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Summary 

 
Electrosprays, which are generated as a result of the breakup of a liquid jet subjected to 

a sufficiently strong electric field, are constituted of highly charged micro drops moving 

under the action of electrostatic forces. The droplets hence generated are transported under 

the combined influence of the electrostatic gradient between the emitter needle and 

counterplate, the interaction with the spray charge and the aerodynamic drag force. Most 

of the applications of electrosprays involve droplet evaporation as a critical aspect in 

achieving their desired result . While many numerical models of electrosprays have 

neglected gas flow induced by the collective motion of the charged droplet cloud, 

experimental evidence shows that the gas speed can be significant locally in these 

systems. Also considering the importance it can have in droplet evaporation in volatile 

electrosprays, there is a need for a general methodology to include the induced gas flow 

caused by the droplets in current numerical models of electrospray dynamics. 

Furthermore, since the gas motion also influences the droplet motion, a formulation that 

can accurately describe these motions should be fully coupled (i.e., two-way coupled). 

Such improved models should be able to elucidate the influence of the induced gas flow 

on variables of practical importance such as the flux deposition pattern on the 

counterplate, plume spread, droplet number density distribution, and also in the prediction 

of droplet evaporation.  

In view of these, we developed a numerical scheme which includes the gasflow 

induced by droplet motion in the numerical simulation of electrosprays. This thesis is 

organized in four chapters.  

A general introduction on electrosprays, their applications, importance of numerical 

simulations for electrospray systems and the need of including the effects of induced 

gasflow in these simulations are described in Chapter 1.  

An objective of this thesis in applying this computational scheme initially on a non-

volatile electrospray system, is described in Chapter 2. Also explained in this chapter is 

the technique of employing Gaussian filters with variable kernel widths that depend on the 

droplet number density, in order to resolve the reactive drag force on the gas by the 
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droplets. We quantified the effect of induced gasflow on the characteristics of the droplet 

plume (viz., droplet number density, droplet velocity, droplet size distribution), as well as 

on droplet dynamics and mass flux, by applying this scheme to an experimentally 

characterized spray by Tang & Gomez (1994), which comprised of non-evaporating 

primary and satellite droplets in air. Results showed better agreement with the 

experimental data when airflow is taken into account than when it is not (assuming still 

air).  

Electrospray applications usually involve volatile spray systems and gasflow being an 

important aspect in droplet evaporation, we further developed a comprehensive numerical 

scheme which fully couples the Lagrangian electrospray droplet dynamics with the effects 

of induced gasflow, Coulomb explosions, and the transport of solvent vapor as well as 

charge left over by vanishing droplets in such systems. The procedure to couple the 

different physics involved is discussed in Chapter 3. 

Also discussed in this chapter is the application of this numerical scheme to compare 

the evaporation effects in three electrospray systems with solvents of different volatility, 

viz., acetone, methanol and n-heptane.  Droplets were injected with unimodal and log-

normal distributed diameters with a mean value of 8 μm, and a coefficient of variation of 

10%. Steady state solutions for the electrospray system in Lagrangian framework and for 

the three Eulerian fields (gasflow dynamics, transport of vapor and charge left by 

vanishing droplets) were obtained, which helps to quantify the effects of various 

phenomena  in a volatile electrospray system. The regions of intense Coulomb explosion 

events within the spray are well captured in form of diagonal bands (in the 2D domain). In 

all three cases, few or no droplets arrive at the counterplate located 3 cm down the 

capillary nozzle, highlighting the relevance of accounting for evaporation when simulating 

these systems. Conclusions from the present thesis work are elaborated in Chapter 4. 
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Chapter 1 

Introduction 
 

1.1  Electrosprays and their applications 

 

Electrosprays are constituted of highly charged micro drops moving under the action of 

electrostatic forces. They are generated as a result of the breakup of a liquid jet subjected 

to a sufficiently strong electric field. In a simple electrospray system, to attain this, high 

voltage (~ in the order of several kV) is applied between the capillary needle (emitter) 

through which the liquid flows and the substrate plate (counterplate) on which the spray is 

deposited. Fig. 1.1a depicts the schematic sketch of the mechanism. The droplets hence 

generated are transported under the combined influence of the electrostatic gradient 

between the emitter and counterplate, the interaction with the spray charge and the 

aerodynamic drag force. Depending upon the liquid flow rate, and voltage applied 

between the electrodes, electrosprays can exhibit different modes, viz. dripping, pulsation, 

cone-jet, and multi-jet.  Fig. 1.1b shows the photograph of an electrospray in cone-jet 

mode. 

Taylor cone & jet 

V Highly
charged 
micro-drops

Collector plate
*courtesy : E. Bodnar

(a) (b)
 

Fig. 1.1 (a) Schematic diagram of a simple electrospray mechanism. (b) an electrospray 

in cone-jet mode 
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Since it is possible to extensively control the fineness of such particles by varying the 

applied voltage, liquid flow rate, electrode configuration, and the mechanical and 

electrical properties of the liquid (Cloupeau & Prunet-Foch, 1994), they promise extensive 

applications in the field of drug delivery, agricultural and automotive sprays, ink-jet 

printers, particle synthesis (Barrero & Loscertales, 2007; Jaworek & Sobczyk, 2008; Bock 

et al 2012), production of thin and uniform coatings (Leeuwenburgh et al., 2006; Jaworek, 

2007; de Jonge et al., 2009; Roncallo et al., 2010; Martin et al., 2010), space thrusters 

(Gamero-Castaño, 2008; Krpoun & Shea, 2009), and mass spectrometry (ESI-MS)  (Fenn 

et al., 1989; Fenn, 2003) etc.  

 

1.2  Induced gasflow and electrospray droplet evaporation 

 

When a collection of aerosol particles move with a net velocity relative to the 

surrounding gas, it exerts a drag force on the gas which can cause the gas to flow. In 

electrosprays, this gas motion is induced by the highly charged micro-drops moving under 

the action of electrostatic forces. Fig 1.2 illustrates the mechanism of induced gas motion, 

and the reactive drag force on air as contributed by an individual droplet. In this figure, Fi 

is the reactive drag force on gas due a droplet of size di moving with the velocity Vi.  ρf is 

the density of gas and u is the mean gas velocity.  

vi (droplet velocity)

U  (gas velocity)

aerodynamic drag on droplet

reactive drag on gas, Fi induces gas motion

  iii VuVuF  fiD dC  2

8

 

Fig 1.2. Schematic sketch of induced gas motion due to droplet drag 
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Because of the difficulty in experimentally assessing gas velocity in electrosprays, only 

a handful of reports have addressed the question of gas flow induced by the droplet 

motion. Tang & Gomez (1994), while carrying out a detailed experimental study on the 

structure of a heptane electrospray, measured gas velocities along the spray centerline as 

high as 34% of the droplet axial velocity. Hartman et al. (1999) found that while droplet 

diameters do not vary radially, their axial velocity dropped as much as 40% from its 

centerline value. They took this result to mean that the gas must move with a significant 

axial velocity at the electrospray centerline. 

Droplet evaporation is a critical aspect aimed at producing the desired result in many 

applications of the electrosprays, mentioned in Section 1.1. For example, the extent of 

droplet evaporation determines the variety of product morphologies that can be achieved 

via electrospray deposition (Rietveld et al, 2006, Bodnár & Rosell-Llompart, 2013). Also 

as the charged droplets evaporate, their charge to mass ratio increases, and undergoes 

droplet fission (Coulomb explosions) on reaching the Rayleigh limit which is given by 

  328 dqq oR   (1) 

 

where q is the charge held by a droplet of diameter d, qR is the charge at Rayleigh limit, ε0 

is the permittivity of vacuum and γ is the surface tension of liquid in air. By these 

explosions a parent droplet releases mass and charge through a number of progenies. Fig. 

1.3 is the schematic sketch of an evaporating electrospray droplet. 

In sum, since gas motion can be a significant factor in droplet evaporation, its study has 

relevance in the field of volatile electrospray systems. 

Convective heat 
transfer

Evaporative mass flux
Background vapor & 
charge concentrations

counterplate

Coulomb explosions (release 
of mass & charges)

 

Fig. 1.3. Schematic sketch of an evaporating electrospray droplet 
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1.3 Numerical simulations on electrospray systems 

 

The first reported numerical simulation of droplet dynamics in a non-volatile 

electrospray is by Gañan-Calvo et al. (1994), who assumed that the surrounding gas is 

still. The constituent terms of their Lagrangian model are the electrical forces produced by 

the external field (due to the electrodes) and by the space charge (droplet–droplet 

Coulombic repulsion, including image charges at the counterplate), and the drag force on 

the droplets due to friction with the gas. This general model has subsequently been 

followed to simulate various non-volatile electrospray systems by different authors, viz., 

Hartman et al. (1999), Wilhelm et al. (2003), Oh et al. (2008), Jung et al. (2010), Yang et 

al. (2012) and Grifoll & Rosell-Llompart (2012, 2014). The still gas assumption has also 

been followed in the recent Eulerian model of Higuera (2012). The assumption of the gas 

to be still has been followed in most of the numerical simulations as a matter of 

convenience, given the complexity of the endeavor. 

The numerical works that have simulated volatile electrosprays are the studies by 

Wilhelm et. al (2003) and Sen et. al (2011). In both of these, the spray system was 

assumed to evaporate against zero solvent background vapor concentration in still ambient 

conditions, wherein the droplet fission was considered. No account for including the 

airflow was done, and under this assumption diffusion alone contributed to vapor 

transport. Furthermore, any corrections in the electrostatic field due to charges left behind 

by the fully evaporating droplets were not described in these works.  

However, in some of these works, the assumption of still gas has been justified based 

on conservation arguments about the global influence of the droplet motion on the gas. 

Gañan-Calvo et al. (1994) obtained the characteristic droplet velocity by balancing 

viscous drag to electric force. By globally balancing the energy transferred per unit time to 

the gas by the spray drag, with the energy dissipated by the viscous stresses outside the 

spray boundaries, they estimate that the characteristic (average) gas velocity is much 

smaller than the characteristic droplet velocity. Wilhelm et al. (2003), while evaluating the 

extent of droplet evaporation, applied global momentum balance to their electrospray 

system estimate the average gas velocity to be 0.4 m/s, which falls between 3.7% of their 

highest axial droplet velocity and 11.7% of their lowest one. Higuera (2012) justified 
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neglecting the gas motion in his Eulerian simulation after an order of magnitude 

estimation of the momentum exchanged between the droplets and the gas.  

Since the conservation arguments are based on radially averaged variables, they can 

overlook regions of high local gas velocity. Therefore, they are not in contradiction with 

the experimental determinations of high centerline gas velocities which were mentioned 

earlier. Indeed, using a more detailed approach, Hartman et al. (1999) estimated that the 

gas velocity close to the spray centerline could be around 32% of droplet axial velocities. 

They arrived at this conclusion by balancing the electric power of the system with the 

kinetic power of the induced gas flow (confined within a radius) and the kinetic power of 

the droplets. 

Deng & Gomez (2007) are the first to partially include the effect of gas flow on the 

droplet drag calculations, by treating the early stage of the spray as a continuous 

cylindrical surface, and adopting a boundary layer sub-model based on the momentum 

integral of a logarithmic gas velocity profile. 

 

1.4 Objectives of this thesis 

 

While many numerical models have neglected induced gas flow, the experimental 

evidence shows that the gas speed can be significant locally. Also considering the 

importance it can have in droplet evaporation in volatile electrosprays, there is a need for 

a general methodology to include the induced gas flow caused by the droplets in current 

numerical models of electrospray dynamics. Furthermore, since the gas motion also 

influences the droplet motion, a formulation that can accurately describe these motions 

should be fully coupled (i.e., two-way coupled). Such improved models should be able to 

elucidate the influence of the induced gas flow on variables of practical importance such 

as the flux deposition pattern on the counterplate, plume spread, droplet number density 

distribution, and also in the prediction of droplet evaporation. In view of these, the 

objectives of this thesis can be summarized as follows: 

 

 To develop a numerical scheme which includes the gasflow induced by droplet 

motion in the numerical simulation of electrosprays. 
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 To quantify the effect of induced gasflow on the characteristics of the droplet 

plume (droplet number density, droplet velocity, droplet size distribution), as well 

as on droplet dynamics and mass flux. To verify the results against the 

experimental values in a non-volatile electrospray system, and also to compare 

such results with the simulations assuming still air. 

