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Abstract 

The exploitation of personal microdata (such as census data, preferences or 
medical records) is of great interest for the data mining community. Such data 
often include sensitive information that can be directly or indirectly related to 
individuals. Therefore, privacy-preserving measures should be undertaken to 
minimize the risk of re-identification and, hence, of disclosing confidential 
information on the individuals. In the past, many privacy-preserving methods 
have been developed to deal with numerical data, but approaches tackling the 
protection of nominal values are scarce. Since the utility of this kind of data is 
closely related to the preservation of their semantics, in this work, we exploit 
several semantic technologies to enable a semantically-coherent protection of 
nominal data. Specifically, we use ontologies as the ground to propose a 
semantic framework that enables an appropriate management of nominal data 
in data protection tasks; such framework consists on a set of operators that 
characterize and transform nominal data while taking into account their 
semantics. Then, we use this framework to adapt perturbative privacy-
preserving methods to the nominal domain. Specifically, we focus on methods 
based on the two main principles underlying to data protection: permutation-
based approaches, i.e., rank swapping, and noise addition. The proposed 
methods have been extensively evaluated with real datasets. Experimental 
results show that a semantically-coherent management of nominal data 
significantly improves the semantic interpretability and the utility of the 
protected outcomes. 
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Resum 

L’explotació de microdades personals (p. ex., dades censals, preferències, o 
registres de salut) és de gran interès per a la mineria de dades. Aquestes dades 
sovint contenen informació sensible que pot ser directament o indirectament 
relacionada amb els individus. Per tant, cal implementar mesures per a 
preservar la privadesa i minimitzar el risc de re-identificació i, conseqüentment, 
de revelació d’informació confidencial sobre els individus. Tot i que s’han 
desenvolupat nombroses mètodes per preservar la privadesa de dades 
numèriques, la protecció de valors nominals ha rebut escassa atenció. Donat 
que la utilitat d’aquest tipus de dades està estretament relacionada amb la 
preservació de la seva semàntica, en aquest treball explotem diverses 
tecnologies semàntiques per fe possible una protecció coherent amb el 
significat de les dades nominals. Específicament, fem servir ontologies com a 
base per a proposar un marc de treball semàntic que permeti manegar dades 
nominals segons en seu significat en tasques de protecció; aquest marc consta 
d’un conjunt d’operadors que caracteritzen i transformen dades nominals a la 
vegada que consideren la seva semàntica. A partir d’aquí, fer servir aquest 
marc per adaptar mètodes pertorbatius de protecció de la privadesa. 
Particularment, ens centrem en mètodes basats als dos principis subjacents a la 
protecció de dades: enfocaments basats en permutació, concretament, rank 
swapping, y addicció de soroll. Els mètodes proposats han estat avaluats 
extensament amb conjunts de dades reals. Els resultats experimentals mostren 
que manegar les dades nominals semànticament millora significativament la 
interpretabilitat i la utilitat dels resultats protegits.  
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Resumen 

La explotación de microdatos personales (p. ej., datos del censo, preferencias, o 
registros de salud) es de gran interés para la minería de datos. Tales datos a 
menudo contienen información sensible que puede ser directa o indirectamente 
relacionada con los individuos. Por tanto, resulta necesario implementar 
medidas para preservar la privacidad y para minimizar el riesgo de re-
identificación y, por consiguiente, de revelación de información confidencial 
sobre los individuos. Pese a que se han desarrollado numerosos métodos para 
preservar la privacidad de datos numéricos, la protección de valores nominales 
ha recibido escasa atención. Puesto que la utilidad de este tipo de datos está 
estrechamente relacionada con la preservación de su semántica, en este trabajo 
explotamos varias tecnologías semánticas para posibilitar una protección 
coherente con el significado de los datos nominales. Específicamente, 
utilizamos ontologías como base para proponer un marco de trabajo semántico 
que permita manejar datos nominales según su significado en tareas de 
protección; dicho marco consta de un conjunto de operadores que caracterizan 
y transforman datos nominales a la vez que tienen en consideración su 
semántica. A partir de aquí, utilizamos este marco para adaptar métodos 
perturbativos de preservación de la privacidad al dominio nominal. 
Particularmente, nos centramos en métodos basados en los dos principios 
subyacentes a la protección de los datos: enfoques basados en permutación, 
concretamente, rank swapping, and adición de ruido. Los métodos propuestos 
han sido extensamente evaluados con conjuntos de datos reales. Resultados 
experimentales muestran que manejar los datos nominales semánticamente 
mejora significativamente la interpretabilidad y la utilidad de los resultados 
protegidos. 
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Chapter 1 Introduction 

 
Data of individuals arising from surveys or electronic records are of great 
interest for public and private organizations. The publication of this 
information allows conducting a variety of statistical studies, for instance, on 
health, education, trade preferences, living conditions or employability. 
Particularly, these data are crucial to improve decision-making in business [1] 
and healthcare [2], or to offer personalized services that enhance the online 
experience [1].  

However, when data about individuals are made available for secondary 
use, special care must be taken to avoid privacy violations. Specifically, 
personal data usually contain personally identifiable information (PII), which 
may enable the re-identification of individuals, and confidential information, 
which may disclose sensitive information on re-identified subjects. Due to the 
plausibility of these threats, and because the protection of individuals’ privacy 
is a fundamental social right, government agencies and current legislations 
emphasize the need of protecting personal data from disclosure. For that, 
individuals’ detailed data (i.e., microdata) must be subject to an 
anonymization process before their release, so that subjects cannot be re-
identified in the protected dataset and, thus, confidential data cannot be 
univocally associated to an identity. In this respect, some studies [3, 4] have 
shown that removing identifying attributes, such as identity numbers or names, 
it is not enough to anonymize data, because combinations of certain non-
identifying attributes, known as quasi-identifiers (e.g. occupation + sex + ZIP 
code), may be linked with external data sources (e.g. voter registration) to 
enable re-identifications. Re-identification via data linkage constitutes a real 
and serious privacy threat that, nowadays, allows data brokers to compile and 
aggregate individuals’ data gathered from different sources (e.g., census data, 
social media or on-line transactions); this information is then used to perform 
inferences about individuals’ habits or preferences, and to construct user 
profiles that can be exploited to conduct marketing campaigns, but also to 
engage potentially discriminatory actions (e.g., in job or health insurance 
applications) [1]. 
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1.1 Motivation and approach 

To minimize the chance of re-identification, quasi-identifying attributes should 
be subjected to anonymization. In turn, because the ultimate motivation 
underlying to data releases is to conduct analyses on the such data, 
anonymization should be done in a way that the protected data still retain as 
much analytical utility as possible; that is, the conclusions or inferences 
extracted from the analysis of the anonymized dataset should be similar to 
those of the original dataset. With the goal of balancing these two, a priori, 
contradictory goals (i.e., privacy and utility preservation), different masking 
methods have been proposed within the disciplines of Statistical Disclosure 
Control (SDC) [5], Privacy-Preserving Data Publishing (PPDP) [6, 7]. The 
proposed methods generate a modified version of the original data by 
generalizing, distorting or introducing ambiguity on the quasi-identifying 
attributes while preserving certain statistics features. Among them, 
perturbative masking methods (such as those based on noise addition, data 
aggregation or data permutation) are the most widespread, because they offer 
a good trade-off between utility and privacy dimensions [5].   

However, most perturbative masking methods have been designed to deal 
with continuous numerical data and, at most, with ordinal categorical data [5]. 
Specifically, in order to transform data while retaining some of their statistical 
features, perturbative methods extensively rely on arithmetical and statistical 
operators meant exclusively for numerical (or, at least, ordinal) data. This 
contrasts with the fact that most of the data that are currently being gathered 
and exploited on individuals are of nominal nature [1], e.g., attributes and 
messages posted in social media [8], healthcare outcomes stored in electronic 
healthcare records [9], queries performed to web search engines [10] or logs 
resulting from on online transactions [11]. Unlike numerical data, nominal 
data are finite, discrete, textual and non-ordinal. In this scenario, it is generally 
not possible to carry out the arithmetical transformations required by 
perturbative masking. Moreover, whereas the utility of numerical data depends 
on the preservation of their statistical features, for nominal values, which refer 
to concepts or instances, data utility is closely related to the preservation of 
semantics [12]; thus, data transformations carried out during the protection 
process require from mechanisms that consider the meaning of words. 
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Data semantics have been traditionally neglected (or scarcely considered) 
in the literature on privacy protection [12, 13]. Therefore, new proposals that 
are able to capture, manage and preserve the semantics underlying to nominal 
data during the masking process are needed. 

This thesis aims at contributing to this need by studying how to capture and 
integrate data semantics within the context of perturbative microdata 
anonymization. Its originality consists on the management and transformation 
of nominal attributes from a semantic point of view, rather than from a 
symbolic way. 

The semantic interpretation of nominal data for masking purposes requires 
the exploitation of structured knowledge sources, which allow mapping values 
in nominal attributes with their conceptual abstractions and, as a result, 
analyze the semantics underlying to them. To do so, in this work we rely in the 
well-known ontological paradigm. Ontologies are rigorous and exhaustive 
organizations of knowledge domains, modeling concepts and their 
interrelations [14]. Works in other fields [15] demonstrate that, by exploiting 
ontologies, we can design semantically grounded mechanisms are able to 
better interpret, analyze and manage textual resources. 

