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Abstract

We study approximations of regular languages by members of a given variety £ of
regular languages. These are upper or lower approximations in the sense of Pawlak’s
rough set theory with respect to congruences belonging to the variety of congruences
corresponding to L. In particular, we consider the closest upper and lower approx-
imations in £. In so-called principal varieties these always exist, and we present
algorithms for finding them, but for other varieties the situation is more complex.
For non-principal + -varieties we study conditions for the existence of the closest up-
per and lower approximations. In particular, we consider varieties that are the union
of a directed family of principal + -varieties, and pseudo-principal + -varieties, that
are defined in this work.

Next, we consider the accuracy of the considered approximations, measured by the
relative density of the object language in the approximation language and the asymp-
totic behavior of this quotient. In particular, we apply our measures of accuracy to k-
definite, reverse k-definite, i, j-definite, k-testable and commutative approximations.
Finally, we examine rough approximations under some infinite index indiscernibility
relations as they were presented by Paun, Polkowski and Skowron (1997), looking at
how they fit in our framework. We study their general features, comparing them with
some of the families already studied, and in some cases introducing modifications in
their definitions to make them congruences.

Although we consider mostly Eilenberg’s + -varieties, the general ideas apply also
to other types of varieties of languages. Our work may also be viewed as an approach
to the characterizable inference problem in which a language of a certain kind is to
be inferred from a given sample.
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Chapter 1

Introduction

In this work we consider the problem of approximating a given regular language by
languages from a given family of regular languages. Here the target families will be
+ -varieties as defined by Eilenberg [12], i.e., varieties of regular languages that do
not contain the empty word, but the general ideas apply equally well to other kinds of
varieties of languages such as *-varieties [12] or varieties of regular tree languages (cf.
[45, 46], for example). This kind of approximating languages may also be regarded as
an approach to the inference of regular languages. The inference of a language from
a sample is an important problem and many inference methods for various types of
languages have been proposed (cf. [2, 15, 30], for example). Of special interest are the
so-called characterizable inference methods that always produce a language belonging
to a given family of languages. To infer a language in some + -variety £ from a given
sample S, we may either directly approximate S in £, or then first obtain a regular
extension R of S by some heuristic method, for example, and then approximate this
R with a member of the variety L.

As shown by Thérien [48, 49|, for each +-variety £ there is a corresponding
variety of congruences £° on the free semigroups generated by finite alphabets. A
language belongs to L iff it is saturated by a congruence belonging to £¢, and all
the approximations that we consider are based on some congruence in £¢. If R is a
language over an alphabet X, then for any congruence 6 on X+, we define the lower

f-approximation Ry and the upper f-approximation R? of R as in Pawlak’s rough set
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theory [34, 35] (cf. also [31] or [40]). Of special interest are the closest approximations,
the greatest lower £-approximation R, and the least upper £-approximation R*, and
a part of our work is centered around them.

Some basic notions and our general notation is introduced in Chapter 2. In Chap-
ter 3 we study and describe approximations of regular languages by members of several
types of varieties £ of regular languages. In 3.1 we start considering the upper and
lower rough approximations R’ and Ry of a language R over an alphabet X with
respect to a given congruence 6 on the free semigroup X . These have naturally all
the general properties of rough approximations. If 6 is of finite index, they are always
regular languages, and we present algorithms for finding them when R is a regular
language given by a finite recognizer (and 6 is effectively given).

In 3.2 we first recall Eilenberg’s [12] + -varieties and Thérien’s [49] corresponding
varieties of congruences that we call simply + -filters. Then we define approximations
in +-varieties. For any upper (lower) approximation of a given language R by a
language L belonging to a +-variety £, there is a congruence 6 in the + -filter L£¢
that corresponds to £ such that R € R’ C L (L C Ry C R). In particular, if the
least upper L-approximation R® (greatest lower L-approximation R;) of R exists,
then R = R’ (R; = Ry) for some congruence  in L°.

In 3.3 we consider the case of principal varieties; a + -variety £ is principal if the
congruences in L¢ corresponding to each alphabet form a principal filter. Since a
smaller congruence always yields approximations that are at least as close to a given
language as those given by a larger congruence, it follows that in a principal + -variety
L, the closest approximations R* and R, exist for every language R. We shall also
present a few concrete examples of constructions of recognizers for approximations of
a given language in a principal +-variety by using the algorithms of 3.1. For each
such + -variety, a suitable practical formulation of the algorithm used is given.

For non-principal + -varieties the situation is far more complex. One of our propo-
sitions in 3.4 implies that in many well-known non-principal + -varieties £, the closest
approximations R- or R, exist only for languages R that themselves belong to £. On

the other hand, there are non-principal + -varieties such that a language may have

10
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one of the closest approximations while the other one does not exist.

In 3.5 we consider an important special case of non-principal + -varieties, the + -
varieties that in Eilenberg’s Variety Theorem [12] correspond to equationally defined
varieties of finite semigroups. We show that these also can be viewed as natural
generalizations of principal varieties. The main result is a theorem that tells when a
given language has a least upper approximation in an equational + -variety. In 3.6

we present some concluding remarks of the chapter.

In Chapter 4 we study the accuracy of the considered approximations. In Section
4.1 we calculate the densities of the languages in the target +—varieties. In Section
4.2 we present two definitions of the accuracy of the upper rough approximation of a
language. The first one is simply the quotient of the cardinality of the set of words
up to a certain length in the language and the cardinality of the set of words up
to the same length in the approximation language. The second is the limit of the
first one when the length approaches infinity. Some basic properties and particular
features of both definitions of the accuracy of approximations are shown. In Section
4.3 we look at the accuracy of approximations of languages over a one-letter alphabet
and in Section 4.4 we establish the attainable accuracy values for approximations
of languages of a given density over any alphabet, in the already mentioned target

families. Finally, in Section 4.5, we make some concluding remarks.

Although the ideas of rough set theory have been applied in numerous areas,
it seems that not much has been done along these lines in formal language theory.
As a notable exception, we can mention the work by Paun, Polkowski and Skowron
[32, 33]. These papers focus on approximating languages with respect some given
similarity relations between words and the convergence of successive refinements of
such approximations. In Chapter 5, we look into [33] in more detail. The relations
defined by the authors are indiscernibility relations that are in some cases congruences,
in some cases only tolerance relations, and they all have infinite index, because the
related words are required to have the same length. We study some of them in
Section 5.1, showing their relation to the families and rough approximations already

considered. In Section 5.2, we present some modifications to make them fit better in

11
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the theoretical context of our work. Finally, in Section 5.3, we make some comments
about the accuracy of the rough approximations shown in the chapter, comparing
them with the accuracy of the rough approximations in the families they are closely

related.

12
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Chapter 2

Preliminaries

Sometimes we write A := B to indicate that A is defined to be equal to B. The basic
set-theoretic symbols N, U, C, C, ... have their usual meanings. The complement
U\ A of a subset A of a given universe U is denoted by A’, and the power set of A
by p(A). The cardinality of a set A is denoted |A]|.

Let & C A x B be a relation from a set A to a set B. The fact that (a,b) € 0
for some a € A and b € B, is expressed also by writing a@b. The converse of 0 is
the relation 6=! := {(b,a) | (a,b) € 8}. The product of § and any p C B x C is the
relation 6 o p := {(a,c) | (3b € A) abb, bpc}. The diagonal relation {(a,a) | a € A}
and the universal relation A x A are denoted by A4 and V 4, respectively. A relation
0 C Ax Ais an equivalence on A if Ay C 6,01 C 0 and 6o C 6. Let Eq(A)
be the set of all equivalences on A. For any 6 € Eq(A), the quotient set A/ is the
set {[a]g | @ € A}, where [a]p := {b € A | afb} is the f-class of a € A. The natural
mapping A — A/0, a — [a]y is denoted by vy. If A/0 is finite, 6 is said to be of finite
inde.

An equivalence 0 € Eq(A) saturates a subset H C A if H is the union of some
O-classes. Let Sat(f) denote the set of all subsets of A saturated by 6. The following

facts are easy to prove.

2.0.1 Lemma For any set A and any equivalences 0, p € Eq(A),

(a) if 6 C p, then Sat(0) 2 Sat(p), and

13
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(b) Sat(8V p) = Sat(6) N Sat(p). O

For any mapping ¢: A — B, we often write ap for the image ¢(a) of an element
a € A. Furthermore, for any H C A and any K C B, we set Hp := {ap | a € H}
and Ko':={a € A|ap € K}. If 0 € Eq(B) is an equivalence on B, then pofop™
is the equivalence {(a1,a2) € A x A | a1p 0 asp} on A.

All the lattice theory needed here can be found in 7] or [10], for example. Partial
orders are called simply orders. Hence an ordered set (A, <) consists of a non-empty
set A and a relation < on A that is reflexive, antisymmetric and transitive. A lattice
is an ordered set (A, <) such that any two elements a,b € A have a least upper
bound, the join a Vb, and a greatest lower bound, the meet a Ab. A complete lattice
is an ordered set (A, <) such that the least upper bound sup H and the greatest
lower bound inf H exist for every H C A. Recall that a filter of a lattice (A, <) is
a non-empty subset F' of A such that (1) @ < b and a € F imply b € F, and (2)
aAb € F whenever a,b € F. The filter generated by a non-empty subset H C A, i.e.,
the least filter [H) containing H, can easily be shown to be the set {a € A | (In >
0)(3by1,...b, € H)by A ... ANb, < a}. The principal filter [a) == {x € A]a < x}
generated by any given element a € A is the least filter that includes a as an element.

Let us now review some basic notions from the theory of finite automata and
regular languages (cf. [1, 11, 12, 23, 22, 51|, for example).

An alphabet is a non-empty set of symbols called letters. If X is an alphabet, then
X* denotes the set of all (finite) words over X, ¢ is the empty word, and X% is the
set of non-empty words over X. Subsets of X* are called languages, and subsets of
X are e-free languages. As usual, X* and Xt stand, respectively, also for the free
monoid and the free semigroup generated by X with concatenation as the operation.
Unless stated otherwise, an alphabet is always assumed to be finite.

The length of a word w € X* is denoted by lg(w), and |w|, is the number of
appearances of a letter z € X in the word w. For any k > 0, let X* := {w €
X* | lg(w) = k}, X2F = {w € X* | lg(w) > k}, X=F = {w € X* | Ig(w) < k},
Xk = {w e X* | 1g(w) > k}, and X<F := {w € X* | lg(w) < k}. For any integer

14



UNIVERSITAT ROVIRA I VIRGILI
ROUGH APPROXIMATIONS IN VARIETIES OF REGULAR LANGUAGES
Gabriela Susana Martin Torres

k > 0 and any word w € X*, we define the k-prefiz pref, (w) and the k-suffiz suffy(w)

of w as follows:
(1) if lg(w) < k, then pref, (w) = suffy(w) = w, and

(2) if lg(w) > k, then pref, (w) is the word w of length k such that w = uwv for some
v € X7, and suffy(w) is the word v of length &k such that w = wv for some

ue Xt

Moreover, the set of subwords of w of length & is defined to be
swi(w) == {v e X*| Qu,v’ € X*)w = uvu'}.

Any alphabet X is also regarded as a set of unary operation symbols, and an
X -algebra is then a system A = (A, X) in which A is a nonempty set and each letter
r € X is interpreted as a unary operation 2*: A — A. The mappings w: A — A
induced by words w € X* are obtained in the natural way: e is the identity map
14 on A, and a(vz)? = (avt)z? for any a € A, v € X* and v € X. Any finite
X-algebra A = (A, X) is also regarded as an X -automaton, and then A is its (finite)
set of states and X is called its input alphabet. The free X-algebra Fx = (X*, X)
generated by {e} has the words over X as its elements and for each z € X, the
operation z7%: X* — X* is defined by uaz’* = ux (u € X*). Of course, uv’™ = uv
for all u,v € X*.

An equivalence 6 € Eq(A) is a congruence on an X-algebra A = (A4, X) if, for
any a,b € A, a6 b implies that az? 0 ba* for every x € X. If 6 is a congruence on A,
then the quotient algebra A/ = (A/6, X) defined by setting [a]pz?/? = [az*]y, for
any a € A and z € X, is a well-defined X-algebra.

For any kind of algebra A, let Con(.A) and FCon(.A) denote the sets of all con-
gruences on A and all congruences on A of finite index, respectively. Obviously,
Con(X*) C Con(Fx) and FCon(X*) C FCon(Fx) for any alphabet X. In fact, the
congruences on the X-algebra Fx are exactly the right congruences on the monoid

X*.

15
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An X-recognizer A = (A, ag, F') consists of an X-automaton A = (A, X), an
initial state ay € A, and a set of final states FF C A. The language recognized by
A is the set L(A) := {w € X* | aqpqw™ € F}. A language L C X* is recognizable,
or regular, if L = L(A) for some X-recognizer A. In this work we consider e-free
languages only. Let Rec(X) denote the set of all e-free regular languages over X, and
let Rec = {Rec(X)}x be the family of all e-free regular languages, where X ranges

over all finite alphabets.

16
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Chapter 3

Rough approximations in a +-variety

In this chapter, we study and describe approximations of regular languages by mem-
bers of several types of varieties of regular languages. We start considering the upper
and lower rough approximations R and Ry of a language R over an alphabet X with
respect to a given congruence f on the free semigroup X*. As shown by Thérien
[48, 49], for each + -variety £ there is a corresponding variety of congruences £¢ such
that a language belongs to L iff it is saturated by a congruence belonging to £¢, so
that we consider approximations based on some congruence in £¢. We then study
+ -varieties in general, for any upper (lower) approximation of a given language R
by a language L belonging to a +-variety L, there is a congruence 6 in the + -filter
£ that corresponds to £ such that B C R’ C L. Next we consider the case of
principal varieties; a +-variety £ is principal if the congruences in L€ corresponding
to each alphabet form a principal filter, in this case the approximations always exist,
and we show how to calculate them in some cases. For many well-known families
of non-principal + -varieties, the closest approximations R* or R, exist only for lan-
guages R that themselves belong to £. Finally, we study an important special case
of non-principal + -varieties, the + -varieties that in Eilenberg’s Variety Theorem [12]
correspond to equationally defined varieties of finite semigroups. We present a theo-
rem that tells when a given language has a least upper approximation in an equational

+ -variety. All the results, unless noted otherwise, come from our paper [27].

17
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3.1 Rough approximations modulo a congruence

As it turns out that the approximations of languages that we want to find, actually are
defined by certain congruences on the free semigroups X, we begin by introducing
approximations of languages modulo such congruences. The following notions are

derived from Pawlak’s [34, 35] theory of rough sets (cf. also [31, 40]).

3.1.1 Definition Let 6 be any equivalence relation on X+ for some alphabet X. The
upper 0-approzimation of a language R C X+ is the language R? := (J{[w]s | w € R}
and the lower 8-approximation of R is the language Ry := J{[w]y | [w]s C R}. O

The upper approximation R? is the union of all f-classes that intersect with R,
while Ry is the union of all §-classes totally contained in R. In the following lemma
we list some well-known general properties of #-approximations that do not depend
on the nature of the universe of elements considered. Recall that R = Xt \ R for

any RC XT.

3.1.2 Lemma Let X be an alphabet and 6 € Eq(X™) be any equivalence on X+.
The following hold for any languages L, R C X ™.

(a) Ry, R’ € Sat(d) and Ry C RC RC.

0) Pg=0=0° and (Xt)y=X*+=(XT).

(¢c) Re=R iff R=R iff R € Sat(0).

(d) (Ro)g = (Ry)’ = Ry and (R%)y = (R%)’ = R,
(e) (LUR)y)DLyURy and (LUR)? =L°UR’.
(f) (LNR)yy=LygNRy and (LNR)? CLNR.
(g) If LC R, then Ly C Ry and L° C RY.

