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Abstract

We study approximations of regular languages by members of a given variety L of
regular languages. These are upper or lower approximations in the sense of Pawlak’s
rough set theory with respect to congruences belonging to the variety of congruences
corresponding to L. In particular, we consider the closest upper and lower approx-
imations in L. In so-called principal varieties these always exist, and we present
algorithms for finding them, but for other varieties the situation is more complex.
For non-principal + -varieties we study conditions for the existence of the closest up-
per and lower approximations. In particular, we consider varieties that are the union
of a directed family of principal + -varieties, and pseudo-principal + -varieties, that
are defined in this work.

Next, we consider the accuracy of the considered approximations, measured by the
relative density of the object language in the approximation language and the asymp-
totic behavior of this quotient. In particular, we apply our measures of accuracy to k-
definite, reverse k-definite, i, j-definite, k-testable and commutative approximations.
Finally, we examine rough approximations under some infinite index indiscernibility
relations as they were presented by Pǎun, Polkowski and Skowron (1997), looking at
how they fit in our framework. We study their general features, comparing them with
some of the families already studied, and in some cases introducing modifications in
their definitions to make them congruences.

Although we consider mostly Eilenberg’s + -varieties, the general ideas apply also
to other types of varieties of languages. Our work may also be viewed as an approach
to the characterizable inference problem in which a language of a certain kind is to
be inferred from a given sample.

Thesis Supervisor: Magnus Steinby
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Chapter 1

Introduction

In this work we consider the problem of approximating a given regular language by

languages from a given family of regular languages. Here the target families will be

+ -varieties as defined by Eilenberg [12], i.e., varieties of regular languages that do

not contain the empty word, but the general ideas apply equally well to other kinds of

varieties of languages such as ∗ -varieties [12] or varieties of regular tree languages (cf.

[45, 46], for example). This kind of approximating languages may also be regarded as

an approach to the inference of regular languages. The inference of a language from

a sample is an important problem and many inference methods for various types of

languages have been proposed (cf. [2, 15, 30], for example). Of special interest are the

so-called characterizable inference methods that always produce a language belonging

to a given family of languages. To infer a language in some + -variety L from a given

sample S, we may either directly approximate S in L, or then first obtain a regular

extension R of S by some heuristic method, for example, and then approximate this

R with a member of the variety L.

As shown by Thérien [48, 49], for each + -variety L there is a corresponding

variety of congruences Lc on the free semigroups generated by finite alphabets. A

language belongs to L iff it is saturated by a congruence belonging to Lc, and all

the approximations that we consider are based on some congruence in Lc. If R is a

language over an alphabet X, then for any congruence θ on X+, we define the lower

θ-approximation Rθ and the upper θ-approximation Rθ of R as in Pawlak’s rough set
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theory [34, 35] (cf. also [31] or [40]). Of special interest are the closest approximations,

the greatest lower L-approximation RL and the least upper L-approximation RL, and

a part of our work is centered around them.

Some basic notions and our general notation is introduced in Chapter 2. In Chap-

ter 3 we study and describe approximations of regular languages by members of several

types of varieties L of regular languages. In 3.1 we start considering the upper and

lower rough approximations Rθ and Rθ of a language R over an alphabet X with

respect to a given congruence θ on the free semigroup X+. These have naturally all

the general properties of rough approximations. If θ is of finite index, they are always

regular languages, and we present algorithms for finding them when R is a regular

language given by a finite recognizer (and θ is effectively given).

In 3.2 we first recall Eilenberg’s [12] + -varieties and Thérien’s [49] corresponding

varieties of congruences that we call simply + -filters. Then we define approximations

in + -varieties. For any upper (lower) approximation of a given language R by a

language L belonging to a + -variety L, there is a congruence θ in the + -filter Lc

that corresponds to L such that R ⊆ Rθ ⊆ L (L ⊆ Rθ ⊆ R). In particular, if the

least upper L-approximation RL (greatest lower L-approximation RL) of R exists,

then RL = Rθ (RL = Rθ) for some congruence θ in Lc.

In 3.3 we consider the case of principal varieties; a + -variety L is principal if the

congruences in Lc corresponding to each alphabet form a principal filter. Since a

smaller congruence always yields approximations that are at least as close to a given

language as those given by a larger congruence, it follows that in a principal + -variety

L, the closest approximations RL and RL exist for every language R. We shall also

present a few concrete examples of constructions of recognizers for approximations of

a given language in a principal + -variety by using the algorithms of 3.1. For each

such + -variety, a suitable practical formulation of the algorithm used is given.

For non-principal + -varieties the situation is far more complex. One of our propo-

sitions in 3.4 implies that in many well-known non-principal + -varieties L, the closest

approximations RL or RL exist only for languages R that themselves belong to L. On

the other hand, there are non-principal + -varieties such that a language may have
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one of the closest approximations while the other one does not exist.

In 3.5 we consider an important special case of non-principal + -varieties, the + -

varieties that in Eilenberg’s Variety Theorem [12] correspond to equationally defined

varieties of finite semigroups. We show that these also can be viewed as natural

generalizations of principal varieties. The main result is a theorem that tells when a

given language has a least upper approximation in an equational + -variety. In 3.6

we present some concluding remarks of the chapter.

In Chapter 4 we study the accuracy of the considered approximations. In Section

4.1 we calculate the densities of the languages in the target +−varieties. In Section

4.2 we present two definitions of the accuracy of the upper rough approximation of a

language. The first one is simply the quotient of the cardinality of the set of words

up to a certain length in the language and the cardinality of the set of words up

to the same length in the approximation language. The second is the limit of the

first one when the length approaches infinity. Some basic properties and particular

features of both definitions of the accuracy of approximations are shown. In Section

4.3 we look at the accuracy of approximations of languages over a one-letter alphabet

and in Section 4.4 we establish the attainable accuracy values for approximations

of languages of a given density over any alphabet, in the already mentioned target

families. Finally, in Section 4.5, we make some concluding remarks.

Although the ideas of rough set theory have been applied in numerous areas,

it seems that not much has been done along these lines in formal language theory.

As a notable exception, we can mention the work by Pǎun, Polkowski and Skowron

[32, 33]. These papers focus on approximating languages with respect some given

similarity relations between words and the convergence of successive refinements of

such approximations. In Chapter 5, we look into [33] in more detail. The relations

defined by the authors are indiscernibility relations that are in some cases congruences,

in some cases only tolerance relations, and they all have infinite index, because the

related words are required to have the same length. We study some of them in

Section 5.1, showing their relation to the families and rough approximations already

considered. In Section 5.2, we present some modifications to make them fit better in
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the theoretical context of our work. Finally, in Section 5.3, we make some comments

about the accuracy of the rough approximations shown in the chapter, comparing

them with the accuracy of the rough approximations in the families they are closely

related.
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Chapter 2

Preliminaries

Sometimes we write A := B to indicate that A is defined to be equal to B. The basic

set-theoretic symbols ∩, ∪, ⊆, ⊂, . . . have their usual meanings. The complement

U \ A of a subset A of a given universe U is denoted by A′, and the power set of A

by ℘(A). The cardinality of a set A is denoted |A|.

Let θ ⊆ A × B be a relation from a set A to a set B. The fact that (a, b) ∈ θ

for some a ∈ A and b ∈ B, is expressed also by writing a θ b. The converse of θ is

the relation θ−1 := {(b, a) | (a, b) ∈ θ}. The product of θ and any ρ ⊆ B × C is the

relation θ ◦ ρ := {(a, c) | (∃b ∈ A) a θ b, b ρ c}. The diagonal relation {(a, a) | a ∈ A}

and the universal relation A×A are denoted by ∆A and ∇A, respectively. A relation

θ ⊆ A × A is an equivalence on A if ∆A ⊆ θ, θ−1 ⊆ θ and θ ◦ θ ⊆ θ. Let Eq(A)

be the set of all equivalences on A. For any θ ∈ Eq(A), the quotient set A/θ is the

set {[a]θ | a ∈ A}, where [a]θ := {b ∈ A | a θ b} is the θ-class of a ∈ A. The natural

mapping A → A/θ, a �→ [a]θ is denoted by νθ. If A/θ is finite, θ is said to be of finite

index.

An equivalence θ ∈ Eq(A) saturates a subset H ⊆ A if H is the union of some

θ-classes. Let Sat(θ) denote the set of all subsets of A saturated by θ. The following

facts are easy to prove.

2.0.1 Lemma For any set A and any equivalences θ, ρ ∈ Eq(A),

(a) if θ ⊆ ρ, then Sat(θ) ⊇ Sat(ρ), and
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(b) Sat(θ ∨ ρ) = Sat(θ) ∩ Sat(ρ). �

For any mapping ϕ : A → B, we often write aϕ for the image ϕ(a) of an element

a ∈ A. Furthermore, for any H ⊆ A and any K ⊆ B, we set Hϕ := {aϕ | a ∈ H}

and Kϕ−1 := {a ∈ A | aϕ ∈ K}. If θ ∈ Eq(B) is an equivalence on B, then ϕ◦θ◦ϕ−1

is the equivalence {(a1, a2) ∈ A× A | a1ϕ θ a2ϕ} on A.

All the lattice theory needed here can be found in [7] or [10], for example. Partial

orders are called simply orders. Hence an ordered set (A,≤) consists of a non-empty

set A and a relation ≤ on A that is reflexive, antisymmetric and transitive. A lattice

is an ordered set (A,≤) such that any two elements a, b ∈ A have a least upper

bound, the join a∨ b, and a greatest lower bound, the meet a∧ b. A complete lattice

is an ordered set (A,≤) such that the least upper bound supH and the greatest

lower bound infH exist for every H ⊆ A. Recall that a filter of a lattice (A,≤) is

a non-empty subset F of A such that (1) a ≤ b and a ∈ F imply b ∈ F , and (2)

a∧ b ∈ F whenever a, b ∈ F . The filter generated by a non-empty subset H ⊆ A, i.e.,

the least filter [H) containing H, can easily be shown to be the set {a ∈ A | (∃n >

0)(∃b1, . . . bn ∈ H) b1 ∧ . . . ∧ bn ≤ a}. The principal filter [a) := {x ∈ A | a ≤ x}

generated by any given element a ∈ A is the least filter that includes a as an element.

Let us now review some basic notions from the theory of finite automata and

regular languages (cf. [1, 11, 12, 23, 22, 51], for example).

An alphabet is a non-empty set of symbols called letters. If X is an alphabet, then

X∗ denotes the set of all (finite) words over X, ε is the empty word, and X+ is the

set of non-empty words over X. Subsets of X∗ are called languages, and subsets of

X+ are ε-free languages. As usual, X∗ and X+ stand, respectively, also for the free

monoid and the free semigroup generated by X with concatenation as the operation.

Unless stated otherwise, an alphabet is always assumed to be finite.

The length of a word w ∈ X∗ is denoted by lg(w), and |w|x is the number of

appearances of a letter x ∈ X in the word w. For any k ≥ 0, let Xk := {w ∈

X∗ | lg(w) = k}, X≥k := {w ∈ X∗ | lg(w) ≥ k}, X≤k := {w ∈ X∗ | lg(w) ≤ k},

X>k := {w ∈ X∗ | lg(w) > k}, and X<k := {w ∈ X∗ | lg(w) < k}. For any integer
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k ≥ 0 and any word w ∈ X∗, we define the k-prefix prefk(w) and the k-suffix suffk(w)

of w as follows:

(1) if lg(w) ≤ k, then prefk(w) = suffk(w) = w, and

(2) if lg(w) > k, then prefk(w) is the word u of length k such that w = uv for some

v ∈ X+, and suffk(w) is the word v of length k such that w = uv for some

u ∈ X+.

Moreover, the set of subwords of w of length k is defined to be

swk(w) := {v ∈ Xk | (∃u, u′ ∈ X∗)w = uvu′}.

Any alphabet X is also regarded as a set of unary operation symbols, and an

X-algebra is then a system A = (A,X) in which A is a nonempty set and each letter

x ∈ X is interpreted as a unary operation xA : A → A. The mappings wA : A → A

induced by words w ∈ X∗ are obtained in the natural way: εA is the identity map

1A on A, and a(vx)A = (avA)xA for any a ∈ A, v ∈ X∗ and x ∈ X. Any finite

X-algebra A = (A,X) is also regarded as an X-automaton, and then A is its (finite)

set of states and X is called its input alphabet. The free X-algebra FX = (X∗, X)

generated by {ε} has the words over X as its elements and for each x ∈ X, the

operation xFX : X∗ → X∗ is defined by uxFX = ux (u ∈ X∗). Of course, uvFX = uv

for all u, v ∈ X∗.

An equivalence θ ∈ Eq(A) is a congruence on an X-algebra A = (A,X) if, for

any a, b ∈ A, a θ b implies that axA θ bxA for every x ∈ X. If θ is a congruence on A,

then the quotient algebra A/θ = (A/θ,X) defined by setting [a]θx
A/θ = [axA]θ, for

any a ∈ A and x ∈ X, is a well-defined X-algebra.

For any kind of algebra A, let Con(A) and FCon(A) denote the sets of all con-

gruences on A and all congruences on A of finite index, respectively. Obviously,

Con(X∗) ⊆ Con(FX) and FCon(X∗) ⊆ FCon(FX) for any alphabet X. In fact, the

congruences on the X-algebra FX are exactly the right congruences on the monoid

X∗.
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An X-recognizer A = (A, a0, F ) consists of an X-automaton A = (A,X), an

initial state a0 ∈ A, and a set of final states F ⊆ A. The language recognized by

A is the set L(A) := {w ∈ X∗ | a0wA ∈ F}. A language L ⊆ X∗ is recognizable,

or regular, if L = L(A) for some X-recognizer A. In this work we consider ε-free

languages only. Let Rec(X) denote the set of all ε-free regular languages over X, and

let Rec = {Rec(X)}X be the family of all ε-free regular languages, where X ranges

over all finite alphabets.
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Chapter 3

Rough approximations in a +-variety

In this chapter, we study and describe approximations of regular languages by mem-

bers of several types of varieties of regular languages. We start considering the upper

and lower rough approximations Rθ and Rθ of a language R over an alphabet X with

respect to a given congruence θ on the free semigroup X+. As shown by Thérien

[48, 49], for each + -variety L there is a corresponding variety of congruences Lc such

that a language belongs to L iff it is saturated by a congruence belonging to Lc, so

that we consider approximations based on some congruence in Lc. We then study

+ -varieties in general, for any upper (lower) approximation of a given language R

by a language L belonging to a + -variety L, there is a congruence θ in the + -filter

Lc that corresponds to L such that R ⊆ Rθ ⊆ L. Next we consider the case of

principal varieties; a + -variety L is principal if the congruences in Lc corresponding

to each alphabet form a principal filter, in this case the approximations always exist,

and we show how to calculate them in some cases. For many well-known families

of non-principal + -varieties, the closest approximations RL or RL exist only for lan-

guages R that themselves belong to L. Finally, we study an important special case

of non-principal + -varieties, the + -varieties that in Eilenberg’s Variety Theorem [12]

correspond to equationally defined varieties of finite semigroups. We present a theo-

rem that tells when a given language has a least upper approximation in an equational

+ -variety. All the results, unless noted otherwise, come from our paper [27].
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3.1 Rough approximations modulo a congruence

As it turns out that the approximations of languages that we want to find, actually are

defined by certain congruences on the free semigroups X+, we begin by introducing

approximations of languages modulo such congruences. The following notions are

derived from Pawlak’s [34, 35] theory of rough sets (cf. also [31, 40]).

3.1.1 Definition Let θ be any equivalence relation on X+ for some alphabet X. The

upper θ-approximation of a language R ⊆ X+ is the language Rθ :=
⋃
{[w]θ | w ∈ R}

and the lower θ-approximation of R is the language Rθ :=
⋃
{[w]θ | [w]θ ⊆ R}. �

The upper approximation Rθ is the union of all θ-classes that intersect with R,

while Rθ is the union of all θ-classes totally contained in R. In the following lemma

we list some well-known general properties of θ-approximations that do not depend

on the nature of the universe of elements considered. Recall that R′ = X+ \ R for

any R ⊆ X+.

3.1.2 Lemma Let X be an alphabet and θ ∈ Eq(X+) be any equivalence on X+.

The following hold for any languages L,R ⊆ X+.

(a) Rθ, R
θ ∈ Sat(θ) and Rθ ⊆ R ⊆ Rθ.

(b) ∅θ = ∅ = ∅θ and (X+)θ = X+ = (X+)θ.

(c) Rθ = R iff Rθ = R iff R ∈ Sat(θ).

(d) (Rθ)θ = (Rθ)
θ = Rθ and (Rθ)θ = (Rθ)θ = Rθ.

(e) (L ∪R)θ ⊇ Lθ ∪Rθ and (L ∪R)θ = Lθ ∪Rθ.

(f) (L ∩R)θ = Lθ ∩Rθ and (L ∩R)θ ⊆ Lθ ∩Rθ.

(g) If L ⊆ R, then Lθ ⊆ Rθ and Lθ ⊆ Rθ.

(h) (R′)θ = (Rθ)′ and (R′)θ = (Rθ)
′.

The inclusions in (e) and (f) may be proper. �
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Assertions (e) and (f) of Lemma 3.1.2 hold more generally for any set S ⊆ ℘(X+)

of languages. In particular, (
⋃
S)θ =

⋃
R∈S R

θ. This suggests that the upper θ-

approximation of a language R = {w1, w2, w3, . . .} can be obtained inductively as the

limit of the sequence (R1)
θ ⊆ (R2)

θ ⊆ (R3)
θ ⊆ . . . of the upper θ-approximations of

the finite subsets Rn = {w1, . . . , wn} (n = 1, 2, 3, . . .) of R. Indeed, Rθ =
⋃

n≥1(Rn)
θ.