1.2  Objectives 

The main objective of this thesis is the design of perturbative masking 
methods well suited for the anonymization of nominal data from a semantic 
point of view. That is, we aim at obtaining an anonymized dataset that is as 
semantically similar to the original data as possible, while offering privacy 
guarantees equivalent to those of standard numerical methods. In this manner, 
the utility of protected nominal data, which closely depends on the 
preservation of their underlying semantics, can be better preserved.  

To achieve this objective, the following specific goals are defined:  
 

1. To study the privacy threats underlying data releases and survey works on 
data protection framed in the areas of Statistical Disclosure Control 
(SDC) and Privacy Preserving Data Publishing (PPDP). These methods 
will be characterized according to their operating principles, the types of 
data they are able to deal with and the data utility aspects they better 
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preserve. Specifically, we will compile and review the state of the art on 
data protection methods for nominal data.  

2. To study the possibilities offered by structured knowledge sources 
(ontologies) to capture the semantics conveyed by nominal data. 
Specifically, we will rely on the notion of ontology-based semantic 
similarity [16], which enables a semantically-coherent management of 
textual data, and which we will use to guide data anonymization from a 
semantic perspective.   

3. To design a framework for nominal data management consisting on a set 
of semantic operators that enables the characterization, comparison and 
transformation of nominal data from a semantic point of view. Ontologies 
and ontology-based semantic similarity will be used as the basic pillar to 
propose these semantically-grounded operators. 

4. To apply our framework to adapt SDC and PPDP methods initially 
designed exclusively for numerical data so that they can deal with 
nominal data in a semantically-coherent way. Specifically, we will focus 
on methods based on the two main principles underlying to data 
protection [17]: permutation-based approaches (i.e., rank swapping) and 
data distortion mechanisms based on noise addition. 

5. To implement the proposed methods and to evaluate and compare their 
performance on nominal data against related works w.r.t. their ability to 
preserve the semantic features of the data. 

1.3 Document structure 

The remaining of this document is organized in the following chapters:  

 Chapter 2 introduces the main notions on data privacy and privacy 
protection, and surveys and characterizes works in SDC and PPDP. 

 Chapter 3 reviews related works applying or proposing data protection 
mechanisms to nominal data, and highlights their limitations w.r.t. the 
preservation of data semantics.  

 Chapter 4 introduces the notion of ontologies and surveys the literature on 
semantic similarity. We also present our framework that, by relying on 
the former, proposes a variety of semantically-grounded operators to 
manage nominal data.  
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 Chapter 5 details our adaptation to the nominal domain of a permutation-
based data protection mechanism: rank swapping. Univariate and 
multivariate algorithms are proposed.   

 Chapter 6 presents our notion of semantic noise, and details our 
adaptation of several noise addition mechanisms (uncorrelated and 
correlated noise) to nominal data.   

 Chapter 7 empirically evaluates our methods with real nominal data and 
compares the results they provide against non-semantic mechanisms. The 
utility of the protected data is measured according to the preservation of 
several marginal and joint semantic features of the data. 

  Chapter 8 summarizes the main contributions of this thesis and presents 
some lines of future research. 
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Chapter 2 Background on privacy protection 

Data about individuals are collected by governments and companies for a 
variety of purposes. These data stores are valuable resources for research and 
market analysis and, therefore, there is a growing demand to access them. 
However, the dissemination of individuals’ data is a controversial task. On the 
one side, there is a demand to access accurate data, that is, the released data 
should retain their analytical utility; on the other side, there is a risk of 
disclosing confidential information about specific individuals, that is, data 
should be protected before making them available for secondary use. In this 
chapter, we discuss such issues and review the privacy-preserving methods 
that exist in the literature aiming to satisfy simultaneously utility and security 
conditions.  

2.1 Data privacy 

In the current era of big data and digital societies, information collection, 
storage and processing capabilities have meaningfully grown. Social networks, 
electronic records or web browsing generate huge volumes of information 
about individuals which are of great interest for public and private 
organizations. Collection and processing (e.g., data mining) of these data 
allows conducting a variety of surveys, improving decision-making in business 
or offering personalized services to enhance the online experience. However, 
the dissemination of personal data may compromise the individuals' privacy, 
which is considered a fundamental right, and it is supported by international 
treaties and constitutional laws, such as the Universal Declaration of Human 
Rights (1948), which devotes its Article 12 to privacy.   

In this scenario, governmental agencies and current legislations on data 
protection emphasize the need of adequately protecting Personally Identifiable 
Information (PII) [18] to preserve individuals’ privacy. PII includes not only 
identifying data, such as social security numbers, but also any non-identifying 
data that, in combination with other non-identifying features, can be used by 
external entities to re-identify individuals by linking them with external data 
sources [3, 4]. The latter constitutes a real and serious privacy threat and, in 
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fact, is being currently employed by data brokers to compile and aggregate 
individuals’ data and, from these, build user profiles that are latter used or sold 
to third parties for commercial and business purposes [1]. Regarding privacy 
violations in data dissemination [19, 20], Title 13, Chapter 1.1 of the U.S. 
Code states that “no individual should be re-identifiable in the released data”. 
Against this background, reaching a tradeoff between individual’s privacy 
protection and protected data that are still useful for analysis is the key point to 
guarantee individuals’ rights while ensuring the continued growth of the 
digital society. Among the main areas where the data release takes place, we 
highlight the followings:  

 Official statistics. National Statistical Institutes (NSIs) collect and publish 
a wide range of high quality statistical information about the population, 
which allow conducting a variety of statistical studies, e.g., about 
education, living conditions or employability.    

 Health information. Electronic Health Records (EHRs) defined as digital 
collections of health information about individual patients, are especially 
valuable resources for clinical research and education, and a vehicle to 
improve quality of health care delivery and reduce medical errors [21]. 
The analysis of EHRs allows conducting a variety of studies about 
treatment models, clinical practice guidelines, prevention measures, 
adverse drug reactions or drug interactions [2]. Because clinical data are 
considered of sensitive nature by the EU Data Protection Act 1998 and 
the Human Rights Act, the use of the health care data for research 
purposes must guarantee confidentiality of the patients to which the data 
refer. For that, different regulations have been adopted, such as the Health 
Insurance Portability and Accountability Act (HIPAA) [22] in the United 
States or the General Data Protection Regulation (GDPR) [19] in the 
European Union. 

 Online services. The extensive use of online services, whether to buy 
online, use social networks or make queries to web search engines, leave 
traces of personal information that the providers can compile and use for 
their purposes or sell to third parties. These services have dramatically 
increased the availability, variety and volume of users’ data. Different 
commercial data sources may be used by companies to obtain a detailed 
profile of consumers. In a survey carried out by Federal Trade 



9 
 

Commission from the United States [1], the authors highlight the 
following sources of data acquisition: customer lists from registration 
websites, online advertising networks, consumers’ web browsing 
activities and directly from their merchant and financial service company 
clients. This information allows companies (i) to identify groups of 
consumers, (ii) to predict an interest, analyze the characteristics the 
consumers share, and use the shared characteristic data to create a 
predictive model to apply to other consumers, (iii) to create or enhance 
products and services, and (iv) for more individualized and controversial 
uses, such as creating user profiles that can then be used for potentially 
discriminatory purposes (e.g., in jobs or health insurance). Such 
information is subject to strict regulation to not result in public profiling 
of individuals, such as [23] for regulations in the European Union. 

2.2 Types of data releases 

Individuals’ information can be released in three main ways [3, 24]: as 
macrodata, which consist of aggregated values of groups of individuals 
published in contingency tables for the frequency distribution of the variables 
or magnitude tables for other aggregate magnitudes; as queryable databases, 
that is, interactive databases to which user can submit statistical queries to 
obtain aggregate information, such as counts or averages; and as microdata, 
where each record of the dataset details the attributes of a specific individual, 
i.e., individuals’ raw data.  

Unlike aggregate data, microdata confer flexibility to perform a per-
individual analysis and, on the contrary to queryable databases, they do not 
restrict the type and number of data analyses [25]. However, the publication of 
microdata may lead to disclosure of confidential information related to the 
individuals from whom the data have been collected. In this regard, a data 
collector must guarantee that no sensitive information about specific 
individuals is disclosed. To satisfy such guarantee, it is necessary that 
microdata be subjected to an anonymization process before their release.  
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2.2.1 Microdata sets 

A microdata set can be represented as a table (matrix), where each record 
(row) contains information about a single individual from those who took part 
in the data collection process, and each attribute (column) contains information 
regarding one of the features collected. We use X to denote the collected 
microdata set and assume that X contains information about n respondents and 
m attributes. We use xi to refer to the record contributed by respondent i, and 

1( , , )n
a a aX x x  to refer to the a-th attribute. The value of the a-th attribute 

for the respondent i is denoted by a
ix . 

The attributes in a microdata set are usually classified in the following 
categories according to their sensitiveness and the type of disclosure risk they 
cause [24]: 

 Identifiers. An attribute is an identifier if it enables a univocal 
identification of the individual to whom the record refers, e.g., the social 
security number (SSN). To preserve individuals’ privacy, identifiers are 
usually removed from the dataset before releasing it, so that other 
(confidential) attributes from the same dataset cannot be directly 
associated to a specific individual. Specifically, before sharing clinical 
datasets, the HIPAA requires that the patient data are de-identified by 
erasing the identifiers classified as Protected Health Information (PHI). 

