UNIVERSITAT ROVIRA 1| VIRGILI

On the (k, t)-metric dimension of a graph

Alejandro Estrada Moreno

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilitzacié ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, aixi com en activitats o materials
d'investigacio i docéncia en els termes establerts a 'art. 32 del Text Refés de la Llei de Propietat Intel-lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autoritzacié prévia i expressa de la persona autora. En
qualsevol cas, en la utilitzacié dels seus continguts caldra indicar de forma clara el nom i cognoms de la
persona autora i el titol de la tesi doctoral. No s'autoritza la seva reproduccié o altres formes d'explotacio
efectuades amb finalitats de lucre ni la seva comunicacio publica des d'un lloc alié al servei TDX. Tampoc
s'autoritza la presentacio del seu contingut en una finestra o marc alié a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i indexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilizacion debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, asi como en
actividades o materiales de investigacién y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorizacion
previa y expresa de la persona autora. En cualquier caso, en la utilizacién de sus contenidos se debera
indicar de forma clara el nombre y apellidos de la persona autora y el titulo de la tesis doctoral. No se
autoriza su reproduccion u otras formas de explotacion efectuadas con fines lucrativos ni su comunicacion
publica desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentacién de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resumenes e indices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.




UNIVERSITAT ROVIRA I VIRGILI
On the (k, t)-metric dimensi
Alejandro Estrada Moreno

on of a graph

DOCTORAL THESIS

ALEJANDRO ESTRADA MORENO

ON THE (k,¢)-METRIC DIMENSION OF A GRAPH

UNIVERSITAT ROVIRA I VIRGILI
2016




UNIVERSITAT ROVIRA I VIRGILI
On the (k, t)-metric dimension of a graph
Alejandro Estrada Moreno

ALEJANDRO ESTRADA MORENO

ON THE (k,¢)-METRIC DIMENSION OF A GRAPH

DOCTORAL THESIS

Supervised by Dr. Ismael Gonzéalez Yero and
Dr. Juan Alberto Rodriguez Veldzquez

Department of Computer Engineering and Mathematics

UNIVERSITAT ROVIRA | VIRGILI

Tarragona
2016



UNIVERSITAT ROVIRA I VIRGILI
On the (k, t)-metric dimension of a graph
Alejandro Estrada Moreno

UNIVERSITAT
ROVIRA | VIRGILI

DEPARTAMENT D' ENGINYERIA
INFORMATICA | MATEMATIQUES

Av. Paisos Catalans, 26
43007 Tarragona

Tel. 34 977 559 703
Fax. 34 977 559 710

[ STATE that the present study, entitled “On the (k,¢)-metric dimension
of a graph”, presented by Alejandro Estrada Moreno for the award of the de-
gree of Doctor, has been carried out under our supervision at the Department

of Computer Engineering and Mathematics of this university.

Tarragona, March 29th, 2016

[7

Doctoral Thesis Supervisor Doctoral Thesis Supervisor

Dr. Juan Alberto Rodriguez Veldzquez Dr. Ismael Gonzalez Yero



UNIVERSITAT ROVIRA I VIRGILI

On the

(kf

t)-metric dimension of a graph

Alejandro Estrada Moreno

Agradecimientos

In this section, I shall write in Spanish, my best way to express my
gratitude.

Mi primer agradecimiento tiene que ser para mis directores de tesis:
Juan Alberto Rodriguez Velazquez e Ismael Gonzalez Yero. Mas alld de su
invaluable ayuda para llevar a término esta tesis, ellos dirigieron mis pasos en
la investigacion y perfilaron mi lenguaje matemaético a lo largo de estos anos.
Durante este tiempo nuestra relacion dejé de ser estrictamente profesional,
hoy somos amigos.

A los grafos, porque han sido mi fuente de inspiracién y ojala que lo
sigan siendo por muchos anos.

También quiero dar gracias al “Departament d’Enginyeria Informatica i
Matematiques” de la “Universitat Rovira i Virgili” por acogerme durante este
tiempo. Esta investigacion no hubiera sido posible sin la beca de formacion
e investigacion que el Programa Marti i Franqués de esta universidad me
concedié en el ano 2012.

A Rolando Trujillo, por su amistad, y por abrirme el camino para llegar
hasta aqui. O mejor, al “Trujo”, porque desde que nos conocemos, pareciera
que le piso los talones!

Agradecer a Yunior Ramirez por estos anos como amigos y colaboradores.
Desde hoy, ya no solo compartimos varios articulos, también tendremos en
comun el dia de la lectura de la tesis.

A mis profesores de todas las ensenanzas, especialmente a los de la Uni-
versidad de La Habana, por todo lo que han aportado a mi formaciéon. A
Monica Batet, por corregir las imperfecciones de mi “resum”.

Al Centro Meteorolégico Provincial de Villa Clara, Cuba, por abrirme
el camino a la vida profesional. En especial a Aldo Moya, mi colega més
cercano y mi amigo.

Agradezco a los que continuamente me han apoyado, especialmente a mi
amigo Yuritzander Baster, que aunque hace mucho nuestros caminos diver-

gen, la amistad es para siempre.



UNIVERSITAT ROVIRA I VIRGILI

On the

(kf

t)-metric dimension of a graph

Alejandro Estrada Moreno

Mil gracias a mis suegros, Eleonora y Norbelio, a mi cunada Neivys,
al concuno Daniel, a Verena y en general a toda esa nueva familia que me
acogié como un hijo méas. Por apoyarme en mis decisiones y cuidar de los
mios cuando yo no estuve.

A mis padres, por darme la vida, por haber hecho de mi un mejor hombre
con sus ensenanzas tanto para la vida como para lo profesional. La distancia
que nos pueda separar, medida de cualquier manera, es infinitesimal; siempre
los llevo conmigo. A mi hermana, por aguantar mis majaderias de hermano
mayor, porque ha tenido la inmensa responsabilidad de cuidar de mis padres
y de borrar las tristezas por mi ausencia. A mis sobrinas, que aunque casi
no conocen a su tio, han de saber que yo las quiero. A mi abuelo, quien por
su edad tal vez no recuerde mi ultimo abrazo. A todos mis tios, primos y
familiares, simplemente gracias.

Quiero terminar agradeciendo a dos personas muy especiales para mi. A
mi Tadeo, que con sus juegos, su incesante sed de curiosidad, sus besos y sus
constantes “te quiero papd”, hace que cualquier obstaculo por grande que
sea, parezca minusculo. A mi Neiky, por su apoyo infinito para llegar hasta
aqui. Por su comprensién extraordinaria, por estar junto a mi en el camino
de la vida. Los buenos y malos momentos siempre serd mejor vivirlos juntos.

A los dos, gracias por existir.



UNIVERSITAT ROVIRA I VIRGILI
On the (k, t)-metric dimension of a graph
Alejandro Estrada Moreno

Contents

Untroduction| 1
(1 Basic concepts and tools| 9
(1.1 Basic concepts and notations|. . . . . . . . .. ... ... ... 9
(1.2 Graph operations| . . . . . . . . .. .. ... L. 11
[1.2.1 Lexicographic product| . . . . . ... ... ... .... 12

[1.2.2  Corona product graphs| . . . . . . .. ... .. ... .. 14

[1.2.3  Cartesian product graphs| . . . .. .. ... ... ... 16

[1.2.4  Strong product graphs| . . . . .. ... ... ... ... 17

2 On (k,t)-dimensional graphs| 19
2.1 (k,t)-metric dimensional graphs| . . . . . . .. .. ... .. .. 19
[2.2  On some families of k-metric dimensional graphs{. . . . . . . . 25

[2.2.1 Bounding the value k for k-metric dimensional graphs|. 25

[2.2.2 On k-metric dimensional treesl . . . . . . ... ... .. 28

[2.3  On some families of k-adjacency dimensional graphl . . . . . . 31
[2.4  k-metric dimensional product graphs . . . . .. .. ... ... 33
[2.4.1  Lexicographic product graphs| . . . . . ... ... ... 33

[2.4.2  Corona product graphs| . . . . . . ... ... ... ... 39

[3 On the (k,t)-metric dimension of graphs| 43
3.1 On the (k,¢)-metric dimension of graphs| . . . . . ... . ... 43
(3.1.1  Large families of graphs having a common (k, t)-metric |

[ generator| . . . .. ... Lo 50
[3.2  On the k-metric dimension of graphs| . . . . . ... ... ... 52
3.2.1 On the k-metric dimension of treesl . . . . . . . .. .. 55

[3.3 On the k-adjacency dimension of graphs| . . . . .. ... ... 59

[3.4  On the k-metric dimension of product graphs/. . . . . . . .. 62




UNIVERSITAT ROVIRA I VIRGILI
On the (k, t)-metric dimension of a graph
Alejandro Estrada Moreno

[3.4.1  Lexicographic product graphs| . . . . .. .. ... ... 62

[3.4.2  Corona product graphs| . . . . . . . ... ... .. ... 118

[4 Computability of the (k,t)-dimensional problem and the k- |

[ metric dimension problem| 125
1.1 The (k,t)-metric dimensional graph problem| . . . . . . . . .. 126
[4.1.1  T'he particular case of product graphs|. . . . . . . . .. 127

(4.2 The k-metric dimension problem| . . . . . .. ... ... ... 129
(4.3 The particular case of trees| . . . . . .. ... ... ... ... 135

[4.3.1 On k-metric dimensional trees different from paths|. . 136

4.3.2  On the k-metric bases and the k-metric dimension of |

| trees different from paths/. . . . . . ... ... .. 139
[Conclusions| 145
(Bibliography| 151
[Symbol Index| 169

Mndex] 173



UNIVERSITAT ROVIRA I VIRGILI

On the

(kf

t)-metric dimension of a graph

Alejandro Estrada Moreno

Introduction

In everyday life we have several situations where the concept of distance is
present. Suppose, for instance, that we wish to travel from Barcelona city
to Madrid city. Thus, we may be interested in one or more of the following

numbers.
1) The straight line distance, in kilometres, from Barcelona to Madrid.
2) The distance, in kilometres, from Barcelona to Madrid by road.

3) The time, in minutes, of the shortest journey from Barcelona to Madrid

by train or bus.

4) The cost, in euros, of the cheapest journey from Barcelona to Madrid by

train or bus.

Each of these numbers is of interest to someone and none of them is easily
obtained from another. However, they do share some similar properties which
can be used to establish a common terminology for altogether. Given a set
X and a function d : X x X — R with the following properties:

(i) d(z,y) >0 for all z,y € X,
(ii)) d(z,y) = 0 if and only if x =y,
(iii) d(z,y) = d(y,x) for all z,y € X,
(iv) d(z,y) < d(z,z) +d(z,y) for all z,y,z € X,

we say that d is a metric on X and that (X, d) is a metric space. Given a
subset M C X, for any point z € X, its metric M -representation is the set
{(m,d(x,m)) : m € M} of its metric M -coordinates (m,d(x,m)). The set M
was called by Blumenthal in [I1], a metric generator for X if distinct points

x € X have distinct M-representations. A metric generator of minimum
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cardinality is called a metric basis of (X,d), and its cardinality the metric
dimension of (X,d). For instance, it is shown in [9] that if U is any non-
empty open subset of any one of the three classical n-dimensional geometries
of constant curvature, namely FEuclidean space R", Spherical space S™ and
Hyperbolic space H", then dim(U) = n + 1.

From now on we consider a simple and connected graph G = (V, E) and
the function dg : V x V' — NU{0}, where dg(z,y) is the length of a shortest
path between z and y in G, and N is the set of positive integers. Obviously
(V,dg) is a metric space, since dg is a metric on V. On the other hand, since
graph structures may be used to model computer networks, social networks,
molecules or any structure which depends on objects and their relationships,
it is therefore an interesting problem to study the metric space (V,dg). Ob-
jects can be represented as vertices in a graph and edges could represent their
relationships. For instance, the problem of uniquely determining the loca-
tion of an intruder in a network was the principal motivation of introducing
the concept of metric dimension of (V, dg) by Slater in [I16] [I17], where the
metric generators were called locating sets. The concept of metric dimension
of (V,dg) was also introduced independently by Harary and Melter in [59],
where metric generators were called resolving sets. Moreover, the terminol-
ogy of metric generators for the case of graphs was recently introduced by
Seb6 and Tannier in [I13].

Given a positive integer ¢, we define the following function dg; : V XV —

NuU {0}, where
de(z,y) = min{dg(z, y),t}. (1)

Since dg ;4 is a metric on V', we also have that (V, dg ) is a metric space. Note
that if ¢ is at least the diameter of GG, then the metric dg, is equivalent to
de. Any metric generator for (V,dg,) is a metric generator for (V,dg41)
and, as a consequence, the metric dimension of (V,dg,+1) is at most the
metric dimension of (V, dg ;). In particular, the metric dimension of (V, dg 1)
is equal to |V| — 1, and as a consequence, it only deserves to study the
metric dimension of (V,dg;) for ¢ > 2. Notice that while using the metric
dg+, the concept of metric generator needs not be restricted to the case
of connected graphs, as for any pair of vertices x,y belonging to different

connected components of G we can assume that dg(z,y) = 400 > t and so
d(ﬂtcxvy) =t.
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A vertex v € V is said to distinguish two different vertices x and vy,
if dgi(v,x) # dgi(v,y). In this sense, a set S C V is a metric generator
for (V,dg4) if every pair of different vertices of G is distinguished by some
element of S.

Despite the undeniable usefulness of a metric generator for (V,dg:), in
its primary version, it has a weakness related with the possible uniqueness
of the vertex identifying a pair of different vertices of the graph. Consider,
for instance, some robots which are navigating, moving from node to node
of a network. On a graph, however, there is neither the concept of direction
nor that of visibility. We assume that robots have communication with a set
of landmarks S (a subset of nodes) which provides them the distance to the
landmarks in order to facilitate the navigation. Assume that all landmarks
have a transmission range t. As a consequence, robots only have communi-
cation with those landmarks in S which are at distance at most ¢ from them.
Our aim is that the landmarks would uniquely determine the robot’s position
on the graph. A minimum set of landmarks which uniquely determines the
robot’s position is a metric basis of (V,dg:), and the minimum number of
landmarks is the metric dimension of (V,dg:). Suppose that in a specific
moment there are two robots x,y whose positions are only distinguished by
one landmark s € S. If the communication between x and s is unexpectedly
blocked, then the robot x will get lost since it could assume to have the
position of y. So, for more realistic settings it may be desirable to consider
a set of landmarks where each pair of nodes is distinguished by at least &
landmarks, for some k£ > 2.

A natural solution regarding that weakness is the location of one land-
mark in every node of the graph. But, such a solution, would have a very
high cost. Thus, the choice of a correct set of landmarks is convenient for
a satisfiable performance of the navigation system. That is, in order to
achieve a reasonable efficiency, it would be convenient to have a set of as
few landmarks as possible, always having the guarantee that every object of
the network will be properly distinguished. In this sense, we introduce the
concept of (k,t)-metric generator for (V,dg;), which is a natural extension
of the concept of metric generator. A set S C V is said to be a (k,t)-metric
generator for a graph G if and only if any pair of different vertices of G is

distinguished by at least k elements of S, i.e., for any pair of different vertices
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u,v € V, there exist at least k distinct vertices wy, ws, ..., w, € S such that
dai(u,w;) # dei(v,w;), for every i € {1,...,k}. (2)

A (k,t)-metric generator of minimum cardinality in G is called a (k, t)-metric
basis and its cardinality the (k,t)-metric dimension of G, which is denoted
by dimg (G).

As an example, we take a graph G obtained from the cycle graph C5 and
the path P, of order » > 2, by identifying one of the vertices of the cycle, say
uy, and one of the extremes of P,, as we show in Figure|l] Let S} = {vy, v2},
Sy = {v1,v9,u. }, Sz = {v1,v2,v3,u,} and Sy = {vy,ve,v3,v4,u,}. For k €
{1,2,3,4} and t at least the diameter of G, the set Sy is a (k, t)-metric basis
of G.

U1

U1 Uz Uy

o0&

O

U3
V4
Figure 1: For k € {1,2,3,4} and ¢ at least the diameter of G, dimy(G) =
kE+1.

Note that the (2, 1)-metric dimension of any graph is equal to |V| and
that there are no (k, 1)-metric bases for £k > 3. Thus, from now on we assume
that ¢ > 2. It can also be noted that every (k,t)-metric generator S satisfies
that |S| > k and, if £ > 1, then S is also a (k — 1,¢)-metric generator.
Moreover, (1,t)-metric generators, where ¢ is at least the diameter of G, are
the standard metric generators (resolving sets or locating sets as defined in
[59] or [1T6], respectively). Notice that if & = 1, then the problem of checking
if a set .S is a metric generator reduces to check condition only for those
vertices u,v € V — S, as every vertex in S is distinguished at least by itself.
Also, if kK = 2, then condition must be checked only for those pairs having
at most one vertex in S, since two vertices of S are distinguished at least by
themselves. Nevertheless, if £ > 3, then condition must be checked for
every pair of different vertices of the graph.

We also must remark that a vertex v € V(G) distinguish two different
vertices x,y € V(G) with regard to the distance dg o, if v is exactly adjacent
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to one of x,y. In some sense, one could say that v distinguishes z,y in
connection with the neighbourhood of v (or according to adjacencies between
these vertices). Therefore, from now on we shall refer to the (k,2)-metric
generators (bases) as k-adjacency generators (bases), and the (k,2)-metric
dimension shall be called k-adjacency dimension and shall be denoted by
adimy(G). On the other hand, the (k,t)-metric generators (bases) of a graph
G, where t is greater than or equal to the diameter of G, had been previously
referred to as k-metric generators (bases), and its (k,t)-metric dimension
had been called k-metric dimension and had been denoted by dim(G). As
a consequence, we keep this nomenclature and notation. In this thesis we
focus on the study of the k-adjacency dimension and the k-metric dimension
of graphs.

The literature about the 1-metric generators for graphs shows its highly
significant potential to be used for solving a representative number of real
life problems, which has been described in several works. For instance,
some applications to the navigation of robots in networks are discussed in
[T, [72), 89, ©0), [114]; to chemistry in [21], 22 68, 69, [75]; to problems of
pattern recognition and image processing, some of which involve the use of
hierarchical data structures, in [93]; to multiprocessor interconnection net-
works in [91] and to the network discovery(verification) problem in [10]. In
addition, interesting connections with the Mastermind game were presented
in [16], 25] 511, 52 55, [70], throughout the development of an strategy for such
game which precisely needs the uniquely recognition of some “elements” of
the game. Finally, 1-metric generators have been also used in studies con-
cerning some coin weighing problems in [4], 15l 16, 17, 18, B1], 46l (6l 113].
There could probably exist some other possible applications of 1-metric ge-
nerators to some real problems. However, to the best of our knowledge,
we have collected here the main part of them. Moreover, this invariant
was further theoretically studied in a number of other papers including
[6, (16, 20, 21, 24, [37, 38, 61, 06, 11, 118, 132, [134].

The study of this invariant in graphs is more interesting if we consider
that the problem of finding the 1-metric dimension of graphs is NP-hard
[72], even when restricted to planar graphs [27]. However, there exist a
linear-time and a polynomial-time algorithm for determining the 1-metric
dimension for trees [72] and outerplanar graphs [27], respectively. For these

reasons, many efforts have been made to computationally solve the problem
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of finding a 1-metric generator of a graph in the last few years. For instance,
an increasing interest into algorithmic questions on this topic has been raised
(see [30], 40l 60] as some examples). In this direction we can also highlight
some papers of Kratica et al. in [77, [78, [79, B0], where some of them are
using some interesting heuristic on genetic algorithms to solve such problem
for some families of graphs. We finally suggest to consult the paper [6], which
contains an important collection of distinct ways of presenting the 1-metric
generators from different points of view that exists nowadays in the literature.
This article mentioned above is also an attempt to unifying the terminology
associated to this parameter in different areas of mathematics. In this thesis
we also try to contribute with this unification.

On the other hand, in order to gain more insight into the metric proper-
ties of graphs, several variations of 1-metric generators have been introduced
and studied. Such variations has become more or less known and popular in
connection to their applicability or according to how much challenging prob-
lems they are raising up. Among them we could remark resolving dominating
sets [14], independent resolving sets [22], local metric sets [8 41, [96], 103, 104],
strong resolving sets [32, [86], 83, R4, ©2], O5 105 107, 113, 135], resolving
partitions [23, 24 38, 53], 106l 108], strong resolving partitions [130, [131],
simultaneous metric dimension [32] [99] 100, 101] and k-antiresolving sets
[TT9]. About this last one variation, it is maybe interesting to point out
that has been applied to generate a privacy measure for social graphs. Be-
sides, the concept of 1-adjacency generatoxﬂ was introduced by Jannesari
and Omoomi in [67] as a tool to study the l-metric dimension of lexico-
graphic product graphs. This concept has been also studied by Fernau and
Rodriguez-Velazquez in [41l [42], where it was shown that the 1-metric di-
mension of the corona product of a graph of order n and some non-trivial
graph H equals n times the 1-adjacency dimension of H. As a consequence
of this strong relationship was obtained that the problem of computing the 1-
adjacency dimension of graphs is NP-hard. The identifying codes are another
variation of 1-metric generators, and they are nothing else than dominating
1-adjacency generators. Little is known about the robustness notions and
other variants discussed in connection with wireless networks for identifying
codes [43], 44, 45| [64], 87, 102].

11-adjacency generators were called adjacency resolving sets in [67]
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The 1-metric generators has been widely studied in the last decade. In
the database of MathSciNet, for instance, we have found 190 papers related
to the metric dimension of graphs since 2000 to date. Likewise, in Google
Scholar, for the same time interval, we have found 1260 documents about
the metric dimension of graphs. According to TDX (Theses and Disserta-
tions Online), a digital cooperative repository of doctoral theses presented
at some Spanish universities, there are 59 doctoral theses that have been
defended since 2000 to date, where the metric dimension of graphs is men-
tioned. However, extensions of the 1-metric dimension to k-metric dimension
for any k£ > 2 had not been taken into account before our work would had
began. To the best of our knowledge, the only work in this direction was pre-
sented in [63], where was weakly studied the case k = 2 through the study of
some parameter they called fault tolerant metric dimension. More recently,
and in parallel with this work, a similar approach to k-metric dimension has
appeared in [I], 2], although the direction of such works are more going in the
algorithmic and computer science sense. Considering all these previous facts,
it is of high importance the study of the (k,¢)-metric dimension of graphs.

The thesis is organized as follows. In the first chapter, we recall some
basic definitions on graph theory. The rest of the chapters are focused on
the (k,t)-metric dimension of graphs with special emphasis on the k-metric
dimension and the k-adjacency dimension. Chapter [2| is focused on finding
the largest integer k such that there exists a (k,t)-metric basis for a given
graph. Chapter deals with finding formulae and bounds for the (k, t)-metric
dimension of some graphs. In Chapter [4] we study some complexity issues
concerning the problems of computing the largest integer k such that there
exists a (k,t)-metric basis for a graph, as well as computing the k-metric
dimension of a graph. We conclude the work with highlights of the principal

studied issues, contributions of the thesis, and future works.
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Chapter 1

Basic concepts and tools

1.1 Basic concepts and notations

We begin by establishing the basic terminology and notations which is used
throughout the thesis. For the sake of completeness we refer the reader to
the books [28, 126]. Graphs considered herein are undirected, finite and
contain neither loops nor multiple edges. From now on G represents a graph
with vertex set V(G), edge set E(G), and order n = |[V(G)|. A graph is
nontrivial if n > 2. If two graphs G and H are isomorphic, then we say
that G = H. We use the notation u ~ v for two adjacent vertices v and
v of G. For a vertex v of G, Ng(v) denotes the set of neighbours that v
has in G, i.e., Ng(v) = {u € V(G) : u ~ v}. The set Ng(v) is called the
open neighbourhood of a verter v in G and Ng[v] = Ng(v) U {v} is called
the closed neighbourhood of a vertex v in G. The degree of a vertex v of
G is denoted by 0¢(v), i.e., 0g(v) = |Ng(v)|. The open neighbourhood of a
set S of vertices of G is Ng(S) = U,cg Na(v) and the closed neighbourhood
of S'is Ng|S] = Ng(S)US. The minimum and mazimum degree of G are
denoted by 6(G) and A(G), respectively. The girth g(G) of G is the length
of a shortest cycle contained in G. A set S is a dominating set in G if
every vertex not in S is adjacent to a vertex in S. As usual, we denote by
AVB = (AU B) — (AN B) the symmetric difference of two sets A and B.
We use the notation K,,, C,, P,, and N, for the complete graph, cycle
graph, path graph, and empty graph, respectively. Moreover, we write K, for
the complete bipartite graph of order s+t and, particularly, K ,, for the star
graph of order n+ 1. An end vertex is a vertex of degree one while a support

vertex is a vertex adjacent to an end vertex. Let T be a tree, an end vertex
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in T is called a leaf.

The diameter, D(G), of G is the longest distance between any two ver-
tices in G, i.e., D(G) = max, ,ev(@){da(u,v)}. If G is not connected, then
we assume that the distance between any two vertices belonging to different
components of G is infinity and, thus, its diameter is D(G) = oc.

The complement of a graph G is a graph G with vertex set V(G) and
wv € E(G) if and only if uv ¢ E(G). The subgraph induced by a set X is
denoted by (X). A cliqgue in G is a set of pairwise adjacent vertices. The
clique number of G, denoted by w(G), is the number of vertices in a maximum
clique in G. We will say that S is an w(G)-clique if |S| = w(G).

Two vertices x,y are called false twins if N(x) = N(y), and z,y are
called true twins if N|x] = N[y]. In particular, if G' contains more than one
isolated vertex, then they are false twin vertices. Figure [I.1] shows examples
of basic concepts such as true twins. Two different vertices x,y are twins if
they are either false twin vertices or true twin vertices. We also say that a
vertex x is a twin, if there exists other vertex y such that x,y are twins. In
concordance with that, we define the twin equivalence relation R on V(QG)

as follows:
Ry «— Ne(z) —{y} = Na(y) — {=}.

We have three possibilities for each twin equivalence class U:
(a) U is a singleton twin equivalence class, or

(b) U is a false twin equivalence class, i.e., Ng(x) = Ng(y), for any z,y € U
(and case (a) does not apply), or

(¢) U is a true twin equivalence class, i.e., Ng|[z] = Ngly|, for any x,y € U

(and case (a) does not apply).

If all twin equivalence classes of a graph G are singletons, then we say that
G is a twins free graph. If G does not have any true (false) twin equivalence
class, then we say that G is a true (false) twins free graph. Given a vertex
x € V(G), we denote the true twin equivalence class to which = belongs by
TT(z), and the false twin equivalence class to which x belongs by FT'(z).
We also denote by S(G), FT(G) and TT(G) the union of the singletons, the
false, and the true twin equivalence classes of a graph G, respectively.

An example of a graph where every equivalence class is a true twin
equivalence class is K, + (K U K3), r,s,t > 2 (see Subsection and
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Section for the concepts of join graph G + H and disjoint union G U H,
respectively). In this case, there are three equivalence classes composed by
r,s and t true twin vertices, respectively. As an example where no class is
composed by true twin vertices we take the complete bipartite graph K, ,
r,s > 2. Finally, the graph K, + Ny, r,s > 2, has two equivalence classes
and one of them is composed by r true twin vertices. On the other hand,
Ky + (K, UNs), r,s > 2, is an example where one class is a singleton, one
class is composed by true twin vertices and the other one is composed by

false twin vertices.

G H

b d o b

Figure 1.1: The set {d,e, f} C V(G) is composed by true twin vertices in
G. Notice that b and g are true twin vertices in G and f and d are also true
twins. The set {e, f,g,h} C V(H) is a twin-free clique in H.

A graph G is 2-antipodal if for each vertex x € V(G) there exists exactly
one vertex y € V(G) such that dg(x,y) = D(G). For example even cycles
are 2-antipodal graphs.

Other remaining definitions not defined herein are given the first time

that the concept appears in the text.

1.2 Graph operations

This section is a brief overview on some graphs operations. The union GUH
of two graphs G and H with disjoint vertex sets Vi and V5, respectively, and
edge sets F; and FEy, respectively, is the graph with vertex set V =1, UV,
and edge set ¥ = E; U E,. This operation is sometimes also known explicitly

as the graph disjoint union.
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A product of graphs is an operation made with two or more graphs in
order to generate another graph. The graphs used in the operation are called
the factors of the product. In the last few years a rich theory involving the
structure and recognition of classes of product graphs has emerged [57]. The
most studied graph products are the Cartesian product, the strong product,
the direct product and the lexicographic product, which are also called stan-
dard products. However, there are also several other non standard styles of
operations with graphs, which have been intensively studied. In this work
we center our attention in one case of the standard products, and other case
of the non standard ones. Specifically, we focus on the lexicographic product
and the corona product of graphs. Even so, here we present two standard
products that we also use in this thesis, the so called Cartesian product and

strong product of graphs.

1.2.1 Lexicographic product

The lexicographic product of two graphs G and H is the graph G o H with
vertex set V(G o H) = V(G) x V(H) and two vertices (a,b) and (c,d) are
adjacent in G o H if either

e ac € E(G), or
e a=candbd € E(H).

In the literature we can also find the names composition or substitution
for the lexicographic product. This product is clearly not commutative, while
it is associative [57, [65]. Figure illustrates two examples of lexicographic
products and, at the same time, emphasizes the fact that the lexicographic
product is not commutative.

A lexicographic product G'o H is connected if and only if G is connected.
The relation between distances in the lexicographic product of graphs and

in its factors is presented in the following remark, for which is necessary to

recall )

Remark 1.1. [57,65] If (a,b) and (c,d) are vertices of G o H, then

dg(a,c), ifa#c,
daor((a,b), (c,d)) = ¢ dy(b,d), ifa=c anddg(a) =0,
dia(b,d), ifa=c and ig(a) # 0.
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Figure 1.2: Two lexicographic product graphs: K30 P3 and P30 K 3.

We now define an extended lexicographic product between a graph G of
order n and a family composed by n graphs. The lexicographic product of a
graph G of order n and a family composed by graphs H = {H;, Ha, ..., H,},
which is denoted by G'oH, is the graph with vertex set (U, cy (o {vi} x V (H,),

where (a,v) is adjacent to (b, w) whenever
e ab € E(G), or
e o =0band vw € E(H,;) for every H; € H.

Note that this approach of the lexicographic product is a natural general-
ization of the standard lexicographic product of graphs, and therefore of
its properties too. For instance, Remark holds. Figure |1.3| shows the
lexicographic product between P3 and a family composed by {P;, K, Ps}.

Q X 0O

@ O O

Figure 1.3: The lexicographic product graph Ps o { P, Ky, P3}.

If every H; € H holds that H; = H, then we use the notation G o H (as
in the standard case) instead of G o H and we refer to H; as the ith copy of
H. In general, we can construct the graph G o H by taking one copy of each
H; € H and, for every u;u; € E(G), we join by an edge every vertex of H;
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with every vertex of H;. Note that G o H is connected if and only if G is
connected.

A particular case of lexicographic product is the join. The join graph
G + H is defined as the graph obtained from disjoint graphs G and H by
taking one copy of G and one copy of H and joining by an edge each vertex
of G with each vertex of H [58,[136]. Note that G+ H = Ky0{G,H}. Itisa
commutative and associative operation. Now, for the sake of completeness,

Figure [1.4] illustrates two examples of join graphs.

)

)

Figure 1.4: Two join graphs: Py + C3 and Ny + Ny + Ns.

Moreover, complete k-partite graphs are typical examples of join graphs.
A complete k-partite graph K, ,,... . is the join graph of empty graphs on
p1, P2, - - -, pi vertices. Notice that Ny + Ny + No, illustrated in Figure [I.4] is
none other than the complete 3-partite graph Kj .

The lexicographic product has been studied from different points of view
in the literature. One of the most common researches focuses on finding
relationships between the value of some invariant in the product and that
of its factors. In this sense, we can find in the literature a large number of
investigations on diverse topics, like for instance, independence number [3,
50], domination number [3, 88 [94], [IT5], chromatic number [3, 26} 50, [73} O8],
connectivity [128], hamiltonicity [7, 81], and metric dimension [39, 67, 85,
112]. For more information on the research on product graphs we suggest
the books [57, [65].

1.2.2 Corona product graphs

Let G and H be two graphs of order n; and ns, respectively. The corona
product G ® H is defined as the graph obtained from G and H by taking one
copy of G and n; copies of H and joining by an edge each vertex from the
ith copy of H with the ith vertex of G. We denote by V' = {v1,va,...,v,}
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the set of vertices of G and by H; = (V;, E;) the copy of H such that v; ~ v
for every v € V;. Notice that the corona product K; ® H is isomorphic to
the join graph K; + H.

Observe that G ® H is connected if and only if G is connected. More-
over, it is readily seen from the definition that this product is neither an
associative nor a commutative operation. Figure shows some examples
of corona products and also underscores the fact that the corona product is

not commutative.

j/d\‘\o

Figure 1.5: The corona product graphs P, © C53 and C3 ® Pj.

"
L

The concept of corona product of two graphs was first introduced by
Frucht and Harary [47]. This product is not too much popular and has not
been widely investigated. One of the reasons could be that the corona pro-
duct is a simple operation on two graphs and some mathematical properties
could be directly consequences of its factors. Surprisingly, for the case of the
k-metric dimension this is not the situation, which makes interesting its study
for this non standard product. Moreover, there are a few remarkable studies
on corona products, like for instance on some topological indices [97, [129], the
chromatic number [48], 54, [133], the domination number [54], the toughness
[19], and the metric dimension [8, 39, 411, [42] 54] 66, ]R3, 106], 132].

We also define an extended corona product between a graph G of order
n and a family composed by n graphs. Let G be a graph of order n and
let H = {Hy, Hy,...,H,} be a family of graphs. The corona product graph
G ©® H is defined as the graph obtained from G and H by taking one copy
of G and joining by an edge each vertex of H; with the ith vertex of G, [47].
In particular, if every H; € ‘H holds that H; = H, then we use the standard
notation G ® H instead of G ® H. Note that G ® H is also connected if and

only if G is connected.
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1.2.3 Cartesian product graphs

The Cartesian product graph GOH, of two graphs G = (Vi, Fy) and H =
(Va, E5), is the graph whose vertex set is V(GOH) = V; x V4, and any two
distinct vertices (x1,x2), (y1,y2) € V1 x V4 are adjacent in GOH if and only
if either:

(a) x1 =y and z9 ~ ya, or
(b) 1 ~ y; and x5 = ys.

The Cartesian product is a straightforward and natural construction,
and is in many respects the simplest graph product [57, 65]. Hypercubes,
Hamming graphs and grid graphs are some particular cases of this product.
The Hamming graph Hy,,, is the Cartesian product of k copies of the complete
graph K, i.e.,

J/

Hy,=K,0K,U ... UK,

k times
The Hypercube @)y, is defined as H,, . Moreover, the grid graph PP, is
the Cartesian product of the paths P, and P, the cylinder graph Cy P, is
the Cartesian product of the cycle C} and the path P,, and the torus graph
C,C, is the Cartesian product of the cycles C} and C),. Figure [1.6 shows

two examples of Cartesian products.

° —— o e

Figure 1.6: Two Cartesian product graphs: C50K, and K; s0Ps.

This operation is commutative [57] in the sense that GOH = HOG, and
is also associative, as the graphs (FOG)OH and FO(GOH) are naturally
isomorphic. A Cartesian product of graphs is connected if and only if both

of its factors are connected.
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This product has been extensively investigated from various perspectives.
For instance, the most popular open problem in the area of domination the-
ory known as Vizing’s conjecture [122]. Vizing suggested that the domination
number of the Cartesian product of two graphs is at least as large as the pro-
duct of domination numbers of its factors. Several researchers have worked
on it, for instance, some partial results appears in [12] 57]. Moreover, Vizing
[121] has investigated the independence number of Cartesian products. The
chromatic number of this product has been completely studied in [I10]. The
connectivity and the hamiltonian properties of Cartesian products have been
described in [123] [127] and [29], respectively. For more information on struc-
ture and properties of the Cartesian product of graphs we refer the reader to
[57, 65].

1.2.4 Strong product graphs

The strong product graph GRH of two graphs G = (V1, Ey) and H = (V4, Es)
is the graph with vertex set V (G X H) = V; x V5, where two distinct vertices
(x1,22), (Y1,y2) € Vi x Va are adjacent in G X H if and only if one of the
following holds.

e 1 =y and xy ~ Yo, OT
e 71~y and Ty = Yo, Or
e 11~y and T3 ~ ys.

Other known names for the strong product are the strong direct product
or the symmetric composition. Notice that GLJH and G x H are subgraphs
of GX H. Figure [I.7] shows two examples of strong products.

Figure 1.7: Two strong product graphs: Cs X Ky and K; 3 X Ps.
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The commutativity of the strong product follows from the symmetry of
the definition of adjacency and for associativity see [57,[65]. A strong product

of graphs is connected if and only if every one of its factors is connected.

Remark 1.2. [57,65] Let G and H be two graphs. For every u € V(G) and
veV(H)
NggH[(u,U)] = Ng[’u] X NH[U]

As a direct consequence of the remark above the following result is ob-

tained.

Corollary 1.3. Let G and H be two graphs and let u,vw' € V(G) and v,v" €
V(H). The following assertions hold.

(i) If (v, ") € Negp(u,v), then v’ € Ngu] and v' € Ng[v].
(ii) Ifu' € Ng(u) and v € Ng(v), then (v',v") € Negm(u,v).

With the strong product is closely connected an important information
theoretical parameter, which in general is very difficult to calculate - the
Shannon capacity. The Shannon capacity of a graph G is defined as the limit
of ¢/a(G*) when n tends to infinity, and where a(G) denotes the indepen-
dence number of the graph G and G* is the strong product of G with itself
k times. This problem has been attracted for several researchers and some
partial results are presented in [5, [57].

Various properties of strong products have been also studied. The inves-
tigation encompasses, for instance, domination [57, 94], chromatic number
[74, [120], connectivity [13],[124] and hamiltonian properties [36] [76]. For more

information on the strong product we refer the reader to [57, [65].
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Chapter 2

On (k,t)-dimensional graphs

Overview

This chapter is concerned with finding the largest integer k£ such that there
exists a (k,t)-metric basis for a graph G. In this sense, we first give general
results for any value of ¢ > 2. Subsequently, we focus on those values of ¢ that
are at least the diameter of G and that are equal to two. Particularly, we
study the values of £ such that there exist k-metric bases for the lexicographic

product and the corona product of graphs.

2.1 (k,t)-metric dimensional graphs

Throughout this chapter, unless otherwise stated, we will consider ¢ as an
integer greater than one.