 

 To develop a comprehensive numerical scheme which fully couples electrospray 

droplet dynamics with the effects of induced gasflow, Coulomb explosions, and 

the transport of solvent vapor as well as charge left over by vanishing droplets in 

volatile electrospray systems. To develop separate codes for the same. 

 

 To apply the fully coupled numerical scheme in predicting the behavior of three 

electrospray systems of varying volatility. 
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Chapter 2 

Two-way coupled numerical simulation of 

electrospray with induced gas flowa 
 

2.1  Abstract 

 

The gas flow induced by droplet motion has been included in the numerical simulation 

of electrosprays. Steady state solutions were sought iteratively in a computational scheme 

that fully couples a 3D Lagrangian model for the droplet dynamics with a steady state 2D 

axisymmetric Eulerian model for the induced gas flow. To resolve the reactive drag force 

on the gas by the droplets we employ Gaussian filters with variable kernel widths that 

depend on the droplet number density. We have applied this scheme to an experimentally 

characterized spray from the literature comprised of non-evaporating primary and satellite 

droplets in air. The predicted characteristics of the droplet plume (droplet number density, 

droplet velocity, droplet size distribution) better match the experimental values when the 

induced airflow is accounted for than when it is not (assuming still air). It is shown that 

the induced airflow contributes to faster moving droplets, shrinkage of plume, and a 

prominent flux about the spray axis (centerline), as compared with the simulations 

assuming still air. Induced airflow results in an increase of 80% in axial droplets velocity 

at the centerline at the collection counterplate. The ratio of mass flux at the centerline 

between the cases of moving and still air equals 2.6 at the counterplate. We have also 

observed that the radial segregation by size of the satellite droplets is sensitive to the 

functional relationship between their charge-to-mass ratio and diameter. Induced gas flow 

is expected to have important implications in the simulation of droplet evaporation and 

vapor concentration in electrosprays. 

 

Keywords: Electrospray, Lagrangian simulation, Induced gas flow, Numerical simulation, 

Spray dynamics, Deposition. 

 
a Results published in J. Aer. Sci: http://dx.doi.org/10.1016/j.jaerosci.2013.07.005 
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Nomenclature  

 

Roman letter symbols 

a factor in the relationship between   and di (Cm-b/kg, ) 

b exponent in the relationship between   and di  

d ensemble averaged reactive drag force density (N/m3) 

'd  fluctuating component of reactive drag force density (N/m3) 

Dc capillary tube outer diameter (m) 

D instantaneous reactive drag force density (N/m3) 

CD  droplet drag coefficient 

di  diameter of i-th droplet (m) 

djet  electrospray jet diameter (m) 

pd  count mean primary droplet diameter (m) 

sd  count mean satellite droplet diameter (m) 

Eext external electrical field (V/m) 

Fi drag force acting on droplet i (N) 

k
iF  drag force acting on droplet i at stage k (N) 

Felec,i electric force acting on droplet i (N) 

H capillary tube tip to counterplate distance (m) 

K Kernel function 

KGauss Gaussian kernel function 

N number of droplets 

n  local ensemble-averaged droplet number density 

NR number of system realizations for ensemble averaging 

p average pressure (Pa)  

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL SIMULATION OF FLUID DYNAMICS AND TRANSPORT PHENOMENA IN ELECTROSTATICALLY CHARGED VOLATILE SPRAYS 
Ajith Kumar Arumugham-Achari 
DL:T 1224-2014 



 

16 
 

'p  fluctuating pressure (Pa)  

P  instantaneous pressure (Pa)  

qi electrical charge of droplet i (C)  

Q liquid flow rate (m3/s) 

r polar coordinate (m)  

Rei 















 





i

d
f i

Vu  Reynolds number  

Ri (= [xi, yi, zi]) position vector of i-th droplet (m)  

k
iR  position vector of i-th droplet at stage k (m)  

RI (= [xi, yi, 2H - zi]) position vector of image of i-th droplet on counterplate (m)  

Rij (= Ri - Rj) displacement between the position vectors of droplets i and j (m)  

RiJ  (= Ri - RJ) displacement between the position vectors from the image of droplet 

j on the counterplate to droplet i (m)  

s  average separation between the centers of neighboring droplets in the ensemble 

spray (m) 

SDp Standard deviation of primary droplets' diameters distribution (m) 

SDs Standard deviation of satellite droplets' diameters distribution (m) 

t time (s)  

u mean gas velocity vector (m/s)  

'u  fluctuating component of gas velocity vector (m/s)  

U instantaneous gas velocity vector (m/s)  

V volume of the spray (m3)  

Vi velocity vector for droplet i (m/s)  

Vjet electrospray jet velocity (m/s)  

x (=[x,y,z]) position vector (m)  
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ze droplet emission point (m) 

 

 

Greek letter symbols 

α normalization factor 

  Dirac’s delta function  

0 electrical permittivity of vacuum (8.854×10-12 C/V·m) 

  droplet charge to mass ratio (C/kg) 

p  average charge to mass ratio of primary droplets (C/kg) 

s  average charge to mass ratio of satellite droplets (C/kg) 

λ (= x - Ri) displacement between the position vector x and position of droplet i 

(m) 

μ dynamic viscosity of surrounding gas (kg/m·s) 

 electrostatic potential (V) 

0 electrostatic potential at the capillary tube (V) 

d density of drop liquid (kg/m3) 

f density of surrounding gas (kg/m3) 

  Gaussian kernel width (m) 

 

 

Acronyms 

CFD Computational Fluid Dynamics 

RANS Reynolds-averaged Navier-Stokes 

CVFD Control Volume Finite Difference 

LSC Lumped Space Charge 

OD Outer diameter 

 

2.2. Introduction  

Electrosprays are dense clouds of highly charged micro drops that are set in motion by 

the action of external electrostatic fields. Such collections of aerosol particles move with a 
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net velocity relative to the surrounding gas and, as a result, exert a reactive drag force on 

the gas, which induces gas flow. This gas motion can be significant in the study of 

electrospray dynamics, particularly when droplet evaporation is involved. Droplet 

evaporation is a key process for many applications of electrospray, such as electrospray 

ionization mass spectrometry (ESI-MS) (Fenn et al, 1989; Fenn, 2003), particle synthesis 

by electrospray (Jaworek & Sobczyk, 2008; Bock et al 2012), and electrospray deposition 

for the synthesis of thin films and coatings (Jaworek, 2007), in which the extent of droplet 

evaporation determines whether a film will be granular (Bodnár & Rosell-Llompart, 2013) 

or display a range of film morphologies (Rietveld et al, 2006).  

Because of the difficulty in the experimental accessibility to gas velocity in 

electrospray systems, only a few experimental reports have addressed the question of gas 

flow induction by the droplet motion. Tang & Gomez (1994), while carrying out a 

detailed experimental study on the structure of a heptane electrospray, measured gas 

velocities along the spray centerline as high as 34% of the droplet axial velocity. Hartman 

et al. (1999) found that while droplet diameters do not vary radially, their axial velocity 

dropped as much as 40% from its centerline value. They took this result to mean that the 

gas must move with a significant axial velocity at the electrospray centerline. 

Our ability to predict the induced gas flow pattern is currently very limited because we 

lack general methodologies for predicting it. The majority of numerical simulation works 

have assumed the gas to be still as a matter of convenience, given the complexity of the 

endeavor. The first reported numerical simulation of droplet dynamics in an electrospray 

is by Gañan-Calvo et al. (1994), who assumed that the surrounding gas is still. The 

constituent terms of their Lagrangian model are the electrical forces produced by the 

external field (due to the electrodes) and by the space charge (droplet–droplet Coulombic 

repulsion, including image charges at the counterplate), and the drag force on the droplets 

due to friction with the gas. This general model has subsequently been followed to 

simulate various electrospray systems by different authors, viz., Hartman et al. (1999), 

Wilhelm et al. (2003), Oh et al. (2008), Jung et al. (2010), Yang et al. (2012) and Grifoll 

& Rosell-Llompart (2012). The still gas assumption has also been followed in the recent 

Eulerian model of Higuera (2012). 

In some of these works, the assumption of still gas has been justified based on 

conservation arguments about the global influence of the droplet motion on the gas. 
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Gañan-Calvo et al. (1994) obtained the characteristic droplet velocity by balancing 

viscous drag to electric force. By globally balancing the energy transferred per unit time to 

the gas by the spray drag, with the energy dissipated by the viscous stresses outside the 

spray boundaries, they estimate that the characteristic (average) gas velocity is much 

smaller than the characteristic droplet velocity. Wilhelm et al. (2003), while evaluating the 

extent of droplet evaporation, applied global momentum balance to their electrospray 

system estimate the average gas velocity to be 0.4 m/s, which falls between 3.7% of their 

highest axial droplet velocity and 11.7% of their lowest one. Higuera (2012) justified 

neglecting the gas motion in his Eulerian simulation after an order of magnitude 

estimation of the momentum exchanged between the droplets and the gas.  

Since the conservation arguments are based on radially averaged variables, they can 

overlook regions of high local gas velocity. Therefore, they are not in contradiction with 

the experimental determinations of high centerline gas velocities which were mentioned 

earlier. Indeed, using a more detailed approach, Hartman et al. (1999) estimated that the 

gas velocity close to the spray centerline could be around 32% of droplet axial velocities. 

They arrived at this conclusion by balancing the electric power of the system with the 

kinetic power of the induced gas flow (confined within a radius) and the kinetic power of 

the droplets. 

Deng & Gomez (2007) are the first to partially include the effect of gas flow on the 

droplet drag calculations, by treating the early stage of the spray as a continuous 

cylindrical surface, and adopting a boundary layer sub-model based on the momentum 

integral of a logarithmic gas velocity profile. 

In sum, while many numerical models have neglected induced gas flow, the 

experimental evidence shows that the gas speed can be significant locally (at the 

centerline). Therefore, there is a need for a general methodology to include the induced 

gas flow caused by the droplets in current numerical models of electrospray dynamics. 

Furthermore, since the gas motion also influences the droplet motion, a formulation that 

can accurately describe these motions should be fully coupled (i.e., two-way coupled). 

Such improved models should be able to elucidate the influence of the induced gas flow 

on variables of practical importance such as the flux deposition pattern on the 

counterplate, plume spread, droplet number density distribution, and also in the prediction 

of droplet evaporation.  
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In the present work, we have developed a two-way coupled Lagrangian description of 

the droplet dynamics with an Eulerian description of the induced gas flow. The gas flow 

description does not consider the detailed flow around each droplet. Instead, two-way 

coupling is attained by seeking time-averaged pseudo-steady state solutions in both 

frameworks (droplet dynamics and induced gas flow). The predictive capability of this 

methodology is assessed by applying it to the experimentally characterized system of 

Tang & Gomez (1994) which considers non-evaporating droplets.  

 

2.3. Methodology 

 

We propose a numerical method that solves for the droplet dynamics and the gas flow 

using an iterative procedure, and seeks pseudo-steady state solutions using separate codes 

for the droplet and gas transport equations. The motion of non-coalescent, non-

evaporating droplets under electric forces in moving gas is simulated by a 3D Lagrangian 

particle tracking model. The droplet-induced pseudo-steady gas flow is simulated by a 2D 

axisymmetric Eulerian model. All of the space within the spray is available to the gas, 

since the volume fraction of the droplet phase is much smaller than unity (dilute aerosol 

approximation).  