(h) (R)o=(R’) and (R)"=(Ry)".

The inclusions in (e) and (f) may be proper. O

18
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Assertions (e) and (f) of Lemma 3.1.2 hold more generally for any set S C p(X™)
of languages. In particular, (JS)? = Upes R?. This suggests that the upper 6-
approximation of a language R = {wy, wa,ws, ...} can be obtained inductively as the
limit of the sequence (R;)? C (Ry)? C (R3)? C ... of the upper #-approximations of
the finite subsets R, = {w1,...,w,} (n=1,2,3,...) of R. Indeed, R? = Un21(Rn)e-
On the other hand, the inclusion J,.,(R.)s C Rg may be proper. In fact, it is proper
always when R contains an infinite 6-class.

An equivalence 6 on X7 can also be given as the partition X+ /0 formed by the
f-classes, and every @-approximation is the union of some f-classes. The following
simple lemma expresses the intuitively obvious fact that a finer partition yields closer

approximations.

3.1.3 Lemma Let R C Xt for some alphabet X, and let 6,0 € Eq(X™T). If 6 C o,
then R, C Ry C R C RY C Re. Forf C 0, there exists a language L C X+ such that
L9 C Le, Ly D L,

Recall that the syntactic congruence oy, of a language L C X is defined by
worpv & (Vs,t € X*)(sut € L+ svt € L) (u,v € XT),

and that it is the greatest congruence on X' that saturates L. Moreover, it is of
finite index iff L is a regular language (cf. [12, 23, 38], for example). To prove the

following basic fact it suffices to note that § C oy, for every L € Sat(6).

3.1.4 Lemma If § € FCon(X™), then Sat(d) C Rec(X). In particular, R’, Ry €
Rec(X) for any language R C X+, O

Any congruence 6 on the semigroup X can be extended to a congruence 6 U
{(e,€)} on the free X-algebra Fx = (X*, X) by adding to it a new congruence class
consisting of € only. Let 6 also denote this extended congruence. The quotient algebra

Fx/0 = (X*/0,X) is defined by [u]pz”*/? = [ux]y (u € X*,x € X), and obviously

[elgw”™/% = [w]y for every w € X*.
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This means that if # € FCon(X™"), we get for any L € Sat(f) an X-recognizer
Fy(L) = (Fx/9, [els, F(L)) by letting F(L) be {[w]y | [w]p € L}. In particular, the
f-approximations R’ and Ry of any language R C X+ have recognizers of this kind.
For RY the appropriate set of final states is F'(RY) = {[w]y | w € X, [w]o N R # 0},
and for Ry it is F(Ry) = {[w]e | w € X, [w]s C R}. Of course, these recognizers are

not always minimal although they certainly are connected from the initial state.

Let us now find recognizers for R? and Ry when 6 € FCon(X*) and R C X
is a regular language recognized by a given X-recognizer A = (A, aog, F), where
A= (A4, X). To determine the sets of final states F(R?), F(Ry) C X*/6, we consider
the direct product A x Fx /60 = (A x X*/0, X). Clearly,

uf4xfk/9 _ ( A

(ag, [€]o) apw™, [w]y) for every w € X™.

The sets F(Ry) and F(R?) can now be found by computing the subalgebra
S = {(agw?, [wly) | w € X"}
of A x Fyx /0 generated by (ag, [¢]s). Indeed,
F(R) = {[v]lg € X*/0 | (3a € F)(a,[v]o) € S}

and F(Ry) = {[v]lp € X*/0| (VYa € A)((a,[v]g) € S = a € F)}.

In the following procedure ROUG H, the set S is computed stepwise starting from
the generator (ao, [¢]p) and adding to it for any already found element (a, [u]g) of S
(the loop starting at line (3)) and any x € X (the loop starting at line (4)) the
next state (az?, [uz]y) whenever it is a new element. The variable NEW holds all
the elements of S that have not yet been used for extending S. When (az*, [uz]y)
has been formed for every € X for a given (a, [u]g) € NEW, the pair (a, [u]p) is
deleted from N EW, and it is never re-introduced there because it remains in S. In
line (1), the variables are given their initial values. In particular, F(R?) := @ and

F(Ry) := X*/0 — {[e]o} (note that ag ¢ F'). When a new pair (b, [v]y) € S is found,
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we add [v]g to F(R?) if b € F, but delete it from F(Ry) if b ¢ F. This is repeated

until no new pairs are found.

3.1.5 Procedure ROUGH (A: X-recognizer, 6: congruence of finite index on X ™)
{A = (A, ap, F), where A = (A, X), an X-recognizer for R C X*; § € FCon(X™)
(also extended to 6 € FCon(Fy))}

var S, NEW C A x X*/0; F(Ry),F(R’) C X*/0; a,be A, z€X; ue X

(1) §={(ao,[elo)}; NEW = {(ao, [elo)}; F(R’) = 0; F(Rg) := X*/0;
(2) while NEW # () do begin

(3) for (a,[u]s) € NEW do begin

(4) for z € X do begin

A.

)

b:=ax
if (b, [uz]y) ¢ S then do begin
S = SU{(b, [uzle)}; NEW := NEW U {(b, [ua]e)};

(5) if b € F then F(R®) := F(R®) U {[uz]y} else F(Ry) := F(Ry) —
{luxlo};
end {if} end {if}

end {for}

NEW := NEW — {(a, [ulp)};

end {for}
end {while}
return (F(Ry), F(RY))

First of all, we note that for every w € X* there is a word v € X* such that

A [w]s = [v]p and (agv™, [v]g) is entered to S at some point. This can be

anA = apv
shown by induction on the length of w. In other words, for every w € X*, the pair
(apw, [w]y) is eventually entered to S, and since only pairs of this form are obtained,

the procedure really computes the intended set S.
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Let us now verify that in line (5) the right elements of X* /0 are added to F(R?)
or deleted from F(Ry).

Consider any [v]g € X*/0 — {[e]p}. If RN [v]g # 0, then there is a word w € X
such that w € R and [w]s = [v], and thus (ay, [e]g)w*FX/? = (b, [w]g) = (b, [v]y) for
some b € F. Now (b,[v]s) € S and hence [v] is added to F(R?) when the pair is
encountered for the first time. On the other hand, if RN [v] = (), then agw™ ¢ F for
every w € X7 such that [w]y = [v]g, and [v]y cannot be entered to F(R?). We may
conclude that the value of F(R?) will be correct.

To show that also F'(Ry) finally gets the right value, we first assume that [v]s C R.

A € F for every word such that [w]y = [v]g, and therefore [v]y is never

Then aqw
deleted from F(Rp). On the other hand, if [v]y € R, then there is a word w € Xt
such that w ¢ R and [w]y = [v]s, and then (ag, [e]g)w™*7*/% = (b, [v]y) for some
b ¢ F. Therefore [v]y is correctly deleted from F'(Ry) when the pair (b, [v]y) is formed
for the first time.

If |A| = n, | X*/0] = m and |X| = k, then the inner for-loop is iterated at most
nmk times. The dominating term in the time estimate for each iteration is the time

needed for computing [uz]y from [u]g and z, and this depends naturally much on the

congruence 6 and how it is given.

The following alternative method for computing f-approximations uses the inverse
transition function of the recognizer A = (A, ag, F) of the given language R. Only the
upper approximation is computed but by Lemma 3.1.2 (h) the lower approximation
can be obtained by the same method. Again, one constructs the set S of pairs of the
form (agw*, [w]y), but now some redundancy can be avoided by tracing computations
of A backwards starting from the pairs (a, [¢]g) with a € F, and thus forming words

w for which agw? € F backwards by extending their suffixes letter by letter.

3.1.6 Procedure TROUGH (A: X-recognizer, §: congruence of finite index on X )
{A = (A, ag, F), where A = (A, X), an X-recognizer for R C X*; Inv: A X
X — p(A) the inverse transition function of A; § € FCon(X™) (extended to 6 €
FCon(Fx)}
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var S, NEW C Ax X*/0; F(R%) C X*/0; a,be A; v€X; uc X

(1) for b€ A do for x € X do Inv(b,z) := {a € A| az? = b};

(2) S:={(a,[elo) |a € F}; NEW :=S; F(R’) := 0
(3) while NEW # () do begin

(3) for (a, [u)y) € NEW do begin
(4) for z € X do begin

(5) for b € Inv(a,z) and (b, [zu]s) ¢ S do begin
S = SU{(b, [zu)e)}; NEW := NEW U {(b, [zuls)}:
if b= ay then F(R?) := F(R’) U {[xuls}
end {for}

end {for}

NEW = NEW — {(a, [u)s)}:

end {for}
end {while}
return (F(R?))

Let us now verify that the subset F(RY) is correctly constructed. For this we
consider any [v]p € X*/0 — {[¢]o}.

If RN [v]g # 0, then there is a word w € X such that w € R and [w]y = [v]p.
Let w = zgxy ...z, for some n > 0 and xg, x1,...,2, € X, and let ag, ay,...,a,11 be
the sequence of states that A assumes when accepting w. Since a,.; € F, the
pair (an,41,[els) is entered into the initial sets S and NEW. Moreover, ay_; €
Inv(ag, x_1) for every k = n+1,n,...,1. Hence, we can show by induction on k that
(ak—1, [ukle), where uy, = xp_1 ... x,, is entered to NEW, unless it is already in S, for
every k =n+ 1,n,...,1. Since u; = w, we will eventually get (ag, [w]g) € NEW,
and hence [v]g(= [w]) is added to F(R?).
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Let us now suppose that [v]y € F(R?), that is to say, (a, [v]g) was added to N EW
at some step. This means that there is a word w = zgzy ...z, such that [w]y = [v]s
and, if ag, ay, . . ., a,41 is the sequence of states that A assumes when reading w, then
any1 € F and a1 € Inv(ag, xx_1) for every k =n+1,n,...,1. But this means that

apw? € F and w € R, and therefore RN [v]y # 0.

3.2 Rough approximations in a + -variety

In this section we introduce the problem of approximating a regular language by a
language belonging to a given variety of regular languages. First we review the parts
of Eilenberg’s variety theory needed here fixing at the same time our terminology and
notation. Full expositions can be found in [1, 12, 23, 38, 39], for example.

A + -variety £ = {L(X)}x assigns to each alphabet X a non-empty set £(X) C
Rec(X) of e-free regular languages over X in such a way that for all X and Y,

(1) LN R, L' € L(X) whenever L, R € L(X),

(2) L € £(X) implies that the quotient languages w™L := {u € Xt | wu € L}

and Lw™! := {u € X* | uw € L} are also in £(X) for every w € X, and
(3) L e L(Y) implies Ly~! € L(X) for every homomorphism ¢ : XT — Y.

The homomorphisms in (3) never shorten a word. Note also that we excluded the pos-
sibility that £(X) = 0 for some X. Hence, the least + -variety is Triv = {Triv(X)}x,
where Triv(X) := {0, X7} for each X. It is obvious that the class VRL" of all +-
varieties forms a complete lattice (VRL™, C) when inclusion is defined by the natural
alphabetwise condition: K C £ iff K(X) C L(X) for every X.

Eilenberg’s fundamental Variety Theorem [12] establishes a bijection between + -
varieties and varieties of finite semigroups (pseudovarieties) thus describing the fam-
ilies of regular e-free languages that can be characterized by syntactic semigroups.
However, we shall use the following description of + -varieties by means of certain

systems of congruences added to the theory by Thérien [48, 49|.
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A + -variety of filters of congruences, called here a + -filter for short, T' = {T'(X)} x
assigns to each alphabet X a nonempty set I'(X) C FCon(X™) of congruences of finite
index on X in such a way that for all alphabets X and Y,

(1) I'(X) is a filter of FCon(X*), and
(2) if ¢: XT — Y is a homomorphism and 6 € T'(Y), then po o' € I'(X).

If VFC™ denotes the class of all +-filters, then (VFC™, C) is a complete lattice for
the natural alphabetwise defined C-relation.

The mappings connecting VRLT and VFC™ are defined as follows. For any
+-variety £ = {£(X)}x and any +-filter I' = {T'(X) } x, let

(1) L€ be the +-filter such that for each X, LX) := [{or | L € L(X)}) is the
filter of FCon(X ™) generated by the syntactic congruences of the members of

L(X), and
(2) T be the + -variety where I'(X) := {L C X" | o € ['(X)} for each X.
If we omit varieties of finite semigroups, the Variety Theorem reads as follows.

3.2.1 Proposition The mappings L + L and T + T form a pair of mutually
inverse isomorphisms between the lattices (VRLT,C) and (VFC*,C). That is to

say, both maps are order-preserving, and
(a) L¢ € VFC" and L% = L for every + -variety L, and

(b) Tt € VRL™T and T =T for every + -filter T. a

Let us also recall the following facts that explain why many 4 -varieties are most

naturally defined in terms of the corresponding + -filters.
3.2.2 Lemma Let L be a + -variety. For any X and L C X7,
(a) L € L(X) iff or, € LX), and

(b) L e L(X) iff L € Sat(0) for some 0 € L(X). O
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Furthermore, we also have the following fact.

3.2.3 Lemma Let L be a + -variety and X be any alphabet. For any 6 € FCon(X ™),
Sat(f) C L(X) iff 0 € L(X).

Proof. 1f Sat(f) C L(X), then [w]y € L(X), and hence oy, € LX), for every
w € X*. Therefore also § € L¢(X) because § = ({0, | w € X'} and the number
of different 6-classes [w]y is finite. Assume then that § € £L¢(X). If L € Sat(f), then
6 C oy, and hence L € L(X). O

We shall now introduce the approximations that we are mainly interested in. In
the rest of this section, £ = {£(X)}x is always a fixed, but arbitrarily chosen, + -

variety, and X and Y are any alphabets.

3.2.4 Definition A language L is called an upper L-approzimation of a language
R C Xtif RC L e L(X). The least upper L-approzimation of R is an upper
L-approximation L of R such that L C K for every upper L-approximation K of R,
and when it exists, it is denoted by R*. The lower L-approzimations and the greatest

lower L-approzimation Ry of R are defined dually. a

Clearly, a language R has at most one least upper L-approximation and at most
one greatest lower L-approximation, and hence the symbols R* and R, are justified.
A minimal upper L-approximation of R is naturally an upper L-approximation
L of R for which there is no K € £(X) such that R C K C L, and mazimal lower
L-approximations are defined correspondingly. However, the following lemma shows

that these notions are of no use here.

3.2.5 Lemma If a language R C X has a minimal upper L-approzimation, this
is also the least upper L-approximation of R. Similarly, if R has a mazimal lower

L-approximation, it is the greatest lower L-approzimation of R.

Proof. Assume that R has a minimal upper £-approximation L that is not R*. Then
there is an upper L-approximation K of R such that L C K does not hold. However,
LNK € L(X) since L is a + -variety, and hence LN K is an upper L-approximation of
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R properly included in L, a contradiction. The assertion about lower approximations

follows similarly from the fact that K U L € L(X) for any K, L € L(X). O

The following proposition shows that for any + -variety £, all L-approximations

are determined by the congruences in £°.

3.2.6 Proposition For any languages R, L C X,

(a) L is an upper L-approxzimation of R iff R C L and L € Sat(f) for some 6 €
L(X);

(b) L is a lower L-approximation of R iff L C R and L € Sat(6) for some 6 €
L(X).

Proof. 1f L is an upper L-approximation of R, then R C L and L € £(X), and hence
or € L°(X). Since L € Sat(oy), this proves one direction of (a). On the other hand,
if R C L and L € Sat(f) for some 6 € LX), then L € £L(X) by Lemma 3.2.2, and

hence L is an upper L-approximation of R. Statement (b) has a similar proof. a

3.2.7 Corollary Forany R C X* and any 0 € L¢(X), R is an upper L-approzimation

of R and Ry is a lower L-approximation of R. O

Next we show that every L-approximation either is of the above kind or then it

can be replaced with a closer approximation of this type.

