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Chapter 1

Introduction

�Translation is like a woman. If it is beautiful, it is not faithful.
If it is faithful, it is most certainly not beautiful.�

Yevgeny Yevtushenko

Automatic translation has been brought to the attention of researchers long before
computers were even invented. The �rst ideas can be traced back to the 17th century
when Descartes envisioned the existence of a universal language in a form of a collection of
ciphers: the lexical equivalents of a word in all known languages would be given the same
code number. Translation between any two languages would then be possible by using this
�mechanical dictionary�. Actual examples of such dictionaries were published by Cave Beck
in 16571, by Johann Joachim Becher in 16612, and by Athanasius Kircher in 16633. These
ideas could be seen as genuine forerunners of machine translation (MT), although the �rst
explicit proposals for �translating machines� did not appear until 1933, when two patents for
mechanical dictionaries were issued independently in France and Russia. In fact, the idea
of using a �unique language� metamorphoses into the �center language� of a bimorphism,
which is a mathematical mechanism that has been successfully used in theorem proving for
MT systems (and to which we shall dedicate a chapter of this dissertation).

The �rst mention of computer translation is credited to Warren Weaver. On March
4, 1947 he wrote to Norbert Wiener: �Recognizing fully, even though necessarily vaguely,
the semantic di�culties because of multiple meanings, etc., I have wondered if it were
unthinkable to design a computer which would translate�. Wiener's response on April 30
disappointed Weaver: �I frankly am afraid the boundaries of words in di�erent languages
are too vague and the emotional and international connotations are too extensive to make
any quasi mechanical translation scheme very hopeful�. Nevertheless, Weaver did not give
up, and his article4 written on July 15, 1949 is credited as being the document that had the
most widespread and profound in�uence in the history of MT: it brought the idea of MT
to general notice and inspired many projects. It is worth mentioning that the possibility of
language universals was one of the key points raised by the memorandum.

Early work in MT had a very simplistic view: the only di�erences between languages
resided in their vocabularies and the permitted word orders. It was Chomsky (1957) and
his much celebrated Syntactic Structure book who revolutionized the �eld with a hierarchy
of generative grammars (with their corresponding language classes), that established a rule

1The Universal Character, by which all Nations in the World may understand one another's Conceptions,

Reading out of one Common Writing their own Mother Tongues. An Invention of General Use, the Practise

whereof may be Attained in two Hours' space, Observing the Grammatical Directions. Which Character is

so contrived, that it may be Spoken as well as Written. London, 1957.
2Character pro notitia linguarum universali.
3Polygraphia Nova et universalis ex combinatoria arte detecta. Rome, 1663.
4Translation memorandum. The Rockefeller Foundation, 1949. Available at http://www.mt-archive.

info/Weaver-1949.pdf.
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16 Chapter 1. Introduction

based system of syntactic structures. In this hierarchy, context free grammars (CFGs) and
their corresponding language class, the context free languages (CFLs), turned out to have
a very important role for natural language processing (NLP), and in particular, for MT.
Further research revealed great generality, mathematical elegance, and wide applicability of
generative grammars.

Unfortunately, the syntactic analysis of phrases in a natural language also showed the
depth of ambiguity in English, for example:

�Time �ies like an arrow� may seem fairly straightforward to us, but a machine
sees a number of other possibilities, for example �Time the speed of �ies as
quickly as you can� (�time� being interpreted as a verb rather than a noun) and
�Certain �ies enjoy an arrow� (�time� being interpreted as an adjective, and
�like� being interpreted as a verb). The machine could be instructed to rule out
these particular o�beat parsings, but how would it handle the sentence, �Fruit
�ies like bananas�? Burck (1965)

After more than a decade of enthusiastic research on MT, the ALPAC5 report concluded
in 1966 that the results obtained in this period had failed to ful�ll the expectations, and
therefore recommended against funding further research in MT. The �eld regained its luster
in the late 1980s with the introduction of statistical machine learning tools, the increase
of computational power, and the availability of multilingual textual corpora. Nevertheless,
one cannot base an MT system exclusively on statistics, as Chomsky (1957) demonstrated
with this famous example:

1. Colorless green ideas sleep furiously.

2. *Furiously sleep ideas green colorless.

It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these
sentences) has ever occurred in an English discourse. Hence, in any statistical
model for grammaticalness, these sentences will be ruled out on identical grounds
as equally �remote� from English. Yet (1), though nonsensical, is grammatical,
while (2) is not grammatical. Chomsky (1957)

Most modern translation systems are a mix of syntax-directed and statistical based
translations. As the title suggests, this work is primarily concerned with the former one.

Although we are used to thinking about �translation� in the context of natural languages,
the word itself means a correspondence between any two strings in di�erent languages that
have the same meaning. These may occur, for example, in computer science in the tran-
scription of a program written in a high level programming language into the corresponding
machine code, or in biology in the process by which messenger RNA directs the amino acid
sequence of a growing polypeptide during protein synthesis.

Formally speaking, translations are sets of pairs of strings, where a string is a �nite
sequence of symbols from a �nite alphabet. The input string of a translation often must
have a certain structure. For example, the input strings of a natural language translation
must be correct utterances of the input language. An intuitive way to describe the structure
of a sentence is with a derivation tree (Aho and Ullman, 1972, Section 2.4.1) or a production

5Automatic Language Processing Advisory Committee of the National Academy of Science - National
Research Council.
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tree (Engelfriet, 1975c, Gécseg and Steinby, 1984). These show how to derive the sentence
using grammatical rules. The translation process can then be done on the �structure level�
by relating derivation trees of the input language to derivation trees of the output language.
Thus, a tree transformation is de�ned as this relation between input and output derivation
trees. The translation pair is found by taking the yields of the trees, i.e., the sequences of
labels of the leaves, read from left to right.

The notion of translation appeared in computer science at the same time as programming
languages (FORTRAN - 1957, ALGOL - 1958, COBOL - 1959) and their compilers. In
particular, a notational variation of CFGs � Backus-Naur form � was used to de�ne the
syntax of ALGOL by Backus et al. (1960, 1963). CFGs are still employed nowadays for
de�ning the syntax of many programming languages. Compilers used to be large hand-
written programs, and extremely di�cult to modify because it was hard to identify those
parts which would be a�ected by a change in the source code. For this reason, Irons (1961),
followed by Barnett and Futrelle (1962) and �ulík (1965), proposed to separate the syntactic
description of a programming language (input) from its semantics (translation into output),
and to use CFGs to represent the former.

The core principle of a syntax-directed translation (SDT) is that the meaning of an input
is related to its syntactic structure. �ulík (1965), Lewis II and Stearns (1968), and Aho and
Ullman (1972) were among the �rst scientists who de�ned SDTs by means of synchronous
grammars. This syntax-directed translation schemata can be seen as a CFG with translation
elements attached to each production. Whenever a production is used in a derivation of an
input string, the associated translation element generates a part of an output string. Since
then many devices de�ning SDTs have been introduced and investigated, some of them
being exhibited in this manuscript.

Any SDT can be viewed as a three-step process (Maneth, 2004, Figure 3): �rst, parse
the input string and obtain a derivation tree, then perform a tree transformation (derivation
trees of the input grammar are transformed into derivation trees of the output grammar),
and �nally, output the yield of the transformed tree. In particular, this allows to design
parsing algorithms that check whether a program is syntactically correct. If the program
is correct, a derivation tree is returned as a convenient structural representation of the
program. Then the tree transformation (i.e., syntax-directed translation device) turns this
parse tree into a representation of the compiled program (for example, a program in ma-
chine code or pseudo-code). This further exempli�es the natural use of SDTs in program
compilation.

Chomsky (1957) used trees for representing the syntax of sentences, and the connection
between �nite tree automata and context-free languages was shown in some of the very �rst
papers on tree automata by Thatcher (1967) and Doner (1970). Moreover, Rounds (1970a)
introduced tree transducers explicitly as models of Chomsky's transformational grammars:

Recent developments in the theory of automata have pointed to an extension of
the domain of de�nition of automata from strings to trees . . . Why pursue such
a generalization? . . . because parts of mathematical linguistics can be formalized
easily in a tree-automaton setting. The theories of transformational grammars
and of syntax-directed compilation are two examples. Rounds (1970a)

However, although the theory of tree automata, tree languages and tree transformations
has grown in the past four decades into a rich and well-founded discipline (check Thatcher,
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1973, Gécseg and Steinby, 1984, Gécseg and Steinby, 1997, Fülöp and Vogler, 1998, Comon
et al., 2007, for expositions and further references), it is only recently that researchers have
more extensively turned to tree-based approaches for NLP (see Knight, 2007, Knight and
Graehl, 2005, May, 2010, Maletti et al., 2009, Maletti, 2010a, for overviews).

Compiler design and machine translation, or, as Bar-Hillel (1964) used to call it, fully
automatic high quality translation are �elds in which accuracy is an important issue, so the
whole theory should rely on a solid mathematical background. Among the most desirable
properties of syntax-based systems de�ning tree transformations are (see Knight, 2007,
Maletti, 2010a, for example):

• EXPR: The model is suitably expressive for application in machine translation mean-
ing it has the ability to handle local rotations, which are re-orderings of parts of
sentences that come up in translations between di�erent languages. Abeillé et al.
(1990), Yamada and Knight (2001), and Chiang and Knight (2006) give some exam-
ples of such local rotations.

• SYM: The model is symmetric, which means that for each tree transformation de�n-
able by the model, its inverse tree transformation can also be de�ned. This property
allows us to invert a tree transducer that translates Romanian to Spanish sentences
to produce a translator from Spanish to Romanian.

• PRES and PRES−1: The tree transformations de�ned by the model preserve regularity
of tree languages and so do their inverses. In other words, the property demands that
the image and pre-image of a regular tree language remain regular under the tree
transformation. In practice, such properties are also called forward and backward
applications (see May, 2010, for example).

• COMP: The class of tree transformations de�ned by the model is closed under com-
position. In other words, it means that complex systems can be constructed by com-
positions of simpler ones. An example of how such a property improves the quality of
translations is shown by Tîrn uc  (2008, Section 5). Having two small fragments of
Romanian-to-English and English-to-Spanish translations de�ned by syntax-directed
translation schemata and using Theorem 7.4 of Steinby and Tîrn uc  (2009), a direct
and correct translation from Romanian to Spanish is obtained.

Synchronous grammars consist of two formal grammars whose productions are linked by
some mechanism. These two grammars can easily model syntax-sensitive transformations
because the derivation on either side (assume input, without loss of generality) can be seen
as a syntax tree of the sentence it generates. Thus, synchronous grammars can describe local
rotations commonly used in phrase-based machine translation, where a phrase is any part
of the input sentence. Moreover, the links can communicate information about the shape of
the input parse tree to the output side, but the mechanism is limited by the requirement that
the input and output trees have similar (or matching) shapes (Chiang and Knight, 2006,
Chiang, 2006, Satta, 2004, 2009). Consequently, properties that may signi�cantly improve
the translation process like closure under composition and preservation of recognizability of
tree languages are di�cult to prove for such formalisms and hence were largely unknown in
the linguistics community (cf. Shieber, 2004, Chiang and Knight, 2006, for example).

A tree transducer dynamically transforms an input tree into the output tree using a �nite
state control mechanism. In the last decade, new types of tree transducers were used with
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considerable success in modeling translations between natural languages especially because
of their ability to capture syntax-sensitive transformations and complex re-orderings of the
syntax trees of sentences. Those tree transducers are now an essential device in the �eld of
syntax-based machine translation (see Knight and Graehl, 2005, Graehl et al., 2008, Knight,
2007, Maletti, 2010a, and the references therein). Unfortunately, closure under composition
and preservation of recognizable tree languages do not hold in general for most of the main
tree transducer types (Baker, 1979, Engelfriet, 1975c, Gécseg and Steinby, 1984, Maletti
et al., 2009), which shows that the added power comes with severe drawbacks.

A tree bimorphisms o�ers an elegant algebraic way to de�ne tree transformations by
being formed by two tree homomorphisms de�ned on the same common tree language
called center. Such a formalism was used with considerable success in proving properties
like closure under composition and preservation of recognizability by imposing suitable
restrictions on its constituents (Takahashi, 1972, 1977, Arnold and Dauchet, 1982, Steinby,
1986, Bozapalidis, 1992, Steinby and Tîrn uc , 2007). Moreover, by taking the yields of the
input and output trees, they can be seen as devices that generate string-to-string relations.
Dauchet and Tison (1992) and Raoult (1992), and to some extent Maletti (2010a) and
Tîrn uc  (2008), brie�y surveyed the main classes of tree bimorphisms and their main
characteristics.

Using the tree bimorphism formalism, Shieber (2004) was the �rst one who linked tree
transducers and synchronous grammars in an attempt to improve the mathematical frame-
work of the latter devices:

The bimorphism characterization of tree transducers has led to a series of compo-
sition closure results. Similar techniques may now be applicable to synchronous
formalisms, where no composition results are known. Shieber (2004)

Immediately a series of such new results emerged: Shieber (2006), Huang et al. (2006),
Maletti (2007, 2008, 2010a), Steinby and Tîrn uc  (2007, 2009), Maletti and Tîrn uc 
(2009, 2010), Tîrn uc  (2011), Tîrn uc  (2009, 2007), Tîrn uc  (2008), and Nederhof and
Vogler (2012).

In this manuscript we give a comprehensive study of the theory and properties of SDT
systems seen from these three very di�erent perspectives that perfectly complement each
other: as generating devices (synchronous grammars), as acceptors (transducer machines)
and as algebraic structures (bimorphisms). These systems are investigated and compared
both as tree transformation and translation de�ning devices. We focus on tree bimorphisms
given their recent applications to NLP, and we propose a more complete and up-to-date
overview on tree transformations classes de�ned by tree bimorphisms, linking them with
well-known types of synchronous grammars and tree transducers. Moreover, we prove or
recall most desired properties such classes possess improving thus the mathematical knowl-
edge on synchronous grammars and tree transducers as Shieber (2004) suggested. Also, by
means of Hasse diagrams, we clearly show for the �rst time the inclusion relations between
the main classes of tree bimorphisms both on string level (as translation devices) and on tree
level (as tree transformation mechanisms). In addition, we further exhibit how to extend
previous results to more general classes of tree bimorphisms and synchronous grammars.

The work is structured as follows, the main results being outlined in Table 8.1.1.
Chapter 2 �xes the general notation to be used later and reviews some basic notions

concerning formal language theory such as set theory, strings, languages, and the Chomsky
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hierarchy (Hasse diagram of Figure 2.3.1). Special attention is paid to CFLs and their
properties in Section 2.4, as they are intensively used in Chapters 3, 4, and 6, for example.

Chapter 3 establishes the general notation and terminology related to the transla-
tion theory (Section 3.1), and surveys two of the most investigated classes of translations:
regular translations (Section 3.2) and syntax-directed translations (Section 3.3). We give
uniform de�nitions for various subclasses of syntax-directed translations, whose usefulness
is mentioned in Section 8.3.2. Linear syntax-directed translations is such a subclass that
only recently received an increased interest in the NLP community because of its applica-
tion in word alignment. In Theorem 3.3.15(iii) we give an alternative characterization of
linear syntax-directed translations by string bimorphisms. This new result can be further
used to prove mathematical properties of linear syntax-directed translations. For exam-
ple, Proposition 3.3.17 elegantly shows a few composition results between various types of
syntax-directed translations. Finally, in Section 3.3.4, we study the connections between the
di�erent types of syntax-directed translation de�ning devices introduced in De�nition 3.3.3.
The results are summarized in the Hasse diagram of Figure 3.3.1.

Chapter 4 is a gentle introduction to the theory of tree languages and tree automata.
The focus is on recognizable tree languages and their speci�cation methods (Section 4.4) as
they form the core of the whole dissertation. We brie�y present other well-known classes of
tree languages, too: deterministic recognizable tree languages (Section 4.4.1), tree languages
generated by tree substitution grammars (Section 4.4.2.1), local tree languages (Section 4.5),
and context-free tree languages (Section 4.7). The inclusion relations among them are estab-
lished by the Hasse diagram of Figure 4.8.1. Moreover, in Section 4.6, a special attention is
paid to production trees and connections between recognizable tree languages and context-
free languages. This concept will be extended and frequently used later in Chapter 6.

As an aside, we mention the uniform presentation and comparison between all common
tree homomorphism classes to be found in the literature (Section 4.2), and the de�nition
of tree substitution grammars, which is essential in getting new characterizations of syntax-
directed translations in Sections 5.3 and 6.4.

Chapter 5 surveys the main tree transducer types in the literature: top-down tree
transducers (Section 5.2.1), bottom-up tree transducers (Section 5.2.2), and extended top-
down tree transducers (Section 5.2.4), together with their formal properties (Table 5.2.1)
and the inclusion relations between the classes of tree transformations de�ned by them
(Figures 5.2.2 and 5.2.3). In Section 5.3, we present two synchronous grammars that gen-
erate pairs of trees, widely used to model linguistic phenomena encountered in machine
translation, language interpretation, and natural language generation: synchronous tree-
substitution grammars (Section 5.3.1) and generalized synchronous tree-substitution gram-
mars (Section 5.3.2), also known in the literature as synchronous tree-substitution grammars
with states. Using our formal de�nition, we get new characterizations of syntax-directed
translations (Proposition 5.3.3 and Corollary 5.3.9). In addition, we give a direct and
e�ective characterization in terms of generative devices of (linear non-deleting) extended
top-down tree transducers, which was di�erently proved by Maletti (2008).

Chapter 6 presents in detail some classes of tree transformations de�ned by means
of tree bimorphisms that have good properties such as SYM, PRES, PRES−1, and COMP,
together with their connection with synchronous grammars and tree transducers: quasi-
alphabetic tree transformations and translations of Steinby and Tîrn uc  (2007, 2009) in
Section 6.2, primitive transformations of Takahashi (1972) in Section 6.3, linear complete
bimorphisms of Arnold and Dauchet (1976a, 1982) in Section 6.4, and alphabetic tree rela-
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tions of Bozapalidis (1992) in Section 6.5. Moreover, the Hasse diagram of Figure 6.6.1
shows for the �rst time the inclusion relations between these classes on both the tree and
string level. Furthermore, Section 6.7 presents an up-to-date overview of other less-known
classes of tree transformations de�ned by means of tree bimorphisms that share surprising
properties.

In Chapter 7, two new types of synchronous grammars are de�ned for the �rst time.
Synchronous translation generators are introduced in Section 7.1 as a class of translation-
de�ning devices that generalize synchronous context-free grammars, and hence the basic
syntax-directed translation schemata studied in Section 3.3.1. They also generalize the
syntax-connected transduction schemes of Schreiber (1975, 1976) but are essentially equiv-
alent in power with these. In addition, Section 7.2 considers synchronous tree transforma-
tion generators that in a natural way correspond to synchronous translation generators and
generalize the synchronous tree-substitution grammars and generalized tree-substitution
grammars, that were presented in Section 5.3.

Chapter 8 presents a summary of the classes of translations and tree transformations
that we have investigated in this thesis, along with some of their main properties (Table
8.1.1). In Section 8.2, we propose to the reader a series of future work ideas related to
Section 5.3.2 and Chapter 7. Moreover, Section 8.3 exhibits a set of bibliographic notes for
the previous chapters that hopefully provide inspiration for further reading. They primarily
contain the very �rst papers on the topic and recent advances (up to 2014) of related
formalisms that could not be covered in this work. The idea was also to point out possible
applications of the notions introduced. The literature on formal language theory and natural
language processing is extensive and we have generally limited the bibliography to papers
which we have read and found interesting or useful. To ease keeping track of the cited items
and their use in the thesis, the bibliography contains a reference to the places where each
paper has been mentioned. We apologize in advance to those who may feel that their work
was inadequately referenced or omitted, and hope they understand the limitations of both
space and time.

Moreover, the dissertation makes use of many notions and devices from both linguistics
and formal language theory de�ned over strings as well as on trees. The appendix List

of Notation summarizes all the symbols used in the manuscript together with the place
where they were de�ned for the �rst time.
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Chapter 2

Preliminaries

Although we assume that the reader is familiar with the theory of formal languages, we
review some basic notions and �x the general notation to be used throughout the monograph.
We borrowed most of them from Aho and Ullman (1972), Linz (2001), Hopcroft et al. (2001),
and Rozenberg and Salomaa (1997) but also other textbooks have been consulted: Salomaa
(1973), Harrison (1978), Sudkamp (1997), Sipser (1997) and Taylor (1998).

2.1 Sets, relations and mappings

We may express the fact that P is de�ned to be Q by writing P := Q. The basic set-
theoretical symbols ∩,∪,×, etc. have their usual meanings. Nevertheless, we indicate some
conventions regarding the notation used.

(i) ∅ denotes the empty set , i.e., the unique set having no elements.

(ii) If a set X is a subset of Y and Y is a superset of X, we write X ⊆ Y . The proper
inclusion is denoted by X ⊂ Y .

(iii) We write X ‖ Y if two sets X and Y are incomparable.

(iv) The di�erence of the sets X and Y is denoted by X \ Y .

(v) XC denotes the complement of the set X with respect to a given superset (universe).

(vi) The power set of a set X, written ℘(X), is the set of all subsets of X. Moreover,
℘F (X) denotes the set of �nite subsets of X.

(vii) |X| denotes the cardinality of the set X.

(viii) The union of a family (Xj)j∈J of some sets (indexed by J) is written as
⋃
j∈J Xj .

Similarly,
⋂
j∈J Xj is their intersection.

(ix) We often write x for the one-element set {x}.

(x) For any n ≥ 0, Xn := X ×X . . .×X︸ ︷︷ ︸
n times

.

The numbers we deal with here are always non-negative integers. When we write � . . .
for all m ≥ 1 . . .� we mean �. . . for all integers m ≥ 1 . . .�. Let N := {0, 1, 2, . . .} and
N+ := N \ {0} be the sets of all the natural numbers and the positive integers, respectively.
For any n ∈ N+, let [n] denote the set {i | 1 ≤ i ≤ n}.

Let X, Y , and Z be sets, and consider a (binary) relation ρ ⊆ X × Y . The fact that
(x, y) ∈ ρ for some elements x ∈ X and y ∈ Y is also expressed by writing xρy. For
any x ∈ X, let xρ := {y | xρy}. More generally, for any X ′ ⊆ X, X ′ρ is the set of all
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y ∈ Y such that (x, y) ∈ ρ for some x ∈ X ′. The converse, or inverse of ρ is the relation
ρ−1 := {(y, x) | (x, y) ∈ ρ} (⊆ Y × X). The domain of ρ is the subset Dom(ρ) := Y ρ−1

of X, and its range is the subset Range(ρ) := Xρ of Y . The composition of two relations
ρ ⊆ X × Y and ρ′ ⊆ Y × Z is the relation

ρ ◦ ρ′ := {(x, z) | x ∈ X, z ∈ Z, (∃y ∈ Y )(x, y) ∈ ρ, (y, z) ∈ ρ′} .

Often we write ρρ′ for ρ◦ρ′. The total relation of a set X is totX := X×X, and the identity
relation {(x, x) | x ∈ X} of a set X is denoted by idX . The re�exive transitive closure of a
relation ρ ⊆ X ×X is ρ∗ :=

⋃
i≥0 ρ

i, where ρ0 := idX and ρi := ρi−1 ◦ ρ for every i ∈ N+.
Then, the transitive closure of ρ is ρ+ :=

⋃
i≥1 ρ

i = ρρ∗.
A (total) mapping φ from a set X to a set Y is a relation φ ⊆ X × Y such that for

every x ∈ X there is exactly one y in Y satisfying xφy. If we want to emphasize that φ
may be not de�ned for all x ∈ X, then we shall say that φ is a partial mapping from X
to Y . In either case, we write φ : X → Y . If xφy for some x ∈ X and y ∈ Y , then y
is called the image of x and x a pre-image of y. This is expressed by writing φ(x) = y,
xφ = y or φ : x 7→ y. Moreover, for any X ′ ⊆ X, the set {xφ | x ∈ X ′} is the image of
X ′ under φ and is denoted by X ′φ or φ(X ′). The inverse φ−1 of φ is always de�ned as a
relation (⊆ Y ×X), but usually it is not a mapping from Y to X. For any Y ′ ⊆ Y , the set
{x ∈ X | xφ ∈ Y ′} is the pre-image of Y ′ under φ, and it is denoted by Y ′φ−1 or φ−1(Y ′).
The set of all mappings from X to Y is denoted by Y X .

The composition of two mappings φ : X → Y and φ′ : Y → Z is the mapping φφ′ : X →
Z, where φφ′ is the composition of φ and φ′ as relations. Then, xφφ′ = (xφ)φ′ for every
x ∈ X.

For any φ : X → Y and Z ⊆ X, the restriction of φ to Z is the mapping φ|Z : Z → Y
such that φ|Z(x) = φ(x) for all x ∈ Z. If φ′ : Z → Y is the restriction of φ to Z, i.e., Z ⊆ X
and φ′ = φ|X , then we also say that φ is an extension of φ′ to X.

A mapping φ : X → Y is called

(i) injective if φ(x) = φ(x′) implies x = x′ for all x, x′ ∈ X,

(ii) surjective if for every y ∈ Y , there is an x ∈ X such that y = φ(x), and

(iii) bijective (or a bijection) if it is injective and surjective.

We denote the identity mapping of a set X that maps each element of X to itself by 1X .
Obviously, 1X is a bijection. Any bijection from a set X to itself is called a permutation
on X. We shall frequently use permutations on the sets [n] (n ∈ N+), and they are usually
denoted by σ. Such a permutation σ is often denoted by (i1 i2 . . . in), where σ(j) := ij for
every j ∈ [n]. If n = 0, the permutation of 0 elements is called the empty permutation.

Finally, we note that the term e�ective used for a given relation (e.g., equality) between
two classes of objects means in fact that there exists an algorithm (Aho and Ullman, 1972,
Section 0.4) which relates each object from one class to the other.

2.2 Strings and languages

An alphabet is any set of symbols, which are also called letters. As a rule, alphabets are
assumed to be �nite and usually denoted by X, Y and Z. The letters x, y, and z usually
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denote symbols in X, Y , and Z. If Y ⊆ X, then Y is a subalphabet of X. A string over
an alphabet X is any �nite sequence x1x2 . . . xn (n ∈ N) of letters xi (i ∈ [n]) in X. There
is one special string denoted by ε which has no letters (n = 0). It is called the empty
string . We reserve v and w for denoting strings. The set of all strings over an alphabet X
is denoted by X∗, and X+ := X∗ \ {ε} is the set of non-empty strings over X.

If v, v′, and w are arbitrary strings, then vw is the concatenation of v and w. We call v
a pre�x and w a su�x of the string vw. Moreover, w is a substring of vwv′. Both pre�xes
and su�xes of a string are substrings of it. For all strings v, vε = εv = v. Note that
the empty string is a su�x, a pre�x and a substring of every string. Moreover, v0 := ε
and vi := vi−1v for every i ∈ N+. Also, note (Rozenberg and Salomaa, 1997) that X∗

and X+ are, respectively, the free monoid and the free semigroup generated by X (with
concatenation as operation). The length of a string v, i.e., its number of letters, is denoted
by |v|, and |v|x denotes the number of occurrences of a given letter x ∈ X in the string v.
Furthermore, for any Y ⊆ X, we set |v|Y :=

∑
x∈Y |v|x, i.e., |v|Y is the length of the string

obtained by erasing from v all letters not in Y . The reverse of a string v = v1v2 . . . vn is
the string vR = vn . . . v2v1 written in reverse order.

Subsets of X∗ are called languages over X, and subsets of X+ are ε-free languages. We
reserve K and L to denote languages. Since any language is a set, the operations of union,
intersection, di�erence and complementation are de�ned for languages in the standard set-
theoretical way. If K ⊆ X∗ and L ⊆ Y ∗, then the concatenation of K and L is the language
KL := {vw | v ∈ K and w ∈ L}. Sometimes we want to concatenate an arbitrary number
of strings from a language, and hence we need to de�ne the closure of a language. Let
L0 := {ε} and Li := Li−1L for every i ∈ N+. Then, L∗ :=

⋃
i≥0 L

i is the Kleene closure

of L, and L+ :=
⋃
i≥1 L

i is the positive closure of L. We say that a family of languages
is closed under an operation if the result of applying the operation to any language(s) of
the family also belongs to the family. For example, a class of languages is closed under
intersection if the intersection of any two languages in the class is also a member of the
class.

De�nition 2.2.1. A mapping µ : X∗ → Y ∗ is a (string) homomorphism if µ(vw) :=
µ(v)µ(w) for all v, w ∈ X∗. The mapping µ−1 : Y ∗ → ℘(X∗), de�ned by µ−1(w) :=
{v ∈ X∗ | µ(v) = w} for every w ∈ Y ∗, is then called an inverse homomorphism.

In particular, a homomorphism is de�ned by the image of the letters in its domain, i.e.,
µ(ε) = ε, and if v = x1x2 . . . xn with xi ∈ X (i ∈ [n]), then µ(v) = µ(x1)µ(x2) . . . µ(xn).

If Y ⊆ X, we de�ne the projection homomorphism prY : X∗ → Y ∗ by setting prY (y) := y
for all y ∈ Y , and prY (x) := ε for all x ∈ X \ Y . The symbols µ and ν shall always denote
string homomorphisms.

By applying a homomorphism µ : X∗ → Y ∗ to a language L ⊆ X∗ we get another
language µ(L) := {µ(v) ∈ Y ∗ | v ∈ L}. Also, for L ⊆ Y ∗, µ−1(L) := {v ∈ X∗ | µ(v) ∈ L} is
the language consisting of those strings which get mapped by µ into a string in L.

Next, we illustrate some of the notions introduced in this section by an example.

Example 2.2.2. English (understood as the set of all possible sentences over the �nite
vocabulary of the English language), Java (understood as the set of all syntactically correct
Java programs) and {0n1n | n ∈ N} are examples of languages. The string homomorphism
µ : {0, 1, 2}∗ → {x, y}∗ is de�ned by µ(0) := x, µ(1) := yy and µ(2) := ε. If L = {012}∗,
then µ(L) = {xyy}∗. Also ν : {0, 1} → {x}, ν(0) := x, ν(1) := x is a string homomorphism,
and we have ν−1(x) = {0, 1} and ν−1(x∗) = {0, 1}∗.
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2.3 Specifying languages

Usually, a language is in�nite or, even if it is �nite, it can contain arbitrarily many strings.
Thus, it may be impossible, or at least not practical, to exhaustively enumerate all the
strings in the language. Consequently, to study languages mathematically, �nitary mecha-
nisms to specify them are necessary.

2.3.1 Recognizers

A recognizer is a device that accepts a string as its input and decides, after some com-
putations, whether the string belongs to a given language. If this is the case, it may
simultaneously produce output of some form. Thus, the language accepted by a recognizer
is the set of all strings it accepts.

Moreover, a recognizer is deterministic or nondeterministic depending on whether, in
each con�guration, there is at most one possible move or a �nite set of possible moves. The
general scheme of such devices can be found in Aho and Ullman (1972, Figure 2.1) or Linz
(2001, Figure 2.1), for example.

2.3.2 Generating devices

The most common generating device is a formal grammar � a �nite mechanism for producing
sets of strings over an alphabet of terminals. To form such valid strings, it uses another
alphabet of special symbols called nonterminals, which often represent syntactic categories.
This alphabet is disjoint from the terminal alphabet. A distinguished symbol from the
nonterminals is chosen as the start of the generation process. Moreover, a �nite set of rules
speci�es how a string is transformed into another. The process of determining the way a
terminal string is generated by a grammar is called parsing . Before proceeding with the
formal de�nition of a generating device, we give an example from linguistics.

Example 2.3.1. A grammar for a natural language, let us say English, correctly decides,
using a set of rules, whether a sentence is well formed or not. The terminal alphabet
would contain all strings in the English language. Now, a common rule of English grammar
is �A sentence (S) can consist of a noun phrase (NP ) followed by a verb phrase (VP )�.
Treating S, NP and VP as nonterminals, we may write the grammatical rule mentioned
above as S → NP VP . Since we still did not obtain a sentence in English, we have to specify
grammatical rules for both NP and VP . Usually, a noun phrase is formed of a determiner
(DET ) and a noun (NN), and a verb phrase may have a verb (VB) and a noun phrase.
Hence, the grammar also has the rules NP → DET NN and VP → VBNP . Now, if we
choose S as the start symbol and associate the terminals the and a to DET , boy and girl
to NN and sees to VB, we can progressively generate the grammatical English sentences
�the boy sees a girl� and �the girl sees the boy�.

Now, the precise de�nition of a grammar follows.

De�nition 2.3.2. A phrase structure grammar is a system G = (N,X,P, S) speci�ed as
follows.

(1) N is a �nite set of nonterminal symbols.

(2) X is the terminal alphabet such that X ∩N = ∅.
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(3) P is a �nite subset of (N ∪X)∗N(N ∪X)∗ × (N ∪X)∗. An element (α, β) in P
will be written α → β and called a production. Moreover, α, and β will be referred
to as the left-hand side, and right-hand side of the production, respectively.

(4) S ∈ N is the distinguished start symbol .

If, for any n ≥ 2, α → β1, α → β2, . . ., α → βn are all in P , then in examples we may
simply write α→ β1 | β2 | . . . | βn.

To generate strings, a grammar starts with the start symbol and then repeatedly uses
rules to transform the current string until a string containing terminals only is obtained.
The strings thus obtained at each step are called sentential forms, and they are de�ned
inductively as follows.

(1) S is a sentential form.

(2) If δαγ is a sentential form and α→ β is in P , then also δβγ is a sentential form.

Moreover, if δαγ and δβγ are as above, then we write δαγ ⇒G δβγ and we say that δαγ
directly derives δβγ. Furthermore, for any sentential forms δ and γ, δ ⇒∗G γ means that
there is a derivation

δ ⇒G δ1 ⇒G . . .⇒G δn−1 ⇒G γ

of length n ≥ 0 of γ from δ in G. We say that γ is derived from δ (or equivalently, δ
derives γ) in n derivation steps, and we express it by writing δ ⇒n

G γ. Finally, the language
generated by G is the set L(G) := {v ∈ X∗ | S ⇒∗G v}. When the grammar G is clear from
the context, we may drop the subscript G from ⇒G, ⇒n

G and ⇒∗G.
An important concept is expressed when we say that two grammars are �equivalent�.

Since there are a number of general ideas of equivalence which make sense, the term weak
equivalence is sometimes used for this concept.

De�nition 2.3.3. Two grammars G1 and G2 are (weakly) equivalent if L(G1) = L(G2).

We use the following conventions to represent the elements involved in a grammar:

(i) x, y and z represent terminals, as do the digits 0, 1 and 2;

(ii) A, B and C are nonterminals, and S is always the start symbol;

(iii) v and w are strings of terminals only;

(iv) α, β, δ and γ represent strings that may contain both nonterminals and terminals
(sentential forms).

To clarify the notions introduced so far, we give an example.

Example 2.3.4. The device G = ({S,A,B,C,C1, C2}, {x}, P, S), where the productions

S → C1CxC2|x Cx→ xxC

CC2 → AC2|B xA→ Ax

xB → Bx C1A→ C1C

C1B → ε
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form P , is a phrase structure grammar. The strings S and C1xxCC2 are examples of
sentential forms of G, and a derivation in G is

S ⇒G C1CxC2 ⇒G C1xxCC2 ⇒G C1xxB ⇒G C1xBx⇒G C1Bxx⇒G xx .

Using two endmarkers C1 and C2, the grammar allows only the construction of strings where
the number of x's is a power of 2. Thus, L(G) = {x2n | n ∈ N}.

Phrase structure grammars can be classi�ed according to the form of their productions.
Thus, by imposing restrictions on the elements of P , we may obtain classes of languages
with particular properties. Some of such classes are presented next.

Note that each time we introduce a class of languages, we present the corresponding class
of generating device (the descriptive method) and the corresponding class of recognizers (the
pragmatic method) specifying it. Sometimes we also give an algebraic method to describe
languages, which is mostly used to investigate mathematical properties of such language
classes.

2.3.3 The Chomsky hierarchy

We now survey some of the best-known types of phrase structure grammars and present
recognizers for them.

De�nition 2.3.5. A phrase structure grammar G = (N,X,P, S) is said to be

• context-sensitive if all productions in P are of the form αAβ → αγβ, where A ∈ N
and α, β, γ ∈ (N ∪X)∗, which means that A can be rewritten as γ only if it occurs
in a context of α on the left and β on the right. In addition, P may contain the
production S → ε, and in this case S does not occur on the right-hand side of any
production in P .

• context-free if each production in P is of the form A → β, where A ∈ N and β ∈
(N ∪X)∗.

• right-linear if each production in P is of the form A→ xB or A→ x, where A,B ∈ N
and x ∈ X ∪ {ε}.

Sentential forms, derivations and generated languages are de�ned as in Section 2.3.2.
Next we shall give some examples.

Example 2.3.6. The fragment grammar of Example 2.3.1 is context-free and generates a
few sentences in English that are grammatically correct. On the other hand, the grammar
G′ = ({S,A,B,C}, {x, y}, P, S) with P consisting of

S → xA | yB | ε B → xC | yS
A→ yC | xS C → xB | yA

is right-linear and generates the language

L(G′) = {v ∈ {x, y}∗ | |v|x and |v|y are both even} .
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The phrase structure grammar G = ({S,A,B}, {x, y, z}, P, S), where

S → xyz | xAyz yB → By

Ay → yA xB → xx | xxA
Az → Byzz

are the productions in P , is context-sensitive. A derivation in G is

S ⇒G xAyz ⇒G xyAz ⇒G xyByzz ⇒G xByyzz ⇒G xxAyyzz ⇒G xxyAyzz

⇒G xxyyAzz ⇒G xxyyByzzz ⇒G xxyByyzzz ⇒G xxByyyzzz ⇒G xxxyyyzzz .

The nonterminals A and B act as messengers as follows. Each time an A is created, it travels
to reach the �rst z, creates another y and z and lets the messenger B travel until it sees an x
and then create another x. Thus, the language generated by G is L(G) = {xnynzn | n ≥ 1}
(Linz, 2001, Example 11.2).

Any of the above families of grammars gives rise to a family of languages.

De�nition 2.3.7. A language L is said to be type 0, context-sensitive, context-free, or
regular, if there exists a phrase structure, context-sensitive, context-free, or right-linear
grammar G, respectively, such that L = L(G).

A great deal is known about these classes of languages and grammars. Part of the
material is summarized in Table 2.3.1, where, for the unde�ned terms, the reader is invited to
consult Harrison (1978), Hopcroft et al. (2006), Salomaa (1973), Linz (2001), and Rozenberg
and Salomaa (1997), for example.

Grammars Languages Notation Recognizers

Phrase structure Recursively
RE

Deterministic or nondeter-
(type 0) enumerable ministic Turing machines
Context-sensitive

Context-sensitive CSL Linear bounded automata
(type 1)
Context-free

Context-free CFL Pushdown automata
(type 2)
Right-linear

Regular REG
Deterministic or nondeter-

(type 3) ministic �nite automata

Table 2.3.1: Main classes of languages and their speci�cation methods.

In the original terminology (Chomsky, 1959b, a), RE, CSL, CFL, and REG are named
type 0 languages, type 1 languages, type 2 languages, and type 3 languages, respectively. It
is well known that each language class of type i (i ∈ [3]) is a proper subset of the family of
type i− 1. These relationships are depicted in the Hasse diagram of Figure 2.3.1 to which
we will refer to as the Chomsky hierarchy . In such a diagram every upwards oriented edge
denotes proper inclusion. No edge or chain of edges connecting two nodes denotes their
incomparability.

Note that such Hasse diagrams not only establish hierarchies of language classes but
also give a classi�cation of recognizers and generating devices according to their power as
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REG

CFL

CSL

RE

Figure 2.3.1: The Chomsky hierarchy.

language speci�cation methods. For example, pushdown automata are more powerful than
�nite automata.

Unfortunately, for some practical purposes such as a better representation of all syntax
of programming or natural languages, each of the four main classes is either too limited
or too powerful. Thus, further families of languages together with their generating devices
and recognizers were introduced and investigated. Consequently, to study their place in the
Chomsky hierarchy becomes natural.

2.3.4 Decision problems

A decision problem is a question in some formal system with a Yes/No answer, depending
on the values of some input parameters. A decision problem is (algorithmically) decidable if
there exists an algorithm such that, given any instance of the problem as input, it outputs
Yes or No, depending on whether the input is true or not, respectively. Otherwise, it is
undecidable. The most common decidability issues related to languages are the following.

• Emptiness: is a given language L empty?

• Finiteness: is a given language L a �nite set?

• Membership: does v ∈ L hold for a given string v and a given language L?

• Inclusion: does L1 ⊆ L2 hold for two given languages L1 and L2?

• Equality : does L1 = L2 hold for two given languages L1 and L2?

2.4 Context-free languages

Context-free languages (CFLs) are languages generated by context-free grammars (CFGs)
or recognized by pushdown machines � �nite automata equipped with an auxiliary memory
in the form of a pushdown stack. These speci�cation methods have features that permit the
description of nested structures needed in programming and natural languages. For exam-
ple, a CFG de�nes the syntactic structure of almost all programming languages. Moreover,
the Document Type De�nition feature of XML is speci�ed by a CFG which describes the
permissible HTML tags and the ways in which these tags may be nested. For practical
examples, the interested reader may consult Hopcroft et al. (2001, Section 5.3) or Wintner
(2001, Section 3.6). Also, CFGs can be used to model RNA folding and to generate RNA
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structures (Searls, 1992). Furthermore, deterministic versions of pushdown machines are
widely used in parsing (see Aho et al., 2006, for an overview).

Now, we recall the formal de�nition of the class of CFLs as well as a few of their
properties to be used later on. For details, we refer to Aho and Ullman (1972, Sections 2.4
and 2.6), Hopcroft et al. (2001, Chapters 5 and 7), and Linz (2001, Chapters 5, 6 and 8).

De�nition 2.4.1. A context-free grammar (CFG) is a phrase structure grammar CF =
(N,X,P, S) in which each production in P is of the form A → β, where A ∈ N and
β ∈ (N ∪X)∗. A language is context-free if it is de�ned by a CFG, and CFL denotes the
class of all context-free languages.

Next, an example is given.

Example 2.4.2. The context-free grammar

CF = ({S}, {if, else}, {S → SS | if S | if S else | ε}, S)

generates the language of all possible sequences of if and if-else clauses in C. A sample
derivation of if if else is

S ⇒CF SS ⇒CF if SS ⇒CF if if S else S ⇒CF if if else S ⇒CF if if else .

Note that a derivation may involve sentential forms with more than one nonterminal,
and hence there is a choice of the order in which nonterminals are rewritten. For example,
always the leftmost nonterminal was replaced at each step of the derivation above. But

S ⇒CF SS ⇒CF S if S else⇒CF if S if S else⇒CF if S if else⇒CF if if else

is also a valid derivation generating if if else and using the same productions. The di�er-
ence between them is entirely in the order in which productions are applied. A derivation
is called leftmost if at each step the leftmost nonterminal of the current sentential form is
rewritten. It is well known that if δ ⇒∗ γ, then there is also a leftmost derivation of γ from
δ. Analogously, a rightmost derivation may be de�ned.

A convenient way to show the derivation of a terminal string in a CFG is by a hierar-
chical structure called parse tree, syntax tree or derivation tree (cf. Aho and Ullman (1972,
Section 2.4.1) or Linz (2001, pp. 130�133), for example). For example, the derivation tree
corresponding to the above derivation of �if if else� is illustrated by Figure 2.4.1(b). We
omit further details here because in Chapter 4, we systematically present the general notion
of tree and formally de�ne derivation trees to suit our needs.

The machines recognizing CFLs are called pushdown automata. Informally, such a recog-
nizer is a nondeterministic �nite automaton equipped with a pushdown stack as an auxiliary
memory. This memory enables the machine to record a potentially unbounded amount of
information in a last-in-�rst-out fashion. The deterministic versions of pushdown automata
de�ne an important proper subfamily of CFL: the deterministic context-free languages. For
details, we refer to Hopcroft et al. (2001, Chapter 6), Linz (2001, Chapter 7), and Aho and
Ullman (1972, Section 2.5).

Another proper subfamily of CFL is the class of linear languages de�ned thus.

De�nition 2.4.3. A linear grammar is a context-free grammar LG = (N,X,P, S) in
which each production is of the form A→ vBw or of the form A→ v, where A,B ∈ N and
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S(a):

Sif else

S

S S

if S ε

Sif else

ε

(b):

Figure 2.4.1: Derivation tree associated to the production S → if S else (a) and to the
terminal string if if else (b).

v, w ∈ X∗. A language L is linear if L = L(LG) for some linear grammar LG. The class of
all linear languages is denoted by LIN .

Also, there is a type of recognizer called one-turn pushdown automaton that accepts
exactly the linear languages (see Harrison, 1978, Section 5.7).

Next, an example of a linear language is given.

Example 2.4.4. The grammar LG = ({S,A,B}, {x, y}, P, S), where P has the productions

S → A | B | ε,
A→ xAy | xy, and
B → xByy | xyy,

is linear and generates the language L = {xnyn | n ∈ N} ∪ {xny2n | n ∈ N}.

It is often practical to modify a given CFG so that it has a particular structure. First
of all, there might be certain types of undesirable productions which make parsing less
e�cient, or unusable symbols that do not a�ect the generative capacity. More precisely,
we would like to construct an equivalent simpli�ed grammar by removing, in the following
order,

• ε-productions, i.e., productions of the form A→ ε with A ∈ N ,

• unit productions, i.e., productions of the form A→ B with A,B ∈ N ,

• nonterminals that do not generate any strings of terminal symbols, and

• nonterminals or terminals that cannot be reached in a derivation from S.

De�nition 2.4.5. A CFG CF = (N,X,P, S) is called

• ε-free if either

(1) P has no ε-productions, or

(2) there is exactly one ε-production S → ε and S does not appear on the right-
hand side of any production in P ;
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• cycle-free if there is no derivation of the form A⇒+
CF A for any A ∈ N ;

• without useless symbols if, for every δ ∈ N ∪ X, there is a derivation of the form
S ⇒∗CF v1δv2 ⇒∗CF v1vv2 with v, v1, v2 ∈ X∗;

• proper if it is ε-free, cycle-free and without useless symbols.

Then, we can note.

Theorem 2.4.6. For any given CFG, there e�ectively exists an equivalent proper CFG.

Now, we present a normal form for CFGs that have both practical and theoretical
implications (e.g., faster parsing and easier proofs).

De�nition 2.4.7. A CFG CF = (N,X,P, S) is in Chomsky normal form (CNF) if each of
its productions is of the form

(1) A→ BC with A,B,C ∈ N ,

(2) A→ x with A ∈ N and x ∈ X, or

(3) S → ε.

Moreover, if S → ε is in P , then B,C ∈ N \ {S} in any rule A→ BC of type (1).

There is an algorithm to convert a given CFG to one in CNF as certi�ed by the next
theorem.

Theorem 2.4.8. For every CFG, there e�ectively exists an equivalent grammar in CNF.

Next, we mention some of the closure properties of CFLs that will be used later.

Theorem 2.4.9. The class of context-free languages is e�ectively closed under union, star-
closure, concatenation, homomorphism, inverse homomorphism and intersection with regu-
lar languages, but it is not closed under intersection and complementation.

Finally, we turn our attention to the common decision problems for CFLs.

Theorem 2.4.10. The emptiness, �niteness and membership are decidable for context-free
languages but the inclusion and equality are not.
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Chapter 3

Translations

A translation is a relation between elements of one language (the �source� or �input�) and
elements of another language (the �target� or �output�), that is to say, a set of pairs of
strings. In NLP, a translation from a language, let us say Spanish, to another language
such as Romanian, relates the sentences (i.e., strings) with the same meaning from these
languages. In computer science, the notion of translation appeared in the same time as
programming languages (FORTRAN-1957, ALGOL-1958, COBOL-1959) and their com-
pilers. For example, a compiler can be seen as a device that translates a source program
written by a user in a high-level programming language to a target program in a lower-level
programming language, which can be recognized and executed by a computer. Therefore,
it performs a string translation.

Two of the most investigated classes of translations with numerous applications are
regular translations and syntax-directed translations. In the literature, regular translations
are known under di�erent names: regular transductions, �nite state transducer mappings,
�nite transductions, rational translations, rational transductions or rational relations (see,
for example, Elgot and Mezei, 1965, Ginsburg, 1966, Aho and Ullman, 1972, Eilenberg,
1974, Cho�rut, 1978, Berstel, 1979, Yu, 1997, Mohri, 1996, 1997, Wintner, 2001, Roche
and Schabes, 1995, 1997, Jurafsky and Martin, 2009, and the references therein). Detailed
presentations of syntax-directed translations are given by Aho and Ullman (1972, 1973),
Vere (1970), Aho et al. (2006), Huang (2008), and Crespi-Reghizzi (2009).

In this chapter, we start by �xing in Section 3.1 the general notation and terminology
related to the translation theory. Next, in Section 3.2, we survey the usefulness in practice
and the basic properties of regular translations (Theorem 3.2.4), as well as two speci�ca-
tion methods for them: �nite-state transducers (De�nition 3.2.1) and string bimorphisms
(Theorem 3.2.3). Then, we focus on speci�cation methods for syntax-directed translations
such as syntax-directed translation schemata (Section 3.3.1) and pushdown transducers
(Section 3.3.2). Moreover, we overview in Section 3.3.3 the basic mathematical properties
of this translation class, and we exhibit useful subclasses of syntax-directed translations
in Section 3.3.1 and the inclusion relations between them in the Hasse diagram of Fig-
ure 3.3.1. We conclude this chapter by presenting several original references related to
regular translations and (subclasses of) syntax-directed translations.

3.1 Basic notions

Let X and Y be alphabets. Any relation λ ⊆ X∗×Y ∗ is called a translation. The fact that
(v, w) ∈ λ for some v ∈ X∗ and w ∈ Y ∗ means that λ translates v into w, and w is then
called a translation of v. The input alphabet of λ is X and Y is the output alphabet .

Example 3.1.1. Every homomorphism µ : X∗ → Y ∗ speci�es a translation

λ(µ) := {(v, vµ) | v ∈ X∗} (⊆ X∗ × Y ∗) .

UNIVERSITAT ROVIRA I VIRGILI 
SYNTAX-DIRECTED TRANSLATIONS, TREE TRANSFORMATIONS AND BIMORPHISMS 
Catalin Ionut Tirnauca 



36 Chapter 3. Translations

For example, suppose we have a mathematical text written in English and we want to
translate every Greek letter appearing in it into its corresponding English name. Let X =
Math ∪ Roman ∪Greek be the input alphabet, where Greek is the alphabet of Greek
letters and Math that of mathematical symbols. Moreover, let Y = Math ∪ Roman be
the output alphabet. To automatically change every Greek letter in the given text to its
corresponding English name, we can use the homomorphism µ : X∗ → Y ∗ de�ned by setting
µ(x) := x if x ∈ X \Greek, and µ(α) := alpha, µ(β) := beta, . . ., µ(Ω) := Omega for each
letter in Greek (see the table of Aho and Ullman, 1972, p. 214 for the complete de�nition).
Then, the text αX + βY would be translated into alphaX + betaY .

Since translations are binary relations, all the notions and notation introduced in Sec-
tion 2.1 apply to them, too. Thus, the converse of a translation λ ⊆ X∗ × Y ∗ is the
translation λ−1 := {(w, v) | (v, w) ∈ λ} from Y ∗ to X∗, and for any v ∈ X∗, K ⊆ X∗,
w ∈ Y ∗ and L ⊆ Y ∗,

• vλ := {w ∈ Y ∗ | (v, w) ∈ λ} is the set of translations of v,

• Kλ :=
⋃
v∈K vλ is the set of translations of members of K,

• wλ−1 := {v ∈ X∗ | (v, w) ∈ λ} is the pre-image of w, and

• Lλ−1 :=
⋃
w∈Lwλ

−1 is the pre-image of L.

In particular, the domain of λ is the set

Dom(λ) := Y ∗λ−1 = {v ∈ X∗ | ∃w ∈ Y ∗ such that (v, w) ∈ λ}

of all strings over X that have at least one translation, and the range of λ is the set

Range(λ) := X∗λ = {w ∈ Y ∗ | ∃v ∈ X∗ such that (v, w) ∈ λ}

of all strings over Y that are translations of at least one string in X∗.
Moreover, the composition of two translations λ ⊆ X∗ × Y ∗ and λ′ ⊆ Y ∗ × Z∗ is the

translation
λ ◦ λ′ := {(v, w) | v ∈ X∗, w ∈ Z∗, (∃v′ ∈ Y ∗) vλv′, v′λ′w} .

The composition operation is extended in a natural way to classes of translations: if A and
B are classes of translations, then

A ◦ B = {λ ◦ λ′ | λ ∈ A, λ′ ∈ B}

is the class of all translations that are the composition of a translation from A and a
translation from B. For any classes A, B and C of translations,

• A ◦ B ⊆ C means that any composition of an A-translation and a B-translation is a
C-translation,

• C ⊆ A ◦ B means that any C-translation can be decomposed into the product of an
A-translation and a B-translation, and

• C ◦ C ⊆ C means that C is closed under composition.
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Moreover, a class C of translations preserves a class L of languages if Lλ ∈ L for all λ ∈ C
and L ∈ L.

Almost any interesting class of translations includes as a subclass the class IDλ of
identity translations {(v, v) | v ∈ X∗}. If IDλ ⊆ C for some class C, then C ⊆ C ◦ C and,
even more, B ⊆ C ◦ B and B ⊆ B ◦ C for any class B of translations.

Similarly as in the case of languages (see Section 2.3), translations may be speci�ed
by generating devices, called now synchronous grammars, which simultaneously generate
the pairs in a translation. This is done by associating the nonterminals (cf. Irons, 1961,
Barnett and Futrelle, 1962, �ulík, 1965, Aho and Ullman, 1972, Wu, 1997, Saers, 2011,
Satta and Peserico, 2005, Shieber, 2004, 2006, Shieber and Schabes, 1990b, a, Eisner, 2003,
Abeillé et al., 1990, Schreiber, 1975, 1976, Maletti, 2013, Nederhof and Vogler, 2012, for
example) or the nonterminals and terminals (Melamed, 2003, Melamed et al., 2004) on
which the grammar is de�ned, or by linking the productions which guide the generation
process (George�, 1981). On the other hand, there are basically two types of machines
recognizing translations:

(i) two-tape recognizers that get as input both an input string and a suggested translation
of it (see Elgot and Mezei, 1965, Ginsburg, 1975, Berstel, 1979, for overviews);

(ii) �nite-state transducers that produce a translation as an output from the given input
string (see, for example, Ginsburg, 1966, Eilenberg, 1974, Aho and Ullman, 1972,
Cho�rut, 1978, Mohri, 1996, 1997, Yu, 1997, and the references therein).

In this monograph we shall consider and compare some means of de�ning translations. For
any type of translation-de�ning devices TDD, we let λ[TDD] denote the class of translations
de�nable by a device belonging to TDD. Moreover, the symbol λ is reserved to always
denote a translation.

3.2 Regular translations

One of the simplest, but yet very useful, type of translation is the regular translation. In
this section, we have chosen the terminology and notation of Aho and Ullman (1972) and Yu
(1997).

A translation is regular if it is computed by a �nite-state transducer. Informally, a
�nite-state transducer is just a �nite automaton with an associated write-only output tape.
During each move, a string of symbols, possibly ε, is read and the machine emits a string
of output symbols, possibly ε, on the output tape. In fact, one can assume without loss of
generality that, during each move, the read input and the emitted output are just a single
symbol or ε (Yu, 1997, Theorem 2.17). This is formalized as follows.

De�nition 3.2.1. A �nite-state transducer (FST) is a device FT = (Q,X, Y, κ, q0, F ),
where

(1) Q is the �nite set of states,

(2) X is the output alphabet and Y is the output alphabet,

(3) κ : Q× (X ∪ {ε})→ ℘(Q× (Y ∪ {ε})) is the transition mapping ,

(4) q0 ∈ Q is the initial state, and
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(5) F ⊆ Q is the set of �nal states.