It is clear that it is not possible to find a (k,¢)-metric generator for
a graph for every integer k. That is, given a graph G and the distance
de.t, there exists an integer r such that G does not contain any (k, t)-metric
generator for every k > r. According to that fact, we say that a graph G is
(k,t)-metric dimensional if k is the largest integer such that there exists a
(k,t)-metric basis of G. Notice that if G is a (k, t)-metric dimensional graph,
then for each positive integer r < k, there exists at least one (r,t)-metric
basis of G. Given a graph G and two different vertices =,y € V(G), we
denote by Dg(z,y) the set of vertices that distinguish the pair x,y with

regard to the metric dgy, t.e.,
Day(r,y) ={z €V : dgi(z,x) # da(z,y)}.

19
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We also define the set of nontrivial vertices that distinguish the pair z,y
as Dg4(7,y) = Day(z,y) — {7,y}. Note that a set S C V(G) is a (k,1)-
metric generator for G if |Dg(x,y) NS| > k for every two different vertices
z,y € V(G). It can also be noted that two different vertices z,y € V(G)
belong to the same twin equivalence class of G if and only if Dg, (, y) =0,
or equivalently, if D¢ (2, y) = {z,y}.

Since for every different vertices z,y € V' we have that |Dg¢(z,y)| > 2,
it follows that the whole vertex set V' is a (2, t)-metric generator for G' and, as
a consequence, we deduce that every graph G is (k, t)-metric dimensional for
some k > 2. On the other hand, for any graph G of order n > 3, there exists
at least one vertex v € V and two vertices x,y € V such that {z,y} € Ng(v)
or dgi(x,v) = dg(y,v) =t > 2,50 v ¢ Dg(x,y) and, as a result, there is
no n-metric dimensional graph of order n > 3. Comments above are recalled

in the next remark.

Remark 2.1. Let G be a (k,t)-metric dimensional graph of order n > 2 and
let t be an integer greater than one. If n > 3, then 2 < k <n—1. Moreover,
G is (n,t)-metric dimensional if and only if G = Ky or G = Ns.

We define the following parameter

D(G,t) = min {|Dg+(z,y)|}.

z,yeVv

Theorem 2.2. A graph G is (k,t)-metric dimensional if and only if k =
D(G,1t).

Proof. (Necessity) If G is a (k,t)-metric dimensional graph, then for any
(k,t)-metric basis B and any pair of different vertices z,y € V(G), we have
|BNDgy(z,y)| > k. Thus, k < D(G,t). Now we suppose that k < D(G,1).
In such a case, for every 2,y € V(G) such that |B N Dg(2',y')| = k, there
exists 2y € Day(2,y") — B such that dg (20, 2") # da (22, y'). Hence,
the set

BU U {Zx’y’}
'y €V(G): |BNDg,i(x'y')|=k

is a (k + 1,t)-metric generator for GG, which is a contradiction. Therefore,
k=D(G,t).
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(Sufficiency) Let a,b € V(G) such that m‘i/r(lc) |De+(z,y)| = |Daila,b)|
x,Yye

= k. Since no set S C V(Q) satisfies |[SNDg(a,b)| > k and V(G) is a (k, t)-
metric generator for G, we conclude that G is a (k,t)-metric dimensional

graph. [

The characterization proved in Theorem[2.2]is a result on general graphs.
We next particularize this for some specific classes of graphs or we bound its
possible value in terms of other parameters of the graph. If two vertices u, v
of G do not belong to the same twin equivalence class, then u or v, say u, has
an adjacent vertex x that is not adjacent to v. Thus, {u,v,z} C Dg.(u,v),

and as a consequence, we deduce the following result.

Corollary 2.3. A graph G is (2,t)-metric dimensional if and only if there

are at least two vertices of G belonging to the same twin equivalence class.

It is clear that P, and Pj are (2,t)-metric dimensional. Now, a specific

characterization for (2, ¢)-dimensional trees is obtained from Theorem [2.2] (or

from Corollary .

Corollary 2.4. A tree T of order n > 4 is (2,t)-metric dimensional if and

only if T contains a support vertex which is adjacent to at least two leaves.

An example of a (2,t)-metric dimensional tree is the star graph Ki,,_1,
whose (2, t)-metric dimension is dimg ¢ (K ,,—1) = n—1. On the other side, an
example of a tree T" which is not (2, ¢)-metric dimensional is drawn in Figure
2.1 By Corollary and since |Dp(vi,vs)| = [{vi,vs,v5}| = 3, we have
that 7" is (3,¢)-metric dimensional. The set V(T') — {va} is a (3,2)-metric
basis and a (3,3)-metric basis of T, while {vy,vs,v4,v5} is a (3,4)-metric

basis, or equivalently, a 3-metric basis of T

U3 Us

Vg Ve U7

Figure 2.1: An example of (3,¢)-metric dimensional tree T'. The set V(T') —
{va} is a (3, 2)-metric basis and a (3, 3)-metric basis of T', while {vy, vs, v4, v5 }

is a (3, r)-metric basis of T for any r > 4.

A cut verter in a graph is a vertex whose removal increases the number

of components of the graph and an extreme verter is a vertex v such that
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the subgraph induced by N{[v| is isomorphic to a complete graph. Also, a
block is a maximal biconnected Subgraphﬂ of the graph. Now, let § be the
family of sequences of connected graphs G, Ga,...,G,, r > 2, such that G
is a complete graph K,,,, ny > 2, and G, ¢ > 2, is obtained recursively from
G;_1 by adding a complete graph K, n; > 2, and identifying one vertex of
G,_1 with one vertex of K,,,.

From now on we say that a connected graph G is a generalized treeﬂ if
and only if there exists a sequence {G1,Gs,...,G,.} € § such that G, = G
for some r > 2. The 1-metric dimension of these graphs was studied in [82].
Notice that in these generalized trees every vertex is either, a cut vertex or an
extreme vertex. Also, every complete graph used to obtain the generalized
tree is a block of the graph. Note that, if every K, is isomorphic to Ko,
then G, is a tree, justifying the terminology used. With these concepts we

give the following consequence of Theorem [2.2] which is a generalization of

Corollary [2.4]

Corollary 2.5. A generalized tree G is (2,t)-metric dimensional if and only
if G contains at least two extreme vertices being adjacent to a common cut

vertex.

In particular we can state the following result on Cartesian product

graphs.

Proposition 2.6. Let G and H be two connected graphs of order n > 2 and
n' > 3, respectively. Then GOH is (k,t)-metric dimensional for some k > 3.

Proof. Notice that for any vertex (a,b) € V(GOH), Neou((a,b)) = (Ng(a)x
{b}) U ({a} x Ng(b)). Now, for any two distinct vertices (a,b), (c,d) €
V(GOH) at least a # c or b # d and since H is a connected graph of
order at least three, we have that Ny (b) # {d} or Ny(d) # {b}. Thus, we
obtain that Ngog((a,b)) # Neom((c,d)). Therefore, the twin equivalence
classes of GLJH are singletons and, by Remark and Corollary 2.3) GOH

is (k,t)-metric dimensional for some k > 3. O

Now, according to Remark [2.1] we have that every graph of order n > 2,
different from K, and N,, is (k,t)-metric dimensional for some k£ < n — 1.
Next we characterize those graphs being (n — 1,t)-metric dimensional. To

this end, we first show two previous results.

LA biconnected graph is a connected graph having no cut vertices.
2In some works these graphs are called block graphs.
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Proposition 2.7. Let P, be a path of order n > 3. If n <t + 2, then P, is
(n —1,t)-metric dimensional. Otherwise, P, is (k,t)-metric dimensional for

some k <n— 2.

Proof. Since n > 3, by Remark 2.1 P, is (k,¢)-metric dimensional for some

ke{2,...,n—1}. We now consider two cases:

(1) n <t+ 2. For any pair of different vertices u,v € V(P,) there exists at
most one vertex w € V(FB,) such that w does not distinguish « and v.
Therefore, by Theorem P, is (n — 1,t)-metric dimensional.

(2) n > t+ 2. Let u,v € V(P,) be the leaves. Since t > 2, it follows
n > 4. Let u/,v" be the vertices adjacent to v and v, respectively. Since
n>t+2,dp,(u,v) =dp, (u,v') =t and dp, (v, v) = dp, +(v/, V") = .
So, Dp, +(v,v") N {u,v'} = 0, which means that |Dp, ;(v,v")] < n — 2.
Therefore, by Theorem [2.2] the graph P, is (k, t)-metric dimensional for

some k <n — 2.

]

Proposition 2.8. Let C,, be a cycle graph of order n. If n < 2t+1 and it is
odd, then C,, is (n — 1,t)-metric dimensional. Otherwise, C,, is (k,t)-metric

dimensional for some k < n — 2.

Proof. Since n > 3, by Remark 2.1} C,, is (k, t)-metric dimensional for some

ke {2,...,n—1}. We now consider three cases:

(1) n < 2t+ 1 and it is odd. For any pair of different vertices u,v € V(C),)
there exist only one vertex w € V(C,,) such that w does not distinguish
u and v. Therefore, by Theorem 2.2} C,, is (n — 1, ¢)-metric dimensional.

(2) n is even. In this case, C, is 2-antipodal. For any pair of vertices
u,v € V(C,), such that dg, (u,v) = 2I, we can take a vertex z such
that dc, (u,x) = de, (v,2) = 1. So, Dc, +(u,v) N {z,y} = 0, where y is
antipodal to x. Therefore, by Theorem the graph C,, is (k,t)-metric
dimensional for some k < n — 2.

(3) n > 2t+1 and it is odd. Let u,v € V(C,,) be two adjacent vertices. Let
x,y be the antipodal vertices of u. Since n > 2t + 1, we deduce that
de, (u, ) = de, (u,y) >t + 1, which gives de, (u, ) = de, +(u,y) = t.
Without loss of generality, we assume that d¢, (v,z) = dg,(v,y) + 1.
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Since d¢, (v, ) >t + 1, we deduce that de, (v, z) = d¢, +(v,y) = t. So,
De,i(z,y) N {u,v} = 0. Therefore, by Theorem 2.2 the graph C,, is
(k,t)-metric dimensional for some k < n — 2.

[]

Once presented the two propositions above, we are now ready to present

the characterization of (n — 1,¢)-metric dimensional graphs.

Theorem 2.9. Let G be a graph order n > 3. The graph G is (n — 1,t)-
metric dimensional if and only if G is a path andn < t+ 2, or G is an odd
cycle andn <2t+1, or G = K, U K,, or G = N3.

Proof. Since n > 3, by Remark , G is (k,t)-metric dimensional for some
ke {2,...,n—1}. If G is a path of order n < ¢ 4 2, then by Proposition
2.7 we have that G is (n — 1,¢)-metric dimensional. If G is a cycle of odd
order n < 2¢t+1, then by Proposition [2.§]it follows that G is (n— 1, t)-metric
dimensional. If G = K; U Ky or G = Nj, then it is straightforward to see
that G is (2, t)-metric dimensional.

On the other side, let G be a (n—1,t)-metric dimensional graph. Hence,
for every pair of different vertices xz,y € V(G) there exists at most one
vertex which does not distinguish x,y. Suppose A(G) > 2 and let v € V(G)
such that {uy,us,uz} C N(v). Figure shows all the possibilities for the
links between these four vertices. Figures (a), (b) and (d) show
that v, u; do not distinguish s, us. Figure (c) shows that uy,us do not
distinguish v, us. Thus, from the situations above we deduce that there is
a pair of different vertices which is not distinguished by at least two other
different vertices. Thus, G is not a (n— 1, t)-metric dimensional graph, which
is a contradiction. So A(G) < 2. If G is connected, then we have that G is
either a path or a cycle, and by Propositions and 2.8 we deduce that G is
a path of order n < t+2, or GG is an odd cycle of order n < 2t+1. If G is not
connected, then each connected component is either a path, or a cycle or an
isolated vertex. If one of the connected components C' has order at least three,
then there exists a vertex v of degree two. Let N(v) = {x,y}. The vertex v
and any vertex belonging to a connected component different from C does not
distinguish x, y, which is a contradiction. Thus, each connected component C
of G satisfies A(C') < 1. Suppose that there exists one connected component

C of order two. In this case, if there exists other connected component of
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order two, or there exist at least two other connected component, then the
pair of vertices belonging to C' is not distinguished by at least two vertices,
which is a contradiction. So in this case G = K; U K,. Suppose that
all connected components are isolated vertices. If there exist at least four
connected components, then any pair of vertices of GG is not distinguished

by at least two vertices, which is a contradiction. Therefore, in this case

G = N3, and we conclude the proof. n
Uus
us us
usg
(75} v Uy v /i\
U9 U Uy v U9 Uy U
(a) (b) (c) (d)

Figure 2.2: Possible cases for a vertex v with three adjacent vertices uy, us, us.

2.2 On some families of k-metric dimensional
graphs

From now on, given a graph G and two vertices z,y € V(G), for t > D(G) we
say that G is k-metric dimensional instead of (k,t)-metric dimensional. The
concept of k-metric dimensional graph was introduced by Estrada-Moreno
et al. in [34, B5]. In this section, we use the notation D(G), Dg(x,y) and
D (w,y) instead of D(G,t), Da(w,y) and Dg (v, y), respectively.

2.2.1 Bounding the value k for k-metric dimensional
graphs

In order to continue presenting our results, we need to introduce some defi-
nitions. A vertex of degree at least three in a graph G will be called a major
vertex of G. Any end vertex u of GG is said to be a terminal vertex of a major
vertex v of G if dg(u,v) < dg(u,w) for every other major vertex w of G. The
terminal degree ter(v) of a major vertex v is the number of terminal vertices

of v. A major vertex v of G is an exterior major vertex of G if it has positive
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terminal degree. Let M(G) be the set of exterior major vertices of G having
terminal degree greater than one.

Given w € M(G) and a terminal vertex u; of w, we denote by P(u;,w)
the shortest path that starts at u; and ends at w. Let [(u;,w) be the length
of P(uj,w). Now, given w € M(G) and two terminal vertices u;,u, of w
we denote by P(u;,w,u,) the shortest path from u; to u, containing w, and
by ¢(uj, u,) the length of P(u;, w,u,). Notice that, by definition of exterior
major vertex, P(u;, w,u,) is obtained by concatenating the paths P(u;, w)
and P(u,,w), where w is the only vertex of degree greater than two lying

on these paths. Finally, given w € M(G) and the set of terminal vertices

U = {uy,us,...,ux} of w, for j # r we define ¢(w) = minU{g(uj,ur)} and
u]-,ure
l(w) = min{l(u; :
(w) = min{i(u;, w)}
V12 V13 V14 V15 V16 U17
O—O0—CQ—-O0—O0
V10
Vg Vg V11 V18
oO—O0—0O—O0—CF—0—0
U1 Vo U3 U4 Us Ve U7

Figure 2.3: A graph G where ¢(G) = 3.
From the local parameters above we define the following global parameter

s(G) = wg%){g(w)}.

An example which helps to understand the notation above is given in
Figure 2.3] In such a case we have M(G) = {v3,v5,v15} and, for instance,
{v1,vs,v12} are terminal vertices of vs3. So, vz has terminal degree three
(ter(vs) = 3) and it follows that

[(v3) = min{l(v12, v3), (v, v3), [ (v1,v3) }

=min{1,2,2} =1,
and

¢(v3) = min{¢(vi2,v1), s(v12, vs), s(vs, v1) }
= min{3, 3,4} = 3.
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Similarly, it is possible to observe that ter(vs) = 2, l(vs) = 1, s(v5) = 3,
ter(vys) = 2, l(v15) = 2 and ¢(v15) = 4. Therefore, ¢(G) = 3.
According to this notation we present the following result.

Theorem 2.10. Let G be a connected graph such that M(G) # 0. If G is
k-metric dimensional, then k < ¢(G).

Proof. We claim that there exists at least one pair of different vertices x,y €
V(Q) such that |Dg(z,y)| = <(G). To see this, let w € M(G) and let uy, ug
be two terminal vertices of w such that ¢(G) = ¢(w) = ¢(uy, us). Let u} and
ul, be the vertices adjacent to w in the shortest paths P(u;, w) and P(us, w),
respectively. Notice that it could happen w] = u; or u, = uy. Since every
vertex v € V (P(uy,w,ug)) — {w} satisfies that dg(u),v) = dg(ub,v), and
the only distinctive vertices of u),u}, are those ones belonging to P(uf,u;)
and P(ub, up), we have that |Dg(u}, ub)| = ¢(G). Therefore, by Theorem [2.2]
if G is k-metric dimensional, then & < ¢(G). O

The upper bound of Theorem [2.10]is tight. For instance, it is achieved
for every tree different from a path as it is further proved in Subsection [2.2.2]

where the k-metric dimension of trees is studied.

Theorem 2.11. Let G be a graph of order n different from a complete graph.
If G is k-metric dimensional, then k <n —w(G) + 1.

Proof. Let S be an w(G)-clique. Since G is not complete, there exists a vertex
v ¢ S such that Ng(v) € S. Let uw € S with v % u. If Ng(v) =S —{u}, then
d(u,z) = d(v,x) =1 for every x € S —{u}. Thus, |Dg(u,v)| <n—w(G)+1.
On the other hand, if Ng(v) # S — {u}, then there exists v’ € S — {u} such
that v »# v. Thus, d(u,v) = d(u',v) = 2 and for every x € S — {u,u'},
d(u,z) = d(u',x) = 1. So, |Dg(u,v’)| < n —w(G)+ 1. Therefore, Theorem
2.2leads to k <n —w(G) + 1. O

Examples where the previous bound is achieved are those connected
graphs G of order n and clique number w(G) = n — 1. In such a case,
n —w(G) + 1 = 2. Notice that in this case there exists at least two twin

vertices. Hence, by Corollary [2.3] these graphs are 2-metric dimensional.

Theorem 2.12. Let G be a graph of minimum degree 6(G) > 2, maximum
degree A(G) > 3 and girth g(G) > 4. If G is k-metric dimensional, then

k<n—1-(AG)-2) (6(G) — 1)'.
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Proof. Let v € V be a vertex of maximum degree in G. Since A(G) > 3 and
g(G) > 4, there are at least three different vertices adjacent to v and N(v)
is an independent se Given uy,uy € N(v) and i € {0,..., {@J — 2} we
define the following sets.

140 ::.pJ(U) — {1L1,1L2}.
A= N@) - {v}.

T€EAQ

Ay = | N(z) - A,

~ AL

ALg<G>J s

I
2 C
=
=

Now, let A = {v} U A; |. Since §(G) > 2, we have that |A| >

||C ‘A

-2

14+ (A(G) — 2) (6(G) —1)". Also, notice that for every vertex x € A,

i= 0
d(u1,x) = d(ug, ). Thus, uy, us can be only distinguished by themselves and

at most n — |A| — 2 other vertices. Therefore, |Dg(u1,us)| < n—|A| and the
result follows by Theorem [2.2] O

The bound of Theorem is sharp. For instance, it is attained for the
graph in Figure 2.4 Since in this case n = 8, §(G) = 2, A(G) = 3 and
1)
g(G) =5, we have that k <n—1—(A(G)—2) Z (6(G)—1)" = 6. Table
i=0
shows every pair of different vertices of this graph and their corresponding
nontrivial distinctive vertices. Notice that by Theorem the graph is 6-

metric dimensional.

2.2.2 On k-metric dimensional trees

By Remark we know that a path of order 2 is 2-metric dimensional, and
by Theorem [2.9) any path of order n > 3 is n — I-metric dimensional. Thus,

in this subsection we only considerer trees different from paths.

3An independent set or stable set is a set of vertices in a graph, no two of which are

adjacent.
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(%A Vg Us
)
Ug Vg
U1 U\; U3

Figure 2.4: A graph that satisfies the equality in the upper bound of Theorem

To study the k-metric dimensional trees different from paths, we need the
terminology and notation already described in Subsection and also the

following one. Given an exterior major vertex v in a tree 1" and the set of its

terminal vertices v, ..., v,, the subgraph induced by the set U V(P(v,v;))
i=1

is called a branch of T at v (a v-branch for short).

Theorem 2.13. If T is a k-metric dimensional tree different from a path,

then k = <(T).

Proof. Since T is not a path, M(T) # 0. Let w € M(T) and let uy,us be
two terminal vertices of w such that ¢(7') = ¢(w) = ¢(u1, u2). Notice that,
for instance, the two neighbours of w belonging to the paths P(w,wu;) and
P(w, uy), say u) and ul, satisfy |Dr(u}, uh)| = <(T).

It only remains to prove that for every z,y € V(T') it holds that |Dy(x, y)|
> ¢(T). Let w € M(T) and let To, = (Vy,, Ey,) be the w-branch. Also we con-
sider the set of vertices V' = V(T') — U, e p(r) Vio- Note that [Vi,[ > ¢(T) +1
for every w € M(T). With this fact in mind, we consider three cases.

Case 1: z € V,, and y € Vs for some w,w’ € M(T), w # w'. In this
case x,y are distinguished by w or by w’. Now, if w distinguishes the pair
x,y, then at most one element of V,, does not distinguish z,y (see Figure
. So, x and y are distinguished by at least |V,,| — 1 vertices of T" or by at

least |V,/| — 1 vertices of T.

Case 2: z € V' or y € V. Thus, V' # () and, as a consequence,

|IM(T')| > 2. Hence, we have one of the following situations.

e There exist two vertices w, w € M(T), w # w', such that the shortest
path from z to w and the shortest path from y to w’ have empty

intersection, or
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z,y | Dglx,y) z,y Dg(x,y)
1,03 | {v4, 05,07, 8} v1, V2 | {v3,v4, 05, Vg, Vs }
1,05 | {v2, V4, V6, Vs } 1,0y | {v2, V3, Vs, U7, Vg }
U1, Vs {04,1)5,1)7,?18} V2,3 {U17714,U6,U7,US}
U1, U7 {02,1)3,@5,?}6} V2, Uy {UI,U57U67U77U8}
U1, Vs {02,U3,U4,U7} VU2, Vg {U37U47U57U6;U7}
V2, Vs {U1;U37U47U8} U3, Ug {U1>U2,U47U5;U7}
V2,6 | {v1,vs, V5, 07} vg, Vs | {v1, V2, V3,07, Vg }
va,v7 | {v1,vs, 04, Vs} vg,v7 | {v1,v3, V5,06, U8}
V3, vy | {v1, 02,05, s} Vs, Vg | {v1, V2,04, V7, Vs }
v3, U5 | {v1,v2, V6, 7} Vs, Us | {v1, V3, 04, Vg, 7}
3,V | {V4, Vs, U7, Vs } Vs, U7 | {V2, V3, Vs, Vs, Vg }
U3, U7 {02,1)4,1)6,?18} Vg, U {Ul,?JQ,U3,U4705}
V4, Vs {U3aU67U77U8}

V4, Vg {U1,U3,U5,U7}

Us, U7 {U17U37U47U8}

vr,vg | {v1, 4, V5, V6}

Table 2.1: Pairs of vertices of the graph in Figure and their nontrivial

distinctive vertices.

O&

g\
S

Figure 2.5: In this example, w distinguishes the pair x,y, and z is the only

vertex in V,, that does not distinguish z,y.

e for every vertex w” € M(T), it follows that either y belongs to the
shortest path from z to w” or x belongs to the shortest path from y to

w”.

In the first case, =,y are distinguished by vertices in V,, or by vertices in V,,,
and in the second one, x,y are distinguished by vertices in V.
Case 3: z,y € V, for some w € M(T). If z,y € V(P(w,w)) for

some [ € {1,..., ter(w)}, then there exists at most one vertex of V(P (u;, w))
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which does not distinguish z, y. Since ter(w) > 2, the vertex w has a terminal
vertex u, with ¢ # [. So, x,y are distinguished by at least |V (P (u;, w,u,))| —
1 vertices, and since |V (P(u;,w,u,))| > <(T) + 1, we are done. If z €
V(P(u,w) and y € V(P(ugy,w) for some [,q € {1,...,ter(w)}, I # ¢, then
there exists at most one vertex of V(P(w;, w, u,)) which does not distinguish
x,y. Since |V (P(u;, w,u,))| > ¢(T) + 1, the result follows.

Therefore, ¢(T') = D(T') and by Theorem [2.2| the proof is completed. [

2.3 On some families of k-adjacency dimen-
sional graph

From now on, given a graph G and two vertices x,y € V(G), we say that G is
k-adjacency dimensional instead of (k,2)-metric dimensional. The concept
of k-adjacency dimensional graphs was introduced by Estrada-Moreno et al.
in [33]. In this section, we use the notation C(G), Cq(x,y) and Ci(z,y)
instead of D(G, 2), Daa(r,y) and Df 5(w, y), respectively. Note that C(G) =
o min {INe(2)VNa(y) Uiz, y}}-

As we shall see in Theorem [4.2] given a graph G, the problem of finding
the value of k such that G is k-adjacency dimensional is easy to solve. Even
so, we would point out some useful particular cases. For instance, by Corol-
lary we deduce that complete graph K, and complete bipartite graph
K,  are 2-adjacency dimensional.

If u,v € V(G) are adjacent vertices of degree two and they are not twin
vertices, then |Cq(u,v)| = 4. Thus, for any integer n > 5, C), is 4-adjacency

dimensional and we can state the following more general remark.

Remark 2.14. Let G be a twins free graph of minimum degree two. If G

has two adjacent vertices of degree two, then G is 4-adjacency dimensional.

For any hypercube Q,, m > 2, we have [Cq, (u,v)] = 2r if u ~ v,
|Cq, (u,v)| =2r —2if dg, (u,v) =2 and |Cq, (u,v)| = 2r + 2 if dg, (u,v) > 3.
Hence, C(Q,) = 2r — 2.

Remark 2.15. For any integer v > 2 the hypercube Q,. is (2r — 2)-adjacency

dimensional.

It is straightforward to see that for any graph G of girth g(G)) > 5 and



UNIVERSITAT ROVIRA I VIRGILI

On the

(kf

t)-metric dimension of a graph

Alejandro Estrada Moreno

On (k,t)-metric dimensional graphs 32

minimum degree 6(G) > 2, C(G) > 26(G). Hence, the following remark is

immediate.

Remark 2.16. Let G be a k-adjacency dimensional graph. If g(G) > 5 and
I(G) > 2, then k > 26(G).

If there is an end vertex u in G whose support vertex v has degree two,
then |Ce(u,v)| = |Ng[v]| = 3. Hence, we deduce the following result.

Remark 2.17. Let G be a twins free graph. If there exists an end vertex

whose support vertex has degree two, then G is 3-adjacency dimensional.

The case of trees is summarized in the following remark an we need the

concept of exterior major vertex already presented in Subsection 2.2.1

Remark 2.18. Let T be a k-adjacency dimensional tree of order n > 3.
Then k € {2,3} and k = 2 if and only if there are two leaves sharing a

common Support vertex.

Proof. By Remark we conclude that k£ = 2 if and only if there are two
leaves sharing a common support vertex. Also, if T" is a path different from
P, then by Remark we have that k = 3.

If T is not a path, then there exists at least one exterior major vertex u
of terminal degree greater than one. Then, either u is the support vertex of
all its terminal vertices, in which case Remark leads to k = 2, or u has
at least one terminal vertex whose support vertex has degree two, in which
case Remark leads to k = 3 if there are no leaves of 7" sharing a common

support vertex. ]

Since |Cao(z,y)| < d(x) + 0(y) + 2, for all z,y € V(G), the following
remark immediately follows.

Remark 2.19. If G is a k-adjacency dimensional graph, then

< 1 .
k< w;g‘l/_r(lG){(S(x) +o(y)}+2

This bound is achieved, for instance, for any graph G = C,, ® K;. Also,
a trivial example is the case of graphs having two isolated vertices, which are
2-adjacency dimensional.

Since any k-adjacency generator is a (k,t)-metric generator, and for any
graph G of diameter at most two the distances dg; and dg o are equivalent,

the following result is straightforward.
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Remark 2.20. If a graph G is k-adjacency dimensional and (k' t)-metric
dimensional, then k < k'. Moreover, if D(G) < 2, then k' = k.

2.4 k-metric dimensional product graphs

We explained earlier that we study the k-metric dimension of the lexico-
graphic product and the corona product of graphs. Thus, we need to deter-

mine the values of k such that there exist k-metric bases for these products.

2.4.1 Lexicographic product graphs

We now analyse when the lexicographic product is k-metric dimensional.
We first study the particular case of join graphs due its importance and its

peculiarities.

Join graphs

Throughout this section we also use the concept of C(H) for a graph H
already defined at the beginning of Section [2.3

Proposition 2.21. Let H be a graph of order n' > 2 and maximum de-
gree A(H). The graph Ky + H is k-metric dimensional if and only if k =
min{C(H),n’ — A(H) + 1}.

Proof. If x,y € V(H), then Dy, (z,y) = Cu(x,y). Also, if z ¢ V(H) then
Di,+u(z,y) = {z}U(V(H)— Ng(y)). Therefore, by Theorem [2.2] the result
follows. [l

We next point out some consequences of Proposition

Corollary 2.22. Let H be a nontrivial graph. If H is k-metric dimensional
and K1 + H is K'-metric dimensional, then k' < k.

Proof. By Proposition we have that if K+ H is a k’-metric dimensional
graph, then &' < C(H). Since, for any x,y € V(H) we have Cy(z,y) C
Dy (z,y), we deduce that if H is k-metric dimensional, then C(H) < k and,

as a consequence, k' < k. O

Corollary 2.23. For any connected graph H of order n’ > 2, the graph
K1+ H is 2-metric dimensional if and only if A(H) =n'—1 or H has twins

vertices.
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Notice that the previous corollary may also be derived from Corollary

2.3

Corollary 2.24. Let H be a connected graph of order n' > 4 and maximum
degree A(H) =n' — 2. If H does not contain twin vertices, then Ky + H is

3-metric dimensional.

Proof. Since H does not contain twin vertices, for every x,y € V(H) there
exists z € Cy(z,y) — {z,y}. Thus, C(H) > 3. Now, since n’ —A(H)+1 =3,
by Proposition [2.21] we can deduce the result. O]

The wheel graph W4 ,, is the join graph K; + C,, and the fan graph Fi,
is the join graph K; + P,.

Corollary 2.25. For any n > 4, the fan graph F} ,, is 3-metric dimensional,

and for any n > 5, the wheel graph W ,, is 4-metric dimensional.
We now show a property on the (n’ — A(H) + 1)-metric bases of K + H.

Proposition 2.26. Let H be a nontrivial graph of order n'. If K1 + H 1is
(n' — A(H) + 1)-metric dimensional, then the vertex of Ky belongs to every
(' — A(H) + 1)-metric basis of Ky + H.

Proof. Let v be the vertex of K;. Notice that for every z € V(H), we have
Dy yu(z,0) = (V(H) = Nu(z)) U {v}.

For every x € V(H) such that Ny(z) = A(H) we have that n’ —A(H)+1 =
| (V(H) — N(x)) U{v}| = |Dg,+u(z,v)|. Thus, for any (n' — A(H) + 1)-
metric basis B we have Dy, y(x,v) C B and, since v € Dk, py(x,v), we
conclude that v € B. O

By Proposition [2.26] we deduce that if the vertex of K; does not belong
to any k-metric basis of K + H, then K + H is not (n' — A(H) + 1)-metric

dimensional. Thus, by Proposition [2.21| we obtain the following result.

Proposition 2.27. Let H be a nontrivial graph. If the vertex of Ky does
not belong to any k-metric basis of K1 + H, then Ky + H is C(H)-metric
dimensional.

Proposition 2.28. Let G and H be two graphs of order n > 2 and n’ > 2,
respectively. The graph G + H s k-metric dimensional if and only if k =
min{C(G),C(H),n — A(G) +n' — A(H)}.
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Proof. If z,y € V(G), then Dgyp(z,y) = Co(z,y). Analogously, if z,y €
V(H), then Dgyp(x,y) = Cy(x,y). Also, if x € V(G) and y € V(H), then
Deiu(z,y) = (V(G) — Ng(2)) U (V(H) — Ny (y)). Therefore, by Theorem
2.2] the result follows. O

General lexicographic product graphs

Twin vertices play a highly significant role into studying the k-metric dimen-
sion of graphs, as we shall observe through our exposition. In this sense,
we need to use a formal terminology already set forth above in Section [1.1]
Now, for any graph G of order n, a family composed by n nontrivial graphs
H = {Hy,...,H,} and u; € V(G), we define in G o H the following local

parameter:

( |V (H,), if u; € S(G),

min  {V(H,)| - A(H;) + [V(H)| - A}, it w € TT(G).
L uj,w €TT (uz)

Moreover, we define a global parameter from the local parameter defined

above,

T(GoH)= uirenvi'](ac){T(ui’ H)}.

We also define
C(H) = min{C(H,)}.

H;eH

With all the tools presented till this point, we are now prepare to give
our first result regarding the value k for which a lexicographic product graph

is k-metric dimensional.

Theorem 2.29. Let G be a connected graph of order n > 2 and let H be a
family of n nontrivial graphs. The graph G o H is k-metric dimensional if

and only if k = min{T (G o H),C(H)}.

Proof. By Theorem [2.2] it is only necessary to prove that D(G o H) =
min{7 (GoH),C(H)}. Hence, let (u;,v), (uj, w) € V(GoH) be two different
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vertices. We analyse two cases.

Case 1. i = j. In this case v # w. By Remark[L.1] (i) and (ii), it follows that
DGOH((uiJ U)? (ui7 w)) = {ul} X CHz (v,w). ThUS,
R, = min - {[Deon((ui, v), (wi, w))|} = min {C(Hy)} = C(H).

(uivv)r(uivw)EV(Go ) H,eH

Case 2. i # j. If w;, u; are not twins, then DE(u;, u;) # 0. So, for every u; €
D¢ (w, uj) it follows V(H;) € Doy ((us,v), (u;,w)) or equivalently |V (H;)| <
Daon((wi, v), (uj, w))]. Thus,
}% = Injn, 1) ° Uiy V), (Us, W
? (Ui,v),(uj,w)GV(Go’H){| con((us, v), (1), w)))[}
i H,
> min {|V(H)|}

> min {|C(H)[} = C(H).

Notice that Ry is strictly greater than R;. So, the minimum between them
is R;.

Now, we assume that u;, u; are twins, so D*(u;,u;) = (). Hence we con-
sider two possibilities for u;, u; in the next statements, where the conclusions

are consequences of Remark [1.1] (i) and (ii).

Subcase 2.1: If u; ~ wj, then |Dgoy ((ui, v), (uj, w))| = |(V(H;) — Ng,(v)) U
(V(H;) — Np;(w))]. So, it follows that

s = (uiav)7(ujr,nwi)réV(G’oH){’DGOH((ui’ v), (uj, w))]}
= min{|(V(H;) — N, (v)) U (V(H;) — Nu,;(w))[}

= min{|V(H;)| — A(H:) + |V(H;)| — A(H;)}
Zulglvi?c){fr(uh H)}

=T(GoH).

Subcase 2.2: If dg(u;,u;) = 2, then |Daow((uwi,v), (uj,w))| = |Ng,[v] U
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Ny, [w]|. Similarly, we obtain that
R, = min Deaon((ui,v), (wi,w
= (Do), )]}
= min{| Ny, [v] U N, [w][}
= min {7 (w,H)}

UZEV(G)

=T(GoH).
As a conclusion of all the statements above, it is obtained that

D(GoH) = {Paen((w,v), (uj,w))]}

min
(Ui,’l])7(u]' 7w)€V(GOH
= min {rznzl?{‘,DGoH((Uzy U)v (Uja w))’}a I?;?{!DGOH((W, ’U), (uj7 w))‘}}

= min{ Ry, Ry, R3, R4}
= min{ Ry, R3, R4}
=min{C(H), T (G o H)}.

Therefore the proof is completed. O

We next emphasize some particular cases of Theorem [2.29 when the
lexicographic product graphs have some specific structure which are related

with the existence or not of twin vertices in the graph G.

Corollary 2.30. Let G be a connected twins free graph of ordern > 2 and let
H be a family composed by n nontrivial graphs. Then G o H is C(H)-metric
dimensional.

Corollary 2.31. Let G be a connected nontrivial graph and let H be a graph
of order n' > 2.

(i) If G is twins free, then the graph G o H is k-metric dimensional if and
only if k =C(H).

(ii) If G contains at least one false twin and one true twin, then the graph
G o H is k-metric dimensional if and only if k = min{26(H) + 2,2(n’ —
A(H)),C(H)}.

(iii) If G is true twins free and contains at least one false twin, then the graph
GoH is k-metric dimensional if and only if k = min{206(H)+2,C(H)}.
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(iv) If G is false twins free and contains at least one true twin, then the
graph G o H is k-metric dimensional if and only if k = min{2(n’ —
A(H)),C(H)}.

V11 U3 V21 V11 U3 V21 V11 U3 V21
U1 Vo U2 i U1 Vo CP) : : U1 Vo g i
V12 V22 V12 V22 V12 V22
(;a (;b (;c

Figure 2.6: The graph G, = € {a,b, ¢}, satisfies the conditions of Corollary
2.31| (ii), (iii) and (iv) respectively.

As some instances of graphs G that satisfy the conditions of the corollary
above we next construct some examples. In Figure 2.6 the vertices vy
and vis of the graph G, are true twins, as well as v9; and wyy are false
twins. So, (G, contains two false twins and two true twins and satisfies the
premise of Corollary (ii), and as a consequence, for any graph H of order
n’ > 2, we have that G, o H is k-metric dimensional for k¥ = min{26(H) +
2,2(n’ — A(H)),C(H)}. Similarly, G} is a true twins free graph and it has
two false twin vertices, v;; and v3. Thus, Gy o H is k-metric dimensional for
k = min{20(H) + 2,C(H)}. Finally, the graph G. is false twins free and it
has two true twin vertices, v9; and vyy, and consequently, G. o H is k-metric
dimensional for £k = min{2(n’ — A(H)),C(H)}.

We also point out the particular case k = 2 of Theorem [2.29]

Corollary 2.32. Let G be a connected graph of order n > 2 and let ‘H
be a family composed by n nontrivial graphs. The graph G o H is 2-metric

dimensional if and only if at least one of the following statements holds,
(i) there exists H; € H which has twins or,

(ii) there exist two true twin vertices u;, u; € V(G) such that A(H;) = n;—1
and A(H;) =n; — 1.

(ili) there exist two false twin vertices u;,u; € V(G) such that H; and H;
contain at least an isolated vertex.
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2.4.2 Corona product graphs

If there exists a graph H; € H such that H; has twin vertices, then for any
graph G, the corona graph G ® H has twin vertices. Notice also that any
two vertices of GG are not twins in G © H. Therefore, according to Corollary
we deduce the following result.

Remark 2.33. For any connected graph G of order n and any family ‘H
composed by n connected nontrivial graphs, the corona graph G ©® H s 2-
metric dimensional if and only if there exists a 2-metric dimensional graph
H, eH.

Corollary 2.34. Let G be a connected graph. Then,
(i) Forn > 2, the graph G ® K, is 2-metric dimensional.
(ii) The graphs G ® Py and G ® Cy are 2-metric dimensional.