3.2.8 Proposition Consider any language R C X*. If K is any lower L-approzimatio
of R and L is any upper L-approzimation of R, then there is a congruence 6 € L(X)
such that K C Ry C RC R C L.

Proof. Let 0 := ok Nog. Then 6 € LX) because ok, o, € L°(X). Moreover,
K=K; CRyy CRYCRCR CR*CL™ =1L
by Lemma 3.1.2(g) and Lemma 3.1.3 because § C ok, 0 Co,and K CRC L. O
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3.2.9 Corollary Let R C X* for some X. If R exists, then R* = R? for some
0 € L£9(X). Similarly, if Ry exists, then Ry = Ry for some 0 € L5(X). Moreover, if
both R and Ry exist, then RX = R? and Ry = Ry for some § € L¢(X). O

Next we note a connection between least upper L-approximations and greatest

lower L-approximations.

3.2.10 Proposition Let R C X* for some X. Then R* exists iff (R'). exists, and
then R = ((R')). Similarly, R; exists iff (R')* exists, and then Ry = ((R')*)’.

Proof. 1If R exists, then R = RY for some 0 € L£°(X). We claim that (R?) = (R/)..
Of course, (RY) = (R')y is a lower L-approximation of R'. If (R?)" were not the
greatest lower L-approximation of R’, then there would exist a p € £°(X) such that
(R%) c (R), € R'. However, this would imply that R > ((R'),) = R* O R,
contradicting the assumption that R? = R-.

Assume now that (R'). exists. Then (R'); = (R')y for some 0 € £°(X), and it

can be seen that R’ is R®. The second assertion has a similar proof. O

3.2.11 Corollary The least upper L-approzimation R exists for every (regular) lan-
guage R C X7 iff the greatest lower L-approximation Ry exists for every (reqular)
language R C X, a

3.3 Approximations in principal +-varieties

We shall now consider + -varieties of a special kind, the so-called principal + -varieties.
There are many examples of these and many further + -varieties are naturally given
as unions of principal + -varieties. For more about principal varieties, cf. [37, 45, 46].

A + filter T is called principal, if for each alphabet X, I'(X) is a principal filter,
ie., I'(X) = [y(X)) for some congruence v(X) € FCon(X ™). A +-variety £ is called
principal if L€ is a principal + -filter. The following lemma (cf. [45]) can be used for

verifying that a system of congruences yields a principal + -filter.
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3.3.1 Lemma Assume that we are given a congruence (X) € FCon(X™) for each
alphabet X. Then T = {[v(X))}x is a principal + -filter iff v(X) C poy(Y)op™?

for all X andY and every homomorphism ¢ : Xt — YT,

By applying the above condition to the endomorphisms ¢ : X* — X*, we see
that in a principal +-filter I = {[y(X))} x, the congruences v(X) are fully invariant.
The following basic fact is an immediate consequence of Lemma 3.1.3 and Proposition

3.2.8.

3.3.2 Proposition For any principal + -variety L, all least upper L-approzimations
and all greatest lower L-approzimations exist. More precisely: if L5 = {[v(X))}x,
then R = R'™ and Ry = Ry(x) for any X and R C X*.

In the next examples, we consider two well-known families of principal + -varieties.

3.3.3 Example For any k > 0 and any X, we define the relation §;(X) on X+ by
wp(X)v & suffy(u) = suffy(v) (u,v € XT).
Clearly, 6x(X) € FCon(X™) for every k > 0, and
XV6,(X) = {{wy |we XF w#c}u{Xw|we X*},

i.e., each word w € X of length < k forms a singleton class {w} and each word
w of length k determines the class X*w of all words ending in w. In particular,
X*1/60(X) = {XT}. Moreover, by using Lemma 3.3.1 it is easy to see that kDef¢ :=
{[6c(X))}x is a principal +-filter. A language L C X7 is k-definite [17, 36] if
it is saturated by 0x(X), that is to say, if the membership of a word w in L is
determined by suffy(w). Hence, the family of k-definite (e-free) languages kDef =
{kDef(X)}x is the principal + -variety corresponding to the + -filter £De f¢. Because
I6(X) D dpy1(X) for every k > 0 and any X, we have a properly ascending chain
0Def¢ C 1Def¢ C 2Def¢ C ... of principal +-filters and a corresponding chain
0Def C 1Def C 2Def C ... of principal + -varieties. For any language R C Xt and
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each k > 0,
Rl = %) = (RN X U {X*w |w e X*, RN X"w # 0},
and similarly
Riper = Rsx) = (RNXF)U| J{X"w | we X" X*w C R}

In particular, ROP¢/ = X for any R # (), Ropey = 0 for any R C X and (°P¢/ = (),
Xipes = XT. O

3.3.4 Example The following definitions, notation and results were taken from [24]
(cf. also [42], [12] (VIIL.9) and [38], Chapter 4.1).

We say that a word w = x;...x, € X*, where x1,...,x, € X, is a scattered subword
of u € X* if u = wyxuomws...x 1 for some uy, ..., u, 11 € X*. The set of scattered
subwords of length (at most) k of a word u is denoted by sswy,(u) (sswex(u)). Let

Ji(X) be the relation defined on X* by
(u,v) € Jp(X) < sswep(u) = ssweg(v)

Observe that if the length of a word w is greater than k& and has the same set of
scattered subwords of length & as another word v, then ssweg(u) = sswey(v), thus

the above definition splits into two parts:
Vu,v € X, if lg(u) < k, then (u,v) € Jp(X) iff u= .
Vu,v € X1, if 1g(u) = k, then (u,v) € Jp(X) iff sswy(u) = sswy(v).
The shuffle of u,v € X* is the set v o v = {wV1.. UV, | Uty ooy Up, V1, ooy Uy €

X* U = Up..Up,v = v1...05,n = 0}. The shuffle of two languages A, B C X* is

AoB:UueA’veBuov.
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For any alphabet X and k > 0, Ji(X) € FCon(X™), and

XHI(X) = {{u} Jue XFPu{((Vse X"\ |J toX")[5C X}
seS teXk\S
Then, each word u of length < k forms a singleton class, and each word u of length

> k, determines the class (),cg 50 X\ Ucxn gt 0 X*, where S = sswy(u).

For any morphism ¢ : Xt — Yt if (u,v) € Jp(X) then (ug, vg) € Ji(Y), because
sswy(u) = sswy(v) obviously implies sswy(u¢) = sswi(vg). Applying lemma 3.3.1,
we can conclude that the family J¢ = {[Jx(X))}x is a principal +-filter.

A language R C X is piecewise k-testable if it is saturated by Ji(X), that is to
say, if the membership of a word v in R is determined by sswy(u).

Hence, the family of piecewise k-testable (e-free) languages J, = {Jx(X)}x is
the principal + -variety corresponding to the principal + -filter J and thus, for every
regular language R C X, k > 0, the least upper Jp-approximation and the greatest

lower Ji-approximation exist. Moreover,
R = RO = (RAXF)U{( (] soX*\ |J toX")|ueRNX>"}
s€Esswi (u) teXk\ssw(u)

and

Rz, =Ry (x) =

(ROXHFHU{([(VsoX*\ |J toX)[SCX"([VsoX"\ [J toX")CR}
s€s teXF\S ses teXM\S

A language is piecewise testable if it is piecewise k-testable for some k& > 0. As

Je(X) D Jer1(X) for every k > 0 and any X, we have a properly ascending chain

Js € Jf € J5 C ... of principal +-filters and a corresponding chain Jy C J1 C

J2 C ... of principal +-varieties. Hence, the union J = (J,.,{Jk(X)}x is a non-

principal +-variety. We consider approximations in this type of variety in the next
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section.

Let £ be a principal + -variety defined by a principal + -filter £¢ = {[y(X))} x and
let R C X* be a regular language. By Proposition 3.3.2, recognizers for R and R,
can be constructed from the quotient algebra Fx /v(X) as described in Section 3.1 by
applying ROUGH or IROUGH to the congruence v(X). When using ROUGH in
this situation, it may be convenient to replace the quotient algebra Fy /v(X) with an
isomorphic X-algebra F(v(X)) = (W(y(X)), X) in such a way that the isomorphism
is given by a map [w],(x) +— @ assigning to each vy(X)-class [w],(x) an element @ of
W(v(X)) that in a natural way identifies the class. Moreover, it has to be assumed
that there is an effective procedure to compute the representative w € W (v(X)) of
[w]y(x) for any given word w € X*. When IROUGH is used, we don’t make use of
the algebraic structure of Fx/v(X), and hence it suffices to introduce a suitable set
W (y(X)) of representatives for the v(X)-classes. Of course, the sets F(R"X)) and
F(R,(x)) are now subsets of W (y(X)).

For example, if we want to find the least upper k-definite approximation of a lan-
guage R C X, the congruence to consider is 5 (X), and we can take W (9 (X)) to be
X =k with @ = suffy,(w) for each w € X*, and the algebra F(5,(X)) = (W (6x(X)), X)

is defined by setting wa” (X)) = suffy (wz) for any w € X=F and z € X.

3.3.5 Example Let us find the least upper 2-definite approximation of the language
R = 01*0 over the alphabet X = {0,1}. It is recognized by the X-recognizer A =
(A, ag, F) with A = {ap, a1, asr,a;}, F = {a;} and the transitions defined by ag0* =
ay, agl™ = ay, 104 = ag, a1t = ay, 4,04 = a, 14 = afOA = aflA = Qyp.

For the sake of simplicity, we write dy for d5(X). Let us now apply IROUGH
to A and W(d,) = X=2. The computation is given in the table below. The current
value of the set NEW is given in the corresponding row, while the values of S and
F(R%) include also all items appearing in the rows above the current row. For the
sake of readability, we show even steps that add nothing to the sets S or NEW. In
these steps, the algorithm just deletes the element of N EW considered. We always
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pick the first element from the list when an element from NEW has to be selected.

(a,z) | Inv(a,x) S NEW F(R*)
(as,¢) (as,¢) 0

(ar,0) a (a1,0) | (ay,¢€),(a1,0)

(as, 1) 0 (a1,0)

(a1,0) ag (ap,00) | (aq,0), (ag,00) 00

(ar,1) a (a1, 10) | (ag,00), (ay,10)

(ag,0) 0 (ao,00), (a1, 10)

(ap, 1) 0 (a1, 10)

(a1,0) ag (ap, 10) | (a1, 10), (ag, 10) 10

(a1,1) a (ag, 10)

(a0, 0) 0 (a0, 10)

(agp,1) 0 0

The set of final states obtained is F/(R%) = {00, 10} , and it corresponds to the classes
[00]5,, [10]5,- Hence we obtain the approximation R = X*00 + X*10.

For the sake of comparison, we compute the same approximation R% using our

first algorithm ROUGH.
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z|b | S NEW F(R%)
(ao, €) (a0, €) 0

0|a | (a1,0) | (ag,e),(a1,0)

1| ay | (ag,1) | (a1,0), (ay, 1)

0| as | (ar,00) | (a1,0), (as, 1), (ar, 00) 00

11]a | (a,01) | (ay,1),(as,00),(as,01)

0| a¢ | (as,10) | (ay, 1), (ar,00), (a1,01)

1| ay | (aw,11) | (af,00), (a1, 01), (as, 11)

0| ay | (as,00) | (ar,00), (a1,01), (at, 11), (as,, 00)

1| ay | (ay,01) | (ag,01), (ag, 11), (a4, 00), (ay-, 01)

0| as | (ar,10) | (a1,01), (as, 11), (as-, 00), (s, 01), (ar, 10) | 10

11 a | (a,11) | (ay,11), (as, 00), (asr, 01), (ay, 10), (a1, 11)

0] a (atr, 11), (azr, 00), (asr, 01), (ay, 10), (a1, 11)

1| a (air, 00), (asr, 01), (ay, 10), (a1, 11)

0| ay (atr, 00), (ar, 01), (ay, 10), (a1, 11)

1] a (ay, 01), (ay, 10), (a1, 11)

0| a (ayr, 01), (ay, 10), (aq, 11)

1| ag (ayr,10), (a1,11)

0| ay (ayr,10), (a1,11)

1| ag (ay,11)

0| ar (ar,11)

1| a; 0

As the above table shows, many more steps are now needed because, in a sense, all

paths from the initial state ag to the final state a; are traversed. |

For any k£ > 0 and any X, the reverse k-definite languages ([14],[12],[38]) are
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defined by the relation p(X) on X:
wpr(X)v < pref,(u) = pref,(v) (u,v € XT).

A language L C X is reverse k-definite if it is saturated by pi(X). These languages
are symmetric to k-definite in the sense that a language is reverse k-definite, if its
reverse is k-definite. As a second example of application of the algorithm, we consider
the generalized definite languages, that are a combination of k-definite and reverse

h-definite. For any h,k > 0 and any X, we define the relation 7, ,(X) on Xt by
uyne(X)v < pref,(u) = pref,(v) and suffy(u) = suffy(v) (u,v € XT).

A language L C X is h, k-definite if it is saturated by 73, 1 (X). For any pair h, k > 0,
the (e-free) h, k-definite languages form the principal + -variety corresponding to the
principal +-filter {[v,5(X))}x. When IROUGH is used for computing least upper
(h, k)-definite approximations, an appropriate set W (v, x(X)) for representing the

i (X)-classes is X=" x X=F with @ = (pref, (w), suff(w)) for every w € X*.

3.3.6 Example If we apply TROUGH for finding the least upper 2, 2-definite ap-
proximation of the language R = 01*0 over X = {0, 1}, we get {(00,00), (01,10)} as
the set of final states F(R"22(X)), and hence the desired approximation is the language
R22(X) = 00+ 000 + 010 + 00X*00 + 01.X*10. Note that the words 00, 000 and 010
also belong to the classes represented by (00,00) or (01, 10). O

As one more example, let us consider the locally testable languages. For any
k > 1 and any alphabet X, we define the relation Az(X) on X+ by stipulating that
for any u,v € X1, u A\ (X) v iff pref,_,(u) = pref,_,(v), suffy_; (u) = suffy_1(v) and
swi(u) = swy(v). It is easy to see that kLoc® := {[A\;(X))} is a principal + -filter. A
language L C X7 is k-testable [29] if it is saturated by A\y(X), that is to say, if the
membership of a word w in L is determined by its prefix of length k — 1, its suffix of
length k& — 1, and the set swy(w) of its subwords of length k. The family of (e-free)

k-testable languages kLoc = {kLoc(X)} x is the principal + -variety corresponding to
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the +-filter kLoct. Because Ai(X) D Ay1(X) for every k > 0 and any X, we have
a properly ascending chain Locf C 1Loc® C 2Loc® C ... of principal + -filters and a
corresponding chain 0Loc C 1Loc C 2Loc C ... of principal +-varieties.

From the definition of A\;(X) it is clear that W(\,(X)) := (X*71 p(X*), X*1)

with @ = (pref,_; (w), swg(w), suff;_1(w)) is an appropriate representation of X* /A, (X)

3.3.7 Example If we apply IROUGH for computing the least upper 2-testable ap-

proximation of our example language R = 01*0, we obtain as the set of final states
F(R*Y)) = {(0,{00},0), (0,{01,10},0), (0,{01,11,10},0)},
and hence we obtain the least upper 2-testable approximation

R¥™X) = Ly | u € 0X*0,swo(u) € {{00},{01,10},{01,11,10}}
= 00"0 + (0X*0\ X*00X™)

3.4 Approximations in non-principal + -varieties

The most obvious non-principal + -variety is the greatest + -variety Rec of all the e-
free regular languages that corresponds to the greatest + -filter Rec® = {FCon(X ™)} x.
For any X and R € Rec(X), we get R = Rp.. = R. However, in general, the situ-
ation is more complicated.