A con�guration of FT is a triple (q, v, w), where q ∈ Q is the current state, v ∈ X∗ is
the input string remaining to be read and w ∈ Y ∗ is the output string that has been already
emitted. The moves of FT are determined by the transition mapping and described by the
next-con�guration relation `FT⊆ (Q×X∗×Y ∗)×(Q×X∗×Y ∗), de�ned as follows. For all
q, q′ ∈ Q, x ∈ X ∪ {ε}, v ∈ X∗, y ∈ Y ∪ {ε} and w ∈ Y ∗, we write (q, xv, w) `FT (q′, v, wy)
if (q′, y) ∈ κ(q, x). We say that w ∈ Y ∗ is an output, or a translation, of v ∈ X∗ if
(q0, v, ε) `∗FT (q, ε, w) for some q ∈ F . Thus, the translation computed by FT is the relation

λ(FT ) := {(v, w) | (q0, v, ε) `∗FT (q, ε, w) for some q ∈ F} (⊆ X∗ × Y ∗) .

Note that an input string may have multiple translations. The class of translations com-
putable by FSTs is called the class of regular translations, and it is denoted by λ[FST ].

The FST FT is deterministic if, for all q ∈ Q, either κ(q, ε) = ∅ and |κ(q, x)| ≤ 1
for every x ∈ X, or |κ(q, ε)| = 1 and κ(q, x) = ∅ for every x ∈ X, but still several
translations can be de�ned for a single input. To obtain exactly one translation for each
input string, it is enough to require that no ε-moves can be made in a �nal state as suggested
by Aho and Ullman (1972, p. 227), although other simple modi�cations of the de�nition of
a deterministic FST can be found in the literature (Schützenberger, 1977, Ginsburg, 1966,
Eilenberg, 1974, Berstel, 1979, Cho�rut, 1978, Mohri, 1996, 1997). Contrary to the case of
�nite automata, not every FST can be determinized (Mohri, 1997, Cho�rut, 1978).

Next, we give examples of regular translations (see also Wintner, 2001, 2002, Kosken-
niemi, 1983, Karp et al., 1992).

Example 3.2.2. The FST FT = ({q0, q1, . . . , q7},Roman,Roman, κ, q0, {q3, q7}) with κ
de�ned by setting κ(q0,m) := (q1,m), κ(q1, a) := (q2, e), κ(q1, o) := (q4, i), κ(q2, n) :=
(q3, n), κ(q4, u) := (q5, c), κ(q5, s) := (q6, e) and κ(q6, e) := (q7, ε) computes the regular
translation that maps man and mouse to their plural men and mice, respectively. Moreover,
it is deterministic. Such an FST can be easily extended to an FST that maps every English
noun in singular to its plural form (Wintner, 2001, Example 2.19). Another simple and
useful FST is a part-of-speech tagger that translates every string in some natural language
into its corresponding tag (from the output alphabet of part-of-speech tags), for example,
girl into NN and see into VB. Furthermore, this can be extended to a morphological
analyzer that associates to every string in some natural language its internal structure of
morphemes. For example, girl is translated into girl −NN − singular, and the output of
see is see− VB − present.

Nivat (1968, Section I.3) gives a more algebraic representation of regular translations
by means of regular languages and string homomorphisms (cf. also Berstel, 1979, Theo-
rems 3.2 and 4.1).

Theorem 3.2.3 (Nivat's Characterization). A translation λ ⊆ X∗ × Y ∗ is regular if and
only if there exist an alphabet Z, two homomorphisms µ : Z∗ → X∗, ν : Z∗ → Y ∗ and a
regular language L ⊆ Z∗ such that λ = µ−1 ◦ idL ◦ ν.

A triple SB = (µ,L, ν) with L ⊆ Z∗ (center language), µ : Z∗ → X∗ (input homo-
morphism) and ν : Z∗ → Y ∗ (output homomorphism) is called a string bimorphism. The
relation

λ(SB) := µ−1 ◦ idL ◦ ν = {(vµ, vν) | v ∈ L} (⊆ X∗ × Y ∗)
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is the translation de�ned by SB. In other words Nivat's theorem says that a translation is
regular if and only if there is a string bimorphism with a regular center language de�ning
it. This characterization o�ers elegant proofs of properties of regular translations such as
the ones gather in Theorem 3.2.4 below (see Nivat (1968, Chapter III), Ginsburg (1966,
Chapter 4) and Berstel (1979, Chapter III)). Further applications of this result may be
found in the next section.

Theorem 3.2.4. The following assertions are true.

(i) The domain and range of any regular translation are regular languages.

(ii) The class of regular translations is closed under union, star-closure, concatena-
tion, inverse and composition, but it is not closed under intersection or complemen-
tation.

(iii) The class of regular translations preserves regular languages and context-free lan-
guages.

(iv) For any regular translation, the �niteness, the emptiness and the membership are
decidable, but inclusion and equivalence are not.

Not only that regular translations have good properties and a well-developed theory,
but they are also e�cient (see Jurafsky and Martin, 2009, Roche and Schabes, 1997, Mohri,
1997, 1996, for example) and easy to work with since they are implemented by toolkits like
Carmel (Graehl, 1997), OpenFst (Allauzen et al., 2007) and XFST (Karttunen et al., 1997,
Beesley and Karttunen, 2003). Thus, regular translations and FSTs (sometimes enriched
with weights) are suitable to describe basic word transformations encountered in various
real-world applications:

• in compiler design as models for lexical analyzers (Aho et al., 2006, Crespi-Reghizzi,
2009, Aho and Ullman, 1972, Section 3.3);

• in image processing as tools for image manipulation � �lters, edge detectors, wavelet
transform, etc. (Culik II and Kari, 1997);

• in computational biology as models for sequence analysis � genome alignment, �nd-
ing frequent nucleotide patterns, reconstruction of DNA sequences, searching DNA
databases, etc. (Cortes and Mohri, 2005);

• in natural language processing, especially in text processing � spelling correction,
searching patterns in long texts, indexation, compression, part-of-speech tagging,
morphological analysis, etc., and speech processing � large-vocabulary speech recog-
nition, speech synthesis, etc. (Jurafsky and Martin, 2009, Beesley and Karttunen,
2003, Roche and Schabes, 1997, Mohri, 1996, 1997, Kaplan and Kay, 1994, Wintner,
2001, Koskenniemi, 1983, Karttunen and Wittenburg, 1983).

Unfortunately, they are limited, for example, in translations between natural languages and
in the construction of other parts of a compiler, where a basic knowledge about the structure
of the input and reordering of its parts are needed. Consequently, more powerful translation
devices are called for, and some of these we study in the upcoming section.
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3.3 Syntax-directed translations

Another well-known class of translations is that of syntax-directed translations. A syntax-
directed translation originates in the idea to separate the syntactic description of a program-
ming language from its semantics, and to use CFGs for the former (Irons, 1961, Barnett
and Futrelle, 1962). Therefore, the core principle of a syntax-directed translation is that
the meaning of an input is related to its syntactic structure (i.e., parse tree). Thus, syntax-
directed translations have more representational power than regular translations (similarly
as CFLs do over regular languages). They are suitable for applications:

• in programming-language compilation (see Aho and Ullman, 1972, 1973, Vere, 1970,
Aho et al., 2006, Crespi-Reghizzi, 2009, and the references therein) as, for example,
the design of compiler generators � programs that automate large parts of the work
required to write a compiler;

• in natural language processing for semantic interpretation (De Mori et al., 1982) and,
especially, for machine translation (see Yamada and Knight, 2001, Wu, 1997, Chiang,
2007, Huang, 2008, Chiang and Knight, 2006, for example).

Hence, the practical importance of syntax-directed translations motivated deeper and
continuous theoretical investigations of speci�cation methods, mathematical foundations
(e.g., closure properties and decomposition results), and useful subclasses and the relations
between them. Consequently, in what follows, we exhibit:

(i) speci�cation methods of syntax-directed translations such as syntax-directed transla-
tion schemata (Section 3.3.1) and pushdown transducers (Section 3.3.2),

(ii) subclasses of syntax-directed translations (Section 3.3.1) and the inclusion relations
between them (Section 3.3.4 and the Hasse diagram of Figure 3.3.1), and

(iii) basic mathematical properties of syntax-directed translations such as normal forms,
generative capacity and composition and decomposition results (Section 3.3.3).

In Section 3.3.3 we also present an algebraic characterization, the string bimorphism, which
naturally yields various subclasses of syntax-directed translations and o�ers elegant proofs
of their properties. Moreover, in Section 6.2, we introduce tree bimorphisms that specify all
syntax-directed translations. Such a new characterization will be further used, for example,
to improve the mathematical foundations of syntax-directed translations by proving other
closure properties (union, closure under composition, etc.).

3.3.1 Syntax-directed translation generating devices

First, we present a generating device de�ning a syntax-directed translation � a synchronous
grammar called syntax-directed translation schema (Irons, 1961, Aho and Ullman, 1972,
�ulík, 1965) and also known as syntax-directed transduction (Lewis II and Stearns, 1968).
It consists of an input CFG and an output CFG with a common set of nonterminals. In
every synchronous production the number of nonterminals occurring in the right-hand side
of the production of the input grammar is the same as the number of nonterminals occurring
in the corresponding right-hand side of the production in the output grammar. Moreover,
a pairing is made by associating occurrences of the same input/output nonterminals. In
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other words, a syntax-directed translation schema may be seen as a CFG with translation
elements attached to each production. Whenever a production is used in a derivation of an
input string, the associated translation element generates a part of an output string. The
precise de�nition follows.

De�nition 3.3.1. A syntax-directed translation schema (SDTS) is a device SD = (N,X, Y,
P, S) speci�ed as follows.

(1) N is the alphabet of nonterminal symbols such that N ∩ (X ∪ Y ) = ∅.

(2) X and Y are the input and the output alphabet.

(3) S ∈ N is the start symbol.

(4) P is a �nite set of productions of the form

A;A→ v0A1v1 . . . vm−1Amvm;w0Aσ(1)w1 . . . wm−1Aσ(m)wm (σ) (3.3.1)

where m ≥ 0, A,A1, . . . , Am ∈ N , σ is a permutation on [m], and for every 0 ≤ i ≤ m,
vi ∈ X∗ and wi ∈ Y ∗. Note that σ(i) = j means that the ith nonterminal in β
corresponds to the jth nonterminal in α.

When α ∈ X∗ and β ∈ Y ∗ in a production A;A → α;β (σ) in P , we may omit the
empty permutation σ and write the production simply as A;A→ α;β. The input grammar
of SD is the CFG SDin = (N,X,P in, S), where P in := {A → α | A;A → α;β (σ) ∈
P for some β and σ}. Similarly, the CFG SDout = (N,Y, P out, S), where P out := {A→ β |
A;A→ α;β (σ) ∈ P for some α and σ}, is called the output grammar of SD.

To present the semantics of an SDTS SD, we use the notion of associated nonterminals.
Whenever we apply a production in a derivation, we have to apply it to two �associated�
nonterminals. This notion will be formalized later in Section 5.3.1 for a more general case
(cf. Aho and Ullman, 1969a, p. 321). The translation forms of SD, which are elements
of (N ∪X)∗ × (N ∪ Y )∗, are de�ned inductively as follows.

(1) (S, S) is a translation form, and the two Ss are said to be associated.

(2) If (γAδ, γ′Aδ′) is a translation form in which the two explicit instances of A are
associated and A;A→ α;β (σ) is a production in P , then (γαδ, γ′βδ′) is a translation
form. The nonterminals of α and β are associated in (γαδ, γ′βδ′) the same way as
they are associated in the production. The nonterminals of γ and δ are associated
with those of γ′ and δ′ in the new translation form exactly as in the original one.

If (γAδ, γ′Aδ′) and (γαδ, γ′βδ′) are as above, then we write

(γAδ, γ′Aδ′)⇒SD (γαδ, γ′βδ′).

This is a leftmost derivation step if the explicit instance of A is the leftmost occurrence of
any nonterminal symbol in γAδ. Furthermore, for any translation forms (γ, δ) and (γ′, δ′),
(γ, δ)⇒∗SD (γ′, δ′) means that, for some n ∈ N, there exists a derivation

(γ, δ)⇒SD (γ1, δ1)⇒SD . . .⇒SD (γn−1, δn−1)⇒SD (γ′, δ′)
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of (γ′, δ′) from (γ, δ) in SD. A derivation is leftmost if every step in it is leftmost. The
translation de�ned by SD is the relation

λ(SD) := {(v, w) | (S, S)⇒∗SD (v, w)} (⊆ X∗ × Y ∗) .

Let λ[SDTS] denote the class of translations de�nable by SDTSs. A translation is syntax-
directed (SDT) if it is de�nable by an SDTS. Moreover, two SDTSs are equivalent if they
de�ne the same translation. In what follows, we might denote the class of all syntax-directed
translations by SDT .

We illustrate the notions introduced so far by giving an example of an SDTS that trans-
lates a fragment of English into Japanese (Yamada and Knight, 2001, Figure 1). Tîrn uc 
(2008, Section 5) gives as an example SDTSs that model a fragment of a Romanian-English
and an English-Spanish translation.

Example 3.3.2. The system SD = (N,Roman,Roman, P, S, S), where the nonterminals
S, VB, VB1, VP , NN , TO, DET and PRP are in N and P consists of the productions

S;S → PRP VB1 VP ;PRP VP VB1 (1 3 2) VB1;VB1 → adores; daisuki desu

VP ;VP → VB TO;TO VB ga (2 1) VB;VB → listening ; kiku no

TO;TO → TONN ;NN TO (2 1) TO;TO → to;wo

PRP ;PRP → he; kare ha NN ;NN → music; ongaku ,

is an SDTS. A derivation in SD is

(S, S)⇒SD (PRP VB1 VP, PRP VP VB1)⇒SD (he VB1 VP, kare ha VP VB1)

⇒SD (he adores VP, kare ha VP daisuki desu)

⇒SD (he adores VB TO , kare ha TO VB ga daisuki desu)

⇒SD (he adores listening TO, kare ha TO kiku no ga daisuki desu)

⇒SD (he adores listening TONN, kare ha NN TO kiku no ga daisuki desu)

⇒2
SD (he adores listening to music, kare ha ongaku wo kiku no ga daisuki desu)

translating the English text �he adores listening to music� into its corresponding Japanese
sentence �kare ha ongaku wo kiku no ga daisuki desu�. In this example, we may observe
some of the features of SDTSs that may be appealing, up to some extent, not only for the
design of compilers but also for syntax-based translation of natural languages: they model
simple reordering of parts of sentences required by languages with di�erent grammatical
structure (e.g., swapping of grammatical categories), they do insertions of extra strings in
a derivation step to specify di�erent syntactic cases, and they perform rough word-for-word
translations between strings of both languages acting like a dictionary.

By restricting the productions of SDTSs or by giving them more freedom (e.g., in the
associating process), we may obtain other useful classes of translation de�ning devices and
translations (Aho and Ullman, 1972, 1973, Aho et al., 2006, Wu, 1997, Saers, 2011, Satta
and Peserico, 2005, Satta, 2007). These we describe next. Firstly, we focus on the restricted
versions of SDTSs.

De�nition 3.3.3. An SDTS SD = (N,X, Y, P, S) is said to be
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• of order k (k-SDTS, k ≥ 0) if in no production A;A→ α;β (σ) in P , the number of
nonterminals in α exceeds k,

• simple (sSDTS) if in each production A;A→ α;β (σ) in P , σ is the identity permu-
tation,

• an inversion transduction grammar (ITG) if in each production A;A→ α;β (σ) in P ,
σ is the identity permutation or the inverse permutation,

• right-linear (rSDTS) if each production in P is of the form A;A→ vB;wB (1) or of
the form A;A→ v;w, where A,B ∈ N , v ∈ X∗ and w ∈ Y ∗, or

• linear (lSDTS) if each production in P is of the form A;A → vBv′;wBw′ (1) or of
the form A;A→ v;w, where A,B ∈ N , v, v′ ∈ X∗ and w,w′ ∈ Y ∗.

The classes of translations de�ned by SDTSs of order k, simple SDTSs, ITGs, right-linear
SDTSs, and linear SDTSs are denoted by λ[k-SDTS], λ[sSDTS], λ[ITG], λ[rSDTS], and
λ[lSDTS], respectively.

To clarify the above de�nition, we give some examples.

Example 3.3.4. The SDTS SD1 = ({A,S}, {0, 1, ]}, {0, 1, ]}, P, S), where P consists of

S;S → A]A;A]A (2 1) A;A→ 1A; 1A (1)

A;A→ 0A; 0A (1) A;A→ ε; ε ,

is an ITG of order 2. Obviously, λ(SD1) = {(v]w,w]v) | v, w ∈ {0, 1}∗}. The SDTS

SD2 = ({S}, {0, 1}, {0, 1}, {S;S → ε; ε, S;S → 0S;S0 (1), S;S → 1S;S1 (1)}, S)

is linear (and hence of order 1) and de�nes the translation λ(SD2) = {(v, vR) | v ∈ {0, 1}∗}.
The SDTS of Example 3.3.2 has order 3, and is neither simple nor an ITG. The SDTS

SD3 = ({S}, X,X, {S;S → +SS;SS + (1 2), S;S → ∗SS;SS ∗ (1 2), S;S → x;x}, S)

where X = {+, ∗, x}, is simple (of order 2) and translates every pre�x Polish arithmetic
expression over X into its corresponding post�x Polish expression. The system

SD4 = ({S}, {0, 1}, {0, 1}, {S;S → 0S; 1S (1), S;S → 1S; 0S (1), S;S → ε; ε}, S)

is a right-linear SDTS that translates every bit string into its bitwise complement, e.g., 1001
into 0110.

Next we study synchronous context-free grammars, which are generalized SDTSs in
which nonterminals associated in a production can be distinct. This decoupling of non-
terminals may be essential to capture the syntactic divergences between languages (Huang
et al., 2009, p. 565) and it allows more general parse tree transformations (Satta, 2007)
as we will formally show in Section 6.2.2. Also, it has been claimed that this stronger
expressivity may be very convenient when proving formal properties of the model (Satta,
2007). Let us note that in the NLP community, the term synchronous context-free grammar
often refers to the syntax-directed translation schemata considered in De�nition 3.3.1 (see
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Chiang, 2006, 2007, Zhang et al., 2006, Zhang and Gildea, 2007, for example). However,
we prefer the traditional names and to consider the two formalisms separately. The formal
de�nition of a synchronous context-free grammar is as follows (cf. Satta and Peserico, 2005).

De�nition 3.3.5. A synchronous context-free grammar (SCFG) is a construct SC =
(N,X, Y, P, S, S′), where

(1) N , X and Y are as in De�nition 3.3.1,

(2) S, S′ ∈ N are the start symbols, and

(3) P is a �nite set of productions of the form

A;B → v0A1v1 . . . vm−1Amvm;w0B1w1 . . . wm−1Bmwm (σ) (3.3.2)

where m ≥ 0, A,A1, . . . , Am, B,B1, . . . , Bm ∈ N , σ is a permutation on [m], and for
every 0 ≤ i ≤ m, vi ∈ X∗ and wi ∈ Y ∗. Note that σ(i) = j has the same meaning as
for SDTSs.

The input grammar, output grammar, translation forms, derivation and leftmost deriva-
tion are de�ned for SCFGs in an analogous way as for SDTSs (cf. Satta, 2007, Tîrn uc ,
2011, for details). Thus, the translation de�ned by SC is the relation

λ(SC) := {(v, w) | (S, S′)⇒∗SC (v, w)} (⊆ X∗ × Y ∗) .

The class of translations de�nable by SCFGs is denoted by λ[SCFG].
An example of an SCFG is given next.

Example 3.3.6. The device

SC = ({S,A}, {x}, {0, 1}, {S;S → S;A (1), S;S → x; 0, S;A→ x; 1}, S, S)

is an SCFG. There are exactly two successful derivations in SC:

(S, S)⇒SC (x, 0) and (S, S)⇒SC (S,A)⇒SC (x, 1) ,

and therefore, λ(SC) = {(x, 0), (x, 1)}.
Note that even if it is obvious how to construct an SDTS de�ning the same translation,

there is no SDTS that can capture exactly the syntactic divergences represented by the two
pairs of syntactic trees of SC. This is suggested by the fact that the same nonterminal may
appear in a di�erent number of occurrences in the pairs of parse trees, which is not the case
for an SDTS. More precisely, the following SCFG-rule (Huang et al., 2009)

VP ; VP → VBNN ; VBZ NNS (1 2)

illustrates that Chinese does not have a plural noun (VBZ) or third-person-singular verb
(NNS). The di�erence between the syntactic trees of SDTSs and SCFGs will be formally
shown with the help of tree bimorphisms in Section 6.2.2.

3.3.2 Recognizers of syntax-directed translations

In this section we turn our attention to machines specifying various forms of syntax-directed
translations: nondeterministic pushdown transducers, which are in fact pushdown automata
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with an attached write-only output tape, and deterministic pushdown transducers. Aho and
Ullman (1972) shall be checked for details.

Lewis II and Stearns (1968, Theorem 3) showed that simple SDTSs and pushdown
transducers de�ne the same translation class. Aho and Ullman (1969b) proved that deter-
ministic pushdown transducers are less powerful translation devices that nondeterministic
pushdown transducers. Therefore, we get the following result, where λ[PDT ] and λ[DPDT ]
denote the class of all translations de�nable by nondeterministic pushdown transducers and
deterministic pushdown transducers, respectively,.

Theorem 3.3.7. λ[DPDT ] ⊂ λ[PDT ] = λ[sSDTS].

To de�ne all SDTs, one may add to a pushdown transducer a �xed number k ≥ 0 of stor-
age registers associated to each stack symbol (Aho and Ullman, 1969b). A storage register
holds a string of output symbols. When the machine pops the topmost symbol of the stack,
the contents of its registers are transmitted to the below stack symbol. Such a device is
called k-register pushdown transducer , and let λ[kPDT ] denote the class of translations de-
�ned by all k-register pushdown transducers. Aho and Ullman (1969b, Theorem 4.1 and 4.2)
proved the following.

Theorem 3.3.8. λ[kPDT ] = λ[k-SDTS], and the equality is e�ective.

3.3.3 Properties of syntax-directed translations

In this section we present some of the general properties of syntax-directed translations (cf.
Aho and Ullman, 1972, Vere, 1970). We start by noting the generative capacity of an SDTS
(Aho and Ullman, 1972, Exercise 3.1.7).

Proposition 3.3.9. The domain and range of any SDTS of order k ≥ 2 are CFLs. If the
SDTS is of order 1, then its domain and range are linear languages.

Proof. Let SD = (N,X, Y, P, S) be any SDTS. Firstly, we show that Dom(λ(SD)) =
L(SDin). If v ∈ Dom(λ(SD)), then there is w ∈ Y ∗ such that (v, w) ∈ λ(SD), which
means that (S, S)⇒∗SD (v, w), and hence S ⇒∗

SDin w. So, Dom(λ(SD)) ⊆ L(SDin).
Conversely, if v ∈ L(SDin), then S ⇒∗

SDin v, and hence there is a derivation

S ⇒SDin δ1 ⇒SDin . . .⇒SDin δn−1 ⇒SDin v

of v from S in SDin. By the de�nition of SDin, each production A→ α in P in is constructed
from at least one production A;A → α;β (σ) in P for some β and σ. Hence, there is at
least one corresponding derivation

(S, S)⇒SD (δ1, γ1)⇒SD . . .⇒SD (δn−1, γn−1)⇒SD (v, w)

in SD for some γi ∈ (N ∪ Y )∗(i ∈ [n − 1]) and w ∈ Y ∗ (since v does not contain any
nonterminals because in any translation form of an SDTS, the input and output parts
contain the same nonterminals and the same number of each). So, there exists w ∈ Y ∗

(not necessarily unique) such that (S, S) ⇒∗SD (v, w), and consequently v ∈ Dom(λ(SD)).
Hence, L(SDin) ⊆ Dom(λ(SD)).

Since SDin is a CFG, this shows that Dom(λ(SD)) is a CFL, and if SD is of order 1,
the grammar SDin is linear.

For ranges the proof can be done analogously.
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On the other hand, the following property of SDTSs shows a generative limitation of
these devices (Aho and Ullman, 1969b, Theorem 4).

Theorem 3.3.10. If λ ∈ λ[SDTS], then there is k ∈ N such that, for all v ∈ Dom(λ) with
v 6= ε, there exists w such that (v, w) ∈ λ and |v| ≤ k|w|.

The above result can be used, for example, to show that certain translations (e.g.,
{(xn, xn2

) | n ≥ 1}) cannot be de�ned by any SDTS.
As in the case of CFGs (see Theorem 2.4.6), there may be redundant productions and

nonterminals in an SDTS that can be removed in an e�ective way (Aho and Ullman, 1972,
Lemmata 3.6 and 3.9).

Theorem 3.3.11. If λ ∈ λ[k-SDTS] (k ≥ 2), then there e�ectively exists a k-SDTS SD =
(N,X, Y, P, S) such that

(1) there is no production of the form A;A→ B;B in P (i.e., no unit productions),

(2) there is no production of the form A;A→ ε; ε in P with A 6= S, and if S ;S → ε;ε
is in P , then S does not occur in the right-hand side of any production,

(3) there are no useless nonterminals (i.e., for any A ∈ N , there is a derivation
(S, S)⇒∗SD (δ1Aδ2, γ1Aγ2)⇒∗SD (v, w) for some δ1, δ2 ∈ (N ∪X)∗, γ1, γ2 ∈ (N ∪Y )∗,
v ∈ X∗ and w ∈ Y ∗), and

(4) λ(SD) = λ.

Any SDTS as above is called proper . In addition, it is useful, for both practical and
theoretical considerations, to also put its productions in a normal form. For di�erent types
of SDTSs the following normal forms are available.

Theorem 3.3.12. The following hold.

(i) Any right-linear SDTS is e�ectively equivalent to a proper right-linear SDTS with
every production of the form A;A → xB; yB (1), or of the form A;A → x; y, where
A,B ∈ N , x ∈ X ∪ {ε} and y ∈ Y ∪ {ε}.

(ii) Any ITG is e�ectively equivalent to an ITG in which each production is of one
of the forms

(1) A;A→ BC;BC (1 2) with A,B,C ∈ N ,

(2) A;A→ BC;CB (2 1) with A,B,C ∈ N ,

(3) A;A→ x; y with x ∈ X ∪ {ε} and y ∈ Y ∪ {ε}, but x and y are not both ε, or

(4) S;S → ε; ε, and then B,C ∈ N \ {S} in any production of type (1) or (2).

(iii) Any simple SDTS is e�ectively equivalent to a simple SDTS where each produc-
tion is of the form (1), (3), or (4) as in (ii).

(iv) Any SDTS of order k ≥ 2 is e�ectively equivalent to a proper SDTS with each of
its productions of the form

(1) A;A→ A1 . . . Am;Aσ(1) . . . Aσ(m) (σ) with A1, . . . , Am ∈ N , or of the form
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(2) A;A→ v;w with v ∈ X∗ and w ∈ Y ∗.

We say that such an SDTS is in weak normal form.

(v) Any SDTS is e�ectively equivalent to a proper SDTS with each of its productions
of the form

(1) A;A→ A1 . . . Am;Aσ(1) . . . Aσ(m) (σ) with A1, . . . , Am ∈ N , or of the form

(2) A;A→ x; y with x ∈ X ∪ {ε} and y ∈ Y ∪ {ε}.

We say that the SDTS is in strong normal form.

(vi) Any linear SDTS is e�ectively equivalent to a linear SDTS with every production
of the form A;A → ε; ε or of the form A;A → xBx′; yBy′ with A,B ∈ N , x, x′ ∈
X ∪ {ε}, y, y′ ∈ Y ∪ {ε}, and x, x′, y and y′ are not all ε.

Proof. For (i), let SD = (N,X, Y, P, S) be any right-linear SDTS. From this we construct a
right-linear SDTS SD′ = (N ′, X, Y, P ′, S) as follows. Let A;A→ vB;wB be any production
in P with v = x1 . . . xn (xi ∈ X) and w = y1 . . . ym (yi ∈ Y ). If 1 ≤ n < m (the case
n ≥ m ≥ 1 is treated analogously), we add the productions

A;A→ x1B1; y1B1 (1)

Bi;Bi → xi+1Bi+1; yi+1Bi+1 (1) (i ∈ [n− 1])

Bj ;Bj → Bj+1; yj+1Bj+1 (1) (n ≤ j ≤ m− 2)

Bm−1;Bm−1 → B; ymB (1)

to P ′. Moreover, we add A, B and Bl (l ∈ [m−1]) to N ′. Furthermore, for every production
A;A → v;w in P with v = x1 . . . xn (xi ∈ X), w = y1 . . . ym (yi ∈ Y ) and 1 ≤ n < m (the
case n ≥ m ≥ 1 is treated analogously), the productions

A;A→ x1B1; y1B1 (1)

Bi;Bi → xi+1Bi+1; yi+1Bi+1 (1) (i ∈ [n− 1])

Bj ;Bj → Bj+1; yj+1Bj+1 (1) (n ≤ j ≤ m− 2)

Bm−1;Bm−1 → ε; ym

are added to P ′, and A,B1, . . . , Bm−1 to N ′. If n ∈ {0, 1} and m ∈ {0, 1}, the production
is already in the desired normal form. Obviously every production in P has the same e�ect
on the generative process as the correspondent productions newly introduced in P ′. Hence,
λ(SD) = λ(SD′), and SD′ is in the required normal form.

Statement (ii) was shown by Wu (1997, Theorem 2). Using the string bimorphism char-
acterization of simple SDTSs (Theorem 3.3.15), (iii) was proved by Aho and Ullman (1969a,
Corrolary 1) or by Aho and Ullman (1972, Theorem 3.6). The proof of (iv) is due to Aho and
Ullman (1969b, Lemmata 3.1 and 3.2) or to Aho and Ullman (1972, Lemmata 3.7 and 3.9).

To prove (v), for any given k-SDTS SD = (N,X, Y, P, S) (k ≥ 2), we construct the
SDTS SD′ = (N ′, X, Y, P ′, S) (cf. Maletti and Tîrn uc , 2009), where

• N ′ := N ∪ {x | x ∈ X} ∪ {y | y ∈ Y } with x and y being new nonterminals,
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• for every x ∈ X and y ∈ Y , the following two productions are in P ′

x→ x; ε and y → ε; y ,

• and for every typical SDTS-production

A;A→ v0A1v1 . . . vm−1Amvm;w0Aσ(1)w1 . . . wm−1Aσ(m)wm (σ)

of the form (3.3.1) in P with vi = xi1 . . . xiki (ki ≥ 0, xij ∈ X) and wi = yi1 . . . yili
(li ≥ 0, yij ∈ Y ), the following production

A;A→ v0w0A1v1w1 . . . Amvmwm; v0w0Aσ(1)v1w1 . . . Aσ(m)vmwm (σ)

is in P ′, where for every 0 ≤ i ≤ m we de�ne

xi1 . . . xiki := xi1 . . . xiki and yi1 . . . yili := yi1 . . . yili .

• The set P ′ does not contain any further productions.

Obviously, SD′ is in weak normal form. Finally, it is easy to see that the new productions
together produce exactly the e�ect of the original productions, and hence λ(SD′) = λ(SD).

Statement (vi) is proved by Saers (2011, Theorem 5.1).

Note that in general not every SDTS can be given in a Chomsky-like normal form as
remarked by Aho and Ullman (1972), Huang et al. (2009) or Wu (1997). This will be
formally shown in next section by Theorem 3.3.18. On the other hand, restricted versions
of SDTSs such as ITGs admit a CNF. Moreover, Huang et al. (2009) present conditions for
an SDTS of order k to posses a CNF.

We continue by presenting a more algebraic characterization of syntax-directed transla-
tions � the string bimorphism (Aho and Ullman, 1969b).

De�nition 3.3.13. A language L ⊆ Z∗ is said to

(i) characterize a translation λ ⊆ X∗ × Y ∗ if there is a string bimorphism SB =
(µ,L, ν) with µ : Z∗ → X∗ and ν : Z∗ → Y ∗, such that λ = λ(SB), and to

(ii) strongly characterize a translation λ ⊆ X∗ × Y ∗ if there is a string bimorphism
SB = (µ,L, ν) such that λ = λ(SB), and µ : Z∗ → X∗ and ν : Z∗ → Y ∗ are thus:

• Z = X ∪ Y ′ with X ∩ Y ′ = ∅,
• µ(z) := z if z ∈ X, and µ(z) := ε if z ∈ Y ′, and
• ν(z) := ε if z ∈ X, and ν|Y ′ is a bijection between Y ′ and Y .

To clarify the de�nition, we present Examples 3.14-3.15 of Aho and Ullman (1972).

Example 3.3.14. The language 0+ characterizes, but does not strongly characterize, the
translation λ = {(xn, xn) | n ≥ 1} (µ(0) = ν(0) := x). Moreover, λ is strongly characterized
by the language {xnyn | n ≥ 1} ⊆ {x, y}∗ (Z1 = {x}, Z2 = {y}, µ(x) := x, µ(y) := ε,
ν(x) := ε and ν(y) := y).
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Now using De�nition 3.3.13, we get the following speci�cation methods for various types
of syntax-directed translations.

Theorem 3.3.15. The following statements hold.

(i) A translation is regular, if and only if it is strongly characterized by a regular
language, if and only if it is characterized by a regular language.

(ii) A syntax-directed translation is simple, if and only if it is strongly characterized
by a CFL, if and only if it is characterized by a CFL.

(iii) A syntax-directed translation is linear, if and only if it is strongly characterized
by a linear language, if and only if it is characterized by a linear language.

Proof. Statement (i) was proved independently by Nivat (1968, Section I.3) and Aho and
Ullman (1972, Theorem 3.3) (see also Theorem 3.2.3). Item (ii) is due to Aho and Ullman
(1969a, Theorem 1) and Aho and Ullman (1972, Theorem 3.4). Next we exemplify the
constructions of Aho and Ullman by showing statement (iii).

First, let λ ⊆ X∗ × Y ∗ be a translation characterized by a linear language. By Def-
inition 3.3.13(i), there exist an alphabet Z and a string bimorphism SB = (µ,L, ν) with
µ : Z∗ → X∗, ν : Z∗ → Y ∗ and L ⊆ Z∗, L ∈ LIN , such that λ = λ(SB). Moreover, because
L ∈ LIN , there is a linear grammar LG = (N,Z, P, S) such that L = L(LG). Now, we
construct a linear SDTS SD = (N,X, Y, P ′, S), where

(1) for every productionA→ v in P withA ∈ N and v ∈ Z∗, we putA;A→ µ(v);ν(v)
into P ′;

(2) for every production A → vBw in P with A,B ∈ N and v, w ∈ Z∗, we have
A ;A→ µ(v)Bµ(w) ; ν(v)Bν(w) (1) in P ′;.

Obviously, SD is a linear SDTS. To prove that λ = λ(SB) = λ(SD), it is enough to show
by length of the derivation that for every A ∈ N ,

(A,A)⇒n
SD (v, w) ⇔ ∃v′ ∈ Z∗, A⇒n

LG v
′, v = µ(v′), and w = ν(v′) .

Assuming this has be done, we get that λ is a linear translation.
Next, let λ ⊆ X∗ × Y ∗ be a linear translation. Then, there is a linear SDTS SD =

(N,X, Y, P, S) such that λ(SD) = λ. Let Z := X ∪ Y ′, where Y ′ := {y′ | y ∈ Y } is an
alphabet of new symbols. Moreover, we de�ne µ : Z∗ → X∗ by setting

µ(z) := z if z ∈ X and µ(z) := ε if z ∈ Y ′ ,

ν : Z∗ → Y ∗ by
ν(z) := ε if z ∈ X and ν(z) := y if z ∈ Y ′ ,

and φ : Y ∗ → Y ′∗ by φ(y) := y′. Furthermore, we construct a linear grammar LG =
(N,Z, P ′, S), where P ′ is obtained from P as follows.

(1) For every production A ; A → v ; w in P with v ∈ X∗ and w ∈ Y ∗, we add the
production A→ vφ(w) in P ′.

(2) For every production A ; A → vBv′ ; wBw′ (1) in P with A,B ∈ N , v, v′ ∈ X∗
and w,w′ ∈ Y ∗, we add the production A→ vφ(w)Bv′φ(w′) in P ′.
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Thus, we de�ned the string bimorphism SB = (µ,L(LG), ν).
Now, if one shows by length of the derivation that for every A ∈ N

(A,A)⇒n
SD (v, w) ⇔ ∃v′ ∈ Z∗, A⇒n

LG v
′, v = µ(v′), and w = ν(v′) ,

then it easily follows that λ(SD) = λ(SB). Consequently, the linear translation λ is strongly
characterized by the linear language L(LG).

Since it is obvious from De�nition 3.3.13 that if a linear language characterize a trans-
lation then it also strongly characterize that translation, we may conclude the proof.

Corollary 3.3.16. There exist linear SDTs which are not regular and translations de�ned
by ITGs which are not simple SDTs.

Proof. By Theorem 3.3.15(i), the translation de�ned by the linear SDTS SD2 of Exam-
ple 3.3.4 is not regular (Aho and Ullman, 1972, Example 3.16). Also, by Theorem 3.3.15(ii),
the translation de�ned by the ITG SD1 of Example 3.3.4 is not a simple SDT (Aho and
Ullman, 1969a, Theorem 2).

Finally, we present a few composition results for various types of SDTSs.

Proposition 3.3.17. The following hold.

(i) λ[FST ] ◦ λ[SDTS] ⊆ λ[SDTS].

(ii) λ[SDTS] ◦ λ[FST ] ⊆ λ[SDTS].

(iii) λ[FST ] ◦ λ[sSDTS] ⊆ λ[sSDTS].

(iv) λ[sSDTS] ◦ λ[FST ] ⊆ λ[sSDTS].

Proof. Aho and Ullman (1968, Section VII) and Aho et al. (1969) showed statements (i)-(iv)
by using automaton de�nitions of these classes of translations. However, for statements (iii)
and (iv) we give an alternative elegant proof using the string bimorphism characterization
of SDTs given by Theorem 3.3.15.

For (iii), let λ1 ∈ λ[FST ] and λ2 ∈ λ[sSDTS]. By Theorem 3.3.15(i-ii), there exist
the string bimorphisms SB1 = (µ1, L1, ν1) and SB2 = (µ2, L2, ν2) with L1 ∈ REG and
L2 ∈ CFL such that λ(SB1) = λ1 and λ(SB2) = λ2. Moreover, let SB = (µ1, L, ν2) be the
string bimorphism with L := µ−1

2 (ν1(L1)) ∩ L2. By Theorems 4.14 and 4.16 of Hopcroft
et al. (2001) and Theorem 2.4.9, L is a CFL, and obviously λ(SB) = λ1 ◦ λ2. Therefore,
λ1 ◦ λ2 ∈ λ[sSDTS] by Theorem 3.3.15(ii).

For (iv), let λ1 ∈ λ[sSDTS] and λ2 ∈ λ[FST ]. By Theorem 3.3.15(i-ii), there exist
string bimorphisms SB1 = (µ1, L1, ν1) and SB2 = (µ2, L2, ν2) with L1 ∈ CFL and L2 ∈
REG such that λ(SB1) = λ1 and λ(SB2) = λ2. Moreover, let SB = (µ1, L, ν2) be the string
bimorphism with L := µ−1

2 (ν1(L1)) ∩ L2. Using again Theorem 2.4.9, we get L ∈ CFL.
Therefore, λ1 ◦ λ2 = λ(SB) ∈ λ[sSDTS] by Theorem 3.3.15(ii).

3.3.4 Hierarchies of syntax-directed translations

We start with an ascending hierarchy that classi�es SDTSs according to their order (see
Aho and Ullman (1972, Section 3.2.3) or Aho and Ullman (1969b, Section III)). This can
be used to show certain connections between di�erent types of syntax-directed translation
de�ning devices.
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Theorem 3.3.18. λ[1SDTS] ⊂ λ[2SDTS] = λ[3SDTS], and for all k ≥ 3, it holds that
λ[k-SDTS] ⊂ λ[(k+1)-SDTS].

Next, we give another speci�cation method of regular translations: right-linear SDTSs.

Theorem 3.3.19. λ[FST ] = λ[rSDTS], and the equality is e�ective.

Proof. Firstly, given any FST FT = (Q,X, Y, κ, q0, F ), we build the right-linear SDTS
SD = (Q,X, Y, P, {q0}) with P constructed as follows. For every q ∈ F , q; q → ε; ε is in P .
Moreover, for all q, q′ ∈ Q, x ∈ X ∪ {ε} and y ∈ Y ∪ {ε} such that (q′, y) ∈ κ(q, x), add
q; q → xq′; yq′ (1) to P . Next, we show by induction on n ≥ 0 that for all q, q′ ∈ Q, v ∈ X∗
and w ∈ Y ∗,

(q, v, ε) `∗FT (q′, ε, w) in n moves i� (q, q)⇒n
SD (vq′, wq′) .

To prove the �only if � direction we proceed by induction on the number of moves of FT .

(1) If (q, v, ε) `FT (q′, ε, w), then v ∈ X ∪ {ε}, w ∈ Y ∪ {ε} and (q′, w) ∈ κ(q, v). So,
q; q → vq′;wq′ (1) is in P , and hence (q, q)⇒SD (vq′, wq′).

(2) If (q, v, ε) `∗FT (q′, ε, w) in n ≥ 2 moves, then there exist q′′ ∈ Q, x ∈ X ∪ {ε},
v′ ∈ X∗, y ∈ Y ∪ {ε} and w′ ∈ Y ∗ such that (q′′, y) ∈ κ(q, x) and (q′′, v′, ε) `∗FT
(q′, ε, w′) in n − 1 moves with v = xv′ and w = yw′. Thus, q; q → xq′′; yq′′ (1) is in
P , and from the induction assumption, we have (q′′, q′′)⇒n−1

SD (v′q′, w′q′). Finally, we
get (q, q)⇒n

SD (vq′, wq′).

For the �if � direction, we proceed by induction on the length of derivation witnessing
(q, q)⇒n

SD (vq′, wq′).

(1) If (q, q)⇒SD (vq′, wq′), then q; q → vq′;wq′ (1) with v ∈ X ∪{ε} and w ∈ Y ∪{ε}
is in P . Thus, (q′, w) ∈ κ(q, v), and hence (q, v, ε) `FT (q′, ε, w).

(2) If (q, q) ⇒n
SD (vq′, wq′) for some n ≥ 2, then there exist q′′ ∈ Q, x ∈ X ∪

{ε}, v′ ∈ X∗, y ∈ Y ∪ {ε} and w′ ∈ Y ∗ such that q; q → xq′′; yq′′ (1) is in P and
(q′′, q′′) ⇒n−1

SD (v′q′, w′q′) with v = xv′ and w = yw′. By the induction hypothesis,
we get (q′′, v′, ε) `∗FT (q′, ε, w′) in n − 1 moves, and since (q′′, y) ∈ κ(q, x), we �nally
obtain (q, v, ε) `∗FT (q′, ε, w) in exactly n moves.

Now, we can argue as follows:

(v, w) ∈ λ(FT )⇔ (q0, v, ε) `∗FT (q, ε, w) for some q ∈ F
⇔ (q0, q0)⇒∗SD (vq, wq) and q; q → ε; ε ∈ P
⇔ (q0, q0)⇒∗SD (v, w)⇔ (v, w) ∈ λ(SD) .

Hence, λ[FST ] ⊆ λ[rSDTS]. For the converse inclusion (cf. Aho and Ullman, 1972,
Lemma 3.4), let SD = (N,X, Y, P, S) be any right-linear SDTS in normal form by Theo-
rem 3.3.12(i). We construct the FST FT = (N ∪ {?}, X, Y, κ, S, {?}) with ? a new symbol,
and

• for every A;A→ xB; yB (1) in P , (B, y) ∈ κ(A, x);

• for every A;A→ x; y in P , (?, y) ∈ κ(A, x).
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Next, one can prove by induction on n ≥ 0 that for all A ∈ N , v ∈ X∗ and w ∈ Y ∗,

(S, v, ε) `∗FT (A, ε, w) in n moves ⇔ (S, S)⇒n
SD (vA,wA) .

Assuming this has be done similarly as above, it follows that (v, w) ∈ λ(SD) if and only if
(v, w) ∈ λ(FT ). Consequently, λ[rSDTS] ⊆ λ[FST ], which concludes the proof.

Now, we investigate the connections between the various types of SDTSs presented in
De�nition 3.3.3.

Proposition 3.3.20. λ[rSDTS] ⊂ λ[lSDTS] ⊂ λ[sSDTS] ⊂ λ[ITG] ⊂ λ[SDTS].

Proof. From De�nition 3.3.3 it is clear that

λ[rSDTS] ⊆ λ[lSDTS] ⊆ λ[sSDTS] ⊆ λ[ITG] ⊆ λ[SDTS] .

By Corollary 3.3.16 and Theorem 3.3.19, we get λ[rSDTS] ⊂ λ[lSDTS] and λ[sSDTS] ⊂
λ[ITG]. Every ITG is of order 2 by Theorem 3.3.12(ii), and since λ[2SDTS] ⊂ λ[4SDTS]
by Theorem 3.3.18, we have λ[ITG] ⊂ λ[SDTS]. Clearly, every linear SDTS is of order 1
and simple, and every simple SDTS is of order 2 by Theorem 3.3.12(iii). But λ[1SDTS] ⊂
λ[2SDTS] by Theorem 3.3.18, and hence λ[lSDTS] ⊂ λ[sSDTS].

In the sequel we show that by allowing di�erent nonterminals to be associated in an
SDTS we do not increase the generative capacity. The construction of a compound non-
terminal alphabet was suggested by Huang et al. (2009, p. 565) and by Zhang et al. (2006,
p. 258), and the result was mentioned and used in several places in the literature, at least
by Satta and Peserico (2005), Chiang and Knight (2006), Satta (2007), and Maletti and
Tîrn uc  (2010). Here, we just check the formal details.

Proposition 3.3.21. λ[SCFG] = λ[SDTS], and the equality is e�ective.

Proof. Since any SDTS is an SCFG with A = B and Aσ(i) = Bi (for all i ∈ [m]) in each
production of the form (3.3.2), the inclusion λ[SDTS] ⊆ λ[SCFG] is obvious.

To prove the converse, we associate with any given SCFG SC = (N,X, Y, P, S, S′) an
SDTS SD = (N×N,X, Y, P ′, (S, S′)) with productions in P ′ obtained from the productions
in P as follows. If A;B → α;β (σ) is a production of the form (3.3.2) in P , then the
production

(A,B); (A,B)→ α′;β′ (σ) ,

where
α′ = v0(A1, Bσ−1(1))v1 . . . vm−1(Am, Bσ−1(m))vm

and
β′ = w0(Aσ(1), B1)w1 . . . wm−1(Aσ(m), Bm)wm ,

is included into P ′. The linking permutation of this production is σ, too. For example, if

A;B → xxAyCAy;BzAzC (2 3 1)

is a SCFG-production, then

(A,B); (A,B)→ xx(A,C)y(C,B)(A,A)y; (C,B)z(A,A)z(A,C) (2 3 1)
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is the corresponding SDTS-production.
It remains to show λ(SC) = λ(SD). Let µ : ((N ×N)∪X)∗ → (N ∪X)∗ and ν : ((N ×

N) ∪ Y )∗ → (N ∪ Y )∗ be the homomorphisms such that xµ := x, yν := y, (A,B)µ := A
and (A,B)ν := B for any x ∈ X, y ∈ Y and (A,B) ∈ N × N . It is then clear that
if (A,B); (A,B) → α′;β′ (σ) is a production in P ′ obtained from the SCFG-production
A;B → α;β (σ) in P , then µ(α′) = α and ν(β′) = β. First we prove that for any derivation

(A,B)⇒SC (δ1, δ
′
1)⇒SC . . .⇒SC (δn, δ

′
n) (3.3.3)

in SC, there is a derivation

((A,B), (A,B))⇒SD (γ1, γ
′
1)⇒SD . . .⇒SD (γn, γ

′
n) (3.3.4)

in SD such that δi = γiµ and δ′i = γ′iν for every i ∈ [n]. We proceed by induction on the
length of the derivation (3.3.3).

(1) If n = 1, then (A,B) ⇒SC (δ1, δ
′
1) and A;B → δ1; δ′1 (σ) is a production in P

with δ1 ∈ (N ∪ X)∗ and δ′1 ∈ (N ∪ Y )∗. Consequently, (A,B); (A,B) → γ1; γ′1 (σ)
is the corresponding SDTS-production in P ′ with δ1 = γ1µ and δ′1 = γ′1ν, and hence
((A,B), (A,B))⇒SD (γ1, γ

′
1) such that γ1µ = δ1 and γ′1ν = δ′1.

(2) Let (3.3.3) be a derivation of length n ≥ 2, and suppose the assertion holds for
all shorter derivations. Thus, there is a derivation

(A,B)⇒SC (δ1, δ
′
1)⇒SC (δ2, δ

′
2)⇒SC . . .⇒SC (δn−1, δ

′
n−1)

of length n − 1 in SC, and a production A;B → δ; δ′ (σ) of the form (3.3.2) in P
such that δn−1 = αAβ, δ′n−1 = α′Bβ′, δn = αδβ, δ′n = α′δ′β′, and the A and the B
singled out are associated in the pair (δ′n−1, δ

′
n−1). So, (A,B); (A,B) → γ; γ′ (σ) is

the corresponding SDTD-production in P ′ with δ = γµ and δ′ = γ′ν, and this means
that (γn−1, γ

′
n−1)⇒SD (γn, γ

′
n). Obviously, δn = γnµ and δ′n = γ′nν. Furthermore, by

the induction assumption, we have the derivation

((A,B), (A,B))⇒SD (γ1, γ
′
1)⇒SD (γ2, γ

′
2)⇒SD . . .⇒SD (γn−1, γ

′
n−1)

of length n − 1 in SD such that δi = γiµ and δ′i = γ′iν for every i ∈ [n − 1], which
concludes the induction step.

In particular, if (δn, δ
′
n) ∈ λ(SC), then δn ∈ X∗ and δ′n ∈ Y ∗, and hence δn = γnµ = γn

and δ′n = γ′nν = γ′n, which implies (δn, δ
′
n) ∈ λ(SD). So, λ(SC) ⊆ λ(SD).

For λ(SD) ⊆ λ(SC), it su�ces to verify by induction on the length of the derivation
that for every derivation (3.3.4) there is a derivation (3.3.3) such that δi = γiµ and δ′i = γ′iν
for every i ∈ [n]. Assuming this has be done similarly as above, if (γn, γ

′
n) ∈ λ(SD), then

γn ∈ X∗ and γ′n ∈ Y ∗, and hence γnµ = γn and γ′nν = γ′n. So, (γn, γ
′
n) ∈ λ(SC), which

concludes the proof.

We conclude by gathering all the results of this section in the following.

Theorem 3.3.22. The inclusion relations between the classes λ[FST ], λ[ITG], λ[SDTS],
λ[SCFG], λ[lSDTS] and λ[sSDTS] are given by the Hasse diagram of Figure 3.3.1.
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λ[FST ] = λ[rSDTS]

λ[lSDTS]

λ[sSDTS]

λ[ITG]

λ[SDTS] = λ[SCFG] = SDT

Figure 3.3.1: Hasse diagram of various types of syntax-directed translations.

Proof. It follows from Theorem 3.3.19 and Propositions 3.3.20 and 3.3.21.

Later, in Section 6.2.2, we introduce another speci�cation method for syntax-directed
translations which involves the parse trees of such synchronous grammars, and which will
permit the improvement of the mathematical foundations of SDTSs and related formalisms.
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Chapter 4

Trees and Tree Languages

This chapter is a short introduction to tree languages and tree automata. The emphasis
is on �nite tree automata and regular tree languages as these certainly form the core of
the whole monograph. Special attention is also paid to the connections between regular
tree languages and context-free languages. We followed the notations, terminology and
presentation of Steinby (2005, 2004) and Engelfriet (1975c), but also Gécseg and Steinby
(1984), Gécseg and Steinby (1997), and Comon et al. (2007) have been consulted.

4.1 Trees and contexts

The trees considered here are �nite (�nitely many nodes and branches), labeled (the nodes
are labeled with symbols from some alphabet), rooted (there is one node, the root, with
no branches entering it), directed (the branches are going downwards) and ordered (the
branches leaving any given node are ordered from left to right). Such trees are commonly
and conveniently de�ned as terms (cf. Thatcher and Wright, 1968, Doner, 1970, Burris and
Sankappanavar, 1981, Gécseg and Steinby, 1984, Gécseg and Steinby, 1997, Baader and
Nipkow, 1998, for example).

A ranked alphabet (Σ, rk) consists of an alphabet Σ and a mapping rk : Σ → N which
assigns to each symbol in Σ a non-negative integer rank . Usually we leave the mapping rk
implicit. For any m ∈ N, let Σm := {f ∈ Σ | rk(f) = m}. Symbols of ranks 0, 1
and 2 are called constants, and unary and binary symbols, respectively. We may write
Σ = {f1/m1, . . . , fk/mk} when Σ consists of the symbols f1, . . . , fk with the respective
ranks m1, . . . ,mk. In what follows Σ, Ω and Γ are always ranked alphabets. The letters e,
f , g and h are reserved for symbols in the ranked alphabets. If U is a set of symbols, then

Σ(U) := {f(u1, . . . , um) | m ≥ 0, f ∈ Σm and u1, . . . , um ∈ U} .

Besides ranked alphabets, we use also ordinary alphabets X, Y and Z for labeling leaves
of trees. In this context, they are called leaf alphabets, and they are assumed to be disjoint
from the ranked alphabets.

De�nition 4.1.1. The set TΣ(X) of Σ-terms over X is the smallest set T such that

(1) X ∪ Σ0 ⊆ T , and

(2) f(t1, . . . , tm) ∈ T whenever m ≥ 1, f ∈ Σm and t1, . . . , tm ∈ T .

When regarded as representations of labeled trees, we call them ΣX-trees.

Any d ∈ X ∪ Σ0 represents a tree with only one node which is labeled with d. Sim-
ilarly, f(t1, . . . , tm) is interpreted as a tree formed by adjoining the m trees represented
by t1, . . . , tm to a new root labeled with f . Note that any t ∈ TΣ(X) is represented as a
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f

g f

x e x

f

g ξ

x

Figure 4.1.1: The ΣX-context f(g(x), ξ) (on the right) and the ΣX-tree represented by
f(g(x, f(e, x))) (on the left). The alphabets are given in Example 4.1.3.

special string over Σ ∪X ∪ Z, where Z consists of the parentheses ( and ) and the comma
(see Aho and Ullman (1972, Section 0.5.7) or (Engelfriet, 1975c, Section 2), for example).
Also observe that TΣ(X) is a CFL over Σ ∪X ∪ Z. For every t ∈ TΣ(X) and f ∈ Σ, |t|f
is the number of nodes in t labeled with the symbol f . Analogously, |t|x is the number of
leaves in t labeled with the letter x. A tree t ∈ TΣ(X) is linear (respectively, non-deleting)
in Y ⊆ X if |t|y ≤ 1 (respectively, |t|y ≥ 1) for every y ∈ Y . For every t ∈ TΣ(X) and
g ∈ Σ1, we let g0(t) := t and gn+1(t) := g(gn(t)) for all n ∈ N. If X = ∅ in De�nition
4.1.1, then TΣ(X) becomes the set TΣ of Σ-trees. We will also speak generally about trees
without specifying the alphabets. The letters r, s, t and u are reserved for trees.

Remark 4.1.2. As the de�nition of the set TΣ(X) is inductive, notions related to ΣX-trees
can be de�ned recursively and statements about them can be proved by tree induction. For
example, the yield yd(t), the height hg(t), the set sub(t) of subtrees, the (label of the) root
root(t), and the set fork(t) of forks of a ΣX-tree t are de�ned thus:

(1) yd(x) := x, hg(x) := 0, sub(x) := {x}, root(x) := x and fork(x) := ∅ for x ∈ X;

(2) yd(e) := ε, hg(e) := 0, sub(e) := {e}, root(e) := e and fork(e) := ∅ for e ∈ Σ0;

(3) yd(t) := yd(t1)yd(t2) . . . yd(tm), hg(t) := max{hg(t1), . . . ,hg(tm)}+ 1, sub(t) :=
{t} ∪ sub(t1) ∪ . . . ∪ sub(tm), root(t) := f and fork(t) := fork(t1) ∪ . . . ∪ fork(tm) ∪
{f(root(t1), . . . , root(tm))} for t = f(t1, . . . , tm) (m ≥ 1).

The (�nite) set of all possible forks of ΣX-trees is denoted by fork(Σ, X). To prove by tree
induction that a statement S(t) holds for all ΣX-trees t, one shows that

(1) S(t) holds for every t ∈ X ∪ Σ0, and that

(2) if t = f(t1, . . . , tm), then S(t) follows from the assumption that S(t1), . . . , S(tm)
all hold (the inductive assumption).