Theorem 2.35. Let G be a connected nontrivial graph of order n and let
H be a family composed by n nontrivial graphs. Then, G ©® H 1is k-metric
dimensional if and only if k = C(H).

Proof. We claim that C(H) = min {|Dgen(x,y)|}. Notice that, for ev-
z,yeV(GOH)

ery u,v € V(H;), we have that |Cy, (u,v)| < |V (H;)|. Let x, y be two different

vertices of G ® H. We consider the following cases.

Casel. lf x € V(H;)andy € V(H,), i # j, then we obtain that Dgey(z,y) =

U ) u{ud).
v E€DG (viy0;)
Case 2. If z,y € V(G), then we assume that + = v; and y = v;. So, it
follows that Deey(z,y) = U (V(H) U{u}).

v €DG (viy0;)

Case 3. If z € V(H;) and y € V(G), then y = v; for some j € {1,...,n} and
we consider the following. If j =4, then Dgoyn(z,y) = V(G © H) — Ny, ().
Now, if j # ¢, then we have Dgoy(z,y) 2 V(H;).

Case 4. If x,y € V(H;), then Dgoy(z,y) = Cu,(x,y).
Now, notice that from Cases 1, 2 and 3, |Dgey(z, y)| > }IIIH%HV(HZ)‘} >
i €

7

II{négl{{C(H,)} = C(H). Also, in Case 4, for every z,y € V(H;) we have that
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[Deen(z,y)| = |Cri(2,y)| 2 min {C(H;)} = C(H). Thus,

< i D .
C(H) < $,y€r‘£1(lg®7'l){| con(z, y)|}

On the other hand, we consider the following.

in_{|D < i D
ryein  ADeon(wy)ly < | min  {Paon(r.y)l}

< D
;Ingl{{x yrerll}l(le {Dcon(x,y)|}}

= min{ min {]CH (z,9)[}}

H;eH z,ycV(H
= min {C(H, )}
=C(H).
Therefi = i D Th 2.2 -
erefore C(H) Mer‘?(l(r;l@m{] con(z,y)|} and, by Theorem we con
clude the proof. n

Notice that if every H; € H satisfies that H; = H, then C(H) = C(H).
Thus, the following result follows from Theorem [2.35]

Corollary 2.36. Let G and H be two connected nontrivial graphs. Then
G © H is k-metric dimensional if and only if k = C(H).

According to Theorem [2.35] if the corona graph G ® H is k-metric di-
mensional, then the value of £ is independent from the connected nontrivial
graph G. Moreover, for any z,y € V(H;) it holds Dy, (z,y) 2 Cu,(x,y).
Therefore, by Theorems and we deduce the following result.

Proposition 2.37. Let GOH be a k-metric dimensional graph such that G is
a connected nontrivial graph and H = {Hy, Hs, ..., H,} is a family composed
by nontrivial graphs, where H; is k;-metric dimensional for i € {1,... n}.
Then the following assertions hold:

(i) k< min {k}

1€{l,....,n}

(ii) k= k; if and only if mln {C( i)} = min {|Dg,(z,y)|}.

ie{l,..., x,yeV (Hj)

(iii) If k =k;, then C(H;) = min {|DH (x,y)|}

z,yeV (Hj)
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If a graph H has diameter D(H) < 2, then for every xz,y € V(H) it
holds Dy (x,y) = Cy(x,y). Thus, the following result is deduced.

Corollary 2.38. Let G ® H be a k-metric dimensional graph where G is a
connected nontrivial graph and H = {Hy, Ha, ..., H,} is a family composed
by graphs such that H; is k;-metric dimensional and D(H;) < 2, for every
ie{l,...,n}. Then k= min }{k:z}

i€{1,....,n

If g(H) > 5, then for every z,y € V(H) we have that either |Ny(z) N
Np(y)] = 1 or |[Ny(xz) N Ng(y)| = 0. Hence, as a consequence of Theorem
2.35] the next result follows.

Corollary 2.39. Let G be a connected nontrivial graph of order n and
let H = {Hy,Hs,...,H,} be a family composed by 0-reqular graphs where
g(H;) > 5, for everyi € {1,...,n}. Then G ©®H is a 20-metric dimensional
graph.

We would point out the following particular case of Corollary

Remark 2.40. Let G be a connected nontrivial graph. Then, for n > 5, the

graph G ® C, is 4-metric dimensional.

If x € V(H) is an end vertex and y € V(H) is a support vertex of degree
two which is adjacent to z, then |Cy(x,y)| = 3. Thus, from Corollary

and Theorem [2.35| we deduce the following result.

Proposition 2.41. Let G be a connected graph of order n > 2 and let H be
a family composed by n nontrivial graphs such that no graph belonging to H
has twin vertices. If there exists H € ‘H, having an end vertex whose support

vertex has degree two, then G ® H is a 3-metric dimensional graph.

An interesting particular case of the result above is when the family H
contains a path P. of order » > 4 and no graph belonging to H has twin

vertices. In such a case G ® H is a 3-metric dimensional graph.
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Chapter 3

On the (k,t)-metric dimension

of graphs

Overview

The current chapter is concerned with finding formulae and bounds for the
(k,t)-metric dimension of some graphs. We also describe some classes of
graphs where these bounds are achieved. Despite we give some results for
the (k,t)-metric dimension for any ¢ > 2, we emphasize in the particular
cases of the k-metric dimension and the k-adjacency dimension of a graph
G, i.e., the cases when t > D(G) and t = 2, respectively. We also find exact
values of the k-metric dimension of some families of lexicographic product
graphs and Corona product graphs, or general lower and upper bounds, and

express these in terms of invariants of the factor graphs.

3.1 On the (k,t)-metric dimension of graphs

As in the previous chapter, throughout this chapter, unless otherwise stated,
we will consider ¢ as an integer greater than one.

In this section we study the problem of computing or bounding the (k, t)-
metric dimension of several families of graphs. The following result is direct
consequence of the fact that any (k, t)-metric generator for G is also a (k,t +

1)-metric generator for G.

Remark 3.1 (Monotony of the (k,t)-metric dimension with respect to t).
Let G be a (K',t)-metric dimensional graph. Then for any k € {1,...,k'}

43
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and any integers r,s such that 2 <r < s,
dlm],w»(G) Z dlmk,s(G)
Moreover, if r > D(G), then dimy,(G) = dimy s(G).

Theorem 3.2 (Monotony of the (k,¢)-metric dimension with respect to k).
Let G be a (k,t)-metric dimensional graph and let r,s be two integers. If
1 <r<s<k, then dim,;(G) < dimg(G).

Proof. Let B be a (k,t)-metric basis of G and let x € B. Since all pairs of
different vertices in V(G) are distinguished by at least k vertices of B, we have
that B — {z} is a (k — 1,¢)-metric generator for G and, as a consequence,
dimg_14(G) < |B—A{z}| < |B| = dimy(G). Proceeding analogously, we
obtain that dimg_1+(G) > dimg_2:+(G) and, by a finite repetition of the

process we obtain the result. O
Corollary 3.3. Let G be a (k,t)-metric dimensional graph of order n > 2.
(i) For anyr € {2,...,k}, dim,;(G) > dim,_14+(G) + 1.
(ii) For anyr € {1,...,k}, dim,+(G) > dim; +(G) + (r — 1).
(iii) For anyr e {1,...,k}, dim,(G) <n—(k—r).

Let Dy +(G) be the set obtained as the union of the sets Dg¢(x,y) that

distinguish a pair of different vertices x,y whenever |Dg.(x,y)| =k, i.e.,

Dis(G) = U Dg (z,y).
1D, (z,y)|=k
Remark 3.4. If G is a (k,t)-metric dimensional graph, then for any (k,t)-
metric basis B we have Dy(G) C B, and as a consequence, dimy+(G) >

Dkt (G)]-

Proof. Since every pair of different vertices x,y is distinguished only by the
elements of D¢ ¢(x,y), if [Dg i (u, v)| = k for some u, v of G, then for any (k, t)-
metric basis B we have D¢ (u,v) C B, and as a consequence, Dy (G) C B.
Therefore, the result follows. n

The bound given in Remark is tight. For instance, for ¢ > D(G)
we will show in Proposition that there exists a family of trees attaining
this bound for every k. Other examples for any positive integer t > 2 can be

derived from the following result.
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Theorem 3.5. Let G be a (k,t)-metric dimensional graph of order n > 2.
Then dimy, .(G) = n if and only if V(G) = Dy.(G).

Proof. Suppose that V(G) = Dy,(G). Now, since every (k,t)-metric dimen-
sional graph G satisfies that dim(G) < n, by Remark we obtain that
dimy(G) = n.

On the other hand, let dimy(G) = n. Note that for every a,b € V(G),
we have |Dg(a,b)| > k. If there exists at least one vertex x € V(G) such
that © ¢ Dy .(G), then for every a,b € V(G), we have |Dg(a,b) — {z}| > k
and, as a consequence, V' (G) — {z} is a (k,t)-metric generator for G, which
is a contradiction. Therefore, V(G) = Dy 4(G). O

Corollary 3.6. Let G be a graph of order n > 2. Then dimy;(G) = n if and

only if every vertex of G belongs to a non-singleton twin equivalence class.

We will show other examples of graphs that satisfy Theorem for
k > 3. Let W, be the wheel graph and £y, = K; + P, be the fan graph.
Since V(F14) = D34(F14) and V(Wy5) = Dy(Wis), by Theorem 3.5 we
have that dims(F4) = 5 and dimg (W, 5) = 6.

Given two nontrivial graphs G and H, it holds that any pair of twin
vertices x,y € V(G) or x,y € V(H) are also twin vertices in G + H. As a
direct consequence of Corollary [3.6] the next result holds.

Remark 3.7. Let G and H be two nontrivial graphs of order ny and ns,
respectively. If all the vertices of G and H are twin vertices, then G + H is

(2,t)-metric dimensional and
dimg,t(G + H) =nj + No.

Note that in Remark [3.7], the graphs G and H could be non-connected.
Moreover, G and H could be nontrivial empty graphs. For instance, N, + N,
where N,, N,, r,s > 1, is the complete bipartite graph K, ; which satisfies
that dimg (K, s) =7+ s.

In general, we can state the following result.

Remark 3.8. Let G be a connected graph, and let Uy, Us, ..., U, be the non-

singleton twin equivalence classes of G. Then

dimy(G) > > |Uil.
1=1
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Proof. Since for two different vertices z,y € V(G) we have that Dy, (x,y) =

{z,y} if and only if there exists a twin equivalence class U; such that z,y € Uj,

we deduce .
Dy,(G) = U
i=1
Therefore, by Remark [3.4] we conclude the proof. O

Notice that the previous result leads to Corollary [3.6, so this bound is
tight. Now, we consider the connected graph G of order r +t obtained from
an empty graph N, of order r > 2 and a path P, of order t > 2 by connecting
every vertex of N, to a given leaf of P,. In this case, there are t singleton
classes and one false twin equivalence class, say Uy, of cardinality r. By the
previous result we have dimy(G) > |U;| = r and, since U; is a (2, t)-metric
generator for G, we conclude that dimy(G) = r.

In particular we can state the following result on the strong product

graphs.

Theorem 3.9. Let G and H be two nontrivial connected graphs of order n

and n', respectively. Let Uy, Us, ..., U, be the true twin equivalence classes of

G. Then .
dimy (G R H) >n' > |Uj].
=1

Moreover, if every vertex of G is a true twin, then
dims,(GX H) = nn'.
Proof. For any two vertices a,c € U; and b € V(H),

NG&HKG; b)] = Ng[a] X NH[b]
= Nold x Ny[b]
= NggH[(C, b)]

Thus, (a,b) and (¢, b) are true twin vertices. Hence,

Do (GRH) 2 | JU; x V(H).
=1

Therefore, by Remark 3.4 we conclude dimy (G X H) > n/ Z |Usi|.

i=1
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Finally, if every vertex of GG is a true twin, then U Ui =V(G) and, as a

i=1
consequence, we obtain dimy (G X H) = nn'. O
It was shown in [2I] that dim(G) = 1 if and only if G = P,. The

following result is a generalization.

Theorem 3.10. Let G be a nontrivial graph. Then dim;(G) = 1 if and
only if G = Ky UP, or G= P,y for somer € {1,...,t}.

Proof. Note that one of the vertices of K; U K; and one of the vertices
of P, form a corresponding (1,t¢)-metric basis in the corresponding graph.
For every r € {2,...,t} one of the leaves of P, and one of the leaves of
P, are (1,t)-metric bases of K7 U P, and P, respectively. Thus, for any
r e {1,...,t} we have that if G = K; U P, or G = P,;4, then dim, ,(G) = 1.

Now, suppose that dim; +(G) = 1. We first show that A(G) < 2. To this
end, suppose that there exists a vertex u of deg(u) > 3. Thus, for every v € V
there exist two vertices x,y € Ng(u) such that dg (v, ) = dg4(v,y). Hence,
dim; 4(G) > 2, which is a contradiction, and as a consequence, A(G) < 2.
Note that no vertex belonging to any (1,¢)-metric basis has degree two, since
this vertex does not distinguish a pair of its neighbours. As a consequence
of this facts, we deduce that each connected component of GG is a path or an
isolated vertex. If G has at least three connected components, then no vertex
belonging to a connected component distinguishes two vertices belonging to
other two connected components. Hence, GG has at most two connected com-
ponents. If G has only one connected component, then G is a path of order
at most t+ 1. Note that if G is a path of order at least t+2, then for any leaf
v of the path there exist two vertices x, y such that dg (v, z) = dg(v,y) =1,
which is a contradiction. Now, consider that G has two connected compo-
nents. If these connected components have order greater than one, then no
vertex belonging to a connected component distinguish two vertices belonging
to the other connected component. So, if G has two connected components,
then one of them is an isolated vertex and the other is a path of order at
most t. Note that if G & K; U P, for some r > t, then for any leaf v of P.
there exists a vertex x € V(P,) such that dg+(v,x) = dg+(v,y) = t, where y

is the isolated vertex, which is a contradiction. O
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Proposition 3.11. Let k,t be two integers such that k > 3 and t > k — 1.
For any path P, of order r > k + 1,

dimg(P.) > k+ 1.
Moreover, if k+1 <r <2t —k+ 3, then
dimy(P.) = k+ 1.

Proof. Let V(P,) = {vy,vs,...,v,} such that v; ~ v; 41 foreveryi € {1,...,r—
1}, and let S be a (k, t)-metric basis of P,. Since |S| > k > 3, we deduce that
SN (V(P,) —{v,v.}) # 0. For any vertex w € SN (V(P,) — {v1,v,}) there
exist at least two vertices u,v € V(P,) such that dp, ¢(w,u) = dp,(w,v).
Hence, |S| = dimg(P.) > k + 1.

Let 8" = { UTs oA VTE] -k e g4k 1} for some r > k + 1.
Note that |S’| = k+1. If r < 2t —k+3, then for any pair of different vertices
u,v € V(P,) there exists at most one vertex w € S” such that dp, (w,u) =
dp, +(w,v). Thus, for every pair of different vertices x,y € V(F,), there exists
at least k vertices of S’ such that they distinguish z,y. So S” is a (k, t)-metric
generator for P,. Therefore, dimy(P,,t) < |S'| = k + 1 and, consequently,
the result follows. ]

We now consider the limit case of the trivial bound dimy.(G) > k.

Proposition 3.12. If G is a nontrivial graph, then dimy,(G) = k if and
only if k € {1,2} and G = Ky U P, or G = P,y for allr € {1,...,t}.

Proof. The case k = 1 was studied in Theorem[3.10] On the other hand, note
that all the vertices of K; U K and all the vertices of P, form a (2, t)-metric
basis of K7 U K7 and Py, respectively. For every r € {2,...,t} the leaves
of P, and the leaves of P,,; form a (2,¢)-metric basis of K1 U P, and P,,,
respectively. Thus, for any r € {1,...,t} we have that if G = K; U P, or
G = P4y, then dimy(G) = 2.

Now, suppose that dimg(G) = k for some k£ > 2. By Corollary
(i) we have that k£ = dimy(G) > dim; +(G) + k — 1, and as a consequence,
dim; +(G) = 1. Hence, by Theorem it follows that G = K; U P, or
G = Py for any r € {1,...,t} and we are done for k € {1,2}.

From now on we assume that £ > 3. If G = P,,, then by Corollary
we deduce that » > 3. As a consequence of this fact and by Proposition



UNIVERSITAT ROVIRA I VIRGILI

On the

(kf

t)-metric dimension of a graph

Alejandro Estrada Moreno

On the (k,t)-metric dimension of graphs 49

3.11| we have that dimy,(G) = k + 1, which is a contradiction. Since the
isolated vertex of K7 U P, does not distinguish any pair of different vertices
of P,, we obtain that dimy,(K; U P,) > dimg,(P,). By Corollary [2.3] if
G = K{UP,, then r > 4. According to this fact and by Proposition [3.11], we
conclude that k + 1 = dimy¢(P,) < dimy (K, U P,), which is a contradiction
again. Therefore, if k& > 3, then for any nontrivial graph G we deduce that
dimg(G) > k + 1. m

The following result allows to extend the results on the (k,t)-metric
dimension of lexicographic product graphs G o H to results on the (k,2)-

metric dimension of G o H, and vice versa.

Theorem 3.13. Let G be a connected graph of order n > 2 and let H =
{Hy,..., H,} be a family composed by nontrivial graphs. A set A C V(GoH)
is a (k,t)-metric generator for G o H if and only if A is a (k,2)-metric

generator for G o H, and as a consequence,
dika(G o H) = dlmk,Q(G o} H)

Proof. By definition, any (k,2)-metric generator for a graph is also a (k,r)-
metric generator for r > 3. Considering that any (k, D(G))-metric generator
for a graph G is also a (k,t)-metric generator for t > D(G), we only need
to prove that any (k, D(G o H))-metric generator for G o H is also a (k, 2)-
metric generator. For simplicity, we will use the terminology of k-metric
generators and k-adjacency generators. Let V(G) = {uy,...,u,}, let S be
a k-metric generator for G o H, and let S; = SN ({w;} x V(H;)) for every
u; € V(G). We differentiate the following four cases for two different vertices

(wi,v), (uj,w) € V(G oH).

Case 1. ¢ = j. In this case v # w. By Remark [I.1] no vertex from S;, [ # i,
distinguishes (u;, v) and (u;, w). So it holds that |Dgoy ((ui, v), (us, w))NS;| >
k. Since for any vertex (u;,x) € S; we have that dgoy((us, ), (u;,v)) =
daon2((wi, ), (us,v)) and deoy((u, ), (wi, w)) = daon2((wi, x), (u;, w)), we
conclude that k& < |Cgop ((ui, v), (u;, w)) NS;| = [Caon ((us, v), (u;, w)) N S|.

Case 2. ¢ # j and u;, u; are true twins. By Remark , no vertex from S;, | ¢
{1, 7}, distinguishes (u;, v) and (uj, w). So |Dgow ((us, v), (uj, w))N(S;US;)| >
k. Since for any vertex (u,z) € S; U S; we have that deoy((u, x), (u;,v)) =
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dGoH,Q((u’x)7(ui7U)) and dGOH((u7$)7(uj7w)) = dGOH,Q((u7x>7(uj’w))’ we
conclude that k < |Caqop((us, v), (u;, w))N(S;US;)| = [Caon((us,v), (u;, w))N
S.

Case 3. ¢ # j and w;, u; are false twins. Analogous to the previous case.

Case 4. i # j and u;, u; are not twins. Hence, there exists u; € V(G)—{u;, u;}
such that dg o(w, u;) # dg2(w, u;). Hence, for any vertex (u;, ) € S; we have
that

deor2((w, ), (wi,v)) = deo((w, ui) # da2((ur, uj) = daow,2((w, ), (uj, w)).

According to Case 1, we have that |S;| > k. Therefore, we conclude that
k< |CGOH((UZ'7 U)’ (uj’ w)) N Sl| < |CG’OH((ui7U)7 (ujvw)) N S|
In conclusion, S is a k-adjacency generator for GG o H. The proof is

complete. n

3.1.1 Large families of graphs having a common (k,t)-

metric generator

Let B be a (k,t)-metric basis of a graph G = (V, E), and let D(G,t) =
min{D(G),t}. For any r € {0,1,..., D(G,t)} we define the set

B,(B) = J{y e V: das(z,y) <r}.

zeB

In particular, Bo(B) = B and B;(B) = U Ng[z]. Moreover, since B is a
z€B

(k,t)-metric basis of G, |Bpan-1(B)| > |[V| — 1.

Let G = (V,E) be a connected graph that is not complete. Given a
(k,t)-metric basis B of G we say that a graph G’ = (V| E’) belongs to the
family Gg(G) if and only if Ng/(v) = Ng(v), for every v € Bp(gy—2(B).
In particular, if ¢ = 2 and G is not a complete graph, then G' = (V| E’)
belongs to the family Gg(G) if and only if N/ (z) = Ng(x), for every z € B.
Moreover, if G is a complete graph, we define Gp(G) = {G}. By the definition
of Gp(G), we deduce the following remark.

Remark 3.14. Let B be a (k,t)-metric basis of a connected graph G, and
let G' € Gp(G). Then for any b € B and v € Bpgy-1(B), das(b,v) =
der ¢ (b,v). Moreover, (Bpgp—2(B)) = (Bparp-2(B)).
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Notice that if Bp(g,-2(B) € V, then any graph G’ € Gp(G) is isomor-
phic to a graph G* = (V, E*) whose edge set E* can be partitioned into two
sets £, Ej, where E} consists of all edges of G having at least one vertex

in Bpg)—2(B) and Ej is a subset of edges of a complete graph whose vertex

- B —o(B
set is V —Bp(gy—2(B). Hence, if | = viG) §(G’t) o )‘), then Gp(G)

contains 2! different graphs, where some of them could be isomorphic.

Theorem 3.15. Any (k,t)-metric basis B of a graph G is a (k,t)-metric

generator for any graph G' € Gg(G), and as a consequence,
dimk,t(G/) S dlmm(G)

Proof. Assume that B is a (k,t)-metric basis of a graph G = (V, E), and
G' € Gp(G). We shall show that B is a (k,t)-metric generator for G'. To
this end, we take two different vertices u,v € V. Since B is a (k,t)-metric
basis of G, there exists B,, C B such that |B,,| > k and for every x € B,,
we have that dg(x,u) # dg+(z,v). Now, consider the following two cases

for u,v.

(1) w,v € Bpgy-1(B). In this case, since for every x € B,, we have that

dei(z,u) # dg+(z,v), Remark leads to dert(z,u) # deri(z,v) for every
T € By,.

(2) u € Bpgy-1(B) and v & Bp(g,-1(B). By definition of Bp(g,)-1(B),
we deduce that dg i (z,u) < D(G,t) — 1 for every x € B,,. Since v ¢
Bp(ay-1(B), we have that de¢(z,v) = D(G,t) for every x € B,,. So,
deri(z,u) < D(G,t) — 1 < D(G,t) = dgr4(z,v) for every x € By,.

Notice that since B is a (k, t)-metric basis of G, the case u,v € Bpg)-1(B)
is not possible. According to the two cases above, B is a (k,t)-metric gene-
rator for G'. Therefore, dimy;(G') < |B| = dimy(G). O

By Proposition we have that if G is a nontrivial graph, then dimy, ,(G)
= k if and only if ¥ € {1,2} and G = Ky U P, or G = P, for every
r € {1,...,t}. Thus, for any graph G of order at least t+2, dimy (G) > k+1.

Therefore, the next corollary is a direct consequence of Theorem |3.15|

Corollary 3.16. Let B be a (k,t)-metric basis of a graph G of order n > t+2
and let G' € Gp(G). If dimg(G) = k + 1, then dimy,(G') = k + 1.
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Figure shows some graphs belonging to the family Gg(G) having a
common (2,2)-metric generator B = {vq, v3,v4,v5}. Moreover, as we shall
see in Theorem [3.27, B is also a common (2, 2)-metric basis for all graphs
belonging to Gp(G). In this case, the family Gp(G) contains 2'9 = 1024

different graphs, where some of them could be isomorphic.

Figure 3.1: B = {vy,v3,v4,v5} is a (2,2)-metric basis of G and
{(;7(;17(;27(;47(;5} CZg;B((;»

3.2 On the k-metric dimension of graphs

In this section we present some results that allow to compute the k-metric
dimension of several families of graphs. We also give some tight bounds on
the k-metric dimension of a graph.

We now present a lower bound for the k-metric dimension of a k’-metric
dimensional graph G with &' > k. To this end, we require the use of the
following function for any exterior major vertex w € V(&) having terminal
degree greater than one, i.e., w € M(G). Notice that this function uses the
concepts already defined in Subsection 2.2.1 Given an integer r < &/,
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(ter(w) — 1) (r — l(w)) + l(w), if l(w) < [5],
I(w) =
(ter(w) — 1) [5] + |51, otherwise.

In Figure we give an example of a graph G, which helps to clarify
the notation above. Since every graph is at least 2-metric dimensional, we

can consider the integer r = 2 and we have the following.

e Since l(v3) =1 < | %], it follows that I, (vs) = (ter(vs) — 1) (r — l(v3))+
l(v3) =(83—-1)(2-1)+1=3.

e Sincel(vs) =1
l(vs) = (2 = 1)(

e Since l(v15) = 2 > |%], it follows that [,(vi5) = (ter(vis) — 1) [5] +
5l=-n73+ 3] =2

Therefore, according to the result below, dimy(G) >3 +2+4+2=17.

< | %], it follows that I, (vs) = (ter(vs) — 1) (r — I(v5))+
2 1) +1=2

Theorem 3.17. If G is a k-metric dimensional graph such that |M(G)| > 1,
then for every r € {1,...,k},

dim,(G) > Y IL(w).
weM(G)
Proof. Let S be an r-metric basis of G. Let w € M(G) and let w;, ug
be two different terminal vertices of w. Let u, u) be the vertices adja-
cent to w in the paths P(u;,w) and P(us, w), respectively. Notice that
De(uj,ul) = V (P(u;, w,us)) — {w} and, as a consequence, it follows that

1SN (V (P(uj, w,us)) — {w})| > r. Now, if ter(w) = 2, then we have
1SN (V (P(uj, w,us)) — {w})| > r = I (w).

Now, we assume ter(w) > 2. Let W be the set of terminal vertices of w, and
let u; be the vertex adjacent to w in the path P(u;,w) for every u; € W.

Let U(w U V(P(uj,w)) —{w} and let = = m1n{|5ﬂ V (P(uj, w))|}.
u; €W
Since S is an r-metric generator of minimum cardinality (it is an r-metric

basis of (), it is satisfied that 0 < 2 < min{l(w), |5]}. Let u, be a terminal
vertex such that |[S N (V (P(uq,w)) —{w})| = x. Since for every terminal
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vertex ug € W — {u,} we have that |S N Dg(u’ﬁ,u’aﬂ > r, it follows that
1SN (V (P(ug, w)) — {w})| > r — z. Thus,

ter(w)

[SNU@w)| = Y 1SNV (P(ug,w)) = {w})] +
B=1,6%a

+150(V (P(ua, w)) — {w})]
> (ter(w) — 1) (r — x) + .

Now, if z = 0, then |SNU(w)| > (ter(w) — 1) r > I,(w). On the contrary, if
x > 0, then the function f(z) = (ter(w) — 1) (r — x) + z is decreasing with
respect to x. So, the minimum value of f is achieved in the highest possible
value of z. Thus, |SNU(w)| > I.(w). Since ﬂ U(w) = 0, it follows that

weM(G)
dim,(G) > Y [SnUw)[> Y IL(w).
weEM(G) weEM(G)

O

Now, in order to give some consequences of the bound above we shall
use some notation defined in Subsection to introduce the following pa-

rameter.

wG)= > ter(v).

veM(G)
Notice that for & = 1 Theorem [3.17 leads to the bound on the metric
dimension of a graph, established by Chartrand et al. in [2I]. In such a case,
I (w) = ter(w) — 1 for all w € M(G) and thus,

dimy(G) > ) (ter(w) —1) = u(G) — [M(G)].

weM(G)
Next we give the particular cases of Theorem for r =2 and r = 3.

Corollary 3.18. If G is a connected graph, then
dimy(G) > u(G).

Proof. It M(G) = (), then u(G) = 0 and the result is direct. Suppose that
M(G) # (. Since Ir(w) = ter(w) for all w € M(G), we deduce that

dimy(G) > Y ter(w) = p(G).
weM(G)
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Corollary 3.19. If G is k-metric dimensional for some k > 3, then
dims(G) > 24(G) — IM(G).

Proof. It M(G) = 0, then the result is direct. Suppose that M(G) # 0.
Since I3(w) = 2ter(w) — 1 for all w € M(G), we obtain that

dimg(G) > ) (2ter(w) — 1) = 2u(G) — |M(G)|.

weM(G)

O

In the next subsection we give some results concerning trees which show
that the bounds proved in Theorem [3.17] and Corollaries and are
tight. Specifically those results are Theorem and Corollaries and
3.22| respectively.

3.2.1 On the k-metric dimension of trees

Since any path is a particular case of a tree and its behaviour with respect
to the k-metric dimension is relatively different, here we analyse them in a
first instance. In Proposition [3.12| we noticed that for k € {1,2} the k-metric
dimension of a path P,(n > 2) is k. On the other hand, by Proposition
we deduce that for any integer £ > 3 and any path graph P, of order
n > k+ 1, we have that dim(P,) = k + 1.

We now continue with a formula for the r-metric dimension of any k-
metric dimensional tree different from a path which, among other usefulness,
shows that Theorem [3.17]is tight. In this proof we use the concept of branch
already defined in Subsection [2.2.2]

Theorem 3.20. If T is a tree which is not a path, then for anyr € {1,...,
(1)},
dim,(T) = Y I(w).
weM(T)

Proof. Since T is not a path, T" contains at least one vertex belonging to
M(T). Let w € M(T) and let T,, = (Vu, EWw) be the w-branch. Also
we consider the set V' = V(T) — U,emr) Voo For every w € M(T), we
suppose u; is a terminal vertex of w such that [(uy, w) = l(w). Let U(w) =

{ui,ug, ..., us} be the set of terminal vertices of w. Now, for every u; €
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K“ﬁw)f

1 )
i w and we consider the set

U(w), let the path P(u;,w) = u]u}u? u
S(uj,w) CV (P(uj,w)) — {w} given by:

{on ™ i) < (3]

S(up, w) =
{ul,u;...,u?“l}, if [(w) > | %],
and for j #£ 1,
{uj,u}, . ,ug_l(w)_l}, if (w) < 5],
S(ujaw) =

1 [51-1
{uj,uj,...,uj ,

According to this we have,

((w),  iflw) < [5] and u; = u,

S| r—U(w), if l(w) < [5] and u; # i,
7 %], if {(w) > | 5] and uj = uy,

| 51 if ((w) > 3] and u; # w

Let S(w) = U S(uj, w)and S = U S(w). Since for every w € M(T')

u; €U (w) weM(T)
it follows that ﬂ S(u;,w) = 0 and ﬂ S(w) = (), we obtain that
u; €U (w) weM(T)
1S|="Y_ L(w).
weM(T)

Also notice that for every w € M(T), such that ter(w) = 2 we have
|S(w)| = r and, if ter(w) > 2, then we have |S(w)| > r + 1. We claim that
S is an r-metric generator for T'. Let u,v be two distinct vertices of T. We
consider the following cases.

Case 1: u,v € V,, for some w € M(T). We have the following subcases.

Subcase 1.1: u,v € V(P(u;j,w)) for some j € {1,...,ter(w)}. Hence
there exists at most one vertex of S(w) NV (P(u;j, w)) which does not distin-
guish u,v. If ter(w) = 2, then there exists at least one more exterior major
vertex w' € M(T) — {w}. So, the elements of S(w’) distinguish u,v. Since
|S(w")| > r, we deduce that at least r elements of S distinguish u,v. On the
other hand, if ter(w) > 2, then since |S(w)| > r + 1, we obtain that at least

r elements of S(w) distinguish u, v.
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Subcase 1.2: u € V(P(uj,w)) and v € V(P(w,w)) for some j,l €
{1,... ,ter(w)}, j # l. According to the construction of the set S(w), there
exists at most one vertex of (S(w) N (V(P(uj, w,w;))) which does not distin-
guish u, v.

Now, if ter(w) = 2, then there exists w’ € M(T) — {w}. If dp(u,w)
dr(v,w), then the r elements of S(w) distinguish u,v and, if dp(u,w) #

dr(v,w), then the elements of S(w') distinguish wu, v.

On the other hand, if ter(w) > 2, then since |S(w)| > r + 1, we deduce
that at least r elements of S(w) distinguish w, v.

Case 2: u € V,, and v € V,, for some w,w" € M(T) with w # w'. In
this case, either the vertices in S(w) or the vertices in S(w') distinguish u, v.
Since |S(w)| > r and |[S(w’)| > r we have that u,v are distinguished by at
least r elements of S.

Case 3: u € V' or v € V'. Without loss of generality we assume u € V.
Since V’ # (), we have that there exist at least two different vertices in M(T).

Hence, we have either one of the following situations.

e There exist two vertices w, w" € M(T), w # w', such that the shortest
path from u to w and the shortest path from v to w’ have empty

intersection, or

e for every vertex w” € M(T), it follows that either v belongs to every
shortest path from u to w” or u belongs to every shortest path from v

to w”.

Notice that in both situations, since |S(w)| > r, for every w € M(T), we
have that u, v are distinguished by at least r elements of S. In the first case,
u and v are distinguished by the elements of S(w) or by the elements of S(w")
and, in the second one, u and v are distinguished by the elements of S(w").

Therefore, S is an r-metric generator for 7' and, by Theorem [3.17], the

proof is complete. n

In the case r = 1, the formula of Theorem leads to
dimy(T) = p(T') — [M(T)],

which is the result obtained in [2I]. Other interesting particular cases are
the following ones for r = 2 and r = 3, respectively. That is, by Theorem
[3.20l we have the next results.
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Corollary 3.21. If T is a tree different from a path, then
dimy(T") = (7).
Corollary 3.22. If T is a tree different from a path with ¢(T) > 3, then
dimg(T) = 24(T) — | M(T).

As mentioned before, the two corollaries above show that the bounds
given in Corollaries and are achieved.

We finish this subsection with a formula for the k-metric dimension of a
k-metric dimensional tree with some specific structure. Given a graph G, we
define Dy (G) as Dy4(G) for t > D(G). With this notation in mind, we show
that the inequality dimy(7T") > |Dy(T)|, given in Remark [3.4] can be reached.

Proposition 3.23. Let T be a tree different from a path and let k > 2
be an integer. If ter(w) = 2 and ¢(w) = k for every w € M(T), then
dimg(T) = |D(T)].

Proof. Since every vertex w € M(T) satisfies that ter(w) = 2 and ¢(w) = k,
we have that ¢(7) = k. Thus, by Theorem [2.13} T is k-metric dimensional
tree. Since I(w) = k for every w € M(T'), by Theorem we have that
dimg(7T) = kE|M(T)|. Let u,,us be the terminal vertices of w. As we have
shown in the proof of Theorem , for every pair z,y € V(T') such that = ¢
V (P(up,w,us)) — {w} ory & V (P(u,, w,us)) —{w}, it follows that z,y are
distinguished by at least k+ 1 vertices of T" and so |Dj(x,y)| > k— 2. Hence,
if | D (z,y)| = k—2, then z,y € V (P(u,, w,us)) —{w} for some w € M(T).
If dr(z,w) # dr(y,w), then z,y are distinguished by more than k vertices
(those vertices not in V' (P(u,, w, us))—{w}). Thus, if |D§(x,y)| = k—2, then
dr(z,w) = dr(y,w) and, as a consequence, Di(z,y) = V (P(u,,w,us)) —
{z,y,w}. Considering that |V (P(u,,w,us)) —{w}| = k and at the same
time that ﬂ V (P(up, w,uy)) = 0, we deduce | Dy (T)| = k|M(T)|. There-

weM(T)
fore, dimy(T") = |Dy(T)|. O

Figure [3.2] shows an example of a 3-metric dimensional tree. In this
case M(T') = {w,w'}, ter(w) = ter(w’) = 2 and ¢(w) = ¢(w’) = 3. Then
Proposition leads to dims(T") = |Ds(T)| = [{u1, ug, us, v, uh, u}| = 6.
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us U Ul uh

Figure 3.2: A 3-metric dimensional tree T for which dimg(7") = |D3(T")| = 6.

3.3 On the k-adjacency dimension of graphs

In this section we present some results that allow us to compute the k-
adjacency dimension of several families of graphs. We also give some tight
bounds on the k-adjacency dimension of a graph. For the graph G shown
in Figure we have dim;(G) = 8 < 9 = adim;(G), dimy(G) = 12 <
14 = adimy(G) and dimgz(G) = 20 = adimz(G). Note that the only 3-
adjacency basis of G, and at the same time the only 3-metric basis, is V(G) —
{0,6,12,18}.

10 11 13 14 15 16 17 19 20 21 22 23

NV

Figure 3.3: The set {2,4,6,8,10,14,16,20,21} is a 1-adjacency basis of G,
while the set {20+ 1: [ € {0,...,11}} U {6,12} is a 2-adjacency basis and
V(G) —{0,6,12,18} is a 3-adjacency basis.

In the same way, for the Petersen graph G we have that adimg(G) =
adims(G) + 1 = adimy(G) + 2 = adim3(G) + 3 = 10 and adimy(G) =
adim; (G) +1 =4.

Since Cq(z,y) = Cq(z,y) for all z,y € V(G), we deduce the following
result, which was previously observed for k£ = 1 by Jannesari and Omoomi
in [67].

Remark 3.24. For any nontrivial graph G and k € {1,2,...,C(G)},
adim (G) = adimy(G).

Moreover, A is a k-adjacency generator for G if and only if A is a k-adjacency

generator for G.
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According to the Proposition [3.12] it is interesting to study the graphs
where adim(G) = k£ + 1. To begin with, we state the following remark.

Remark 3.25. If G is a graph of order n > 7, then adim; (G) > 3.

Proof. Suppose, for purposes of contradiction, that adim;(G) < 2. By
Proposition we deduce that adim;(G) = 2. Let B = {u,v} be an
adjacency basis of G. Then for any w € V(G) — B the distance vec-
tor (dg2(u, w),dg2(v, w)) must belong to {(1,1),(1,2),(2,1),(2,2)}. Since
|V(G)—B| > 5, by Dirichlet’s box principle at least two elements of V/(G)—B
have the same distance vector, which is a contradiction. Therefore, adim;(G)
> 3. O

By Corollary (3.3 (ii) and Remark we obtain the following result.

Theorem 3.26. For any graph G of order n > 7 and k € {1,...,C(G)},
adimy(G) > k + 2.
Our next result immediately follows from Theorems and [3.26]

Theorem 3.27. Let B be a k-adjacency basis of a graph G of order n > 7
and let G' € Gp(Q). If adimg(G) = k + 2, then adimg(G') = k + 2.