On the other hand, the inclusion
⋃

n≥1(Rn)θ ⊆ Rθ may be proper. In fact, it is proper

always when R contains an infinite θ-class.

An equivalence θ on X+ can also be given as the partition X+/θ formed by the

θ-classes, and every θ-approximation is the union of some θ-classes. The following

simple lemma expresses the intuitively obvious fact that a finer partition yields closer

approximations.

3.1.3 Lemma Let R ⊆ X+ for some alphabet X, and let θ, � ∈ Eq(X+). If θ ⊆ �,

then R� ⊆ Rθ ⊆ R ⊆ Rθ ⊆ R�. For θ ⊂ �, there exists a language L ⊆ X+ such that

Lθ ⊂ L�, Lθ ⊃ L�.

Recall that the syntactic congruence σL of a language L ⊆ X+ is defined by

u σL v ⇔ (∀s, t ∈ X∗)(sut ∈ L ↔ svt ∈ L) (u, v ∈ X+),

and that it is the greatest congruence on X+ that saturates L. Moreover, it is of

finite index iff L is a regular language (cf. [12, 23, 38], for example). To prove the

following basic fact it suffices to note that θ ⊆ σL for every L ∈ Sat(θ).

3.1.4 Lemma If θ ∈ FCon(X+), then Sat(θ) ⊆ Rec(X). In particular, Rθ, Rθ ∈

Rec(X) for any language R ⊆ X+. �

Any congruence θ on the semigroup X+ can be extended to a congruence θ ∪

{(ε, ε)} on the free X-algebra FX = (X∗, X) by adding to it a new congruence class

consisting of ε only. Let θ also denote this extended congruence. The quotient algebra

FX/θ = (X∗/θ,X) is defined by [u]θx
FX/θ = [ux]θ (u ∈ X∗, x ∈ X), and obviously

[ε]θw
FX/θ = [w]θ for every w ∈ X∗.
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This means that if θ ∈ FCon(X+), we get for any L ∈ Sat(θ) an X-recognizer

Fθ(L) = (FX/θ, [ε]θ, F (L)) by letting F (L) be {[w]θ | [w]θ ⊆ L}. In particular, the

θ-approximations Rθ and Rθ of any language R ⊆ X+ have recognizers of this kind.

For Rθ the appropriate set of final states is F (Rθ) = {[w]θ | w ∈ X+, [w]θ ∩ R �= ∅},

and for Rθ it is F (Rθ) = {[w]θ | w ∈ X+, [w]θ ⊆ R}. Of course, these recognizers are

not always minimal although they certainly are connected from the initial state.

Let us now find recognizers for Rθ and Rθ when θ ∈ FCon(X+) and R ⊆ X+

is a regular language recognized by a given X-recognizer A = (A, a0, F ), where

A = (A,X). To determine the sets of final states F (Rθ), F (Rθ) ⊆ X∗/θ, we consider

the direct product A×FX/θ = (A×X∗/θ,X). Clearly,

(a0, [ε]θ)w
A×FX/θ = (a0w

A, [w]θ) for every w ∈ X∗.

The sets F (Rθ) and F (Rθ) can now be found by computing the subalgebra

S := {(a0wA, [w]θ) | w ∈ X∗}

of A×FX/θ generated by (a0, [ε]θ). Indeed,

F (Rθ) = {[v]θ ∈ X∗/θ | (∃a ∈ F )(a, [v]θ) ∈ S}

and F (Rθ) = {[v]θ ∈ X∗/θ | (∀a ∈ A)((a, [v]θ) ∈ S → a ∈ F )}.

In the following procedure ROUGH, the set S is computed stepwise starting from

the generator (a0, [ε]θ) and adding to it for any already found element (a, [u]θ) of S

(the loop starting at line (3)) and any x ∈ X (the loop starting at line (4)) the

next state (axA, [ux]θ) whenever it is a new element. The variable NEW holds all

the elements of S that have not yet been used for extending S. When (axA, [ux]θ)

has been formed for every x ∈ X for a given (a, [u]θ) ∈ NEW , the pair (a, [u]θ) is

deleted from NEW , and it is never re-introduced there because it remains in S. In

line (1), the variables are given their initial values. In particular, F (Rθ) := ∅ and

F (Rθ) := X∗/θ − {[ε]θ} (note that a0 /∈ F ). When a new pair (b, [v]θ) ∈ S is found,
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we add [v]θ to F (Rθ) if b ∈ F , but delete it from F (Rθ) if b /∈ F . This is repeated

until no new pairs are found.

3.1.5 Procedure ROUGH(A: X-recognizer, θ: congruence of finite index on X+)

{A = (A, a0, F ), where A = (A,X), an X-recognizer for R ⊆ X+; θ ∈ FCon(X+)

(also extended to θ ∈ FCon(FX))}

var S,NEW ⊆ A×X∗/θ; F (Rθ), F (Rθ) ⊆ X∗/θ; a, b ∈ A; x ∈ X; u ∈ X∗;

(1) S := {(a0, [ε]θ)}; NEW := {(a0, [ε]θ)}; F (Rθ) := ∅; F (Rθ) := X+/θ;

(2) while NEW �= ∅ do begin

(3) for (a, [u]θ) ∈ NEW do begin

(4) for x ∈ X do begin

b := axA;

if (b, [ux]θ) /∈ S then do begin

S := S ∪ {(b, [ux]θ)}; NEW := NEW ∪ {(b, [ux]θ)};

(5) if b ∈ F then F (Rθ) := F (Rθ) ∪ {[ux]θ} else F (Rθ) := F (Rθ)−

{[ux]θ};

end {if} end {if}

end {for}

NEW := NEW − {(a, [u]θ)};

end {for}

end {while}

return (F (Rθ), F (Rθ))

First of all, we note that for every w ∈ X∗ there is a word v ∈ X∗ such that

a0w
A = a0v

A, [w]θ = [v]θ and (a0v
A, [v]θ) is entered to S at some point. This can be

shown by induction on the length of w. In other words, for every w ∈ X∗, the pair

(a0w
A, [w]θ) is eventually entered to S, and since only pairs of this form are obtained,

the procedure really computes the intended set S.
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Let us now verify that in line (5) the right elements of X∗/θ are added to F (Rθ)

or deleted from F (Rθ).

Consider any [v]θ ∈ X∗/θ − {[ε]θ}. If R ∩ [v]θ �= ∅, then there is a word w ∈ X+

such that w ∈ R and [w]θ = [v]θ, and thus (a0, [ε]θ)w
A×FX/θ = (b, [w]θ) = (b, [v]θ) for

some b ∈ F . Now (b, [v]θ) ∈ S and hence [v]θ is added to F (Rθ) when the pair is

encountered for the first time. On the other hand, if R∩ [v]θ = ∅, then a0w
A /∈ F for

every w ∈ X+ such that [w]θ = [v]θ, and [v]θ cannot be entered to F (Rθ). We may

conclude that the value of F (Rθ) will be correct.

To show that also F (Rθ) finally gets the right value, we first assume that [v]θ ⊆ R.

Then a0w
A ∈ F for every word such that [w]θ = [v]θ, and therefore [v]θ is never

deleted from F (Rθ). On the other hand, if [v]θ � R, then there is a word w ∈ X+

such that w /∈ R and [w]θ = [v]θ, and then (a0, [ε]θ)w
A×FX/θ = (b, [v]θ) for some

b /∈ F . Therefore [v]θ is correctly deleted from F (Rθ) when the pair (b, [v]θ) is formed

for the first time.

If |A| = n, |X∗/θ| = m and |X| = k, then the inner for-loop is iterated at most

nmk times. The dominating term in the time estimate for each iteration is the time

needed for computing [ux]θ from [u]θ and x, and this depends naturally much on the

congruence θ and how it is given.

The following alternative method for computing θ-approximations uses the inverse

transition function of the recognizer A = (A, a0, F ) of the given language R. Only the

upper approximation is computed but by Lemma 3.1.2 (h) the lower approximation

can be obtained by the same method. Again, one constructs the set S of pairs of the

form (a0w
A, [w]θ), but now some redundancy can be avoided by tracing computations

of A backwards starting from the pairs (a, [ε]θ) with a ∈ F , and thus forming words

w for which a0w
A ∈ F backwards by extending their suffixes letter by letter.

3.1.6 Procedure IROUGH(A: X-recognizer, θ: congruence of finite index on X+)

{A = (A, a0, F ), where A = (A,X), an X-recognizer for R ⊆ X+; Inv : A ×

X → ℘(A) the inverse transition function of A; θ ∈ FCon(X+) (extended to θ ∈

FCon(FX)}
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var S,NEW ⊆ A×X∗/θ; F (Rθ) ⊆ X∗/θ; a, b ∈ A; x ∈ X; u ∈ X∗;

(1) for b ∈ A do for x ∈ X do Inv(b, x) := {a ∈ A | axA = b};

(2) S := {(a, [ε]θ) | a ∈ F}; NEW := S; F (Rθ) := ∅;

(3) while NEW �= ∅ do begin

(3) for (a, [u]θ) ∈ NEW do begin

(4) for x ∈ X do begin

(5) for b ∈ Inv(a, x) and (b, [xu]θ) /∈ S do begin

S := S ∪ {(b, [xu]θ)}; NEW := NEW ∪ {(b, [xu]θ)};

if b = a0 then F (Rθ) := F (Rθ) ∪ {[xu]θ}

end {for}

end {for}

NEW := NEW − {(a, [u]θ)};

end {for}

end {while}

return (F (Rθ))

Let us now verify that the subset F (Rθ) is correctly constructed. For this we

consider any [v]θ ∈ X∗/θ − {[ε]θ}.

If R ∩ [v]θ �= ∅, then there is a word w ∈ X+ such that w ∈ R and [w]θ = [v]θ.

Let w = x0x1 . . . xn for some n ≥ 0 and x0, x1, . . . , xn ∈ X, and let a0, a1, . . . , an+1 be

the sequence of states that A assumes when accepting w. Since an+1 ∈ F , the

pair (an+1, [ε]θ) is entered into the initial sets S and NEW . Moreover, ak−1 ∈

Inv(ak, xk−1) for every k = n+1, n, . . . , 1. Hence, we can show by induction on k that

(ak−1, [uk]θ), where uk = xk−1 . . . xn, is entered to NEW , unless it is already in S, for

every k = n + 1, n, . . . , 1. Since u1 = w, we will eventually get (a0, [w]θ) ∈ NEW ,

and hence [v]θ(= [w]θ) is added to F (Rθ).
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Let us now suppose that [v]θ ∈ F (Rθ), that is to say, (a0, [v]θ) was added to NEW

at some step. This means that there is a word w = x0x1 . . . xn such that [w]θ = [v]θ

and, if a0, a1, . . . , an+1 is the sequence of states that A assumes when reading w, then

an+1 ∈ F and ak−1 ∈ Inv(ak, xk−1) for every k = n+1, n, . . . , 1. But this means that

a0w
A ∈ F and w ∈ R, and therefore R ∩ [v]θ �= ∅.

3.2 Rough approximations in a + -variety

In this section we introduce the problem of approximating a regular language by a

language belonging to a given variety of regular languages. First we review the parts

of Eilenberg’s variety theory needed here fixing at the same time our terminology and

notation. Full expositions can be found in [1, 12, 23, 38, 39], for example.

A + -variety L = {L(X)}X assigns to each alphabet X a non-empty set L(X) ⊆

Rec(X) of ε-free regular languages over X in such a way that for all X and Y ,

(1) L ∩R,L′ ∈ L(X) whenever L,R ∈ L(X),

(2) L ∈ L(X) implies that the quotient languages w−1L := {u ∈ X+ | wu ∈ L}

and Lw−1 := {u ∈ X+ | uw ∈ L} are also in L(X) for every w ∈ X+, and

(3) L ∈ L(Y ) implies Lϕ−1 ∈ L(X) for every homomorphism ϕ : X+ → Y +.

The homomorphisms in (3) never shorten a word. Note also that we excluded the pos-

sibility that L(X) = ∅ for some X. Hence, the least + -variety is Triv = {Triv(X)}X ,

where Triv(X) := {∅, X+} for each X. It is obvious that the class VRL+ of all + -

varieties forms a complete lattice (VRL+,⊆) when inclusion is defined by the natural

alphabetwise condition: K ⊆ L iff K(X) ⊆ L(X) for every X.

Eilenberg’s fundamental Variety Theorem [12] establishes a bijection between + -

varieties and varieties of finite semigroups (pseudovarieties) thus describing the fam-

ilies of regular ε-free languages that can be characterized by syntactic semigroups.

However, we shall use the following description of + -varieties by means of certain

systems of congruences added to the theory by Thérien [48, 49].
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A + -variety of filters of congruences, called here a + -filter for short, Γ = {Γ(X)}X
assigns to each alphabet X a nonempty set Γ(X) ⊆ FCon(X+) of congruences of finite

index on X+ in such a way that for all alphabets X and Y ,

(1) Γ(X) is a filter of FCon(X+), and

(2) if ϕ : X+ → Y + is a homomorphism and θ ∈ Γ(Y ), then ϕ ◦ θ ◦ ϕ−1 ∈ Γ(X).

If VFC+ denotes the class of all + -filters, then (VFC+,⊆) is a complete lattice for

the natural alphabetwise defined ⊆-relation.

The mappings connecting VRL+ and VFC+ are defined as follows. For any

+ -variety L = {L(X)}X and any + -filter Γ = {Γ(X)}X , let

(1) Lc be the + -filter such that for each X, Lc(X) := [{σL | L ∈ L(X)}) is the

filter of FCon(X+) generated by the syntactic congruences of the members of

L(X), and

(2) Γl be the + -variety where Γl(X) := {L ⊆ X+ | σL ∈ Γ(X)} for each X.

If we omit varieties of finite semigroups, the Variety Theorem reads as follows.

3.2.1 Proposition The mappings L �→ Lc and Γ �→ Γl form a pair of mutually

inverse isomorphisms between the lattices (VRL+,⊆) and (VFC+,⊆). That is to

say, both maps are order-preserving, and

(a) Lc ∈ VFC+ and Lcl = L for every + -variety L, and

(b) Γl ∈ VRL+ and Γlc = Γ for every + -filter Γ. �

Let us also recall the following facts that explain why many + -varieties are most

naturally defined in terms of the corresponding + -filters.

3.2.2 Lemma Let L be a + -variety. For any X and L ⊆ X+,

(a) L ∈ L(X) iff σL ∈ Lc(X), and

(b) L ∈ L(X) iff L ∈ Sat(θ) for some θ ∈ Lc(X). �
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Furthermore, we also have the following fact.

3.2.3 Lemma Let L be a + -variety and X be any alphabet. For any θ ∈ FCon(X+),

Sat(θ) ⊆ L(X) iff θ ∈ Lc(X).

Proof. If Sat(θ) ⊆ L(X), then [w]θ ∈ L(X), and hence σ[w]θ ∈ Lc(X), for every

w ∈ X+. Therefore also θ ∈ Lc(X) because θ =
⋂
{σ[w]θ | w ∈ X+} and the number

of different θ-classes [w]θ is finite. Assume then that θ ∈ Lc(X). If L ∈ Sat(θ), then

θ ⊆ σL, and hence L ∈ L(X). �

We shall now introduce the approximations that we are mainly interested in. In

the rest of this section, L = {L(X)}X is always a fixed, but arbitrarily chosen, + -

variety, and X and Y are any alphabets.

3.2.4 Definition A language L is called an upper L-approximation of a language

R ⊆ X+ if R ⊆ L ∈ L(X). The least upper L-approximation of R is an upper

L-approximation L of R such that L ⊆ K for every upper L-approximation K of R,

and when it exists, it is denoted by RL. The lower L-approximations and the greatest

lower L-approximation RL of R are defined dually. �

Clearly, a language R has at most one least upper L-approximation and at most

one greatest lower L-approximation, and hence the symbols RL and RL are justified.

A minimal upper L-approximation of R is naturally an upper L-approximation

L of R for which there is no K ∈ L(X) such that R ⊆ K ⊂ L, and maximal lower

L-approximations are defined correspondingly. However, the following lemma shows

that these notions are of no use here.

3.2.5 Lemma If a language R ⊆ X+ has a minimal upper L-approximation, this

is also the least upper L-approximation of R. Similarly, if R has a maximal lower

L-approximation, it is the greatest lower L-approximation of R.

Proof. Assume that R has a minimal upper L-approximation L that is not RL. Then

there is an upper L-approximation K of R such that L ⊆ K does not hold. However,

L∩K ∈ L(X) since L is a + -variety, and hence L∩K is an upper L-approximation of
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R properly included in L, a contradiction. The assertion about lower approximations

follows similarly from the fact that K ∪ L ∈ L(X) for any K,L ∈ L(X). �

The following proposition shows that for any + -variety L, all L-approximations

are determined by the congruences in Lc.

3.2.6 Proposition For any languages R,L ⊆ X+,

(a) L is an upper L-approximation of R iff R ⊆ L and L ∈ Sat(θ) for some θ ∈

Lc(X);

(b) L is a lower L-approximation of R iff L ⊆ R and L ∈ Sat(θ) for some θ ∈

Lc(X).

Proof. If L is an upper L-approximation of R, then R ⊆ L and L ∈ L(X), and hence

σL ∈ Lc(X). Since L ∈ Sat(σL), this proves one direction of (a). On the other hand,

if R ⊆ L and L ∈ Sat(θ) for some θ ∈ Lc(X), then L ∈ L(X) by Lemma 3.2.2, and

hence L is an upper L-approximation of R. Statement (b) has a similar proof. �

3.2.7 Corollary For any R ⊆ X+ and any θ ∈ Lc(X), Rθ is an upper L-approximation

of R and Rθ is a lower L-approximation of R. �

Next we show that every L-approximation either is of the above kind or then it

can be replaced with a closer approximation of this type.