For any D ⊆ X ∪ Σ0, the generalized yield-mapping ydD : TΣ(X) → D∗ is de�ned
inductively by ydD(d) := d for every d ∈ D, ydD(d) := ε for every d ∈ (X ∪ Σ0) \ D,
and ydD(f(t1, . . . , tm)) := ydD(t1) . . . ydD(tm) for every f ∈ Σm (m ≥ 1) and t1, . . . , tm ∈
TΣ(X). In particular, ydX = yd.

Let ξ be a special symbol of rank 0 not in Σ or X. A Σ(X∪{ξ})-tree in which ξ appears
exactly once is called a ΣX-context . The set of all ΣX-contexts is denoted by CΣ(X). If
c, c′ ∈ CΣ(X), then c′(c) is the ΣX-context obtained from c′ by replacing the ξ in it with
c. Similarly, if t ∈ TΣ(X) and c ∈ CΣ(X), then c(t) is the ΣX-tree obtained when the ξ
in c is replaced with t. Moreover, for any c ∈ CΣ(X), c0 := ξ and cn+1 := c(cn) for every
n ∈ N. Again by setting X = ∅, CΣ(X) becomes the set CΣ of Σ-contexts.
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Example 4.1.3. Let Σ = {f/2, g/1, e/0} and X = {x}. Then, t = f(g(x), f(e, x)) is a
ΣX-tree, and c = f(g(x), ξ) is a ΣX-context, both being depicted in Figure 4.1.1. Then,
t is non-deleting but not linear in X, |t|x = 2, |t|g = 1, root(t) = f , hg(t) = 2, sub(t) =
{t, g(x), f(e, x), e, x} and fork(t) = {f(g, f), g(x), f(e, x)}. Note that fork(Σ, X) has 20
elements. Now, ydX(t) = yd(t) = xx, and if D = {e, x}, then ydD(t) = xex. Moreover,
c(f(e, x)) = t, and, if f(e, ξ) is another ΣX-context, c(f(e, ξ)) = f(g(x), f(e, ξ)).

Besides the term representation, there is another customary method to formally de�ne
trees that makes use of the Dewey notation (Gécseg and Steinby, 1984, Gécseg and Steinby,
1997). It uses a set, called domain, of sequences of non-negative integers plus the empty
sequence ε that in a natural way represent the `nodes' of a tree. The integers appearing
in such a sequence are separated by a dot (cf. Gorn, 1967). However, there are simple
translations between the two representations of trees.

Any ΣX-tree de�ned as a term according to De�nition 4.1.1 can be rede�ned as a tree
which uses the Dewey notation as follows. Firstly, we formally de�ne the domain dom(t)
of a ΣX-tree t by setting:

(1) dom(t) := {ε} for t ∈ X ∪ Σ0;

(2) dom(t) := {ε} ∪ {i.ω | i ∈ [m], ω ∈ dom(ti)} for t = f(t1, . . . , tm) (m ≥ 1).

We omit .ε at the end of a sequence in dom(t). The symbol ω is reserved to always denote
an element of a domain of a tree.

Now, we de�ne the mapping t̂ : dom(t)→ X ∪ Σ thus:

(1) if t ∈ X ∪ Σ0, then t̂(ε) := t;

(2) if t = f(t1, . . . , tm), then t̂(ε) := f and t̂(i.ω) := t̂i(ω) for every i ∈ [m], ω ∈ dom(ti).

For example, the ΣX-tree f(g(x), f(e, x)) of Figure 4.1.1 can be rede�ned as the mapping
t̂ : {ε, 1, 2, 1.1, 2.1, 2.2} → X ∪ Σ, ε 7→ f , 1 7→ g, 2 7→ f , 1.1 7→ x, 2.1 7→ e, 2.2 7→ x.

Conversely, let V be the set of all �nite sequences of positive integers separated by dots.
In particular, it includes the empty sequence ε. The pre�x relation ≤ in V is de�ned thus:
ω ≤ ω′ if and only if ω.ω′′ = ω′ for some ω′′ ∈ V . A �nite subset W of V is a (�nite) tree
domain if it satis�es the following two conditions:

(1) if ω ≤ ω′ and ω′ ∈W , then ω ∈W ;

(2) if ω.j ∈W , i, j ∈ N∗, and i < j, then ω.i ∈W .

A ΣX-tree can now be de�ned as a mapping t : W → Σ∪X, where W is a tree domain and
for each ω ∈W ,

(1) t(ω) ∈ Σ0 ∪X if @i ∈ N+ such that ω.i ∈W , and

(2) t(ω) ∈ Σm, where m = max{i ∈ N+ | i.ω ∈W}, otherwise.

We mostly use the term representation of trees, but in some cases it is useful if we employ
the elements of dom(t) for referring to them as nodes of t or positions in t. For example,
the label t(ω) of a ΣX-tree t at position ω ∈ dom(t), the subtree t|ω of t rooted at node ω
and the replacement t[u]ω of the subtree of t rooted at node ω by the ΣX-tree u are easily
de�ned. Moreover, for every D ⊆ X ∪ Σ, let domD(t) := {ω ∈ dom(t) | t(ω) ∈ D}. Then,
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the set of branches from the root to the leaves of a ΣX-tree t is br(t) := domX∪Σ0(t). Other
basic notions and operations regarding trees are equally easy to de�ne (cf. Remark 4.1.2).
As an example, sub(t) := {t|ω | ω ∈ dom(t)} for any t ∈ TΣ(X). Finally, we say that two
trees s and t, possibly over di�erent alphabets, have the same shape if dom(s) = dom(t).

Example 4.1.4. Consider the ΣX-tree t = f(g(x), f(e, x)) of Figure 4.1.1. Then, dom(t) =
{ε, 1, 2, 1.1, 2.1, 2.2}, the label at position 2.2 is t(2.2) = x, the subtree rooted at 1 is
t|1 = g(x), and t[e]2 = f(g(x), e). Finally, dom{f}(t) = {ε, 2} and br(t) = {1.1, 2.1, 2.2}.

Now, let Ξ = {ξ1, ξ2, . . .} be a countably in�nite set of symbols called variables disjoint
from any leaf alphabet or ranked alphabet considered here. For any n ∈ N, let Ξn =
{ξ1, . . . , ξn}. These variables indicate places into which trees may be substituted. For any
Σ, X and n ∈ N,

T̃Σ(X ∪ Ξn) := {t ∈ TΣ(X ∪ Ξn) | ydΞn
(t) = ξ1ξ2 . . . ξn} ,

and
CnΣ(X) := {t ∈ TΣ(X ∪ Ξn) | |t|ξi = 1 for all i ∈ [n]} .

In other words, CnΣ(X) contains all those trees of TΣ(X∪Ξn) in which each variable ξ1, . . . , ξn
occurs exactly once. If t ∈ TΣ(X ∪ Ξn) and t1, . . . , tn ∈ TΣ(Y ) for some X, Y and n ∈ N,
then t[t1, . . . , tn] denotes the Σ(X ∪ Y )-tree obtained from t by simultaneously replacing in
it each occurrence of ξi with ti for all i ∈ [n]. Now, if x ∈ X and n = |t|x, t[x← (t1, . . . , tn)]
denotes the result of replacing, for every i ∈ [n], the i-th (with respect to the lexicographic
order on the positions) occurrence of x in the ΣX-tree t by ti. Moreover, var(t) is the set
of all variables ξi ∈ Ξn appearing in t ∈ TΣ(X ∪ Ξn).

A ΣX-substitution is a �nite set of pairs (ξi, s), where ξi ∈ Ξ, s ∈ TΣ(X) and no variable
ξi appears in two di�erent pairs. If t ∈ TΣ(X ∪ Ξ) and θ = {(ξi1 , s1), . . . , (ξim , sm)} is a
ΣX-substitution, then θ(t) is the Σ(X∪Ξ)-tree obtained by replacing the occurrences of the
variables ξi1 , . . . , ξim in t by the corresponding trees s1, . . . , sm. If var(t) is a subset of the set
of variables occurring in the substitution θ, then θ(t) is a ΣX-tree and θ(t) = t[s1, . . . , sm].
Moreover, for any ΣX-substitution θ, a ΣX-tree t is said to be an instance of a Σ(X∪Ξ)-tree
u with variables if t = θ(u). For example, if θ = {(ξ1, f(x, x)), (ξ3, x)} and t = f(ξ1, f(c, ξ1)),
then θ(t) = f(f(x, x), f(c, f(x, x))). Thus, the ΣX-tree f(f(x, x), f(c, f(x, x))) is an in-
stance of t. The symbol θ will always denote a substitution.

4.2 Tree homomorphisms

Now we introduce mappings that may transform trees quite radically.

De�nition 4.2.1. A tree homomorphism ϕ : TΣ(X)→ TΩ(Y ) is determined by a mapping
ϕX : X → TΩ(Y ) and mappings ϕm : Σm → TΩ(Y ∪ Ξm), for all m ≥ 0 such that Σm 6= ∅,
as follows:

(1) xϕ := ϕX(x) for x ∈ X,

(2) eϕ := ϕ0(e) for e ∈ Σ0, and

(3) tϕ := ϕm(f)[t1ϕ, . . . , tmϕ] for t = f(t1, . . . , tm) (m ≥ 1).
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In other words, a tree homomorphism ϕ recursively processes a tree t starting from its
root and going towards the leaves by applying the mapping corresponding to the current
examined symbol: if it is a symbol f of rank m ≥ 1, then it replaces f in t with the
corresponding tree ϕm(f) in which variables may appear as leaf symbols (given by the
mappings of type (3)). Next, each such variable ξi (i ∈ [m]) will be replaced by the
corresponding subtree tiϕ (i ∈ [m]) of t. Observe that this is done inductively using the
family of mappings (ϕm)m≥1 and repeating the same procedure as above. Moreover, for
each i ∈ [m], ξi is a place holder in ϕm(f) for tiϕ, and a presence of a ξi can be seen as
a call for computing tiϕ. The tree homomorphism recursively continues this way until it
reaches the leaves of t: each constant e is replaced by the tree ϕ0(e) in TΩ(Y ) (given by the
mapping of type (2)), and each x in X is substituted by the corresponding tree ϕX(x) in
TΩ(Y ) (given by the mapping of type (1)). Note that the processing of tϕ can be done also
in a 'bottom-up' fashion: starting at the leaves and going upwards to the root.

Depending on the restrictions imposed on each tree ϕm(f) (m ≥ 1) and implicitly on its
variables, we may �nd several types of tree homomorphisms in the literature (cf. Thatcher,
1973, Engelfriet, 1975a, c, Arnold and Dauchet, 1978a, 1982, Gécseg and Steinby, 1984,
Gécseg and Steinby, 1997, Steinby, 1986, Bozapalidis, 1992, Comon et al., 2007, Steinby
and Tîrn uc , 2007, 2009, for example). In particular, a tree homomorphism ϕ : TΣ(X)→
TΩ(Y ) is said to be:

• linear if for all m ≥ 1 and f ∈ Σm, ϕm(f) is linear in Ξm; otherwise, it is called
non-linear ;

• non-deleting if for all m ≥ 1 and f ∈ Σm, ϕm(f) is non-deleting in Ξm; otherwise, it
is called deleting ;

• strict if no ϕm(f), with f ∈ Σm and m ≥ 1, is of the form ξi (i ∈ [m]);

• normalized if for all m ≥ 1 and f ∈ Σm, we have ϕm(f) ∈ T̃Σ(X ∪ Ξn) for some
n ∈ N;

• alphabetic if ϕX(x) ∈ Y for every x ∈ X, ϕ0(e) ∈ Ω0 for every e ∈ Σ0, and for all
m ≥ 1 and f ∈ Σm,

ϕm(f) = g(ξ1, . . . , ξm)

for some g ∈ Ωm;

• permuting if ϕX(x) ∈ Y for every x ∈ X, ϕ0(e) ∈ Ω0 for every e ∈ Σ0, and for all
m ≥ 1 and f ∈ Σm,

ϕm(f) = g(ξσ(1), . . . , ξσ(m))

for some permutation σ of [m] and some g ∈ Ωm;

• quasi-alphabetic if ϕX(x) ∈ Y for every x ∈ X, and for all m ≥ 0 and f ∈ Σm,

ϕm(f) = g(y01, . . . , y0k0 , ξσ(1), y11, . . . , ym−1km−1 , ξσ(m), ym1, . . . , ymkm),

where σ is a permutation of [m], ki ∈ N and yi1, . . . , yiki ∈ Y for every 0 ≤ i ≤ m,
and g ∈ Ωm′ for m′ = m+ k0 + k1 + . . .+ km;
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• symbol-to-symbol if ϕX(x) ∈ Y for every x ∈ X, ϕ0(e) ∈ Ω0 for every e ∈ Σ0, and for
all m ≥ 1 and f ∈ Σm,

ϕm(f) = g(ξi1 , . . . , ξik)

for some k ≥ 1, g ∈ Ωk and 1 ≤ i1, . . . , ik ≤ m;

• �ne if ϕX(x) ∈ Y for every x ∈ X, ϕ0(e) ∈ Ω0 for every e ∈ Σ0, and for all m ≥ 1
and f ∈ Σm, either ϕm(f) = ξi for some i ∈ [m] or

ϕm(f) = g(ξi1 , . . . , ξik)

for some k ∈ [m], g ∈ Ωk and 1 ≤ i1, . . . , ik ≤ m (ij 6= il for every j, l ∈ [k] and
j 6= k).

If X = ∅, i.e., for tree homomorphisms of the form ϕ : TΣ → TΩ(Y ), the mapping ϕX and
any conditions concerning it can be omitted.

We denote by lH, nH, sH, aH, pH, qH, ssH, and fH the classes of all linear, non-
deleting, strict, alphabetic, permuting, quasi-alphabetic, symbol-to-symbol, and �ne tree
homomorphisms, respectively. Further subclasses of tree homomorphisms can be obtained
by combining any of these restrictions. For example, lnH is the class of all linear non-deleting
tree homomorphisms. We reserve υ, ϕ and ψ to always denote tree homomorphisms.

Now let us informally describe the features of the various types de�ned above, as well as
the connections and di�erences between them. Linear means that in each ϕm(f) (m ≥ 1,
f ∈ Σm), no ξi (i ∈ [m]) appears more than once, i.e., no subtree is copied during the
application of the mappings ϕm. For a non-deleting tree homomorphism, every ξi (i ∈ [m])
appears at least once in each ϕm(f) (m ≥ 1, f ∈ Σm), i.e., no subtree is erased during
the application of the mappings ϕm. A tree homomorphism is strict if no ϕm(f) (m ≥ 1,
f ∈ Σm) is equal to one of its direct subtrees. An alphabetic tree homomorphism just
relabels the nodes of a tree since after applying the mappings the resulting tree has the
same shape as the processed tree; it is linear, non-deleting and normalized. A permuting
tree homomorphism not only relabels the nodes of a tree, but may also reorder its subtrees.
A quasi-alphabetic tree homomorphism also relabels the nodes of a tree and may reorder
subtrees but in addition, letters from the leaf alphabet Y may appear as direct subtrees of
each node. Moreover, a constant is mapped to another constant or to a tree of height 1. In
a symbol-to-symbol tree homomorphism the nodes of a tree are relabeled and its subtrees
may be reordered, deleted or copied. A �ne tree homomorphism does not allow copying,
and it may relabel the nodes of a tree, replace a subtree by one of its subtrees or reorder
and delete subtrees of a tree.

Example 4.2.2. Let Σ = {f/3, g/2, e/0}, Ω = {h/5, f/3, g/2, e/0}, X = {x}, and Y =
{0, 1}. Consider the six tree homomorphisms ϕ,ψ, υ, ϕ′, ψ′, υ′ : TΣ(X)→ TΩ(Y ) de�ned by
setting

ϕ3(f) := g(ξ2, ξ1) ϕ2(g) := g(ξ1, ξ1) ϕ0(e) := e ϕX(x) := 0

ψ3(f) := ξ2 ψ2(g) := g(ξ2, ξ1) ψ0(e) := e ψX(x) := 1

υ3(f) := f(ξ3, ξ1, ξ2) υ2(g) := g(ξ1, ξ2) υ0(e) := e υX(x) := 1

ϕ′3(f) := f(ξ1, ξ2, g
′(e, ξ3)) ϕ′2(g) := g(ξ1, ξ2) ϕ′0(e) := e ϕ′X(x) := 0

ψ′3(f) := h(ξ3, 0, ξ1, ξ2, 1) ψ′2(g) := g(ξ1, ξ2) ψ′0(e) := f(1, 0, 1) ψ′X(x) := 1

υ′3(f) := f(ξ1, ξ2, ξ3) υ′2(g) := g(ξ1, ξ2) υ′(e) := e υ′X(x) := 0 .
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Figure 4.2.1: Application of various tree homomorphisms.

Then, ϕ is symbol-to-symbol, non-linear, deleting and not normalized, ψ is �ne, not nor-
malized, linear nor deleting, υ is permuting but not normalized, ϕ′ is linear, non-deleting
and normalized, ψ′ is quasi-alphabetic and not normalized, and υ′ is alphabetic and hence
normalized. In addition, ϕ, υ, ϕ′, ψ′ and υ′ are strict but ψ is not. For the ΣX-tree
t = f(e, g(x, e), x), we get

tϕ = g′(g′(0, 0), e) tϕ′ = f(e, g′(0, e), g′(e, 0)) tυ = f(1, e, g′(1, e))

tψ = g′(e, 1) tψ′ = h(1, 0, f(1, 0, 1), g′(1, f(1, 0, 1)), 1) tυ′ = f(e, g′(0, e), 0) .

The processed tree t and the obtained trees are displayed in Figure 4.2.1.

Note that any normalized tree homomorphism is linear but not necessarily strict or
non-deleting. Any �ne tree homomorphism is linear, it may not be strict and may be
deleting. Every symbol-to-symbol tree homomorphism is strict but may be non-linear and
deleting. On the other hand, every quasi-alphabetic tree homomorphism is strict, linear,
non-deleting and symbol-to-symbol. Clearly, any permuting tree homomorphism is quasi-
alphabetic. Finally, an alphabetic tree homomorphism means a normalized permuting tree
homomorphism. These observations immediately yield the following proposition.

Proposition 4.2.3. Let ϕ : TΣ(X)→ TΩ(Y ) be a tree homomorphism and t ∈ TΣ(X).

(i) If ϕ is quasi-alphabetic, then hg(t) ≤ hg(tϕ) ≤ hg(t) + 1.

(ii) If ϕ is symbol-to-symbol, then hg(tϕ) ≤ hg(t).

(iii) If ϕ is permuting, then hg(tϕ) = hg(t).

Also, we note the following facts to be used later.

Remark 4.2.4. If ϕ ∈ pH, ψ ∈ qH and υ ∈ aH, then ϕ ◦ ψ, υ ◦ ψ ∈ qH.
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4.3 Tree languages

Any subset of TΣ(X) is called a ΣX-tree language. We reserve the letters T and U to always
denote tree languages. Such a ΣX-tree language T is almost variable-free if T ⊆ TΣ ∪X.
Moreover, if the leaf alphabet X is empty, then T ⊆ TΣ is a Σ-tree language, and we call
it variable-free. We may also speak about tree languages without specifying the alphabets.
If Fam is any family of tree languages, we denote the sets of ΣX-tree languages and Σ-
tree languages in Fam by FamΣ(X) and FamΣ, respectively. Moreover, Famvf (Famavf ,
respectively) denotes the family of all variable-free (almost-variable free, respectively) tree
languages in Fam.

Now we turn our attention to operations on tree languages. Since any tree language is
just a set, the operations of union, intersection, Cartesian product, di�erence and comple-
mentation are de�ned for tree languages in the usual set-theoretic way (see Section 2.1).

Next, we present operations on trees that may be regarded as generalizations of the
concatenation of languages. First, for all T, T1, . . . , Tn ⊆ TΣ(X ∪ Ξn),

T [T1, . . . , Tn] := {t[t1, . . . , tn] | t ∈ T, t1 ∈ T1, . . . , . . . tn ∈ Tn} .

For any f ∈ Σm (m ≥ 1), the f -concatenation of m tree languages T1, . . . , Tm ⊆ TΣ(X∪Ξn)
is the set f(T1, . . . , Tm) := {f(t1, . . . , tm) | t1 ∈ T1, . . . , tm ∈ Tm}. For any given x ∈ X,
the x-product T •x U of two tree languages T,U ⊆ TΣ(X) is

T •x U := {t[x← (u1, . . . , un)] | t ∈ T, n = |t|x, and u1, . . . , un ∈ U} .

In other words, the x-product of T and U is the set of all trees obtained from any t ∈ T by
replacing each leaf labeled with x with a tree in U . Note that di�erent leaves labeled with
x may be substituted by di�erent trees in U . Furthermore, the x-quotient of T by U is

T /x U := {t ∈ TΣ(X) | ({t} •x U) ∩ T 6= ∅} .

Hence, T /x U is the set of all trees that can be transformed into a tree in T by replacing
every leaf labeled with x with a tree in U . Now, the x-iteration of T (⊆ TΣ(X)) is the
ΣX-tree language T ∗x :=

⋃
j≥0 T

j,x, where T 0,x := {x} and T j,x := (T •x T j−1,x) ∪ T j−1,x

for all j ≥ 1. Informally, T ∗x contains x and all trees obtained by replacing in some t ∈ T
every occurrence of x with some tree that is already in T ∗x. Let us illustrate the previous
notions by an example.

Example 4.3.1. Let Σ = {f/3, g/2, e/0} and X = {x}, and consider the tree t =
f(g(ξ2), x, f(e, x, ξ1)) ∈ TΣ(X ∪ Ξ2) and two arbitrary trees t1, t2 ∈ TΣ(X). Then

t[t1, t2] = f(g(t2), x, f(e, x, t1)) ,

t[x← (t1, t2)] = f(g(ξ2), t1, f(e, t2, ξ1)) , and

f({e, t1}, {ξ2}, {t2}) = {f(e, ξ2, t2), f(t1, ξ2, t2)} .

Now let T = {x, f(x, e, f(e, x, e))} and U = {t1, t2}. Obviously, T •x U equals

U ∪ {f(t1, e, f(e, t1, e)), f(t1, e, f(e, t2, e)), f(t2, e, f(e, t1, x)), f(t2, e, f(e, t2, e))} ,
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and if t1 = x and t2 = e, then

T /x U = {f(x, x, f(x, x, x)), f(x, x, f(x, x, e)), f(x, x, f(e, x, x)), f(x, x, f(e, x, e))}
∪ {f(x, e, f(x, x, x)), f(x, e, f(x, x, e)), f(x, e, f(e, x, x))} ∪ T .

For any T ⊆ TΣ(X), we call yd(T ) := {yd(t) | t ∈ T} (⊆ X∗) the yield language of T ,
and let yd−1(L) := {t ∈ TΣ(X) | yd(t) ∈ L} for any L ⊆ X∗. Moreover, any ΣX-context c
de�nes a unary operation c : TΣ(X)→ TΣ(X), t 7→ c(t), which generates two tree language
operations. More precisely, for any T ⊆ TΣ(X),

c(T ) := {c(t) | t ∈ T} and c−1(T ) := {t ∈ TΣ(X) | c(t) ∈ T} .

To work with (in�nite sets of) trees, one needs methods to specify tree languages. Again,
as in the string case, grammars and recognizers are the most common ones, but rather than
working with strings, they generate and accept trees. We proceed by presenting the most
well-known classes of tree languages, how to specify them and the relation between the
various classes introduced.

4.4 Recognizable tree languages

As shown already by Thatcher and Wright (1968), Doner (1970) and Magidor and Moran
(1969), for example, the recognizable (or regular) tree languages are obtained in numerous
ways (cf. Gécseg and Steinby, 1984, Gécseg and Steinby, 1997, Engelfriet, 1975c, Comon
et al., 2007, for expositions and further references). Next, we exhibit the recognizers and
the generating devices de�ning recognizable tree languages, as well as some of their proper-
ties. Furthermore, we present subclasses with practical applications and several connections
between tree languages and string languages.

4.4.1 Tree recognizers

Since trees are hierarchical structures, they can be processed either starting from the root
and moving towards the leaves (top-down), or starting from the leaves and going up towards
the root (bottom-up). In both cases the control may be nondeterministic or deterministic.
We shall see that one type of recognizer accepts a smaller class than recognizable tree
languages, the other three being equivalent. We start with nondeterministic top-down
recognizers �rst studied by Magidor and Moran (1969).

De�nition 4.4.1. A nondeterministic top-down (ndT) ΣX-recognizer is a system TR =
(Q,Σ, X, P, I), speci�ed as follows.

(1) Q is a unary ranked alphabet of states such that Q ∩ (Σ ∪X) = ∅.

(2) Σ and X are the input alphabets.

(3) I ⊆ Q is the set of initial states.

(4) P is a �nite set of rules, each of one of the following two types:

(NDT1) q(d)→ d, where d ∈ X ∪ Σ0 and q ∈ Q;
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(NDT2) q(f(ξ1, . . . , ξm)) → f(q1(ξ1), . . . , qm(ξm)), where m ≥ 1, f ∈ Σm and q, q1, . . .,
qm ∈ Q.

Since we de�ned trees as terms, we give the semantics of an ndT as a term rewriting
system. So, for any s, t ∈ TΣ∪Q(X), s ⇒TR t means that t is obtained from s by replacing
an occurrence of

(1) a subtree q(d) of s by d, where q(d)→ d is a rule of type (NDT1) in P , or

(2) a subtree q(f(t1, . . . , tm)) of s by the tree f(q1(t1), . . . , qm(tm)) by using a type
(NDT2) rule q(f(ξ1, . . . , ξm))→ f(q1(ξ1), . . . , qm(ξm)) appearing in P .

Then, the tree language accepted by TR is the set

T (TR) := {t ∈ TΣ(X) | q(t)⇒∗TR t for some q ∈ I} .

Thus, TR accepts a ΣX-tree t if and only if it is possible to choose an initial state in which
TR starts at the root of t and then successively apply transition rules for each node of t in
such a way every leaf is reached in a state q that agrees with the label d of the leaf, i.e.,
P contains the rule q(d) → d. A ΣX-tree language R is called recognizable, or regular, if
R = T (TR) for some ndT ΣX-recognizer TR. Let Rec denote the family of all recognizable
tree languages. Hence, by our general convention, RecΣ(X), and RecΣ denote the sets of
all recognizable ΣX-tree languages, and all recognizable Σ-tree languages, respectively.

An ndT Σ-recognizer TR = (Q,Σ, P, I) of a Σ-tree language T ⊆ TΣ is obtained by an
obvious modi�cation of De�nition 4.4.1, and let Recvf be the family of recognizable tree
languages without a leaf alphabet.

Example 4.4.2. The system TR = ({qf , qg, qx}, {f/2, g/1}, {x}, P, {qf}), where P is con-
sisting of the rules

qf (f(ξ1, ξ2))→ f(qg(ξ1), qg(ξ2))

qg(g(ξ1))→ g(qg(ξ1))

qg(g(ξ1))→ g(qx(ξ1))

qx(x)→ x ,

is an ndT recognizer, and T (TR) = {f(gn(x), gm(x)) | n,m ≥ 1). A sample computation in
TR is

qf (f(g(x), g(g(x))))⇒TR f(qg(g(x)), qg(g(g(x))))⇒2
TR f(g(qx(x)), g(qg(g(x))))⇒TR

⇒TR f(g(qx(x)), g(g(qx(x))))⇒2
TR f(g(x), g(g(x))) ,

which shows that the tree f(g(x), g(g(x))) is accepted by the machine.

If a nondeterministic top-down tree recognizer has exactly one initial state and, in the
accepting process, at most one rule can be applied at each node of the tree, then it becomes
a deterministic top-down recognizer. In this case, the recognition power is weaker because
the machine has to make the decision of acceptance separately at each leaf without any
information about the tree outside the path leading from the root to that leaf.
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De�nition 4.4.3. A deterministic top-down (dT) ΣX-recognizer is an ndT ΣX-recognizer
TR = (Q,Σ, X, P, I) with exactly one initial state, at most one rule of type (NDT1) for each
pair (d, q) ∈ (X ∪ Σ0) × Q, and at most one rule of type (NDT2) for any m ≥ 1, f ∈ Σm

and q ∈ Q.

If I = {q0}, we write TR = (Q,Σ, X, P, q0). A ΣX-tree language is deterministic
recognizable (dT-recognizable) if it is recognized by a dT ΣX-recognizer. The family of all
dT-recognizable tree languages is denoted by DRec. An example is given next.

Example 4.4.4. If Σ = {f/2, g/1} and X = {x}, then TR = ({q0, q1},Σ, X, P, q0) with P
consisting of the following rules

q0(f(ξ1, ξ2))→ f(q1(ξ1), q1(ξ2))

q0(g(ξ1))→ g(q1(ξ1))

q1(f(ξ1, ξ2))→ f(q0(ξ1), q0(ξ2))

q1(g(ξ1))→ g(q0(ξ1))

q0(x)→ x

is a deterministic top-down ΣX-recognizer accepting the language of all ΣX-trees in which
each path is of even length.

We also note the following (see Magidor and Moran, 1969, Gécseg and Steinby, 1984,
Gécseg and Steinby, 1997, Engelfriet, 1975c, for example).

Theorem 4.4.5. DRec ⊂ Rec.

Proof. It is clear from the de�nitions that any dT ΣX-recognizer is also an ndT ΣX-
recognizer. Let Σ = {f/2} and X = {x, y}. Obviously, the �nite set {f(x, y), f(y, x)} is in
RecΣ(X). If there is a dT ΣX-recognizer that accepts the trees f(x, y) and f(y, x), then it
must also accept the trees f(x, x) and f(y, y). Consequently, we get that {f(x, y), f(y, x)} /∈
DRecΣ(X), and hence DRec ⊂ Rec.

Let us now consider the bottom-up generalization of the �nite automaton. The precise
de�nition follows.

De�nition 4.4.6. A nondeterministic bottom-up (ndB) ΣX-recognizer is a system BR =
(Q,Σ, X, P, F ), where

(1) Q, Σ and X have the same meaning as in De�nition 4.4.1,

(2) F ⊆ Q is the set of �nal states, and

(3) P is a �nite set of rules, each of one of the following two types:

(NDB1) d→ q(d) with d ∈ X ∪ Σ0 and q ∈ Q;
(NDB2) f(q1(ξ1), . . . , qm(ξm)) → q(f(ξ1, . . . , ξm)) with m ≥ 1, f ∈ Σm and q, q1, . . .,

qm ∈ Q.

The next-con�guration relation ⇒BR is de�ned for any ndB BR as a term rewriting
system as follows. For any s, t ∈ TΣ∪Q(X), s ⇒BR t means that t is obtained from s by
replacing an occurrence of
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(1) d in s by the tree q(d), where q(d)→ d is a rule of type (NDB1) in P , or

(2) a subtree f(q1(t1), . . . , qm(tm)) of s by the tree q(f(t1, . . . , tm)) by using a type
(NDB2) rule f(q1(ξ1), . . . , qm(ξm))→ q(f(ξ1, . . . , ξm)) appearing in P .

Thus, the tree language accepted by BR is the set

T (BR) := {t ∈ TΣ(X) | t⇒∗BR q(t) for some q ∈ F} .

Moreover, BR is deterministic if there are no two transition rules in P with the same
left-hand side. Next we shall give an example.

Example 4.4.7. The device BR = ({qf , qg, qx}, {f/2, g/1}, {x}, P, {qf}), where P consists
of the rules

f(qg(ξ1), qg(ξ2))→ qf (f(ξ1, ξ2))

g(qg(ξ1))→ qg(g(ξ1)

g(qx(ξ1))→ qg(g(ξ1)

x→ qx(x)

is a bottom-up tree recognizer recognizing the tree language {f(gn(x), gm(x)) | n,m ≥ 1).
The computation of f(g(x), g(g(x))) in TR is

f(g(x), g(g(x)))⇒2
BR f(g(qx((x))), g(g(qx(x))))⇒2

BR f(qg(g(x)), g(qg(g(x))))⇒TR

⇒BR f(qg(g(x)), qg(g(g(x))))⇒TR qf (f(g(x), g(g(x)))) .

Note that actually BR is deterministic.

Obviously, any deterministic ΣX-bottom-up tree recognizer is by de�nition an ndB
that contains exactly one rule for each possible left-hand side. On the other hand, any
ndB ΣX-recognizer can be made deterministic by the usual subset construction for �nite
automata (see Engelfriet (1975c, Theorem 3.8) or Gécseg and Steinby (1984, Theorem 2.6),
for example). Thus, deterministic and nondeterministic bottom-up tree recognizers de-
�ne the same class of tree languages. Furthermore, any ndB ΣX-recognizer de�ned as a
term rewriting system becomes an equivalent ndT ΣX-recognizer of the kind introduced
in De�nition 4.4.1 when all rules are reversed and �nal states are turned into initial states
(see Example 4.4.7). Moreover, the converse transformation yields an equivalent ndB ΣX-
recognizer for any given ndT ΣX-recognizer (Engelfriet, 1975c, Theorem 3.17). Hence, ndB
tree recognizers recognize exactly the recognizable tree languages.

In what follows we also speak generally about tree recognizers without specifying the
alphabets.

4.4.2 Regular tree grammars

Another way to de�ne the recognizable tree languages is by regular tree grammars, �rst
studied by Brainerd (1969) (in a more general form). These generating devices are the
natural generalization from strings to trees of regular grammars of the Chomsky hierarchy.
Formally, they are de�ned as follows.
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De�nition 4.4.8. A regular ΣX-tree grammar (RTG) is a device RT = (N,Σ, X, P, S)
speci�ed as follows.

(1) N is a �nite non-empty set of nonterminal symbols such that N ∩ (Σ ∪X) = ∅.

(2) Σ is a ranked alphabet and X is a leaf alphabet that together form the terminal
alphabet of RT .

(3) P is a �nite set of productions of the form A → r, where A ∈ N and r ∈
TΣ(X ∪N).

(4) S ∈ N is the distinguished start symbol.

For any s, t ∈ TΣ(X ∪N), s⇒RT t means that there exist a (Σ ∪N)X-context c and a
production A → r in P such that s = c(A) and t = c(r) (i.e., t can be obtained from s by
replacing one occurrence of A by r). The derivation relation⇒∗RT and the n-step derivation
relation ⇒n

RT are de�ned as usual (see Section 2.3.2). The ΣX-tree language generated by
RT is the set

T (RT ) := {t ∈ TΣ(X) | S ⇒∗RT t} .

Note that any regular ΣX-tree grammar may be viewed as a CFG with the terminal
alphabet Σ∪X ∪Z, where Z consists of the parentheses ( and ) and the comma. Thus, the
tree languages generated by RTGs are special CFLs when trees are treated as strings. An
example is given next.

Example 4.4.9. Let Σ = {f/3, g/2} and X = {x}. The system

RT = ({S,B},Σ, X, {S → f(x, S,B), S → g(x,B), B → y}, S)

is an RTG generating the ΣX-tree language

T (RT ) = {t ∈ TΣ(X) | t = f(x, ξ, y)n(g(x, y)), n ∈ N} .

A sample derivation in RT is

S ⇒RT f(x, S,B)⇒RT f(x, f(x, S,B), B)⇒RT f(x, f(x, g(x,B), B), B)

⇒3
RT f(x, f(x, g(x, y), y), y) .

Note that the yield language of T (RT ) is the CFL {xnyn | n ≥ 1}.
A more complicated example of an RTG that models linguistic phenomena can be found

in Graehl et al. (2008, Figure 4), for example. Also, May (2010, Section 2.2) shall be
consulted.

We recall the following (cf. Gécseg and Steinby, 1984, Lemma II.3.4).

Theorem 4.4.10. Every regular ΣX-tree grammar is e�ectively equivalent to a regular
ΣX-tree grammar RT = (N,Σ, X, P, S) in which each production is of the form

(1) A→ d, where A ∈ N and d ∈ Σ0 ∪X, or of the form

(2) A→ f(A1, . . . , Am), where m > 0, f ∈ Σm and A,A1, . . . , Am ∈ N .

Such a tree grammar is said to be in normal form.
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Example 4.4.11. Let Σ = {f/2, g/1} and X = {x, y}. Then RT = ({S,A},Σ, X, P, S)
with P consisting of the productions

S → f(A,A) | g(A), and

A→ f(S, S) | g(S) | x | y

is a ΣX-tree grammar in normal form generating all ΣX-trees of odd height.
On the other hand, the RTG RT of Example 4.4.9 is equivalent to the RTG in normal

form ({S,A,B},Σ, X, {S → f(A,S,B), S → g(A,B), A→ x,B → y}, S).

Any regular ΣX-tree grammar in normal form can easily be converted to an equivalent
ndT ΣX-tree recognizer by turning nonterminals into states and taking as rules the pro-
ductions, and conversely. Hence it is clear that the regular tree grammars generate exactly
the recognizable tree languages (see Gécseg and Steinby (1984, Theorem II.3.6) or Gécseg
and Steinby (1997, Proposition 6.2), for example).

4.4.2.1 Tree substitution grammars

We now consider a restricted type of regular tree grammar with applications in linguis-
tics, namely tree-substitution grammars (Schabes, 1990, Frank, 2000, Eisner, 2003, Shieber,
2004), by giving a new formal de�nition that will be further used and explained in Sec-
tion 5.3.1. In the formulation of Shieber (2004), a tree-substitution grammar is essen-
tially a set P of trees in TΣ(N), where Σ is the ranked alphabet of terminal symbols and
N := {f↓ | f ∈ Σ \ Σ0}. Each derivation begins with a tree in P whose root is labeled
with the symbol in Σ that has been chosen as the start symbol. The idea is that if a leaf is
labeled with a symbol f↓ in N , then we may substitute for that leaf any tree in P in which
the root is labeled by f . Derivations are de�ned via derivation trees, but we may de�ne
them equivalently in the usual way by regarding the symbols f↓ ∈ N as nonterminals and
then stipulating that if f↓ is the left-hand side of a production, then the right-hand side of
the production is a tree r ∈ P such that root(r) = f . The possibility of having multiple
copies of trees in P and the ordering of the N -labeled leaves in the tree in P postulated by
Shieber (2004) do not have any e�ect on the generative power, and their intended uses will
be achieved otherwise when we de�ne the synchronous version of tree-substitution gram-
mars. On the other hand, the set of productions should obviously be �nite, and hence we
arrive at the following de�nition.

De�nition 4.4.12. A tree-substitution grammar (TSG) is a system TS = (N,Σ, X, P, S)
speci�ed as follows.

(1) Σ and X are the terminal alphabets.

(2) N := {f↓ | f ∈ Σ\Σ0} is the set of nonterminal symbols such thatN∩(Σ∪X) = ∅.

(3) P is a �nite set of productions of the form f↓ → r, where f↓ ∈ N , r ∈ TΣ(X ∪N)
and root(r) = f .

(4) S ∈ N is the start symbol (and hence S = f↓ for some f ∈ Σ \ Σ0).

The one-step derivation relation ⇒TS is de�ned as usual: if s, t ∈ TΣ(X ∪ N), then
s ⇒TS t if and only if there is a context c ∈ CΣ(X ∪ N) and a rule f↓ → r in P such
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that s = c(f↓) and t = c(r). Then, the ΣX-tree language generated by TS is the set
T (TS) := {t ∈ TΣ(X) | S ⇒∗TS t}. Furthermore, let T [TSG] denote the class of all the tree
languages generated by TSGs.

As Frank (2000) observed, TSGs are adequate systems to produce appropriate structural
descriptions for clausal complementation and to generate sentences containing adjunction
structures such as adverbial modi�ers and relative clauses. Next, we give an example of
such a tree grammar.

Example 4.4.13. The system

TS = ({S↓}, {S/2}, {x, y}, {S↓ → S(x, y), S↓ → S(x, S(S↓, y))}, S↓)

is a TSG. A sample derivation in TS is

S↓ ⇒TS S(x, S(S↓, y))⇒TS S(x, S(S(x, S(S↓, y)), y))

⇒TS S(x, S(S(x, S(S(x, y), y)), y)) ,

and TS generates the tree language T (TS) = {S(x, S(ξ, y))n(S(x, y)) | n ∈ N}.

It is immediately clear from the de�nition that every TSG is a special regular tree gram-
mar and hence that T [TSG] ⊆ Rec. However, it is also obvious that not every recognizable
tree language can be generated by a TSG. First of all, the root of any tree in the tree
language generated by a TSG must be labeled by the symbol that corresponds to the start
symbol. Secondly, the number of nonterminals is limited by the size of the ranked alphabet.
Moreover, the dT-recognizable tree language {x} cannot be generated by any TSG. On the
other hand, the TSG ({f↓}, {f/2}, {x, y}, {f↓ → f(x, y), f↓ → f(y, x)}, f↓) generates the
tree language {f(x, y), f(y, x)}, which is not dT-recognizable by Theorem 4.4.5. Hence, we
have.

Theorem 4.4.14. T [TSG] ⊂ Rec and T [TSG] ‖ DRec.

On the other hand, we may note the following fact (cf. Schabes, 1990).

Proposition 4.4.15. Every context-free language is the yield of a tree language generated
by a tree-substitution grammar.

Proof. If L ⊆ X∗ is a CFL, it is generated by a CFG CF = (N,X,P, S) in CNF (cf.
Theorem 2.4.8). Assuming �rst that L ⊆ X+, we de�ne the TSG TS = (N ′,Σ, X, P ′, S′),
where Σ := {e/0} ∪ {A/2 | A ∈ N}, N ′ := {A↓ | A ∈ N}, S′ := S↓, and

P ′ := {A↓ → A(B↓, C↓) | A→ BC ∈ P} ∪ {A↓ → A(x, e) | A→ x ∈ P} .

Clearly, TS generates exactly the usual derivation trees of CF (cf. Sudkamp, 1997, for
example) in which inner nodes are labeled with nonterminal symbols (now binary symbols
in Σ), but here any leaf labeled with a terminal symbol x ∈ X is replaced with a subtree
A(x, e). Hence, yd(T (TS)) = L(CF ) = L. If ε ∈ L, the construction is modi�ed by adding
the production S↓ → S(e, e) to P ′. Note that S does not appear on the right-hand side of
any production in P because CF is in CNF.

The closure properties of T [TSG] are discussed by Maletti (2014). Thus, we �nd out that
this tree language class is not closed under union, intersection, complement and alphabetic
tree homomorphism.
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4.4.3 Properties of recognizable tree languages

First of all, there is a tool that generalizes the Pumping Lemma of regular languages
(Hopcroft et al., 2001, Theorem 4.1) from strings to trees. It may be used to show that cer-
tain tree languages are not recognizable (see Engelfriet (1975c, Theorem 3.71), Gécseg and
Steinby (1984, Lemma II.10.1) or Gécseg and Steinby (1997, Proposition 5.2), for example.).

Theorem 4.4.16 (Pumping Lemma). For any R ∈ RecΣ(X), there is n ∈ N+ such that if
r ∈ R and hg(r) ≥ n, then for some s ∈ TΣ(X) and c, c′ ∈ CΣ(X), r = c′(c(s)), hg(c) ≥ 1,
and c′(ck(s)) ∈ R for all k ∈ N.

Now, we mention some relevant closure properties and decidability results of recogniz-
able tree languages (cf. Gécseg and Steinby (1984, Section II.4), and Engelfriet (1975c,
Theorems 3.74 and 3.75), for example).

Theorem 4.4.17. The following hold.

(i) Rec is closed under union, intersection, and complement.

(ii) Rec is not closed under arbitrary tree homomorphisms.

(iii) Rec is closed under linear tree homomorphism and arbitrary inverse tree homo-
morphism.

(iv) Rec is closed under f -concatenation, x-product, x-quotient and x-iteration.

(v) If c ∈ CΣ(X) and T ∈ RecΣ(X), then c(T ) and c−1(T ) are also in RecΣ(X).

(vi) The emptiness, the �niteness, the membership, the inclusion and the equivalence
are decidable for recognizable tree languages.

4.5 Local tree languages

Another important class of recognizable tree languages is de�ned as follows.

De�nition 4.5.1. For any D ⊆ Σ ∪X and E ⊆ fork(Σ, X), let

L(D,E) := {t ∈ TΣ(X) | root(t) ∈ D, fork(t) ⊆ E} .

A ΣX-tree language T is local if T = L(D,E) for some D and E.

Let Loc be the family of local tree languages. Note that, for any given Σ and X,
LocΣ(X) is a �nite set of tree languages. An example is provided next.

Example 4.5.2. Let Σ = {f/2, g/1, e/0}, X = {x}, E = {f(g, e), g(f), g(x)} and D =
{f, x}. Then,

L(D,E) = {x} ∪ {f(g(ξ), e)n(g(x)) | n ≥ 1} .

A tree in L(D,E) is f(g(f(g(x), e)), e).

We also observe the following.

Theorem 4.5.3. Loc ‖ T [TSG], Loc ⊂ Rec and Loc ‖ DRec.
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Proof. It is easy to construct a ΣX-recognizer for any given L(D,E) with D ⊆ Σ ∪X and
E ⊆ fork(Σ, X) (Gécseg and Steinby, 1984, Theorem II.9.4), and consequently Loc ⊆ Rec.
Moreover, it is clear that there exist one-tree tree languages that are dT-recognizable but
not local, and therefore the inclusion is strict.

On the other hand, {f(x, y), f(y, x)} is local (D = {f} and E = {f(x, y), f(y, x)}) but
not dT-recognizable (see the proof of Theorem 4.4.5), and hence Loc ‖ DRec.

Finally, it is obvious that the local tree language of Example 4.5.2 cannot be generated
by a TSG (the label of the root of any tree is either x or g and hence cannot be labeled by
the start symbol). Moreover, the tree language g(g(x)), which is not local, is generated by
the TSG TS = ({g↓}, {g/1}, {x}, {g↓ → g(g(x))}). So, Loc ‖ T [TSG].

On the other hand, we have.

Remark 4.5.4. Any dT-recognizable local ΣX-tree language with one root symbol is in
T [TSG].

It is well known that every recognizable tree language is obtained by an alphabetic tree
homomorphism from a local tree language (cf. Doner, 1970, Thatcher, 1967, for example).
However, if we use the proof presented by Gécseg and Steinby (1984, Section II.9), this fact
can be given in a slightly stronger form.

Proposition 4.5.5. For every recognizable ΣX-tree language T , we may de�ne a ranked
alphabet Ω, a leaf alphabet Y , a local dT-recognizable ΩY -tree language U and an alphabetic
tree homomorphism ϕ : TΩ(Y ) → TΣ(X) such that T = Uϕ. Moreover, if T ⊆ TΣ, then U
can be chosen to be in LocΩ ∩DRecΩ.

Proof. Assume RT = (N,Σ, X, P, S) is a regular ΣX-tree grammar in normal form that
generates T . Let Y := {[A → x] | A → x ∈ P, x ∈ X}, and let Ω be the ranked alphabet
such that Ω0 := {[A→ e] | A→ e ∈ P, e ∈ Σ0} and for each m ≥ 1,

Ωm := {[A→ f(A1, . . . , Am)] | A→ f(A1, . . . , Am) ∈ P} .

Now, let U := L(D,E) be the local ΩY -tree language, where D := {[S → r] | S → r ∈ P}
and

E := {[A→ f(A1, . . . , Am)]([A1 → r1], . . . , [Am → rm]) | m ≥ 1,

A→ f(A1, . . . , Am), A1 → r1, . . . , Am → rm ∈ P} .

Next, let ϕ : TΩ(Y ) → TΣ(X) be the alphabetic tree homomorphism de�ned by the map-
pings ϕY : Y → TΣ(X), [A→ x] 7→ x, ϕ0 : Ω0 → TΣ(X), [A→ e] 7→ e, and

ϕm : Ωm → TΣ(X ∪ Ξm), [A→ f(A1, . . . , Am)] 7→ f(ξ1, . . . , ξm) ,

for every m ≥ 1. Then T = Uϕ (Gécseg and Steinby, 1984, Theorem 9.5).
To show that U is also dT-recognizable, we de�ne a dT recognizer TR = (Q,Ω, Y, P ′, S)

as follows. Let Q = Q1 := N ∪{?}, where ? is a new symbol. The set P ′ of transition rules
is de�ned by the following clauses:

(1) For any q ∈ Q and [A → d] ∈ Y ∪ Ω0, the rule q([A → d]) → [A → d] is in P ′ if
and only if q = A.
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(2) Consider now any pair q ∈ Q and [A → f(A1 . . . Am)] ∈ Ωm, where m ≥ 1. If
q 6= A, then the rule for this pair is

q([A→ f(A1 . . . Am)](ξ1, . . . , ξm))→ [A→ f(A1 . . . Am)](?(ξ1), . . . , ?(ξm)) .

If q = A, then the rule is

q([A→ f(A1 . . . Am)](ξ1, . . . , ξm))→ [A→ f(A1 . . . Am)](A1(ξ1), . . . , Am(ξm)) .

It is not hard to see that T (RT ) = L(D,E), and hence U ∈ LocΩ(Y ) ∩DRecΩ(Y ).
Finally, we note if X is empty, then so is Y .

4.6 Grammars and production trees

Each ΩY -tree s in the set U de�ned in the proof of Proposition 4.5.5 represents a derivation
in RT of the ΣX-tree sϕ ∈ T by displaying the structure of the derivation as well as the
productions used in it. We call these trees production trees of RT and denote their set U
by P (RT ).

Example 4.6.1. Let us consider the regular ΣX-tree grammar RT = (N,Σ, X, P, S), where
N = {S,A,B}, Σ = {f/2, g/1}, X = {x, y}, and

P = {S → f(A,B), A→ f(A,A), A→ x,B → g(B), B → y} .

The production tree of the derivation

S ⇒RT f(A,B)⇒2
RT f(f(A,A), g(B))⇒3

RT f((x, x), g(y)) ,

is

[S → f(A,B)]

[A→ f(A,A)] [B → g(B)] .

[A→ x] [A→ x] [B → y]

Similar production trees will be used also for representing derivations in other kinds
of generating devices. In the derivation trees of a CFG the inner nodes are labeled by
nonterminals, but the number of branches going out of a node depends on the length
of the right-hand side of the corresponding production rather than the symbol itself (see
Section 2.4 and Aho and Ullman, 1972, Section 2.4.1, for example). This contradicts the
uniqueness of the rank of each symbol in a ranked alphabet, so we consider production trees
in which inner nodes are labeled by productions instead of nonterminals.
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Much of the importance of tree automata in language theory derives from the following
well-known fact (see Mezei andWright, 1967, Thatcher, 1967, Doner, 1970, Engelfriet, 1975c,
Gécseg and Steinby, 1984, Gécseg and Steinby, 1997, for example).

Theorem 4.6.2. A language is context-free if and only if it is the yield language of a
recognizable tree language.

This result can be made more precise: the yield-language of any recognizable tree lan-
guage is context-free, but all CFLs are obtained already from a proper subclass of Rec.
Indeed, by using production trees similar to those de�ned above for regular tree grammars,
the class of tree languages needed can be narrowed down to Loc∩DRec. Following Gécseg
and Steinby (1984), we de�ne the production trees of a CFG CF = (N,X,P, S) as follows.

Let ΣCF be the ranked alphabet such that

ΣCF
m := {[A→ α] | A→ α ∈ P, |α| = m}

for each m ≥ 0. The sets P (CF, d) of ΣCFX-trees, where d ∈ N ∪X, are de�ned inductively
as follows:

(1) P (CF, x) := {x} for x ∈ X;

(2) for each A ∈ N such that A→ ε ∈ P , let [A→ ε] ∈ P (CF,A);

(3) if A → d1 . . . dm ∈ P , where m ≥ 1, d1, . . . , dm ∈ N ∪ X and t1 ∈ P (CF, d1), . . . ,
tm ∈ P (CF, dm), then [A→ d1 . . . dm](t1, . . . , tm) ∈ P (CF,A).

The set of production trees of CF is the ΣCF -tree language P (CF ) := P (CF, S). Each
production tree t ∈ P (CF ) represents a (unique leftmost) derivation of the string yd(t) ∈
L(CF ). On the other hand, for each v ∈ L(CF ) and each leftmost derivation of v, there is
a production tree t ∈ P (CF ) such that v = yd(t).

Example 4.6.3. Let CF = ({S,A,B}, {x, y, z}, P, S) be the CFG with the production set
P = {S → AxB, A→ xAy, A→ ε, B → z}. The leftmost derivation

S ⇒CF AxB ⇒CF xAyxB ⇒CF xyxB ⇒CF xyxz

is represented by the production tree

[S → AxB]

x[A→ xAy] [B → z] .

[A→ ε]x y z

The yield of this tree is xyxz � as it should.

Similarly as for the production trees of a RTG (Proposition 4.5.5), we can show that
P (CF ) is both local and dT-recognizable. The above observations can be summed up as
follows (cf. Gécseg and Steinby, 1984, Section II.2).

Proposition 4.6.4. For any CFG CF = (N,X,P, S), the set P (CF ) of production trees is
a local and dT-recognizable ΣCFX-tree language such that yd(P (CF )) = L(CF ).
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4.7 Context-free tree languages

In Section 4.4.2, regular grammars were generalized from strings to trees by allowing, in
the right-hand sides of each production, trees in which any nonterminal may occur as a
constant labeling the leaves. If we permit nonterminals to label any node in the tree of the
right-hand side of any production, CFGs get a natural counterpart in tree language theory
formally de�ned as follows (Rounds, 1970b, 1969).

De�nition 4.7.1. A context-free tree grammar (CFTG) is a system CT = (N,Σ, X, P, S)
speci�ed as follows.

(1) N is a ranked alphabet of nonterminals such that N ∩ (X ∪ Σ) = ∅.

(2) Σ and X are a ranked alphabet and a leaf alphabet, respectively, of terminal
symbols.

(3) P is a �nite set of productions of the form f(ξ1, . . . , ξm) → r, where m ∈ N,
f ∈ Nm and r ∈ TN∪Σ(X ∪ Ξm).

(4) S ∈ N0 is the start symbol.

The direct derivation relation ⇒CT , the derivation relation ⇒∗CT and the n-step deriva-
tion relation⇒n

CT are de�ned as for a term rewriting system with the productions as rewrite
rules, similarly as it was done for RTGs in Section 4.4.2. The ΣX-tree language generated
by CT is the set T (CT ) := {t ∈ TΣ(X) | S ⇒∗CT t}. A tree language is context-free if it
is generated by a CFTG, and let CFTL denote the class of all context-free tree languages
(CFTL). Gécseg and Steinby (1997, Section 15) and Stamer (2009, Proposition 2.15) give
more information about their formal properties.

An example shall clarify the de�nition.

Example 4.7.2. The system

CT = ({A/1, S/0}, {f/2}, {x}, {S → A(x), A(ξ1)→ ξ1, A(ξ1)→ A(f(ξ1, ξ1))}, S)

is a CFTG generating the ΣX-tree language T of all balanced binary trees

{x, f(x, x), f(f(x, x), f(x, x)), f(f(f(x, x), f(x, x)), f(f(x, x), f(x, x))), . . .} ,

which is not recognizable by Theorem 4.4.16. A derivation for f(f(x, x), f(x, x)) is

S ⇒CT A(x)⇒CT A(f(x, x))⇒CT A(f(f(x, x), f(x, x)))⇒CT f(f(x, x), f(x, x)) .

Moreover, the yield language of T is the language {x2n | n ∈ N}.

Hence, it is obvious that.

Theorem 4.7.3. Rec ⊂ CFTL.

Another way to specify CFTLs is by nondeterministic pushdown tree recognizers, which
generalize the usual pushdown automata by allowing trees instead of strings in both the
input and stack. More precisely, it was shown that both nondeterministic bottom-up push-
down tree recognizers (Schimpf and Gallier, 1985, Theorem 5.3.1) and nondeterministic
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top-down pushdown tree recognizers (Guessarian, 1983, Theorem 1) e�ectively accept ex-
actly the class CFTL. For details we also refer the reader to Coquidé et al. (1994), and
Gécseg and Steinby (1997).

Finally, note that a language is the yield of a CFTL if and only if it is an indexed
language (Rounds, 1969, 1970b, Gécseg and Steinby, 1997, Proposition 15.2). For details
on this language class, we refer to Aho (1967, 1968, 1969). Its applications to compilers
and linguistics were also studied by Hayashi (1973), Gazdar (1988), Duske and Parchmann
(1984), Partee et al. (1990), and Vijay-Shanker and Weir (1994).