An example of an application of the result above is shown in Figure [3.1]
where adimy(G’) = 4 for all G € Gp(G). In this case, as we mentioned
above, Gp(G) contains 2'° = 1024 different graphs.

From Remark [3.25] and Theorem [3.26] we only need to consider graphs of
order n € {3,4,5,6} to determine those satisfying adimy(G) = k+1. If n = 3,
then by Proposition we conclude that adim;(G) = 2 or adimy(G) = 3
if and only if G € {Kj5, N3}. For k € {1,2} and n € {4,5,6} the graphs
satisfying adimg(G) = k + 1 can be determined by a simple calculation.
Here we just show some of these graphs in Figure [3.4] Finally, the cases

adims(G) = 4 and adim;(G) = 5 are studied in the following two remarks.

Remark 3.28. A graph G of order greater than or equal to four satisfies
adimg(G) =4 if and only if G € {Py, Cs}.

Proof. It G € { Py, C5}, then it is straightforward to check that adims(G) = 4.
Assume that B = {vy,...,v4} is a 3-adjacency basis of GG. Since for any pair

of vertices v;,v; € B, there exists v; € B N C*(v;,v;), by inspection we
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vy vy
Vg V2 U2
o< o9 o 9 OO
vz U3 U1 vy U3 U1 vy Us V1 vy
Gy G G

Figure 3.4: Any graph belonging to the families Gg(G1), Gp(G2) or {K; U
K3, Gs}, where B = {vy,v9,v3}, satisfies adimy(G) = 3. The reader is re-
ferred to Subsection for the construction of the families Gg(G;).

can check that (B) = P;. We assume that v; ~ vy for i € {1,2,3}. If
V(@) — B = (), then G = P,. Suppose that there exists v € V(G) — B. If
v ~ vy, then the fact that |B N C*(v,v1)| > 2 leads to v ~ v3 and v ~ vy.
Since |B N C*(v,v4)| > 2 and v ~ ws, it follows that v ~ v;. Thus, v is
connected to any vertex in B, which leads to |B N C*(v,v2)| = [{vs}]| = 1,
contradicting the fact that B is a 3-adjacency basis of G. Analogously if
v ~ v3, then we arrive to a similar contradiction. Thus, v ~ vy or v ~ vy. If
v ~ vy and v % vy, then |BNC*(v,v9)| = |{vs}| = 1, contradicting the fact
that B is a 3-adjacency basis of G. Now, if v ~ vy and v ~ vy, then G = .
If |V(G)| > 6, then there exist u,v € V(G) — B. Since |B N C(u,v)| > 3,
then either |[BN N(u)| > 2 or |[BN N(v)| > 2. Suppose that |BN N (u)| > 2.
As discussed earlier, BN N(u) = {v1,vs4}. Since |BNC(u,v)| > 3, it follows
that either v ~ vy or v ~ w3, which, as we saw earlier, contradicts the fact
that B is a 3-adjacency basis of G. [

By Corollary (i) and Remark we deduce that adimy(G) > 6 for
any graph G of order at least five such that G 2% C5. Since adimy(C5) = 5,

we obtain the following result.

Remark 3.29. A graph G of order n > 5 satisfies that adimy(G) =5 if and
only if G = Cs.

From Corollary [3.3 (i) and Remark [3.29] it follows that any 4-adjacency

dimensional graph G of order six satisfies adim4(G) = 6, as the case of Cg.
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3.4 On the k-metric dimension of product
graphs

As we mentioned above, in this section we study the k-metric dimension of

the lexicographic product graphs.

3.4.1 Lexicographic product graphs

In this subsection we focus into obtaining the (k,t)-metric dimension of the
lexicographic product of graphs for k € {1,..., min{7 (GoH),C(H)}}. Theo-
remf3.13] allows us to give, without loss of generality, all results referred to
the (k,t)-metric dimension of G'oH in terms of adimy (G oH) or dimg (G oH)

as we consider appropriate.

Join graphs
The following remark is a particular case of Corollary [3.6]

Remark 3.30. Let H be a graph of order n. Then adimy(K;+ H) =n+1 if
and only if A(H) =n—1 and every vertex v € V(H) of degree 6(v) <n —1

belongs to a non-singleton twin equivalence class.

Proposition 3.31. Let H be a graph of ordern > 2 and k € {1,...,C(K;+
H)}. Then

Proof. Let A be a k-adjacency basis of Ky + H, Ay = ANV(H) and let
z,y € V(H) be two different vertices. Since Cg,+u(z,y) = Cu(z,y), it
follows that |Ag NCu(z,y)| = |ANCk,+u(z,y)| > k, and as a consequence,
Ap is a k-adjacency generator for H. Therefore, adimy(K; + H) = |A| >
|Ap| > adimy(H). O

Theorem 3.32. For any nontrivial graph H, the following assertions are
equivalent:

(i) There exists a k-adjacency basis A of H such that |A— Ng(y)| > k, for
ally € V(H).

(ii) adimg(K; + H) = adimy(H).
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Proof. Let A be a k-adjacency basis of H such that |A — Ny(y)| > k, for all
y € V(H). By Proposition we have that adimy(K; + H) > adimg(H).
It remains to prove that adimy(K; + H) < adimg(H). We will prove that
A is a k-adjacency generator for K; + H. We differentiate two cases for
two vertices xz,y € V(K; + H). If z,y € V(H), then the fact that A is
a k-adjacency basis of H leads to k < |[ANCgx(z,y)| = |ANCky+u(z,y)|
On the other hand, if x is the vertex of K; and y € V(H), then the fact
that Cx, m(z,y) = {z} U (V(H) — Ng(y)) and |A — Ny (y)| > k leads to
|ANCr,+u(z,y)| > k. Therefore, A is a k-adjacency generator for Ky + H,
and as a consequence, adimg(H) = |A| > adimy(K; + H).

On the other hand, let B be a k-adjacency basis of K1+ H such that |B| =
adimg(H ) and let By = BNV/(H). Since for any hy, hy € V(H) the vertex of
K; does not belong to Cr,+p(hi, ha), we conclude that By is a k-adjacency
generator for H. Thus, |By| = adimg(H) and, as a consequence, By is a
k-adjacency basis of H. If there exists h € V(H) such that |By — Ng(h)| <
k, then |B N Ck,+u(v,h)] = |Bg — Ng(h)| < k, which is a contradiction.
Therefore, the result follows. n

Corollary 3.33. Let H be a nontrivial graph such that adimg(K; + H) =
adimy(H). Then the vertex of K1 does not belong to any k-adjacency basis
A Of,lfi + H.

Proof. Let A be a k-adjacency basis of Ky + H, let x,y € V(H) be two
different vertices and let Ay = ANV(H). Since Cx,+u(z,y) = Cu(z,y), it
follows that |Ay NCr(x,y)| = |ANCk,+u(x,y)| > k, and as a consequence,
Ap is a k-adjacency generator for H. Thus, adimg(H) = adimg (K, + H) =
|A] > |Ag| > adimg(H), and as a consequence, Ay = A. Therefore, the
vertex of K; does not belong to A. m

Our next result on graphs of diameter grater than or equal to six, is a

consequence of Theorem [3.32]

Corollary 3.34. For any graph H of diameter D(H) > 6 and k € {1,...,
C(Ki+ H)},

Proof. Let S be a k-adjacency basis of H. We will show that |S— Ny (x)| > k,
for all x € V(H). Suppose, for the purpose of contradiction, that there exists
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x € V(H) such that |[SN(V(H)—Ng(z))| < k. Let F(z) = SNNg|x]. Notice
that |S| > k and hence F(z) # (.

From the assumptions above, if V(H) = F(x) U {z}, then D(H) < 2,
which is a contradiction. If for every y € V(H) — (F(z) U{z}) there exists
z € F(x) such that dy(y,z) = 1, then dy(v,v") < 4 for all v,v" € V(H) —
(F(x)U{x}). Hence D(H) < 4, which is a contradiction. So, we assume
that there exists a vertex y' € V(H) — (F(z) U{z}) such that dg(y, z) > 1,
for every z € F(z), i.e, Ny(y )N F(z) =0. If V(H) = F(x) U {x,y'}, then
by the connectivity of H we have ¢y ~ x and, as consequence, D(H) = 2,
which is also a contradiction. Hence, V(H) — (F(x) U {x,y'}) # 0. Now,
for any w € V(H) — (F(z) U{z,y'}) we have that |Cy(y',w) N S| > k and,
since |S N (V(H) — Nuy(z))| < k and Ng(y') N F(z) = 0, we deduce that
Ny (w)NF(x) # 0. From this fact and the connectivity of H, we obtain that
dy(y',w) < 5. Hence D(H) < 5, which is also a contradiction. Therefore, if
D(H) > 6, then for every x € V(H) we have that |SN(V(H) — Ng(z))| > k.
Therefore, the result follows by Theorem |3.32] n

Corollary 3.35. Let H be a graph of girth g(H) > 5 and minimum degree
d(H) > 3. Then for any k € {1,...,C(K,+ H)},

adimy (K, + H) = adimy(H).

Proof. Let A be a k-adjacency basis of H and let x € V(H) and y € Ny(x).
Since g(H) > 5, for any u,v € Ny (y)—{z} we have that Cy (u, v)NNg[x] = 0.
Also, since |Cy(u,v) N A| > k, we obtain that |A — Ngy(z)| > k. Therefore,
by Theorem [3.32| we conclude the proof. O]

We now study the k-metric dimension of fan and wheel graphs. The case
k = 1 for fan graphs was previously studied in [62] and for wheel graphs in
[15].

Proposition 3.36. [15] [62]

1, ifn=1,
2, ifn=2345
1) adim (K, + P,) =
() adimi (K + P =4 if n=6,
|2222], otherwise.
ifn=23,6,

= J , otherwise.
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By Corollary , we know that the fan graphs Fy,, n > 4, are 3-
metric dimensional, so dimy(F},) makes sense for £ € {1,2,3}. Thus, it
only remains for us analyse the case k € {2,3}. To this end, we will use
the following notation. Let V(P,) = {uy,us,...,u,} be the vertex set of
the path P,, and let Fy,, = (u) + P,. We assume that u; ~ w;;; for each
ie{l,...,n—1}

We first present some useful lemmas.

Lemma 3.37. Let k € {2,3} and let n > 6 be an integer. For any k-metric
basis S of Fy,, it holds |S NV (P,)| > 2k.

Proof. Notice that D, , (u1,uz) = {u1,uz,us} and Dp, , (up—1,Un) = {tp_2,
Up—1, Uy }. Since S is a k-metric basis of Fy,, we have [SNDp, , (w1, uz)| > k
and |SNDp, ,, (Un—1,un)| > k. Asn > 6, it holds D, , (w1, u2)Dp, ,, (tn—1, Un)
= (). Therefore, |SNV(P,)| > 2k. O

Lemma 3.38. Let H be a nontrivial graph, let K1+ H be a k'-metric dimen-
sional graph, and let k € {1,...,K'}. If for every k-metric basis S of K1+ H
we have that |SNV(H)| > k+ A(H), then the vertex of Ky does not belong
to any k-metric basis of K1 + H.

Proof. Let v be the vertex of Ky, and let S be a k-metric basis of K| + H.
We will show that S’ = S — {v} is a k-metric generator for K; + H.

On the one hand, for every x € V(H) we have |S' N Dg,1uy(z,v)| =
IS"N(V(H) — Ny (2))| > k,as |S"NV(H)|=|SNV(H)| > k+ A(H).

On the other hand, for any z,y € V(H) we have |S' N Dk, +u(z,y)| =
1SN Dk, (@,y)| = k, as v € Diy v (@, y).-

Therefore, S’ is a k-metric generator for K; + H and, by the minimality
of S, the set S’ is a k-metric basis of K; + H. n

By performing some simple calculations, we observe that dims(F} 2) = 3,
dimQ(FLg) = 4, dimg(FlA) = dimg(Fm) = 4, and dimg(FlA) = dim3<F1’5)

= 5. The remaining values of dimy (£} ,,) are obtained in our next proposition.
Proposition 3.39. For any integer n > 6,
(i) dima(F10) = [*5H].

(i) dimg(Fi,) =n— [
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Proof.

(i) We shall prove that A = {u; € V(P,) : i =1 (2)} U{u,} is a 2-metric
generator for Fy,. Let x,y be two different vertices of F},, = (u) + P,.

If x = u, then dp ,(r,u;) = 1 for every u; € V(F,). Since |A| > 4 and
there exist at most two vertices uj,u; € V(P,) such that dp , (y,u;) =
dr,,,(y,w) =1, we have |Dp,  (u,y) N A| > 2.

Let us now assume that z,y € V(P,). If z,y € A, then they are distin-
guished by themselves and, if x,y ¢ A, then there exist at least two ver-
tices u;,u; € A such that u;,u; € N(x) 7 N(y) C Dp,.(x,y). Finally,
if v € Aand y ¢ A, then there exists a vertex w; € A — {x} such that
w € N(y) — N(z). Therefore, A is a 2-metric generator for F, and, as a
consequence, dims(F,) < [A] = [2].

It remains to show that dimy(F,) > WLTHW With this aim, we take an
arbitrary k-metric basis A" of Fy,. Since n > 6, by Lemmas and
3.38 u ¢ A’. Notice that Dp, , (u1,u2) = {u1,uz,us} and Dp, , (Up_1,uy) =
{tn—2,un_1,u,}. Thus, |A'N{uy,us,uz}| > 2 and |A'N{uy_o9, up_1,u,}| > 2.
So, for n = 6, then |A’| > 4 and we are done. From now on, we consider
n > 7. Let M(P,) = V(P,) — {uy, ug, us, Up—2, Up_1, U, }. Assume for pur-
poses of contradiction that |A' N M(P,)] < [%%| — 1. We consider the
following three subcases.

(1) n—6 =4p or n — 6 = 4p + 1 for some positive integer p. Let Q; =
{Ug;, Ugis1, Ugivo, ugirs}, 1 < i < p. Notice that every Q; C M(P,). Since
|A'NM(P,)| < |58 = 2p, there exists at least a set Q; = {uaj, Usj1, Usjso,
ugjy3} such that |Q; N A’| < 1. Since Dp, ,, (Usgjr1, Usjra) = {Uaj, Usjrr, Usjta,
ugjrs}, we deduce that wgjiq, usjio are distinguished by at most one vertex
of A’, which is a contradiction.

(2) n—6 = 4p + 2 for some positive integer p. As above, let Q; = {4, Ugir1,
Usiyo, Usivs}, | <@ < p. Notice that M(P,) = (U_; Qi) U{Uagpr1), Uaps1)+1}-
If there exists at least one @; such that |@; N A’| < 1, then we have a con-
tradiction as in the case above. Thus, |Q; N A’| > 2 for all 1 < i < p and we
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have

> [A'N M(P,)]
p

=) 1Qi N A+ A N {ttagpiay, tagpiny i}
i=1

> 2p.

As a consequence, it follows |Q; N A’'| = 2 for every j € {1,...,p} and
A" N {uapay, Uaprny1} = 0. Now, if wgpio, taprs € A’ then gy, uspy1 ¢ A'.
Thus, w4p1, uspss are distinguished only by w4p43, which is a contradiction.
Conversely, if wapio ¢ A" or usgpys ¢ A, then |A' N {uspio, Uspss, Usps1),
u4(p+1)+1| < 1 and, like in the previous case, we obtain that w43, usp41) are
distinguished by at most one vertex, which is also a contradiction.
(3) If n — 6 = 4p + 3, then we obtain a contradiction by proceeding analo-
gously to Case 2 (n — 6 =4p + 2).

Thus, |A' N M(P,)| > [%°] and we obtain that dimy(Fy,) = [4'] =
|A'NM (P,)|+|A'NDr, , (w1, u2)|+|A'NDp (w1, )| > [ 258 ] +4 = [ ].

Therefore, (i) follows.

(ii) Let S = V(P,) —{w; € V(P,) : 1 =0(5) AN 1<i<n-—4}. No-
tice that [S| =n — [22]. We claim that S is a 3-metric generator for F},.
Let z,y be two different vertices of F ,,.

If + = u, then dp, ,(v,u;) = 1 for every w; € V(P,). Also, there exist
at most two vertices u;,u; € V(P,) such that dp, , (y,u;) = dp,, (y,w) = 1.
Since |S| > 6, the vertices x,y are distinguished by at least three vertices of
S.

Now suppose z,y € V(P,). According to the construction of S, there
exist at least three different vertices u;,, us,,u;; € S such that dp, , (2, u;;) #

dr,, (y,u;;), with j € {1,2,3} (notice that = or y could be equal to some w;,

j€{1,2,3}).
Thus, S is a 3-metric generator for F, and, as a result, dimg(Fy,) <
S| =n—|%*].

It remains to show that dims(Fi,) > n — [%2]. Now, let S’ be a
3-metric basis of Fj,. Since n > 6, by Lemmas [3.37 and [3.38, u ¢ 5"

Also, notice that two adjacent vertices u;,u;;1 are distinguished by them-

selves and at least one neighbour w; 1 or u;;5. So, at least three of them
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belong to S’. Now, if there exist three consecutive vertices w; 1, u;, u;jy1 €
S’ such that w; o, u;1o ¢ S’, then the vertices wu;_1,u;41 are not distin-
guished by at least three vertices of S’, which is a contradiction. Thus,
if two vertices u;,u; ¢ S, then ¢ —j = 0 (5) and, as a consequence, per
each five consecutive vertices of V(P,), at least four of them are in S, or
equivalently, at most one does not belong to S’. Moreover, notice that
Dp,, (u1,u2) = {ur,uz,us}, Dp, (u1,u3) = {uy,us,us}, Dr,, (U1, ) =
{tn—2,un_1,un}, and Dp,  (Un-2,un) = {Up_3,Un_2,u,}. By Remark ,
{u, ug, Us, Us, Up_3, Up—_2, Un_1,Up} C S'. Hence, |S"| < V‘T—ﬂ + 1. Finally,
we have that dims(Fy,) = |5 = n+1—[9] > n— |2%2]. Therefore,

dims(Fy,) =n — \_"T_‘lj O

Let V(C,) = {uo,us,...,u,—1} be the vertex set of the cycle C,, in
Wi, = Ki + C,, and let u be the central vertex of the wheel graph. From
now on, all the operations with the subscripts of u; € V(C,,) will be taken
modulo n.

Since W; 3 and W4 have twin vertices, they are 2-metric dimensional
graphs. Also, by Corollary we know that the wheel graphs W, ,,, n > 5,
are 4-metric dimensional, i.e, dimy (W ,,) makes sense for k € {1,2,3,4}. We
now study dimy (W ,) for k € {2,3,4}. To this end, we first give some useful

results.

Lemma 3.40. Let C, be a cycle graph of order r > 7, and let k € {2,3,4}.
For any k-metric basis S of W1, we have that |SNV(C,)| > k + 2.

Proof. Let V(C,) = {ug, uz, ..., u—_1} be the vertex set of the cycle C,. The
subscripts of u; € V(C,) will be taken modulo r. Notice that Dy,  (u;, uit1) =
{Uz‘—la Uiy Uiy 1, Uz’+2}-

We first consider the case r > 8. Since Dy, , (4, wir1)Dw, , (Uiga, Uirs) =
0, |Dw,, (ui, uip1)N(SNV(C,))| > k and | Dy, , (Wisa, tips)N(SOV(C,))| > k,
we deduce that |[SNV(C,.)| > 2k. Thus, for k > 2 we have that |SNV(C,)| >
k4 2.

We now consider the case r = 7. Since Dy, , (s, wir1)Dw, , (Wi, Uivs) =
{u;i46}, in this case we have |SNV(C,)| > 2k — 1. So, for k € {3,4} it holds
|S| > k+2. Now we take k = 2. Suppose that [SNV(C,)|=3. It SNV (C,)
is composed by non-consecutive vertices, say S NV (C,) = {w;, uir2, uita},
then |Dy, , (Uiya, uirs) N (SN V(C,))| = 1, which is a contradiction. If there
are two consecutive vertices in S NV (C,), say u;,u;v1 € SN V(C,), then
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Dw,, (tivs, uira) N (S N V(C,))| < 1, which is a contradiction. Hence,
|ISNV(C,)| > 4 and, as a consequence, for k£ = 2 we have that |[SNV(C,)| >
k+2. [

By Lemmas and we deduce the next result.

Proposition 3.41. Let C,. be a cycle graph of order r > 7, and let k €
{2,3,4}. Then the vertex of Ky does not belong to any k-metric basis of
Wi,

Lemma 3.42. Let H be a nontrivial graph, and let K1 + H be a k'-metric
dimensional graph. Let k € {1,...,k'} and S C V(H). If for every x,y €
V(H), |SNDr,+u(z,y)| > k and |S| > k+ A(H), then S is a k-metric
generator for K1 + H.

Proof. Let v be the vertex of Kj. Since for every z,y € V(H) we have
that |S N Dy, +u(x,y)| > k, in order to prove that S is a k-metric generator
for K; + H, it is enough proving that for every x € V(H) the condition
|Dic,m(x,v) N S| > k is satisfied. Notice that for every x € V(H) we have
that D, n(z,v) = (V(H) — Ng(z)) U{v}. Since |S| > k+ A(H), for every
x € V(H) there exist k vertices y € SN (V(H) — Ny (z)). Thus, for every
x € V(H) it holds that |Dg,yu(x,v) N S| > k. Therefore, S is a k-metric
generator for Ky + H. O]

By performing some simple calculations, we have that dims(W;3) =
dimy (W1 4) = dimy (W 5) = dimy(Wi6) = 4, dimg(Wy5) = dimg(Wi6) = 5,
and dimy(W;5) = dimy(W;6) = 6. Next we present a formula for the k-
metric dimension of wheel graphs for n > 7 and k € {2,3,4}.

Proposition 3.43. For anyn > 7,
(i) dima(Wh,) = [5].

(ii) dims(Wi,) =n— [2].

(ili) dimy(Wi,) =n.

Proof. Since n > 7, by Proposition , the central vertex of Wi ,, does not
belong to any k-metric basis of W ,. Thus, any k-metric basis of Wy, is
a subset of V(C,). Let S, C V(C,), k € {2,3,4}, be a set of vertices of
Wi, such that [So| < [2], |S5] < n— |2], and |Ss| < n. We claim that

2 5
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Sy is not a k-metric generator for Wy, with k € {2,3,4}. Consider each Sy
independently:

k = 2. Since |Sy| < [%W, there exist four consecutive vertices wu;, u; 1, Uit 2,
;43 such that at most one of them belongs to Sy. Thus, |Dw, , (wit1, Uit2) N
Syl < 1.

k = 3. Since |S;| < n— L%J , there exist five consecutive vertices wu;, w; 1, U2,
Uit3, Ujr4 such that at most three of them belong to S3;. Thus, there ex-
ist four consecutive vertices uj, w1, Ujro, Ujrs € {Ui, W1, Uivo, Uits, Uit}
such that at most two of them belong to S3, with the exception of two
cases. Hence, |Dw, (w41, u42) N S3| < 2. The two exceptional cases
are when either u; 1, w10, u; 3 € S3 Or u;, Uj12, uirs € S3. In both cases,
| Dw, ., (Wig1, wigs) N Ss| = 2.

k = 4. Since |S4| < n, there exist four consecutive vertices u;, w;i1, Uir2, its
such that at most three of them belong to Sy. Thus, [Dw, , (tit1, tit2)NSs| <
3.

Therefore, as we claimed, Sy is not a k-metric generator for W, ,,, with
k €{2,3,4}, and so dimy(Wy,,) > (%W, dimg(Wy,) > n— [%j and dimy (W3 ,)
> n.

Since n > 7, by Proposition , the central vertex of W, does not
belong to any k-metric basis of Wi ,. Thus, V(C,) is a 4-metric genera-
tor for Wi, and, as a result, dimy(W;,) = n. It remains to show that
dimy (W1 ,,) < (%1 and dimg(W;,,) < n— L%J With this aim, let A, C V(C,,),
k € {2,3}, be a set of vertices such that u; belongs to A, or Aj if and
only if i is odd or i # 0 (5), respectively. Notice that |As| = [2] and
|As| = n — |£]|. We shall show that for every u;,u; € V(C,), i # j, it holds
'Dw,., (ui, u;) N Ag| > k and hence, by Lemmas and [3.42, we have that
Ay, is a k-metric generator for Wi ,. Consider each Aj separately:

k= 2. If u;,u; € Ay, then the result is straightforward. If u; € Ay and u; ¢
Ay, then {u;, up} € Ay N Dy, (w4, u ), for some uy, € N(u;) — Nlug]. Also,

if ug, u; & Ag, then {ug, w;} € AsNDyy, ,, (ui, uj), where ug, u; € N(u;) VN (uy).

k= 3. If uj,u; € As, then {u;,uj,ur} € Az N Dy, (u5,u;), where uy, €
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A3 N (N[w;]VNu;]). If u; € Az and u; ¢ As, then {w;,ug,w} C Az N

Dw, ,, (u;,u ), where uy, u; € A3 N (N [u;]VN[w;]). Finally, if u;, u; & As, then

{ur, g, up } © A3 N Dy, (44, u5), where g, wy, U, € N(u;) U N (uy).
Therefore, Ay, is a k-metric generator for Wy ,,, with k € {2,3} and, as a

consequence, the result follows. O

Proposition 3.44. [67] For any integer n > 4,

2 42
adimy (P,) = adim; (C,) = { nr J .

5

Notice that by Propositions and [3.44] for any n > 4, n # 6, we have
that

adim; (P,) = adim; (K + P,) = adim;(C},) = adim; (K; + C,,).

We now show the relationship between the k-adjacency dimension of fan
(wheel) graphs and path (cycle) graphs. By Theorem we have that any
path graph of order at least four is 3-adjacency dimensional and any cycle
graph of order at least five is 4-adjacency dimensional. From Propositions
[3.37], [3.39] and [3.43] we will derive closed formulae for the k-adjacency dimen-
sion of paths (for k£ € {2,3}) and cycles (for k € {2,3,4}).

Proposition 3.45. For any integer n > 4,

n+1

adim,(P,) = { -

—‘ and adimg(P,) =n — {n —_ 4J :
Proof. Let k € {2,3} and V(P,) = {v1,v2,...,v,}, where v; is adjacent to
Vi1 for every i € {1,...,n—1}.

We first consider the case n > 7. Since Cp, (v1,v2) = {v1,v2,v3} and
Cp, (Un—1,vn) = {Un_2,Vn_1,v,}, we deduce that for any k-adjacency basis A
of P, and any y € V(T), |A — Np,(y)| > k. Hence, Theorem leads to
adimy (K, 4+ P,) = adimy(P,). Therefore, by Proposition we deduce the
result for n > 7.

Now, for n = 6, since Cp, (v1,v2) = {v1, v2,v3} and Cp, (vs, v6) = {v4, V5, U6},
we deduce that adims(Fs) > 4 and adims(Fs) = 6. In addition, {vy, v3, v4, v}
is a 2-adjacency generator for Ps and so adimy(Fg) = 4.

From now on, let n € {4,5}. By Proposition we have dimg (K, +
P,) > adimy(P,). It remains to prove that adimy(K; + P,) < adimy(P,).
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If n =4 or n =5, then by Proposition [3.12] adim,(P,) > 3. Note
that {vy,vq9,v4} and {vy,vs,v5} are 2-adjacency generators for P, and Ps,
respectively. Thus, adimy(P,) = adims(Ps) = 3. Let A be a 3-adjacency basis
of P,, where n € {4,5}. Since Cp, (v1,v2) = {v1,v2,v3} and Cp, (v_1,v,) =
{vn—2,Vn-1,v,}, we have that (ANCp, (v1,v2)) U(ANCp, (Vy—1,v,)) = V(P,),
and as consequence, A = V(P,). Therefore, adims(P,) = 4 and adimz(P5) =

U

5 and, as a consequence, the result follows.

Proposition 3.46. For any integer n > 5,
adimy(C),) = {EW , adimz(C,) =n — LEJ and adimy(C,) = n.

Proof. Let k € {2,3,4} and V(C,,) = {v1,v2,...,v,}, where v; is adjacent to
vi11 and the subscripts are taken modulo n.

We first consider the case n > 7. Since Co, (Vit3, Vita) = {Vit2, Vits, Vita,
V15, we deduce that for any k-adjacency basis A of C,,, |A — N¢, (v;)| > k.
Hence, Theorem leads to adimy(K; + C,,) = adimy(C,,). Therefore, by
Proposition we deduce the result for n > 7.

From now on, let n € {5,6}. By Proposition we have dimg(K; +
G) > adim(G). It remains to prove that adimy(K; + H) < adimy(H).

By Theorem 3.2 we deduce that 2 = adim; (C5) < adim,(C5) < adims(Cj)
< adimy(C5) < 5. Hence, adimy(C5) = 3, adims(Cs) = 4 and adimy(C5) = 5.
Therefore, for n = 5 the result follows.

By Theorem 3.2, adims(Cg) > adim;(Cg) = 2 and, since {vy, vs,vs5} is a
2-adjacency generator for Cg, we obtain that adimy(Cs) = 3. Now, let A4 be
a 4-adjacency basis of Cg. If |A4] < 5, then there exists at least one vertex
which does not belong to Ay, say vy. Then, |C¢, (vi,v9) N Ay| < 3, which is
a contradiction. Thus, adimy(Cg) = |A4| = 6. Let Al = {vy, vo,v3,v4}, A2 =
{v1,v2,v3,v5} and A3 = {v1,v9,v4,v5}. Note that any manner of selecting
four different vertices from Cp is equivalent to some of these A}, A3, A3. Since
ICc, (vs,v6) N A3| = [{v1,v4}] =2 < 3, |Cc, (va,v6) N A3 = [{v1, 03} =2 <3
and |Cq, (v1,v2) N A3| = [{v1,v2}] = 2 < 3, we deduce that adims(Cg) > 5 >
|Al] = |A2] = |A3| = 4. By Theorem [3.2] 5 < adim3(Cs) < adimy(Cs) < 6.

Thus, adimz(Cs) = 5 and, as a consequence, the result follows. O

By Propositions and [3.46, adims(P,) = n for n € {4,...,8} and
adimy(C,,) = n for n > 5. These are examples of graphs satisfying conditions

of Theorem 3.5
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By Propositions [3.36], [3.39] [3.43], [3.44] [3.45] and we observe that
for any k € {1,2,3} and n > 7, adimy(K; + P,) = adimy(P,) and for any
k€ {1,2,3,4}, adimg(K; + C,,) = adimg(C,,). The next result is devoted
to characterize the trees where adimy(K; + 7') = adimg(7"). To this end,

we recall that the eccentricity of a vertex v in a connected graph G is the

maximum distance between v and any other vertex u of G.
Proposition 3.47. Let T be a tree. The following statements hold.

(a) adimy (K4 +T) = adimy(T) if and only if T ¢ Fy = { Py, P3, Ps, K1, T},
where n > 3 and T" is obtained from PsU{K;} by joining by an edge the

vertex of K to the central vertex of Ps.

(b) adimy (K +7T) = adime(7T') if and only if T & Fy = {P,, K1, T'}, where
r € {2,...,5}, n > 3 and T" is a graph obtained from K, U Ky by
joining by an edge one leaf of K, to one leaf of Ks.

(¢) adimg(K;y + T') = adims(T) if and only if T & F3 = {Py, Ps}.

Proof. For any k € {1,2,3} and T € Fy, a simple inspection shows that
adimy (K, + T) # adimg(7). From now on, assume that T ¢ Fj, for
k € {1,2,3}, and let Ext(T") be the number of exterior major vertices of
T. We differentiate the following three cases.

Case 1. T = P,. The result is a direct consequence of combining Proposi-

tions and for kK = 1 and Propositions and for k > 1.

In the following cases we shall show that there exists a k-adjacency basis
A of T such that |A — Np(v)| > k, for all v € V(T'). Therefore, the result
follows by Theorem [3.32

Case 2. Ext(T") = 1. Let u be the only exterior major vertex of 7'

We first take & = 1. Since any two vertices adjacent to u must be
distinguished by at least one vertex, we have that all paths from w to its
terminal vertices, except at most one, contain at least one vertex in A. Thus,
|A—Nr(y)| > 1, forally € V(T')—{u}. Now we shall show that |A—Np(u)| >
1. fue Aor AZ Np(u), then we are done, so we suppose that for any
adjacency basis A of T, u ¢ A and A C Nr(u). If there exists a leaf v
such that dp(u,v) > 4, then the support v’ of v satisfies Cr(v,v") N A = 0,
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which is a contradiction. Hence, the eccentricity of u satisfies 2 < e(u) < 3.
If w is a leaf of T such that dr(u,w) = €(u), then the vertex v € Np(u)
belonging to the path from u to w must belong to A and, as a consequence
A= (A—{u'}) U{w} is an adjacency basis of T', which is a contradiction.
We now take k& = 2. Let A be a 2-adjacency basis of T. Since any
two vertices adjacent to u must be distinguished by at least two vertices
in A, either all paths joining u to its terminal vertices contain at least one
vertex of A or all but one contain at least two vertices of A. Thus, any vertex
y € V(T)—{u} and any 2-adjacency basis A of T satisfy that |A—Nz(y)| > 2.
If there exist two vertices v,v’ € V(T') such that dr(u,v) > 3 and
dr(u,v") > 3, then |A — Np(u)| > 2, as |[ANCa(v,v")| > 2. On the other
hand, if there exists only one leaf v such that dr(u,v) > 3 and another leaf
w such that dp(u,w) = 2, we have that in order to distinguish v and its
support as well as w and its support, |A N Nr[v]| > 1 and |A N {u,w}| > 1
and, as a result, |A — Np(u)| > 2. Now, since T" ¢ F, it remains to con-
sider the case where u has eccentricity two. Let v, w be two leaves such that
dr(u,v) = dr(u, w) = 2. If [Ny (u)| = 3, then the set A composed by u and its
three terminal vertices is a 2-adjacency basis of T' such that |A — Np(u)| > 2.
Assume that |[Np(u)| > 4. In order to distinguish v and its support vertex
v, as well as w and its support vertex w’, any 2-adjacency basis A of T' must
contain at least two vertices of {u, v, v’} and at least two vertices of {u, w, w'}.
If u¢ A, then v,w € A, and as a consequence, |A — Np(u)| > 2. Assume
that « € A. In this case, if A— Np[u] # 0, then |A — Ny(u)| > 2. Otherwise,
A C Nr[u] and {u,v’,w'} C A and, as a consequence, A" = (A — {v'}) U {v}
is a 2-adjacency basis of T" and |A" — Np(u)| > 2.
Finally, suppose that there exists exactly one leaf v such that dr(u,v) = 2.
Let v' be the support vertex of v. In this case, V(T') — {v'} is a 2-adjacency
basis A of T such that |A — Np(u)| > 2.
We now take £ = 3. In this case, there exist two leaves v,w such that
dr(u,v) > 2 and dr(u,w) > 2. Since v and its support vertex v’ must be dis-
tinguished by at least three vertices, they must belong to any 3-adjacency ba-
sis. Analogously, w and its support vertex w’ must belong to any 3-adjacency
basis. In general, any leaf that is not adjacent to u and its support vertex
belong to any 3-adjacency basis of T'. Moreover, there exists at most one
terminal vertex x adjacent to u. If x exists, it must be distinguished from

any vertex belonging to Np(u) — {x} by at least three vertices. Thus, they
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must belong to any 3-adjacency basis. Any vertex y different from u and any
3-adjacency basis A of T satisfy v,v" € A — Nr(y) or w,w’ € A — Np(y). If
v,v" € A— Np(y) and w,w’ € A— Np(y), then |A — Nr(y)| > 3. Otherwise,
assuming without loss of generality that v,v" € A— Np(y), there exists a ter-
minal vertex z different from w such that y o¢ z. Thus, again |[A—Nr(y)| > 3.
If dr(u,v) =2, then v,v" are distinguished only by u, v,v’, so u must belong
to any 3-adjacency basis of T'. Thus, for any 3-adjacency basis A of T" we
have that u,v,w € A — Np(u), and as a consequence, |A — Np(u)| > 3. Fi-
nally, if dr(u,v) > 2 and dr(u,w) > 2, then v,v', w,w" € A — Nr(u). Hence
|A = Np(u)| > 3.

Case 3. Ext(T) > 2. In this case, there are at least two exterior major
vertices u,v of T having terminal degree at least two. Let uy,us be two
terminal vertices of u and vy, vy be two terminal vertices of v. Let u} and u),
be the vertices adjacent to w in the paths v — u; and u — us, respectively.
Likewise, let vj and v}, be the vertices adjacent to v in the paths v — v, and
v — vy, respectively. Notice that it is possible that uy = uf, ug = uj, vi = v}
or vy = v). Note also that C(u}, ub) = (Np[u)]UNrp[ub))—{u} and C(v],vh) =
(Nr[vy] U Np[vy]) —{v}. Since for any k-adjacency basis A of T" it holds that
|IC(u},ub) N A| > k and |C(v],vy) N A|l > k, and for any vertex w € V(T') we
have that (A — Np(w)) NC(u},uh) = 0 or (A — Np(w)) NC(vy,v5) = 0, we
conclude that |[A — Np(w)| > k. O

By Remark we know that adimy(H) = adimy,(H) for any nontrivial
graph H and k € {1,2,...,C(H)}. Thus, by Corollaries [3.33], [3.34] [3.35|
and Propositions |3.36} [3.39, [3.43], [3.44} [3.45] |3.46| and |3.47| we deduce the

following results.

Proposition 3.48. Let H be a nontrivial graph such that adimy(K; U H) =

adimg(H). Then the vertex of Ky does not belong to any k-adjacency basis
Of)]<i LJ.TT.

Proposition 3.49. If H is a graph of diameter D(H) > 6, or H has girth
g(H) > 5 and minimum degree §(H) > 3, then adimy,(K,UH) = adimy,(H) =
adimg(H) for any k € {1,...,C(K, + H)}.

Proposition 3.50. Let T' be a tree. The following statements hold.
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(a) adim;(K; UT) = adimy(T) = adim,(T) if and only if T & F, =
{Ps, Ps, Ps, K1, 1"}, where n > 3 and T" is obtained from P; U Ky by

joining by an edge the vertex of K1 to the central vertex of Ps.

(b) adimy(K, UT) = adimy(T) = adimy(T) if and only if T ¢ Fo =
{P.,Ky1,,T"}, where r € {2,...,5}, n > 3 and T" is a graph obtained
from Ky, U Ky by joining by an edge one leaf of K, to one leaf of K.

(¢) adimz(K,UT) = adims(T) = adims(T) if and only if T & F5 = {Py, Ps}.
Moreover, if T is a path P, of order n, then

(i) adim;(K; U P,) = adim,(P,) = adim,(P,)

LQ"—JZJ form > 7.

(ii) adimy(K, U P,) = adimy(P,) = adimy(P,)

("T“W forn > 6.
(iii) adims(K; U P,) = adims(P,) = adim3(P,) = n — L”T’ﬂ forn > 6.