 Quasi-identifiers. A quasi-identifier attribute is a non-identifying attribute 
that, in combination with other non-identifying attributes from the dataset, 
may result identifying. We use the term quasi-identifier to refer to the 
identifying combination of non-identifying attributes in the dataset (e.g., 
occupation + sex + ZIP code), and quasi-identifier attribute to refer to the 
attributes that conform a quasi-identifier. A quasi-identifier may be 
employed by attackers to re-identify individuals by linking it with non-
anonymous external data sources (e.g., voter registration). If the exploited 
external sources contained some identifier, attackers could determine the 
individuals’ identity from the dataset, as demonstrated in several studies 
[3, 4, 26].  Nowadays, the amount of information externally available in a 
variety of sources (e.g., electoral rolls, census data or social media) 
together with the increasing amounts of computational power facilitates 
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conducting such re-identifications. In practice, any attribute is potentially 
a quasi-identifier attribute depending on the external information 
available for the attacker [26]. Unlike identifiers, quasi-identifier 
attributes must not be removed from the dataset because they provide 
useful information to data analysis. Therefore, to not jeopardize the 
individuals’ privacy, the release of quasi-identifier attributes must be 
protected. 

 Confidential attributes. A confidential attribute is an attribute that 
contains sensitive information on the individuals, e.g., health condition. 
Because of their sensitive nature, confidential attributes must be 
especially protected. This does not only mean preventing the attacker 
from determining the exact value that a confidential attribute takes for 
certain individual, but also preventing inferences on the value of that 
attribute, such as lower-bounding and upper-bounding it. Note that a 
confidential attribute also can be considered a quasi-identifier attribute.  

On the other hand, according to their data type, the attributes in a microdata 
set can be classified as: 

 Numerical. An attribute is numerical if it admits arithmetical operations 
and order relationships. In turn, a numerical attribute can be either 
continuous (e.g., income) or discrete (e.g., age). Some operations carried 
out on discrete numerical values (e.g., aggregation) may require 
approximating the result or using discrete arithmetical operators (e.g., the 
mode instead of the mean).  

 Categorical. An attribute is categorical if it does not admit arithmetical 
operations. In turn, a categorical attribute can be either ordinal if it admits 
order relationships (e.g., color, where the different colors may be ranked 
on basis of their wave lengths) or nominal if it does not admit order 
relationships, which is the case of most textual data. Much of the 
information used by data brokers for categorizing individuals is of 
nominal type [1] (e.g., occupation, education or personal interests). 

When publishing a microdata set, the data collector must guarantee that no 
sensitive information about specific individuals is disclosed. Disclosure can be 
classified into two categories [5]: 
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(i) Identity disclosure occurs when an attacker discovers the true identity 
of an individual in the released dataset. 

(ii) Attribute disclosure occurs when an attacker discovers the exact value 
of a confidential attribute of an individual in the released dataset, or 
infers some information about its value, i.e., bounding it (interval 
disclosure). 

2.3 Privacy-preserving methods for microdata 
releases 

To minimize the identity disclosure and, consequently, the possibility of 
gaining confidential information about a specific individual (attribute 
disclosure), the data collector must subject the microdata set to an 
anonymization process prior its release. The main challenge in the 
anonymization process is to find out a balance between privacy and utility: the 
disclosure risk must be limited, but the data need to remain useful for analysis. 
This approach contrasts with the alternative of protecting data via encryption, 
which incurs no disclosure risk at all, but offers no utility.  

To anonymize data, the first action to perform is subject the microdata set 
to a de-identification process, where the identifying attributes (identifiers) are 
removed. In this way, none of the remaining attributes in the dataset can be 
immediately and univocally associated to a specific individual. We assume in 
subsequent chapters that the considered microdata sets do not contain any 
identifier attribute, i.e., the datasets have been de-identified.  

However, de-identification is not sufficient to avoid identity disclosure. De-
identified datasets often contain quasi-identifier attributes whose combination 
may define a unique tuple and, thus, may lead to re-identification (identity 
disclosure). To protect quasi-identifier attributes in a microdata set and, at the 
same time, offer valid data for analysis, different privacy-preserving methods 
have been proposed within the discipline of Statistical Disclosure Control 
(SDC) [5], under the umbrella of National Statistical Institutes (NSIs), and 
within the computer science community under the name of  Privacy Preserving 
Data Publishing (PPDP) [6, 7] and Privacy Preserving Data Mining (PPDM) 
[27]. Whereas both SDC and PPDP are focused on protecting microdata sets 
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for their release, PPDM aims at protecting the outcomes of the data mining 
tasks while keeping secret the original microdata set.  

Privacy-preserving methods can be classified into two main categories: 
masking methods and synthetic methods [3, 28]. To build the protected dataset, 
the masking methods modify the records of the original dataset. Depending on 
the effect on the original data, masking methods are subdivided into non-
perturbative masking methods and perturbative masking methods. By contrast, 
in the synthetic methods, the protected dataset consists of a set of records 
randomly drawn from a statistical model adjusted to the original dataset. 
Because the protected dataset does not directly derive from the original 
dataset, synthetic data seem to have the advantage of avoiding the re-
identification problem. However, some authors [29, 30] state that synthetic 
data overfitted to original data may lead to the re-identification. On the other 
hand, synthetic data only preserve the statistical properties explicitly selected 
by the data protector, which leads to the question whether the data protector 
should not directly publish the statistics he wants preserved rather than a 
synthetic microdata set [24].  

To provide a stronger protection, privacy-preserving methods can also be 
applied to confidential attributes. In this way, even if identity disclosure 
happens, there may not be attribute disclosure.  

As a result of the above, data collectors publish a modified version X* of 
the original microdata set X, called protected or anonymized dataset, where the 
identifiers have been removed and the quasi-identifiers and/or the confidential 
attributes (according to the policy of the statistical agency [5]) have been 
masked.  

2.3.1 Non-perturbative masking methods 

Non-perturbative masking methods protect the original dataset either by 
suppressing some of the data or by reducing their level of detail; in both cases, 
they preserve data truthfulness. We depict the main techniques below: 
 

 Sampling [28]: this method is based on publishing an unmodified record 
sample S of the original dataset X. For example, S may be composed of 
the set of the even records of X. Since there is an uncertainty about 
whether or not a specific respondent is in the released sample, the 
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disclosure risk decreases. This technique is suitable for categorical data, 
but not for continuous data, because values in a continuous attribute are 
probably unique for each respondent, i.e., it is highly unlikely that two 
respondents will take the same value for the continuous attribute and, 
thus, unique matches of S with the external data sources could still 
happen. 

 Generalization [31]: this technique, also known as global recoding, 
replaces the attribute values by more general values, thus reducing the 
detail of the original information. Generalization is usually performed at 
the attribute level, that is, either all or none of the records are generalized. 
To mask an attribute, it is necessary to represent the values of the attribute 
domain in a generalization hierarchy, where the most general value is at 
the root of the hierarchy and the most specific values correspond to the 
leaves. The generalization process proceeds by replacing the values 
represented by the leaf nodes with one of their ancestor nodes at a higher 
level. As an example, for a nominal attribute that details the occupation of 
a set of individuals, values as hotel clerk and file clerk could be replaced 
by the category clerk. For a continuous attribute, original values are 
replaced by numerical intervals. Top and bottom coding is a special case 
of generalization in which the top values (those above a certain threshold) 
and the bottom values (those below a certain threshold) in the attribute are 
respectively replaced by a value that represents the upper limit (top-code) 
and by a value that represents the lower limit (bottom-code). The idea 
behind of this technique is that values overcoming a threshold are 
considered unusual and, therefore, are more prone to be easily associated 
with specific individuals. For instance, consider a de-identified dataset 
that stores information about active staff; because aged people carrying on 
their profession are uncommon and, thus, more easily re-identifiable by 
an attacker, the top-code could be set to 60 whereby any age greater than 
this value will be replace by “>60”. By definition, this method can be 
used on attributes that can be ranked, that is, numerical or categorical 
ordinal.  

 Local suppression: This method is based on removing certain values of an 
attribute that are likely to contribute significantly to the disclosure risk of 
the involved records. Particularly, because uncommon combinations of 
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quasi-identifier values (outlier records) in the dataset may lead to re-
identification, certain values in those combinations are replaced by the 
value missing to subtract their uniqueness. Suppression can be performed 
at the record level (entire records are suppressed), or on particular 
attributes in some records. Obviously, deleting values may severely 
hamper the accuracy of the analysis. Because continuous attribute values 
tend to be unique for each individual and it does not make sense to 
systematically suppress the values of these attributes, local suppression is 
rather oriented to categorical variables. In this respect, [31] proposes ways 
to combine local suppression and generalization. 

2.3.2 Perturbative masking methods 

Perturbative masking methods are based on distorting the original data to 
produce a protected dataset. Unlike non-perturbative methods, the perturbative 
ones may yield non-truthful data for individual records. We depict the main 
perturbative techniques below.    