4.8 A hierarchy of families of tree languages

The results of Remark 4.5.4 and Theorems 4.4.5, 4.5.3, 4.4.14 and 4.7.3 can be gathered in
the Hasse diagram of Figure 4.8.1, which represents a hierarchy of well-known families of
tree languages.

DRec ∩ Loc1

T [TSG]

Rec

LocDRec

CFTL

Figure 4.8.1: Hasse diagram representing an hierarchy of well-known families of tree lan-
guages, where DRec∩Loc1 denotes the class of all dT-recognizable local tree languages with
exactly one root symbol.
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Chapter 5

Tree Transformations

A tree transformation is any relation between two sets of trees and, by using the yield
mapping of Section 4.1, any tree transformation de�nes a translation as well. For example,
τ = {(te, ts) | te ∈ TΣ(X), ts ∈ TΩ(Y )} represents a tree transformation that relates a
parse tree te of an English sentence with the parse tree ts of its Spanish translation. This
naturally gives rise to a translation λ(τ) = {(yd(te), yd(ts)) | (te, tf ) ∈ τ} by taking the
yields of the paired parse trees. Also, any syntax-directed translation can be viewed as a
three-step process, one of which is a tree transformation τ : derivation trees of the input
grammar of an SDTS are transformed to derivation trees of the output grammar of the
SDTS, i.e., for any given input string v ∈ X∗, one constructs a derivation tree s ∈ TΣ(X)
such that yd(s) = v, takes a transform t ∈ TΩ(Y ) of s such that (s, t) ∈ τ , and outputs the
string w = yd(s) ∈ Y ∗ as a translation for v (cf. �ulík, 1965). Note that here (v, w) is an
element in the translation de�ned by τ . For example, this makes it possible to design parsing
algorithms that check whether a program is syntactically correct. If the program is correct,
a derivation tree is returned as a convenient structural representation of the program. Then
the tree transformation (i.e., syntax-directed translation device) turns this parse tree into
a representation of the compiled program (for example, a program in machine code or
pseudocode), which further exempli�es the natural use of syntax-directed translations in
program compilation.

Since the 1960s and the 1970s when the theory of program schemata, syntax-directed
translations, attributed grammars and semantic interpretation emerged, many researchers
from both formal languages and NLP communities, mostly independently, de�ned and stud-
ied formal models that de�ne tree transformation classes, especially tree transducers (see
Gécseg and Steinby, 1984, Gécseg and Steinby, 1997, Comon et al., 2007, Maletti, 2010a,
for complete expositions) and synchronous tree grammars (see Chiang and Knight, 2006,
Chiang, 2006, Razmara, 2011, for good introductions). A quite comprehensive list of tree
transducers and synchronous tree grammars found in the literature is exhibited in Sec-
tion 8.3.4.

After �xing in Section 5.1 the general terminology and notation concerning tree trans-
formations, we survey from the literature the main tree transducer types: top-down tree
transducers (Section 5.2.1), bottom-up tree transducers (Section 5.2.2) and extended top-
down tree transducers (Section 5.2.4), together with their formal properties (Table 5.2.1)
and the inclusion relations between them (Figure 5.2.3). In Section 5.3, we present two
formal grammars that generate pairs of trees, widely used to model linguistic phenomena
encountered in machine translation, language interpretation and natural language genera-
tion: synchronous tree-substitution grammars (Section 5.3.1) and generalized synchronous
tree-substitution grammars (Section 5.3.2), also known in the literature as synchronous
tree-substitution grammars with states. Using our new formal de�nition, we get new char-
acterizations of syntax-directed translations (Proposition 5.3.3 and Corollary 5.3.9). In
addition, we give a direct and e�ective characterization in terms of generative devices of
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(linear non-deleting) extended top-down tree transducers, which was di�erently proved by
Maletti (2008). On the other hand, in Section 8.2.1, we propose for further research several
theoretical topics related to generalized synchronous tree-substitution grammars.

5.1 Basic notions

Let Σ and Ω be ranked alphabets, and X and Y leaf alphabets. Relations of the form
τ ⊆ TΣ(X) × TΩ(Y ) are called tree transformations. The fact that (s, t) ∈ τ for some
s ∈ TΣ(X) and t ∈ TΩ(Y ) means that τ may transform s to t, and t is then called a
transform of s. The input alphabets of τ are Σ and X, and Ω and Y are the output alphabets
of τ . Moreover, any such tree transformation τ naturally gives rise to a translation

λ(τ) := {(yd(s), yd(t)) | (s, t) ∈ τ} (⊆ X∗ × Y ∗) .

Hence, any tree transformation de�ning device also de�nes a translation. The class of tree
transformations de�nable by devices of a given type TTD will be denoted by τ [TTD], and
λ[TTD] is its corresponding translation class. In what follows, the symbol τ always denotes
a tree transformation. Next, we shall give some examples.

Example 5.1.1. Any collection of pairs of syntax trees of natural language sentences,
where ranked alphabets code the grammatical categories such as noun or verb phrase and
leaf alphabets usual natural languages alphabets and vocabularies like English, Kanji or
Romanian, is a tree transformation.

Example 5.1.2. Any tree homomorphism ϕ : TΣ(X) → TΩ(Y ) de�nes a tree transforma-
tion

τ(ϕ) := {(t, tϕ) | t ∈ TΣ(X)} (⊆ TΣ(X)× TΩ(Y )) .

For example, if Σ = {f/2} and X = {x}, then τ(ϕ) = {(t, x) | t ∈ TΣ(X)} is the tree trans-
formation de�ned by the tree homomorphism ϕ : TΣ(X)→ TΣ(X) speci�ed by ϕ2(f) := ξ1

and ϕX(x) := x.

Since tree transformations are binary relations, all the general de�nitions and properties
presented in Section 2.1 apply directly to them, too. Thus, the converse, or inverse, of a
tree transformation τ ⊆ TΣ(X)× TΩ(Y ) is the tree transformation

τ−1 := {(t, s) | (s, t) ∈ τ}

from TΩ(Y ) to TΣ(X), and for any t ∈ TΣ(X), T ⊆ TΣ(X), u ∈ TΩ(Y ) and U ⊆ TΩ(Y ),

• tτ := {u ∈ TΩ(Y ) | (t, u) ∈ τ} is the set of transforms of t,

• Tτ :=
⋃
t∈T tτ is the set of transforms of members of T ,

• uτ−1 := {t ∈ TΣ(X) | (t, u) ∈ τ} is the pre-image of u, and

• Uτ−1 :=
⋃
u∈U uτ

−1 is the pre-image of U .

In particular, the domain of τ is the set

Dom(τ) := TΩ(Y )τ−1 = {s ∈ TΣ(X) | ∃t ∈ TΩ(Y ) such that (s, t) ∈ τ}
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of all ΣX-trees that have at least one transform, and the range of τ is the set

Range(τ) := TΣ(X)τ = {t ∈ TΩ(Y ) | ∃s ∈ TΣ(X) such that (s, t) ∈ τ}

of all ΩY -trees that are transforms of at least one ΣX-tree. Also, if τ ⊆ TΣ(X) × TΓ(Z)
and τ ′ ⊆ TΓ(Z)× TΩ(Y ) are two tree transformations such that the output alphabets of τ
are the input alphabets of τ ′, then their composition is the tree transformation

τ ◦ τ ′ := {(s, t) | s ∈ TΣ(X), t ∈ TΩ(Y ),∃r ∈ TΓ(Z) such that (s, r) ∈ τ and (r, t) ∈ τ ′}

from TΣ(X) to TΩ(Y ). The composition operation is extended in a natural way to classes
of tree transformations: if A and B are classes of tree transformations, then

A ◦ B = {τ ◦ τ ′ | τ ∈ A, τ ′ ∈ B}

is the class of all tree transformations that are the composition of a tree transformation
from A and a tree transformation from B. Therefore, for any classes A, B and C of tree
transformations,

• A◦B ⊆ C means that any composition of anA-transformation and a B-transformation
is a C-transformation,

• C ⊆ A ◦ B means that any C-transformation can be decomposed into the product of
a A-transformation and a B-transformation, and

• C ◦ C ⊆ C means that C is closed under composition.

Moreover, a class C of tree transformations preserves a class T of tree languages if Tτ ∈ T
for all τ ∈ C and T ∈ T .

Almost any interesting class of tree transformations includes as a subclass the class IDτ
of identity tree transformations {(t, t) | t ∈ TΣ(X)}. If IDτ ⊆ C for some class C, then
C ⊆ C ◦ C and, even more, B ⊆ C ◦ B and B ⊆ B ◦ C for any class B of tree transformations.

Furthermore, any useful tree transformation admits a �nite (e�ective) speci�cation
method. Consequently, in what follows, we present the basic types of machines, called
tree transducers, that compute tree transformations, and generating devices, called syn-
chronous grammars, that generate pairs of trees. Moreover, we will survey the properties of
the tree transformations classes de�ned by the presented devices, as well as their translation
power.

5.2 Tree transducers

We consider tree transducers as formal models of syntax-directed translations (cf. Fülöp and
Vogler, 1998). A tree transducer is a �nite-state machine which computes a tree transfor-
mation. Given an input tree over the input (ranked and leaf) alphabets, the tree transducer
computes, using a �nite set of transition rules, an output tree over the output (ranked and
leaf) alphabets. Due to the complexity of trees and the asymmetry between top-down and
bottom-up direction of processing a tree, there is a rich variety of di�erent types of tree trans-
ducers and corresponding classes of tree transformations. In this section we shall introduce
the basic tree transducer types and the tree transformations de�ned by them. We borrowed
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the notation and terminology developed by Engelfriet (1975a), Steinby (2005) and Fülöp
(2004), but also Gécseg and Steinby (1984), Gécseg and Steinby (1997), Fülöp and Vogler
(1998), and Comon et al. (2007) have been consulted.

Before starting our exposition we introduce some auxiliary terminology and notation.
For any alphabets Ω, Y and Q = Q1, and any set H of trees, we de�ne TΩ(Y ∪ Q(H)) as
the smallest set T such that:

(1) Y ∪ Ω0 ∪Q(H) ⊆ T ;

(2) if g ∈ Ωm and t1, . . . , tm ∈ T for m ≥ 1, then g(t1, . . . , tm) ∈ T .

If H ⊆ TΣ(X) and Q∩ (Σ∪X ∪Ω∪Y ) = ∅, then each tree t ∈ TΩ(Y ∪Q(H)) has a unique
representation t = r[q1(s1), . . . , qn(sn)], where n ∈ N, r ∈ T̃Ω(Y ∪ Ξn), q1, . . . , qn ∈ Q and
s1, . . . , sn ∈ H.

Example 5.2.1. If Σ = {g/1, e/0}, X = {x}, Ω = {f/2}, Y = {y}, Q = {q/1} and
H = {g(x), e}, then r = f(f(y, ξ1), ξ2) ∈ T̃Ω(Y ∪ Ξ2) and t = f(f(y, q(e)), q(g(x))) ∈
TΩ(Y ∪Q(H)) has a unique representation r[q(e), q(g(x))].

5.2.1 Top-down tree transducers

A top-down, or root-to-frontier, tree transducer starts at the root of the given input tree
and moves towards the frontier formed by the leaves. Because of this way of moving, we
can discern immediately the two main properties of top-down tree transducers: during a
computation, a subtree of the input tree may be deleted before processing, or all copies
of the subtree are then processed independently, possibly in di�erent ways. The precise
de�nition follows (Rounds, 1970a, Thatcher, 1970).

De�nition 5.2.2. A top-down tree transducer (TOP-transducer) is a system TD = (Q,Σ,
X,Ω, Y, P, I) that consists of the following parts.

(1) Q is the unary ranked alphabet of states such that Q ∩ (Σ ∪X ∪ Ω ∪ Y ) = ∅.

(2) Σ and X are the input alphabets, and Ω and Y are the output alphabets.

(3) P is a �nite set of rules each one of which is either of the form

(T1) q(d)→ r, where q ∈ Q, d ∈ X ∪ Σ0 and r ∈ TΩ(Y ), or of the form

(T2) q(f(ξ1, . . . , ξm)) → r(q1(ξi1), . . . , qk(ξik)), where q ∈ Q, m ≥ 1, f ∈ Σm, k ≥ 0,
q1, . . . , qk ∈ Q and r ∈ TΩ(Y ∪Q(Ξm)) (i1, . . . , ik ∈ [m] and k is the total number
of occurrences of the variables ξi in r).

(4) I ⊆ Q is the set of initial states.

The one-step derivation relation ⇒TD is de�ned as follows. For any s, t ∈ TΩ(Y ∪
Q(TΣ(X))), s⇒TD t holds if t is obtained from s either

• by replacing an occurrence of a subtree q(d) with r, where q(d)→ r is a rule in P of
type (T1), or

• by replacing an occurrence of a subtree q(f(s1, . . . , sm)) with r(q1(si1), . . . , qk(sik)),
where q(f(ξ1, . . . , ξm))→ r(q1(ξi1), . . . , qk(ξik)) is a rule in P of type (T2).
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Figure 5.2.1: A sample rule in a TOP-transducer and an illustration of a derivation step
using that rule.

Then, the tree transformation computed by TD is the relation

τ(TD) := {(s, t) | s ∈ TΣ(X), t ∈ TΩ(Y ), q(s)⇒∗TD t for some q ∈ I} .

If τ = τ(TD) for some TOP-transducer TD, then τ is called a top-down tree transformation
(TOP-transformation). The class of all TOP-transformations is denoted by τ [TOP], and
λ[TOP] denotes the class of all translations de�ned by TOP-transducers.

Example 5.2.3. Consider Σ = {h/3, f/2, g/1}, X = {x} and Q = {q, q′}. Let TD =
(Q,Σ, X,Σ, X, P, {q}) be a top-down tree transducer with the following rules

q(h(ξ1, ξ2, ξ3))→ f(f(q(ξ1), q′(ξ2)), q(ξ3)) q(x)→ x

q(g(ξ1))→ q(ξ1) q′(x)→ x

q′(g(ξ1))→ g(q′(ξ1)) .

Then q(h(gl(x), gm(x), gn(x))) ⇒∗TD f(f(x, gm(x)), x) for every l,m, n ∈ N. The �rst rule
and a derivation step involving that rule are illustrated in Figure 5.2.1.

Because of TOP-transducers capability to make copies of subtrees of the input tree,
it is obvious that a TOP-transformation does not always preserve recognizability and the
class τ [TOP] is not closed under composition (Engelfriet, 1975a, Gécseg and Steinby, 1984,
Comon et al., 2007). Therefore, it makes sense to consider also some restricted types of
TOP-transducers.

De�nition 5.2.4. A type (T2) rule q(f(ξ1, . . . , ξm))→ r(q1(ξi1), . . . , qk(ξik)) is

• linear if no ξi (i ∈ [m]) appears more than once in r, and

• non-deleting if every ξi (i ∈ [m]) appears at least once in r.

Any type (T1) rule q(d)→ r is regarded as both linear and non-deleting.

Now we can de�ne some special types of top-down tree transducers.

De�nition 5.2.5. A TOP-transducer TD = (Q,Σ, X,Ω, Y, P, I) is called
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(a) linear, if every rule in P is linear,

(b) non-deleting, if every rule in P is non-deleting,

(c) deterministic, if I consists of one state only, and there are no two rules in P with
the same left-hand side, and

(d) total, if P contains

(1) for each pair q ∈ Q and d ∈ X ∪ Σ0 a rule q(d)→ r, and

(2) for each pair q ∈ Q and f ∈ Σm (m ≥ 1), a rule q(f(ξ1, . . . , ξm))→ r.

Following our general convention, the classes of tree transformations which correspond to
the subclasses (a)-(d) of TOP-transducers are denoted by τ [l-TOP], τ [n-TOP], τ [d-TOP]
and τ [t-TOP], respectively. Moreover, λ[l-TOP], λ[n-TOP], λ[d-TOP] and λ[t-TOP], re-
spectively, denote the classes of translations de�ned by the corresponding subclasses (a)-(d)
of TOP-transducers. If more than one restriction is imposed, then TOP is pre�xed by
the corresponding letters. For example, τ [ln-TOP] (λ[ln-TOP], respectively) denotes the
class of tree transformations (translations, respectively) computed by linear non-deleting
TOP-transducers.

The TOP-transducer of Example 5.2.3 is linear, non-deleting and deterministic but it is
not total (there is no rule de�ned for the pair q and f or for the pair q′ and h).

Because a TOP-transducer has to decide whether to delete a subtree before reading it,
no TOP-transducer is capable of computing the tree transformation τ = {(f(x, x), x)}(⊆
TΣ(X) × TΣ(X), where Σ = {f/2} and X = {x}). Such drawback is solved by equipping
a TOP-transducer with a look-ahead facility: the possibility to inspect subtrees in some
way before deciding what rule to apply (Engelfriet, 1977). Note that the idea of regular
look-ahead also occurs in the theory of parsing of CFLs (Culik II and Cohen, 1973).

De�nition 5.2.6. A top-down tree transducer with regular look-ahead (TOPR-transducer)
is a device TDR = (Q,Σ, X,Ω, Y, P, I), where Q, Σ, X, Ω, Y and I are speci�ed as in
De�nition 5.2.2 for TOP-transducers and P is a �nite set of rules of the form

〈q(f(ξ1, . . . , ξm))→ r(q1(ξi1), . . . , qk(ξik)),M〉

with q(f(ξ1, . . . , ξm)) → r(q1(ξi1), . . . , qk(ξik)) a (T2)-rule of the usual kind (see De�ni-
tion 5.2.2), and M : Ξm → ℘(TΣ(X)) a mapping that de�nes the domain of application of
the rule by specifying for each ξi, i ∈ [m], a recognizable ΣX-tree language M(ξi). The
look-ahead M is �nite if for every i ∈ [m], M(ξi) is a �nite tree language.

The semantics of a TOPR-transducer is de�ned as for a TOP-transducer with the addi-
tional condition that a rule

〈q(f(ξ1, . . . , ξm))→ r(q1(ξi1), . . . , qk(ξik)),M〉

can be applied in state q at the root of an input subtree f(s1, . . . , sm) exactly in case
si ∈ M(ξi) for all i ∈ [m]. The class of tree transformations computed by top-down tree
transducers with �nite (respectively, regular) look-ahead is denoted by τ [TOPF] (respec-
tively, τ [TOPR]). Moreover, λ[TOPF] and λ[TOPR] denote the corresponding classes of
translations de�ned by these tree transducers.
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Example 5.2.7. The system

TDR = ({q0}, {f/2}, {x}, {f/2}, {x}, {〈q0(f(ξ1, ξ2))→ x,M〉}, {q0}) ,

where M(ξ1) = M(ξ2) := {x}, is a TOP-transducer with �nite (and therefore regular)
look-ahead, which computes the tree transformation {(f(x, x), x)}.

Moreover, the de�nition of linear and non-deleting TOPR-transducers is identical to
the top-down case (see De�nition 5.2.5). The class of tree transformations computed by
linear top-down tree transducers with �nite (respectively, regular) look-ahead is denoted
by τ [l-TOPF] (respectively, τ [l-TOPR]).

5.2.2 Bottom-up tree transducers

A bottom-up, or frontier-to-root, tree transducer starts at the leaves of the given input tree
and moves towards the root. Because of this way of moving, we can distinguish immediately
the two main properties of these tree transducers: during a computation, a subtree of the
input tree cannot be deleted before processing, or it is �rst processed and then the (only)
result may be multiplied. The precise de�nition follows (Thatcher, 1973).

De�nition 5.2.8. A bottom-up tree transducer (BOT-transducer) is a system BU = (Q,Σ,
X,Ω, Y, P, F ) that consists of the following parts.

(1) Q is the unary ranked alphabet of states such that Q ∩ (Σ ∪X ∪ Ω ∪ Y ) = ∅.

(2) Σ and X are the input alphabets, and Ω and Y are the output alphabets.

(3) P is a �nite set of rules each one of which is either of the form

(B1) d→ q(r), where d ∈ X ∪ Σ0, q ∈ Q and r ∈ TΩ(Y ), or of the form

(B2) f(q1(ξ1), . . . , qm(ξm)) → q(r(ξi1 , . . . , ξik)), where m ≥ 1, f ∈ Σm, k ≥ 0,
q1, . . . , qk, q ∈ Q and r ∈ TΩ(Y ∪ Ξm) (i1, . . . , ik ∈ [m], and k is the total
number of occurrences of the variables ξi in r).

(4) F ⊆ Q is the set of �nal states.

The one-step derivation relation ⇒BU is de�ned as follows. For any s, t ∈ TΣ(X ∪
Q(TΩ(Y ))), s⇒BU t holds if t is obtained from s either

• by replacing an occurrence of a subtree d ∈ X ∪ Σ0 with q(r), where d → q(r) is a
rule in P of type (B1), or

• by replacing an occurrence of a subtree f(q1(t1), . . . , qm(tm)) with q(r(ti1 , . . . , tik)),
where f(q1(ξ1), . . . , qm(ξm))→ q(r(ξi1 , . . . , ξik)) is a rule in P of type (B2).

Thus, the tree transformation computed by BU is the relation

τ(BU) := {(s, t) | s ∈ TΣ(X), t ∈ TΩ(Y ), s⇒∗BU q(t) for some q ∈ F} .

If τ = τ(BU) for some BOT-transducer BU , then τ is called a bottom-up tree transformation
(BOT-transformation). The class of all BOT-transformations is denoted by τ [BOT], and
λ[BOT] denotes the class of all translations de�ned by TOP-transducers.
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Example 5.2.9. The system

BU = ({q, q′}, {g/1}, {x}, {f/2, h/1, h′/1}, {y}, P, {q′})

with P consisting of the rules

g(q(ξ1))→ q(h(ξ1))

g(q(ξ1))→ q(h′(ξ1))

g(q(ξ1))→ q′(f(ξ1, ξ1))

x→ q(y)

is a BOT-transducer computing the tree transformation

τ(BU) = {(gn(x), f(t, t)) | n ≥ 1, t ∈ T{h/1,h′/1}({y}), hg(t) = n− 1} .

Then

g(g(g(x)))⇒BU g(g(g(q(y))))⇒BU g(g(q(h(y))))⇒BU g(q(h′(h(y))))

⇒BU q
′(f(h′(h(y)), h′(h(y))))

is a sample computation in BU .

Let us now introduce the special BOT-transducers that correspond to the types of TOP-
transducers de�ned in Section 5.2.1.

De�nition 5.2.10. Let BU = (Q,Σ, X,Ω, Y, P, F ) be a BOT-transducer. A type (B2) rule
f(q1(ξ1), . . . , qm(ξm))→ q(r(ξi1 , . . . , ξik)) is called

• linear if no ξi (i ∈ [m]) appears more than once in r, and

• non-deleting if every ξi (i ∈ [m]) appears at least once in r.

Any type (B1) rule d → q(r) is regarded as both linear and non-deleting. Then BU is
called

(a) linear, if every rule in P is linear,

(b) non-deleting, if every rule in P is non-deleting,

(c) deterministic, if there are no two rules in P with the same left-hand side, and

(d) total, if P contains

(1) a rule d→ q(r) of type (B1) for any d ∈ X ∪ Σ0, and

(2) a rule f(q1(ξ1), . . . , qm(ξm)) → q(r(ξi1 , . . . , ξik)) of type (B2) for any f ∈ Σm

(m ≥ 1) and q1, . . . , qm ∈ Q.

The classes of tree transformations which correspond to the subclasses (a)-(d) of BOT-
transducers are denoted by τ [l-BOT], τ [n-BOT], τ [d-BOT] and τ [t-BOT], respectively. If
more than one restriction is imposed, then BOT is pre�xed by the corresponding letters.
For example, τ [ln-BOT] denotes the class of tree transformations computed by linear non-
deleting BOT-transducers.
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5.2.3 Some special tree transformation classes

In this section we present some special tree transformations that are computed both by
TOP- and BOT-transducers (cf. Engelfriet, 1975a, c, 2015).

First, note that for any tree homomorphism ϕ : TΣ(X)→ TΩ(Y ), its tree transformation
τ(ϕ) (see Example 5.1.2) is computed by the 1-state TOP-transducer TD = ({q},Σ, X,Ω, Y,
P, {q}), where P consists of the following rules

• q(x)→ ϕX(x) for every x ∈ X,

• q(e)→ ϕ0(e) for every e ∈ Σ0, and

• q(f(ξ1, . . . , ξm))→ ϕm(f)[q(ξ1), . . . , q(ξm)] for every m ≥ 1 and f ∈ Σm.

In an analogous way, a 1-state BOT-transducer computing τ(ϕ) may be de�ned. Let HOM
denote the class of all tree homomorphisms viewed as tree transformations. Moreover,
it is obvious that a linear or non-deleting tree homomorphism is linear or non-deleting,
respectively, also as a tree transformation.

A relabeling is a tree transformation that transforms each tree to some trees of exactly
the same shape but the label of each node may be replaced with a symbol of the same rank.

De�nition 5.2.11. A one-state TOP-transducer TD = ({q},Σ, X,Ω, Y, P, {q}) is a relabel-
ing TOP-transducer if each rule in P has one of the following forms:

(1) q(x)→ y with q ∈ Q, x ∈ X and y ∈ Y ;

(2) q(e)→ e′ with q ∈ Q, e ∈ Σ0 and e′ ∈ Ω0;

(3) q(f(ξ1, . . . , ξm))→ g(q(ξ1), . . . , q(ξm)), where q ∈ Q,m ≥ 1, f ∈ Σm and g ∈ Ωm.

A tree transformation is called a relabeling if it is computed by a relabeling TOP-transducer.
Let REL denote the class of all relabellings.

It is easy to see that exactly the same relabellings would be computed by similarly
de�ned one-state BOT-transducers.

On the other hand, since they are also natural generalizations of alphabetic tree ho-
momorphisms, we may de�ne a relabeling as a tree transformation η ⊆ TΣ(X) × TΩ(Y )
which is determined by a mapping ηX : X → ℘(Y ) and mappings ηm : Σm → ℘(Ωm) for
each m ≥ 0 such that Σm 6= ∅, as follows:

(1) xη := ηX(x) for x ∈ X;

(2) eη := η0(e) for e ∈ Σ0;

(3) sη := {g(t1, . . . , tm) | g ∈ ηm(f), (s1, t1), . . . , (sm, tm) ∈ η} for s = f(s1, . . . , sm)
(m ≥ 1).

The relabeling η is total if none of the sets ηX(x), η0(c) or ηm(f) is empty.
A more general type of relabeling is obtained if the set of symbols that may replace a

given input symbol at node ω depends on some �nite-state information about the input
subtree rooted at ω.

De�nition 5.2.12. A TOP-transducer TD = (Q,Σ, X,Ω, Y, P, I) is a �nite-state relabeling
TOP-transducer if each rule in P has one of the following forms:
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(1) q(x)→ y with q ∈ Q, x ∈ X and y ∈ Y ;

(2) q(e)→ e′ with q ∈ Q, e ∈ Σ0 and e′ ∈ Ω0;

(3) q(f(ξ1, . . . , ξm)) → g(q1(ξ1), . . . , qm(ξm)) , where m ≥ 1, f ∈ Σm, g ∈ Ωm and
q1, . . . , qm, q ∈ Q.

A tree transformation is called a �nite-state relabeling if it is computed by a �nite-state re-
labeling TOP-transducer. Let QREL denote the class of �nite-state relabellings. Moreover,
the class of translations de�ned by �nite-state relabeling TOP-transducers is denoted by
λ[QREL].

Again, it is easy to see that �nite-state relabelings are also computed by a similarly
de�ned class of BOT-transducers. Moreover, they are de�ned by top-down or bottom-up
shape preserving tree transducers of Fülöp and Gazdag (2003) and Gazdag (2006a) (cf.
Gazdag, 2006b, for an overview).

Any ndB ΣX-recognizer BR = (Q,Σ, X, P, F ), where states are unary symbols, can be
converted into a BOT-transducer BU = (Q,Σ, X,Σ, X, P, F ) that de�nes the tree trans-
formation τ = {(t, t) | t ∈ T (BR)} (⊆ TΣ(X) × TΣ(X)), i.e., for any t ∈ TΣ(X), tτ = {t}
if t ∈ T (BR), and tτ = ∅ if t /∈ T (BR). The class of these tree transformations is denoted
by FTA. Note they can also be computed by non-deterministic top-down tree recognizers
viewed as TOP-transducers.

5.2.4 Extended top-down tree transducers

Already Rounds (1970a) proposed top-down transducers with limited look-ahead, and sub-
sequently, Engelfriet (1975a) introduced and studied the more powerful top-down tree trans-
ducers with regular look-ahead. The tree transducers to be considered in this section have
a �nite look-ahead capability but they also process in one step the whole inspected part of
the input tree. Both bottom-up and top-down versions of such transducers were considered
already in late 1970s by Dauchet (1975), Arnold and Dauchet (1976a), and Lilin (1978),
but the recent interest in them stems from the demands of NLP, as explained by Graehl
and Knight (2004), Knight and Graehl (2005), Graehl et al. (2008), Maletti et al. (2009)
and Maletti (2008, 2010a), for example. We shall adopt the current terminology and speak
about extended (top-down) tree transducers.

We start our exposition by presenting our formal de�nition, which is an adaptation of
the one used by Knight and Graehl (2005), Maletti (2008, 2010a) and Maletti et al. (2009),
for example.

De�nition 5.2.13. An extended top-down tree transducer (XTT-transducer) is a system
XT = (Q,Σ, X,Ω, Y, P, I) speci�ed as follows.

(1) Q is a unary ranked alphabet of states such that Q ∩ (Σ ∪X ∪ Ω ∪ Y ) = ∅.

(2) Σ and X are the input alphabets, and Ω and Y are the output alphabets.

(3) P is a �nite set of rules of the form

q(`[ξ1, . . . , ξn])→ r[q1(ξi1), . . . , qk(ξik)] , (5.2.1)

where ` ∈ T̃Σ(X∪Ξn), r ∈ T̃Ω(Y ∪Ξk), q, q1, . . . , qk ∈ Q and i1, . . . , ik ∈ [n] for some
n, k ≥ 0.
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(4) I ⊆ Q is the set of initial states.

For any s, t ∈ TΣ∪Ω∪Q(X ∪ Y ), we write s ⇒XT t if and only if there exist a context
c ∈ CΣ∪Ω∪Q(X ∪ Y ), a rule of type (5.2.1) in P and ΣX-trees s1, . . . , sn such that

s = c(q(`[s1, . . . , sn])) and t = c(r[q1(si1), . . . , qk(sik)]) .

Then the tree transformation computed by XT (XTT-transformation) is the relation

τ(XT ) := {(s, t) | s ∈ TΣ(X), t ∈ TΩ(Y ), q(s)⇒∗XT t for some q ∈ I} ,

and the translation de�ned by XT is naturally the relation

λ(XT ) := {(yd(s), yd(t)) | (s, t) ∈ τ(XT )} (⊆ X∗ × Y ∗) .

The classes of all tree transformations and translations de�nable by XTT-transducers are
denoted by τ [XTT] and λ[XTT], respectively.

Now, we shall give an example of an XTT-transducer and its features.

Example 5.2.14. The device XT = ({q}, {f/2}, {x}, {h/3}, {x}, P, {q}) with P consisting
of the following 2 rules

q(f(ξ1, f(ξ2, ξ3))→ h(q(ξ2), q(ξ1), q(ξ3))

q(x)→ x

is an XTT-transducer. A sample computation of XT is

q(f(x, f(f(x, f(x, x)), x)))⇒XT h(q(f(x, f(x, x))), q(x), q(x))⇒XT

⇒XT h(h(q(x), q(x), q(x)), q(x), q(x))⇒5
XT h(h(x, x, x), x, x) .

Note that XT expresses a common translation rule

S

s1 S

s2 s3

→ S

t1t2 t3

speci�c to English-Arabic translations, where s1, s2, and s3 are the parse trees of the
subject, the verb, and the object in English and each ti is the corresponding transform of
si, i ∈ [3], into Arabic. Maletti et al. (2009) showed that such a tree transformation cannot
be computed by a linear TOP-transducer (cf. also Shieber, 2004).

Although, TOP-transducers can represent such a tree transformation by introducing
new states and using a certain number of non-linear rules, such as

q(S(ξ1, ξ2))→ S(q1(ξ2), q2(ξ1), q3(ξ2)) ,

and deleting rules, such as

q1(VP (ξ1, ξ2))→ q2(ξ1) and q3(VP (ξ1, ξ2))→ q2(ξ2) ,
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this is computationally very costly in practical applications and uncharacteristic for natural-
language phenomena since the copied subtrees may be processed di�erently as explained by
Shieber (2004, Section 3.1) and Maletti (2010a, Section 3).

Many other examples that show the expressive power of XTT-transducers for linguistic
applications are presented by Knight (2007), Knight and Graehl (2005), Maletti et al. (2009),
Maletti (2010a), and Razmara (2011).

Again, for practical purposes, it makes sense to consider special cases of extended top-
down tree transducers as we did for TOP- and BOT- tree transducers.

De�nition 5.2.15. Let XT = (Q,Σ, X,Ω, Y, P, I) be an XTT-transducer. A type (5.2.1)
rule is called

• linear if each variable ξi ∈ Ξn appears in r at most once,

• non-deleting if each variable ξi ∈ Ξn appears in r at least once,

• non-erasing if r /∈ Ξn, and

• an epsilon-rule if ` = ξ1 (and hence n = 1).

Then, XT is linear or non-deleting if all of its rules are, respectively, linear or non-deleting.
Moreover, it is called epsilon-free or non-erasing if it has, respectively, no epsilon-rules or
no erasing rules.

We use the pre�xes �l�, �n�, �q� and �e� followed by '-XTT' to denote the classes of tree
transformations and translations which correspond to linear, non-deleting, quasi-alphabetic
and epsilon-free XTT-transducers, respectively. For example, the XTT-transducer of Ex-
ample 5.2.14 is linear, non-deleting, epsilon-free and non-erasing. Further subclasses of
tree transformations and translations de�nable by XTT-transducers can be obtained by
combining any of these pre�xes. For example, the classes of all tree transformations and
translations de�nable by linear non-deleting XTT-transducers are denoted by τ [ln-XTT]
and λ[ln-XTT], respectively.

In the same way as it was done for TOP-transducers (see De�nition 5.2.6), we can add a
look-ahead facility to an XTT-transducer (Maletti et al., 2009). We will denote by τ [XTTR]
(τ [XTTF], respectively), the class of tree transformations computed by XTT-transducers
with regular (�nite, respectively) look-ahead . Moreover, we use again the pre�xes �l�, �n�
and �e� in front of XTTR to restrict the tree transformations in τ [XTTR] to those computed
by linear, non-deleting and epsilon-free, respectively, XTT-transducers with regular look-
ahead. Combinations of pre�xes are also allowed with the obvious e�ect.

5.2.5 Properties and hierarchies of tree transducers

We start this subsection by comparing, with respect to inclusion, some of the tree trans-
formations classes computed by di�erent versions of TOP-, BOT- and XTT-transducers
introduced so far.

Thus, the Hasse diagram of Figure 5.2.2 (cf. Fülöp, 2004, Figure 8) shows the inclu-
sion relations between the tree transformation classes τ [BOT], τ [TOP], τ [l-BOT], τ [l-TOP],
τ [ln-BOT], τ [ln-TOP], QREL, τ [l-TOPF], and τ [l-TOPR]. On the other hand, Figure 5.2.3
is the Hasse diagram of the inclusion relations between various classes of TOP- and XTT-
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QREL

τ [ln-BOT] = τ [ln-TOP]

τ [l-TOP]

τ [BOT]

τ [l-BOT]

τ [l-TOPF]

τ [l-TOPR]

τ [TOP]

Figure 5.2.2: Hasse diagram representing the inclusion relations among some top-down
and bottom-up tree transformations.

transformations (Maletti et al., 2009, Figure 4.3): τ [ln-XTT], τ [XTT], τ [l-XTT], τ [le-XTT],
τ [lne-XTT], τ [e-XTT], τ [l-TOP], τ [ln-TOP], τ [TOPR], τ [TOP], τ [l-TOPF], τ [l-TOPR],
τ [l-XTTR], τ [TOPF], τ [XTTR], τ [le-XTTR], and τ [e-XTTR],.

Compositions and decomposition results of tree transformations computed by tree trans-
ducers have been studied extensively by Engelfriet (1975a, c, 2015), Baker (1978b, 1979),
Gécseg and Steinby (1984), Gécseg and Steinby (2015), Fülöp and Vágvölgyi (1987), Fülöp
(1991), Fülöp and Vogler (1998), and Maletti et al. (2009). As an example, we show the
following result to be used later on (cf. Engelfriet, 1975a, Theorem 3.5).

Theorem 5.2.16. The following inclusion relations hold e�ectively in the sense that the
indicated decompositions always can be found for a given BOT-, linear BOT-, or linear
non-deleting BOT- transducer:

(i) τ [BOT] ⊆ REL ◦ FTA ◦HOM;

(ii) τ [l-BOT] ⊆ REL ◦ FTA ◦ l-HOM;

(iii) τ [ln-BOT] ⊆ REL ◦ FTA ◦ ln-HOM.

In all three cases, the inclusion relation actually can be replaced with equality.

Proof. The computations of a BOT-transducer BU = (Q,Σ, X,Ω, Y, P, F ) can be simulated
by composing a relabeling, a tree transformation in FTA and a tree homomorphism as
follows:

1. The relabeling replaces nondeterministically each label in the input tree by the name
of a rule of BU that begins with that label (and hence could possibly be applied at
that node).

2. The BOT-transducer de�ning the FTA-transformation checks that the states appear-
ing in the new labels are consistent with the state behavior of BU , thus eliminating
all trees that do not represent computations of BU .
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τ [TOP]

τ [l-TOP]

τ [ln-TOP]

τ [lne-XTT]

τ [ln-XTT]

τ [l-XTT]

τ [le-XTT]

τ [l-TOPF]

τ [e-XTT] =

τ [TOPF]

τ [l-TOPR]

τ [XTT]

τ [XTTR]

τ [l-XTTR]

τ [le-XTTR]

τ [e-XTTR] =

τ [TOPR]

Figure 5.2.3: Hasse diagram representing the inclusion relations between the classes of tree
transformations computed by extended top-down tree transducers.
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Tree transducer model

E
X
P
R

S
Y
M

P
R
E
S

P
R
E
S
−

1

C
O
M
P

TOP-transducers - - - + -
Linear TOP-transducers - - + + -
Linear non-deleting TOP-transducers - - + + +
TOPR-transducers + - - + -
Linear TOPR-transducers - - + + +
BOT-transducers + - - + -
Linear BOT-transducers - - + + +
Linear non-deleting BOT-transducers - - + + +
XTT-transducers + - - + -
Linear XTT-transducers + - + + -
Linear non-deleting XTT-transducers + + + + -
XTT-transducers with regular look-ahead + - - + -
Linear XTT-transducers with regular look-ahead + - + + -

Table 5.2.1: Overview of formal properties of various TOP-, BOT- and XTT- transducers
(+ stands for `the property holds' and - means `the property does not hold').

3. The tree homomorphism produces at each node the same output as BU would produce
using that rule that appears as the label of the node.

If BU is a linear or linear non-deleting BOT-transducer, then the tree homomorphism of
the above construction will also be linear or linear non-deleting, respectively, and hence also
(ii) and (iii) follow.

We should also mention the famous Hierarchy Theorem of Engelfriet (1982) (cf. also
Gécseg and Steinby, 1984) that states, among other facts, that the composition powers
of τ [TOP] and τ [BOT] form two properly ascending chains τ [TOP]n ⊂ τ [TOP]n+1 and
τ [BOT]n ⊂ τ [BOT]n+1 for every n ≥ 1 that are interleaved with each other. Note that for
a tree transformation class C, C1 := C and Cn+1 := Cn ◦ C for n ≥ 1.

We conclude this section by exhibiting in Table 5.2.1 the main properties appealing
for machine translation of several tree-transducer models (see Gécseg and Steinby, 1984,
Gécseg and Steinby, 2015, Comon et al., 2007, Engelfriet, 1975c, Maletti, 2010a, Maletti
et al., 2009, Knight, 2007, and the references therein)

5.3 Synchronous tree grammars

The idea to simultaneously generate pairs of strings using formal grammars (cf. Satta,
2004, 2009, for an overview) is about as old as the development of better compilers and
the introduction of the SDTSs in the 1960s (see Chapter 3 and Section 8.3.2 for further
references). In the 1990s the NLP community got interested in generating devices that
synchronously produce pairs of trees, being motivated especially by

• automatic translation between natural languages (Abeillé et al., 1990, Schabes, 1990),
where it is needed to explicitly represent subject-object swapping and discontinuous
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constituents,

• language interpretation tasks (Shieber and Schabes, 1990b), where it is useful to relate
a syntactic analysis of a natural language (e.g., English) to some other structure such
as the associated semantics represented in a logical form language or the analysis of
a sentence in another natural language (e.g., French), and

• natural language generation (Shieber and Schabes, 1990a, 1991).

Subsequently, many other synchronous grammars explicitly generating tree transformations
were investigated, usually for machine translation purposes (cf. Chiang and Knight, 2006,
Chiang, 2006, Razmara, 2011, for short overviews).

In Section 5.3.1, we deal with synchronous tree substitution grammars introduced by
Schabes (1990) and further studied by Eisner (2003) and Shieber (2004). Basically, such a
generative device consists of two TSGs where the mutual nonterminals marked for substi-
tution are bijectively associated via a permutation. Here, we give a new formal de�nition
(De�nition 5.3.1), exemplify its usage by formalizing a well-known example in the NLP
community (Example 5.3.2), and prove how this new de�nition makes it easier to see how
synchronous tree substitution grammars relate to SDTSs (Proposition 5.3.7).

Next, in Section 5.3.2, we introduce generalized synchronous tree substitution grammars,
also called synchronous tree substitution grammars with states by Fülöp et al. (2010) and
Maletti (2010c, 2011a), where their weighted version is algorithmically studied for tasks in
(statistical) machine translation. In such a synchronous grammar, the nonterminals (also
called states) do not depend anymore on the given input and output alphabets, and hence,
the root of the input tree (output tree, respectively) is not related to the nonterminal
rewritten on the input left-hand side (output right-hand side, respectively). As explained
by Knight (2007) and Fülöp et al. (2010), this freedom removes the nonterminal (i.e.,
state) information from the input and output tree, and therefore, it overcomes the formal
drawbacks of the constructions of Shieber (2004), that used the less powerful synchronous
tree substitution grammars. Moreover, our De�nition 5.3.4 permits us to give a direct
and e�ective characterization in terms of generating devices (Proposition 5.3.8) of linear
non-deleting XTT-transducers as stated by Knight (2007) and di�erently proved by Maletti
(2008). Also, we get new characterizations of syntax-directed translations (Proposition 5.3.7
and Corollary 5.3.9).

5.3.1 Synchronous tree substitution grammars

A synchronous tree-substitution grammar introduced by Schabes (1990) and further studied
by Eisner (2003) and Shieber (2004) consists of two synchronously working TSGs. First we
give a new formal de�nition of this notion (cf. Shieber, 2004) that makes it easier to see how
synchronous tree-substitution grammars relate to other syntax-directed translations devices
such as SDTSs.

De�nition 5.3.1. A synchronous tree-substitution grammar (STSG) is a system ST =
(N,Σ, X, N ′,Ω, Y, P, S, S′) speci�ed by the following clauses.

(1) Σ and X are the input alphabets of ST , and Ω and Y are the output alphabets.

(2) N := {f↓ | f ∈ Σ \ Σ0} and N ′ := {f ′↓ | f ′ ∈ Ω \ Ω0} are the sets of nonterminal
symbols.
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(3) S ∈ N and S′ ∈ N ′ are the start symbols.

(4) P is a �nite set of productions A;A′ → r; r′ (σ) such that

(a) A ∈ N , A′ ∈ N ′, r ∈ TΣ(X ∪N) and r′ ∈ TΩ(Y ∪N ′),
(b) if A = f↓ and A′ = f ′↓, then root(r) = f and root(r′) = f ′, and

(c) σ is a bijection between the (occurrences of) nonterminals in r′ and those in r
that associates with each nonterminal in r′ a unique nonterminal in r.

It is assumed that N ∩ (Σ ∪ X) = N ′ ∩ (Ω ∪ Y ) = ∅. If ydN (r) = A1A2 . . . An and
ydN ′(r

′) = A′1A
′
2 . . . A

′
n, then σ in clause (4c) is given as a permutation of [n] such that

for every i ∈ [n], the ith nonterminal A′i in r
′ is associated with the nonterminal Aσ(i) of

r. When r ∈ TΣ(X) and r′ ∈ TΩ(Y ) in a production A;A′ → r; r′ (σ), we may omit the
permutation σ (on the empty set) and write the production simply as A;A′ → r; r′.

Consider now any STSG ST = (N,Σ, X,N ′,Ω, Y, P, S, S′). Let AP (ST ) be the set of
all associated pairs of trees (s, s′) such that s ∈ TΣ(X ∪ N), s′ ∈ TΩ(Y ∪ N ′) and the
nonterminals in s′ are bijectively associated to those in s. If the trees (s, s′) ∈ AP (ST )
contain n nonterminals each, then the associating bijection between them can be represented
by a permutation ς on [n] such that the ith nonterminal of s′ is associated with the ς(i)th

nonterminal of s. For any (s, s′), (t, t′) ∈ AP (ST ), we write (s, s′)⇒ST (t, t′), if and only if
there are contexts c ∈ CΣ(X ∪N), c′ ∈ CΩ(Y ∪N ′) and a production A;A′ → r; r′ (σ) in
P such that s = c(A), s′ = c′(A′), t = c(r), t′ = c′(r′), and the explicit nonterminals A and
A′ are associated in the pair (s, s′). Moreover, the associating bijection of the pair (t, t′) is
inherited from (s, s′) and (r, r′) in the natural way. We have (s, s′) ⇒n

ST (t, t′) if and only
if there is an n-step derivation

(s, s′)⇒ST (s1, s
′
1)⇒ST . . .⇒ST (sn−1, s

′
n−1)⇒ST (t, t′)

of (t, t′) from (s, s′). The set SP (ST ) of synchronous pairs of trees is now de�ned inductively
as follows:

(1) (S, S′) ∈ SP (ST ) and the only occurrences of S and S′ are associated in this pair;

(2) if (s, s′) ∈ SP (ST ) and (s, s′) ⇒ST (t, t′), then (t, t′) ∈ SP (ST ) and the associating
bijection of (t, t′) is de�ned as above.

Clearly, SP (ST ) = {(s, s′) ∈ AP (ST ) | (S, S′) ⇒∗ST (s, s′)}. The tree transformation
de�ned by ST is the relation

τ(ST ) := {(s, s′) ∈ SP (ST ) | s ∈ TΣ(X), s′ ∈ TΩ(Y )} ,

and the translation de�ned by ST is given by

λ(ST ) := yd(τ(ST )) = {(yd(s), yd(s′)) | (s, s′) ∈ τ(ST )} .

The classes of the STSG-de�nable tree transformations and the STSG-de�nable translations
are denoted by τ [STSG] and λ[STSG], respectively.

Next, we clarify the notions presented so far by formalizing, via our De�nition 5.3.1, the
machine translation example of Abeillé et al. (1990), Chiang (2006) and Chiang and Knight
(2006).
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Example 5.3.2. The device ST = (N,Σ, X,N ′,Ω, Y, P, S↓, S↓) with

• Σ = {S/2, VP/2, NP/1, VB/1},

• X = {John,misses,Mary},

• Ω = {S/2, VP/2, PP/2, VB/1, NP/1, PRP/1},

• Y = {Marie, Jean,manque, à},

• N = {S↓, VP↓, NP↓, VB↓},

• N ′ = {S↓, VP↓, PP↓, VB↓, NP↓, PRP↓}, and

• P consisting of the following �ve productions

S↓;S↓ → S(NP↓, VP (VB↓, NP↓));S(NP↓, VP (VB↓, PP (PRP (à), NP↓))) (3 2 1)

NP↓;NP↓ → NP (John);NP (Jean)

NP↓;NP↓ → NP (Mary);NP (Marie)

VB↓;VB↓ → VB(misses);VB(manque)

is an STSG. A derivation in ST is
(S↓, S↓)⇒ST

(
S(NP↓, VP (VB↓, NP↓)), S↓(NP↓, VP (VB↓, PP (PRP (à), NP↓)))

)
(3 2 1)

⇒ST

(
S(John, VP (VB↓, NP↓)), S↓(NP↓, VP (VB↓, PP (PRP (à), Jean)))

)
(2 1)

⇒ST

(
S(John, VP (misses,NP↓)), S↓(NP↓, VP (manque, PP (PRP (à), Jean)))

)
(1)

⇒ST

(
S(John, VP (misses,Mary)), S↓(Marie, VP (manque, PP (PRP (à), Jean)))

)
.

Thus, the following two pairs of trees are generated by ST :
S

NP

John

V P

V B

misses

NP

Mary

S

NP

Marie

V P

V B

manque

PP

PRP

à

NP

Jean

( , )

and

S

NP

Mary

V P

V B

misses

NP

John

S

NP

Jean

V P

V B

manque

PP

PRP

à

NP

Marie

( , )
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5.3. Synchronous tree grammars 95

Moreover, λ(ST ) contains the correct English-to-French translations (John misses Mary,
Marie manque à Jean) and (Mary misses John, Jean manque à Marie).

Therefore, STSGs are able to naturally perform subject-object swapping characteristic
to translations between natural languages with di�erent structures without �attening the
syntax trees and integrate the verb into a synchronous production (to make sure that this
swapping does not occur with just any verb). This would not have been the case for SDTSs
or SCFGs.

When STSGs are de�ned this way, it seems quite obvious that any STSG-de�nable
translation is also SDTS-de�nable. In Section 5.3.2, we shall prove this fact in a more
general form. Here we note the converse statement.

Proposition 5.3.3. λ[SDTS] ⊆ λ[STSG].

Proof. Let SD = (N,X, Y, P, S) be an SDTS. By Theorem 3.3.12(iv), we may suppose
without loss of generality that SD is proper and each production in P is of the form

(R1) A;A → A1 . . . Am;Aσ(1) . . . Aσ(m) (σ), where m ≥ 1, A,A1, . . . , Am ∈ N , and σ is a
permutation of [m], or of the form

(R2) A;A→ v;w, where A ∈ N , v ∈ X∗ and w ∈ Y ∗.

The length of a production A;A→ α;β (σ) is de�ned to be the maximum of the lengths of
α and β. For any nonterminal A ∈ N , let lg(A) denote the maximum of the lengths of all
the productions in P in which A appears in the left-hand side. Obviously, we may assume
that there is no A ∈ N with lg(A) = 0. Otherwise, if SD has just the rule S;S → ε; ε, the
result is obvious because one can easily construct the STSG

({S↓}, {e/0}, ∅, {S↓}, {e/0}, ∅, {S↓;S↓ → S(e);S(e)}, S↓, S↓)

that de�nes the same translation (ε, ε) as SD.
We de�ne now an STSG ST = (N̄ ,Σ, X, N̄ ,Σ, Y, P̄ , S↓, S↓) as follows.

(1) Let Σ0 := {e}, and Σm := {A ∈ N | lg(A) = m} for m ≥ 1.

(2) Let N̄ := {A↓ | A ∈ Σ \ Σ0}.

(3) Each production in P̄ is constructed from a production in P as follows:

(a) For any production A;A → A1 . . . Am;Aσ(1) . . . Aσ(m) (σ) in P of type (R1), we
include in P̄ the production

A↓;A↓ → A(A1↓, . . . , Am↓, e, . . . , e);A(Aσ(1)↓, . . . , Aσ(m)↓, e, . . . , e) (σ) ,

where there are lg(A)−m e's in each sequence.

(b) For any production A;A→ x1 . . . xi; y1 . . . yj in P of type (R2) with x1, . . . , xi ∈
X and y1, . . . , yj ∈ Y , we add to P̄ the production

A↓;A↓ → A(x1, . . . , xi, e, . . . , e);A(y1, . . . , yj , e, . . . , e) ,

where the two sequences of e's are of length lg(A)− i and lg(A)− j, respectively.

UNIVERSITAT ROVIRA I VIRGILI 
SYNTAX-DIRECTED TRANSLATIONS, TREE TRANSFORMATIONS AND BIMORPHISMS 
Catalin Ionut Tirnauca 



96 Chapter 5. Tree Transformations

Let yd′X : TΣ(N̄∪X)→ (N∪X)∗ and yd′Y : TΣ(N̄∪Y )→ (N∪Y )∗ be the modi�ed yield-
mappings such yd′X(x) := x for x ∈ X, yd′Y (y) := y for y ∈ Y , yd′X(A↓) = yd′Y (A↓) := A
for any A ∈ N , and yd′X(e) = yd′Y (e) := ε. It is then obvious that if A↓;A↓ → r; r′ (σ) is a
production in P̄ obtained from the production A;A→ α;β (σ) in P , then yd′X(r) = α and
yd′Y (r′) = β.

Next we show that any derivation step in ST is matched by a corresponding step in
SD. If (s, s′) ⇒ST (t, t′), then there exist contexts c ∈ CΣ(X ∪ N̄) and c′ ∈ CΣ(Y ∪ N̄)
and a production A↓;A↓ → r; r′ (σ) in P̄ such that s = c(A↓), s′ = c′(A↓), t = c(r) and
t′ = c′(r′), where the two A↓'s singled out are associated in the pair (s, s′). Furthermore,
yd′X(s) = γAδ and yd′Y (s′) = γ′Aδ′ for some γ, δ ∈ (N ∪X)∗ and γ′, δ′ ∈ (N ∪Y )∗, and the
two A's are associated. Then yd′X(t) = γyd′X(r)δ and yd′Y (t′) = γ′yd′Y (r′)δ′. Since A;A→
yd′X(r); yd′Y (r′) (σ) is in P , this means that (yd′X(s), yd′Y (s′)) ⇒SD (yd′X(t), yd′Y (t′)) and
we can complete the induction step. Now it is clear that for any derivation

(S↓, S↓) ⇒ST (s1, s
′
1) ⇒ST . . . ⇒ST (sn, s

′
n) (DST )

in ST , we get the derivation

(S, S) ⇒SD (yd′X(s1), yd′Y (s′1)) ⇒SD . . . ⇒SD (yd′X(sn), yd′Y (s′n)) (DSD)

in SD. Hence, λ(ST ) ⊆ λ(SD).
The inclusion λ(SD) ⊆ λ(ST ) follows when one shows by induction on n ≥ 0 that for

every derivation

(S, S) ⇒SD (γ1, γ
′
1) ⇒SD . . . ⇒SD (γn, γ

′
n) (D′SD)

in SD, there is a derivation (DST ) in ST such that yd′X(si) = γi and yd′Y (s′i) = γ′i for
every i ∈ [n]. The case n = 0 is obvious, and for the induction step, we consider a
derivation step (γ, γ′) ⇒SD (δ, δ′) in SD and assume that there are trees s ∈ TΣ(N̄ ∪ X)
and s′ ∈ TΣ(N̄ ∪ Y ) such that yd′X(s) = γ and yd′Y (s′) = γ′. If A;A → α;β (σ) is the
production applied in the derivation step, then there are contexts c ∈ CΣ(N̄ ∪ X) and
c′ ∈ CΣ(N̄ ∪ Y ) such that s = c(A↓) and s′ = c′(A↓), where two occurrences of A↓ are
associated. Furthermore, yd′X(s) = δ1Aδ2 and yd′Y (s′) = δ′1Aδ

′
2. Thus, when we apply the

production A↓;A↓ → r; r′ (σ) of P̄ (that corresponds to A;A→ α;β (σ)) to the pair (s, s′),
we get a derivation step (s, s′) ⇒ST (c(r), c′(r′)) such that yd′X(c(r)) = δ1αδ2 = δ and
yd′Y (c′(r′)) = δ′1βδ

′
2 = δ′, and thus the induction can be completed.

5.3.2 Generalized synchronous tree substitution grammars

The following generalization of the STSGs is suggested rather immediately by our Def-
inition 5.3.1. Using this de�nition we will get new characterizations of syntax-directed
translations and later, in Section 6.4, we will re-examine the representation of tree trans-
formations de�ned by STSGs by certain tree bimorphisms suggested by Shieber (2004).
Observe that as opposed to the STSGs, the nonterminals of this synchronous tree grammar
are now separated from the input and output alphabets and the generation process is not
guided anymore by the roots of the input and output trees. Also note that this model is
called synchronous tree substitution grammar with states (i.e., nonterminal sets disjoint from
the input and output alphabets) by Maletti (2010c, 2011a) and Fülöp et al. (2010), where
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5.3. Synchronous tree grammars 97

its weighted version is algorithmically studied and compared with other similar weighted
formalisms.