Often a non-principal + -variety is naturally defined as the union of an ascending
chain of principal + -varieties or, more generally, as the union of a directed family of
principal + -varieties; recall that a non-empty family of classes S is directed if for all
A, B € S, there is a C' € S such that A, B C C. On the other hand, it is easy to see

that the union of a directed family of principal + -varieties is always a + -variety.

3.4.1 Lemma Let L be the union | J,.; L; of a directed family of principal 4 -varieties
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Li(i € I). For any alphabet X and any language R C X+, if R* exists, then R* = R

for some i € I. Similarly, if Ry exists, then Ry = Ry, for some ¢ € I.

Proof. Let L& = {[0:(X))}x (i € I). If R* exists, then by Corollary 3.2.9 R = R for
some 6 € L£°(X). On the other hand, it is easy to see that L°(X) = [{6;(X) | i € I}),
and since {6;(X) | i € I'} is (downwards) directed, we must have 8 D 6;(X) for some
1 € I, and then R C R C R? implies that RE = RY%X) = RLi The second fact is

obtained dually. O

Let us consider an example.

3.4.2 Example A language is definite 17, 36] if it is k-definite for some k& > 0.
Hence the +-variety Def of definite (e-free) languages is the union of the ascending
chain 0Def C 1Def C 2Def C ... of principal + -varieties, and the corresponding
+ -filter Def€ is the union of the chain 0Def¢ C 1Def¢ C 2Def¢ C ... of principal
+ -filters.

Let us consider the non-definite language R = 0*10* over X = {0, 1}. By Example
3.3.3, for each k > 0,

R¥Pel = {0107 4,5 > 0,i+j < k— 1} U| J{X"w | w e X* R0 X"w # 0},
and thus 0% € RFPef \ R(+DDef - Hence we obtain the properly descending chain
Xt = Rl o R o RPPel 5 (D R)

of upper approximations of R. Thus none of the approximations R¥P¢f is the least
upper De f-approximation of R, and by Lemma 3.4.1 this means that R”*/ does not
exist. On the other hand, for every k > 0, we have Ryp.y = {0°107 | 4,7 > 0,7+ j <
k — 1}, and hence 10¢~! € Riit1)pes \ Ripes. This means that Ropey C Riper C

Roper C ... (C R), and thus R has no greatest lower De f-approximation either. O

The following proposition shows that, in fact, the closest definite approximations

RP<l and Rp.; do not exist for any non-definite language R.
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3.4.3 Proposition Let £ be a + -variety and X be any alphabet. If {w} € L(X)
for every w € X, then the least upper L-approzimation R of a language R C X+
ezists iff R € L(X). Similarly, Ry exists iff R € L(X).

Proof. If R € L£(X), then naturally R = R. Assume then that R ¢ £(X) and
let L € £(X) be any upper L-approximation of R. For any w € L — R (# ), also
L — {w} is an upper L-approximation of R, and hence R* cannot exist. The second

assertion is proved similarly. a

It is easy to see that if a 4-variety £ is the union (J;.; £; of a directed family
of principal +-varieties £;, where £ = {[0;(X))}x (i € I), then for any X and
we X, {w} € L(X) iff [w]y,x) = {w} for some 7 € I. Hence, we may restate the

above proposition for a frequently occurring case as follows.

3.4.4 Corollary Let L = |J..; L; be a + -variety given as the union of a directed

iel
family of principal + -varieties, where L5 = {[0;(X))}x (i € I), and assume that for
some alphabet X, there exists for every word w € Xt an i € I such that [wlp,(x) =
{w}. Then a language R C X* has a least upper L-approzimation iff R € L(X).

Similarly, Ry exists iff R € L(X). O

As we noted in Examples 3.3.3 and 3.3.4, [w]s,(x) = {w} and [w];,(x) = {w} for
any k > 0 and w € X<*, and hence Corollary 3.4.4 applies to the 4 -varieties of
Def and J. It also applies, for example, to the non-principal + -varieties of finite
and co-finite languages, reverse definite languages, generalized definite languages,
and locally testable languages ([12, 6, 14, 29, 38]). A language has a least upper or
greatest lower approximation in any of those + -varieties only in case it itself belongs
to the variety. Membership to each of these families can be decided by inspecting
the syntactic semigroup of the language (cf. [12, 38]). Let us conclude this section
with a couple of examples. The first one shows that in a non-principal + -variety to
which Proposition 3.4.3 does not apply, the closest approximations may exist even

for languages that do not belong to the variety.
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3.4.5 Example For any word w, let ¢(w) denote the set of all words that can be
obtained from w by permuting its letters. A language R is commutative if c¢(w) C R
for every w € R. Let Com(X) denote the set of e-free regular commutative languages
over X. The family Com := {Com(X)}x is a +-variety, cf. [12, 38]. Clearly, the
assumption of Proposition 3.4.3 cannot hold for Com and any X with at least two
letters. The non-commutative language R = {00,10} over the alphabet {0,1} has
both of the closest Com-approximations. Indeed, RE°™ = {00, 01,10} and Rcom =
{00}. O

The second example shows that in a non-principal + -variety £ a language R may

have one of the closest approximations R and R, without having the other.

3.4.6 Example Let £L = Com N Def be the + -variety of commutative definite e-
free languages. For each k > 0, let £, = Com N kDef. Then L = Ukzo Ly, and
Ly C Ly C Ly C .... It is easy to see that for every k > 0, L is the principal
+ -variety defined by the principal +-filter £§ = {[0x(X))}x where 0y(X) = Vx+

and for any £k > 1,
X*/0k(X) = {c(w) | 1 <lg(w) <k} U{X="};

any two words u,v € X=* are 0;(X)-related because (u, vu), (vu, uv), (uv,v) € O(X).
Hence, if R (or R;) exists, then RX = R (or R = Ry, (x)) for some k > 0.

Let us consider the regular language R = (01)* = {01,0101, ...} over X = {0, 1}.
Since Ry, = () for every k > 0, we have Ry = ). On the other hand, R®™X) = X+

and

R = | J{e((0n)) [1<i < k/2pu X

for each k& > 1, and hence R%X) 5 RA(X) 5 R(X) 5 and RF cannot exist. For

the complement R’ the converse holds; (R')* = X+ exists but (R'). does not. O
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3.5 Approximations in pseudo-principal + -varieties

Let us now consider approximations in certain + -varieties that are natural general-
izations of principal + -varieties.

We call a system 8 = {8(X)}x a family of congruences if 3(X) € Con(X™) for
each alphabet X. Such a family is said to be consistent if 3(X) C po B(Y)o ™!
for all alphabets X,Y and every homomorphism ¢ : XT — Y. For any family of
congruences 3 = {8(X)}x, let I's = {T5(X)}x, where I'3(X) := {f € FCon(X™") |
B(X) C 6} for each alphabet X. Let us note a few basic properties of these notions.

3.5.1 Lemma Let 8= {B(X)}x be a consistent family of congruences.
(a) For every X, B(X) is a fully invariant congruence of X+.
(b) If|X|=[Y], then X*/B(X) =Y"/B(Y).
(c) Tsis a + -filter.
(d) If B(X) € FCon(X ™) for every X, thenT's equals the principal + -filter {[5(X)) } x.

Proof. For (a), it suffices to apply the consistency condition to the endomorphisms
w: Xt — Xt To prove (b), let 15 : X — Y be a bijection and let ¢ : X — Y be
its extension to an isomorphism. Then one can easily verify that [w]gx) — [w]ay)
yields a well-defined isomorphism X*/8(X) — Y*/3(Y).

Clearly, I's(X) is a filter of FCon(X™) for every X. Consider any 6 € I's(Y)
and any homomorphism ¢ : X* — Y*. Then 6 € FCon(Y ™) implies pofop~! €
FCon(X™), and by the consistency condition, 3(X) C oo (Y)op ™t Cpofhopl.
Hence, also ¢ 0§ o o' € T'g(X) holds, and (c) follows. Now (d) is quite obvious; if
B(X) € FCon(X), then I'3(X) = [B(X)). O

3.5.2 Definition We call a +-filter I' = {T'(X)}x pseudo-principal if T' = T'z for
some consistent family of congruences 3, and then I'! is a pseudo-principal + -variety.

We shall now show that pseudo-principal + -varieties correspond, in the sense of

Eilenberg’s [12] Variety Theorem, to so-called equational varieties of finite semigroups.
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First we recall some notions and facts concerning equational classes and varieties of
finite semigroups. For systematic treatments of these matters, cf. [1], [7], [12], [38] or
[39], for example.

A class of semigroups V is a wvariety if it contains all subsemigroups, all homomor-
phic images and all direct products of members of V. If K is any class of semigroups,
the variety generated by K, i.e., the least variety V such that K C V, is denoted by
V(K). Moreover, let F(K) be the class of all finite members of K.

An identity over an alphabet Z, not necessarily finite, is an expression u ~ v
where u,v € Z1. A semigroup S satisfies u = v, S |E u = v in symbols, if up = vy
for every homomorphism ¢ : Zt — S. If F is a set of identities, S |= F means that
S E u = v for every u & v € E. More generally, a class K of semigroups satisfies
u v (resp., F), and we write K Fu~v (KE E),if SEFu=v (S[E E) for
every S € K. It is convenient to identify an identity v ~ v with the ordered pair
(u,v) of words. Then the set of identities over Z satisfied by a class K of semigroups
equals the fully invariant congruence 6 (Z) of Z* that is defined as the intersection
of the kernels kerp, where ¢ : Zt — S is a homomorphism for some S € K (cf.
[7], especially Sections I1.11 and II.14, or [1], for example). On the other hand, for
any set of identities E, let Mod(FE) be the class of all the semigroups that satisfy all
the identities of E. A class K of semigroups is called equational if K = Mod(E) for
some set E of identities. A fundamental theorem of G. Birkhoff (for general algebras)
states that a class is equational iff it is a variety.

The following fact has a straightforward proof.

3.5.3 Lemma For every class K of semigroups, Ok := {0x(X)}x is a consistent

family of congruences. m|

For the next lemma, cf. Lemma 11.14.7 in [7], for example.

3.5.4 Lemma If p € Con(X™") is fully invariant, then for all u,v € X, X /p E

uviffupv. O

In the following lemma, the congruence p is viewed also as a set of identities.
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3.5.5 Lemma Let p,0 € Con(X) for some X. If p is fully invariant, then X+ /0 |=
piffpcb.

Proof. Recall that, for any congruence 6 of a semigroup S, the natural mapping
vg: S — S/0, s [s]p, is a homomorphism. Hence, if X /0 = p , then [u]y = uvp =
vvg = [v]g for any (u,v) € p, i.e., p C 6.

If p C 6, then Xt/p — X1/0, [w], — [w]e, is a well-defined epimorphism, and
since X+ /p = p by Lemma 3.5.4, also X /6 = p holds. O

Various forms of the following lemma are known in general algebra but for the

sake of completeness, we prove it as stated.

3.5.6 Lemma Let V be a variety of semigroups, X be an alphabet and 8 € Con(X ™).
Then Xt/0 € V iff Oy (X) C 6.

Proof. If 0y (X) C 6, then X /0y (X) = X1/0, [w]p,(x) — [w]y, is an epimorphism.
Moreover, Xt /0v(X) € V since V is a variety (cf. Corollary I1.11.10 of [7]). This
means that X*/6 € V, too. On the other hand, X*/0 € V implies that X+ /0 |=
Ov(X), and hence 0y (X) C 6 by Lemma 3.5.5. O

A wvariety of finite semigroups, a VFES for short, is a class S of finite semigroups
that contains all subsemigroups, all homomorphic images and all finite direct products
of its members. For any variety V of semigroups, the subclass F(V) is a variety of
finite semigroups, and a VFS S is called equational if S = F(V) for some variety V
(cf. [1], p. 60). Hence, a class S of finite semigroups is an equational VFS iff there
exists a set E of identities (over some alphabet) such that S = F(Mod(E)).

Let S be any VFS. For each (finite) alphabet X, let S'(X) consist of all the
languages L C Xt such that its syntactic semigroup S(L) := X+ /oy is in S. Then
S := {SY(X)}x is the +-variety that by the Variety Theorem corresponds to S.
Conversely, for any +-variety £ = {£(X)}x, the corresponding VFS L is the VFS
generated by the syntactic semigroups S(L) with L € £(X) for some X.

The +-filter S° = {S°(X)}x that by Thérien’s theorem corresponds to a given
VFS S is defined by S¢(X) := {0 € FCon(X™) | X*/0 € S}. Conversely, the VFS
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I'* that corresponds to a given +-filter I' = {T'(X)}y, is the VFS generated by the
semigroups X*1/6, where § € T'(X) for some X. Lemma 3.5.6 yields the following
description of the + -filter corresponding to an equational VFS.

3.5.7 Lemma If V is any variety of semigroups, then F(V)¢ =Ty, that is to say,
F(V)¢(X)={0 € FCon(X™") | Ov(X) C 0} for every alphabet X . O

For any family of congruences 8 = {5(X)}x, let K(8) be the class of all quotient
semigroups Xt/3(X), where X ranges over all (finite) alphabets, and let V(8) be
the variety generated by K(5).

3.5.8 Lemma If 3 is a consistent family of congruences, then Oy = 3.

Proof. Consider any alphabet X. Since fvs)(X) = Ok(s)(X), it suffices to show
that k(g (X) = B(X). The inclusion Ok (X) € B(X) follows from Lemma 3.5.4.
Indeed, if (u,v) € Ok ) (X), then X*/5(X) = u ~ v, and hence (u,v) € B(X).

To prove the converse inclusion, let (u,v) € S(X). Consider any alphabet Y and
any homomorphism ¢ : X+ — Y /3(Y). There is a homomorphism ¢ : XT — Y+t
such that ) = @ovgyy. Then the consistency condition 3(X) C po3(Y)op ! implies
that up 5(Y) vy, and therefore u) = (up)vgryy = (vp)vgryy = vip. This shows that
Y*/B(Y) = u~ v, and hence B(X) C k() (X) holds, too. O

Now we can establish the following correspondence.

3.5.9 Proposition A variety of finite semigroups S is equational iff the correspond-

ing + -filter S¢ is pseudo-principal.

Proof. If S = F(V) for some variety V of semigroups, 0y is a consistent family
of congruences by Lemma 3.5.3, and S® = I'y,, by Lemma 3.5.7. Assume then that

S¢ = I'g for a consistent family 3 of congruences. Then S¢=1's = Iy, ,, = F(V(8))
by Lemmas 3.5.7 and 3.5.8, and hence S is the equational VFS F(V(5)). O

3.5.10 Lemma If (R%)? = R? for some R C Xt and 0,p € Eq(X™), then ROV =
RY.
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Proof. The assertion follows from Lemma 2.0.1 (b); since R’ is in both Sat(f) and
Sat(p), we have R’ € Sat(f V p), and hence RY C R C (R%)%Vr = RY. O

3.5.11 Proposition Let 8 be a consistent family of congruences and let L = Fé be
the corresponding + -variety. For any alphabet X and any language R C X, the

following three conditions are pairwise equivalent.
(1) The upper approzimation R*X) is a regular language.
(2) RPX) = RO for some 6 € T5(X).
(3) RO = RE.

Proof. If RP™X) is regular, then RAX) = (R?X))? for some p € FCon(X*). Now
RPX) = RAX)VP by Lemma 3.5.10, and naturally 3(X) V p € T's(X). Hence (1)
implies (2), and the converse is obvious.

To show that (2) implies (3), let R?X) = R for some § € 's(X). Then R
is an upper L-approximation of R, and from Proposition 3.2.8 and Lemma 3.1.3 it
easily follows that it is the least upper L-approximation.