2.3.1. Governing equations 

2.3.1.1 Lagrangian ‘particle dynamics’ 

The 3D Lagrangian droplet dynamics simulations are based on the model first proposed 

by Gañán-Calvo et al (1994). The electrospray system is considered to be made of 

electrostatically interacting droplets considered to be point particles for which the mutual 

aerodynamic interactions are not considered. The droplets also experience drag from the 

surrounding gas, and interact with an external electrostatic field created by electrodes (a 

droplet-emitting capillary tube, and a droplet-collecting plate named counterplate). 

Following these assumptions, the droplet dynamics are described by Newton's second law: 

 ielec,i
i FF

V


td

d
d di 

 3

6
 (1) 
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where Fi and Felec,i are the drag and electric forces acting on droplet i, which are given by: 

 

   iii VuVuF  fiiD dC  2

8
 (2) 

where  

  21104.01
24

i
i

iD Re
Re

C   (3)  

which is valid for 5000iRe  (Abraham 1970), and 

  














N

ij
j iJij

j
i

i RR
q

q
q

1
33

04
iJij

extielec,

RR
EF


 (4) 

 

The motion of a droplet i is described by its position vector Ri and velocity vector Vi, as 

 

 i
i V

R


td

d
 (5) 

 

 Equations (1) and (5) are solved for each droplet to obtain its trajectory from the 

emission point to the counterplate.  

2.3.1.2. Gasflow dynamics and boundary conditions 

The body force impelling the gas flow is the reactive drag force due to the droplets' 

motions. Therefore, the gas motion is governed by the continuity equation (assuming 

incompressible gas flow) and the Navier-Stokes (momentum transport) equations 

extended to include droplet drag forces:  

 0 U  (6) 

 DUUU
U












 2 P

tf  (7) 

where D is a fine grained function that describes the reactive drag force per unit volume 

exerted by the droplets on the gas, which, when droplets are modeled as material points, is 

given by  
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      ii RxFxD 



N

i 1

 (8) 

The instantaneous flow velocity, pressure and reactive drag force density are split into 

their time-averaged and fluctuating components as 

 

 'uuU   (9) 

 'ppP   (10) 

 'ddD   (11) 

 

In the present work, we seek to determine the time-averaged gas flow field u . Hence, Eq. 

(7) is time-averaged in order to obtain the steady-state fluid flow equation, which is 

similar to RANS equation in turbulent flows, i.e. 

 

   duuuuu  ''2
ff p   (12) 

 

where ''uuf  is analogous to the Reynolds stress term in turbulent flow, though different 

in its cause. In order to account for this viscous-like stress in Eq. (12), a closure model 

would be needed. This closure model could be formulated either by comparing system-

specific solutions of Eqs. (6-7), or detailed experimental data, to Eq. (12). Here, the gas 

velocity perturbations 'u  are associated with the local perturbations on the gas mean flow 

caused by passing droplets. Therefore, such system-specific solutions or data would have 

to resolve very fine flow scales, and thus present enormous difficulties. Any such 

approach is beyond the scope of the present formulation, in which, as a first 

approximation, the term  ''· uuf  is neglected. 

The computational domain and boundary conditions for the gas flow are 2D 

axisymmetric, as shown in Fig.2.1. The surfaces of the cylindrical capillary tube electrode 

and the counterplate are assumed to be stationary walls with no-slip conditions imposed 

on them. The gas is free to flow in and out through the open boundaries, in such a way 

that the flow is normal at the top boundary and fulfills a self similarity condition at the 

side boundary (Deshpande & Vaishnav, 1982). The jet extends from below the capillary 

tube (Fig. 1), and moves with velocity Vjet which is estimated from the total flow rate and 
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djet by the mass conservation principle (  2/4 jetdQ  ). The surface of the electrospray jet 

is modeled as a cylindrical boundary of uniform diameter djet, which can be estimated 

from the count mean droplet diameter as pd /1.89 (Tang & Gomez, 1994; Rosell-Llompart 

& Fernandez de la Mora, 1994).  

 

0
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r
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No-slip 
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Fig. 2.1. Schematic diagram of the 2D axisymmetric computational domain for the gas 

flow, including boundary conditions. 

2.3.1.3. Ensemble averaged reactive drag force 

In Eq. (12) the reactive drag force density d can be computed by ensemble averaging 

Eq. (8) over a large number NR of system realizations (ergodic hypothesis). NR is defined 

as "large" enough to make d become independent of NR. In addition, the fine grained 

(singular) description based on Dirac's delta must be replaced with a coarser grained (non-

singular) kernel function K such that 

      
 


RN

k

N

iR

K
N 1 1

1 k
i

k
i RxFxd  (13) 

In this work we employ the Gaussian kernel defined as 
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     
3

22

2exp





λ

λ



Gauss

K  (14) 

where   is the filter width for smoothing the reactive drag forces, and α is a normalization 

factor that ensures conservation of force globally within the ensemble averaged system, so 

that  

    


 

volume
spray 

1 1

 dVNR

N

k

N

i

R

xdFk
i . (15) 

Similar smoothing of the particle drag force has been employed in numerical 

simulations of particle laden flows (Kitagawa et al, 2001; Maxey & Patel, 2001; Apte et 

al, 2008; Finn et al, 2011).  

Deen et al. (2004) suggest that the filter width should be in the order of particle 

diameter, rather than at finer length scales. This is a logical consequence of the fact that 

each droplet transfers its drag to the gas phase at the droplet surface. Kim et al. (1993) 

simulated three-dimensional flow over two fixed spheres normal to the line connecting 

their centers, for 50 < Re < 150. They found that the drag increases as the spheres become 

close together, and that the drag coefficient for separations larger than four diameters 

differs by less than 0.7% of the drag for an isolated single sphere. Since the kernel width 

should not be smaller than the "region of influence" of the drag force, the smallest kernel 

width extends to about two droplet diameters in this study. 

At the same time, our formulation is tolerant of filter widths that are larger than the 

particle diameter, as long as d(x, y, z) remains unchanged. This can happen when   is 

sufficiently smaller than the characteristic distance for maximum change of d: 

 
max

d

d


  (16) 

Finally note that any choice of filter width   implies a large enough ensemble (large 

enough NR), such that the density force field becomes independent of the ensemble size. In 

other words, the graininess of the ensemble spray should not be "imprinted" onto d(x, y, 

z), which, instead, should be a smooth function of position. In mathematical terms, in the 

ensemble spray the droplet centers must be much closer together than the filter width  : 
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   3/1 RnNs , 

where n is the local ensemble-averaged droplet number density, and s is the average 

separation between the centers of neighboring droplets in the ensemble spray. Therefore 

NR must fulfill:  

 
3

1

n
NR   (17) 

 

2.3.2. Numerical implementation 

The numerical scheme has been implemented in three parts: droplet dynamics, reactive 

drag force calculation, and gas flow dynamics. These parts have been run iteratively 

through successive stages according to the flow chart shown in Fig.2. 2. Initially (stage 0), 

quiescent gas is assumed (u = 0) and the droplet dynamics is simulated long enough to 

ensure that a statistically significant portion of the steady state is captured (Grifoll & 

Rosell-Llompart, 2012). Using this solution, an ensemble-averaged drag force field is 

computed. Such field is then used with the gas dynamics code to compute the steady-state 

velocity field solution. This solution is then fed back into the droplet dynamics simulation, 

initiating a new stage of the global iteration loop. The overall scheme is considered to 

have converged by comparing the gas flow solutions of two consecutive stages. A more 

detailed description of these steps is provided next. 

2.3.2.1. Droplet dynamics and the reactive drag force calculation 

The present 3D Lagrangian droplet dynamics simulations use the LSC method of Grifoll 

& Rosell-Llompart (2012). This scheme simplifies the far droplet-droplet electrostatic 

interactions (last term of Eq. (4)) using a coarse-graining approximation without any 

significant loss in accuracy. 

Upon attaining a droplet dynamics solution, the droplets’ relative velocities (Vi - u) and 

position data Ri are used to compute the corresponding drag forces Fi (Eq. (2)). Next, 

through the methodology explained in Section 2.3.1, the fine grained reactive drag force 

data are ensemble averaged over NR realizations. Then, they are smoothed in a 3D 

Cartesian grid of cubic elements of side equal to the kernel width. And these smoothed 
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data are then transformed from the 3D Cartesian domain to the 2D cylindrical domain in 

which the computation of gas flow is carried out (Fig.2.1). 

2.3.2.2. Gas flow dynamics 

The 2D Eulerian gas flow computations are based on the stream function-vorticity 

formulation and on the Control Volume Finite Difference (CVFD) discretization scheme 

proposed by Gosman et al. (1969). The CVFD methodology is an integral approach which 

considers control volumes, each surrounding a computational node. It has the advantages 

of ensuring the conservation laws and ease of physical interpretation and implementation. 

More details of this discretization scheme and the solution procedure can be found in 

Deshpande & Vaishnav (1982). The numerical scheme was tested against the laminar jet 

problem of Deshpande & Vaishnav (1982), resulting in better than 2% agreement in the 

stream function values.  

At each iteration stage (Fig. 2.2), the computed gas flow field is fed to the droplets 

dynamics code in order to update the spray configuration. The drag forces on the droplets 

are re-calculated according to Eq. (2) where the updated gas velocity at the droplets 

positions is interpolated from its values at the neighboring grid points. Since the variation 

in velocities between contiguous grid points is small, we opt for zero-order interpolation, 

namely taking the gas velocity value of the cell to which each droplet belongs.  
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Fig. 2.2. Numerical scheme for two-way coupling.  

 

2.4. Results and discussion 

 

2.4.1. System description 

The numerical scheme has been applied to simulate the experimental system of Tang & 

Gomez (1994), whose parameters are provided in Table 1. This system was previously 

simulated under the assumption of still air by Grifoll & Rosell-Llompart (2012). 

This spray is comprised of non-evaporating primary and satellite droplets. The primary 

droplet size distribution is the experimental histogram provided by Tang & Gomez (1994), 

while the satellite droplet distribution is assumed to be log-normal, also based on their 

data. The computation for droplet charge (q) for both primary and satellite droplets is 
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based on a single functional dependence of charge-to-mass ratio ( ) with droplet diameter 

(d): 

 bad  (18) 

 

Details on the goodness of the two parameters a and b can be found in Gamero-

Castano (2008) and Hai-Bin Tang et al. (2011). For the present spray configuration these 

parameters were calculated to be a = 6.13×10-9 Cm1.5/kg and b = -1.5. These values are 

chosen to be consistent with the report of Tang & Gomez (1994), who find an average 

charge density of the primary droplets equal to 22.5 C/m3, and a charge-to-mass ratio 

dependence with the average diameters for the primary and the satellite droplets given by: 

 

5.1











s

p

s

p

d

d




 (19) 

 

The external electrical field has been calculated by solving Laplace's equation for the 

electrostatic potential  in the region between the capillary tube and the counterplate, in 

cylindrical coordinates, using a very fine non-homogeneous grid. The boundary 

conditions are  = 0 at the capillary tube and Taylor cone surfaces;  = 0 V at the plate, 

0 z at z = - 9H, and 0 r at r = 10H.  

Taking the largest droplet velocity in the system as equal to the jet velocity, we can 

estimate an upper bound of the Reynolds number, which is 27 for an average droplet 

moving in still air. This value is well within the range of application of Eq. (3).  

 

 Table 2.1. System configuration* 

 

Parameter (units) 
Symbo

l 
Value 

Capillary-to-plate separation (m) H 0.03 

Capillary tube OD (μm) Dc 450 

Droplet emission point (cm) ze 0.24 

Count mean diameter for primary droplets (μm) pd  32.3 
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Coefficient of variation of primary droplets' diameter pp dSD

 
0.06 

Count mean diameter for satellite droplets (μm) sd  9.96 

Coefficient of variation of satellite droplets' diameter ss dSD

 
0.25 

Capillary potential (V) 0  5000 

Liquid flow rate (cc/h)  Q 10 

 *From Tang & Gomez (1994) 

 

2.4.2. Selection of kernel width 

 

Finding the steady state solution to the governing equations requires a smooth reactive 

drag force field, since the streamfunction-vorticity formulation uses the spatial derivatives 

of such force field. Initially we tried computing the reactive drag force density by simply 

averaging the contributions from droplets present within given control volumes. However, 

the number of system realizations needed to get a smooth force field became prohibitive. 