De�nition 5.3.4. A generalized synchronous tree-substitution grammar (GSTSG) is a sys-
tem GS = (N,Σ, X,N ′,Ω, Y, P, S, S′) speci�ed as follows.

(1) Σ, X, Ω, Y , S and S′ are as in an STSG (see De�nition 5.3.1).

(2) N and N ′ are �nite sets of nonterminal symbols such that N ∩ (Σ ∪X) = N ′ ∩
(Ω ∪ Y ) = ∅.

(3) P is a �nite set of productions A;A′ → r; r′ (σ) such that A ∈ N , A′ ∈ N ′,
r ∈ TΣ(X ∪ N) and r′ ∈ TΩ(Y ∪ N ′), and σ is a bijection between the (occurrences
of) nonterminals in r′ and those in r that associates with each nonterminal in r′ a
unique nonterminal in r. Again, we write simply A;A′ → r; r′ when r ∈ TΣ(X) and
r′ ∈ TΩ(Y ).

The relations ⇒GS and ⇒n
GS , as well as the tree transformation τ(GS) and the translation

λ(GS) are de�ned the same way as for an STSG. The classes of tree transformations and
translations de�nable by GSTSGs are denoted by τ [GSTSG] and λ[GSTSG], respectively.

We call (c(A), c′(A′) ⇒GS (c(r), c′(r′)), where c ∈ CΣ(X ∪ N), c′ ∈ CΩ(Y ∪ N ′) and
A;A′ → r; r′ (σ) is a production in P , a leftmost derivation step if the explicit instance of A
is the leftmost occurrence of any nonterminal symbol in c(A), and in a leftmost derivation
every step is leftmost. Since the productions of a GSTSG are 'context-free', every derivation
can obviously be replaced with a leftmost one that yields the same result and in which
exactly the same productions are used as in the original derivation.

Observe that any STSG is a special GSTSG in which the sets of nonterminal symbols
depend on the ranked alphabets and the productions satisfy the additional condition (4b)
of De�nition 5.3.1.

Example 5.3.5. The system GS = ({S},Σ, X, {S},Σ, X, P, S, S), where Σ = {f/1, g/1},
X = {x}, and

P = {S;S → f(S); f(S) (1), S;S → g(S); g(S) (1), S;S → x;x} ,

is a GSTSG that de�nes the tree transformation τ(GS) = {(s, s) | s ∈ TΣ(X)}. It is
clear that τ(GS) is not de�ned by any STSG because in an STSG the start symbols must
be either f↓ or g↓; if, for example, the input start symbol is f↓, then no pair of the form(
g(s), g(s)

)
can be generated.

This example, together with De�nitions 5.3.1 and 5.3.4, allow us to state (cf. Fülöp
et al., 2010, Maletti, 2011a).

Proposition 5.3.6. τ [STSG] ⊂ τ [GSTSG].

The following proposition is a strengthened form of the converse of Proposition 5.3.3.

Proposition 5.3.7. λ[GSTSG] ⊆ λ[SDTS].
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Proof. Let GS = (N,Σ, X,N ′,Ω, Y, P, S, S′) be any GSTSG, and consider the SDTS SD =
(N ×N ′, X, Y, P0, (S, S

′)), where the productions in P0 are obtained from the productions
in P as follows. If A;A′ → r; r′ (σ) is a production in P such that

yd(r) = v0A1v1 . . . vmAmvm+1 and yd(r′) = w0A
′
1w1 . . . wmA

′
mwm+1 ,

where v0, v1, . . . , vm+1 ∈ X∗, A1, . . . , Am ∈ N , w0, w1, . . . , wm+1 ∈ Y ∗ and A′1, . . . , A′m ∈
N ′, we include in P0 the production (A,A′); (A;A′)→ α;β (σ), where

α = v0(A1, A
′
σ−1(1))v1 . . . vm(Am, A

′
σ−1(m))vm+1

and
β = w0(Aσ(1), A

′
1)w1 . . . wm(Aσ(m), A

′
m)wm+1 .

Example Let Σ = {f/3, e/0}, X = {x}, Ω = {h/3} and Y = {y1, y2}. If A,B,C ∈ N and
A′, B′ ∈ N ′ are nonterminals, then

A;A′ → f(f(x,A,B), e, C);h(y1, h(B′, y2, A
′), B′)) (3 2 1)

is a possible GSTSG-production and

(A,A′); (A;A′)→ x(A,B′)(B,A′)(C,B′); y1(C,B′)y2(B,A′)(A,B′) (3 2 1)

is the corresponding SDTS-production. 2

Let µ : (X ∪ (N × N ′))∗ → (X ∪ N)∗ and µ′ : (Y ∪ (N × N ′))∗ → (Y ∪ N ′)∗ be the
homomorphisms such that xµ := x, yµ′ := y, (A,A′)µ := A and (A,A′)µ′ := A′ for any
x ∈ X, y ∈ Y and (A,A′) ∈ N ×N ′. Then it is easy to see that for any derivation

(S, S′)⇒GS (s1, s
′
1)⇒GS . . .⇒GS (sn, s

′
n) (DGS)

in GS there is a derivation

((S, S′), (S, S′))⇒SD (δ1, δ
′
1)⇒SD . . .⇒SD (δn, δ

′
n) (DSD)

in SD such that yd(si) = δiµ and yd(s′i) = δ′iµ
′ for every i ∈ [n]. If, in particular, (sn, s

′
n) ∈

τ(GS), then
(yd(sn), yd(s′n)) = (δnµ, δ

′
nµ
′) = (δn, δ

′
n) ∈ λ(SD)

because then yd(sn) ∈ X∗ and yd(s′n) ∈ Y ∗. Hence, λ(GS) ⊆ λ(SD).
For the converse, it su�ces to verify by induction on the length of the derivation that for

every derivation (DSD) there is a derivation (DGS) such that yd(si) = δiµ and yd(s′i) = δ′iµ
′

for every i ∈ [n].

Now we prove a result in view of which generalized synchronous tree substitution gram-
mars appear as the generative counterparts of linear non-deleting XTT-transducers (Knight,
2007, p.127).

Proposition 5.3.8. τ [GSTSG] = τ [ln-XTT].

Proof. Given a GSTSG GS = (N,Σ, X,N ′,Ω, Y, P, S, S′) we introduce a linear non-deleting
XTT-transducer XT = (Q,Σ, X,Ω, Y, P ′, I), where Q := N ×N ′, I := {(S, S′)}, and P ′ is
de�ned as follows.
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If A;A′ → r; r′ (σ) is in P , and ydN (r) = A1 . . . Am and ydN ′(r
′) = A′1 . . . A

′
m, where

m ≥ 0, A1, . . . , Am ∈ N and A′1, . . . , A
′
m ∈ N ′, then there are trees r̃ ∈ T̃Σ(X ∪ Ξm) and

r̃′ ∈ T̃Ω(Y ∪Ξm) such that r = r̃[A1, . . . , Am] and r′ = r̃′[A′1, . . . , A
′
m]. Now we put into P ′

the rule
(A,A′)(r̃)→ r̃′[(Aσ(1), A

′
1)(ξσ(1)), . . . , (Aσ(m), A

′
m)(ξσ(m))] .

For example, if

S;S → f(A, f(B,C)); f
(
A, f(B, f(g(x), C))

)
(3 2 1)

is a production in the GSTSG GS, then the XTT-transducer rule

(S, S)
(
f(ξ1, f(ξ2, ξ3))

)
→ f

(
(C,A)(ξ3), f((B,B)(ξ2), f(g(x), (A,C)(ξ1))

)
is in P ′.

It can be shown that τ(XT ) = τ(GS), and hence τ [GSTSG] ⊆ τ [ln-XTT].
To prove the converse inclusion, it su�ces to consider any linear non-deleting XTT-

transducer XT = (Q,Σ, X,Ω, Y, P ′, {q0}) with exactly one initial state because τ [GSTSG]
is obviously closed under union. Let GS = (Q,Σ, X,Q,Ω, Y, P, q0, q0) be the GSTSG in
which P is obtained from P ′ as follows.

Because XT is linear and non-deleting, each rule in P ′ is of the form

q(`)→ r[q1(ξσ(1)), . . . , qn(ξσ(n))] ,

where n ≥ 0, ` ∈ T̃Σ(X ∪ Ξn), r ∈ T̃Ω(Y ∪ Ξn), q, q1, . . . , qn ∈ Q and σ is a permutation of
[n]. For such a rule we put into P the production

q; q → `[qσ(1), . . . , qσ(n)]; r[q1, . . . , qn] (σ) .

For example, if
q(f(ξ1, f(ξ2, ξ3))→ h(q(ξ2), q(ξ1), q(ξ3))

is the XTT-transducer rule of Example 5.2.14, then

q; q → f(q2, f(q1, q3));h(q1, q2, q3) (2 1 3) .

is the corresponding constructed GSTSG-production.
Again, it can be shown that this way τ(GS) = τ(XT ), and so τ [ln-XTT] ⊆ τ [GSTSG],

which concludes the proof.

Finally, we gather the results of Propositions 5.3.6, 3.3.21, 5.3.3, 5.3.7 and 5.3.8 into the
following conclusion, obtaining thus new characterizations of syntax-directed translations.

Corollary 5.3.9. The following hold:

SDT = λ[ln-XTT] = λ[GSTSG] = λ[STSG] = λ[SDTS] = λ[SCFG] .

Very often tree transducers and synchronous grammars are connected via tree bimor-
phisms, the formalism that we study in detail in the following chapter, in an attempt to
improve the mathematical foundations of both devices and subsequently, their relevance in
practice.
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Chapter 6

Tree Bimorphisms and Translations

As we already noted in Section 3.2, Nivat (1968) has shown that a translation is regular
if and only if it can be represented as a composition of an inverse string homomorphism,
the intersection with a regular language, and a string homomorphism. This fact yields a
powerful algebraic tool for the study of regular translations - the string bimorphisms, and
most of the properties of regular translations (see Theorem 3.2.4) could be proved using
this characterization (cf. Berstel, 1979). Soon afterwards the tree bimorphism emerged
as a natural counterpart to this notion in tree language theory being formed by two tree
homomorphisms and a recognizable tree language. These general tree bimorphisms are quite
powerful, but by suitable restrictions on its constituents one can get tree transformations
with useful properties such as preservation of recognizability and closure under composition
and which thus correspond to some extent to the regular translations.

It is the aim of this chapter to present in detail some of these classes with 'regular-like'
properties together with their connection with synchronous grammars and tree transducers:
quasi-alphabetic tree transformations and translations of Steinby and Tîrn uc  (2007, 2009)
in Section 6.2, primitive transformations and primitive transformations with permutation
of Takahashi (1972) in Section 6.3, linear complete bimorphisms of Arnold and Dauchet
(1976a, 1982) in Section 6.4, and alphabetic tree relations of Bozapalidis (1992) in Sec-
tion 6.5. Moreover, the Hasse diagram of Figure 6.6.1 shows for the �rst time the inclusion
relations between these classes on tree and string level. Furthermore, Section 6.7 presents a
quite complete and up-to-date overview of other less-known classes of tree transformations
de�ned by means of tree bimorphisms that share appealing properties. We bring them
into the spotlight of new applications by showing their connection with well-established
synchronous grammars studied in computational linguistics community. Raoult (1992) and
Dauchet and Tison (1992) brie�y surveyed a few results from the 1970s and 1980s concerning
tree bimorphisms. On the other hand, Tîrn uc  (2008) presented an informal overview on
several relations between synchronous grammars and tree transducers via tree bimorphisms.

6.1 Basic notions

We start the presentation of tree bimorphisms with their formal de�nition.

De�nition 6.1.1. A tree bimorphism is a triple TB = (ϕ,R, ψ) that consists of

• a tree language R ⊆ TΓ(Z) called the center ,

• an input tree homomorphism ϕ : TΓ(Z)→ TΣ(X), and

• an output tree homomorphism ψ : TΓ(Z)→ TΩ(Y ).

The tree transformation de�ned by TB is the relation

τ(TB) := ϕ−1 ◦ idR ◦ψ = {(rϕ, rψ) | r ∈ R} (⊆ TΣ(X)× TΩ(Y )) ,
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Figure 6.1.1: A pictorial representation of a tree bimorphism (ϕ,R, φ).

and the translation de�ned by TB is the relation

λ(TB) := yd(τ(TB)) = {(yd(rϕ), yd(rψ)) | r ∈ R} (⊆ X∗ × Y ∗) .

Moreover, we say that a tree bimorphism (ϕ,R, ψ) is variable-free (respectively, almost
variable-free) if R ⊆ TΓ (respectively, R ⊆ TΓ ∪ Z).

A pictorial representation of a tree bimorphism is shown in Figure 6.1.
For any classes H1 and H2 of tree homomorphisms and any class Fam of tree languages,

we denote by B[H1,Fam,H2] the class of all tree bimorphisms TB = (ϕ,R, ψ) with ϕ ∈ H1,
R ∈ Fam and ψ ∈ H2, and the corresponding classes of tree transformations and translations
are denoted by τ [H1,Fam,H2] and λ[H1,Fam,H2], respectively.

To clarify the notions introduced so far, we shall give an example.

Example 6.1.2. Let Σ = {f/3, g/1}, Ω = {h/1}, X = {x}, and Y = {1}. Moreover, let

R = {f(gl(x), gm(x), gn(x)) | l,m, n ∈ N} ⊆ TΣ(X) ,

and let ϕ : TΣ(X)→ TΣ(X) and ψ : TΣ(X)→ TΩ(Y ) be the tree homomorphisms given by

ϕ3(f) := f(ξ3, ξ2, ξ1) ϕ1(g) := g(ξ1) ϕX(x) := x

ψ3(f) := ξ3 ψ1(g) := h(ξ1) ψX(x) := 1 .

Then the tree transformation de�ned by TB = (ϕ,R, ψ) is

τ(TB) = {(f(gn(x), gm(x), gl(x)), hn(1)) | l,m, n ∈ N} ∈ τ [pH,Rec, fH] .

Moreover, the translation de�ned by TB is λ(TB) = {(xxx, 1)}.

UNIVERSITAT ROVIRA I VIRGILI 
SYNTAX-DIRECTED TRANSLATIONS, TREE TRANSFORMATIONS AND BIMORPHISMS 
Catalin Ionut Tirnauca 



6.2. Quasi-alphabetic tree bimorphisms 103

Note that by de�nition, a class of tree transformations de�ned by a tree bimorphism
is naturally decomposed into three classes of tree transformations computable by classical
tree transducers and easy to handle: HOM−1, FTA and HOM. The decomposition results
of Engelfriet (1975a, c) (cf. also Theorem 5.2.16) showed that all TOP- and BOT-tree
transformations can be de�ned by such tree bimorphisms, but this did not lead to any
useful characterizations of these classes of tree transformations. Moreover, the family of
tree transformations de�ned by these tree bimorphisms enjoy few of the good properties
demanded by practice (see Table 5.2.1) and shared by the original string bimorphisms
of Nivat (1968) (cf. Theorem 3.2.4). Therefore, attention has turned to special classes
of tree bimorphisms which are obtained by imposing some restrictions on the center tree
language or the tree homomorphisms (cf. Takahashi, 1972, Arnold and Dauchet, 1976a, 1982,
Bozapalidis, 1992, Steinby and Tîrn uc , 2007, 2009, for example).

De�nition 6.1.3. A tree bimorphism TB = (ϕ,R, ψ) is said to be

• alphabetic if R ∈ Rec and ϕ,ψ ∈ aH;

• permuting if R ∈ Rec and ϕ,ψ ∈ pH;

• quasi-alphabetic if R ∈ Loc and ϕ,ψ ∈ qH;

• linear non-deleting if R ∈ Rec and ϕ,ψ ∈ lnH;

• �ne if R ∈ Rec and ϕ,ψ ∈ fH.

These tree bimorphisms are studied next (cf. Raoult, 1992, Dauchet and Tison, 1992,
Tîrn uc , 2008, Maletti, 2010a, for briefer expositions).

6.2 Quasi-alphabetic tree bimorphisms

Quasi-alphabetic tree bimorphisms were introduced by Steinby and Tîrn uc  (2007, 2009)
as the natural counterpart of SDTSs, and their formal properties were further investigated
by Maletti and Tîrn uc  (2010, 2009). In Section 6.2.1, we exhibit the properties of quasi-
alphabetic tree bimorphisms that make them appealing for certain applications in machine
translation (see Chiang and Knight, 2006, Yamada and Knight, 2001, Knight, 2007, Chiang,
2007, 2006, for example): preservation of recognizability of tree languages and closure under
inverses, union and composition. We continue in Section 6.2.2 by showing that quasi-
alphabetic tree bimorphisms and SDTSs are equally powerful as translation de�ning devices.
Also, a formal de�nition of tree transformations de�nable by SDTSs and SCFGs is given
for the �rst time (cf. Tîrn uc , 2011). Moreover, we present subclasses of quasi-alphabetic
tree bimorphisms that de�ne regular translations and simple syntax-directed translations.
This way, we may now also use tree language theory for proving properties of regular
translations and syntax-directed translations as we show in a couple of examples. Finally,
in Section 6.2.3, we place quasi-alphabetic tree transformations into the tree transducer
hierarchy of Figures 5.2.2 and 5.2.3 (cf. Tîrn uc , 2009), thus making quasi-alphabetic tree
bimorphisms easy to implement in TIBURON (May and Knight, 2006, May, 2010).

We start by �xing some notation and terminology.

De�nition 6.2.1. The members of τ [qH,Loc, qH] are called quasi-alphabetic tree trans-
formations. Similarly, we refer to the elements of λ[qH,Loc, qH] as the quasi-alphabetic
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104 Chapter 6. Tree Bimorphisms and Translations

translations. Let us denote the classes τ [qH,Loc, qH] and λ[qH,Loc, qH] simply by τ [qTB]
and λ[qTB], respectively. Similarly, τ [qH,Locvf , qH] and λ[qH,Locvf , qH] are generically
denoted τ [qTBvf] and λ[qTBvf], respectively.

Since the composition of an alphabetic tree homomorphism and a quasi-alphabetic tree
homomorphism obviously is a quasi-alphabetic tree homomorphism, the following facts
easily follow from Proposition 4.5.5 (cf. Steinby and Tîrn uc , 2009, Theorems 6.2 and 6.3).

Proposition 6.2.2. The following hold.

(i) τ [qH,Loc ∩DRec, qH] = τ [qH,Loc, qH] = τ [qH,Rec, qH].

(ii) λ[qH,Loc ∩DRec, qH] = λ[qH,Loc, qH] = λ[qH,Rec, qH].

(iii) τ [qH,Loc ∩DRecvf , qH] = τ [qH,Locvf , qH] = τ [qH,Recvf , qH].

(iv) λ[qH,Loc ∩DRecvf , qH] = λ[qH,Locvf , qH] = λ[qH,Recvf , qH].

Hence, when considering quasi-alphabetic tree transformations or translations, one may
either assume that the de�ning tree bimorphisms belong to B[qH,Loc∩DRec, qH] or allow a
more general tree bimorphism in B[qH,Rec, qH]. The same assumption can be made for tree
transformations and translations de�ned by variable-free quasi-alphabetic tree bimorphisms.

Moreover, we can show that almost variable-free quasi-alphabetic tree bimorphisms
de�ne exactly the quasi-alphabetic tree transformations. To eliminate variables is essential
to our approach to closure under composition of τ [qTB] that is shown in Section 6.2.1.

Lemma 6.2.3. τ [qH,Recavf, qH] = τ [qTB].

Proof. Every tree transformation de�ned by an almost variable-free quasi-alphabetic tree
bimorphism is obviously quasi-alphabetic. To prove the converse inclusion, let TB =
(ϕ,R, ψ) be a quasi-alphabetic tree bimorphism with R ⊆ TΓ(Z), ϕ : TΓ(Z) → TΣ(X)
and ψ : TΓ(Z) → TΩ(Y ). Moreover, let V be an alphabet and φ : Z → V a bijection.
Finally, let BU = (Q,Γ′, ∅,Ω′, ∅, P,Q) be the linear BOT-transducer with

• Q := V ∪ {?}.

• Γ′m := Γm for every m ≥ 1 and Γ′0 := Γ0 ∪ Z.

• Ω′m := {t ∈ Γ(Q) | m = |t|?} for every m ≥ 1, and let Ω′0 := Γ0 ∪ Z.

• The set P of rules is given as follows:

- For every z ∈ Z, let z → q(z) be a rule of P where q = φ(z).

- For every m ≥ 1, f ∈ Γm and q1, . . . , qm ∈ Q, let

f(q1(ξ1), . . . , qm(ξm))→ ?(f(q1, . . . , qm)(ξi1 , . . . , ξin))

be a rule of P , where i1 < . . . < in and {i1, . . . , in} = {i ∈ [m] | qi = ?}.

Let R′ := τ(BU)(R) be the image of R under τM . Clearly, R′ is almost variable-free, and,
by Table 5.2.1, it is recognizable. We construct the tree bimorphism TB′ = (ϕ′, R′, ψ′) such
that ϕ′Z := ϕZ , ψ′Z := ψZ , and

ϕ′m(t) := ϕ(t[?← (ξ1, . . . , ξm)]) and ψ′m(t) := ψ(t[?← (ξ1, . . . , ξm)])
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6.2. Quasi-alphabetic tree bimorphisms 105

for every t ∈ Ωm (m ≥ 0). Clearly, ϕ′ and ψ′ are quasi-alphabetic. Thus, TB′ is an almost
variable-free quasi-alphabetic tree bimorphism. Note that BU is deterministic and total
and thus τ(BU) is a mapping (Engelfriet, 1975a, Fülöp, 2004). Finally, let us prove that
τ(TB′) = τ(TB). For this, we show that tϕ = tτ(BU)ϕ′ and tψ = tτ(BU)ψ′ for every
t ∈ TΓ(Z). Obviously, it is su�cient to prove the former statement since the argument is
totally symmetric. We proceed by tree induction on t ∈ TΓ(Z).

(1) Let t ∈ Z. Then clearly tϕ = tτ(BU)ϕ = tτ(BU)ϕ′.

(2) Let t = f(t1, . . . , tm) for some m ≥ 1, f ∈ Σm and t1, . . . , tm ∈ TΓ(Z). Moreover,
for every i ∈ [m], let qi := φ(ti) if ti ∈ Z and qi := ? otherwise. Then

f(t1, . . . , tm)τ(BU)ϕ′ = f(q1, . . . , qm)(ti1τ(BU), . . . , tinτ(BU))ϕ′

= ϕ′n(f(q1, . . . , qm))[ti1τ(BU)ϕ′, . . . , tinτ(BU)ϕ′]

= ϕ(f(q1, . . . , qm)[?← (x1, . . . , xn)])[ti1ϕ, . . . , tinϕ]

= f(q1, . . . , qm)[?← (ti1 , . . . , tin)]ϕ

= f(t1, . . . , tm)ϕ = tϕ

with i1 < . . . < in and {i1, . . . , in} = {i ∈ [m] | qi = ?}.

This completes the proof.

Next, we shall give an example of a quasi-alphabetic tree bimorphism.

Example 6.2.4. Let Γ = {f/3, g/1, e/0}, Σ = {h/6, g/1}, Ω = {f/3, g/1}, X = {x}, and
Y = {0, 1}. Consider the recognizable tree language

R = {f(gm(x), e, gn(x)) | m,n ∈ N} ⊆ TΓ(X)

and the quasi-alphabetic tree homomorphisms ϕ : TΓ(X)→ TΣ(X) and ψ : TΓ(X)→ TΩ(Y )
given by

ϕ3(f) := h(x, ξ2, ξ3, x, x, ξ1) ϕ1(g) := g(ξ1) ϕ0(e) := x ϕX(x) := x

ψ3(f) := f(ξ1, ξ2, ξ3) ψ1(g) := g(ξ1) ψ0(e) := f(1, 1, 0) ψX(x) := 1 .

Then, TB = (ϕ,R, ψ) ∈ B[qH,Rec, qH]. The quasi-alphabetic tree transformation de�ned
by TB is

τ(TB) = {
(
h(x, x, gn(x), x, x, gm(x)), f(gm(1), f(1, 1, 0), gn(1))

)
| m,n ∈ N} ,

and the quasi-alphabetic translation de�ned by TB is λ(TB) = {(xxxxxx, 11101)}.

The following proposition is trivial, but indicates why closure under composition (The-
orem 6.2.17) is possible whereas closure under intersection (Theorem 6.2.12) fails.

Proposition 6.2.5. For every quasi-alphabetic tree bimorphism TB, there exist a quasi-
alphabetic tree bimorphism TB1 with a normalized input tree homomorphism and a quasi-
alphabetic tree bimorphism TB2 with a normalized output tree homomorphism such that
τ(TB) = τ(TB1) = τ(TB2). If TB is variable-free (almost variable-free, respectively), then
TB1 and TB2 can be chosen such that they are variable-free (almost variable-free, respec-
tively).
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6.2.1 Properties

Now we exhibit the fundamental properties of quasi-alphabetic tree transformations studied
by Steinby and Tîrn uc  (2007, 2009) and Maletti and Tîrn uc  (2009, 2010). As shown
in the next section, this improves the mathematical foundations of the well-known syntax-
directed translations and their speci�cation methods. We start by elegantly proving the
recognizability of tree languages by the quasi-alphabetic tree bimorphisms.

Theorem 6.2.6. If TB ∈ B[qH,Rec, qH] and R ∈ Rec, then Rτ(TB) ∈ Rec.

Proof. If TB = (ϕ,R′, ψ) is a quasi-alphabetic tree bimorphism and R is any recognizable
tree language, then Rτ(TB) = (Rϕ−1 ∩ R′)ψ is also recognizable because recognizable
tree languages are closed under inverse tree homomorphisms, intersection and linear tree
homomorphisms by Theorem 4.4.17(i-iii).

When quasi-alphabetic tree transformations are de�ned by means of bimorphisms, it
seems natural to prove decidability results for them such as the membership, the empti-
ness and the �niteness, as shown below (as it was done by Steinby, 1984, for other tree
bimorphisms and their tree transformation classes).

Theorem 6.2.7. Suppose τ ⊆ TΣ(X) × TΩ(Y ) is a quasi-alphabetic tree transformation
and let (s, t) ∈ TΣ(X)× TΩ(Y ). Each of the following questions is decidable:

(i) Is (s, t) in τ?

(ii) Is τ empty?

(iii) Is τ �nite?

Proof. Assume τ = τ(TB) for some quasi-alphabetic tree bimorphism TB = (ϕ,R, ψ).
A quasi-alphabetic tree homomorphism never decreases the height of a tree by Proposi-
tion 4.2.3(i), and hence, by considering a �nite number of trees r ∈ R, one can decide
whether there exists such a tree r in R that rϕ = s and rψ = t. So, the membership
problem is decidable. The decidability of questions (b) and (c) follows from the fact that
τ is empty, �nite or in�nite depending on whether R is empty, �nite or in�nite, and that
these questions are decidable for recognizable tree languages by Theorem4.4.17(vi).

Another useful immediate consequence of de�ning quasi-alphabetic tree transformations
by tree bimorphisms is that every τ ∈ τ [qTB] with τ ⊆ TΣ(X) × TΩ(Y ) is symmetrically
locally �nite (cf. Elgot and Mezei, 1965), i.e., for any s ∈ TΣ(X) and any t ∈ TΩ(Y ), the set
sτ of transforms of s and the pre-image tτ−1 of t are both �nite. This is so because a quasi-
alphabetic tree homomorphisms never reduces the height of a tree by Proposition 4.2.3(i).

The local �niteness of quasi-alphabetic tree transformations implies that TΣ(X) ×
TΩ(Y ) \ τ never is �nite or a quasi-alphabetic tree transformation τ unless the ranked
alphabets have only nullary symbols. Therefore, the questions �Is TΣ(X) × TΩ(Y ) \ τ in
τ [qTB]?� and �Is τ = TΣ(X)× TΩ(Y )?� are trivial for a tree transformation τ ∈ τ [qTB].

We continue by presenting a canonical representation of quasi-alphabetic tree transfor-
mations in the spirit of Bozapalidis (1992, Proposition 3.1). Note that our product alphabet
is simpler than the corresponding one of Bozapalidis (1992) (see also De�nition 6.5.2). Such
a representation will allow us to conclude that quasi-alphabetic tree transformations are
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TΓ (Z)

TΣ(X) TΩ(Y )

ϕ ψ

TΓ (Z)

TΣ(X) TΩ(Y )

ϑ

T[Σ×Ω](X × Y )

π1 π2

Figure 6.2.1: Illustration of the construction in Theorem 6.2.9.

closed under union. Also, it can be used to prove that various classes of tree transforma-
tions de�ned by tree bimorphisms are computed by certain tree transducers (cf. Rahonis,
2001, Tîrn uc , 2009, for example).

For the rest of this section, let TB = (ϕ,R, ψ) be a quasi-alphabetic bimorphism with
ϕ : TΓ(Z)→ TΣ(X) and ψ : TΓ(Z)→ TΩ(Y ). Let [Σ×Ω] be the ranked alphabet such that
for every m ≥ 0

[Σ× Ω]m := {〈s, t〉 | s ∈ Σ(X ∪ Ξm) ∩ CmΣ (X) and t ∈ Ω(Y ∪ Ξm) ∩ CmΩ (Y )} .

In other words, this product alphabet allows us to store 〈ϕm(f), ψm(f)〉 for any f ∈ Γm
(m ≥ 0). Clearly, there are canonical quasi-alphabetic tree homomorphisms

π1 : T[Σ×Ω](X × Y )→ TΣ(X) and π2 : T[Σ×Ω](X × Y )→ TΩ(Y )

given by

π1
X×Y (〈x, y〉) := x and π2

X×Y (〈x, y〉) := y for 〈x, y〉 ∈ X × Y ,

and

π1
m(〈s, t〉) := s and π2

m(〈s, t〉) := t for m ≥ 0 and 〈s, t〉 ∈ [Σ× Ω]m .

Henceforth, we will use these projections also for other product ranked alphabets.

Proposition 6.2.8. There exists a quasi-alphabetic tree homomorphism

ϑ : TΓ(Z)→ T[Σ×Ω](X × Y )

such that tϕ = (tϑ)π1 and tψ = (tϑ)π2 for every t ∈ TΓ(Z).

Proof. Let ϑ : TΓ(Z) → T[Σ×Ω](X × Y ) be the tree homomorphism such that ϑZ(z) :=
〈ϕZ(z), ψZ(z)〉 for every z ∈ Z, and ϑm(f) := 〈ϕm(f), ψm(f)〉 for every f ∈ Γm withm ≥ 0.
Clearly, ϑ is quasi-alphabetic, and it is easy to check by tree induction that tϕ = (tϑ)π1

and tψ = (tϑ)π2 for every t ∈ TΓ(Z).

Using the previous proposition, we can now eliminate the ranked alphabet Γ, the leaf
alphabet Z, and the particular tree homomorphisms ϕ and ψ from the tree bimorphism TB.
Essentially, every quasi-alphabetic tree transformation τ ⊆ TΣ(X) × TΩ(Y ) is determined
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by a recognizable language R ∈ Rec[Σ×Ω](X × Y ). The construction is illustrated in Fig-
ure 6.2.1.

Theorem 6.2.9. A relation τ ⊆ TΣ(X)× TΩ(Y ) is a quasi-alphabetic tree transformation
if and only if there exists R ⊆ Rec[Σ×Ω](X × Y ) such that τ = {(tπ1, tπ2) | t ∈ R}.

Proof. The if-direction is trivial because (π1, R, π2) is a quasi-alphabetic bimorphism de�n-
ing τ . For the converse, let TB = (ϕ,R′, ψ) be a quasi-alphabetic tree bimorphism such
that τ(TB) = τ . By Proposition 6.2.8 there exists a quasi-alphabetic tree homomorphism
ϑ : TΓ(Z) → T[Σ×Ω](X × Y ) such that τ = {(tϑπ1, tϑπ2) | t ∈ R′}. Thus, R = ϑ(R′) has
the desired properties because it is recognizable by Theorem 4.4.17(iii).

Now, we use Theorem 6.2.9 to prove that quasi-alphabetic tree transformations are
closed under union (cf. Maletti and Tîrn uc , 2010, Corollary 10).

Corollary 6.2.10. The class τ [qTB] is closed under union.a

Proof. Let τ1, τ2 ⊆ TΣ(X) × TΩ(Y ) be quasi-alphabetic tree transformations. By Theo-
rem 6.2.9, there exist R1, R2 ⊆ Rec[Σ×Ω](X × Y ) such that

τ1 = {(tπ1, tπ2) | t ∈ R1} and τ2 = {(tπ1, tπ2) | t ∈ R2} .

Then

τ1 ∪ τ2 = {(tπ1, tπ2) | t ∈ R1} ∪ {(tπ1, tπ2) | t ∈ R2} = {(tπ1, tπ2) | t ∈ R1 ∪R2} ,

which proves that τ1∪τ2 is a quasi-alphabetic tree transformation by Theorem 6.2.9 (because
R1 ∪R2 is recognizable by item (i) of Theorem 4.4.17).

Note that there is a simple direct proof of this fact as shown next. However, we prefer
to also give an alternative proof using the canonical representation of quasi-alphabetic tree
transformations just to demonstrate how such a result can thus be utilized (cf. also Boza-
palidis, 1992, Bozapalidis and Rahonis, 1994, Rahonis, 2001, Takahashi, 1972, for example).

Let τ1, τ2 ⊆ TΣ(X)×TΩ(Y ) be two quasi-alphabetic tree transformations. Without any
loss of generality, we may assume that τ1 and τ2 are de�ned by the quasi-alphabetic tree
bimorphisms TB1 = (ϕ,R, ψ) and TB2 = (ϕ′, R′, ψ′), respectively, where R ∈ RecΓ(Z) and
R′ ∈ RecΓ′(Z

′) are such that Γ ∩ Γ′ = ∅ and Z ∩ Z ′ = ∅. Moreover, ϕ : TΓ(Z) → TΣ(X)
and ϕ′ : TΓ′(Z

′)→ TΣ(X), and we de�ne ϕ̄ : TΓ∪Γ′(Z ∪ Z ′)→ TΣ(X) such that

• for every z ∈ Z ∪ Z ′, ϕ̄Z∪Z′(z) :=

{
ϕZ(z) if z ∈ Z
ϕZ′(z) if z ∈ Z ′ ,

• for every m ≥ 0 and f ∈ (Γ ∪ Γ′)m, ϕ̄m(f) :=

{
ϕm(f) if f ∈ Γm

ϕ′m(f) if f ∈ Γ′m .

Similarly, ψ : TΓ(Z)→ TΩ(Y ) and ψ′ : TΓ′(Z
′)→ TΩ(Y ), and we de�ne the tree homomor-

phism ψ̄ : TΓ∪Γ′(Z ∪ Z ′)→ TΩ(Y ) by

• for every z ∈ Z ∪ Z ′, ψ̄Z∪Z′(z) :=

{
ψZ(z) if z ∈ Z
ψZ′(z) if z ∈ Z ′ ,
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6.2. Quasi-alphabetic tree bimorphisms 109

• for every m ≥ 0 and f ∈ (Γ ∪ Γ′)m, ψ̄m(f) :=

{
ψm(f) if f ∈ Γm

ψ′m(f) if f ∈ Γ′m .

Clearly, TB = (ϕ̄, R ∪ R′, ψ̄) is a quasi-alphabetic tree bimorphism and τ(TB) = τ1 ∪ τ2.
Therefore, τ [qTB] is closed under union.

For any tree bimorphism TB = (ϕ,R, ψ), the tree bimorphism (ψ,R, ϕ) de�nes the
inverse of τ(TB). Hence, the following fact is obvious.

Proposition 6.2.11. The class τ [qTB] is closed under inverses.

Let us move on to closure under intersection. For it we would need to align the two
input tree homomorphisms and the two output tree homomorphisms at the same time and
enforce equality both-sided. The next theorem shows that we are not able to achieve this
for quasi-alphabetic tree transformations.

Theorem 6.2.12. No class C of tree tree transformations such that

pH ⊆ C ⊆ τ [H,Rec, lH]

is closed under intersection.

Proof. Let Σ = {f/2, g/1, e/0}, and let ψ,ψ′ : TΣ → TΣ be the permuting tree homomor-
phisms de�ned by

ψ2(f) := f(ξ1, ξ2) ψ1(g) := g(ξ1) ψ0(e) := e

ψ′2(f) := f(ξ2, ξ1) ψ′1(g) := g(ξ1) ψ′0(e) := e .

Clearly, ψ and ψ′ belong to C. Note that ψ = idTΣ
. We observe that for every m,n ∈ N

f(gm(e), gn(e))ψ = f(gm(e), gn(e))

f(gm(e), gn(e))ψ′ = f(gn(e), gm(e)) .

Let R := {f(gm(e), gn(e)) | m,n ∈ N}. Clearly, R is a recognizable tree language. Assume
that there exists τ ∈ τ [H,Rec, lH] such that τ = ψ ∩ψ′. Since τ preserves recognizable tree
languages by Theorem 4.4.17(iii), the image Rτ should be recognizable, but

Rτ = {f(gn(e), gn(e)) | n ∈ N}

is known not to be recognizable by Theorem 4.4.16 (cf. also Gécseg and Steinby, 1984,
Gécseg and Steinby, 1997). Hence no τ with the given properties exists, which proves the
statement.

Because obviously pH ⊆ τ [qTB], we get.

Corollary 6.2.13. The class τ [qTB] is not closed under intersection.

Using also Corollary 6.2.10, we note.

Corollary 6.2.14. The class τ [qTB] is not closed under complement.
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Now let us consider some common relations on trees of Section 4.3. Let R ∈ RecΣ(X),
and let τ ⊆ TΣ(X)×TΣ(X) be a quasi-alphabetic tree transformation. Moreover, τ is de�ned
by the quasi-alphabetic tree bimorphism (ϕ,R′, ψ), where R′ ∈ RecΣ(X) and ϕ(t) := t for
every t ∈ TΣ(X). Then the intersection of a quasi-alphabetic tree transformation with idR
is a quasi-alphabetic tree transformation, because (ϕ,R ∩ R′, ψ) is a quasi-alphabetic tree
bimorphism de�ning τ ∩ idR. Also the union with idR is a quasi-alphabetic tree trans-
formation because idR is a quasi-alphabetic tree transformation and quasi-alphabetic tree
transformations are closed under union by Corollary 6.2.10.

In general, the tree transformations `sub' and `br' (if we consider the branches as trees
over a ranked alphabet of symbols of ranks 0 and 1) are not quasi-alphabetic. Moreover, for
R ⊆ RecΣ(X) and x ∈ X, also the following relations τ and τ ′, which are de�ned for every
t ∈ TΣ(X) by tτ := t •x R and tτ := t /x R, are not quasi-alphabetic tree transformations
in general (in contrast to Bozapalidis, 1992, see Proposition 4.2 & pp. 191�200, where it is
shown that all those tree transformations are de�ned by �ne tree bimorphisms). All these
facts can easily be proved using Proposition 4.2.3. Moreover, in general, quasi-alphabetic
tree transformations are not closed under f -concatenation (again in contrast to Bozapalidis,
1992, Proposition 3.6).

Now we turn our attention to one of the most interesting theoretical properties of classes
of tree transformations: closure under composition. It was shown by Steinby and Tîrn uc 
(2007, Theorem 5) or Steinby and Tîrn uc  (2009, Theorem 7.4) that if we restrict our-
selves to quasi-alphabetic tree bimorphisms with a variable-free center tree language, then
the resulting class of tree transformations (see also Proposition 6.2.2(iii)) is closed under
composition. The method they employed is similar to the one of Nivat (1968) or Bozapa-
lidis (1992), but here we extend this result to include variables by using a slightly di�erent
approach (cf. Maletti and Tîrn uc , 2009). First, we point out why it is far easier to prove
the closure only for tree transformations de�ned by variable-free or almost variable-free
quasi-alphabetic tree bimorphisms.

Lemma 6.2.15. Let ϕ : TΣ(X) → TΓ(Z) and ψ : TΩ(Y ) → TΓ(Z) be normalized quasi-
alphabetic tree homomorphisms, and let s ∈ TΣ ∪ X and t ∈ TΩ ∪ Y . If sϕ = tψ, then
dom(s) = dom(t).

Proof. Firstly, let s ∈ X. Then sϕ ∈ Z. Since sϕ = tψ, it follows that t ∈ Y and hence
dom(s) = dom(t). Secondly, let s = f(s1, . . . , sm) for some f ∈ Σm and s1, . . . , sm ∈ TΣ.
Then sϕ = ϕm(f)[s1ϕ, . . . , smϕ] = tψ. Since ϕ is quasi-alphabetic and s ∈ TΣ, we have
siϕ /∈ Z for every i ∈ [m]. If we additionally take into account that sϕ = tψ, then we
can conclude that t = g(t1, . . . , tm) for some g ∈ Ωm and t1, . . . , tm ∈ TΩ. Moreover,
since ϕ and ψ are normalized, it also follows that ϕm(f) = ψm(g). Using the induction
hypothesis, we thus obtain dom(s) = dom(t).

The previous lemma essentially states that all almost variable-free trees with the same
image under two normalized quasi-alphabetic tree homomorphisms can be paired up in a
product data structure TΣ×Ω(X × Y ). In addition, the following result would be useful.

Lemma 6.2.16. Let ϕ : TΩ(Z) → TΣ(X) and ψ : TΩ(Z) → TΣ(X) be normalized quasi-
alphabetic tree homomorphisms. Then R = {t ∈ TΩ ∪ Z | tϕ = tψ} is recognizable.

Proof. We construct the regular tree grammar TG = ({S},Ω′, P, S), where

• Ω′0 := Ω0 ∪ Z,
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• Ω′m := Ωm for every m ≥ 1, and

• P := P1 ∪ P2 with

P1 = {S → z | z ∈ Z,ϕZ(z) = ψZ(z)}, and
P2 = {S → f(S, . . . , S) | f ∈ Ωm, ϕm(f) = ψm(f)} .

Then R = T (TG) ∩ (TΩ ∪ Z), which is recognizable by Theorem 4.4.17(i).

Now we plug the statements of Proposition 6.2.5 and Lemmata 6.2.3, 6.2.15 and 6.2.16
together, and establish the relation to closure under composition (cf. Proposition 6.2.2(i)).

Theorem 6.2.17. The class τ [qTB] is closed under composition.

Proof. Let TB = (ϕ,R, ψ) and TB′ = (ϕ′, R′, ψ′) be quasi-alphabetic tree bimorphisms,
where R ⊆ TΓ(Z), ϕ : TΓ(Z) → TΣ(X), ψ : TΓ(Z) → TΩ(Y ), R′ ⊆ TΛ(W ), ϕ′ : TΛ(W ) →
TΩ(Y ) and ψ′ : TΛ(W ) → T∆(V ). Without loss of generality, let TB and TB′ be almost
variable-free by Lemma 6.2.3. Moreover, suppose that ψ and ϕ′ are normalized by Propo-
sition 6.2.5. Let

τ := τ(TB) ◦ τ(TB′)

= {(s, u) | ∃t : (s, t) ∈ τ(TB), (t, u) ∈ τ(TB′)}
= {(tϕ, uψ′) | t ∈ R, u ∈ R′, tψ = uϕ′} .

Since tψ = uϕ′, it follows by Lemma 6.2.15 that dom(t) = dom(u). Hence there is a
tree s ∈ TΓ×Λ ∪ (Z ×W ) such that sπ1 = t and sπ2 = u where π1 and π2 are the usual
projections to the �rst and second component.

Let T := TΓ×Λ ∪ (Z ×W ). We can continue the displayed equations by

τ = {(tπ1ϕ, tπ2ψ
′) | t ∈ T, tπ1 ∈ R, tπ2 ∈ R′, tπ1ψ = tπ2ϕ

′}
= {(tπ1ϕ, tπ2ψ

′) | t ∈ π−1
1 (R) ∩ π−1

2 (R′) ∩R′′} ,

where R′′ = {t ∈ T | tπ1ψ = tπ2ϕ
′}. It is easily seen that the tree homomorphisms

π1ϕ1, π2ψ2, π1ψ1, and π2ϕ2 are quasi-alphabetic by Remark 4.2.4. Moreover, π1ψ and π2ϕ
′

are normalized. By assumption, R′′ is thus recognizable, and π−1
1 (R) and π−1

2 (R′) are
recognizable by Theorem 4.4.17(iii). Consequently, π−1

1 (R) ∩ π−1
2 (R′) ∩ R′′ is recognizable

by Theorem 4.4.17(i), and hence, τ ∈ τ [qTB].
So whenever the set {t ∈ TΓ×Λ ∪ (Z ×W ) | tψ = tϕ′} is recognizable, we can construct

a quasi-alphabetic tree bimorphism that computes the composition of two given quasi-
alphabetic tree bimorphisms as above. Now, using Lemma 6.2.16, we can complete the
proof.

6.2.2 Translation power

In this section a formal de�nition for tree transformations de�nable by SDTSs (and im-
plicitly SCFGs) is given for the �rst time (cf. also Tîrn uc , 2011). Moreover, it is shown
how this formulation is supported by the relation on string level between syntax-directed
translation de�ning devices and quasi-alphabetic tree bimorphisms: they de�ne the same
translations (Steinby and Tîrn uc , 2007, 2009). Hence, the connections on string and tree
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level between formalisms inspired by compiler design and linguistics � SDTSs and SCFGs,
and an algebraic tool � the tree bimorphism, are established. This way, the mathematical
foundations of such synchronous grammars are strengthen as promised in Section 3.3.3.

Let SD = (N,X, Y, P, S) be any SDTS. Every derivation in SD can obviously be replaced
with a leftmost one that yields the same result and in which exactly the same productions
are used as in the original derivation. Hence, we may view leftmost derivations as normal
forms of derivations, and we will represent them by production trees (cf. Section 4.6). These
we de�ne as follows.

First, we associate with SD a ranked alphabet ΣSD such that for every m ∈ N,

ΣSD
m := {[A;A→ α;β (σ)] | A;A→ α;β (σ) ∈ P, |prN (α)| = m} .

Now, the sets P (SD,A,A) of ΣSD-trees associated with the nonterminals A ∈ N are de�ned
inductively as follows:

(1) if [A;A→ α;β] ∈ ΣSD
0 , then [A;A→ α;β] ∈ P (SD,A,A);

(2) if [A;A → α;β (σ)] ∈ ΣSD
m with m ≥ 1 and prN (α) = A1 . . . Am, and t1 ∈ P (SD,A1,

A1), . . . , tm ∈ P (SD,Am, Am), then [A;A→ α;β (σ)](t1, . . . , tm) ∈ P (SD,A,A).

The set of production trees of SD is now the ΣSD-tree language P (SD) := P (SD,S, S).
Then it is easy to see that P (SD) = L(D,E), where

• D is the set of all symbols of the form [S;S → α;β (σ)] in ΣSD, and

• E ⊆ fork(ΣSD, ∅) is the set of all forks of the form

[A;A→ α;β (σ)]([A1;A1 → α1;β1 (σ1)], . . . , [Am;Am → αm;βm (σm)])

with m ≥ 1 and A;A → α;β (σ) ∈ P such that prN (α) = A1 . . . Am and Ai;Ai →
αi;βi (σi) ∈ P for all i ∈ [m],

if one shows by tree induction that for all t ∈ TΣSD , t ∈ P (SD) if and only if fork(t) ⊆ E.
Moreover, we can construct the dT ΣSD-recognizer TR = (Q,ΣSD, ∅, P ′, I) such that

P (SD) = T (TR), in the following way:

• Q := {qA | A ∈ N},

• I := {qS}, and

• P ′ is built from P as follows:

� if [A;A→ α;β] ∈ ΣSD
0 , then qA([A;A→ α;β])→ [A;A→ α;β] is in P ′;

� if [A;A→ α;β (σ)] ∈ ΣSD
m for some m ≥ 1 and for a production A;A→ α;β (σ)

of the form (3.3.1) in P with prN (α) = A1, . . . , Am, then the rule

qA([A;A→ α;β (σ)](ξ1, . . . , ξm))→ [A;A→ α;β (σ)](qA1(ξ1), . . . , qAm(ξm))

is in P ′.

This is obvious if one shows by tree induction that for all A ∈ N and t ∈ TΣSD , t ∈
P (SD,A,A) if and only if qA(t)⇒∗TR t, where root(t) is of the form [A;A→ α;β (σ)]. We
record these facts as a proposition (cf. Steinby and Tîrn uc , 2009, Theorem 6.2).
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Proposition 6.2.18. P (SD) ∈ Loc ∩DRecvf .

By slight modi�cations (see Tîrn uc , 2007, Tîrn uc , 2011), one can associate with
any SCFG SC = (N,X, Y, P, S, S′) a ranked alphabet ΣSC , specify inductively the sets
P (SC,A,B) of ΣSC-trees associated with the nonterminals A,B ∈ N and de�ne the set of
production trees of SC as the ΣSC-tree language P (SC) := P (SC, S, S′). Hence, we get.

Corollary 6.2.19. P (SC) ∈ Loc ∩DRecvf .

To see how a production tree represents a derivation in SD, we split it into a tree that
represents the generated input and a tree that represents the generated output. This way
we also associate in a natural way a tree transformation with SD.

First, let us arbitrarily number the production in P by 1, 2, . . .. Now, two ranked
alphabets Σin and Σout are de�ned as follows. For any m ≥ 0, let

Σin
m := {[A→ α]i | (∃β, σ)A;A→ α;β (σ) is the ith production in P and |α| = m} ,

and similarly

Σout
m := {[A→ β]i | (∃α, σ)A;A→ α;β (σ) is the ith production in P and |β| = m} .

Note that Σin and Σout are essentially the ranked alphabets ΣGin
and ΣGout

belonging to the
input and output grammars, respectively, but their symbols are augmented with numbers
that identify the original rule in P . Hence, the same production A→ α of Gin may appear
in more than one symbol of Σin, and similarly for productions of the output grammar.

Next, we de�ne two quasi-alphabetic tree homomorphisms ϕSD : TΣSD → TΣin(X) and
ψSD : TΣSD → TΣout(Y ) by the following respective mappings ϕSDm and ψSDm (m ≥ 0):

(1) If A;A→ α;β, where α = x1 . . . xk and β = y1 . . . yl for some k, l ≥ 0, x1, . . . , xk ∈ X
and y1, . . . , yl ∈ Y , is the ith production in P , then we set

ϕSD0 ([A;A→ α;β]) := [A→ α]i(x1, . . . , xk)

and
ψSD0 ([A;A→ α;β]) := [A→ β]i(y1, . . . , yl) .

(2) If m ≥ 1 and p = A;A→ α;β (σ) is the ith production in P of the form (3.3.1), then
let

ϕSDm ([p]) := [A→ α]i(x01, . . . , x0k1 , ξ1, x11, . . . , xm−1km−1 , ξm, xm1, . . . , xmkm) ,

and

ψSDm ([p]) := [A→ β]i(y01, . . . , y0l1 , ξσ(1), y11, . . . , ym−1lm−1 , ξσ(m), ym1, . . . , ymlm).

Clearly, TBSD := (ϕSD, P (SD), ψSD) is a quasi-alphabetic tree bimorphism. We regard
τ(TBSD) (⊆ TΣin(X)×TΣout(Y )) as the tree transformation de�ned by SD. In an analogous
way, we can construct, for every SCFG SC, a quasi-alphabetic tree bimorphism TBSC :=
(ϕSC , P (SC), ψSC) and refer to τ(TBSC) as the tree transformation de�ned by SC (see
Tîrn uc , 2007, Tîrn uc , 2011, for details). Let τ [SDTS] (τ [SCFG], respectively) further
denote the class of all tree transformations de�nable by SDTSs (SCFGs, respectively).
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Next, we �rst note a couple of lemmas that further clarify the meaning of the production
trees of an SDTS.

Lemma 6.2.20. If t ∈ P (SD,A,A) for some A ∈ N then (A,A)⇒∗SD(yd(tϕSD), yd(tψSD)).

Proof. We proceed by tree induction on t ∈ P (SD,A,A).

(1) If t = [A;A → α;β] ∈ ΣSD
0 , then α ∈ X∗ and β ∈ Y ∗, and hence yd(tϕSD) = α

and yd(tψSD) = β. So, (A,A)⇒SD (α, β).

(2) If t = [A;A → α;β (σ)](t1, . . . , tm), where m ≥ 1 and A;A → α;β (σ) is a
production of the form (3.3.1) in P , then ti ∈ P (SD,Ai, Ai) for every i ∈ [m]. Hence,
by the induction assumption, (Ai, Ai)⇒∗SD

(
yd(tiϕ

SD), yd(tiψ
SD)
)
for every i ∈ [m].

Because we have

yd(tϕSD) = v0yd(t1ϕ
SD)v1 . . . vm−1yd(tmϕ

SD)vm

and
yd(tψSD) = w0yd(tσ(1)ψ

SD)w1 . . . wm−1yd(tσ(m)ψ
SD)wm ,

we �nally get (A,A)⇒∗SD (yd(tϕSD), yd(tψSD)).

Basically, the above lemma shows that ϕSD maps each production tree of SD to a tree
that represents the structure of the generated input string. Similarly, ψSD produces a tree
for the generated output string. Also the following converse of Lemma 6.2.20 holds.

Lemma 6.2.21. If (A,A) ⇒∗SD (v, w) with v ∈ X∗ and w ∈ Y ∗, then there exists a t in
P (SD,A,A) such that v = yd(tϕSD) and w = yd(tψSD).

Proof. We proceed by induction on the length of a derivation witnessing (A,A) ⇒∗SD
(v, w).

(1) If (A,A)⇒SD (v, w), then A;A→ v;w ∈ P , and one may take t := [A;A→ v;w].

(2) Let (A,A) ⇒∗SD (v, w) by a derivation of length n ≥ 2 and assume that the
assertion holds for all shorter derivations. Hence, there exist a production A;A →
α;β (σ) of the form (3.3.1) in P and, for every i ∈ [m], derivations (Ai, Ai) ⇒∗SD
(v̄i, w̄i) each in at most n − 1 steps such that v = v0v̄1v1 . . . vm−1v̄mvm and w =
w0w̄σ(1)w1 . . . wm−1w̄σ(m)wm+1. By the inductive assumption, for every i ∈ [m], there
exists ti in P (SD,Ai, Ai) such that v̄i = yd(tiϕ

SD) and w̄i = yd(tiψ
SD). If we take

t := [A;A→ α;β (σ)](t1, . . . , tm), then clearly t ∈ P (SD,A,A). Since

yd(tϕSD) = v0yd(t1ϕ
SD)v1 . . . vm−1yd(tmϕ

SD)vm

and
yd(tψSD) = w0yd(tσ(1)ψ

SD)w1 . . . wm−1yd(tσ(m)ψ
SD)wm ,

we get v = yd(tϕSD) and w = yd(tψSD).

This concludes the proof.
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The choice of de�nition of τ(TBSD) is then supported by the following fact.

Lemma 6.2.22. λ(SD) = λ(TBSD).

Proof. If (v, w) ∈ λ(SD), then there exists a derivation (S, S) ⇒∗SD (v, w), and hence
by Lemma 6.2.21, there is t ∈ P (SD) such that v = yd(tϕSD) and w = yd(tψSD). So,
(v, w) ∈ yd(τ(SD)), and consequently λ(SD) ⊆ λ(TBSD).

Conversely, if (v, w) ∈ λ(TBSD) = yd(τ(TBSD)), then there exists t ∈ P (SD) such
that v = yd(tϕSD) and w = yd(tψSD). By Lemma 6.2.20, we get (S, S) ⇒∗SD (v, w), so
(v, w) ∈ λ(SD). Hence, λ(TBSD) ⊆ λ(SD), which concludes the proof.

The following facts follow immediately from the de�nitions and Lemma 6.2.22.

Proposition 6.2.23. τ [SDTS] ⊆ τ [qTBvf ], and hence λ[SDTS] ⊆ λ[qTBvf ].

It is clear that the converse inclusion τ [qTBvf] ⊆ τ [SDTS] cannot hold because every
τ ∈ τ [SDTS] is between trees over ranked alphabets only of the form Σin and Σout. However,
for translations we can prove the equality λ[SDTS] = λ[qTB].

Proposition 6.2.24. λ[qTBvf ] ⊆ λ[SDTS].