2.3.2.1 Noise addition 

Noise addition is a family of methods that consist of adding to the input data a 
random noise sequence, typically drawn from a probability distribution. The 
main approaches to noise addition are uncorrelated noise, for individual 
attributes, and correlated noise, for multivariate datasets, both of them 
formulated for continuous  data [5]. 

Particularly, uncorrelated noise addition [32] is based on adding sequences 
of normally distributed random noise to individual attributes from an input 

dataset. In order to distort a attribute aX with n records, each value a
ix is 

replaced by a noisy version *a
ix : 

 * ,a a aX X     (2.1) 
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where 1 , ,{ }a
n

a a    2~ (0, )a  is a noise sequence randomly drawn from 

a normal distribution with mean zero and variance 2
a . The error variance 

2
a  is proportional to the original attribute variance 2

aX  as follows: 

 2 2 0,a aX      (2.2) 

 
The parameter α determines the amount of noise to be added, whose value 

usually ranges between 0.1 and 0.5 [33]. The higher the α, the higher the 
distortion level. Note that if α > 0.5, more than 50% of the variation in the 
distorted data is caused by the added noise and, therefore, the data values tend 
to become marginal. 

The result of uncorrelated noise addition is a distorted attribute that 
preserves the mean of the input attribute and keeps the variance proportional in 
a factor 1+α: 
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  (2.3) 

 
In order to distort multiple attributes, given the uncorrelated character of 

the method, the noise must be applied to each attribute independently [33, 34], 
without considering the noise applied to previous attributes. Consequently,  
 

  , 0,a bCov a b       (2.4) 

Because the covariance between any two noise vectors a  (added to an 

attribute aX ) and b  (added to an attribute bX ) is null, the correlation 
between noise-added attributes is not preserved. Thus, the method is suitable 
for statistical analyses over attributes but not over records with non-
independent attributes. 

In order to solve this limitation, Kim [35] proposes a method to add 
correlated random noise to several attributes in a dataset X with m attributes, 
such that: 

 * ,X X     (2.5) 
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where *X , X and ε are (nm) matrices and ε ~ N(0, Σε) follows a multivariate 
normal distribution (MVN) with mean the m-dimensional vector 0 and 

covariance matrix the (mm) matrix Σε,  
 

 , 0,X       (2.6) 

  
where ΣX is the covariance matrix of X, a symmetric matrix whose diagonal 
elements are the variances of individual attributes and the off-diagonal 
elements are the covariances between attribute pairs. 

In consequence, the method preserves the mean of each attribute, keeps the 
covariance matrix of the distorted data proportional to the covariance matrix of 
the original data in a factor 1+α and maintains the Pearson correlation 
coefficient ρ between the attributes, 
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

   (2.7) 

2.3.2.2 Swapping 

Data swapping relies on exchanging the values within of each attribute in such 
a way that low-order frequency counts are preserved. This technique was 
originally presented to protect datasets with categorical attributes [36] and was 
extended to continuous data in [37]. 

Rank swapping, a variant of data swapping proposed by Greenberg in an 
unpublished manuscript [38] and described by Moore in [39], improves the 
analytical utility of the protected dataset by limiting the scope of the swaps and 
maintaining each permuted value within a certain rank-distance from the 
original one. Firstly, the method sorts in ascending order the records of the 
dataset by the values of the first attribute to be protected. Then, each value of 
the attribute is swapped with another one randomly chosen within the interval 
formed by the successive k records in the ranking, such that k=p.n/100, being p 
a user-defined percent of the total number of records. In this way, the rank of 
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two swapped values cannot differ by more than p% of the total number of 
records. Large values of p lead to greater permutations in the data whereas the 
smaller values of p induce a higher disclosure risk. The method is 
independently applied on each original attribute using, as input, the permuted 
dataset obtained in the previous iteration. Rank swapping was initially defined 
for ordinal categorical data and subsequently applied to continuous data [40].  

In [41] the authors propose two new versions of rank swapping where each 
value can be swapped by any other value of the attribute, such that closer 
values have a higher probability to be selected than distant ones. This approach 
tries to avoid the interval disclosure, i.e., an attacker trying to link records will 
not be able to delimit the swapping interval with full confidence. The first 
version, named rank swapping p-distribution, defines the swapping interval 
using a normal probability distribution defined by μ = σ = 0.5 p. To permute an 

attribute X
a
,  each ranked value a

ix  is swapped by the ranked value a
i rx  , r 

being a random number generated from N(0.5p, 0.5p); thus, distant values 
have lower probability to be selected than closer values. In the second version, 
named rank swapping p-buckets, the ranked values of the attribute are split 

into p buckets. Then, each ranked value a
ix  is swapped by a randomly selected 

value from another bucket which has been chosen according to a probability 
distribution. Obviously, buckets closer to the original value are selected with 
higher probability than the distant buckets. Both versions provide a lower 
disclosure risk than the standard method, but a larger information loss.  

2.3.2.3 Microaggregation  

This technique reduces the variability of the attributes by replacing the original 
values by small aggregates or microaggregates. The masking process is carried 
out in two steps: first, the dataset is partitioned into sets of at least k records 
and, then, the original values in each set are replaced by the group 
representative value, typically the average value or centroid. The higher the 
within-group homogeneity, the lower the within-group variance, and thus, the 
more representative the group average value will be. To maximize within-
group homogeneity, groups are formed using a criterion of maximum 
similarity. 
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Depending on whether microaggregation deals with one or several 
attributes at a time, this technique is classified into univariate and multivariate. 
The univariate method, known as individual ranking [42, 43],  
microaggregates each attribute independently. Firstly, the records in the 
dataset are sorted by the first attribute to be protected, secondly, groups of k 
contiguous records are formed and, finally, the attribute values within each 
group are replaced by the group representative value (e.g., average value). The 
same procedure is repeated for the rest of the attributes by using as input 
dataset the obtained in the previous iteration.  

Individual ranking causes low information loss [40], but high disclosure 
risk [44]. On the other hand, multivariate methods rank the dataset through 
multi-dimensional sorting [42] using either the first principal component of the 
dataset (that is, the most highly correlated standardized attribute with most 
original attributes of the dataset) or the sum of z-scores (that is, the sum of the 
standardized attribute values in each record). After sorting the records, 
univariate microaggregation is applied on each attribute. An alternative that 
better preserves data utility is to use heuristic methods to build the set of 
records, such as done by the MDAV (Maximum Distance to Average Vector) 
algorithm [45, 46]. The method computes the average record of the dataset 
through the squared Euclidean distance to firstly obtain the most distant record 
xr from the average record and, then, obtain the most distant record xs from xr. 
After that, a cluster is built for xr with the k-1 nearest records, similarly for xs. 
Subsequently, the two clusters are microaggregated and labeled as 
microaggregated. The process is iteratively repeated with the non-
microaggregated records until all records in the dataset are microaggregated. 
In any case, multivariate microaggregation leads to higher information loss 
than individual ranking [40]. Microaggregation was initially defined for 
numerical and subsequently extended to ordinal categorical data in [47]. 
Specifically, the median is used to aggregate ordinal data.  

2.3.2.4 Data shuffling 

Data shuffling [48] is a method to protect continuous confidential attributes 
that combines additive noise perturbation and data swapping. The method 
assumes that a dataset X consists of a set C of k confidential attributes and a set 
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S of m-k non-confidential attributes. The masking process yields as output a 
dataset X*={C*, S}, where only the confidential attributes have been perturbed.  

In a nutshell, the masking process works as follows. Firstly, the method 

builds the (mm) rank-order correlation matrix R of the original dataset X. This 
correlation matrix measures the association between the ranked confidential 
attributes and the ranked non-confidential attributes. After that, it computes the 

(mm) product moment correlation matrix ρ of X using R. The elements ρi,j of 
ρ are computed as follows, 

 
,

, 2sin ,
6

i j
i j r 
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  (2.8) 

 
 

where ρi,j and ri,j are the product moment correlation and the rank-order 
correlation between the attributes at the positions i and j. 

Secondly, the method ranks the non-confidential attributes S. With these 

ranks, obtain the normalized values attr*
is for each non-confidential attribute by 

using the following transformation: 

 attr* 1 ( ) 0.5
,i

i
s

n
 

 
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  (2.9) 

 
 

where (i) represents the rank order of the value of the non-confidential 

attribute S
attr

 in the record i and 1  represents the inverse of the standard 
normal distribution. 

Thirdly, the method generates k perturbed variables Y* from a multivariate 

normal distribution (MVN) with mean the vector 1 * T( ) ( )XS SS S    and 

covariance matrix 1( )XX XS SS SX    .  

Once the perturbed variables Y* have been generated, data shuffling 
performs a reverse mapping from the perturbed values Y* to the original 
confidential values C. The reverse mapping (shuffling) is based on replacing 
the rank ordered perturbed values of Y* with the rank ordered original values 
C. The shuffled values, designed by C*, are the same as the original 
confidential values C, but reordered. 

If all attributes in the dataset are confidential, an independent, multivariate 
normal dataset with correlation matrix ρ is generated and reverse mapping is 
performed on this dataset.  
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Because data shuffling is a patented method and, thus, cannot be 
implemented without an agreement from the authors, it has been scarcely 
evaluated in the literature. 