Instead, we have tested the effect of various Gaussian kernel widths ( ) on the smoothing 

of the ensemble averaged reactive drag force (d), as explained in Section 2.3.1.3. We have 

found that 3000 is a practical number of system realizations (NR) in this system. Such 

realizations (independent snapshots) were selected at equally spaced times within the 

period 0.1<  t < 0.7 s, in which the system was found to be under steady state (following 

the criterion of Grifoll & Rosell-Llompart, 2012).  

Fig.2.3 shows the effect of the Gaussian kernel width () on the axial component of the 

reactive force density along the centerline. These curves are smooth near the droplet 

emission point between ze (0.24 cm) and several mm downstream. But they display 

increasing noisiness further downstream. This noise grows in amplitude for the smaller 

values of , and is due to statistical under-sampling in regions of the spray where the 

number density is so low that Eq. (17) is not fulfilled. In the emission point region, the 

different curves do not coincide, nor do they show an asymptotic trend. This effect is due 

to the use of kernel sizes which are wider than the spray in this region (shown later). 

Indeed, near to the emission point the swarm of droplet centers cluster tightly together 
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around the centerline, within a radius that is smaller than the average primary droplet 

diameter ( pd ). A choice of kernel width much smaller than pd  would lead to an 

asymptotic d(x, y, z) function, provided NR was large enough. However, such d would 

have no physical meaning because the drag force is transferred from the droplet phase to 

the gas phase at the length scale defined by the radius of the droplet-air interface (droplet 

radius) rather than at significantly finer scales.  

In order to avoid the large fluctuations found in some of the force density curves of Fig. 

3, we have used a combination of kernels in different regions, as summarized in Table 2.2. 

In the region near the emission point we have chosen a kernel width of approximately 2 

primary mean droplet diameters ( = 75 μm) (Section 2.1.3). In regions far away from the 

emission point, where the spray becomes more dilute, the kernel widths have been 

increased as given in Table 2.2.  
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Fig. 2.3. Reactive drag force computed along the axis for different kernel widths. 
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Table 2.2. Characteristics of the tested kernels. 

 

Kernel size,   

(μm) 

Axial range of use 

(cm) 

75 0.0 – 0.6  

150 0.6 – 1.0  

300 1.0 – 1.5  

600 1.5 – 3.0  

 

2.4.3. System simulation 

The streamlines for steady-state induced air flow on attaining convergence after five 

global iterations are shown in Fig.2.4a, superimposed on a snapshot of the simulated 

spray system, also in steady state. Figure 2.4b shows another snapshot of the same 

system, however obtained assuming still air. In both of these simulations the model 

predicts the segregation of droplets experimentally observed by Tang & Gomez (1994), 

whereby a shroud of satellite droplets forms around a core of primary droplets. The 

airflow streamlines of Fig. 2.4a show the formation of a jet-like structure. The flow 

impinges onto the counterplate wherefrom it develops a wall jet boundary layer.  

These airflow computations were performed using a non-uniform grid of 193×252 cells 

extending 10H×10H (Fig. 1). The smallest radial grid size corresponds to djet/2 at the 

centerline, whereas the smallest axial grid size is 45 μm both at the counterplate and at the 

capillary tube tip. Grid independency was tested using a double refined grid (386×504 

cells). The maximum difference in velocity field between the two solutions was found to 

be 5.7% at the axis (z = 0.25 cm), and the average variation was 0.12% for the entire flow 

domain. 
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Fig. 2.4. Spray snapshots projected on rz plane for (a) simulation with moving air, 

including the streamlines of the induced air flow, and (b) simulation with still air. The 

circles diameters are proportional to the actual droplet diameters.  

 

The radial profiles of the axial and radial air velocity components (Figs. 2.5a, b) show 

that high air velocities occur mainly in a region close to the spray axis. Fig. 2.5a shows 

that the axial velocity attains its maximum value at the axis near the emission point. At all 

axial positions, the axial velocity decays radially from a maximum value at the axis, and is 

below 0.1 m/s for r > 0.8 cm. The inward (negative) radial velocity found at z = 0.5 and 

1.5 cm (Fig. 2.5b) is due to the air entrainment effect (see Fig.2.4). When the counterplate 

is approached (curve for z = 2.5 cm) the radial velocity increases as the air spreads radially 

out forming a wall jet like pattern. The humps present in all these velocity profiles 

correlate to the presence of the primary and satellite droplet plumes. 

The observed radial drop in axial velocity shown in Fig. 2.5a is consistent both with the 

previous experimental determinations of centerline air velocities, and with the conclusions 

from various radially-averaged conservation balances, that were mentioned earlier in the 

Introduction.  
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Fig. 2.5. Air velocity at various axial positions: (a) axial component, (b) radial 

component. 

 

Fig. 2.6 graphs the centerline velocity of the air and the droplets obtained in the 

experiments of Tang & Gomez (1994) and in the present simulations with and without air 

flow. Droplets velocities simulated when the air is at rest (gray line) significantly 

underpredict the experimental values. This line displays a monotonous decrease in the 

initial spray zone (z < 0.8 cm), unlike the experimental data (squares). On the other hand, 

the simulations that account for airflow predict air and droplet velocities which are in fair 

agreement with the experimental data. In the downstream spray zone (z > 0.8 cm), the 

simulated air velocity (dashed line) decays slower than the experimental data (circles), 

overpredicting them.  

We should note that had we computed the air velocity fluctuations term  ''uuf  in 

Eq. (12), a faster decay of the axial air velocity would have been obtained, because this 

term would enhance the momentum transfer. In numerical simulations of electric wind 

caused by corona discharges by Zhao & Adamiak (2005) this term was also neglected, and 

a similar overprediction of the axial air velocities was found, with an increasing deviation 

towards the centerline. Since the radial variation of axial velocity is maximum at the 

centerline, this is where maximum overprediction of gas velocity would be expected.  
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To better understand the droplet dynamics along the centerline, it is also helpful to look 

at the different terms of the droplet momentum equation (Eq. (1)): the inertia term, the 

drag force, and the electrical force. We have taken all 3000 snapshots and have averaged 

each of these terms within equal cylindrical slices of radius 0.03 cm centered at the 

centerline. As shown in Fig. 2.7, the drag tends to zero at the emission point because the 

droplet and air velocities are equal (to the jet velocity, 12.3 m/s). (This behavior is 

opposite to the case of still air, for which the drag is maximum at this position, rather than 

minimum, and the droplet velocity decays with a significant slope; as shown by the grey 

line in Fig.2.6) Initially (near the droplet emission point), the air momentum at the 

centerline is rapidly transferred to its surroundings due to the action of viscous stresses, 

causing a rapid drop in air velocity at the centerline (Fig.2.6). As a result, the drag force 

on the droplets (Fig. 2.7) suddenly increases; however this change is too short lived to 

appreciably change the droplet velocity (Fig. 2.6). Beyond this initial transition, which 

ends at about z = 0.4 cm, the air slows down at a much slower rate. Up to this location the 

inertia term is near zero (Fig. 2.7), consistently with a nearly constant droplet velocity in 

both the simulated and the experimental results (Fig. 2.6). Beyond this zone (z > 0.4 cm), 

the air velocity continues to decrease (Fig. 2.6), causing an increase in the drag force (Fig. 

2.7), and the electrical force starts to decrease. At about z = 0.55 cm, the drag force 

reaches a maximum when both the droplets and the air slow down at equal rates. Near the 

counterplate, the air stream is deflected and the axial velocity drops towards zero (Fig. 

2.6). As a result, the drag force on the droplets is increased (Fig. 2.7), though with 

minimal effect on the droplet velocity (Fig. 2.6). These simulations also show that along 

the axis the droplets do not attain electrophoretic motion (zero inertia). 
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Fig. 2.6. Numerical and experimental values of axial velocities along the centerline for air 

and droplets. 
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Fig. 2.7. Average electrical forces, drag forces, and inertia sensed by the droplets along 

the centerline. Secondary abscissa shows the droplet Lagrangian time based on the droplet 

axial velocity given in Fig. 2.6.  
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Tang & Gomez (1994) also show radial distributions of the number density and 

average droplet diameter at a constant axial position of z = 1.2 cm. In Fig. 2.8 we compare 

these data to our numerical predictions with and without airflow. Volumetric bins of 

height 250 μm, consistent with the kernel size at this axial location (z = 1.2 cm) were 

considered for these calculations. 

The number density distribution (Fig. 2.8a) shows a similar pattern to the experimental 

data, with a core spray of primary droplets, surrounded by a shroud of satellite droplets. 

Only when the model includes airflow, the number density near the centerline increases to 

a maximum, in qualitative agreement with the experimental data. However, a 

disagreement in number density is found close to the axis, within a region of radius ~1 

mm. This disagreement could be the result of two causes. First, the actual charge-to-mass 

ratio for the largest droplets might be higher than as defined in Eq. (19). If so, the actual 

particles would be expected to expand radially faster than predicted by the present model, 

leading to a reduced number density. Second, because the model neglects the fluctuation 

term  ''· uuf  (as discussed earlier), it may lead to overprediction of the air axial 

velocity at the centerline, resulting in a shorter Lagrangian time for the droplets. This 

would imply lesser expansion by space charge repulsion near the centerline, and an 

increased number density.  

We have quantified the effect on the number density shown in Fig. 8a when increasing 

the kernel size in the initial axial range, 0 < z < 0.6 cm (Table 2) from 75 to 150 μm. The 

effect is minor, with only a 7% decrease in the number density at the centerline (r = 0) 

which rapidly diminishes to a 1.4% decrease at r = 0.5 mm. However, as argued earlier in 

the context of Fig. 2.3, 75 μm is a more appropriate kernel size for the initial axial range. 

On the other hand, the locations of both the primary and satellite droplet plumes show 

better agreement with the experiments, than the simulations which consider still air. This 

improvement is the result of two factors. First, the axial motion of the cloud is faster in the 

presence of airflow. Therefore, the droplets sampled at a fixed z are "younger" (in 

Lagrangian time) than when airflow is neglected. And a younger spray should have 

expanded radially less than an older one. Second, the radially converging airflow close to 

the droplets' emission point reduces the extent of radial expansion (Fig. 2.4).  

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL SIMULATION OF FLUID DYNAMICS AND TRANSPORT PHENOMENA IN ELECTROSTATICALLY CHARGED VOLATILE SPRAYS 
Ajith Kumar Arumugham-Achari 
DL:T 1224-2014 



 

37 
 

The average diameter profile (Fig. 2.8b) also shows better overall agreement with the 

experimental data when airflow is included than when it is not (except in regions for 

which the droplet count, shown in Fig. 2.8a, is very low).  

Initially, we had carried out the simulations assuming a constant charge-to-mass ratio 

for both primaries and satellite droplets, as done previously by Grifoll & Rosell-Llompart 

(2012) in absence of airflow. This assumption was consistent with the information 

provided in Tang & Gomez (1994), but, under the presence of airflow, resulted in reverse 

dependence of local satellite diameter versus r. In conclusion, the radial segregation by 

size of the satellite droplets is sensitive to the functional relationship between charge-to-

mass ratio and diameter. By contrast, the assumed relationship given by Eq. (18), which is 

also consistent with Tang & Gomez (1994), leads to a correct prediction of the segregation 

effect (Fig. 2.8b).  
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Fig. 2.8. Radial profiles at z =1.2 cm of (a) droplet number density, and of (b) droplet 

diameter. 

