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The work that is the support of this thesis has been performed in the research group of 

Oenological Biotechnology at the Department of Biochemistry and Biotechnology of the 

Faculty of Oenology at Rovira i Virgili University (URV) between the years 2011 and 

2016. During this period, I held a grant from URV for one year, a six-month predoctoral 

scholarship from Programa Martí Franquès and finally a FI Fellowship from AGAUR, 

Government of Catalunya.  

The work that I carried was part of the project “Microbiological selection and control for 

transforming non-commercial strawberries into new beverages” funded by the Spanish 

Ministry of Science and Innovation (AGL2010-22152-C03-02). This project was the 

continuation of a previous project entitled “Elaboration of food seasonings from fruits with 

double fermentation: microbiological, chemical and sensory control and analysis” 

(AGL2007-66417-C02/ALI). This project had as main objective the development of 

seasonings using fruits of secondary quality (persimmon and strawberry), which are not 

suitable for its direct sale, being a way to take advantage of surplus and highly perishable 

raw material to produce new products. The results obtained were satisfactory for both 

fruits; however, the product from strawberry showed better features (aroma, taste and 

higher concentration of bioactive antioxidants) than the persimmon, resulting in a more 

attractive final product. Moreover, Spain is the main producer of strawberries (30%) in 

the EU, followed by Germany, Poland, United Kingdom and France (Figure 1, FAOSTAT) 

and one of the most important over the world. In fact, in 2007, Spain was the second 

larger producer of strawberries in the world and in 2012 became the fourth after United 

States, Mexico and Turkey (FAOSTAT, 2012). Therefore, this high production of 

strawberry, a very sensitive and perishable fruit, together with the previous results 

obtained in the elaboration of seasonings, made strawberry a good candidate for the 

development of new products, such as a new non-alcoholic beverage.  

UNIVERSITAT ROVIRA I VIRGILI 
SELECTION AND OPTIMIZATION OF ACETIC ACID BACTERIA FOR D-GLUCONIC ACID PRODUCTION 
Florencia Sainz Perez 
 



JUSTIFICATION AND OBJECTIVES 

 

14 
 

 

Figure 1. Strawberry production in EU (2012). Source: FAOSTAT http://faostat.fao.org/.  

 

Thus, this soft beverage, produced with strawberry surplus, was the result of a mixture 

of two natural fermentations. The first product consisted of an alcoholic fermentation 

followed by an acetification (“strawberry vinegar”) and the second one, the oxidation of 

D-glucose into D-gluconic acid without consuming D-fructose using acetic acid bacteria 

(AAB) (“Gluconated strawberry juice”). Therefore, the project proposed a selective 

fermentation of D-glucose, in which D-glucose was mainly metabolized to D-gluconic 

acid and acetic acid. The new beverage would have an acid and refreshing sour flavor, 

sweetened with the natural D-fructose of the fruit. As the strawberry vinegar was the 

object of study in the previous project, in this case, we focused on the elaboration of the 

gluconated strawberry juice. The project was done in collaboration with the Universities 

of Sevilla and Cordoba, being our group responsible for the microbiological aspects of 

the process.  

Therefore, the working hypothesis of the present thesis was: Appropriate starter 

cultures will be able to produce a new non-alcoholic fermented beverage with 

surplus strawberry by oxidizing D-glucose to D-gluconic acid.  
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To test this hypothesis, our general aim was to make a selective fermentation carried out 

by AAB, in which D-glucose was transformed into D-gluconic acid without fermenting D-

fructose, to maintain a part of the natural sweetness of strawberry that will increase the 

acceptability of the product. To achieve this general aim, four specific objectives were 

developed: 

Objective 1: To select an acetic acid bacteria able to oxidize D-glucose to D-gluconic 

acid without consuming D-fructose. 

Objective 2: To analyze the enzymatic activity of the membrane-bound dehydrogenases 

responsible for D-glucose oxidation in the selected acetic acid bacteria strains. 

Objective 3: To determine the nitrogen requirements of the selected acetic acid bacteria 

strains.  

Objective 4: To monitor the selected acetic acid bacteria strains during the process. 
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To achieve these objectives, the following experimental design was followed: 

 

Objective 1: To select an acetic acid bacteria able to oxidize D-glucose to D-

gluconic acid without consuming D-fructose. 

 

CHAPTER 1: Comparison of D-gluconic acid production in selected strains of acetic acid 

bacteria. Results published in International Journal of Food Microbiology, 222, 40-47 

(2016).  

 

AAB has the ability to perform oxidative fermentation of a wide range of substrates, like 

D-glucose, ethanol, glycerol or D-sorbitol and to release to the medium the 

corresponding products. This characteristic makes AAB interesting for the biotechnology 

industry.  

We studied the production of D-gluconic acid in different strains of Gluconobacter and 

Acetobacter genera. Two experiments were performed in the study. In the first 

experiment, AAB strains were grown in different media (minimal medium, synthetic must 

and 2x strawberry concentrate) and the best three strains were selected. The main 

selection criteria were: highest concentration of D-gluconic acid, total consumption of D-

glucose and minimal oxidation of D-fructose. From this, the selected strains were tested 

in 3x strawberry concentrate with two different pH (3.3 and 4.8).  

A part of this work was also used in the collaboration with the University of Sevilla and 

as a result an article in the journal Food Chemistry was published: Impact of gluconic 

fermentation of strawberry using acetic acid bacteria on amino acids and biogenic 

amines profile (Ordóñez et al., 2015) 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
SELECTION AND OPTIMIZATION OF ACETIC ACID BACTERIA FOR D-GLUCONIC ACID PRODUCTION 
Florencia Sainz Perez 
 



EXPERIMENTAL DESIGN 

 

20 
 

Objective 2: To analyze the enzymatic activity of the membrane-bound 

dehydrogenases responsible for D-glucose oxidation in the selected acetic acid 

bacteria strains. 

 

CHAPTER 2: Determination of dehydrogenase activities involved in D-glucose oxidation 

in Gluconobacter and Acetobacter strains. Results published in Frontiers in Microbiology, 

doi: 10.3389/fmicb.2016.01358 

 

Most of the oxidative fermentations in AAB are catalyzed by membrane-bound 

dehydrogenase enzymes, which can be PQQ or flavin dependent. In D-glucose 

metabolism, the membrane-bound D-glucose dehydrogenase (mGDH) oxidize D-

glucose to D-gluconic acid. Then, D-gluconic acid could be metabolize by D-gluconate 

dehydrogenase (GADH) or glycerol dehydrogenase (GLDH) to 2-keto-D-gluconic acid 

(2KGA) or 5-keto-D-gluconic acid (5KGA), respectively. Furthermore, 2KGA could be 

oxidize to 2,5-di-keto-D-gluconic acid by the membrane-bound 2-keto-D-gluconate 

dehydrogenase (2KGDH).  

In six different strains of three AAB species, the enzymatic activities of the membrane-

bound dehydrogenases responsible for D-glucose metabolism were compared. The 

mGDH and GLDH activities were measured by phenazine methosulfate (PMS) and 2,6-

dichlorophenol indophenol (DCIP) as electron acceptors and for GADH and 2KGDH 

ferricyanide was used as electron acceptor. All these oxidative compounds produced 

during the experiment were analyzed by high performance liquid chromatography 

(HPLC). Finally, primers were designed for the partial amplification of the genes coding 

for mGDH, GLDH, GADH, 2KGDH and phylogenetic trees were constructed to compare 

the sequences of these genes in our strains with the sequences available in the Genbank 

Database.  
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Objective 3: To determine the nitrogen requirements of the selected acetic acid 

bacteria strains.  

 

CHAPTER 3: Effect of nitrogen source on the growth of different acetic acid bacteria 

strains. This manuscript is being reviewed in the International Journal of Food 

Microbiology 

 

AAB are considered fastidious microorganisms due to the difficulties for isolation and 

cultivation on solid media. AAB are strictly aerobic and their growth depends on available 

carbon sources and molecular oxygen. Different media have been designed for the 

isolation of AAB from different sources, but little is known about the needs of AAB for 

nitrogen sources. The aim of this study was to analyze the best nitrogen sources and the 

minimal concentration of nitrogen necessary for AAB growth. 

Three different media (Synthetic medium (SM), minimal medium (M9) and Yeast nitrogen 

base (YNB)) were tested by adding a complete solution of amino acids and ammonium 

in a range of concentrations (from 25 to 1000 mg N/L). After the selection of the best 

medium and the best nitrogen concentration for each strain, the nitrogen source was 

added as a single amino acid or ammonium ion at the optimal concentration.  

 

Objective 4: To monitor the selected acetic acid bacteria strains during the 

process. 

 

To monitor the selected strains during the two processes involved in the elaboration of 

the fermented beverage, the research group has available specific TaqMan-MGB 

process and primers for the species G.oxydans and A.malorum, but not for G.japonicus. 

Due to difficulties to design a probe for G.japonicus, a study of the 16S-23S rDNA internal 

transcribed spacer (ITS) in different AAB species was done. 
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CHAPTER 4: Analysis of ribosomal internal transcribed spacers (16S-23S) in acetic acid 

bacteria (Manuscript in preparation)  

 

Different molecular techniques based on PCR methods are used for AAB identification 

at different levels (genus, species or strains). The use of the 16S-23S rDNA internal 

transcribed spacer (ITS) presents higher discriminatory power than the use of 16S rDNA, 

since it shows differences in length and sequence between species, being a good 

solution for the identification of AAB at species level.  

The 16S-23S rDNA ITS of a high number of AAB strains belonging to different genera 

and species was amplified in this work to do a variability study. As in some strains, more 

than one fragments were obtained, these amplicons were purified using a QIAquick Gel 

Extraction Kit (Qiagen, Netherlands) and sequenced. Furthermore, in some strains, the 

different ITS amplicons were cloned into pGEM-T Easy vector (Promega, MA, USA), and 

introduced in E. coli cells. Then, some transformed colonies from each strain were 

purified and the plasmid inserted was isolated and screened by digestion with the 

restriction endonuclease EcoRI (Roche), to determine which ITS amplicon was inserted 

in each plasmid and what was the proportion between them.  

 

CHAPTER 5: Draft genome sequence of Acetobacter malorum CECT 7742, a strain 

isolated from strawberry vinegar. Genome Announcements 4(3):e00620-16 (2016). 

(doi:10.1128/genomeA.00620-16). 

 

CHAPTER 6: Draft genome sequences of Gluconobacter cerinus CECT 9110 and 

Gluconobacter japonicus CECT 8443, acetic acid bacteria isolated from grape must. 

Genome Announcements 4(3):e00621-16 (2016). (doi:10.1128/genomeA.00621-16). 

 

The whole genome sequencing of different strains of AAB species allows to understand 

diverse aspects of diversity, evolution and above all, gives genomic information. 
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Technological advances and bioinformatics improvements have allowed the 

development of faster and more efficient sequencing methods. Nowadays, it is possible 

to use sequencing methods as a routine tool in research, due the reduction in the cost 

of the analysis.  

The genome of three AAB strains belonging to different species and genera was 

sequenced. The DNA was extracted according to the cetyltrimethyl ammonium bromide 

(CTAB) method and the whole-genome was sequenced using the Genome Analyzer Ion 

Torrent PGM (Thermo Fisher Scientific, Madrid, Spain). The whole genome sequences 

were deposited in the GenBank Database. 
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1. ACETIC ACID BACTERIA 

1.1. AAB general characteristics 

The acetic acid bacteria (AAB) are gram-negative or gram-variable bacteria, with 

ellipsoidal or rod-shape morphology. Their size is between 0.4 to 1 µm wide and 0.8 to 

4.5 µm long; they are mobile due the presence of flagella that can be peritrichous or 

polar and are not able to form spores (Yamada and Yukphan, 2008). Microscopically, 

AAB can be seen as individual cells, in pairs or chains. However, depending on the 

environmental conditions and culture age, they could change their morphology, forming 

aggregates (Park et al., 2003; Trček et al., 2007), which is a problem for their isolation 

and quantification.  

AAB are catalase positive and oxidase negative and have a strictly aerobic metabolism 

with oxygen as the terminal electron acceptor. According to Holt et al. (1994), AAB grow 

well between pH 5.5 and 6.3, although they are able to grow at pH lower than 4. 

Moreover, Du Toit and Pretorius (2002b) reported that AAB could be isolated at pH 

between 2 and 3 in culture media with acetate and aeration. The optimal range of 

temperature for growth is between 25ºC and 30ºC, while some species are able to grow 

among 30ºC to 40ºC (Ndoye et al., 2006; Saeki et al., 1997) and weakly at temperatures 

as low as 10ºC (Joyeux et al., 1984).  

AAB are widespread in different niches in nature, usually they are found in substrates 

containing sugar and/or ethanol. They can occur in fruits, flowers or palm sap, but also 

in manufactured products like food and fermented beverages, such as fruit juices, wine, 

cider, beer, cocoa and vinegar (Nielsen et al., 2007; Yamada and Yukphan, 2008). In 

addition, they were found in the plant rhizosphere (Fuentes-Ramírez et al., 2001) and 

recently as symbiotic microorganism in insects (Crotti et al., 2010).  

The ability to oxidize incompletely an extensive number of carbohydrates and alcohol 

and the quick release in the media of the corresponding products, like acetic acid, 

cellulose, sorbose, sorbitol, D-gluconic acid, made AAB important for industry and 
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biotechnology applications. People have benefited for many years from AAB, without 

knowing that they were responsible for many processes such as vinegar production. 

Nowadays, more about AAB and their benefits is known, thus many new fields can be 

exploited by using these microorganisms (Raspor and Goranovic, 2008).  

1.2. AAB Taxonomy 

AAB are classified in the Acetobacteraceae family, in α-class of Proteobacteria (De Ley 

et al., 1984: Sievers et al., 1994a, b) and their taxonomy has been updated many times 

in the last forty years mainly due to the improvements and developments of new 

technologies. If we do a brief review of the history of AAB, F.T. Kützing can be considered 

as the first who observed microscopically AAB in a naturally fermented vinegar in 1837, 

when he described that the thin film that covered the surface of the vinegar was made 

by “globulles” six times smaller than yeasts. However, the first systematic study of 

acetification was carried out by Louis Pasteur in 1868, who described that only with the 

presence of a mass of live microorganism, “vinegar mother”, was possible to produce 

acetic acid and obtain the final product. Ten years later, Hansen reported that the 

“vinegar mother” responsible for transforming alcohol into acetic acid was a mixture of 

several bacterial species and not just one.  

Taxonomically, Acetobacter and Gluconobacter were the first genera proposed by 

Beijerinck in 1898 and Asai in 1935, respectively, using morphological and biochemical 

characteristics for this first classification (Cleenwerck and Vos, 2008). Later, Frateur, in 

1950, suggested a classification based on five physiological criteria: (i) catalase activity; 

(ii) production of D-gluconic acid from D-glucose; (iii) oxidation of acetic acid to carbon 

dioxide and water; (vi) oxidation of lactic acid to carbon dioxide and water and (v) 

oxidation of glycerol to dihydroxyacetone. Thereby, the genus Acetobacter was 

subdivided in four groups: peroxydans, oxydans, mexosydans, and suboxydans (review 

by Barja et al., 2003). In 1974, in the eight edition of Bergey´s Manual of Determinative 

Bacteriology AAB had still only two genera Acetobacter and Gluconobacter according to 
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the ability to oxidize acetate and lactate to carbon dioxide and water and the flagellation 

pattern. Later, Yamada and Kondo (1985) presented a different classification based on 

chemotaxonomic methods, where differences on ubiquinone system were analyzed. The 

genus Acetobacter showed Q-9, as primary respiratory quinone, while genus 

Gluconobacter had Q-10. Due to this feature, the Gluconacetobacter genus was created 

(Yamada et al., 1997a) and some strains included hitherto in the genus Acetobacter (A. 

xylinus, A. liquefaciens, A. hansenii, A. diazotrophicus and A. europaeus) were 

reclassified into this new genus. Some years later, in 2012, Yamada et al. proposed the 

genus Komagataeibacter for some species included in Gluconacetobacter genus, 

among them Ga. europaeus, Ga. xylinus, Ga. hansenii,...  

Although morphological, biochemical and physiological criteria have been commonly 

used to differentiate and characterize AAB genera and species, these traditional tests 

are laborious, time consuming, not accurate and difficult to interpret, therefore, not 

enough reliable (Cleenwerck and De Vos, 2008; Gullo et al., 2012). These difficulties led, 

in recent decades, to study the AAB taxonomy by the combination of phenotypic, 

chemotaxonomic and genotypic data (Cleenwerck and De Vos, 2008; Mamlouk and 

Gullo, 2013). DNA-molecular methods are quicker and more reproducible for the 

differentiation and classification of new species/genera of AAB. Nowadays, diverse 

methods are used, such DNA-DNA hybridization, key to discriminate among closely 

species of bacteria (Cleenwerck and De Vos, 2008); analysis of 16S rDNA (Yamada et 

al., 2012a), this gene is a highly conserved gene among AAB and allows the 

differentiation of AAB species. However, in some cases, this gene may not be enough 

resolutive for taxonomic studies. Thus, additional genotypic tests must be done, like the 

analysis of the internal transcribe spacer (ITS) between the genes 16S and 23S rDNA. 

This region shows a higher discriminatory power than 16S rDNA gene, with more 

variation in sequence and length (González et al., 2006a; González and Mas, 2011; Ruiz 

et al., 2000; Trček and Barja, 2015). Different works has proven the usefulness of this 

method differentiating closely related species such as Acetobacter malorum and 
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Acetobacter cerevisiae (Valera et al., 2011). In the last years, new technologies for a 

rapid identification of bacteria and routine analysis, such as MALDI-TOF MS, have been 

developed. The use of the protein profiles obtained by this method has been successfully 

applied to the differentiation of AAB at different levels (genera, species and strains) 

(Andrés-Barrao et al., 2013; Wieme et al., 2014). 

As we above mentioned, the AAB taxonomy has been updated many times since 1898, 

and these modifications and rearrangements are expected to continue in the coming 

years due to that AAB are present in many different habitats (Trček and Barja, 2015). To 

date, AAB are classified in nineteen genera (Table 1), being Acetobacter, the one with a 

higher number of described species (25 species), followed by Gluconobacter (15 

species), Komagataeibacter (14 species), Gluconacetobacter (10 species), Asaia (8 

species); the other AAB genera has only 1 or 2 species described (Trček and Barja, 

2015). It is important to highlight that although the genera Commensalibacter and 

Endobacter belong to the Acetobacteraceae family and were included in the list of AAB 

by Trček and Barja (2015), they are not yet accepted as acetic acid bacteria.  

 

Table 1. Genera of the acetic acid bacteria actually described, with the type species of the genus 

and the number of described species (edited from Trček and Barja, 2015). 

 
 

Genus Type species 

Number 
of 

described 
species  

Author(s) 

Acetobacter A.aceti 25 Beijerinck (1898) 

Gluconobacter G.oxydans 15 Asai (1935) 

Acidomonas A.methanolica 1 Urakami et al. (1989) 

Gluconacetobacter G.liquefaciens 10 Yamada et al. (1997b) 

Asaia A.bogorensis 8 Yamada et al. (2000) 

Kozakia K.baliensis 1 Lisdiyanti et al. (2002) 

Saccharibacter S.floricola 1 Jojima et al. (2004) 

Swaminathania S.salitolerans 1 Loganathan and Nair (2004) 

Neoasaia N.chiangmaiensis 1 Yukphan et al. (2005) 

Granulibacter G.bethesdensis 1 Greenberg et al. (2006) 

Tanticharoenia T.sakaeratensis 1 Yukphan et al. (2008) 

Commensalibacter C.intestini 1 Roh et al. (2008) 

Ameyamaea A.changmaiensis 1 Yukphan et al. (2009) 

Neokomagataea N.thailandica 2 Yukphan et al. (2011) 

Komagataeibacter K.xylinus 14 Yamada et al. (2012 a,b) 

Endobacter E.medicaginis 1 
Ramírez-Bahena et al. 

(2013) 

Swingsia S.samuiensis 1 Malimas et al. (2013) 

Nguyenibacter N.valangensis 1 Thi Lan Vu et al. (2013) 

Bombella B.intestini 1 Li et al. (2015) 
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1.3. Metabolism of AAB 

The AAB are strictly aerobic microorganisms, the availability of molecular oxygen is 

crucial for their growth, as it acts as terminal electron acceptor. This group of 

microorganisms is known for the ability to incompletely oxidize a wide range of sugars 

and alcohols, accumulating intermediate metabolites in the media, without relevant 

toxicity for the bacteria (De Ley et al., 1984). The carbon source is also an important 

factor in AAB growth and different strains or species could adapt to diverse carbon 

sources.  

Two kinds of enzyme systems that differ on localization in the cell are able to oxidize 

sugar, alcohols and polyols. The first pathway involves dehydrogenase enzymes located 

in the plasma membrane and the final products from the oxidation are released to the 

external medium. The second system is located inside the cell and the enzymes are 

NAD(P)+ dependent. These enzymes are believed to contribute to the production of 

biosynthetic precursors and to the cell maintenance in the stationary phase (Matsushita 

et al., 1994).  

One of the main AAB characteristic and the best known is their ability to oxidize ethanol 

to acetic acid by two membrane-bound enzymes. This pathway has two consecutive 

stages: first, ethanol is oxidized to acetaldehyde by the membrane-bound alcohol 

dehydrogenase (ADH) and after, acetaldehyde is oxidized to acetic acid by the 

membrane-bound aldehyde dehydrogenase (ALDH). Both enzymes presented 

pyrroloquinoline (PQQ) cofactor and are independent of NADP+. The enzyme ADH has 

an optimal pH of 4 with a restricted substrate specificity and ALDH showed an optimal 

pH among 4 and 5, however the oxidation could happen at lower pH (Adachi et al., 1980). 

The productivity of acetic acid is higher in Acetobacter species than in Gluconobacter 

species. This is because Acetobacter’s ADH is more active and the resistance to acetic 

acid in this species is higher (Matsushita et al., 1994). It is important to consider that 

Acetobacter and Gluconacetobacter species are able to completely oxidize acetic acid 
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to carbon dioxide and water via tricarboxylic acid pathway. Ethanol is a potent inhibitor 

of this process. Instead, Gluconobacter species are incapable of completely oxidizing 

ethanol, because this genus does not present a functional tricarboxylic acid pathway.  

AAB are able to oxidize different primary alcohols to their respective ketones, for 

example 2,3-Butanediol to acetoin or 1,2-Propanediol to hydroxyacetone. Also AAB are 

able to metabolize polyalcohols to sugars, like mannitol to D-fructose or sorbitol into 

sorbose. All these products will be accumulated in the medium. Moreover, organic acids 

such as citric, lactic, fumaric, pyruvic and succinic acids can also be used by AAB. In this 

case, these substrates are at intermediate degrees of oxidation, and therefore can be 

completely oxidized to carbon dioxide and water. As mentioned above, a complete 

oxidation occurred only in the species of AAB that present a functional tricarboxylic acid 

pathway.  

Different carbohydrates, such as arabinose, D-fructose, galactose, ribose, sorbose, 

mannose and xylose, can be oxidized by AAB, although D-glucose is the preferred 

carbon source for most AAB (De Ley et al., 1984).  

1.3.1. Oxidation of D-glucose by AAB 

As we above mentioned, two different pathways (Figure 2) could be responsible for D-

glucose oxidation (Gupta et al., 2001; Muynck et al., 2007; Velizarov and Beschkov, 

1998) and, therefore, two different enzyme systems (Matsushita et al., 1994) that differ 

in cellular localization, function and substrate specificity are present in AAB 

(Deppenmeier et al., 2002; Muynck et al., 2007).  

One enzyme system is located in the cytosol, thus, D-glucose must be taken up into the 

cell, through the cytoplasmic membrane, and then be oxidized intracellularly to D-

gluconate by NADP+-dependent D-glucose dehydrogenase or be metabolized by the 

pentose phosphate pathway (Muynck et al., 2007; Silberbach et al., 2003). After, this D-

gluconate could be further oxidized to 2-keto-D-gluconic acid (2KGA) or 5-keto-D-

gluconic acid (5KGA) by the cytoplasmic NADP+-dependent enzymes, 2-keto-D-
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gluconate reductase (2KGR) and 5-keto-D-gluconate reductase (5KGR), respectively. 

Moreover, these enzymes can catalyze the reverse reaction; reducing the keto-D-

gluconic acids again to D-gluconate (Elfari et al., 2005; Klasen et al., 1995; Muynck et 

al., 2007; Pronk et al., 1989).  

 

Figure 2. Enzymatic reactions for D-glucose oxidation by AAB. 

According to Matsushita et al. (1994), these NADP+-dependent enzymes are mainly 

involved in the synthesis of biosynthetic precursors and in the cell maintenance during 

the stationary phase, without much contribution to the oxidative fermentation.  

The second and the most important pathway for D-glucose metabolism, known as “direct 

D-glucose oxidation” pathway, (Figure 2) take place in the periplasmic space. In this 

case, D-glucose is directly oxidized by the membrane-bound PQQ-dependent D-glucose 

dehydrogenase (mGDH) (Deppenmeier et al., 2002; Elfari et al., 2005; Gupta et al., 

2001; Krajewski et al., 2010; Matsushita et al., 1994) to glucono-δ-lactone, and then is 

converted to D-gluconate by glucono-δ-lactonase or spontaneously (Matsushita et al., 

1994; Shinagawa et al., 1999). D-glucose is almost quantitatively converted to D-

gluconate and only when the concentration of D-glucose decreases below a certain value 

(30 mM), the keto-D-gluconic acid production starts (Weenk et al., 1984). The substrate 
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specificity of mGDH seems to be restricted to D-glucose (Adachi et al., 2007). The 

membrane-bound dehydrogenases are linked to the respiratory chain, which transfers 

electrons to ubiquinone and then to the terminal oxidase, resulting in the synthesis of 

ATP (Matsushita et al., 1994). mGDH is the key enzyme in the metabolism of D-glucose 

in AAB (Ameyama et al., 1981). Afterwards, D-gluconate can be oxidized to 2KGA by a 

FAD-dependent membrane-bound D-gluconate dehydrogenase (GADH). This enzyme 

is specific for D-gluconate oxidation (Adachi et al., 2007; Ameyama et al., 1981; 

Matsushita et al., 1994; Toyama et al., 2007). 2KGA may also be oxidized to 2,5-di-keto-

D-gluconate (2-5DKGA) by the FAD-dependent 2-keto-D-gluconate dehydrogenase 

(2KGDH) (Gupta et al., 2001; Matsushita et al., 1994), which is a flavohemoprotein with 

three different subunits similar to GADH that only uses 2KGA as substrate (Adachi et al., 

2007). D-gluconate can also be oxidized to 5KGA by a PQQ-dependent membrane-

bound glycerol or polyol dehydrogenase. This enzyme has been elusive and now is 

known that has a broad substrate preference towards several sugar alcohols (D-glycerol, 

D-sorbitol, D-arabitol, or D-mannitol) and is identical to D-arabitol dehydrogenase 

(ARDH) or D-sorbitol dehydrogenase (SLDH) (Adachi et al., 2007; Matsushita et al., 

2003).  

It is important to highlight that the oxidation of D-glucose depends on the pH of the 

medium, the initial D-glucose concentration and the particular conditions used for 

cultivation (Asai 1968; Olijve and Kok, 1979, Qazi et al., 1991). Each enzyme involved 

in the D-glucose oxidation has a specific pH that must be considered during the oxidation 

process (Silberbach et al., 2003). De Ley et al. (1984) found that the optimal pH for AAB 

growth is 5.5. On the other hand, some authors reported that D-glucose was 

quantitatively converted into D-gluconate and no production of keto-D-gluconate was 

detected when there was no pH control (Beschkov et al., 1995; Weenk et al., 1984). 

Instead, when pH of the medium was controlled (pH 5.5), although D-glucose was also 

practically quantitatively converted to D-gluconate, the accumulation of 2KGA and 5KGA 

was observed (Weenk et al., 1984). Some years later, Qazi et al. (1991), described the 

UNIVERSITAT ROVIRA I VIRGILI 
SELECTION AND OPTIMIZATION OF ACETIC ACID BACTERIA FOR D-GLUCONIC ACID PRODUCTION 
Florencia Sainz Perez 
 



INTRODUCTION 

 

35 
 

pH 5.5 as the optimal for D-glucose dehydrogenase activity and the range 3.5-4.0 for the 

activity of gluconate and keto-D-gluconate dehydrogenases. However, other studies 

have reported different pH for the optimal activity of these enzymes, suggesting that it is 

heavily dependent on the strain and medium conditions used and also on the aim 

targeted (Elfari et al., 2005; Silberbach et al., 2003). In general, an acidic pH, between 

3.0-6.0, is considered good for membrane-bound dehydrogenase enzymes activity and 

an alkaline pH, between 8.0-11.0, for cytosolic enzymes activity (Adachi et al., 2001; 

Matsushita et al., 1994).  

Keto-D-gluconates production is highly dependent on the initial concentration of D-

glucose and the strain used (Weenk et al., 1984). These authors demonstrated that with 

initial D-glucose concentrations of 50 and 250 mM, the content of this substrate in the 

medium should drop below 10 mM and 80 mM, respectively, to boost the synthesis of 

keto-D-gluconates. In another study, three different D-glucose concentrations (56 mM, 

500 mM and 1160 mM) were tested, and while the low concentrations resulted in a 

quantitatively conversion of D-glucose into D-gluconate, the highest initial concentration 

of D-glucose (1160 mM), reduced the yield of D-gluconate production (65%) (Beschkov 

and Velizarov, 1995). D-glucose oxidation is mostly located in the membrane when the 

concentration of D-glucose in the medium is above 15 mM and the pH is below 3.5, 

since, in these conditions, the pentose phosphate pathway is inhibited (Olijve and Kok, 

1979; Ramachandran et al., 2006). 

The oxygen concentration in the medium can also interfere with the D-glucose oxidation. 

An increase of the dissolved oxygen in the medium positively influences both the AAB 

growth as the oxidation process by stimulating the enzymes involved (Buse et al., 1992; 

Macauley et al., 2001). Similar benefits due to a high aeration rate have been observed 

by other authors (Silberbarch et al., 2003; Sonoyama et al., 1982).  

1.3.1.1. Uses of D-gluconic acid and keto-D-gluconic acids 
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D-gluconic acid is a nontoxic and noncorrosive weak acid soluble in water. It is 

considered a safe food additive, used in different food industries (Ramachandran et al., 

2006; Rogers et al., 2013). It could be used in its free form, calcium or sodium salt and 

also like a lactone (Gupta et al., 2001). Different industries like pharmaceutical, food, 

fodder and concrete benefit from its use. D-gluconic acid present chelating properties, 

especially with calcium and iron (Gupta et al., 2001; Mattey, 1992). It can be used for 

precious metal cleaning (Gupta et al., 2001), and in dairy industry, as an additive in 

cleaning products to clean milk storages vessels and machinery and to prevent 

accumulation of calcium salts (Rogers et al., 2013).  Furthermore, it is widely spread in 

natural products like in fruit juices, honey, yoghurt, bread, cottage cheese and meat. It 

gives a refreshing sour taste to wine and fruit juices (Ramachandran et al., 2006), can 

be added in food to give smooth acidity (Rogers et al., 2013) and it has the property to 

prevent bitterness in foodstuffs (Ramachandran et al., 2006). It is extensively used as 

flavoring agent and to reduce the fat absorption (Ramachandran et al., 2006). Its low 

toxicity, high stability and solubility help to achieve high concentrations of calcium or iron 

salts, when used in medical treatment for anemia (Mattey, 1992). Moreover, D-gluconic 

acid has been reported to have some beneficial effects upon intestinal microbiota (Asano 

et al., 1994, 1997; Tsukahara et al., 2002).  

From a biotechnological point of view, 5KGA is important for the chemical industry as a 

precursor of L-tartaric acid (Muynck et al., 2007; Yamada et al., 1971), which can be 

produced in few steps (Klasen et al., 1991; Matzerath et al., 1995). It is important to 

highlight that AAB are only involved in the first step of the process, the oxidation of D-

glucose to 5KGA. The subsequent oxidation of 5KGA to L-tartaric acid needs the 

presence of ammonium vanadate (NH4VO3) to catalyze this reaction, which is 

independent on the AAB activity (Klasen et al., 1991; Matzerath et al., 1995). L-tartaric 

acid has diverse functions as acidulant in wine, fruit and beverages, as taste enhancer 

and antioxidant in food industry and as acidic reducing agent in textile industry 

(Herrmann et al., 2004; Matzerath et al., 1995). Moreover, L-tartaric acid could be an 
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alternative to citric acid as an acidulant in food additives due to its superior organoleptic 

properties (Matzerath et al., 1995).  

Furthermore, different products from D-glucose oxidation are intermediates of the 

synthesis pathway of L-ascorbic acid (vitamin C). At present, a considerable part of 

commercially manufactured of L-ascorbic acid is still synthesized via the seven-step 

Reichstein process that includes six chemical stages and only one microbial step 

(Bremus et al., 2006; Liu and Zhang, 2010). However, the high energy consumption 

together with the high temperatures and pressures required at some stages, makes the 

process very expensive for the industry. Therefore, in the last twenty years, different 

strategies to overcome these difficulties based on the microbial biotransformation have 

been investigated. Most of these approaches have been focused on the production of 2-

keto-L-gulonate (2KLG), as the key intermediate that can be later converted to L-ascorbic 

acid by conventional chemical catalysis (Bremus et al., 2006). Figure 3 shows the 

different routes for the production of L-ascorbic acid indicating which steps can be done 

by AAB, specially Gluconobacter strains. AAB are involved in two possible pathways for 

the production of 2KLG from D-glucose, oxidation of D-glucose to 5KGA or to 2,5-DKGA. 

The latter is especially interesting since it could be directly converted to 2KLG by 

Corynebacterium (Sonoyama et al., 1982).  

For the chemical industry and especially for the production of organic acids, the microbial 

fermentation presented more advantages than petroleum-based chemical production 

(Alonso et al., 2015). Thus, fermentative production is trustworthy, eco-friendly, 

achievable, sustainable and above anything, it is economically competitive. Therefore, 

the development and improvement of processes based on microbial fermentation are 

now one of the challenges in biotech industry.  
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       Figure 3. Different methods used for the production of L-Ascorbic acid. (Bremus et al., 2006) 

1.3.2. Nitrogen metabolism 

Little information is known about both the metabolic pathways involved in nitrogen 

assimilation as the nitrogen requirements of AAB. Most of AAB are supposed to be able 

to use inorganic ammonium as the only nitrogen source and to synthetize amino acids 

and nitrogen compounds (Belly and Claus, 1972; De Ley et al., 1984). However, some 

studies have reported that some amino acids are essential for AAB growth, while others 

described a stimulatory or inhibitory function (Belly and Claus, 1972). Anyway, all these 

studies are quite old (mainly in the 1950s).  

In recent years, studies about nitrogen have been focused on the characterization of the 

consumption pattern of amino acids and ammonium during wine vinegar production and 

differences between acetification processes (Álvarez-Cáliz et al., 2012, 2014; Maestre 

et al., 2008; Valero et al., 2005). In addition, possible nitrogen limitations in the raw 

substrate that could compromise the process have been lately analyzed (Callejón et al., 

2010). Wine due to the previous alcoholic fermentation (AF) carried out by yeast could 

be a poor medium for AAB development during vinegar production. However, the 

autolysis of yeast at the end of AF release amino acids and vitamins to the medium, 

which may be beneficial for the growth of AAB (Fleet, 2001). In the case of must grape, 
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high concentrations of arginine and proline are present in the AF beginning. During 

alcoholic fermentation, arginine is one of the principal nitrogen sources for yeast, while 

proline cannot be used in anaerobic conditions. For this reason, wine present high 

concentrations of proline, which seems to be a good nitrogen source for AAB, followed 

by leucine and ammonium ion. Anyway, this nitrogen pattern could change due to the 

raw substrates used for vinegar production (Valero et al., 2005). As expected after 

acetification, nitrogen content of vinegars is lower than in wines. In fact, in a study done 

by Maestre et al. (2008), a decrease in total nitrogen content (9.99 mM in wine vs. 6.58 

mM in vinegar), as well as in nitrogen source diversity (14 amino acids detected in wine 

vs. 9 in vinegar) was observed. Furthermore, wines that has been subjected to biological 

aging contain lower available nitrogen than young wines (Álvarez-Cáliz et al., 2014), due 

to nitrogen consumption by flor yeast (Berlanga et al., 2004, 2006). However, the content 

present in these wines seems not to be a limiting factor for acetification. Moreover, the 

urea synthesized by the flor yeast during the aging process that could pose a problem is 

suppressed by the AAB during the acetification (Álvarez-Cáliz et al., 2014). 

On the other hand, the pattern of consumption and synthesis of nitrogen sources by AAB 

was heavily dependent on the environmental conditions (Álvarez-Cáliz et al., 2012). 

These authors reported that AAB preferred to consume free amino acids rather than 

ammonium ion when unexpected changes occurred in the environment, while in 

favorable conditions, AAB used more ammonium ion because they probably synthetize 

amino acids that are partly stored as a reserve for future unfavorable conditions. 