3.2.8 Proposition Consider any language R ⊆ X+. If K is any lower L-approximation

of R and L is any upper L-approximation of R, then there is a congruence θ ∈ Lc(X)

such that K ⊆ Rθ ⊆ R ⊆ Rθ ⊆ L.

Proof. Let θ := σK ∩ σL. Then θ ∈ Lc(X) because σK , σL ∈ Lc(X). Moreover,

K = KσK
⊆ RσK

⊆ Rθ ⊆ R ⊆ Rθ ⊆ RσL ⊆ LσL = L

by Lemma 3.1.2(g) and Lemma 3.1.3 because θ ⊆ σK , θ ⊆ σL and K ⊆ R ⊆ L. �
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3.2.9 Corollary Let R ⊆ X+ for some X. If RL exists, then RL = Rθ for some

θ ∈ Lc(X). Similarly, if RL exists, then RL = Rθ for some θ ∈ Lc(X). Moreover, if

both RL and RL exist, then RL = Rθ and RL = Rθ for some θ ∈ Lc(X). �

Next we note a connection between least upper L-approximations and greatest

lower L-approximations.

3.2.10 Proposition Let R ⊆ X+ for some X. Then RL exists iff (R′)L exists, and

then RL = ((R′)L)
′. Similarly, RL exists iff (R′)L exists, and then RL = ((R′)L)′.

Proof. If RL exists, then RL = Rθ for some θ ∈ Lc(X). We claim that (Rθ)′ = (R′)L.

Of course, (Rθ)′ = (R′)θ is a lower L-approximation of R′. If (Rθ)′ were not the

greatest lower L-approximation of R′, then there would exist a ρ ∈ Lc(X) such that

(Rθ)′ ⊂ (R′)ρ ⊆ R′. However, this would imply that Rθ ⊃ ((R′)ρ)
′ = Rρ ⊇ R,

contradicting the assumption that Rθ = RL.

Assume now that (R′)L exists. Then (R′)L = (R′)θ for some θ ∈ Lc(X), and it

can be seen that Rθ is RL. The second assertion has a similar proof. �

3.2.11 Corollary The least upper L-approximation RL exists for every (regular) lan-

guage R ⊆ X+ iff the greatest lower L-approximation RL exists for every (regular)

language R ⊆ X+. �

3.3 Approximations in principal + -varieties

We shall now consider + -varieties of a special kind, the so-called principal + -varieties.

There are many examples of these and many further + -varieties are naturally given

as unions of principal + -varieties. For more about principal varieties, cf. [37, 45, 46].

A + -filter Γ is called principal, if for each alphabet X, Γ(X) is a principal filter,

i.e., Γ(X) = [γ(X)) for some congruence γ(X) ∈ FCon(X+). A + -variety L is called

principal if Lc is a principal + -filter. The following lemma (cf. [45]) can be used for

verifying that a system of congruences yields a principal + -filter.
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3.3.1 Lemma Assume that we are given a congruence γ(X) ∈ FCon(X+) for each

alphabet X. Then Γ = {[γ(X))}X is a principal + -filter iff γ(X) ⊆ ϕ ◦ γ(Y ) ◦ϕ−1

for all X and Y and every homomorphism ϕ : X+ → Y +.

By applying the above condition to the endomorphisms ϕ : X+ → X+, we see

that in a principal + -filter Γ = {[γ(X))}X , the congruences γ(X) are fully invariant.

The following basic fact is an immediate consequence of Lemma 3.1.3 and Proposition

3.2.8.

3.3.2 Proposition For any principal + -variety L, all least upper L-approximations

and all greatest lower L-approximations exist. More precisely: if Lc = {[γ(X))}X ,

then RL = Rγ(X) and RL = Rγ(X) for any X and R ⊆ X+.

In the next examples, we consider two well-known families of principal + -varieties.

3.3.3 Example For any k ≥ 0 and any X, we define the relation δk(X) on X+ by

u δk(X) v ⇔ suffk(u) = suffk(v) (u, v ∈ X+).

Clearly, δk(X) ∈ FCon(X+) for every k ≥ 0, and

X+/δk(X) = {{w} | w ∈ X<k, w �= ε} ∪ {X∗w | w ∈ Xk},

i.e., each word w ∈ X+ of length < k forms a singleton class {w} and each word

w of length k determines the class X∗w of all words ending in w. In particular,

X+/δ0(X) = {X+}. Moreover, by using Lemma 3.3.1 it is easy to see that kDef c :=

{
[
δk(X)

)
}X is a principal + -filter. A language L ⊆ X+ is k-definite [17, 36] if

it is saturated by δk(X), that is to say, if the membership of a word w in L is

determined by suffk(w). Hence, the family of k-definite (ε-free) languages kDef =

{kDef(X)}X is the principal + -variety corresponding to the + -filter kDef c. Because

δk(X) ⊃ δk+1(X) for every k ≥ 0 and any X, we have a properly ascending chain

0Def c ⊂ 1Def c ⊂ 2Def c ⊂ . . . of principal + -filters and a corresponding chain

0Def ⊂ 1Def ⊂ 2Def ⊂ . . . of principal + -varieties. For any language R ⊆ X+ and
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each k ≥ 0,

RkDef = Rδk(X) = (R ∩X<k) ∪
⋃

{X∗w | w ∈ Xk, R ∩X∗w �= ∅},

and similarly

RkDef = Rδk(X) = (R ∩X<k) ∪
⋃

{X∗w | w ∈ Xk, X∗w ⊆ R}.

In particular, R0Def = X+ for any R �= ∅, R0Def = ∅ for any R ⊂ X+ and ∅0Def = ∅,

X+
0Def = X+. �

3.3.4 Example The following definitions, notation and results were taken from [24]

(cf. also [42], [12] (VIII.9) and [38], Chapter 4.1).

We say that a word w = x1...xn ∈ X∗, where x1, ..., xn ∈ X, is a scattered subword

of u ∈ X∗ if u = u1x1u2x2...xnun+1 for some u1, ..., un+1 ∈ X∗. The set of scattered

subwords of length (at most) k of a word u is denoted by sswk(u) (ssw�k(u)). Let

Jk(X) be the relation defined on X+ by

(u, v) ∈ Jk(X) ⇔ ssw�k(u) = ssw�k(v)

Observe that if the length of a word u is greater than k and has the same set of

scattered subwords of length k as another word v, then ssw�k(u) = ssw�k(v), thus

the above definition splits into two parts:

∀u, v ∈ X+, if lg(u) < k, then (u, v) ∈ Jk(X) iff u = v.

∀u, v ∈ X+, if lg(u) � k, then (u, v) ∈ Jk(X) iff sswk(u) = sswk(v).

The shuffle of u, v ∈ X∗ is the set u ◦ v = {u1v1...unvn | u1, ..., un, v1, ..., vn ∈

X∗, u = u1...un, v = v1...vn, n � 0}. The shuffle of two languages A,B ⊆ X∗ is

A ◦B =
⋃

u∈A,v∈B u ◦ v.
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For any alphabet X and k � 0, Jk(X) ∈ FCon(X+), and

X+/Jk(X) = {{u} | u ∈ X<k} ∪ {(
⋂
s∈S

s ◦X∗ \
⋃

t∈Xk\S

t ◦X∗) | S ⊆ Xk}

Then, each word u of length < k forms a singleton class, and each word u of length

� k, determines the class
⋂

s∈S s ◦X∗ \
⋃

t∈Xk\S t ◦X∗, where S = sswk(u).

For any morphism φ : X+ → Y +, if (u, v) ∈ Jk(X) then (uφ, vφ) ∈ Jk(Y ), because

sswk(u) = sswk(v) obviously implies sswk(uφ) = sswk(vφ). Applying lemma 3.3.1,

we can conclude that the family J c
k = {[Jk(X))}X is a principal +-filter.

A language R ⊆ X+ is piecewise k-testable if it is saturated by Jk(X), that is to

say, if the membership of a word u in R is determined by sswk(u).

Hence, the family of piecewise k-testable (ε-free) languages Jk = {Jk(X)}X is

the principal + -variety corresponding to the principal + -filter J c
k and thus, for every

regular language R ⊆ X+, k � 0, the least upper Jk-approximation and the greatest

lower Jk-approximation exist. Moreover,

RJk = RJk(X) = (R ∩X<k) ∪ {(
⋂

s∈sswk(u)

s ◦X∗ \
⋃

t∈Xk\ssw(u)

t ◦X∗) | u ∈ R ∩X�k}

and

RJk
= RJk(X) =

(R ∩X<k) ∪ {(
⋂
s∈S

s ◦X∗ \
⋃

t∈Xk\S

t ◦X∗) | S ⊆ Xk, (
⋂
s∈S

s ◦X∗ \
⋃

t∈Xk\S

t ◦X∗) ⊆ R}.

A language is piecewise testable if it is piecewise k-testable for some k � 0. As

Jk(X) ⊃ Jk+1(X) for every k ≥ 0 and any X, we have a properly ascending chain

J c
0 ⊂ J c

1 ⊂ J c
2 ⊂ . . . of principal + -filters and a corresponding chain J0 ⊂ J1 ⊂

J2 ⊂ . . . of principal + -varieties. Hence, the union J =
⋃

k�1{Jk(X)}X is a non-

principal +-variety. We consider approximations in this type of variety in the next
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section.

Let L be a principal + -variety defined by a principal + -filter Lc = {[γ(X))}X and

let R ⊆ X+ be a regular language. By Proposition 3.3.2, recognizers for RL and RL

can be constructed from the quotient algebra FX/γ(X) as described in Section 3.1 by

applying ROUGH or IROUGH to the congruence γ(X). When using ROUGH in

this situation, it may be convenient to replace the quotient algebra FX/γ(X) with an

isomorphic X-algebra F(γ(X)) = (W (γ(X)), X) in such a way that the isomorphism

is given by a map [w]γ(X) �→ ŵ assigning to each γ(X)-class [w]γ(X) an element ŵ of

W (γ(X)) that in a natural way identifies the class. Moreover, it has to be assumed

that there is an effective procedure to compute the representative ŵ ∈ W (γ(X)) of

[w]γ(X) for any given word w ∈ X∗. When IROUGH is used, we don’t make use of

the algebraic structure of FX/γ(X), and hence it suffices to introduce a suitable set

W (γ(X)) of representatives for the γ(X)-classes. Of course, the sets F (Rγ(X)) and

F (Rγ(X)) are now subsets of W (γ(X)).

For example, if we want to find the least upper k-definite approximation of a lan-

guage R ⊆ X+, the congruence to consider is δk(X), and we can take W (δk(X)) to be

X≤k with ŵ = suffk(w) for each w ∈ X∗, and the algebra F(δk(X)) = (W (δk(X)), X)

is defined by setting wxF(δk(X)) = suffk(wx) for any w ∈ X≤k and x ∈ X.

3.3.5 Example Let us find the least upper 2-definite approximation of the language

R = 01∗0 over the alphabet X = {0, 1}. It is recognized by the X-recognizer A =

(A, a0, F ) with A = {a0, a1, atr, af}, F = {af} and the transitions defined by a00
A =

a1, a01A = atr, a10A = af , a11A = a1, atr0A = atr1
A = af0

A = af1
A = atr.

For the sake of simplicity, we write δ2 for δ2(X). Let us now apply IROUGH

to A and W (δ2) = X≤2. The computation is given in the table below. The current

value of the set NEW is given in the corresponding row, while the values of S and

F (Rδ2) include also all items appearing in the rows above the current row. For the

sake of readability, we show even steps that add nothing to the sets S or NEW . In

these steps, the algorithm just deletes the element of NEW considered. We always
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pick the first element from the list when an element from NEW has to be selected.

(a, x) Inv(a, x) S NEW F (Rδ2)

(af , ε) (af , ε) ∅

(af , 0) a1 (a1, 0) (af , ε), (a1, 0)

(af , 1) ∅ (a1, 0)

(a1, 0) a0 (a0, 00) (a1, 0), (a0, 00) 00

(a1, 1) a1 (a1, 10) (a0, 00), (a1, 10)

(a0, 0) ∅ (a0, 00), (a1, 10)

(a0, 1) ∅ (a1, 10)

(a1, 0) a0 (a0, 10) (a1, 10), (a0, 10) 10

(a1, 1) a1 (a0, 10)

(a0, 0) ∅ (a0, 10)

(a0, 1) ∅ ∅

The set of final states obtained is F (Rδ2) = {00, 10} , and it corresponds to the classes

[00]δ2 , [10]δ2 . Hence we obtain the approximation Rδ2 = X∗00 +X∗10.

For the sake of comparison, we compute the same approximation Rδ2 using our

first algorithm ROUGH.

33

UNIVERSITAT ROVIRA I VIRGILI 
ROUGH APPROXIMATIONS IN VARIETIES OF REGULAR LANGUAGES 
Gabriela Susana Martin Torres 



x b S NEW F (Rδ2)

(a0, ε) (a0, ε) ∅

0 a1 (a1, 0) (a0, ε), (a1, 0)

1 atr (atr, 1) (a1, 0), (atr, 1)

0 af (af , 00) (a1, 0), (atr, 1), (af , 00) 00

1 a1 (a1, 01) (atr, 1), (af , 00), (a1, 01)

0 atr (atr, 10) (atr, 1), (af , 00), (a1, 01)

1 atr (atr, 11) (af , 00), (a1, 01), (atr, 11)

0 atr (atr, 00) (af , 00), (a1, 01), (atr, 11), (atr, 00)

1 atr (atr, 01) (a1, 01), (atr, 11), (atr, 00), (atr, 01)

0 af (af , 10) (a1, 01), (atr, 11), (atr, 00), (atr, 01), (af , 10) 10

1 a1 (a1, 11) (atr, 11), (atr, 00), (atr, 01), (af , 10), (a1, 11)

0 atr (atr, 11), (atr, 00), (atr, 01), (af , 10), (a1, 11)

1 atr (atr, 00), (atr, 01), (af , 10), (a1, 11)

0 atr (atr, 00), (atr, 01), (af , 10), (a1, 11)

1 atr (atr, 01), (af , 10), (a1, 11)

0 atr (atr, 01), (af , 10), (a1, 11)

1 atr (af , 10), (a1, 11)

0 atr (af , 10), (a1, 11)

1 atr (a1, 11)

0 af (a1, 11)

1 a1 ∅

As the above table shows, many more steps are now needed because, in a sense, all

paths from the initial state a0 to the final state af are traversed. �

For any k ≥ 0 and any X, the reverse k-definite languages ([14],[12],[38]) are
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defined by the relation ρk(X) on X+:

u ρk(X) v ⇔ prefk(u) = prefk(v) (u, v ∈ X+).

A language L ⊆ X+ is reverse k-definite if it is saturated by ρk(X). These languages

are symmetric to k-definite in the sense that a language is reverse k-definite, if its

reverse is k-definite. As a second example of application of the algorithm, we consider

the generalized definite languages, that are a combination of k-definite and reverse

h-definite. For any h, k ≥ 0 and any X, we define the relation γh,k(X) on X+ by

u γh,k(X) v ⇔ prefh(u) = prefh(v) and suffk(u) = suffk(v) (u, v ∈ X+).

A language L ⊆ X+ is h, k-definite if it is saturated by γh,k(X). For any pair h, k ≥ 0,

the (ε-free) h, k-definite languages form the principal + -variety corresponding to the

principal + -filter {
[
γh,k(X)

)
}X . When IROUGH is used for computing least upper

(h, k)-definite approximations, an appropriate set W (γh,k(X)) for representing the

γh,k(X)-classes is X≤h ×X≤k with ŵ = (prefh(w), suffk(w)) for every w ∈ X∗.

3.3.6 Example If we apply IROUGH for finding the least upper 2, 2-definite ap-

proximation of the language R = 01∗0 over X = {0, 1}, we get {(00, 00), (01, 10)} as

the set of final states F (Rγ2,2(X)), and hence the desired approximation is the language

Rγ2,2(X) = 00+ 000+ 010+ 00X∗00 + 01X∗10. Note that the words 00, 000 and 010

also belong to the classes represented by (00, 00) or (01, 10). �

As one more example, let us consider the locally testable languages. For any

k ≥ 1 and any alphabet X, we define the relation λk(X) on X+ by stipulating that

for any u, v ∈ X+, uλk(X) v iff prefk−1(u) = prefk−1(v), suffk−1(u) = suffk−1(v) and

swk(u) = swk(v). It is easy to see that kLocc := {
[
λk(X)

)
} is a principal + -filter. A

language L ⊆ X+ is k-testable [29] if it is saturated by λk(X), that is to say, if the

membership of a word w in L is determined by its prefix of length k − 1, its suffix of

length k − 1, and the set swk(w) of its subwords of length k. The family of (ε-free)

k-testable languages kLoc = {kLoc(X)}X is the principal + -variety corresponding to

35

UNIVERSITAT ROVIRA I VIRGILI 
ROUGH APPROXIMATIONS IN VARIETIES OF REGULAR LANGUAGES 
Gabriela Susana Martin Torres 



the + -filter kLocc. Because λk(X) ⊃ λk+1(X) for every k ≥ 0 and any X, we have

a properly ascending chain Locc0 ⊂ 1Locc ⊂ 2Locc ⊂ . . . of principal + -filters and a

corresponding chain 0Loc ⊂ 1Loc ⊂ 2Loc ⊂ . . . of principal +-varieties.

From the definition of λk(X) it is clear that W (λk(X)) := (Xk−1, ℘(Xk), Xk−1)

with ŵ = (prefk−1(w), swk(w), suffk−1(w)) is an appropriate representation of X∗/λk(X).