 

Figs. 2.9a, b show the radial distributions of the droplets' axial mass flux at two axial 

locations (z = 1.2 cm and on the counterplate, i.e. z = 3 cm) for the cases of still air and 

moving air. The ability to predict the droplet mass flux is of interest to practitioners of 

electrospray deposition who make thin films and coatings. In Figs. 2.9a and b, the 

contribution from the satellite droplets to the mass flux is extremely small, as can be 

confirmed by comparing Fig. 2.9a with Fig. 2.8a, and 2.9b with 2.4 . The effect of the 
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induced airflow is to raise the mass flux near the center and reduce the plume width. The 

ratio of mass flux at the centerline between the cases of moving and still air is 2.2 at z = 

1.2 cm, and 2.6 at z = 3.0 cm. This effect is the result of the aforementioned causes of 

inwardly radial airflow and reduction of Lagrangian time available for cloud expansion. 

An indication of reduced residence time of the plume in the presence of airflow is the 

reduction in average number of primary droplets in the plume from 1125 in still air to 904 

in moving air, and in the average number of satellites from 1755 to 1656. It should be 

noted that close to the centerline, the flux may be overpredicted since, while the droplet 

velocity closely agrees with the experiments (Fig. 2.6), the centerline number density is 

overpredicted (Fig. 2.8a).  
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Fig. 2.9. Comparison of mass flux assuming still or moving air at (a) z = 1.2 cm and (b) z 

= 3.0 cm. 

 

 

2.5. Conclusions  

 

The air flow induced by droplet motion has been included into a Lagrangian model of 

electrosprays. Steady state solutions for air flow and droplet dynamics were sought 

iteratively in a fully coupled computational scheme. Detailed simulations have been 

performed on an electrospray plume which was experimentally characterized by Tang & 
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Gomez (1994). Results show that including air motion in the simulations modifies the 

droplet trajectories significantly. Radial profiles of number density, and of local average 

droplet diameter, and centerline droplet velocities show better agreement with the 

experimental data when airflow is taken into account. Significant air entrainment towards 

the spray axis is observed near the droplet generation region, which develops into a jet 

like structure that impinges onto the counterplate. The droplets mass flux radial 

distribution is particularly sensitive to the air entrainment, which results in a steep 

increase near the spray axis. 

In order to resolve the reactive force on the air by the droplets while using a practical 

number of independent system realizations, it is necessary to use a filter. In the present 

simulations, with 3000 ensemble-averaged realizations, we have used a range of Gaussian 

filters differing in kernel width at different axial locations. At the denser spray regions 

close to the droplet emission point, the kernel size should neither be much wider nor much 

smaller than the average droplet diameter. Further downstream, where the droplet number 

density decreases, a wider kernel width has been used in order to suppress the fluctuations 

in the reactive force density.  
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Chapter 3 

Numerical simulations of evaporating electrosprays 

with Coulomb explosionsb 

3.1 Abstract 

The design and optimal operation of electrospray devices can be facilitated with the 

help of numerical simulations of the relevant phenomena in order to reduce the 

experimental burden. In this study, mechanistic models for the diverse phenomena have 

been implemented in numerical codes in order to simulate volatile electrosprays. The 

overall model includes a Lagrangian description of the droplets dynamics, shrink of 

droplets due to evaporation and Coulomb explosions, as well as Eulerian descriptions for 

the gas flow induced by the droplets, the transport of vapor, and the electrical charge 

leftover by the vanishing droplets. To couple the different physics, the Lagrangian code 

and the three Eulerian ones were run sequentially, taking the inputs needed for each code 

from the results of the preceding runs. The Eulerian codes were formulated under steady 

state, while for the Lagrangian model we take an ensemble average of a steady-state 

portion of the simulation as representative. After several sequences of simulations, each 

variable field converged and the overall result was taken as illustrative of the behavior of 

the electrospray under steady state. This methodology has been applied to three 

electrospray systems with solvents of different volatility: acetone, methanol and n-

heptane. The droplets were injected into the three systems with unimodal and log-normal 

distributed diameters with mean 8 μm, and a coefficient of variation of 10%. Regions of 

intense Coulomb explosion events in form of diagonal bands within the spray are well 

captured. In all three cases, few or no droplets arrive at the counterplate located 3 cm 

down the capillary nozzle, highlighting the relevance of accounting for evaporation when 

simulating these systems. 
 

bThis chapter will be submitted to Journal of Aerosol Science (2014) 
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Nomenclature  

 

Roman letter symbols 

 

Ai droplet acceleration vector (m2/s) 

BM,neq 


















neqS
Y

G
Y

neqS
Y

,
1

, non equilibrium Spalding transfer number for mass 

Cc  



















 


 d

d

55.0
exp8.0514.21  Cunningham slip correction factor 

CD  droplet drag coefficient 

CL specific heat capacity of liquid 

Cp,G specific heat capacity of air at atmospheric pressure 

CV  vapor concentration density (mol/m3) 

Cq  residual charge concentration density (C/m3) 

d ensemble averaged reactive drag force density (N/m3) 

D instantaneous reactive drag force density (N/m3) 

Dc capillary tube outer diameter (m) 

di  diameter of i-th droplet (m) 

djet  electrospray jet diameter (m) 

dt time interval (s) 

pd  count mean primary droplet diameter (m) 

sd  count mean satellite droplet diameter (m) 

Eext external electrical field (V/m) 

f1 











1


e
correction factor to heat transfer (accounting for evaporation) 

Fi drag force acting on droplet i (N) 
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Felec,i electric force acting on droplet i (N) 

H capillary tube tip to counterplate distance (m) 

HM 











 

neqM
B

,
1ln  mass transfer potential 

K electrical mobility of residual charge (m2/V-s) 

LV latent heat of vaporization 

md mass of droplet (kg) 

dm


 droplet mass transfer rate (kg/s) 

NP number of progeny droplets 

Nu Nusselt number 

PrG 















g

Gp
C

g




,  Prandtl number for gasflow 

qi electrical charge of droplet i (C)  

qR electrical charge of a droplet at Rayleigh limit (C)  

Q liquid flow rate (m3/s) 

r polar coordinate (m)  

Rei 















 





i

d
f i

Vu  Reynolds number  

Ri (= [xi, yi, zi]) position vector of i-th droplet (m)  

RI (= [xi, yi, 2H - zi]) position vector of image of i-th droplet on counterplate (m)  

Rij (= Ri - Rj) displacement between the position vectors of droplets i and j (m)  

RiJ  (= Ri - RJ) displacement between the position vectors from the image of droplet 

j on the counterplate to droplet i (m) 

ScG   Schmidt number for gasflow 

Sh Sherwood number 
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Td temperature of the droplet (K) 

TG temperature of the gas (K) 

u mean gas velocity vector (m/s) 

uq (=KE+u) residual charge velocity vector (m/s) 

U instantaneous gas velocity vector (m/s)  

Ur,Uz radial and axial components of mean gas velocity vector (m/s) 

 t time (s)  

V volume of the spray (m3)  

Vi velocity vector for droplet i (m/s)  

Vjet electrospray jet velocity (m/s)  

x (=[x,y,z]) position vector (m)  

YG free stream vapor mass fraction 

YS,neq non-equilibrium vapor mass fraction at droplet surface 

ze droplet emission point (m) 

 

 

Greek letter symbols 

 

α 





























progenyR
q

q  Ratio of charge limit for progenies 

β 






























 


d

m
dmdG

2

Pr3 
 non dimensional evaporation parameter accounting for 

blowing effect 

γ  surface tension of liquid (N/m) 

Γ  diffusivity of liquid species in air (m2/s)
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0 electrical permittivity of vacuum (8.854×10-12 C/V·m) 

  droplet charge to mass ratio (C/kg) 

λ mean free path of air molecules (m) 

μg dynamic viscosity of surrounding gas (kg/m·s) 

 electrostatic potential (V) 

0 electrostatic potential at the capillary tube (V) 

d density of drop liquid (kg/m3) 

f density of surrounding gas (kg/m3) 

 














L
C

Gp
C

, ratio of specific heat capacities 

τd 

















g

d
d





18

2

 droplet time constant for Stokes flow 

 

 

Acronyms 

CFD Computational Fluid Dynamics 

CVFD Control Volume Finite Difference 

CSC Continuous Space Charge 

OD Outerdiameter 

 

3.2 Introduction  

Electrosprays are constituted of highly charged micro or nano droplets which are 

created by the action of electrostatic forces on a liquid. The droplets hence generated are 

transported under the combined influence of the electrostatic gradient between the spray 

needle and counterplate, the interaction with the spray charge and the aerodynamic drag 

force. Some important applications of such sprays are in electrospray ionization mass 

spectrometry (ESI-MS) (Fenn et al, 1989), particle synthesis (Jaworek & Sobczyk, 2008; 

Bock et al, 2012), and thin film deposition (Jaworek, 2007). Droplet evaporation is a 

critical aspect aimed at producing the desired result in these applications. For example, the 

extent of droplet evaporation determines the variety of product morphologies that can be 
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achieved via electrospray deposition (Rietveld et al, 2006, Bodnár & Rosell-Llompart, 

2013). 

Owing to the considerable effort required to setup an experimental electrospray system 

to study its various influencing parameters, and the limitations associated with the 

measurement techniques, numerical simulations are a powerful approach in the design and 

analysis of electrosprays. Given the importance of droplet evaporation in electrospray 

applications, the numerical simulations of many practical electrospray systems should 

include this phenomenon. However, most of the available numerical simulation models on 

electrosprays have considered non-volatile droplets. Thus, following the original 

Lagrangian description of droplet dynamics in an electrospray by Gañan-Calvo et al. 

(1994), a number of non-volatile electrospray systems were numerically simulated by 

different authors, viz., Hartman et al. (1999), Oh et al. (2008), Jung et al. (2010), Yang et 

al. (2012) and Grifoll & Rosell-Llompart (2012, 2014). Distinct description of an 

electrospray system through an Eulerian model by Higuera (2012) has also assumed the 

spray to be non-volatile. 

The few numerical works that have considered volatile electrosprays are the studies by 

Wilhelm et. al (2003) and Sen et. al (2011). In both of these, the spray system was 

assumed to evaporate against zero solvent background vapor concentration in still ambient 

conditions, wherein the droplet fission was considered. No account for including the 

airflow was done, and under this assumption diffusion alone contributed to vapor 

transport. Furthermore, any corrections in the electrostatic field due to charges left behind 

by the fully evaporating droplets were not described in these works.  

Wilhelm et. al. (2003) simulated the transport, evaporation and deposition of n-butanol 

electrospray containing yttrium and zirconium salts on a heated substrate. They combined 

the Lagrangian droplet dynamics model with a simplified Abramzon-Sirignano 

evaporation model (1989); after performing an order of magnitude calculation to rule out 

any significant contribution from air entrainment. A trial and error approach was followed 

to identify the vapor background concentration which closely fit to the deposited salt 

concentration.  

Sen A.K et. al (2011) assumed monodisperse electrospray in the Lagrangian 

framework experiencing droplet fission in a stationary medium. A simple kinetic 

evaporation model, more suitable for evaporation of sub-micron drops in stagnant ambient 
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conditions, was used in their simulations. However, while mentioning the discrepancies in 

droplet velocities, the authors suggestively acknowledged that it could be due to the fact 

that the effect of air entrainment into the spray has been overlooked in their simulations. 

While formulating a complete numerical framework for a volatile electrospray, one 

should consider the aspects of ambient gas conditions (e.g. gasflow dynamics, presence of 

temperature gradients, vapor saturation level), Coulomb explosions on droplets reaching 

their Rayleigh limit, production and transport of solvent vapor, precipitation of solutes 

within droplets, transport of charged residual particle impurities and (or) ions generated by 

ion desorption or by the charge residue mechanism, etc. These aspects can influence the 

rate of droplet evaporation, the droplet dynamics and hence the electric field. Since gas 

motion can be a significant factor in droplet evaporation, rigorous numerical framework of 

volatile electrosprays should also include the influence of the gas flow induced by the 

droplet motion. 