Proof. Consider a tree bimorphism TB = (ϕ,R, ψ), where ϕ : TΓ → TΣ(X) and ψ : TΓ →
TΩ(Y ) are quasi-alphabetic tree homomorphisms, and R = L(D,E) ⊆ TΓ is a variable-free
local tree language. By Proposition 6.2.5, we can assume without loss of generality that ϕ
is normalized. We construct an SDTS SD = (N,X, Y, P, S) as follows.

For each f ∈ Γ, we introduce a nonterminal f̂ , and let N := {S} ∪ {f̂ | f ∈ Γ}, where
S is a new nonterminal. Let P consist of the following rules.

(1) If f ∈ D, then S;S → f̂ ; f̂ is in P .

(2) If e ∈ Γ0, then ê; ê→ yd(ϕ0(e)); yd(ψ0(e)) is in P .

(3) Consider any element f(f1, . . . , fm) of E. If

ϕm(f) = g(x01, . . . , x0k1 , ξ1, x11, . . . , xm−1km−1 , ξm, xm1, . . . , xmkm)

and

ψm(f) = h(y01, . . . , y0l1 , ξσ(1), y11, . . . , ym−1lm−1 , ξσ(m), ym1, . . . , ymlm) ,

with g ∈ Σ, h ∈ Ω, σ a permutation of [m], and ki, li ∈ N, xij ∈ X (j ∈ [ki]) and
yil ∈ Y (l ∈ [li]) for each 0 ≤ i ≤ m, then P includes the rule

f̂ ; f̂ → v0f̂1v1 . . . vm−1f̂mvm;w0f̂σ(1)w1 . . . wm−1f̂σ(m)wm (σ) ,

where for every 0 ≤ i ≤ m, vi = xi1xi2 . . . xiki and wi = yi1yi2 . . . yili .

It can now be veri�ed that λ(SD) = λ(TB)(= yd(τ(TB))).
For the inclusion λ(TB) ⊆ λ(SD), it su�ces to show by tree induction on t ∈ TΓ that if

root(t) = f and fork(t) ⊆ E, then (f̂ , f̂)⇒∗SD (yd(tϕ), yd(tψ)).

(1) For t ∈ Γ0, the result follows from clause (2) of the de�nition of P .
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(2) If t = f(t1, . . . , tm) for some m ≥ 1 and f ∈ Σm, and root(ti) = fi for all
i ∈ [m], then f(f1, . . . , fm) ∈ E and for all i ∈ [m], fork(ti) ⊆ E. By the induction
assumption, (f̂i, f̂i)⇒∗SD (yd(tiϕ), yd(tiψ)). If ϕm(f) and ψm(f) are as in clause (3)
of the de�nition of P , then fork(t) ⊆ E, and hence P contains the rule

f̂ ; f̂ → v0f̂1v1 . . . vm−1f̂mvm;w0f̂σ(1)w1 . . . wm−1f̂σ(m)wm ,

where vi = xi1xi2 . . . xiki and wi = yi1yi2 . . . yili for every 0 ≤ i ≤ m. We immediately
obtain (f̂ , f̂)⇒∗SD (yd(tϕ), yd(tψ)) because yd(tϕ) = v0yd(t1ϕ)v1 . . . vm−1yd(tmϕ)vm
and yd(tψ) = w0yd(tσ(1)ψ)w1 . . . wm−1yd(tσ(m)ψ)wm, .

Indeed, if t ∈ R, then root(t) = f belongs toD and fork(t) ⊆ E. Hence, S;S → f̂ ; f̂ ∈ P
and (f̂ , f̂)⇒∗SD (yd(tϕ), yd(tψ)), so (yd(tϕ), yd(tψ)) ∈ λ(SD).

Next, to show λ(SD) ⊆ λ(TB), one �rst proves by induction on the length of the
derivation that if (f̂ , f̂) ⇒∗SD (v, w) for some f ∈ Γ, v ∈ X∗ and w ∈ Y ∗, then there is a
tree t ∈ TΓ such that root(t) = f , fork(t) ⊆ E, v = yd(tϕ), and w = yd(tψ).

(1) If (f̂ , f̂) ⇒SD (v, w), then f̂ ; f̂ → v;w ∈ P , f ∈ Γ0, v = yd(ϕ0(f)) and w =
yd(ψ0(f)). Obviously, we may choose t = f .

(2) Let (f̂ , f̂) ⇒∗SD (v, w) by a derivation of length n ≥ 2, and assume that the
assertion holds for all derivations of at most n − 1 steps. Then there exists in P a
production

f̂ ; f̂ → v0f̂1v1 . . . vm−1f̂mvm;w0f̂σ(1)w1 . . . wm−1f̂σ(m)wm (σ) ,

such that v = v0v̄1v1 . . . vm−1v̄mvm and w = w0w̄σ(1)w1 . . . wm−1w̄σ(m)wm, where for
each i ∈ [m], (f̂i, f̂i)⇒∗SD (v̄i, w̄i) in at most n−1 steps. By the induction assumption,
there exists, for each i ∈ [m], a tree ti ∈ TΓ such that root(ti) = fi, fork(ti) ⊆ E,
v̄i = yd(tiϕ) and w̄i) = yd(tiψ). Now, fork(t) ⊆ E for t = f(t1, . . . , tm) because
also f(f1, . . . , fm) ∈ E. Moreover, yd(tϕ) = v0yd(t1ϕ)v1 . . . vm−1yd(tmϕ)vm=v and
yd(tψ) = w0yd(tσ(1)ψ)w2 . . . wm−1yd(tσ(m)ψ)wm=w.

Then we can argue as follows: if (v, w) ∈ λ(SD), then (S, S) ⇒∗SD (v, w), and hence
there exists a nonterminal f̂ ∈ N such that S;S → f̂ ; f̂ is in P and (f̂ , f̂)⇒∗SD (v, w). But
root(t) = f ∈ D, fork(t) ⊆ E, v = yd(tϕ) and w = yd(tψ), and hence (v, w) ∈ λ(TB).

If we put together Propositions 6.2.23, 6.2.24 and 3.3.21, we get the main result of this
section (cf. also Tîrn uc , 2011, Tîrn uc , 2007).

Theorem 6.2.25. λ[SDTS] = λ[SCFG] = λ[qTBvf ].

Let us also note that Melamed (2003, p. 81) has shown that two-dimensional multitext
grammars are equal in generative power to SDTSs. Hence they also perform the same
translations as quasi-alphabetic tree bimorphisms. Whether every n-dimensional multi-
text grammar can be split into a cascade of quasi-alphabetic tree translations, is an open
question.

Next, we give an example that shows how the ideas and constructions presented so
far can be extended from SDTSs to the more general case of SCFGs (cf. Tîrn uc , 2011,
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Example 5.1). However, a complete example of how to construct a quasi-alphabetic tree
bimorphism from a given SDTS that models a piece of an English-to-Spanish translation
was given by Tîrn uc  (2008, Section 5).

Example 6.2.26. Let SC = ({S, S′, A,B,C}, {x, y, z}, {0, 1}, P, S, S′) be an SCFG, where
P consists of the following productions:

p1 := S;S′ → xyASzB;B0SA1 (3 1 2),

p2 := S;A→ BzC;C00B(2 1),

p3 := S;A→ AS; 1SS′(1 2),

p4 := A;S → z; ε

p5 := C;C → xyz; 1, and

p6 := B;B → x; 11 .

A (leftmost) derivation in SC is

(S, S′)⇒p1

SC (xyASzB,B0SA1)⇒p4

SC (xyzSzB,B0A1)⇒p2

SC (xyzBzCzB,B0C00B1)

⇒p6

SC (xyzxzCzB,B0C00111)⇒p5

SC (xyzxzxyzzB,B0100111)

⇒p6

SC (xyzxzxyzzx, 110100111) ,

where the production applied in each derivation step is mentioned by a superscript on
the derivation relation ⇒SC . Therefore, (xyzxzxyzzx, 110100111) is an element in the
translation of SC.

Now, we have:

• ΣSC = {[p1]/3, [p2]/2, [p3]/2, [p4]/0, [p5]/0, [p6]/0},

• Σin = {[S → xyASzB]1/6, [S → BzC]2/3, [C → xyz]5/3, [S → AS]3/2, [A → z]4/1, [B →
x]6/1}, and

• Σout = {[S′ → B0SA1]1/5, [A → C00B]2/4, [A → 1SS′]3/3, [B → 11]6/2, [C → 1]5/1, [S →
ε]4/0}.

Moreover, the set P (SC) ⊆ TΣSC of production trees of SC is the local variable-free tree
language L(D,E), where D = {[p1]} and

E = {[p1]([p4], [p2], [p6]), [p1]([p4], [p3], [p6]), [p2]([p6], [p5]), [p3]([p4], [p1])} .

A production tree in P (SC) representing the above derivation is shown in Figure 6.2.2 (up).
The tree homomorphisms ϕSC : TΣSC → TΣin(X) and ψSC : TΣSC → TΣout(Y ) de�ned

by setting

ϕSC3 ([p1]) := [S → xyASzB]1(x, y, ξ1, ξ2, z, ξ3) ψSC3 ([p1]) := [S′→B0SA1]1(ξ3,0, ξ1, ξ2,1)
ϕSC2 ([p2]) := [S → BzC]2(ξ1, z, ξ2) ψSC2 ([p2]) := [A→ C00B]2(ξ2, 0, 0, ξ1)
ϕSC2 ([p3]) := [S → AS]3(ξ1, ξ2) ψSC2 ([p3]) := [S → 1SS′]3(1, ξ1, ξ2)
ϕSC0 ([p4]) := [A→ z]4(z) ψSC0 ([p4]) := [S → ε]4
ϕSC0 ([p5]) := [C → xyz]5(x, y, z) ψSC0 ([p5]) := [C → 1]5(1)
ϕSC0 ([p6]) := [B → x]6(x) ψSC0 ([p6]) := [B → 11]6(1, 1)

are quasi-alphabetic.
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Thus, we constructed the quasi-alphabetic tree bimorphism TBSC = (ϕSC , P (SC), ψSC)
and hence τ(TBSC) = {(tϕSC , tψSC) | t ∈ P (SC)}. Figure 6.2.2 shows the pair (tϕ, tψ) in
τ(TBSC) for the production tree t = [p1]([p4], [p2]([p6], [p5]), [p6]) in P (SC). Consequently,
we obtain (xyzxzxyzzx, 110100111) ∈ λ(TBSC) = λ(SC) as it should (cf. Proposition
6.2.23).

Using the connection of Theorem 6.2.25, we can prove properties of syntax-directed
translations using the algebraic mechanisms of tree language theory. It is more elegant to
show, for example, that the domain and range of the translation de�ned by any SDTS SD
are CFLs (cf. Proposition 3.3.9). Indeed, let TB = (ϕ,R, ψ) be a quasi-alphabetic tree
bimorphism such that λ(SD) = λ(TB) for a given SDTS SD. Then, by Theorems 4.4.17
and 4.6.2, dom(λ(SD)) is a CFL as the yield of the recognizable tree language dom(τ(TB)) =
(TΩ(Y )ψ−1 ∩ R)ϕ = Rϕ. Similarly, Range(λ(SD)) = yd(Rψ) is seen to be context-free
especially when one notes that quasi-alphabetic tree bimorphisms are closed under inverses
by Proposition 6.2.11.

We continue by showing that a special type of quasi-alphabetic tree bimorphisms de�nes
the class λ[FST ] of regular translations (cf. Tîrn uc , 2011). Thus, we may now also use
tree language theory for proving properties of regular translations. We exemplify it by giving
a proof based on tree language techniques of the well-known result of Theorem 3.2.4(iv)).

Firstly, we recall the de�nition of comblike tree languages (Gécseg and Steinby, 1984,
p. 136). For any ranked alphabet Σ and leaf alphabet X, the set CombΣ(X) of comblike
ΣX-trees is the smallest set T such that

(1) X ∪ Σ0 ⊆ T , and

(2) f(x1, . . . , xm−1, t) ∈ T whenever m ≥ 1, f ∈ Σm, t ∈ T and x1, . . . , xm−1 ∈ X.

We also note the following facts about comblike trees.

Remark 6.2.27. The following hold.

(i) If T ⊆ CombΣ(X) and T ∈ RecΣ(X), then yd(T ) is regular (cf. Gécseg and
Steinby, 1984, Chapter III, Ex.6, p.136).

(ii) If T ⊆ CombΣ(X) and ϕ : TΣ(X)→ TΩ(Y ) is a quasi-alphabetic tree homomor-
phism, then ϕ(T ) is a set of comblike trees.

A quasi-alphabetic tree bimorphism TB = (ϕ,R, ψ) is called a comblike tree bimorphism
if

• R ⊆ TΓ is a set of comblike trees over Γ, where Γ is a ranked alphabet such that⋃
m≥2 Γm = ∅.

• ϕ : TΓ → TΣ(X) and ψ : TΓ → TΩ(Y ) are quasi-alphabetic tree homomorphisms
de�ned as follows.

� For every e ∈ Γ0,

ϕ0(e) := f(x1, . . . , xk) and ψ0(e) := g(y1, . . . , yl)

for some k, l ≥ 0, f ∈ Σk, g ∈ Ωl, xi ∈ X (i ∈ [k]) and yj ∈ Y (j ∈ [l]).
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t : [S;S′ → xyASzB;B0SA1 (3 1 2)]

[S;A→ BzC;C00B(2 1)][A;S → z; ε] [B;B → x; 11]

[C;C → xyz; 1][B;B → x; 11]

[S → xyASzB]1tϕ:

z [B → x]6

x

[S → BzC]2

z [C → xyz]5

yx z

[B → x]6

x

[A→ z]4

z

yx

tψ :
[S′ → B0SA]1

[B → 11]6

11

0 [S → ε]4 [A→ C00B]2

[C → 1]5

1

0 0 [B → 11]6

11

Figure 6.2.2: An element in the tree transformation τ(TBSC) de�ned by the SCFG SC of
Example 6.2.26: the tree tψ in TΣout(Y ) (down) is a transform of the tree tϕ in TΣin(X)
(middle) for the production tree t in P (SC) (up).
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� For every g ∈ Γ1,

ϕ1(g) := f(x1, . . . , xk−1, ξ) and ψ1(g) := h(y1, . . . , yl−1, ξ)

for some k, l ≥ 1, f ∈ Σk, h ∈ Ωl, xi ∈ X (i ∈ [k − 1]) and yj ∈ Y (j ∈ [l − 1]).

Now, we recall the constructions given in the beginning of this section. For any given
right-linear SDTS SD = (N,X, Y, P, S), we can turn its set of productions P into a ranked
alphabet P ′ consisting only of unary and nullary symbols (i.e., for any p = A;A→ α;β (σ)
in P , rk(p) = |prN (α)| ∈ P ′). Then the set of production trees P (SD) ⊆ TP ′ is a set of
comblike trees over P ′, and the de�ned quasi-alphabetic tree homomorphisms ϕSD and ψSD

are comblike. Thus, for any right-linear SDTS SD we can construct a comblike tree bimor-
phism (ϕSD, P (SD), ψSD) de�ning the same translation (cf. Proposition 6.2.23). On the
other hand, if in the proof of Proposition 6.2.24 the given quasi-alphabetic tree bimorphism
(ϕ,R, ψ) is comblike, then the constructed SDTS SD is right-linear. Therefore, we may
note.

Proposition 6.2.28. The class of regular translations is e�ectively equal to the class of
translations de�ned by comblike tree bimorphisms.

Now, many results concerning regular translations can be derived directly from tree
language theory by using the connection provided by Proposition 6.2.28. As an example,
we give a new proof of a well-known result (see Theorem 3.2.4(iv)).

Proposition 6.2.29. Regular translations and their inverses preserve regular languages.

Proof. Let L be a regular language and λ a regular translation. By Proposition 6.2.28, there
is a comblike tree bimorphism TB = (ϕ,R, ψ) such that λ = λ(TB). Thus, Lλ = Lλ(TB) =
yd((yd−1(L)ϕ−1 ∩R)ψ), which is regular by the following reasoning:

- yd−1(L) is a recognizable tree language since L is regular (Gécseg and Steinby, 1984,
Theorem III.3.2);

- (yd−1(L)ϕ−1 ∩ R)ψ is recognizable since recognizable tree languages are closed un-
der inverse tree homomorphisms, intersection and linear tree homomorphisms (Theo-
rem 4.4.17);

- (yd−1(L)ϕ−1 ∩R)ψ is a set of comblike trees by Remark 6.2.27(ii);

- yd((yd−1(L)ϕ−1 ∩R)ψ) is regular by Remark 6.2.27(i).

By similar arguments, Lλ−1 = yd(yd−1(L)ψ−1 ∩R)ϕ is regular.

Nevertheless, Nivat's original string bimorphism characterization of regular translations
of Theorem 3.2.3 yields a simpler, less specialized proof of Proposition 6.2.29 (cf. Berstel,
1979).

Finally, we add to the result of Theorem 6.2.25 that every Cartesian product of CFLs is a
quasi-alphabetic translation (cf. Maletti and Tîrn uc , 2009). This sharpens Proposition 3.6
of Bozapalidis (1992), where the same property was proved for �ne tree bimorphisms.

Theorem 6.2.30. For all context-free languages L1 and L2, there exists a quasi-alphabetic
tree bimorphism TB such that λ(TB) = L1 × L2.

UNIVERSITAT ROVIRA I VIRGILI 
SYNTAX-DIRECTED TRANSLATIONS, TREE TRANSFORMATIONS AND BIMORPHISMS 
Catalin Ionut Tirnauca 
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Proof. Without any loss of generality, we can assume that L1, L2 ⊆ X∗. By Theorem 4.6.2,
there exist recognizable tree languages R1 ⊆ TΣ(X) and R2 ⊆ TΩ(X) such that L1 = yd(R1)
and L2 = yd(R2). Let Y be a set such that Y ∩ (Σ ∪ Ω) = ∅ and there exists a bijection
φ : Y → X. Then, we extend φ to φΣ : Σ ∪ Y → Σ ∪X and φΩ : Ω ∪ Y → Ω ∪X such that
φΣ(f) := f and φΩ(g) := g for every f ∈ Σ and g ∈ Ω. We denote the ranked alphabets
Σ ∪ Y and Ω ∪ Y , in which all symbols of Y are nullary, by Σ̄ and Ω̄, respectively. Next,
we de�ne the ranked alphabet

Σ̄ ∨ Ω̄ := {〈f, g〉 | f ∈ Σ̄, g ∈ Ω̄}

such that rk(〈f, g〉) = max(rk(f), rk(g)). In a similar way the ranked alphabets Σ ∨ Ω̄ and
Σ̄ ∨ Ω are de�ned. Without loss of generality, we can assume that Σ̄0 6= Y 6= Ω̄0 and
Σ1 6= ∅ 6= Ω1.

Next we show how to embed a tree of TΣ(X) into TΣ̄∨Ω̄. To this end, we de�ne the linear
TOPR-transducer TDR

Σ = ({?}, Σ̄∨ Ω̄, ∅,Σ∪X, ∅, P, {?}), where for every 〈f, g〉 ∈ (Σ̄∨ Ω̄)m
(m ≥ 0), we have in P the rule〈

? (〈f, g〉(ξ1, . . . , ξm))→ φΣ(f)(?(ξ1), . . . , ?(ξrk(m))),M
〉

with look-ahead M(ξi) := Ti, i ∈ [m], where T1 = . . . = Trk(f) = TΣ̄∨Ω̄ and Trk(f)+1 =

. . . = Tm = TΣ∨Ω̄. In an analogous way the linear TOPR-transducer TDR
Ω is de�ned.

Let R := τ(TDR
Σ)−1(R1) ∩ τ(TDR

Ω)−1(R2), which is recognizable by Theorem 4.4.17(i) and
Table 5.2.1. Next, we take the quasi-alphabetic tree homomorphism ϕ : TΣ̄∨Ω̄ → TΣ∨Ω̄(X),
which is de�ned for every 〈f, g〉 ∈ (Σ̄ ∨ Ω̄)m (m ≥ 0) by

ϕm(〈f, g〉) :=

{
〈f, g〉(ξ1, . . . , ξk) if f ∈ Σk

〈h1, h2〉(φ(f)) otherwise ,

where 〈h1, h2〉 ∈ Σ1 × Ω1 is arbitrary. In an analogous fashion, the quasi-alphabetic tree
homomorphism ψ : TΣ̄∨Ω̄ → TΣ̄∨Ω(X) is de�ned. Now if we take the quasi-alphabetic tree
bimorphism TB = (ϕ,R, ψ), then it should be clear that ydX(tϕ) = ydX(tτ(TDR

Σ)) and
ydX(tψ) = ydX(tτ(TDR

Ω)) for every t ∈ TΣ̄∨Ω̄. Consequently, λ(TB) = L1 × L2, which
concludes our proof.

Note that other less special proof can be given if one directly constructs an SCFG SC
such that λ(SC) = L1 × L2 (⊆ X∗ × X∗) and then uses Theorem 6.2.25. This can be
done as follows. By Theorem 2.4.8, there exist CFGs CF1 = (N1, X, P1, S1) and CF2 =
(N2, X, P2, S2) in CNF such that L1 = L(CF1) and L2 = L(CF2). We de�ne the SCFG
SC = (N1 ∪N2, X,X, P, S1, S2) thus.

(1) For any productions A1 → B1C1 in P1 and A2 → B2C2 in P2 with A1, B1, C1 ∈ N1

and A2, B2, C2 ∈ N2, we include the production A1;A2 → B1C1;B2C2 (1 2) in P .

(2) For any productions A1 → x1 in P1 and A2 → x2 in P2 with A1 ∈ N1, A2 ∈ N2 and
x1, x2 ∈ X, we include the production A1;A2 → x1;x2 in P .

(3) For the productions S1 → ε in P1 and S2 → ε in P2, we add the production S1;S2 →
ε; ε to P .
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It should be obvious then that λ(SC) = L1×L2. However, we preferred to show the power
of quasi-alphabetic tree bimorphisms in the spirit of Bozapalidis (1992, Proposition 3.6).

6.2.3 Implementation by tree transducers

We already showed the usefulness of quasi-alphabetic tree bimorphisms in proving prop-
erties of tree transformations. Moreover, we improved the mathematical foundations of
synchronous grammars such as, for example, SDTSs and SCFGs, by using the connection
between quasi-alphabetic tree bimorphisms and syntax-directed translation devices. Conse-
quently, we can now use tree language theory techniques to elegantly prove other well-known
properties. However, tree bimorphisms are in general hard to train and less-used in real-
world applications, because there is no toolkit to implement them. Therefore, connections
with tree transducer classes are looked for.

In this section, we investigate upper bounds to the power of quasi-alphabetic tree bi-
morphisms by placing them in the widely known tree transducer hierarchy of Figure 5.2.3.
Furthermore, we prove that there is a special type of linear non-deleting epsilon-free XTT-
transducer, namely the quasi-alphabetic tree transducer, that e�ectively computes all quasi-
alphabetic tree transformations (cf. Tîrn uc , 2009). Thus, quasi-alphabetic tree bimor-
phisms are easily implemented in TIBURON (May and Knight, 2006, May, 2010) and
trainable (Graehl et al., 2008), and therefore suitable for real-word applications, especially
in machine translation. The relations between quasi-alphabetic tree bimorphisms (and im-
plicitly synchronous grammars de�ning syntax-directed translations) and famous types of
tree transducers are shown in Figure 6.2.3.

We start by proving that every quasi-alphabetic tree transformation can be computed
by a linear TOP-transducer with �nite look-ahead. With that we establish a rough upper
bound to the power of quasi-alphabetic tree bimorphisms.

Proposition 6.2.31. τ [qTB] ⊆ τ [l-TOPF].

Proof. Let us consider a quasi-alphabetic bimorphism TB = (ϕ,R, ψ), where R ⊆ TΓ(Z),
ϕ : TΓ(Z)→ TΣ(X) and ψ : TΓ(Z)→ TΩ(Y ). By Proposition 6.2.5, we can assume without
loss of generality that ϕ is normalized. Moreover, let TR = (Q,Γ, Z, P, I) be a ΓZ-ndT
such that T (TR) = R. We construct the linear TOP-transducer with �nite look-ahead
TDR = (Q,Σ, X,Ω, Y, P ′, I) as follows.

1. For every transition q(z) → z ∈ P with z ∈ Z, we have the rule
〈
q(ϕZ(z)) →

ψZ(z),M
〉
in P ′ with look-ahead M : ∅ → TΣ(X);

2. For every transition q(f(ξ1, . . . , ξm)) → f(q1(ξ1), . . . , qm(ξm)) ∈ P with m ≥ 0, f ∈
Γm and q1, . . . , qm ∈ Q, we have the rule〈

q(root(ϕm(f))(ξ1, . . . , ξn))→ ψm(f)[q1(ξj1), . . . , qm(ξjm)],M
〉

in P ′ with look-ahead M(ξi) := {sji} for every i ∈ [m], where ϕm(f) = g(s1, . . . , sn)
for some n ≥ 0, g ∈ Σn and s1, . . . , sn ∈ TΣ(X), and ji = dom{ξi}(ϕm(f)) for every
i ∈ [m].

First, let us prove τ(TB) ⊆ τ(TDR) by showing q(tϕ) ⇒∗
TDR tψ for every q ∈ Q and

t ∈ T (TR)q, where T (TR)q stands for the tree language recognized by TR if q were the only
initial state, i.e., I = {q}. We proceed by tree induction on t.
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(1) Let t ∈ Z. Then q(tϕ)⇒TDR tψ using a rule constructed in item 1. above.

(2) Let t = f(t1, . . . , tm) for some m ≥ 0, f ∈ Γm and t1, . . . , tm ∈ TΓ(Z). Moreover,
let q1, . . . , qm ∈ Q be such that q(f(ξ1, . . . , ξm)) → f(q1(ξ1), . . . , qm(ξm)) ∈ P and
ti ∈ T (TR)qi for every i ∈ [m]. Then

q(f(t1, . . . , tm)ϕ) = q(ϕm(f)[t1ϕ, . . . , tmϕ])

= q(g(s1[t1ϕ, . . . , tmϕ], . . . , sn[t1ϕ, . . . , tmϕ])) ,

where ϕm(f) = g(s1, . . . , sn) for some n ≥ 0, g ∈ Σn and s1, . . . , sn ∈ TΣ(X). Let
ji = dom{ξi}(ϕm(f)) for every i ∈ [m]. Then

q(f(t1, . . . , tm)ϕ)⇒TDR ψm(f)[q1(sj1 [t1ϕ, . . . , tmϕ]), . . . , qm(sjm [t1ϕ, . . . , tmϕ])]

using a rule constructed in the second item above. Note that the look-ahead restriction
is trivially ful�lled. Clearly, sji = ξi for every i ∈ [m] and thus we have

q(f(t1, . . . , tm)ϕ)⇒TDR ψm(f)[q1(t1ϕ), . . . , qm(tmϕ)] .

By the induction hypothesis, we have qi(tiϕ) ⇒∗
TDR tiψ for every i ∈ [m]. Conse-

quently, we obtain

q(tϕ)⇒TDR ψm(f)[q1(t1ϕ), . . . , qm(tmϕ)]⇒∗
TDR ψm(f)[t1ψ, . . . , tmψ] = tψ .

This proves the auxiliary statement and τ(TB) ⊆ τ(TDR) if we consider states of I.
The converse inclusion can be proved after one shows that for every q ∈ Q, s ∈ TΣ(X),

and t ∈ TΩ(Y ), if q(s)⇒∗
TDR t, then there exists u ∈ T (TR)q such that s = uϕ and t = uψ.

This can be done by induction on the length of the derivation in TDR, and we omit further
details here.

Next, we show that linear TOP-transducers are not su�ciently powerful to implement
all quasi-alphabetic tree transformations.

Proposition 6.2.32. τ [qTB] ‖ τ [l-TOP].

Proof. Let Σ = {f/2, e/0} and X = {x1, x2}. Moreover, let ϕ : TΣ → TΣ(X) be a quasi-
alphabetic tree homomorphism with ϕ0(e) := f(x1, x2) for e ∈ Σ0, and ϕ2(f) := f(ξ1, ξ2)
for f ∈ Σ2. Then TB = (ϕ, {e}, idTΣ

) is a quasi-alphabetic tree bimorphism that de�nes the
tree transformation {(f(x1, x2), e)}. It is known that τ(TB) is not in τ [l-TOP] (Engelfriet,
1975a, Example 2.6). On the other hand, by Proposition 4.2.3(i) and Lemma 3.5 of Fülöp
(2004) (cf. also Fülöp and Vogler, 1998, Lemma 3.27), it is obvious that there are tree
transformations computed by linear TOP-transducers that are not quasi-alphabetic (Comon
et al., 2007, Example A' on pp.169�170), and hence τ [qTB] ‖ τ [l-TOP].

Now, we focus on quasi-alphabetic tree transducers introduced by Tîrn uc  (2009).
They are a particular type of (linear, non-deleting and epsilon-free) XTT-transducers for-
mally de�ned as follows.

UNIVERSITAT ROVIRA I VIRGILI 
SYNTAX-DIRECTED TRANSLATIONS, TREE TRANSFORMATIONS AND BIMORPHISMS 
Catalin Ionut Tirnauca 



124 Chapter 6. Tree Bimorphisms and Translations

De�nition 6.2.33. An extended top-down tree transducer XT = (Q,Σ, X,Ω, Y, P, I) is
called quasi-alphabetic if in each production q(`) → r in P , either (1) ` ∈ X and r ∈ Y or
(2) for some n ≥ 0,

` ∈ Σ(X ∪ Ξn) ∩ CnΣ(X) and r ∈ Ω(Y ∪Q(Ξn)) ∩ CnΩ∪Q(Y ) ,

where

Σ(X ∪ Ξn) := {f(t1, . . . , tm) | m ≥ 1, f ∈ Σm and ti ∈ X ∪ Ξn, ∀i ∈ [m]}

and

Ω(Y ∪Q(Ξn)) := {g(t1, . . . , tm) | m ≥ 1, g ∈ Ωm and ∀i ∈ [m], ti ∈ Y or ti ∈ Q(Ξn)} .

We denote by τ [q-XTT] and λ[q-XTT] the classes of tree transformations and, respectively,
translations de�nable by quasi-alphabetic XTT-transducers.

Note that since the quasi-alphabetic tree transformations are incomparable with tree
transformations computed by linear TOP-transducers, not allowing arbitrary patterns as
left-hand sides of the rules, but only shallow patterns of the form f(ξ1, . . . , ξm) for some
symbol f of rank m would not have permitted us to compare such transducers with quasi-
alphabetic tree bimorphisms. Next, we give another characterization of the quasi-alphabetic
tree transformations and translations.

Theorem 6.2.34. τ [qTB] = τ [q-XTT], and hence λ[qTB] = λ[q-XTT]. Both equalities are
e�ective.

Proof. Let B = (ϕ,R, ψ) be a quasi-alphabetic tree bimorphism with ϕ : TΓ(Z)→ TΣ(X),
R ⊆ TΓ(Z) and ψ : TΓ(Z) → TΩ(Y ). By Proposition 6.2.5, we can assume without loss
of generality that ϕ is normalized. Since R is recognizable, there is a ΓZ-ndT TR =
(Q,Σ, X, P, I) such that R = T (TR).

Next, we construct the quasi-alphabetic XTT-transducer XT = (Q,Σ, X,Ω, Y, I, P ′),
where the rules of P ′ are de�ned as follows:

• For every q(z)→ z in P with q ∈ Q and z ∈ Z, q(ϕZ(z))→ ψZ(z) is in P ′.

• For every q(e)→ e in P with q ∈ Q and e ∈ Γ0, q(ϕ0(e))→ ψ0(e) is in P ′.

• For every q(f(ξ1, . . . , ξm)) → f(q1(ξ1), . . . , qm(ξm)) in P with m ≥ 1, f ∈ Γm, and
q, q1, . . . , qm ∈ Q, the rule q(ϕm(f))→ ψm(f)[q1(ξ1), . . . , qm(ξm)] is in P ′.

To show that τ(XT ) = τ(TB), it is enough to prove that for every q ∈ Q, s ∈ TΣ(X)
and t ∈ TΩ(Y ), q(s) ⇒∗XT t if and only if there exists r ∈ TΓ(Z) such that q(r) ⇒∗TR r,
s = rϕ and t = rψ.

To this end, let q ∈ Q, s ∈ TΣ(X) and t ∈ TΩ(Y ) be such that there exists r ∈ TΓ(Z)
with q(r) ⇒∗TR r, s = rϕ and t = rψ. To show q(s) ⇒∗XT t, we proceed by tree induction
on r.

(1) If r = z, then q(z) → z is in R, s = ϕZ(z) and t = ψZ(z). Hence, q(ϕZ(z)) →
ψZ(z) is in P ′, which is obviously equivalent to q(s)⇒∗XT t.
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(2) If r = f(r1, . . . , rm) with m ≥ 0, f ∈ Γm and r1, . . . , rm ∈ TΓ(Z), then

s = ϕm(f)[r1ϕ, . . . , rmϕ] and t = ψm(f)[r1ψ, . . . , rmψ] .

Since q(r)⇒∗TR r, there is a rule

q(f(ξ1, . . . , ξm))→ f(q1(ξ1), . . . , qm(ξm))

in P , and for every i ∈ [m], qi(ri)⇒∗TR ri. By the induction hypothesis, qi(riϕ)⇒∗XT
riψ for every i ∈ [m], and because there exists the rule

q(ϕm(f))→ ψm(f)[q1(ξ1), . . . , qm(ξm)]

in P ′, we get q(s)⇒∗XT t.

Next, let q(s) ⇒∗XT t for some q ∈ Q, s ∈ TΣ(X) and t ∈ TΩ(Y ) and we proceed by
induction on the number of steps of this derivation.

(1) If q(s)⇒XT t, then there is a rule q(s)→ t in P ′, which means that there exists
r ∈ Z ∪ Γ0 such that q(r)→ r is in P , s = rϕ and t = rψ.

(2) Assume that the assertion holds for all derivations of at most n−1 steps, for some
n ≥ 2, and suppose that q(s) ⇒∗XT t by an n-step derivation. Hence, there exists
a rule q(ϕm(f)) → ψm(f)[q1(ξ1), . . . , qm(ξm)] in P ′ and, for every i ∈ [m], there are
derivations qi(si)⇒∗XT ti, each in at most n−1 steps, such that s = ϕm(f)[s1, . . . , sm]
and t = ψm(f)[t1, . . . , tm]. By the inductive assumption, for every i ∈ [m], there exists
ri ∈ TΓ(Z) such that qi(ri)⇒∗TR ri, si = riϕ and ti = riψ. If we set r := f(r1, . . . , rm),
then rϕ = s, rψ = t and q(r)⇒∗TR r.

For the converse inclusion, let XT = (Q,Σ, X,Ω, Y, P, I) be a quasi-alphabetic tree
transducer. We can assume without loss of generality that every rule in P has the left-hand
side �normalized�, i.e., the formal variables from Ξ appear in order. We construct a leaf
alphabet Z such that z = [q(x) → y] is in Z for every rule q(x) → y in P , and a ranked
alphabet Γ such that for every m ≥ 0, Γm contains all the symbols of the form [q(s) → t],
where s ∈ Σ(X ∪ Ξm) ∩ CmΣ (X), t ∈ Ω(Y ∪Q(Ξm)) ∩ CmΩ∪Q(Y ) and q(s)→ t ∈ P .

We de�ne two tree homomorphisms ϕ : TΓ(Z)→ TΣ(X) and ψ : TΓ(Z)→ TΩ(Y ), and a
ΓZ-ndT TR = (Q,Γ, Z, P ′, I) as follows.

• For every rule q(x)→ y in P with x ∈ X and y ∈ Y , let

ϕZ(z) := x, ψZ(z) := y and q(z)→ z ∈ P ′ .

• For every rule q(s)→ t in P with s ∈ Σ(X ∪Ξm)∩CmΣ (X) and t ∈ Ω(Y ∪Q(Ξm))∩
CmΩ∪Q(Y ), let u be the unique tree in TΩ(Y ∪Ξm)∩CmΩ (Y ) such that t is a θ-instance
of u, i.e., t = uθ, where θ = {(ξ1, q1(ξ1)), . . . , (ξm, qm(ξm))} is a QΞ-substitution.
Then, ϕm([q(s)→ t]) := s, ψm([q(s)→ t]) := u, and

q([q(s)→ t](ξ1, . . . , ξm))→ [q(s)→ t](q1(ξ1), . . . , qm(ξm)) ∈ P ′ .

Clearly, the tree bimorphism TB = (ϕ, T (TR), ψ) is quasi-alphabetic, and hence it
remains to prove that τ(XT ) = τ(TB). For this, it is enough to show that for every
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s ∈ TΣ(X), t ∈ TΩ(Y ) and q ∈ Q, q(s) ⇒∗XT t if and only if there exists r ∈ TΓ(Z) such
that q(r)⇒∗TR r, s = rϕ and t = rψ.

Firstly, let s ∈ TΣ(X), t ∈ TΩ(Y ) and q ∈ Q be such that there is r ∈ TΓ(Z) with
q(r)⇒∗TR r, s = rϕ and t = rψ. To prove q(s)⇒∗XT t, we proceed by tree induction on r.

(1) If r ∈ Z, then there are x ∈ X and y ∈ Y such that r = [q(x)→ y] and q(r)→ r
is a rule in P ′. Therefore, we have a rule q(rϕ) → rψ in P , and since rϕ = s and
rψ = t, we get q(s)⇒∗XT t.

(2) If r = [q(s̄) → t̄ ](r1, . . . , rm) for some m ≥ 0, r1, . . . , rm ∈ TΓ(Z) and [q(s̄) →
t̄ ] ∈ Γm with s̄ ∈ Σ(X∪Ξm)∩CmΣ (X), t̄ ∈ Ω(Y ∪Q(Ξm))∩CmΩ∪Q(Y ) and q(s̄)→ t̄ ∈ P ,
then

s = rϕ = s̄[r1ϕ, . . . , rmϕ] and t = rψ = u[r1ψ, . . . , rmψ] ,

where u ∈ TΩ(Y ∪ Ξm) ∩ CmΩ (Y ) is the unique tree such that t̄ = uθ for some QΞ-
substitution θ = {(ξ1, q1(ξ1)), . . . , (ξm, qm(ξm))}. Since q(r)⇒∗TR r, there is a rule

q([q(s̄)→ t̄ ](ξ1, . . . , ξm))→ [q(s̄)→ t̄ ](q1(ξ1), . . . , qm(ξm))

in P ′, and for every i ∈ [m], qi(ri)⇒∗TR ri. By the induction assumption, qi(riϕ)⇒∗XT
riψ for every i ∈ [m]. Hence, we obviously get q(rϕ)⇒∗XT rψ, which is equivalent to
q(s)⇒∗XT t.

Now, let q(s) ⇒∗XT t for some q ∈ Q, s ∈ TΣ(X) and t ∈ TΩ(Y ), and we proceed by
induction on the number of steps of this derivation.

(1) If q(s)⇒XT t, then there is a rule q(s)→ t in P , which means that there exists
r = [q(s)→ t] ∈ Z ∪ Γ0 such that q(r)→ r is in P ′, s = rϕ and t = rψ.

(2) Assume that the assertion holds for all derivations of at most n−1 steps, for some
n ≥ 2, and suppose that q(s) ⇒∗XT t by a derivation of n steps. Hence, there exist
s̄ ∈ Σ(X ∪ Ξm) ∩ CmΣ (X), t̄ ∈ Ω(Y ∪ Q(Ξm)) ∩ CmΩ∪Q(Y ) and the rule q(s̄) → t̄ ∈ R
such that s = s̄[s1, . . . , sm] and t = u[tσ−1(1), . . . , tσ−1(m)], where s1, . . . , sm ∈ TΣ(X),
t1, . . . , tm ∈ TΩ(Y ), σ is the permutation on [m] giving the order in which the variables
ξ1, . . . , ξm appear in t̄, and u ∈ TΩ(Y ∪ Ξm) ∩ CmΩ (Y ) is the unique tree such that
t̄ = uθ for some QΞ-substitution θ = {(ξ1, q1(ξ1)), . . . , (ξm, qm(ξm))}. Moreover, for
every i ∈ [m], there are derivations qi(si)⇒∗XT ti each in at most n−1 steps. Then by
induction assumption, for every i ∈ [m], there is ri ∈ TΓ(Z) such that q(ri) ⇒∗TR ri,
si = riϕ and ti = riψ. If we set r := [q(s̄) → t̄ ](r1, . . . , rm), then clearly we get
q(r)⇒∗TR r, s = rϕ and t = rψ.

This concludes the proof.

The theorem above gives us the possibility to switch, when the need arises, between
algebraic and machine-oriented techniques in tackle problems.

Note that to simulate a quasi-alphabetic tree transducer by a quasi-alphabetic tree
bimorphism, the alphabet we construct depends on the tree transducer, and hence it is
variable. Though, an alternative is to use the canonical representation of quasi-alphabetic
tree bimorphisms of Theorem 6.2.9 and act as follows (cf. also Rahonis, 2001, Section 3).
First, the tree transducer simulates the inverse quasi-alphabetic tree homomorphism (π1)−1
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whereas its rules de�ne a [Σ×Ω](X×Y )-ndT tree recognizer that accepts the tree language
R. Then it computes the quasi-alphabetic tree homomorphism π2. Thus, the product
alphabet becomes a part of the computation mode of the quasi-alphabetic XTT-transducer
as an intermediate alphabet.

τ [e-XTT]

τ [XTT]

τ [l-TOP]τ [qTB] =

τ [q-XTT]

τ [lne-XTT]

τ [XTTR]

τ [l-TOPF]

τ [TOPR] =

τ [e-XTTR]

τ [TOPF] =

Figure 6.2.3: Hasse diagram representing the inclusion relations among well-known classes
of tree transformations computed by tree transducers and quasi-alphabetic tree transfor-
mations.

e
As a immediate consequence of Theorem 6.2.34, we get a rough upper bound to the

power of quasi-alphabetic tree bimorphisms because every quasi-alphabetic XTT-transducer
is clearly linear, non-deleting and epsilon-free.

Corollary 6.2.35. τ [qTB] ⊂ τ [lne-XTT].

Moreover, because the image of a recognizable tree language via a quasi-alphabetic tree
homomorphism is still a recognizable language, we get.

Proposition 6.2.36. The domain and range of a quasi-alphabetic extended top-down tree
transducer are recognizable tree languages.

Finally let us gather all the connections presented so far into a Hasse diagram. This
o�ers a complete picture on the power of quasi-alphabetic tree transformations when com-
pared with some well-known classes of tree transformations de�ned by tree transducers.

Theorem 6.2.37. The inclusion relations between quasi-alphabetic tree transformations
and certain tree transformation classes de�ned by tree transducers are given by the Hasse
diagram of Figure 6.2.3.

Proof. Follows from Propositions 6.2.32 and 6.2.31, Corollary 6.2.35 and Figure 5.2.3.
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6.3 Alphabetic and permuting tree bimorphisms

Alphabetic tree transformations and permuting tree transformations were originally called
primitive transformations on trees and, respectively, primitive transformations with permu-
tations by Takahashi (1972). In this section, we recall their basic properties (Takahashi,
1972, Bozapalidis, 1992), investigate their translation power and relation with synchronous
grammars (Maletti and Tîrn uc , 2009), and connect them with the tree transducer classes
de�ned by Gazdag (2006b). We start by �xing some notation and terminology.

De�nition 6.3.1. The members of τ [aH,Rec, aH] and λ[aH,Rec, aH] are called alpha-
betic tree transformations and alphabetic translations, respectively. Similarly, we refer to
τ [pH,Rec, pH] and λ[pH,Rec, pH] as the classes of permuting tree transformations and
permuting translations. The classes τ [pH,Rec, pH], λ[pH,Rec, pH], τ [aH,Rec, aH] and
λ[aH,Rec, aH] are denoted simply τ [pTB], λ[pTB], τ [aTB] and λ[aTB], respectively.

6.3.1 Properties

As a direct consequence of Theorem 6.2.12, we �nd that permuting tree transformations are
not closed under intersection. Moreover, it is clear that every alphabetic tree homomorphism
is permuting, and every permuting tree homomorphism is quasi-alphabetic. Thus, we can
note the following.

Proposition 6.3.2. τ [aTB] ⊆ τ [pTB] ⊆ τ [qTB].

Next, we list the main properties of alphabetic and permuting tree transformations
proved by Takahashi (1972, Theorems 4, 5 and 6) and Bozapalidis (1992, Section 6). Note
that some of them follow directly from our Proposition 6.3.2.

Theorem 6.3.3. The following hold.

(i) Closure properties. The classes τ [aTB] and τ [pTB] are closed under inverses,
union and composition, but not under intersection.

(ii) For any R,R′ ∈ Rec, the tree transformation {(r, r′) ∈ R × R′ | dom(r) =
dom(r′)} is permuting, and therefore, alphabetic.

(iii) The classes τ [aTB] and τ [pTB] preserve the recognizability of tree languages.

(iv) Decidability results. The equality is decidable for alphabetic tree transforma-
tions.

(v) Canonical representation. A tree transformation τ ⊆ TΣ(X)×TΩ(Y ) is alpha-
betic if and only if there is an R ∈ RecΣ×Ω(X×Y ) such that τ = {(tπ1, tπ2) | t ∈ R},
where for any m ≥ 0, (Σ × Ω)m := Σm × Ωm, and π

1 : TΣ×Ω(X × Y ) → TΣ(X) and
π2 : TΣ×Ω(X × Y )→ TΩ(Y ) are the projections de�ned by

π1
X×Y (x, y) := x and π2

X×Y (x, y) := y for every (x, y) ∈ X × Y, and
π1

Σ×Ω(f, g) := f and π2
Σ×Ω(f, g) := g for every (f, g) ∈ Σ× Ω .
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6.3.2 Translation power

In this section, we show that the SDTSs in strong normal form of Theorem 3.3.12(v) de�ne
the same translations as the permuting tree bimorphisms (Maletti and Tîrn uc , 2009).
However, compared with Theorem 6.2.25, a leaf alphabet must be allowed for the center
tree language of such tree bimorphisms. Moreover, we prove that simple SDTS correspond
to alphabetic tree bimorphisms. The latter result shows that alphabetic tree bimorphisms
are strictly less powerful than SDTSs.

Let us �rst consider the direction in which we construct a tree bimorphism for an SDTS.
Since the only di�erence between quasi-alphabetic and permuting tree bimorphisms is in
their homomorphisms, let us reconsider the construction of the tree homomorphisms ϕSD

and ψSD given in the beginning of Section 6.2.2. We only change the behavior on productions
that have just terminal symbols on the right-hand side.

De�nition 6.3.4. Let SD = (N,X, Y, P, S) be an SDTS in strong normal form, and let
e be a new leaf symbol. For every production p = A;A → α;β (σ) ∈ P let rk(p) be the
number of nonterminals in α. This turns the set P into a ranked alphabet. Moreover, let
P ′ :=

⋃
m>1 Pm. We construct the tree homomorphisms

ϕSD : TP ′(P0)→ TP ′(X
′) and ψSD : TP ′(P0)→ TP ′(Y

′) ,

where X ′ := X ∪ {e} and Y ′ := Y ∪ {e}, as follows. Let p = A;A→ α;β (σ) ∈ P .

• If p ∈ P0, then

ϕSD0 (p) :=

{
e if α = ε

α if α ∈ X
and ψSD0 (p) :=

{
e if β = ε

β if β ∈ Y.

• If m ≥ 1 and p ∈ P ′m, then

ϕSDm (p) := p(ξ1, . . . , ξm) and ψSDm (p) := p(ξσ(1), . . . , ξσ(m)) ,

where σ is the permutation of p. Thus, we constructed the permuting tree bimorphism
TBSD := (ϕSD, TP ′(P0), ψSD). Furthermore, we de�ne the translation of TBSD as the
relation

λ(TBSD) := {(ydX\{e}(s), ydY \{e}(t)) | (s, t) ∈ τ(TBSD)} .

Note the special treatment of e. It is never output but acts as the empty string. The
constructed tree homomorphisms ϕSD and ψSD are permuting, and if SD is simple,
then they are alphabetic.

By Theorem 3.3.12(v) we can assume strong normal form without loss of generality.
Thus, using De�nition 6.3.4, a minor modi�cation of the proof of Proposition 6.2.23 yields
the following.

Lemma 6.3.5. For every SDTS SD in strong normal form, there exists a permuting tree
bimorphism TB such that λ(SD) = λ(TB). If SD is simple, then TB can be chosen to be
alphabetic.

For the converse, we reconsider Proposition 6.2.24, which states that for every quasi-
alphabetic tree bimorphism TB there exists an SDTS SD such that λ(SD) = λ(TB). It is
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easy to see that the SDTS constructed in Proposition 6.2.24 is simple if TB is alphabetic.
The minor modi�cation of the de�nition of the translation de�ned by a tree bimorphism
(i.e., the special treatment of the symbol e in De�nition 6.3.4) requires only a minor change
in the proof of Proposition 6.2.24. Therefore, using Proposition 6.3.2, we get.

Lemma 6.3.6. For every permuting tree bimorphism TB ∈ B[pH,Rec, pH], there exists an
SDTS SD such that λ(SD) = λ(TB). If TB is alphabetic, then SD can be chosen to be
simple.

Lemmata 6.3.5 and 6.3.6 yield the following relations between SDTSs and permuting
tree bimorphisms, which sharpen the result of Theorem 6.2.25. However, in the tree bimor-
phisms used in this alternative characterization of the syntax-directed translations, the tree
homomorphisms belong to a proper subclass of qH, but in return a leaf alphabet must be
allowed for the center tree languages.

Theorem 6.3.7. The following hold e�ectively.

(i) λ[SDTS] = λ[pTB].

(ii) λ[sSDTS] = λ[aTB].

If we now consider Theorems 3.3.22 and 6.3.7 together, we obtain as a consequence the
following relation between alphabetic and permuting tree bimorphisms.

Corollary 6.3.8. λ[aTB] ⊂ λ[pTB].

6.3.3 Implementation by tree transducers

Here, using known results from the literature, we look for the machine-correspondents of
alphabetic and permuting tree bimorphisms, building for the �rst time a bridge between
the two classes of devices.

We start with tree transformations de�ned by alphabetic tree bimorphisms. Using De�-
nition 5.2.12 and the canonical representation of the class τ [aTB] given by Theorem 6.3.3(v),
a much simpli�ed version of the proof of Theorem 7 of Rahonis (2001) shows that �nite-state
relabeling TOP-transducers compute exactly the class of alphabetic tree transformations.
Therefore, we have.

Theorem 6.3.9. τ [aTB] = QREL, and hence λ[aTB] = λ[QREL]. Both equalities are
e�ective.

Now, using Theorems 2.64 and 3.70 of Gazdag (2006b), we get another machine char-
acterization of the class τ [aTB]: top-down or bottom-up shape preserving tree transducers
compute exactly the class of alphabetic tree transformations.

Next, we turn our attention to the tree transducer counterpart of the permuting tree
bimorphisms (cf. Gazdag, 2006b, Section 2.1).

De�nition 6.3.10. A TOP-transducer TD = (Q,Σ, X,Ω, Y, P, I) is permuting if each rule
in P has one of the following forms:

(1) q(x)→ y with q ∈ Q, x ∈ X and y ∈ Y ;

(2) q(e)→ e′ with q ∈ Q, e ∈ Σ0 and e′ ∈ Ω0;
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(3) q(f(ξ1, . . . , ξm)) → g(q1(ξσ(1)), . . . , qm(ξσ(m))), where m ≥ 1, σ is a permutation
of [m], f ∈ Σm, q1, . . . , qm, q ∈ Q and g ∈ Ωm.

Thus, using just the de�nitions, a slight change of the �rst part of the proof of The-
orem 6.2.34 shows that we can construct a permuting tree transducer TD for any given
permuting tree bimorphism, which computes the same tree transformation.

On the other hand, given any permuting TOP-transducer TD = (Q,Σ, X,Ω, Y, P, I) we
can build:

• a leaf alphabet Z such that z := [q(x)→ y] is in Z for every rule q(x)→ y in P ,

• a ranked alphabet Γ such that for every m ≥ 0,

Γm := {[q(s)→ t] | q(s)→ t ∈ P with s ∈ Σ(Ξm) ∩ T̃Σ(Ξm)} ,

• a ΓZ-ndT TR = (Q,Γ, Z, P ′, I), where

- q(z)→ z ∈ P ′ for every rule q(x)→ y in P with x ∈ X and y ∈ Y and

- q([q(s) → t](ξ1, . . . , ξm)) → [q(s) → t](q1(ξ1), . . . , qm(ξm)) ∈ P ′ for every rule
q(s)→ t in P with s ∈ Σ(Ξm) ∩ T̃Σ(Ξm) and t ∈ Ω(Q(Ξm)) ∩ CmΩ∪Q(∅), and

• two tree homomorphisms ϕ : TΓ(Z)→ TΣ(X) and ψ : TΓ(Z)→ TΩ(Y ) such that

- ϕZ(z) := x and ψZ(z) := y for every z = [q(x)→ y] ∈ Z, and
- for any m ≥ 0 and [q(s)→ t] ∈ Γm,

ϕm([q(s)→ t]) := s and ψm([q(s)→ t]) := u ,

where u ∈ TΩ(Ξm) ∩ CmΩ (∅) is the unique tree such that t = θ(u) for some
QΞ-substitution θ = {(ξ1, q1(ξσ(1)), . . . , (ξm, qm(ξσ(m))}.

Now, a slight modi�cation of the second part of the proof of Theorem 6.2.34 shows that
the permuting tree bimorphism (ϕ, T (TR), ψ) de�nes the same tree transformation as TD.
Therefore, we can state.

Theorem 6.3.11. A tree transformation is permuting if and only if it is computed by a
permuting top-down tree transducer.

6.4 Linear non-deleting tree bimorphisms

In this section we present the class B[lnH,Rec, lnH] of linear non-deleting tree bimorphisms,
that was �rst studied by Arnold and Dauchet (1976a) and lately received an increased
interest by both formal language and NLP communities because of its relation with XTT-
transducers (Arnold and Dauchet, 1982, Maletti, 2007, 2008) and synchronous grammars
(Shieber, 2004, cf. also Theorem 6.4.8). The properties of this bimorphism class were
investigated by Arnold and Dauchet (1976b, a, 1982), Dauchet and Mongy (1979), Dauchet
(1975) and Maletti (2007, 2008) (cf. Maletti, 2010a, for a brief survey). In what follows, we
may denote τ [lnH,Rec, lnH] and λ[lnH,Rec, lnH] simply by τ [lnTB] and λ[lnTB].

The main properties of linear non-deleting tree bimorphisms are presented next.
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Theorem 6.4.1. The following hold.

(i) The class τ [lnTB] is closed under union and inverses.

(ii) Any tree transformation in τ [lnTB] preserves the recognizability of tree languages.

(iii) The class τ [lnTB] is not closed under composition.

Since every quasi-alphabetic tree homomorphism is linear and non-deleting, we get.

Proposition 6.4.2. τ [qTB] ⊆ τ [lnTB], and hence λ[qTB] ⊆ λ[lnTB].

Now, we study the translation power of linear non-deleting tree bimorphisms (cf. Shieber,
2004). To this end, we prove that GSTSGs are the natural generative counterpart of this
tree bimorphism class, thus obtaining new characterizations of tree transformations and
translations de�nable by GSTSGs (cf. Shieber, 2004, Knight, 2007, Maletti, 2008, 2010a,
for example). By using Corollary 5.3.9, we obtain new descriptions of the class λ[SDTS] =
λ[qTB] = SDT .

Firstly, as it was done in Section 6.2.2 for quasi-alphabetic tree bimorphisms, we repre-
sent derivations of a GSTSG GS = (N,Σ, X,N ′,Ω, Y, P, S, S′) by `production trees' which
now are de�ned as follows. Let ΓGS be the ranked alphabet such that for any m ≥ 0,

ΓGSm := {[A;A′ → r; r′ (σ)] | A;A′ → r; r′ (σ) ∈ P, |ydN (r)| = m} .

Next, we de�ne for every pair (A,A′) ∈ N ×N ′ a set P (GS,A,A′) inductively as follows:

(1) if [A;A′ → r; r′] ∈ ΓGS0 , then [A;A′ → r; r′] ∈ P (GS,A,A′);

(2) if [A;A′ → r; r′ (σ)] ∈ ΓGSm for some m ≥ 1, ydN (r) = A1 . . . Am and ydN ′(r
′) =

A′1 . . . A
′
m, then

[A;A′ → r; r′ (σ)](t1, . . . , tm) ∈ P (GS,A,A′)

for all t1 ∈ P (GS,A1, A
′
σ−1(1)), . . . , tm ∈ P (GS,Am, A

′
σ−1(m)).