3.3.7 Example If we apply IROUGH for computing the least upper 2-testable ap-

proximation of our example language R = 01∗0, we obtain as the set of final states

F (Rλ2(X)) = {(0, {00}, 0), (0, {01, 10}, 0), (0, {01, 11, 10}, 0)},

and hence we obtain the least upper 2-testable approximation

Rλ2(X) = {u | u ∈ 0X∗0, sw2(u) ∈ {{00}, {01, 10}, {01, 11, 10}}

= 00∗0 + (0X∗0 \X∗00X∗)

�

3.4 Approximations in non-principal + -varieties

The most obvious non-principal + -variety is the greatest + -variety Rec of all the ε-

free regular languages that corresponds to the greatest + -filter Recc = {FCon(X+)}X .

For any X and R ∈ Rec(X), we get RRec = RRec = R. However, in general, the situ-

ation is more complicated.

Often a non-principal + -variety is naturally defined as the union of an ascending

chain of principal + -varieties or, more generally, as the union of a directed family of

principal + -varieties; recall that a non-empty family of classes S is directed if for all

A,B ∈ S, there is a C ∈ S such that A,B ⊆ C. On the other hand, it is easy to see

that the union of a directed family of principal + -varieties is always a + -variety.

3.4.1 Lemma Let L be the union
⋃

i∈I Li of a directed family of principal + -varieties
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Li(i ∈ I). For any alphabet X and any language R ⊆ X+, if RL exists, then RL = RLi

for some i ∈ I. Similarly, if RL exists, then RL = RLi
for some i ∈ I.

Proof. Let Lc
i = {[θi(X))}X (i ∈ I). If RL exists, then by Corollary 3.2.9 RL = Rθ for

some θ ∈ Lc(X). On the other hand, it is easy to see that Lc(X) = [{θi(X) | i ∈ I}),

and since {θi(X) | i ∈ I} is (downwards) directed, we must have θ ⊇ θi(X) for some

i ∈ I, and then R ⊆ Rθi(X) ⊆ Rθ implies that RL = Rθi(X) = RLi . The second fact is

obtained dually. �

Let us consider an example.

3.4.2 Example A language is definite [17, 36] if it is k-definite for some k ≥ 0.

Hence the + -variety Def of definite (ε-free) languages is the union of the ascending

chain 0Def ⊂ 1Def ⊂ 2Def ⊂ . . . of principal + -varieties, and the corresponding

+ -filter Def c is the union of the chain 0Def c ⊂ 1Def c ⊂ 2Def c ⊂ . . . of principal

+ -filters.

Let us consider the non-definite language R = 0∗10∗ over X = {0, 1}. By Example

3.3.3, for each k ≥ 0,

RkDef = {0i10j | i, j ≥ 0, i+ j < k − 1} ∪
⋃

{X∗w | w ∈ Xk, R ∩X∗w �= ∅},

and thus 0k ∈ RkDef \R(k+1)Def . Hence we obtain the properly descending chain

X+ = R0Def ⊃ R1Def ⊃ R2Def ⊃ . . . (⊃ R)

of upper approximations of R. Thus none of the approximations RkDef is the least

upper Def -approximation of R, and by Lemma 3.4.1 this means that RDef does not

exist. On the other hand, for every k ≥ 0, we have RkDef = {0i10j | i, j ≥ 0, i+ j <

k − 1}, and hence 10k−1 ∈ R(k+1)Def \ RkDef . This means that R0Def ⊂ R1Def ⊂

R2Def ⊂ . . . (⊂ R), and thus R has no greatest lower Def -approximation either. �

The following proposition shows that, in fact, the closest definite approximations

RDef and RDef do not exist for any non-definite language R.
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3.4.3 Proposition Let L be a + -variety and X be any alphabet. If {w} ∈ L(X)

for every w ∈ X+, then the least upper L-approximation RL of a language R ⊆ X+

exists iff R ∈ L(X). Similarly, RL exists iff R ∈ L(X).

Proof. If R ∈ L(X), then naturally RL = R. Assume then that R /∈ L(X) and

let L ∈ L(X) be any upper L-approximation of R. For any w ∈ L − R ( �= ∅), also

L− {w} is an upper L-approximation of R, and hence RL cannot exist. The second

assertion is proved similarly. �

It is easy to see that if a + -variety L is the union
⋃

i∈I Li of a directed family

of principal + -varieties Li, where Lc
i = {[θi(X))}X (i ∈ I), then for any X and

w ∈ X+, {w} ∈ L(X) iff [w]θi(X) = {w} for some i ∈ I. Hence, we may restate the

above proposition for a frequently occurring case as follows.

3.4.4 Corollary Let L =
⋃

i∈I Li be a + -variety given as the union of a directed

family of principal + -varieties, where Lc
i = {

[
θi(X)

)
}X (i ∈ I), and assume that for

some alphabet X, there exists for every word w ∈ X+ an i ∈ I such that [w]θi(X) =

{w}. Then a language R ⊆ X+ has a least upper L-approximation iff R ∈ L(X).

Similarly, RL exists iff R ∈ L(X). �

As we noted in Examples 3.3.3 and 3.3.4, [w]δk(X) = {w} and [w]Jk(X) = {w} for

any k ≥ 0 and w ∈ X<k, and hence Corollary 3.4.4 applies to the + -varieties of

Def and J . It also applies, for example, to the non-principal + -varieties of finite

and co-finite languages, reverse definite languages, generalized definite languages,

and locally testable languages ([12, 6, 14, 29, 38]). A language has a least upper or

greatest lower approximation in any of those + -varieties only in case it itself belongs

to the variety. Membership to each of these families can be decided by inspecting

the syntactic semigroup of the language (cf. [12, 38]). Let us conclude this section

with a couple of examples. The first one shows that in a non-principal + -variety to

which Proposition 3.4.3 does not apply, the closest approximations may exist even

for languages that do not belong to the variety.
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3.4.5 Example For any word w, let c(w) denote the set of all words that can be

obtained from w by permuting its letters. A language R is commutative if c(w) ⊆ R

for every w ∈ R. Let Com(X) denote the set of ε-free regular commutative languages

over X. The family Com := {Com(X)}X is a + -variety, cf. [12, 38]. Clearly, the

assumption of Proposition 3.4.3 cannot hold for Com and any X with at least two

letters. The non-commutative language R = {00, 10} over the alphabet {0, 1} has

both of the closest Com-approximations. Indeed, RCom = {00, 01, 10} and RCom =

{00}. �

The second example shows that in a non-principal + -variety L a language R may

have one of the closest approximations RL and RL without having the other.

3.4.6 Example Let L = Com ∩ Def be the + -variety of commutative definite ε-

free languages. For each k ≥ 0, let Lk = Com ∩ kDef . Then L =
⋃

k≥0 Lk and

L0 ⊂ L1 ⊂ L2 ⊂ . . .. It is easy to see that for every k ≥ 0, Lk is the principal

+ -variety defined by the principal + -filter Lc
k = {[θk(X))}X where θ0(X) = ∇X+

and for any k ≥ 1,

X+/θk(X) = {c(w) | 1 ≤ lg(w) < k} ∪ {X≥k};

any two words u, v ∈ X≥k are θk(X)-related because (u, vu), (vu, uv), (uv, v) ∈ θk(X).

Hence, if RL (or RL) exists, then RL = Rθk(X) (or RL = Rθk(X)) for some k ≥ 0.

Let us consider the regular language R = (01)+ = {01, 0101, . . .} over X = {0, 1}.

Since Rθk = ∅ for every k ≥ 0, we have RL = ∅. On the other hand, Rθ0(X) = X+

and

Rθk(X) =
⋃

{c((01)i) | 1 ≤ i < k/2} ∪X≥k

for each k ≥ 1, and hence Rθ0(X) ⊃ Rθ1(X) ⊃ Rθ2(X) ⊃ . . . and RL cannot exist. For

the complement R′ the converse holds; (R′)L = X+ exists but (R′)L does not. �
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3.5 Approximations in pseudo-principal + -varieties

Let us now consider approximations in certain + -varieties that are natural general-

izations of principal + -varieties.

We call a system β = {β(X)}X a family of congruences if β(X) ∈ Con(X+) for

each alphabet X. Such a family is said to be consistent if β(X) ⊆ ϕ ◦ β(Y ) ◦ ϕ−1

for all alphabets X, Y and every homomorphism ϕ : X+ → Y +. For any family of

congruences β = {β(X)}X , let Γβ = {Γβ(X)}X , where Γβ(X) := {θ ∈ FCon(X+) |

β(X) ⊆ θ} for each alphabet X. Let us note a few basic properties of these notions.

3.5.1 Lemma Let β = {β(X)}X be a consistent family of congruences.

(a) For every X, β(X) is a fully invariant congruence of X+.

(b) If |X| = |Y |, then X+/β(X) ∼= Y +/β(Y ).

(c) Γβ is a + -filter.

(d) If β(X) ∈ FCon(X+) for every X, then Γβ equals the principal + -filter {[β(X))}X .

Proof. For (a), it suffices to apply the consistency condition to the endomorphisms

ϕ : X+ → X+. To prove (b), let ψ0 : X → Y be a bijection and let ψ : X+ → Y + be

its extension to an isomorphism. Then one can easily verify that [w]β(X) �→ [wψ]β(Y )

yields a well-defined isomorphism X+/β(X) → Y +/β(Y ).

Clearly, Γβ(X) is a filter of FCon(X+) for every X. Consider any θ ∈ Γβ(Y )

and any homomorphism ϕ : X+ → Y +. Then θ ∈ FCon(Y +) implies ϕ ◦ θ ◦ ϕ−1 ∈

FCon(X+), and by the consistency condition, β(X) ⊆ ϕ ◦ β(Y ) ◦ ϕ−1 ⊆ ϕ ◦ θ ◦ ϕ−1.

Hence, also ϕ ◦ θ ◦ ϕ−1 ∈ Γβ(X) holds, and (c) follows. Now (d) is quite obvious; if

β(X) ∈ FCon(X), then Γβ(X) = [β(X)). �

3.5.2 Definition We call a + -filter Γ = {Γ(X)}X pseudo-principal if Γ = Γβ for

some consistent family of congruences β, and then Γl is a pseudo-principal + -variety.

We shall now show that pseudo-principal + -varieties correspond, in the sense of

Eilenberg’s [12] Variety Theorem, to so-called equational varieties of finite semigroups.
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First we recall some notions and facts concerning equational classes and varieties of

finite semigroups. For systematic treatments of these matters, cf. [1], [7], [12], [38] or

[39], for example.

A class of semigroups V is a variety if it contains all subsemigroups, all homomor-

phic images and all direct products of members of V. If K is any class of semigroups,

the variety generated by K, i.e., the least variety V such that K ⊆ V, is denoted by

V(K). Moreover, let F(K) be the class of all finite members of K.

An identity over an alphabet Z, not necessarily finite, is an expression u ≈ v

where u, v ∈ Z+. A semigroup S satisfies u ≈ v, S |= u ≈ v in symbols, if uϕ = vϕ

for every homomorphism ϕ : Z+ → S. If E is a set of identities, S |= E means that

S |= u ≈ v for every u ≈ v ∈ E. More generally, a class K of semigroups satisfies

u ≈ v (resp., E), and we write K |= u ≈ v (K |= E), if S |= u ≈ v (S |= E) for

every S ∈ K. It is convenient to identify an identity u ≈ v with the ordered pair

(u, v) of words. Then the set of identities over Z satisfied by a class K of semigroups

equals the fully invariant congruence θK(Z) of Z+ that is defined as the intersection

of the kernels kerϕ, where ϕ : Z+ → S is a homomorphism for some S ∈ K (cf.

[7], especially Sections II.11 and II.14, or [1], for example). On the other hand, for

any set of identities E, let Mod(E) be the class of all the semigroups that satisfy all

the identities of E. A class K of semigroups is called equational if K = Mod(E) for

some set E of identities. A fundamental theorem of G. Birkhoff (for general algebras)

states that a class is equational iff it is a variety.

The following fact has a straightforward proof.

3.5.3 Lemma For every class K of semigroups, θK := {θK(X)}X is a consistent

family of congruences. �

For the next lemma, cf. Lemma II.14.7 in [7], for example.

3.5.4 Lemma If ρ ∈ Con(X+) is fully invariant, then for all u, v ∈ X+, X+/ρ |=

u ≈ v iff u ρ v. �

In the following lemma, the congruence ρ is viewed also as a set of identities.
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3.5.5 Lemma Let ρ, θ ∈ Con(X+) for some X. If ρ is fully invariant, then X+/θ |=

ρ iff ρ ⊆ θ.

Proof. Recall that, for any congruence θ of a semigroup S, the natural mapping

νθ : S → S/θ, s �→ [s]θ, is a homomorphism. Hence, if X+/θ |= ρ , then [u]θ = uνθ =

vνθ = [v]θ for any (u, v) ∈ ρ, i.e., ρ ⊆ θ.

If ρ ⊆ θ, then X+/ρ → X+/θ, [w]ρ �→ [w]θ, is a well-defined epimorphism, and

since X+/ρ |= ρ by Lemma 3.5.4, also X+/θ |= ρ holds. �

Various forms of the following lemma are known in general algebra but for the

sake of completeness, we prove it as stated.

3.5.6 Lemma Let V be a variety of semigroups, X be an alphabet and θ ∈ Con(X+).

Then X+/θ ∈ V iff θV(X) ⊆ θ.

Proof. If θV(X) ⊆ θ, then X+/θV(X) → X+/θ, [w]θV(X) �→ [w]θ, is an epimorphism.

Moreover, X+/θV(X) ∈ V since V is a variety (cf. Corollary II.11.10 of [7]). This

means that X+/θ ∈ V, too. On the other hand, X+/θ ∈ V implies that X+/θ |=

θV(X), and hence θV(X) ⊆ θ by Lemma 3.5.5. �

A variety of finite semigroups, a VFS for short, is a class S of finite semigroups

that contains all subsemigroups, all homomorphic images and all finite direct products

of its members. For any variety V of semigroups, the subclass F(V) is a variety of

finite semigroups, and a VFS S is called equational if S = F(V) for some variety V

(cf. [1], p. 60). Hence, a class S of finite semigroups is an equational VFS iff there

exists a set E of identities (over some alphabet) such that S = F(Mod(E)).

Let S be any VFS. For each (finite) alphabet X, let Sl(X) consist of all the

languages L ⊆ X+ such that its syntactic semigroup S(L) := X+/σL is in S. Then

Sl := {Sl(X)}X is the + -variety that by the Variety Theorem corresponds to S.

Conversely, for any + -variety L = {L(X)}X , the corresponding VFS Ls is the VFS

generated by the syntactic semigroups S(L) with L ∈ L(X) for some X.

The + -filter Sc = {Sc(X)}X that by Thérien’s theorem corresponds to a given

VFS S is defined by Sc(X) := {θ ∈ FCon(X+) | X+/θ ∈ S}. Conversely, the VFS
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Γs that corresponds to a given + -filter Γ = {Γ(X)}X , is the VFS generated by the

semigroups X+/θ, where θ ∈ Γ(X) for some X. Lemma 3.5.6 yields the following

description of the + -filter corresponding to an equational VFS.

3.5.7 Lemma If V is any variety of semigroups, then F(V)c = ΓθV , that is to say,

F(V)c(X) = {θ ∈ FCon(X+) | θV(X) ⊆ θ} for every alphabet X. �

For any family of congruences β = {β(X)}X , let K(β) be the class of all quotient

semigroups X+/β(X), where X ranges over all (finite) alphabets, and let V(β) be

the variety generated by K(β).

3.5.8 Lemma If β is a consistent family of congruences, then θV(β) = β.

Proof. Consider any alphabet X. Since θV(β)(X) = θK(β)(X), it suffices to show

that θK(β)(X) = β(X). The inclusion θK(β)(X) ⊆ β(X) follows from Lemma 3.5.4.

Indeed, if (u, v) ∈ θK(β)(X), then X+/β(X) |= u ≈ v, and hence (u, v) ∈ β(X).

To prove the converse inclusion, let (u, v) ∈ β(X). Consider any alphabet Y and

any homomorphism ψ : X+ → Y +/β(Y ). There is a homomorphism ϕ : X+ → Y +

such that ψ = ϕ◦νβ(Y ). Then the consistency condition β(X) ⊆ ϕ◦β(Y )◦ϕ−1 implies

that uϕβ(Y ) vϕ, and therefore uψ = (uϕ)νβ(Y ) = (vϕ)νβ(Y ) = vψ. This shows that

Y +/β(Y ) |= u ≈ v, and hence β(X) ⊆ θK(β)(X) holds, too. �

Now we can establish the following correspondence.

3.5.9 Proposition A variety of finite semigroups S is equational iff the correspond-

ing + -filter Sc is pseudo-principal.

Proof. If S = F(V) for some variety V of semigroups, θV is a consistent family

of congruences by Lemma 3.5.3, and Sc = ΓθV by Lemma 3.5.7. Assume then that

Sc = Γβ for a consistent family β of congruences. Then Sc = Γβ = ΓθV(β)
= F(V(β))c

by Lemmas 3.5.7 and 3.5.8, and hence S is the equational VFS F(V(β)). �

3.5.10 Lemma If (Rθ)ρ = Rθ for some R ⊆ X+ and θ, ρ ∈ Eq(X+), then Rθ∨ρ =

Rθ.
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Proof. The assertion follows from Lemma 2.0.1 (b); since Rθ is in both Sat(θ) and

Sat(ρ), we have Rθ ∈ Sat(θ ∨ ρ), and hence Rθ ⊆ Rθ∨ρ ⊆ (Rθ)θ∨ρ = Rθ. �

3.5.11 Proposition Let β be a consistent family of congruences and let L = Γ l
β be

the corresponding + -variety. For any alphabet X and any language R ⊆ X+, the

following three conditions are pairwise equivalent.