Here we couple various numerical models to attain the description of the behaviour of 

evaporating electrospray systems undergoing Coulomb explosions, additionally solving 

for the induced gasflow; the transport equations for vapor and for charges left behind upon 

complete droplet evaporation. Coupled are the Continuous Space Charge approximation 

model (Grifoll and Rosell-Llompart, 2014) for the Lagrangian droplet dynamics, an 

Eulerian vorticity-streamfunction method to describe the induced gas flow (Arumugham-

Achari et. al., 2013), and a non-equilibrium Langmuir-Knudsen evaporation model (Miller 

et. al., 1998) for sprays. This methodology has been applied to compare three electrospray 

systems with solvents of different volatility: acetone, methanol and n-heptane. 

 

3.3 Mathematical model and methodology 

In a volatile electrospray system multiple and complex phenomena interact with each 

other. In order to simulate them, we have developed separate models for each 

phenomenon. The numerical codes into which each of those models is implemented are 

run sequentially. A sequence of runs that includes the simulations of all phenomena is 

called a stage. When simulating a phenomenon, the results of the simulation of the 

preceding phenomena are taken as inputs. The numerical method solves for pseudo-steady 

state solutions for the droplets dynamics, and the steady state solution for gas, vapor and 
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charge transports. The motion of evaporating droplets under electric forces in moving gas 

is simulated by a 3D Lagrangian particle tracking model. The droplet-induced pseudo-

steady gas flow, the transport of vapor and charges from complete droplet evaporation are 

simulated by 2D axisymmetric Eulerian models.  Since the volume fraction of the droplet 

phase is much smaller than unity, the dilute aerosol approximation has been adopted. A 

final steady state configuration for the volatile electrospray system is obtained when 

numerical convergence is obtained for successive stages in all these frameworks. 

3.3.1. Governing equations 

3.3.1.1 Lagrangian particle dynamics 

The 3D Lagrangian droplet dynamics simulations are based on the model first proposed 

by Gañan-Calvo et al (1994). The electrospray system is considered to be made of 

electrostatically interacting droplets considered to be point particles for which the mutual 

aerodynamic interactions are not considered. The droplets experience drag from the 

surrounding gas, and electrical force from the electrodes and spray charges. Following 

these assumptions, the droplet dynamics are described by Newton's second law through 

the equations: 

 i
i

td

d
V

R
  (1) 

 ii
i

di td

d
d ,

3

6 elecFF
V


 (2) 

Equations (1) and (2) determine the trajectory of each droplet i from the emission point to 

the counterplate, where Fi and Felec,i are the drag and electric forces acting on droplet i, 

which are given by: 

 

   iifiDi dC VuVuF   2

8
 (3) 

  iii q REFelec ,  (4) 

For calculating the electric force as in equation (4) we follow the Continuous Charge 

submodel of Grifoll and Rosell-Llompart (2014). This technique is a modification to the 

classical Lagrangian method, in which the sum of droplet-to-droplet interactions is 
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replaced by the mean electric field due to the droplets space charge which is solved using 

Gauss's law (Poisson's equation). This method considerably brings down the 

computational time needed for calculating the electrical forces in systems with large 

number of droplets. The continuous charge density appearing in Gauss's law is estimated 

considering the charge carried by the droplets present in elemental volumes defined in a 

2D cylindrical coordinate system aligned with the spray.  

Grifoll and Rosell-Llompart (2014) show that the procedure is not applicable in two 

regions: close to the emission point (where the droplets move almost in a row), and close 

to the spray axis (when the neighboring droplets create fluctuations in the radial electric 

field that greatly exceed the time averaged radial electric field). To overcome this 

drawback, the system is split into two regions, R1 and R2, in which different methods of 

computing the electrical forces on a droplet are considered. Region R1 is defined as a 

cylinder centered on the system axis, and region R2 as the space outside R1. The electrical 

field acting on a droplet in R1 is obtained by adding the continuous field due to the 

droplets in R2 (and the electrodes and boundaries), solved using Poisson's equation, plus 

all the individual fields due to the other droplets in R1. Whereas the electrical field 

experienced by a droplet in R2 is obtained by solving Poisson's equation for the whole 

spray charge plume (with appropriate boundary conditions).   

3.3.1.2. Evaporation of droplets and Coulomb explosions 

A number of droplet evaporation models have been developed to simulate droplet 

evaporation in sprays. Comprehensive reviews of such models can be found in the works 

of Sazhin (2005, 2006), for high temperature applications like spray combustion, and of 

Miller et al. (1998) for general droplet gas-liquid flow simulations. Miller et al. (1998) 

show that all the models, including the classic so called d2 law, perform equally well in 

low pressure and low temperature applications. However, they conclude that the 

Langmuir-Knudsen models have the ability to perform better over a wider range of 

temperature and pressure conditions. Jakubczyk et al. (2012) studied the range of 

applicability of classic d2 law in the evaporation of droplets in the atmosphere, and 

concluded that considerable departure from the classic law can be encountered by the 

influence of impurities in liquids, or by surface tension and kinetic effects for small 

droplets. Among the available evaporation models, here we have considered the 
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convective Langmuir-Knudsen non-equilibrium model (M7 of Miller et al., 1998) as it 

offers various advantages over others: It is simpler to implement, considers Stephan flow, 

rarefaction (kinetic) effects important in the evaporation of small droplets, and needs no 

iterations, unlike the popular Abramzon and Sirignano (1989) model. Hence it is 

computationally efficient and applicable for simulating sprays involving a large number of 

small droplets which are in relative motion with respect to the host gas. The Kelvin effect, 

which is prominent only for submicron ranges (Hinds, 1999), has not been considered. On 

neglecting the non-uniform internal temperature effects (i.e., assuming infinite liquid 

thermal conductivity), the governing equations of this droplet evaporation model can be 

summarized as follows: 

  
d

d

L

V
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dG

d

m
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td
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




3
 (6) 

 

where the Frössling correlations for heat and mass transfer have been used to estimate the 

Nusselt and Sherwood numbers as 

 3121552.02 Gd PrReNu   (7) 

 3121552.02 Gd ScReSh   (8) 

 

As the droplets evaporate, their charge to mass ratio increases, and are assumed to 

undergo Coulomb explosions on reaching the Rayleigh limit which is given by 

  328 dqq oR   (9) 

The mass, charge and number of progenies discharged from the parent droplets through 

such an explosion, have a wide range of values been reported. Such data from various 

literatures are summarized in Table 3.1. 
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Table 3.1 Summary of data reported in literature on mass and charge loss through 

Coulomb explosions  

 

Reference Solvent 

Drop 
diameter 

range 
(microns) 

Instability 
onset 
range 

% of qR 

Fractional 
mass loss 
Δm/m  
(%) 

Fractional 
charge 

loss 
Δq/q 
(%) 

Water 10-40 90 NA 20-40 
Methanol 10-40 110 NA 15-20 

Smith et al 
(2002) 

acetonitrile 10-40 100 NA 15-20 
n-heptane 35-45 101 NA 19 
n-octane 35-60 87 NA 17 

Grim & 
Beauchamp 
(2002) p-xylene 10-40 89 NA (<2) 17 
Gomez  & Tang 
(1994) 

heptane 20-100 70   

Taflin (1989) low vapor 
pressure oils 

4-20 80±5 2 10-15 

dioctyl phtalate  93±9 2.3 15-50 Richardson et al 
(1989) sulphuric acid  94.5±10.5 0.1 41.1-57.7 
Schweizer et al 
(1971) 

n-octanol 15-40 100±4 5 23 

Davis&Bridges 
(1993) 

1-dodecanol 10-20 85±5 1.6-2.35  

diethylphthalate 
(pure) 

 96 1.83-2.73 15.9-25.7 
Hunter & Ray 
(2009) 

diethylphthalate 
(increased 

solute 
concentration) 

 96 0.05 35 

hexadecane 96±6 1.11-1.5 13-17.6 
diethylene 

glycol 
104±7 < 0.03 35.7-39.7 

triethylene 
glycol 

100±5 < 0.03 35.8-76.4 

diethylphthalate

5-25 

97±6 1.83-2.73 15.9-25.7 

K.-Y. Li et al 
(2005) 

diethylphthalate 26.468 99.8 2.86 23.1 
Grim & Beau. 
(2005) 

Methanol 225 100 0.79 13 

Tang & Smith 
(1999) 

generic fluid NA 100 2 15 

 * NA- data not available 
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While in most of the studies the limitation in instrument accuracy prevents fractional 

mass loss detection below 2%, most of them give an account of the fractional charge loss 

through Coulomb explosions. Davies & Bridges (1993) agrees with the analysis of Roth & 

Kelly (1983) that in their experimental 1-dodecanol spray, fission generated around 4-5 

progenies for 2% mass loss; 2-3 for 1% mass loss, which in turn kept the progeny charges 

below their Rayleigh limit. K.-Y. Li et al (2005), through Lorentz-Mie scattering on pure 

single droplet break-ups detected progressively at various diameter en route of full 

evaporation, observed that few large progenies with 60-100% of their Rayleigh limit were 

created by low conductivity liquids. According to them, thousands of small progenies of 

less than 0.03% mass fraction were generated by the droplet fission for high conductivity 

liquids. Hunter & Ray (2009), through Gibbs free energy analysis conclude that in general 

it is numerically justified to assume that a Coloumb fission creates identical progenies that 

can carry 50-100% charge of their Rayleigh limits. Tang & Smith (1999), calculates that 4 

progenies are generated through the disruption having 10% of parent drop diameter, while 

the parent droplet loses 15% of its charge. 

Hence from the above studies we summarize that the fractional mass (Δm/m) and 

charge loss (Δq/q) on Coulomb explosions have dependence on the solvent physical 

properties like electrical conductivity and surface tension. A higher conductivity can result 

in smaller mass loss and higher charge loss. In general, the observed ranges for the 

parameters are: 

 %)2%03.0(~ 

m

m  (10) 

 %)70%20(~ 

q

q  (11) 

 Np ~ few to 1000's (12) 

 

where Np is the number of progenies resulted from a single explosion. 

On evaporation and subsequent Coulomb explosions the droplets and their progenies 

may produce ions by field desorption, or can become fully evaporated, leaving behind 

charged precipitates (solid residues) or molecular ion residues which get transported 

within the system by virtue of their electrical mobility (Fenn et al., 1996). Such charged 

species are collectively called residual charges hereafter. 
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3.3.1.3. Gasflow dynamics and transport of vapor and charge 

The body force impelling the gas flow is the reactive drag force due to the motions 

both of droplets and of residual charges. Therefore, the gas motion (assumed isothermal) 

is governed by the continuity equation (assuming incompressible gas flow) and the 

Navier-Stokes equations including such drag force:  

 0 u  (13) 

 duuu  2 pf
 (14) 

where u, p and d are the components of gasflow velocity, pressure and reactive drag force 

density. The 2D Eulerian gasflow equations were formulated based on the vorticity-

streamfunction method, and were solved through the Control Volume Finite Difference 

(CVFD) discretization scheme proposed by Gosman et al. (1969).  More details on the 

solution of induced gasflow in electrosprays are provided by Arumugham-Achari et al. 

(2013). 

Under the assumption that the gasflow and hence the vapor transport is steady, the 

transport equation for electrospray solvent vapor in 2-D axisymmetric cylindrical co-

ordinates is 
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where ur and uz are the radial and axial components of gas velocity, Γ is the binary 

diffusion coefficient of vapor in the carrying gas (here air), CV is the vapor concentration 

density (mol/m3), and SV is the vapor volumetric  generation rate (mol/m3 s). 

The transport of residual charge is assumed to be described by a steady-state 

continuous field. It is thus based on the charge conservation equation 

 
q

S j  (16) 

where j is the electrical current density and Sq is the residual-charge volumetric generation 

rate (C/m3 s), which arises from the transfer of charge from spray droplets to residual 

charge species by the mechanisms mentioned earlier. When neglecting the diffusion of the 

residual charges, and from the expression of current density as the sum of gas velocity 

plus electrophoretic velocity K·E, the equation above  becomes 

       qzzqrrq SuEKC
z

uEKCr
rr







1  (17) 
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where Cq is the residual charge density (C/m3) and K is the electrical mobility of residual 

charges (m2/V s).  