The set of production trees of GS is now de�ned as the ΓGS-tree language P (GS) :=
P (GS, S, S′). The following fact is easily veri�ed (cf. Section 6.2.2).

Lemma 6.4.3. P (GS) ∈ Loc ∩DRecvf .

Let us now present one half of our characterization of GSTSGs by tree bimorphisms
that both generalizes and strengthens a result claimed by Shieber (2004).

Proposition 6.4.4. τ [GSTSG] ⊆ τ [lnH,Loc ∩DRecvf , lnH].

Proof. Consider any GS = (N,Σ, X,N ′,Ω, Y, P, S, S′). Let us de�ne two tree homomor-
phisms ϕ : TΓGS → TΣ(X) and ψ : TΓGS → TΩ(Y ) by the following mappings ϕm and ψm
(m ≥ 0):

(1) for any e = [A;A′ → r; r′] ∈ ΓGS0 , let ϕ0(e) := r and ψ0(e) := r′;

(2) for any f = [A;A′ → r; r′ (σ)] ∈ ΓGSm , where m ≥ 1, ydN (r) = A1 . . . Am and
ydN ′(r

′) = A′1 . . . A
′
m, let

ϕm(f) := r(A1 ← ξ1, . . . , Am ← ξm)
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and
ψm(f) := r′(A′1 ← ξσ(1), . . . , A

′
m ← ξσ(m)) ,

where A← ξ denotes the replacement of the occurrence of A by the variable ξ.

We shall show that the tree bimorphism TB := (ϕ, P (GS), ψ) de�nes the same tree trans-
formation as GS. For this we need the following two lemmas. The �rst one can be veri�ed
by tree induction on t following the inductive de�nition of the sets P (GS,A,A′) considering
simultaneously all pairs (A,A′) ∈ N ×N ′ (cf. Lemma 6.2.20).

Lemma A. If t ∈ P (GS,A,A′) for some A ∈ N and A′ ∈ N ′, then (A,A′)⇒∗GS (tϕ, tψ).

The proof of the second lemma can be carried out by induction on the length of the
derivation considering again all pairs (A,A′) ∈ N ×N ′ in parallel (cf. Lemma 6.2.21).

Lemma B. If (A,A′) ⇒∗GS (s, s′) for some A ∈ N , A′ ∈ N ′, s ∈ TΣ(X) and s′ ∈ TΩ(Y ),
then there exists a tree t ∈ P (GS,A,A′) such that s = tϕ and s′ = tψ.

The inclusion τ(TB) ⊆ τ(GS) is obtained by applying Lemma A to the pair (S, S′),
i.e., to production trees. The converse inclusion follows similarly from Lemma B. Hence, it
su�ces to note that TB ∈ B[lnH,Loc ∩ DRecvf , lnH]. Indeed, the tree homomorphisms ϕ
and ψ are linear and non-deleting, and P (GS) is in Loc ∩DRecvf by Lemma 6.4.3.

Corollary 6.4.5. λ[GSTSG] ⊆ λ[lnH,Loc ∩DRecvf , lnH].

Let us now prove the converse of Proposition 6.4.4 in a slightly strengthened form.

Proposition 6.4.6. τ [lnH,Rec, lnH] ⊆ τ [GSTSG].

Proof. Let TB = (ϕ,R, ψ) be a tree bimorphism such that R ∈ RecΓ(Z), and ϕ : TΓ(Z)→
TΣ(X) and ψ : TΓ(Z)→ TΩ(Y ) are linear non-deleting tree homomorphisms with ϕ normal-
ized. Furthermore, let RT = (N,Γ, Z, P, S) be a regular ΓZ-tree grammar in normal form
generating R. Let GS = (N,Σ, X,N,Ω, Y, P ′, S, S) be the GSTSG, where P ′ is constructed
from P and TB as follows:

(1) For every production A → z in P such that A ∈ N and z ∈ Z, we include in P ′
the production A;A → ϕZ(z);ψZ(z). Similarly, if A → e is a production in P such
that A ∈ N and e ∈ Γ0, we add to P ′ the production A;A→ ϕ0(e);ψ0(e).

(2) If P contains a production A → f(A1, . . . , Am), where m ≥ 1, f ∈ Γm and
A,A1, . . . , Am ∈ N , we add to P ′ the production

A;A→ ϕm(f)[A1, . . . , Am];ψm(f)[A1, . . . , Am] (σ) ,

where σ is the permutation on [m] such that ydΞm
(ψm(f)) = ξσ(1) . . . ξσ(m).

To prove the inclusion τ(TB) ⊆ τ(GS), we �rst show that for any A ∈ N and t ∈ TΓ(Z),
if A⇒∗RT t, then (A,A)⇒∗GS (tϕ , tψ). We proceed by tree induction on t.

(1) If A⇒∗RT z for some z ∈ Z, then A→ z is in P , and hence (A,A)⇒∗GS (zϕ , zψ)
because P ′ contains the production A;A → ϕZ(z);ψZ(z). The case t = e, where
e ∈ Γ0, is similar.
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(2) If t = f(t1, . . . , tm) for some m ≥ 1, f ∈ Γm and t1, . . . , tm ∈ TΓ(Z), then P
contains a production A → f(A1, . . . , Am) such that Ai ⇒∗RT ti for every i ∈ [m].
By the induction hypothesis, (Ai, Ai) ⇒∗GS (tiϕ, tiψ) for every i ∈ [m], and by �rst
applying the production

A;A→ ϕm(f)[A1, . . . , Am];ψm(f)[A1, . . . , Am] (σ)

of GS that corresponds to A→ f(A1, . . . , Am), we get

(A,A)⇒∗GS (ϕm(f)[t1ϕ, . . . , tmϕ], ψm(f)[t1ψ, . . . , tmψ]) = (tϕ, tψ) .

Now, if (s, t) ∈ τ(TB), for some s ∈ TΣ(X) and t ∈ TΩ(Y ), then there is an r ∈ T (RT )
such that s = rϕ and t = rψ. Since S ⇒∗RT r, we get (S, S) ⇒∗GS (rϕ, rψ) = (s, t), i.e.,
(s, t) ∈ τ(GS).

To prove the converse inclusion τ(GS) ⊆ τ(TB), we �rst show that if (A,A)⇒∗GS (s, t)
for some A ∈ N , s ∈ TΣ(X) and t ∈ TΩ(Y ), then there exist an r ∈ TΓ(Z) such that
A ⇒∗RT r, s = rϕ and t = rψ. We proceed by induction on the length of the derivation
witnessing (A,A)⇒∗GS (s, t).

(1) If (A,A)⇒GS (s, t) in one step, then P ′ must contain the production A;A→ s; t.
This means that there is a production A→ r in P , where r ∈ Z∪Γ0, such that s = rϕ
and t = rψ. Hence, this r is the required ΓZ-tree.

(2) Let (A,A) ⇒∗GS (s, t) by a derivation of length n ≥ 2 and assume that the
assertion holds for all shorter derivations. The �rst production

A;A→ ϕm(f)[A1, . . . , Am];ψm(f)[A1, . . . , Am] (σ)

applied in the derivation is obtained from some production A → f(A1, . . . , Am) in
P . Moreover, for all i ∈ [m], there is a derivation (Ai, Ai) ⇒GS . . . ⇒GS (si, ti)
of length at most n − 1 such that s = ϕm(f)[s1, . . . , sm] and t = ψm(f)[t1, . . . , tm].
By the induction hypothesis, for every i ∈ [m], there is a tree ri ∈ TΓ(Z) such that
Ai ⇒∗RT ri, si = riϕ and ti = riψ. For r := f(r1, . . . , rm), we have A ⇒∗RT r,
rϕ = ϕm(f)[r1ϕ, . . . , rmϕ] = s and rψ = ψm(f)[r1ψ, . . . , rmψ] = t.

Now, if (s, t) ∈ τ(GS), then (S, S)⇒∗GS (s, t), and hence there exists an r ∈ TΓ(Z) such
that S ⇒∗RT r, s = rϕ and t = rψ. Since r ∈ T (RT ) = R, we get (s, t) ∈ τ(TB).

Corollary 6.4.7. λ[lnH,Rec, lnH] ⊆ λ[GSTSG].

Because the inclusions τ [lnH,Loc ∩ DRecvf , lnH] ⊆ τ [lnH,Loc, lnH] ⊆ τ [lnH,Rec, lnH]
are all obvious (by Proposition 4.5.5 and the trivial fact that ϕψ ∈ lnH for all ϕ ∈ aH and
ψ ∈ lnH), we can gather the results of Propositions 6.4.6 and 6.4.4 into the following (cf.
also Corollary 5.3.9 and Proposition 5.3.8).

Theorem 6.4.8. The following equalities hold e�ectively.

(i) τ [lnH,Loc ∩ DRecvf , lnH] = τ [lnH,Loc, lnH] = τ [lnH,Rec, lnH] = τ [GSTSG] =
τ [ln-XTT].
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(ii) λ[lnH,Loc ∩ DRecvf , lnH] = λ[lnH,Loc, lnH] = λ[lnH,Rec, lnH] = λ[GSTSG] =
λ[ln-XTT] = λ[STSG] = λ[SDTS] = SDT .

The connection between GSTSGs and tree bimorphisms mentioned in the theorem above
can be used to improve the the mathematical background of such synchronous grammars.
For example, we can easily show.

Corollary 6.4.9. (i) τ [GSTSG] is not closed under composition, but it is closed
under inverses and union.

(ii) τ [GSTSG] preserves the recognizability of tree languages.

(iii) The emptiness and �niteness are decidable for τ [GSTSG].

Proof. For (i) and (ii), it is enough to use Theorems 6.4.1 and 6.4.8. Note that closure under
union of τ [GSTSG] can be alternatively shown by slightly adapting the direct construction
given after Corollary 6.2.10 for quasi-alphabetic tree transformations. Now, let GS be any
GSTSG, and assume τ(GS) = τ(TB) = ϕ−1 ◦ idR ◦ψ for some linear non-deleting tree
bimorphism TB = (ϕ,R, ψ). The decidability of questions in item (ii) follows from the fact
that τ(GS) is empty, �nite or in�nite depending on whether R is empty, �nite or in�nite, and
that these questions are decidable for recognizable tree languages by Theorem4.4.17(vi).

More theoretical questions related to GSTSG and the class of tree transformation they
de�ne are proposed for further study in Section 8.2.1. The tree bimorphism approach could
be the key approach in solving most of them.

6.5 Fine tree bimorphisms

Fine tree bimorphisms and the tree transformation they de�ne were introduced by Arnold
and Dauchet (1978a) and later systematically studied by Bozapalidis (1992) and by Boza-
palidis and Rahonis (1994). Next, their connection with tree transducers was investigated
by Rahonis (2001). In this section we overview the main results of these papers. Moreover,
in Section 6.6, we will show that they have the same translation power as quasi-alphabetic
tree bimorphisms. We start by �xing some notation and terminology.

De�nition 6.5.1. The elements in τ [fH,Rec, fH] are called �ne tree transformations, and
similarly, the members of λ[fH,Rec, fH] are named �ne translations. In what follows, we
may denote τ [fH,Rec, fH] and λ[fH,Rec, fH] simply by τ [fTB] and λ[fTB], respectively.

Now we present the supremum ranked alphabet of Bozapalidis (1992, Section 2). This
operation of concatenating ranked symbols is useful when we investigate trees over di�erent
ranked alphabets and of possibly di�erent shapes. In particular, it was successfully used
to prove closure properties by Bozapalidis (1992) and that various classes of tree bimor-
phisms (alphabetic, �ne or quasi-alphabetic, for example) admit canonical representations
(Theorems 6.3.3, 6.5.4 and 6.2.9). This characterization of the tree transformations de-
�ned by such tree bimorphisms is also essential in the construction of tree transducers that
e�ectively compute �ne tree transformations (Rahonis, 2001). Moreover, it was used by
Maletti and Tîrn uc  (2010) to compare �ne and quasi-alphabetic tree bimorphisms (cf.
also Theorem 6.6.2).
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De�nition 6.5.2. Let Σ and Ω be ranked alphabets, and let n ∈ N be the minimal integer
such that Σ =

⋃n
i=0 Σi and Ω =

⋃n
i=0 Ωi. We de�ne the ranked alphabet Σ[n] such that

Σ
[n]
0 := Σ0 and, for every m ∈ [n],

Σ[n]
m := {u ∈ Σ(Ξm) | u is linear in Ξm and |u|ξm = 1} ∪ {m} .

The alphabet Ω[n] is de�ned the same way. The supremum of Σ and Ω, denoted by Σ ∨ Ω,
is the ranked alphabet such that for every m ≥ 0,

(Σ ∨ Ω)m :=
⋃

max(k,l)=m

Σ
[n]
k × Ω

[n]
l .

Moreover, the two canonical �ne tree homomorphisms ϕΣ : TΣ∨Ω(X ×Y )→ TΣ(X) and
ϕΩ : TΣ∨Ω(X × Y )→ TΩ(Y ) are de�ned by

ϕΣ
X×Y (〈x, y〉) := x ϕΣ

m(〈t, u〉) :=

{
ξm if t = m

t otherwise

ϕΩ
X×Y (〈x, y〉) := y ϕΩ

m(〈t, u〉) :=

{
ξm if u = m

u otherwise

for every 〈x, y〉 ∈ X × Y and 〈t, u〉 ∈ (Σ ∨ Ω)m with m ≥ 0.

We illustrate the above de�nition by Example 1 of Rahonis (2001).

Example 6.5.3. If Σ = {f/2, g/1, e/0} and Ω = {f ′/2, e′/0}, then

Σ
[2]
0 = {e},

Σ
[2]
1 = {1, g(ξ1)},

Σ
[2]
2 = {2, g(ξ2), f(ξ1, ξ2), f(ξ2, ξ1)}, and

Σ
[2]
3 = {3, g(ξ3), f(ξ1, ξ3), f(ξ2, ξ3), f(ξ3, ξ1), f(ξ3, ξ2)} .

Moreover, (Σ ∨ Ω)1 = {(e, 1), (1, e′), (g(ξ1), e′), (1, 1), (g(ξ1), 1)}.

Next, we note the main properties of �ne tree transformations.

Theorem 6.5.4. The following hold.

(i) Closure properties. The class τ [fTB] is closed under f -concatenation, union,
composition and inverses.

(ii) Preservation of recognizability.The class τ [fTB] preserves the recognizable
and context-free tree languages.

(iii) The tree transformations sub, br, and intersection and union with a recognizable
tree language are all �ne tree transformations.

(iv) The identity tree transformations belong to the class τ [fTB].
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(v) For any Σ, X, R ∈ RecΣ(X) and x ∈ X, the relations τ, τ ′ ⊆ TΣ(X) × TΣ(X)
de�ned by the respective conditions tτ := t •xR and tτ := t /xR (t ∈ TΣ(X)), are �ne
tree transformations.

(vi) Canonical representation. A tree transformation τ ⊆ TΣ(X)× TΩ(Y ) is �ne
if and only if there is an R ∈ RecΣ∨Ω(X × Y ) such that τ = {(tϕΣ, tψΩ) | t ∈ R},
where Σ ∨ Ω, ϕΣ and ϕΩ are as in De�nition 6.5.2.

(vii) Translation power. For all L1, L2 ∈ CFL, there exists a �ne tree bimorphism
TB such that λ(TB) = L1 × L2.

(viii) Decidability results. The equality is decidable for �ne tree transformations.

(ix) Tree transducers. There exists a type of tree transducers (cf. Rahonis, 2001,
De�nition 5) that e�ectively computes exactly the class τ [fTB] of all �ne tree trans-
formations.

Because of all these nice properties, Bozapalidis and Rahonis (1994) used �ne tree trans-
formations de�ned by tree bimorphisms in an attempt to lift the theory of full AFL's (cf.
Ginsburg, 1975) to trees and tree languages.

Next, we focus on the relations between �ne tree bimorphisms and tree transducers. First
we show that the class of �ne tree transformations is essentially di�erent from the classes
of tree transformations computed by TOP-transducers. For the speci�c class τ [TOP] this
was already remarked by Bozapalidis (1992) and Rahonis (2001), and here we only re�ne
their argument to suit our needs.

Proposition 6.5.5. τ [fTB] ‖ τ [l-TOPR] and τ [ln-TOP] ‖ τ [fTB].

Proof. It is known that τ [l-TOPR] ⊆ τ [BOT] (Engelfriet, 1975a, 1977). As argued by Boza-
palidis (1992, p. 188), the class τ [fTB] is incomparable to τ [BOT]. So, τ [fTB] ‖ τ [l-TOPR].
Moreover, it is known that ln-HOM ⊆ τ [ln-TOP] (Engelfriet, 1975c, Fülöp, 2004). Suppose
that ln-HOM ⊆ τ [fTB]. Then also every linear non-deleting inverse tree homomorphism is
a �ne tree transformation because �ne tree transformations are closed under inverses. How-
ever, Arnold and Dauchet (1982, Section 3.4) proved on p. 52 in their main theorem that
any class of tree bimorphisms containing B[lnsH,Rec, lnsH] (and their inverses) is not closed
under composition (cf. Maletti, 2010a, Arnold and Dauchet, 1982, Figure 1), and therefore,
the class of �ne tree transformations would not be closed under composition. This contra-
dicts Theorem 6.5.4(i), and thus ln-HOM ‖ τ [fTB]. Consequently, τ [ln-TOP] ‖ τ [fTB].

The connection between �ne tree bimorphisms and tree transducers was investigated
by Rahonis (2001), who de�ned a new type of tree transducer that computes exactly the
class of �ne tree transformations. In the proofs, he used De�nition 6.5.2 and the canonical
representation of �ne tree bimorphisms of Theorem 6.5.4(vi), the idea being that, by its
seven types of rules, the tree transducer naturally simulates the canonical �ne tree homo-
morphisms (ϕΣ)−1 and ϕΩ and the recognizable tree language R ⊆ TΣ∨Ω(X × Y ). Note
that such a tree transducer is incomparable to the classical BOT- and TOP-transducers.
On the other hand, its domain and range are recognizable tree languages.

UNIVERSITAT ROVIRA I VIRGILI 
SYNTAX-DIRECTED TRANSLATIONS, TREE TRANSFORMATIONS AND BIMORPHISMS 
Catalin Ionut Tirnauca 



138 Chapter 6. Tree Bimorphisms and Translations

6.6 Comparisons and relations between tree bimorphisms

Next, we relate the class of quasi-alphabetic tree transformations to other known classes
of tree relations presented in this monograph (cf. Maletti and Tîrn uc , 2010). We fo-
cus on classes of tree transformations de�ned by tree bimorphisms that were exhibited in
Sections 6.3, 6.2 and 6.5, and classes of tree transformations computed by various TOP-
transducers presented in Section 5.2. Recall that τ [qTB] = τ [qH,Rec, qH], τ [fTB] =
τ [fH,Rec, fH], τ [aTB] = τ [aH,Rec, aH] and τ [pTB] = τ [pH,Rec, pH] are the classes of
quasi-alphabetic, �ne, alphabetic and permuting tree transformations, respectively.

We start by showing that every tree transformations computed by a �nite-state relabel-
ing TOP-transducer is a permuting tree transformation.

Proposition 6.6.1. QREL ⊆ τ [pTB].

Proof. Let τ ∈ QREL. Since QREL ⊆ τ [ln-TOP] = REL ◦ FTA ◦ ln-HOM by Figure 5.2.2
and Theorem 5.2.16(iii), there exists a relabeling η ⊆ TΣ(X) × TΓ(Z), a recognizable tree
language R ⊆ TΓ(Z), and a linear non-deleting tree homomorphism ψ : TΓ(Z) → TΩ(Y )
such that τ = {(tη−1, tψ) | t ∈ R}. Moreover, by the constructions of Engelfriet (1975a,
Theorem 3.5) (cf. also Theorem 5.2.16), ψ is permuting and η−1 : TΓ(Z)→ TΣ(X), i.e., η−1

is computed by a deterministic relabeling TOP-transducer. Consequently, η−1 and ψ are
permuting because every deterministic relabeling is permuting. Thus, the tree bimorphism
(η−1, R, ψ) de�ning τ is permuting.

Next we consider the relation of quasi-alphabetic and �ne tree transformations by show-
ing that every quasi-alphabetic tree transformation is also �ne. The strictness of this in-
clusion can be obtained using Proposition 6.5.5. Note that for this result we need the
supremum ranked alphabet of De�nition 6.5.2.

Theorem 6.6.2. τ [qTB] ⊆ τ [fTB].

Proof. Let TB = (ϕ,R, ψ) be a quasi-alphabetic tree bimorphism, where R ⊆ TΓ(Z),
ϕ : TΓ(Z)→ TΣ(X) and ψ : TΓ(Z)→ TΩ(Y ). Moreover, let x ∈ X and y ∈ Y . We build the
linear tree homomorphism ϑ : TΓ(Z)→ TΣ∨Ω(X×Y ) such that ϑZ(z) := 〈zϕ, zψ〉 for every
z ∈ Z and ϑk(f) := 〈t(ε)ω, u(ε)ω′〉(ξ1, . . . , ξk, t1, . . . , tl) for every f ∈ Γk (k ≥ 0), where

• t = ϕk(f) and u = ψk(f),

• {i1, . . . , im} = domX(t) and {j1, . . . , jn} = domY (u),

• l = max(m,n) and

ta =


〈t(ia), u(ja)〉 if a ≤ min(m,n)

〈t(ia), y〉 if n < a ≤ m
〈x, u(ja)〉 if m < a ≤ n

for every a ∈ [l], and

• ω = ω1 . . . ωk+m and ω′ = ω′1 . . . ω
′
n are such that t(ωa) = ϑk(f)(a)π1 for every

a ∈ [k+m] and t(ω′b) = ϑk(f)(b)π2 for every b ∈ [k+n], where π1 and π2 are the usual
projections to the �rst and second components, respectively, with xπ1 = x = xπ2 for
every x ∈ X.
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By Theorem 4.4.17(iii), Rϑ is recognizable. An easy proof shows that

τ(TB) = {(tϕΣ, tϕΩ) | t ∈ Rϑ} ,

where ϕΣ and ϕΩ are the canonical �ne tree homomorphisms of De�nition 6.5.2. Hence,
τ(TB) is a �ne tree transformation by Theorem 6.5.4(vi), which is the analogue of our
Theorem 6.2.9 for quasi-alphabetic tree transformations.

As an immediate consequence of Theorems 6.6.2 and 6.5.4(ii), we get the following result
(cf. also Theorem 6.2.6).

Corollary 6.6.3. Quasi-alphabetic tree transformations preserve the recognizable and the
context-free tree languages.

Let us collect the results of this section in a Hasse diagram (see Figure 6.6.1).

Theorem 6.6.4. The inclusion relations between the classes of tree transformations and
translations de�ned by �nite-state relabeling TOP-transducers, permuting tree bimorphisms,
alphabetic tree bimorphisms, quasi-alphabetic tree bimorphisms, �ne tree bimorphisms, linear
TOP-transducers, linear non-deleting TOP-transducers, linear TOPR-transducers and lin-
ear TOP-transducers with �nite look ahead, are given by the HasseHasse diagram!classes of
tree translations de�ned by tree bimorphisms and tree transducers diagrams of Figure 6.6.1.

Proof. The following six statements are su�cient to prove the claims of the left diagram.

τ [aTB] = QREL ⊂ τ [pTB] ⊆ τ [qTB] ⊆ τ [fTB] (6.6.1)

τ [pTB] ⊆ τ [ln-TOP] ⊂ τ [l-TOP] ⊆ τ [l-TOPF] ⊆ τ [l-TOPR] (6.6.2)

τ [qTB] ⊆ τ [l-TOPF] (6.6.3)

τ [qTB] ‖ τ [l-TOP] (6.6.4)

τ [ln-TOP] ‖ τ [fTB] (6.6.5)

τ [fTB] ‖ τ [l-TOPR] (6.6.6)

Statement (6.6.1) is clear by Theorem 6.3.9 and Proposition 6.6.1. The strictness is due
to the fact that QREL is closed under intersection whereas this is not true for τ [pTB] by
Theorem 6.2.12. The �nal inclusions of (6.6.1) are proved in Theorem 6.6.2 and Proposi-
tion 6.3.2. The inclusions of (6.6.2) are all obvious (cf. also Figure 5.2.2), and (6.6.3) is
shown in Proposition 6.2.31. Finally, the inequality (6.6.4) is proved in Proposition 6.2.32,
and inequalities (6.6.5) and (6.6.6) are proved in Proposition 6.5.5.

It is proved in Theorems 6.3.7 and 3.3.22, and Corollary 6.3.8 that

λ[FST ] ⊂ λ[aTB] = λ[QREL] = λ[sSDTS] ⊂ λ[pTB] = SDT .

Moreover, Theorem 6.2.25 shows that SDT = λ[qTB]. To prove that the remaining classes
also collapse to the class of all syntax-directed translations, we prove that for every τ ∈
τ [lH,Rec, lH], we can construct a quasi-alphabetic tree bimorphism TB such that λ(TB) =
λ(τ). It is clear from the de�nitions that �ne tree bimorphisms are linear, and Maletti
(2008, Theorem 4) proved τ [l-TOPR] ⊆ τ [lH,Rec, lH].

To this end, we �rst prove that λ(τ) ∈ λ[lnH,Rec, lnH] using a construction that is
similar to the one in the proof of Theorem 6.2.30 and Lemma 6.2.3 (eliminating variables
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τ [ln-TOP]

τ [l-TOPR]

τ [l-TOPF]

τ [l-TOP]

τ [fTB]

τ [qTB]

τ [pTB]

τ [aTB] = QREL

(a)

=λ[pTB]

= λ[ln-TOP] = λ[l-TOP]

= λ[qTB] = λ[l-TOPF]

= λ[fTB] = λ[l-TOPR]

SDT

λ[aTB] = λ[QREL] = λ[sSDTS]

λ[FST ]

(b)

Figure 6.6.1: Hasse diagrams of classes of tree transformations de�ned by tree bimorphisms
and tree transducers (a), and corresponding translations (b).

in the center tree language and turning the tree homomorphisms into non-deleting ones
such that no variables are output for the subtrees that were deleted by the original tree
homomorphisms). Next we �atten the output trees. Let TB′ = (ϕ,R, ψ) be a linear non-
deleting tree bimorphism such that R ⊆ TΓ, ϕ : TΓ → TΣ(X) and ψ : TΓ → TΩ(Y ). Then,
the quasi-alphabetic tree homomorphisms ϕ′ and ψ′ are constructed by setting ϕ′m(f) :=
g(t1, . . . , tn) and ψ′m(f) := g′(u1, . . . , un′), where for every m ≥ 0, f ∈ Γm, g ∈ Σn and g′ ∈
Ωn′ are new output symbols. In addition, t1, . . . , tn ∈ X ∪ Ξ and u1, . . . , un′ ∈ Y ∪ Ξ are
such that

ydX∪Ξ(ϕm(f)) = t1 . . . tn and ydY ∪Ξ(ψm(f)) = u1 . . . un′ .

Now let TB′′ := (ϕ′, R, ψ′). It should be clear that λ(TB′′) = λ(TB′), which proves the
statement because τ(TB′′) ∈ τ [qTB].

6.7 Other types of tree bimorphisms

Dauchet and Tison (1992) and Raoult (1992), and in light of applications of tree bimor-
phisms in NLP Maletti (2010a) and Tîrn uc  (2008), were the only ones to brie�y survey
and link di�erent classes of tree bimorphisms. In this section, we propose a more complete
and up-to-date overview on tree transformations classes de�ned by tree bimorphisms, link-
ing them with well-known types of synchronous grammars and tree transducers. Thus, in
Section 6.7.1, we discuss the rational relations of binary trees of Takahashi (1977) and link
them with ITGs, linear complete strict bimorphisms of Arnold and Dauchet (1976a, 1982),
linear bimorphisms of Comon et al. (2007), extended top-down tree-to-string transducers
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f

f x

x x

f

x f

x x

〈f, f〉

〈f, x〉 〈x, f〉

〈x,$〉 〈x,$〉 〈x,$〉 〈x,$〉

Figure 6.7.1: Example of the canonical representation of rational relations of binary trees
used by Takahashi (1977). By applying the projections on the �rst and second component,
respectively, on the balanced tree on the left, we get the two trees on the right.

of Huang et al. (2006) and synchronized transductions of Rahonis (2001). Next, in Sec-
tion 6.7.2, we bring into actuality the tree counterparts of regular translations (Σ-rational
tree transformations) and of simple SDTSs (Σ-algebraic tree transformations) studied by
Steinby (1984, 1986, 1990). Finally, in Section 6.7.3, we present bimorphisms of magmoids
(Arnold and Dauchet, 1978b, 1979, 1982, Estenfeld, 1982, Maletti, 2013) and bitransfor-
mations (Nederhof and Vogler, 2012, Shieber, 2006), which extend the original tree bimor-
phisms de�ned in Section 6.1 by working with tuples of trees (instead of trees) or with
homomorphisms computed by machines beyond the power of one-state BOT- or TOP-
transducers (see Section 5.2.3).

6.7.1 Miscellaneous

One of the �rst attempts to extend the constructions and results of Nivat (1968) from
strings to trees was made by Takahashi (1977), who introduced rational relations of binary
trees. Such a relation τ is the tree transformation de�ned by a linear non-deleting strict tree
bimorphism (ϕ,R, ψ) (Arnold and Dauchet, 1976a) in which ϕ,ψ ∈ lnsH and the center
is a set R ⊆ TΓ(Z) of balanced binary trees in the sense of Knuth (1968), i.e., Γ0 6= ∅
and Γ2 6= ∅, and Γm = ∅, otherwise. For example, if Γ = {f/2, e/0} and Z = {z}, then
f(f(x, e), f(f(x, x), f(x, x))) is such a tree but f(f(f(x, x), f(x, x)), e) is not.

The key to such a de�nition of a rational relation of binary trees was a canonical repre-
sentation further generalized by Dauchet and Tison (1990) (cf. also Raoult, 1992, p.320):
two binary trees are the images under two projections (on the �rst and second component,
respectively) of a common unique balanced binary tree over the Cartesian product of the
alphabets augmented by a special symbol $, called dummy node by Takahashi (1977) and
meaning 'not de�ned'. For example, Figure 6.7.1 above shows how the trick of Takahashi
(1977) works: the two binary trees on the left are the projections on the �rst and second
component, respectively, of the unique balanced binary tree on the right.

Now we list without proof the following properties of rational relations of binary trees:

(i) The class of rational relations of binary trees is closed under inverses and composition.

(ii) Rational relations of binary trees preserve the recognizability of tree languages. In
particular, the domain and range of a rational relation of binary trees are recognizable
tree languages.

(iii) The class of rational relations of binary trees is equal to the class of tree transfor-
mations de�ned by linear tree bimorphisms with the center a set of balanced binary
trees as above.
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When de�ned as in Theorem 3.3.12(ii), it becomes obvious that by similar constructions
and proofs as in Section 6.2.2 (cf. also Tîrn uc , 2011, Section 6), the class of parse tree
transformations of ITGs is equal to the class of rational relations of binary trees, and hence,
additional theoretical properties (items (i)-(iii) above) are available for such synchronous
grammars. Moreover, a new characterization of translations of ITGs is thus given through
a pioneer work on tree bimorphisms by Takahashi (1977). For the usefulness of such devices
in linguistics, the reader is referred to Wu (1997), Wu and Fung (2005), Wu et al. (2006),
Saers and Wu (2009), Saers et al. (2009) and Saers et al. (2012), for example.

Another attempt to extend the results and constructions of Nivat (1968) to the tree
case was made by Arnold and Dauchet (1976a, 1982), who introduced the linear non-
deleting strict tree bimorphisms B[lnsH,Rec, lnsH] and transducteurs généralisé ascendants,
fashionable nowadays in machine translation under the name of extended top-down tree
transducers (see Section 5.2.4).

For the class τ [lnsTB] of tree transformations de�ned by linear non-deleting strict tree
bimorphisms B[lnsH,Rec, lnsH], the following hierarchy seems to be available (cf. Arnold
and Dauchet, 1976a, 1982, Theorem 6.2):

τ [lnsTB] ⊂ τ [lnsTB]2 = τ [lnsTB]3 .

However, there is no clear proof of τ [lnsTB]2 = τ [lnsTB]3 to be found in the literature,
the authors reasoning that it is too long and technical to be given (see Comon et al.,
2007, Raoult, 1992, for example). On the other hand, Arnold and Dauchet (1982, Sec-
tion 3.4) proved that no class of tree bimorphisms containing B[lnsH,Rec, lnsH] is closed
under composition, a phenomenon originally called �chevauchement de découpage� and fur-
ther explained by Maletti (2010a).

Furthermore, Arnold and Dauchet (1976a) linked linear non-deleting strict tree bimor-
phisms to linear non-deleting XTT-transducers in which the right-hand side of each rule
cannot be a tree with only one node - a variable. Their constructions and results were fur-
ther used by Maletti (2007, 2008, 2010a) to prove that linear non-deleting XTT-transducers
are not closed under composition and show the connection between linear non-deleting tree
bimorphisms, STSGs and linear non-deleting XTT-transducers (see Sections 6.4 and 5.2.4;
cf. also Shieber, 2004).

Using the idea behind XTT-transducers to naturally model really complicated linguistic
phenomena, Huang et al. (2006) extended the expressivity of generalized syntax-directed
translators of Aho and Ullman (1971, 1969c), Martin and Vere (1970), Baker (1978a) and
Yamada and Knight (2001) by introducing extended top-down tree-to-string transducers.
Actually, without mentioning it, they show that the tree transformations computed by
such transducers can be de�ned by linear non-deleting tree bimorphisms. Consequently,
this class of tree transformations is easily further extended to a weighted model, which
is shown to perform better than the classical generalized syntax-directed translators (see
Gécseg and Steinby, 1984, Gécseg and Steinby, 1997, for an overview) in a fragment of an
English-to-Chinese translation experiment.

Comon et al. (2007, Section 6.5) mentions several results concerning tree bimorphisms.
For example, we �nd in their Theorem 6.5.2 that for the class τ [lTB] of tree transformations
de�ned by the linear tree bimorphisms B[lH,Rec, lH], the following hierarchy hold:

τ [lTB] ⊂ τ [lTB]2 ⊂ τ [lTB]3 ⊂ τ [lTB]4 = τ [lTB]5 .
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Moreover, Comon et al. (2007, Theorem 6.5.1) o�ers another characterization of BOT-
transformations by showing that BOT = τ [lnssH,Rec,H] = τ [pH,Rec,H].

Rahonis (2001) introduced synchronized transductions as the class of tree transforma-
tions computed by synchronized tree transducers, machines that implement the idea of par-
allel computation (Salomaa, 1994). However, an alternative characterization of such tree
transformations by means of tree bimorphisms is given byRahonis (2001, Theorem 22): a
tree transformation τ ⊆ TΣ(X)×TΩ(Y ) is synchronized if it is de�ned by a tree bimorphism
(ϕΣ, R, ϕΩ), where

• ϕΣ and ϕΩ are the canonical �ne tree homomorphisms of De�nition 6.5.2, and

• R ⊆ TΣ∨Ω(X × Y ) is a nondeterministic synchronized tree language, i.e., the tree
language recognized by a nondeterministic synchronized tree recognizer of Salomaa
(1994) (note that this class of tree languages strictly contains Rec).

Using the connection with tree bimorphisms, Rahonis (2001) proves several properties
of synchronized transductions:

(i) The class of synchronized transductions is not closed under composition but it is closed
under composition with �ne tree transformations.

(ii) Every �ne tree transformations is a synchronized transduction.

(iii) The class of synchronized transductions is incomparable with BOT and TOP.

(iv) The equivalence is undecidable for synchronized transductions.

Further research on synchronized transductions is proposed by Rahonis (2001, p. 398).

6.7.2 Σ-rational and Σ-algebraic tree transformations

Even a more directly algebraic approach to tree transformations was suggested by Steinby
(1986, 1984), by extending the notion of a rational subset from monoids to arbitrary algebras
as in Steinby (1981). Thus, Σ-rational and Σ-algebraic tree transformations were de�ned
by special tree bimorphisms that resemble in many ways (cf. Theorems 6.7.2 and 6.7.4)
their string counterparts - regular translations and simple syntax-directed translations both
studied in Chapter 3. Moreover, they also have some properties of their own since these tree
transformations are locally �nite and closed under intersection and many basic questions
(e.g., equivalence), undecidable for regular translations, are decidable for them.

An immediate interest in Σ-rational and Σ-algebraic tree transformations may arise
from their relation with regular translations and simple syntax-directed translations. Fur-
thermore, Steinby (1990) put forward Σ-rational and Σ-algebraic tree transformations as
error-correcting transformations required by certain errors in tree representations of pat-
terns, and thus, perhaps certain modi�cations of trees can be modeled by Σ-rational tree
transformations or related systems.

Before starting the exposition of the main results of Steinby (1984, 1986, 1990), we need
to present some auxiliary notation and basic general algebra terminology. However, all alge-
braic notions and results used here can be found, for example, in Burris and Sankappanavar
(1981), Gécseg and Steinby (1984) and Steinby (2004, 1981, 1977, 2005), which shall be
checked for further details and references.
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First of all, in a Σ-algebra K = (K,Σ), K is a non-empty set of elements, each f ∈ Σm

(m ≥ 1) is realized as an m-ary operation fK : Km → K, and any e ∈ Σ0 is realized as
a constant eK. The ΣX-trees form the term algebra TΣ(X) = (TΣ(X),Σ) de�ned so that
eTΣ(X) = e for all e ∈ Σ0, and fTΣ(X)(t1, . . . , tm) = f(t1, . . . , tm) for all m ≥ 1, f ∈ Σm and
t1, . . . , tm ∈ TΣ(X).

The set RatΣ(X) of Σ-rational ΣX-tree languages is de�ned inductively by the following
conditions:

(1) every �nite T ⊆ TΣ(X) is in RatΣ(X);

(2) if R,R′ ∈ RatΣ(X), the R ∪R′ ∈ RatΣ(X);

(3) if m ≥ 1, f ∈ Σm and R1, . . . , Rm ∈ RatΣ(X), then f(R1, . . . , Rm) ∈ RatΣ(X);

(4) if R ∈ RatΣ(X), then 〈R〉 ∈ RatΣ(X), where 〈R〉 is the subalgebra generated by R in
the term algebra TΣ(X).

Unless Σ = Σ0, RatΣ(X) ⊂ RecΣ(X).
Next, recall that a homomorphism ϕ : TΣ(X)→ TΣ(Y ) of term algebras is a special linear

non-deleting strict tree homomorphism which commutes in some sense with the operations of
the two term algebras involved. Since TΣ(X) is generated by X, ϕ is completely determined
by the images xϕ ∈ TΣ(Y ) of the leaf symbols x ∈ X. In fact, the image tϕ of any t ∈ TΣ(X)
is obtained from t by replacing every occurrence of each x ∈ X with the ΣY -tree xϕ.

A subset H of K is called an algebraic subset of the Σ-algebra K = (K,Σ) if there exist
an alphabet X, a homomorphism of Σ-algebras ϕ : TΣ(X) → K and a ΣX-tree language
R ∈ RecΣ(X) such that H = Rϕ (cf. Mezei and Wright, 1967, these subsets can be obtained
as solutions of �xed-point equations). The set of all algebraic subsets of K is denoted
by AlgK, and it is known that RatK ⊆ AlgK. Moreover, for any TΣ(X), AlgTΣ(X) =
RecΣ(X). Finally, note that in a monoid X∗, the algebraic subsets are the CFLs over
X, and Alg(X∗ × Y ∗) is the set of all simple syntax-directed translations from X∗ to Y ∗

(Berstel, 1979).
Now, we can proceed to the formal de�nition of Σ-rational tree transformations.

De�nition 6.7.1. A Σ-rational tree bimorphism TB = (ϕ,R, ψ) consists of two homomor-
phisms of term algebras ϕ : TΣ(Z)→ TΣ(X) and ψ : TΣ(Z)→ TΣ(Y ), and a Σ-rational tree
language R ∈ RatΣ(Z). A tree transformation is called a Σ-rational tree transformation
(Σ-RTT) if it is de�ned by a Σ-rational bimorphism. Furthermore, let RatΣ(X,Y ) denote
the set of all Σ-RTTs from TΣ(X) to TΣ(Y ).

Next, we list without proof some of the nice properties of Σ-rational tree transformations
(cf. Steinby, 1984, 1986, 1990). Note that the tree bimorphism was the key approach to
elegantly prove all of these useful properties.

Theorem 6.7.2. The following hold.

(i) Alternative characterization. The Σ-RTTs from TΣ(X) × TΣ(Y ) are exactly
the rational subsets of the direct product TΣ(X)× TΣ(Y ).

(ii) Closure properties. The class of all Σ-RTTs is closed under union, intersec-
tion, composition and inverses.
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(iii) Any Σ-RTT τ is symmetrically locally �nite.

(iv) If τ ∈ RatΣ(X,Y ) and T ∈ RatΣ(X), then Tτ ∈ RatΣ(Y ).

(v) If τ ∈ RatΣ(X,Y ) and T ∈ RatΣ(Y ), then Tτ−1 ∈ RatΣ(X).

(vi) If τ ∈ RatΣ(X,Y ) and T ∈ RecΣ(X), then Tτ ∈ RecΣ(Y ).

(vii) If τ ∈ RatΣ(X,Y ) and T ∈ RecΣ(Y ), then Tτ−1 ∈ RecΣ(X).

(viii) Translation power. The translation λ(τ) de�ned by any τ ∈ RatΣ(X,Y ) is
a regular translation from X∗ to Y ∗. If Σ0 6= ∅ and Σm 6= ∅ for some m ≥ 2, any
regular translation λ ⊆ X∗ × Y ∗ is obtained this way.

(ix) Tree Transducers. The class of Σ-RTTs is computed by BOT-transducers, but
not always by TOP-transducers.

(x) Decidability results. The emptiness, the �niteness, the membership, the inclu-
sion and the equality are all decidable for Σ-RTTs.

As argued by Steinby (1986), the representation of Σ-RTTs by tree bimorphisms permits
a direct comparison with other classes of tree transformations de�ned by tree bimorphisms.
Since rational tree languages are recognizable and homomorphisms of term algebra are
special linear non-deleting strict tree homomorphisms, Σ-RTT form a proper subclass of the
class BI = τ [lnsH,Rec, lnsH] of linear non-deleting strict tree transformations of Arnold and
Dauchet (1976a, 1982) (see Section 6.7.1). In addition, the permuting tree transformations
of Takahashi (1972) (see Section 6.3) form a class incomparable with Σ-RTTs because they
can relabel nodes and reorder subtrees, but have a weaker subtree rewriting capability than
Σ-RTTs.

Corresponding to simple syntax-directed translations (also known as algebraic transduc-
tions), Σ-algebraic tree transformations were de�ned by means of tree bimorphisms thus
(cf. Steinby, 1986, 1984).

De�nition 6.7.3. A Σ-algebraic tree bimorphism is a triple TB = (ϕ,R, ψ), where R ∈
RecΣ(Z), and ϕ : TΣ(Z) → TΣ(X) and ψ : TΣ(Z) → TΣ(Y ) are homomorphisms of term
algebras. A tree transformation is called a Σ-algebraic tree transformation (Σ-ATT) if it is
de�ned by a Σ-algebraic tree bimorphism. Furthermore, let AlgΣ(X,Y ) denote the set of
all Σ-ATTs from TΣ(X) to TΣ(Y ).

Now, we list without proof the properties of Σ-algebraic tree transformations.

Theorem 6.7.4. The following hold.

(i) Alternative characterization. The Σ-ATTs from TΣ(X) × TΣ(Y ) are exactly
the algebraic subsets of the direct product TΣ(X)× TΣ(Y ).

(ii) Closure properties. The class of all Σ-ATTs is closed under union, intersec-
tion, composition and inverses.

(iii) Any τ ∈ AlgΣ(X,Y ) is symmetrically locally �nite.

(iv) If τ ∈ AlgΣ(X,Y ) and T ∈ RecΣ(X), then Tτ ∈ RecΣ(Y ).
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(v) If τ ∈ AlgΣ(X,Y ) and T ∈ RecΣ(Y ), then Tτ−1 ∈ RecΣ(Y ).

(vi) Translation power. The translation λ(τ) de�ned by any τ ∈ AlgΣ(X,Y ) is a
simple syntax-directed translation from X∗ to Y ∗. If Σ0 6= ∅ and Σm 6= ∅ for some
m ≥ 2, then for every simple syntax-directed translation λ ⊆ X∗ × Y ∗ there exists a
τ ∈ AlgΣ(X,Y ) such that λ = λ(τ).

(vii) Tree Transducers. The class of Σ-algebraic tree transformations is computed
by linear BOT-transducers, but not always by TOP-transducers.

(viii) Since any τ ∈ AlgΣ(X,Y ) is locally �nite, the questions �Is TΣ(X)×TΣ(Y ) \ τ
in AlgΣ(X,Y )?� and �Is τ = TΣ(X)× TΣ(Y )?� are always answered as No.

(ix) Decidability results. The emptiness, the �niteness, the membership, the in-
clusion and the equality are all decidable for Σ-ATTs.

(x) For any two Σ-ATTs τ and τ ′, the question �Is τ ∩ τ ′ = ∅?� is decidable.

(xi) For any Σ-ATT τ , it is decidable whether τ is a partial function.

(xii) For any τ1, τ2 ∈ AlgΣ(X,Y ) and any R ∈ RecΣ(X), the following questions are
decidable:

a. Does rτ1 ∩ rτ2 = ∅ hold for every r ∈ R?
b. Does rτ1 = rτ2 hold for every r ∈ R?
c. Does rτ1 ⊆ rτ2 hold for every r ∈ R?

Note that obviously the results (ix)-(xii) of the above theorem hold for Σ-RTTs, too
(cf. Steinby, 1984). Again the de�nition of Σ-ATTs by tree bimorphisms was essential in
elegantly tackle the proofs of all the properties mentioned above. Moreover, when de�ned
this way it is easy to show that the inclusion RatΣ(X,Y ) ⊆ AlgΣ(X,Y ) is proper unless
Σ = Σ0 (cf. Steinby, 1986). It is also obvious that Σ-ATTs form a proper subclass of the
class BI = τ [lnsH,Rec, lnsH] of linear non-deleting strict tree transformations studied by
Arnold and Dauchet (1976a, 1982).

6.7.3 Extended bimorphisms: magmoids and bitransformations

An alternative way to de�ne trees and tree languages, originating with Pair and Quéré
(1968) and quite popular among French writers, involves to work with tuples of trees as
basic objects rather than trees. The usual tree operations are then augmented by operations
which catenate tuples of trees or form a tree from an m-tuple by creating a new root labeled
by an m-ary operator. This formalism has been developed further by Arnold and Dauchet
(1978b, 1979) to a theory of algebraic structures called magmoids, which also embodies
many of the ideas of Eilenberg and Wright (1967). Arnold (1977) discusses speci�cation
methods and decidability results within the framework of magmoids.

Subsequently, Arnold and Dauchet (1982) and Bozapalidis (1988) extended tree homo-
morphisms and tree bimorphisms to morphisms and bimorphisms of magmoids. Actually,
the class of morphisms of magmoids, also called m-morphisms, viewed as tree transfor-
mations are equivalent to the class of deterministic multi bottom-up transducers of Lilin
(1978) and Fülöp et al. (2005), and an 1-morphism is our classical tree homomorphism
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de�ned in Section 4.2. Arnold and Dauchet (1982) introduced many special classes of bi-
morphisms of magmoids such as linear, non-deleting and strict, for example, and studied,
almost exclusively, the closure under composition of such classes as well as compositions
and decompositions between them. Recently, using this theory of magmoids, Maletti (2013)
showed that every tree transformation generated by a synchronous forest substitution gram-
mar (cf. also Raoult, 1992, Zhang et al., 2008b, a, Sun et al., 2009, for the relevance of
such synchronous grammars in theory and practice) is de�ned by a bimorphism with a
recognizable center tree language and input and output homomorphisms computed by de-
terministic multi bottom-up tree transducers (i.e., m-morphisms). Thus, he was able to
show many decomposition results of synchronous forest substitution grammars and that
the tree transformation class generated by these synchronous grammars is not closed under
composition.

Moreover, Estenfeld (1982) used a similar algebraic approach and described tree trans-
formations by tree bimorphisms where the tree languages are replaced by categories of
derivation trees of CFGs and, instead of the input and output tree homomorphisms, we
have functors of CFGs (cf. also Schnorr, 1969, Walter, 1976). Such special bimorphisms
are shown to de�ne the same translations as simple SDTSs and share properties such as
closure under composition and inverses.

On the other hand, Nederhof and Vogler (2012) introduced bitransformations, which
extend the classical notion of tree bimorphism in the following way. The center is still a
recognizable tree language, but contrary to the classical case where the input and output
homomorphisms can be viewed as tree transformations computed by a one-state TOP- or
BOT-transducers, they now are tree transformations de�ned by a very restricted type of
macro tree transducers (Engelfriet, 1980, Engelfriet and Vogler, 1985, Fülöp and Vogler,
1998, Maneth, 2004): its linear, non-deleting, total and deterministic version in which there
is at most one state of rank m ≥ 0. Basically, such a machine combines a TOP-transducer
and a CFTG to serve as a formal model of semantics in which context can be implicitly
handled by allowing additional parameter symbols in the rules.

In the same paper, they proposed a variant of synchronous CFTGs and proved that
such a formalism generates the same class of tree transformations as the one de�ned by
the above-mentioned bitransformations. This alternative characterization of synchronous
CFTG in terms if tree bimorphisms permitted a direct comparison between synchronous
CFTGs and well-known tree transducers and synchronous tree grammars. For example, it
becomes obvious that every synchronous tree adjoining grammar of Shieber and Schabes
(1990b, a, 1991) and Abeillé et al. (1990) can be simulated by a synchronous CFTG because
synchronous tree adjoining grammars are characterized by bitransformations in which the
input and output homomorphisms are computed by linear non-deleting total deterministic
macro tree transducers which have at most one state of rank 1 and at most one state
of rank 2, no other states being allowed (Shieber, 2006). Among other properties that
make synchronous CFTGs appealing for machine translation applications, Nederhof and
Vogler (2012) mentioned their polynomial parsing complexity and their natural way to
de�ne tree transformations and translations, which allows a straightforward extension to
weighted formalisms by assigning probabilities to rules.
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Chapter 7

Synchronous Translation and Tree

Transformation Generators

In this chapter, two new classes of translation and tree transformation de�ning devices that
extend in a natural way the formalisms exhibited in Table 8.1.1 are introduced. Further
related research topics that might be rewarding are proposed in Section .

7.1 Synchronous translation generators

We shall now introduce a class of translation-de�ning devices that generalize the syn-
chronous context-free grammars of Satta and Peserico (2005), and hence the basic syntax-
directed translation schemes of Irons (1961), Lewis II and Stearns (1968) and Aho and
Ullman (1972) - see Chapter 3 for an overview. They also generalize the �syntax-connected
transduction schemes� of Schreiber (1975, 1976) but, as we shall show, they seem to be
essentially equivalent in power with these1.

De�nition 7.1.1. A synchronous translation generator (STG) is a system SG = (N,X, Y,
P, S, S′) speci�ed as follows.

(1) X and Y are the input and the output alphabet, respectively.

(2) N is an alphabet of nonterminal symbols such that N ∩ (X ∪ Y ) = ∅.

(3) S, S′ ∈ N are the start symbols.

(4) P is a �nite set of productions A;B → α;β (σ), where A,B ∈ N , α ∈ (N ∪X)∗,
β ∈ (N ∪ Y )∗ and σ is a mapping that associates each occurrence of a nonterminal
in β with a unique occurrence of a nonterminal in α in such a way that only occur-
rences of the same nonterminal in β can be associated with any given occurrence of
a nonterminal in α. When β ∈ Y ∗ in a production A;B → α;β (σ), we may omit the
mapping σ and write the production simply as A;B → α;β.

The input grammar of SG is the CFG SGin = (N,X,P in, S), where P in consists of the
productions A → α such that A;B → α;β (σ) ∈ P for some B, β′ and σ. Similarly,
the grammar SGout = (N,Y, P out, S′), where P out := {B → β | A;B → α;β (σ) ∈
P for some A, α and σ}, is the output grammar of SG.

Hence, any production of an STG SG = (N,X, Y, P, S, S′) can be written in the form

A;B → v0A1v1 . . . vm−1Amvm;w0B1w1, . . . wn−1Bnwn (σ) (7.1.1)

1Since we are not quite sure about the interpretation of all parts of the de�nition given by Schreiber
(1975, 1976), we develop our theory independently of these papers.
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where m,n ≥ 0, v0, . . . , vm ∈ X∗, w0, . . . , wn ∈ Y ∗, A1, . . . , Am, B1, . . . , Bn ∈ N , and
σ : [n] → [m] is a mapping such that if σ(i) = σ(j) for some i, j ∈ [n], then Bi = Bj ;
if σ(i) = k, then Bi is associated with Ak. Moreover, we may give σ as the n-tuple
(σ(1)σ(2) . . . σ(n)) formed by its values. Let us illustrate this by an example.

Example 7.1.2. If A,B,C ∈ N , x ∈ X, y ∈ Y and σ : [5]→ [4] is a mapping, then

A;B → xABxxBA;CByCByB (σ)

is a possible STG-production. If σ(1) = σ(3) = 1, σ(2) = σ(4) = 3 and σ(5) = 4, then we
may write the production also as

A;B → xABxxBA;CByCByB (1 3 1 3 4).

Note that two C's are associated with the �rst A on the input side while no nonterminal is
associated with the leftmost B. 2

The translation forms of SG are triples (δ, γ, π), where δ ∈ (N ∪ X)∗, γ ∈ (N ∪ Y )∗

and π is a mapping from [|γ|N ] to [|δ|N ] that associates each occurrence of a nonterminal
in γ with a unique occurrence of a nonterminal in δ. Moreover, only occurrences of the
same nonterminal in γ can be associated with the same occurrence of a nonterminal in δ.
If |γ|N = n, then π may be written as (π(1)π(2) . . . π(n)). The strings δ and γ are called,
respectively, the input form and the output form of (δ, γ, π). Moreover, we refer to the
occurrences of nonterminals in δ and γ as input nonterminals and output nonterminals,
respectively. A translation form (δ, γ, π) in which γ ∈ Y ∗ is denoted (δ, γ,�) to show that
there are no output nonterminals to be associated with input nonterminals. The set of all
translation forms is de�ned inductively as follows:

(1) (S, S′, (1)) is a translation form in which the only S′ is associated with the only S.

(2) If (δAδ′, γ0Bγ1 . . . γk−1Bγk, π) is a translation form, where A,B ∈ N , δ, δ′ ∈ (N∪X)∗,
k ≥ 0, γ0, γ1, . . . , γk ∈ (N ∪Y )∗ and the displayed Bs are all the output nonterminals
associated by π with the displayed A, and A;B → α;β (σ) is a production in P , then
(δαδ′, γ0βγ1 . . . γk−1βγk, π

′) is a translation form in which the output nonterminals
appearing in γ0, γ1, . . . , γk are associated with input nonterminals in δ and δ′ as they
were associated in the original form, and the nonterminals in the new β's are associated
with the nonterminals in the new α as speci�ed by σ. To express that this is the case,
we write

(δAδ′, γ0Bγ1 . . . γk−1Bγk, π)⇒SG (δαδ′, γ0βγ1 . . . γk−1βγk, π
′) .

This is called a derivation step, and it is leftmost if the explicit instance of A is the
leftmost occurrence of any nonterminal in δAδ′.

Furthermore, derivations and the derivation relation are de�ned as usual. Two STGs
SG and SG′ are said to be equivalent if λ(SG) = λ(SG′). The class of translations de�nable
by STGs is denoted by λ[STG].

The association of output nonterminals with input nonterminals shows which output
nonterminals are rewritten together with a given input nonterminal. Note that there may
be input nonterminals with which no output nonterminal is associated. The rewriting of such
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an input nonterminal does not a�ect the output form. Note also that output nonterminals
associated with the same input nonterminal are always rewritten the same way and so are
their corresponding successor nonterminals. Hence, the output substrings produced by them
are identical. This means that not all strings generated by SGout (as a CFG) necessarily
appear in the range of λ(SG) and, as we shall see, the range is not necessarily context-free.

The possible further generalization that would allow di�erent sets of input and output
nonterminals would obviously not increase the power of the STGs since we can equally well
use their union as a common set of nonterminals.