(1) The upper approximation Rβ(X) is a regular language.

(2) Rβ(X) = Rθ for some θ ∈ Γβ(X).

(3) Rβ(X) = RL.

Proof. If Rβ(X) is regular, then Rβ(X) = (Rβ(X))ρ for some ρ ∈ FCon(X+). Now

Rβ(X) = Rβ(X)∨ρ by Lemma 3.5.10, and naturally β(X) ∨ ρ ∈ Γβ(X). Hence (1)

implies (2), and the converse is obvious.

To show that (2) implies (3), let Rβ(X) = Rθ for some θ ∈ Γβ(X). Then Rβ(X)

is an upper L-approximation of R, and from Proposition 3.2.8 and Lemma 3.1.3 it

easily follows that it is the least upper L-approximation.

Finally, if Rβ(X) = RL, then it follows from Corollary 3.2.9 that Rβ(X) = Rθ for

some θ ∈ Γβ(X). Hence, (3) implies (2). �

We say that θ ∈ Con(X+) has regular classes if [u]θ ∈ Rec(X) for every u ∈ X+.

3.5.12 Lemma Let β be a consistent family of congruences and let u ∈ X+ for some

alphabet X. Then [u]β(X) is a regular language iff there exists a congruence ρ ∈ Γβ(X)

such that [u]β(X) = [u]ρ.

Proof. If [u]β(X) is a regular language, it is saturated by some θ ∈ FCon(X+). Now,

ρ := θ∨β(X) ∈ Γβ(X) and [u]β(X) = [u]ρ by Lemma 3.5.10. This implies one direction

of the lemma, and the converse is perfectly obvious. �

3.5.13 Proposition Let β be a consistent family of congruences and let L be the

corresponding + -variety. Furthermore, assume that β(X) has regular classes for

some X. For any R ⊆ X+, if RL exists, then RL = Rβ(X).
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Proof. If RL exists, then RL = Rθ for some θ ∈ Γβ(X). If Rβ(X) ⊂ Rθ, then there is

a word u ∈ Rθ such that (u, v) ∈ β(X) for no v ∈ R. If ρ ∈ Γβ(X) is the congruence

prescribed by Lemma 3.5.12 for this u, then Rθ∩ρ ⊂ Rθ since u ∈ Rθ \ Rρ∩θ. As

θ ∩ ρ ∈ Γβ(X), this would mean that Rθ is not the least upper L-approximation of

R. Hence Rβ(X) = Rθ = RL must hold. �

Applied to a pseudo-principal + -variety given by the corresponding equational

VFS, the above findings can be summarized as follows.

3.5.14 Corollary Let L = {L(X)}X be the pseudo-principal + -variety that corre-

sponds to a given equational VFS F(V), where V is a variety of semigroups, and let

R ⊆ X+ for some alphabet X.

(a) If RθV(X) is a regular language, then it is the least upper L-approximation of R.

(b) If θV(X) has regular classes, then the least upper L-approximation of R exists

iff RθV(X) is a regular language, and then RL = RθV(X). �

Let us consider, by the way of a concrete example, the +-variety Com of commu-

tative languages. For any alphabet X, let κ(X) be the equivalence on X+ such that

X+/κ(X) = {c(w) | w ∈ X+}. Then κ(X) is a congruence on X+, and a language

R ⊆ X+ is commutative iff it is saturated by κ(X). It is obvious that the family

of congruences κ = {κ(X)}X is consistent and that Com is the pseudo-principal + -

variety defined by Γκ, i.e., that Comc(X) = {θ ∈ FCon(X+) | κ(X) ⊆ θ} for every

alphabet X. It is well known (cf. [12, 38]) that the corresponding equational VFS is

F(Com), where Com is the variety of commutative semigroups. Hence, θCom = κ.

Since [w]κ(X) = c(w) for any X and w ∈ X+, the family of congruences κ has regular

classes and Rκ(X) = c(R) :=
⋃
{c(w) | w ∈ R} for any R ⊆ X+. By Corollary 3.5.14,

the least upper Com-approximation exists iff the commutative closure c(R) of R is

regular. For example, a regular language like (01)+ does not have a least upper Com-

approximation. However, since it is decidable whether the commutative closure of a

regular language R is regular (cf. [13], for example), it is decidable whether RCom

45

UNIVERSITAT ROVIRA I VIRGILI 
ROUGH APPROXIMATIONS IN VARIETIES OF REGULAR LANGUAGES 
Gabriela Susana Martin Torres 



exists. When c(R) is non-regular, one has to be satisfied with other commutative

approximations based on some congruence θ in Γκ.

3.6 Concluding remarks

We have introduced certain approximations of languages and presented a number

of their basic properties. Of course, much remains to be done. For example, for

certain + -varieties it could be possible to develop methods to efficiently find the

approximations by making use of the special properties of the variety.

Pseudo-principal +-varieties pose several natural and challenging problems. When

and how can we decide whether the closest approximations exist? How can they be

formed when they exist? And if they don’t exist, how can we find other approxima-

tions in the variety that are sufficiently close to the given language?

Although the most general notions and results apply directly also to other types

of varieties, such as varieties of tree languages, new problems will probably be en-

countered in the more advanced parts of the theory.
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Chapter 4

Accuracy of rough approximations in

a + -variety

Throughout this chapter we consider the accuracy of upper θ-approximations Rθ

of a given language R over an alphabet X with respect to a given congruence. We

consider only upper rough approximations because, as we will observe in this chapter,

languages often do not contain whole classes of the given congruence thus giving empty

lower rough approximations.

Several ways to measure the quality of rough approximations have been proposed

(see for example [35, 32, 33]), but they are not useful in our case because they deal

with finite sets of objects. We adopt the approach suggested by Berstel in [4]. He

introduced an expression for the relative density of two given languages, one of which

is a subset of the other. Here we consider the density of a language in its upper

approximation; this number, when defined, is regarded as a measure of the accuracy

of the approximation. In particular, we look at the accuracy of approximations in

the families of k-definite, reverse k-definite, generalized i, j-definite, k-testable and

commutative languages. Some of the results are new, but most come from our paper

[28], unless stated otherwise. When the alphabet is clear from the context, we write

just θ instead of θ(X).
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4.1 Densities of the languages in the varieties under

study

The following standard definitions can be found in [18] or [5]. Given two functions

f(n) and g(n), we say that f(n) is O(g(n)), or that f(n) = O(g(n)), if for some

positive constants c and n0, 0 � f(n) � cg(n) for all n � n0; f(n) is said to be

Ω(g(n)), and written f(n) = Ω(g(n)), if there exists a constant c > 0 and an infinite

sequence n1 < n2 < n3 < ... satisfying f(ni) � cg(ni) for all i � 1, and finally f(n)

is Θ(g(n)), and written f(n) = Θ(g(n)), if f(n) is both Ω(g(n)) and O(g(n)). The

density function dR(m) of a language R ⊆ X+ is defined by dR(m) = |R ∩ Xm|,

m ≥ 1. If dR(m) = Θ(1) then we say that R has constant density, if dR(m) = Θ(mc)

for some integer c ≥ 1, then R has polynomial density and if dR(m) = Θ(cm) for

some c � 0, then R has exponential density. Languages of constant density are called

slender languages. Languages that have at most one word of each length are called

thin languages.

In [47] the regular languages of polynomial density are characterized as unions of

finitely many languages of the form z0y
∗
1z1...y

∗
k+1zk+1 where z0, y1, z1, ..., yk+1, zk+1 ∈

X∗. Furthermore, it is shown that for every infinite regular language R, the density

dR(m) is either polynomial or exponential of the form 2Θ(cm), where c is a constant.

We will now compute the densities of languages in the varieties under study.

It is easy to see that infinite k−definite, reverse k−definite, and generalized i, j−definite

languages over an at least binary alphabet, have exponential density. Commutative

and k−testable languages can have exponential, polynomial or constant density. The

case of commutative languages is different from the others, as we will see along this

chapter, partly because of the fact that its associated congruence κ has infinite index.

Furthermore, approximations under this congruence are not always regular. In the

next two propositions we describe some features of the densities of these families.

4.1.1 Proposition Let X be an at least binary alphabet, and R ⊆ X+ an infinite

language in Sat(θ) for some θ ∈ {δk, ρk, γi,j, λk}, where k, i+ j � 1.
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(1) If θ ∈ {δk, ρk} there is a number 1 � n � |X|k such that dR(m) = n|X|m−k for

every m � k.

(2) If θ = γi,j, there is a number 1 � n � |X|i+j such that dR(m) = n|X|m−(i+j) for

every m � i+ j.

(3) If θ = λk, then R can have constant, exponential or polynomial density, and it is

decidable which one it has. Furthermore, for every integer n > 0 there exists an

alphabet X and a language R ⊆ X+ in this family such that dR(m) = Θ(mn).

Proof. If R is an infinite language in Sat(δk), there must be words v1, ..., vr ∈ X<k,

r � 0, and u1, ..., un ∈ Xk for some n � 1 such that R = {v1, ..., vr}∪X∗u1∪...∪X∗un.

Thus dR(m) = n|X|m−k for every m � k. When θ ∈ {ρk, γi,j} the proof is similar.

Consider next the case of k−testable languages. The language R = (01)+ is an

example of slender 2−testable. To see that there are exponential density k−testable

languages, it suffices to note that X+ is a k−testable language. For a (slightly) less

trivial example, consider a k−testable language R over the alphabet X = {0, 1, 2, 3}

such that its not allowed subwords are in {0, 1}+. Any language with this property

contains (2 + 3)+ as a subset, therefore it has exponential density.

We show now that there exist polynomial density 2−testable languages. We start

by considering the language R = 1∗23∗45∗ over the alphabet X = {1, 2, 3, 4, 5}. It is

easy to see that R is a 2−testable language over X. For each number m � 2, there is

exactly one word in R of length m for each choice of the positions of 2 and 4. Since

there are
(
m
2

)
such choices, dR(m) =

(
m
2

)
= m(m−1)

2
and this is Θ(m2). Using this

idea, we build now a 2−testable language R such that dR(m) = Θ(mn) for any given

n � 1. If n = 1 we take the language R = x∗
0x1x

∗
2 over the alphabet X = {x0, x1, x2}

that satisfies dR(m) = m. If n > 1 we take the alphabet X = {x0, ..., xk+1} where

k satisfies 2n = k + 1, and the 2−testable language R = x∗
0x1x

∗
2x3...xkx

∗
k+1. In this

case dm(R) =
(
m
n

)
= Θ(mn). Finally, in [47] and [43] regular languages of exponential

density are characterized, and this characterization leads to a linear algorithm for

deciding whether a regular language is of exponential density when the language is

given by a deterministic finite automaton. �
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We denote by ψ(L) the Parikh set of a language L ⊆ X+.

4.1.2 Proposition Let X be an alphabet with l letters, and L ⊆ X+ a language in

Sat(κ).

(1) dL(m) =
∑

{
(

m
s1,...,sl

)
| (s1, . . . , sl) ∈ ψ(L ∩Xm)}.

(2) L can have constant, exponential or polynomial density, and when L is regular,

it is decidable which one it has. Furthermore, for every integer n > 0 there exists

a commutative language L, over a binary alphabet, such that dL(m) = Θ(mn).

Proof. The expression of the density of a commutative language follows straight-

forwardly by counting the non-equivalent permutations of letters corresponding to

each Parikh vector of the language. An example of slender commutative language is

L = 1+, in this case, dL(m) = 1 for every m � 1. For a polynomial commutative

language of order n, consider L = c(1n0∗). It has density dL(m) =
(
m
n

)
for m � n,

that is Θ(mn). Finally, if we take L = (Xn)+, it is easy to see that dL(m) = lm if

m is a multiple of n, and dL(m) = 0 otherwise. When L is regular, the decidability

follows by the same argument of the proof of statement (3) in proposition 4.1.1. �

The densities of regular languages in Sat(δk), Sat(ρk), Sat(γi,j), and Sat(κ) are

computable. In the first three cases it is obvious from the expressions given in propo-

sition 4.1.1. It is known that the Parikh set of a regular language can be effectively

obtained (cf. [41, 3, 50]), therefore, the density of a regular language in Sat(κ) can

also be calculated by using the expression given in the proposition 4.1.2.

4.2 Measures of accuracy of rough approximations

of languages

In this section we introduce two definitions of the accuracy of upper rough approxi-

mations and establish some of their basic properties. We consider just upper rough

approximations because quite often languages do not contain whole classes of the
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given congruence, thus giving finite lower rough approximations. For example, as it

can be directly deduced from our results about density in the previous section, if a

language has polynomial density, all its lower δk, ρk, γi,j−approximations are finite.

This may happen even if the language has exponential density. Consider for example,

the language R = X+u where u ∈ Xk and k � 1. This language is very close to X∗u,

its upper δk−approximation, but Rδk = ∅.

Some ways to deal with the inexactness of language approximations have been

proposed ([26, 19, 8]). In rough set theory [35], the accuracy of the θ−approximation

of a set R is expressed as the quotient |Rθ|/|Rθ|. This notion is not useful for us

because of the cases of empty or finite lower approximations noted above and because

languages and their approximations are usually infinite sets.

Let R1 and R2 be two languages over some alphabet X, such that R1 ⊆ R2. We

use the notion of natural relative density given by Berstel in [4],

D(R1, R2) := lim
m→∞

|R1 ∩X�m|/|R2 ∩X�m|

whenever this limit exists. The question whether, for a given pair of languages, the

first one has a relative density in the second one is decidable for regular languages (see

[21]). Berstel proved that this number, even when it exists, is not always rational. Our

definitions of accuracy are reformulations of Berstel’s definition of relative density.

If θ ∈ Eq(X+) and m � 1, the m-accuracy of the upper θ−approximation of a

language R ⊆ X+ is defined by

Acc(R, θ,m) := |R ∩X�m|/|(Rθ ∩X�m|

when Rθ ∩X�m �= ∅, and Acc(R, θ,m) := 1 otherwise.

Observe that since |R∩X�m| = dR(1)+ ...+dR(m), the m-accuracy can be rewritten

as Acc(R, θ,m) = (dR(1) + ...+ dR(m))/(dRθ(1) + ...+ dRθ(m)).

We obtain the following facts immediately from the definition.
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4.2.1 Proposition Let R be a language over an alphabet X and let θ, ρ ∈ Eq(X+).

(1) 0 ≤ Acc(R, θ,m) ≤ 1 for every m ≥ 1.

(2) If θ ⊆ ρ then Acc(R, θ,m) ≥ Acc(R, ρ,m) for every m ≥ 1.

(3) Acc(R, θ,m) = 1 for every m ≥ 1 if and only if R ∈ Sat(θ).

4.2.2 Lemma Let θ ∈ Eq(X+) and suppose there exists n � 1 such that w/θ = {w}

for every w ∈ X≤n. Then for any R ⊆ X+ and m ≤ n, Acc(R, θ,m) = 1.

Proof. It is clear that if w/θ = {w} for every w ∈ X≤n then Rθ ∩X�m = R ∩X�m

for every m � n. �

The congruences that define the families of k−definite, reverse k−definite, gen-

eralized i, j−definite and k−testable languages, satisfy the hypothesis of the last

lemma.

4.2.3 Corollary For every regular language R ⊆ X+ and any m � 1, there exist

numbers k � 1, i+ j � 1 such that Acc(R, δk,m) = Acc(R, ρk,m) = Acc(R, λk,m) =

Acc(R, γi,j,m) = 1.

Note that for any language R and any θk ∈ {δk, ρk, λk} with k � 0 we have a non-

increasing chain Rθ0 ⊇ Rθ1 ⊇ . . . of approximations, and according to proposition

4.2.1 and corollary 4.2.3, for every m � 0, a corresponding non-decreasing sequence

0 � Acc(R, θ0,m) � Acc(R, θ1,m) � . . . � Acc(R, θk,m) . . .

where Acc(R, θk,m) = 1 for every k > m. The case of γi,j is similar.

The next proposition states that it is possible to reach values of m−accuracy that are

arbitrarily close to any given value between 0 and 1 for the cases of ρk, δk, λk, and γi,j

approximations.

4.2.4 Proposition Let X be an alphabet with at least two letters and let θ ∈ {ρk, δk, λk, γi,j},

where k � 1, i + j � 1. For any numbers q, r ∈ (0, 1) such that q < r, there exists a

number m � 1 and a regular language R ⊆ X+ such that q < Acc(R, θ,m) < r.
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Proof. Suppose that L = {w ∈ X+ | w/θ = {w}}. By the properties of the

congruences considered, the set L is finite. Suppose that |L| = l. Let us take the

language L′. For m > max{lg(w) | w ∈ L}, consider a language R over the same

alphabet chosen to have the properties R ∩X>m = L′ ∩X>m, R ∩X�m ⊆ L′ ∩X�m

and suppose that |R ∩X�m| = c, where c is in {1, ..., |X�m| − l}. Any language with

these properties satisfies Acc(R, θ,m) = |R ∩ X�m|/|Rθ ∩ X�m| = c/|L′ ∩ X�m| =

c/(|X�m| − l). The number c/(|X�m| − l) can be fit in (q, r) by choosing values for

m and c as follows. Let us call N = |X�m| − l. If we choose m big enough to ensure

that 1/N < (r− q) then there exists a number c in {1, ..., N} such that q < c/N < r.

�

It is also possible to obtain values of Acc(R,κ,m) arbitrary close to 1.

4.2.5 Proposition Let X be an at least binary alphabet. For any given q ∈ [0, 1),

there exist a finite language R and m > 0 such that q < Acc(R,κ,m) < 1.