2.4 Data masking methods w.r.t. utility 
preservation 

Disclosure risk limitation entails some modifications of the original data, 
which causes information loss and decreases the utility of the protected data. 
In any case, the actual data utility depends on the posterior data uses: a 
protected dataset may be useful for some kinds of analysis, but not for others. 
However, because potential data uses are very diverse and it may be hard even 
to identify them all at the moment of data release [5], measuring data utility 
becomes a tough task. See [5] for a thorough review of utility metrics used for 
microdata releases. 

 To minimize the information loss is desirable to maximize the preservation 
of the analytic structure of the dataset, which is determined by statistical 
measures, both univariate (e.g., mean and variance) and multivariate (e.g., 
correlation), as well as by other data features of great analytical interest (e.g., 
outlying values or granularity of the attributes). Information loss can be 
measured by observing the differences between the original and masked data 
[5], and by considering that there is a small loss if the analytic structure of the 
masked dataset is very similar to the structure of the original dataset. Below, 
we discuss strengths and weaknesses of the main masking methods w.r.t. 
information loss.  

Non-perturbative methods are characterized by preserving data 
truthfulness, which results in masked records totally consistent with the 
contents of the original records, but with less detail. However, these methods 
usually lead to a significant loss of information, either by suppressing some of 
the data or by reducing the level of detail. By omitting data, as done by 
sampling and local suppression methods, most features of the dataset are 
severely altered. For example, because outlier records are particularly easy to 
re-identify, if they are present in the input data, these are systematically 
eliminated by such methods. These values that are atypically distant from the 
rest of the data are particularly useful for researchers because they could 
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identify areas calling for further investigation (e.g., rare diseases). Similar 
consequences result from the methods that reduce the detail of the data, as do 
by the generalization method. Because the input values can only be replaced 
by a reduced set of generalizations, this entails appreciable granularity 
penalties. This fact is more noticeable as one moves up in the generalization 
hierarchy: coarse generalizations could hide certain patterns in the data 
analysis and, thus, result in a high loss of information. By omitting data and 
reducing information detail, arithmetical measures are also altered.   

Unlike non-perturbative methods, perturbative ones distort the original data 
and lead to the publication of non-truthful data. As a consequence, it is 
possible that the masked dataset may contain nonsensical value combinations 
for individual records. For example, if the attributes of the dataset are (gender, 
disease) or (occupation, income), after the masking process, it may be the case 
that a masked record has the values (female, prostate cancer) or (clerk, income 
of a senior executive), which may provide wrong conclusions. To minimize the 
number of nonsensical combinations and, thus, obtain a masked dataset with 
coherent values, it is desirable that the perturbative mechanisms be 
parametrizable. In this way, a data collector will be able to adjust the distortion 
level in the masking process and graduate the dissimilarity between the 
original and masked values, thereby obtaining more accuracy datasets.  

Despite altering data truthfulness, perturbative methods provide masked 
datasets of higher analytical utility than non-perturbative ones. In the case of 
rank swapping and data shuffling, the univariate features of the data, such as 
the mean, the variance, the frequency distribution, outlying values and the 
granularity of the attribute samples are perfectly preserved because the values 
in the protected attribute are exactly the same as those in the original attribute 
but permuted. Because microaggregation replaces the original values in each 
set of records by aggregates, when these microaggregates are averages, the 
attribute means are preserved. However, by making data more homogenous, 
the variability and granularity of the microaggregated dataset are reduced. 
Noise addition, on the other hand, is capable of preserving the mean of the 
original attributes and keeping the variance proportional to the level of added 
noise, but might alter the granularity and the outliers. Finally, a study carried 
out in [49] shows that microaggregation preserves better the outliers than noise 
addition.  

Regarding the dependence among the attributes of the input dataset, as 
evidenced in a study that evaluates the utility of the outcomes of several 
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perturbative methods [50], correlated noise addition is the only method that 
fully preserves the correlation structure of the original data, multivariate 
microaggregation yields good outcomes and rank swapping alters significantly 
the correlation structure of the data, thus greatly distorting regression 
inferences. Concerning data shuffling, the authors show in [51] that the rank-
order correlation obtained from the masked data is likely to be very close to 
that of the original data. 

 

Table 2.1 Comparative of masking methods w.r.t. data types and preserved analytical features. 
X: applicable; =: fully preserved feature; ++: highly preserved feature; +: averagely preserved 
feature 

  Non-Perturbative methods Perturbative methods 
 

 Sampl. Generaliz. Suppress.
Noise 

addition
Rank 
swap. 

Micro 
aggregation

Data 
shuffling 

Data 
types 

Continuous 
numerical 

 X  X X X X 

Discrete 
numerical 

X X X  X X X 

Ordinal 
categorical 

X X X  X X X 

Nominal 
categorical 

X X X     

Parametrizable 
perturbation 

   X X X  

Preserved 
analytical 
features 

Truthfulness = = =     
Data nature =  = = = = = 
Frequency 
dist. 

    
=

 
= 

Outliers    + = + = 
Granularity +   + = + = 
Cardinality  =  = = = = 
Mean +   = = = = 
Variance +   ++ =  = 
Correlation +   =  + ++ 

 
As summary and guide for practitioners and researchers on protected 

microdata releases, Table 2.1 shows the data types on which each masking 
method can operate and their impact on the structure of the original dataset. 
Note that, because the generalization method discretizes input continuous 
values to numerical ranges, the nature of the data changes from continuous to 
discrete. In contrast with non-perturbative methods, the perturbative ones 
maintain the continuous nature of numerical values. As we can see, most 
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perturbative masking methods have been designed to deal with numerical data 
and, in some cases, with ordinal data [5]. In this respect, because nominal 
values are finite, discrete, textual and non-ordinal, the arithmetic and sorting 
operations required in these methods do not make sense for nominal data; thus, 
perturbative masking methods in their standard form may seem, a priori, not 
applicable for such type of data.  

2.5 Privacy models 

Whereas data protection methods offer a posteriori privacy guarantees, privacy 
models establish beforehand conditions that the protected data must satisfy to 
guarantee a minimum level of anonymity for the respondents. These privacy 
guarantees can be attained for a particular dataset using one or several of the 
anonymization methods detailed in Section 2.3, as summarized in Table 2.2.  

Below, we depict the main privacy models proposed in the literature and 
when these models can be combined each other to achieve more robust 
protection. In addition, we detail which protection methods can be used to 
enforce a specific privacy model, thereby offering ex ante privacy guarantees.  

2.5.1 k-anonymity 

k-Anonymity is a privacy model for microdata releases focused on preventing 
the re-identification of the individuals to whom the data refer.  

Let X be a microdata set consisting of quasi-identifier attributes and 
confidential attributes. To prevent re-identification, the idea underlying in k-
anonymity is to make the combination of quasi-identifier attributes non-unique 
by making them indistinguishable within groups of records. For that, k-
anonymity [31] requires each combination of values of the quasi-identifier 
attributes in the released dataset X* to be shared by k or more records. The set 
of records in X* sharing the values for all the quasi-identifier attributes is 
named equivalence class. In this way, k-anonymity guarantees that, for any 
combination of quasi-identifier values in the released dataset X*, there are at 
least k-1 records sharing the same combination. Therefore, an attacker with 
access to an external non-anonymous identifying dataset that contains the 
quasi-identifier attributes from the released dataset X* will not be able to link a 
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specific individual to a specific record in X*. In this scenario, the attacker will 
be able to, at most, identify the set of k records in X* that contains the target 
individual. Therefore, the probability of performing the right re-identification 
is not greater than 1/k.  

Two main approaches can be used to generate k-anonymous datasets. The 
first one is based on  combining two non-perturbative masking methods: 
generalization and local suppression [4, 31]. On the one hand, by generalizing 
attribute values within record groups to a common value or tuple, they are 
made indistinguishable. On the other hand, suppression contributes to reduce 
the amount of generalization required to generate the k-anonymous dataset by 
removing outlier records. This approach has the disadvantage of requiring a 
high computational cost to find an optimal recoding that minimizes the 
information loss [52]. A second more practical approach is based on 
microaggregation [46]: by construction, when microaggregation is directly 
applied to the quasi-identifier attributes a dataset with a minimum cluster size 
of k, the outcome satisfies k-anonymity.  

A k-anonymous dataset X* is protected against identity disclosure because 
its quasi-identifier attributes have been homogenized to limit the probability of 
record re-identification to 1/k. However, if the confidential attributes of X* 
have null or low variability within an equivalence class, an attacker can 
determine the exact or approximated value that a confidential attribute takes 
for those individuals. Specifically, if all the individuals within an equivalence 
class share the same value in a confidential attribute and the attacker can 
establish that target individual’ record is within this group, then the attacker 
learns the confidential attribute value, even if re-identification didn’t 
happened. Therefore, k-anonymity cannot guarantee protection against 
attribute disclosure. 