Important differences in the consumption pattern of nitrogen sources were also observed 

when different vinegar production systems such as superficial and submerged methods 

were compared (Callejón et al., 2008). The consumption of amino acid was much lower 

in submerged that in surface acetifications, and for instance, proline, the most consumed 

amino acid in surface acetifications, was not used in submerged cultures. These 

differences could be explained for two main reasons: acetification time and AAB species 

involved in the processes.  
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1.4. AAB Isolation and growth 

One of the biggest problems found in AAB is their isolation, lower percentage of recovery 

and maintenance in culture media, in particular in samples that were isolated from 

extreme media with high ethanol and/or acetic acid concentration, such as wine or 

vinegar (Entani et al., 1985; Gullo et al., 2006; Sievers et al., 1992). This low AAB 

recovery was initially associated with the absence of specific synthetic media for these 

microorganisms. Therefore, different media with diverse carbon sources were developed 

to try to solve this problem. In Table 2, different media used for the AAB isolation are 

shown. Among them, GY, GYC and YPM have been the most suitable media for the 

isolation of AAB from samples of musts, wines (Bartowsky et al., 2003; Du Toit and 

Lambrechts, 2002a; González et al., 2004) and diverse vinegars (Gullo et al., 2006; 

Prieto et al., 2007; Valera et al., 2011; Vegas et al., 2010). In the case of samples from 

vinegars with high concentration of acetic acid, the most suitable media are AE and RAE 

with a double layer agar (Entani et al., 1985; Sokollek and Hammes, 1997). However, 

the total AAB recovery in this media is still low when compared with the microscopy 

counting (Sokollek et al., 1998; Trček, 2005). These differences can be accounted for 

the formation of aggregates and because some AAB cells could enter into a viable but 

non-culturable state (VBNC) (Millet and Lonvaud-Funel, 2000), underestimating, 

therefore, the real population. To solve these problems, some culture-independent 

techniques have been developed for AAB detection and quantification, like 

epifluorescence (Baena-Ruano et al., 2006; Fernández-Pérez et al., 2010; Mesa et al., 

2003), quantitative PCR (Jara et al., 2013; Torija et al., 2010; Vegas et al., 2013), 

fluorescence in situ hybridization FISH (Franke et al., 2000) and metagenomics or 

massive sequencing (Portillo and Mas., 2016; Valera et al., 2016).  
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Table 2. Most common media to isolate AAB 

Media   Quantity   Media   Quantity 

       
aGYC agar    bGY Medium   

D-glucose  5.0% (w/v)  D-glucose  2.0% (w/v) 

Yeast extract  1.0% (w/v)  Yeast extract  1.0% (w/v) 

Calcium Carbonate  0.5% (w/v)  Agar  2.0% (w/v) 

Agar  2.0% (w/v)     

       

GYC Medium    dAE Medium   

D-glucose  10.0% (w/v)  D-glucose  0.5% (w/v) 

Yeast extract  1.0% (w/v)  Yeast extract  0.3% (w/v) 

Calcium Carbonate  2.0% (w/v)  Peptone  0.4% (w/v) 

Agar  1.5% (w/v)  Agar  0.9% (w/v) 
    Absolute ethanol  3 ml (v/v) 
    Acetic acid   3 ml (v/v) 
       

cYPM Medium    eRAE Medium   

Yeast extract  0.5% (w/v)  D-glucose  0.4% (w/v) 

Peptone  0.3% (w/v)  Yeasy Extract  0.1% (w/v) 

Mannitol  2.5% (w/v)  Peptone  0.1% (w/v) 

Agar  1.2% (w/v)  Absolute ethanol  0-4% (w/v) 
    Citric acid  0.015% (w/v) 

    Na2HPO4  0.038% (w/v) 

    Agar  0.5-1% (w/v) 

       

V50       

Yeast extract  0.4% (w/v)     

Glycerol  0.2% (w/v)     

L-Tartaric acid  0.2% (w/v)     

K2HPO4  0.05% (w/v)     

MgSO4.7H2O  0.05% (w/v)     

Na acetate  0.1% (w/v)     

MnSO4  0.02% (w/v)     

CaCl  0.01% (w/v)     

Ethanol  6.0% (w/v)     

pH5             
 

aD-glucose yeast extract Calcium carbonate medium 
bD-glucose yeast extract medium 
cYeast extract peptone mannitol medium 
dAcetic acid ethanol medium 
eReinforced-AE medium 

 

1.5. AAB Molecular Techniques 

Both the identification at species level as well as the typing of AAB have been benefited 

by the development and progress of molecular techniques. During the last decades, 

diverse techniques have been tested for AAB analysis, showing interesting results for 

both taxonomy studies and biotechnology industry. The phenotypic properties were in 
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the past a mainstay of bacterial identification, however, nowadays they are 

complemented or replaced by molecular techniques like, sequence analysis or PCR-

based methods. The latter are the most used in AAB identification, showing quickness, 

specificity, reliability and sensitivity. Obviously, these PCR-based methods have different 

levels of discrimination (genus, species or strain) (Trček and Barja 2015), being very 

important to choose the most suitable for each application. 

1.5.1. Genotyping 

Different culture-dependent techniques, such as RAPD-PCR, ERIC-PCR or REP-PCR, 

have been developed for AAB typing, allowing to differentiate among strains. Random 

amplified polymorphic DNA-PCR (RAPD-PCR) amplifies randomly the genomic DNA by 

using low hybridization temperatures and a short primer with arbitrary sequence, and 

strain-specific band pattern is obtained. This technique was applied to study AAB 

populations in different kinds of vinegars (Nanda et al., 2001; Trček et al., 1997). 

However, the most used techniques for AAB typing are ERIC-PCR, REP-PCR or (GTG)5-

rep-PCR. These methods are based on the amplification of repetitive sequences 

distributed along the genome, that are highly conserved and generate different size 

fragments, producing a unique pattern for each strain. This technique has been 

successfully used in diverse substrates such as wines (González et al., 2004), vinegars 

(Hidalgo et al., 2010b, 2012, 2013a, 2013b; Nanda et al., 2001; Vegas et al., 2010, 2013; 

Wu et al., 2010) and grapes (Mateo et al., 2014; Navarro et al., 2013; Valera et al., 2011). 

1.5.2. Genera and species identification 

Different culture-dependent and independent techniques have been developed for the 

identification at genera and species level of AAB. Among the dependent-culture 

methods, one of the most used is the analysis of 16S rDNA. Although the restriction 

analysis of the amplification of 16S rDNA is an effective tool for routine AAB species 

grouping, the subsequent sequencing of the gene is mandatory to have an accurate 

identification. However, this technique cannot differentiate between closely related 
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species, as for example between A. cerevisiae and A. malorum (Valera et al., 2011), due 

to the high homology between these species, up to 99.7% in this gene (Cleenwerck and 

De Vos, 2008). In these cases, the use of the 16S-23S rDNA internal transcribed spacer 

region (ITS) has been demonstrated to be efficient (González and Mas, 2011; Valera et 

al., 2011). Because of the importance of this technique for our work, it will be discussed 

with more detail in a separate section. 

Two culture-independent techniques have been the most used for AAB species 

identification: DGEE and RT-PCR (Real Time PCR). The first one is commonly used to 

determine biodiversity in the samples, amplifying a fragment of the 16S rDNA that is 

separated according to its sequence not to its size. This technique has been applied to 

characterize microorganisms present in wines (Andorrà et al., 2008; Lopez et al., 2003), 

vinegars (De Vero et al., 2006; Gullo et al., 2009; Haruta et al., 2006) and vinegar biofilms 

(Valera et al., 2015a). 

On the other hand, RT-PCR is a fast, accurate and sensitive tool for the detection and 

enumeration of microorganisms. In this case, it is possible to quantify only those 

microorganisms on which specific primers o probes have been designed. This technique 

has been applied in AAB in different studies. Some of them have quantified the total AAB 

in wines and vinegars using general primers for AAB and SYBR-Green as fluorescent 

reporter (Andorrá et al., 2008; González et al., 2006b; Torija et al., 2010). Other authors 

have designed specific TaqMan or TaqMan-MGB probes for the detection and 

quantification of different genera or species of AAB (Gammon et al., 2006; Torija et al., 

2010; Valera et al., 2013) and some have applied these probes for species detection in 

vinegar samples (Jara et al., 2013; Vegas et al., 2013) and in vinegar biofilms (Valera et 

al., 2015a). 

In the recent years, the development of next-generation sequencing system, such as 

pyrosequencing, has provided the possibility to have a more complete information about 

the whole complexity of the communities present in fermented products (Ercolini, 2013; 

Illeghems et al., 2012). However, few studies (Nie et al., 2013; Valera et al., 2015b) have 
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been yet done to study the microbiota present in vinegar (liquid or biofilm) using this 

technology. 

1.5.2.1. Analisis of 16S–23S rRNA ITS region 

The rRNA genetic loci of eubacterial consist of three genes: 16S, 23S and 5S that are 

separated by an internal transcribed spacer region (ITS). According to Barry et al. (1991), 

during the evolution, ITS regions suffered minimal selective pressure, which generated 

a greater sequence variation in these regions than in genes with functional roles. More 

than one copy of these regions are usually found in the genome and present some 

conserved regions coding for functional roles like tRNA genes and antitermination 

sequences. The ITS region are well known to be characterized by sequence and length 

variations (Barry et al., 1991; Dolzani et al., 1995), being an appropriate tool for 

differentiation at species (Barry et al., 1991; Jensen et al., 1993) or strain level (Dolzani 

et al., 1995; Kostman et al., 1992). 

In AAB, different studies have used this region to identify AAB species (González et al., 

2006a; González and Mas, 2011; Prieto et al., 2007; Ruiz et al., 2000; Sievers et al., 

1996; Trček, 2005; Trček and Teuber, 2002). In most of them, the ITS was amplified and 

subsequently digested with several restriction enzymes (PCR-RFLP). Sievers et al. 

(1996) sequenced the 16S-23S rRNA ITS region of three strains belonging to K. 

europaeus and K. xylinus species (formely named Acetobacter europaeus and A. 

xylinum) and detected the sequences coding for tRNAIle and tRNAAla, that were identical 

in all the strains. Moreover, they were able to determine that the genome of these strains 

contained four copies of the ITS and that all the copies were also identical. Ruiz et al. 

(2000) compared the results obtained by PCR-RFLP 16S-23S rRNA with the PCR-RFLP 

16S rRNA to identify different AAB strains (reference strains and natural wine isolates). 

The use of the ITS region using diverse restriction enzymes showed the same degree of 

species differentiation as that of PCR-RFLP 16S rRNA when reference strains where 

analysed. However, the natural isolates showed different restriction patterns regarding 

UNIVERSITAT ROVIRA I VIRGILI 
SELECTION AND OPTIMIZATION OF ACETIC ACID BACTERIA FOR D-GLUCONIC ACID PRODUCTION 
Florencia Sainz Perez 
 



INTRODUCTION 

 

45 
 

to the ones obtained with the reference strains, suggesting that this technique may be 

more adequate for detecting intraspecific differentiation than for identification at species 

level. However, subsequent studies have demonstrated its usefulness for species 

identification. Thus, Trček and Teuber. (2002) were able to make a database with 12 

groups of 16S-23S ITS restriction profiles of AAB reference strains, that was successfully 

tested with isolates from wine vinegar (Trček and Teuber, 2002) and alcohol vinegar 

(Trček, 2005). Moreover, the use of ITS region has been often used to differentiate 

species closely related that were not able to be differentiate using the gene 16S rRNA. 

Thus, González et al. (2006a) proposed to combine both techniques (PCR-RFLP of 16S 

rRNA and 16S-23S rRNA ITS) using diverse restriction enzymes for an accurate 

identification of AAB species in a shorter time and in Prieto et al. (2007), the ITS region 

was very useful to correctly identify some isolates from Chilean healthy grapes badly 

classified using the PCR-RFLP 16S rRNA. Later, González and Mas. (2011) proposed 

to include the ITS region as a part of the polyphasic approach for AAB identification, 

since it was a good tool for the discrimination of AAB involved in food processes. 

Moreover, they also proposed this region as suitable for the design of primers and probes 

for AAB identification. In fact, probes designed in this region has allowed to discriminate 

between wild isolates of A. cerevisiae and A. malorum, that cannot be differentiated by 

16S rRNA gene (Valera et al., 2013). 

1.5.3. Genome sequencing  

In 1977, Frederick Sanger and Alan R. Coulson published the methodology for the 

determination of DNA sequence (Sanger et al., 1977). The procedure was known as 

Sanger sequencing and was based on chain-termination method. On the same year, 

Maxam and Gilbert. (1977) developed another sequencing method that was based on 

chemical modification of DNA and subsequent cleavage at specific bases (Liu et al., 

2012). The sequencing technology proposed by Sanger et al. (1977) showed significant 

improvement to the Maxam and Gilbert method, due to its higher efficiency and low use 
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radioactivity, making that Sanger sequencing was adopted as the only technology used 

for DNA sequencing during the following years. In 1995, the first two bacterial genome 

(Haemophilus influenza and Mycoplasma genetalium) were completely sequenced 

(Fleischmann et al., 1995; Fraser et al., 1995) and in 2001, using the Sanger sequencing 

technology together with the automatic sequencing instruments the completion of 

Human Genome Project was possible. This project encouraged technical improvements 

in sequencing methods to be faster, with more accuracy and cheaper. Moreover, it also 

stimulated the development of next-generation sequencing methods (NGS). These 

technologies are different from Sanger sequencing in some aspects such as the high 

throughput, massively sequencing reactions in parallel and reduced cost (Liu et al., 2012; 

Van Dijk et al., 2014). Important advances in bioinformatics tools for the data processing 

have been also necessary since the relatively short reads given by NGS made genome 

assembly more difficult (Morozovo et al., 2008; Van Dijk et al., 2014). 

The vast reduction in the sequencing price has allowed to a great number of labs and 

research groups to consider sequencing as a basic routine tool for any biological study 

(Binnewies et al., 2006; Buermans and Den Dunnen, 2014; Van Djik et al., 2014). 

According to Land et al. (2015), the number of sequenced genomes continue increasing 

dramatically, and nowadays, more than 90.000 sequenced bacterial genomes are 

available in the National Center for Biotechnology Information (NCBI, 2016). This high 

amount of genomic data helps to understand different aspects such as bacterial diversity, 

population characteristics, mobile genetic elements, horizontal gene transfer (Binnewies 

et al., 2006), detection of pathogenic genes, and evolution studies (Liu et al., 2012). 

Furthermore, Ramasamy et al. (2014) suggested incorporating the genomic information 

in bacterial taxonomic studies for complementing phenotypic and chemotaxonomic 

parameters, in a new approach named “taxono-genomics”. 

Until June 2016, 120 genomes of AAB are publicly available (NCBI, 2016). Of the 19 

AAB genera, only 11 have genomes assembly, being Acetobacter, Gluconobacter and 

Komagataeibacter, those with the highest number of whole genome sequence 
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published. The genus Acetobacter has 51 published genomes of 18 different species, 

having some species more than one sequenced strain. A. pasteurianus is the species 

with the highest number of genome assemblies (15), followed by A. malorum, A. 

tropicalis, A. aceti and A.cerevisiae with 6, 5, 4 and 3, respectively. In the case of 

Gluconobacter and Komagataeibacter, there are published 31 and 6 genomes 

assemblies, respectively. A strain of G. oxydans species (strain 621H) was the first AAB 

to be completely sequenced by Prust et al. (2005), and nowadays, this species is the 

second one with more sequenced strains (12). During the years from 2005 to 2008, just 

one AAB was sequenced per year, while only in 2009, 8 strains of A.pasteurianus were 

sequenced. It is important to note, that till the date (NCIB, June 2016), this year, 40 new 

AAB genomes have been published, twice the published genomes in the last year. 

Acetobacter and Gluconobacter are the genera with the highest number of registered 

genomes in this year, with 18 sequences each. 

 

2. FERMENTED PRODUCTS 

2.1. Fermentation 

Fermentation is a process where primary food products suffer biochemical modifications 

carried out by microorganisms and their enzymes. The fermentation process is the oldest 

form of food preservation in the world and is an inexpensive technology. There are 

records of fermentation of milk, meat and vegetables that are dated before 6000 BC. 

Fermentation is a handcraft process, in which, over the centuries, the methodologies and 

knowledge associated with the process have passed generation to generation in local 

communities, monasteries and feudal states, without knowing that those responsible for 

the process were microorganisms (Caplice and Fitzgerald, 1999). It was in the mid-19th 

century with the industrial revolution, urbanization and the development of modern 

science that the role of microorganisms in the process was uncovered, representing a 

significant impact on food fermentation. The production of food increased in size, and it 
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was necessary to industrialize the manufacturing process and expand foods to distant 

markets. Moreover, microorganisms were recognized as responsible for the fermentation 

process and then it was possible to characterize and isolate starter cultures to produce 

food on a large scale in industries. The use of selected starter cultures was a revolution 

in the food industry with an immediate repercussion in quality and safety. Then, 

fermentation was not only a process for preservation, but also the fermented products 

started to be important for their unique flavor, aroma and texture attributes that were 

more appreciated by consumers.  Fermentation intensifies aroma, taste, texture, 

nutritional value (Nount and Mortarjemi, 1997) and other attractive properties as 

appearance, elimination of undesirable components and protection against food 

poisoning and development of pathogens (Farnworth, 2004). Thus, consumers perceive 

that fermented foods promote health and prevent nutritional diseases, mostly due to the 

relation of fermented foods with safety, digestibility and probiotic effects. 

Fermented foods are consumed worldwide and wide range of substrates is used. Diverse 

substrates, including plant and animal origin, can be used. Furthermore, the composition 

of substrates, water and the microorganisms used have great impact on the final product. 

In the 21st century, one of the main problems of world population is the food waste, being 

meat, fruit, vegetables and bakery products, the main wasted foods (Melikoglu and 

Webb, 2013). Fermentation could be a solution to reduce food waste, using its potential 

to transform raw material in new products with added value and attractive for the 

consumer.  

2.2. Vinegar  

Historically, the appearance of vinegar goes back with the beginning of the agriculture 

and the discovery of the alcoholic fermentation from fruit, vegetables and cereals. The 

word vinegar comes from the latin vinum acre or vinum acetum (sour wine), referring to 

a kind of wine dominated by high volatile acidity. Thus, the word vinegar, since ancient 

times, has been always related with strong tasting, intense or acid. Vinegar has not been 
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very well considered as fermented food. However, it has been extensively used as a food 

condiment, preservative agent and in some places, vinegar is considered a healthy drink 

(Solieri and Giudici, 2009).  During the Middle Ages and the Renaissance, the medical 

use of vinegar expanded and it was used as a digestive, prophylactic for liver problems, 

sore throats, anthelmintic and hair loose (Plessi, 2003). Moreover, vinegar is known for 

their anti-bacterial activity. Thus, some recent studies have linked the consumption of 

vinegar as drink with lower blood pressure, anti-oxidant activity, reduced diabetes 

effects, prevention of cardiovascular diseases and refreshment after exercise (Fushimi 

et al., 2002; Johnston et al., 2004; Kondo et al., 2001; Nishidai et al., 2000; Ogawa et 

al., 2000; Shau-mei Ou and Chang, 2009; Shimoji et al., 2002; Sugiyama et al., 2003;). 

The definition for vinegar in Codex Alimentarius (1987) says that “vinegar is a liquid, fit 

for human consumption, and produced from a suitable raw material of agricultural origin, 

containing starch, sugars or starch and sugar, by the process of double fermentation, 

first alcoholic and the acetous”. Therefore, vinegar could be produced from any 

fermentable sugar by two fermentation steps; in the first one, carbohydrates are 

metabolized into ethanol by yeast and afterwards, AAB oxidize the ethanol into acetic 

acid in an aerobic process. Different kind of raw materials could be used for vinegar 

production, including rice, malt, grapes, apple, potatoes, and any other sugary food 

(Bamforth, 2005; Solieri and Giudici, 2009). 

In general, vinegar is an inexpensive product, where low cost material is used, mostly 

surpluses raw substrates from seasonal agriculture, substandard and waste fruit or from 

processed food (Table 3). However, there are some expensive vinegars, such as 

Traditional Balsamic Vinegar or Sherry vinegar, that are produced according to 

established methods, in specific geographical regions and generally protected by 

“Apellation of origin” systems. 
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Table 3. Overview of vinegars from around the world: raw materials, intermediate product, vinegar 

name and geographical distribution. (Solieri and Giudici, 2009). 

a Vegetable is not a botanical term and it used to refer to an edible plant part; some botanical fruits, such as 
tomatoes, are also generally considered to be vegetables. 
b Obtained by bamboo sap fermentation. 
c Umeboshi are pickled ume fruits. Ume is a species of fruit-bearing tree of the genus Prunus, which is often 
called a plum but is actually more closely related to the apricot 

Category 
Raw 

material 
Intermediate Vinegar name 

Geographical 
distribution 

Vegetable 
a 

Rice Moromi Komesu, kurosu 
(Japanese) Heicu 

(Chinese) 

East and Southeast Asia 

 
Bamboo sap Fermented bamboo sap Bamboo vinegar b Japan, Korea 

 
Malt Beer Malt vinegar Northern Europe, USA 

 
Palm sap Palm wine (Toddy, tari, 

tuack, tuba) 
Palm vinegar, Toddy 

vinegar 
Southeast Asia, Africa 

 
Barley Beer Beer vinegar Germany, Austria, 

Netherlands 
 

Millet Koji Black vinegar China, East Asia 
 

Wheat Koji Black vinegar China, East Asia 
 

Sorghum Koji Black vinegar China, East Asia 
 

Tea and 
sugar 

Kombucha Kombucha vinegar Russia, Asia (China, 
Japan, Indonesia) 

 
Onion Onion alcohol Onion vinegar East and Southeast Asia 

 
Tomato - Tomato vinegar Japan, East Asia 

 
Sugarcane Fermented sugar cane 

juice        Basi 
Cane vinegar               
Sukang iloko                 

Kibizu 

France, USA           
Philippines                    

Japan 

Fruit Apple Cider Cider vinegar USA, Canada 
 

Grape Raisin                                        
Red or white wine                

Sherry wine                       
Cooked must 

Raisin (grape) vinegar          
Wine vinegar                 

Sherry (Jerez) vinegar         
Balsamic vinegar 

Turkey and Middle East      
Widespread                         

Spain                                   
Italy 

 
Coconut Fermented Coconut 

water 
Coconut water vinegar Philippines, Sri Lanka 

 
Date Fermented date juice Date vinegar Middle East 

 
Mango Fermented mango juice Mango vinegar East and Southeast Asia 

 
Red date Fermented jujube juice Jujube vinegar China, East Asia 

 
Raspberry Fermented raspberry 

juice 
Raspberry vinegar East and Southeast Asia 

 
Blackcurrant Fermented blackcurrant 

juice 
Blackcurrant vinegar East and Southeast Asia 

 
Blackberry Fermented blackberry 

juice 
Blackberry vinegar East and Southeast Asia 

 
Mulberry Fermented mulberry 

juice 
Mulberry vinegar East and Southeast Asia 

 
Plum Umeboshi c fermented 

juice 
Ume-su Japan 

 
Cranberry Fermented cranberry 

juice 
Cranberry vinegar East and Southeast Asia 

 
Kaki Fermented persimmon 

juice 
Persimmon vinegar               

Kakisu 
South Korea                           

Japan 

Animal Whey Fermented whey Whey vinegar Europe 
 

Honey Diluted honey wine, tej Honey vinegar Europe, America, Africa 
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2.2.1. Fruits and fruit vinegars 

Fruits and fruit products are vital for human diet and have played an important role in 

nutrition. Foods in general, and especially fruits, have different nutrients that are 

essential for growth, maintenance, body tissue repair and giving nourishment. These 

nutrients are divided in macronutrients (energy substrates required in large quantities), 

micronutrients (essential for humans in small quantities) and bioactive compounds 

(Sánchez-Moreno et al., 2012). 

Fruits contain between 70% and 90% of water and carbohydrates are the main nutrients 

after water. The principal monosaccharides are D-glucose and D-fructose and two 

different types of fiber could be found, water-soluble fiber and insoluble fiber. Fruits are 

the best sources of vitamins (vitamin C, vitamin E, vitamin B1, B2, B3, B6); folate and 

diverse types of minerals (iron, calcium, phosphorus, magnesium, potassium, zinc, 

copper, selenium). The concentrations of all these macro and micronutrients vary 

according to the kind of fruit. Bioactive compounds or phytochemicals like carotenoids, 

flavonoids and phytosterols are present in low quantities. However, their consumption is 

important due to their ability to decrease the risk of diverse degenerative diseases such 

heart disease, cancer and aging. 

Nowadays, people care more about the food health benefits and “natural” aspects, and 

consequently, the demand for high quality products is growing. Fermentation is the 

process that could give the consumer exceptional flavor, taste, bioactive compounds and 

other benefits in a 100% natural way (Hugenholtz, 2013). In some countries of Africa and 

especially in Asia, the demand of fruit vinegar products is growing due to their relation to 

health. Large variety of fruits could be used for the production of vinegar. It is possible to 

use second quality and waste fruit that can produce high quality juices (Monspart-Sényi, 

2006). The advantage of this type of vinegars is that keep the subtle flavors and aroma 

of the raw material (Plessi, 2003). However, fruits with low concentration of sugar are 

more difficult to be used for these products. Thus, in the elaboration of some fruit 
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vinegars, fruit or fruit juice are added to alcohol or rice vinegars; so that vinegar acts as 

a solvent for the extraction of aromas and nutrients of the fruit, resulting in a final sweet-

sour taste (Shao-meu Ou and Chang, 2009; Solieri and Giudici, 2009). In a study done 

by Chang et al. (2005), these authors analyzed 44 Taiwan local fruit vinegars and only 

nine samples were directly obtained from the fermentation of the fruit juice. 

Several studies have analyzed fruit vinegars; however, they are mainly focused on their 

organoleptic characteristics and their quality parameters. Some examples involve 

rabbiteye blueberry (Min-Sheng and Po-Jung, 2010), blueberry (Hidalgo et al., 2013a), 

apple (Liu et al., 2008; Sakanaka and Ishihara, 2008), lemon, peach (Liu et al., 2008), 

persimmon (Hidalgo et al., 2010a; Sakanaka and Ishihara, 2008; Ubeda et al., 2011b), 

plum (Liu and He, 2009), and strawberry (Hidalgo et al., 2010a; Ubeda et al., 2011a; 

Ubeda et al., 2012;) vinegars. 

2.3. Strawberry drink 

As previously mentioned, one of the problems of fresh fruit and vegetables production is 

the large amount of waste, due to both the surplus of production and the second or third 

quality fruit that for its appearance is impossible to be sold in the market. A possible 

solution is the use of this low-quality fruit for the production of different products like 

beverages, fruit juices, jams purees, etc.. However, the market of these products is quite 

saturated, and therefore, it is not able to absorb all this surplus production, which implies 

that part of the harvest is left in the fields, creating serious ecological and economic 

problems. Thus, the waste takes not only the fruits, but also the agrochemicals and the 

labor used. Moreover, some fruits are quickly perishable. Some alternatives to these 

problems include the transformation by fermentations. For instance, the alcoholic 

fermentation of fruit sugars, obtaining as a final product, a fruit wine with variable alcohol 

concentration. Consumption of fruit wine is not extended around the world, however 

some apricot (Joshi et al 1990), apple (Joshi et al., 1991), banana (Akubor et al., 2003), 
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acerola (Santos et al., 2005), mango (Reddy and Reddy, 2005), gabiroba (Duarte et al., 

2009) wines have been reported to be popular in some countries. 

Other strategy could be to transform these fruit surplus by microbiological processes in 

new products with added value that are attractive and healthy for consumers. This was 

the main objective of two projects (AGL2007-66417-C02/ALI and AGL2010-22152-C03-

02) developed by the Oenological Biotechnology group from URV in collaboration with 

other research groups. In the first one, the aim was to elaborate fruit vinegars while in 

the second one, the purpose was the elaboration of a strawberry drink by selective 

fermentation using yeasts and AAB. This drink would be the result of a mixture of two 

bioprocesses; being the first one a strawberry vinegar, produced by alcoholic 

fermentation and then the acetification of the strawberry puree. The second one would 

be the oxidation of the natural D-glucose of the strawberry into D-gluconic acid by AAB, 

without consuming D-fructose. This “gluconated strawberry juice” could have stability 

problems due to the presence of a fermentable sugar (D-fructose) and the low acidity. 

However, the addition of strawberry vinegar will solve this limitation. Furthermore, the 

low pH of the drink will help to prevent the growth of spoilage microorganisms. The new 

beverage will have a refreshing sour taste, but sweetened by the natural D-fructose of 

the fruit. Therefore, in this new non-alcoholic beverage the goal is the equilibrium 

between the acidity (which provides microbial stability), D-fructose sweetness (acid 

balance in taste) and the D-gluconic acid fixed acidty (which will intensify the taste). 

 

3. HEALTH IMPACT OF THE STRAWBERRY DRINK 

Several studies report the relation between rich diet in vegetables and fruits and lower 

occurrence of obesity, neurologic and cardiovascular diseases, cancer and infections 

(Etminan et al., 2004; Vauzour et al., 2010). The fruit consumption will increase in the 

population if the sensory characteristics of the products are attractive and include some 

health benefits. According to Prosinska and Bartles. (2007), when a new fruit product 
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appears in the market, the success will be due to the attitude of the consumer towards 

the product depending on the expected and real taste, quality and healthiness. 

Many studies have reported the healthy and nutritional effects of strawberries. According 

to Giampieri et al. (2012a), the presence of high levels of vitamin C, folate and phenolic 

compounds, increases the nutritional quality of strawberries. Most of the bioactive 

compounds of strawberries are phenolic compounds that are known for their antioxidant 

and anti-inflammatory actions, anti-hypertensive, anti-allergic properties (Alvarez-

Suarez, 2011), anti-cancer and antineurodegenerative effects (Tulipani et al., 2009). The 

principal class of phenolic compounds found in strawberries are flavonoids, especially 

anthocyanins, flavonols such as quercetin and kaempferol, and flavanols (Giampieri et 

al., 2012a, 2012b; Tulipani et al., 2009). Furthermore, strawberries contain a huge 

concentration of phenolic acids and ellagic acid/ ellagitannins, a recently characterized 

compound in food and only found in berries from the Rosaceae family (Giampieri et al., 

2012a, 2012b). 

There are no studies on the health benefits of strawberry vinegar or D-gluconic acid 

fermentation of strawberry, but it has been demonstrated the presence of different 

phenolic compounds and antioxidant activities in these products (Álvarez-Fernández et 

al., 2014; Hornedo-Ortega et al., 2016; Ubeda et al., 2012). In the previous project 

(AGL2007-66417-C02/ALI), strawberry vinegar was produced using different conditions 

and treatments and a decrease in the total phenols, total monomeric anthocyanins and 

anti-oxidant activity during the process was observed. However, when acetification was 

done in wood barrels, an improvement in all the parameters was detected. It seems that 

the use of wood barrels and especially cherry barrels, is beneficial for a rich 

concentration of phenols and the increase of the antioxidant activity in strawberry 

vinegars. Álvarez-Fernández et al (2014) identified 44 non-anthocyanin phenolic 

compounds in D-gluconic fermentation of strawberry and most of these compounds 

increased during the process. 
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An important feature of the strawberry drink is to maintain the natural sweetness of the 

D-fructose of the fruit. The main sources of D-fructose are fruits, some vegetables, 

honey, and table sugar (sucrose). However, in the early 1970, a major source of D-

fructose was developed: a high fructose corn syrup (HFCS), which was produced 

enzymatically by converting starch in a mixture of D-fructose and D-glucose. Two 

variants of HFCS exist: HFCS-55 (50% D-fructose + 50% D-glucose) and HFCS-42 with 

42% of D-fructose (Johnson and Muray, 2010). Nowadays, the major consumption of D-

fructose is through the intake of products that contain HFCS, like sweetens drinks, soft 

drinks, juice fruits and pre-packaged food (Basciano et al., 2005; Bray and Popkin, 2013). 

Forty years ago, D-fructose was considered better sweetener for diabetes patients, 

because it had no influence on D-glucose plasma level, being used in patients with 

limited insulin production (Basciano et al., 2005; Tappy et al., 2010). However, several 

studies related the consumption of D-fructose with weight gain, type 2 diabetes mellitus, 

non-alcoholic fatty liver disease, increase of triglyceride levels, hypertension, metabolic 

syndrome, insulin resistant and D-glucose intolerance (Basciano et al., 2005; Cruz et al., 

2007; Gaby, 2005; Johnson and Muray, 2010; Montonen et al., 2007; Tappy et al., 2010). 

However, it has to be emphasized that these aspects were related with the consumption 

of high quantities of HFCS. Thus, most investigations focused on the high consumption 

of D-fructose by humans (Faeh et al., 2005; Ka et al., 2009; Montonem et al., 2007; 

Pérez-Pozo et al., 2010), due the greater intake of sweetened beverage in the last years, 

which has contributed to increase obesity or metabolic disorders. Moderate consumption 

of D-fructose does not cause harmful health effects (Cruz et al., 2007; Gaby, 2005). 

Those deleterious effects are related to the amounts consumed as well as the individual 

tolerance, age, body fat mass and genetic background (Bray and Popkin, 2014; Tappy 

and Lê, 2015). Bray and Popkin. (2014), highlight the large amount of studies related 

with D-fructose but that none of them compares the consumption of D-fructose with that 

of the other sugars. 
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The product that we propose has only the natural D-fructose of the strawberry, without 

any further addition. The presence of sugar in the proposed strawberry drink is much 

lower than the content in any soft drink and that of natural or industrial fruit juices. 

However, the moderate consumption of natural fruit juices is considered a healthy option 

(Sartorelli, et al., 2009), and, thus, this beverage contains the same healthy components 

as well as low sugar content. Vasdev et al. (2002), demonstrated that rats fed with D-

fructose and vitamin C did not develop metabolic syndrome. Moreover, strawberries 

contain high concentrations of vitamin C, minimizing the possible adverse effects caused 

by D-fructose (Johnson and Murray, 2010). 
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ABSTRACT 

The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the 

production of several compounds, including D-gluconic acid. The production of D-

gluconic acid in fermented beverages could be useful for the development of new 

products without D-glucose. In the present study, we analyzed nineteen strains 

belonging to eight different species of AAB to select those that could produce D-gluconic 

acid from D-glucose without consuming D-fructose. We tested their performance in three 

different media and analyzed the changes in the levels of D-glucose, D-fructose, D-

gluconic acid and the derived gluconates. D-glucose and D-fructose consumption and 

D-gluconic acid production were heavily dependent on the strain and the media. The 

most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and 

Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) 

also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-

gluconates. 

 

 

Keywords: D-glucose, Strawberry, Keto-D-gluconic acids, Acetobacter, Gluconobacter 
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1. INTRODUCTION 

Acetic acid bacteria (AAB) belong to the Acetobacteraceae family and are now classified 

into nineteen genera: Acetobacter, Gluconobacter, Gluconacetobacter, 

Komagataeibacter, Asaia, Neokomagataea, Granulibacter, Kozakia, Neoasaia, 

Swaminathania, Saccharibacter, Acidomonas, Tanticharoenia, Ameyamaea, 

Nguyenibacter, Swingsia, Commensalibacter, Endobacter and Bombella (Lan Vu et al., 

2013; Malimas et al., 2013; Trček and Barja, 2015). AAB are strictly aerobic, gram-

negative, rod-shaped bacteria (Deppenmeier et al., 2002; Sievers and Swings, 2005) 

that are widespread in nature, occurring in sugary and/or alcoholic niches, such as fruits, 

flowers or alcoholic beverages (wine, cider, beer, sake and soft drinks) (Trček and 

Teuber, 2002). From a biotechnological point of view, AAB are very interesting due to 

their ability to perform oxidative fermentation through incomplete oxidation of alcohols or 

sugars (such as D-glucose, glycerol, D-sorbitol, ethanol), resulting in a near-quantitative 

excretion of the corresponding oxidation products in the culture medium (Adachi et al., 

2003; Deppenmeier et al., 2002; Matsushita et al., 2003). Some examples of this 

metabolism are the production of acetic acid from ethanol or D-gluconic acid from D-

glucose (Deppenmeier et al., 2002; Lino et al., 2012; Prust et al., 2005).  