Proof. Let us take X such that |X| = l � 2, x ∈ X and n � 2. The set Fn =

{w ∈ Xn | |w|x = 2} satisfies |Fn| =
(
n
2

)
(l − 1)n−2 = n(n−1)

2
(l − 1)n−2. Now, if R is

a subset of Fn such that ψ(R) = ψ(Fn), then Rκ = Fn and Acc(R,κ,m) = |R|
|Fn| for

any m > n. It is easy to see that the number |Fn| can be made as big as desired, and

the number |R| as close to |Fn| as needed. Thus, to obtain the result, it is enough

to adjust the number n and the number of words in R, to reach a value such that

q < Acc(R,κ,m) < 1 holds.

�

Next, we study the asymptotic behavior of the m−accuracy when m approaches

infinity.

The limit lim
m→∞

Acc(R, θ,m) does not always exist for a regular language R ⊆ X+.

4.2.6 Example Consider the δ2−approximation of the language R = {w ∈{0,1}+ |
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lg(w) ≡2 0}. The limit lim
m→∞

Acc(R, δ2,m) does not exist because for even m

Acc(R, δ2,m) =

m/2∑
i=1

22i/
m∑
i=2

2i =
(2m+2 − 4)/3

2m+1 − 4

and for odd m

Acc(R, δ2,m) =

(m−1)/2∑
i=1

22i/
m∑
i=2

2i =
(2m+1 − 4)/3

2m+1 − 4
.

Thus the subsequences {Acc(R, δ2, 2i)}i�1 and {Acc(R, δ2, 2i+1)}i�1 tend to 2/3 and

1/3 respectively.

When the limit lim
m→∞

Acc(R, θ,m) exists it is denoted Acc(R, θ), and it is the

accuracy of the upper θ−approximation of R. The proximity of a language R ⊆ X+

to the approximation Rθ can be described by the number Acc(R, θ) when it exists.

The following results are direct consequences of the definition of accuracy.

4.2.7 Proposition Let R ⊆ X+ and θ, ρ ∈ Eq(X+). If Acc(R, θ) and Acc(R, ρ) are

defined, then

(1) 0 ≤ Acc(R, θ) ≤ 1.

(2) Acc(R, θ) ≥ Acc(R, ρ) when θ ⊆ ρ.

(3) If R1 is an infinite language that differs from R just in a finite number of words,

then Acc(R, θ) = Acc(R1, θ).

4.2.8 Corollary Let us consider a family {θk}k�1 ⊆ Eq(X+) that satisfies θk ⊇ θk+1

for every k � 1.

(1) If Acc(R, θk) is defined for every k, then Acc(R, θ1) � Acc(R, θ2) � ....

(2) If Acc(R, θk) = 1 for some k � 1, then Acc(R, θl) = 1 for every l � k.

(3) If Acc(R, θk) = 0 for some k � 1, then Acc(R, θl) = 0 for every l � k.
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4.2.9 Lemma If R is a finite language and θ ∈ {ρk, δk, λk, γi,j}, where k � 1 and

i+ j � 1, then Acc(R, θ) ∈ {0, 1}. If R is a cofinite language then Acc(R, θ) = 1.

Proof. Observe that if R is finite, Rθ is either R or an infinite set, depending on the

length of the words in R. Therefore, Acc(R, θ) = 1 or 0, respectively. If R = X+ \ F

where F is a finite subset of X+, we have that Rθ = X+ − {w ∈ F | w/θ = {w}}.

Consequently, Rθ is either R itself or it differs from R just by a finite number of

words, then Acc(R, θ) = 1. �

4.2.10 Lemma If R ⊆ X+ is a non-empty, non-commutative finite language, then

Acc(R,κ) ∈ (0, 1). If R is any co-finite language, then Acc(R,κ) = 1.

Proof. If R is finite, then Rκ is also finite. Suppose that |R| = j and |Rκ| = k for

some j, k � 1. Obviously j < k, and then 0 < Acc(R,κ) = j/k < 1. Suppose now

that R = X+\F , where F is a finite language. It is enough to observe that Rκ = X+,

if F ⊆ Rκ, Rκ = R if F ∩ Rκ = ∅, and Rκ = X+ \ F1, where F1 = F \ (F ∩ Rκ), if

F ∩Rκ �= ∅ and F � Rκ. �

We will often make use of the following fact observed by Berstel in [4] that is a

direct consequence of well-known properties of series (see for example Spivak [44],

Chapter 22).

4.2.11 Lemma Let R and S be languages over an alphabet X such that R ⊆ S. If

the limit lim
m→∞

dR(m)

dS(m)
exists and the sequence dS(m) diverges then

lim
m→∞

dR(m)

dS(m)
= lim

m→∞

dR(1) + ...+ dR(m)

dS(1) + ...+ dS(m)

As a consequence of this result we have

4.2.12 Lemma Let R be a language over the alphabet X and θ ∈ Eq(X+) such that

the limit lim
m→∞

dR(m)

dRθ(m)
exists. Then Acc(R, θ) exists and equals lim

m→∞

dR(m)

dRθ(m)
.
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Proof. If Rθ has constant density and lim
m→∞

dR(m)

dRθ(m)
exists, then both dR(m) and

dRθ(m) have a constant value from some N � 1 on, and thus the result is clearly

true. If Rθ has at least polynomial density, then dRθ(m) diverges and by hypothesis

lim
m→∞

dR(m)

dRθ(m)
exists. Thus, we can apply the previous result to obtain

Acc(R, θ) = lim
m→∞

dR(1) + ...+ dR(m)

dRθ(1) + ...+ dRθ(m)
= lim

m→∞

dR(m)

dRθ(m)

�

Observe that under the hypothesis of the last lemma

Acc(R, θ) = lim
m→∞

dR(m)

dRθ(m)
= lim

m→∞

dR(m)

dR(m) + dRθ−R(m)
=

1

1 + lim
m→∞

dRθ−R(m)

dR(m)

Let us define, whenever it exists,

T (R, θ) = lim
m→∞

d(Rθ−R)(m)

dR(m)

This number gives an idea of the size of what is added to R to obtain the approxi-

mation Rθ.

4.2.13 Lemma Let us consider a congruence θ ∈ Eq(X+) and a language R over X

such that the limit lim
m→∞

dR(m)

dRθ(m)
exists. Then Acc(R, θ) = 1 if and only if T (R, θ) = 0.

In the next two sections we compute the accuracy of the upper approximations of

languages of different densities in the families under study.

4.3 Languages over a one-letter alphabet

Let us consider the case of languages over a one-letter alphabet X = {0}. It is

well known and easy to see that if R is an infinite one-letter regular language, R =
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0x1 + ...+ 0xl + 0p(0r)∗(0y1 + ...+ 0ys) for some numbers l, x1, ..., xl, r, s, y1, ..., ys such

that l � 0, 0 � x1 < ... < xl � p, r � 1, s � 0 and 0 � y1 < ... < ys < r. The

statement (3) in proposition 4.2.7 allows us to assume w.l.g. that xi = 0 for every

i ∈ {1, ..., l} and that

(1) R = (0r)∗(0c1 + ...+ 0cs), where s � 1 and 0 � c1 < ... < cs < r.

We can assume that s � 1, because if s = 0 the same results can be straightfor-

wardly obtained. Observe that over a unary alphabet, δk = ρk = λk = γi,j, where

k = max{i, j} � 1. According to this, all the {ρk, δk, λk, γi,j}−approximations can be

handled together for the case of a one-letter alphabet. In this section we refer to any

of those congruences as θk. Their classes are u/θk = 0k0∗ if u ∈ X�k and u/θk = {u}

if u ∈ X<k. In what follows, R is a language as in (1).

4.3.1 Lemma |R ∩X�nr| = ns for every n � 1.

4.3.2 Lemma If R has at least one word u ∈ X�k, then Rθk = 0k0∗∪ (R∩X<k) and

|Rθk ∩X�m| = m− k + 1 + |R ∩X<k| for every m > k.

In the next two lemmas c = |R ∩X<k|.

4.3.3 Lemma Acc(R, θk, nr) = ns/(nr − k + 1 + c) where n is such that nr > k.

4.3.4 Lemma �m/r� s/(m−k+1+c) � Acc(R, θk,m) � (�m/r�+ 1)s/(m−k+1+c)

for every m > k.

4.3.5 Proposition Acc(R, θk) = s/r for every k � 1.

Proof. As both the upper and the lower bound given in the previous lemma for

Acc(R, θk,m) tend to s/r when m goes to infinity, Acc(R, θk,m) does, by the Sandwich

Theorem. �

According to this result the accuracy of approximations in the case of a one-letter

regular language always exists and it is a rational number, but it cannot be improved

by taking larger k′s. Observe also that the accuracy in this case can be effectively

computed.
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4.3.6 Corollary For every k � 1 and numbers n and m such that 0 < m < n, there

exists an infinite one-letter regular language R such that Acc(R, θk) = m/n.

4.3.7 Example Consider the θk-approximation of R = (0n)+ where k, n � 1. For

m ≥ k, n

Acc(R, θk,m) = |{0n, 02n, ..., 0�m/n�n}|/|{0k, 0k0, ..., 0m}| = �m/n� /(m− k + 1)

It is not hard to see that the limit of Acc(R, θk,m) when m aproaches infinity is 1/n.

4.4 Languages over an at least binary alphabet

Throughout this section, X is an at least binary alphabet. We start by giving an

example.

4.4.1 Example Let us consider the language R = X∗0\0+0, where X = {0, 1}, and

its 1-definite approximation. Since R∩Xm = Xm−10\{0m} and Rδ1 ∩Xm = Xm−10,

we obtain Acc(R, δ1,m+ 1) = (2m−1)
2m

. Therefore, Acc(R, δ1) exists and equals 1.

Observe that this language is "almost" 1−definite. Only one word of each length

has been removed from X∗0, which is the 1−definite approximation of R. It is a

particular case of the following general fact.

4.4.2 Lemma Let R be an exponential density regular language over X, θ ∈ Eq(X+)

and suppose that the limit lim
m→∞

dR(m)

dRθ(m)
exists. If Rθ \R has polynomial density, then

Acc(R, θ) = 1.

Proof. If Rθ\R has polynomial density and R has exponential density then T (R, θ) =

0. Therefore, according to lemma 4.2.13 Acc(R, θ) = 1. �

The value of the accuracy cannot be predicted if the difference between the lan-

guage and its approximation has exponential density. According to the results of

Szilard, Yu and Zhang in [47], an exponential density language can only have a 2Θ(cm)
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density function, where c is a constant. This means that T (R, θ) = lim
m→∞

2c1m+c2

2b1m+b2
,

where c1, c2, b1, b2 are constants. Therefore the possible values of T (R, θ) are ∞, 0

or some finite positive constant, when c1 > b1, c1 < b1 or c1 = b1, respectively.

Accordingly, the accuracy Acc(R, θ) can be 0, 1 or 0 < Acc(R, θ) < 1.

The following result is a consequence of proposition 4.1.1.

4.4.3 Corollary For every regular language R ⊆ X+ of at most polynomial density

and any θ ∈ {δk, ρk, γi,j}, Acc(R, θ) = 0.

4.4.4 Example Let us consider the 2−definite approximation of the language R =

01∗0 over the alphabet X = {0, 1}. Since Rδ2 = X∗10 ∪X∗00, we obtain for m ≥ 2,

Acc(R, δ2,m) = 1/2m−1. Therefore, the limit of Acc(R, δ2,m) exists and equals 0.

Unlike the case of the families in the hypothesis of this corollary, polynomial lan-

guages may have non-zero accuracy values when they are approximated by members

of the commutative family, as the following proposition shows.

4.4.5 Proposition For every n � 2, there exists a polynomial language R ⊆ {0, 1}+

such that Acc(R,κ) = 1/n.

Proof. Let us define R = 0n−1(0n)∗1(0n)∗, n � 2. It has density dR(m) = k if

m = kn for some k � 1, and dR(m) = 0 otherwise. Its commutative approxima-

tion is Rκ = 0∗10∗ ∩ (Xn)+, that has density dRκ(m) = m if m = kn for some

k � 1, and dRκ(m) = 0 otherwise. Therefore, Acc(R,κ) = limm→∞

∑m
i=1 dR(i)∑m
i=1 dRκ (i)

=

limk→∞
1+2+...+k

n+2n+...+kn
= 1/n. �

As a consequence of corollary 4.4.3, only exponential density languages can be ex-

pected to have nonzero accuracy values for the k-definite, reverse k-definite and gen-

eralized i, j-definite cases. Let us consider for example the language R = {0, 1}∗0n+1,

where n � 1, and its 1−definite approximation. We obtain for m > n, Acc(R, δ1,m) =

2m−n−1/2m−1 and thus Acc(R, δ1) = 1/2n.
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4.4.6 Proposition For every number q ∈ [0, 1) and θ ∈ {δk, ρk, λk, γi,j}, where k � 1

and i+ j � 1, there exists an alphabet X and an exponential density regular language

R over X such that q < Acc(R, θ) < 1.

Proof. Let us consider the δk−approximation of the language R = u1X
∗ ∪ ... ∪ urX

∗

over an alphabet X, where n > k, 1 � r � |X|n and u1, ..., ur ∈ Xn. As the

δk−approximation of R is X�k we obtain Acc(R, δk) = limm→∞ r|X|m−n/|X|m =

r/|X|n. Thus, to satisfy our thesis it suffices to choose |X|, r and n such that 1/|X|n <

1− q and r = |X|n − 1. The cases of ρk and γi,j are similar. For the case of λk let us

take an alphabet X such that 0 /∈ X and the language R = 0lX∗∪0l−1X∗∪ ...∪0kX∗

where k < l. Then

Acc(R, λk) = lim
m→∞

|X|m−l + |X|m−l+1 + ...+ |X|m−k

|X|m−k + |X|m−k−1 + ...+ 1
= 1− 1

|X|l−k+1

and we can take l and |X| such that 1/|X|l−k+1 < 1− q. �

Because of the fact that δk, ρk, γi,j form descending chains for increasing k, i, j,

better approximations of an exponential language can be obtained by taking greater

elements of that chains, as the following example shows.

4.4.7 Example Consider the language R = 0+ + 1X∗, and k > 1, then dR(m) =

2m−1 + 1, Rρk = 0 + 02 + · · · + 0k−1 + 0kX∗ + 1X∗ and dRρk (m) = 2m−k + 2m−1 for

m � k. Therefore,

Acc(R, ρk) = lim
m→∞

2m−1 + 1

2m−k + 2m−1
= lim

m→∞

2m−1

2m−1(2−k+1 + 1)
=

1

1 + 1
2k−1

So that when we take bigger k’s, the accuracy improves.

Next, we show some examples of the possible situations that may appear when an

exponential language is approximated by a member of the commutative family. The

densities of the κ -approximations are calculated by using the expression obtained in

proposition 4.1.2.

4.4.8 Example Let X = {0, 1}.
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(1) For the language R = (00 + 11)+ we have

Acc(R,κ) = lim2m→∞
2+22+...+2m

2+23+...22m−1 = limm→∞ 2(1
2
)m = 0.

(2) Let R = (00 + 01 + 10)+. Despite the fact that this language has many more

words of even length than the language in (1), it is not difficult to see that the

accuracy is again 0, Acc(R,κ) = limm→∞(3
4
)m = 0.

(3) Finally, to see some non-trivial exponential language that is well approximated

by a commutative language, let us consider R = {w ∈ (X2)+ | 1n /∈ swn(w), n �

2}. The densities are dR(2m) = ((22m +
(
2m
m

)
)/2) − (m − 1)(2m − 1) and

dRκ(2m) = (22m +
(
2m
m

)
)/2. Then we obtain Acc(R,κ) = 1.

4.5 Concluding remarks

In this chapter several facts have been established that describe the behavior of the

density of the approximations with respect to the density of the object language. In

particular, we focused on the accuracy of the upper rough approximation of a regular

language by a language in the k-definite, reverse k-definite, i, j-definite, k-testable and

commutative families. We showed the asymptotic behavior of the relative density for

a one-letter alphabet and for the general case of an arbitrary alphabet, and found the

attainable values of accuracy in each case.
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Chapter 5

Comparisons with previous work

In the paper [33] Pǎun, Polkowski and Skowron introduce several indiscernibility

relations among strings that are equivalence or tolerance relations, and study lower

and upper rough approximations of languages defined by them. After presenting some

general facts about the relations, they consider the problem of approximating context-

free languages and find that in most cases the obtained approximations are regular.

Finally, they suggest some possible variants of the relations. In this chapter we study

some of these indiscernibility relations from our point of view, their connections with

the families we already considered, and how some of our results can be applied to

them. Firstly, we consider the relations as they were defined in [33], and after that we

introduce modifications. The original notation is simplified to conform with ours. For

example, the upper rough approximation of a language L under the relation Prefk is

denoted Prefk(L) in [33], but here by LPk . We also restrict the relations defined on

X∗ to X+ to fit in our general framework. Each relation R(X) on X+ considered in

this chapter, will be written R when there is no need to specify the alphabet.

5.1 Working with the original relations

The relations Pk, Ak and Mk studied in this section are those named Prefk, ASubk

and MSubk in [33]. The relation Sk was not defined there, but we included it as it

seems natural to consider suffixes along with prefixes.
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5.1.1 The relations Pk(X) and Sk(X)

The relation Pk(X) on X+, k � 1, is defined by

Pk(X) := {(u, v) | u, v ∈ X+, lg(u) = lg(v), prefk(u) = prefk(v)}.

The condition lg(u) = lg(v) will be called the length condition.