Proposition 3.51. For any cycle C,, of ordern > 7, the following statements
hold.

(i) adim; (K, U C,) = adim,(C,,) = adim,;(C,,) = L—”J

(ii) adimy (K, U C,) = adimy(C,,) = adimy(C,,)

I
—
N3
1

(iii) adims(K; U C,) = adims(C,,) = adims(C,) =n — [2].
(lV) adim4(K1 U O_n) = ad1m4(Cn) = ad1m4(c_n) =n.

From now on, we shall study some cases where adimy, (K;+H) > adimy(H).
First of all, notice that by Corollary [3.34] if H is a connected graph and
adimy (K, + H) > adimg(H) + 1, then D(H) < 5 and, by Corollary if
H has minimum degree §(H) > 3, then it has girth g(H) < 4. We would

point out the following consequence of Theorem [3.32]

Corollary 3.52. If adimg (K, + H) > adimy(H) + 1, then either H is con-
nected or H has exactly two connected components, one of which is an isolated

vertex.

Proof. Let A be a k-adjacency basis of H. We differentiate three cases for
H.

Case 1. There are two connected components H; and Hy of H such that
\V(Hy)| > 2 and |V(Hy)| > 2. As for any i € {1,2} and u,v € V(H;),
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|Cr(u,v) N A| = |Cq,(u,v) N Al > k we deduce that |ANV(Hy)| > k and
|ANV(Hy)| > k. Hence, if v € V(H;), then |A — Ny (x)| > |[ANV (Hs)| > k
and if x € V(H) — V(H;), then |A — Ny (z)| > |ANV(H,)| > k. Thus, by
Theorem [3.32, adim (K + H) = adim,(H).

Case 2. There is a connected component H; of H such that |V (H;y)| > 2
and there are two isolated vertices u,v € V(H). From Cg(u,v) = {u,v}
we conclude that k& < 2 and |[{u,v} N A| > k. Moreover, for any z,y €
V(Hy), v # y, we have that |Cy(z,y) N A| = |Ch,(u,v) N A] > k and so
|ANV(Hy)| > k. Hence, if x € V(H;), then |A — Ny (z)| > [{u,v} NA| > k
and if x € V(H) — V(Hy), then |A — Ng(z)| > |ANV(Hy)| > k. Thus, by
Theorem [3.32, adimy (K + H) = adimy(H).

Case 3. H = N, for n > 2. In this case k € {1,2}, adimy (K, + N,,) =
adim; (N,,) = n — 1 and adimy(K; + N,,) = adimy(N,,) = n.

Therefore, according to the three cases above, the result follows. O

By Proposition and Theorem [3.32] adimy, (K7 + H) > adimy,(H) + 1
if and only if for any k-adjacency basis A of H, there exists h € V(H)
such that |A — Ng(h)| < k. Consider, for instance, the graph G shown
in Figure 3.1} The only 2-adjacency basis of G is B = {vs,v3,v4,v5} and
|B — Ng(v1)| = 0, so adimy(K; + G) > adimy(G) +1 = 5. It is easy to
check that A = {vy, vg, v7,v8,v9} is a 2-adjacency generator for K; + G, and
so adimy (K7 + G) = adimy(G) + 1 = 5. We emphasize that neither B U {v;}
nor BU {z} are 2-adjacency bases of (z) + G.

Proposition 3.53. Let H be a graph of ordern > 2 and letk € {1,...,C(K;+
H)}. If for any k-adjacency basis A of H, there exists h € V(H) such that
|A— Ny(h)|=k—1and |A— Ng(h')| > k—1, for all M € V(H), then

adimy (K, + H) = adimy(H) + 1.

Proof. 1f for any k-adjacency basis A of H, there exists h € V(H) such that
|A— Ny (h)| = k—1, then by Theorem [3.32] adimy,(K;+ H) > adimy,(H)+1.

Now, let A be a k-adjacency basis of H and let v be the vertex of Kj.
Since |[A—Ng(h')| > k—1, for all b’ € V(H), the set AU{v}, is a k-adjacency
generator for K7 + H and, as a consequence, adim(K; + H) < |AU{v}| =
adimg(H) + 1. O

The graph H shown in Figure[3.5has six 3-adjacency bases. For instance,

one of them is B = {1,2,3,4,5,8,9} and the remaining ones can be found
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Figure 3.5: The set B = {1,2,3,4,5,8,9} is a 3-adjacency basis of this graph.

by symmetry. Notice that for any 3-adjacency basis, say A, there are two
vertices 7, j such that |A — Ng(i)| = 2, |[A— Ng(j)| =2 and |A— Ng(l)| > 3,
for all [ # 4,j. In particular, for the basis B we have ¢ = 3 and j = 4.
Therefore, Proposition leads to adimg(K; + H) = adimz(H) + 1 = 8.

By Theorem [3.32] and Proposition [3.53| we deduce the following result
previously obtained in [67].

Proposition 3.54. [67] Let H be graph of order n > 2. If for any adjacency
basis A of H, there exists h € V(H) — A such that A C Ny (h), then

adiml(Kl + H) = adlm1<H) + ]_,

otherwise,
adim1 (Kl -+ H) = adim1 (H)

Theorem 3.55. For any nontrivial graph H,

Proof. Let A be a 2-adjacency basis of H and let u be the vertex of Kj.
Notice that there exists at most one vertex x € V(H) such that A C Ny(z).
Now, if |[A— Ny (v)| > 1 for allv € V(H), then we define X = AU{u} and, if
there exists x € V(H) such that A C Ng(z), then we define X = AU {z,u}.
We claim that X is a 2-adjacency generator for Ky + H. To show this,
we first note that for any y € V(H) we have that |Cr,4m(u,y) N X| =
|((A—= Ng(y))U{u})NX| > 2. Moreover, for any a,b € V(H) we have that
Cr,+u(a,b) = Cy(a,b). Therefore, X is a 2-adjacency generator for Ky + H
and, as a consequence, adimy (K + H) < adimy(H) + 2. O

We would point out that if for any 2-adjacency basis A of a graph H,

there exists a vertex x such that A C Ny (x), then not necessarily adims (K +
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H) = adimy(H) + 2. To see this, consider the graph G shown in Figure [3.1]
where {vy, v3,v4,v5} is the only 2-adjacency basis of G and {vy, v3, v4,v5} C
Ny (v1). However, {vq,vg,v7, 08,09} is a 2-adjacency basis of K; + G and so
adimy (K, + H) = adim(H) + 1. Now, we prove some results showing that
the inequality given in Theorem is tight.

Theorem 3.56. Let H be a nontrivial graph. If there exists a vertex x of
degree 0(x) = |V(H)| — 1 not belonging to any 2-adjacency basis of H, then

adimg (K, + H) = adimy(H) + 2.

Proof. Let u be the vertex of K; and let x € V(H) be a vertex of degree
d(z) = |V(H)| — 1 not belonging to any 2-adjacency basis of H. In such a
case, Cx,+m(z,u) = {z,u} and, as a result, both z and v must belong to any
2-adjacency basis X of K; + H. Since X — {u} is a 2-adjacency generator
for H and z € X — {u} we conclude that |X — {u}| > adimy(H) + 1 and so
adimy (K, + H) = | X| > adime(H) + 2. By Theorem we conclude the
proof. O

Examples of graphs satisfying the premises of Theorem [3.56| are the fan
graphs Fi, and the wheel graphs W, for n > 7. For these graphs we have
adim2<K1+FLn) = adimg(FLn)—l—Q and adimQ(Kl—i—Wl,n) = adimQ(len)—i—Q.

Theorem 3.57. Let H be a graph having an isolated vertex v and a vertex
u of degree 6(x) = |V(H)| — 2. If for any 2-adjacency basis B of H, neither

u nor v belongs to B, then

Proof. Let u be the vertex of K;. Since Cx,1m(z,u) = {x,u,v}, at least
two vertices of {x,u, v} must belong to any 2-adjacency basis X of K; + H.
Then we have that x € X — {u} or v € X — {u}. Since X — {u} is a
2-adjacency generator for H, we conclude that if | X N {z,v}| = 1, then
adimg (K + H) > | X — {u}| > adims(H) + 1, whereas if | X N {z,v}| = 2,
then adimy (K7 + H) > | X — {u}| > adimy(H) + 2. Hence, adimy(K; + H) =
| X | > adimy(H) 4 2. By Theorem we conclude the proof. O

For instance, we take a family of graphs G = {G1,Gs,...} such that
for any G; € G, every vertex in V(G;) belongs to a non-singleton true twin
equivalence class. Then X = (J, .o V(G;) is the only 2-adjacency basis of
H=K U(K;+ UGieg G;). Therefore, adimy (K, + H) = adima(H) + 2.
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Proposition 3.58. Let H be graph and k € {1,...,C(Ky + H)}. If there
exists a vertex x € V(H) and a k-adjacency basis A of H such that A C
Ny (z), then

adimg (K + H) < adimg(H) + k.

Proof. Let u be the vertex of K; and assume that there exists a vertex
vy € V(H) and a k-adjacency basis A of H such that A C Ng(vy). Since
k <|V(H)|-A(H)+1, we have that |V (H)—Npg(v1)| > k—1. With this fact
in mind, we shall show that X = AU{u} U A’ is a k-adjacency generator for
Ki+ H, where A =0if k =1and A" = {vy,v9,...,04_1} C V(H)— Ng(v1)
if & > 2. To this end we only need to check that |Cx,m(u,v) N X| > k,
for all v € V(H). On one hand, |Ck,+g(u,v1) N X| = [{u} UA'| = k. On
the other hand, since A C Ng(vq), for any v € V(H) — {v;} we have that
|A — Ny (v)| > k and, as a consequence, |Cr,u(u,v) N X| > k. Therefore,
X is a k-adjacency generator for Ky + H and, as a result, adimg(K; + H) <
| X| = adimy(H) + k. O

Figure 3.6: The set A = {2,3,5,6,7,9} is the only 3-adjacency basis of H
and A C Ny(1).

The bound above is tight. It is achieved, for instance, for the graph
shown in Figure 3.6l In this case adims(K; + H) = adims(H) 4+ 3 = 9.
The set {2,3,5,6,7,9} is the only 3-adjacency basis of H, whereas (u) + H
has four 3-adjacency bases, i.e., {1,2,3,4,5,6,7,8 u}, {1,2,3,4,5,6,7,9,u}
{1,2,3,4,5,7,8,9,u} and {1,2,3,4,6,7,8,9, u}.

Conjecture 3.59. Let H be graph of order n > 2 and k € {1,...,C(K; +
H)}. Then

We have shown that Conjecture [3.59|is true for any graph H and k €
{1,2}, and for any H and k satisfying the premises of Proposition m
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Moreover, in order to assess the potential validity of Conjecture [3.59, we
explored the entire set of graphs of order n < 11 and minimum degree two
by means of an exhaustive search algorithm. This search yielded no graph H
such that adimy (K + H) > adimy,(H)+k, k € {3,4}, a fact that empirically
supports our conjecture.

Two different vertices u, v of G+ H belong to the same twin equivalence

class if and only if at least one of the following three statements hold.
(a) u,v € V(G) and u, v belong to the same twin equivalence class of G.
(b) u,v € V(H) and u, v belong to the same twin equivalence class of H.
(¢) ueV(G),veV(H), Nglu] = V(G) and Ng[v] = V(H).

The following two remarks are direct consequence of Corollary [3.6]

Remark 3.60. Let G and H be two graphs of order ny > 2 and ny > 2,
respectively. Then adimy(G + H) = ny + ns if and only if one of the two
following statements hold.

(a) Ewvery vertex of G belongs to a non-singleton twin equivalence class of G

and every vertex of H belongs to a non-singleton twin equivalence class
of H.

(b) A(G) = ny — 1, A(H) = ny — 1, every vertex u € V(G) of degree
d(u) < ny — 1 belongs to a non-singleton twin equivalence class of G and
every vertex v € V(H) of degree 6(v) < ng— 1 belongs to a non-singleton
twin equivalence class of H.

Theorem 3.61. Let G and H be two nontrivial graphs. Then the following

assertions hold:
(i) For any k€ {1,...,C(G+ H)},

(ii) For any k € {1,..., min{C(H),C(K; + G)}}
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Proof. First we proceed to deduce the lower bound. Let A be a k-adjacency
basis of G + H, Ag = ANV(G), Ay = ANV(H) and let xz,y € V(G)
be two different vertices. Notice that Ag # () and Ay # (), as ny > 2 and
ne > 2. Now, since Caipm(z,y) = Ca(x,y), it follows that |Ag N Ca(x,y)| =
|ANCqiu(x,y)| > k, and as a consequence, Ag is a k-adjacency generator
for G. By analogy we deduce that Ay is a k-adjacency generator for H.
Therefore, adim (G + H) = |A| = |Ag| + |An| > adimy(G) + adimy(H).

To obtain the upper bound, first we suppose that there exists a k-
adjacency basis U of K; + G such that the vertex of K; does not belong
to U. We claim that for any 2-adjacency basis B of H the set X = U U B is
a k-adjacency generator for G+ H. To see this we take two different vertices
a,b € V(G+H). Ifa,b € V(G), then |Coin(a,b)NX| = |Cx,+c(a, b)NU| > k.
If a,b € V(H), then |Coin(a,b)NX| = |Cx(a,b)NB| > k. Now, assume that
a € V(G) and b € V(H). Since U is a k-adjacency generator for (b) + G, we
have that [Cyy1c(a, b)NU| > k. Hence, |Cotr(a, b)NX| = [Cpy4a(a,b)NU| >
k. Therefore, X is a k-adjacency generator for G+ H and, as a consequence,
adim, (G + H) < |X| = |U| + |B| = adimg(K; + G) + adimy(H).

Suppose from now on that the vertex u of K7 belongs to any k-adjacency
basis U of K; + G. We differentiate two cases:

Case 1. For any k-adjacency basis B of H, there exists a vertex z such
that B C Ngy(z). We claim that X = U’ U (B U {z}) is a k-adjacency
generator for G + H, where U’ = U — {u}. To see this we take two different
vertices a,b € V(G + H). Notice that since B is k-adjacency basis of H,
there exists exactly one vertex z € V(H) such that B C Ng(z) and for
any y € V(H) — {x} it holds |B — Ng(y)| > k. If a,b € V(G), then
ICarm(a, )N X| =|Cx,1c(a,b)NU'| = |Cky1c(a,b)NU| > k. If a,b € V(H),
then |Coym(a,b) N X| = |Cx(a,b) N (BU{zx})| > k. Now, assume that a €
V(G)and b € V(H). Since U'U{b} is a k-adjacency basis of (b) + G, we have
that [Cpy+a(a,b) NU'| > k — 1. Furthermore, |Ciay4+u(a,b) N (B U {x})| > 1.
Hence, |Cayu(a,b) N X| = [Cpy+a(a,b) NU'| + |Clay+u(a, b) N (BU{z})| > k.
Therefore, X is a k-adjacency generator for G + H and, as a consequence,
adimg(G+ H) < |X| = |U'|+|BU{z}| = (adimy(K; +G) — 1)+ (adimy (H) +
1) = adimy (K, + G) + adimg (H).

Case 2. There exists a k-adjacency basis B’ of H such that |B' —
Ng(h')| > 1, forall i’ € V(H). We take X = U’'UB’ and we proceed as above
to show that X is a k-adjacency generator for G + H. As above, for a,b €
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V(G)ora,b e V(H) we deduce that |Cqrm(a,b)NX| > k. Now, for a € V(G)
and b € V(H) we have [Cpy1c(a,b)NU'| > k —1 and |Ciay+r(a, b) N B'| > 1.
Hence, |Carm(a,b) N X| = [Cuyta(a, b) NU'| + [Clay+u(a, b) N B| > k and, as
a consequence, adimg (G + H) < |X| = |U'| +|B'| = (adimy(K; + G) — 1) +
adimg(H) < adimg (K3 + G) + adimy(H). O

By Proposition [3.54] and Theorem |3.61| we obtain the following result.

Proposition 3.62. Let G and H be two nontrivial graphs. If for any adja-
cency basis A of G, there ezists g € V(G) such that A C Ng(g) and for any
adjacency basis B of H, there exists h € V(H) such that B C Ng(h), then

adim, (G + H) = adim; (G) + adim; (H) + 1

Otherwise,

adim; (G + H) = adim, (G) + adim; (H).

Corollary 3.63. Let G and H be two nontrivial graphs and k € {1,...,C(G+
H)}. If adimg (K, + G) = adimg(G), then

adimy (G + H) = adimy(G) + adimg(H).

In the previous subsection we showed that there are several classes of
graphs where adimy(K; + G) = adim(G). This is the case, for instance, of
graphs of diameter D(G) > 6, or G € {P,,C,}, n > 7, or graphs of girth
g(G) > 5 and minimum degree 6(G) > 3. Hence, for any of these graphs,
any nontrivial graph H, and any k € {1,...,min{C(H),C(K;+G)}} we have
that adimy (G + H) = adimy(G) + adim(H).

Theorem 3.64. Let G and H be two nontrivial graphs. Then the following

assertions are equivalent:

(i) There exists a k-adjacency basis Ag of G and a k-adjacency basis Ay
of H such that |(Ag — Ng(x)) U (Ag — Nu(y))| > k, for all z € V(G)
and y € V(H).

(i) adimg(G + H) = adimy(G) + adimy(H).

Proof. Let Ag be a k-adjacency basis of G and and let Ay be a k-adjacency
basis of H such that |(Ag — Ng(x)) U (Ag — Ng(y))| > k, for all z € V(G)
and y € V(H). By Theorem 3.61} adim,(G+ H) > adimg(G) +adimy(H). It
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remains to prove that adim;(G+ H) < adimy(G) + adim(H ). We will prove
that A = AgUAp is a k-adjacency generator for G+ H. We differentiate three
cases for two vertices x,y € V(G+ H). If z,y € V(G), then the fact that Ag
is a k-adjacency basis of G leads to k < |Ag N Cq(z,y)| = |[ANCaru(z,y)|.
Analogously we deduce the case z,y € V(H). If 2 € V(G) and y € V(H),
then the fact that Corm(z,y) = (V(G) — Ng(x)) U (V(H) — Nu(y)) and
|(Ag — Ng(z))U(Ag — Nu(y))| > k leads to |ANCein(x,y)| > k. Therefore,
Ais a k-adjacency generator for G+ H, as a consequence, |A| = |Ag|+|An| =
adimg(G) + adimy (H) > adimg (G + H).

On the other hand, let B be a k-adjacency basis of G+ H such that |B| =
adimy(G)+adimg(H) and let B = BNV (G) and By = BNV(H). Since for
any g1,92 € V(G) and h € V(H), h & Carr(g1,92), we conclude that Bg is a
k-adjacency generator for G and, by analogy, By is a k-adjacency generator
for H. Thus, |Bg| < adimg(G), |By| < adimy(H) and |Bg| + |Bu| = |B| =
adimy(G) + adimy(H). Hence, |Bg| = adimg(G), |By| = adimg(H) and, as
a consequence, Bg and By are k-adjacency bases of G and H, respectively.
If there exists g € V(G) and h € V(H) such that |(Bg — Ng(9)) U (By —
Ny (h))| <k, then |B N Cein(g; h)| = [(Be — Na(g)) U (By — Nu(h))| <k,

which is a contradiction. Therefore, the result follows. O
We would point out the following particular cases of the previous resultﬂ.

Corollary 3.65. Let C,, be a cycle graph of order n > 5 and P, a path graph
of order n’ > 4. If G € {K; + C,,, Ny + C,,}, then

2n + 2
5)

J +t—1and adimy(G) = [gw +t.

adim, (G) = {

]fG S {Kt + Pn’th + Pn’}; then

2n' + 2

adim, (G) = L J +t—1and adimy(G) = [n il 1—‘ +t.

2

Proof. Let Gy € {K;,N;} and Gy € {P,,C,}. By Propositions and
we deduce that adims(Gy) — A(G2) > 1. On the other hand, for any
2-adjacency basis A of G; and x € V(G) we have |B — Ng, (y)| € {1,t}.
Therefore, by Theorem we obtain the result for G = G; + Gb. O

!Notice that for n > 7 and n’ > 6, this result can be derived from Corollary
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Corollary 3.66. Let G be a graph of order n > 7 and mazimum degree
A(G) < 3. Then for any integer r > 2 and H € {K,, N,.},

adims (G + H) = adimy(G) + 7.

Proof. By Theoremwe deduce that adimy(G) > 4, so for any 2-adjacency
basis A of G and = € V(G) we have |A — Ng(x)| > 1. Moreover, for any
2-adjacency basis B of H and y € V(H) we have |B — Ng(y)| € {1,r}.
Therefore, by Theorem we obtain the result. O

Corollary 3.67. Let G and H be two graphs of order at least seven such
that G s ki-adjacency dimensional and H is ko-adjacency dimensional. For
any integer k such that A(G) + A(H) — 4 < k < min{k;, ko },

adimy (G + H) = adimy(G) + adimg(H).

Proof. By Theorem [3.26] for any positive integer k& < min{ki, k»}, we have
adimg(G) > k + 2 and adimg(H) > k + 2. Thus, if £ > A(G) + A(H) — 4,
then (adimy(G) — A(G)) + (adimg(H) — A(H)) > k. Therefore, by Theorem
[3.64) we conclude the proof. O

As a particular case of the result above we derive the following remark.

Remark 3.68. Let G and H be two 3-regular graphs of order at least seven.
Then
adimy (G + H) = adimy(G) + adimg(H).

General lexicographic product graphs

Note that a trivial upper bound on the k-metric dimension of GoH is |V (G o
H)|, which is tight at least for &k = 2. To see this, we can firstly consult the
notation given by Section [I.I] and we can refer to Corollary [3.6] which states
that the 2-metric dimension of a graph G is equal to its order if and only if
G has no singleton twin equivalence classes. Considering this fact, we can

conclude the next result.

Remark 3.69. Let G be a connected graph of order n > 2 and let H =
{Hy, ..., H,} be a family composed by nontrivial graphs. Then dimy(GoH) =
V(G o H)| if and only if the following statements hold.

(i) For every u; € S(G), the graph H; € H has no singleton twin equiva-

lence classes.
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(ii) For every u; € TT(G), either the graph H; € H has no singleton twin
equivalence classes or H; has exactly one singleton twin equivalence
class {v;}, where 6(v;) = n; — 1, and there exists u; € TT (u;) such that
H; € H has a vertex v; of degree §(v;) =n; — 1.

(iii) For every u; € FT(G), either the graph H; € H has no singleton twin
equivalence classes or H; has exactly one singleton twin equivalence
class {v;}, where 6(v;) = 0, and there exists u; € FT(u;) such that
H; € H has a vertex v; of degree 6(vj) = 0.

On the other hand, now we give a lower bound for dim (G o#H), in terms
of adimy(H;) for every H; € H, which is also tight.

Theorem 3.70. Let G be a connected graph of order n > 2 and let H =
{Hy,..., H,} be a family composed by nontrivial graphs. For any k € {1,...,
min{7 (G oH),C(H)}}, any k-metric basis B of GoH, and any u; € V(G),
B; = {v : (u;,v) € B} is a k-adjacency generator for H; and, as a conse-

quence, |B;| > adimy(H;). Moreover,

dim,(GoH) > Z adimy, (H;).
i=1
Proof. Let B be a k-metric basis for GoH and let B; = {v : (u;,v) € B}. By
Remark [L.1} we deduce that for any (u;,v), (u;,v) € {w;} x V(H;), v # v,
it holds that |Dgop((us,v), (us,v')) N ({w;} x B;)| > k. Also, by Remark
again, Dgoy((us,v), (u;,v")) = {u;} x Cy,(v,v'), and as a consequence,
|B; N Cy,(v,v")| > k. Thus, B; is a k-adjacency generator for H; and we
obtain that |B;| > adim(H;). Therefore, dimy(GoH) = |B| = > | |Bi| >
Yo, adimg (H;). O

Later on, in Theorem [3.72, we show the tightness of the result above.
To this end we need some extra notation. Given a graph G with vertex set
V(GQ) = {ui,uz,...,u,} and a family of graphs H = {H;,..., H,}, we de-
fine the following properties on the triplet (G, H, k). We must remark that
in order to simplify the notations and statements of our exposition, even
though the graphs G and H has no any relationship between them, the next

properties are stated in such a way that seems there exists some connection.

Property P;: G is true twins free, otherwise for any u; € TT(G), where
TT(u;) = {4, Wiy, - - ., Uy, }, there exist i, k-adjacency bases A! [ AL ... Al

217 127
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of Hy,, Hy,, ..., H; , respectively, such that for every 5.l € {1,...,r}, j #1,
and every x € V(H;;) and y € V(H,,) it follows,

(A, = Nu, () U (A}, = Npz, ()] = k.

Notice that Property P; ensures that for any w;,u; € TT(G), i # j,
there exist two k-adjacency bases Af, AE- of H;, Hj, respectively, such that
vertices belonging to {u;} x H; are distinguished from vertices belonging to
{u;} x Hj by at least k vertices of ({u;} x Af) U ({u;} x A}).

An example which helps to clarify the property above is, for instance, the
triplet (K3, H,2), where V(K3) = {u1,us,us} and H = {C3}, C2,C3}. Fig-
ure shows the family of graphs #H. In this case TT(uy) = {uy, us,usz} =
TT(Ks3), since there is only one true twin equivalence class. If we take as 2-
adjacency bases Ay, = {v],vi, v}, A1, = {v?, 03,03} and Ay, = {v} 03 vi}
of Ci,C2% and C3, respectively, then (K3, Cj,2) satisfies Property P;. For
instance, if x = vy and y = v3, then (A}, — Ngz(v5)) U (Ary — Nes(v3))] =
|(Az, = {v vsh) U (Agy — {0, v} = Hogb u{oit =2 > 2.

Figure 3.7: Sketch of lexicographic product K3 o C5, where the dashed line
between two cycles Cs means that each vertex of a cycle is connected to all
vertices of the other cycle. The vertices represented by thick lines form a

2-adjacency basis of each copy of Cs.

Property P,: G is false twins free, otherwise for any u; € FT(G), where
FT(u;) = {u;,, sy, .. ., uz, }, there exist i, k-adjacency bases Af | Af .. ,A{T

217 127
of H;,,H,,,..., H; , respectively, such that for every 5,1 € {1,...,r}, j #1,
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and every x € V(H;.) and y € V(H,;,) it follows,

(A 0 Nz, [a]) U (A 0 Na [y))] = k.

Notice that Property P, ensures that for any u;,u; € FT(G), i # j,
there exist two k-adjacency bases A{ , A; of H;, Hj, respectively, such that
vertices belonging to {u;} x H; are distinguished from vertices belonging to
{u;} x H; by at least k vertices of <{uz} X A{) U <{u]} X Af)

Further on we will see a triplet (G, H, k) that satisfy Properties P; and
Ps at the same time, when H is a family of paths of order greater than three
and /or cycles of order greater than four, G is any nontrivial connected graph
and k € {2,3}.

To continue our exposition we need some extra notation. Given a fam-
ily of graphs H = {H,,..., H,}, we define H as the family of complement
graphs of each H; € H, i.e., H = {H,,..., H,}. We now see how Properties
P, and P, behave for the case of the triplet (G,H, k). To this end, we need

to define two other properties on the triplet (G, H, k).

Property P;: G is true twins free, otherwise for any u; € TT(G), where

TT(u;) = {ts,, Wiy, - - -, Uy, }, there exist i, k-adjacency bases Af [ AL ... Al
of H;, Hy,,..., H; , respectively, such that for every 5,1l € {1,...,r}, j # 1,

and every x € V(H;.) and y € V(H,,)), it follows

(A}, N Ny, [2]) U (A, 0 N, [y])] = k.

Property P,: G is false twins free, otherwise for any u; € FT(G), where
FT(w;) = {uy,uiy, ..., u; }, there exist i, k-adjacency bases A{l,AZfQ, . ,AZJ:_
of Hy,, H;,, ..., H; , respectively, such that for every 5.l € {1,...,r}, j #1,
and every x € V(H;;) and y € V(H,,) it follows,

(A], = Nu,, (2)) U(A] = Nu, (9))] = k.

2
Next claim relates all the properties above while using them in (G, H, k)
or (G, H, k).
Claim 3.71. Let G be a graph with vertex set V(G) = {uy,ua, ..., u,} and
let H={H,,...,H,} be a family of n graphs. Then,

(i) the triplet (G, H, k) satisfies Property Py if and only if (G, H, k) satisfies
Property Ps,
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(ii) the triplet (G, H, k) satisfies Property Py if and only if (G, H, k) satisfies
Property Py.

Proof. For any graph H, any A C V(H), and any v € V(H) we have that A—
Ng(v) = AN Ny[v]. Thus, for any u; € TT(G) the set of k-adjacency bases
{A; A}, ... A} } which makes that the triplet (G,H, k) satisfies Property
Py, also makes that (G, H, k) satisfies Property P; and vice versa. Therefore
(i) follows. The item (ii) follows similarly from the same fact that ANNg[v] =

A —-]V}{(U). ]

In this point we are able to give one of the main results of this work and

its powerful consequences.

Theorem 3.72. Let G be a connected graph of ordern > 2, let H be a family
composed by n nontrivial graphs and let k € {1,..., min{7T (G oH),C(H)}}.

(i) The triplet (G, H, k) satisfies Properties Py and Py if and only if

dim,(GoH) = Z adimy (H;).

i=1

(ii) The triplet (G, H, k) satisfies Properties P3 and Py if and only if
dimy (G o H) =) adimy(H,).
i=1

Proof.

(i) (Necessity) We assume that the triplet (G,H, k) satisfies Properties Py

and Py. If u; € TT(G) or u; € FT(G), then we take a k-adjacency basis Al

or Alf of H; as defined in Property P; or Property P,, respectively. Also, if

u; € V(@) is not a twin vertex, then we take any k-adjacency basis A; of H;.
We claim that

B=| (J {wrxAa|ul | {wyxal|u| UJ {w}xA4
w€TT(G) w; €FT(G) u; €S(G)
is a k-metric generator for G o H.
We differentiate the following four cases for two different vertices (u;, v),

(uj,w) € V(GoH).

Case 1. i = j. In this case v # w. We have three possibilities for the

vertex u;
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e u; € TT(G), in which case BN ({u;} x V(H;)) = {u;} x AL,
e u; € FT(G), in which case BN ({u;} x V(H;)) = {u;} x Al
e u; € S(G), in which case BN ({u;} x V(H;)) = {w;} x A;.

Since Af, A7 and A; are k-adjacency bases of H;, we obtain that |Cp, (v, w)N
Al > K, |Cy,(v,w) N AY| > k and |Cy,(v,w) N A;] > k. In any case, as
Daon((uiyv), (us, w)) = {u;} X Cy, (v, w), we conclude that | BN Dgoy ((ui, v),
(uj,w))| > k.

Case 2. i # j and u;, u; are true twins. So Dgoy ((ui, v), (uj, w)) = (V(H;) —
Ny, (v)) U (V(H;) — Ng,(w)). Since (G,H, k) satisfies Property Py, there
exist at least & elements of ({u;} x Aj) U ({u;} x A%) C B distinguishing

(ui’ U)? (uj’ w)'

Case 3. @ # j and wu;,u; are false twins. Thus Dgoy((u;,v), (uj, w)) =
Ny, [v] U Ny, [w]. Since (G, H, k) satisfies Property Ps, there exist at least &
elements of ({u;} x A)U ({u;} x A;) C B distinguishing (u;,v), (u;, w).

Case 4. i # j and w;, u; are not twins. Hence, there exists v € Dg(u;, u;).
So, the set BN ({w;} x V(H,)) is either {u;} x AL or {u;} x A or {u;} x A,.
Hence, (u;,v) and (u;, w) are distinguished by, at least k elements of B.

Therefore, B is a k-metric generator for Go, and consequently, dimy(Go
H) < |B| =", adimy(H;). By Theorem . we conclude that dimg (G o
H) =0 adimy(H;).

(Sufficiency) Assume that dimy(G o H) = > | adimy(H;). Let B be a
k-metric basis of G o H and let B; = {v : (u;,v) € B} for every u; € V(G).
By Theorem we have that | B;| > adimy(H). According to this fact and
since > 7 adimy(H;) = dim,(G o H) = |B] = > 1, |B;| > .1, adimy(H;),
we deduce that |B;| = adimg(H;). So B; is a k-adjacency basis of H;.

We first consider that GG is not true twins free, i.e., there exist two true
twin vertices u; and u;. Let v € V(H;) and v’ € V(H,) such that H;, H; € H.
In such case we obtain that Doy ((u;, v), (u;,v")) = {wi} x (V(H) — Ng(v)))
U{u;} x (V(H) — Ng(v'))). Suppose, for purposes of contradiction, that for
each k-adjacency basis A; of H; and each k-adjacency basis A; of H; there
exist two vertices x € V(H;) and 2’ € V(H;) such that [(A; — Ny, (x)) U
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(Aj = Ng,(2'))| < k. Since B;, B; are k-adjacency bases of H; and Hj, re-
spectively, there exist two vertices w € V(H;) and v’ € V(H;) such that
[(B; — Np,(w)) U (B; — Ny, (w'))| < k. Hence, | BN Dgoy ((wi, ), (uj, w'))| =
| ({w;} x (B; = Ng(w))) U ({u;} x (B;j — Ng(w')))| < k, which is a contra-
diction. Therefore, B; and B; satisfy the condition |({w;} x (B; — Ng(v)))
U({u;} x (B — Nu(v')))| > k for every v € V(H;) and every v' € V(H,),
and as a consequence, the triplet (G, H, k) satisfies Property P;. If G is true
twins free, then the triplet (G, H, k) directly satisfies Property P;.

We now consider that G is not false twins free, i.e., there exist two false
twin vertices w; and u;. Let v € V(H;) and v' € V(H;) such that H;, H; €
H. In this case, Dgon ((us, v), (u;,v")) = ({u;} X Ng[v]) U ({u;} x Nglv']).
Suppose, for purposes of contradiction, that for each k-adjacency basis A;
of H; and each k-adjacency basis A; of H;, there exist two vertices y €
V(H;) and y' € V(H;) such that |(A; N Ng,[y]) U (4; N Ng,[y])| < k.
Since B;, B; are k-adjacency bases of H,; an Hj, respectively, there exist
two vertices z € V(H;) and 2’ € V(H;) such that |(B; N Ng,[2]) U (B; N
Ny, [#'])] < k. Hence, | BN Daow((us, 2), (uj,2"))| = | ({us} x (Bi N Ny[z]))U
({u;} x (Bj N Ng[#]))| < k, which is a contradiction. Therefore, B; and
B, satisty | ({u;} x (B; N Nglz])) U ({u;} x (B; N Ny[']))| > k for every
v € V(H;) and every v' € V(H,), and as a consequence, the triplet (G, H, k)
satisfies Property P,. If G is false twins free, then the triplet (G, H, k) sat-
isfies Property Ps.

(ii) Proceeding analogously to the proof of (i) and considering that adimy (H;)
= adimg (H;) for every H; € H and also considering Claim , we conclude
this proof. O]

The previous theorem is a generalization for k € {1,...,C(H)} of a result
obtained by Jannesari and Omoomi [67] for the 1-metric dimension of Go H,
i.e, for dim; (G o H) when graphs belonging to ‘H are isomorphic to the same
graph H.

Assume now that the k-adjacency dimension of every graph of a given
family ‘H' is known. Hence, as a measure of the reach of Theorem the
following consequences are deduced. Notice that we can then compute, not
only the k-metric dimension of G o H', but also that of G o ﬁ/, for a huge
quantity of graphs G. If G is a connected graph of order n > 2 and H is
a family composed by n nontrivial graphs, then Theorem [3.72] gives us the

conditions for which the problem of computing the k-metric dimension of
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G oH and G o H is reduced to computing the k-adjacency dimension of the
graphs H; € H.

Corollary 3.73. Let G be a connected graph of ordern > 2, let H be a family
composed by n nontrivial graphs and let k € {1,..., min{T (G oH),C(H)}}.
Then the following statements hold.

(i) If G is twins free, then

dim;,(G o H) = dimg (G o H) = > _ adim;,(H,).
=1

(ii) If G is false twins free and (G, H,k) holds Property P,

n

dimy,(GoH) =) adimy(H,).

=1

(iii) If G is true twins free and (G,H, k) holds Property Pa,

n

dimy(GoH) =) adimy(H,).

i=1

(iv) If G is false twins free and (G, H, k) holds Property Ps,

(v) If G is true twins free and (G, H, k) holds Property Py,

dim, (G o H) = Z adimy (H;).

=1

A natural question is now the following one. Can we realize triplets
(G, H, k) satisfying Properties Py, Pa, P3 or P47 To proceed in this direction,
we first need to present some useful lemmas which allow us to describe some
realizations of the triplet (G, #H, k) in concordance with Properties P; and
Ps.

Lemma 3.74. Let G be a connected graph of order n > 2 and let H be
a family composed by n nontrivial graphs. If adim,(H) — A(H) > [£] for
every H € H and k € {1,..., min{T (GoH),C(H)}}, then (G, H, k) satisfies
Properties Py and Py.
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Proof. Let A;, Aj, i # j, be two k-adjacency bases of H;, H; € H, respec-
tively. Since adimy(H;) — A(H;) > [£] and adimy(H;) — A(H;) > [%], it
follows that for every v € V(H;) and w € V(Hj;), |A; — Ny, (v)| > [£] and
|Aj — Ny, (w)| > [£], which implies that (G, H, k) satisfies Properties P; and

Py. [l

Lemma 3.75. Let G be a connected graph of order n > 2 and let H be a
family composed by n graphs without isolated vertices. If A(H)—1 < ng for
every H e H and k € {1,..., min{T (GoH),C(H)}}, then (G, H, k) satisfies
Properties Py and Ps.

Proof. Let H € H,let v € V(H), and let A be k-adjacency basis of H. Since
Ng(v) # 0, for every w € Ny (v) we have that |[Ny(w) —{v} < A(H)—-1<
|5]. Now, as [ANC(v,w)| > k, we obtain |[A N Ng[v]| > [£]. Thus, for
every H,H; € H, | # j, and every v € V(H;), w € V(H,) it follows that
[(A; N Ny, [v]) U (A; N Ny, [w])| > k, where A;, A; are k-adjacency bases of
H,, H;, respectively. Therefore, (G, H, k) satisfies Properties P, and P3. [

According to Proposition [3.45 and and the lemmas above, we can
notice now that, for instance, any triplet (G, H, k), where G is any connected
graph, H is formed by paths of order greater than three and/or cycles of order
greater than four, and k € {2,3} (or if H is only formed by cycles, then also
happens for k = 4), satisfies Properties P; and P,, and Properties P3 and
Py. In this sense, by Theorem [3.72] the previous lemmas and Propositions
and [3.46], we give a closed formulae for the lexicographic product of any
connected graph G and this family H of graphs.