D-gluconic acid is a non-corrosive, non-volatile, non-toxic, mild organic acid and a natural 

constituent of fruits, plants, wine and honey that provides a refreshing sour taste. It is 

listed as a generally permitted food additive (E574) by the EFSA, and it is listed as a 

GRAS (Generally Recognized As Safe) additive by the US FDA (Ramachandran et al., 

2006). Although, D-gluconic acid can be produced chemically or by enzymatic processes 

using purified enzymes, mainly from Aspergillus niger, the most common method for its 

synthesis is oxidative fermentation (Papagianni, 2011). In the case of AAB, D-gluconate 

can be synthesized by two different pathways. In the first pathway, D-glucose is directly 

oxidized in the periplasmic space by membrane-bound pyrroquinoline quinone (PQQ)-

dependent glucose dehydrogenase (GDH) (Matsushita et al., 1994; Merfort et al., 2006; 

Olijve and Kok, 1979; Silberbach et al., 2003). In this pathway, D-glucose is oxidized to 
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glucono--lactone and then to D-gluconate. This acid could be further oxidized to 2-keto-

D-gluconate (2-KGA) and 2,5-di-keto-D-gluconate by a flavin-dependent gluconate-2-

dehydrogenase (GA2DH) and 2-keto-D-gluconate dehydrogenase (2KGDH), 

respectively (Matsushita et al., 1994). Additionally, D-gluconate could also be oxidized 

to 5-keto-D-gluconic acid (5-KGA) by a membrane-bound PQQ-dependent gluconate-5-

dehydrogenase (GA5DH) (Shinagawa et al., 1999). The second pathway is located in 

the cytoplasm; therefore, D-glucose is first taken into the cells and then converted to D-

gluconate by a soluble NADP+-dependent glucose dehydrogenase, which is further 

dissimilated in the pentose phosphate cycle (Herrmann et al., 2004; Muynck et al., 2007). 

In the cytoplasm, this D-gluconate can also be oxidized to 2-KGA or 5-KGA by 2-keto-

D-gluconate reductase (2KGR) and 5-keto-D-gluconate reductase (5KGR), respectively. 

2-KGA can also be reduced back to D-gluconate by the cytosolic 2KGR (Deppenmeier 

et al., 2002; Matsushita et al., 1994; Muynck et al., 2007). In either case, the production 

of D-gluconic acid is mainly the result of the direct oxidation in the periplasmic space, as 

the membrane-bound GDH activity is 30-fold higher than that of the cytosolic GDH 

(Pronk et al., 1989). 

Strawberries are very popular berries and have a high nutritional value due to the 

presence of micronutrients and phenolic substances, of which the potential health 

benefits have been widely studied (Giampieri et al., 2012; Hannum, 2004). However, 

they are also an easily perishable fruit, which are generally consumed fresh, and, 

therefore, must be processed very quickly after harvest. Some alternatives to direct 

consumption have been developed, such as juice, jelly, nectar, puree, concentrate or 

jams (Barrett et al., 2005; Sinha, 2006). Recently, the production of strawberry vinegars 

by double fermentation has been proposed as a good alternative to the current 

processing methods because fermentation extends the shelf life, can add some value to 

the product and is one of the more environmentally friendly processes (Hidalgo et al., 

2010, 2013). Nevertheless, the consumption of vinegar is low, and other strategies that 

preserve the fruit’s natural sweetness and compensate for acidity using AAB are being 
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studied. One such process is the production of a beverage that is mainly based on D-

glucose oxidation to D-gluconic acid, where D-fructose is not fermented. Thus, the aim 

of this work is the selection of AAB strains to carry out this process. Although strains of 

the Gluconobacter genus initially seemed to be the most suitable for this purpose 

(because they prefer sugary environments and have been well studied with regard to D-

glucose metabolism in AAB), the only AAB strain we isolated from strawberries is a strain 

of Acetobacter malorum (Hidalgo et al., 2013). Therefore, strains from species of both 

the Gluconobacter and Acetobacter genera were tested in this study. Different media 

and conditions were used to select the best strain for the production of a non-alcoholic 

fermented beverage made from strawberries.  

 

2. MATERIALS AND METHODS 

2.1. Bacterial strains and growth conditions 

Nineteen strains of eight species of AAB were used in this study (Table 1). Fifteen of 

these strains were isolated by our research group in previous studies (Hidalgo et al., 

2013; Navarro et al., 2013; Valera et al., 2011; Vegas et al., 2010), and the remaining 

four were obtained from different culture collections. The AAB were grown in GY medium 

(1% (w/v) yeast extract; 1% (w/v) D-glucose; Panreac, Barcelona, Spain) at 28°C with 

shaking (125 rpm) for 48 h. 
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Table 1. Strains used in this study.  

Species Strain 
Origin or 

isolation source 
References 

Gluconobacter 
japonicus 

 CECT 8443 Grape must Navarro et al. (2013) 

Gj1 Grape Valera et al. (2011) 

Gj2 Grape Valera et al. (2011) 

Gj3 Grape Valera et al. (2011) 

6 Grape must Navarro et al. (2013) 

13 Grape must Navarro et al. (2013) 

Gluconobacter 
oxydans 

 
DSM 7145T 

Beer (Henneberg 1897) De Ley (1961) 

17 Grape must Navarro et al. (2013) 

Po5 Vinegar Vegas et al. (2010) 

Gluconobacter 
albidus 

14 Grape must Navarro et al. (2013) 

Gluconobacter 
cerinus 

16 Grape must Navarro et al. (2013) 

Gluconobacter 
thailandicus 

15 Grape must Navarro et al. (2013) 

Acetobacter 
pasteurianus 

DSM 3509 T Beer 
(Hansen 1879) Beijerinck and 

Folpmers (1916) 

11 Grape must Navarro et al. (2013) 

Acetobacter 
cerevisiae 

 LMG 1625 T 
Beer (ale) in 

storage 
Cleenwerck et al. (2002) 

19 Grape must Navarro et al. (2013) 

Acetobacter 
malorum 

 LMG 1746 T Rotting apple Cleenwerck et al. (2002) 

9 Grape must Navarro et al. (2013) 

 CECT 7749 Strawberry vinegar Hidalgo et al. (2013) 
  T Type Strains 

2.2. D-gluconic acid production 

Two experiments were performed to study the production of D-gluconic acid by the AAB. 

In the first experiment, all AAB strains were screened for the production of D-gluconic 

acid in duplicate in three different media: Minimal medium (MM; 1% (w/v) yeast nitrogen 

base w/o amino acids (Becton, Dickinson & Co, Franklin Lakes, NJ, USA) and sugars), 

Synthetic must (SM) prepared according to Riou et al. (1997) and 2x strawberry 

concentrate (2x-SC, HUDISA, S.A, Huelva, Spain). The sugar concentrations (D-glucose 

and D-fructose) and pH in the MM and SM were adjusted to the natural sugar 

concentration (192 mM of D-glucose and 246 mM of D-fructose) and the pH (3.3) of the 
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strawberry concentrate (2x-SC). The pH was adjusted with 10 M hydrochloric acid. Only 

one strain of each species of Acetobacter genera was tested in 2x-SC. The criteria used 

for the selection of the strains were as follows: a) maximal concentration of D-gluconic 

acid, b) D-glucose depletion, and c) minimal consumption of D-fructose. According to 

these parameters, the three best strains were selected, and the experiments were 

repeated in triplicate and monitored over time.  

In the second experiment, the strains selected from the previous results were tested in 

triplicate in 3x strawberry concentrate (3x-SC; 333 mM D-glucose and 356 mM D-

fructose; HUDISA, Huelva, Spain) at two different pH values: 3.3 and 4.8. The pH of the 

3x-SC was adjusted to 4.8 by adding calcium carbonate (Sigma-Aldrich, St. Louis, MO, 

USA).  

In both experiments, the fermentations were performed in sterile 250 mL Erlenmeyer 

flasks in 100 mL of medium inoculated with 2106 cells/mL of the corresponding strain 

grown in GY medium. All of the experiments were stopped after 30 days. Although D-

glucose depletion and the maximal D-gluconic consumption were expected to occur 

rapidly, the experiment was extended (until 30 days) to determine whether the different 

AAB strains were able to use other carbon sources, such as D-fructose and/or D-gluconic 

acid. The media had been previously sterilized with dimethyldicarbonate (DMDC; 

Velcorin, Sigma-Aldrich) when the strawberry concentrates were used (2x-SC and 3x-

SC). Additionally, 100 mg/L of natamycin E-235/Delvocid (DSM; Delft, The Netherlands) 

were added to prevent the growth of yeast and fungi. The effectiveness of these 

treatments was confirmed by microscopy and plating on GYA (GY plus 2% (w/v) agar 

(Panreac) and YPDA (2% (w/v) D-glucose, 2% (w/v) bacteriological peptone (Panreac), 

1% (w/v) yeast extract, and 2% (w/v) agar) media. Moreover, in the case of 3x-SC, 20 

µL of pectolytic enzymes (ROHAPECT®, AB Enzymes, Darmstadt, Germany) were used 

to reduce the viscosity and allow better homogenization of the medium. All of the 

Erlenmeyer flasks were incubated at 28°C with shaking (125 rpm). 
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Samples were taken at different times of the process to monitor the sugar consumption 

(D-glucose and D-fructose) and production of D-gluconic acid, 2-keto-D-gluconic acid (2-

KGA) and 5-keto-D-gluconic acid (5-KGA). Microbiological controls of the processes 

were performed at different levels, depending on the complexity of the media. In MM and 

SM, the optical density (OD) was measured throughout the processes. In the case of the 

strawberry concentrates, microscopic evaluation was performed because it was not 

possible to measure the OD. Moreover, the presence of solid particles in these 

concentrates made it very difficult to properly evaluate the AAB population with 

microscopy because these insoluble particles resulted in an overestimation of the 

population, with high standard deviations. 

2.3. Chemical analyses 

The sugar concentrations (D-glucose and D-fructose) were measured with an enzymatic 

kit (Boehringer Mannhein, Germany). The pH was measured using a Crison micro pH 

meter (Crison Instruments, S.A., Barcelona, Spain). 

D-gluconate, 2-KGA and 5-KGA were determined and quantified by the Centre for Omic 

Sciences. To prepare the sample, dilutions of the aqueous extracts (1:10) were 

centrifuged at 15,000 rpm and 4°C for 10 min and then serially diluted in ultrapure LC-

MS water (Milli-Q system – Millipore) to a final dilution of 1:10000. The following 

analytical standards were used: D-gluconic acid, 2-KGA and 5-KGA (Sigma-Aldrich).  

A 1290 UHPLC Series Liquid Chromatograph coupled to a 6490 QqQ/MS (Agilent 

Technologies, Palo Alto, U.S.A.) was used for the D-gluconic acid, 2-KGA and 5-KGA 

determinations. The ion exchange chromatographic column was a Hi-Plex H, 6.5 x 300 

mm, 8 µm (Agilent Technologies). The mobile phases were water (solvent A) and ACN 

(solvent B). The flow rate was 0.25 mL/min, and the column compartment was set at an 

isothermal temperature of 65°C. Elution gradient was 0-10 min 15% B isocratic, 10-12 

min 0% B, 12-18 min 0% B isocratic, and 19 min 15% B. A post run of 3 min was applied. 

The injected sample volume was 2 µL. The retention times of D-gluconate, 2-KGA and 
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5-KGA were 11.10 min, 9.63 min and 10.28 min, respectively. The calibration curves, 

linearity, precision, accuracy and the method detection and quantification limits were 

studied by analyzing serial standard dilutions prepared in ultrapure LC-MS water and 

pooled samples spiked with standard solutions. The obtained validation parameters of 

this method allowed us to quantify D-gluconic acid, 2KGA and 5KGA in the extract 

samples. Additionally, in some samples, the D-gluconic acid quantification using this 

methodology was compared to that with the enzymatic kit (Boehringer Mannhein, 

Germany) and obtained very similar concentrations, with standard deviation values that 

were always lower than 10%.  

2.4. Statistical analysis 

All statistical analyses were performed using the statistical software package SPSS 

version 17.0 for Windows. One-way analysis of variance and Sheffe’s post tests were 

performed to evaluate the significant differences between media (significance levels p < 

0.05). 

 

3. RESULTS AND DISCUSSION 

3.1. Initial selection of the acetic acid bacteria strains for D-gluconic acid 

production 

The ability of nineteen AAB strains to produce D-gluconic acid from D-glucose without 

using D-fructose was tested in three different media (MM, SM and 2x-SC) (Table 2). The 

different compositions of these media were considered appropriate to test the 

background effect on D-gluconic acid production. However, all of the media had the 

same sugar concentration and pH as strawberry puree for comparative purposes. The 

strawberry concentrates were industrially pasteurized; however, this treatment efficiently 

reduces the population size of the microorganisms present in the puree, but it does not 

completely eliminate them. For this reason, the strawberry concentrates were sterilized 

with DMDC. The effectiveness of the DMDC treatment was tested by microscopic 
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evaluation and growth on GYA and YPDA. No colonies grew on any media, and no cells 

were observed by optical microscopy. Moreover, sugar consumption and D-gluconic acid 

production were not observed without AAB inoculation. D-glucose and D-fructose 

consumption and D-gluconic acid production were dependent on the strain and the 

media. This is consistent with previous studies, (Asai, 1968; Olijve and Kok, 1979; 

Weenk et al., 1984), which reported that the rate of D-glucose oxidation was dependent 

on the particular characteristics of the strain and the conditions of the culture. However, 

as expected, all strains presented a preference for D-glucose rather than D-fructose. D-

fructose dissimilation seemed to be adaptive and is repressed by the presence of D-

glucose, while the D-glucose utilization systems were constitutive and did not depend on 

the substrate on which the microorganisms grew (Benziman and Rivetz, 1972). The 

utilization of D-fructose by the AAB was higher in the strawberry concentrate, where only 

four strains consumed less than 15% (w/v) of the initial D-fructose, compared to thirteen 

strains in the other two media. Moreover, in 2x-SC, eight strains oxidized more than 50% 

(w/v) of the D-fructose, while in the other media, no strain was able to oxidize more than 

42.5% (w/v) (Table 2).  

Among the strains tested, most belonged to the Gluconobacter genus. This genus was 

reported to prefer sugar-rich environments (Raspor and Goranovic, 2008), showing high 

oxidation activity with sugar and sugar alcohols (D-glucose, D-gluconic acid, D-sorbitol, 

and glycerol). All strains tested produced D-gluconic acid, although D-glucose depletion 

was medium-dependent because some strains exhausted D-glucose in one media but 

not in the others. In MM, the D-gluconic acid production in all Gluconobacter strains was 

similar, while in SM, higher divergence was observed, resulting in two and even four 

times greater accumulation in some strains compared to the others.  
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Table 2. Production of D-gluconic acid by acetic acid bacteria in minimal medium, synthetic must and 2x strawberry concentrate 

 MINIMAL MEDIUM SYNTHETIC MUST 2X-STRAWBERRY CONCENTRATE 

Strain 
Glucosea 

(mM) 
% Fru 

consumedb 

Max. 
Glnc 
(mM) 

% Gln 
consumedd 

Glucose           
(mM) 

% Fru 
consumed 

Max. 
Gln 

(mM) 

% Gln 
consumed 

Glucose 
(mM) 

% Fru 
consumed 

Max. 
Gln 

(mM) 

% Gln 
consumed 

CECT 8443 41.1 0.0 132.1 0.0 - 5.0 159.2 45.2 - 10.5 105.6 0.0 

Gj1 37.8 0.0 132.7 0.0 - 10.0 146.9 65.3 9.4 18.6 85.2 29.6 

Gj2 28.9 0.0 136.2 0.0 - 1.2 164.3 56.9 7.2 17.2 81.6 17.8 

Gj3 23.3 1.0 141.8 0.0 - 9.7 153.1 53.3 12.8 0.0 77.6 7.3 

6 27.8 42.5 112.2 0.0 105.6 15.0 35.7 0.0 11.1 53.5 71.4 42.9 

13 - 12.5 120.9 14.3 - 2.5 96.9 23.7 - 54.6 86.7 29.9 

DSM 7145 33.3 25.0 102.0 0.0 116.7 15.0 30.6 0.0 - 100.0 71.4 71.4 

17 - 23.0 134.7 14.4 - 27.5 95.9 0.0 12.8 75.6 41.8 0.0 

Po5 66.7 0.0 102.0 0.0 - 0.0 165.8 0.0 - 11.2 153.1 0.0 

14 - 3.8 119.4 19.7 - 20.2 79.1 26.5 5.6 72.1 66.3 53.8 

16 - 23.2 138.8 0.0 - 40.7 79.1 35.5 27.8 79.1 67.3 0.0 

15 - 0.0 120.4 0.0 - 11.2 115.3 9.7 19.4 21.9 23.0 0.0 

DSM 3509 - 2.2 107.7 4.1 - 12.7 103.6 14.7 n.d.e n.d. n.d. n.d. 

11 134.4 13.2 38.3 0.0 - 14.7 109.7 48.9 11.1 52.1 55.6 74.1 

LMG 1625 151.7 10.0 32.7 0.0 122.2 5.0 15.3 0.0 n.d. n.d. n.d. n.d. 

19 137.2 15.5 49.0 0.0 - 19.0 106.1 0.0 12.2 85.5 41.0 63.6 

LMG 1746 150.6 10.0 8.7 0.0 158.9 8.5 1.5 0.0 n.d. n.d. n.d. n.d. 

9 134.4 18.0 49.2 0.0 - 19.0 61.2 0.0 n.d. n.d. n.d. n.d. 

CECT 7749 65.0 0.0 102.0 0.0 - 33.5 127.6 100 - 10.0 121.9 8.6 

a Concentration of D-glucose not used by AAB after 30 days of process 
b % Fru consumed: percentage of D-fructose consumed along the process 
c Max. Gln: Maximum concentration of D-gluconic acid that was accumulated 
d % Gln consumed: percentage of D-gluconic acid that was consumed after its maximum accumulation 
e n.d.: not determined
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In 2x-SC, the Gluconobacter strains produced the least amount of D-gluconic acid, and 

Gluconobacter oxydans Po5 was the only strain that accumulated as much or more D-

gluconate in this medium as in the other two. Interestingly, some strains consumed D-

gluconic acid, but this behavior was also dependent on the medium. For example, strains 

of Gluconobacter japonicus CECT 8443, Gj1, Gj2 and Gj3 oxidized approximately 50% 

of the D-gluconic acid produced (45-65%) in SM but not in MM. Moreover, these same 

strains produced less D-gluconic acid in 2x-SC and exhibited little or no oxidation of this 

acid.  

Out of the strains that exhausted all of the D-glucose, the D-gluconic acid yield that 

accumulated from the initial D-glucose was highly variable between strains and media, 

ranging from 72% to 83% in MM, 47-99% in SM and 43-92% in 2x-SC. AAB are 

recognized for their rapid oxidation of sugars and alcohols (“overflow metabolism”) and 

the near-quantitative excretion of the resulting acids to the medium (Deppenmeier et al., 

2002; Deppenmeier and Ehrenreich, 2009). Although D-glucose can also be metabolized 

via the pentose phosphate pathway, the pH of the medium (< 3.5) and the initial D-

glucose content (> 15 mM) strongly repressed this pathway (Olijve and Kok, 1979). 

Therefore, the low rate of D-gluconic acid accumulation in some cases may be related 

to its further oxidation to ketogluconates because D-gluconic acid metabolization via the 

pentose phosphate pathway may be almost completely prevented due to the low pH 

(Olijve and Kok, 1979). 

Some of the strains used in this study belonged to the Acetobacter genus. This genus 

was reported to prefer alcohol-rich environments (Raspor and Goranovic, 2008), 

exhibiting highly active ethanol oxidation reactions and reduced oxidation activity with 

sugar or sugar alcohols (Matsushita et al., 2003). This statement is generally consistent 

with the results, but as in the case of Gluconobacter, these results were highly dependent 

on the strain and medium. In general, low levels of D-glucose degradation were observed 

in MM with only one strain, Acetobacter pasteurianus DSM 3509, which consumed all of 

the D-glucose. In contrast, in SM, 70% of the strains exhausted all of the D-glucose, with 
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the A. malorum and Acetobacter cerevisiae-type strains as the only ones that exhibited 

low consumption (Table 2). Consequently, the D-gluconic acid production was higher in 

SM than in MM. Interestingly, A. malorum CECT 7749 showed the highest accumulation 

of D-gluconic acid in SM, although this acid was then rapidly and completely oxidized. 

However, this strain behaved differently in the other two media and produced large 

amounts of D-gluconic acid without relevant oxidation to other products.   

From the results of this first experiment, the best strains were selected using the total 

depletion of D-glucose, a high rate of D-gluconic acid production from D-glucose and 

minimal consumption of D-fructose as the main criteria. Although all of the data obtained 

in the previous experiments were considered, the results from 2x-SC medium were 

considered more relevant for the selection of the strains due to the great divergence 

observed in these parameters between the three media in most of the strains. Therefore, 

according to these criteria, three strains were selected, G. oxydans Po5, G. japonicus 

CECT 8443 and CECT 7749, a strain of A. malorum, which was the only one in this study 

that was isolated from strawberry.  

3.2. Production of D-gluconic acid and its derived gluconates in the selected 

strains  

In the selected strains, the production of D-gluconic acid and consumption of D-glucose 

and D-fructose in the three media were monitored throughout the entire process (Fig. 1). 

In all of the strains, D-glucose consumption was significantly faster in SM and was 

completely exhausted after an average of 5 days. As expected, this time point coincided 

with the maximal accumulation of D-gluconic acid during fermentation. Furthermore, the 

D-glucose depletion seemed to be correlated with the start of the D-gluconic acid 

oxidation in G. japonicus CECT 8443 (Fig. 1a) and A. malorum CECT 7749 (Fig. 1c) but 

not G. oxydans Po5 (Fig. 1b). In any case, the D-gluconic acid oxidation was quite 

different between the two strains. In G. japonicus CECT 8443, only half of the D-gluconic 

acid was oxidized, and the rest remained stable for more than 20 days, while all of the 
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D-gluconic acid was depleted in the A. malorum CECT 7749 strain after 20 days. 

Furthermore, in this strain, the slow consumption of D-fructose overlapped with that of 

D-gluconic acid, although when the acid was depleted, D-fructose oxidation stopped. In 

the 2x-SC medium, the D-gluconic acid production was slower for all strains but obtained 

maximum concentrations similar to those obtained in SM, with the exception of G. 

japonicus CECT 8443. Moreover, no clear D-gluconic acid oxidation was observed, likely 

due to the presence of small quantities of D-glucose until the end of the process (<11 

mM). Very slow and low level D-gluconic acid consumption only occurred in A. malorum 

CECT 7749. In this medium, low levels of D-fructose were also consumed in the early 

days, but afterwards, the D-fructose levels remained stable until the end of the process.  

Finally, in MM, a very high rate of conversion of D-glucose into D-gluconic acid was 

achieved (higher than 90% in all the strains) in the first days of the process, although 

almost no growth was observed (data not shown). Low growth yields and high oxidation 

rates have been described for these bacteria. (Olijve and Kok, 1979; Sievers and Swings, 

2005). The main problem of the MM was an abrupt arrest that occurred when there was 

still between 50 and 75 mM D-glucose in the medium, although initially, the process was 

very similar to that in SM. Under these conditions, a large amount of D-gluconic acid 

accumulated outside the cells and created an acidic environment, dropping the pH to 

below 2.2 (data not shown). Due to the lack of buffering substrates in the medium, we 

presume that this low pH led to a slower growth, a gradual decrease in cell viability 

(Velizarov and Beschkov, 1998), and a strong repression of D-gluconic acid production. 

Concomitant with the decrease in the pH, this arrest in the D-gluconic acid production 

could also be due to the inactivation of the D-glucose membrane-bound dehydrogenase, 

similar to what has been described for Gluconobacter suboxydans alcohol 

dehydrogenase in acidic growth conditions (Matsushita et al., 1994).  
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Figure 1. D-glucose (■), D-fructose ( ) and D-gluconic acid (🔺) concentrations in different strains of acetic 

acid bacteria in different media: minimal medium (MM; ⚊), synthetic must (SM;⚋) and 2x strawberry 

concentrate (2x-SC;𝌀). A. G. japonicus CECT 8443; B. G. oxydans Po5; and C. A. malorum CECT 7749. 

The concentrations plotted are the means of triplicates. The standard deviations were always below 10%. 
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The production of 5-KGA and 2-KGA in the selected strains was also evaluated in the 

SM medium (Fig. 2). In strains G. japonicus CECT 8443 (Fig. 2a) and A. malorum CECT 

7749 (Fig. 2c), the accumulation of 2-KGA started before D-gluconic acid achieved the 

maximum concentration observed in this medium, while 5-KGA was only detected when 

D-gluconic acid oxidation began. Most of the 2-KGA had accumulated when degradation 

of the acid was observed, with the final concentration of 2-KGA being higher than that of 

5-KGA. The arrest of the production of both ketoacids coincided with the cessation of D-

gluconic acid consumption, and further utilization of both ketoacids was even observed 

in A. malorum CECT 7749. On one hand, these results agree with those of Weenk et al. 

(1984), who linked the start of the keto-D-gluconate formation to the decrease in the D-

glucose concentration in the media below a threshold of approximately 30 mM. In our 

case, 2-KGA was first detected when the amount of D-glucose in the media was 

approximately this concentration. On the other hand, these results also agree with those 

of Silberbach et al. (2003), who reported that small amounts of 2-KGA were formed 

during the oxidation of D-glucose to D-gluconate, but 5-KGA production could not be 

observed until D-glucose was completely oxidized to D-gluconic acid. The production of 

5-KGA by A. malorum CECT 7749 was surprising because when this species was first 

described, one of its features was its inability to produce 5-KGA from D-glucose 

(Cleenwerck et al., 2002). Conversely, G. oxydans Po5 produced the highest 

concentration of D-gluconic acid, but very small amounts of keto-D-gluconic acids were 

produced (concentrations < 2.5 mM) (Fig. 2b). Similar results were obtained with other 

strains, such as G. oxydans DSM 3503, as reported by Silberbach et al. (2003). The 

production of 2-KGA and 5-KGA under acidic conditions and in the absence of NADP+ 

was demonstrated to require two different types of membrane-bound D-gluconate 

dehydrogenases (GADH); these enzyme activities seemed to be largely dependent on 

the culture conditions (pH, temperature, shaking, etc.) (Shinagawa et al., 1999). These 

two enzymes compete with each other to oxidize D-gluconate; therefore, the selective 
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expression of either dehydrogenase can increase the production of either of the keto-D-

gluconates (Elfari et al., 2005; Matsushita et al., 2003).   

Figure 2. Evolution of the metabolites derived from D-glucose oxidation and bacterial growth by three 
different strains of acetic acid bacteria throughout the fermentation of synthetic must (SM). A. G. japonicus 

CECT 8443; B. G. oxydans Po5; C. A. malorum CECT 7749; D-glucose (■); D-gluconic acid (🔺); 2-keto-D-

gluconic acid ( ); 5-keto-D-gluconic acid ( ); OD (). The concentrations plotted are the means of triplicates. 

The standard deviations were always below 10%. 
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Different studies have reported that Gluconobacter strains (most of the studies referred 

to G. oxydans strains) presented differences in the ratio of both keto-D-gluconates 

obtained from D-glucose (Elfari et al., 2005; Herrmann et al., 2004; Silberbarch et al., 

2003; Weenk et al., 1984). This is consistent with our findings because the three strains 

tested yielded quite different product spectra.  

Bacterial growth was also monitored during this process (Fig. 2). Clear differences 

between strains were observed with the maximal OD that was achieved. Strains G. 

oxydans Po5 and A. malorum CECT 7749 presented the lowest and highest growth, 

respectively; the latter was twenty-fold higher. In strains A. malorum CECT 7749 and G. 

japonicus CECT 8443, the bacterial growth increased during the utilization of D-glucose 

or D-gluconic acid, and even 5-KGA in A. malorum CECT 7749. On the other hand, in 

G. oxydans Po5, as no D-gluconic acid utilization was observed, the growth was arrested 

when D-glucose was exhausted. It has been reported that Gluconobacter strains are 

unable to grow rapidly, even in a complete medium (Macauley et al., 2001), and, as 

mentioned above, there is a negative correlation between product accumulation and 

biomass formation. Therefore, the higher the biomass, the lower the amount of D-

glucose that was used for product formation (Elfari et al., 2005). This agrees with our 

results, where G. oxydans Po5, the strain with the lowest biomass production, 

accumulated the highest content of D-gluconic acid (40% more than the strain with the 

highest biomass production, A. malorum CECT 7749). However, D-gluconate and keto-

D-gluconate (mainly 5-KGA) utilization seemed to be associated with a large increase in 

biomass. 

3.3. Effect of pH on the production of D-gluconic acid and the derived 

gluconates by the selected strains  

The selected strains were tested in 3x-SC (Fig. 3) using two different initial pH values 

(pHi): 3.3, the natural pH of strawberry concentrate, and 4.8, the pH with a maximal 

empirical activity for the oxidation from D-glucose to D-gluconate, according to 
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Silberbach et al. (2003). It is important to note that the pH was monitored but not 

controlled, and, therefore, pH decreased due to microbial acid production. G. japonicus 

CECT 8443 (Fig. 3a) accumulated more D-gluconic acid (ca. 50 mM) at pHi 3.3 and did 

so faster than at pHi 4.8 (Fig. 3b). At this pHi, the lower amount of D-gluconic acid was 

compensated for by a higher concentration of both keto-D-gluconic acids (the sum of 

both ketoacids was 134 mM at pHi 4.8, whereas it was 77 mM at pHi 3.3). Other 

differences with this strain were that at pHi 3.3, D-glucose was not exhausted, and the 

concentrations of both ketoacids were similar, while at pHi 4.8, more 2-KGA was 

produced (82 mM 2-KGA vs. 51 mM 5-KGA). At both pHi values, the synthesis of the 

ketoacids overlapped with the D-gluconic acid production, which was more evident at 

pHi 4.8. However, the strain G. oxydans Po5 was the only one that presented a similar 

pattern at both pHi values (Fig. 3c and 3d), producing high levels of D-gluconic acid (ca. 

255 mM) and no further oxidation. Another characteristic of this strain is that it produced 

a higher concentration of 5-KGA than 2-KGA, which was the inverse of the other two 

strains. Finally, fermentations with strain A. malorum CECT 7749 exhibited changes that 

were similar to strain G. japonicus CECT 8443 in the beginning of the process, with more 

accumulation of D-gluconic acid at pHi 3.3 (Fig. 3e), although slower than the G. 

japonicus CECT 8443 strain, and with more production of keto-D-gluconic acids at pHi 

4.8 (Fig. 3f). However, at this latter pHi, the D-gluconic acid began to be slowly oxidized 

on day 7, along with the remaining D-glucose, while the concentration of 2-KGA 

increased rapidly to reach 166 mM on day 16 (seven-fold higher than 5-KGA). At this 

time point, no D-glucose was available, and all of the metabolites derived from its 

oxidation (D-gluconate, 2-KGA and 5-KGA) were rapidly and completely metabolized. 

The lack of these acids resulted in a sharp increase in the pH of the medium, reaching 

pH values near 8. No significant modifications of the pH were observed in any of the 

other fermentations. On the other hand, at pHi 3.3, these compounds were not 

metabolized, retaining similar concentrations of both ketoacids and a high concentration 

of D-glucose (ca. 67 mM) in the medium.  
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Figure 3. Evolution of the metabolites derived from D-glucose oxidation by three different strains of acetic 
acid bacteria (G. japonicus CECT 8443 (A, B); G. oxydans Po5 (C, D); A. malorum CECT 7749 (E, F)) 
throughout the fermentation of 3x strawberry concentrate (3x-SC) at two initial pHs: 3.3 (A, C, E) and 4.8 (B, 

D, F). D-glucose (■); D-gluconic acid (🔺); 2-keto-D-gluconic acid ( ); 5-keto-D-gluconic acid ( ); pH (). 

The concentrations plotted are the means of triplicates. The standard deviations were always below 10%. 
 

These results differ markedly from other previously reported results; the accumulation of 

D-gluconic acid was higher at pH 3.3. In fact, there is no agreement about the optimal 

pH for the formation of D-glucose oxidation products, due to its dependence on medium 

conditions. For example, Ano et al. (2011) found that the pH of the medium was the most 
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important factor for selective production, with pH values of nearly 3, between 3 and 5, 

and nearly 5 as the optimal pH values for D-gluconate, 5-KGA and 2-KGA production, 

respectively. This suggests that the optimal pH for the production of D-gluconic acid is 

quite far from the pH proposed by Silberbach et al. (2003) and is more in agreement with 

our results. In most cases, the synthesis of both keto-D-gluconates started when high 

concentrations of D-glucose were still present in the medium (> 28 mM), which 

contradicted the results observed in this study with other media and also those reported 

by other research groups (Weenk et al., 1984; Silberbach et al., 2003). Therefore, the 

beginning of the synthesis of keto-D-gluconates seemed to be linked to more than simply 

the amount of D-glucose present in the medium, as observed by Beschkov et al. (1995). 

Moreover, in the A. malorum CECT 7749 strain, there was a simultaneous decrease in 

the extracellular concentrations of D-gluconic acids, 2-KGA and 5-KGA at pHi 4.8, 

resulting in an increase of the pH. Ano et al. (2011) described an increase in the pH and 

cell growth in G. suboxydans IFO 12528 when 5-KGA was metabolized. They suggested 

that 5-KGA had been taken into the cell and utilized by the assimilative pathway. In our 

case, two explanations are possible: (i) 2-KGA could be further oxidized to 2,5-di-keto-

D-gluconate by the membrane 2-keto-D-gluconate dehydrogenase enzyme or (ii) 2-KGA 

was taken up and dissimilated by oxidation via the pentose phosphate pathway 

(Matsushita et al., 1994). Nevertheless, the large increase in the pH to values up to 8 

suggested that the latter occurred.  

Modifications to the medium pHi did not have the same effect in all strains; G. oxydans 

Po5 was not affected, while the other two strains exhibited higher production of D-

gluconic acid and lower accumulation of keto-D-gluconates at pHi 3.3. It is important to 

note that the pHi was adjusted to 4.8 with CaCO3, and the addition of this salt at the 

beginning of the conversion is considered essential for the increased production of keto-

D-gluconates (Beschkov et al., 1995). Therefore, the presence of this salt could be 

responsible for the increased synthesis at this pHi. Furthermore, while G. japonicus 

CECT 8443 and A. malorum CECT 7749 accumulated larger amounts of 2-KGA than of 
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5-KGA, G. oxydans Po5 primarily synthesized 5-KGA, with 2-KGA being a minor product. 

The preference for the synthesis of one or the other keto-D-gluconate seemed to be 

closely linked to the pH and its control (Ano et al., 2011; Silberbach et al., 2003). 

However, in our case, the pH was not controlled, and the different experiments were 

developed at pH values of approximately 3 (for experiments with an initial pH of 3.3) or 

4 (for experiments with an initial pH of 4.8); the main product should have been 5-KGA 

and not 2-KGA, according to the optimal pH values reported for the synthesis of both 

keto-D-gluconates (Ano et al., 2011; Shinagawa et al., 1999). Therefore, in our case, 

keto-D-gluconate synthesis seemed to be more dependent on the strain. 

3.4. Conclusions 

It was possible to achieve selective conversion of D-glucose into D-gluconic acid without 

fermenting D-fructose in strawberry concentrates using AAB. G. japonicus CECT 8443 

and G. oxydans Po5, belonging to the Gluconobacter genus, were the best strains for 

this process. The choice of the strain will depend on the final concentration of D-gluconic 

acid desired because G. oxydans Po5 generally produced higher amounts of D-gluconic 

acid in all media tested. These strains may be used in industrial conditions (continuous 

fermentations with pH and oxygen controls) in the future. The A. malorum CECT 7749 

strain, isolated from strawberry, also showed good performance in fruit concentrate at its 

natural pH. However, its ability to further oxidize D-gluconic acid in certain conditions 

discouraged its selection for this process. 
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ABSTRACT 

Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively 

variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as 

the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- 

dependent membrane-bound dehydrogenases. In the present study, the enzyme activity 

of the membrane-bound dehydrogenases (membrane-bound PQQ-glucose 

dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound 

glycerol dehydrogenase (GLDH)) involved in the oxidation of D-glucose and D-gluconic 

acid (GA) was determined in six strains of three different species of AAB (three natural 

and three type strains). Moreover, the effect of these activities on the production of 

related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid 

(5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high 

mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain 

presented low activity in the three enzymes. Nevertheless, no correlation was observed 

between the activity of these enzymes and the concentration of the corresponding 

metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being 

maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-

glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested 

strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, 

no 2KGA production was detected which is related to the absence of GADH activity after 

24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a 

high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending 

on the desired product composition. Moreover, the sequences of these genes were used 

to construct phylogenetic trees. According to the sequence of gcd, gene coding for 

mGDH, Acetobacter and Komagataeibacter were phylogenetically more closely related 

each other than with Gluconobacter.  
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1. INTRODUCTION 

Acetic acid bacteria (AAB) are gram-negative, ellipsoidal to rod-shape acidophilic 

bacteria and are obligate aerobes (De Ley and Swings, 1984; Deppenmeier et al., 2002). 