Finally, if R%X) = R, then it follows from Corollary 3.2.9 that R%) = R? for
some 0 € T'g(X). Hence, (3) implies (2). O

We say that 6 € Con(X ™) has reqular classes if [u]y € Rec(X) for every u € X+.

3.5.12 Lemma Let 8 be a consistent family of congruences and let uw € X for some
alphabet X . Then [u]gx) is a reqular language iff there exists a congruence p € I'g(X)
such that [u]gxy = [u],.

Proof. If [u](x) is a regular language, it is saturated by some # € FCon(X ™). Now,
p:=0VB(X) € 'g(X)and [u]gx) = [u], by Lemma 3.5.10. This implies one direction

of the lemma, and the converse is perfectly obvious. O

3.5.13 Proposition Let § be a consistent family of congruences and let L be the
corresponding + -variety. Furthermore, assume that $(X) has reqular classes for

some X. For any R C X%, if R® exists, then R = R,
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Proof. If R exists, then R® = R’ for some 6 € I'3(X). If RX) C R?, then there is
a word u € R? such that (u,v) € 3(X) for no v € R. If p € ['3(X) is the congruence
prescribed by Lemma 3.5.12 for this u, then R C R? since u € R? \ R*™. As
0N p € (X)), this would mean that R? is not the least upper L-approximation of
R. Hence R = R’ = R* must hold. |

Applied to a pseudo-principal + -variety given by the corresponding equational

VFS, the above findings can be summarized as follows.

3.5.14 Corollary Let L = {L(X)}x be the pseudo-principal + -variety that corre-
sponds to a given equational VFS F(V), where V is a variety of semigroups, and let
R C X for some alphabet X .

(a) If R s a regular language, then it is the least upper L-approzimation of R.

(b) If Ov(X) has regular classes, then the least upper L-approzimation of R erists

iff RS is a reqular language, and then R® = ROV(X), O

Let us consider, by the way of a concrete example, the +-variety Com of commu-
tative languages. For any alphabet X, let s¢(X) be the equivalence on X* such that
Xt/#(X) = {c(w) | w e XT}. Then s(X) is a congruence on X, and a language
R C X7 is commutative iff it is saturated by 3¢(X). It is obvious that the family
of congruences s = {5(X)}x is consistent and that Com is the pseudo-principal + -
variety defined by T',,, i.e., that Com¢(X) = {6 € FCon(X™") | 5(X) C 6} for every
alphabet X. It is well known (cf. [12, 38]) that the corresponding equational VFS is
F(Com), where Com is the variety of commutative semigroups. Hence, Ocom = 7.
Since [w],.(x) = c¢(w) for any X and w € X7, the family of congruences s has regular
classes and R = ¢(R) := (J{c(w) | w € R} for any R C X*. By Corollary 3.5.14,
the least upper Com-approximation exists iff the commutative closure ¢(R) of R is
regular. For example, a regular language like (01)* does not have a least upper Com-
approximation. However, since it is decidable whether the commutative closure of a

regular language R is regular (cf. [13], for example), it is decidable whether R¢™
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exists. When c(R) is non-regular, one has to be satisfied with other commutative

approximations based on some congruence ¢ in T',,.

3.6 Concluding remarks

We have introduced certain approximations of languages and presented a number
of their basic properties. Of course, much remains to be done. For example, for
certain + -varieties it could be possible to develop methods to efficiently find the
approximations by making use of the special properties of the variety.

Pseudo-principal +-varieties pose several natural and challenging problems. When
and how can we decide whether the closest approximations exist? How can they be
formed when they exist? And if they don’t exist, how can we find other approxima-
tions in the variety that are sufficiently close to the given language?

Although the most general notions and results apply directly also to other types
of varieties, such as varieties of tree languages, new problems will probably be en-

countered in the more advanced parts of the theory.

46



UNIVERSITAT ROVIRA I VIRGILI
ROUGH APPROXIMATIONS IN VARIETIES OF REGULAR LANGUAGES
Gabriela Susana Martin Torres

Chapter 4

Accuracy of rough approximations in

a + -variety

Throughout this chapter we consider the accuracy of upper f-approximations R’
of a given language R over an alphabet X with respect to a given congruence. We
consider only upper rough approximations because, as we will observe in this chapter,
languages often do not contain whole classes of the given congruence thus giving empty

lower rough approximations.

Several ways to measure the quality of rough approximations have been proposed
(see for example [35, 32, 33]), but they are not useful in our case because they deal
with finite sets of objects. We adopt the approach suggested by Berstel in [4]. He
introduced an expression for the relative density of two given languages, one of which
is a subset of the other. Here we consider the density of a language in its upper
approximation; this number, when defined, is regarded as a measure of the accuracy
of the approximation. In particular, we look at the accuracy of approximations in
the families of k-definite, reverse k-definite, generalized i, j-definite, k-testable and
commutative languages. Some of the results are new, but most come from our paper
[28], unless stated otherwise. When the alphabet is clear from the context, we write

just 0 instead of 6(X).
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4.1 Densities of the languages in the varieties under
study

The following standard definitions can be found in [18] or [5]. Given two functions
f(n) and g(n), we say that f(n) is O(g(n)), or that f(n) = O(g(n)), if for some
positive constants ¢ and ng, 0 < f(n) < cg(n) for all n > ng; f(n) is said to be
Q(g(n)), and written f(n) = Q(g(n)), if there exists a constant ¢ > 0 and an infinite
sequence ny < ng < nz < ... satisfying f(n;) > cg(n;) for all i > 1, and finally f(n)
is ©(g(n)), and written f(n) = ©(g(n)), if f(n) is both Q(g(n)) and O(g(n)). The
density function dr(m) of a language R C Xt is defined by dr(m) = |[R N X™|,
m > 1. If dg(m) = ©(1) then we say that R has constant density, if dg(m) = ©(m*)
for some integer ¢ > 1, then R has polynomial density and if dg(m) = ©(c™) for
some ¢ > 0, then R has exponential density. Languages of constant density are called
slender languages. Languages that have at most one word of each length are called
thin languages.

In [47] the regular languages of polynomial density are characterized as unions of
finitely many languages of the form zoyjzi...y;, 1 2k4+1 Where 2o, Y1, 21, ..., Ykt1, 2ht1 €
X*. Furthermore, it is shown that for every infinite regular language R, the density

dr(m) is either polynomial or exponential of the form 2°("™) where ¢ is a constant.
We will now compute the densities of languages in the varieties under study.

It is easy to see that infinite k—definite, reverse k—definite, and generalized 7, j—definite
languages over an at least binary alphabet, have exponential density. Commutative
and k—testable languages can have exponential, polynomial or constant density. The
case of commutative languages is different from the others, as we will see along this
chapter, partly because of the fact that its associated congruence s has infinite index.
Furthermore, approximations under this congruence are not always regular. In the

next two propositions we describe some features of the densities of these families.

4.1.1 Proposition Let X be an at least binary alphabet, and R C Xt an infinite

language in Sat(8) for some 0 € {6y, pr,Vij, A\x}, where k,i+j > 1.
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(1) If 0 € {0k, pi} there is a number 1 < n < |X|* such that dr(m) = n|X|™* for

every m = k.

(2) If 0 = 7., there is a number 1 < n < | X[ such that dg(m) = n| X |9 for

every m =1+ j.

(3) If 6 = Ai, then R can have constant, exponential or polynomial density, and it is
decidable which one it has. Furthermore, for every integer n > 0 there exists an

alphabet X and a language R C X in this family such that dg(m) = ©(m").

Proof. If R is an infinite language in Sat(dy), there must be words vy, ..., v, € X<¥,
r >0, and uy, ..., u, € X* for some n > 1 such that R = {vy, ..., v, JUX*u; U...UX *u,,.
Thus dg(m) = n|X|™* for every m > k. When 6 € {pi,~;;} the proof is similar.
Consider next the case of k—testable languages. The language R = (01)" is an
example of slender 2—testable. To see that there are exponential density k—testable
languages, it suffices to note that X is a k—testable language. For a (slightly) less
trivial example, consider a k—testable language R over the alphabet X = {0, 1,2, 3}
such that its not allowed subwords are in {0,1}*. Any language with this property
contains (2 + 3)* as a subset, therefore it has exponential density.

We show now that there exist polynomial density 2—testable languages. We start
by considering the language R = 1*23*45* over the alphabet X = {1,2,3,4,5}. It is
easy to see that R is a 2—testable language over X. For each number m > 2, there is
exactly one word in R of length m for each choice of the positions of 2 and 4. Since

there are (7)) such choices, dg(m) = () = m(ﬂgfl) and this is ©(m?). Using this

idea, we build now a 2—testable language R such that dr(m) = ©(m") for any given
n > 1. If n = 1 we take the language R = z{x 3 over the alphabet X = {x¢, 21, z2}
that satisfies dr(m) = m. If n > 1 we take the alphabet X = {z,..., 2511} where
k satisfies 2n = k + 1, and the 2—testable language R = z{z z573...747%, ;. In this
case dy,(R) = (') = ©(m"). Finally, in [47] and [43] regular languages of exponential
density are characterized, and this characterization leads to a linear algorithm for
deciding whether a regular language is of exponential density when the language is

given by a deterministic finite automaton. m]
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We denote by (L) the Parikh set of a language L C X

4.1.2 Proposition Let X be an alphabet with [ letters, and L C XT a language in
Sat(s).

(1) di(m) = S{(, ™) | (51, 50) € LN X™)}.

(2) L can have constant, exponential or polynomial density, and when L is regular,
it is decidable which one it has. Furthermore, for every integern > O there exists

a commutative language L, over a binary alphabet, such that dp(m) = ©(m™).

Proof. The expression of the density of a commutative language follows straight-
forwardly by counting the non-equivalent permutations of letters corresponding to
each Parikh vector of the language. An example of slender commutative language is
L = 1%, in this case, dr(m) = 1 for every m > 1. For a polynomial commutative
language of order n, consider L = ¢(1"0*). It has density d;(m) = (") for m > n,
that is ©(m™). Finally, if we take L = (X™)7T, it is easy to see that dp(m) = I™ if
m is a multiple of n, and dr(m) = 0 otherwise. When L is regular, the decidability

follows by the same argument of the proof of statement (3) in proposition 4.1.1. O

The densities of regular languages in Sat(dy), Sat(px), Sat(v;;), and Sat(x) are
computable. In the first three cases it is obvious from the expressions given in propo-
sition 4.1.1. It is known that the Parikh set of a regular language can be effectively
obtained (cf. [41, 3, 50]), therefore, the density of a regular language in Sat(s¢) can

also be calculated by using the expression given in the proposition 4.1.2.

4.2 Measures of accuracy of rough approximations

of languages

In this section we introduce two definitions of the accuracy of upper rough approxi-
mations and establish some of their basic properties. We consider just upper rough

approximations because quite often languages do not contain whole classes of the
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given congruence, thus giving finite lower rough approximations. For example, as it
can be directly deduced from our results about density in the previous section, if a
language has polynomial density, all its lower 0, pi,7;,,—approximations are finite.
This may happen even if the language has exponential density. Consider for example,
the language R = X*+u where u € X* and k > 1. This language is very close to X*u,

its upper o, —approximation, but Rs, = 0.

Some ways to deal with the inexactness of language approximations have been
proposed (]26, 19, 8]). In rough set theory [35], the accuracy of the §—approximation
of a set R is expressed as the quotient |Rg|/|R?|. This notion is not useful for us
because of the cases of empty or finite lower approximations noted above and because
languages and their approximations are usually infinite sets.

Let R; and Ry be two languages over some alphabet X, such that Ry C Ry. We

use the notion of natural relative density given by Berstel in [4],
D(Rl7 RZ) = lim |R1 n X<m|/|R2 N Xgm‘
m—ro0

whenever this limit exists. The question whether, for a given pair of languages, the
first one has a relative density in the second one is decidable for regular languages (see
[21]). Berstel proved that this number, even when it exists, is not always rational. Our

definitions of accuracy are reformulations of Berstel’s definition of relative density.

If # € Eq(X*) and m > 1, the m-accuracy of the upper —approximation of a
language R C X7 is defined by

Ace(R,0,m) := |[RNXS™|/|(R' N X<™|

when RN X<™ #£ (), and Acc(R, 0, m) := 1 otherwise.

Observe that since [RN XS"| = dg(1) + ...+ dr(m), the m-accuracy can be rewritten
as Acc(R,0,m) = (dr(1) + ... + dr(m))/(dge (1) + ... + dge(m)).

We obtain the following facts immediately from the definition.
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4.2.1 Proposition Let R be a language over an alphabet X and let 6, p € Eq(X™).
(1) 0 < Ace(R,0,m) <1 for every m > 1.
(2) If 0 C p then Acc(R,0,m) > Acc(R, p,m) for every m > 1.
(3) Acc(R,0,m) =1 for every m > 1 if and only if R € Sat(6).

4.2.2 Lemma Let 0 € Eq(X™) and suppose there exists n > 1 such that w/0 = {w}
for every w € X=". Then for any R C Xt and m <n, Acc(R,0,m) = 1.

Proof. 1t is clear that if w/0 = {w} for every w € X=" then R N X<™ = RN X<™

for every m < n. O

The congruences that define the families of k—definite, reverse k—definite, gen-
eralized i, j—definite and k—testable languages, satisfy the hypothesis of the last

lemma.

4.2.3 Corollary For every regular language R C Xt and any m > 1, there exist
numbers k = 1, i+ j > 1 such that Acc(R, o, m) = Ace(R, pr,m) = Acc(R, A\, m) =
ACC(R7 Yij m) =1

Note that for any language R and any 6y € {3x, pr, Ar} With k& > 0 we have a non-
increasing chain R% D R% D ... of approximations, and according to proposition
4.2.1 and corollary 4.2.3, for every m > 0, a corresponding non-decreasing sequence

0 < Ace(R,0p,m) < Ace(R,01,m) < ... < Ace(R, Ok, m) . ..

where Acc(R, 0, m) =1 for every k > m. The case of ~; ; is similar.

The next proposition states that it is possible to reach values of m—accuracy that are
arbitrarily close to any given value between 0 and 1 for the cases of p, 0k, A, and ; ;

approximations.

4.2.4 Proposition Let X be an alphabet with at least two letters and let 0 € {py, Ok, Ak,
where k > 1, i+ j > 1. For any numbers q,r € (0,1) such that ¢ < r, there exists a

number m = 1 and a regular language R C X such that ¢ < Acc(R,6,m) < r.
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Proof. Suppose that L = {w € X | w/0 = {w}}. By the properties of the
congruences considered, the set L is finite. Suppose that |L| = I. Let us take the
language L. For m > max{lg(w) | w € L}, consider a language R over the same
alphabet chosen to have the properties RN X>" = L'NX>™, RNXS™" C L'NXs™
and suppose that |[RN XS™| = ¢, where ¢ is in {1, ..., |XS™| — [}. Any language with
these properties satisfies Acc(R,0,m) = |[RN X<™|/|RP N XS™| = ¢/|L/ N X<™| =
¢/(JX<™| — 1). The number ¢/(|X<™| — 1) can be fit in (g,r) by choosing values for
m and c as follows. Let us call N = |X<™| —[. If we choose m big enough to ensure
that 1/N < (r — ¢) then there exists a number ¢ in {1, ..., N} such that ¢ < ¢/N <.

O

It is also possible to obtain values of Acc(R, 3, m) arbitrary close to 1.

4.2.5 Proposition Let X be an at least binary alphabet. For any given q € [0,1),

there exist a finite language R and m > 0 such that ¢ < Acc(R, 2,m) < 1.