Various special types of STGs are obtained by imposing di�erent restrictions on the
association maps of the productions. These we de�ne as follows (cf. Schreiber, 1975, 1976).

De�nition 7.1.3. An STG-production of the form 7.1.1 is called

• homogeneous if A = B, and Bi = Aj whenever σ(i) = j for some i ∈ [n] and j ∈ [m],

• linear if σ is injective,

• non-deleting if σ is surjective,

• order-preserving if σ(i) ≤ σ(j) whenever 1 ≤ i ≤ j ≤ n, and

• simple if σ is an identity mapping (and hence m = n).

An STG is called homogeneous, linear , non-deleting , order-preserving or simple if all of its
productions are, respectively, homogeneous, linear, non-deleting, order-preserving or simple,
and we denote by λ[hSTG], λ[lSTG], λ[nSTG], λ[oSTG] and λ[sSTG] the respective classes
of translations. Further subclasses of STGs can be obtained by combining any of these
restrictions. For example, λ[hlSTG] is the class of translations de�ned by homogeneous
linear STGs. 2

In a homogeneous production each output nonterminal is associated with an occurrence
of itself in the input form and homogeneous STGs are very similar to the syntax-connected
transduction schemes of Schreiber (1975). If an STG is linear, no two output nonterminals
of any translation form are linked with the same input nonterminal, and therefore the sub-
derivations starting from any two output nonterminals are independent. In any translation
form of a non-deleting STG, at least one output nonterminal is associated with each input
nonterminal, and hence also the output form is a�ected by every derivation step.

Remark 7.1.4. We may also note the following.

(a) SCFGs are precisely the linear non-deleting STGs, that is, λ[lnSTG] = λ[SCFG] =
SDT .

(b) SDTSs become by a slight formal modi�cation the homogenous linear non-deleting
STGs, i.e., λ[hlnSTG] = λ[SDTS] = SDT .

Usually, it is simpler to consider STGs in normal form.

De�nition 7.1.5. An STG SG = (N,X, Y, P, S, S′) is in normal form if all of its produc-
tions are of the form

(i) A;B → α;β (σ) with α, β ∈ N∗, or of the form
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(ii) A;B → u;w with u ∈ X∗ and w ∈ Y ∗. 2

The next theorem guarantees that there is an algorithm to convert any given STG to
one in normal form.

Theorem 7.1.6. For every STG SG one can construct an equivalent STG SG′ in normal
form in such a way that if SG is linear, non-deleting or simple, then so is SG′.

Proof. Let SG = (N,X, Y, P, S, S′) be any STG. We construct SG′ = (N ′, X, Y, P ′, S, S′)
with N ⊆ N ′ as follows. Let

A;B → v0A1v1 . . . vm−1Amvm;w0B1w1, . . . wn−1Bnwn (σ) (∗)

be a production in P which is not in normal form. If m ≥ n, we replace it by the production

A;B → Cv0A1Cv1 . . . Cvm−1AmCvm ;Cw0B1Cw1 . . . Cwn−1BnCwn (σ′) ,

where Cv0 , . . . , Cvm , Cw0 , . . . , Cwm are new nonterminals and

σ′ = (1 2σ(1) 3 2σ(2) . . . 2n− 1 2σ(n) 2n+ 1 2n+ 2 . . . 2m+ 1) ,

and the productions Cvj ;Cwj → vj ;wj (0 ≤ j ≤ n).
If n > m, we replace (∗) by the production

A;B → Cv0A1Cv1 . . . Cvm−1AmCvm Cε . . . Cε︸ ︷︷ ︸
n−m times

;Cw0B1Cw1 . . . Cwn−1BnCwn (σ′′) ,

where Cv0 , . . . , Cvm , Cw0 , . . . , Cwn , Cε are new nonterminals and

σ′′ = (1 2σ(1) 3 2σ(2) . . . 2m−1 2σ(m) 2m+ 1 2σ(m+ 1)2m+ 3 . . . n+m2σ(n)n+m+ 1) ,

and the productions Cvj ;Cwj → vj ;wj (0 ≤ j ≤ m) and Cε;Cwj → ε;wj (m+ 1 ≤ j ≤ n).
It should be obvious that in both cases, the new rules together produce exactly the e�ect

of the original rule. Hence, λ(SG) = λ(SG′).

Let us illustrate the above construction by an example.

Example 7.1.7. Let us consider the STG-production of Example 7.1.2. Since n > m, it is
replaced by the productions

A;B → CxACεBCxxBCεACεCε;CεCCεBCyCCεBCyBCε(1 2 3 6 5 2 7 6 9 8 10)
Cx;Bε → x; ε Cε;Cε → ε; ε Cxx;By → xx; y Cε;Cy → ε; y.

in normal form. 2

Now we study the generative power of STGs. Proposition 3.3.9 proved that the ranges
of SDTS-translations are context-free languages. Hence, the following example shows that
a non-linear STG may de�ne a translation not de�nable by any SDTS or SCFG.

Example 7.1.8. For each alphabet X, the translation λc = {(w,ww) | w ∈ X∗}(⊆ X∗ ×
X∗) is de�ned by the homogenous non-deleting STG SG = ({S,A}, X,X, S, S), where

P = {S;S → A;AA (1 1)} ∪ {A;A→ xA;xA (1) | x ∈ X} ∪ {A;A→ ε; ε} .

UNIVERSITAT ROVIRA I VIRGILI 
SYNTAX-DIRECTED TRANSLATIONS, TREE TRANSFORMATIONS AND BIMORPHISMS 
Catalin Ionut Tirnauca 



7.1. Synchronous translation generators 153

For example, if X = {0, 1}, then we have derivations like

(S, S, (1)) ⇒SG (A,AA, (1 1))⇒SG (0A, 0A0A, (1 1))⇒SG (00A, 00A00A, (1 1))

⇒SG (001, 001001,�) .

If |X| ≥ 2, then the range {ww | w ∈ X∗} of λc is not a CFL. More generally, for any
n ≥ 1, we get the translation {(w,wn) | w ∈ X∗} by replacing S;S → A;AA (1 1) with
S;S → A;AA . . . A︸ ︷︷ ︸

n times

(1 1 . . . 1︸ ︷︷ ︸
n times

). 2

The above example depends on the parallel rewriting on the output side caused by
the nonlinearity of the �rst production. In fact, it is easy to simulate any Indian parallel
grammar (IPG) of Siromoney and Krithivasan (1974) (cf. also Dassow et al., 1997) by
a non-linear STG; recall that an IPG is just a CFG, but at each derivation step all oc-
currences of one of the nonterminals is rewritten in parallel using the same production.
Given a CFG CF = (N,X,P, S), let SG = (N,X,X,P ′, S, S) be the STG in which P ′ is
obtained from P by transforming any production A → α of P into the STG-production
A;A→ B1 . . . Bk;α (σ), where {B1, . . . , Bk} is the set of nonterminals appearing in α and
σ associates each output nonterminal with its unique occurrence in B1 . . . Bk. It should
be clear that λ(SG) = {(ε, w) | w ∈ L}, where L is the language generated by CF in the
Indian parallel mode. Therefore, if we denote by PCL the class of languages generated by
IPGs, then PCL ⊆ Range(STG).

Next, we observe that deleting productions do not a�ect the rewriting on the output
side. Indeed, for every STG ST = (N,X, Y, P, S, S′), we can construct a non-deleting STG
ST ′ = (N ∪ {�}, X, Y, P ′, S, S′), where � is a new nonterminal and P ′ is obtained from
P as follows. Every non-deleting production of P is in P ′, too. Furthermore, for every
deleting production A;B → α;β (σ) in P of the form (7.1.1), the production A;A′ →
α;α′ �|[m]−σ([n])| (σ′) is in P ′. Now, σ′ associates each occurrence of the nonterminal �
with distinct occurrences of nonterminals in α that did not have an association before, and
the nonterminals in α′ with those in α exactly as σ. Moreover, for every A;B → α;β (σ)
in P , A;� → α; ε is in P ′. It should be clear that ST and ST ′ generate the same output
language. As an immediate consequence, we also note that the range of any linear STG is
a CFL since the ranges of linear non-deleting STGs are CFLs.

These observations help us show that {xpypzp | p ≥ 1} cannot be the language generated
by the output grammar of any STG. Indeed, assume there is an STG ST = (N,X, {x, y, z},
P, S, S′) with no useless productions such that Range(ST ) = {xpypzp | p ≥ 1}. Because
Range(ST ) is not a CFL, ST must be a non-linear STG. Hence, there are p0 ≥ 1, n ≥ 2
and a derivation

(S, S′, (1))⇒∗ST (u0Au1, u
′
0A
′u′1 . . . u

′
n−1A

′u′n, (1 1 . . . 1)︸ ︷︷ ︸
n times

)⇒∗ST (u0u2u1, x
p0yp0zp0 ,�)

for some A,A′ ∈ N , u0, u1, u2 ∈ X∗ and u′0, u′1, . . . , u′n ∈ {x, y, z}∗. Let

L(A,A′) = {u′ ∈ {x, y, z}∗ | ∃u ∈ X∗, (A,A′, (1))⇒∗ST (u, u′,�)} .

It can be proved that L(A,A′) = {dk} for some k ≥ 0 and d ∈ {x, y, z} as follows. First,
L(A,A′) cannot contain two di�erent letters since n ≥ 2. Now, if L(A,A′) contains two
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words dk and dl with k 6= l, then Range(ST ) would include at least one word in which the
number of occurrences of letter d is n|l − k| greater than the number of occurrences of the
other two letters, which contradicts our initial assumption.

Now, we can construct the linear STG ST ′ = (N,X, {x, y, z}, P0, S, S
′), where the

productions in P0 are obtained from those of P as follows. First, add to P0 all linear
productions in P . Next, for every production of the form (7.1.1) and for every i ∈ [m]
such that |σ−1(i)| ≥ 2, let u′i be the unique element of the set L(Ai, Bj) with j ∈ σ−1(i).

Moreover, for every i ∈ [m], let αi :=

{
ε, if |σ−1(i)| ≥ 2

Ai, otherwise
, and for every j ∈ [n], let

α′j :=

{
u′σ(j), if |σ

−1(σ(j))| ≥ 2

Bj , otherwise
. Add to P0 the linear production

A;B → u0α1u1 . . . um−1αmum;u′0α
′
1u
′
1 . . . u

′
n−1α

′
nu
′
n (σ′),

where σ′ associates the (remaining) nonterminals exactly as σ does in the original production
(7.1.1). It is easy to see that Range(ST ′) = Range(ST ) /∈ CFL, a contradiction. Hence,
there is no STG ST such that Range(ST ) = {xpypzp | n ≥ 1}.

However, the range of any STG ST is a contex-sensitive language. Indeed, a nondeter-
ministic algorithm recognizing the language Range(ST ) in linear time can be constructed
by simulating the rewriting process that takes place on the output CFG grammar of ST .
A special attention shall be paid to the output nonterminals associated with an input non-
terminal. Hence, Range(STG) ⊆ CS (see Mateescu and Salomaa, 1997).

We summarize the previous observations regarding the ranges of STGs in the following
proposition.

Proposition 7.1.9. CFL ∪ PCL ⊂ Range(STG) ⊂ CS.

The inclusions must be proper. Note that {xpypzp | p ≥ 1} is a context-sensitive
language (Mateescu and Salomaa, 1997, Example 2.1) that cannot be in Range(STG).
Also, the range of the STG ST = (S,A, {x, y}, {x, y}, P, S, S), where P = {S;S →
A;AA (1 1), A;A → AA;AA (1 2), A;A → A;xAy (1), A;A → ε; ε}, that is, {ww |
w is a balanced string in {x, y}∗} is neither context-free nor parallel context-free.

Also the following property of STGs holds.

Theorem 7.1.10. For every STG there e�ectively exists an equivalent homogenous STG.

Proof. Given any STG SG = (N,X, Y, P, S, S′), we de�ne a homogenous STG SG′ =
(N ′, X, Y, P ′, (S, S′), (S, S′)), where N ′ := N × (N ∪{�}) (� /∈ N) and P ′ is obtained from
P as follows.

(1) For each production of the form (7.1.1) in P , we include in P ′ the production
(A,B); (A,B)→ δ; γ (σ) with

δ = v0(A1, C1)u1 . . . vm−1(Am, Cm)vm

and
γ = w0(Aσ(1), B1)w1 . . . wn−1(Aσ(n), Bn)wn ,

and where for each k ∈ [m], Ck =

{
Bj , if σ(j) = k (j ∈ [n]),

�, if k is not in the range of σ.
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(2) For every A;B → α;β (σ) in P , we add (A,�); (A,�) → ᾱ; ε to P ′, where ᾱ is
obtained from α by replacing each input nonterminal C with (C,�).

Note that in (1), the value of Ck is always uniquely de�ned because σ(i) = σ(j) implies
Bi = Bj (i, j ∈ [n]). The productions of type (2) are obtained from the productions of the
input grammar SGin and they can only be applied in situations in which there would be
an independent input nonterminal in a derivation in SG. (Hence, they could be omitted if
SG is non-deleting.)

Let µ : (N ′ ∪X)∗ → (N ∪X)∗ and ν : (N ′ ∪ Y )∗ → (N ∪ Y )∗ be homomorphisms such
that xµ = x for x ∈ X, (A,B)µ = A for (A,B) ∈ N ′, yν = y for y ∈ Y and (A,B)ν = B
if (A,B) ∈ N ×N , and (A,B)ν = ε if B = �. Now, one can verify by induction on n ≥ 0
that for each derivation

((S, S′), (S, S′), (1))⇒SG′ (δ1, γ1, π1)⇒SG′ . . .⇒SG′ (δn, γn, πn) (a)

in SG′,
(S, S′, (1))⇒SG (δ1µ, γ1ν, π1)⇒SG . . .⇒SG (δnµ, γnν, πn) (b)

is a valid derivation in SG, and that every derivation in SG is obtained this way from a
derivation in SG′. From this it immediately follows that SG and SG′ are equivalent.

Corollary 7.1.11. For every STG SG one can construct an equivalent homogenous STG
SG′ in normal form in such a way that if SG is linear, non-deleting, order-preserving or
simple, then so is SG′.

7.2 Synchronous tree transformation generators

We shall now consider a class of tree transformation generating devices that in a natural way
correspond to synchronous translation generators. They generalize the STSGs and GSTSGs
studied by Eisner (2003), Fülöp et al. (2010) and Shieber (2004) and presented in Section 5.3.
This generalization follows the lead of (Schreiber, 1975, 1976), who extended SDTSs to
syntax-connected transduction schemes (cf. Chapter 7.1) by linking each occurrence of a
nonterminal in the output grammar with a unique occurrence of a nonterminal in the input
grammar in such a way that only occurrences of the same nonterminal in the output can
be associated with any given occurrence of a nonterminal in the input.

De�nition 7.2.1. A synchronous tree transformation generator (STTG) is a system TG =
(N,Σ, X,Ω, Y, P, S, S′) speci�ed as follows.

(1) Σ and Ω are ranked alphabets, and X and Y are leaf alphabets; Σ and X are the
input alphabets, and Ω and Y are the output alphabets.

(2) N is a �nite set of nonterminals such that N ∩ (Σ ∪X ∪ Ω ∪ Y ) = ∅.

(3) S, S′ ∈ N are the start symbols.

(4) P is a �nite set of productions A;A′ → r; r′ (σ) in which A,A′ ∈ N , r ∈
TΣ(X ∪ N), r′ ∈ TΩ(Y ∪ N), and σ is a mapping that associates each occurrence
of a nonterminal in r′ with a unique occurrence of a nonterminal in r in such a way
that only occurrences of the same nonterminal in r′ can be associated with the same
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occurrence of a nonterminal in r. If r′ ∈ TΩ(Y ), we may omit σ and write the pro-
duction as A;A′ → r; r′.

The input grammar of TG is the regular tree grammar TGin = (N,Σ, X, P in, S), where
P in consists of the productions A → r such that A;A′ → r; r′ (σ) for some A′, r′ and σ.
Similarly, TGout = (N,Ω, Y, P out, S′), where P out consists of those productions A′ → r′ for
which A;A′ → r; r′ (σ) ∈ P for some A, r and σ, is the output grammar of TG. 2

Much of what was said about STGs in Section 7.1 can be said, in an appropriately
modi�ed form, about STTGs. Let us �rst note that an STTG-production A;A′ → r; r′ (σ)
can be written in the more explicit form

A;A′ → q[A1, . . . , Am]; q′[A′1, . . . , A
′
n] (σ) , (7.2.1)

where m,n ≥ 0, A1, . . . , Am, A
′
1, . . . , A

′
n ∈ N , q ∈ T̃Σ(X ∪ Ξm), q′ ∈ T̃Ω(Y ∪ Ξn), and

σ : [n]→ [m] is a mapping such that if σ(i) = σ(j) for some i, j ∈ [n], then A′i = A′j ; if σ(i) =
k, then A′i is associated with Ak. Again, we may give σ as the n-tuple (σ(1)σ(2) . . . σ(n))
formed by its values. Obviously, that (7.2.1) equals the production A;A′ → r; r′ (σ), means
that ydN (r) = A1 . . . Am, ydN (r′) = A′1 . . . A

′
n, r = q[A1, . . . , Am] and r′ = q′[A′1, . . . , A

′
n].

For any given STTG TG = (N,Σ, X,Ω, Y, P, S, S′), its translation forms, input forms,
output forms, input nonterminals, output nonterminals, (leftmost) derivation steps and (left-
most) derivations are de�ned the same way as for an STG with the obvious modi�cations. In
particular, a translation form of TG is a triple (s, s′, π), where s ∈ TΣ(X∪N), s′ ∈ TΩ(Y ∪N)
and π is a mapping from [|yd|N (s′)] to |yd|N (s)] that associates each output nonterminal
with a unique input nonterminal in such a way that any two output nonterminal associated
with the same input nonterminal are equal. A derivation step is of the form

(c(A), c′[A′, . . . , A′], π)⇒TG (c(r), c′[r′, . . . , r′], π′) ,

where c ∈ CΣ(X ∪N), c′ ∈ T̃Ω(Y ∪N ∪Ξk) for some k ≥ 0, A;A′ → r; r′ (σ) is a production
in P , and the displayed k occurrences of A′ are all the output nonterminals associated with
the displayed input nonterminal A. Then, the tree transformation de�ned by TG is the
relation

τ(TG) := {(t, t′) | t ∈ TΣ(X), t′ ∈ TΩ(Y ), (S, S′, (1))⇒∗TG (t, t′,�)} ,

and the translation de�ned by TG is

λ(TG) := yd(τ(TG)) = {(yd(t), yd(t′)) | (t, t′) ∈ τ(TG)} .

Let us denote the classes of tree transformations and translations de�nable by an STTG by
τ [STTG] and λ[STTG], respectively.

Homogeneous, linear, non-deleting, order-preserving and simple STTGs are also de�ned
by the same conditions as the respective classes of STGs. The classes of tree transformations
and translations de�nable by such special STTGs are naturally denoted by τ [hSTTG],
λ[hSTTG], τ [lSTTG], etc.

Furthermore, we say that an STTG TG = (N,Σ, X,Ω, Y, P, S, S′) is in normal form if
every production in it is of the form

(1) A;A′ → r; r′ (σ), where r ∈ TΣ(N) and r′ ∈ TΩ(N), or
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(2) A;A′ → s; s′ with s ∈ TΣ(X) and s′ ∈ TΩ(Y ).

Obviously, at the tree level, we cannot �nd an equivalent STTG in normal form for
every STTG. We conjecture that the following weaker fact can be proven.

Theorem 7.2.2. For every STTG TG one can construct an STTG TG′ in normal form
such that λ(TG) = λ(TG′).

The next result can be obtained simply by imitating the proof of Theorem 7.1.10.

Theorem 7.2.3. For every STTG there e�ectively exists an equivalent homogeneous STTG.

As one could expect, STTGs are related to STGs as follows.

Theorem 7.2.4. λ[STTG] = λ[STG].

Proof. For any STTG TG = (N,Σ, X,Ω, Y, P, S, S′), let ST = (N,X, Y, P ′, S, S′) be the
STG in which P ′ consists of all productions A;A′ → yd(r); yd(r′) (σ) obtained from a
production A;A′ → r; r′ (σ) in P . To show that λ(ST ) = λ(TG), it su�ces to verify the
following facts by induction on the length of the given derivation.

Claim 1 For any A,A′ ∈ N , t ∈ TΣ(X) and t′ ∈ TΩ(Y ), if (A,A′, (1)) ⇒∗TG (t, t′,�), then
(A,A′, (1))⇒SG ∗(yd(t), yd(t′),�).

Claim 2 For any A,A′ ∈ N , v ∈ X∗ and w ∈ Y ∗, if (A,A′, (1))⇒SG (v, w,�), then there
are trees t ∈ TΣ(X) and t′ ∈ TΩ(Y ) such that yd(t) = v, yd(t′) = w and (A,A′, (1)) ⇒∗TG
(t, t′,�).

The other inclusion is also straightforward, and can be obtained by simply imitating the
proof of Proposition 5.3.3.
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Chapter 8

Concluding Remarks, Further Topics

and Bibliographic Notes

In this chapter, we exhibit in Table 8.1.1 a summary of the main results presented in this
thesis, along with several related topics and references that are proposed for further study.

8.1 A summary of the main results

In this section, we present a summary of the classes of translations and tree transforma-
tions naturally de�ned by means of tree bimorphisms that were studied in this monograph,
along with some of their most useful properties. Also their connection with well-known
synchronous grammars and tree transducers from the literature is outlined. Note that

⋃
and

⋂
denote the closure under union and intersection, respectively.

The inclusion relation between the classes of tree transformations of Table 8.1.1 and
corresponding translations are shown in Proposition 6.4.2, Section 6.7.2 and the Hasse
diagrams of Figures 3.3.1, 5.2.2, 5.2.3, 6.2.3, and 6.6.1.

When de�ned and connected in such an uniform manner, the formalisms (especially
synchronous grammars) can be straightforwardly extended to assign probabilities to rules,
whereby probability distributions can be de�ned, both on the translations and on tree
transformations (Nederhof and Vogler, 2012).

8.2 Topics to be considered

Next, several ideas for further study are proposed.

8.2.1 Future work on Section 5.3.2

Already in Corollary 6.4.9, we exempli�ed how the connection between GSTSGs and the
tree bimorphism formalism detailed in Chapter 6 can be used to improve the mathematical
foundations of such grammars by showing various closure properties and decidability results.
Next, we propose di�erent research topics that might be of practical interest in view of the
linguistic relevance of GSTSGs and their link with linear non-deleting XTT-transducers.

In the spirit of Theorems 3.3.11 and 2.4.6, one can consider proper GSTSGs without 'ε-
rules' or unit rules, i.e., without rules of the forms A;A′ → B; r, A;A′ → r;B′ and A;A′ →
B;B′. Could these rules be safely eliminated without a�ecting the generative/translation
capacity? Also normal forms (cf. Theorem 3.3.12) can be de�ned and studied. Furthermore,
a simple GSTSGs could be de�ned as a GSTSG GS in which in every production A;A′ →
r; r′ (σ) in P , the permutation σ is the identity. How do they relate to simple SDTSs? What
theoretical properties do they have? Are they practically relevant?
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Bimorphisms Translations Transducers Properties Decidability

Alphabetic tree transformations τ [aTB] (Takahashi, 1972)

Alphabetic λ[sSDTS] QREL
COMP, SYM,
PRES, PRES−1,

⋃ equality

De�nitions
6.1.3 and 6.3.1

Theorem 6.3.7(ii)
Theorem
6.3.9

Theorem 6.3.3 Theorem 6.3.3

Permuting tree transformations τ [pTB] (Takahashi, 1972)

Permuting λ[SDTS] p-TOP
COMP, SYM,
PRES, PRES−1,

⋃ equality

De�nitions
6.1.3 and 6.3.1

Theorem 6.3.7(i)
Theorem
6.3.11

Theorem 6.3.3 Theorem 6.3.3

Σ-rational tree transformations Σ-RTTs (Steinby, 1984, 1986, 1990)

Σ-rational
λ[rSDTS],λ[FST ]

BOT
COMP, SYM,
PRES, PRES−1,⋃
,
⋂

emptiness,
�niteness,
membership,
inclusion,
equality

De�nition
6.7.1

Theorems
6.7.2(viii) and
3.3.19

Theorem
6.7.2(ix)

Theorem 6.7.2
Theorem
6.7.2(x)

Σ-algebraic tree transformations Σ-ATTs (Steinby, 1984, 1986, 1990)

Σ-algebraic λ[sSDTS] l-BOT
COMP, SYM,
PRES, PRES−1,⋃
,
⋂

emptiness,
�niteness,
membership,
inclusion,
equality

De�nition
6.7.3

Theorem 6.7.4(vi)
Theorem
6.7.4(vii)

Theorem 6.7.4
Theorem
6.7.4(ix)

Linear non-deleting tree transformations τ [lnTB] (Arnold and Dauchet, 1976a, 1982)

Linear
non-deleting

λ[SDTS],
λ[STSG],
λ[GSTSG]

ln-XTT
SYM, PRES,
PRES−1,

⋃ emptiness,
�niteness

De�nition
6.1.3

Theorem 6.4.8(ii),
Corollary 5.3.9

Theorem
6.4.8(i)

Theorem 6.4.1 Corollary 6.4.9

Fine tree transformations τ [fTB] (Bozapalidis, 1992)

Fine λ[SDTS]
Rahonis
(2001)

COMP, SYM,
PRES, PRES−1,

⋃ equality

De�nitions
6.1.3 and 6.5.1

Theorem 6.5.4
Theorem
6.5.4

Theorem 6.5.4 Theorem 6.5.4

Quasi-alphabetic tree transformations τ [qaTB] (Steinby and Tîrn uc , 2007, 2009)

Quasi-
alphabetic

λ[SDTS],
λ[SCFG]

q-XTT
COMP, SYM,
PRES, PRES−1,

⋃ emptiness,
�niteness,
membership

De�nitions
6.1.3 and 6.2.1

Theorem 6.2.25

Theorem
6.2.34,
Proposition
6.2.23

Theorems 6.2.17
and 6.2.6,
Corollary 6.2.10,
Proposition 6.2.11

Theorem 6.2.7

Table 8.1.1: Weak and strong equivalences of classes of tree transformations and translations
de�ned by tree bimorphisms, synchronous grammars or tree transducers. Properties of such
classes � a summary of results.
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As for the closure properties of GSTSGs, it remains an open question if τ1 ∩ τ2 is in
τ [GSTSG] for any τ1, τ2 ∈ τ [GSTSG]. Moreover, τ [GSTSG] is not closed under composi-
tion, but compositions with tree transformations belonging to subclasses of τ [GSTSG] may
be worth studying. For example, if τ1 ∈ τ [GSTSG] and τ2 ∈ τ [STSG], one could verify
if τ1 ◦ τ2 and τ2 ◦ τ1 are in τ [GSTSG]. As for the decidability results for GSTSGs, the
following questions are still open:

• Inclusion: Is τ(GS) ⊆ τ(GS′)?

• Equivalence: Is τ(GS) = τ(GS′)?

• Composition: Is τ(GS) ◦ τ(GS′) ∈ τ [GSTSG]?

• Intersection: Is τ(GS) ∩ τ(GS′) 6= ∅?

8.2.2 Future work on Chapter 7

The following topics could be further explored for STGs. For example, the Hasse diagram
showing the inclusion relations between the classes λ[STG], λ[lSTG], λ[nSTG], λ[oSTG],
λ[sSTG], λ[lnSTG], λ[loSTG], etc. could be explored. Also other known classes of trans-
lations may be placed into the diagram. In addition, one could verify if the composition
of two STG-translations is an STG-translation. But how about compositions of, or with,
special STG-translations?

Moreover, it could be interesting to investigate other closure properties of the classes
λ[xxSTG], where xxSTG is any type of STG introduced in De�nition 7.1.3. In particular,

• λ1, λ2 ∈ λ[xxSTG] ⇒ λ1 ∪ λ2 ∈ λ[xxSTG]?

• λ1, λ2 ∈ λ[xxSTG] ⇒ λ1 ∩ λ2 ∈ λ[xxSTG]?

• λ1, λ2 ∈ λ[xxSTG] ⇒ λ1 \ λ2 ∈ λ[xxSTG]?

Also to characterize STG-translations in terms of tree bimorphisms may be quite re-
warding in view of the results presented so far in Chapter 6. Furthermore, special classes
of STGs could be characterized by such devices, and one shall relate them to known classes
of tree bimorphims that were studied in Chapter 6.

The construction follows the lines of Section 6.2.2. Every derivation in an STG can
obviously be replaced with a leftmost one that yields the same result and in which exactly
the same productions are used as in the original derivation. Hence, we may view leftmost
derivations as normal forms of derivations, and again we will represent them by production
trees. These are de�ned as follows.

Let SG = (N,X, Y, P, S, S′) be an STG. We associate with SG a ranked alphabet ΣSG

that contains for each production A;B → α;β (σ) in P a symbol [A;B → α;β (σ)] of rank
|α|N , i.e., for every m ≥ 0,

ΣSG
m = {[A;B → α;β (σ)] | A;B → α;β (σ) ∈ P, |α|N = m} .

Now, the sets P (SG,A) of ΣSG-trees associated with the nonterminals A ∈ N are de�ned
inductively as usual. The set of production trees of SG is the ΣSG-tree language P (SG) :=
P (SG, S).
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Clearly, the production trees can be converted to production trees of the input grammar
SGin by the alphabetic tree homomorphism that maps [A;B → α;β (σ)] to [A → α]. The
following fact is also obvious.

Lemma 8.2.1. P (SG) ∈ Loc ∩DRecvf . 2

To see how a production tree represents a derivation in SG, we split it into a tree that
represents the generated input and a tree that represents the generated output. This way
a converse can be obtained by focusing on tree bimorphisms (ϕ, P (SG), ψ) with ϕ and
ψ of some type (a quasi-symbol-to-symbol tree homomorphism could be de�ned similarly
as quasi-alphabetic tree homorphisms extended alphabetic and permuting tree homomor-
phisms; such a de�nition shall do the trick).

Now using the representation by tree bimorphisms, one can show that the membership
problem �(u, v) ∈ λ(ST )?� is decidable for synchronous translation generators. If it is not,
how about the various special types (linear, non-deleting, etc.)? How about SDTSs?

On the other hand, to describe a class of (extended) tree transducers that characterizes
τ [STG] and �nd the appropriate special types corresponding to our subclasses of τ [STG]
means to improve knowledge and applicability of such synchronous generators.

Moreover, let Sstg denote the STG-surface language operator, i.e., if L is a family of
languages, then Sstg(L) is the family of all the languages Lλ (:= {v | (u, v) ∈ λ, u ∈ L}),
where L ∈ L and λ ∈ λ[STG]. The following topics on surface languages then might be
worth investigating:

(a) Study/characterize/bound Sstg(CFL).

(b) Study/characterize/bound Sstg(Reg).

(c) Are CFL ⊆ Sstg(CFL) ⊆ S2
stg(CFL) ⊆ . . . and Reg ⊆ Sstg(Reg) ⊆ S2

stg(Reg) ⊆ . . .
properly ascending chains?

(d) Are there some natural upper bounds or limits of the above chains?

Of course, the same questions can be considered for all the special classes of STGs (and
perhaps for other families of languages).

As for the STTGs, the following directions could be further explored. One could exhibit
and verify the Hasse diagram that will show the inclusion relations between the classes
τ [STTG], τ [lSTTG], τ [nSTTG], τ [oSTTG], τ [sSTTG], τ [lnSTTG], and τ [loSTTG], for
example. Also, other known classes of translations may be placed into the diagram. Further-
more, one could check if the composition of two STTG-tree transformation is an STTG-tree
transformation. How about compositions of, or with, special STTG-transformations?

In addition, one could study other closure properties of the classes τ [xxSTTG]. In
particular,

• τ1, τ2 ∈ τ [xxSTTG] ⇒ τ1 ∪ τ2 ∈ τ [xxSTTG]?

• τ1, τ2 ∈ τ [xxSTTG] ⇒ τ1 ∩ τ2 ∈ τ [xxSTTG]?

• τ1, τ2 ∈ τ [xxSTTG] ⇒ τ1 \ τ2 ∈ τ [xxSTTG]?
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STTG-tree transformations could be characterized in terms of tree bimorphisms in or-
der to improve their mathematical background. Moreover, one could characterize also the
special classes of STTGs and relate them to known classes of tree bimorphims. Again one
could construct a tree bimorphism for any STTG by using the production trees (see also
Section 6.2.2). The production trees are local, and also a converse can be obtained by
focusing on tree bimorphisms (ϕ,R, ψ) of some type, where R is local. Then the following
question could be addressed: assuming that the membership problem �(s, t) ∈ τ(TG)?� is
decidable, device a practical decision algorithm.

In order to improve the applicability of STTGs, one should describe a class of (extended)
tree transducers that characterizes τ [STTG], and �nd the appropriate special types corre-
sponding to our subclasses of τ [STTG].

Furthermore, let Ssttg denote the STTG-surface language operator, i.e., if F is a family
of languages, then Ssttg(L) is the family of all the languages Tτ (:= {s | (s, t) ∈ τ, u ∈ T}),
where T ∈ F and τ ∈ τ [STTG]. The following topics on surface languages could be
investigated:

(a) Study/characterize/bound Ssttg(Rec).

(b) Is Rec ⊆ Ssttg(Rec) ⊆ S2
sttg(Rec) ⊆ . . . a properly ascending chain?

(d) Are there some natural upper bounds of the above chain? Can we characterize the
limit family?

Of course, the same questions can be revisited for all the special classes of STTGs (and
perhaps for other families of languages).

8.3 Bibliographic notes

This section hopefully provide inspiration for further reading. Each subsection mostly
contains the very �rst papers on the topic of the mentioned chapter and recent advances
(up to 2014) of related formalisms that could not be covered by the thesis. The idea was
also to point out possible applications of the notions introduced.

8.3.1 On Chapter 2

The theory of formal languages emerged in the 1950s when four di�erent types of grammars
were introduced as devices for de�ning natural languages (Chomsky, 1956, 1957, 1959b, a).
The classi�cation of these classes of grammars and languages into the �rst Chomsky hier-
archy became clearer in Chomsky (1963) and Bar-Hillel (1964), and, since then, a standard
reference in the �eld.

The concept of a �nite-state system originates in the work of McCulloch and Pitts
(1943). Hu�man (1954), Mealy (1955) and Moore (1956) independently established �nite
automata as they are customary described and used nowadays. A �rst comprehensive study
of �nite automata (characterization, closure properties, and decidability results) was done
by Rabin and Scott (1959).

The idea of a pushdown automaton was independently introduced by Oettinger (1961)
and by Schützenberger (1963). The equivalence between context-free languages and push-
down machines was formally shown by Chomsky (1962) and Evey (1963). Deterministic
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pushdown automata were introduced by Fischer (1963). One-turn pushdown automata are
due to in Ginsburg and Spanier (1966).

Turing machines were de�ned by Turing (1936). Linear bounded automata were �rst
studied by Myhill (1960), and later on their equivalence with context-sensitive languages
was established by Landweber (1963) and Kuroda (1964).

Among the great variety of textbooks dedicated to formal languages and their appli-
cations one can �nd Aho and Ullman (1972), Aho and Ullman (1973), Bar-Hillel (1964),
Eilenberg (1974), Ginsburg (1966), Harrison (1978), Hopcroft and Ullman (1969), Hopcroft
et al. (2001), Hopcroft et al. (2006), Kozen (1997), Linz (2001), Martín-Vide et al. (2004),
Rozenberg and Salomaa (1997), Salomaa (1973), Sipser (1997), Sudkamp (1997), Sudkamp
(2006), Taylor (1998), Beesley and Karttunen (2003) and Roche and Schabes (1997).

8.3.2 On Chapter 3

An automatic translation means to mechanically transform strings of one language into
another, and the concept is even older than the computing machines. With it, the theoret-
ical framework for describing devices that de�ne translations, generally called translation
theory, developed quickly in the 1950s to be applied in linguistics, especially in machine
translation (Weaver, 1955, Chomsky, 1957, Locke and Booth, 1955, Bar-Hillel, 1960), and
in computer science such as in compiler design (Wilkes (1951), Sheridan (1959), Backus
(1959), Backus et al. (1960, 1963), Irons (1961), Dijkstra et al. (1959); for overviews see
Wilkes (1968), Sammet (1969), Wexelblat (1981), O'Hearn and Tennent (1997), and Priest-
ley (2011), for example). Since then many translation classes have been introduced and
studied theoretically and experimentally, but a perfect candidate to handle all ambiguities
and syntactic di�erences encountered in natural languages is yet to be found.

Regular translations were �rst studied by Elgot and Mezei (1965) and numerous meth-
ods to de�ne them were investigated since then: �nite-state transducers (Elgot and Mezei,
1965, Ginsburg, 1962, 1966), right-linear syntax-directed translation schemata (Aho and
Ullman, 1972), string bimorphisms (Nivat, 1968), matrix representations (Berstel, 1979),
formal power series (Eilenberg, 1974, Salomaa and Soittola, 1978), and tree bimorphisms
(Steinby (1986); cf. also Tîrn uc  (2011) and Proposition 6.2.28). In the literature, regular
translations are known under di�erent names: regular transductions, �nite state transducer
mappings, �nite transductions, rational translations, rational transductions or rational re-
lations (Aho and Ullman, 1972, Berstel, 1979, Cho�rut, 1978, Mohri, 1997, Yu, 1997, Elgot
and Mezei, 1965, Ginsburg, 1966, Eilenberg, 1974, Wintner, 2001, Roche and Schabes, 1997).
For good overviews on their properties and numerous applications, especially in NLP, com-
puter science and biology, the interested reader can consult, for example, Cho�rut (1978),
Berstel (1979), Cortes and Mohri (2005), Aho et al. (2006), Rozenberg and Salomaa (1997),
Jurafsky and Martin (2009), Roche and Schabes (1997), Beesley and Karttunen (2003),
Mohri (1996, 1997), and the references therein.

The concept of syntax-directed translation (see Aho and Ullman, 1972, Fülöp and Vogler,
1998, Maneth, 2004, for detailed explanations) appeared for the �rst time in the works
of Irons (1961, 1963), and Barnett and Futrelle (1962) as a simple model of a compiler.
Immediately after, their properties were systematically investigated when syntax-directed
translations were de�ned by syntax-directed translations schemata (�ulík, 1965, 1966, 1968,
Lewis II and Stearns, 1966, 1968, Younger, 1966, 1967, Paull, 1967, Aho and Ullman, 1969b)
and (k-register) pushdown transducers (Aho and Ullman, 1968, 1969a). Later on, the math-
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ematical foundations of syntax-directed translations (see Vere, 1970, Aho and Ullman, 1972,
for overviews) were improved when they were characterized by means of tree bimorphisms
by Steinby and Tîrn uc  (2007, 2009), and Maletti and Tîrn uc  (2009, 2010) (see Sec-
tion 6.2 for a complete exposition).

Good introductory textbooks of applications of syntax-directed translations in computer
science are Aho and Ullman (1972, 1973), Crespi-Reghizzi (2009) and Aho et al. (2006).
On the other hand, the usefulness of this well-known translation class in NLP, especially in
machine translation, is surveyed in the works of Yamada and Knight (2001), Chiang and
Knight (2006), Jurafsky and Martin (2009), Huang (2008) and Chiang (2006, 2007).

Simple syntax-directed translations were systematically studied by Aho and Ullman
(1969a), where they were de�ned by means of string bimorphisms and simple syntax-directed
translation schemata. Their application in compiler design is surveyed by Aho and Ullman
(1972) and Aho et al. (2006).

Translations de�ned by inversion transduction grammars are due to Wu (1995, 1997)
and their usefulness, especially in alignment, was further studied by Wu and Fung (2005),
Wu et al. (2006), Saers and Wu (2009), Saers et al. (2009) and Saers et al. (2012).

Linear syntax-directed translations were �rst investigated by Aho and Ullman (1972),
and recently they have received an increased interest in the NLP community because of
their utility in word alignment (see Saers, 2011, for an overview). Moreover, di�erent
ways to de�ne them were studied: linear syntax-directed translation schemata (Saers et al.,
2010), zipper �nite-state transducers (Saers and Wu, 2011) and string bimorphisms (Theo-
rem 3.3.15(iii)).

Extended versions of syntax-directed translation schemata were mostly considered by
linguists in the recent years as an attempt of modeling more complicated natural language
phenomena. Synchronous context-free grammars were introduced by Satta and Peserico
(2005), and further investigated by Zhang et al. (2006), Zhang and Gildea (2007), Satta
(2007), Huang (2008), Tîrn uc  (2011), and Huang et al. (2009), for example. They generate
exactly the syntax-directed translations as it was suggested by Huang et al. (2009, p. 565)
and Zhang et al. (2006, p. 258); this result is mentioned at least by Satta and Peserico
(2005), Chiang and Knight (2006), Satta (2007), and Maletti and Tîrn uc  (2010). All the
details are formally checked in Proposition 3.3.21.

To implement independent rewriting by means of partial deletion of syntactic structures,
Melamed (2003) introduced multitext grammars. They simultaneously generate arbitrary n
strings that are translations of each other via production rules of arbitrary length. More-
over, in the productions of such synchronous grammars both terminals as well as nonter-
minals can be linked except the empty string. However, multitext grammars of dimension
2 (Melamed, 2003, p. 81) are exactly the syntax-directed translation schemata of Aho and
Ullman (1969a, 1972).

Schreiber (1975, 1976) extended syntax-directed translation schemata by introducing the
syntax-connected transduction schemes as an attempt to better model the more complicated
phases of a compiler such as the semantic analysis, code generation and optimization. These
synchronous grammars were further extended and systematically studied in Chapter 7.1.

8.3.3 On Chapter 4

The theory of tree automata and tree languages emerged in the 1960s when J.R. Büchi
and J.B. Wright observed that �nite-state automata may be de�ned as unary algebras (cf.
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also Mezei and Wright, 1967, Thatcher, 1973). Then, the generalization to tree automata
was suggested independently by Doner (1965, 1970) and Thatcher and Wright (1965, 1968).
Moreover, Thatcher (1973) and Rounds (1970b) expressed for the �rst time the idea to give
elegant proofs using tree language theory for results on strings.

Many results presented in this chapter were obtained in various forms in early contri-
butions by various authors. Even then many of them de�ned trees as terms and nowadays
this formalism is the most common one. However, most authors do not use a separate
frontier alphabet, but we followed Gécseg and Steinby (1984), Gécseg and Steinby (1997),
Steinby (2004, 2005), for example, where the reasons (originating in universal algebra) are
explained. Also, we felt that the tree bimorphism exposition (of Chapter 6) as formalism
for describing natural language phenomena gains by using separate leaf alphabets (clearly
representing the vocabularies). Moreover, in many presentations, symbols from the ranked
alphabets may have more than one rank. This occurs especially in examples from linguistics
where a symbol represent the same grammatical category in di�erent sentences.

Alphabetic tree homomorphisms, often called projections, are due to Thatcher and
Wright (1968), and general tree homomorphisms arose as special cases of tree transfor-
mations computed by tree transducers (see Thatcher, 1970, 1973, Engelfriet, 1975a, cf. also
Section 5.2.3 for details). Other special types of tree homomorphisms, such as linear, non-
deleting, strict, normalized, permuting, �ne, quasi-alphabetic and symbol-to-symbol, can be
found in the literature, cf., for example, Thatcher (1973), Arnold and Dauchet (1978a, 1982),
Steinby (1986), Takahashi (1972, 1977), Steinby and Tîrn uc  (2007, 2009), Comon et al.
(2007), and Bozapalidis (1992).

Deterministic and nondeterministic bottom-up tree recognizers were invented, and their
equivalence was established, in the mid-1960s independently by Thatcher andWright (1968),
Doner (1965, 1970), and Magidor and Moran (1969). Nondeterministic top-down tree rec-
ognizers were introduced by Rabin (1969) and Magidor and Moran (1969). The latter
paper investigated deterministic top-down tree recognizers and also showed the equivalence
between nondeterministic top-down and bottom-up tree recognizers.

Regular tree grammars are due to Brainerd (1969), and their restriction motivated by
linguistics - tree substitution grammars, appeared twenty years later in the work of Schabes
(1990).

Also, alternative ways to specify recognizable tree languages were investigated (see Géc-
seg and Steinby, 1984, Gécseg and Steinby, 1997, for expositions): �xed point equations
(Mezei and Wright, 1967, Eilenberg and Wright, 1967), congruences (Brainerd, 1968, Arbib
and Give'on, 1968, Magidor and Moran, 1969, Kozen, 1977, Fülöp and Vágvölgyi, 1989a),
logic formulae (Thatcher and Wright, 1968, Doner, 1970), regular expressions (Arbib and
Give'on, 1968, Thatcher and Wright, 1968, Magidor and Moran, 1969) and elementary op-
erations on tree languages in the Medvedev style (Costich, 1972).

The basic properties of recognizable tree languages were shown in the very �rst papers
in tree language theory: Mezei and Wright (1967), Eilenberg and Wright (1967), Thatcher
(1970), Magidor and Moran (1969), Thatcher and Wright (1968), Arbib and Give'on (1968),
Doner (1970) and Brainerd (1968, 1969).

Local tree languages were investigated by Thatcher (1967, 1970), Magidor and Moran
(1969), and Doner (1970).

The connection between context-free languages and recognizable tree languages was es-
tablished using equations (Mezei and Wright, 1967, Magidor and Moran, 1969) and deriva-
tion trees (Thatcher, 1967, 1970, Doner, 1970). Engelfriet (1975c) and Steinby (1977) further

UNIVERSITAT ROVIRA I VIRGILI 
SYNTAX-DIRECTED TRANSLATIONS, TREE TRANSFORMATIONS AND BIMORPHISMS 
Catalin Ionut Tirnauca 



8.3. Bibliographic notes 167

used various forms of production trees.
Context-free tree grammars are due to Rounds (1969, 1970a, b) and originate in the idea

of Fischer (1968). Immediately, they were systematically studied by Engelfriet and Schmidt
(1977a, b), Arnold and Dauchet (1976c, 1977, 1978a), Downey (1974) and Maibaum (1974).

Several handbooks (Gécseg and Steinby, 1984, Gécseg and Steinby, 2015, Gécseg and
Steinby, 1997, Comon et al., 2007) were dedicated to survey the basic results related to
trees and tree language theory. Also, Thatcher (1973), Engelfriet (1975c, 2015), and Steinby
(2004) o�er good introductions into the �eld.

8.3.4 On Chapter 5

To formally de�ne and study how a (parse) tree is transformed into another (parse) tree
has become customary since 1960s when the theory of program schemata, syntax-directed
translations, attributed grammars and semantic interpretation emerged. Among the �rst
papers dealing with tree transformations and their applications we mention: Thatcher
(1970, 1973), Rounds (1968, 1970a, 1973), Kop°iva (1970), Engelfriet (1971, 1975a, c),
Baker (1973a, b), Rosen (1971), Ogden and Rounds (1972), Martin and Vere (1970), Joshi
et al. (1972, 1975), Kosaraju (1973), Alagi¢ (1973, 1975), and Bertsch (1973). Recently,
the computational linguistics community has extensively turned to tree-based approaches
(many times enriched with weights) for NLP applications such as: syntax-based machine
translation (Abeillé et al., 1990, Shieber and Schabes, 1990b, Yamada and Knight, 2001,
Graehl and Knight, 2004, Knight and Graehl, 2005, Eisner, 2003, Melamed, 2003, Alshawi
et al., 2000, Gildea, 2003, Shieber, 2004, 2006, May, 2010, DeNeefe, 2011), summariza-
tion (Knight and Marcu, 2002), question answering (Echihabi and Marcu, 2003), language
modeling (Charniak, 2001), paraphrasing (Pang et al., 2003), and natural language gen-
eration (Shieber and Schabes, 1990a, 1991, Langkilde and Knight, 1998, Bangalore and
Rambow, 2000, Corston-Oliver et al., 2002).

Top-down tree transducers were introduced by Rounds (1968, 1970a) and Thatcher
(1970), as models of transformational grammars of Chomsky (1957). Bottom-up tree trans-
ducers are due to Thatcher (1973). Schreiber (1975, 1976) de�ned the generalized �nite
tree transducer, which combines both devices: a move applies a top-down tree transducer
rule followed by a bottom-up tree transducer rule. As it was mentioned in the case of tree
languages and tree recognizers, many of the authors dealing with tree transducers do not
use a separate leaf alphabet. Also, some of them allow symbols from the ranked alphabets
to have more than one rank.

The basic properties of such tree transducers and their variants (deterministic, total,
linear, non-deleting, relabeling, etc.), inclusion relations between various classes and many
composition and decomposition results were �rst studied by Engelfriet (1971, 1975a, c)
and Baker (1973a, b, 1978b, 1979), and later by Vágvölgyi (1986), Fülöp and Vágvölgyi
(1987, 1991), Engelfriet (1982) and Fülöp (1991).

Top-down tree transducers with regular look-ahead are due to Engelfriet (1975b, 1977),
and this notion has been developed further in various ways: Bloem and Engelfriet (2000),
Fülöp and Vágvölgyi (1989b, c, d), Engelfriet and Vogler (1985, 1986, 1987, 1988), Maletti
et al. (2009), Vágvölgyi (1992), Maletti (2007, 2008), and Engelfriet et al. (2016).

Extended top-down tree transducers were �rst considered by Dauchet (1975), Arnold and
Dauchet (1976a, 1982), and Lilin (1978), and later by Graehl and Knight (2004). Extended
top-down transducers with regular look-ahead were introduced by Maletti et al. (2009).
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Variants of such tree transducers, useful closure properties, composition and decomposition
results, and relations with the classical (top-down and bottom-up) tree transducers were
studied since then, also by Knight and Graehl (2005), Maletti (2007, 2008, 2010b, 2012),
Maletti et al. (2009), Maletti and Vogler (2009), Fülöp and Maletti (2013), Graehl et al.
(2008), Lagoutte et al. (2012), and Tîrn uc  (2009) (cf. Knight, 2007, Maletti, 2010a, Raz-
mara, 2011, for overviews and further references).

In a similar manner, bottom-up tree transducers were generalized to (extended) multi
bottom-up tree transducers (Lilin, 1978, Fülöp et al., 2004, 2005, Maletti, 2007, Engelfriet
et al., 2008) by allowing the states to have an arbitrary rank (�multi�) and by permitting
trees of arbitrary height on both sides of the rules (�extended�). Variants of them, properties
appealing for NLP applications including composition and decomposition results, and con-
nections with other well-known classes of tree transformations were systematically studied
by Fülöp et al. (2004, 2005), Maletti (2008, 2010c, 2011a, b, 2012), Engelfriet et al. (2009),
and surveyed by Maletti (2010a).

Generalized syntax-directed translators were de�ned by Aho and Ullman (1969c), Aho
and Ullman (1971), Martin and Vere (1970) and Baker (1978a) to transform trees into
strings in a top-down fashion. As also surveyed by Gécseg and Steinby (1984), Gécseg
and Steinby (2015) and Gécseg and Steinby (1997), they are technically useful for studying
certain properties of tree transformations classes computed by classical tree transducers and,
in compiler design, as mathematical models of syntax-directed translations of context-free
grammars. Recently, such transducers were called (top-down) tree-to-string transducers in
the computational linguistics community (Knight and Graehl, 2005), and used in several
machine translation models, especially when there does not exist a good parser for the
output language or trees are not available on the output side of a training corpus: Yamada
and Knight (2001), Galley et al. (2004), Galley et al. (2006), and Marcu et al. (2006).

Even more powerful tree transducer models were introduced and studied over time.
Macro tree transducers were introduced by Engelfriet (1980), and a comprehensive discus-
sion of them can be found in Engelfriet and Vogler (1985), Fülöp and Vogler (1998), and
Maneth (2004), for example. Restricted versions of such transducers were recently applied
in machine translation by Shieber (2006), Maletti (2012), and Nederhof and Vogler (2012).
Other very powerful transducer devices are, for example: alphabetic tree transducers and
synchronized tree transducers (Rahonis, 2001), attributed tree transducers (Fülöp, 1981, En-
gelfriet, 1980, 1981), modular tree transducers (Engelfriet and Vogler, 1991), and ground tree
transducers (Dauchet and Tison, 1990, Dauchet et al., 1990). However, our list is far from
comprehensive, and the interested reader can �nd more models and further references in
the works of Gécseg and Steinby (1997), Maneth (2004), Fülöp and Vogler (1998), Comon
et al. (2007), and Fülöp (2004), for example.

Gécseg and Steinby (1984), Gécseg and Steinby (1997), Gécseg and Steinby (2015),
Fülöp and Vogler (1998) and Comon et al. (2007) are the classical textbooks covering
the tree transducer theory, but also Thatcher (1973), Engelfriet (1975a, c), Fülöp (2004),
Steinby (2005), Knight (2007), Maletti (2010a) and Razmara (2011) survey the basic tree
transducers discussed in this chapter, as well as their applications.

The process of simultaneous generation of pairs of strings and trees, and its applications
in compiler design and NLP is reviewed by Satta (2004, 2009), and Chiang and Knight
(2006), Chiang (2006) and Razmara (2011) o�er good and brief introductions into the
features of the most well-known synchronous grammars and their usefulness in representing
natural language phenomena.
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Synchronous tree-substitution grammars were mentioned for the �rst time in the work
of Schabes (1990), and Shieber (2004) and Eisner (2003) started to use them to naturally
model local rotations in the form of subject-object swapping, a very common phenomenon
occurring in translations between natural languages. Enriched with weights, synchronous
tree-substitution grammars further found their use in NLP in alignment (Gildea, 2003),
statistical (syntax-based) machine translation (DeNero et al., 2009, Graehl et al., 2008, Liu
et al., 2009, Chiang, 2010, Zhang et al., 2006, 2007, 2013), annotation (Kato and Matsubara,
2010b, a, Krasnowska et al., 2012) and sentence compression (Cohn and Lapata, 2009,
Yamangil and Shieber, 2010, Feblowitz and Kauchak, 2013), for example.

Generalized synchronous tree-substitution grammars can be found in the literature under
the name of synchronous tree-substitution grammars with states, and their weighted ver-
sion was de�ned and systematically studied for solving various tasks in statistical machine
translation by Maletti (2010c, 2011a) and Fülöp et al. (2010).

Synchronous tree-adjoining grammars were independently introduced by Shieber and
Schabes (1990b, a) and Abeillé et al. (1990) as a more powerful type of synchronous tree
substitution grammar that also allows tree adjunction (Joshi and Schabes, 1997) as opera-
tion at its nodes, besides substitution. Used to explicitly model even the most complicated
natural language phenomena encountered, for example, in semantic interpretation, natural
language generation, paraphrasing and machine translation, the synchronous tree-adjoining
grammars were further studied by Schabes and Joshi (1990), Shieber and Schabes (1991),
Shieber (1994), Abeillé (1994), TAG+3 (1994), Park (1995), Dras (1997, 1999), Schuler
(1999), Nesson et al. (2008), Shieber (2006), and Maletti (2010b), for example. Their
stochastic version is due to Shieber (2007) and the applicability of the weighted model
to statistical machine translation is surveyed by DeNeefe (2011) (see also the references
therein). However, it is generally argued that such generating devices are algorithmically
expensive for practical use in machine translation.

Therefore, in the last decade, many other devices that generate pairs of trees in a syn-
chronized manner were proposed having as motivation various problems in NLP, especially
in (statistical) machine translation. We mention synchronous context-free tree grammars
(Nederhof and Vogler, 2012), generalized multitext grammars (Melamed et al., 2004), syntax-
directed translations with extended domain of locality (Huang et al., 2006), synchronous
description tree grammars (Rambow et al., 1995, Rambow and Satta, 1996), synchronous
dependency insertion grammars (Ding and Palmer, 2005), synchronous tree-insertion gram-
mars (Nesson et al., 2006, DeNeefe and Knight, 2009), synchronous tree sequence substitu-
tion grammars (Raoult, 1992, Zhang et al., 2008b, a, Sun et al., 2009, Maletti, 2011c), and
synchronous forest substitution grammars (Maletti, 2013), for example.

Finally, bear in mind that very often tree transducers and synchronous grammars are
connected via tree bimorphisms, the formalism that we studied in detail in Chapter 6, in
an attempt to improve the mathematical foundations of both devices and subsequently,
their relevance in practice. Most of these relations are proved or referred to throughout this
chapter and especially in Section 6.7 (cf. Tîrn uc , 2008, for a brief exposition).
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