These bacteria could occur in sugary natural environments such as fruits, honey bees, 

or flowers and in artificial and manmade environments such as soft drinks, cider, beer, 

wine, or vinegar (De Ley and Swings, 1984). AAB are well known for the rapid and 

incomplete oxidation of a broad range of sugars, sugar alcohols, and sugar acids (such 

as D-glucose, glycerol, D-sorbitol, ethanol, or D-gluconic acid) resulting in the 

accumulation of high amounts of the oxidized products in the culture medium (Asai, 

1968; Deppenmeier et al., 2002; Elfari et al., 2005). This capacity allows for the use of 

AAB for a variety of biotechnological processes in which they carry out oxidative 

fermentation to obtain several useful compounds that are difficult to be prepared with 

chemical processes or to be produced with high yields (Gupta et al., 2001; Deppenmeier 

et al., 2002). Some examples of this metabolism are the production of acetic acid from 

ethanol or D-gluconic acid (GA) from D-glucose (Deppenmeier et al., 2002; Prust et al., 

2005; Lino et al., 2012). Most of these oxidative reactions are catalyzed by membrane-

bound dehydrogenases, with reactive centers that are oriented to the periplasmic space 

(Matsushita et al., 1994). This implies that transport of substrates inside the cell is 

unnecessary and accumulation of oxidized products in the medium is rapid and near-

quantitative (Deppenmeier et al., 2002; Adachi et al., 2003; Matsushita et al., 2003; Elfari 

et al., 2005; Merfort et al., 2006).  

In AAB, many membrane-bound oxidoreductases have been described, and most of 

these oxidoreductases are pyrroloquinoline quinone (PQQ-) or flavin (FAD-) dependent 

proteins (Saichana et al., 2015). The oxidative reaction with these dehydrogenases 

results in bioenergy for AAB because electrons extracted from the substrates are 

transferred via ubiquinone to the terminal ubiquinol oxidase (Adachi et al., 2007). In D-

glucose oxidation, several enzymes located on the periplasmic face of the cytoplasmic 

membrane catalyze D-glucose oxidation sequentially. Membrane-bound PQQ-glucose 
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dehydrogenase (mGDH) oxidizes D-glucose to glucono-δ-lactone, and it is then 

converted to GA by glucono-δ-lactonase or spontaneously (Matsushita et al., 1994; 

Shinagawa et al., 1999). Therefore, mGDH is the enzyme responsible for the production 

of most GA from D-glucose during fermentation (Macauley et al., 2001). GA can be 

further converted to 2-keto-D-gluconic acid (2KGA) or 5-keto-D-gluconic acid (5KGA) by 

two different membrane-bound dehydrogenases (Matsushita et al., 1994; Saichana et 

al., 2015). One protein is D-gluconate dehydrogenase (GADH), which is a FAD-

dependent enzyme (flavoprotein-cytochrome c complex) reacting with GA as its only 

substrate and is responsible for the oxidation of GA to 2KGA (Matsushita et al., 1994; 

Adachi et al., 2007; Toyama et al., 2007). The membrane-bound dehydrogenase 

involved in the 5KGA production has been unidentified for a long time, and no specific 

5KGA-yielding gluconate dehydrogenase has been found in AAB. Instead, it has been 

shown that this reaction is catalyzed by a glycerol or polyol dehydrogenase (GLDH, 

membrane-bound glycerol dehydrogenase), which shows a broad substrate specificity 

towards several sugar alcohols (D-glycerol, D-sorbitol, D-arabitol, or D-mannitol). 

Therefore, it is concluded that other PQQ-dependent dehydrogenases such as D-arabitol 

dehydrogenase (ARDH) or D-sorbitol dehydrogenase (SLDH) are identical to GLDH. 

(Matsushita et al., 2003; Adachi et al., 2007). 2KGA could be further oxidized to 2,5-di-

keto-D-gluconate by the FAD-dependent 2-keto-D-gluconate dehydrogenase (2KGDH), 

which is characterized as a flavoprotein-cytochrome c complex with three different 

subunits similar to GADH.  

We have developed a strawberry beverage in which D-glucose is completely fermented 

to GA or some other acids, yet fruit D-fructose is maintained as a natural sweetener 

(Cañete-Rodríguez et al., 2015, 2016). GA could be found naturally in fruit juices, honey, 

yoghurt, bread, cottage cheese and meat. This acid gives a refreshing sour taste to wine 

and fruit juices and has the property of preventing bitterness in foodstuffs. In the food 

industry, GA is widely used as flavoring agent and for reducing absorption of fat products 

and is listed as a generally permitted food additive (E574) by the EFSA, and as a GRAS 
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(Generally Recognized As Safe) additive by the US FDA (Ramachandran et al., 2006). 

Moreover, GA has been reported to have some beneficial effects on intestinal microbiota 

(Asano et al., 1994, 1997; Tsukahara et al., 2002) and it has limited toxicity. This low 

toxicity makes GA useful for food additives as one of the common counter ions for the 

administration of some metal cations (Zn, Ca, Na, K) or other chemicals (chlorhexidine). 

However, the equimolar conversion of D-glucose into GA and the high D-glucose 

concentrations in some fruits might recommend the reduction of GA by further oxidation. 

Therefore, the knowledge of the possible transformations of D-glucose into different 

metabolites would help control the levels of the different compounds in these transformed 

fruit beverages. In a previous study (Sainz et al., 2016), three natural AAB strains were 

selected for this GA fermentation using different media and conditions, but especially 

focusing on the strawberry process. Two of these strains belong to the Gluconobacter 

genus: Gluconobacter japonicus strain CECT 8443 isolated from grape must (Navarro 

et al., 2013) and Gluconobacter oxydans strain Po5 isolated from wine vinegar (Vegas 

et al., 2010). The other strain from Acetobacter malorum (CECT 7742) was the only 

strain isolated from strawberry vinegar (Hidalgo et al., 2013).  

The aim of the present study was to compare the enzyme activities of the membrane-

bound dehydrogenases responsible for D-glucose and GA oxidations in six strains of 

three different AAB species (selected strains from our collection and other strains from 

other culture collection strains). We wanted to analyze the effect of these enzyme 

activities on the production of the involved metabolites (GA, 2KGA and 5KGA) for better 

control of the production of these fermented beverages. 

 

2. MATERIALS AND METHODS 

2.1. Microorganism and culture conditions 

Two strains of each AAB species (G. oxydans, G. japonicus and A. malorum) were used 

in this study (Table 1). For the preparation of the inocula, these strains were previously 
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grown for 24 h in 5 mL potato media (Matsushita and Ameyama, 1982) with shaking at 

28ºC. Experiments were performed in Erlenmeyer flasks of 500 mL with 100 mL media 

(30 g/L of D-glucose (Wako Pure Chem., Osaka, Japan), 40 g/L of D-fructose (Wako 

Pure Chem.), 5 g/L of polypeptone (Nihon Pharmaceutical Co., Ltd, Tokyo, Japan) and 

5 g/L of yeast extract (Oriental Yeast Co., Ltd, Tokyo, Japan)) and inoculated with 1 mL 

of the corresponding strain grown in potato media. The experiment was carried out in 

triplicate, with shaking (200 rpm) at 28ºC and sampled at 24, 48 and 96 h. Bacterial 

growth was measured by a Klett-Summerson photoelectric colorimeter with a red filter.   

 

Table 1. Strains used in this study 

Species Strain Source Reference 

Gluconobacter 
japonicus 

CECT 8443 Grape must Navarro et al., (2013) 

NBRC 3271T Myrica rubra (Fruit) Malimas et al., (2009) 

Gluconobacter 
oxydans 

Po5 Vinegar Vegas et al., (2010) 

 621 H - 
(Henneberg, 1987) De Ley 

., (1961) 

Acetobacter 
malorum 

CECT 7742a Strawberry vinegar Hidalgo et al., (2013) 

NBRC 108912 T Rotting apple Cleenwerck et al., (2002) 

          

T Type strains. 
 a This strain has been incorrectly named CECT 7749 in previous studies (Hidalgo et al., 2013 and Sainz 
et al., 2016). 

 

2.2. Preparation of membrane fraction 

As explained previously, cells were harvested at 24, 48 and 96 h. The total volume (100 

mL) was centrifuged for 5 min at 10.600 x g, and the cells were washed twice with 50 

mM potassium phosphate buffer, pH 6.5 (1 g wet cells per 4-5 mL buffer). After washing, 

the pellets were stored for 24 hr at 4ºC and then resuspended in the same volume with 

the same buffer. The cell suspension was passed twice through a French pressure cell 

press (SIM AMINCO, Spectronic Instruments, Inc., Rochester, NY, USA) at 16.000 psi. 

Intact cells were removed with 10.000 x g for 10 min, and the supernatant was 

centrifuged at 100.000 x g for 60 min at 4ºC. The resulting precipitate was resuspended 
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in potassium phosphate buffer [1M dipotassium phosphate (Wako Pure Chem.) and 1M 

monopotassium phosphate (Wako Pure Chem.), pH 6.5] (20 mL buffer per 1 g pellet) 

and homogenized with the same buffer in a glass homogenizer. In the case of GLDH, 10 

mM MES [2-(N-morpholino) ethanesulfonic acid, (Dojindo, Kumamoto, Japan)] - NaOH 

buffer was used. The resulting homogenate was considered the membrane fraction. 

2.3. Protein determination 

The protein concentration was determined by a modified Lowry method (Dulley and 

Grieve, 1975) using bovine serum albumin (Sigma, Tokyo, Japan) as the standard.  

2.4. Assays of enzyme activity 

All enzymatic reactions were performed in triplicate and at 25ºC. mGDH and GLDH were 

assayed in the presence of phenazine methosulfate (PMS) (Wako Pure Chem.) and 2,6-

dichlorophenol indophenol (DCIP) (Wako Pure Chem.) as electron acceptors, as 

described by Matsushita et al. (1980). The 1 mL reaction mixture contains 50 mM 

potassium phosphate buffer (pH 6.5), 8 mM sodium azide (Wako Pure Chem.), 6.67 mM 

DCIP, 6 mM PMS, 100 mM D-glucose or glycerol (Wako Pure Chem.) as substrate and 

the membrane fraction. Some modifications were done for the GLDH assay; 10 mM 

acetate buffer (10mM sodium acetate trihydrate (Wako Pure Chem) and acetic acid 

(Wako Pure Chem) (pH 6.0) was used instead of potassium phosphate buffer. For the 

conversion of apo-enzyme to holo-enzyme, 3 mM calcium chloride anhydrate (Wako 

Pure Chem.) and 0.1 µM PQQ (Wako Pure Chem.) were added and incubated for 10 

min in an ice bath. The enzyme activity was measured by the reduction of DCIP at 600 

nm. One unit of enzyme activity was defined as the amount of enzyme catalyzing the 

oxidation of 1 µmol of substrate per min, which was calculated using the millimolar 

extinction coefficient of DCIP of 13.2 at pH 6.5 and of 11.13 at pH 6.0.  

The enzyme activity of GADH and 2KGDH was measured according to Wood et al. 

(1962), using ferricyanide (Wako Pure Chem.) as an electron acceptor. The reaction 

mixture consists of 8 mM sodium azide, 100 mM ferricyanide, 100 mM GA (Sigma) or 
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2KGA (Sigma) as the substrate, the membrane fraction and McIlvaine buffer [a mixture 

of 0.1 M citric acid (Wako Pure Chem.) and 0.2 M disodium hydrogen phosphate (Wako 

Pure Chem.), pH 4.5] to a total volume of 1.0 mL. The reaction started with the addition 

of ferricyanide solution, and after 10 min, the reaction was stopped by adding 500 µL of 

ferric-Dupanol reagent (Wako Pure Chem.). Twenty min later, 3.5 mL of water was 

added, and after mixing well, the absorbance at 600 nm was measured by a UV-1700 

PharmaSpec spectrophotometer (UV-1700 PharmaSpec, Shimadzu, Kyoto, Japan). 

Under these assay conditions, 4 absorbance units corresponded to 1 µmol of substrate 

oxidized.  

2.5. Determination of substrates and products by HPLC analysis 

All metabolites were analyzed using high performance liquid chromatography (HPLC – 

Shimadzu). D-glucose and D-fructose were quantified on a Pb2+-loaded cation-exchange 

column (SUGAR SP0810, 8.0 mm I.D. × 300 mm L, Shodex, Showa denko KK, 

Kawasaki, Japan) at 80°C using distilled and deionized water as the mobile phase at a 

flow rate of 0.5 mLmin-1. Substances were detected with a refractive index detector. The 

retention times for D-glucose and D-fructose were 19.5 and 24.7 min, respectively. GA, 

5KGA, and 2KGA were quantified on an ion-exclusion column (RSpak KC-811, 8.0 mm 

I.D. × 300 mm L, Shodex, Showa denko KK, Kawasaki, Japan) at 60°C using 0.1% (w/v) 

phosphoric acid as the mobile phase at a flow rate of 0.4 mLmin-1. Substances were 

detected with an UV detector (SPD-M20A, Shimadzu SPD-M20A) at 210 nm. The 

retention times of GA, 5KGA, and 2KGA were 18.8, 18.1, and 17.4 min, respectively. 

2.6. Primer design and PCR conditions  

Genes coding for mGDH (gcd) and large subunits of GADH (gndL), GLDH (sldA) and 

2KGDH (kgdL) were partially amplified to confirm their presence. For this reason, the 

primers for these genes were designed using the program Primer3Plus (Untergasser et 

al., 2007) in each species using the sequences available in the GenBank database 
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(Table 2). The amplification reaction was carried out in a total volume of 50 µL consisting 

of 1 µL of DNA solution, 5 µL of 10 X buffer, 3 µL of MgCl2, 200 µM each of the four 

dNTPs (Roche Diagnostic GmBh, Manheim, Germany), 0.4 µL of BSA (20 mg/mL), 4 µL 

of DMSO, 1 µL of each primer (10 pmol), and 0.4 µL of Taq Polymerase (Biotaq, Bioline 

- USA). The conditions of the PCR were as follows: initial denaturation at 94ºC for 5 min, 

followed by 30 cycles of denaturing at 94ºC for 1 min, annealing at 55ºC or 60ºC 

(depending on the primers) for 30 s, extension at 72ºC for 1 min and a final extension at 

72ºC for 10 min and maintained at 4ºC. The amplifications were performed in a Gene 

Amp PCR System 2700 (Applied Biosystems, Foster city, USA), and the PCR products 

were detected by electrophoresis gel on 1% agarose in 1X TBE buffer. The gels were 

stained with ethidium bromide and photographed.  

2.7. Sequence alignment and phylogenetic tree construction 

The nucleotide sequences of genes gcd and gndL of the natural strains used in this study 

have been sequenced and deposited in the GenBank Database with the following 

accession numbers: G. oxydans Po5 (KU896941, KU896943), A. malorum CECT 7742 

(Amal_02000, Amal_01874) and G. japonicus CECT 8443 (A0J51_02827, 

A0J51_00901). The sldA gene sequence was not found in A. malorum and the 

corresponding sequences for Gluconobacter species were A0J51_00428 and 

A0J51_00622 for G. japonicus and KU896942 for G. oxydans. These sequences were 

compared with the sequences from other genera and species available in GenBank 

database for the phylogenetic analyses. The sequence alignment was performed using 

the nucleotide sequence with the MUSCLE 3.8.31 software (Edgar 2004a, 2004b). The 

poorly aligned regions were removed using the Gblocks 0.91b program (Castresana, 

2000; Talavera and Castresana, 2007).  

The phylogenetic tree was reconstructed using the maximum likelihood method 

implemented in the PhyML program (v3.1/3.0 aLRT). The HKY85 substitution model was 

selected assuming an estimated proportion of invariant sites (of 0.248) and 4 gamma-
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distributed rate categories to account for rate heterogeneity across sites. The gamma 

shape parameter was estimated directly from the data (gamma=0.770). Reliability for 

internal branch was assessed using the aLRT test (SH-Like). The tree rendering was 

performed with the TreeDyn 198.3 graphical editor (http://www.phylogeny.fr/; Dereeper 

et al., 2008, 2010).  

 

3. RESULTS 

In this study, three selected AAB strains, belonging to G. japonicus, G. oxydans, and A. 

malorum species, isolated from vinegar or fruit were examined together with their 

corresponding culture collection strains in terms of growth, enzyme activities involved in 

the D-glucose oxidation, and metabolites produced from oxidation. For the G. japonicus 

species, both the isolated and the type culture strains showed very similar growth (Figure 

1), achieving a high population at the end of the experiment (320 Klett units at 96 h), 

without reaching the stationary phase. Both strains presented a high mGDH activity and 

a similar evolution over time (Figure 1A). In both cases, mGDH activity is maximal at 24 

h, although strain CECT 8443 exhibited twice the activity of NBRC 3271, and the activity 

decreased afterwards. In relation to GADH, both strains presented similar behavior, 

showing the highest activity at 24 h (Figure 1B). However, strain NBRC 3271 had four-

fold higher activity than CECT 8443 during the first 48 h followed by a sharp decline, 

resulting in a GADH activity being practically absent at 96 h. Instead, the GLDH activity 

in these strains presented low activity (lower than 0.15 U/mg protein in all the cases) and 

behaved differently from each other (Figure 1C). Strain NBRC 3271 presented the 

highest activity at 24 h and decreased afterwards, whereas strain CECT 8443 exhibited 

the highest activity at 48 h. The G. oxydans strains (Figure 2), although they had a very 

similar initial population, presented huge differences in their growth, mainly due to the 

first 24 h, when strain 621H achieved twice the population of Po5. After this moment, the 

evolution in both strains was very similar, showing slower growth and entry in the 

stationary phase.  
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Table 2. PCR pair primers used for gene amplification    

 

Strain 
GenBank 
accession 

No. 

Locus tag 
of gene 

sequences 
used for 
primer 
design 

gene Product 
Primer 
name 

Primer sequence (fwd) Primer sequence (rev) 

Gluconobacter 
japonicus  

NBRC 3271 

LHZK00000000 AD938_10885 gcd 
membrane-bound glucose 
dehydrogenase 

mgdh TGGTTTTCCCGGGTGATCTG GTAGTAGTCCATCGTGCCCG 

LHZK00000000 AD938_08480 gndL 
gluconate 2-
dehydrogenase, large 
subunit 

gadh1 TCCTGAGTGCGTTCCAGTTC CGCTTTGGCAATGGGTTCAA 

LHZK00000000 AD938_03325 - 
gluconate 2-
dehydrogenase, large 
subunit 

gadh2 GGCCTATCCCTCGTCAATCG TGCATAACCGCTGCAAAACC 

LHZK00000000 AD938_10275 sldA 
glycerol dehydrogenase 
large subunit SldA 

gldh1 CGGGTGAAGAGAAGTGGGTC GAGCTGGTCATACATCGGGG 

LHZK00000000 AD938_11075 sldA 
glycerol dehydrogenase 
large subunit SldA 

gldh2 GGTAAGGAGATCTGGCGTCG TGAAACTGCATTTTCCGCCG 

Gluconobacter 
oxydans  

621H  

CP000009 GOX0265 gcd 
membrane-bound glucose 
dehydrogenase 

mgdh CTCGTGTACATCCCGATGGG ACCACCCCACTCGAACATTC 

CP000009 GOX1231 - 
gluconate 2-
dehydrogenase, large 
subunit 

gadh TATTGCAGCGGCTATGACTG CATGGTCGAAATTCATGCTG 

CP000009 GOX0854 sldA 
glycerol dehydrogenase 
large subunit SldA 

gldh GCGACGGGTAAGGAGATCTG TTTCTTCAGGGCTACGCAGG 

Gluconobacter 
oxydans  

NBRC 3293 
AB985494 - kgdL 

large subunit of 2-keto-D-
gluconate dehydrogenase 

2kgdh GGAAAACTGGCGCAACATGTCG CCCGAACGGGATCATGTC 

Acetobacter 
malorum strain  

DmCS_005 

JOJU00000000 AmDm5_2097 - 
membrane-bound glucose 
dehydrogenase 

mgdh ATGTTTGAATGGGGCGGTCT CGTCATACGCCCGGATGTAA 

JOJU00000000 AmDm5_1995 - 
gluconate 2-
dehydrogenase, large 
subunit 

gadh CGGGTGAAGCCTATACGGTC AGAATGACAAGTCCGGCAGG 

JOJU00000000 AmDm5_0421 kgdL 
large subunit of 2-keto-D-
gluconate dehydrogenase 

2kgdh ACCTGCCGTCAGACTTTGAG ATACAATGCGCGGCAATCAC 
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Figure 1. Enzyme activity and growth (expressed in Klett units) of two Gluconobacter japonicus strains at 
three different growth stages (24, 48 and 96 hours). (A) Glucose dehydrogenase activity (mGDH); (B) 
Gluconate dehydrogenase activity (GADH); (C) Glycerol dehydrogenase activity (GLDH). Enzyme activity 

represented in bars: NBRC 3271 (   ), CECT 8443 (   ) and cell growth with lines: NBRC 3271 (⚊); CECT 

8443 (⚋). 
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Similarly, G. oxydans Po5 presented the highest activity of mGDH (Figure 2A) at 24 h, 

when maximal activity was reached, which was three times higher than in 621H. Then, 

a clear decrease of the activity was observed in both cases. The GADH activity was only 

detected at 24 h in both G. oxydans strains, with similar values (approximately 0.1 U/mg 

protein) (Figure 2B). In the case of GLDH, G. oxydans strains showed similar activity at 

24 h (Figure 2C), later presenting a reduction in the activity. However, in strain Po5, this 

decrease was more pronounced at 48 h, but an upturn of activity was observed at the 

end (96 h). Finally, A. malorum strains presented a similar evolution of G. oxydans 

strains, although in this case the wild strain (CECT 7742) grew better than the type strain 

(NBRC 108912) (Figure 3). In this case, the difference in growth between both strains 

(approximately 90 Klett units) was mainly observed during the first 24 h. After these 24 

h, CECT 7742 showed some growth, although with a lower rate, whereas the type strain 

was not growing. Strain NBRC 108912 showed a very high mGDH activity at 24 h; 

however, no activity was detected afterwards (Figure 3A). In contrast, CECT 7742 

presented less activity but maintained the activity over time (1 U/mg protein at 24 and 48 

h. and half at 96 h.). The activity of GADH presented similar evolution as mGDH, 

although with much lower values. In strain NBRC 108912, GADH activity was only 

detected at 24 h, and with the highest value, whereas CECT 7742 presented a low and 

constant activity over time (Figure 3B). Finally, low GLDH activity was observed in both 

A. malorum strains (Figure 3C), although the activity was higher in NBRC 108912. In 

CECT 7742, residual activity was observed in all the points studied.  

The activity of 2KGDH was also studied in all the strains. However, no activity was 

detected in any of these strains (Table 3).  

In the tested strains, evolution of the metabolites derived from D-glucose oxidation was 

analyzed at the same time points when the enzymatic activity was measured (24, 48 and 

96 h). Similar patterns between strains of the same species were obtained according to 

the consumption and production of the metabolites studied. 
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Figure 2. Enzyme activity and growth (expressed in Klett units) of two Gluconobacter oxydans strains at 
three different growth stages (24, 48 and 96 hours). (A) Glucose dehydrogenase activity (mGDH); (B) 
Gluconate dehydrogenase activity (GADH); (C) Glycerol dehydrogenase activity (GLDH); Enzyme activity 

represented in bars: 621H (    ), Po5 (    ) and cell growth with lines: 621H (⚊); Po5 (⚋). 
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Figure 3. Enzyme activity and growth (expressed in Klett units) of two Acetobacter malorum strains at three 
different growth stages (24, 48 and 96 hours). (A) Glucose dehydrogenase activity (mGDH); (B) Gluconate 
dehydrogenase activity (GADH); (C) Glycerol dehydrogenase activity (GLDH). Enzyme activity represented 

in bars: NBRC 108912 (   ), CECT 7742 (   ) and cell growth with lines: NBRC 108912 (⚊); CECT 7742 (⚋). 
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In G. japonicus and G. oxydans strains, D-glucose was totally exhausted at 24 h, when 

the maximum accumulation of GA in the medium was observed (Figure 4A, B). 

Moreover, in G. japonicus strains, the depletion of D-glucose appeared to be correlated 

with the beginning of the oxidation of GA, resulting in the accumulation of 2KGA and 

5KGA in the medium. Unlike what happened in strain NBRC 3271, where the initial 

accumulation of both keto-D-gluconates was similar, in CECT 8443, (Figure 4B) the 

accumulation of 2KGA occurred before, not detecting 5KGA until 48 h. Both G. japonicus 

strains accumulated more 2KGA than 5KGA, although this difference was really 

remarkable in the type strain, in which the 2KGA concentration was three times higher 

than 5KGA. The consumption of GA was not observed in G. oxydans strains, and it 

mostly accumulated in the medium (Figure 4C, D). However, strain 621H produced 

5KGA in similar amounts to those obtained with G. japonicus NBRC 3271. This 

accumulation of 5KGA compensated for the lower accumulation of GA in this strain 621H 

compared with Po5. In the A. malorum strains, only NBRC 108912 (Figure 4E) consumed 

all D-glucose at the first 24 h, whereas CECT 7742 (Figure 4F) consumed the substrate 

by 48 h. Moreover, after the maximal accumulation of GA (24 h in both A. malorum 

strains), 56% of GA produced was further oxidized in NBRC 108912, whereas only 19% 

was further oxidized in CECT 7742. CECT 7742 accumulated four times more 2KGA 

than NBRC 108912.  
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Figure 4. Evolution of metabolites derived from D-glucose oxidation by six different strains of acetic acid 
bacteria. (A) Gluconobacter japonicus NBRC 3271; (B) Gluconobacter japonicus CECT 8443; (C) 
Gluconobacter oxydans 621H; (D) Gluconobacter oxydans Po5: (E) Acetobacter malorum NBRC 108912; 

(F) Acetobacter malorum CECT 7742. D-glucose (■); D-fructose (); D-gluconic acid (🔺); 2-keto-D-

gluconic acid ( ); 5-keto-D-gluconic acid ( ). 
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The presence of the genes coding for the measured enzymes (gcd, gndL, sldA and kgdL) 

was confirmed by the amplification of a fragment of these genes. All primer sequences 

were designed from already available genome sequences of these three AAB species 

(see Table 2). In strain NBRC 3271, because two set of genes for GADH and GLDH are 

present, two sets of primers (gadh1 and gadh2; gldh1 and gldh2) were designed (Table 

2). As expected, the presence of the genes for mGDH (gcd) and GADH (gndL) was 

confirmed for all the strains (Table 3). However, in strain G. japonicus CECT 8443, only 

one set of primers (gadh1) worked for the amplification of gndL, and specific primers 

(mgdh) for gcd of NBRC 3271 did not work, although amplification was achieved with G. 

oxydans primers. In the case of the GLDH gene, no amplification was obtained in G. 

oxydans Po5 despite presenting activity, and in G. japonicus CECT 8443, as in GADH 

genes, only one set of primers (gldh2) worked. Finally, the 2KGDH gene (kgdL) was 

amplified only in A. malorum strains, although activity was not detected. 

 

Table 3. Results of PCR analyses of gcd, gndL, sldA, and kgdL genes, and of enzyme activity 
for the six tested acetic acid bacteria strains. 

a amplified only by primers gadh1 (Table 2). 
b amplified only by primers gldh2 (Table 2). 
n.d: not determine. 

 

Phylogenetic trees were constructed using the nucleotide sequences of these genes in 

these strains in comparison with sequences available in the GenBank Database (Figures 

5-7). In all cases, AAB genera were clustered separately according to these gene 

sequences. In the case of the mGDH gene (Figure 5), two branches were clearly 

 
 gcd gndL sldA   kgdL 

Species Strain Activity Gene Activity Gene Activity Gene Activity Gene 

Gluconobacter 
japonicus 

CECT 
8443 

+ + + + a + + b - n.d 

NBRC 
3271 

+ + + + + + - n.d 

Gluconobacter 
oxydans 

Po5 + + + + + - - - 

621H + + + + + + - - 

Acetobacter  
malorum 

CECT 
7742 

+ + + + + n.d - + 

NBRC 
108912 

+ + + + + n.d - + 
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observed; one branch included the Komagataeibacter and Acetobacter species and the 

branch included the Gluconobacter and Asaia species. In the Acetobacter branch, both 

A. malorum enzymes grouped with A. orleanensis, A. senegalensis and A. tropicalis and 

were separated from those of A. pasteurianus, A. pomorum, A. ghanensis, A. syzygii and 

A. aceti. In the case of the Gluconobacter cluster, different species were mixed, and no 

specific groupings were observed. Our G. oxydans enzymes grouped together while our 

G. japonicus strains were separated in different subclusters.  

 

 
Figure 5. Phylogenetic relationship of gcd gene in different species of acetic acid bacteria. The entries of 

different genotypes include the accession numbers of the GeneBank database sequence. The gcd sequence 
of Pseudomonas aeruginosa B136-33 was used as outgroup. The numbers indicate the branch support 
values. 
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In the case of the GADH gene (Figure 6), the sequence of one of the genes (the one that 

was amplified with the set of primers gadh2) of G. japonicus NBRC 3271 appeared as 

outgroup. The other sequences were grouped in three clusters, one for Acetobacter 

species, another for Komagataeibacter species and the last one for Gluconobacter 

species together with one Asaia sequence. As in the mGDH tree, the two A. malorum 

enzymes grouped together. In the Gluconobacter cluster, there were two branches; one 

branch consisted of Asaia bogorensis sequence and gndL (which was amplified with set 

of primers gadh2) of a strain of G. oxydans (DSM 3504). All other sequences grouped 

together in a common branch.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Phylogenetic relationship of gndL gene in different species of acetic acid bacteria. The entries of 

different genotypes include the accession numbers of the GeneBank database sequence. The sequence of 
one of the genes coding for GADH in Gluconobacter japonicus NBRC 3271 (AD938_03325) was used as 
outgroup. The numbers indicate the branch support values. 
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Finally, in the GLDH gene (sldA) tree (Figure 7), the sequences were grouped in two 

clusters; one branch included Gluconobacter sequences, and the other branch included 

Komagataeibacter and Asaia sequences. Unlike the other genes, in this case, the Asaia 

sequences clustered with Komagataeibacter but not with Gluconobacter. No Acetobacter 

sequences have been included because this gene has not been described in this genus. 

In the Gluconobacter cluster, three different groups were clearly defined; one cluster was 

basically G. oxydans sequences, while in the other two clusters, the two homologous 

GLDH genes (that were amplified by the primer sets of gldh1 and gldh2) of G. japonicus 

grouped separately.  

 
Figure 7. Phylogenetic relationship of sldA gene in different species of acetic acid bacteria. The entries of 
different genotypes include the accession numbers of the GeneBank database sequence. The sldA 
sequence of Acinetobacter baumannii 1429530 was used as outgroup. The numbers indicate the branch 
support values. 
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4. DISCUSSION 

In a previous study (Sainz et al., 2016), we selected three strains of AAB capable of 

oxidizing D-glucose to GA without consuming D-fructose in a puree of strawberry with 

the aim of developing a new attractive fermented beverage for consumers preserving 

the fruit natural sweetness. The following three main requirements were decisive for the 

selection of these strains: a high production of GA, total consumption of D-glucose and 

minimal oxidation of D-fructose. Because the consumption of D-glucose and D-fructose 

and the production of GA were observed to be dependent on the strain and the media, 

the strains were mainly selected based on their behavior in strawberry puree. The 

selected strains were G. japonicus CECT 8443, G. oxydans Po5 and A. malorum CECT 

7742, depending on the desired final product (final concentration of GA and keto-D-

gluconates). Understanding the differences in the production of these compounds in 

these strains could help control the beverage composition in a more effective and 

reproducible way.  

It has been extensively described that AAB present high numbers of membrane-bound 

dehydrogenases, classified as quinoproteins and flavoproteins - cytochrome c complex, 

involved in incomplete oxidation of sugars and alcohols to produce the corresponding 

sugar acids which are accumulated in the medium (Matsushita et al., 1994; Adachi et al., 

2007; Matsushita et al., 2004). This feature is essential for industrial applications of these 

organisms (Meyer et al., 2013). In our study, different AAB strains were collected at 

different growth phases, and the activity of membrane-bound dehydrogenases involved 

in D-glucose oxidation and the accumulation of corresponding metabolites were studied.  

According to the growth of the strains, differences in the maximal population were 

observed both among species and between strains within the same species, reaching in 

some cases double the population size. Only G. japonicus strains showed identical 

growth, achieving the highest population of all the studied species. A low biomass 

formation has been associated with high oxidation rates (Elfari et al., 2005); the more 

biomass produced, the less D-glucose used for product formation. Krajewski et al. (2010) 
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explained this low biomass when D-glucose is used as carbon source because most D-

glucose is metabolized rapidly to GA and its derivatives in the periplasm, and therefore, 

it could not be used for biomass formation, just for the generation of proton motive force. 

In our case, no important differences were observed between the species or strains 

because D-glucose was completely depleted in all the cases, and the maximal 

accumulation of GA in the medium was similar, except for strain CECT 7742 belonging 

to A. malorum that accumulated approximately 30 mM less of GA. In this case, the lower 

accumulation of GA was compensated by a high concentration of 2KGA. Therefore, there 

was no correlation between low growth and high GA and keto-D-gluconates production, 

likely because growth in all cases was low, suggesting that the amount of D-glucose 

used for biomass was only a minor part of the initial D-glucose, and the differences 

observed in growth were not reflected in metabolite production. This low growth confirms 

that the oxidation of D-glucose to GA and keto-D-gluconates has a negative effect on 

the growth rate and the growth yield as stated by Krajewski et al. (2010) for G. oxydans.  

All strains accumulated GA in the medium, being maximal at 24 h, in parallel with the 

maximal activity of mGDH. This high enzyme activity at the late exponential phase and 

its subsequent decrease agree with the findings of Matsushita et al. (1980), who 

described that mGDH activity reached the maximum activity in the mid-to late 

exponential phase of cultivation and then decreased with progress of growth. Ameyama 

et al. (1981) observed that the higher formation of this enzyme was achieved at the late 

exponential phase, between 24 and 30 h, depending on the fermenter used, when AAB 

grew on a medium containing D-glucose, glycerol and sodium-D-gluconate. The activity 

levels obtained in this study are consistent with those found in the literature (Ameyama 

et al., 1981; Matsushita et al., 1987, 1989; Meyer et al., 2013), showing similar or even 

higher values. Important differences in mGDH activity among strains were observed, and 

these differences were especially relevant in the case of selected Gluconobacter strains 

with a high activity along the process in comparison to culture collection strains. 

However, in practically all cases, similar GA concentrations were detected, probably due 
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to a limitation of substrate (D-glucose) in the media. Moreover, as the first sampling point 

of activity (24 h) already showed the highest enzyme activity, a similar evolution over 

time was observed in the enzyme activities between strains.  

Regarding GADH, all our tested strains showed GADH activity. Shinagawa et al.  (1976) 

previously reported this activity in the cell free extracts in strains of Gluconobacter and 

Acetobacter together with strains from other bacteria (Pseudomonas aeruginosa, 

Klebsiella pneumoniae and Serratia marcescens). In our study, G. japonicus NBRC 3271 

presented the highest activity of GADH and the highest accumulation of 2KGA, whereas 

G. oxydans strains did not accumulate any 2KGA despite presenting small activity only 

at 24 h. Strains from different species of the Gluconobacter genus are reported to 

accumulate high concentrations of 2KGA and/or 5KGA from D-glucose or GA without 

any appreciable assimilation into cells (Sievers and Swings, 2005). Moreover, a 

sequential accumulation of GA and keto-D-gluconates during the growth of G. oxydans 

621H and other Gluconobacter species on D-glucose media with controlled pH has been 

described (Weenk et al., 1984), which is in agreement with our results. However, 

Levering et al. (1988) showed that G. oxydans 621H growing in yeast extract medium 

containing 50 mM D-glucose was able to oxidize quantitatively D-glucose to GA, without 

the production of 2KGA and 5KGA, similar to our observations with strain Po5. This lack 

of keto-D-gluconates synthesis in some strains has been associated with the fact that 

during the first phase of growth on D-glucose in batch cultures, the oxidation of D-glucose 

by mGDH was so rapid that the respiratory chain becomes saturated. For this reason, 

the ubiquinone was unable to accept electrons from GADH, resulting in the impossibility 

of oxidizing the GA in these conditions (Levering et al., 1988). Therefore, strain Po5, with 

high production of GA but no accumulation of keto-D-gluconates, appeared to be the 

best strain to obtain and maintain high concentrations of GA in the fermented beverage. 

In our previous study (Sainz et al., 2016), we tested different media, and this strain was 

the strain with the highest production of GA and the lowest production of keto-D-

gluconates. Diverse studies in Gluconobacter strains showed differences in the rate of 
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2KGA or 5KGA from D-glucose (Weenk et al., 1984; Silberbach et al., 2003; Herrmann 

et al., 2004; Elfari et al., 2005). The individual product yields vary among different strains 

and depend also on the media and on the particular conditions used for cultivation (Asai 

1968; Olijve and Kok, 1979). GLDH and GADH enzymes compete for the oxidation of 

GA; therefore, selective expression of either dehydrogenase could increase the 

production of either of the keto-D-gluconates (Matsushita et al., 2003; Elfari et al., 2005). 

In our conditions, only G. japonicus strains were able to accumulate both keto-D-

gluconates. These strains present two genes for GLDH, and strain NBRC 3271 also 

presents two genes for GADH. However, strain CECT 8443 has only one gene for GADH 

with a sequence similar to the gene, which was amplified with primers gadh1 of strain 

NBRC3271.  