Pk(X) is in Con(X+) and it has infinite index because of the length condition,

but the family {Pk(X)}X is not consistent. Indeed, if ϕ : X+ → Y + is a morphism

that is not length-preserving, then Pk(X) �⊆ ϕ ◦ Pk(Y ) ◦ ϕ−1 because the fact that

for two words u, v ∈ X+, lg(u) = lg(v), does not imply that lg(uϕ) = lg(vϕ). For

example, if X = {a, b}, Y = {c} and ϕ : X+ → Y + is defined by aϕ = c, bϕ = cc,

then (aa, ab) ∈ P1(X) but (aaϕ, abϕ) /∈ P1(Y ) because aaϕ = cc and abϕ = ccc have

different lengths. If we drop the length condition in the definition of Pk(X), it becomes

ρk(X) and we would have the associated family of reverse k-definite languages.

If the congruences of a family include the length condition, they need to be finer

than κ(X), otherwise we can always define a morphism that is not length-preserving,

and does not preserve the congruence, as in the above example.

5.1.1 Proposition For every k � 1,

(1) X+/Pk = {{u} | u ∈ X<k} ∪ {uXj | u ∈ Xk, j � 0},

(2) the Pk-approximations are finite unions of languages of the form uX∗∩
⋃

j∈I X
j

where u ∈ X�k, I ⊆ N, and

(3) if L ⊆ X+ is a context-free language, then the Pk-approximations of L are finite

unions of languages of the form uX∗ ∩
⋃

j∈I X
j, where u ∈ X�k and I ⊆ N

forms an arithmetic sequence.

Proof. The first statement is obvious from the definition of Pk. To prove (2), it is

enough to observe that for every language L and u ∈ Xk, the set uX∗ ∩
⋃

j∈I X
k+j

where I = {lg(v) | v ∈ u−1L} is added to the approximation, and if u ∈ X<k ∩ L,

then {u} is added. Finally, for any vector v = (s1, ..., sn), n = |X| and s1, ..., sn � 0,
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we denote |v| = s1 + ... + sn. If L is context-free, its Parikh set is semilinear. As

u−1L is also context-free for every u ∈ X+, its Parikh set is a finite union of sets

of the form {v0 + t1v1 + ... + tmvm | t1, ..., tm � 0} where v0, ..., vm ∈ Nn, and thus,

the set of possible lengths of words in u−1L is a finite union of sets of the form

J = {|v0| + t1|v1| + ... + tm|vm| | t1, ..., tm � 0}. If gcd(|v1|, ..., |vm|) = 1, then

J = {s | s � N}∪F for some N � 0 and F a finite subset of N, otherwise J is of the

form {n0 + n1j | j ≥ 0} for some n0 � 0 and n1 > 1. It remains to be observed that

the sets I are finite unions of the sets J associated with each prefix of L of length

k. �

5.1.2 Example If L = {aibi | i � 1}, then LP3 =
⋃

i�1 aaaX
2i+1 ∪ aabX ∪ {ab} =

(aaaX∗ ∩
⋃

i�3X
2i) ∪ (aabX∗ ∩X4) ∪ {ab}.

Note that for every language L, Lρk is regular, in fact reverse k-definite. In [33] it

is proved that LPk is regular for any context-free language L, but this does not hold

for all languages. Take for example X = {a} and L = {ap | p ∈ P}. In this case

LPk = L for every k.

As Pk ⊆ ρk, we have LPk ⊆ Lρk and LPk
⊇ Lρk , but even for regular languages, it

is not true in general that LPk = Lρk or LPk
= Lρk . For example, if L is (aaa)+, then

LP3 =
⋃

n�0 aaaX
3n and LP3 = {aaa} while Lρ3 = aaaX∗ and Lρ3 = ∅.

5.1.3 Proposition Let L ⊆ X+ and k � 1.

(1) If L is a finite language, then LPk = Lρk iff L ⊆ X<k.

(2) If L is an infinite language, then LPk = Lρk iff du−1L(n) �= 0 for every u ∈

prefk(L) ∩Xk and n � 0.

(3) If L is a finite language, then LPk
= Lρk iff for every u ∈ prefk(L) ∩ Xk and

j � 0, uXj � L.

(4) If L is an infinite language, then LPk
= Lρk iff uX∗ ⊆ L for each u ∈ prefk(L)∩

Xk such that uXj ⊆ L for some j � 0.
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Proof. The fact (1) is obvious. To prove (2) it is enough to observe that LPk = Lρk

iff for each k-prefix of length k of a word in L, the language contains words of every

length with that prefix. But this is exactly the condition that du−1L(n) �= 0 for every

u ∈ prefk(L) ∩ Xk and n � 0. The claims (3) and (4) follow from the definitions

similarly as (1) and (2). �

Let SL :=
∑∞

i=0 six
i be the formal power series where si := dL(i), that is to say,

the ith coefficient of the series is the number of words of length i in the language L.

For a context-free language, the series SL can be obtained by using the procedure

known as Schützenberger’s method (cf. [9]).

Let G = (V,X, P, S) be an unambiguous context-free grammar, where V denotes

the set of non-terminals, X the set of terminals, P the set of productions, S is

the initial symbol, and let LG be the generated language. The sets (V ∪ X)+ and

(V (x)∪{x})+, where V (x) = {A(x) | A ∈ V }, are viewed as commutative semigroups,

and the morphism Θ : (V ∪ X)+ → (V (x) ∪ {x})+ is defined as follows: Θ(a) = x

for every a ∈ X, and Θ(A) = A(x) for every A ∈ V . For example, the words

Aaa, aAa, aaA in (V ∪X)+ are regarded as the same element, and they are sent by

Θ to A(x)x2(= xA(x)x = x2A(x)) in (V (x) ∪ {x})+.

We then associate with every set of productions A → e1, A → e2, ..., A → en in P ,

where A ∈ V and ei ∈ (V ∪X)∗, the algebraic equation

Θ(A) = Θ(e1) + ...+Θ(en)

where Θ(ei) = 1 if ei = ε. The resulting system is then solved for S(x) and it gives

the generating function of the series SLG
.

5.1.4 Example The grammar G = {{S}, {a, b}, {S → aSb|ab}, S} generates L =

{aibi | i � 1}. Applying the Schützenberger method we obtain S(x) = S(x)x2 + x2

and then S(x) = x2

1−x2 , whose expansion has the coefficients 0, 0, 1, 0, 1, 0, ....

When L is an infinite language, the condition to have LPk = Lρk , given in Propo-

sition 5.1.3 (2), is that for every u ∈ prefk(L) ∩ Xk and n � 0, du−1L(n) �= 0. We
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will now outline a procedure to find out whether this condition holds for a regular

language L, given by an unambiguous regular grammar. It was proved in [9] that if

this is the case, the corresponding generating function is rational. Note that such a

grammar can be obtained for any regular language from a deterministic automaton,

by including for any transition labeled by a letter a from a state A to a state B,

• the production A → aB if B is not a final state, and

• the productions A → aB and A → a, if B is final.

Moreover, include the rule S → ε if the initial state S is final.

The procedure is as follows:

(1) Calculate the set prefk(L) ∩Xk = {u1, ..., un}

(2) Form a grammar for u−1
i L for every i = 1, ..., n

(3) Apply Schützenberger’s method to find the formal power series
∑

j∈Ii sjx
j of

u−1
i L, where Ii is the index set corresponding to the non-zero coefficients.

(4) LPk = (
⋃n

i=1

⋃
j∈Ii uiX

j) ∪ (L ∩X<k)

A grammar for the left derivative of a regular language in step (2) can be easily

built, and if G is a regular unambiguous grammar, the whole procedure is effective.

In this case, the formal power series in step (3) is rational and thus its coefficients

can be efficiently computed, for example by using the method of partial fractions.

5.1.5 Example Let L = {u ∈ {a, b}+ | lg(u) ≡3 1}. An unambiguous grammar for

L is G = (S,X, V, P ) where S is the initial symbol, X = {a, b} is the set of terminal

symbols, V = {S,A,B} is the set of non-terminals, and P is the following set of

productions: S → aA|bA|a|b, A → aB|bB, B → aS|bS. The set of 2-prefixes of

length 2 of L is pref2(L) ∩ X2 = X2. A grammar for u−1L, where u ∈ pref2(L), is

obtained just by considering B as the new initial symbol. Applying Schützenberger’s

method to this grammar we obtain B = 4x2

1−8x3 that has the sequence of coefficients
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0, 0, 22, 0, 0, 25, 0, 0, 28, .... As the sequence has zeros, according to our condition,

Lρ2 �= LP2 . In fact, the P2-approximation turns out to be LP2 = {a, b} ∪ X2(X2 +

X5 +X8 + ...) = X +X4 +X7 +X10 + ... = L, while Lρ2 = X+.

We present a second example of an application of the procedure, in which the Pk-

approximation of the language is not trivial.

5.1.6 Example Let X = {a, b} and L = (aaa)+. An unambiguous grammar for L

is G = (S,X, V, P ) where V = {S}, and P = {S → aaaS, S → aaa}. The set of

3-prefixes is obviously pref3(L)∩X3 = {aaa}. A grammar for aaa−1L, is obtained by

just replacing S → aaa by S → ε . Applying Schützenberger’s method to this gram-

mar we obtain S = 1
1−x3 , which has the sequence of coefficients 1, 0, 0, 1, 0, 0, 1, 0, 0, ....

As the sequence has zeros, this implies again that Lρ3 �= LP3 , and in this case

LP3 = aaa(ε+X3 +X6 + ...) while Lρ3 = aaaX∗.

In some cases the process can be carried out also for context-free languages.

5.1.7 Example Let L ⊆ {a, b}+ be {aibi | i � 1}. The set of 2-prefixes of L

is pref2(L) = {ab, aa}, and (ab)−1L = {ε}, (aa)−1L = {ai−2bi | i ≥ 2}. Using

Schützenberger’s procedure we obtain S = 1 for (ab)−1L and S = x2

1−x2 for (aa)−1L.

The sequence of coefficients of the latter is 0, 0, 1, 0, 1, 0, .... Thus, we obtain LP2 =

{ab} ∪ aaX2 ∪ aaX4 ∪ ..., while Lρ2 = aaX∗ ∪ abX∗.

Let us define the relation Sk(X) over X+ by

Sk(X) := {(u, v) | u, v ∈ X+, lg(u) = lg(v), suffk(u) = suffk(v)}

If we denote by uR the reversal of a word u and LR the reversal of a language L, then

Lu−1 = ((u−1)RLR)R and all the arguments used for Pk-approximations can easily be

modified to apply to Sk(X).
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5.1.2 The relations Ak(X) and Mk(X)

For w, u ∈ X+, the multiplicity of w in u is the number

µ(w, u) := |{u1 ∈ X∗ | u = u1wu2, for some u2 ∈ X∗}|.

For any k � 1, the relations Ak(X) and Mk(X) on X+ are defined as follows:

Ak(X) := {(u, v) | u, v ∈ X>k, lg(u) = lg(v), swk(u) = swk(v)}

∪ {(u, u) | u ∈ X�k}.

Mk(X) := {(u, v) | u, v ∈ X>k, (∀w ∈ Xk)µ(w, u) = µ(w, v)}

∪ {(u, u) | u ∈ X�k}.

As observed in [33], the length condition makes no difference for Mk, because the

length of a word u is completely determined by swk(u) and the multiplicities of the

members of that set, so we may drop this condition from the definition of Mk. None

of the relations Ak and Mk are congruences on X+. For example, the words bab and

aba are related by A2, but if we add the prefix b, we get (bbab, baba) /∈ A2. The same

example shows that M2 is not a congruence. Moreover, none of them are of finite

index because each class has a finite number of elements. The relation Ak and the

congruence λk, associated with k-testable languages, are incomparable. For example,

(ababa, aba) ∈ λ2 \ A2 and (aba, bab) ∈ A2 \ λ2. The same examples show that Mk

and λk are also incomparable.

For any word u ∈ X+ and any k � 1, let us denote the complement of swk(u)

within Xk by nswk(u) .

5.1.8 Proposition Let L ⊆ X+, k � 1 and u ∈ X+.

(1) Ak+1 ⊆ Ak, and the inclusion is proper if |X| > 1.
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(2) If L ⊆ X�k, then LAk = LAk
= LMk = LMk

= L.

(3) If lg(u) > k, then [u]Ak
= (

⋂
s∈swk(u)

X∗sX∗ \
⋃

t∈nswk(u)
X∗tX∗) ∩X lg(u).

(4) The rough approximations of L under Ak are finite unions of sets of the form

C ∩ (
⋃

j∈I X
j) where C is a k-testable language and I ⊆ N.

(5) If L is context-free, then the rough approximations under Ak are regular and the

sets I in (4) form arithmetic sequences.

Proof. The fact that Ak = ∆X+ for |X| = 1 is obvious. The (non-strict) inclusion

in (1) was proved in [33]. To see that it is proper if |X| > 1, observe that for every

x, y ∈ X, the words xk−1yxk−1 and xk−2yxk−1y, are in Ak \ Ak+1. The fact (2) is

obvious because for every word u, if lg(u) � k, both [u]Ak
and [u]Mk

are {u}. The

expression in (3) comes directly from the definition of the relation. To see that (4)

holds, observe that there is a finite number of sets
⋂

s∈swk(u)
X∗sX∗\

⋃
t∈nswk(u)

X∗tX∗

for u ∈ L, and that they are k-testable languages. As the set swk(L) =
⋃

u∈L swk(u)

is finite, let us take {u1, ..., un} ⊆ L such that swk(L) =
⋃n

i=1 swk(ui). If we denote

Ii = {lg(u) | u ∈ L, swk(u) = swk(ui)}, and Ci =
⋂

s∈swk(ui)
X∗sX∗\

⋃
t∈nswk(ui)

X∗tX∗

for i = 1, ..., n, n � 1, then LAk = (
⋃n

i=1 Ci ∩
⋃

j∈Ii X
j) ∪ (L ∩ X�k). The lower

approximations LAk
are also finite unions of this type of sets. Suppose now, to prove

(5), that L is a context-free language. The fact that its rough approximation under

Ak is regular was proved in [33] (Proposition 6.4), but we offer an alternative proof.

If L is context-free, the sets Ci ∩ L, are also context-free and as the sequences Ii are

the sets of possible lengths of words in Ci ∩ L, the argument used in the proof of

statement (3) of lemma 5.1.1 can be applied to prove that the sets Ii form arithmetic

sequences. Now, let us take a regular language R such that it has the same Parikh set

as Ci∩L and define the substitution σ from X to subsets of X+ by putting σ(a) = X

for every a ∈ X. It gives σ(R) =
⋃

j∈Ii X
j, that is a regular set, and therefore each

set Ci ∩
⋃

j∈Ii X
j is regular. �

5.1.9 Example If L is the context-free language {anbn | n � 1}, then sw2(L) =
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{aa, ab, bb} and LA2 = a2a∗b∗b2 ∩ (X2)+ ∪ {ab} = [(X∗aaX∗ ∩X∗abX∗ ∩X∗bbX∗) \

X∗baX∗] ∩
⋃

i�2X
2i ∪ {ab}.

The approximations under Ak will then correspond to finite unions of "slices" of

locally testable languages of the lengths existing in the language. If we drop the length

condition in the definition of Ak, the classes become just locally testable languages

(as it is clear from (3) in the last proposition), and then the approximations under

Ak thus modified, are also regular.

5.2 Working with modified relations

5.2.1 Modifying Ak(X)

To get a refinement of Ak(X) that is a congruence on X+, let us define Ak(X) ⊆

Ak(X) by

(u, v) ∈ Ak(X) ⇔ (u, v) ∈ Ak(X), prefk−1(u) = prefk−1(v), suffk−1(u) = suffk−1(v).

This is clearly a refinement of λk(X). In fact, (u, v) ∈ Ak(X) iff (u, v) ∈ λk(X) and

lg(u) = lg(v). The relation thus modified is a congruence on X+ of infinite index, but

the associated family is not consistent because it does not satisfy Ak(X) ⊆ κ(X), for

every k � 1.

5.2.1 Proposition Let L ⊆ X+, k � 1 and u ∈ X+.

(1) If lg(u) � k, then [u]Ak
= {u} and hence LAk = LAk

= L if L ⊆ X�k.
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(2) If lg(u) > k, then

[u]Ak
= ((

⋂
s∈swk(u)

X∗sX∗) ∩ prefk−1(u)X
∗ ∩X∗suffk−1(u)

\ (
⋃

t∈nswk(u)

X∗tX∗)) ∩X lg(u).

(3) The rough approximations of L under Ak are finite unions of sets of the form

C ∩
⋃

j∈I X
j where C is a k-testable language and I ⊆ N.

(4) If L is context-free, then the sets I in (3) form arithmetic sequences and the

rough approximations of L under Ak are regular.

(5) Ak ⊂ λk.

(6) Ak+1 ⊆ Ak, and the inclusion is proper if |X| > 1.

(7) Ak ∈ Con(X+) \ FCon(X+).