Several extensions of k-anonymity have been proposed in the literature to 
mitigate the risk of attribute disclosure. On the one hand, l-diversity [53] 
requires the presence of at least l different well-represented values in the 
confidential attribute for each equivalence class. On the other hand, t-closeness 
[54] requires the distribution of the confidential attribute in each equivalence 
class to be similar to the distribution in the overall data set. To provide 
protection against attribute disclosure, and thus, offer a stronger privacy 
guarantee, k-anonymity must be combined with l-diversity or t-closeness. 
Again, generalization and suppression have been used to enforce both, 
specifically, by considering the additional constraints imposed by l-diversity or 



26 
 

t-closeness on the confidential attributes to select the groups of records to 
generalize [54, 55]. Very recently, microaggregation have been also adapted to 
enforce t-closeness on top of a k-anonymous microaggregated dataset [56]. 

2.5.2 Probabilistic k-anonymity 

Probabilistic k-anonymity [26] is a privacy model for microdata release that 
offers the same protection guarantees as k-anonymity. Like k-anonymity, it 
limits the probability of re-identification at most 1/k. However, probabilistic k-
anonymity does not require that combinations of quasi-identifier values in the 
released dataset X* to be indistinguishable within groups of k records. By 
relaxing the indistinguishability requirement, it is reasonable to expect that 
probabilistic k-anonymity can be satisfied with less information loss than k-
anonymity.  

Because probabilistic k-anonymity is a relaxation of k-anonymity, if X* 
satisfies k-anonymity, then it satisfies probabilistic k-anonymity. On the 
contrary, probabilistic k-anonymity does not imply k-anonymity.   

Any approach that allows attaining the required limit in the probability of 
record re-identification, can be used to obtain probabilistic k-anonymous 
datasets. Obviously, generalization, suppression and microaggregation 
naturally support probabilistic k-anonymity but, because they reduce the 
granularity of the data to make quasi-identifier values indistinguishable, they 
incur in an unnecessary information loss. Additionally to k-anonymity, rank 
swapping can be used to enforce probabilistic k-anonymity by setting the 
parameter k in the rank swapping method; in this way, an attacker with access 
to the permuted attribute, whose values have been swapped in intervals 
encompassing at k records, would only be able to infer the original values with 
a probability at most 1/k. 

2.5.3 ε-Differential privacy 

Whereas the above privacy models are aimed at microdata releases, ε-
differential privacy was proposed as a privacy guarantee for queryable 
databases [25], where queries (typically count queries) are submitted to a 
database containing the original individual records (microdata). In this query-
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answer interactive environment, differential privacy states the conditions that 
the answers must satisfy so that disclosure risk is under control. The 
anonymization mechanism to attain differential privacy is called a 
differentially private sanitizer and sits between the user submitting queries and 
the database answering them. 

The principle underlying differential privacy is that the presence or absence 
of any single individual in the database should be undetectable when analyzing 
the outcomes of the queries. For that, the sanitizer must limit the contribution 
of any single individual on the response to a query. Because differential 
privacy assumes that each record in the dataset refers to a different individual, 
comparing the outcome of a query before and after an individual has 
contributed her data to the dataset is equivalent to comparing the outcome of 
that query between datasets that differ in at most one record (neighbor 
datasets). Formally, 
 
Definition 1. Let ε be a positive real number and  a randomized function 
that takes a dataset X as input. An output ( )X  to a query f is differentially 

private if, for all neighbor datasets X and X’, and all subsets S of the domain of 
 , ( )X  holds  

 P( ( ) ) P( ( ') )X S e X S       (2.10) 

 
 

ε-differential privacy guarantees that the knowledge gain that can be 
extracted from the response to a query f is limited by a factor of eε. 

The most common differentially private sanitization mechanism is noise 
addition. After the database computes the answer f(X) to a certain user query f, 
the sanitizer adds random noise to f(X) to mask the answer. The noisy answer 

( ) ( )X f X noise    is returned to user that submitted the query f. Different 

distributions can be used to generate noise according to the data type provided 
by f(X): the Laplace distribution is used when f(X) is a real value [57], and the 
discrete Laplace distribution [58] or the symmetric geometric distribution [59] 
are used when f(X) is an discrete numeric value. 

Among noise distributions, the Laplace distribution Lap(0, ∆(f)/ε) with 
mean 0 and scale parameter ∆(f)/ε is the most used, where ∆(f) represents the 
sensitivity of f, i.e., the maximum variation in the query function between 
neighbor datasets, and ε represents the differential privacy parameter. The 
scale parameter is used to calibrate the noise such that, fixed ε, the higher the 
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sensitivity ∆(f), the more Laplace noise is added to mask the effect of any 
single individual record in the response of the query. In other words, to satisfy 
equation (2.10), more noise is required when the function f varies strongly 
between neighbor datasets. On the other hand, when ε is very small, because 
equation (2.10) requires that the probabilities on both sides be almost equal, 

( )X  must yield very similar values for all pairs of neighbor datasets, which 

is achieved by adding a lot of noise. Thus, fixed ∆(f), the smaller ε, the more 
noise is needed to be added.  

Despite differential privacy is designed for queryable databases, different 
approaches have been proposed for microdata release [24, 60, 61]. In most 
cases, a differentially private dataset is generated from noisy histogram 
queries. A histogram on an attribute is constructed by partitioning its domain 
into mutually disjoint subsets and obtaining the frequencies in each subset. 
Then, to prevent the counts from disclosing information on the data and, thus, 
to fulfill ε-differential privacy, discrete noise is applied on the counts. In these 
cases, any number of analysis (queries) can be performed, but utility 
guarantees are only offered for a restricted class of queries (counting queries). 
Very recently [62, 63], an alternative approach for differentially private 
microdata releases have been presented. Instead of releasing noisy counts, the 
authors add Laplacian noise to the actual attribute values. To decrease the 
noise (and, thus, improve data utility), the dataset is prior microaggregated by 
means of univariate [62] or multivariate microaggregation [63], so that original 
values are replaced by averages, which have a lower sensitivity. The advantage 
of this method is that it does not restrict the type and number of analyses on 
the protected dataset.  

Table 2.2 Privacy-preserving methods used to satisfy privacy models 

Privacy model Privacy-preserving method 

k-anonymity 
Generalization + local suppression 

Microaggregation 

k-anonymity + t-closeness 
Generalization + local suppression 

Microaggregation 
k-anonymity + l-diversity Generalization + local suppression 
Probabilistic k-Anonymity Rank swapping 

ε-differential privacy 
Noise addition 

Microaggregation + Noise addition 
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2.6 Conclusion 

In this chapter, we have surveyed and compared privacy protection 
mechanisms that aim at balancing the tradeoff between the individual’s 
privacy and the analytical utility of the protected data. Among them, the 
perturbative masking methods usually provide the most accurate outcomes, 
because they better preserve the statistical features of the data (recall Table 
2.1).  

However, because of their mathematical operating principle, perturbative 
mechanisms are seen as techniques intended for numerical data and, at most, 
for ordinal categorical data. To apply perturbative masking methods on 
nominal data and, thus, embrace their benefits regarding utility preservation, 
mechanisms alternative to the standard numerical algorithms are required. In 
the next chapter, we will discuss this issue and survey the different adaptations 
that have been proposed in the literature to apply perturbative masking to 
nominal data. 
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Chapter 3 State of the art on perturbative 
protection of nominal data 

 

As discussed in Chapter 2, perturbative masking methods provide protected 
datasets that have, in general, higher analytical utility than those obtained with 
non-perturbative mechanisms. However, as their operating principle is based 
on mathematical calculations, perturbative methods, a priori, can only deal 
with continuous data and, in some cases, with ordinal categorical data. This 
contrasts with the fact that most of the personal data that are currently being 
gathered (e.g., from social networks, electronic healthcare records or web 
browsing logs) and that should be subject of anonymization are nominal. 
Therefore, it would be desirable to have available perturbative protection 
alternatives that can manage nominal data.  

This constitutes a challenging goal due to the very nature of nominal data: 
because nominal data are finite, discrete, textual and non-ordinal, it is not 
possible to carry out the arithmetical data transformations required by 
perturbative masking. Moreover, because nominal data refer to concepts or 
instances (rather than numerical magnitudes), the utility of the protected 
nominal data is more closely related to the preservation of data semantics than 
of data distributions [13]; therefore, data transformations should carefully 
consider the semantics conveyed by nominal values.  

Under this semantic perspective, in this chapter we survey the alternatives 
and adaptations proposed in the literature to protect nominal data in a 
perturbative way. Related works have been classified according to the 
perturbative principle they use to protect data: data distortion (which includes 
noise addition), data permutation (which includes data swapping) and data 
aggregation (which includes data microaggregation). 

3.1 Related works on distortion-based methods 

Nominal data have been scarcely considered in noise addition methods and, in 
all cases, data distortion mechanisms alternative to the standard numerical 



32 
 

noise have been proposed. One of the first techniques for distorting nominal 
data was introduced by Kooiman et al. [64]. This method, named Post 
Randomization Method (PRAM), changes the original values of an attribute 
according to a predefined probability distribution. The probability distribution 
is described by a Markov matrix whose entries are the probabilities associated 
with the transitions between each original value and any other value of the 
sample. However, it is generally difficult to find a suitable Markov matrix that 
performs changes with low loss of information [5].  