Gluconobacter oxydans 621H only accumulated 5KGA. In other studies and culture 

conditions, 621H exhibited different keto-D-gluconate synthesis profiles, varying from the 

accumulation of both keto-D-gluconates (Weenk et al., 1984) or no keto-D-gluconates 

synthesis, confirming that culture conditions are essential for the synthesis of these 

compounds. The other strain belonging to G. oxydans, Po5, did not accumulate any keto-

D-gluconate, despite having a similar GLDH activity to 621H. A lack of amplification of 

the GLDH gene (sldA) was observed in this strain (Po5). The 621H sldA sequence was 

used for the design of the primers, and although this gene sequence in both strains is 

similar (> 96%), there are some nucleotide differences in the region where the reverse 

primer hybridized (results not shown). In G. japonicus, strain NBRC 3271 showed the 

highest GLDH activity at 24 h and after a decrease, although the 5KGA concentration 

was increasing until 48 h. Instead, in CECT 8443, the increase in GLDH activity between 

24 and 48 h was correlated with the increase in the 5KGA accumulation. A. malorum 

strains presented both activities (GADH and GLDH), but no accumulation of 5KGA was 

detected. A lack of 5KGA synthesis was expected according to the A. malorum 

description (synthesis of 2KGA and lack of 5KGA synthesis) (Cleenwerck et al., 2002). 

However, the activity detected in this study together with the accumulation of this 
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compound by strain CECT 7742 in a previous study (Sainz et al., 2016) appear to confirm 

that this species or some strains belonging to this species are able to synthesize 5KGA. 

It has to be emphasized that this previous production of 5KGA was observed in different 

medium conditions. The absence of the sldA sequence in the A. malorum genome 

appears to suggest the possibility that other enzymes for the synthesis of this compound 

are used. Furthermore, strain NBRC 108912 showed a high decrease in the GA 

concentration that cannot be only accounted for the oxidation to 2KGA. Nevertheless, 

the products of D-glucose oxidation have been reported to be assimilated by cytoplasmic 

reductases during the stationary phase, and then introduced to the pentose-phosphate 

pathway to produce cell biomass (Saichana et al., 2015). However, this would have as 

consequence a second phase of growth that was not observed in our case. 

A phylogenetic study using the sequences of these three key enzymes for D-glucose 

oxidation in AAB was performed; in all the cases, trees that showed clear clusters 

according to the genus were obtained. Gene gcd was the one with more sequences 

available in the GenBank database, allowing for a more reliable study. Based on the gcd 

sequences, the Acetobacter and Komagataeibacter species seemed to be more closely 

related, and Gluconobacter was more related to Asaia, which is different to the findings 

obtained using the 16S rRNA gene sequence (Yamada et al., 2012). However, this 

difference should not be surprising because the D-glucose metabolism of these two 

genera is closer than in the other genera, which have a higher preference for other 

substrates, such as ethanol. The Gluconobacter and Asaia genera were reported to 

develop better in media enriched with sugar (Raspor and Goranovic 2008), with high 

oxidation activity of sugar and sugar alcohols (D-glucose, GA, D-sorbitol, and glycerol). 

In addition, Matsutani et al. (2011) claimed that the Acetobacter and Komagataeibacter 

species are more closely related to each other than Gluconobacter by whole genome 

level phylogenetic analysis. Therefore, our results agree with this previous work.  

For our results, the concentrations of D-glucose and GA show an effective, almost 

equimolar conversion, which takes place during the first 24 h and is likely to the end of 
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the exponential phase of growth (Matsushita et al., 1980; Ameyama et al., 1981). At this 

time, the mGDH activity is the highest during the studied period. The absence of the 

main substrate makes its activity unnecessary and therefore declines afterwards. It could 

be assumed that during the first 24 h, the high activity of this enzyme accounts for the 

full transformation of D-glucose into GA, which occurs in all the species and strains 

observed. However, the transformation of GA is heavily dependent on the species and 

the strain (Asai, 1968; Olijve and Kok, 1979; Weenk et al., 1984). Regardless of the 

presence of the activities of GADH and GLDH in G. oxydans natural strain Po5, no further 

oxidation of GA to keto-D-gluconates was observed. In fact, no production of 5-KGA was 

detected despite the high activity of GLDH in G. oxydans, showing a lack of correlation 

between the activity and products that could be explained by the lack of specificity of this 

enzyme (Matsushita et al., 2003). Instead, the absence of GADH activity after 24 h 

correlated with the lack of 2KGA production in both G. oxydans strains. In G. japonicus 

and A. malorum, the production of 2KGA was always observed, although no correlation 

could be found between the activity and the products. However, when activity of GADH 

was detected after 24 h, albeit it was low, important accumulation of 2KGA in the medium 

was observed (higher than 50 mM). Comparing between the three selected strains, 

important differences were observed at the activity level of these enzymes. Both 

Gluconobacter strains (CECT 8443 and Po5) presented a very high activity of mGDH at 

24 h, with a further decrease and low activity in the GADH and GLDH but with changes 

overtime, whereas CECT 7742 presented in the three enzymes a low activity but 

maintained practically constant throughout all the time. 

The possible use of these different strains and species for the production of different 

concentrations of GA and its derivatives could be achieved through the thorough 

knowledge of the activity and the expression of the enzymes. However, our results also 

indicate that the conditions of the process and the composition of the medium are crucial 

to the final composition of the product because important differences were observed in 

the synthesis profile of these strains in different media or conditions (Sainz et al., 2016). 
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Therefore, a next step should be the analysis of the expression of these genes 

(especially mGDH and GADH) in different conditions to fully understand and control the 

process of the oxidation of D-glucose by AAB. 
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ABSTRACT 

Acetic acid bacteria (AAB) are recognized as fastidious microorganisms due to the 

problems associated with their isolation and growth on solid media. Furthermore, 

insufficient information is known about the nutritional requirements of AAB for optimal 

growth. The aim of this work was to study the effects of different concentrations and 

sources of nitrogen on the growth of different AAB strains and to establish which nitrogen 

source best encouraged their growth. Two strains of three species of AAB, 

Gluconobacter japonicus, Gluconobacter oxydans and Acetobacter malorum, were 

grown in three different media with diverse nitrogen concentrations (25, 50 100, and 300 

mg N/L and 1 g N/L) as a complete solution of amino acids and ammonium. With this 

experiment, the most favourable medium and the lowest nitrogen concentration 

beneficial for the growth of each strain was selected. Subsequently, under these 

conditions, single amino acids or ammonium were added to media individually to 

determine the best nitrogen sources for each AAB strain. The results showed that 

nitrogen requirements are highly dependent on the nitrogen source, the medium and the 

AAB strain. Gluconobacter strains were able to grow in the lowest nitrogen concentration 

tested (25 mg N/L); however, one of the G. oxydans strains and both A. malorum strains 

required a higher concentration of nitrogen (100-300 mg N/L) for optimal growth. In 

general, single nitrogen sources were not able to support the growth of these AAB strains 

as well as the complete solution of amino acids and ammonium.  

 

 

Keywords: Gluconobacter, Acetobacter, Ammonium, Proline, Glutamine 
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1. INTRODUCTION  

Acetic acid bacteria (AAB) are strictly aerobic microorganisms that are particularly 

interesting because they are able to quickly and incompletely oxidize a large number of 

carbohydrates and alcohols, producing an accumulation of organic acids as the final 

products. This feature makes AAB useful for various biotechnological processes 

(Deppenmeier et al., 2002; Gullo and Giudici, 2008), such as the production of acetic 

acid from ethanol; D-gluconic acid, 2-keto-D-gluconic acid and 5-keto-D-gluconic acid 

from D-glucose; L-sorbose from D-sorbitol; and dihydroxyacetone from glycerol (Gupta 

et al., 2001; Lino et al., 2012; Prust et al., 2005). Nevertheless, the industrial exploitation 

of AAB is not fully developed (Mamlouk and Gullo, 2013), mainly due to problems with 

AAB recovery on solid media and their high mutability (Mas et al., 2007). For these 

reasons, they are considered fastidious microorganisms. To solve the problem of low 

AAB culturability, different culture media have been developed to improve AAB isolation 

from different sources, with D-glucose, ethanol and mannitol as the carbon sources most 

widely used for the preparation of these enrichment media (Gullo et al., 2006; Mas et al., 

2007). However, relatively little new information has become available about the nitrogen 

and growth factor requirements in AAB since the studies about this topic conducted in 

the 1950s (Foda and Vaughn, 1953; Raghavendra Rao and Stokes, 1953; Rainbow and 

Minston, 1953). Raghavendra Rao and Stokes. (1953) reported that the growth factor 

requirements are critically influenced by the carbon and energy sources present in the 

medium. These authors also claimed the necessity of using peptone and yeast extract 

in culture media to ensure a sufficient supply of nitrogen for AAB growth. The problem of 

using these preparations is that there is no control over the nitrogen composition, and it 

is not possible to study AAB nitrogen requirements. Previously, Underkofler et al. (1943) 

reported that the use of a mixture of twenty amino acids can be used instead of 

hydrolysed casein for Acetobacter suboxydans growth, and the study also established 

pantothenic, nicotinic and p-aminobenzoic acids as the factors required for growth of this 

species. Later, Drysdale and Fleet. (1988) suggested that most AAB are able to grow 
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using inorganic ammonia as the sole source of nitrogen because they can synthesize all 

the amino acids from this compound; therefore, there are no essential amino acids for 

AAB. However, these authors also reported that some amino acids could have a 

stimulatory or inhibitory effect on the growth of some AAB species, and even earlier 

studies reported an essential role for some amino acids (Kerwar et al., 1964; Stokes and 

Larsen, 1945).  

In recent years, studies of nitrogen and AAB have mainly focused on ensuring that there 

was sufficient available nitrogen and appropriate for carrying out the acetification after 

alcoholic fermentation by yeast. For this reason, different studies have analysed the 

changes in amino acids during the production of vinegars from different types of raw 

materials and different acetification conditions (Álvarez-Cáliz et al., 2012; Callejón et al., 

2008; Maestre et al., 2008; Valero et al., 2005). The effects of various physico-chemical 

operations, such as flocculation and filtration, during the stabilization of must and wines 

(Valero et al., 2005) and the biological ageing of wine (Álvarez-Cáliz et al., 2014) on the 

availability of nitrogen content for AAB growth have also been studied. Although all these 

practices are expected to decrease the concentrations of amino acids and vitamins 

available for the AAB growth, there are others, such as the autolysis of yeasts at the end 

of the alcoholic fermentation, that have the opposite effect and favour the growth of AAB 

(Fleet, 2001). However, extreme media, such as wine with a low pH and a high ethanol 

concentration, could also modify the amino acid requirements of AAB, increasing their 

nutritional demand (Drysdale and Fleet, 1988). All these studies have demonstrated that 

AAB growth depends on the substrate used. In the case of wine vinegars, grape musts 

are rich in arginine and proline; moreover, the latter cannot be used by yeast (Ribéreau-

Gayon et al., 2006) and is the major amino acid in wines and one of the amino acids 

most used by AAB (Álvarez-Cáliz et al., 2012; Callejón et al., 2008; Maestre et al., 2008). 

Other substrates, such as ethanol or cider, are clearly nitrogen-poor, resulting in the need 

to add nutrients to favour AAB growth. Therefore, the concentration and type of nitrogen 
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sources available for AAB growth could be a limiting factor for the best development of 

a specific process.  

In a previous study (Sainz et al., 2016), three natural AAB strains were selected for the 

production of a new strawberry beverage, which was based on the production of D-

gluconic acid from D-glucose to maintain the natural D-fructose from the strawberries in 

the final product. Two of these strains belong to the Gluconobacter genus: CECT 8443, 

a strain of Gluconobacter japonicus isolated from grape must (Navarro et al., 2013) and 

Po5, a strain of Gluconobacter oxydans isolated from wine vinegar (Vegas et al., 2010). 

The other strain, CECT 7742, belonging to Acetobacter malorum, was the only strain 

isolated from strawberry vinegar (Hidalgo et al., 2013).  

Hence, the aim of this study was to determine the nitrogen requirements of these three 

strains, using the type strain of each species for comparison. For that reason, we first 

analysed the growth of the six strains in different culture media using a range of nitrogen 

concentrations to establish the minimum nitrogen concentration for the optimal growth of 

each strain. Afterwards, in the optimal medium with minimal nitrogen concentration, 

individual amino acids or ammonium were added to determine the best nitrogen source 

for each strain. 

 

2. MATERIALS AND METHODS 

2.1. Microorganisms 

Two strains from three different species (G. japonicus, G. oxydans and A. malorum) of 

AAB were used in the study (Table 1). All the strains were initially grown in GY liquid 

media (5% (w/v) D-glucose and 1% (w/v) yeast extract; Panreac, Barcelona, Spain) at 

28 ºC with shaking (125 rpm).  
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Table 1. Strains used in this study 

Species Strain Source Reference 

Gluconobacter 
japonicus 

NBRC 3271T Myrica rubra  Malimas et al., (2009) 

CECT 8443 Grape Must Navarro et al. (2013) 

Gluconobacter 
oxydans 

 621 H - 
(Henneberg, 1987) De Ley 

. (1961) 

Po5 Vinegar Vegas et al. (2010) 

Acetobacter 
malorum 

NBRC 108912 T Rotting apple Cleenwerck et al., (2002) 

CECT 7742* Strawberry vinegar Hidalgo et al. (2013) 

         

 T Type strains 
 a This strain has been incorrectly named CECT 7749 in previous studies (Hidalgo et al., 2013 and Sainz et   
al., 2016).  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

2.2. Determination of nitrogen requirements 

2.2.1. Media used  

The effect of the nitrogen source on the growth of the strains was tested in three different 

media: synthetic medium (SM) prepared according to Riou et al. (1997); yeast nitrogen 

base medium (YNB; yeast nitrogen base without amino acids (Becton Dickinson & Co, 

Franklin Lakes, NJ, USA)); and M9 minimal medium (Harwood and Cutting, 1990). For 

the preparation of M9, a concentrated salt solution (5X) with 64 g/L sodium hydrogen 

phosphate heptahydrate, 15 g/L monopotassium phosphate and 2.5 g/L sodium chloride 

was first prepared for a stock solution. Then, to prepare 1 L of the M9 media, 200 mL of 

this concentrated salt solution was mixed with 2 mL magnesium sulfate (1 M), 0.1 mL 

calcium chloride (1 M), and different nutrient solutions (sugar, nitrogen, vitamins) and 

brought to 1 L with distilled water. The three media tested had an initial sugar 

concentration of 5% (w/v) (2.5% (w/v) D-glucose and 2.5% (w/v) D-fructose), and 10 

mL/L vitamins (100X) and 1 mL/L oligo elements (1000X) were added to each medium. 

The concentrated solution of vitamins (100X) was prepared with 2 g/L myo-inositol; 0.15 

g/L calcium pantothenate; 0.025 g/L thiamine hydrochloride; 0.2 g/L nicotinic acid; 0.025 

g/L pyridoxine; and 3 mL biotin (100 mg/L). The oligo elements solution (1000X) was 

comprised of 4 g/L manganese sulfate monohydrate; 4 g/L zinc sulfate heptahydrate; 1 
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g/L copper sulfate pentahydrate; 1 g/L potassium iodide; 0.4 g/L cobalt chloride 

hexahydrate; 1 g/L boric acid; and 1 g/L ammonium heptamolybdate.   

Different nitrogen concentrations (25, 50, 100, 300 mg N/L and 1 g N/L) were added to 

media, initially as a complete solution of ammonium and amino acids, taking into 

consideration all the nitrogen atoms. When the optimal nitrogen concentration was 

determined for each strain, all the nitrogen was added as a single amino acid or 

ammonium ions to establish the best nitrogen source for each strain.  

Amino acids solutions have been prepared with distilled water at a concentration of 2.5 

g N/L and filtered. The amino acids used were: alanine (Ala); arginine (Arg); asparagine 

(Asn); aspartic acid (Asp); cysteine (Cys); phenylalanine (Phe); γ-Aminobutyric acid 

(Gaba); glycine (Gly); glutamic acid (Glu); glutamine (Gln); histidine (His); isoleucine (Ile); 

leucine (Leu); lysine (Lys); methionine (Met); ornithine (Orn); proline (Pro); serine (Ser); 

threonine (Thr); tryptophan (Trp) and valine (Val). 

2.2.2. Growth monitoring 

For all experiments, the initial optical density (OD; 600 nm) was adjusted to ca. 0.1. 

Assays were performed using a microplate reader SpectroStar Nano (BMG LABTECH) 

at 28 ºC in triplicate. The absorbance was measured continuously for 200 cycles, with 

stirring at 500 rpm for 80 seconds prior to each reading. For the representation of the 

growth, the OD was normalized by dividing the values of each strain by its initial OD, so 

that all graphs began at OD = 1. To compare the different conditions tested, the maximal 

OD was determined and the maximum growth rate was calculated. The maximum growth 

rate was the slope obtained in the exponential phase of the OD curve plotted against the 

time.  

2.3. Statistical procedures 

Data were analysed using a one-way ANOVA, and significant differences were 

determined using Tukey´s method (p < 0.05). The differences in maximum OD and 

maximum growth rate for each strain were compared among the different nitrogen 
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concentrations in the same medium, different media at the same nitrogen concentration, 

and finally, different nitrogen sources. Values represented with the same letter were not 

significantly different. All statistical analyses were carried out using SPSS Statistics 23.  

 

3. RESULTS 

3.1. Selection of optimal media and nitrogen concentrations 

First, the six strains were grown in the three media (YNB, M9 and SM) without the 

addition of amino acids, ammonium, vitamins or oligo elements to assure that they could 

not grow without a supply of external nitrogen. No strain was able to grow in these three 

media (data not shown), confirming that no assimilable nitrogen was available in these 

media. Then, a complete solution of amino acids and ammonia in different 

concentrations of nitrogen (25 mg N/L, 50 mg N/L, 100 mg/L, 300 mg N/L and 1 g N/L), 

vitamins (1X) and oligo elements (1X) was added to the three media to determine the 

best nitrogen concentration and the best medium for the growth of each AAB strain. In 

Table 2, the results obtained for the six strains grown in YNB, M9 and SM are shown. In 

general, G. japonicus strains presented the highest growth in all the media tested and in 

all the concentrations of nitrogen that were used in this study.  

In YNB medium, the G. japonicus strain CECT 8443 showed better growth than the type 

strain (LMG 1373) in all the nitrogen concentrations tested; CECT 8443 growth was 

twelve times higher than the growth of LMG 1373 in nitrogen concentrations of 300 mg 

N/L and 1 g N/L. High concentrations of nitrogen seemed to be unfavourable for LMG 

1373 growth in this medium, but not for strain CECT 8443. Therefore, 25 mg N/L can be 

considered an optimal concentration for the growth of both strains in this medium. 

Essentially no differences were observed in maximum growth rates either between 

strains or among nitrogen concentrations.  
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Table 2. Maximum OD and growth rate of AAB strains when grown in three different media (YNB, SM, M9) with different nitrogen concentrations (25, 50, 

100, 300 mg N/L and 1 g N/L).  

      25 mg N/L 50 mg N/L 100 mg N/L 300 mg N/L 1 g N/L 

Species Strain Medium Maximal OD Maximal Rate Maximal OD Maximal Rate Maximal OD Maximal Rate Maximal OD Maximal Rate Maximal OD Maximal Rate 

G.japonicus 

LMG 1373T 

YNB 15.90 ± 0.03A,a 0.11 ± 0.01A,a 10.73 ± 0.03A,b 0.14 ± 0.01A,b 3.84 ± 0.06A,c 0.10 ± 0.00A,ac 4.62 ± 0.05A,cd 0.11 ± 0.01A,acd 4.51 ± 0.03A,cd 0.12 ± 0.01A,abd 

M9 12.51 ± 0.02B,a 0. 13 ± 0.02AB,a 16.87 ± 0.15B,b 0.14 ± 0.03AB,a 20.98 ± 0.14B,b 0.19 ± 0.07B,a 12.84 ± 0.14B,ac 0.18 ± 0.03B,a 11.39 ± 0.13B,ac 0.18 ± 0.03B,a 

SM 21.69 ± 0.01B,a 0.10 ± 0.02AB,a 20.48 ± 0.01C,a 0.13 ± 0.00AB,a 24.95 ± 0.01C,ab 0.09 ± 0.00A,b 29.24 ± 0.01C,bc 0.12 ± 0.01A,b 32.09 ± 0.03C,c 0.13 ± 0.02A,b 

CECT 8443 

YNB 40.88 ± 0.11A,a 0.11 ± 0.01A,a 36.18 ± 0.05A,ab 0.12 ± 0.00A,a 35.29 ± 0.08A,b 0.11± 0.00A,a 57.87 ± 0.08A,c 0.14± 0.00A,b 55.57 ± 0.04A,c 0.12 ± 0.00A,a 

M9 7.14 ± 0.03B,a 0.09 ± 0.00AB,a 9.78 ± 0.12B,b 0.10 ± 0.01AB,a 13.97 ± 0.21B,c 0.09 ± 0.00AB,a 14.56 ± 0.20B,c 0.09 ± 0.01B,a 9.73 ± 0.02B,b 0.09 ± 0.01B,a 

SM 11.82 ± 0.21C,a 0.10 ± 0.01AB,a 16.65 ± 0.03C,b 0.10 ± 0.03AB,a 18.23 ± 0.05C,b 0.11 ± 0.03AB,a 16.92 ± 0.14B,b 0.11 ± 0.03B,a 13.91 ± 0.19C,b 0.10 ± 0.02B,a 

G.oxydans 

621H 

YNB 2.84 ± 0.02A,a 0.07 ± 0.02A,a 2.80 ± 0.02A,a 0.05 ± 0.00A,a 4.01 ± 0.02A,a 0.05 ± 0.01A,a 8.41 ± 0.02A,b 0.07 ± 0.00A,a 0.99 ± 0.01A,c 0.05 ± 0.01A,a 

M9 3.16 ± 0.02A,a 0.05 ± 0.00AB,a 3.20 ± 0.02AB,a 0.05 ± 0.00A,a 3.42 ± 0.04A,a 0.05 ± 0.00A,a 2.99 ± 0.02B,a 0.06 ± 0.00AB,a 0.93 ± 0.01A,b 0.03 ± 0.00A,a 

SM 1.92 ± 0.01B,a 0.05 ± 0.01AB,a 4.15 ± 0.01B,b 0.09 ± 0.01B,a 7.55 ± 0.02B,c 0.09 ± 0.02B,a 6.46 ± 0.01C,c 0.05 ± 0.01B,a 6.43 ± 0.02B,c 0.07 ± 0.00B,a 

Po5 

YNB 16.07 ± 0.07A,a 0.17 ± 0.02A,a 16.76 ± 0.03A,a 0.17 ± 0.01A,a 16.88 ± 0.17A,a 0.13 ± 0.02A,ab 22.92 ± 0.07A,b 0.07 ± 0.00A,b 7.51 ± 0.01A,c 0.12 ± 0.01A,ab 

M9 12.65 ± 0.00B,a 0.09 ± 0.02B,a 20.53 ± 0.07B,b 0.08 ± 0.01B,a 28.22 ± 0.03B,c 0.11 ± 0.02A,a 27.97 ± 0.07C,c 0.15 ± 0.03B,b 23.30 ± 0.26B,b 0.14 ± 0.03AB,b 

SM 12.84 ± 0.22B,a 0.20 ± 0.02A,a 17.09 ± 0.03A,ab 0.21 ± 0.02A,a 22.16 ± 0.05A,bc 0.20 ± 0.02B,a 20.01 ± 0.05B,bcd 0.17 ± 0.02B,ab 21.20 ± 0.13B,bcd 0.09 ± 0.02A,b 

A.malorum 

DSM 14337T 

YNB 3.45 ± 0.01A,a 0.04 ± 0.00A,a 1.05 ± 0.01A,b 0.04 ± 0.00A,ab 2.02 ± 0.01A,c 0.05 ± 0.01A,abc 1.64 ± 0.04A,c 0.06 ± 0.00A,c 2.46 ± 0.03A,c 0.04 ± 0.00A,abc 

M9 2.89 ± 0.01A,a 0.06 ± 0.00AB,a 5.76 ± 0.02B,b 0.06 ± 0.01B,a 8.88 ± 0.01B,c 0.07 ± 0.01AB,a 10.65 ± 0.01B,d 0.07 ± 0.01A,a 8.74 ± 0.02B,c 0.06 ± 0.01B,a 

SM 0.84 ± 0.02B,a 0.05 ± 0.00AB,a 1.18 ± 0.01A,b 0.05 ± 0.00AB,a 1.44 ± 0.00C,c 0.05 ± 0.00AB,a 1.24 ± 0.00A,bd 0.05 ± 0.00AB,a 1.29 ± 0.00C,bcd 0.05 ± 0.00AB,a 

CECT 7742 

YNB 3.10 ± 0.02A,a 0.05 ± 0.01A,a 4.90 ± 0.02A,b 0.08 ± 0.02A,b 6.80 ± 0.03A,bc 0.06 ± 0.01A,abc 10.1 ± 0.00A,d 0.08 ± 0.00A,bc 6.24 ± 0.03A,bc 0.14 ± 0.01A,d 

M9 7.80 ± 0.01B,a 0.08 ± 0.01B,a 9.40 ± 0.05B,ab 0.08 ± 0.01A,a 12.8 ± 0.04B,bc 0.10 ± 0.01B,a 13.0 ± 0.07B,cd 0.08 ± 0.00AB,a 14.1 ± 0.00B,d 0.09 ± 0.01B,a 

SM 5.70 ± 0.01C,a 0.06 ± 0.01A,a 6.18 ± 0.01A,a 0.05 ± 0.01B,a 11.65 ± 0.01B,b 0.08 ± 0.01AB,b 13.62 ± 0.01B,bc 0.08 ± 0.00AB,bc 12.24 ± 0.00C,bc 0.08 ± 0.01B,bc 

T: Type strais. Values represented with different letter were significantly different (p<0.05). In maximal OD, lower case letters represent differences between concentrations 
of nitrogen within the same medium, while capital letters represent differences between different media with the same nitrogen concentration. In all the cases the 
comparison are within the same strain. In maximal rate, the same comparisons were done and differences were marked with italics. 
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Surprisingly, in the other two media (M9 and SM), the type strain (LMG 1373) presented 

better growth than CECT 8443, with the only exception being growth in M9 with the 

addition of 300 mg N/L. However, in both cases, the OD of LMG 1373 was higher than 

the OD observed for CECT 8443. In the M9 medium, LMG 1373 presented its maximum 

growth rate with the addition of 100 mg N/L, whereas strain CECT 8443 presented 

maximum growth at the concentration range between 100 and 300 mg N/L, with very 

similar values for both the maximal growth and rate. However, higher concentrations (1 

g N/L) resulted in a decrease in growth, unlike the pattern that was observed in the YNB 

medium. Moreover, the maximum growth rates for CECT 8443 were clearly lower than 

the ones obtained for LMG 1373. Finally, in SM, the maximum growth of LMG 1373 

increased as it did the nitrogen concentration, and the growth of this strain showed an 

opposite trend in YNB. In contrast, CECT 8443 displayed a peak in the maximum OD 

when grown in SM with an addition of 100 mg/L of N, and the lowest values were 

observed at both ends of the nitrogen concentration gradient. 

Regarding G. oxydans strains, 621H grew poorly in all the tested media, especially 

compared with Po5, which grew well in all media tested (Table 2). In YNB medium, both 

strains showed the highest maximum OD in this medium with the addition of 300 mg N/L; 

however, the maximum growth rate was rather low, especially for Po5 compared with 

the growth rate of this strain at a lower nitrogen concentration. Despite this low rate, the 

growth of Po5 was three-fold higher than that of 621H. Moreover, strain Po5 also 

presented satisfactory growth in lower concentrations of nitrogen, but this growth was 

clearly reduced in presence of the 1 g N/L concentration. At this high nitrogen 

concentration, no growth was observed in strain 621H. Po5 achieved a higher maximum 

OD in M9 medium than in YNB media, with 100 mg N/L and 300 mg N/L as the optimal 

concentrations. In M9 media, a higher concentration of nitrogen also resulted in 

decreased growth, but this was less pronounced than the decrease observed in YNB 

medium. Comparing both G. oxydans strains, 612H presented a very similar growth 

between 25 and 300 mg N/L and no growth at 1 g N/L, and its maximal OD was as much 
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as nine times lower as that of Po5.  Finally, both strains presented the same trend in SM 

medium; less growth was observed with the concentration of 25 mg N/L, and a similar 

maximum OD was observed between 100 and 1000 mg N/L. The best nitrogen 

concentration was 100 mg N/L, in which the maximum OD and growth rate were 

achieved. However, once again, the growth of Po5 was stronger than that of 621H in SM 

medium, reaching a maximum OD that was between three- and six-fold higher.  

Finally, regarding the A. malorum strains, although both strains grew poorly in most of 

the media and nitrogen concentrations, once again, the indigenous strain CECT 7742 

grew better than the type strain DSM 14337 (Table 2). In YNB medium, strain DSM 

14337 performed better with the concentration of 25 mg N/L, presenting a growth similar 

to that of CECT 7742. On the other hand, CECT 7742 growth was favoured by higher 

nitrogen concentrations, with 300 mg N/L as the most optimum nitrogen concentration 

for this strain in YNB medium. In M9 medium, the growth of both A. malorum strains 

improved when the nitrogen concentration was higher, showing the best growth in the 

range between 100 and 1000 mg N/L. Moreover, in this medium, the differences between 

the strains were lower; in general, the difference between them was less than two-fold. 

Finally, DSM 14337 did not grow in SM media regardless of the nitrogen concentration, 

while CECT 7742 presented a similar growth pattern and an identical maximum growth 

rate between 100 and 1000 mg N/L, reaching the maximum OD with the concentration 

of 300 mg N/L.  

After this preliminary study, it was necessary to select the best medium and the lowest 

nitrogen concentration that was favourable for the growth of each strain. Whenever 

possible, the same medium and nitrogen concentration were selected for strains 

belonging to the same AAB species to allow a better comparison between them. For G. 

japonicus strains, YNB media with a concentration of 25 mg N/L was selected. Although 

this medium was not ideal for the type strain LMG 1373, its growth was sufficient, and 

this was the best medium for the natural strain CECT 8843. In the case of the G. oxydans 

strains, 621H grew poorly in all media, but the best growth was observed in YNB with 
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the concentration of 300 mg N/L. Alternatively, Po5 grew well in all media, presenting 

good growth in YNB with the concentration of both 300 mg N/L and 25 mg N/L. Therefore, 

both concentrations were chosen for comparison purposes between G. oxydans strains, 

and we extended this comparison to all the Gluconobacter strains. For A. malorum 

strains, the best growth was obtained in M9 media; although the nitrogen required in both 

strains was high, the concentration was fixed at 100 mg N/L.  

3.2. Analysis of individual amino acids and ammonium  

The second experiment was carried out using the media selected above, but the nitrogen 

source was added individually as ammonia or as a single amino acid to test the capacity 

of these strains to grow with a unique nitrogen source as well as to determine the best 

nitrogen source for each strain. The control medium was the same medium used in the 

previous experiment (the complete solution of amino acids and ammonium at the same 

concentration).  

In Figure 1, the growth of G. japonicus strains LMG 1373 and CECT 8443 in YNB with 

the different nitrogen sources at 25 mg N/L is shown. In both cases, significant 

differences in growth were observed between the media with the individual nitrogen 

sources and the control medium. For LMG 1373, there were some amino acids (Arg, 

Gaba, His, Lys, Orn and Thr) that essentially did not promote growth of this strain; in 

contrast, Asn and Gln were the best promoters as sole nitrogen sources and produced 

two-thirds of the growth obtained by the control. Finally, the addition of ammonium, Ala 

and Ser presented intermediate effects, permitting growth of approximately half that of 

the control. On the other hand, CECT 8443, which presented very good growth with the 

control medium, was not able to recover growth with a unique nitrogen source; not even 

one-third of the growth obtained by the control medium was observed for any individual 

nitrogen source. The best sources were Asn and Trp, followed by ammonium, Gln and 

Met. No growth was observed with the addition of Gaba, His, Orn, Ser or Val. Therefore, 

for both G. japonicus strains, Asn, Gln and ammonium promoted growth while the 
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presence of Gaba, His and Orn in the medium was not enough to improve the growth of 

these strains.  

Figure 1. The maximum OD of two G. japonicus strains in YNB medium using different single nitrogen 

sources fixed at 25 mg N/L. As a control, a complete solution of amino acids and ammonium with a final 
concentration of 25 mg N/L was used. Experiments were carried out in triplicate. LMG 1373 (   ) and CECT 
8443 (   ). 

 

As expected based on the previous results, strain 621H did not grow well with the 

individual nitrogen sources at a concentration of 25 mg N/L (data not shown); therefore, 

we only considered the results obtained with the concentration of 300 mg N/L (Figure 2). 

In this case, two amino acids, Gln and His, were the best promoters of 621H growth; 

using these amino acids as a sole nitrogen sources, 621H was capable of recovering the 

same or better growth compared with that measured in the control medium. For the 

remaining amino acids as nitrogen sources, significantly lower growth than that in the 

control was observed. Furthermore, essentially half of the sources tested were not able 

to support growth of this strain. For the Po5 strain, we analysed its growth at two nitrogen 

concentrations (25 and 300 mg N/L). 
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Figure 2. The maximum OD of two G. oxydans strains in YNB medium using different single nitrogen sources 

fixed at 300 mg N/L. As a control, a complete solution of amino acids and ammonium with a final 
concentration of 300 mg N/L was used. Experiments were carried out in triplicate. 621H (   ) and Po5 (   ). 
 

In the low nitrogen concentration (Figure 3), minor differences from the control were 

observed, although the growth with only ammonium added was higher. Moreover, in the 

majority of the nitrogen sources, Po5 was only capable of producing half of the growth 

of the control. Only His, Lys and Orn were poor nitrogen sources, producing very low 

growth. Similarly, to the G. japonicus strains, for Po5, ammonium and Gln were 

considered good sources of nitrogen, and His and Orn were poor sources. In the high 

nitrogen concentration (300 mg N/L) (Figure 2), large differences between the media with 

the sole nitrogen sources and the control media were highlighted. Curiously, at this 

nitrogen concentration, ammonium was not a good source of nitrogen, and the sources 

with the highest maximum OD were Asn, Ala, Gln and Trp. Compared to the other G. 

oxydans strain, the most remarkable observation was that the addition of His supported 

only low growth, unlike the case for strain 621H but similar to that for the other 

Gluconobacter strains tested, in which this amino acid supported poor growth. 
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Figure 3. The maximum OD of strain Po5 in YNB medium using different single nitrogen sources fixed at 25 

mg N/L. As a control, a complete solution of amino acids and ammonium with a final concentration of 25 mg 
N/L was used. Experiments were carried out in triplicate. 
 

Finally, the growth response to the different nitrogen sources was similar in both A. 

malorum strains (CECT 7742 and DSM 14337) (Figure 4). Neither the presence of the 

majority of the amino acids nor the ammonium ion was enough to enhance the growth 

of these strains. In fact, no growth was observed with these sources, and only five amino 

acids were able to favour growth of the A. malorum strains, Ser, Gln, Glu, Ala and 

especially Pro. The presence of 100 mg N/L in the medium in the form of Pro increased 

the growth of both strains to 1.5 times the growth observed in the control medium. For 

CECT 7742, Ala also enhanced growth.    

 
 

0

2

4

6

8

10

12
M

a
x
im

a
l 

O
D

 

Nitrogen source

UNIVERSITAT ROVIRA I VIRGILI 
SELECTION AND OPTIMIZATION OF ACETIC ACID BACTERIA FOR D-GLUCONIC ACID PRODUCTION 
Florencia Sainz Perez 
 



CHAPTER 3 

 

149 
 

Figure 4. The maximum OD of two A. malorum strains in M9 medium using different single nitrogen sources 

fixed at 100 mg N/L. As a control, a complete solution of amino acids and ammonium with a final 
concentration of 100 mg N/L was used. Experiments were carried out in triplicate. DSM 14337 (   ) and CECT 
7742 (   ). 
 
 
 

4. DISCUSSION 

Few studies have dealt with the nutrition of AAB; in the 1950s, some studies about the 

nutritional requirements of AAB were performed (Foda and Vaughn, 1953; Raghavendra 

Rao and Stokes, 1953; Rainbow and Minston, 1953). More recently, studies have been 

mainly focused on the consumption of amino acids and ammonium during the 

acetification process and the differences among the substrates used for the production 

of wine vinegar (Álvarez-Cáliz et al., 2012, 2014; Callejón et al., 2008; Maestre et al., 

2008; Valero et al., 2003). Therefore, the main aim of this work was to determine which 

nitrogen sources are the best for AAB growth and what is the minimal concentration 

needed to promote AAB growth. Thus, different media and nitrogen concentrations were 

tested in two strains of each of three AAB species to determine whether there were 

different amino acid and nutritional patterns for each strain. Three different media (YNB, 

M9 and SM) were used, but the carbon source was the same in all cases to prevent 

changes in the nitrogen utilization due to the carbon source, as described by 

Raghavendra Rao and Stokes. (1953). In our study, we first worked with a complete 
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solution of amino acids and ammonium in various media that are commonly used to 

culture bacteria to determine the best medium and the minimum nitrogen concentration 

that supported the growth of each strain tested. In the previous studies performed on 

AAB nutrition, different and sometimes opposing conclusions were made. This can be 

attributed to the fact that these studies were conducted under different conditions and 

using different media, strains, etc.; the nitrogen requirements are greatly influenced by 

the strain used and the growth conditions of the strain (Belly and Claus, 1972), as was 

observed in the present study. For example, some authors reported that the ammonium 

ion was a sufficient nitrogen source for AAB growth (Drysdale and Fleet, 1988; Maestre 

et al., 2008) because AAB could synthesize all amino acids from this compound; other 

research reported that some amino acids were essential for the growth of some strains 

or species (Kerwar et al., 1964; Stokes and Larsen, 1945).  