Theorem 3.76. Let G be a connected graph of order n > 2 and let H =

{P,,....P,,Cqrs....Co}. If s >4 for 1 <i<randq >5 forr+1<
1 <n, then

. . e ~ [

(i) dimy(G oH) = dimy(G o H) :Z’V 5 —‘ + Z {5—‘

=1 i=r+1

) dnms(Got) = (@7 = 3 (= | 52| )+ 3 (- [2]).

=1 i=r+1

Moreover, if H = {C,,...,Cy,} and ¢; > 5, then dimy(G o H) = dimy(G o

ﬂ) = Zq@
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Note that for any connected graph G of order n and any family H com-
posed by n graphs we have that dimy(G o H) = dimy(GoH) = Y1 ¢ =
|V (G oH)|, and these are two other examples where the trivial upper bound
is reached.

On the other hand, Theorem does not consider the case £k = 1.
Note that from Proposition [3.44] and Lemma [3.74] we deduce that any triplet
(G,H,1), where G is any connected graph, and # is formed by paths of order
at least seven and/or cycles of order at least seven, satisfies Properties P;
and P,. However, for k£ = 1 paths and cycles do not satisfy the condition
of Lemma [3.75] The following lemma provide us a family H composed by
paths and cycles where it makes sure that (G, #H, 1) satisfies Properties P
and Ps.

Lemma 3.77. Let P, and C,, be a path and a cycle graph of order n > 7.
If n mod 5 € {1,3}, then no adjacency basis of P, or C, is a dominating
set. Otherwise, there exist adjacency bases of P, and C,, that are dominating

sets.

Proof. In C),, consider the path v;v;11v;12v;43v;14, where the subscripts are
taken modulo n, and an adjacency basis B. If v;,v,40 € B and v;.; ¢
B, then {v;41} is said to be a 1-gap of B. Likewise, if v;,v;13 € B and
Vit1, Vite & B, then {v;11,v;42} is said to be a 2-gap of B and if v;,v;14 € B
and v;y1, V2,003 € B, then {vi1,v;192,v,43} is said to be a 3-gap of B.
Since B is an adjacency basis of C),, it has no gaps of size 4 or larger and it
has at most one 3-gap. Moreover, every 2- or 3-gap must be neighboured by
two 1-gaps and the number of gaps of either size is at most adim,(C,,). We

now differentiate the following cases for C,:

1. n =5k, k > 2. In this case, adim; (C,,) = 2k and n — adim; (C,,) = 3k.
Since any 2-gap must be neighboured by two 1-gaps, any adjacency
basis has at most k& 2-gaps. Any set B having exactly k 2-gaps and
exactly k 1-gaps is an adjacency basis of C,,, as |B| > 2k = adim, (C,,)
and |(Ng, () N B)V(Ng, (y) N B)| > 1 for any pair of different vertices
z,y € V(C,)— B. Since the number of vertices of V' (C,,) — B belonging
to a 1- or 2-gap is 3k = n — | B|, we deduce that B has no 3-gaps, i.e.

it is a dominating set.

2. n="5k+1, k > 2. In this case, adim;(C,,) = 2k and n — adim, (C,,) =

3k + 1. As in the previous case, any adjacency basis B has at most k
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2-gaps. Now, assume that B has no 3-gaps. Then |V (C,) — B| = 3k <
3k + 1 =n — |B|, which is a contradiction. Thus, any B has a 3-gap,

i.e. it is not dominating.

3. n =>5k+2, k > 1. In this case, adim; (C,) = 2k+1 and n—adim;(C,,) =
3k + 1. As in the previous cases, any adjacency basis has at most
k 2-gaps. Moreover, any set B having exactly k£ 2-gaps and exactly
k+1 1-gaps is an adjacency basis of C,, and the number of vertices of
V(C,) — B belonging to a 1- or 2-gap is 3k + 1 =n — |B|, so B has no

3-gaps, i.e. it is a dominating set.

4. n = 5k+3, k > 1. In this case, adim; (C,,) = 2k+1 and n—adim, (C,,) =
3k + 2. As in the previous cases, any adjacency basis B has at most
k 2-gaps. Now assume that B has no 3-gaps. Then |V(C,) — B| =
3k +1 < 3k + 2 =n —|B|, which is a contradiction. Thus, any B has

a 3-gap, t.e. it is not dominating.

5. n = b5k+4, k > 1. In this case, adim, (C,,) = 2k+2 and n—adim, (C,,) =
3k+2. Assume that some adjacency basis B has k+1 2-gaps. Then, B
would have at least k4 1 1-gaps, making |V (C,,) — B| > 3k + 3, which
is a contradiction. So, any adjacency basis has at most k 2-gaps. As
in cases 1 and 3 the previous cases, any set B having exactly k£ 2-gaps
and exactly k£ + 2 1-gaps is an adjacency basis of C,,, and the number
of vertices of V(C,,) — B belonging to a 1- or 2-gap is 3k +2 =n —|B|,

so B has no 3-gaps, i.e. it is a dominating set.

As a consequence of all the cases above, the results follows for C,,.

Consider now the path P,, where n mod 5 € {0,2,4}, and let C! be
the cycle obtained from P, by joining its leaves v; and v, by an edge. Let
B be an adjacency basis of C! which is also a dominating set and satisfies
v1, v, ¢ B (at least one such B exists). We have that every v € B and every
v € V(P,) — B satisty der o(u,v) = dp, 2(u,v), so B is also an adjacency
basis and a dominating set of P,.

To conclude, consider the path P,, n mod 5 € {1, 3}, and let C/, be the
cycle obtained from P, by joining its leaves v; and v, by an edge. Consider
V =V(P,) = V(C,), and let B be an adjacency basis of P,. If vy,v, €
B or vy,v, ¢ B, then every vertex v € V — B has the same adjacency

representation in C!, with respect to B as in P, so B is an adjacency basis of
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C,,. Moreover, some vertex w € V — B satisfies BANp, (w) = BNN¢r (w) = 0,
so B is not a dominating set of P,. We now treat the case where v; €
B and v, ¢ B. If v,_1 ¢ B then B is not a dominating set of P,. If
Un—1 € B and v, ¢ B, we have that des 2(vs,vn—1) = dp,2(vV2,0n-1) =
2 # 1 = dp,2(Un,Vp—1) = dcy, 2(Un, Vp—1), Whereas for any other pair of
different vertices x,y € V — B there exists z € B such that des o(x,2) =
dp,2(x,2) # dp, 2(y, 2) = dcs 2(y, 2), so B is an adjacency basis of C}, where
{vn} is a 1-gap. In consequence, some vertex w € (V — B) — {v,} satisfies
BNNp,(w) = BNN¢, (w) =0, so B is not a dominating set of P,. Finally, if
Vo, Up_1 € B, then for any pair of different vertices x,y € V — B there exists
z € B —{v1} such that d¢s o(2,2) = dp, 2(x, 2) # dp, 2(y, 2) = dcr 2(y, 2), s0
B is an adjacency basis of C! where {v,} is a 1-gap. As in the previous case,
some vertex w € (V — B) —{v,} satisfies BN Np,(w) = BN Ner (w) = 0, so

B is not a dominating set of P,. The proof is complete. O

According to Lemma , we deduce that any triplet (G, H, 1) satisfies
Properties Py and Ps, whenever G is any connected graph, and H is formed
by paths of order at least seven and/or cycles of order at least seven, where
at most one of these orders n; holds that n; mod 5 € {1,3}. Therefore, by
Theorem [3.72] and Proposition [3.44] we can conclude the following result.

Theorem 3.78. Let G be a connected graph of order n > 2 and let H =
{Py, Py, Cqirs-- - Cqu b If ¢ > 7 and there exists at most one q; such

that ¢; mod 5 € {1,3}, then

. . — " | 2¢; + 2
dim; (G o H) = dim(GoH) = ; { E J :
To finish this subsection, we continue now with some examples of classes
of graphs achieving the equality in the bound of Theorem [3.70f To this
end, we need the following lemma, in order to give another possible triplet

satisfying Properties P; and Pj.

Lemma 3.79. Let G be a connected graph of order n > 2 and let 'H
{Hy,..., H,} be a family of graphs. If every H € H has diameter D(H) >
6, or has girth g(H) > 5 and minimum degree 6(H) > 3, then for k €
{1,...,min{7(G o H),C(H)}} the triplet (G, H, k) satisfies Properties Py
and Py.
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Proof. By Corollaries and [3.35] adimy(H) = dimy(K; + H) for every
H € H. By Theorem there exists a k-adjacency basis A of H such that
|A — Ng(v)| > k for all v € V(H). Thus, we deduce that for any G and
ke {l,...,C(G)}, the triplet (G,H, k) satisfies Properties P; and P,. [

Finishing this subsection, as we mention before, now we are able to give a
result in which we describe some other classes of graphs achieving the bound
of Theorem [3.70] That is, by Corollary (ii) and (v), and Lemma [3.79

we obtain the following.

Theorem 3.80. Let G be a connected false twins free graph of order n > 2
and let H = {H;,..., H,} be a family composed by n graphs such that every
H € H has diameter D(H) > 6, or has girth g(H) > 5 and minimum degree
O(H) > 3. Then for any k € {1,..., min{T(GoH),C(H)}}, dimy(GoH) =

n

Zadimk(Hi). Moreover, if G is a connected true twins free graph of order

i=1
n

n > 2, then dim(G o H) = Zadimk(Hi).

i=1
The particular case of the 2-metric dimension of G o H

As it can be inferred from the seen so far, the closed formulae for the value
of dimy(G o H) depends on the 2-adjacency dimension of H. Clearly, from
Theorem [3.70| we deduce that for any connected graph G of order n > 2 and
any nontrivial graph H, it follows dims(G o H) > n - adimy(H ), which leads

to the next result.

Corollary 3.81. Let G be a connected graph of order n > 2 and let H be
a nontrivial graph. Then, there ezists a non-negative integer f(G, H) such
that

dimy(G o H) = n - adimy(H) + f(G, H).

From now on, our goal is to determine the value of f(G, H). To begin
with, we rephrase the properties given above in order to facilitate their com-
prehension in this particular case. Since in this particular case k = 2, we

only define the properties for a pair of graphs (G, H).

Property P;: G is true twins free, otherwise there exists a 2-adjacency
basis A of H such that A € Ny (v), for all v € V(H).
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Property P,: G is false twins free, otherwise there exists a 2-adjacency
basis A of H which is a dominating set of H.

To give the first case for a possible value of f(G, H), we will state two par-

ticular cases of two more general already known results (see Theorem m

and Corollary [3.73)).

Theorem 3.82. Let G be a connected graph of order n > 2 and let H be a
nontrivial graph. Then dimy(G o H) = n - adimy(H) if and only if the pair
(G, H) satisfies Properties Py and Ps.

Corollary 3.83. Let G be a connected graph of order n > 2 and let H be a

nontrivial graph. Then the following statements hold.
(i) If G is a twins free graph, then

dimy(G o H) = dimy(G o H) = n - adimy(H).

(ii) If G is a false twins free graph and the pair (G, H) satisfies Property
P1, then
dimy(G o H) = n - adimy(H).

(i) If G is true twins free graph and the pair (G, H) satisfies Property Po,
then
dimy(G o H) = n - adimy(H).

Theorem leads to the case when f(G,H) = 0. We next define
the following four properties for a graph H which will be used to give the
remaining possible values of f(G,H). We must remark that the proofs of
the forthcoming results showing the values of f(G, H) are very similar with
respect to the structure and the technique used. However, the complemen-
tary use of the next four properties (and its negations) makes necessary the
almost complete development of each proof. Those analogous cases will be

avoided.

Property P3;. For each 2-adjacency basis A of H there exists a vertex v
such that A C Ng(v).
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Property P;. For each 2-adjacency basis A of H there exists a vertex v
such that AN Ng[v] = 0.

Property Ps. For each 2-adjacency generator S for H of cardinality adims(H )+
1 there exists a vertex v such that |S — Ng(v)| < 1.

Property Ps. For each 2-adjacency generator S for H of cardinality adimy(H )+
1 there exists a vertex v such that |S N Nglv]| < 1.

Since the 2-adjacency generators of a graph H are simultaneously 2-

adjacency generators of its complement H, we deduce the following remark.

Remark 3.84. Let G be a nontrivial connected graph such that G is con-

nected and let H be a nontrivial graph. The following assertion hold.
(i) The pair (G, H) satisfies Property Py if and only if the pair (G, H)
satisfies Property Ps.

(ii) The graph H satisfies Property Ps if and only if H satisfies Property
Py.

(iii) The graph H satisfies Property Ps if and only if H satisfies Property
Ps.

Our first result regarding the existence of a possibly non-zero value for

f(G, H) is given in the next theorem.

Theorem 3.85. Let G be a connected graph of order n > 2 and let H be a
nontrivial graph. If the pair (G, H) satisfies Py and H satisfies Properties
Ps and Ps, then

dimy(G o H) = n - adimy(H) + |TT(G)].

Proof. Let B be a 2-metric basis of G o H and, for any v, € V(G), let
B, = {v : (w,v) € B}. Suppose that there exists u; € TT(G). In this case
there exists u; € TT(u;) — {w;}. We claim that |B; U B;| > 2- adimy(H ) + 2.

Suppose, for purposes of contradiction, that

By Theorem we know that B; and B; are 2-adjacency generators for H

and so from (3.1)) we have that at least one of them is a 2-adjacency basis of
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H, say B;. By Property Ps, there exists w € V(H) such that B; C Ny (w). If
B, is a 2-adjacency basis of H, then there exists w’ € V(H) such that B; C
Ny(w'). Thus, [B N Deon((us; w), (ug, w'))| = | ({ui} x (B; = Nu(w))) U
({u;} x (Bj — Ng(w")))| = 0, which is a contradiction. If B; is not a 2-
adjacency basis of H, then |B;| = adimy(H) + 1. By Property Ps, there
exists a vertex w” € V(H) such that |B; — Ny(w")] < 1. Thus, |B N
Daon (i w), (ug, w"))| = | ({ui} x (Bi = Ng(w)))U({u;} x (Bj = Nu(w"))) |
< 1, which is a contradiction again. As a consequence |B; U B]-\ > 2.
adimy(H )+ 2. Therefore, any two vertices u;, u; in the same true twin equiv-
alence class of G satisfy |B; U B;| > 2 - adimy(H) + 2, which leads to

U  Bj| = ITT(w)|(adimy(H) + 1). (3.2)

u; €TT (u;)

Finally, since the intersection of any two true twin equivalence classes of a
graph is empty, by Theorem and we conclude that dimy(G o H) =
|Bl =31, |Bil > n-adimy(H) + [TT(G)].

On the other hand, we consider a 2-adjacency basis A of H satisfying
the following. If G has at least a false twin equivalence class, then A is
taken such that every z € V(H) satisfies AN Ny[z] # (), which is possible
by Property Ps. Otherwise, we take an arbitrary 2-adjacency basis A of H.
Let v. be a vertex of H such that A C Ng(v.), which exists by Property
Ps. We shall show that B" = |U,.cy(q)({ui}t x 4) U U, crre{(ui,ve)} is
a 2-metric generator for G o H. Note that |B'| = n - adimy(H) + |TT(G)|.
We analyse the following four cases in order to prove that any two different
vertices (u;,v), (uj,v") € V(G o H) are distinguished by at least two vertices
in B'.

Case 1: ¢« = j. In this case, v # v'. As A is a 2-adjacency basis of
H, we obtain that |A N Cyx(v,v’)] > 2 and since Dgop((ui,v), (u;,v")) =
{u;} x Cyx(v,v"), we conclude that |B" N Dgom ((ui,v), (us, v'))| > [({u;} %
A) N Deon ((uiyv), (ug,v"))] > 2.

Case 2: i # j and u;, u; are true twins. In this case we have that, Dgoy ((us, v),
(uj,v")) = ({ui} x (V(H) = Ng(v))) U ({u;} x (V(H) = Np(v'))). If v =,
then [B" N ({wi} x (V(H) — Nu(v)))| = [({ui} x (AU {vc})) N ({ui} x
(V(H) — Ng(v)))| = [{(us,v.)}| = 1. Now, if v # v, then due to the
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fact that A is a 2-adjacency basis of H and A C Ng(v.), it follows that
2 < [ANCu(v,ve)| = [A = Nu(v))| < [B'0({ui} x (V(H) = Nu(v)))|. In
any case, |B' N ({u;} x (V(H) — Ng(v)))| > 1. Analogously, we deduce that
|B'N({u;} x (V(H)—=Ng(v')))| > 1. Therefore, |B'NDgop ((ui, v), (uj, ")) >
2.

Case 3: i # j and u;, u; are false twins. In this case, Dgop ((w;, v), (uj,v")) =
({ui} x Ng[v]) U ({u;} x Ng[v']). Since AN Ng[w] # 0 for all w € V(H), we
deduce that |B' N Dgop((wi, v), (u;,v"))| = [({wi} x (AN Ngv])) U ({u;} x
(AN Nyx[v']))] > 2.

Case 4: i@ # j and w;,u; are not twins. Clearly, there exists a vertex
w € D¢ (u;,uj), and as a consequence, the elements of B'N({w;} x V(H)) dis-
tinguish the vertices (u;, v) and (u;,v’). Since |[B'N({w} xV(H))| > |A| > 2,
we have that |B’ N Dgoy ((u;, v), (us, v'))| > 2.

Therefore, B’ is a 2-metric generator for G o H and, as a consequence,
dimy(GoH) < |B'| = n-adims(H)+|TT(G)|, which completes the proof. [

Figure 3.8: The set of black vertices {2, 3,4, 5} is the only 2-adjacency basis
of this graph.

The premises of Theorem [3.85| are satisfied for the graph H shown in
Figure [3.8] and any nontrivial connected graph G. Notice that the set of
black vertices Ny (1) = {2, 3,4, 5} is the only 2-adjacency basis of H and so H
satisfies Property Ps. It can be checked that for every 2-adjacency generator
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S for H of cardinality |S| = adimg(H) + 1 it follows that Ny (1) C S. Thus,
Property Ps is satisfied. Since the 2-adjacency basis of H is a dominating
set, we conclude that for any nontrivial connected graph G, the pair (G, H)
satisfies Property P,. Note that this is an example where H does not have
any dominating vertex.

If H is a graph having exactly one dominating vertex which does not
belong to any 2-adjacency basis, then H satisfies Properties P3 and Ps.

Corollaries [3.33] [3.34] 3.35] and Proposition [3.47] allow us to state the

following consequences of Theorem [3.85|

Proposition 3.86. Let G be a connected false twins free graph of order n > 2
and let H be a graph having at least one of the following properties.

(i) H= Ky + H', where H' is a graph of diameter D(H') > 6.
(i) H = Ky + H', where g(H') > 5 and 6(H') > 3.

(i) H = K +H', such that H' is a tree that does not belong to { P, K1 ,,T"},
where r € {2,...,5}, n >3 and T is a graph obtained from K, U Ky
by joining by an edge one leaf of K1, to one leaf of K.

Then, dimy(G o H) = n - adimy(H') + |TT(G)]|.

We now show several others consequences of Theorem for some

particular families of graphs.
Proposition 3.87. Let G be connected graph of order n > 2.

(i) If H is a fan graph K; + P, such that n' > 6, then dimy(G o H) =
[+ ITT(G)]

(ii) If H is a wheel graph K; + Cys such that n’ > 7, then dimy(G o H) =
n[%3]+|TT(G).

(iii) If H is a star graph K, such that n’ > 2, then dimy(G o H) = nn’ +
ITT(G)|.

Proof. (i) By Proposition and Corollary |3.33], the vertex of K3 does not
belong to any 2-adjacency basis of K7 + P,. Hence, H satisfies Properties
Ps and Ps. It only remains to prove that the pair (G, H) satisfies Property

Ps.
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Let vy be the vertex of Ky, let A be a 2-adjacency basis of Ki + P,
and let V(Py) = {v1,..., vy} where v; ~ vj4; for 1 < j < n' —1. If
V1,05, Vi1 & A, then |ANCk, 4 p, (vj—1,v;)| < 1and [ANCk, 4 p, (v, vj41)] <
1, which is a contradiction. Thus, for every 7 € {2,...,n" — 1}, it fol-
lows that |[A N Ng,ip,[vj]] > 1. If vi,v5 € A or vy_1,vy ¢ A, then
| ANCkgyp, (v1,v2)] < 1or [ANCr 4p,(Vn—1,vn)| < 1, respectively, which
is a contradiction. So, [ANNg,1p ,[v1]| > 1 and [ANNg, 4p ,[vn]| > 1. Now,
since |A| > 2, we deduce that [A N Ng,4p ,[v0]| = [ANV (K + Py)| > 2.
Thus, the pair (G, H) satisfies Property Ps. Therefore, by Theorem and
Propositions and we conclude the proof.

(ii) Proceeding analogously to the previous case, but now using Propositions

and instead of Propositions and [3.45] the result follows.

(ili) Let K4,» = Ky + N,. Note that the vertices of N, are twins in Kj ,»
and, as a consequence, V(N,) is the only 2-adjacency basis of K ,,. Thus,
K, satisfies Properties P3 and Ps. Note that for every v € V(K,/) it
follows that [V(N,) N Ni, ,[v]] > 1. So, the pair (G, H) satisfies Property
Ps. Therefore, by Theorem |3.85 we conclude the proof. O

In order to present other possible values for f(G, H), from now on, we
will refer to =P, as the negation of P,. Besides, we will say that ¢(G)
and 7(G) are the number of false and true equivalence classes of a graph
G, respectively. Last, we denote by v(G) the number of non-singleton twin

equivalence classes, i.e., v(G) = ¢(G) + 7(G).

Theorem 3.88. Let G be a connected graph of order n > 2 and let H be
a nontrivial graph. If the pair (G, H) satisfies Property Py and H satisfies
Properties P3 and —Ps, then

dimy(Go H) =n-adime(H) + |TT(G)| — 7(G).

Proof. Let B be a 2-metric basis of G o H. For any u; € V(G) we define
B, = {v : (w,v) € B}. Suppose that there exists u; € TT(G) and let
u; € TT(u;) — {w;}. We claim that |B; U Bj| > 2 - adimy(H) + 1. Sup-
pose, for purposes of contradiction, that |B; U B;| = 2 - adimy(H). Since
by Theorem we have that B; and B; are 2-adjacency generators for H,
we deduce that B; and B; are 2-adjacency bases of H. By Property Ps,
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there exist two vertices w,w’ € V(H) such that B; C Ny(w) and B; C
Np(w'). Thus, [B N Deon((ui, w), (uy, w'))| = | ({wi} x (Bi = Nu(w))) U
({u;} x (Bj = Ng(w')))| = 0, which is a contradiction. Thus, |B; U B;| >

2 -adimy(H) + 1 and, as a consequence,

U  Bj| > ITT(u)|(adimy(H) + 1) — 1. (3.3)

u; €TT (uz)

Finally, since the intersection of any two true twin equivalence classes of a
graph is empty, by Theorem and (3.3)) we conclude that dimy(G o H) =
Bl =" |Bil > n-adimy(H) + |TT(G)| — 7(G).

We will now show that

B = U ({u;} x AU U ({u;} x S)

we(V(G)—TT(G))UM(G) weTT(G)—M(G)

is a 2-metric generator for G o H, where M (G) is a set composed by exactly
one vertex of each true twin equivalence class of GG. Also, A and S are a 2-
adjacency basis and a 2-adjacency generator for H, respectively, as described
at next. If G has at least a false twin equivalence class, then we take A as
a 2-adjacency basis of H such that every z € V(H) satisfies AN Ny[z] # 0,
which is possible by Property P,. Otherwise, we take A as an arbitrary
2-adjacency basis of H. We take S as a 2-adjacency generator for H of
cardinality adimy(H) + 1 that satisfies |S — Ny (v)| > 2 for every v € V(H),
which exists by Property —Ps. Note that, |B’| = n - adimy(H) + |TT(G)| —
7(G).

We differentiate the following four cases in order to prove that any two
different vertices (u;, v), (uj,v") € V(G o H) are distinguished by at least two

vertices in B'.
Case 1: v = j. It is analogous to Case 1 of the proof of Theorem [3.85

Case 2: ¢ # j and u;, u; are true twins. In this case, we have that Dgop ((us, v),
(uj, v')) = ({ui} x (V(H) = Nu(v)))U({u;} x (V(H) = Nu(v'))). Note that
w & M(G)oru; ¢ M(G),say u; ¢ M(G). Thus, BN({u;}xV(H)) = {u;}x
S and, since |S — Ny (v')| > 2, we deduce that | B’ N Dgop ((u;, v), (uj,v'))| >
{u;} x (S = Nu (V)] = 2.
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Case 3: 1 # j and u;, u; are false twins. It is analogous to Case 3 of the proof

of Theorem [3.851

Case 4: @ # j and u;, u; are not twins. It is analogous to Case 4 of the proof
of Theorem [3.85

Therefore, B’ is a 2-metric generator for G o H and, as a consequence,
dimy(G o H) < |B'| =n-adimy(H) + |TT(G)| — 7(G), which completes the
proof. O

Figure 3.9: In the graph H, any 2-adjacency basis is given by Ny (v) with
veV(H).

Consider the graph H shown in Figure [3.9) Notice that only the sets
Ny (v), with v € V(H) form 2-adjacency bases of H, and as a consequence, H
satisfies Property Ps. In addition, the 2-adjacency generator S = {1,2,3,4, 8}
for H satisfies that |S| = adime(H) + 1 and |S — Ny(v)| > 2 for ev-
ery v € V(H). Thus, H satisfies Property —P5. Note that the value

II‘}i(I}{)“S — Ny (v)|} = 2 is attained for vertices belonging to {1,4,5,6}.
ve

Besides, the 2-adjacency basis Ngy(4) = {1,2,7,8} of H is also a domina-
ting set, and as a consequence, the pair (G, H) satisfies Property P, for any
nontrivial connected graph G. Therefore, by Theorem [3.88, we have that
dimy(G o H) = n-adims(H) + |TT(G)| — 7(G) = 4n + |TT(G)| — 7(G) for
any connected graph G of order n > 2. For instance, if G = K,,, then we
have dimy (K, 0 H) =4n+ |TT(K,,)| — 7(K,) =4n+n—1="5n— 1.

Theorem 3.89. Let G be a connected graph of order n and let H be a
nontrivial graph. If the pair (G, H) satisfies Property Py and H satisfies
Properties Py and Pg, then

dimy(G o H) = n-adimy(H) + |FT(G)|.
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Proof. Let B be a 2-metric basis of G o H and let B; = {v : (u;,v) € B}.
Suppose that u; and u; are false twins in G. We claim that |B; U B;| >
2 - adimy(H) + 2. Suppose, for purposes of contradiction, that |B; U B;| <
2 - adimy(H) + 1. According to Theorem m, B; and B; are 2-adjacency
generators for H. Hence, B; or Bj, say B;, is a 2-adjacency basis of H.
By Property Py, there exists w € V(H) such that B; N Ny[w] = 0. If
B; is a 2-adjacency basis of H, then by Property Py, there exists w' &
V(H) such that B; N Ny[w'| = 0. Thus, |B N Dgon((ui, w), (u;,w'))| =
| ({wi} x (B; N Ny[w])) U ({u;} x (BN Ng[w']))| = 0, which is a contra-
diction. If B; is not a 2-adjacency basis of H, then |B;| = adimy(H) + 1.
Now, by Property Pg, there exists a vertex w” € V(H) such that |B; N
Ny[w"]| < 1. Thus, |BNDgon ((us, w), (uj,w"”))| = | ({w;} x (B; N Ngw]))U
({u;} x (Bj N Ng[w"]))| <1, which is a contradiction again. So, as we have
claimed, |B; U B;| > 2 - adimy(H) + 2. Hence, any two vertices u;, u; in the
same false twin equivalence class of G satisty |B; U B;| > 2 - adimy(H) + 2,

and as a consequence, we obtain that

U Bj| = IFT(w)l|(adimy(H) + 1). (3.4)

u; €FT (u;)

Finally, since the intersection of any two false twin equivalence classes of a
graph is empty, by Theorem and we conclude that dimy(G o H) =
Bl = 0, 1Bl = n - adima(H) + [FT(G).

On the other hand, we consider a 2-adjacency basis A of H satisfying the
following. If G has at least a true twin equivalence class, then we choose the 2-
adjacency basis A, such that every z € V(H) satisfies A—Npy(z) # 0, which is
possible by Property P;. Otherwise, we choose A as an arbitrary 2-adjacency
basis of H. Let v, be the vertex of H such that ANNg[v.] = (), which exists by
Property Py. We will show that B" = U, cy(q)({wi} X A)UU,, e pr(y { (wis ve) b
is a 2-metric generator for G o H. Note that |B'| = n-adimy(H) + |FT(G)|.
We analyse the following four cases in order to prove that any two different
vertices (u;,v), (u;,v") € V(G o H) are distinguished by at least two vertices
in B'.

Case 1: i = j. It is analogous to Case 1 of the proof of Theorem [3.85

Case 2: i # j and w;, u; are true twins. In this case we have that Deop ((wi, v),
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(uy, N) = ({wi} x (V(H) — Ny (v)))U({u;} x (V(H) — Ng(v'))). Since A—
Np(z) # 0 for all z € V(H), we deduce that |B' N Dgon ((us, v), (uj,v'))| =

|({u;} x (A= Ng(v))) U {u;} x (A= Nyx(v')))| > 2.

Case 3: i # j and w;, u; are false twins. In this case, Dgon ((us, v), (uj,v'))
({wi} x Ng[v]) U ({u;} x Ng[v']). If v = v, then |B' N ({w;} x Nglv])| =
[({ui} x (AU {ve}) 0 ({ui} x Nulo))] = {(wi; ve)}| = 1. Now, if v # v,
then, due to the fact that A is a 2-adjacency basis of H and AN Ny[v.] = 0,
it follows that 2 < |ANCx(v,v.)| = |AN Nyv]| < |B' N ({w} x Ng[v])|.
In both cases, |B' N ({w;} x Ng[v])] > 1. Analogously, we deduce that
|B' N ({u;} x Ng[v'])] > 1. Therefore, |B’ N Dgop((ui,v), (uj,v'))] > 2.

Case 4: @ # j and u;, u; are not twins. It is analogous to Case 4 of the proof
of Theorem [3.85]

Therefore, B’ is a 2-metric generator for G o H and, as a consequence,
dimy(GoH) < |B'| = n-adimy(H)+|FT(G)|, which completes the proof. [J

v
H

Figure 3.10: The set of black vertices A is the only 2-adjacency basis of the
graph H.

The premises of Theorem [3.89 are satisfied for the graph H shown in
Figure and any connected nontrivial graph G. Note that the black
vertices are twins and thus, they belong to any 2-adjacency basis of H. In
addition, the set of black vertices A is a 2-adjacency generator for H and
therefore, it is the only 2-adjacency basis of H. Since A N N[v] = 0, the
graph H satisfies Property P,. Since any 2-adjacency generator S for H
must contain the set of twin vertices of H, we deduce that A C S. Thus, if
|S| = adimg(H) + 1 = |A] + 1, then |S — Ny (v)| <1, and as a consequence,
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H satisfies Property Ps. Since A € Ny(v) for all v € V(H), we conclude
that for any graph G, the pair (G, H) satisfies Property P;. Note that this
is an example where H does not have any isolated vertex.

Note that by Remark any pair of graph (G, H) satisfies the condi-
tions of Theorem if and only if (G, H) satisfies the conditions of Theorem
3.89, Thus, in the next two propositions we give some families of pairs of
graphs satisfying the conditions of Theorem from Propositions and
B.87

Proposition 3.90. Let G be a connected true twins free graph of order n > 2
and let H be a graph having at least one of the following properties.

(i) H =K, UH', where H' is a graph of diameter D(H') > 6.
(ii) H = Ky UH', where g(H') > 5 and §(H') > 3.

(iil) H = KiUH’ such that H' is a tree that does not belong to {P,, K, ,,T'},
where r € {2,...,5}, n >3 and T is a graph obtained from K, U Ky
by joining by an edge one leaf of K1, to one leaf of K.

Then dimy(G o H) = n - adims(H') + |FT(G)].
Proposition 3.91. Let G be a connected graph of order n > 2.
(i) If H = K{UP,, such thatn' > 6, then dimy(GoH) = n[“]+|FT(G)|.
(ii) If H = K,UC, such that n' > 7, then dimy(Go H) = n[%]+|FT(G)|.
(i) If H = K; U K,y such that n' > 2, then dimy(G o H) = nn' + |FT(G)]|.

Theorem 3.92. Let G be a connected graph of order n and let H be a
nontrivial graph. If the pair (G, H) satisfies Property Py and H satisfies
Properties Py and —Pg, then

dims(G o H) = n -adime(H) + |FT(G)| — ¢(G).

Proof. Let B be a 2-metric basis of G o H and let B; = {v : (u;,v) € B}.
Suppose that w; and u; are false twins in G. We claim that |B; U B;| >
2 - adimy(H) + 1. Suppose, for purposes of contradiction, that |B; U B;| =
2 - adimy(H). According to Theorem m, B; and B; are 2-adjacency ge-
nerators for H. Hence, B; and B; are 2-adjacency bases of H. By Prop-
erty Py, there exist w,w’ € V(H) such that B; N Ny[w] = § and B; N
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Ny[w'] = 0. Thus, |B N Dgon ((ui, w), (u;,w’))| = | {uwi} x (B; N Ngw])) U
({u;} x (B; N Ng[w']))| = 0, which is a contradiction. So, as we have
claimed before, |B; U B;| > 2-adimy(H)+1. Hence, any two vertices u;, u; in
the same false twin equivalence class of G satisfy |B;UB;| > 2-adimy(H)+1,

and as a consequence, we obtain that

U Bj| = [FT(w)|(adimy(H) + 1) — 1. (3.5)

u; €FT (u;)

Finally, since the intersection of any two false twin equivalence classes of a
graph is empty, by Theorem and we conclude that dimy(G o H) =
Bl = X0, B = n - adimy(H) + [FT(G)| - ¢(G).

We will show that

B = U ({u;} x A)U U ({u;} x 9)

we(V(G)—FT(G))UM(G) wEFT(G)—M(G)

is a 2-metric generator for G o H, where M (G) is a set composed by exactly
one vertex of each false twin equivalence class of G. Also A and S are a
2-adjacency basis and a 2-adjacency generator for H, respectively, chosen as
follows. If GG has at least a true twin equivalence class, then we take A as a 2-
adjacency basis of H such that every z € V(H) satisfies ANNg[z] # 0, which
is possible by Property P;. Otherwise, we take A as an arbitrary 2-adjacency
basis of H. Also, we take S as a 2-adjacency generator for H of cardinality
adimy(H) +1 that satisfies | SN Ng[2]| > 2 for every 2’ € V/(H), which exists
by Property —Pg. Note that, |B’| = n - adimy(H) + |TT(G)| — p(G).

We differentiate the following four cases in order to prove that any two
different vertices (u;,v), (u;,v’") € V(G o H) are distinguished by at least two

vertices in B'.
Case 1: i = j. It is analogous to Case 1 of the proof of Theorem [3.85

Case 2: 7 # j and u;, u; are true twins. It is analogous to Case 2 of the proof
of Theorem [3.89

Case 3: i # j and w;, u; are false twins. In this case, Dgop ((u;, v), (uj,v')) =
({u; } x Ny [v])U({u; } x Ng[v']). Note that u; ¢ M(G) or u; ¢ M(G), say u; ¢
M(G). Thus, B'N({u;} x V(H)) = {u;} x S. By the definition of S, we have
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that it is a 2-adjacency generator for H such that |[SNNg[v']| > 2. Therefore,
we deduce that |B' N Dgop((ui,v), (uj,v'))] > {u;} x (SN Ng[v'])| > 2.

Case 4: @ # j and u;, u; are not twins. It is analogous to Case 4 of the proof
of Theorem [3.85

Therefore, B’ is a 2-metric generator for G o H and, as a consequence,
dimy(G o H) < |B'| =n-adime(H) + |FT(G)| — ¢(G), which completes the
proof. O

Consider the graph H shown in Figure 3.9 Note that by Remark [3.84]
any pair of graphs (G, H) satisfies the conditions of Theorem if and
only if (G, H) satisfies the conditions of Theorem m Therefore, by Theo-
rem , we have that dimy(G o H) = n - adimy(H) + |FT(G)| — ¢(G) =
In+|FT(G)|—¢(G) for any connected graph G of order n > 2. For instance,
if G = Ky ,_1, then we can compute dimy(K,,,_j0H) = 4n+|FT(K;, 1) —
Oo(Kip1)=4n+(n—1)—1=5n—2.

Theorem 3.93. Let G be a connected graph of order n and let H be a
nontrivial graph. If H satisfies Properties P3, Py, Ps and Pg, then

dimy (G o H) = dimy(G o H) = n - adimy(H) + |TT(G)| + |FT(G)|.

Proof. Let B be a 2-metric basis of G o H and let B; = {v : (u;,v) € B}.
If u; and u; are true twins in G, then by using an analogous procedure as
in the first part of the proof of Theorem we obtain that |B; U B;| >
2 - adimy(H) + 2, which leads to

U  Bj| = ITT(w)|(adimy(H) + 1). (3.6)
u; €TT (uy;)
Similarly, if u; and u; are false twins in G, then as in the first part of the
proof of Theorem we obtain that |B; U B;| > 2 - adimy(H) + 2, which
leads to
U  Bj| = IFT(w)|(adimy(H) + 1). (3.7)
UjEFT(ui)

Now, since the intersection of any two (true and false) twin equivalence classes

of a graph is empty, by Theorem [3.70, (3.6) and (3.7) we conclude that
dimy(Go H) = |B| =>_7" | |B;| > n-adimy(H) + |TT(G)| + |FT(G)|.
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On the other hand, we take an arbitrary 2-adjacency basis A of H. Let
ve, UL be two different vertices of H such that A C Ng(v.) and AN Ny[vl] =
(), which exist by Properties P3 and Py, respectively. We will show that

B= J (u}xHu | {ww)u |J {(w))}isa2metric

’U,ZEV(G) UZGTT(G) UZEFT(G)
generator for G o H. Note that |B'| = n - adims(H) + |TT(G)| + |FT(G)|.

We analyse the following four cases in order to prove that any two different
vertices (u;,v), (u;,v") € V(G o H) are distinguished by at least two vertices
in B'.

Case 1: i = j. It is analogous to Case 1 of the proof of Theorem [3.85

Case 2: 7 # j and u,, u; are true twins. It is analogous to Case 2 of the proof
of Theorem [3.85

Case 3: @ # j and w;, u; are false twins. We proceed analogously to Case 3
of the proof of Theorem using v, instead of v..