The transport equations for vapor and residual charge are discretized and solved 

through an upwind numerical scheme  to obtain the respective steady-state background 

concentrations. 

3.3.1.4. Boundary conditions 

The boundary conditions when solving for the electrostatic potential  in the region 

between the capillary tube and the counterplate, were  = 0 at the capillary tube and 

Taylor cone surfaces;  = 0 V at the plate, 0 z at z = - 9H, and 0 r at r = 10H.  

The computational domain and boundary conditions for the gasflow are as shown in 

Fig. 3.1a. The surfaces of the capillary tube electrode and the counterplate are assumed to 

be stationary walls with no-slip conditions. The gas (air) is free to flow in both directions 

at the open boundaries, with farfield condition on the top boundary at z = -9H and self 

similarity condition at the side boundary at r = 10H (Deshpande and Vaishnav, 1982). 

After estimating the diameter of the electrospray jet as djet from the droplet diameter 

(Tang & Gomez, 1994; Rosell-Llompart & Fernandez de la Mora, 1994), the surface of 

the jet is modeled as a cylindrical boundary moving with a uniform velocity Vjet, which in 

turn is estimated from djet and the total liquid volumetric flow rate Q by mass 

conservation.  

The computational domain and the boundary conditions for the transport of vapor and 

residual charges are shown in Fig.3.1b. For the transport of vapor, diffusive flux is absent 

across the symmetry axis at r = 0 as well as across the far field exit boundary at r = 10H. 

We consider fresh gas is constantly entering the domain through the top boundary at z = 0, 

a plane coincident with the exit of electrospray capillary tube, thus CV = 0 on such plane. 

Additionally on the counterplate, the no-flux boundary condition is imposed. 

Residual charges are transported under the combined influence of electric field and gas 

flow, and hence most of the boundary conditions are implicit by nature of their transport 

equations. Only required is the specification of zero influx at the top open boundary at z = 

0. 
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Fig. 3.1.Schematic diagrams of the 2D axisymmetric computational domains for (a) 

gas flow, and (b) transport of vapor and residual charge, including the 

respective boundary conditions 
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3.3.2. Numerical implementation 

The numerical scheme has been implemented in several parts which have been run 

iteratively through successive stages according to the flow chart shown in Fig. 3.2. 

Initially, quiescent gas with zero background solvent vapor concentration is assumed (u = 

0; Cq = 0; CV = 0). The droplet dynamics including droplet evaporation and subsequent 

Coulomb explosions against the input background vapor concentration is simulated for 

long enough to ensure that a statistically significant portion of the steady state solution is 

generated.  

The droplet dynamics module also computes the generation of residual charge as 

follows. An evaporating droplet shrinks faster as it becomes smaller. The accurate 

tracking of such shrinking would require time steps that are even smaller than the time 

step used for tracking the droplet dynamics themselves (t). To avoid this additional 

computational burden, droplets attaining a size below a small critical diameter are 

assumed fully evaporate within a single t. In other words, within a single time step, such 

droplets are assumed to release their remaining solvent mass as vapor into the system, as 

well as their electrical charge as residual charge.  

From the droplet dynamics data, an ensemble-averaged drag force density, and a 

volumetric generation rates of vapor SV (mols/m3·s) and of residual charge Sq (C/m3·s) are 

calculated. Thereafter based on the discretization schemes mentioned in Section 3.3.1.3, 

the steady fields for gasflow, vapor and residual charge concentrations are simulated.  

Finally, these field values, u, CV, and Cq, are fed back to the droplet dynamics module 

(which handles droplet motion, evaporation and Coulomb explosions), thereby completing 

one stage of iterations for the numerical scheme.  

The scheme is considered to have attained global convergence by comparing all the 

respective fields from two consecutive stages. In the simulations presented in this study, 

five iterations were needed to ensure global convergence.   
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Fig. 3.2. Flow diagram for the fully coupled numerical scheme implemented to simulate 

volatile electrosprays. 

 

3.4 Results and discussion 

3.4.1. Numerical verification 

The numerical model for the electrospray droplet dynamics including coulomb 

explosions was verified by comparing against the results of Wilhelm et. al (2003). 

Following the simplified approach applied by them to model an n-butanol electrospray 

system, we overlook the non-equilibrium effects in droplet evaporation, induced airflow, 

transport of vapor and residual charge for this verification. The droplets had a Gaussian 

size distribution with a root mean square value of 4% and a mean diameter of 19 μm. The 

volume flow rate was 2.67 ml/h and the electric current 39.3 nA. In this spray system, 

droplets evaporate against a zero background vapor concentration, subsequently 

undergoing fission on reaching their Rayleigh charge limits. The ambient gas has a 

temperature gradient due to the presence of a heated substrate plate held at 673K, at a 

distance of z = 3 cm from the electrospray nozzle. Mass and charge lost through progenies 
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are not accounted to modify the background vapor and residual charge concentrations. 

Results from both the simulations are compared in Fig 3.3, for which agreement can be 

observed.  
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Fig. 3.3. Comparison of results in the simulations for n-butanol spray: Average droplet 

velocity (a) Wilhelm et. al. (2003), (b) present simulations, and Droplet diameter (c) 

Wilhelm et. al. (2003), (d) present simulations. Each data point represents a droplet. 
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3.4.2. Systems description 

The numerical scheme has been applied to simulate three electrospray systems which 

differ in liquid volatility. All the systems were assumed to have log-normal size 

distribution with a mean droplet diameter of 8 μm and a coefficient of variation of 10%. 

The droplets were injected randomly within a radial zone of twice the mean droplet 

diameter. The values of parameters common to all the three systems are provided in Table 

3.2. The selection of external voltage 0 was based on the empirical formulae of Smith 

(1986) and Pantano et. al (1994) 

Table 3.2. System configuration 

 

Parameter (units) Symbol Value 

Capillary-to-plate separation (m) H 0.03 

Capillary-tube OD diameter (m) Dc 450 

Count mean diameter for droplets (m) d  8.0 

Coefficient of variation for droplets d
d

  0.10 

Capillary potential (V) 0Φ  4000 

 

For this comparative study on different electrosprays based on common solvents, we 

selected acetone, methanol and n-heptane in decreasing order of vapor pressure (Table 

3.3). In each case, the flow rate, the mean droplet diameter and electrical current were 

computed based on the empirical formulae of Gañan-Calvo et al (1997). Accordingly, the 

droplet diameter is a function of flow rate, liquid conductivity, electric current, 

permittivity, surface tension and liquid density. Conductivity had to be increased 

significantly in the case of n-heptane, in order to numerically attain the required mean 

droplet diameter of 8 microns. Such high conductivity for n-heptane electrosprays is well 

within the feasible experimental limits achieved by means of additives (Tang and Gomez, 

1996). It should be noted that the difference in flow rates for the three different systems 

are small, but could be relevant while analyzing the results of the simulations. The vapor 

pressure values for the solvents were calculated from the Antoine's equation (Reid et al, 

1987). 
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Table 3.3 Characteristics of the spray systems based on the selected solvents 

 

Sl 

no. 

Solvent Boiling 

point 

Tb     

(K) 

Vap. 

press. 

(bars)* 

@ 300K 

Diffusivity 

in air 

@300K, 

Γ x104 

(m2/s) 

Surface 

tension, 

γ 

(mN/m) 

Liquid 

density, ρ 

(kg/m3) 

Liquid 

viscosity, 

μ 

(mPas) 

Electrical 

conductivity, 

K 

(μS/m) 

Flow 

rate 

x1010 

Q (m3/s) 

Current, 

I 

(nA) 

1 acetone 330 0.333 0.104 23.36 786.0 0.32 20 2.06 42 

2 methanol 338 0.187 0.160 22.07 791.8 0.59 44 2.49 55 

3 n-heptane 371 0.067 0.070 19.65 684.0 0.40 1.71 1.43 13 

 

*based on Antoine's coefficients for vapor pressure from Reid et al. (1987) 
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3.4.3. Systems simulation 

For all the three spray systems mentioned in Table 3.3, the electric field was computed 

using a very fine non-homogeneous grid of 337×505 cells extending 10H×10H, of which 

a domain under z=0 is used to compute the transport of residual charge (Fig.3.1). The 

induced gasflow computations were performed using a non-uniform grid of 193×252 cells 

extending 10H×10H. This grid had the smallest radial cell size of djet/2 at the symmetry 

axis, and the smallest axial cell size of 45 μm both at the counterplate and at the capillary 

tube tip. 

Based on the discussion in Section 3.3.1.2, we have assumed that droplets undergo 

Coulomb explosions on reaching their charge limit releasing 2% of their mass (Δm/m = 

0.02) in 4 progenies, each in turn carrying a charge 70% of its own Rayleigh limit (α = 

0.7). Considering the first Coulomb explosion can happen when the parent droplet is about 

6 microns in diameter, each progeny will have a diameter of 1.025 μm. In the simulations, 

we consider 1.025 μm as the critical diameter, at which in our scheme a droplet turns into 

a residual charge and solvent vapor (Section 3.3.2).  

In our simulations we have chosen to treat residual charges as monomobile species, for 

the sake of simplicity. Depending upon the solute and (or) purity of solvent in an 

electrospray application (Karpas, 1989; Rosell, 1994; Steiner et al, 2001; Kirby, 2009; 

Fernandez-Maestre, 2010), the species carrying the residual charge can have a wide range 

of electrical mobility. For a spherical residue at charge limit ratio α, one can compute its 

electrical mobility (K) by the relation: 

  

 
d

Cq

g

cRK


3

  (10) 

 

Fig. 3.4 shows the variation in electrical mobility depending on the size of a spherical 

charged residue for α= 0.7 Hence for the residues of the critical diameter, the electrical 

mobility cannot be below 0.14 cm2/V s. Considering this and with reference to the 

literature mentioned above, we employ a uniform electrical mobility K of 0.5 cm2/V-s in 

all the three systems simulated. 
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Fig. 3.4. Electrical mobility vs. sphere diameter at a residue charge limit of 70% 

 

The time step for droplet dynamics computation is 1×10-6 s, whereas the calculations 

for droplet evaporation is carried out once in every 20 Lagrangian time steps (i.e. 2×10-5 

s). Preliminary simulations on the single droplet evaporation for all the solvents at an 

average axial gas velocity of 3 m/s (identified through the gasflow computations), 

revealed that less than 2×10-5 s is required for the complete evaporation of a droplet of 

size below the critical diameter, justifying the choice of this evaporation time step. All 

droplets dynamics data feeding into the other parts of the simulation were computed by 

ensemble averaging the droplet dynamics results within the period 0.1s to 0.2s of spray-

simulation time, which corresponds to 500 snapshots of the electrospray system.  

The simulation results of the three different systems are reported separately hereafter. 

 

3.4.3.1 Acetone electrospray 

The streamlines for steady-state induced airflow on attaining convergence after five 

stages (global iterations, see Fig. 3.2) are shown in Fig. 3.5a, along with one snapshot of 

the acetone electrospray system. The steady state field for vapor concentration, 
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transported combinedly through convection and diffusion, under the influence of airflow 

is depicted in Fig. 3.5b. 
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Fig.  3.5. (a) Snapshot of evaporating acetone electrospray with streamlines of induced 

airflow, and (b) steady state vapor iso-concentration contours as % of saturation 

concentration (for air at 300K).  

 

A maximum vapor concentration is observed at the droplets emission point owing to the 

highest droplet concentration involved. The concentration decreases steeply radially and 

axially, practically representing a situation of almost zero background vapor concentration 

for the major part of the spray. Comparative simulations shows that while this spray have 

only 2500 droplets, a non-evaporating spray of the same solvent had around 15000 

droplets, both evaluated at steady state configurations. Practically all of the spray is 

completely evaporated within an axial distance of 2 cm from the needle.  