From another perspective, given that nominal values lack a natural order, 
some authors [65] suggest breaking down the nominal attribute into ordinal 
sub-attributes to facilitate the operations during the distortion process. In this 
regard, an attribute such as place of birth could be turned into the numerical 
variables geographical longitude and latitude, but not all attributes admit an 
ordinal alternative. In [66], Islam and Brankovic present a noise addition 
framework with several probabilistic techniques to distort nominal attributes, 
in which the values of an attribute are replaced by other values of the same 
attribute according to a user defined probability.  

In recent years, noise addition has also gained relevance in the context of 
data privacy thanks to the popularization of the ɛ-differential privacy model 
[25], whose enforcement usually relies on Laplacian noise. Under the umbrella 
of differential privacy, some mechanisms have been proposed to deal with 
discrete data, either discrete numbers or nominal values. On the one hand, the 
geometric mechanism [59] is capable of adding random noise from a 
symmetric geometric distribution to one discrete numeric value, such as an 
integer numeric answer to a query on a given dataset. On the other hand, 
McSherry and Talwar [67] propose the exponential mechanism to distort 
nominal attributes. This method probabilistically chooses the output of a 
discrete function according to the input dataset and a quality criterion based on 
a score function. The score tells us how good a noisy output is for that dataset. 
Since the probability associated with an output increases exponentially with its 
score, the distribution is biased towards outputs with high scores, thus moving 
the expected outcomes closer to the optimum.  

All the above methods rely on the distribution of the data rather than on the 
actual semantics of nominal values. This makes them more suitable for 
discrete numerical values, rather than nominal ones. In an effort to consider 
the meaning of the values, Giggins and Brankovic [68] proposed VICUS: a 
noise addition technique for nominal attributes that uses a similarity measure 
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to capture the notion of transitive similarity between the values of an attribute. 
Because VICUS does not exploit the semantics modeled in ontologies, all the 
values of the dataset and the relationships between them must be manually 
represented in a graph in order to be able to use the similarity measure. From a 
semantic perspective, Abril et al. [69] suggest using noise addition to protect 
individual textual documents while preserving the semantics of the document, 
even though they do not specify the calculation of such noise.  

From the discussion above, we can see that most distortion techniques for 
nominal data available in the literature neglect or poorly consider the 
semantics of nominal values and/or deviate from the standard notion of noise 
addition. Moreover, another limitation to highlight is that the available 
methods manage individual attributes independently and, therefore, neglect the 
potential correlations between attribute pairs. This crucial issue may 
negatively affect data analysis, which usually exploits attribute correlations to 
perform inferences.  

3.2 Related works on permutation-based 
methods 

Various permutation-based methods have been proposed to protect datasets 
while preserving certain statistical features. However, nominal data have 
barely been considered by these techniques. The first one, named data 
swapping [70], is based on swapping the values of each attribute from a 
dataset of  t categorical attributes to yield a permuted dataset whose t-order 
frequency counts, or t-order statistics, are the same as those of the original 
dataset, i.e., a t-order equivalent dataset. Since the t-order statistics are 
preserved, the inferences that derive from them are not altered. To do this, the 
authors introduce the notion of (t-1, Xl) equivalence classes, t being the 
number of attributes to distort in the dataset and Xl  the attribute to distort in 

each step. Two records 1( , , , , )l t
i i i ix x x x    and 1( , , , , )l t

j j j jx x x x    from a 

dataset X with t attributes belong to the same (t-1, Xl) equivalence class if 
1 1 1 1 1 1, , , , ,l l l l t t
i j i j i j i jx x x x x x x x        , i.e., the records belonging to a 

same class only may differ in the value associated to the attribute Xl . To 
distort a given attribute Xl , the method builds all (t-1, Xl) equivalence classes 
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for that attribute and then randomly swaps the values of Xl  within each 
equivalence class. This process is repeated for each one of the t attributes 
using as input the dataset obtained in the previous permutation stage. The 
authors show that any data swap that preserves t-order statistics will 
significantly reduce the risk of disclosure. However, because of the way in 
which data swapping operates, this method is not suitable when most 
equivalence classes in the dataset are composed of one or few records, since 
the swaps can hardly be carried out. 

Concerning the form in which the data are released, in [38, 71] the authors 
present two alternatives: releasing directly the permuted dataset or releasing 
only the t-order statistics obtained from the dataset as contingency tables. In 
the first case, because data are released as microdata, it is necessary to add 
enough uncertainty on the true values of the individuals’ data to reasonably 
protect their privacy. However, identifying a large number of swaps that 
preserves the t-order statistics is computationally impractical [72, 73]. In the 
second case, the existence of other t-orders equivalent to that of original 
dataset protects individuals’ privacy, because attackers cannot know whether a 
certain t-order statistic comes from the original dataset or a permuted one. As a 
feasible approach for the release of microdata, Reiss proposes in [72] a 
variation of data swapping where the t-order frequency counts are 
approximately preserved. Firstly, the method computes the relevant frequency 
tables from the original dataset, and then constructs a new dataset consistent 
with these tables. To do this, the values of an attribute are randomly selected 
according to the probability distribution derived from the original frequency 
tables; because this may produce values not appearing in the original dataset, 
this makes it a synthetic method, rather than a strict data swapping one. 

Because the above methods do not limit the swapping range, very different 
values may be swapped, thereby increasing the information loss. In order to 
limit the scope of the swaps and maintain each permuted value within a certain 
rank-distance from the original one, a new permutation approach named rank 
swapping was proposed. All the methods classified as rank swapping depicted 
in Section 2.3.2.2 have been designed to deal with numerical or ordinal 
categorical data. In both cases, total orders are available to build the value 
ranks in which the algorithms rely. However, nominal data lack a natural total 
order. For such data, rank swapping has been considered either non-applicable 
[5, 74] or it has been suboptimally applied by defining artificial total orders, 
e.g., topological order of categorical labels for nominal attributes [75]. In this 
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latter proposal, a cumulative function of the frequency of the nominal values in 
the attribute defined on the topological order is used to rank the attribute. 
Although with this alternative non-comparables nominal values can be sorted, 
the utility of the protected outcomes may be hampered because of their lack of 
semantic coherence.  

Even though rank swapping is pointed out as one of the best performer data 
protection mechanisms in terms of disclosure risk minimization and data 
utility preservation [40], because swapping is applied independently for each 
attribute, it may alter significantly the correlation structure of the data [50]. An 
alternative permutation approach that tries to overcome this shortcoming is 
data shuffling (Section 2.3.2.4). However, data shuffling has not been applied 
to nominal data because, like rank swapping, requires sorting the values of the 
dataset. 

From the discussion above, we can see that there are no permutation 
techniques for nominal data in the literature that consider the semantics of the 
values. 

3.3 Related works on aggregation-based methods 

As discussed in Section 2.3.2.3, data aggregation is based on building clusters 
of, at least, k indistinguishable records and replacing the original values of 
each record with the representative value of the cluster to which the record 
belongs, typically the central element of the cluster or centroid. In order to 
preserve the accuracy of the data after the aggregation process (i) the records 
within the cluster must be as homogeneous as possible (in this way, similar 
records are aggregated together, thereby minimizing the information loss 
resulting from the replacements), and (ii) the value used to aggregate the 
records in the cluster must be an accurate representative of the elements in the 
cluster.  

Several approaches have been proposed to adapt aggregation-based 
methods to nominal data. On the one hand, [46, 47] propose definitions for 
aggregation and clustering, which are the two basic operations required in 
microaggregation. Specifically, for aggregating nominal data the centroid is 
computed by using the plurality rule or mode. The clustering operation is 
based on the k-modes algorithm. In short, this algorithm obtains the optimal 
cluster through an iterative process. Firstly, cluster centroids are initialized at 
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random, and the values of the attribute are assigned to the cluster of the nearest 
centroid. To determine the nearest centroid of a record, a distance measure is 
used, which is defined as the summation of the distance between individual 
values. The distance is defined as 1 when nominal values are different and 0 
when equal. Finally, cluster centroids are revaluated based on their newly 
assigned records. As both operations are performed solely according data 
distribution and, thus, omit the semantics of the data, this alternative impairs 
the utility of nominal attributes.  

On the other hand, truthfully semantic centroids that consist on the concept 
that taxonomically subsumes all the values in the cluster [76] are negatively 
affected by outliers: generalizing outlying values to a common subsumer 
commonly produces too abstract generalizations that result in a high loss of 
information. In [11, 13, 77], the authors present two microaggregation 
techniques that yield semantically-coherent outcomes by considering both the 
semantics and the distribution of the data during the calculation of the centroid 
and the construction of the clusters. The proposed solutions, which will be 
detailed in the next chapter, are based on capturing and managing the 
semantics underlying to nominal values by exploiting the formal knowledge 
modeled in ontologies.  

In view of the above, microaggregation is the only perturbative masking 
method that has been adapted to work with nominal data from a semantic 
perspective.  

3.4 Conclusion 

The above discussion evinces that most perturbation techniques for nominal 
data available in the literature neglect or poorly consider the semantics of 
nominal values. The accurate management of nominal data is not 
straightforward because, on the contrary to numbers, they take values from a 
discrete and finite list of categories, which are usually expressed by words. 
Since neither arithmetic operators nor a total order relation can be applied to 
this kind of data, simplistic approaches use equality/inequality operators, 
distributional statistics (e.g., mode), probabilistic techniques and artificial total 
orders to compare, aggregate, distort or sort them. These approaches neglect 
the most important dimension of nominal data: the meanings of the words, i.e., 
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their semantics. Consequently, protected nominal datasets may lack semantic 
coherence and, thus, their utility may be severely hampered.  