Case 4: @ # j and u;, u; are not twins. It is analogous to Case 4 of the proof

of Theorem [3.851

Thus, B’ is a 2-metric generator for Go H and, as a consequence, dims(Go
H) < |B| =n-adimy(H) + |TT(G)| + |FT(G)|. Therefore dimy(G o H) =
n-adimy(H)+|TT(G)|+ |FT(G)|. Finally, since each 2-adjacency basis of H
is also a 2-adjacency basis of H, we conclude that H satisfies the conditions
of the theorem, which means that dimy(G o H) = n - adimy(H) + |TT(G)| +
|FT(G)| and the proof is complete. O

For instance, we take a family of graphs H such that for any H € H we
have that A(H) > 1 and every vertex in V(H) belongs to a non-singleton
twin equivalence class. If (J o, V(H) is different from a complete graph,
then the set (J;.4, V (H) belongs to any 2-adjacency generator of H' = K +
(K1 UUpey H). Moreover, Uy V(H) is a 2-generator for H', and as a
consequence, it is the only 2-adjacency basis. Let u be the universal vertex
of H and let v € V(H’) be the vertex of degree 1. Note that Np/(u) C
Upen V(H) and Ngi[v] N Uyey V(H) = 0. Thus, Properties Ps and Py are
satisfied. Since ey V(H) is subset of any 2-adjacency generator for H',
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Properties P5; and Pg are also satisfied. Therefore, if we take any connected
graph GG of order n > 2, then by Theorem we have that dimy(G o H') =
n-adimy(H') + |TT(G)| + |[FT(G)| = n(|V(H)| —2) +|TT(G)| + |FT(G)|.
In Figure we show an example of a graph H' = K; + (K; U Cy U K»)
that satisfies the Properties Ps, Py, Ps and Pg.

\
/

Figure 3.11: The graph K; + (K; U Cy U K3) satisfies Properties Ps, Py, Ps

and Pg, and the set of black vertices is its only 2-adjacency basis.

Theorem 3.94. Let G be a connected graph of order n and let H be a
nontrivial graph. If H satisfies Properties P3, Py, = Ps and —Pg, then

dimy(G o H) = dimy(G o H) = n - adimy(H) + |TT(G)| + |FT(G)| — v(G).

Proof. Let B be a 2-metric basis of GoH and let B; = {v : (u;,v) € B}. If y;
and u; are true twins in G, then as in the first part of the proof of Theorem
3.88| we obtain that |B; U B;| > 2 - adimy(H) + 1. Thus

U  Bj| = |77 (w)|(adimy(H) + 1) — 1. (3.8)

Uj €TT(u;)

Also, if u; and u; are false twins in G, then as in the first part of the proof
of Theorem we obtain that |B; U B;| > 2-adimy(H) + 1, which leads to

U Bj| > [FT(w)|(adimy(H) + 1) — 1. (3.9)

Uj EFT(u;)

Since the intersection of any two twin equivalence classes of a graph is empty,
by Theorem and we conclude that dimy(G o H) = |B| =
S0 B = n- adimy(H) + | FT(G)| - 1(G).

On the other hand, we take an arbitrary 2-adjacency basis A of H. Let
Ve, V), be two different vertices of H such that A C Ny (v.) and ANNy[v.] =0,
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which exist by Properties P; and Py, respectively. Also, we take two 2-
adjacency generators S and S’ for H of cardinality adims(H )+ 1 that satisfy
|S — Ng(v)| > 2 and |S" N Ny(v]| > 2 for every v € V(H), which exist by
Properties =P5 and —Pg, respectively. Last, we take two vertex sets M(G)
and M'(G) such that M(G) is composed by exactly one vertex of each true
twin equivalence class of G and M'(G) is composed by exactly one vertex of
each false twin equivalence class of G.
We will show that

B = U ({u;} x AU

w €(V(G)~TT(G)—FT(G))UM(G)UM'(G)

U U ({u;} x S)U

w €TT(G)—M(G)
U U ({u;} x )
w, EFT(G)—M'(G)
is a 2-metric generator for Go H. Note that, |B'| = n-adimy(H)+ |TT(G)|+
|FT(G)| — v(G). We analyse the following four cases in order to prove that
any two different vertices (u;,v), (u;,v") € V(G o H) are distinguished by at

least two vertices in B'.
Case 1: ¢ = j. It is analogous to Case 1 of the proof of Theorem [3.85

Case 2: 7 # j and u;, u; are true twins. It is analogous to Case 2 of the proof
of Theorem [3.88

Case 3: ¢ # j and u;,u; are false twins. We proceed analogously to Case 3
of the proof of Theorem [3.92] using S’ instead of S.

Case 4: @ # j and u;, u; are not twins. It is analogous to Case 4 of the proof
of Theorem [3.85

Therefore, B’ is a 2-metric generator for G o H and, as a consequence,
dimy(Go H) < |B'| = n-adimy(H) + |TT(G)| + |FT(G)| — v(G). Finally, as
in Theorem [3.93 we also have that dimy(G o H) = n-adimy(H) + |TT(G)| +
|FT(G)| — v(G), which completes the proof. O

The graph H shown in Figure has only two 2-adjacency bases A =
{2,3,4,5} and A’ = {6,7,8,9}. Note that Ny(1) C A and Ng[10]N A = 0,
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Figure 3.12: This graph satisfies the conditions of Theorem and its only
two adjacency bases are {2,3,4,5} and {6,7,8,9}.

as well as, Ny(10) C A" and Ny[1] N A" = (). Thus, H satisfies Properties
Ps and Py. The set S ={1,2,3,8,10} is a 2-adjacency generator for H such
that |S| = adim(H) + 1, |[S — Ng(v)| > 2 and [S N Ng[v]| > 2 for every
v € V(H). Note that the value n‘l/i(rllﬂ{]S — Ny (v)|} = 2 is attained for
ve
vertices belonging to {4,5,6,7,9} and the value ng/i(r;l)ﬂS N Ng[v]|} =2 1is
ve
attained for vertices belonging to {2,3,8,10}. Hence, H satisfies Properties

=P5 and —Pg, and as a consequence, it satisfies conditions of Theorem [3.94!

Theorem 3.95. Let G be a connected graph of order n and let H be a
nontrivial graph. If H satisfies Properties P3, Py, Ps and —Pg, then

dimy(G o H) = dimy(G o H) = n - adima(H) + [TT(G)| + |FT(G)| — (G).

Proof. Let B be a 2-metric basis of Go H and let B; = {v : (u;,v) € B}. If u;
and u; are true twins in G, then as in the first part of the proof of Theorem
we obtain that |B; U B;| > 2 - adimy(H ) + 2, which leads to

U Bj| = ITT(w)|(adimy(H) + 1). (3.10)

u; €TT (u;)

Also, if u; and u; are false twins in G, then as in the first part of the proof
of Theorem we have |B; U B;| > 2-adimy(H) + 1, and as a consequence,

U  Bj| > |FT(w)|(adimy(H) + 1) — 1. (3.11)

u; €FT (u;)

Since the intersection of any two twin equivalence classes of a graph is empty,

by Theorem [3.70, (3.10) and (3.11)) we conclude that dims(G o H) = |B| =
> ic1 |Bil = n-adimy(H) + |[FT(G)| — ¢(G).
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On the other hand, we take an arbitrary 2-adjacency basis A of H.
Let v.,v. be two different vertices of H such that A C Ng(v.) and AN
Ng[vl] = 0, which exist by Properties P3 and Py, respectively. Also, we
take a 2-adjacency generator S for H of cardinality adimg(H) + 1 satisfying
|S N Ny (v)| > 2 for every v € V(H), which exists by Property —=Pgs. Last,
we take a vertex set M (G) composed by exactly one vertex of each false twin
equivalence class of G.

We will show that

B = U {upxAu | {(ui,ve)} U ({u;} xS)
w€(V(G)—FT(G)UM(G) w€TT(G) w, €FT(G)—M(G)

is a 2-metric generator for Go H. Note that, |B’| = n-adimy(H ) +|TT(G)|+

|FT(G)| — ¢(G). We analyse the next four cases in order to prove that any

two different vertices (u;,v), (u;,v") € V(G o H) are distinguished by at least

two vertices in B'.
Case 1: ¢ = j. It is analogous to Case 1 of the proof of Theorem [3.85

Case 2: 7 # j and u;, u; are true twins. It is analogous to Case 2 of the proof

of Theorem [3.851

Case 3: 7 # j and u;, u; are false twins. It is analogous to Case 3 of the proof
of Theorem [3.92]

Case 4: i # j and u;, u; are not twins. It is analogous to Case 4 of the proof
of Theorem [3.85]

Therefore, B’ is a 2-metric generator for G o H and, as a consequence,
dimy(Go H) < |B'| =n-adimy(H) +|TT(G)|+ |FT(G)| — ¢(G). Finally, as
in Theorem [3.93, we also have that dimy(G o H) = n-adimy(H) + |TT(G)| +
|FT(G)| — ¢(G), which completes the proof. O

The graph H shown in Figure has only one 2-adjacency basis given
by A = {2,3,4,5}. Note that Ny(1) C A and Ng[10]N A = (. Thus, H
satisfies Properties P3 and Py. The set S = {2,3,6,9,10} is a 2-adjacency
generator for H such that |S| = adim(H) + 1 and |S N Ng[v]| > 2 for every
v € V(H). Note that the value vg{l/i(%)ﬂs N Ny[v]|} = 2 is attained for
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Figure 3.13: This graph satisfies Properties Ps, Py, Ps and —Pg, and the set
of black vertices {2,3,4,5} is its only 2-adjacency basis.

vertices belonging to {1,2,3,4,5}. Hence, H satisfies Property —Pg. It can
be checked that there exists at least one vertex v € V(H) such that | —
Ny (v)] = 1 for each one of the eleven 2-adjacency generators for H having
cardinality adim(H ) + 1. So, H satisfies Property Ps, and as a consequence,
it satisfies conditions of Theorem [3.95]

Theorem 3.96. Let G be a connected graph of order n and let H be a
nontrivial graph. If H satisfies Properties P3, Py, =Ps and Pg, then

dimy(G o H) = dimy(G o H) = n - adima(H) + |TT(G)| + |[FT(G)| — 7(G).

Proof. Let B be a 2-metric basis of Go H and let B; = {v : (u;,v) € B}. If u;
and u; are true twins in G, then as in the first part of the proof of Theorem
we obtain that |B; U B;| > 2 - adimy(H) + 1. So we have

U  Bj| > |77 (w)|(adimy(H) + 1) — 1. (3.12)

Uj ETT(ui)

Also, if u; and u; are false twins in G, then as in the first part of the proof
of Theorem we obtain that |B; U B;| > 2 - adimy(H) + 2. Thus,

U  Bj| = IFT(w)|(adimy(H) + 1). (3.13)

u; €FT (u;)

Since the intersection of any two twin equivalence classes of a graph is empty,
by Theorem [3.70} and we conclude that dimy(G o H) = |B| =
S0 B = n - adimy(H) + [TT(G)] + | FT(G)| - 7(G).

On the other hand, we take an arbitrary 2-adjacency basis A of H.
Let v.,v. be two different vertices of H such that A C Ny(v.) and AN
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Ng[v] = 0, which exist by Properties P3 and Py, respectively. Also, we
take a 2-adjacency generator S for H of cardinality adimg(H) + 1 satisfying
|S — Ng(v)| > 2 for every v € V(H), which exists by Property —=Ps. Last,
we take a vertex set M (G) composed by exactly one vertex of each true twin
equivalence class of G.

We will show that

B = U ({u;} x A)U U {upxSHu | {(us,0))
wi€(V(G)~TT(G))UM(G) w€TT(G)~M(Q) w €FT(Q)

is a 2-metric generator for Go H. Note that, |B'| = n-adimy(H ) +|TT(G)|+

|FT(G)| — v(G). We analyse the following four cases in order to prove that

any two different vertices (u;,v), (u;,v") € V(G o H) are distinguished by at

least two vertices in B'.
Case 1: 7 = j. It is analogous to Case 1 of the proof of Theorem [3.85

Case 2: 7 # j and u;, u; are true twins. It is analogous to Case 2 of the proof

of Theorem [3.88]

Case 3: ¢ # j and u;,u; are false twins. We proceed analogously to Case 3
of the proof of Theorem using v, instead of v..

Case 4: 7 # j and u;, u; are not twins. It is analogous to Case 4 of the proof
of Theorem [3.85]

Therefore, B’ is a 2-metric generator for G o H and, as a consequence,
dimy(Go H) < |B'| =n-adime(H) + |TT(G)| + |FT(G)| — 7(G). Finally, as
in Theorem , we also have that dimy(G o H) = n-adimy(H) + |TT(G)| +
|FT(G)| — 7(G), which completes the proof. O

Note that by Remark any graph H satisfies the conditions of Theo-
rem if and only if H satisfies the conditions of Theorem m The graph
H shown in Figure satisfies the conditions of Theorem [3.95] Therefore,
H is an example of a graph satisfying the conditions of Theorem [3.96]

Notice that the assumptions of Theorems [3.82] [3.85] [3.88] [3.89] [3.92]
13.93} 13.94} 13.95| and [3.96| cover all the possible values for f(G, H) while com-

puting dimy(G o H), where GG is a nontrivial connected graph and H is a
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nontrivial graph. Therefore, it is possible to compute dimy(G o H) in terms

of the values of adimy(H), |TT(G)|, |FT(G)|, 7(G), ¢(G) and v(G).

3.4.2 Corona product graphs

In this subsection we compute or bound the k-metric dimension of corona
product graphs. To do so, we present a generalization of a result obtained in
[41], 142] for k = 1. At the same time, this result shows the strong relation-
ship existing between the k-metric dimension of G ® H and the k-adjacency
dimension of the graphs belonging to H. By Remark [3.24] this relationship
can be extended to G ® H.

Theorem 3.97. If G is a connected graph of order n > 2 and H = {Hy, ...,
H,} is a family composed by n nontrivial graphs, then for k € {1,...,C(H)}
dimy (G OH) =) adimy(H;) = dimy,(G © H).

i=1
Proof. We will show that dim,(G ® H) < >  adimy(H;). Let S; be a
k-adjacency basis of H;. In order to show that S = J;_,S; is a k-metric
generator for G ® H, we analyse the following four cases for two different
vertices z,y € V(G © H).

1. z,y € V(H;). Since S; is a k-adjacency basis of H;, it follows that
|S; N Cy,(z,y)| > k. Since Cy,(x,y) = Dgeon(x,y), we deduce that
SN Deonlz,y)| = k.

2. x € V(H;) and y € V(H;), j # i. For every v € S}, we have dgou(y,v) <
2 < 3 <dgon(x,v). Since S; is a k-adjacency basis of H;, we deduce that
|S;| > k, and consequently, |S N Dgow(z,y)| > k.

3. x € V(H;) and y € V(G). If y = w;, then for every v € S; such that
J # i, we have dgoy(x,v) = dgon(z,y) + deon(y,v) > daon(y,v). Now,
if y = w; such that j # i, then for every v € S; we have dgoy(z,v) =
deon(z,y) + daon(y,v) > deen(y,v). Since S; is a k-adjacency basis of
H;, we deduce that |S;| > k, and as a consequence, |S N Dgey(z,y)| > k.

4. v =y € V(G) and y = u; € V(G). For every v € §;, we have
deon(z,v) = deon(®,y) + deon(y,v) > deown(y,v). Since S; is a k-
adjacency basis of H;, we deduce that |S;| > k, and thus, |SNDgex(z,y)| >
k.



UNIVERSITAT ROVIRA I VIRGILI

On the

(k, t)

-metric dimension of a graph

Alejandro Estrada Moreno

On the (k,t)-metric dimension of graphs 119

Hence, S is a k-metric generator for G ® ‘H and, as a consequence,

n

dimy(GOH) <> 18] =) adimy(H;).
i=1 i=1

It only remains to prove that dim,(G ® H) > >°" | adimy(H;). To do
this, let B be a k-metric basis of G ® H and, let B; = BN V(H;). We claim
that B; is a k-adjacency generator for H;. To this end, consider two different
vertices x,y € V(H;). Since Dgoxn(z,y) N (V(G O H) — V(H;)) = 0, we
deduce that |Dgew(x,y) N B;| > k. Since for every u € B; we have that
deon(r,u) = deen(x,u) and daow(y,u) = deen2(y,u), we conclude that
Cu,(z,y) = Dgen(z,y) and, as a consequence, |Cy,(z,y) N B;| > k. So,
B; is a k-adjacency generator for H; and, consequently, |B;| > adimy(H;).

Therefore,
dimy(G O H) = |B| > Z |Bi| > Zadlmk( i)-

We have shown that dimy,(G © H) = >, adimy(H;) and by analogy we
deduce that dimz(GOH) = >, adimg(H;). By Remark . we have that
S adimg(H;) = >0 adimg(H;), and so, the result follows. O

Note that the k-metric dimension of corona product graphs is not equiv-
alent to its k-adjacency dimension as in the case of lexicographic product
graphs. For the graph G = P, ® Ps shown in Figure [3.3| we have dim;(G) =
8 < 9 = adim(G), dimy(G) = 12 < 14 = adimy(G) and dimz(G) = 20 =
adimz(G). The only 3-adjacency basis of GG, and at the same time the only
3-metric basis, is V(G) — {0, 6,12, 18}.

According to Theorem [3.97, dimy,(G ® H) = Y7, adimy(H;), and con-
sidering that adimy(H;) > k, we have a lower bound of kn on dim,(G ® H).
By Proposition and Theorem [3.97, we can deduce when this lower bound
is tight.

Proposition 3.98. For any connected graph G of order n > 2 and any
family H composed by n nontrivial graphs, dimg(G © H) = kn if and only if
k € {1,2} and for every H € H we have that H € {Py, Ps, Py, P3}.

Our next result is obtained as a consequence of Theorem and the
fact that dimg(H) < adimg(H) < |V(H)| for any nontrivial graph H and
ke{l,...,CH)}.
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Theorem 3.99. Let G be a connected graph of order n > 2 and let H be a
family composed by n nontrivial graphs. Then for every k € {1,...,C(H)},

Zdlmk ) < dimp(GOH) < Z |V (H

=1

By Theorem it follows when the lower bound of Theorem [3.99| is

achieved.

Theorem 3.100. Let G be a connected graph of order n > 2 and let H be a
family composed by n nontrivial graphs. Then dimy(GOH) =, dimy(H;)
if and only if dimg(H;) = adimg(H;) for every H; € H.

We know that if a graph H has diameter D(H) < 2, then dy; and dg o
are equivalents. So dimy(H) = adimy(H). Thus, the following result is a

particular case of previous theorem.

Theorem 3.101. Let G be a connected graph of order n > 2 and let H be a
family composed by n nontrivial graphs such that every H; € H has D(H;) <
2. Then for every k € {1,...,C(H)}, dimy(G © H) =, dim,(H;).

By Theorem we have that dimg(GoH) = adim(GoH) for any con-
nected graph GG and any family H composed by nontrivial graphs. Therefore,
by Theorem [3.100| we deduce the following result.

Theorem 3.102. Let G be a connected graph of order n > 2 and let H =
{G1oH1,Gy0Hs,...,GroH,}, where G; is a connected graph of order n; > 2
and H; is a family composed by n; nontrivial graphs with i € {1,2,...,n}.
Then for every k € {1,...,C(H)}, dimg(G ©H) = > | dimg(G; o H;).

By Theorems [3.76| and [3.102, we deduce the following two results.

Proposition 3.103. Let G be a connected graph of order n > 2 and let
H={G1oH1,Ga0Hs,...,G,oH,}, where G; is a connected graph of order
n; > 2 and H; is a family composed by n; paths with i € {1,2,...,n}. [
every path P;; € H; has order g; ; > 4, then

(i) dimy(G O H) = zn:Z[q”“w

i=1 j=1

(i) dims(G & H) = anz(q” VU 4D

=1 j5=1
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Note that Theorem leads to the conclusion that in the previous
proposition each H;, where i € {1,2,...,n}, can also be formed by the
complement of paths of order at least four.

Proposition 3.104. Let G be a connected graph of order n > 2 and let
H={G1oH1,Ga0Hs,...,G,oH,}, where G; is a connected graph of order
n; > 2 and H; is a family composed by n; cycles with i € {1,2,...,n}. [
every cycle C; j € H; has order g;; > 5, then

() dimy(com) = Y3 [%]

=1 j=1

() dimy(C 0 H) = iz@” ]).

=1 j=1

=1 j=1

By Theorem we deduce that in the previous proposition each H;,
where ¢ € {1,2,...,n}, can also be formed by the complement of cycles of
order at least five.

By Theorems [3.78 and [3.102, we deduce the following result.

Proposition 3.105. Let G be a connected graph of order n > 2 and let
H = {GyoH,Gy0Hy,...,G, 0 H,}, where G; is a connected graph of
order n; > 2 and H; is a family composed by n; paths and/or cycles with
i€{1,2,...,n}. If every H; ; € H; has order g;; > 7 and in each family H,;
there exists at most one q;; such that ¢;; mod 5 € {1,3}, then

dim(Go ) =30y |22
=1 j=1
Our following result is a direct consequence of Theorems [3.5] and [3.97]

Proposition 3.106. Let G be a connected graph of order n > 2 and let H
be a family composed by n nontrivial graphs. Then dimy(GOH) =1, |Vi]
if and only if k = C(H) and Dy2(H;) = V(H;) for every graph H; € H.

The graphs P, and Cg are two examples for a graph H satisfying the
conditions of Proposition [3.106, Notice that C(P,) = 3 and adims(P,) = 4.
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Also, C(Cs) = 4 and adimy4(Cs) = 6. Therefore, for any nontrivial graph G
of order n, dim3(G ® P;) = 4n and dimy(G ® C) = 6n.

From Corollary we can deduce the particular case of Proposition

[3.106] for k& = 2.

Proposition 3.107. Let G be a connected graph of order n > 2, and let H
be a family composed by nontrivial graphs. Every vertex of H; € H belongs

to a non-singleton twin equivalence class if and only if
dimy(G © H) Z \Vil.

We must point out that Theorems |3.99 and [3.101] are generalizations of

previous results established in [132] for the case k = 1.

Notice that there are values for dimg(G ® H) non-achieving the bounds
given in Theorem m If there exists a graph H; € H such that dimy(H;) <
8(1h1]k(}i;) < |L/(]§;)\,t11e11

Zdlmk ) < dimy,(G © H) ZW\

The results given in Proposition [3.109| show some examples. Note that
dimg(P,,) = k+1 < adimg(P,,) < n; = |V (FP,,)| for n; > 9 and k € {1,2,3}.

In order to present our next result we introduce a new definition. Given
a family of n graphs H, we denote by K; ¢ H the family of graphs formed
by the graphs K + H; for every H; € H, i.e., Ky o H = {K; + Hy, K; +
Hy,...,Ky+ H,}.

Proposition 3.108. Let G be a connected graph of order n > 2, and let H be
a family composed by n nontrivial graphs. Then for any k € {1,...,C(H)},

dim (G © H) = dimi (G © H) = dimy, (G © (K, o H))
if each H; € H holds one of the following statements.
(i) H; has diameter D(H;) > 6.
(ii) H; has girth g(H) > 5 and minimum degree §(H) > 3.
(iii) H; is a cycle graph of order at least seven.

(iv) H; is a tree T' such that the following statements hold.
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(a) If k=1, then T ¢ Fy = {P, P, Ps, K1, T'}, where n > 3 and T"
is obtained from Ps; U{K,} by joining by an edge the vertez of K,
to the central vertex of Ps.

(b) If k=2, thenT & Fo ={P,, K1,,T'}, where r € {2,...,5}, n >3
and T" is a graph obtained from Ki, U Ky by joining by an edge
one leaf of K1, to one leaf of Ks.

(¢) If k=3, then T & F3 = {Py, Ps}.

Proof. Since for every H; € H, it follows D(K; + H;) = 2, by Theorem
dimy, (GO (K1 oH)) = > dimy(K; + H;). Also, by Corollaries
[3.33], [3.34], [3.35], Propositions [3.43], [3.44], [3.46] and [3.47], and Theorem [3.97]
dimy, (GO H) = dim, (GO H) = >, adimy,(H;) = Y, dim (K, + H;). So,
the result follows. O

The next result shows a relationship between dimy,(G®H) and dimg(G®
(K1 oH)) for a family #H of paths of order greater than five and k € {1,2,3}.
We only consider k£ € {1,2,3}, since for n’ > 6 we have that C(P,) =
C(F1 ) = 3, and as a consequence, by Theorem , GOH and GO(Ki1oH)
are 3-metric dimensional. Thus, by Theorem and Propositions [3.36]
13.39) and |3.108, we obtain the following result.

Proposition 3.109. Let G be a connected graph of order n > 2, and let H
be a famuly of paths. If every path P; € H has order n;, then the following

statements hold.

(G) If ng; > 7 fori € {1,...,n}, then dim(G ® H) = dim;(G © H) =
dimy (G © (Ky o H)) = S, [ %]

(ii) If n; > 6 fori € {1,...,n}, then dimy(G © H) = dimy(G ® H) =
dlmQ(G ® (K1 07‘[)) = Z?:l "ng&—l"‘ .

(iii) If n; > 6 for i € {1,...,n}, then dim3(G ® H) = dims(G © H) =

Finally, we present a relationship between dimy(G ® H) and dimg(G ®
(K10H)) for a family H of cycles of order greater than six and k € {1, 2, 3,4}.
We only consider k € {1,2,3,4}, since for n’ > 7 we have that C(C,,) =
C(Wi ) =4, as a consequence, by Corollary , GoOHand GO (KioH)
are 4-metric dimensional. Thus, by Theorem and Propositions [3.36]
[3.43] and [3.108, we obtain the following result.
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Proposition 3.110. Let G be a connected graph of order n > 2, and let H
be a family of n cycles. If every cycle C; € H has order n; > 7, then

(i) dimi(G ©H) = dimy (G O H) = dimy (G © (K1 o H)) = 31, |22,

(ii) dimy(G ©H) = dimy(G © H) = dima(G © (K10 H)) = Y0, [%].
(ili) dims(GOH) = dimz(GOH) = dims(GO(K1oH)) = >0, (ni — [%]).

(iv) dimy(G ©H) = dimy(G 0 H) = dimy(G & (K, o H)) = >0 n,.

1=
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Chapter 4

Computability of the
(k,t)-dimensional problem and

the k-metric dimension problem

Overview

In this chapter we study the computability of some problems concerning the
(k,t)-metric dimension of graphs. Namely, we propose an algorithm which
can be solved in cubic time with regard to order of the graph, for finding the
value of k such that a graph is (k, t)-dimensional. We devise others particular
algorithms for computing the value of k such that the lexicographic product
and the corona product are k-metric dimensional. Despite these algorithms
can also be solved in cubic time, we reduce its constant factor. Moreover,
we prove that the problem of computing the k-metric dimension of graphs
is NP-hard. However, the problem of computing the k-metric dimension of
trees is solved in linear time with respect to the order of trees. To this end,
we give three algorithms, the first one is for computing the value of £ such
that a tree is k-metric dimensional, the second one is for finding the value of
the k-metric dimension of a tree, and the last one is for finding a k-metric

basis of a tree.

125
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4.1 The (k,t)-metric dimensional graph prob-

lem

We now consider the problem of finding the integer k for which a given graph
G of order n is (k,t)-metric dimensional for an integer ¢t > 2. By Remark
we know that if G is a (k,t)-metric dimensional graph of order n > 3, then
2 < k < n—1. Therefore, the above mentioned problem would be expressed

in the following way.

(k,t)-DIMENSIONAL GRAPH PROBLEM
INSTANCE: A connected graph G of order n > 3 and an integer ¢t > 2.
PROBLEM: Find the integer k, 2 < k <n — 1, such that G is

(k,t)-metric dimensional.

Theorem 4.1. Let G be a connected graph of order n > 3, and let t > 2
be an integer. The time complexity of computing the value k for which G is

(k,t)-metric dimensional is O(n?).

Proof. We assume that the graph G is represented by its adjacency matrix

Ag. We recall that Ag is a symmetric (n X n)-matrix given by

o 1, it u; ~ uy,
Ac(i ) = { 0, otherwise.
By Theorem [2.2] the problem is reduced to finding the value of D(G,t). To
this end, we can initially compute the distance matrix Dg from the matrix
Ag by using the well-known Floyd-Warshall algorithm [109] 125], which has
time complexity O(n?®). The distance matrix Dg is symmetric of order n x n
whose rows and columns are labelled by vertices, with entries between 0 and
n—1 (or co if G is not connected). Now observe that for every z,y € V(G) we
have that z € Dg(x,y) if and only if min{Dg(z, 2),t} # min{Dg(z, 2),t}.

Given the distance matrix DistM, computing how many vertices belong

V(G)]
2

linear time. Therefore, the overall running time of such a process is bounded
by the cubic time of the Floyd-Warshall algorithm. O

to Dg(z,y) for each of the pairs z,y € V(G) can be checked in
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4.1.1 The particular case of product graphs
In this section we analyse the (k,¢)-DIMENSIONAL GRAPH PROBLEM for

the particular case of join graphs, corona and lexicographic product graphs.
In the study of these graphs the parameter C(G) is involved, as we have seen
in Propositions and and Theorems [2.29) and [2.35] By Theorem
4.1l we learned that C(G) can be computed in O(|V(G)|?) time. However, we

propose an algorithm for the computability of this parameter, where the value

of the constant factor is reduced, despite the fact that the time complexity

remains of the same order.

Theorem 4.2. For any nontrivial graph G, the value of C(G) can be com-
puted in O(|V(G)|?) time.

Proof. We assume that the graph G is represented by its adjacency matrix
Ac. Now observe that for every z,y € V(G) we have that any z € V(G) —
{z,y} belongs to Cq(x,y) if and only if Ag(x,2) # Ag(y, 2). Considering
this, we can compute |Cg(x,y)| in linear time for each pair z,y € V(G).

Therefore, the overall running time for determining C(G) is dominated by
the cubic time of computing the value of |Cq(z,y)| for the (| <2 )l) pairs

of vertices z,y of G.

Considering that the minimum and the maximum degree of any graph
of order n can be computed in O(n?) time, by Propositions and [2.28]
and Corollary [2.31], we deduce the following result.

Proposition 4.3. The following assertions hold:

(i) For any graph H of order n > 2, the value of k for which Ky + H is

k-metric dimensional can be computed in O(n3) time.

(ii) For any two graphs G and H of order n > 2 and n’ > 2, respectively,
the value of k for which G+ H is k-metric dimensional can be computed

in O (max{n n"*}) time.

(iii) For any connected nontrivial graph G and any graph H of order n’ > 2,
the value of k for which G o H is k-metric dimensional can be computed

in O(n’) time.

The following result is direct consequence of Theorems and [4.2]
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Remark 4.4. Let G be a connected nontrivial graph of order n and let
H = {Hy,...,H,} be a family composed by nontrivial graphs. Then the
value of k for which G ® H is k-metric dimensional can be computed in

O iy |V (H;)|?) time.

It was shown in Theorem that the value of k£ for which a graph G is
k-metric dimensional can be computed in cubic time with regard to the order

of G. The value of k for which G o H is k-metric dimensional can compute
3
n
in O (n + Z n2> time. A natural question which raises now regards
i=1

with the existence of an algorithm that could allow us to compute the value
of k for which GoH is k-metric dimensional in a lower order. The next result

solves precisely that fact, where the general complexity is slightly improved.

Proposition 4.5. Let G be a connected graph of order n > 2 and let
H = {Hy,...,H,} be a family composed by nontrivial graphs. Then the

value of k for which G o H is k-metric dimensional can be computed in

n
O [ max{ n® + > VH)2D) V()
uw, €TT(G)UTF(G) i=1
Proof. By Theorem [2.29 we learn that k = min{7 (GoH,C(H)). To compute
T(GoH), it is first necessary to obtain the twin equivalence classes of G. We
assume that the graph G is represented by its adjacency matrix Ag. Now,
note that w;, u; are twins if and only if for every u, € V(G)—{u;, u;}, we have
that Ag(i,7) = Ag(j,r). Given two twin vertices u;, u;, if Ag(i,j) = 1, then
u;, uj are true twins, otherwise they are false twins. Note that determining if
two vertices are twins can be checked in linear time. In the worst case, when
all twin equivalence classes are singletons, it would be necessary to check that
any two vertices are twins between them or not. Thus, we conclude that
determining the twin equivalence classes of G can be computed in O(n?).
Once determined the twin equivalence classes of G, we have the following

three possibilities for each twin equivalence class Ug of G.

o If Us = {uw;}, then we take the order n; of H;, as the representative
value of this class.

e If Uy is a false twin equivalence class, then we take minU {6(H;) +
uj,u€lG

d(H,;) + 2} as the representative value of this class.
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e If Uy is a true twin equivalence class, then we take minU {IV(H;)| —
uj,u €l

A(H;) + |V (H)| — A(H))} as the representative value of this class.

We observe that T(G o H) is the minimum of the representative values of
each twin equivalence class. The minimum and maximum degrees §(H,)
and A(H;) of the graphs H; (of order n;) can be computed in O(n?). So,
computing the representative value of each non-singleton twin equivalence
class Ug can be done in O(}_, Ve n?). Therefore, we can compute the value
of T(GoH)in O(n® + D € TT(G)UTF(G) n?).

On the other hand, by Proposition we have that C(H) can be com-
puted in O(>_" |, n?), which completes the proof. O

4.2 The k-metric dimension problem

Since the problem of computing the value k' for which a given graph is
k'-metric dimensional can be solved in polynomial time, we can study the
problem of deciding whether the k-metric dimension, k& < £/, of G is less than

or equal to r, for some r > k 4 1, i.e., the following decision problem.

kE-METRIC DIMENSION PROBLEM

INSTANCE: A K'-metric dimensional graph G of order n > 3 and integers
k,rsuch that 1 <k <K and k+1<r <n.

QUESTION: Is dimy(G) < r?

We next prove that the k--METRIC DIMENSION PROBLEM is NP-
complete. We must remark that for k£ = 1 the problem above was proved to
be NP-complete by Khuller et al. [72], although a previous claim about it
was first presented in [49]. Moreover, the NP-completeness of this problem
(when k = 1) restricted to the case of planar graphs was settled in [27].
As a kind of generalization of the technique used in [72] for k£ = 1, we also
use a reduction from 3-SAT in order to prove the NP-completeness of the
E-METRIC DIMENSION PROBLEM. We recall 3-SAT decision problem.
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SATISFIABILITY (3-SAT)

INSTANCE: Collection @ = {Q1,...,Qs} of clauses on finite set U of
variables such that |@Q;| = 3 fori € {1,...,s}.

QUESTION: Is there a truth assignment for U that satisfies all the

clauses in Q)7

Our problem is clearly in NP, since verifying that a given subset S C
V(G) with £k +1 < |S| < r is a k-metric generator for a graph G, can be
done in polynomial time by using some similar procedure like that described
in the proof of Theorem In order to present the reduction from 3-SAT,
we need some terminology and notation. From now on, we assume zy, ..., x,
are variables; ()1, ..., Q) are clauses; and x1, 71, 22, T3, . . ., T, T, are literals,
where x; represents a positive literal of the variable while Z; represents a
negative literal.

We consider an arbitrary input to 3-SAT, that is, a boolean formula F
with n variables and s clauses. In this reduction, without loss of generality,
we assume that the formula F has n > 4 variables. Let X = {xy,z9,...,2,}
be the set of variables and let Q = {Q1,Q2,...,Qs} be the set of clauses.
Now we construct a graph G in the following way.

e For every x; € X, we take an even cycle C? of order 4 (%W + 2 and we
denote by F; (the false node) and by T; (the true node) two diametral

k
vertices of C*. Then we denote by f}, f2,..., fﬂﬂ the half vertices of

E
C" closest to F; and we denote by t},t%, ... ,tf(ﬂ the half vertices of
C* closest to T; (see Figure [4.1)).

ti(k/Q"Hl tz[k/QHQ t? [k/2] fisz/z] fi(k/QHQ fi(k/z]ﬂ
O——O
F;
O——O
t L f!

Figure 4.1: The cycle C? associated to the variable ;.
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e For every clause ); € Q, we take a star graph K 4 with central vertex
uj and leaves uj,u?, u3,uj. If k> 3, then we subdivide the edge u;u’
until we obtain a shortest u; — uf path of order (%W + 1, as well as, we
subdivide the edge ujuj’-’ until we obtain a shortest u; — uj” path of order
|£] 4+ 1 (see Figure . We denote by P(uj,u?) the shortest uj — u?

path of length k£ obtained after subdivision. The star graph remains

unchanged for k € {1,2}.

O @ O
2 3
Uj Uj
Oo———©O O——=O Oo——oO Oo———©O

Figure 4.2: The subgraph associated to the clause @);.

o If a variable z; occurs as a positive literal in a clause ();, then we add
the edges Tiu}, Fyu} and Fyuj (see Figure [4.3)).

o If a variable x; occurs as a negative literal in a clause @;, then we add
the edges Tiu}, Fyuj and Tu; (see Figure [4.3).

Bt fi B
Q

Figure 4.3: The subgraph associated to the clause Q; = (z1 V72 VT3) (taking
k=4).

e Finally, for every [ € {1,...,n} such that x; and Z; do not occur in a
clause @; we add the edges Tiuj, Tyuj, Fju; and Fuj.
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Notice that the graph G obtained from the procedure above has order
n (4[5 +2) + s(k + 3). We also observe that given the formula F, the
graph G'r can be constructed in polynomial time. Next we prove that F is
satisfiable if and only if dim;(Gr) = k(n+s). To do so, we first notice some

properties of Gp.

Remark 4.6. Let x; € X. Then there exist two different vertices a,b €
V(C") such that they are distinguished only by vertices of the cycle C* and,
as consequence, for any k-metric basis S of G, we have that |[SNV (C")| > k.

Proof. To observe that it is only necessary to take the two vertices of C*

adjacent to T; or adjacent to Fj. O

Remark 4.7. Let QQ; € Q. Then there exist two different vertices x,y in the
shortest uf — ug’ path such that they are distinguished only by vertices of the

itself shortest u? — u? path and, as consequence, for any k-metric basis S of
G, we have that |S OV (P(u3,u3))| > k.

Proof. To observe that it is only necessary to take the two vertices of P(u?, u?)

adjacent to u;. O

Proposition 4.8. Let F be an arbitrary input to 3-SAT problem. Then the
graph Gp associated to F satisfies that dimg(Gp) > k(n + s).

Proof. As a consequence of Remarks and [4.7] we obtain that for every
variable z; € X and for every clause (); € Q the set of vertices of Gp
associated to each variable or clause, contains at least k vertices of every

k-metric basis for Gg. Thus, the result follows. O
Theorem 4.9. k-METRIC DIMENSION PROBLEM is NP-complete.

Proof. Let F be an arbitrary input to 3-SAT problem having more than three
variables and let G be the graph associated to F. We shall show that F is
satisfiable if and only if dimy(Gr) = k(n + s).

We first assume that F is satisfiable. From Proposition 4.8 we have that
dimy(GFr) > k(n + s). Now, based on a satisfying assignment of F, we shall
give a set S of vertices of G, of cardinality |S| = k(n -+ s), which is k-metric
generator.