The axial induced airflow velocity at the spray axis drops from 14.7 m/s at the 

electrospray jet moving with the same velocity, to 3 m/s within an axial distance of 3 mm 

from the needle and remains around 2 m/s thereafter before dropping to zero close to the 

substrate plate. Considering an average axial airflow velocity of 2 m/s, the Peclet number 

Pe =ΔzUz/Γ >>1 for the present system. Here Δz is the needle to plate distance, Uz a 

representative axial velocity of air within the spray volume and Γ the diffusivity of 

acetone vapor in air. Hence most of the vapor transport is dominated by convection 
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instead of diffusion, and basically follow the streamlines. This explains the narrow radial 

spread of vapor within the domain even though the droplets experience rapid evaporation 

(Fig. 3.5a).  

Fig. 3.6a shows the overall rate at which residual charge is generated per unit volume 

(Sq) within the spray due to droplet evaporation and subsequent Coulomb explosions. 

Three stages of Coulomb explosions are identifiable from this contour plot as regions of 

high Sq. The transport of residual charges is collectively influenced by the electric field 

and the airflow. The steady state concentration field for the residual charge is shown in 

Fig. 3.6b. Since residual charges are generated through Coulomb explosions occurring 

simultaneously at multiple locations within the spray, and due to the decrease in radial 

velocities of such charges in accordance with the local radial electric field (Ur,q=KEr + Ur), 

we observe their concentration to be higher towards the periphery of the electrospray.  

The redistribution of space charge and hence the electric field due to the presence of 

the residual charge within the electrospray has been included in the droplet dynamics 

computations. However since the mobility of the residual charge is very high in 

comparison with the charged droplets, their residence time was shorter and hence was not 

found to any significant influence in the overall droplet dynamics. 
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Fig.  3.6. Contour plots of (a) residual charge volumetric generation rate (Sq), depicting 

regions of Coulomb explosions, and (b) residual charge concentration, for acetone 

electrospray at steady state. 
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3.4.3.2 Methanol electrospray 

The methanol electrospray had a higher jet velocity of 17.6 m/s in comparison with that 

of acetone spray. Axial velocity of induced airflow dropped from jet velocity at needle 

and averaged around 2 m/s thereafter. The electrospray reduced from around 16000 

droplets to 8000, once evaporation due to induced gasflow was included in the 

computations (Fig. 3.7a). A maximum of about 14% to methanol vapor saturation 

concentration in air (at 300K) was identified close to the spray emission region (Fig. 

3.7b). Liquid flux below 1% of the emitted solvent volume reached the substrate plate, 

signifying practically complete evaporation of the spray. Though methanol has a higher 

diffusivity in air (0.16 cm2/s at 300K) than acetone, a high Peclet number suggests that 

vapor transport by convection is dominant in this system too, which follows the 

streamlines of airflow (Fig. 3.7b). However, on comparison it is evident that the methanol 

spray system has greater radial spread in vapor concentration than the acetone spray, 

which we attribute to the following reasons. The larger flow rate and lower vapor pressure 

in comparison with acetone as the solvent, contributes to lesser evaporation and thereby 

more droplets within the spray. Owing to higher electrical conductivity and hence higher 

electric current carried (Table 3.3), the larger number of droplets gives rise to higher spray 

space charge. Higher space charge leads to greater mutual repulsion among droplets and 

hence the greater spread in evaporating plume and resulting vapor field.  
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Fig. 3.7. (a) Snapshot of evaporating methanol electrospray with streamlines of induced 

airflow, and (b) steady state vapor iso-concentration contours as % of saturation 

concentration (for air at 300K). 

 

A larger plume for the present system means that some of the Coulomb explosions 

occur close to the counter-plate (see Fig 3.8a). Upto three such regions are observed in the 

Fig 3.8a, signified by high Sq. For this spray system, residual charges were significant 

and in the same order as the charge carried by the droplets themselves. However owing to 

the larger volume occupied by them in comparison with the droplets, contribution to the 

aerodynamic drag force density due to their motion was very small. Hence they didn’t 

significantly alter the induced gasflow field computed only from the droplet motion. 
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Fig.  3.8. Contour plots of (a) residual charge volumetric generation rate (Sq), depicting 

regions of Coulomb explosions, and (b) residual charge concentration, for methanol 

electrospray at steady state. 

 

3.4.3.3 n-heptane electrospray 

N-heptane has moderate vapor pressure, and was the least volatile among the three 

solvents selected for comparison. For the designed electrospray system of mean droplet 

size 8 μm, the current carried was substantially lower. Also the flow rate maintained for 
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the heptane spray in cone jet mode is only about half of the other two systems (see Table 

3.3). Since charge carried by an electrospray droplet is given by q = (I/Q) × (πd3/6), the 

heptane droplets carried lower charges and hence moved much slower in comparison with 

those in the other systems. The electrospray had a jet velocity of only 10.14 m/s which 

coincides with the initial axial velocity of droplets. After an initial slight increase, this 

drops to an average axial velocity of about 2.5 m/s, whereas the centerline airflow velocity 

drops from the electrospray jet velocity to an average of under 1.5 m/s.  

The spray evaporated completely before reaching the substrate plate and had around 

2400 droplets (Fig.3.9a) instead of the 21000 droplets for the same configuration, 

simulated without considering evaporation. The vapor concentration is low as in the other 

systems and has a maximum of around 15% close to the needle. Peclet number analysis 

indicates convective transport of vapor is dominant as in the other two systems. Also a 

smaller count of droplets meant lesser spray charge, hence a narrower plume and vapor 

field confined along the streamlines (Fig. 3.9b). However considering the low volatility of 

n-heptane, the results indicating complete evaporation of droplets are intriguing and 

require further discussion as follows. To check the possibility of complete evaporation of 

droplets as observed in our study, we use the basic D2 law on the experimental data of 

Burris (1954) who investigated the evaporation characteristics of n-heptane droplets in air 

stream at various flow conditions. Accordingly, time to evaporate an isolated 8 micron n-

heptane drop completely for similar ambient conditions and airflow velocity is around 

5x10-4 s, while even the fastest droplets in the present system have a residence time of 

1.2x10-2 s (~ 24 times the former) owing to the lowest charge content of spray. Hence the 

results of the simulation are justified. 

Broad region of Coulomb explosions in close proximity are observed for the slow 

moving spray system (Fig 3.10a). The final steady state concentration of residual charge 

(Fig 3.10b) is of lower intensity compared to the other two systems owing to the lower 

charge carried by the droplets in comparison, and the uniform electrical mobility assumed 

for the residual charge in all the simulations. In other words, this system comparatively 

creates lesser residual charges on full evaporation of its droplets, which in turn tend to 

move towards the counter-plate as fast as in the other two systems due to their assumed 

uniform mobility. 
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Fig. 3.9. (a) Snapshot of evaporating n-heptane electrospray with streamlines of induced 

airflow, and (b) steady state vapor iso-concentration contours as % saturation 

concentration (for air at 300K). 
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Fig. 3.10. Contour plots of (a) residual charge volumetric generation rate (Sq), depicting 

regions of Coulomb explosions, and (b) residual charge concentration, for n-heptane 

electrospray at steady state. 
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3.5 Conclusions  

 

A numerical scheme has been developed for volatile electrospray systems, which for 

the first time fully couples electrospray droplet dynamics with the effects of induced 

airflow, Coulomb explosions, and the transport of solvent vapor as well as residual 

charge. After validating the results with other non-coupled simulations of an evaporating 

electrospray in stagnant conditions, the scheme is elaborated by introducing non-

equilibrium effects in droplet evaporation, along with the encompassing dynamic effects 

of induced gasflow. The model was applied to compare the evaporation effects on the 

characteristics of three electrospray systems of varying volatility, but with same mean 

droplet size and similar input conditions. Results show that induced gasflow is a very 

important factor in the droplet evaporation when the droplet sizes are in the range 

common to electrospray applications. The results also suggest that the vapor transport in 

such systems is mainly due to forced convection instead of diffusion. Vapor transport by 

pure diffusion has been a simplified approach commonly followed in the numerical 

simulations of evaporating electrosprays due to the assumption of stagnant ambient 

conditions. By being able to predict the source and extent of vaporization, as well as the 

residual charges, we assume that this numerical scheme will have greater applicability if 

extended to the field of electrospray-ionization mass spectrometry, with appropriate 

changes in the gasflow conditions (for eg. co-axial, heated, vapor saturated etc.). 
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Chapter 4 

Conclusion 

A numerical scheme which includes the gasflow induced by droplet motion in the 

numerical simulation of electrosprays has been developed.  Applying this computational 

scheme initially on a non-volatile electrospray system, steady state solutions were sought 

iteratively by fully coupling a 3D Lagrangian model for the droplet dynamics with a 

steady state 2D axisymmetric Eulerian model for the induced gas flow.  

To resolve the reactive drag force on the gas by the droplets we employ Gaussian 

filters with variable kernel widths that depend on the droplet number density. At the 

denser spray regions close to the droplet emission point, we argue that the kernel size 

should neither be much wider nor much smaller than the average droplet diameter. Further 

downstream, where the droplet number density decreases, a wider kernel width has been 

used in order to suppress the fluctuations in the reactive force density.  

In order to quantify the effect of induced gasflow on the characteristics of the droplet 

plume (viz., droplet number density, droplet velocity, droplet size distribution), as well as 

on droplet dynamics and mass flux, we applied this scheme to an experimentally 

characterized spray by Tang & Gomez (1994), which comprised of non-evaporating 

primary and satellite droplets in air.  

Results show that including air motion in the simulations modifies the droplet 

trajectories significantly. Radial profiles of number density, and of local average droplet 

diameter, and centerline droplet velocities show better agreement with the experimental 

data when airflow is taken into account than when it is not (assuming still air). Significant 

air entrainment towards the spray axis is observed near the droplet generation region, 

which develops into a jet like structure that impinges onto the counterplate. The droplets 

mass flux radial distribution is particularly sensitive to the air entrainment, which results 

in a steep increase near the spray axis. It is shown that the induced airflow contributes to 

faster moving droplets, shrinkage of plume, and a prominent flux about the spray axis 

(centerline), as compared with the simulations assuming still air. We have also observed 

that the radial segregation by size of the satellite droplets is sensitive to the functional 

relationship between their charge-to-mass ratio and diameter. 
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Since electrospray applications usually involve volatile spray systems and gasflow 

being an important aspect in droplet evaporation, we further developed a comprehensive 

numerical scheme which fully couples the Lagrangian electrospray droplet dynamics with 

the effects of induced gasflow, Coulomb explosions, and the transport of solvent vapor as 

well as charge left over by vanishing droplets in volatile electrospray systems. Separate 

codes for the diverse phenomena were developed to achieve the same. 

To couple the different physics, the Lagrangian code and the three Eulerian ones (for 

the dynamics of gasflow, vapor and charge left by fully evaporating droplets) were run 

sequentially, taking the inputs needed for each code from the results of the preceding runs. 

The Eulerian codes were formulated under steady state, while for the Lagrangian model 

we take an ensemble average of a steady-state portion of the simulation as representative. 

After several sequences of simulations, each variable field converged and the overall 

result was taken as illustrative of the behavior of the electrospray under steady state.  

This methodology has been applied to compare the evaporation effects in three 

electrospray systems with solvents of different volatility: acetone, methanol and n-

heptane. The droplets were injected into the three systems with unimodal and log-normal 

distributed diameters with a mean value of 8 μm, and a coefficient of variation of 10%. 

Regions of intense Coulomb explosion events in form of diagonal bands (in the 2D 

domain) within the spray are well captured. We observe that the vapor transport in these 

mechanisms are predominantly by forced convection rather than diffusion. Highest vapor 

concentration is observed near the injection zone for all the three systems, which rapidly 

decays thereafter, both radially as well as axially. In all three cases, few or no droplets 

arrive at the counterplate located 3 cm down the capillary nozzle, highlighting the 

relevance of accounting for evaporation when simulating these systems. 

By being able to predict the source and extent of vaporization, as well as the 

concentration of charge released by vanishing droplets, we assume that this numerical 

scheme will have greater applicability if extended to the field of electrospray-ionization 

mass spectrometry, with appropriate changes in the gasflow conditions (for eg. co-axial, 

heated, vapor saturated etc.).  
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