Proof. Let us take X such that | X| =1 2> 2, 2z € X and n > 2. The set F, =
{we X" | |w|, = 2} satisfies |F,| = (2)(1 — 1)*2 = "0 —1)»2. Now, if R is
a subset of F,, such that ¢(R) = ¢(F,), then R* = F,, and Acc(R, »,m) = % for
any m > n. It is easy to see that the number |F,| can be made as big as desired, and
the number |R| as close to |F,| as needed. Thus, to obtain the result, it is enough

to adjust the number n and the number of words in R, to reach a value such that

q < Acc(R, »,m) < 1 holds.

Next, we study the asymptotic behavior of the m—accuracy when m approaches

infinity.

The limit lim Acc(R, 6, m) does not always exist for a regular language R C X .

m—ro0

4.2.6 Example Consider the d;—approximation of the language R = {w €{0,1}1 |
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lg(w) =5 0}. The limit lim Acc(R, 2, m) does not exist because for even m
m—o0

m/2 m

: (2 —4)/3

Aee(h bym) = 32y 3 = D
=2

i=1
and for odd m

(m—1)/2

m m+1 _
Acc(R, 09, m) = Z 22i/22i = w
=2

gl 4
=1

Thus the subsequences { Acc(R, 02, 27) }i>1 and {Acc(R, d2,2i+1)}4>1 tend to 2/3 and
1/3 respectively.

When the limit lim Acc(R, 6, m) exists it is denoted Acc(R,0), and it is the
m—o00
accuracy of the upper —approximation of R. The proximity of a language R C X+

to the approximation R’ can be described by the number Acc(R, @) when it exists.

The following results are direct consequences of the definition of accuracy.

4.2.7 Proposition Let R C X+ and 0,p € Eq(X ™). If Acc(R,0) and Acc(R, p) are
defined, then

(1) 0 < Ace(R,0) < 1.
(2) Acc(R,0) > Acc(R, p) when 6 C p.

(3) If Ry is an infinite language that differs from R just in a finite number of words,
then Acc(R,0) = Acc(Ry,0).

4.2.8 Corollary Let us consider a family {0 }x>1 C Eq(X™) that satisfies 0 2 011

for every k > 1.
(1) If Ace(R, 0y) is defined for every k, then Acc(R,61) < Acc(R,603) < ....
(2) If Acc(R,0y) =1 for some k > 1, then Acc(R,0,) =1 for everyl > k.
(3) If Acc(R,0y) =0 for some k > 1, then Acc(R,0;,) =0 for every | < k.
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4.2.9 Lemma If R is a finite language and 6 € {pg, Ok, Ak, vi;}, where k > 1 and
i+j =1, then Acc(R,0) € {0,1}. If R is a cofinite language then Acc(R,0) = 1.

Proof. Observe that if R is finite, R’ is either R or an infinite set, depending on the
length of the words in R. Therefore, Acc(R,6) =1 or 0, respectively. If R = X*\ F
where F is a finite subset of X*, we have that R = X* —{w € F | w/0 = {w}}.
Consequently, R? is either R itself or it differs from R just by a finite number of
words, then Acc(R,6) = 1. O

4.2.10 Lemma If R C X is a non-empty, non-commutative finite language, then

Acc(R, ) € (0,1). If R is any co-finite language, then Acc(R, ) = 1.

Proof. If R is finite, then R* is also finite. Suppose that |R| = j and |R*| = k for
some j, k > 1. Obviously j < k, and then 0 < Acc(R, ») = j/k < 1. Suppose now
that R = X1\ F, where F is a finite language. It is enough to observe that R* = X,
if FCR* R*=Rif FANR* =0, and R* = X*\ F}, where I}, = F\ (F N R”), if
FNR*#0and F ¢ R O

We will often make use of the following fact observed by Berstel in [4] that is a
direct consequence of well-known properties of series (see for example Spivak [44],

Chapter 22).

4.2.11 Lemma Let R and S be languages over an alphabet X such that R C S. If

the limit lim dr(m)
m—o0 S(m)

exists and the sequence dg(m) diverges then

. dp(m) . dp(l) + ... +dr(m)
lim = lim

As a consequence of this result we have

4.2.12 Lemma Let R be a language over the alphabet X and 6 € Eq(X™) such that

the limit lim dr(m) exists. Then Acc(R,0) exists and equals lim dr(m) .
m—o0 ng (m) m—o0 ng (m)
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d
Proof. If R? has constant density and lim r(m)

m—o0 dpo (m)
dge(m) have a constant value from some N > 1 on, and thus the result is clearly

exists, then both dr(m) and

true. If R? has at least polynomial density, then dge(m) diverges and by hypothesis
i 2r(m)
im

m—00 ng (m)

exists. Thus, we can apply the previous result to obtain

A f) =1 =
cc(R,0) ml_I};O dro(1) + ... + dpo(m)  m—oo dgo(m)

Observe that under the hypothesis of the last lemma

1
Ace(R,0) = lim dr(m) = lim dr(m) =
m—0o dpe(m) — m—oo dp(m) + dge_g(m) 1+ lim dps_gr(m)

m—oo  dp (m)

Let us define, whenever it exists,

d
T(R,0) = lim dire—r)(m)
m—oo  dp(m)

This number gives an idea of the size of what is added to R to obtain the approxi-

mation R?.

4.2.13 Lemma Let us consider a congruence 6 € Eq(X ™) and a language R over X

d
such that the limit lim —= (m)) exists. Then Acc(R,0) =1 if and only if T(R, ) = 0.
m—o0 RO m

In the next two sections we compute the accuracy of the upper approximations of

languages of different densities in the families under study.

4.3 Languages over a one-letter alphabet

Let us consider the case of languages over a one-letter alphabet X = {0}. Tt is

well known and easy to see that if R is an infinite one-letter regular language, R =
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0% + ... + 0% 4 07 (0")*(0%* + ... + 0¥%) for some numbers I, x1, ..., Z, 7, S, Y1, ..., Ys such
that [ > 0,0 <1 < ... <y <p,r=>1l,s>20and 0<y; < ... <ys <r. The
statement (3) in proposition 4.2.7 allows us to assume w.l.g. that x; = 0 for every

i€{1,...,1} and that
(1) R=(0")*(0 +...4+0%), where s 2 land 0 < ¢; < ... < ¢s < 7.

We can assume that s > 1, because if s = 0 the same results can be straightfor-
wardly obtained. Observe that over a unary alphabet, 6, = pr = A\, = v;;, where
k =max{i,j} > 1. According to this, all the {py, 0k, A, 7i; } —approximations can be
handled together for the case of a one-letter alphabet. In this section we refer to any
of those congruences as 6. Their classes are u/6; = 050* if u € X>* and u/6), = {u}

if w € X<F. In what follows, R is a language as in (1).
4.3.1 Lemma |RN XS"| =ns for every n > 1.

4.3.2 Lemma If R has at least one word u € X=*, then R% = 0*0*U(RNX<*) and
|RO% N XS =m —k+ 14 |RN X for every m > k.
In the next two lemmas ¢ = |[R N X<k|.

4.3.3 Lemma Acc(R, 0, nr) = ns/(nr — k + 1+ ¢) where n is such that nr > k.

4.3.4 Lemma |m/r]s/(m—k+1+4c) < Acc(R, 0x,m) < (|m/r] +1)s/(m—k+1+c)

for every m > k.

4.3.5 Proposition Acc(R,0y) = s/r for every k > 1.

Proof. As both the upper and the lower bound given in the previous lemma for
Acc(R, 0y, m) tend to s/r when m goes to infinity, Acc(R, 0), m) does, by the Sandwich

Theorem. d

According to this result the accuracy of approximations in the case of a one-letter
regular language always exists and it is a rational number, but it cannot be improved
by taking larger k’s. Observe also that the accuracy in this case can be effectively

computed.
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4.3.6 Corollary For every k > 1 and numbers n and m such that 0 < m < n, there

exists an infinite one-letter regular language R such that Acc(R,0) = m/n.

4.3.7 Example Consider the f;-approximation of R = (0™)" where k,n > 1. For

m>k,n
Acc(R, 0, m) = [{0", 07", ..., 0™/mIm Y /1{0F, 00, ..., 0™} = [m/n] /(m — k +1)

It is not hard to see that the limit of Ace(R, 0y, m) when m aproaches infinity is 1/n.

4.4 Languages over an at least binary alphabet

Throughout this section, X is an at least binary alphabet. We start by giving an

example.

4.4.1 Example Let us consider the language R = X*0\ 010, where X = {0,1}, and

its 1-definite approximation. Since RNX™ = X™10\ {0} and R®* N X™ = X™~1(,

we obtain Acc(R,d;,m + 1) = (27;:1)

. Therefore, Acc(R,01) exists and equals 1.

Observe that this language is "almost" 1—definite. Only one word of each length
has been removed from X*0, which is the 1—definite approximation of R. It is a

particular case of the following general fact.

4.4.2 Lemma Let R be an exponential density regular language over X, 6 € Eq(X™)
d
and suppose that the limit lim r(m)
Mm—00 ng (m)
Acc(R,0) = 1.

exists. If R’ \ R has polynomial density, then

Proof. 1f R%\ R has polynomial density and R has exponential density then T'(R, §) =
0. Therefore, according to lemma 4.2.13 Acc(R, 0) = 1. O

The value of the accuracy cannot be predicted if the difference between the lan-
guage and its approximation has exponential density. According to the results of

Szilard, Yu and Zhang in [47], an exponential density language can only have a 29(™)
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c1m-+ca

density function, where ¢ is a constant. This means that T(R,0) = lim —,
M—00 2b1m+b2

where c¢1, o, by, by are constants. Therefore the possible values of T(R,0) are 00,0
or some finite positive constant, when ¢; > by, ¢ < by or ¢ = by, respectively.

Accordingly, the accuracy Acc(R,6) can be 0,1 or 0 < Acc(R,0) < 1.
The following result is a consequence of proposition 4.1.1.

4.4.3 Corollary For every reqular language R C X' of at most polynomial density
and any 0 € {0k, pr, i j}, Acc(R,0) = 0.

4.4.4 Example Let us consider the 2—definite approximation of the language R =
01*0 over the alphabet X = {0,1}. Since R’> = X*10 U X*00, we obtain for m > 2,
Acc(R, 63,m) = 1/2™~ 1. Therefore, the limit of Acc(R, 62, m) exists and equals 0.

Unlike the case of the families in the hypothesis of this corollary, polynomial lan-
guages may have non-zero accuracy values when they are approximated by members

of the commutative family, as the following proposition shows.

4.4.5 Proposition For every n > 2, there exists a polynomial language R C {0,1}+
such that Acc(R, ») = 1/n.

Proof. Let us define R = 0"~1(0")*1(0")*, n > 2. It has density dr(m) = k if
m = kn for some k > 1, and dgr(m) = 0 otherwise. Its commutative approxima-
tion is R* = 0*10* N (X™)*, that has density dgr~(m) = m if m = kn for some
k > 1, and dg~(m) = 0 otherwise. Therefore, Acc(R, ») = hmm_m% =

: 4244k _
My o0 g =0 = 1/n. O

As a consequence of corollary 4.4.3, only exponential density languages can be ex-
pected to have nonzero accuracy values for the k-definite, reverse k-definite and gen-
eralized 7, j-definite cases. Let us consider for example the language R = {0, 1}*0" !,
where n > 1, and its 1—definite approximation. We obtain for m > n, Acc(R, 61, m) =

om=n=1/9m=1 and thus Acc(R,d,) = 1/2".
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4.4.6 Proposition For every number q € [0,1) and 6 € {0y, pr, Ak, Vi ;}, where k > 1
andi+j = 1, there exists an alphabet X and an exponential density reqular language

R over X such that ¢ < Acc(R,0) < 1.

Proof. Let us consider the d—approximation of the language R = u; X* U ... U u, X*
over an alphabet X, where n > k, 1 < r < |X|* and wy,...,u, € X" As the
Sp—approximation of R is XZ* we obtain Acc(R,8;) = lim, . 7| X|™ /| X|™ =
r/|X|™. Thus, to satisfy our thesis it suffices to choose | X|, 7 and n such that 1/|X|* <
1—g¢and r = |X|" — 1. The cases of p, and 7, ; are similar. For the case of \; let us
take an alphabet X such that 0 ¢ X and the language R = 0'X* U0 1 X*U...U0F X*
where k£ < [. Then

X X X 1
ACC(R7 Ak) - WLE}I;O |X|'m—k + ‘X|7n—k—l + ...+ 1 - 1 - ‘X|l—k+1
and we can take [ and | X| such that 1/|X|'7*1 <1 —gq. O

Because of the fact that &, px,7s; form descending chains for increasing k,7, 7,
better approximations of an exponential language can be obtained by taking greater

elements of that chains, as the following example shows.

4.4.7 Example Consider the language R = 0% + 1X*, and k > 1, then dr(m) =
2m=l 4 1, R =0+ 0%+ -+ + 0¥ 1+ 0°X* + 1X* and dger (m) = 2m7% + 2m~1 for
m > k. Therefore,

2m71 +1 2m71 1

ACC(R: Pk) = r%l*l)%o 2m—k + om—1 = ,,7.134,120 2m—1(2—k+1 + 1) = 14+ 2]‘%1

So that when we take bigger k’s, the accuracy improves.

Next, we show some examples of the possible situations that may appear when an
exponential language is approximated by a member of the commutative family. The
densities of the s -approximations are calculated by using the expression obtained in

proposition 4.1.2.

4.4.8 Example Let X = {0, 1}.

60



UNIVERSITAT ROVIRA I VIRGILI
ROUGH APPROXIMATIONS IN VARIETIES OF REGULAR LANGUAGES
Gabriela Susana Martin Torres

(1) For the language R = (00 + 11)* we have

T 24224, 42m g 1 _
ACC(R, %) = hnlgmﬁoo 2123, .22m1 — hnlm*)oo 2(§)m =0.

(2) Let R = (00 + 01 4+ 10)*. Despite the fact that this language has many more
words of even length than the language in (1), it is not difficult to see that the

accuracy is again 0, Acc(R, ») = lim,, o0 (3)™ = 0.

(3) Finally, to see some non-trivial exponential language that is well approximated
by a commutative language, let us consider R = {w € (X?)" | 1" ¢ sw,(w),n >
2}. The densities are dgr(2m) = ((2*™ + (*7))/2) — (m — 1)(2m — 1) and
dp=(2m) = (2%™ + (*™))/2. Then we obtain Acc(R, ») = 1.

4.5 Concluding remarks

In this chapter several facts have been established that describe the behavior of the
density of the approximations with respect to the density of the object language. In
particular, we focused on the accuracy of the upper rough approximation of a regular
language by a language in the k-definite, reverse k-definite, ¢, j-definite, k-testable and
commutative families. We showed the asymptotic behavior of the relative density for
a one-letter alphabet and for the general case of an arbitrary alphabet, and found the

attainable values of accuracy in each case.
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Chapter 5

Comparisons with previous work

In the paper [33] Paun, Polkowski and Skowron introduce several indiscernibility
relations among strings that are equivalence or tolerance relations, and study lower
and upper rough approximations of languages defined by them. After presenting some
general facts about the relations, they consider the problem of approximating context-
free languages and find that in most cases the obtained approximations are regular.
Finally, they suggest some possible variants of the relations. In this chapter we study
some of these indiscernibility relations from our point of view, their connections with
the families we already considered, and how some of our results can be applied to
them. Firstly, we consider the relations as they were defined in [33], and after that we
introduce modifications. The original notation is simplified to conform with ours. For
example, the upper rough approximation of a language L under the relation Pref; is
denoted Prefi(L) in [33], but here by L. We also restrict the relations defined on
X* to X7 to fit in our general framework. Each relation R(X) on X considered in

this chapter, will be written R when there is no need to specify the alphabet.