Suppose we have a satisfying assignment for F. For every clause (); € Q
we add to S all the vertices of the set V(P(u?,u?)) — {u;}. For a variable

3770
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x; € X we consider the following. If the value of x; is true, then we add to S

o[ E
the vertices t},t2,...,t, (21 On the contrary, if the value of x; is false, then
k

2 a3
we add to S the vertices f}, f2,..., fi {2]

We shall show that S is a k-metric generator for Gp. Let a,b be two

different vertices of Gr. We consider the following cases.

Case 1. a,b € V(C?) for some i € {1,...,n}. Hence, there exists at most
one vertex y € S N V(C") such that d(a,y) = d(b,y). If d(a,w) # d(b,w)
for every vertex w € S N V(C), then since |S NV (C")| = k, we have that
|Dg(a,b)NS| = k. On the other hand, if there exist one vertex y € SNV (C?)
such that d(a,y) = d(b,y), then d(a,T;) # d(b,T;) and d(a, F;) # d(b, F}).
Thus, for every w € S — V(C?) it follows that d(a,w) # d(b,w) and a,b are
distinguished by more than k vertices of S.

Case 2. a,b € V(P(u?, ug’)) Hence, there exists at most one vertex ¢’ € SN
V(P(u3,u?)) such that d(a,y’) = d(b,y'). But, in this case, d(a, u;) # d(b,u;)
and so for every w € S — V(P (u?,u})) it follows that d(a,w) # d(b,w) and
a, b are distinguished by at least k vertices of S.

Case 3. a = u; and b = u?. Since the clause @); is satisfied, there exists

i €{l,...,n}, i.e, a variable x; occurring in the clause (); such that either

) 2k
ea~T,bstTand SNV(CY) = {t},t?,...,tih1 , i.e, a variable
x; occurring as a positive literal in ); and has the value true in the

assignment, or

k
ea~F,bA F,and SNV(C) = { L Z42,...,f1»2[21 }, i.e, a variable
x; occurring as a negative literal in (); and has the value false in the

assignment.

Thus, in any case we have that for every w € SN V(C?) it follows d(a,w) <
d(b,w) and a, b are distinguished by at least k vertices of S.

Case 4. a € V(C?) and b € V(C') for some 4,1 € {1,...,n}, i # [. In this
case, if there is a vertex z € S N V/(C?) such that d(a, z) = d(b, z), then for
every vertex w € SN V(CY) it follows that d(a,w) # d(b,w). So a,b are
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resolved by at least k vertices of S.
Case 5. a € V(C") and b € V(P(uj,u?)). It is similar to the case above.

Case 6. a € {uj,uj} and b ¢ {uj,uj}. If b € V(C"), for some i € {1,...,n},
then all elements of S N V(P (u?,u}) distinguish a,b. Now, let w be one of
the two vertices adjacent to u; in P(u?,u3). If b € V(P(uj,u?)) — {w}, then
all elements of SN V/(C?) distinguish a, b. On the other hand, since n > 4, if
b = w, then there exists a variable x; not occurring in the clause @);. Thus,
the vertex a is adjacent to T; and to F; and, as a consequence, the vertices
of SNV (C') distinguish a, b.

As a consequence of the cases above, we have that S is a k-metric gene-
rator for Gp. Therefore, dimg(Gp) = k(n + s).

Next we prove that, if dimg(Gr) = k(n + s), then F is satisfiable. To
this end, we show that there exists a k-metric basis S of G such that we
can set an assignment of the variables, so that F is satisfiable. We take S
in the same way as the k-metric generator for G described above. Since S

is a k-metric generator for G of cardinality k(n + s), it is also a k-metric

k
basis. Note that for any cycle C; either S NV(C;) = {t1 t? tQ[A} or

grbgye oy ly

17J10

k
SﬂV(Ci):{ 1 f? ...,ffm}.
In this sense, we set an assignment of the variables as follows. Given a

k
variable z; € X, if SN {ﬁ t? ...,t?(21 = (), then we set z; to be false.

Otherwise we set x; to be true. We claim that this assignment satisfies F.
Consider any clause (); € Q and let x;,, z;,, x;, the variables occurring
in Q;. Recall that for each clause @, we have that S NV (P(ui,u;)) =
V(P(uz,u})) — {un}. Besides no vertex of V(C}) associated to a variable z;,
[ # j1, ja, j3, mor any vertex of S NV (P(u?,u3)) associated to a clause @y,
;7 and uj. Thus u} and u] must be distinguished
by at least k vertices belonging to V(Cj,) U V(C},) U V(C},) associated to

the variables z;,, zj,, z;,.

distinguishes the vertices u

Now, according to the way in which we have added the edges between
the vertices T}, T}y, Tj,, Fj,, F; Lot

Jiyr ~J2o J2» YRR B
distinguished by at least k vertices of S if and only if one of the following

Fj, and u we have that uj and u are

statements holds.
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e There exists [ € {1,2,3} for which the variable z;, occurs as a negative

ol E
literal in the clause ); and SN {tjl-,tjz«, . ,tj(J} = () (in such a case

xj, is set to be false).

e There exists | € {1,2,3} for which the variable z;, occurs as a positive

k
literal in the clause @); and SN {tl. 2 ... tﬂg] } # ) (in such a case

VR E 77

xj, is set to be true).

As a consequence of the two cases above, we have that if at least k vertices
of S distinguish u},u?, then the setting of z;,, | € {1,2,3}, is such that it
satisfies the clause );. Therefore F is satisfiable. O

According to the theorem above we have the following result.

Corollary 4.10. The problem of finding the k-metric dimension of graphs
1s NP-hard.

4.3 The particular case of trees

We must first recall that for the particular case of trees, it is already known
from [72] that the problem of computing its 1-metric dimension can be done
in linear time. Moreover, it was recently proved in [27] that also for the case
of outerplanar graphs, this problem can be solved in polynomial time. We
next deal with the problem of computing the k-metric dimension of trees for
k> 2.

In order to continue presenting our results, we need to use some defi-
nitions exposed at the beginning of subsection 2.2.1 An example of a tree
T which helps to remember the notation of this subsection is given in Fi-
gure[4.4] In such a case we have that M(T') = {6,12,26}, {1,4} is the set of
terminal vertices of vertex 6, {9,11} is the set of terminal vertices of vertex
12 and {15, 20,23} is the set of terminal vertices of vertex 26. For instance,
for the vertex 26 we have that [(26) = min{l/(15,26),1(20,26),[(23,26)} =
min{5, 3,3} = 3 and ¢(26) = min{c(15,20),¢(15,23), varsigma(20,23)} =
min{8, 8, 6} = 6. Analogously, we deduce that {(6) = 2, ¢(6) =5, [(12) =1
and ¢(12) = 3. Therefore, we conclude that ¢(7") = min{s(6),(12),5(26)} =
min{5,3,6} = 3.
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29

26

190/2;
27
18 21
17 200 23
16
1

150

Figure 4.4: A tree T' where ¢(7T") = 3. Note that vertices are labeled through

a post-order traversal.

4.3.1 On k-metric dimensional trees different from

paths

In this subsection we focus on the problem of finding the integer k£ for which
a tree is k-metric dimensional. By Theorem [2.9) we know that a graph G of
order n > 3 is (n — 1)-metric dimensional if and only if G is a path or G is
an odd cycle. Thus, this result allows us to consider only those trees that
are not paths. Theorem is the base of the algorithm presented in this
subsection.

Now we consider the problem of finding the integer k£ such that a tree T’

of order n is k-metric dimensional.

k-DIMENSIONAL TREE PROBLEM
INSTANCE: A tree T different from a path of order n
PROBLEM: Find the integer k, 2 < k < mn — 1, such that T is k-metric

dimensional

Algorithm 1:
Input: A tree T' different from a path rooted in a major vertex v.

Output: The value k for which T is k-metric dimensional.

1. For any vertex u € V(T') visited by post-order traversal as shown in

Figure , assign a pair (a,,b,) in the following way:

(a) If u does not have any child (u is a leaf), then a,, = 1 and b, = occ.
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(b) If w has only one child (u has degree 2), then a, = a,» + 1 and
b = by, where the pair (a,,b,) was assigned to the child vertex

of u. Note that a, can be co. Thus, in such case, a, = oc.

(c) If u has at least two children (u is a major vertex), then a, = oo
and b, = min{a,, + au,,bmin}, where a,, and a,, are the two
minimum values among all possible pairs (a,,, by,) assigned to the

children of u, and b,,;,, is the minimum value among all the b,,’s.

2. The value k for which T is k-metric dimensional equals b, (the second

element of the pair assigned to the root v).

Figure [4.5] shows an example of a run of Algorithm 1 for the tree shown
in Figure [4.4]

(1,00)

Figure 4.5: Algorithm 1 yields that this tree is 3-metric dimensional.

Remark 4.11. Let T be a tree different from a path of order n. Algorithm 1

computes the integer k, 2 < k < n —1, such that T is k-metric dimensional.

Proof. Let v be the major vertex taken as the root of the tree T different
from a path, and let (a,, b,) be the pair stored in v by Algorithm 1. We show
that b, = ¢(7"). Since v is a major vertex, it has at least three children. Let
t > 3 be the number of children of v and let Sy, ..., S; be the subtrees whose

roots are the children vy, ..., v; of v, respectively. We differentiate two cases:
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1. There exist at least two subtrees that are paths. In this case v € M(T).
Let Si,..., Sy be the subtrees that are paths, where 2 < ¢ < ¢. In this
case, after running Algorithm 1, each root v; of S;, 1 < i < t/, stores
the pair (a,,,00), where a,, is the number of vertices of S;. Note that
¢(v) = ay, + ay,, where a,, and a,, are the two minimum values among
all a,,’s belonging to the pairs (a,,,b,,) stored by the children of v
such that 1 < ¢ < /. If ¥ = t, then v is the only exterior major
vertex of T', and Algorithm 1 stores in v the pair (a,,b,) = (00, s(v)) =
(00,5(T)). Assume now that ¢ < t. Thus, there exists at least one
subtree that is not a path. Let Sy.q,...,S; be the subtrees that are
not paths. For each root v; of S;, t' +1 < i < t, if v; is a major vertex,
then we take the vertex v] = v;. Otherwise, v] is the first descendant
of v; that is a major vertex. In this case, Algorithm 1 recursively

stores in v} the pair (00, b, ), where b, = Mmm {q( "}. In both
i i e

cases, b,, = by, where (00, by,) is the pair stored in U, by Algorithm
1. Therefore, by Algorithm 1, the root v stores the pair (a,,b,) =
(00, min{¢(v), byin}) = (00,5(T)), where b, = min {b;}.

t'4+1<i<t

2. There exists at most one subtree that is a path. In this case v ¢ M(T).
Let Sy, ..., 5] be the subtrees that are not paths, where 1 < ¢’ <t¢. For
each root v; of S;, 1 < i < t/, if v; is a major vertex, then we take
the vertex v, = v;. Otherwise, v} is the first descendant of v; that is
a major vertex. In this case, Algorithm 1 recursively stores in v} the

pair (oo, by ), where b, = M {g( )}. In both cases, b,, = by,
1 i v'e i

where (00, b, ) is the pair stored in vz by Algorithm 1. Note in this case,
at least one of two minimum values among all a,, of pairs (a,,, b,,) stored
by the children of v is infinity. Therefore, by Algorithm 1, v stores the
pair (a,, b,) = (00, bymin) = (00,5(T")), where by, = min {b,, }.

1<i<t/

In any case, b, = ¢(T"), and by Theorem the result follows. ]
Corollary 4.12. The positive integer k for which a tree different from a path

18 k-metric dimensional can be computed in linear time with respect to the

order of the tree.
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4.3.2 On the k-metric bases and the k-metric dimen-

sion of trees different from paths

In this subsection we propose an algorithm to compute the k-metric dimen-
sion of a tree and another to determine a k-metric basis. By Proposition
3.11] we know that for any integer £ > 3 and any path graph P, of order
n > k+ 1, dimy(P,) = k+ 1. We observe that, for instance, if P, is a path
of order n and the two leaves of P, belong to a set S C V(P,) of cardinality
k + 1, then S is a k-metric basis of P,. Thus, we center our attention to
those trees different from paths.

We recall a function for any exterior major vertex w € M(T), shown
in Section that allows us to compute the k-metric dimension of any
k < ¢(T). Notice that this function uses the concepts already defined at the
beginning of Subsection [2.2.1, Given an integer k < (7)),

(ter(w) — 1) (k — l(w)) + l(w), if [(w) < LgJ,
]k(lU) =
(ter(w) — 1) [5] + [£], otherwise.

Theorem [3.20]is the base of the two algorithms presented in this subsec-
tion. Now we consider the problem of computing the k-metric dimension of

a tree T of order n, different from a path, for any & < ¢(7).

E-METRIC DIMENSION TREE PROBLEM
INSTANCE: A tree T of order n
PROBLEM: Compute the k-metric dimension of T, for any k < ¢(7T')

Algorithm 2:
Input: A tree T different from a path rooted in a major vertex v.
Output: The k-metric dimension of T for any k < ¢(7).

1. For any vertex u € V(T) visited by post-order traversal as shown in

Figure [4.4] assign a pair (ay, b,) in the following way:

(a) If u does not have any child (u is a leaf), then a,, = 1 and b, = occ.

(b) If u has only one child (u has degree 2), then a, = a, + 1 and
b, = by, where the pair (a,, b,) was assigned to the child vertex

of u. Note that a,, can be oo, in which case a, = oco.
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(c) If u has at least two children (u is a major vertex), then a, =
0o. Let a;;, be the minimum value among all a,,’s in the pairs
(@y,;,by,) assigned to the children of wu, let ¢, be the number of
labels a,,, different from oo, and let s, be the sum of all b,, # oo.
If ¢, <1, then b, = s,. If ¢, > 2 and apin < |5, then b, =

Amin + (Cu — 1)(1 = @min) + Su. If ¢y > 2 and @y > | 5], then
r

by, = EJ + (¢, — 1) [2-‘ + Sy.

2. The k-metric dimension of T is b,.

Figure shows an example of a run of Algorithm 2 for computing the
3-metric dimension of the tree shown in Figure 4.4}

(1,00)

Figure 4.6: Algorithm 2 yields that 3-metric dimension of this tree is 11.

Remark 4.13. Let T be a tree different from a path. Algorithm 2 computes
the k-metric dimension of T for any k < ¢(T).

Proof. Let v be the major vertex taken as a root of the tree T different
from a path and let (a,b) be the pair stored in v once Algorithm 2 has been
executed. We shall show that b, = Z I:(v'). Since v is a major vertex,

v EM(T)
it has at least three children. Let ¢ > 3 be the number of children of v and
let Si,...,S; be the subtrees whose roots are the children wvy,...,v; of v,

respectively. We differentiate two cases:
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1. There exist at least two subtrees that are paths. In this case v € M(T).
Let Sy, ..., Sy be the subtrees that are paths, where 2 < ¢’ < t¢. Hence,
once executed Algorithm 2, each root v; of S;, 1 < i < t/, stores the pair
(ay,;,00), where a,, is the number of vertices of S/. Note that in this
case ter(v) = ¢, =t' > 2 and {(v) = apin. If @i < | %], then I (v) =
Wmin+ (co — 1) (k= amin). Otherwise, Iy (v) = ||+ (c, —1)[5]. If ¢ = ¢,
then v is the only exterior major vertex and s, = 0. As a consequence,
Algorithm 2 has assigned to v the pair (a,,b,) = (00, Ix(v)). Assume
that ' < t. Thus, there exists at least one subtree that is not path. Let
Syi1,...,5 be the subtrees that are not paths. We consider the root
v; of S;, t' +1 <4 <t If v; is a major vertex, then we take the vertex
v; = v;. Otherwise, v} is the first descendant of v; that is a major vertex.

In this case, Algorithm 2 recursively assigns to v; the pair (0o, by),

where b, = Z It (v"). In both cases, b,, = by, where (00, by, )
V' EM(T)NV(S;)
is the pair assigned to v; by Algorithm 2. Hence, s, = Z I (V).
v EM(T)—{v}

Therefore, the execution of Algorithm 2 assigns to v the pair (a,,b,) =

o, L)+ Y L) | =00 Y L)
V' EM(T)—{v} v'EM(T)
2. There exists at most one subtree that is a path. In this case v ¢ M(T)
and ¢, < 1. Let Sy,...,S] be the subtrees that are not paths, where
1 <t < t. For each root v; of S;, 1 < i <, if v; is a major vertex,
then we take the vertex v, = v;. Otherwise, v is the first descendant
of v; that is a major vertex. Hence, Algorithm 2 recursively assigns
to v; the pair (00, by), where b, = Z I(v"). In both cases,

o' EM(T)NV(S;)
by, = by, where (00,b,,) is the pair stored in v; by an execution of

Algorithm 2. Hence, s, = Z I(v"). Note in this case, at most one
v e M(T)
of all the a,,’s belonging to the pairs (a,,,b,,) assigned to the children

of v is different from infinity. As a consequence, ¢, < 1. Therefore,

Algorithm 2 assigns to v the pair (a,,b,) = | oo, Z I (v")
v eM(T)

In any case, b, = Z I(v"), and by Theorem |3.20| the result follows. [
v EM(T)
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Corollary 4.14. The k-metric dimension of any tree T different from a path,

for any k < ¢(T), can be computed in linear time with respect to the order of

T.

Now we consider the problem of finding a k-metric basis of a tree different

from a path for any k < ¢(7"). To this end, we present an algorithm quite

similar to Algorithm 2, which is based on the k-metric basis of T" proposed
in the proof of Theorem [3.20]

k-METRIC BASIS TREE PROBLEM
INSTANCE: A tree T of order n different from a path
PROBLEM: Find a k-metric basis of T', for any k < ¢(7T')

Algorithm 3:
Input: A tree T different from a path rooted in a major vertex v.
Output: A k-metric basis of T for any k < ¢(7).

1. For any vertex u € V(T visited by post-order traversal as shown in

Figure [1.4] assign a pair (ay, b,) in the following way:

(a)
(b)

()

If u does not have any child (u is a leaf), then a = {u} and b = ().

If u has only one child (u has degree 2), then b, = b,/, where the
pair (a,,b,) was assigned to the child vertex of u. If a, = 0,
then a, = 0. If a,y # 0, then a, = a, U {u}.

If u has at least two children (u is a major vertex), then a, = 0.
Let a,i, be a set of minimum cardinality among all a,, belonging
to the pairs (ay,,by,) assigned to the children of u, let ¢, be the
number of a,, which are different from an empty set, and let d,
be the union of all b,,. If ¢, < 1, then b, = d,. If ¢, > 2 and
|@min| < L%J, then we remove elements of each a,, # @, until
its cardinality is k — |amin|. If ¢, > 2 and |amin| > Lg], then we
remove elements of each a,, # @, until its cardinality is [g],

and we remove elements of a,,;, until its cardinality is LgJ Then

by = Qi U U Ay, | Ud,.

A, Famin

2. A k-metric basis of T is stored in b,.
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Remark 4.15. Let T be a tree different from a path. Algorithm 3 finds a
k-metric basis of T' for any k < ¢(T).

Proof. Given an exterior major vertex w € M(T') such that uy, us, ..., u, are
its terminal vertices and [(w) = (Ui, w), we define the vertex set By(w)
in the following way. If [(v) < [%], then |By(w) N (V(P(u;,w)) — {w})| =
k —l(v), for any j # min, and V(P (umin,w)) — {w} C Bg(w). Other-
wise, |By(w) N (V(P(u;,w)) — {w})| = [£], for any j # min, and |By,(w) N
(V(P(tmin, w)) — {w})| = |4]. It was shown in [34], that Uwerer) Bi(w) is
a k-metric basis of T'. Let v be the major vertex taken as a root of the tree T’
different from a path, and let (a,, b,) be the pair assigned to v once executed
Algorithm 3. We show that the vertex set b, = (J,crqz) Be(w). Since v is
a major vertex, it has at least three children. Let ¢ > 3 be the number of
children of v and let Si,...,S; be the subtrees whose roots are the children

vy, ...,0; of v, respectively. We differentiate two cases:

1. There exist at least two subtrees that are paths. In this case v € M(T).
Let Si,...,Sy be the subtrees that are paths, where 2 < ¢’ <t. Hence,
Algorithm 3 assigns to each root v; of S;, 1 < i <t/ the pair (a,,, 0),
where a,, = V(S;). Note that in that situation ter(v) = ¢, = t' > 2
and [(v) = |amin|- If t' = t, then v is the only exterior major vertex
and d, = (. As a consequence, Algorithm 3 assigns to v the pair
(0, Bi(v)). Assume now that ¢ < ¢t. Thus, there exists at least one
subtree that is not a path. Let Sy.i,...,5; be the subtrees that are
not paths. For each root v; of S;, ¢/ +1 < i <, if v; is a major vertex,
then we take the vertex v} = v;. Otherwise, v} is the first descendant
of v; that is a major vertex. Hence, Algorithm 3 recursively stores in
v the pair (0o, b,), where by = U Bi(v"). In both cases,

v eEM(T)NV(S;)
by, = by, where (00, b,,) is the pair stored in v; by Algorithm 3. Hence,

d, = U By (v"). Therefore, Algorithm 3 assigns to v the pair
v eM(T)—{v}
(anb)=|0.Bi)U | B)] =10, U B
v eM(T)—{v} v e M(T)

2. There exists at most one subtree that is a path. In this case v ¢ M(T)
and ¢, < 1. Let Sy,...,S] be the subtrees that are not paths, where

1 <t/ <t. For each root v; of S;, 1 < i < ¢, if v; is a major vertex, then
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we take the vertex v, = v;. Otherwise, v} is the first descendant of v;
that is a major vertex. Hence, Algorithm 3 has recursively assigned to
v; the pair (00, b,), where b, = U Bi(v'). Again, b,, = by,

v EM(T)NV (S;)
where (00,b,,) is the pair stored in v; by Algorithm 3. Thus, d, =

U Bi(v"). Note in such case, that at most one of all possible a,,’s

v'eM(T)
belonging to the pairs (a,,, by,) assigned to the children of v, is different

from infinity. As a consequence, ¢, < 1. Therefore, Algorithm 3 assigns

to v the pair (a,,b,) = | 0, U Br(v")
v eM(T)

In any case, b, = U By (v"), and the result follows. O
v eM(T)
Corollary 4.16. A k-metric basis of any tree different from a path, for any

k <<(T), can be computed in linear time with respect to the order of T

We have proved that for any k£ > 1 the problem of determining the k-
metric dimension of any tree can be solved in linear time, as it was done before
for the case k = 1. It is known that the 1-metric dimension of the outerplanar
graphs can be computed in polynomial time [27], and we conjecture that for
k > 2 the problem of determining the k-metric dimension of any outerplanar

graph can also be solved in polynomial time.
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Conclusions

In this thesis we have studied the (k,t)-metric dimension of graphs. The
central results of the thesis are focused on the k-metric dimension and the
k-adjacency dimension as particular cases of the (k,t)-metric dimension of a
graph G.

We were interested in finding the largest integer £ for which there exist
(k,t)-metric bases of a graph. To this end, we have introduced the concept of
(k,t)-metric dimensional graph. We have analytically determined or bounded
the value of k for some specific classes of graphs. Moreover, we have devised
a cubic time algorithm for computing this value in the general case.

We have obtained closed formulae and tight bounds for the (k,t)-metric
dimension of some graphs. For instance, we have described those graphs
that, for some values of k, have (k,t)-metric dimension equal to k. We have
characterized the paths where the (k,t)-metric dimension equals k£ + 1. We
have also shown how to construct large families of graphs having a (k,t)-
metric basis of a graph as a common (k,t)-metric generator. On the other
hand, we have bounded the value of the k-metric dimension in terms of
distance-related parameters, pointing out some cases where these bounds are
reached. In particular, we have given a formula for computing the k-metric
dimension of any tree.

We have found a strong relationship between the k-metric dimension of
some product graphs and the k-adjacency dimension of one of its factors.
Therefore, we have also studied this parameter, in more detail. In particular,
we have proved that the k-metric dimension of corona product graphs equals
the sum of the k-adjacency dimensions of the second factors. For lexico-
graphic product graphs, we have characterized the cases where this relation
holds, deepening in the particular case of join graphs.

Finally, we have analysed the computability of the studied parameters.

We have shown that the problem of finding the value k£ such that a graph
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is (k,t)-metric dimensional can be solved in cubic time with respect to the
order of the graph. Moreover, we have proposed linear-time algorithms for
computing the k-metric dimension and a k-metric basis of any tree. However,
we have proved that computing the k-metric dimension of arbitrary graphs

is NP-hard, so the problem is difficult in the general case.
Contributions of the thesis

The results presented in this work led to elaborate six papers, four of
which has been published or accepted. Three of these papers have been ac-
cepted in ISI-JCR journals and the other was published in a peer-reviewed
journal that, in the year 2013 ranked 53/251 (first quartile) in the category
“Mathematics, Applied” of ISI-JCR, having Impact Factor 1.232. Further-
more, the two other paper has been submitted to ISI-JCR journals. Other

results have been presented in international conferences or workshops.

Publications in ISI-JCR journals

e A. Estrada-Moreno, Y. Ramirez-Cruz, J.A. Rodriguez-Velazquez. On
the adjacency dimension of graphs. Applicable Analysis and Discrete
Mathematics, in press.
https://doi.org/10.2298/AADM151109022E.

e A. Estrada-Moreno, I. G. Yero, J.A. Rodriguez-Velazquez. The k-
metric dimension of corona product graphs. Bulletin of the Malaysian
Mathematical Sciences Society, in press.
http://dx.doi.org/10.1007/s40840-015-0282-2.

e A. Estrada-Moreno, I. G. Yero, J.A. Rodriguez-Velazquez. The k-
metric dimension of the lexicographic product of graphs. Discrete Ma-
thematics, in press.
http://dx.doi.org/10.1016/j.disc.2015.12.024

Publications in a peer-reviewed journal (ISI-JCR, Q1, until 2014)

e A. Estrada-Moreno, J. A. Rodriguez-Velazquez, 1. G. Yero. The k-
metric dimension of a graph. Applied Mathematics & Information
Sciences, 9(6), 28292840, 2015. http://naturalspublishing.com/
files/published/05a21265hsd7y2. pdf.


https://doi.org/10.2298/AADM151109022E
http://dx.doi.org/10.1007/s40840-015-0282-2
http://dx.doi.org/10.1016/j.disc.2015.12.024
http://naturalspublishing.com/files/published/05a21265hsd7y2.pdf
http://naturalspublishing.com/files/published/05a21265hsd7y2.pdf
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Papers submitted to ISI-JCR journals

e Ismael G. Yero, Alejandro Estrada-Moreno, Juan A. Rodriguez-Velazquez.
On the complexity of computing the k-metric dimension of graphs.
Submitted to Discrete Applied Mathematics (2015).

e Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodriguez-Velazquez.
Relationships between the 2-metric dimension and the 2-adjacency di-
mension in the lexicographic product of graphs. Submitted to Graphs
and Combinatorics (2015).

Other Publications

e Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodriguez-Velazquez.
k-metric resolvability in graphs. Electronic Notes in Discrete Mathema-
tics, 46, 121-128, 2014. http://dx.doi.org/10.1016/j.endm.2014.
08.017.

Participations in specialized conferences

e Ismael G. Yero, Alejandro Estrada-Moreno, Juan A. Rodriguez-Velazquez,
On the complexity of computing the k-metric dimension of graphs,
Algorithmic Graph Theory on the Adriatic Coast, Koper, Eslovenia
(2015).

e Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodriguez-Velazquez,
k-metric resolvability in graphs, Jornadas de Matemética Discreta y
Algoritmica, Spain (2014).

e [smael G. Yero, Alejandro Estrada-Moreno, Juan A. Rodriguez-Velazquez,

The k-metric dimension of graphs, Seventh Cracow Conference on Graph
Theory, Rytro, Poland (2014).

Workshops

1. Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodriguez-Velazquez,
Yunior Ramirez-Cruz. The k-adjacency dimension of graphs in 2nd
URV Doctoral Workshop in Computer Science and Mathematics, pp
47-50, 2015, Llibres URV, ISBN-13: 978-84-8424-399-1.


http://dx.doi.org/10.1016/j.endm.2014.08.017
http://dx.doi.org/10.1016/j.endm.2014.08.017
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2. Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodriguez-Velazquez.
The k-metric dimension of a graph. 1st URV Doctoral Workshop in
Computer Science and Mathematics, pp 37-40, 2014, Llibres URV,
ISBN-13: 978-84-8424-339-7.

Future works

e The (k,t)-metric dimension of a graph.

The central results of the thesis are focused on the k-metric dimension
and the k-adjacency dimension as particular cases of the (k,t)-metric
dimension of a graph G for t > D(G) and t = 2, respectively. However,
it would be interesting to particularly study the (k, ¢)-metric dimension
of a graph for others values of ¢. We have also shown a motivation for
the (k,t)-metric dimension of a graph related to robot’s navigation in
network. A natural question would be if there is another interesting

application of the (k,t)-metric dimension of a graph.

e The (k,t)-metric dimension of product graphs.

We have proved that the (k,¢)-metric dimension of lexicographic pro-
duct graphs is the same for any ¢ > 2. However, this does not happen
in the case of corona product graphs. Therefore, it would be interest-
ing to study the (k,t)-metric dimension of corona product graphs for
different values of . Moreover, is it possible to extend the study of the

(k,t)-metric dimension to other graph product?

e Computability of the (k,¢)-metric dimension.

We have proved that the problem of determining the k-metric dimen-
sion of a graph is NP-Hard. A natural question would be if it is possible
to extend this previous study to the problem of computing the (k,t)-
metric dimension of any graph G for values of ¢ less than the diameter
of G.

e Computability of the (k, t)-metric dimension for the case of outerplanar

graphs.

Given that the 1-metric dimension of the outerplanar graphs can be
computed in polynomial time [27], one could conjecture that for k > 2
the analogous problem can also be solved in polynomial time. More-

over, a natural question would be if it is possible to extend this previous



UNIVERSITAT ROVIRA I VIRGILI
On the (k, t)-metric dimension of a graph
Alejandro Estrada Moreno

Conclusions 149

study to the problem of computing the (k,t)-metric dimension of any

graph G for values of ¢ less than the diameter of G.
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Symbol Index

The symbols are arranged in the order of the first appearance in the work.

Page numbers refer to definitions.

d metric,

(X,d) metric space,
G simple graph,
da(u,v) standard distance between two vertices v and v in G,

dg+(u,v) generalized distance between two vertices u and v in G,
dimy+(G)  (k,t)-metric dimension of a graph G,

adimg(G)  k-adjacency dimension of a graph G,

dimg (G) k-metric dimension of a graph G,

V(G) vertex set of G, |§|

E(G) edge set of G,@

n order of a graph, |§|

G=H graphs G and H are isomorphic,@

U~V vertex u is adjacent to v,|§|

Ng(v) open neighbourhood of a vertex v in G, |§|

N¢[v] closed neighbourhood of a vertex v in G, |§|
dg(v) degree of a vertex v of G, |§|

Ng(v) open neighbourhood of a vertex v in the set S, |§|
Ng[v] closed neighbourhood of a vertex v in the set S, |§|
Q) minimum degree of the graph G, |§|

A(G) maximum degree of the graph G, |§|

g(G) girth of the graph G, |§|

AVB symmetric difference of two sets A and B,|§|

K, complete graph of order n, |§|
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Cn cycle of order n, |§|

P, path of order n, |§|

N, empty graph of order n, |§|

K complete bipartite graph of order s + t, |§|

Ky, star of order n + 1, |§|

T tree, |§|

D(G) diameter of the graph G,

G complement of the graph G,

(X) subgraph induced by the set X,

w(G) clique number of G,

TT(x) true twin equivalence class to which vertex x belongs,

FT(x) false twin equivalence class to which vertex x belongs,

S(G) the union of the singletons equivalence classes of a graph G,

FT(G) the union of the false equivalence classes of a graph G,

TT (x) the union of the true equivalence classes of a graph G,

GUH union of two graphs G and H,

GoH lexicographic product of two graphs G and H,

H family of n nontrivial graphs Hy, Has,...,Hp,

GoH lexicographic product of a graph G of order n and a family H
composed by n graphs,

G+ H join graph of two graphs G and H,

Ky, .. px complete k-partite graph of order p; + ... + pg,

GOH corona product of two graphs G and H,

GOH corona product of a graph G of order n and a family H
composed by n graphs,

GUH Cartesian product of two graphs G and H,

Qn hypercube of order 27,

GXRH strong product of two graphs G and H,

Dg+(x,y)  the vertex set that distinguish two different vertices
z,y € V(G) with regard to dg,

Dat(:v, y)  the nontrivial vertex set that distinguish two different vertices
z,y € V(G) with regard to dg,

D(G,t) the vertex set that distinguish two different vertices
z,y € V(G) of minimum cardinality in G with regard to dg ,
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Da(z,y) the vertex set that distinguish two different vertices
z,y € V(G) with regard to dg,

D¢ (z,y) the nontrivial vertex set that distinguish two different vertices
x,y € V(G) with regard to dg,

D(G) the vertex set that distinguish two different vertices
x,y € V(G) of minimum cardinality in G with regard to dg,

ter(v) terminal degree of a major vertex v,

M(G) set, of exterior major vertices of G having terminal degree greater
than one,

P(u,w) the shortest path between terminal vertex u and its exterior major
vertex w,

l(u, w) the length of P(u,w),

P(u,w,v)  the shortest path between two terminal vertices u, v of the exterior
major vertex w,

s(u,v) the length of P(u,w,v),

¢(w) the minimum ¢(u, v) between all terminal vertices u, v of the
exterior major vertex w,

l(w) the minimum [(u, w) between all terminal vertex u of the exterior
major vertex w,

<(G) the minimum ¢(w) between all exterior major vertex w € M,

Ca(z,y) the vertex set that distinguish two different vertices
z,y € V(G) with regard to dg 2,

Ci(x,y) the nontrivial vertex set that distinguish two different vertices
z,y € V(G) with regard to dg 2,

C(G) the vertex set that distinguish two different vertices
z,y € V(G) of minimum cardinality in G with regard to dg 2,

Fi, fan graph of order n + 1,

Win wheel graph order n + 1,

T(u,H) parameter of G o H, where u € V(G),

T(Go#H)  the minimum 7 (u,H) for every u € V(G),

C(H) the minimum C(H) for every H € H,

Dy +(G) the set obtained as the union of the sets Dg +(x, y)
such that [Dg.(z,y)| = k,

B,(B) closed ball of radius r on the vertex set B,

family of graphs having a common (k, t)-metric generator B
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for G,

Number of vertices associated to exterior major vertex w

that belongs to an r-metric basis of a graph,

the sum of terminal degree of all exterior major vertex with

terminal degree greater than one,
the set Dy, (G) for t > D(G),
the family of complement graphs of each H; € H,

the number of false equivalence classes of a graph G, |103

the number of true equivalence classes of a graph G, |103

the number of non-singleton twin equivalence classes of
a graph G, (103

the family of graphs formed by the graphs Ky + H; for every
H; € H,|122
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Index
2 eccentricity of a vertex,
. ty graph, [9)
2-antipodal graph, emp
end vertex, [9] [25]
exterior major vertex, 26} 28] 52} 55}
B 73, 35, 159
branch of a tree, F
false twin vertices, [85], 07
C :
false twins, [I0] 49} [85] [07]
Cartesian product, false twin equivalence class, [45]
closed neighbourhood, [9] B3] [O7]
complement of a graph, [10} [59} [75] false twins free graph, 7]
B8, B9, ©2, 93] PG, 07} [I1§ fan graph, [34 [64] [65, [[02, [[23]
complete bipartite graph, [J]
complete graph, 9] G
corona product, [14] b
graph,
1 h, Ol 23, 24, [711, [72, [76, [§2 ,
el srapw B B raph famiy. [3 13 B3 B3 10 £
cut vertex, 2] _
generalized tree,
D girth, [0} 27 B2, A1} 64}, 96} 97}, [122]
degree, [] H
diameter, hypercibe,
o7, [122]
distance dg, J
distance dg, )
distinguish, join graph, [I4] [33] 48] [62]
dominating set, [9, [04], [97]
K
E k-adjacency basis,
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Index

174

k-adjacency dimension,
k-adjacency dimensional,
k-adjacency generator,
k-metric basis,

k-metric dimension,
k-metric dimensional,
k-metric generator,
(k,t)-metric basis,

(k, t)-metric dimension, [4]
(k,t)-metric dimensional,
(k. 1)-

,t)-metric generator,

L

leaf, T, 21 B2 T3
lexicographic product, [12] B3|[35] (9]
85, [127]

M

major vertex, [26]
maximum degree, [9]
metric, [I]

metric basis,
metric dimension,
metric generator, [2]
metric space, [1]
minimum degree, [9]
M-coordinates,
M -representation,

N
neighbours, [

O
open neighbourhood, [9]

P

path graph, [9 [23] [71], [75, [84]
93} [04} [96} [120} [123]

S

star graph, [9]
strong product graph,
subgraph induced by a set,

support vertex, [0} 21} B2} A1} [73]
symmetric difference, [}

T

terminal degree, [26]

terminal vertex, [26] 28] 32} 52}, 55} [73],
35, [L39

tree, [3, 21} 28} 55, [73) [75, (102, [I08}
[122] T35} 136}, 139

true twin vertices, [I0]

true twins, [10]

true twin equivalence class,
true twins free graph,

twin vertices, [10]

twins, [10]

twin equivalence class,
twins free graph,

U
union of two graph,

W
wheel graph, 57, [ [68

w

w(G)-clique,



	Introduction
	Basic concepts and tools
	Basic concepts and notations
	Graph operations
	Lexicographic product
	Corona product graphs
	Cartesian product graphs
	Strong product graphs


	On (k,t)-dimensional graphs
	(k,t)-metric dimensional graphs
	On some families of k-metric dimensional graphs
	Bounding the value k for k-metric dimensional graphs
	On k-metric dimensional trees

	On some families of k-adjacency dimensional graph
	k-metric dimensional product graphs
	Lexicographic product graphs
	Corona product graphs


	On the (k,t)-metric dimension of graphs
	On the (k,t)-metric dimension of graphs
	Large families of graphs having a common (k,t)-metric generator

	On the k-metric dimension of graphs
	On the k-metric dimension of trees

	On the k-adjacency dimension of graphs
	On the k-metric dimension of  product graphs
	Lexicographic product graphs
	Corona product graphs


	Computability of the (k,t)-dimensional problem and the k-metric dimension problem
	The (k,t)-metric dimensional graph problem
	The particular case of product graphs

	The k-metric dimension problem
	The particular case of trees
	On k-metric dimensional trees different from  paths
	On the k-metric bases and the k-metric dimension of trees different from paths


	Conclusions
	Bibliography
	Symbol Index
	Index