Different media were optimal for the tested strains. In general, YNB and M9 were the 

best media for Gluconobacter and A. malorum strains, respectively. In fact, in all the 

media tested, Gluconobacter strains grew better than A. malorum strains, which, in 

general, presented poor growth, and the minimum concentrations of nitrogen were high 

(100 mg N/L), indicating that the A. malorum strains had higher nutritional demands. 

However, the best A. malorum growth was supported in M9 medium, which was the 

simplest medium. M9 only had one component that was not present in the other two 

media, the sodium hydrogen phosphate. This compound, together with citric acid, has 

been already used in culture media for Acetobacter xylinum to buffer the medium (Hestrin 

and Schramm, 1954). Another possibility is that some component present in the other 

two media was inhibitory for these A. malorum strains; additional tests should be 

performed to verify this hypothesis. For the Gluconobacter strains, all presented good 

growth in YNB at 25 mg N/L, except for the strain 621H. This strain grew the worst and 

needed higher concentrations of nitrogen in the medium. In the case of G. japonicus, 

both strains presented good growth in all media, showing minor nutritional demands and 

having a higher capacity to adapt to different nitrogen compositions. However, the growth 
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of the natural strain, CECT 8443, was clearly improved in the YNB medium, while the 

type strain grew better in the other two media. The YNB medium contains p-

aminobenzoic acid, which has been defined as a growth factor for AAB (Underkofler et 

al., 1943).  

After selecting the best medium and minimal nitrogen concentration for the growth of 

each strain, we tested the growth efficiency of each strain on single nitrogen sources 

(amino acids or ammonium ion) under the predetermined conditions. In general, different 

patterns of utilization were observed between strains belonging to the Gluconobacter 

and Acetobacter genera. For Acetobacter strains, the best nitrogen source was Pro. 

Acetobacter strains are well known to have a preference for ethanol as carbon source 

and are one of the main players in the transformation of ethanol into acetic acid during 

vinegar production (De Ley et al., 1984; Raspor and Goranovic, 2008). On the other 

hand, Pro is the main amino acid found in wine because grapes are rich in this amino 

acid (Ribéreau-Gayon et al., 2006), and Saccharomyces cerevisiae does not use it 

during alcoholic fermentation because it is an anaerobic process, which avoids proline 

oxidase activity (Arias-Gil et al., 2007; Bell and Henschke, 2005). For this reason, it is 

advantageous for Acetobacter strains to have their nitrogen requirements met with only 

Pro. In fact, different studies carried out to study the amino acid consumption during wine 

acetification have highlighted that Pro is one of the most-consumed amino acids; 

however, it is normally not fully depleted because its concentration is clearly higher than 

that of the other amino acids (Álvarez-Cáliz et al., 2012; Callejón et al., 2008; Maestre et 

al., 2008; Morales et al., 2001). Other good nitrogen sources for the Acetobacter strains 

used in this study were Ala, Glu, Gln and Ser. It is important to note that these strains 

hardly grew in presence of only ammonium. In fact, there is contradictory information 

about the use of ammonium sulfate as the sole source of nitrogen by Acetobacter strains, 

but these differences rely on the strain and the carbon source present in the medium 

(Brown and Rainbow, 1956; Rainbow and Mitson, 1953). Additionally, this statement 

should be extended to the other AAB genera, as most of the strains used in these 
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previous studies that were considered Acetobacter strains actually belong to the 

Gluconobacter genus. We can confirm this statement with our results because the G. 

oxydans strain Po5 presented this opposite behaviour: full recovery of growth when 

ammonium is added at 25 mg N/L and very low growth with the addition of 300 mg N/L, 

probably indicating an inhibition of this compound at high concentrations. On the other 

hand, O’Sullivan. (1974) reported that some amino acids, such as Thr and homoserine, 

inhibited growth of A. aceti strains, whereas the presence of Met and Ile could reverse 

this effect. However, in our case, although the presence of Thr did not improve the growth 

of both A. malorum strains, we cannot assert that there was an inhibition of growth by 

this amino acid, only that this amino acid, similar to Met and Ile, cannot support the 

growth of these strains as the sole nitrogen source.  

In the case of the G. japonicus strains, no single amino acid or ammonium ion could 

replace the complete nitrogen solution because the growth was strongly affected in the 

presence of sole nitrogen sources, especially for the CECT 8443 strain. Therefore, these 

strains likely need a more complex nitrogen source to support their growth. In the case 

of G. oxydans, Po5, as mentioned above, can use ammonia as sole nitrogen source at 

25 mg/L N, while 621H can use Gln and His at 300 mg N/L as nitrogen sources. In fact, 

Gln was, in general, a good nitrogen source for all the tested strains (Acetobacter and 

Gluconobacter strains) and seemed to have a stimulatory effect on their growth. This 

was not unexpected because Gln and Glu are the key nitrogen donors for biosynthetic 

reactions in cells (Merrick and Edwards, 1995). Moreover, the enzymes responsible for 

the main pathway of nitrogen assimilation, glutamine synthetase and glutamate 

synthase, were purified and characterized in G. suboxydans some years ago (Tachiki et 

al., 1978), with Gln identified as the specific substrate of the latter one. Nevertheless, the 

presence of Glu did not present a general improvement in growth; this effect was very 

evident only in Acetobacter strains.  

On the other hand, the high growth of the G. oxydans strain 621H with His as the sole 

nitrogen source was surprising, and it seemed to be a specific trait of this strain because 
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this amino acid was found to be one of the worst growth supporters for the strains tested. 

In fact, this amino acid has been reported to inhibit the activity of glutamine synthetase 

(Tachiki et al., 1978), which could explain the low growth observed in the majority of 

strains. However, previous studies also reported that this amino acid had a stimulatory 

effect on the growth of a strain of A. suboxydans (now renamed as G. suboxydans). This 

study also reported that the only essential amino acid was Val; however, in our study, 

the presence of this amino acid as an individual source seemed to have a low capacity 

to support growth in the strains tested. In fact, a great number of amino acids had a very 

low effect on the growth of these strains, and therefore, these amino acids can be 

considered as non-essential for these strains. This was especially evident for the growth 

of the A. malorum strains, in which only five amino acids were able to boost their growth 

in the medium tested. 

To summarize, we can conclude that nitrogen requirements for AAB strains are very 

dependent on the specific strain and the conditions (nitrogen concentration and media); 

therefore, it is difficult to establish a general protocol for improving AAB growth. Amongst 

the strains tested in this study, some were able to grow in low concentrations of nitrogen, 

as low as 25 mg N/L, while others had higher nitrogen demands (100-300 mg N/L). 

Moreover, most of the strains did not grow well in the presence of single amino acids or 

ammonium; only Pro seemed to be able to replace the complete nitrogen solution for A. 

malorum strains. However, several other single nitrogen sources could boost the growth 

of a specific AAB strain or under certain conditions; as a general trend, Gln seemed to 

be a good nitrogen source for all AAB strains tested. Finally, more tests using 

combinations of the amino acids that highly impacted the growth could be performed to 

determine which amino acids are essential to support the growth of each strain.  
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1. INTRODUCTION 

The identification of AAB has gone in parallel with the changes in taxonomy and AAB 

classification (Guillamón and Mas, 2009). Since their discovery, AAB have been 

classified with different names and were the subject of several studies and 

reclassification (Trček and Barja, 2015; Yamada et al., 2012). At first, AAB have been 

identified to genus and species level by using array of morphological, biochemical and 

physiological tests (De Ley et al., 1984; Cleenwerck et al., 2008), the problem was that 

these methods are time consuming and little accurate (Prieto et al., 2007). Nowadays, 

these phenotypic techniques have been replaced by different molecular techniques 

based in PCR methods for the differentiation of genera, species and strains of these 

bacteria (Guillamón and Mas, 2009; Prieto et al., 2007). The application of molecular 

methods could be the solution for the quick and the accurate identification of AAB 

(González and Mas, 2011; Trček and Teuber, 2002) in a reasonable period of time (Mas 

et al., 2007). The molecular techniques used for AAB classification can be divided in two 

groups, according to the level of determination: those that differentiate at species level 

and those that differentiate at strain level (Guillamón and Mas, 2009). This work was 

focused in the study of 16S-23S rDNA internal transcribed spacer (ITS), which is known 

that exhibits sequences and length variable between species (Barry et al., 1991; 

Guillamón and Mas, 2009) and conserved sequences because of their functional roles 

like tRNA and antitermination sequences (Sievers et al., 1996). These characteristics in 

the ITS sequences showed a higher polymorphism than the 16S rDNA gene (Ruiz et al., 

2000).  Thereby has been a successfully technique to classify and identify AAB at 

species level (Ruiz et al., 2000; Trček and Teuber 2002, González and Mas, 2011). 

For this reason, the aim of this work was to do an in-depth study of the ITS sequences 

present in an important number of strains belonging to different genera and species. The 

strains used were obtained both from different Culture Collections as well as from our 

own indigenous strains collection. 
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2. MATERIALS AND METHODS 

2.1. Bacteria strains and growth conditions 

Acetic acid bacteria (AAB) strains used in this study are listed in Table 1. Out of the 71 

strains studied, 55 were obtained from different Culture Collections (Belgian Co-

ordinated Collections of Microorganism (BCCM/LMG bacteria collection) and German 

Collection of Microorganism and cell culture (DSMZ)) and grown according to the 

provider's specifications. The remaining AAB strains belong to our own AAB strain 

collection and were isolated from grapes, wines and vinegar over the years. These 

strains were grown in D-glucose medium (GY: 1% (w/v) yeast extract; 1% (w/v) D-

glucose, w/v – Cultimed, Barcelona, Spain) at 28ºC with shaking (125 rpm) for 48 h. 

2.2. Analysis of the 16S-23S rRNA Internal Transcribed Spacer (ITS) 

2.2.1. Amplification of 16S-23S rRNA ITS 

The total DNA from the strains was extracted using the CTAB method 

(Cetyltrimethylammonium bromide) as described by Ausubel et al. (1992) and modified 

as in Jara et al. (2008). The conditions for the amplification of 16S-23S rRNA ITS and 

the primers used were described by Ruiz et al. (2000). Amplified DNA was detected by 

electrophoresis on a 1,0 % (w/v) agarose gel in 1 x TBE buffer. The gels were stained 

with ethidium bromide and photographed. The DNA XIV 100 bp ladder (Roche 

Diagnostics, Mannheim, Germany) was used to estimate the length of the fragments. 
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Table 1. Strains used in this study with the obtained ITS amplicons length  

Species Strain Source Reference 
ITS length 

(bp) 

A.aceti 

CECT 298 
Beechwood 

shavings of a 
vinegar plant 

Beijerinck (1898) 850 bp 

LMG 1512 
Film in 

fermentor of 
rice vinegar 

Beijerinck (1898). 
Gosselé et al. (1983b) 

850 bp 

LMG 1531 

Non-cellulose-
producing 

mutant derived 
from strain 
LMG 1530 

Li et al. (2014) 850 bp 

LMG 1496 - 
Beijerinck (1898). 

Gosselé et al. (1983b) 
850 bp 

DSM 3508 
Alcohol turned 

to vinegar 
 Beijerinck (1898) 850 bp 

A.cerevisiae LMG 1625 
Beer (ale) in 

storage 
Cleenwerck et al. (2002) 850 bp 

A. cibinogensis LMG 21418 
Annona 

montanae 
Lisdiyanti et al. (2002) 850 bp 

A. estunensis LMG 1626 Cider 
Carr (1958). Lisdiyanti et 

al. (2001)  
850 bp 

A.indonesiensis LMG 19824 
Annona 
muricata 

Lisdiyanti et al. (2002) 850 bp 

A.lovaniensis LMG 1579 Sewage on soil Lisdiyanti et al. (2002) 800bp 

A.malorum 

LMG 1746 Rotting apple Cleenwerck et al. (2002) 850 bp  

NBRC 108912 Rotting apple Cleenwerck et al. (2002) 850 bp 

CECT 7749 
Strawberry 

vinegar 
Hidalgo et al. (2013) 850 bp  

Am21 Grape Valera et al. (2011) 850 bp  

Am23 Grape Valera et al. (2011) 850 bp  

1.16 Must Grape Navarro et al. (2013) 850 bp 

A.nitrogenifigens LMG 23498 Kombucha tea Dutta and Gachhui (2006) 850 bp 

A.orientalis LMG 21417 Canna hybrida Lisdiyanti et al. (2002) 850 bp 

A. orleanesis 
LMG 1583 Beer Lisdiyanti et al. (2001) 850 bp 

LMG 1282 - -  850 bp 
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A. pasteurianus 

   LMG 1635 Ditch water Visser´t Hooft (1925) 850 bp 

DSM 2347 - 
Hansen (1879). Beijerinck 

and Folpmers (1916) 
850 bp 

LMG 1605 Vinegar brews 
Hansen (1879). Beijerinck 

and Folpmers (1916). 
Gosselé et al. (1983b) 

850 bp 

DSM 46617 - 
Hansen (1879) Beijerinck 

and Folpmers (1916) 
850 bp 

1.18 Grape must Navarro et al. (2013) 850 bp 

Lz70 Grape Valera et al. (2011) 850 bp 

Lz75 Grape Valera et al. (2011) 850 bp 

A.pomorum LMG 18848 Cider vinegar Sokollek et al. (1998) 850 bp 

A.syzygii LMG 21419 
Syzygium 

malaccense 
Lisdiyanti et al. (2002) 850 bp 

A.tropicalis 
LMG 1663 

Fermenting 
putrified meat 

sample 
Lisdiyanti et al. (2001) 850 bp 

Lz26 Grape Valera et al (2011) 850 bp 

Ga. azotocaptans LMG 21311 
Coffea arabica 
L., rhizosphere 

Fuentes-Ramírez et al. 
(2001) 

800 bp 

Ga.diazotrophicus LMG 7603 
Saccharum 
officinarum, 

root 
 Yamada et al. (1997)  850 bp 

Ga.liquefaciens 
DSM 5603 

Dried fruit 
(Diospyros sp.) 

Asai (1935). Yamada et 
al. (1997) 

800 bp 

LMG 1347 - - 800 bp 

Ga. johannae DSM 13595 
Rhizosphere of 
coffee plants 

Fuentes-Ramírez et al. 
(2001) 

800 bp 

Ga.sacharii LMG 19747 
Sugar cane, 
leaf sheath 

Franke et al. (1999) 800 bp 

G.cerinus 

LMG 1368 
Prunus sp. 

(cherry) 

Asai (1935). Asai and 
Shoda (1958). Yamada 

and Akita (1984). Katsura 
et al. (2002) 

820 bp / 700 bp 

CECT 9110 Grape Must Navarro et al. (2013) 800 bp/ 700 bp 

1.20 Grape Must Navarro et al. (2013) 800 bp/ 700 bp 

1.4 Grape Must Navarro et al. (2013) 800 bp/ 700 bp 

1.9 Grape Must Navarro et al. (2013) 800 bp/ 700 bp 

G.frateurii LMG 1365 
Fragaria 

ananassa 
Mason and Claus 1989 820 bp / 700 bp 

G.japonicus 

CECT 8443 Grape Must Navarro et al. (2013) 800 bp / 700 bp 

Gj1 Grape Valera et al. (2011) 820 bp / 700 bp 

Gj2 Grape Valera et al. (2011) 820 bp / 700 bp 

Lz52 Grape Valera et al. (2011) 820 bp / 700 bp 

LMG 1373 
Myrica rubra, 

fruit 
Malimas et al. (2009) 820 bp / 700 bp 

1.13 Grape must Navarro et al. (2013) 800 bp/ 700 bp 
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2.2.2. Sequencing of ITS amplicons  

The ITS amplicons directly obtained from the previous PCR were sequenced by 

Macrogen Inc. (Seoul, South Korea) using an ABI3730 XL automatic DNA sequencer. 

When in a sample more than one band in the ITS amplification was observed, a new 

electrophoretic gel with a higher concentration of agarose (1.5% (w/v)) was prepared 

G.oxydans 

DSM 2343 
Descendent of 

ATCC 621 

De Ley (1961). Gosselé et 
al. (1983a). Mason and 

Claus, (1989) 
820 bp/ 700 bp 

CECT 360 Amstel beer 
De Ley (1961). Mason 

and Claus, (1989) 
820 bp / 700 bp 

DSM 7145 Beer  
De Ley (1961). Mason 

and Claus, (1989) 
820 bp / 700 bp 

DSM 3503 - 
De Ley (1961). Mason 

and Claus. (1989) 
820 bp / 700 bp 

LMG 1484 - . 820 bp / 700 bp 

LMG 1414 Grapes 
Ameyama (1975). 

Malimas et al. (2008) 
820 bp / 700 bp 

LMG 1408 Beer 
De Ley (1961). Mason 

and Claus. (1989) 
820 bp / 700 bp 

Po5 Vinegar Vegas et al. (2010) 820 bp / 700 bp 

G.thailandicus LMG 23137 
Indian cork 
tree, flower 

Tanasupawat et al. (2004) 820 bp / 700 bp 

K.europaeus 

DSM 6160 - Sievers et al. (1992) 850 bp 

DSM 2004 - Brown (1886)  870 bp 

LMG 18494 
Red wine 
vinegar 

Sievers et al. (1992)  800 bp 

K.hansenii 
LMG 1524 Vinegar Gosselé et al. (1983a)  800 bp 

DSM 5602 Vinegar Gosselé et al. (1983a)  800 bp 

K.intermedius LMG 18909 Kombucha tea Boesch et al. (1998)  900 bp 

K. nataicola LMG 1536 Nata de coco Lisdiyanti et al. (2006)  850 bp 

K.oboediens LMG 18849 
Red wine 
vinegar 

fermentation 
Sokollek et al. (1998)  850 bp 

K. sacharivorans LMG 1582 Beet juice Lisdiyanti et al. (2006) 850 bp 

K. maltiaceti LMG 1529 Malt vinegar 
Slapšak  et al. (2013) 
Yamada et al. (2014)  

800 bp 

K. swingsii LMG 22125 
Organic apple 

juice 
Dellaglio et al. (2005) 
Yamada et al. (2012)  

900 bp 

K. xylinus DSM 2325 - Brown (1886) 900 bp 
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and the different amplicons were separated and excised. Each DNA fragments was 

purified using a QIAquick Gel Extraction Kit (Quiagen, Netherlands) and re-amplified 

using the above protocol. Finally, the samples were sequenced by Macrogen Inc. (Seoul, 

South Korea) using an ABI3730 XL automatic DNA sequencer. Sequences were 

compared with those in the GenBank databases. 

2.2.3. ITS cloning and sequencing 

Some of the samples with more than one ITS amplicon were cloned into pGEM-T Easy 

vector (Promega, MA, USA) in accordance with the manufacture´s instruction to 

determine the frequency of each type of amplicons. This vector is a high-copy-number 

vector containing a multiple cloning region within the α-peptide coding region of the 

enzyme β-galactosidase. Insertional inactivation of the α-peptide allows identification of 

recombinants by blue/white screening on indicator plates. White colonies were selected 

randomly from LB plates supplemented with ampicillin (100 µg/ mL), IPTG (0.5 mM) and 

X-gal (80 µg/ mL) and each colony was grown in LB liquid medium. Plasmid DNA was 

extracted from the clones using NucleoSpin Plamid (Macherey Nagel) kit, in accordance 

with manufature´s instruction. A total of 12 clones for G. japonicus strains and 10 clones 

for the others strains tested were screened by digestion with the restriction endonuclease 

EcoRI (Roche) and restriction fragments were visualized in 1% (w/v) agarose gels to 

determine the size of the insert in each clone.  The insert of some clones were sequenced 

by Macrogen Inc, and their sequences were compared with those in the GenBank 

databases. 

 

3. RESULTS 

Genomic DNA was used as the PCR template to amplify the ITS region of 70 strains of 

33 different species of AAB (Table 1). The electrophoresis patterns generated by the 

strains tested in this work showed that Acetobacter and Komagataeibacter strains 
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present a single amplicon. However, multiple PCR products were obtained by 

Gluconobacter strains (Figure 1).  

 

 

 

 

 

 

 

 

Figure 1. Electrophoretic patterns of 16S-23S rRNA ITS region in different AAB strains. Lanes: M, 100 bp 

DNA ladder; 1) LMG 1512T; 2) LMG 1625T; 3) LMG 1746T; 4) CECT 7749; 5) LMG 21417T; 6) DSM 2347T; 
7) LMG 21419T; 8) DSM 7145T; 9) Po5; 10) LMG 1408T; 11) LMG 1368T; 12) CECT 9110; 13) LMG 23137T; 
14) LMG 1365T; 15) LMG 1373T; 16) Gj2; 17) Gj1; 18) CECT 8443; 19) Lz52. 

 

Among the bands obtained, one of them, often the smallest band, used to have a higher 

band intensity. Amplicons from some Gluconobacter strains were sequenced directly 

from the PCR product (total ITS amplification) or after the separation in electrophoresis 

gel and purification of each band (individual ITS amplicons). The sequences obtained 

were compared with those of the Databases to identify the different strains at species 

level (Table 2). In most strains, the sequences obtained from total ITS amplification were 

clear and corresponded to the expected Gluconobacter species. However, in three 

strains (LMG 1368; LMG 1484; LMG 23137), it was not possible to obtain a clean 

sequence and in other three strains (Gj2, LMG 1408 and Po5), the sequence was 

misleading and showed the highest homology with some Acetobacter species. These 

three stains together with strain DSM 7145 were those that presented a higher intensity 

in the biggest band or at least, similar intensity in both bands.

1    2     3    4    5     6   7     8  9  10   11   12  13  14   15   16  17  18  19     M M 

UNIVERSITAT ROVIRA I VIRGILI 
SELECTION AND OPTIMIZATION OF ACETIC ACID BACTERIA FOR D-GLUCONIC ACID PRODUCTION 
Florencia Sainz Perez 
 



 

 
 

Table 2. Homology of the electrophoretic bands obtained from selected Gluconobacter strains with multiple PCR products. The results are expressed as 

homology of the sequences from direct PCR product (complete ITS) and each separated fragment.  

  
LMG 

1373T 

CECT 

8443 
Gj1  Gj2 DSM 7145T LMG 1408 DSM 3503 DSM 2343 LMG 1484 Po5 LMG 23137T LMG 1368 

CECT 

9110 
1.20  

Complete 
ITS 

100% 
G.frateurii 

99.8% 
G.frateurii 

100% 
G.frateurii 

100% 
A.malorum 

98% 
G.oxydans 

99.3%       
A.aceti 

99.8% 
G.oxydans 

100% 
G.oxydans 

Low 
quality 

sequence  

97.6% 
A.malorum 

Low quality 
sequence 

Low quality 
sequence 

98.2% 
G.cerinus 

98.8% 
G.cerinus 

Fragment 
800-820 

bp 

99.3% 
A.malorum  

99.3 %           
A.malorum  

99.7% 
A.malorum 

100% 
A.malorum 

93% 
K.naitaicola 

/ 
K.europaeus  

99.4%       
A.aceti 

99.8% 
A.malorum 

Low 
quality 

sequence 

100% 
K.hansenii 

99.5% 
A.malorum 

99.8% 
A.aceti 

/K.oboediens 

99.8%      
A.aceti 

/K.oboediens 

Low 
quality 

sequence 

99.4% 
A.malorum 

Fragment 
700-720 

bp 

100 % 
G.frateurii 

99.8% 
G.frateurii 

100% 
G.frateurii 

100% 
G.frateurii 

100% 
G.oxydans 

99.8% 
G.oxydans 

100% 
G.oxydans 

100% 
G.oxydans 

99.8% 
G.oxydans 

97.3% 
G.oxydans 

99,6% 
G.frateurii / 
G.oxydans 

/G.thailandicus 

100% 
G.cerinus 

99.2% 
G.cerinus 

100% 
G.cerinus 
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When the sequences obtained from the individual ITS amplicons was used, clear 

sequences were obtained for all the strains. Out of the fragments with different lengths, 

the biggest fragment had 800-820 bp and the smallest fragment, 700-720 bp. In all the 

tested strains, the sequences of the 800-820 bp amplicon showed higher percentage 

similarity with other AAB species different from the expected Gluconobacter species. 

This amplicon in the G. japonicus strains presented 99-100% of identity with A. malorum. 

Instead, the sequences from G. oxydans strains had high similarities with those of A. 

malorum, A. aceti, K. europaeus and K. hansenii. In LMG 23137 (G. thailandicus) and 

LMG 1368 (G. cerinus) this fragment was similar with A. aceti or K. oboediens; instead 

for the strain G. cerinus 1.20 the highest homology was with A. malorum. The sequences 

of the smallest fragment showed 99-100% homology with the corresponding species of 

each strain. As example, the alignment of the two amplicons obtained in the strain Po5 

is shown in Figure 2. 

In some strains from those with more than one ITS amplicon, the PCR product was 

cloned using the kit pGEM-T Easy Vector and were digested using the enzyme EcoRI. 

To determine the frequency of each amplicon. The number of clones was variable 

according to the strains, but for all of them we could recover between 10 and 12. Five 

different lengths were obtained of 820, 773, 752, 720 and 700 bp (Table 3). The 820 bp 

had the highest homology with Acetobacter genus, mostly A. malorum, except for DSM 

2343 and LMG 23137 where the highest homology was with Komagataeibacter genus. 

The 773 bp fragment was only present in two strains (LMG 1484 and LMG 1408) and 

had the highest homology with A. aceti or K. hansenii. The 752 and 720 bp fragments 

were only found once each and had the identity of Ga. liquefaciens and A. pasterianus, 

respectively. Finally, the 700 bp fragment had the same sequence identity as the species 

of origin. This fragment was the most abundant in the analyzed plasmids, except for LMG 

1408 where no Gluconobacter sequences were found. 
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Figure 2. Aligment of the amplicons obtained in the strain Po5. KF896254.1 = G.oxydans and JF346096.1 = A.malorum.
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Table 3. Homology of the sequences from the PCR products cloned from Gluconobacter strains.  

Species Strain 
Total 

plasmid  

Length of the fragment inserted Identity (%) 

820 bp 773 bp 752 bp 720bp 700 bp 820 bp 773 bp 752 bp 720bp 700 bp 

G. japonicus 

LMG1373 12 4 ⚊ ⚊ ⚊ 8 
99 % 

A.malorum  
⚊ ⚊ ⚊ 

100%          
G. frateurii 

CECT 8443 12 7 ⚊ ⚊ ⚊ 5 
99% 

A. malorum 
⚊ ⚊ ⚊ 

99.6%         
G. frateurii 

G. oxydans 

621 H  10* 1 ⚊ ⚊ ⚊ 8 
99% 

A. malorum 
⚊ ⚊ ⚊ 

99%            
G. oxydans 

Po5 10 4 ⚊ ⚊ ⚊ 6 
99%                

A. malorum 
⚊ ⚊ ⚊ 

97%             
G. oxydans 

DSM 2343 10* 1 ⚊ ⚊ 2 6 
99.5 

 K. xylinus 
⚊ ⚊ 

100% A. 
pasteurianus 

99%            
G. oxydans 

DSM 3503 10 5 ⚊ ⚊ ⚊ 5 
99%                

A. malorum 
⚊ ⚊ ⚊ 

99%              
G. oxydans 

LMG 1484 10 ⚊ 5 2 ⚊ 3 ⚊ 

99.4% A. 
aceti / 100% 
K.hansenii 

100% Ga. 
liquefaciens  

⚊ 
99%             

G. oxydans 

LMG 1408 10* 3 6 ⚊ ⚊ ⚊ 
97.3% A. 

pasteurianus  
98%                                        

A. aceti 
⚊ ⚊ ⚊ 

G.thailandicus LMG 23137 10* 1 ⚊ ⚊ ⚊ 8 
99%                      

K. europaeus 
⚊ ⚊ ⚊   

G.cerinus CECT 9110 10* 3 ⚊ ⚊ ⚊ 5  
99.4% 

A. malorum 
⚊ ⚊ ⚊   

* Some sequences were not found in the databases or were low quality sequences. 
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4. DISCUSSION 

In this work, the amplification of the 16S-23S rRNA ITS was studied in a high number of 

strains. Surprisingly, in all Gluconobacter strains, more than one band was obtained 

when this region was amplified. No previous AAB studies had observed this 

polymorphism in the ITS amplification, probably because when total ITS amplification 

was sequenced, in most cases, a correct assignation of species was done. It is important 

to highlight that if different ITS sequences are present in the genome, PCR amplification 

may run into the problem of preferential amplification of one operon over the others. 

Therefore, the most abundant operon could be overrated, minimizing the possibility of 

amplify minor sequences, which could explain why in AAB multiple ITS were not detected 

before. However, in our study, some strains were incorrectly identified by direct 

sequencing of ITS due to the fact that the fragment that was preferentially amplified was 

the non-specific ITS, confirming that a misleading identification could happen although 

in low frequency. Furthermore, the results of strains DMS 7145 and LMG 1408 were 

surprising; these strains are the same, specifically the type strain of G. oxydans, but 

obtained from different Culture Collections, yet the results obtained were different. This 

fact confirmed the PCR’s randomness when two different fragments that can be amplified 

are present in the genome. 

Heterogeneity of the ITS region sequences has been reported in several species (Barry 

et al., 1991; Gurtler, 1999; Acinas et al, 2004; Milyutina et al., 2004). Boyer et al. (2001) 

analyzed the ITS amplicons from Cyanobacteria species and observed two bands for an 

isolate of Calothrix parietina and three bands for an isolate of Scytonema hyalinum. The 

authors suggested that the isolates had multiple rRNA operons since some of them 

contained the sequences coding for two tRNA molecules but others had no tRNA 

features. rRNA operons are normally present in multiple copies in the bacterial genome 

(from 1 or 2 operons in members of Archaea and several eubacterial genera to 6-10 in 

some members of Proteobacteria and gram-positive eubacteria), and major 

heterogeneities among operons have been reported to be due to the type and number 
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of tRNA genes present (Antón et al., 1998). Nevertheless, in our case, all the ITS 

amplicons presented the two tRNA present in the AAB ITS sequences, tRNAAla and 

tRNAIle, and practically identical sequence. On the other hand, in bacteria of the genus 

Acinetobacter, ITS copies with different length and sequences were also observed 

(Maslunka et al., 2014, 2015). According to these authors, the intergenomic 

insertion/deletion (indels) occurring during horizontal transfer events from other species 

of Acinetobacter or unrelated bacterial genera were the responsible for these differences. 

Various studies share this suggestion of transfers between species and attribute it to 

horizontal transfer (Cao et al, 2009; Milyutina et al, 2004; Gurtler and Barrie, 1995). 

However, in our case, the higher length of some ITS copies are not the result of a 

fragment insertion. The resulting sequence has 97-100% similarity with the ITS of 

different AAB species and the ITS of these species is very different from the expected 

ITS in these strains (the one of Gluconobacter species), sharing only about 50% of 

similarity. Therefore, different hypothesis can explain our results. Horizontal transfer 

could be the first one. According to Lawrence (1999), essential genes, present in all 

organisms, are less probably to suffer a successful transfer; in contrast not functional 

genes under weak selection could be benefit from horizontal transfer (Dutta and Pan, 

2002). Another option is that these regions are included in plasmids. Various studies 

reported the presence of plasmids in AAB (Fukaya et al., 1985; Prust et al, 2005; 

Tonouchi et al., 2003). According to Azuma et al. (2009), K. xylinus has a plasmid with 

a gene with high similarity with A. pasteurianus, enhancing the idea of the relation 

between plasmids and genetic instability of AAB. 

The results obtained in this work remain for us doubtful and uncertain because so far, 

some Gluconobacter strains have been totally sequenced and no non-specific ITS 

sequence has been detected. Therefore, as it is the first time that multiple bands in the 

ITS amplification of AAB has been observed, it is necessary to further analyze this aspect 

to understand what happens and why only happens in Gluconobacter strains. 
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Furthermore, these results may challenge the use of the ITS region as a good tool for 

identification of AAB strains. 

Due to these results, we decided to sequence the whole genome of our three selected 

strains together with strain CECT 9110 (G. cerinus), to detect the non-specific ITS in the 

genome of the Gluconobacter strains and verify unequivocally its presence. We selected 

these strains because they would allow us to confirm the observed results but also to 

have a valuable information about the selected strains with a potential industrial 

application. The results of whole genome sequencing of the G. oxydans strain Po5 have 

not been published due to the high number of sequences belonging to this species 

already available. 
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Acetobacter malorum was proposed as new species in 2002 (1) after a polyphasic study 

of 34 Acetobacter strains. This strain was isolated in rotten apples in Ghent (Belgium) 

and initially classified as Acetobacter pasteurianus. The genus Acetobacter is included 

in the group of acetic acid bacteria (AAB), which are Gram-negative bacteria from the 

family Acetobacteraceae. AAB are aerobic microorganisms that are responsible for 

vinegar production (2). Its main characteristic is the incomplete oxidation of a wide range 

of carbohydrates and alcohols yielding the corresponding ketones, aldehydes, and acids 

that are left in the media (3). The biotechnological industry has taken advantage of this 

capacity to recover some compounds, such as intermediaries in the production of 

vitaminC(L-sorbose) and miglitol (antidiabetic drug, after amino-L-sorbose), although 

these have mostly been applied to members of the genus Gluconobacter (4, 5).  

After the initial description of A. malorum, this species has been found in other 

environments, generally associated with fruits but also with the processing of these fruits. 

A. malorum has been isolated in rotten grapes from Australia (6), must from healthy 

grapes from Tarragona, Spain (7), and in fermented grape musts in the Canary Islands 

(8). A. malorum was also isolated from fermented persimmon juices (9) and fermented 

milk (10). The present strain of A. malorum was isolated from strawberry vinegar and 

has been used as starter culture for the production of different fruit vinegars (11–13). 

The identification of A. malorum is difficult due to the high sequence homology with 

Acetobacter cerevisiae when using the 16S sequence analysis. The use of the internal 

transcribed spacer (ITS) 16S-23S rRNA coding region has provided conclusive 

differentiation for both of them (6, 14). The polymorphism in this region has allowed the 

development of specific TaqMan probes that can be used routinely to differentiate these 

two species by a culture-independent quantitative PCR technique (15). 

The strain A. malorum CECT 7742 has provided excellent results in the production of D-

gluconic acid from D-glucose without the oxidation of D-fructose, which has been used 

for the production of new strawberry beverages based on the presence of D-fructose as 

a sweetener and being free of D-glucose (16).  
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Genomic DNA was extracted according to the cetyltrimethylammonium bromide (CTAB) 

method (17). For whole-genome sequencing, the Genome Analyzer Ion Torrent PGM 

(Thermo Fisher Scientific, Madrid, Spain) was used. Preparation of shotgun libraries was 

performed according to the protocols of the manufacturers and resulted in 5,149,025 

reads (256 bp).  

The genome of A. malorum CECT 7742 consists of a chromosome with 4.04 Mb and an 

overall G_C content of 56.78%. The genome was assembled in 331 contigs from 

927,367 reads using the software MIRA 4.9.5_2 (18). Prokka (19) was used for automatic 

annotation and gene detection. The genome harbored 6 rRNA genes, 64 tRNA genes, 

3,416 protein-coding genes with predicted functions, and 649 genes coding for 

hypothetical proteins. Among them, 189 genes encoded dehydrogenases, including 

membrane PQQ-dependent glucose dehydrogenase and flavin adenine dinucleotide 

(FAD)-dependent gluconate-2-dehydrogenase and 2-keto-D-gluconate dehydrogenase, 

responsible for the synthesis of D-gluconic acid and its further oxidation to 2-keto-D-

gluconic acid and 2,5-di-keto-Dgluconic acid, respectively. 

 

NUCLEOTIDE SEQUENCE ACCESSION NUMBERS  

This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under 

the accession no. LVHD00000000. The version described in this paper is version 

LVHD01000000. 
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The species Gluconobacter cerinus (1) was reclassified to G. cerinus in 1984 (2) after 

protein electrophoretic profiles analysis. This species was studied due to the production 

of ketofructose (3) and some particularities in lipid composition (4, 5). Instead, the 

species Gluconobacter japonicus was proposed in 2009 after DNA hybridization within 

the genus Gluconobacter (6). The type strain had been isolated from the fruits of Myrica 

rubra in Japan. The genus Gluconobacter is included in acetic acid bacteria (AAB) and 

has preference for sugary substrates. AAB are Gram-negative bacteria from the family 

Acetobacteraceae. AAB are aerobic microorganisms that are the main bacteria 

responsible for vinegar production but also for other biotechnological applications (7). 