5.1 Working with the original relations

The relations Py, Ay and M, studied in this section are those named Prefy, ASuby
and MSuby in [33]. The relation Sy was not defined there, but we included it as it

seems natural to consider suffixes along with prefixes.
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5.1.1 The relations P;(X) and Si(X)

The relation Py(X) on X, k > 1, is defined by
Pu(X) = {(u,v) | u,v € X 1g(u) = lg(v), pref, (u) = pref,(v)}.

The condition lg(u) = lg(v) will be called the length condition.

Py(X) is in Con(X ™) and it has infinite index because of the length condition,
but the family {P.(X)}x is not consistent. Indeed, if ¢ : X* — Y+ is a morphism
that is not length-preserving, then Py(X) € ¢ o P.(Y) o ¢! because the fact that
for two words u,v € X7, lg(u) = lg(v), does not imply that lg(up) = lg(vy). For
example, if X = {a,b}, Y = {c} and ¢ : XT — Y is defined by ap = ¢, bp = cc,
then (aa,ab) € P1(X) but (aap, abp) ¢ Pi(Y) because aap = cc and abp = ccc have
different lengths. If we drop the length condition in the definition of P (X), it becomes
px(X) and we would have the associated family of reverse k-definite languages.

If the congruences of a family include the length condition, they need to be finer
than >(X), otherwise we can always define a morphism that is not length-preserving,

and does not preserve the congruence, as in the above example.
5.1.1 Proposition For every k > 1,
(1) Xt/Py={{u} |ue XF}U{uX’ |ue Xk j>0},

(2) the Py-approzimations are finite unions of languages of the form uX*NU,;¢, X
where u € X<F, I C N, and

(3) if L C X is a context-free language, then the Py-approzimations of L are finite
unions of languages of the form uX* N Ujel X7, where u € X% and I C N

forms an arithmetic sequence.

Proof. The first statement is obvious from the definition of Py. To prove (2), it is
enough to observe that for every language L and v € X*, the set uX* N Ujes X*
where I = {Ig(v) | v € u"'L} is added to the approximation, and if u € X<* N L,

then {u} is added. Finally, for any vector 7 = (s1,...,s,), n = | X| and sy, ..., s, = 0,
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we denote [0] = s1 + ... + s,. If L is context-free, its Parikh set is semilinear. As
u~tL is also context-free for every w € X7, its Parikh set is a finite union of sets
of the form {Ty + t197 + ... + ¥, | t1, .., tm = 0} where Ty, ..., U, € N and thus,
the set of possible lengths of words in w~'L is a finite union of sets of the form
J = {|vo| + ti|v1| + .. + tw|Om| | t1,.eytm = 0} If ged([T1l, ..., [Um]) = 1, then
J={s| s> N}UF for some N > 0 and F a finite subset of N, otherwise J is of the
form {ng +n1j | 7 > 0} for some ng > 0 and n; > 1. It remains to be observed that
the sets I are finite unions of the sets J associated with each prefix of L of length

k. O

5.1.2 Example If L = {a'd’ | i > 1}, then L™ = (J,5, aaaX**' U aabX U {ab} =
(aaaX* N U253 X*) U (aabX* N X*) U {ab}.

Note that for every language L, L** is regular, in fact reverse k-definite. In [33] it
is proved that L™ is regular for any context-free language L, but this does not hold
for all languages. Take for example X = {a} and L = {a” | p € P}. In this case
LY = [ for every k.

As P, C py, we have L™ C L+ and Lp, D L, , but even for regular languages, it
is not true in general that L = L#* or Lp, = L, . For example, if L is (aaa)™, then

L =, aaaX?®" and Lp, = {aaa} while L#* = aaaX* and L,, = 0.
5.1.3 Proposition Let L C Xt and k > 1.
(1) If L is a finite language, then LY = LPx iff [ C X <*.

(2) If L is an infinite language, then L% = LP* iff d,-1;(n) # 0 for every u €
prefi(L) N X* and n > 0.

(3) If L is a finite language, then Lp, = L, iff for every u € prefi(L) N X* and
j=0,uX? ¢ L.

(4) If L is an infinite language, then Lp, = L,, iff uX* C L for each u € prefy(L)N
X* such that uX? C L for some j > 0.
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Proof. The fact (1) is obvious. To prove (2) it is enough to observe that L = Lrk
iff for each k-prefix of length %k of a word in L, the language contains words of every
length with that prefix. But this is exactly the condition that d,-11(n) # 0 for every
u € prefr(L) N X* and n > 0. The claims (3) and (4) follow from the definitions
similarly as (1) and (2). O

Let Sp := Y2, sz’ be the formal power series where s; := dp (i), that is to say,
the it" coefficient of the series is the number of words of length 7 in the language L.
For a context-free language, the series S;, can be obtained by using the procedure
known as Schiitzenberger’s method (cf. [9]).

Let G = (V, X, P, S) be an unambiguous context-free grammar, where V' denotes
the set of non-terminals, X the set of terminals, P the set of productions, S is
the initial symbol, and let Lg be the generated language. The sets (V U X)* and
(V(z)U{z})", where V(z) = {A(z) | A € V'}, are viewed as commutative semigroups,
and the morphism © : (VU X)T — (V(z) U {z})" is defined as follows: O(a) = =
for every a € X, and ©(A) = A(x) for every A € V. For example, the words
Aaa,aAa,aaA in (VU X)*' are regarded as the same element, and they are sent by
O to A(z)2?(= zA(x)x = 2*A(x)) in (V(z) U {z})".

We then associate with every set of productions A — e;, A = e5,..., A = ¢, in P,

where A € V and e; € (VU X)*, the algebraic equation

O(A) =0(e1) + ... + O(ey)

where O(e;) = 1 if e; = . The resulting system is then solved for S(z) and it gives

the generating function of the series Sy,,.

5.1.4 Example The grammar G = {{S}, {a,b},{S — aSb|ab}, S} generates L =
{a’b' | i > 1}. Applying the Schiitzenberger method we obtain S(z) = S(z)z? + 2*

and then S(z) = %, whose expansion has the coefficients 0,0, 1,0, 1,0, ....

When L is an infinite language, the condition to have L¥* = L#* given in Propo-

sition 5.1.3 (2), is that for every u € pref, (L) N X* and n > 0, d,-1.(n) # 0. We
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will now outline a procedure to find out whether this condition holds for a regular
language L, given by an unambiguous regular grammar. It was proved in [9] that if
this is the case, the corresponding generating function is rational. Note that such a
grammar can be obtained for any regular language from a deterministic automaton,

by including for any transition labeled by a letter a from a state A to a state B,
e the production A — aB if B is not a final state, and
e the productions A — aB and A — a, if B is final.

Moreover, include the rule S — ¢ if the initial state S is final.

The procedure is as follows:

(1) Calculate the set pref, (L) N X* = {uy, ..., u,}
(2) Form a grammar for u; 'L for every i = 1,...,n

(3) Apply Schiitzenberger’s method to find the formal power series Y., s;27 of

u; 'L, where I; is the index set corresponding to the non-zero coefficients.
(4) L = (UL Ujey, wiX7) U (LN X<F)

A grammar for the left derivative of a regular language in step (2) can be easily
built, and if G is a regular unambiguous grammar, the whole procedure is effective.
In this case, the formal power series in step (3) is rational and thus its coefficients

can be efficiently computed, for example by using the method of partial fractions.

5.1.5 Example Let L = {u € {a,b}" | lg(u) =3 1}. An unambiguous grammar for
Lis G = (S, X,V,P) where S is the initial symbol, X = {a, b} is the set of terminal
symbols, V' = {S, A, B} is the set of non-terminals, and P is the following set of
productions: S — aA|bAlalb, A — aB|bB, B — aS|bS. The set of 2-prefixes of
length 2 of L is prefy,(L) N X? = X% A grammar for u='L, where u € prefy(L), is
obtained just by considering B as the new initial symbol. Applying Schiitzenberger’s

42>

g5 that has the sequence of coefficients

method to this grammar we obtain B =
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0,0,22,0,0,2%,0,0,2%,.... As the sequence has zeros, according to our condition,
Lr2 # L2, In fact, the Pp-approximation turns out to be L = {a,b} U X?(X? +
X+ X8+ ) =X+ X'+ X"+ X0 4 =L while LP? = XT.

We present a second example of an application of the procedure, in which the P-

approximation of the language is not trivial.

5.1.6 Example Let X = {a,b} and L = (aaa)’. An unambiguous grammar for L
is G = (5,X,V,P) where V = {S}, and P = {S — aaaS,S — aaa}. The set of
3-prefixes is obviously pref;(L) N X? = {aaa}. A grammar for aaa™'L, is obtained by
just replacing S — aaa by S — ¢ . Applying Schiitzenberger’s method to this gram-
mar we obtain S = ﬁ, which has the sequence of coefficients 1, 0,0, 1,0,0,1,0,0, ....

As the sequence has zeros, this implies again that L”* # L3 and in this case

LP = qaa(e + X3 + X6 + ) while L”* = aaaX*.

In some cases the process can be carried out also for context-free languages.

5.1.7 Example Let L C {a,b}* be {a'b’ | i > 1}. The set of 2-prefixes of L
is prefy(L) = {ab,aa}, and (ab)'L = {e}, (aa)'L = {a*2" | i > 2}. Using
Schiitzenberger’s procedure we obtain S = 1 for (ab)™*L and S = £ for (aa) L.

1—x2

The sequence of coefficients of the latter is 0,0,1,0,1,0,.... Thus, we obtain L™ =

{ab} UaaX?UaaX* U ..., while L”? = aaX* U abX*.

Let us define the relation Sg(X) over X+ by

Sk(X) == {(u,v) | u,v € X, lg(u) = lg(v), suffy(u) = suffy(v)}

If we denote by u® the reversal of a word u and L¥ the reversal of a language L, then
Lu™! = (uHELE)E and all the arguments used for Py-approximations can easily be

modified to apply to Si(X).
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5.1.2 The relations A;(X) and M;(X)

For w,u € Xt the multiplicity of w in u is the number
p(w,u) = [{u; € X* | u = uywug, for some uy € X*}|.

For any k > 1, the relations Ag(X) and M (X) on X are defined as follows:

Ap(X) = {(u,v) | u,v € X7, 1g(u) = 1g(v), swi(u) = swe(v)}

U{(u,u) | u e XF}.

Mp(X) = {(u,v) | u,v € X7, (Vw € X®)p(w, u) = p(w,v)}

U {(u,u) | ue XSF),

As observed in [33], the length condition makes no difference for My, because the
length of a word u is completely determined by swy(u) and the multiplicities of the
members of that set, so we may drop this condition from the definition of Mj. None
of the relations A and M, are congruences on X . For example, the words bab and
aba are related by As, but if we add the prefix b, we get (bbab, baba) ¢ As. The same
example shows that M, is not a congruence. Moreover, none of them are of finite
index because each class has a finite number of elements. The relation A; and the
congruence )y, associated with k-testable languages, are incomparable. For example,
(ababa, aba) € Ao \ A2 and (aba,bab) € Az \ Ag. The same examples show that M

and A\ are also incomparable.

For any word v € X+ and any k > 1, let us denote the complement of swy(u)

within X* by nswy(u) .
5.1.8 Proposition Let LC Xt k>1andue XT.

(1) Agy1 C Ay, and the inclusion is proper if | X| > 1.
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(2) IfL C X<, then L* = Ly, = LMv = Ly, = L.
(3) Iflg(u) >k, then [ula, = (Nscswpw) X 5X ™\ Usenswp ) X XN Xle(w)

(4) The rough approxzimations of L under Ay are finite unions of sets of the form

cn (Ujel X7) where C is a k-testable language and I C N.

(5) If L is context-free, then the rough approzimations under Ay are regular and the

sets I in (1) form arithmetic sequences.

Proof. The fact that Ay = Ax+ for |X| = 1 is obvious. The (non-strict) inclusion
in (1) was proved in [33]. To see that it is proper if | X| > 1, observe that for every
z,y € X, the words 2 'yz*~! and 2*2yz*~ly, are in Ay \ Ar;1. The fact (2) is
obvious because for every word u, if lg(u) < k, both [u]4, and [u]s, are {u}. The
expression in (3) comes directly from the definition of the relation. To see that (4)
holds, observe that there is a finite number of sets ;¢ ) X ™ SX™ \Uicnswy () X X
for w € L, and that they are k-testable languages. As the set swi(L) = U, o, swi(u)
is finite, let us take {uy,...,u,} € L such that swg(L) = [J;_, swi(u;). If we denote
I; = {lg(u) [ v € L,swy(u) = swi(u;) }, and C; = (N icou, un) X SX \Uienswr ) X X
for i = 1,...,n, n > 1, then LY = (U, C; N U,e;, X7) U (L N X<F). The lower
approximations L4, are also finite unions of this type of sets. Suppose now, to prove
(5), that L is a context-free language. The fact that its rough approximation under
Ay is regular was proved in [33] (Proposition 6.4), but we offer an alternative proof.
If L is context-free, the sets C; N L, are also context-free and as the sequences I; are
the sets of possible lengths of words in C; N L, the argument used in the proof of
statement (3) of lemma 5.1.1 can be applied to prove that the sets I; form arithmetic
sequences. Now, let us take a regular language R such that it has the same Parikh set
as C;N L and define the substitution o from X to subsets of X by putting o(a) = X
for every a € X. It gives o(R) = U, X7, that is a regular set, and therefore each

set C; N U,.; X7 is regular. 0

jel;

5.1.9 Example If L is the context-free language {a"b™ | n > 1}, then swy(L) =
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{aa,ab,bb} and L2 = a2a*b*b® N (X2)* U {ab} = [(X*aaX* N X*abX* N X*bbX*) \
X*baX*] N ;o X% U {abd}.

The approximations under A; will then correspond to finite unions of "slices" of
locally testable languages of the lengths existing in the language. If we drop the length
condition in the definition of A, the classes become just locally testable languages
(as it is clear from (3) in the last proposition), and then the approximations under

Ay, thus modified, are also regular.

5.2 Working with modified relations

5.2.1 Modifying A(X)

To get a refinement of A,(X) that is a congruence on X, let us define A,(X) C
AR(X) by

(u,v) € Ap(X) < (u,v) € Ax(X), pref,_; (u) = pref,_,(v), suffp_1(u) = suffp_1 (v).

This is clearly a refinement of A\,(X). In fact, (u,v) € Ax(X) iff (u,v) € \(X) and
lg(u) = lg(v). The relation thus modified is a congruence on X * of infinite index, but
the associated family is not consistent because it does not satisfy A;(X) C s(X), for

every k > 1.

5.2.1 Proposition Let LC Xt k>1andue XT.

(1) Iflg(u) <k, then [u]z- = {u} and hence LA = Lz =Lif L C X<k
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(2) Iflg(u) > k, then

g = (( () X"sX*)Npref, () X" N X suff,_;(u)

seswy(u)

V(U XX n e,

tenswy (u)

(3) The rough approzimations of L under Ay are finite unions of sets of the form

CNU;e; X7 where C is a k-testable language and I C N,

jer
(4) If L is context-free, then the sets I in (3) form arithmetic sequences and the

rough approzimations of L under A;, are reqular.
(5) Ak C M.
(6) Apy1 C Ay, and the inclusion is proper if | X| > 1.
(7) Ay € Con(X ™)\ FCon(X).