Proof. Facts (1), (2) and (7) follow directly from the definition of the relation. To

prove (3) we take a set of words {u1, ..., un} ⊆ L such that for every u ∈ L, there exists

1 � i � n such that (u, ui) ∈ λk. Let us denote Ii = {lg(u) | u ∈ L, (u, ui) ∈ λk},

and Ci = (
⋂

s∈swk(ui)
X∗sX∗)∩ prefk−1(ui)X

∗ ∩X∗suffk−1(ui) \
⋃

t∈nswk(ui)
X∗tX∗, for

i = 1, ..., n, n � 1. Then LAk = (
⋃n

i=1 Ci ∩
⋃

j∈Ii X
j) ∪ (L ∩ X�k). The lower

approximations LAk
are of course unions of this type of sets also. The proof of

statement (4) is similar to that of statement (5) of proposition 5.1.8. To prove (5),

note that Ak ⊆ λk follows from the definitions, and the inclusion is proper because

we can take, for every x ∈ X, (xk, xk+1) ∈ λk \ Ak. The inclusion in (6) is also

clear from the definition, and it is proper when |X| > 1, because for every x, y ∈ X,

(xk−1yxk, xkyxk−1) ∈ Ak \ Ak+1. If |X| = 1 obviously Ak = ∆X+ . �

The approximations under Ak are, once again, finite unions of "slices" of k-testable

languages of the lengths existing in the language. Another possibility to modify Ak

is to drop the length condition, as suggested at the end of [33], but in this case we

would have Ak = λk, and these approximations were studied in Chapter 3.
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5.2.2 Modifying Mk(X)

Let us define Mk(X) by

(u, v) ∈ Mk(X) ⇔ (u, v) ∈ Mk(X), prefk−1(u) = prefk−1(v), suffk−1(u) = suffk−1(v).

The relation Mk(X) thus defined is a refinement of λk(X) and it is a congruence on

X+ of infinite index (every congruence class is finite). It has been studied in the

context of combinatorics on words and it is known as the k-abelian equivalence. It

was defined by J. Karhumäki in [16]. The statement (3) of the following lemma is

mentioned without proof in that work.

5.2.2 Proposition For every alphabet X, and k � 1,

(1) Mk ⊂ λk,

(2) Mk ⊆ Mk and the inclusion is proper if |X| > 1 and k > 1,

(3) κ = M1 ⊇ M2 ⊇ ..., and the inclusions are proper if |X| > 1,

(4) Mk ∈ Con(X+) \ FCon(X+).

Proof. The inclusion in (1) follows directly from the definition of the relation, and

(xk, xk+1) ∈ λk \Mk, so the inclusion is proper. The inclusion in (2) also follows from

the definition, and it is proper for |X| > 1, k > 1 because (xk−1yk−1xk−1, yk−1xk−1yk−1) ∈

Mk \Mk. If |X| = 1, then Mk = Mk = ∆X+ , and if k = 1 then M1 = M1 = κ. To

prove (3), suppose there exist u, v ∈ X+, u = x1...xl, v = y1...yl, xi, yi ∈ X, l > 0,

such that (u, v) ∈ Mk+1 but (u, v) /∈ Mk. As Mk+1 ⊆ Ak+1 ⊆ Ak, we know that

prefk−1(u) = prefk−1(v), suffk−1(u) = suffk−1(v) and swk(u) = swk(v). Then, there

must be a word w ∈ swk(u) such that µ(w, u) = n, µ(w, v) = m and n > m (the case

m > n is similar). Firstly, we suppose that w �= suffk(u) and w �= prefk(u). Let us

order the set of the n occurrences of w in u, denote by i′ the place corresponding to
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the ith appearance of w in u, and by wi′ the appearance of w in the place i′, that is

to say u = x1...xi′−1wi′xi′+k...xl. For example, if u = bbabab and w = ba, then 1′ = 2,

2′ = 4 and u = bw2w4b.

As (u, v) ∈ Mk+1, the words w1′x1′+k, ..., wm′xm′+k must occur at m different places

{j1, ..., jm} ⊆ {2, ..., l − k} in v. Now, the word w(m+1)′x(m+1)′+k must also be one of

the words w1′x1′+k, ..., wm′xm′+k and occurs in a place j ∈ {j1, ..., jm} at v, because

Mk+1 ⊆ Ak+1, but this would imply that µ(wx(m+1)′+k, u) > µ(wx(m+1)′+k, v) that is

a contradiction. Therefore, n > m cannot hold. Similarly, n < m is not possible, and

thus n = m.

Now, if w = suffk(u) (and w = prefk(u)) we can apply the same argument to the

remaining n − 1 > m − 1 (n − 2 > m − 2) occurrences of w in u. The fact that

M1 = κ is obvious. As for every x, y ∈ X, (yk+1xyk, yk−1xyk+2) ∈ Mk \ Mk+1, the

inclusions are strict for |X| > 1. If |X| = 1, then again Mk = ∆X+ . Statement (4)

follows directly from the definition of Mk. �

To describe the classes defined by the relation Mk, we start by observing that

[u]Mk
⊆ c(u) for every u ∈ X+, because Mk ⊆ κ. That is to say, the elements of

[u]Mk
are permutations of u. For any word u = x1...xn ∈ X+, and any permutation

σ ∈ Sn, let σ(u) = xσ−1(1)...xσ−1(n). For example, if u = abaab = x1...x5 and

σ =


 1 2 3 4 5

2 3 1 4 5


 ,

then σ(u) = xσ−1(1)...xσ−1(5) = x3x1x2x4x5 = aabab.

To ensure that σ(u) has the same (k − 1)-prefix ((k − 1)-suffix) as u, the per-

mutation σ must satisfy xσ−1(1) = x1, xσ−1(2) = x2, ..., xσ−1(k−1) = xk−1 (xσ−1(n) =

xn, ..., xσ−1(n−k+2) = xn−k+2). Similarly, for σ(u) to have the same k-subwords as u,

xσ−1(j+1)xσ−1(j+2)...xσ−1(j+k−1) = xσ−1(j)+1xσ−1(j)+2...xσ−1(j)+k−1 must hold for every

1 � j � n− k + 1.

For example, if k = 2, the σ(u) given above satisfies the conditions for u = abaab:

xσ−1(1) = x3 = a = x1, xσ−1(5) = x5 = b and xσ−1(1)+1 = x4 = x1 = xσ−1(2), xσ−1(2)+1 =
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x2 = xσ−1(3), xσ−1(3)+1 = x3 = x4 = xσ−1(4), xσ−1(4)+1 = x4 = x1 = xσ−1(5).

Let us define Tk(u) ⊆ Sn as the set of permutations σ ∈ Sn such that

• xσ−1(1) = x1, ..., xσ−1(k−1) = xk−1,

• xσ−1(n) = xn, ..., xσ−1(n−k+2) = xn−k+2, and

• xσ−1(j)+1 = xσ−1(j+1), ..., xσ−1(j)+k−1 = xσ−1(j+k−1), for all 1 � j � n− k + 1.

5.2.3 Lemma For any word u ∈ X+, [u]Mk
= {u} if n � 2k−1, and [u]Mk

= {σ(u) |

σ ∈ Tk(u)} for n > 2k − 1.

Proof. The first statement was proved in [25]. Let us suppose that u = x1...xn and

v = y1...yn ∈ [u]Mk
. To see that v = σ(u) for some σ ∈ Tk(u), let us define the

permutation σ ∈ Sn by σ(i) = min{j | yj...yj+k−1 = xi...xi+k−1, ∀l < i, j �= σ(l)} for

i � n − k + 1 and σ(i) = i for n − k + 1 < i � n. It is clear that σ thus defined

belongs to Tk(u). The converse is true by the definition of Tk(u). �

5.2.4 Proposition For any k � 1, the family {Mk(X)}X is consistent.

Proof. Let us consider a morphism ϕ : X+ → Y +, and two Mk -related words

u, v ∈ X+. The facts that Mk ⊆ κ and lg(u) = lg(v) imply lg(uϕ) = lg(vϕ). The

conditions prefk−1(uϕ) = prefk−1(vϕ) and suffk−1(uϕ) = suffk−1(vϕ) are obvious. If

w ∈ swk(uϕ), then there must be a word u′ ∈ swj(u), j � k, such that w ∈ swk(u
′ϕ).

Now, swj(u) = swj(v) implies u′ ∈ swj(v) and hence w ∈ swk(u
′ϕ) ⊆ swk(vϕ). The

proof of the converse inclusion swk(vϕ) ⊆ swk(uϕ) is similar. If w ∈ Xk, µ(w, uϕ) =

n, and we order the occurrences of w from the left, then for each i ∈ [1, ..., n] there

are words si, ui, ti ∈ X∗ such that u = siuiti, lg(s1) < lg(s2) < ... < lg(sn) and the ith

occurrence of w in uϕ appears in uiϕ, ui ∈ X�k. Since µ(ui, u) = µ(ui, v) for every

i ∈ [1, ..., n], ui appears in v at least as many times as it appears in the sequence

u1, u2, ..., un, and hence vϕ contains at least n occurrences of w. Hence, µ(w, uϕ) �

µ(w, vϕ). By interchanging the roles of u and v, the equality µ(w, uϕ) = µ(w, vϕ) is

obtained. We can then conclude that Mk(X) ⊆ ϕ ◦Mk(Y ) ◦ ϕ−1 �
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The results in chapter 3 (section 3.5), apply to {Mk(X)}X as the family {θ ∈

FCon(X+) | Mk(X) ⊆ θ}X is a pseudo-principal +-filter and the corresponding +-

variety Mk is a pseudo-principal +-variety. Moreover, as Mk(X) has regular (finite)

classes, according to Corollary 3.5.14, the following statement holds true.

5.2.5 Proposition For every k � 1, a regular language L ⊆ X+ has a least upper

Mk-approximation if and only if LMk(X) is a regular language.

5.2.3 Modifying Jk(X)

In [33] the authors propose to extend the above definitions to scattered subwords.

For this purpose, let us define the relation Jk(X) on X+ by

(u, v) ∈ Jk(X) ⇔ (u, v) ∈ Jk(X), and lg(u) = lg(v).

The relation Jk(X) is a refinement of Jk(X), the congruence associated to piece-

wise k-testable languages introduced in Chapter 3, and it is a congruence of infinite

index on X+. The family {Jk(X)}X is not consistent, because it does not satisfy

Jk(X) ⊆ κ. For example when |X| > 1, (aabab, abbab) ∈ J2(X) \ κ. We summarize

some of its properties in the following

5.2.6 Proposition For any alphabet X, u ∈ X+, L ⊆ X+, and k � 1,

(1) Jk ⊂ Jk,

(2) Jk+1 ⊆ Jk, and the inclusion is proper if |X| > 1,

(3) [u]Jk = {u} if lg(u) � 2k − 1,

[u]Jk = (
⋂

s∈sswk(u)
s ◦X∗ \

⋃
t∈Xk\sswk(u)

t ◦X∗) ∩X lg(u) if lg(u) > 2k − 1,
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(4) the rough approximations of a language L under Jk are finite unions of sets of

the form C ∩
⋃

j∈I X
j where C is a piecewise k-testable language and I ⊆ N,

and

(5) if L is context-free, then the sets I in (4) form arithmetic sequences and the

rough approximations of L under Jk are regular.

Proof. The inclusion in (1) follows from the definition, and it is proper because

(xk+1, xk) ∈ Jk \ Jk for every x ∈ X. To prove (2), observe that (u, v) ∈ Jk+1 ⊆

Jk+1 ⊆ Jk, implies (u, v) ∈ Jk, and as lg(u) = lg(v), we can conclude that (u, v) ∈ Jk.

When |X| = 1, Jk = ∆X+ , and if |X| > 1, the inclusion is proper because for every

x, y ∈ X, (yk+1xk, ykxk+1) ∈ Jk \ Jk+1. The fact that a word of length less or equal

than 2k − 1 is determined by its set of scattered subwords of length k, was proved

in [42] (cf. also [25]), thus [u]Jk = {u} if lg(u) � 2k − 1. The characterization of

the classes of a word of length greater than 2k − 1 follows from the definition of the

relation. The fact (4) is a consequence of (3). The proof of (5) is the same, mutatis

mutandis, as the one of statement (5) in proposition 5.1.8. �

5.3 Some comments on accuracy

The length condition imposed in the definitions of the relations in this chapter tends

to make the approximations better when the original language has gaps in its density

function, for example the ρ2 -approximation of the language R = (X2)+ is Rρ2 =

X2X∗ but the P2 -approximation gives immediately RP2 = R. The ρ2 -accuracy does

not exist in this case (cf. example 4.2.6). However, when the language has no gaps,

the length condition makes little difference in the approximations. We show some

examples of these situations and how our measures of accuracy can reflect them.

5.3.1 Example Let X = {0, 1}.

(1) The language R1 = {w ∈ X+ | |w|0 ≡2 0} has density dR1(m) = 2m−1. The

approximations Rρ3
1 = {1, 00, 11}∪X3X∗, RP3

1 = {1, 00, 11, 001, 010, 100, 111}∪
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X3X+, have densities dRρ3
1
(m) = d

R
P3
1
(m) = 2m for every m � 4, and the

accuracies are Acc(R1, P3) = Acc(R1, ρ3) = limm→∞
2m−1

2m
= 1/2. The equality

in the accuracy, reflects the fact that both approximations are similar in this

no-gaps language.

(2) An interesting case showing how different the behavior of accuracies of ap-

proximations under ρk and Pk can be, is illustrated by R = {00} ∪ 11+. We

have RP2 = {00} ∪ 11X∗ and Rρ2 = 00X∗ ∪ 11X∗, thus dRP2 (m) = 2m−2 <

2 · 2m−2 = dRρ2 (m) for every m > 2. It is clear that both Acc(R, ρ2) and

Acc(R,P2) are zero, but the fact that the P2-approximation is better is shown

by limm→∞ |RP2 ∩ Xm|/|Rρ2 ∩ Xm| = 1/2. This kind of phenomenon occurs

when there is a word u of length k in the language that does not appear as a

k-prefix in any other word of the language. Then, uX∗ is added to Rρk but just

{u} is added to RPk .

(3) This example is a variation of the previous one, in which the accuracy, as we

define it, does show the difference between ρk and Pk-approximations. Let

R = {00} ∪ 11R1, where R1 is the language in the item (1) above. In this

case we have again RP2 = {00} ∪ 11X∗ and Rρ2 = 00X∗ ∪ 11X∗, but now

for every m � 3, dR(m) = 2m−3, thus Acc(R, ρ2) = limm→∞
2m−3

2·2m−2 = 1/4 and

Acc(R,P2) = limm→∞
2m−3

2m−2 = 1/2.

(4) Consider now a language with gaps. The language R = (111 + 000)+, is better

approximated by P3 than by ρ3. Indeed, RP3 = (111 + 000)(X3)∗, and Rρ3 =

(111+000)X∗. The accuracy in the limit is in both cases 0, but for every n � 2,

Acc(R,P3, 3n) =
(2n+1−2)7
23n+1−2

> 2n+1−2
23n−1−2

= Acc(R, ρ3, 3n).

(5) Finally, we give an example comparing the accuracy attained in λk and in Ak-

approximations. Let R = (00)+(11)+. We obtain Rλ2 = 00+11+ and RA2 =

00+11+ ∩ X2(X2)+. To calculate the accuracies we consider the even and the

odd lengths separately because neither the language, nor the A2-approximation,
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have words of odd length. For every n � 2,

lim
n→∞

Acc(R, λ2, 2n) = lim
n→∞

(1 + 2 + ...+ n− 1)

(1 + 2 + ...+ 2n− 3)

= lim
n→∞

n(n− 1)

(2n− 3)(2n− 2)
= 1/4,

lim
n→∞

Acc(R, λ2, 2n+ 1) = lim
n→∞

(1 + 2 + ...+ n− 1)

(1 + 2 + ...+ 2n− 2)

= lim
n→∞

n(n− 1)

(2n− 2)(2n− 1)
= 1/4

and

lim
n→∞

Acc(R,A2, 2n) = lim
n→∞

(1 + 2 + ...+ n− 1)

(1 + 3 + ...+ 2n− 3)

= lim
n→∞

n(n− 1)

(n− 1)(2n− 2)
= 1/2,

lim
n→∞

Acc(R,A2, 2n+ 1) = lim
n→∞

(1 + 2 + ...+ n− 1)

(1 + 3 + ...+ 2n− 3)

= lim
n→∞

n(n− 1)

(n− 1)(2n− 2)
= 1/2,

Therefore, the accuracies Acc(R, λ2) and Acc(R,A2) exist, and the inequality

Acc(R, λ2) = 1/4 < 1/2 = Acc(R,A2) shows the fact that a language with gaps

like this, may be better approximated by A2 than by λ2.

In general, we can state that

5.3.2 Proposition Let R ⊆ X+ and k � 1. Whenever the involved limits exist,

(1) Acc(R, ρk) � Acc(R,Pk),

(2) Acc(R, Jk) � Acc(R, Jk)), and

(3) Acc(R, λk) � Acc(R,Ak) � Acc(R,Mk).
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Proof. To prove (1) it is enough to observe that Pk ⊆ ρk implies RPk ∩ X�m ⊆

Rρk ∩ X�m, and hence Acc(R,Pk,m) � Acc(R, ρk,m) for every m � 1, therefore

Acc(R,Pk) � Acc(R, ρk). The proof of the rest of the inequalities is completely

similar. �

5.4 Concluding remarks

As the work of Pǎun, Polkowski and Skowron [33] seems to be one of the few predeces-

sors of our work on rough approximation of languages in the literature, in this chapter

we studied their approach in some detail. The indiscernibility relations they define

are not always congruences, in some cases they are not even equivalence relations,

and they have all infinite index. We performed the modifications needed to obtain

congruences, described the general features of these relations, and in most cases we

gave characterizations of the equivalence classes under them. Some are related to the

families of k-definite, reverse k-definite, k-testable and piecewise k-testable studied

previously, so that we compared the rough approximations they generate with those

of the mentioned families. The characterization of the classes of Mk is a combinato-

rial problem that remains to be solved. It is worth noting the case of {Mk}X , that

turns out to be a consistent family, giving a new pseudo-principal +-variety to which

we applied our previous results. Finally we showed some examples of the accuracy

of the rough approximations given by the new relations comparing them with the

old ones. In general, we observed that the approximations under relations with the

length condition tend to be better when the original language has gaps in its density.

A full study of approximations under tolerance relations remains to be done, but this

task would certainly require a different theoretical framework.
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