AAB produce the corresponding ketones, aldehydes, and acids from the incomplete 

oxidation of a wide range of carbohydrates and alcohols. The oxidized products can be 

recovered from media (8). The biotechnological industry has taken advantage of this 

capacity of Gluconobacter species to recover some compounds, such as intermediaries, 

in the production of vitaminC(L-sorbose) and miglitol (antidiabetic drug, after amino-L-

sorbose) (9, 10).  

Both species have been described in grapes or grape musts. G. cerinus was isolated in 

grape musts from Spain (11) and rotten grapes in Australia (12), whereas G. japonicus 

has been recovered in Spain, both in grape musts (11) as well as in fermented musts 

(13). G. japonicus was also detected in kefir grains by culture independent methods 

(denaturing gradient gel electrophoresis PCR [DGGE-PCR]) (14). The present strains 

were isolated in our experimental cellar in Tarragona, Spain (11).  

Our interest in these strains was for their use in the production of gluconate from D-

glucose without the oxidation of D-fructose (15). This transformation is sought for use in 

the production of new strawberry beverages based on the presence of D-fructose as a 

sweetener and free of D-glucose because it is converted into D-gluconic acid or the 

corresponding gluconates (16–18).  

Genomic DNA was extracted according to the cetyltrimethylammonium bromide (CTAB) 

method (19). For whole-genome sequencing, the Genome Analyzer Ion Torrent PGM 
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(Thermo Fisher Scientific, Madrid, Spain) was used. Preparation of shotgun libraries was 

performed according to the protocols of the manufacturers and resulted in 5,149,025 

reads (256 bp).  

The genomes consisted of a chromosome with 3.66 Mb and an overall G_C content of 

55.68% for G. cerinus, and 3.50 Mb and a G_C content of 56.28% for G. japonicus. The 

genomes were assembled in 45 contigs from 1,529,910 reads (G. cerinus) and 50 

contigs from 1,831,761 reads (G. japonicus) using the software MIRA 4.9.5_2 (20). 

Prokka (21) was used for automatic annotation and gene detection. The genome 

harbored 2 rRNA genes, 49 tRNA genes, 2,616 protein-coding genes with predicted 

functions, and 786 genes coding for hypothetical proteins for G. cerinus, and 2 rRNA 

genes, 53 tRNA genes, 2,594 protein-coding genes with predicted functions, and 645 

genes coding for hypothetical proteins for G. japonicus.  

Among the identified genes, 122 and 132 encoded dehydrogenases in G. cerinus and 

G. japonicus, respectively, including membrane PQQ-dependent glucose 

dehydrogenase, flavin adenine dinucleotide (FAD)-dependent gluconate-2-

dehydrogenase, and PQQ-dependent sorbitol dehydrogenase. Both strains have two 

genes encoding PQQ-dependent sorbitol dehydrogenase. 

 

NUCLEOTIDE SEQUENCE ACCESSION NUMBERS  

This whole-genome shotgun project of G. cerinus CECT 9110 and G. japonicus CECT 

8443 has been deposited at DDBJ/EMBL/GenBank under the accession numbers 

LUTU00000000 and LVHE00000000, respectively. The versions described in this paper 

are versions LUTU01000000 for G. cerinus CECT 9110 and LVHE01000000 for G. 

japonicus CECT 8443. 
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A large amount of fruits and vegetables is wasted due the excess of crops and the lack 

of quality standards (size, form, color…) required by the market. This waste is an 

economic and environmental challenge, which must be solved. One solution has been 

the production of different products like jams, preserves, juices, etc. However, although 

there is a great demand for this type of products, the market is already saturated for most 

of the fruits and vegetables that can go to this market. Therefore, a possible alternative 

is to develop new products such as beverages or vinegars. In addition, consumers are 

interested in new tailored products, with high quality and added values that might also 

provide health benefits. Thus, the industry should combine these two current targets and 

invest in the development of new products that can satisfy both needs, consumers and 

producers. A possibility is to transform these surpluses of raw materials by fermentation. 

The fermentation process is known to offer numerous benefits that include the 

improvement of sensory characteristics, acceptability, nutritional value and safety of 

foods (Malo and Urquhart, 2016).  

Spain is one of the largest world producers of strawberries in the world and the first in 

Europe. Furthermore, strawberries are easily perishable and large amounts are wasted, 

which converts this fruit in a very good candidate for the development of new fermented 

products. In this thesis we hypothesized that appropriate starter cultures would be able 

to produce a new non-alcoholic fermented beverage with surplus strawberry by oxidizing 

D-glucose to D-gluconic acid. The proposed beverage would be a mixture of two 

products obtained from different strawberry fermentations. The main one was the 

selective oxidation of D-glucose into D-gluconic acid by acetic acid bacteria (AAB), 

without fermenting D-fructose, where this thesis is focused. The idea of this “gluconated 

strawberry juice” was to keep the natural sweetness of strawberry, increasing the 

acceptability of the product. The second one, already developed in a previous project, 

dealt with the production of a strawberry vinegar, which added to the “gluconated 

strawberry juice” would contribute to the microbial stability of the product, unstable 

because of the presence of D-fructose.  
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AAB would be involved in both processes. AAB are well known due to their ability to 

carry out oxidative fermentation of a wide range of alcohols and sugars, resulting in the 

accumulation of near-quantitative oxidative products in the medium. In this thesis, 

different Gluconobacter and Acetobacter strains were tested to perform this selective 

oxidation of D-glucose to D-gluconic acid. Initially, Gluconobacter strains were expected 

to be the best candidates for this process. Gluconobacter strains are known to prefer 

sugars rather than ethanol, unlike what happens in Acetobacter strains (Raspor and 

Goranovic, 2008). However, this does not mean that Acetobacter strains are not able to 

oxidize D-glucose to D-gluconic acid. In fact, some authors noted that the Acetobacter 

strains could also produce high concentration of D-gluconic acid, although not as much 

as Gluconobacter strains. Furthermore, we had a single strain isolated from strawberry 

in a previous project. This strain was classified as Acetobacter malorum. Therefore, for 

all these reasons, we incorporated Acetobacter strains. All the strains tested were 

capable of oxidizing D-glucose into D-gluconic acid. However, other features, like 

complete exhaustion of D-glucose and further oxidation of this acid to keto-D-gluconic 

acids was strain and medium dependent. All the strains tested preferred D-glucose rather 

than D-fructose, although some of them also consumed a part of the D-fructose present. 

To select the best strains, different media and conditions were tested, but due to the high 

influence of these parameters for the development of the process, we focused the strain 

selection based on the data obtained in strawberry concentrated puree medium. Three 

strains were selected: G. japonicus CECT 8443, G. oxydans Po5 and A. malorum CECT 

7742. These strains were isolated for our research group from different natural sources: 

grapes, wine vinegar and strawberry vinegar, respectively (Navarro et al., 2011; Vegas 

et al., 2010; Hidalgo et al., 2013). These strains were the focus of the study in all the 

chapters of this thesis, usually compared to the type strain of each species.  

Under optimal conditions, high yields of D-gluconic acid can be produced. Most of the 

studies about D-glucose oxidation focused on the optimization of medium composition, 

and process conditions. Medium pH seemed to be one of the most important factor for 
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D-glucose oxidation. Diverse authors suggested different pHs for a better selective 

production of D-gluconic or keto-D-gluconic acids and recommended maintaining 

constant the pH of the medium throughout the process. According to Weenk et al. (1984) 

and Beschkov and Velizarov (1995), when the pH was not controlled, the D-glucose was 

quantitatively oxidized to D-gluconic acid and no production of keto-D-gluconic acids was 

detected. In our work, the medium pH was adjusted to pH 3.3 at the beginning of the 

process (in one experiment the pH was also adjusted to 4.8), but, then, it was allowed to 

freely evolve throughout the process. However, although as expected the pH decreased 

in all the cases, we were able to detect the production of keto-D-gluconic acids in most 

of the strains and conditions. Essentially, only Po5 strain showed a very low 

concentration of these products. According to the literature, we should assume that if the 

pH remained constant during the process, greater concentrations of these keto-D-

gluconic acids would have been obtained. In the case of pH 4.8, calcium carbonate was 

used to adjust the pH. The addition of calcium carbonate at the beginning of the process 

was described to increase the keto-D-gluconic acids formation in the medium (Stadler-

Szöke et al., 1980; Weenk et al., 1984) and also to speed up their production (Beschkov 

and Velizarov, 1995), especially of 5KGA, which was the main product observed. This 

statement was confirmed in our study since the processes with addition of calcium 

carbonate presented higher concentration of keto-D-gluconic acids than the processes 

carried out at pH 3.3. Different initial pHs were tested because Silberbach et al. (2003) 

described that each stage of the process had an optimum pH: pH 5.5 for cell growth; pH 

4.8 for complete D-glucose oxidation and pH 3.15 for 2KGA oxidation to 2,5KGA. 

However, in our case, the D-gluconic acid production was higher at pH 3.3 whereas the 

formation of keto-D-gluconic acids was higher at pH 4.8, as above mentioned, resulting 

in a lower concentration of D-gluconic acid. Therefore, we can conclude that it is difficult 

to establish the optimum pH for the selective production of a particular product, but it 

does not seem necessary the pH control to obtain a high concentration of D-gluconic 

acid. However, for implementation at industrial scale, it would be absolutely necessary 
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to establish the particular conditions of the process if pH control could prevent that D-

glucose oxidation progresses towards the production of keto-D-gluconic acids, 

diminishing the concentration of D-gluconic acid present in the medium. 

Production of D-gluconate by AAB is inversely related to biomass formation or, in other 

terms, high levels of D-gluconic acid in the medium imply low growth of AAB (Olijve and 

Kok, 1979; Deppenmeier et al., 2002; Elfari et al., 2005). Furthermore, when D-glucose 

and D-gluconic acid oxidation occurred at pH values of 3.5 - 4.0, like in our study, the 

pentose phosphate pathway is inhibited (Olijve and Kok, 1979) and AAB are unable to 

use these substrates present in the medium as a source of assimilable carbon, and thus, 

to form cell mass (Kostner et al., 2013). This was confirmed in our study when growth 

and membrane-bound glucose dehydrogenase (mGDH) activity was compared between 

both strains of G.oxydans (Po5 and 621H). Po5 presented lower growth, but three times 

higher activity of mGDH than the strain 621H. In fact, the latter was described as a good 

strain for industrial purposes because it had a high substrate oxidation due to very active 

membrane-bound dehydrogenases, despite the disadvantage of low biomass production 

(Kostner et al., 2015). In our case, although Po5 was also well qualified for industrial 

production, because it had more active membrane-bound dehydrogenases, the industrial 

application would be restricted by its poor biomass yield. Therefore, if it were possible to 

boost the AAB growth, the productivity of the process would increase and also its 

economic yield.  

In AAB, the membrane-bound dehydrogenases seemed to compete with the NADH 

dehydrogenases for channeling electrons in the respiratory chain. A recent work (Kotsner 

et al., 2015) suggested that the activity of the NADH dehydrogenase could be a key 

factor to control the biomass formation and the activity of membrane-bound 

dehydrogenases. Two enzymes would have a great influence in the growth of G. 

oxydans: type II NADH dehydrogenase (NDH-2) and triose-phosphate isomerase (TPI). 

In fact, when an additional copy of the ndh gene was introduced in the strain 621H, this 

strain showed an important rise of growth and a sharp decrease of the activity of 
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membrane-bound dehydrogenases. Therefore, a compromise between both parameters 

is required for selection as starter cultures for industrial purposes. In our case, from the 

three selected strains, the most interesting was the strain CECT 8443 of G. japonicus, 

because this strain showed a high growth yield and a high activity of membrane-bound 

dehydrogenases, especially in mGDH. However, in this case, similar to what happened 

with CECT 7742, this high biomass was linked to the use of different carbon sources 

throughout the process. Initially, they used D-glucose to grow, but when depleted, these 

strains continued to grow using D-gluconic acid and even keto-D-gluconic acids. 

Therefore, the strain selection would be also determined by the kind of product to be 

elaborated. In other words, the selection would be in terms of maintaining all the D-

gluconic acid formed or of obtaining a less acidic product and therefore the decrease of 

D-gluconic acid would be due to oxidation to keto-D-gluconic acids. In our study, no direct 

relationship was observed between the activity of keto-D-gluconic acid dehydrogenases 

(GADH and GLDH) and the product content present in the medium: Strains Po5 and 

CECT 8443 presented similar dehydrogenase activities but quite different pattern of 

products. Po5 essentially did not synthesize keto-D-gluconic acids, and, thus, D-gluconic 

acid remained constant throughout the process, whereas CECT 8443 oxidized part of 

the accumulated D-gluconic to the formation of both keto-D-gluconic acids. The 

synthesis of the keto-D-gluconic acids was also strain and medium dependent (Asai, 

1968; Olivje and Kok, 1979). GLDH and GADH enzymes compete for the oxidation of D-

gluconic acid, therefore a selective expression of either dehydrogenase could increase 

the production of either of the keto-D-gluconic acids (Elfari et al., 2005; Matsushita et al., 

2003). More extreme would be the case of CECT 7742, because in some conditions (see 

Chapter 1), this strain was capable of totally oxidizing the D-gluconic acid to keto-D-

gluconic acids and even a part of these keto-D-gluconic acids, which can result in a sharp 

increase of the pH, with a clear increase of the microbial instability. This could discourage 

the use of this strain as starter for this process. 
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Moreover, A. malorum CECT 7742 produced 5KGA accumulation in some conditions 

tested in this thesis, although according to this species description (Cleenwerck et al., 

2002), A. malorum strains are unable to produce 5KGA. However, no DNA sequence 

similar to the gldh gene described in other species was detected when its whole genome 

was sequenced. Therefore, another enzyme different from GLDH and able to produce 

5KGA should be present at least in some strains of A. malorum. 

In our study, the activity of mGDH, GADH and GLDH was, in general, higher at 24 hours 

and decreased over time. However, it would be interesting to study what happened 

during these first 24 hours to have a more precise evolution of the activity of these 

dehydrogenases. Summarizing the results obtained in the two studies related with D-

gluconic acid production by AAB, the medium and the conditions of the process, together 

with the strain, were crucial to determine the composition of the final product. Two 

Gluconobacter strains, CECT 8443 and Po5 seemed to be the best strains to carry out 

this selective oxidation of D-glucose. Nevertheless, the desired final composition of the 

product would determine which strain is the most appropriate in each case. 

The nutritional requirements are a crucial point to determine if a strain could be good 

candidate to be used at industrial level. In AAB, very few studies have been focused on 

their nutritional requirements, and the ones done were quite old, around the fifties (Foda 

and Vaughn, 1953; Raghavendra Rao and Stokes, 1953; Rainbow and Minston, 1953). 

Lately, studies about the nitrogen consumption patterns of AAB in different processes 

and conditions have been performed (Valero et al., 2003; Maestre et al., 2008; Callejón 

et al., 2008; Álvarez-Cáliz et al., 2012, 2014). In our study, we have focused in the 

nitrogen requirements of the three previously selected strains. To carry out this study, 

we have used as base medium different laboratory media commonly used to grow 

bacteria (YNB, M9 and SM). Our first intention was to do this study also in media with 

addition of ethanol/acetic acid. However, the bad and poorly reproducible growth of AAB 

in most of these media made us to discard them and to focus only in the abovementioned 

media. As expected, strains had different nitrogen requirements although some patterns 
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can be drawn. Gluconobacter strains grew better in YNB, and most of them had low 

nitrogen needs, they could grow correctly in YNB with 25 mg N/L, when a complete 

solution of ammonium and amino acid was used. However, 621H had higher nitrogen 

requirements, and therefore, we can assume that if this strain has been described as 

good for industrial applications (Prust et al., 2005; Wei et al., 2014; Kostner et al., 2015), 

our selected Gluconobacter strains may be even better prepared for this purpose. Low 

nitrogen requirement is a good feature for a candidate to be selected as industrial starter 

culture. Instead, A. malorum strains grew better in M9 minimal medium, and they needed 

higher nitrogen concentration (100 mg N/L). In general, all strains tested preferred a 

complete nitrogen solution. However, some single amino acids could supply all the 

nitrogen requirements of some strains. This was especially interesting in Acetobacter 

strains since Pro could support the growth even better than complete nitrogen solution. 

This is an advantage for these strains to carry out wine vinegar acetification, since Pro 

is the main amino acid in wines (Castor and Archer, 1956; Ough and Stashak, 1974; 

Ribéreau-Gayon et al., 2006), so AAB have a great availability of this amino acid for the 

acetification. Moreover, in studies about nitrogen consumption during acetification, it has 

been reported that Pro is the main amino acid consumed in surface acetifications 

(Callejón et al., 2008). In fact, the CECT 7742 strain was selected during strawberry 

surface acetification (Hidalgo et al., 2013). In Gluconobacter strains, there was not a 

single source capable of replacing the complete nitrogen solution, especially in our 

indigenous strains. However, there were some sources such as Gln, ammonium, Ala, 

Asn, especially for Po5. Strain CECT 8443 growth was strongly affected in the presence 

of sole nitrogen sources. Additionally, the amino acid consumption during superficial 

strawberry D-gluconic fermentations of strawberry was analyzed with the three selected 

strains and the most consumed amino acids were Gln, Ala and Trp, confirming that this 

nitrogen sources are good nitrogen sources for these strains (Ordoñez et al., 2015). 

Different results were obtained when this D-gluconic fermentation was carried out using 

submerged conditions, without consumption of nitrogen or even and a slight increase in 
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nitrogen content at the end of the process was observed (Ordoñez et al., 2016). This 

could be due to the fast rate of submerged processes, AAB only needed few hours to 

consume all the D-glucose, without AAB growth, which had only a catalytic function 

(Ordoñez et al., 2016).  

Thus, we could conclude that the nitrogen requirements for AAB were very dependent 

on the specific strain and the process conditions. Nevertheless, in general, our selected 

strains had low nitrogen requirements, what made them good candidates for industrial 

processes. Strain CECT 7742 seemed to be better prepared for acetification, especially 

for strawberry vinegar, and Gluconobacter strains (CECT 8443 and Po5) for D-gluconic 

oxidations. In fact, CECT 7742 and CECT 8443 had been already used as starter 

cultures in semi-industrial conditions for the elaboration of strawberry vinegar and 

strawberry gluconated juices, respectively (Hidalgo et al., 2010, 2013; Cañete-Rodríguez 

et al., 2015, 2016). Therefore, this confirmed that Acetobacter strains were better for 

processes involving oxidation of ethanol whereas Gluconobacter strains preferred 

sugary environments.  

As it has already been mentioned several times throughout this thesis, the strawberry 

beverage proposed was the combination of two different based products, one of them 

with presence of D-fructose. Therefore, both products must be microbiologically stable, 

so in the final products, the levels of microorganisms must be low or absent. Our group 

has developed generic and specific TaqMan-MGB probes and primers for identification 

and quantification of both yeast as well as AAB by Real-time PCR (Hierro et al., 2006; 

Andorrà et al., 2011; González et al., 2006; Torija et al., 2010; Valera et al., 2013). For 

the AAB control in the proposed strawberry beverage, we had available a specific probe 

for A. malorum (Valera et al., 2013), then we can monitor the strain CECT 7742 during 

acetification, and a generic probe for Gluconobacter (Torija et al., 2010). Although 

initially, this probe, designed in the 16S rDNA gene, was described as specific of G. 

oxydans, the high number of closely related species recently described in the 

Gluconobacter genus, reduced the specificity of this probe that can be used as genus 
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specific (Valera et al., 2013). However, after a PCR enrichment using primers designed 

in the ITS region of G. oxydans (Torija et al., 2010), it was possible to selectively amplify 

this species and therefore, it was possible to differentiate it from G. japonicus (Valera et 

al., 2013). Thus, we needed to design a specific TaqMan-MGB probe for the detection 

of G. japonicus. Due to the high similarity of all Gluconobacter species in the 16S rDNA 

gene, we used the 16S-23S rRNA gene ITS region for the probe design. The problem 

arose when we amplified the ITS region in different G. japonicus strains available in our 

AAB collection, and multiple amplicons were obtained. Our surprise increased when we 

observed these multiple amplicons in all the sequences of Gluconobacter strains tested 

and instead, a unique amplicon in strains belonging to Acetobacter and 

Gluconacetobacter genera. Analysis of these amplicons by sequencing showed 

additional bands with high similarity to diverse species of the Acetobacter genus. 

Different assumptions could be made to try to elucidate these results: horizontal transfer 

between the species, presence of this region in a plasmid or DNA contamination during 

the amplifications. In order to confirm the presence of this “exogenous” ITS copy in the 

Gluconobacter strains, the whole genome sequencing of our three selected strains 

(CECT 7742, CECT 8443, Po5) together with a G. cerinus strain (CECT 9110) isolated 

from grape must (Navarro et al., 2013) was done. According to our results, the three 

Gluconobacter strains sent for complete genome sequencing presented a ITS with high 

similarity to A. malorum. Unluckily, in any of the Gluconobacter strains, the A. malorum 

ITS fragment was found in the complete genome. However, with the extraction method 

used, it was very probably that the possible plasmids could be lost, for this reason, a 

hypothetical presence of this “exogenous” ITS in a plasmid could still not be discarded. 

Therefore, further analysis should be performed to elucidate this possibility. Although the 

analysis of the complete genome of our selected strains was not an initial task in the 

project of thesis, to have all this genomic information about our selected strains gives us 

valuable data to better understand their physiological features and different 
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performances. Moreover, we have completely sequenced a strain of G. cerinus, that, to 

our knowledge, it is the first whole genome available of this species in the Databases. 

So, we can conclude that indeed it is possible to selectively oxidize the D-glucose to D-

gluconic acid using selected AAB. Moreover, we have been capable of selecting different 

starter strains that offer us the possibility of elaborating different products according to 

the final D-gluconic acid concentration desired. Transfer of this knowledge to industry 

remains a “pending” task as it happens often with academic research. The three teams 

that were involved in the project (the Universities of Sevilla, Cordoba and Rovira i Virgili) 

have demonstrated that a new healthy beverage can be produced at low cost from 

perishable and surplus substrates. It is now up to the industry and the knowledge transfer 

offices from Universities to find the appropriate tools to produce it. 
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- It is possible to produce a new non-alcoholic fermented beverage with surplus 

strawberry using AAB by oxidizing D-glucose to D-gluconic acid. 

 

- All the strains of Gluconobacter and Acetobacter genera tested were able to oxidize 

D-glucose to D-gluconic acid. However, only some strains did not consume D-

fructose. 

 

- Strains Po5 and CECT 8443, belonging to Gluconobacter genus, were the most 

appropriate ones for the selective oxidation of D-glucose to D-gluconic acid, without 

fermenting D-fructose. The strain Po5 produced higher accumulation of D-gluconic 

acid in most of the media tested. In contrast, CECT 8443 could oxidize D-gluconic 

acid to 2KGA and 5KGA. Thus, the desired concentration of D-gluconic acid in the 

final product would be main criteria for the selection of the strain 

 

- The A. malorum strain CECT 7749, the only one isolated from strawberry, was better 

prepared to carry out the acetification than for D-gluconic production, since in some 

conditions, it completely oxidized the D-gluconic acid produced.  

 

- The selected strains belonging to Gluconobacter showed a high mGDH activity and 

low activity in GADH and GLDH, whereas the A. malorum strain presented low 

activity in the three enzymes. 

 

- Nitrogen requirements were different among the species of AAB tested, being lower 

for the Gluconobacter strains. The addition of a complete solution of amino acids and 

ammonium encouraged ABB growth better than the use of single nitrogen sources. 

However, in A. malorum strains proline could be as efficient as the complete solution 

of amino acids. 
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- Further studies are necessary to elucidate the presence of non-specific ITS in 

Gluconobacter strains and to determine if the use of the amplification of ITS 16S-23S 

rDNA remains, by itself, as the most appropriate technique for the identification of 

AAB at species level.  
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1. CULTURE MEDIA 

1.1. GYC medium (D-glucose Yeast Calcium carbonate) 

GYC is a general medium to grow AAB. 

1.1.1. Liquid medium: 

D-glucose 100 g/L 

Yeast extract 10 g/L 

 

1.1.2. Solid medium: 

D-glucose 100 g/L 

Yeast Extract 10 g/L 

CaCO3 20 g/L 

Agar 15 g/L 

 

Calcium carbonate is used to detect acid production. When acid is produced, a halo is 

formed around the colony. The medium is autoclaved at 121ºC for 15 min. Once the 

medium is warm, natamicine (100 mg/L) can be added to avoid yeast growth. 

1.2. YPD medium (Yeast Extract Peptone Dextrose) 

D-glucose 20 g/L 

Peptone 20 g/L 

Yeast Extract 10 g/L 

 

This medium can be made as a liquid or as a solid by adding 15 g/L of agar. The medium 

is autoclaved at 121ºC for 15 min. 

1.3. Potato medium 

Glycerol 20 g/L 

D-glucose 5 g/L 

Polypeptone 10 g/L 

Yeast extract 10 g/L 

Potato extract 100 mL 

 

The medium is autoclaved at 121ºC for 15 min.  
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1.4. LB medium 

Tryptone 10 g/L 

Yeast extract 5 g/L 

Sodium chloride 10 g/L 

 

This medium can be liquid or solid by adding 15 g/L of agar. The medium is autoclaved 

at 121ºC for 15 min. For Blue/White screening after autoclaving, the medium is 

supplemented with 500μl of ampicillin (100mg/ml), 500μl of IPTG (50mg/mL) and 1mL 

of X-gal (40mg/mL) sterile filtered 

 

2. FERMENTATIVE MEDIA  

2.1. Minimal Medium (MM) 

YNB (without amino acids) 1.7 g/L 

D-glucose 30 g/L 30 g/L 

D-fructose 40 g/L 40 g/L 

 

Adjust pH 3.3. This medium is autoclaved at 121ºC for 15 min. 

2.2. Synthetic Medium or must (SM) 

This medium is prepared according to Riou et al. (1997), however the sugar 

concentration is modified. 

D-glucose 30.0 g/L 

D-fructose 40.0 g/L 

Malic acid 5.0 g/L 

Citric acid 0.5 g/L 

L-Tartaric acid 3.0 g/L 

Potassium Dihydrogen Phosphate 0.75 g/L 

Potassium sulfate 0.5 g/L 

Magnesium sulfate heptahydrate 0.25 g/L 

Calcium Chloride Dehydrate 0.16 g/L 

Sodium chloride 0.2 g/L 

Ammonium chloride 0.46 g/L 

 

Autoclaved at 121ºC for 15 min.  
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When is cold add: 

Vitamins (100X) 10.0 mL/L 

Oligo elements (1000X) 1.0 mL/L 

Complete solution amino acids 10.0 mL/L 

 

Adjust the pH 3.3. Complete the volume to 1 L and filter.  

 

Vitamins solution (100x) 

Myo-inositol 2.0 g/L 

Calcium pantothenate 0.15 g/L 

Thiamine hydrochloride 0.025 g/L 

Nicotinic acid 0.2 g/L 

Pyridoxine 0.025 g/L 

Biotine (100 mg.l-1) 3.0 mL/L 

 

The solution is sterilized by filtration and is stored at -20 ºC. 

 

Oligo elements (1000x) 

Manganese(II) sulfate monohydrate 4 g/L 

Zinc Sulfate Heptahydrate 4.0 g/L 

Copper(II) Sulfate Pentahydrate 1.0 g/L 

Potassium Iodide 1.0 g/L 

Cobalt(II) Chloride Hexahydrate 0.4 g/L 

Boric Acid 1.0 g/L 

Ammonium Heptamolybdate 1.0 g/L 

 

The solution is sterilized by filtration and stored at 4 ºC. 
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Complete solution of AA (100X) in Na2CO3 2% 

Tyrosine 1.95 g/L Heat up 100ºC 

Tryptophan 17.42 g/L 70 ºC 

Isoleucine 3.25 g/L 70 ºC 

Aspartic acid 4.42 g/L  

Glutamic acid 11.96 g/L  

Arginine 36.79 g/L  

Leucine 4.81 g/L Increase temperature 

Threonine 7.54 g/L  

Glycine 1.82 g/L  

Glutamine 49.92 g/L  

Alanine 14.56 g/L  

Valine 4.42 g/L  

Methionine 3.12 g/L  

Phenylalanine 3.77 g/L  

Serine 7.8 g/L  

Histidine 3.38 g/L  

Lysine 1.69 g/L  

Cysteine 2.08 g/L  

Proline 59.93 g/L  

 

The solution is sterilized by filtration and is stored at -20 ºC. 

2.3. YNB medium (YNB) 

D-glucose 25g/L 

D-fructose 25g/L 

YNB (without amino acids) 1.7g/L 

 

Autoclaved at 121ºC for 15 min and stored at room temperature.  

2.4. Minimal medium (M9) 

5X Solution salt 200 mL/L 

Distilled water 452 mL 

 

Autoclaved at 121ºC for 15 min. After autoclaving, swirl to mix and stored at room 

temperature to cool.  
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Then, add: 

Magnesium sulfate (1M) 2 mL /L 

Calcium chloride 0.1 mL /L 

Concentrated sugar solution* 250 mL 

 

*(20% sugar (10% D-glucose (w/v) + 10% D-fructose (w/v))). 

 

Solution salt (5X) 

Sodium Monohydrogen Phosphate Heptahydrate 64 g/L 

Potassium Dihydrogen Phosphate 15 g/L 

Sodium chloride 2.5 g/L 

 

3. NITROGEN REQUIREMENT STUDY 

3.1. Selection of the best media and nitrogen concentrations 

The strains are grown in GY medium, with shaking at 28ºC. Forty mL of each medium 

tested (YNB, M9 and SM) are placed in 50 mL falcons. The media are prepared with the 

different nitrogen concentrations. The following volumes of the different stock solutions 

are used 

 25 mg N/L 50 mg   N/L 100 mg N/L 300 mg N/L 1 g N/L 

Ammonium chloride 0.04 g/L 0.08 g/L 0.15 g/L 0.46 g/L 1.53 g/L 

Vitamins (100X) 10 mL/L 10 mL/L 10 mL/L 10 mL/L 10 mL/L 

Oligo elements (1000X) 1 mL/L 1 mL/L 1 mL/L 1 mL/L 1 mL/L 

Complete solution amino acids 0.833 mL/L 1.66 mL/L 3.33 mL/L 10 mL/L 33.33 mL/L 

 

For all the conditions an initial OD of 0.1 is taken.  

The microplate is prepared by adding 250 μL of medium control to each well. The 

absorbance is measured continuously for 200 cycles, with stirring at 500 rpm for 80 

seconds prior to each reading. 
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  1 2 3 4 5 6 7 8 9 10 11 12 

A                         

B   25 25 25 25 25 25 25 25 25  B   

C   50 50 50 50 50 50 50 50 50  B   

D   100 100 100 100 100 100 100 100 100  B   

E   300 300 300 300 300 300 300 300 300  B   

F   1 1 1 1 1 1 1 1 1  B   

G    B  B  B  B  B  B  B  B  B  B   

H                         

                          

Green: YNB control medium with 25, 50, 100, 300 mg N/L and 1 g N/L 
Blue: M9 control medium with 25, 50, 100, 300 mg N/L and 1 g N/L 
Orange: SM control medium with 25, 50, 100, 300 mg N/L and 1 g N/L 
B: blank 
 
 

3.2. Analysis of individual amino acids and ammonium 

After the selection of the best medium and the lowest nitrogen concentration that was 

advantageous for AAB growth, the addition of a single amino acid or ammonium as the 

only nitrogen source is analyzed. 

The strains grow in GY media, with shaking at 28ºC. The control medium is prepared as 

mentioned above and the selected medium is prepared in two falcons (final volume 40 

mL). In this case, only vitamins and oligoelements are added. 

For all the conditions an initial OD of 0.1 is taken. 

In the tubes, the corresponding volume of the amino acid solution or ammonia (2.5 g/L) 

is added to have the final concentration of nitrogen selected (25, 50, 100, 300 mg N/L or 

1 g N/L) and the final volume (3 mL) was completed with the addition of the medium.  

The microplate is prepared by adding 250 μL of medium control to each well. The 

absorbance is measured continuously for 200 cycles, with stirring at 500 rpm for 80 

seconds prior to each reading. 
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1 2 3 4 5 6 7 8 9 10 11 12 

A 
    

Asn Asp Cys 
     

B 
 

Ala NH4 Arg Asn Asp Cys Phe Gaba Gly Glu 
 

C 
 

Ala NH4 Arg Asn Asp Cys Phe Gaba Gly Glu 
 

D Gln Ala NH4 Arg Gln Trp Val Phe Gaba Gly Glu Val 

E Trp His Ile Leu Gln Trp Val Pro Ser Cont* Thr 
 

F 
 

His Ile Leu Lys Met Orn Pro Ser Cont Thr 
 

G 
 

His Ile Leu Lys Met Orn Pro Ser Cont Thr 
 

H 
 

B B B Lys Met Orn B B B B 
 

             

*Contr= control medium 

 

4. DETERMINATION OF SUGAR CONCENTRATION 

The residual amount of D-glucose and D-fructose was determined using an enzymatic 

kit (Boeringher Mannheim). 

D-Glucose and D-fructose are phosphorylated to D-glucose-6-phosphate (G-6-P) and D-

fructose-6-phosphate (F-6-P) by the enzyme hexokinase (HK) and adenosine-5'-

triphosphate (ATP) with the simultaneous formation of adenosine-5'-diphosphate (ADP) 

(1,2). 

 

 

 

 

In the presence of the enzyme glucose-6-phosphate dehydrogenase (G6PDH), G-6-P is 

oxidized by nicotinamide-adenine dinucleotide phosphate (NADP) to D-gluconate-6-

phosphate with the formation of reduced nicotinamide-adenine dinucleotide phosphate 

(NADPH) (3).  

 

 

 

 

3) G-6-P + NADP+ 
D-gluconate-6-phosphate + NADPH + H+ 

G6P-DH 

1) D-glucose + ATP G-6-P + ADP 
HK 

2) D-fructose + ATP F-6-P + ADP 
HK 
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The amount of NADPH formed in this reaction is stoichiometric to the amount of D-

glucose. NADPH is measured by the increase of its light absorbance at 334, 340 or 365 

nm. On completion of reaction (3), F-6-P is converted to G-6-P by phosphoglucose 

isomerase (PGI) (4).  

 

 

 

G-6-P reacts in turn with NADP forming D-gluconate-6-phosphate and NADPH. The 

amount of NADPH obtained in this reaction is stoichiometric to the amount of D-fructose. 

The increase in NADPH is measured by means of its light absorbance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) F-6-P G-6-P 
PGI 
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5. MEMBRANE-BOUND DEHYDROGENASE ACTIVITY 

5.1. Preparation Membrane Fraction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wet Weight: 20 times buffer 

10.600 x g, 5 min, 4ºC 

pellet 

Washing: 50mM potassium 
phosphate buffer pH 6.5 

10.600 x g, 5 min, 4ºC 

FRENCH PRESS 
(16000 psi x2) 

2X 

Wet Weight: 4 – 5 times buffer 

10.600 x g, 5 min, 4ºC 

supernatant 

100.000 x g 60 min, 4ºC 

pellet MEMBRANE 

Homogenous 
suspension 

Assay 

pellet 
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5.2.  Protein determination  

The protein concentration was determined by a modified Lowry method (Dulley and 

Grieve, 1975) using a bovine serum albumin as the standard. 

Solution A 

Sodium carbonate 20 g/L 

Sodium hydroxide 4 g/L 

Sodium dodecyl sulfate 5 g/L 

Solution B 

Copper (II) sulfate pentahydrate 2g/L 

Potassium sodium tartrate 10 g/L 

Solution C 

Folin-Ciocalteu reagent (Wako Pure Chem.). 

In test tubes: 

1. Prepare a standard curve by diluting the BSA stock with distilled water (total 

volume 400 μL); 

2. Prepare the dilution of the samples (total volume 400 μL). 

3. In all the test tube prepared before: 

4. Add 2 mL of Solution A + Solution B (50:1) and mix with vortex. Stand for 10 min 

at 25ºC 

5. Add 200 μL of Solution C and mix quickly with vortex. Incubate for 20 min at 25ºC. 

6. Measure the absorbance at 750 nm 

5.3. Enzyme Assay 

The enzyme activity of PQQ and FAD- dependent dehydrogenases could be analyzed 

using artificial electron acceptors like potassium ferricyanide or phenazine methosulfate 

(PMS). In the case of membrane-bound GADH and 2KGDH enzymes as contain heme 

c component in their molecule or membrane fraction, their activity is easily determined 

with potassium ferricyanide (Adachi et al., 2007). In this case, the reduction rate of 

ferricyanide to ferrocyanide is quantitative to the amount of substrate oxidized. However, 

enzyme activity of mGDH and GLDH should be measured with DCIP-PMS, because 
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these enzymes do not contain heme c component. In the reaction, DCIP acts as an 

electron acceptor and PMS as a mediator, the reduction of DCIP is measured at 600 nm. 

 

6. DNA EXTRACTION OF AAB 

Total DNA was extracted using the modified CTAB method (cetyl trimethyl ammonium 

bromide), as described by Ausubel et al. (1992). 