Proof. Facts (1), (2) and (7) follow directly from the definition of the relation. To
prove (3) we take a set of words {uy, ..., u, } C L such that for every u € L, there exists
1 <7 < n such that (u,u;) € Ay, Let us denote I; = {lg(u) | v € L, (u,u;) € A},
and C; = (g (un) X 78X ™) Nprefy_y (ws) X N X sutfy (i) \ U, e sy () X X7, for
i =1,.,n,n>1 Then L* = (UL, C; N U, X/) U (LN X<F). The lower
approximations Lz- are of course unions of this type of sets also. The proof of
statement (4) is similar to that of statement (5) of proposition 5.1.8. To prove (5),
note that A, C A, follows from the definitions, and the inclusion is proper because
we can take, for every z € X, (2 2%"1) € \; \ A;. The inclusion in (6) is also
clear from the definition, and it is proper when |X| > 1, because for every z,y € X,
(z*~tyak, 2hyzh=1) € Ay \ Agyr. If | X| =1 obviously Ay = Ax+. O

The approximations under Ay, are, once again, finite unions of "slices" of k-testable
languages of the lengths existing in the language. Another possibility to modify Ay
is to drop the length condition, as suggested at the end of [33], but in this case we

would have A;, = \;, and these approximations were studied in Chapter 3.
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5.2.2 Modifying M;(X)
Let us define M (X) by

(u,v) € Mp(X) & (u,v) € Mp(X), pref,_;(u) = pref,_;(v),suffy_; (u) = suffy_1(v).

The relation M, (X) thus defined is a refinement of \;(X) and it is a congruence on
X7 of infinite index (every congruence class is finite). It has been studied in the
context of combinatorics on words and it is known as the k-abelian equivalence. It
was defined by J. Karhuméki in [16]. The statement (3) of the following lemma is

mentioned without proof in that work.

5.2.2 Proposition For every alphabet X, and k > 1,
(1) My C A,
(2) My C My, and the inclusion is proper if | X| > 1 and k > 1,
(3) 2= M, D M, D ..., and the inclusions are proper if | X| > 1,
(4) My, € Con(X ™)\ FCon(XT).

Proof. The inclusion in (1) follows directly from the definition of the relation, and
(2%, 2¥*+1) € Ay \ M, so the inclusion is proper. The inclusion in (2) also follows from
the definition, and it is proper for | X| > 1, k > 1 because (z*~ 1y~ gkl yk-lgh-1yk=1) ¢
M\ M. If | X| = 1, then M, = M}, = Ax+, and if k = 1 then M; = M; = . To
prove (3), suppose there exist u,v € XT, u = z1..2;, v = y1..y1, T, yi € X, 1 > 0,
such that (u,v) € My, but (u,v) ¢ M. As My, C Apy C Ay, we know that
pref,_,(u) = pref,_, (v), suffy_;(u) = suffy_1(v) and swg(u) = swg(v). Then, there
must be a word w € swy(u) such that p(w,uw) = n, p(w,v) = m and n > m (the case
m > n is similar). Firstly, we suppose that w # suffy(u) and w # pref,(u). Let us

order the set of the n occurrences of w in u, denote by ¢’ the place corresponding to
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the " appearance of w in u, and by w; the appearance of w in the place ', that is
to say U = Ty...Ty_1WyTyyg...T;. For example, if u = bbabab and w = ba, then 1’ = 2,
2" = 4 and u = bwywqb.

As (u,v) € M1, the words wy/ @1/ g, ..., Wy T4 must occur at m different places
{71, dm} €{2,...,1 = k} in v. Now, the word w41y & (m+1y+r must also be one of
the words wy @14, .., Wy Ty s, and occurs in a place j € {j1, ..., jm} at v, because
M1 € Apqa, but this would imply that p(wzmi1y4r w) > p(WTEni1y4+k, v) that is
a contradiction. Therefore, n > m cannot hold. Similarly, n < m is not possible, and
thus n =m.

Now, if w = suff;(u) (and w = pref,(u)) we can apply the same argument to the
remaining n —1 > m — 1 (n — 2 > m — 2) occurrences of w in u. The fact that
M, = s is obvious. As for every z,y € X, (y*tay® v 1oy**t?) € My \ M1, the
inclusions are strict for |X| > 1. If | X| = 1, then again M = Ay+. Statement (4)

follows directly from the definition of Mj. O

To describe the classes defined by the relation M, we start by observing that
[ulzr; C c(u) for every u € X, because M, C s. That is to say, the elements of
[U]W are permutations of u. For any word u = x...x, € X, and any permutation

o € Sy, let o(u) = x5-1(1)...25-1(,). For example, if u = abaab = x,...z5 and

123 45
23145

then o(u) = 2,-1(1)..2,-1(5) = T321T22475 = aabab.

To ensure that o(u) has the same (k — 1)-prefix ((k — 1)-suffix) as u, the per-
mutation ¢ must satisfy Te-1(1) = T1,Te-1(2) = T2,y To=1(k=1) = Th—1 (:vgfl(n) =
Ty ooy To1(n—k42) = Tn_k2). Similarly, for o(u) to have the same k-subwords as u,
To1(j41)To-1(j42) - To1(j4h—1) = To-1(j)+1To~1(j)42:-Lo—1(j)+k—1 Must hold for every
1<j<n—k+1

For example, if k = 2, the o(u) given above satisfies the conditions for u = abaab:

LTo-1(1) = T3 = A = X1, To-1(5) = L5 = b and LTo-1(1)41 = T4 = T1 = T5-1(2), Lo—1(2)+1 —

74



UNIVERSITAT ROVIRA I VIRGILI
ROUGH APPROXIMATIONS IN VARIETIES OF REGULAR LANGUAGES
Gabriela Susana Martin Torres
Ty = T5-1(3), Lo—1(3)+1 — L3 = Ty = To-1(4), Lo—1(4)+1 — T4 = T1 = Ty-1(5)-

Let us define Ty(u) C S, as the set of permutations o € S,, such that

® To-1(1) = L1y -y To—1(k—1) = Tk—1,
® To-1(n) = Tny s Lo—1(n—k+2) — Tn—k+2, and

® To1(j)41 = To—1(j41), s To—1(j)+h—1 = To—1(j+k—1), Torall 1 <j<n—k+ 1.

5.2.3 Lemma For any wordu € X7, [ulz;- = {u} if n <2k—1, and [u]z;- = {o(u) |
o € Ti(u)} forn > 2k — 1.

Proof. The first statement was proved in [25]. Let us suppose that u = ...z, and
v = Y1..Yn € [ulg;. To see that v = o(u) for some o € Tj(u), let us define the
permutation o € S, by o(i) = min{j | yj...Yj4k—1 = Ti---Tivp—1, ¥l < 1,5 # o(l)} for
i<n—k+land o(i) =iforn—k+1<i<n Itisclear that o thus defined

belongs to Ty (u). The converse is true by the definition of Ty (u). O

5.2.4 Proposition For any k > 1, the family {M;,(X)}x is consistent.

Proof. Let us consider a morphism ¢ : X* — Y*, and two Mj-related words
u,v € XT. The facts that My C s and lg(u) = lg(v) imply lg(up) = lg(vy). The
conditions pref,_;(up) = pref,_; (vy) and suffy_;(up) = suffy_1(vp) are obvious. If
w € swy(up), then there must be a word v’ € sw;(u), j < k, such that w € swy(u/p).
Now, sw;(u) = sw;(v) implies u' € sw;(v) and hence w € swy(u'¢) C swy(vp). The
proof of the converse inclusion swy(vy) C swy(ue) is similar. If w € X*, p(w, up) =
n, and we order the occurrences of w from the left, then for each ¢ € [1,...,n] there
are words s;, u;,t; € X* such that u = s;uty, 1g(s1) < lg(sq) < ... < lg(s,) and the i*
occurrence of w in up appears in u;p, u; € X<F. Since pu(u;, u) = p(u;,v) for every
i € [1,...,n], u; appears in v at least as many times as it appears in the sequence
Uy, U, -, Uy, and hence vy contains at least n occurrences of w. Hence, p(w, up) <
w(w,vp). By interchanging the roles of u and v, the equality p(w, up) = p(w,vy) is
obtained. We can then conclude that My (X) C po My(Y)op™! O
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The results in chapter 3 (section 3.5), apply to {M(X)}x as the family {6 €
FCon(X*) | My(X) C 0}x is a pseudo-principal +-filter and the corresponding +-
variety M, is a pseudo-principal +-variety. Moreover, as M;(X) has regular (finite)

classes, according to Corollary 3.5.14, the following statement holds true.

5.2.5 Proposition For every k > 1, a reqular language L C X+ has a least upper

M.-approzimation if and only if LM s g reqular language.

5.2.3 Modifying J;.(X)

In [33] the authors propose to extend the above definitions to scattered subwords.

For this purpose, let us define the relation J,(X) on X+ by

(u,v) € J(X) & (u,v) € Jp(X), and lg(u) = lg(v).

The relation Ji,(X) is a refinement of J;(X), the congruence associated to piece-
wise k-testable languages introduced in Chapter 3, and it is a congruence of infinite
index on X*. The family {J,(X)}x is not consistent, because it does not satisfy
Je(X) C 5. For example when | X| > 1, (aabab, abbab) € Jo(X) \ 5. We summarize

some of its properties in the following

5.2.6 Proposition For any alphabet X, u e X*, LC X*, and k > 1,
(1) Jp C Ji,
(2) Jrr1 C Ji, and the inclusion is proper if | X| > 1,

(3) [ulz; = {u} iflg(u) <2k -1,
[U]E = (HSESSWk(u) so X" \ UtEX’“\sswk(u) to X*) N Xlg(u) Zf lg(U) > 2k — ]_7
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(4) the rough approzimations of a language L under J, are finite unions of sets of

the form C N .., X7 where C is a piecewise k-testable language and I C N,

jer
and

(5) if L is context-free, then the sets I in (4) form arithmetic sequences and the

rough approzimations of L under Jy, are regular.

Proof. The inclusion in (1) follows from the definition, and it is proper because
(xF+t 2%y € Jp \ Ji for every x € X. To prove (2), observe that (u,v) € Jy1 C
Jri1 C Jy, implies (u,v) € Ji, and as Ig(u) = lg(v), we can conclude that (u,v) € Jj.
When |X| =1, J, = Ax+, and if | X| > 1, the inclusion is proper because for every
z,y € X, (yFiak y*ab ) € J, \ Jip1. The fact that a word of length less or equal
than 2k — 1 is determined by its set of scattered subwords of length k, was proved
in [42] (cf. also [25]), thus [u]7- = {u} if lg(u) < 2k — 1. The characterization of
the classes of a word of length greater than 2k — 1 follows from the definition of the
relation. The fact (4) is a consequence of (3). The proof of (5) is the same, mutatis

mutandis, as the one of statement (5) in proposition 5.1.8. O

5.3 Some comments on accuracy

The length condition imposed in the definitions of the relations in this chapter tends
to make the approximations better when the original language has gaps in its density
function, for example the p,-approximation of the language R = (X?)* is RP? =
X2X* but the P, -approximation gives immediately R = R. The p,-accuracy does
not exist in this case (cf. example 4.2.6). However, when the language has no gaps,
the length condition makes little difference in the approximations. We show some

examples of these situations and how our measures of accuracy can reflect them.

5.3.1 Example Let X = {0,1}.

(1) The language R, = {w € X* | |w|o =2 0} has density dg,(m) = 2™ 1. The
approximations R?* = {1,00, 11}UX3X*, R = {1,00, 11,001,010, 100, 111}U
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X3X*, have densities dges(m) = dpes(m) = 2™ for every m > 4, and the
1

accuracies are Acc(Ry, P3) = Acc(Ry, p3) = limy, 00 2;”% = 1/2. The equality

in the accuracy, reflects the fact that both approximations are similar in this

no-gaps language.

An interesting case showing how different the behavior of accuracies of ap-
proximations under py and Py can be, is illustrated by R = {00} U 11*. We
have R = {00} U 11X* and R** = 00X* U 11X*, thus dze,(m) = 22 <
2 2m72 = dpp(m) for every m > 2. It is clear that both Acc(R,ps) and
Acc(R, Py) are zero, but the fact that the Py-approximation is better is shown
by lim,, e [R?2 N X™|/|RP2 N X™| = 1/2. This kind of phenomenon occurs
when there is a word u of length k in the language that does not appear as a
k-prefix in any other word of the language. Then, uX* is added to R** but just
{u} is added to R%*.

This example is a variation of the previous one, in which the accuracy, as we
define it, does show the difference between pr and Py-approximations. Let
R = {00} U 11R;, where R; is the language in the item (1) above. In this
case we have again R™ = {00} U 11X* and R*> = 00X* U 11X*, but now
for every m > 3, dr(m) = 2™73, thus Acc(R, p2) = limy, o0 22;% = 1/4 and

gm—3

AACC(R7 PZ) = hmmﬁoo om—2 — 1/2

Consider now a language with gaps. The language R = (111 + 000)7, is better
approximated by P; than by ps. Indeed, RP* = (111 + 000)(X?®)*, and Rr* =
(1114-000) X *. The accuracy in the limit is in both cases 0, but for every n > 2,

Acc(R, P3,3n) = (2331_27 > 2o Acc(R, p3, 3n).

23n—1_9

Finally, we give an example comparing the accuracy attained in \; and in Aj-
approximations. Let R = (00)*(11)*. We obtain R* = 00*11* and R* =
00711" N X?(X?)*. To calculate the accuracies we consider the even and the

odd lengths separately because neither the language, nor the Ay-approximation,
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have words of odd length. For every n > 2,

-1
= lim n(n —1) =1/4,
n—oo (2n — 3)(2n — 2)
. o (424 +n—1)
Mim Acc(R, A, 2n +1) = lim, (1+2+ .. +2n—2)
-1
I | (k) Y
n—oo (2n — 2)(2n — 1)
and
— 14+2+... -1
lim Acc(R, Az, 2n) = lim (1+2+. . +n—1)
n—00 n%oo(1+3+...+2n—3)
-1
T U ) R 7Y
n—oo (n —1)(2n — 2)
. - o (14244 n—1)
i AR 20 41) = fin gy
—1
T U () NS 7Y

nooo (n—1)(2n — 2)

Therefore, the accuracies Acc(R, \;) and Acc(R, Ay) exist, and the inequality
Acc(R, \y) = 1/4 < 1/2 = Acc(R, Ay) shows the fact that a language with gaps

like this, may be better approximated by A, than by \s.
In general, we can state that
5.3.2 Proposition Let R C Xt and k > 1. Whenever the involved limits exist,
(1) Acc(R, pr) < Ace(R, Py),
(2) Acc(R,J;) < Ace(R, Jy)), and
(3) Acc(R, \,) < Acc(R, Ay) < Ace(R, My,).
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Proof. To prove (1) it is enough to observe that P, C p; implies R N X<™ C
Rre N XS™ and hence Acc(R, P,,m) > Acc(R, px,m) for every m > 1, therefore
Acc(R, P,) > Acc(R,pr). The proof of the rest of the inequalities is completely

similar. O

5.4 Concluding remarks

As the work of Paun, Polkowski and Skowron [33] seems to be one of the few predeces-
sors of our work on rough approximation of languages in the literature, in this chapter
we studied their approach in some detail. The indiscernibility relations they define
are not always congruences, in some cases they are not even equivalence relations,
and they have all infinite index. We performed the modifications needed to obtain
congruences, described the general features of these relations, and in most cases we
gave characterizations of the equivalence classes under them. Some are related to the
families of k-definite, reverse k-definite, k-testable and piecewise k-testable studied
previously, so that we compared the rough approximations they generate with those
of the mentioned families. The characterization of the classes of M}, is a combinato-
rial problem that remains to be solved. It is worth noting the case of {M}}y, that
turns out to be a consistent family, giving a new pseudo-principal +-variety to which
we applied our previous results. Finally we showed some examples of the accuracy
of the rough approximations given by the new relations comparing them with the
old ones. In general, we observed that the approximations under relations with the
length condition tend to be better when the original language has gaps in its density.
A full study of approximations under tolerance relations remains to be done, but this

task would certainly require a different theoretical framework.
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