Cells are harvested from culture medium, wine or vinegar and centrifuged for 5 min in at 

14000 rpm.  

1. Resuspend the pellet in 520 μL of TE Buffer (10 mM Tris-HCl; 1 mM EDTA, pH 

8).  

2. Add 30 μl of SDS 20% and 6 μl of proteinase K (20 mg/mL). Mix using the vortex  

3. Incubate the mixture during 1h at 37ºC  

4. Add 150 μl of NaCl 5M and 140 μl of 10% CTAB in 0,7M NaCl  

5. Incubate the suspension during 10 min at 65ºC  

6. Incubate on ice for 10-15 min  

7. Add one volume of chloroform:isoamyl alcohol (24:1) and mix manually until 

homogenize  

8. Incubate the mixture on ice for 5 min  

9. Centrifuge at 4ºC and 10000 rpm for 10 min (wash again with chloroform:isoamyl 

alcohol until not observe the inter-phase)  

10. Transfer the aqueous phase to an Eppendorf tube with 380 μl of isopropanol  

11. Mix until observe the precipitation of the DNA  

12. Incubate at -20ºC for 5 min  

13. Centrifuge at 4ºC at 10000 rpm for 10 min  

14. Eliminate the supernatant  
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7. AAB IDENTIFICATION 

7.1. Amplification of the 16S-23S rRNA gene ITS region (Ruiz et al., 2000)  

Primers used to amplify the ITS 16S-23S rDNA are:  

ITS1, 5’-ACCTGCGGCTGGATCACCTCC-3’  

ITS2, 5’-CCGAATGCCCTTATCGCGCTC-3’ 

Amplification mix μL for final volume = 50 μL 

Primer ITS1 (10 ρM) 1.5 μL 

Primer ITS2 (10 ρM) 1.5 μL 

dNTPs (each dNTP 10 mM) 1.0 μL 

MgCl2 (100 mM) 3.0 μL 

Buffer Taq 10x, without Mg. (Biotaq) 1.0 μL 

Taq DNA polymerasa (Biotaq) 0.5 μL 

H2O milli-Q 40.5 μL 

DNA 1.0 μL 

 

PCR conditions:  

 

 

 

 

 

 

 

 

Five microliters of the amplified DNA are mixed with 2 μL of bromophenol blue and 

detected by electrophoresis on a 1% (w/v) agarose gel (Boehringer Mannheim). The 

length of the amplification product is determined by comparison with a 100 bp DNA 

ladder (Roche Diagnostics, Mannheim, Germany). 

 

 

 

94ºC 94ºC 

65ºC 

72ºC 72ºC 

4ºC 

5´ 30´´ 

30´´ 

1´ 7´ 

∞ 
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7.2. Band purification with QIAquick Gel Extraction Kit (Quiagen, 

Netherlands) 

With QIAquick Gel Extraction kit, 80% of DNA ranging from 70 bp to 10 kb could be 

recovered. First, the band is excised from the gel and the agarose is dissolved in a buffer 

with a pH indicator to determine if the pH of the solution is optimal for DNA binding. then, 

the mixture is added to the spin column. The silica membrane of the column retains the 

nucleic acids in high salt-conditions, impurities are washed and after, pure DNA is eluted 

with low salt buffer or water. DNA fragments purified with the kit system are ready for 

direct use (sequencing, restriction digestion, etc…).  

7.3. Cloning ITS products into pGEM- T Easy vector 

pGEM-T Easy Vector is suitable for the cloning of PCR products. The vector has a 3´ 

terminal thymidine in both ends, that improves the efficiency of ligation of a PCR product 

into the plasmid.  

For the preparation of the cloning reaction, the mix contains: 

2X Rapid Ligation Buffer 5 μL 

pGEM-T Easy Vector 1 μL 

PCR product 2 μL 

T4 DNA Ligase 1 μL 

Deionized water 1 μL 

 

Mix by pipetting and incubate for 1 hour at room temperature.  

7.3.1. Transformation of JM109 High Efficiency Competent Cells 

1. Prepare LB/ampicillin/ IPTG/ X-Gal plates. 

2. Centrifuge the ligation reactions and add 2 μl to a sterile Eppendorf on ice.  

3. Add 50 μl of JM109 High Efficiency Competent Cells to 2 μl of the ligation reactions 

and incubate on ice for 20 minutes. 

4. Heat shock for 45-50 seconds at exactly 42ºC. Incubate on ice for 2 minutes. 

5. Add S.O.C medium (Invitrogen - ThermoFisher Scientific, USA) and incubate for 1.5 

hours at 37ºC with shaking. 
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6. Plate. Select white colonies and growth in LB liquid media with ampicillin. 

7.4. Plasmid extraction with NucleoSpin® Plasmid QuickPure 

With the NucleoSpin Plasmid QuickPure the pelleted bacteria are resuspended (Buffer 

A1) and plasmid DNA is liberated from the E.coli host cells by SDS/alkaline lysis (Buffer 

A2). Buffer A3 neutralizes the resulting lysate and creates appropriate conditions for 

binding of plasmid DNA to the silica membrane of the column. Precipitated protein, 

genomic DNA, and cell debris are then pelleted by a centrifugation step. The supernatant 

is loaded onto a column. Contaminations like salts, metabolites, and soluble 

macromolecular cellular components are removed by a simple washing with ethanolic 

Buffer A4. Pure plasmid DNA is finally eluted under low ionic strength conditions with 

alkaline Buffer AE (5mm Tris/HCl, Ph 8.5). 

7.4.1. Digestion 

Cloned plasmid 5 μL 

Buffer H 2 μL 

Enzyme Eco RI 1 μL 

Distilled water 12 μL 

 

Incubate at 37ºC for 1 hour. Visualize the fragments in agarose gel 1.5% 
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ABSTRACT 

This paper studies the amino acid profile of beverages obtained through the fermentation 

of strawberry purée by surface culture using three strains belonging to different acetic 

acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans 

and one of Acetobacter malorum) isolated from strawberry. An HPLC-UV method 

involving Diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From 

among an entire set of 21 amino acids, multiple linear regression showed that glutamine, 

alanine, arginine, tryptophan, GABA and proline were significantly related to the 

fermentation process. Furthermore, linear discriminant analysis classified 100% of the 

samples correctly in accordance with the microorganism involved. G. japonicus 

consumed glucose most quickly and achieved the greatest decrease in amino acid 

concentration. None of the 8 biogenic amines were detected in the final products, which 

could serve as a safety guarantee for these strawberry gluconic fermentation beverages, 

in this regard. 

 

Keywords: HPLC; DEEMM; nitrogen compounds; beverages; strawberry products; 

acetic acid bacteria 
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1. INTRODUCTION 

Strawberry (Fragaria x ananassa Duch.) is one of the most economically important fresh 

and processed fruits (Hancock, Sjulin & Lobos, 2008) and a source of bioactives 

(Álvarez-Fernández, Hornedo-Ortega, Cerezo, Troncoso & García-Parrilla, 2014a; 

Cerezo, Cuevas, Winterhalter, Garcia-Parrilla & Troncoso, 2010; Stürtz, Cerezo, Cantos-

Villar & Garcia-Parrilla, 2011). Hence, there is a wide variety of processed strawberry 

products, such as purée, jams, juices, beverages, fruit preparations, etc. (Fügel, Carle & 

Schieber, 2005; Hui, Barta, Canor, Gusek, Sidhu & Sinha, 2006). Recently, strawberry 

fermented products, such as wines and vinegars, have been produced as a good solution 

for using strawberry surpluses and as an alternative method for conserving this 

perishable fruit (Hidalgo, Torija, Mas & Mateo, 2013; Ubeda, et al., 2013). 

Gluconic acid is abundantly available in grains, fruits and other foodstuffs, such as rice, 

meat, dairy products, honey and fermented products like wine and vinegar. It is a mild 

organic acid, which has applications in the food industry (Deppenmeier, Hoffmeister & 

Prust, 2002; Ramachandran, Fontanille, Pandey & Larroche, 2006; Singh & Kumar 

2007). It is produced from glucose by different microorganisms, which include bacteria, 

yeast and some ectomycorrhizal fungus. Among them, some genera of the family 

Acetobacteraceae, such as Gluconobacter, are used industrially to produce gluconic 

acid (Deppenmeier & Ehrenreich, 2009; Ramachandran et al., 2006). There are several 

works that have studied gluconic acid fermentations. However, most of them are focused 

on biotechnology and its applications (Deppenmeier et al., 2002; Gupta, Singh, Qazi, & 

Kumar, 2001; Ramanchandran et al., 2006; Singh & Kumar, 2007) and reports focusing 

on the gluconic fermentation of fruits are scarce. 

Acetic acid bacteria (AAB) can utilize a wide range of compounds as sources of nitrogen, 

from simple inorganic compounds to complex compounds, including amino acids 

(Merrick & Edwards, 1995). Gluconobacter strains are able to grow using ammonium ion 

as their sole source of nitrogen (Deppenmeier & Ehrenreich, 2009; Gupta et al., 2001). 

However, AAB have been shown to consume amino acids in the conversion of ethanol 
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into acetic acid (Callejón, Troncoso & Morales, 2010). Hence, free amino acids present 

in the medium could also be a good source of nitrogen for these bacteria, in addition to 

ammonium ion. The amino acid content of fruits and fruit derived products is studied 

since they contribute to the final aroma and taste, among other properties (Mandrioli, 

Mercolini & Raggi, 2013). 

Furthermore, some biogenic amines can be directly formed from amino acids by 

decarboxylation. These compounds can be formed and degraded during the normal 

metabolism of living organisms, although they have been quantified especially in 

fermented food and beverages such as cheeses, dry fermented sausages or wine 

(Ancín-Azpilicueta, González-Marco & Jiménez-Moreno, 2008; ten Brink, Damink, 

Joosten, & Huis in’t Veld, 1990; Kirschbaum, Rebscher, & Brückner, 1999). High 

concentrations of biogenic amines in final products could be due to employ poor quality 

raw materials, contamination and food processing and storage under unsuitable 

conditions (Önal, 2007; ten Brink at al., 1990). Biogenic amines, in particular histamine 

and tyramine, can cause health problems when are present in food in a high 

concentration (ten Brink at al., 1990). These compounds could cause wide effects on 

consumer such as headache, inflammations, irritation, hypertension and hypotension 

(Ancín-Azpilicueta et al., 2008; ten Brink at al., 1990). The European legislation does not 

have a biogenic amines threshold, but European Food Safety Authority (EFSA) has 

elaborated a scientific opinion on the risk associated with their formation in fermented 

products (European Food Seafty Authority (EFSA) Panel on Biological Hazards 

(BIOHAZ), 2011). 

Several techniques have been developed for analyzing amino acids and biogenic amines 

in foods (Callejón et al., 2010; Hernández-Orte, Ibarz, Cacho & Ferreira, 2003; Önal, 

2007; Peña-Gallego, Hernández-Orte, Cacho & Ferreira, 2012). Nevertheless, the 

analytical technique most frequently employed for the determination of amino acids and 

biogenic amines is HPLC with C18 reverse-phase columns (Peña-Gallego et al., 2012). 

This method is less time-consuming than other techniques and the instrumentation used 
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is simple (Hernández-Orte et al., 2003). The direct detection of amino acids by HPLC 

yields matrix interferences (Callejón, Tesfaye, Torija, Mas, Troncoso & Morales, 2008) 

and biogenic amines do not have good absorption properties in the visible, ultraviolet or 

fluorescence wavelength ranges (Peña-Gallego, Hernández-Orte, Cacho & Ferreira, 

2009). For these reasons, the determination of these compounds requires a chemical 

derivatization to improve detection limits and to avoid matrix interference (Callejón et al., 

2010; Gómez-Alonso, Hermosín-Gutiérrez & García-Romero, 2007; Peña-Gallego et al., 

2012). The reagents most widely used are 2,2-dihydroxy-1,3-indanedione (Ninhydrin), 

dansyl chloride (DnsCl), dabsyl Chloride (DbsCl), phenylisothiocyanate (PITC), o-

phthaldialdehyde (OPA), 6-aminoquinolyl N-hydroxysuccinimidyl carbamate (AQC) and 

diethyl ethoxymethylenemalonate (DEEMM), among others (Callejón et al., 2010; Peña-

Gallego et al., 2012). Some of these techniques have been able to determine amino 

acids and biogenic amines simultaneously, such as the method proposed by Gómez-

Alonso et al. (2007), which used DEEMM as the derivatization agent to increase the 

specific absorbance of the analytes, followed by reversed phase HPLC and UV-vis 

photodiode array detection. This method has been proposed for wines and beers.  

The aims of this study were: (a) to adapt an analytical method to determine the profile of 

amino acids, biogenic amines and ammonium ion in different gluconic acid fermented 

products and in the starting substrate (strawberry purée) by HPLC using DEEMM as the 

derivatization agent; (b) to study the differences in amino acid consumption by the 

different AAB strains employed; (c) to verify whether the fermented products can be 

discriminated or grouped according to the strain that performed the fermentation, taking 

the amino acid profiles as variables, and (d) to check whether these fermented 

beverages are safe for human consumption by determining the concentrations of 

biogenic amines.  
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2. MATERIALS AND METHODS 

2.1. Reagents and standards 

Most of the amino acid standards were purchased from Fluka (Buchs, Switzerland). The 

aspartic acid, glutamic acid, histidine, alanine, lysine, γ-aminobutiric acid (GABA), 

biogenic amines, ammonium sulphate, diethyl ethoxymethylenemalonate, acetic acid 

glacial, boric acid, 2-aminoadipic acid (internal standard) and sodium azide were 

supplied by Sigma-Aldrich (Steinheim, Germany). The glycine, ornithine, methanol 

(HPLC grade) and acetonitrile (HPLC grade) were acquired from Merck (Darmstadt, 

Germany). The sodium acetate and sodium hydroxide were obtained from Panreac 

(Castellar del Vallès, Barcelona). The ultrapure water was obtained from a Milli-Q water 

purification system (Millipore, Bedford, MA, USA). 

The stock standard solutions were prepared individually by dissolving the pure 

compounds in HCl 0.1 N. The calibration solutions were prepared by diluting the stock 

standard solutions with water.  

2.2. Samples 

We analyzed samples of the fermentation of strawberry purée using a surface cultures 

of acetic acid bacteria (AAB), supplied by HUDISA, S.A. (Lepe, Spain). These gluconic 

fermentations were conducted in the laboratories of the Biochemistry and Biotechnology 

Department (Facultat d'Enologia, Universitat Rovira i Virgili. Tarragona, Spain). These 

fermentations were carried out with different AAB strains: one of Acetobacter malorum 

(3 samples), one of Gluconobacter oxydans (3 samples) and one of Gluconobacter 

japonicus (2 samples). The initial substrate used for these processes was also studied. 

AAB were grown in a GY medium (1% yeast extract and 5% glucose) and incubated at 

28 °C with stirring. The fermentation substrate consisted of mixing 90% strawberry purée 

with 10% rectified concentrated must (Concentrados Pallejà, Riudoms, Spain). For each 

fermentation, 500 mL of the substrate was inoculated with 2x106 cell/mL of the AAB 

strains in a 1 L Erlenmeyer flask. Fermentations were performed at 28 ºC with a stirring 
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speed of 128 rpm. In all the cases the fermentations were considered finished after 10 

days of fermentation, when more than 90% of the initial glucose had been consumed. 

Only G. japonicus strain practically exhausted glucose after the 10 days. All samples 

were frozen immediately after sampling. Table 1 displays the sample codes and their 

concentrations in glucose, fructose and gluconic acid. 

 

Table 1. Samples codes and glucose, fructose and gluconic acid concentration in strawberry 

purée and gluconic fermented. 

Samples 
  

Codex 
Glucose 

(g/L) 
Fructose 

(g/L) 
Gluconic 
acid (g/L) 

Strawberry purée   SP 62 62 - 

Strawberry gluconic acid 
fermentation beverages (SGFB) 

Acetobacter 
malorum 

SGFAM1 4,74 51,72 49,91 

 
 SGFAM2 6,68 54,69 45,73 

 
 SGFAM3 2,25 51,33 47,78 

 

Gluconobacter 
oxydans 

SGFGO1 4,74 56,96 51,95 

 
 SGFGO2 4,12 50,47 46,16 

 
 SGFGO3 2,57 54,22 49,48 

 

Gluconobacter 
japonicus 

SGFGJ1 0,93 50,94 52,38 

    SGFGJ2 0,78 47,49 47,95 

 

2.3. Sample preparation 

First, 2 mL of sample were centrifuged at 6000 rpm for 15 min (Eppendorf centrifuge 

5415R, Hamburg, Germany). The derivatization of amino acids and biogenic amines was 

performed by diethyl ethoxymethylenemalonate (DEEMM). For this, 700 µL of borate 

buffer 1 M (pH = 9), 300 µL of methanol, 400 µL of standard or sample, 10 µL of internal 

standard (L-2-aminoadipic acid, 1 g/L) and 12 µL of DEEMM were mixed in a covered 

vial, which was introduced into an ultrasound bath for 30 min. Later, the sample was 

heated at 70 °C for 2 hours to allow the complete degradation of excess DEEMM and 

reagent byproducts (Gómez-Alonso et al. 2007). All samples were filtered through a 

membrane filter with a mean pore size of 0.45 µm (Millipore) prior to use. 
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2.4. Equipment 

HPLC analysis was carried out in Waters HPLC system consisting of a Waters 717 

autosampler injector and a Waters 1525 Binary HPLC pump system controller connected 

to a Waters 996 photodiode array detector. Data treatment was performed in a Waters 

Millennium data station. The column consisted of a LiChroCART® 250-4 LiChrospher® 

100 RP-18 (5 µm, 250 x 4.6 mm) from Merck (Darmstadt, Germany) and a 4.0 x 3.0 mm 

guard column from Analytical Phenomenex (Torrance, CA, USA). The column was 

thermostatized at 45 °C in a column header module controlled by Waters TCM HPLC 

Temperature Controller. The gradient program employed is shown in Table 2; it was 

similar to the one used by Gómez-Alonso et al. (2007). The injection volume was 10 µL 

and the separation was obtained at a flow rate of 0.9 mL/min. Mobile phase A consisted 

of a 25 mM acetate buffer (pH 5.8) with 0.02% sodium azide, and mobile phase B was 

an 80:20 mixture of acetonitrile and methanol. A photodiode array detector monitored at 

280 and 269 nm was used for detection. All mobile phases were filtered through a 

membrane filter with a mean pore size of 0.45 µm (Millipore) prior to use. 

 

Table 2. Eluent gradient for HPLC method. 

Time (min) A (%) B (%) 

0 90 10 

20 90 10 

26 87 13 

32 83 17 

34 83 17 

43 75 25 

48 75 25 

53 70 30 

58 70 30 

65 60 40 

72 28 72 

75 25 75 

77 20 80 

79 20 80 

85 0 100 
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2.5. Statistical analysis 

All statistical analyses were performed by means of Statistica software (StatSoft, 2004). 

One-way ANOVA was performed to evaluate significant differences between types of 

samples (significance levels p<0.05). Multiple linear regression (MLR) was performed to 

evaluate relationships between amino acid concentrations and glucose consumption. 

In addition, Principal Component Analysis (PCA) followed by Lineal Discriminant 

Analysis (LDA) were employed to evaluate whether the profiles of amino acids and 

biogenic amines were different enough to distinguish between the gluconic acid 

fermentations analyzed.  

 

3. RESULTS AND DISCUSSION 

3.1. Method validation  

The analytical method used to perform this work was originally developed by Gómez-

Alonso et al. (2007) to determine amino acids in wines and beers. Slight modifications in 

gradient and temperature were performed to obtain better peak resolution in the 

strawberries and their fermented products. Thus, the modified method was validated in 

terms of linearity, sensitivity (detection and quantification limits) and precision 

(repeatability and intermediate precision) response according to AOAC criteria (AOAC, 

1993). Table 3 displays these validation parameters. Linear range was obtained using a 

value close to the limit of quantification (LOQ) as the lowest concentration. Thus, the 

lowest point of the linear range was lower than that described by Gómez-Alonso et al. 

(2007) in most cases. In all the analytes, R2 were above 0.99, showing a linear 

relationship between standard concentration and detector response. 

Room temperature in our laboratory oscillates widely. Therefore, we set the temperature 

at 45 ºC to achieve repeatability and intermediate precision within AOAC limits (AOAC, 

1993).  
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Due to the high concentration of asparagine and its proximity to serine, peak overlapping 

could not be prevented, so the two were quantified together (asparagine-serine) as 

previously described (Hermosín, Chicón & Dolores Cabezudo, 2003). 

3.2. Sample analysis 

The proposed method was applied to determine amino acids and biogenic amines in 

strawberry purées and beverages obtained after gluconic fermentation. 

Table 4 displays amino acid concentration in samples obtained by surface culture 

fermentation with different AAB strains. A total of 31 compounds were determined, 

including 22 amino acids, 8 biogenic amines and ammonium ion. 

Asparagine-serine, alanine and glutamine were the major amino acids in the substrate 

as shown Fig. 1, which is in accordance to the strawberry amino acids profile (Moing, 

Renaud, Gaudillère, Raymond, Roudeillac & Denoyes-Rothan, 2001; Perez, Rios, Sanz 

& Olias, 1992). On the other hand, the amino acid profiles changed after gluconic 

fermentation (Fig. 2). In general, most amino acids followed a similar trend, and 

theirconcentration change during fermentations with different AAB strains. In order to 

search for a relationship between amino acids and glucose consumption, we performed 

a correlation matrix analysis, which revealed the most significant correlations. Hence, we 

selected glutamine, alanine, arginine, GABA, proline and tryptophan for subsequent 

multiple linear regression analysis. We tested 3 methods: standard, forward stepwise 

and backward stepwise inclusion of variables, and obtained an R2 of 0.9874 for standard 

and forward stepwise analysis and an R2 of 0.9807 for backward stepwise analysis. The 

following variables were included in the forward stepwise analysis (in order): alanine, 

arginine, glutamine, tryptophan and GABA. However, only glutamine and arginine were 

included in the backward stepwise analysis model. 
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Table 3. Results of regression analysis of calibration curves, LOD, LOQ, repeatability and intermediate precision.  

Compounds λ (nm) 
RT 

(min) 

Linear 
range 
(μg/L) 

Ecuation y= ax + b R² 
LOD 

(μg/L) 
Repeatability (n=5) Intermediate precision (n=5) 

       
Mean (mg/L) 

RSD 
(%) 

Mean (mg/L) 
RSD 
(%)               

Aspartic acid 280 3.8 0.5-100 y = 0.055x + 0.1715 0.9929 0.15 41.94 1.27 41.84 2.47 

Glutamic acid 280 4.4 0.5-150 y = 0.0542x + 0.1309 0.997 0.10 35.98 0.73 35.79 2.58 

Asparagine 280 7.4 0.5-800 y = 0.0382x + 0.1171 0.9964 0.15 62.34 2.14 62.14 1.18 

Serine 280 7.4 0.5-100 y = 0.073x + 0.0107 0.9997 0.15 55.78 0.49 55.83 0.11 

Glutamine 280 8.3 5-800 y = 0.0484x + 0.5199 0.9985 0.10 26.70 1.74 25.43 2.65 

Histidine 280 10.4 0.5-100 y = 0.0529x - 0.0306 0.9977 0.15 43.14 0.29 43.37 0.44 

Glycine 280 11.9 0.5-100 y = 0.1127x + 0.0299 0.9999 0.05 36.84 1.02 36.55 2.30 

Threonine 280 12.2 1-100 y = 0.0611x - 0.0267 0.9987 0.05 35.68 2.06 35.36 1.51 

Alanine 280 19.8 1-150 y = 0.0689x + 0.0793 0.9987 0.05 53.60 1.95 52.66 1.32 

Arginine 280 21.2 5-100 y = 0.0383x + 0.0045 0.9962 0.05 39.86 1.57 40.03 3.98 

GABA 280 22 0.5-150 y = 0.0678x - 0.0427 0.9996 0.05 45.29 1.01 44.03 4.68 

Proline 280 24.8 may-00 y = 0.025x - 0.3434 0.9973 0.3 66.97 1.27 58.01 13.90 

Tyrosine 280 35.6 1-100 y = 0.021x + 0.7793 0.99 0.05 61.31 2.81 66.06 2.17 

Valine 280 43.4 1-100 y = 0.0624x + 0.169 0.9988 0.05 41.45 1.51 40.73 1.25 

Methionine 280 44 0.5-100 y = 0.0339x - 0.0147 0.9975 0.05 60.75 0.60 60.17 0.47 

Cysteine 280 46.7 0.5-100 y = 0.0267x + 0.0521 0.997 0.05 43.82 6.06 48.49 7.92 

Isoleucine 280 49.7 0.5-100 y = 0.0467x + 0.0901 0.9957 0.05 15.94 7.89 14.51 3.21 

Tryptophan 280 57.1 0.5-100 y = 0.0818x - 0.0572 0.9974 0.05 45.76 1.14 46.14 4.07 

Leucine 280 50.9 0.5-100 y = 0.0633x + 0.2051 0.9993 0.05 44.18 2.27 46.53 9.34 

Phenylalanine 280 51.5 1-100 y = 0.0383x + 0.0011 0.9994 0.05 97.25 1.54 95.31 2.72 

Ornithine 280 56.9 0.5-100 y = 0.0256x + 0.037 0.9976 0.05 52.79 1.55 51.00 3.32 

Lysine 280 60.3 0.5-100 y = 0.077x + 0.0198 0.9997 0.05 40.04 0.76 39.92 0.75 

Histamine 280 34.5 0.5-100 y = 0.0286x + 0.0246 0.9936 0.05 87.14 4.89 78.50 4.84 

Agmatine 280 38.7 0.5-100 y = 0.025x + 0.1354 0.9921 0.05 23.08 7.62 22.63 4.47 

Spermidine 280 60.7 0.5-100 y = 1.0326x - 0.0169 0.9991 0.10 1.97 0.33 1.96 0.98 

Tyramine 280 71.5 0.5-100 y = 0.0627x - 0.0644 0.995 0.05 42.83 1.44 41.60 2.45 

Putrescine 280 74.9 0.5-100 y = 0.0582x + 0.151 0.9958 0.05 52.82 1.61 51.94 1.35 

Tryptamine 280 75.1 0.5-100 y = 0.055x + 0.1047 0.9975 0.05 25.49 1.04 25.15 2.55 

Cadaverine 280 75.9 0.5-100 y = 0.0561x + 0.1219 0.9943 0.05 43.75 1.45 42.98 1.15 

Phenylethylamine 280 75.9 0.5-100 y = 0.0461x + 0.0044 0.9998 0.05 44.77 0.54 43.36 3.19 

Ammonium 269 37.8 1-100 y = 0.0714x + 0.0631 0.9996 0.05 20.25 3.84 20.41 5.27 
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Figure 1. Strawberry purée (substrate) HPLC Chromatogram at 280 nm. 1, aspartic acid; 2, glutamic acid; 

3, internal standard; 4, asparagine-serine; 5, glutamine; 6, histidine; 7, glycine; 8, threonine; 9, alanine; 10, 
arginine; 11, γ-aminobutiric acid; 12, proline; 13, tyrosine; 14, ammonium ion; 15, valine; 16, methionine; 17, 
isoleucine; 18, tryptophan; 19, leucine; 20, phenylalanine; 21, ornithine; 22, lysine. 

 

 

Figure 2. Gluconobacter japonicus strain HPLC Chromatogram at 280 nm. 1, aspartic acid; 2, glutamic acid; 

3, internal standard; 4, asparagine-serine; 5, glutamine; 6, histidine; 7, glycine; 8, threonine; 9, alanine; 10, 
arginine; 11, γ-aminobutiric acid; 12, proline; 14, ammonium ion; 15, valine; 16, methionine; 17, isoleucine; 

18, tryptophan; 19, leucine; 20, phenylalanine; 22, lysine. 

 

Glutamine, alanine and tryptophan showed a significant decrease. These amino acids 

were mostly consumed by AAB. They have already been shown to be a good nitrogen 

source for microorganisms such as AAB and yeast (Arias-Gil, Garde-Cerdán & Ancín-

Azpilicueta, 2007; Joubert, Bayens & De Ley, 1961; Sánchez & Demain, 2002). 
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Conversely, other amino acids, such as arginine, GABA and proline, increased 

significantly during fermentation. Among them, the increase of arginine was the most 

pronounced. A probable cause of the arginine increase in the final beverages is that this 

amino acid is known to be stored in microorganism vacuole under nitrogen-available 

conditions, and it is left in the media after autolysis (Carrasco & Pérez-Ortín, 2003; Leigh 

& Dodsworth, 2007). increases in GABA have been previously reported following the 

fermentation of blackberry with Lactobacillus brevis (Kim, Lee, Ji, Lee & Hwang, 2009). 

On the other hand, proline is not usually consumed in a rich nitrogen medium (Callejón 

et al., 2008). Besides, this amino acid could increase its concentration during cider 

fermentation by AAB (Valero, Berlanga, Roldan, Jimenez, García & Mauricio, 2005).  

In all the samples fermented with gluconic acid, asparagine-serine was the most 

abundant amino acid followed by arginine, glutamic acid, proline and ammonium ion. 

Gluconic fermentation did not modify the most essential amino acid from strawberry 

purée substrate. Generally, tryptophan was the only amino acid that was significantly 

consumed for all AAB strains tested significantly. Conversely, arginine increased wide 

its concentration in all fermentations (Table 4). This is important because it is an essential 

amino acid to fetus, infant and disease adults with disease such as endothelial 

dysfunction, cystic fibrosis or sickle cell disease vasculopathy (Wu, 2009; Wu et al., 

2009). 

Additionally, gluconic fermentation preserves polyphenols, which exert a bioactive effect 

and play an important role in the sensory properties (Álvarez-Fernández, Hornedo-

Ortega, Cerezo, Troncoso & García-Parrilla, 2014b). 

Biogenic amines were not detected in the substrates or beverages. This was expected 

since according to Cipolla, Havouis and Moulinoux (2010) strawberries were included in 

the group of food containing less than 100 nmol/g/ml of polyamines. Moreover, biogenic 

amines of endogenous origin are found in low concentrations (Önal, 2007). 
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Table 4. Concentration of amino acids, biogenic amines and ammonium ion in strawberry purée 

and gluconic fermented. 

Compounds Mean concentrations (mg/L) ± 

  SP SGFAM SGFGO SGFGJ 
Aspartic acid 45.98b,c ± 0.79 34.10a ± 1.53 31.20a,d ± 1.29 38.77c ± 4.14 
Glutamic acid 58.53d ± 0.20 58.39d ± 1.98 56.38d ± 2.45 48.43a,b,c ± 3.50 
Asparagine-serine 717.17d ± 12.09 711.73 ± 21.89 654.92 ± 35.04 594.00a ± 18.56 
Glutamine 102.96b,c,d ± 0.88 30.49a,d ± 0.64 25.11a,d ± 1.37 18.35a,b,c ± 2.18 
Histidine 22.34b,d ± 0.42 17.74a,d ± 1.89 18.34d ± 2.31 15.21a,b,c ± 0.87 
Glycine 1.48b ± 0.32 2.28a ± 0.64 2.00 ± 1.17 1.82 ± 1.21 
Threonine 37.86 ± 2.73 36.52 ± 1.58 33.75 ± 2.22 34.24 ± 1.57 
Alanine 113.93b,c,d ± 3.13 28.26a,d ± 0.46 17.56a ± 2.15 19.97a,b ± 2.52 
Arginine 6.43b,c,d ± 0.91 59.35a ± 1.69 63.16a ± 3.01 63.73a ± 0.72 
GABA 1.89b,c,d ± 0.89 5.12a,c ± 0.74 6.73a,b ± 1.31 5.99a ± 0.87 
Proline 13.74b,c,d ± 1.34 36.55a ± 2.78 41.46a± 2.17 38.96a ± 2.35 
Tyrosine 1.58c,d ± 1.20 1.18 ± 0.51 ND ND 
Valine 6.16d ± 0.82 4.10d ± 0.58 3.50d ± 0.74 1.99a,b,c ± 0.19 
Methionine 10.12 ± 1.11 11.47 ± 1.37 12.47 ± 2.22 12.44 ± 1.44 
Cysteine ND ND ND ND 
Isoleucine 4.69d ± 0.53 3.34d ± 1.12 4.25d ± 1.20 0.34a,b,c ± 1.13 
Tryptophan 2.11b,c,d ± 0.09 0.70a ± 0.12 0.90a ± 0.44 0.70a ± 0.15 
Leucine 0.64 ± 0.55 0.83 ± 1.47 0.62 ± 1.04 0.65 ± 0.80 
Phenylalanine 7.97d ± 0.78 9.65 ± 1.95 9.18 ± 1.82 9.87a ± 0.70 
Ornithine 4.08d ± 0.13 2.09 ± 1.50 1.48 ± 0.50 ND 
Lysine ND 1.83 ± 0.59 2.59 ± 1.06 1.69 ± 0.71 
Histamine  ND ND ND ND 
Agmatine ND ND ND ND 
Spermidine ND ND ND ND 
Tyramine ND ND ND ND 
Putrescine ND ND ND ND 
Tryptamine ND ND ND ND 
Cadaverine ND ND ND ND 
Phenylethylamine ND ND ND ND 
Ammonium 39.51c,d ± 0.17 49.04d ± 5.19 57.58a,d ± 3.63 64.64a,b,c ± 2.26 

 
ND: non detected. 
RSD: Relative standard deviation. 
Codes of samples are explained in Table 1.  
aShows significant differences between substrat and other samples according to ANOVA test (p<0.05). 
bShows significant differences between A.malorum and other samples according to ANOVA test (p<0.05). 
cShows significant differences between G.oxydans and other samples according to ANOVA test (p<0.05). 
dShows significant differences between G.japonicus and other samples according to ANOVA test (p<0.05). 

 

 

During fermentative processes, especially by lactic acid bacteria, the concentration of 

biogenic amines increases significantly (Landete, Ferrer & Pardo, 2007). However, the 

non-presence of biogenic amines in the gluconic fermentations may be due to the fact 

that AAB are not able to produce these nitrogen compounds (Landete et al., 2007). 

Although amino acids and ammonium showed a similar trend during all gluconic 

fermentations, we observed some differences, depending on the bacteria involved in the 

process. Thus, G. japonicus strain was the one that showed the highest consumption of 

amino acids. In fact, significant differences in amino acid profile were observed between 

UNIVERSITAT ROVIRA I VIRGILI 
SELECTION AND OPTIMIZATION OF ACETIC ACID BACTERIA FOR D-GLUCONIC ACID PRODUCTION 
Florencia Sainz Perez 
 



APPENDIX 2 
 

244 

 

G. japonicus strain and the other two strains. Glutamine, histidine, valine, ornithine, 

glutamic acid and isoleucine were consumed by G. japonicus strain in a higher proportion 

than by the rest of the strains during fermentation. According to these results, we could 

conclude that G. japonicus strain showed the greatest activity during fermentation. This 

strain demonstrated the fastest glucose consumption, as no glucose was present in the 

medium after 10 days of fermentation. 

In order to explore differences between the strains, multivariate statistical analysis was 

applied. First, we performed a principal component analysis (PCA). We selected the 

most significant variables to gather different samples using the variable contribution 

obtained in PCA. Hence, Factor 1 includes glutamine, alanine, arginine and proline, and 

Factor 2 includes glutamic acid, asparagine-serine, isoleucine, leucine and 

phenylalanine. Afterwards, a linear discriminant analysis (LDA) was performed to 

evaluate whether the profile of amino acids and ammonium ion were different enough to 

distinguish the samples analyzed in this study based on substrate and AAB strain. For 

this purpose, we selected the variables mentioned above in Factor 1 and 2. Both 

standard and forward stepwise analyses were performed in LDA and the AAB strain was 

the grouping variable. The classification matrix was 100% for the standard and the 

forward stepwise analysis. However, while the standard analysis considered all these 

variables, the forward stepwise analysis did not select glutamic acid or phenylalanine. 

The scatterplot of canonical scores of the standard and forward stepwise analyses are 

shown in Fig. 3. As it can be observed, the selected variables were able to clearly 

separate the substrate from the gluconic acid products. However, although the final 

products showed a similar amino acid profile, the LDA was able to group the samples 

from gluconic acid fermented beverages according to the strain involved in their 

fermentation process. 
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Figure 3. The scatterplot of canonical scores of standard (A) and forward stepwise (B) analysis. 

 

4. CONCLUSIONS 

A method for the determination of amino acid and biogenic amines in gluconic acid 

fermentation was successfully adapted, obtaining adequate values and demonstrating 

good linearity and precision, as well as low detection and quantification limits. Its utility 

for the routine analysis of amino acids and biogenic amines in this type of product has 

been shown. 
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The fermented products did not contain biogenic amines. The amino acid profile, 

specifically the concentrations of glutamine, alanine, arginine, proline, glutamic acid, 

asparagine-serine, isoleucine, leucine and phenylalanine allows the discrimination of the 

beverages according to the AAB strain responsible for the fermentation. Fermentation 

with G. japonicus resulted in major amino acid concentration changes. 
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