Microaggregation is the only perturbative masking method that has been 
thoughtfully adapted to yield semantically-coherent outcomes by exploiting 
the formal knowledge modeled in ontologies. The significant improvement of 
utility obtained in [13] with the semantic version against those obtained with 
the standard microaggregation leads to consider the use of ontologies (and the 
semantic techniques that rely on them) as via to interpret nominal data during 
the masking process.  

Specifically, by exploiting ontologies to capture and manage the semantics 
underlying to nominal data, we could adapt to the nominal domain other 
perturbative methods that offer additional advantages over microaggregation. 
In this regard, we focus our attention in two particularly interesting techniques: 
noise addition, because it is the only method that is able to fully preserve the 
dependence relation between the attributes of the dataset, and rank swapping, 
because it is the only non-patented method that is able to perfectly preserve the 
univariate analytical features of the dataset. In fact, rank swapping is 
considered one of the best perturbative mechanisms w.r.t. disclosure risk 
minimization and data utility preservation [40]. In addition, both methods can 
be used to satisfy privacy models and, therefore, offer ex ante privacy 
guarantees, as discussed in Section 2.5. Specifically, rank swapping yields 
probabilistic k-anonymous datasets. On the other hand, noise addition may be 
used as sanitization mechanism to attain differential privacy. 

In addition to the above advantages, a recent study [17] has shown that any 
anonymization method is functionally equivalent to a permutation plus a small 
amount of noise; this turns the spotlight on the permutation-based and 
distortion-based data transformations encompassed by the swapping and noise 
addition mechanisms as the essential principle underlying any data 
anonymization.  
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Chapter 4 Semantic Operators 

 

As discussed in Chapter 3, most perturbative masking methods available in the 
literature neglect or poorly consider the semantics of nominal data. Because 
the utility of such data is closely related to the preservation of their semantics, 
data transformations employed during the protection process would require 
from operators (the difference, the mean, the variance, the covariance and the 
sorting operator) that consider the meaning of words. For such purpose, in this 
chapter, we first introduce the notion of semantic domain for nominal data, 
which is based on an underlying ontology, and discuss existing ontology-based 
semantic similarity measures that can be used to compare nominal values 
(difference operator). Then, we introduce a semantically-coherent version of 
the mean, which conveys the meaning of a sample of nominal values and 
present, as our contribution, semantic versions of the remaining operators 
needed in data protection: the semantic variance, the semantic covariance and 
the semantic sorting operator. 

4.1 Ontology 

An ontology is a structured knowledge source that explicitly and consensually 
represents the concepts and the semantic interrelations of a domain of 
knowledge [14]. According to the formal definition proposed in [78], an 
ontology O is composed of a set of concepts or classes C, and a set of relation 
types R. The set of concepts represents the real-world entities of the area of 
knowledge being modeled. For example, in a medical ontology, the concepts 
can be types of diseases, medical procedures or clinical findings; i.e., single 
units of thought with a distinct clinical meaning. R represents types of 
semantic relations between concepts, such as taxonomic relationships, e.g., 
hyponymy and hypernymy (is-a links), and non-taxonomic relationships, e.g., 
meronymy and holonymy (part-of  links).  

Taxonomic relationships define a semi-upper lattice ≤C on C with top 
element rootC. In the concept hierarchy ≤C, a concept cj is a specialization or a 
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subsumed concept of another concept ci, i.e., cj  C ci, if and only if every 
instance of cj is also an instance of ci, ci being a generalization or subsumer of 
cj. cj = C ci means that ci and cj are the same concept. In ≤C the concepts are 
linked by means of transitive taxonomic relationships, which implies that if ck 

 C cj and cj  C ci, then ck  C ci. Consequently, the more general the concept is, 
the upper its position in the hierarchy ≤C will be.  

The most common relation types between concepts modeled in an ontology 
O include: 

 Hyponym: a concept cj is a hyponym of a concept ci if cj is a kind of ci, 
e.g., flu is a hyponym of disease. This relation is often termed is-a 
relationship. 

 Hypernym: a concept ci is a hypernym of a concept cj if cj is a kind of ci, 
e.g., disease is a hypernym of flu.  

 Meronym: a concept cj is a meronym of a concept ci if cj is a part or a 
member of ci, e.g., hand is a meronym of body. This relation is often 
termed part-of relationship. 

 Holonym: a concept ci is a holonym of a concept cj if cj is a part or a 
member of ci, e.g., body is a holonym of hand.  

 Co-hyponyms: two concepts cj and ck are co-hyponyms of a concept ci if 
(i) cj and ck are hyponyms of ci (both cj and ck share the same hypernym 
ci) and (ii) cj and ck are not hyponym each other, e.g., influenza caused by 
influenza A virus and influenza caused by influenza B virus are co-
hyponyms of flu. Co-hyponyms are also known as coordinate terms. 

4.1.1 Types of ontologies 

Guarino proposes in [14] the following classification of ontologies according 
to their level of dependence on a particular task or point of view: 

 Top-level ontologies: describe general concepts like entity, which are 
independent of a particular problem or domain, such as WordNet [79] or 
Cyc [80] that try to model knowledge of the world. 
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 Domain-ontologies: describe the vocabulary related to a generic domain 
by specializing the concepts introduced in the top-level ontology, such as 
SNOMED-CT [81] that models biomedicine knowledge. 

 Task ontologies: describe the vocabulary related to a generic task or 
activity by especializing the top-level ontologies. 

 Application ontologies: they are the most specific ones. Concepts often 
correspond to roles played by domain entities. They have a limited 
reusability as they depend on the particular scope and requirements of a 
specific application. Those ontologies are typically developed ad-hoc by 
the application designers [82, 83]. 

4.2 Semantic domain 

As stated above, unlike numerical data, nominal data are finite, discrete and 
non-ordinal. Nominal domains can be expressed either as unstructured term 
lists or as taxonomically structured set of concepts modeled in knowledge 
bases such as ontologies. The former case neglects data semantics and, as a 
consequence, the meaning of the output data can be much more distorted than 
what is expected and produce outcomes with a significant loss of information.  
The latter case is more desirable for handling nominal data because the 
meaning of data is considered thanks to the formal semantics provided by the 
ontology. 

In this work, we propose to use ontologies to capture the underlying 
semantics of nominal data during the masking process. In order to ensure the 
generality of the methods, we only consider taxonomic relations because they 
are available in any ontology and constitute the backbone of the knowledge 
structure that ontologies provide [84]. In this context, the ontology is seen as a 
taxonomic tree or graph in which concepts (nodes) are interrelated by means 
of is-a links (edges). 

We assume that the nominal values of an attribute aX  of the original 
dataset have been unequivocally associated with concepts c modeled in an 
ontology O. This process, named conceptual mapping, can be carried out 
manually or by lexically matching the strings of nominal values and concept 
labels, as done in [10].  
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Below, we define the concept hierarchy (or taxonomy) associated with the 
nominal values of an attribute that have been mapped in an ontology O. 

 

Definition 2. Let ( )aS X be the set of subsumers of an attribute aX mapped 

in an ontology O. The least common subsumer of aX , denoted by ( )aLCS X , 

is the most specific concept in ( )aS X . 

   

  
 

 
( ) | :   

( ) ( ) | ( ) :   

i j j C i

i C i

a a

a a a

S X c O c X c c

LCS X c S X c S X c c

    

    
  (4.1) 

 
 

Definition 3. The taxonomy associated with an nominal attribute aX  

mapped in an ontology O, denoted by ( )aX , is the concept hierarchy 

extracted from O that includes all concepts that are taxonomic specializations 

of ( )aLCS X , including itself.  

   ( )( ) |i i C
a aX c O c XLCS      (4.2) 

 

Note that ( )aLCS X is also the root concept of ( )aX . 

4.3 Semantic difference  

Privacy preserving methods also require from a distance measure to detect 
which individuals are most similar in order to group, swap, etc. their values 
and minimize the loss of information resulting from the subsequent data 
transformation. However, when managing nominal data, the standard 
arithmetical operator used to measure distances does not make sense. To 
support the difference operator in the nominal domain, and because nominal 
values should be managed according to the semantics of the concepts to which 
they refer, we propose to use the notion of semantic distance. Due to its core 
importance and the need of dealing with textual inputs, semantic distance has 
been applied in recent years in a variety of tasks, which include natural 
language processing, information management and retrieval, textual data 
analysis and classification or privacy-protection.  
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Semantic distance, sd: c1 × c2 → , is a function mapping a pair of 
concepts to a real number that quantifies the differences between the meanings 
of two concepts according to the semantic evidence gathered from one or 
several knowledge sources [16]. In general, most measures were designed to 
assess the semantic similarity. Thus, unlike semantic distance, semantic 

similarity, sim: c1 × c2 → , quantifies the alikeness between the meanings of 
two concepts. 

It is important to note that two different concepts, which are often 
confounded, can be found in the literature. On one hand, semantic similarity 
states how taxonomically near two terms are, because they share some aspects 
of their meaning (e.g., dogs and cats are similar because they are mammals; 
and bronchitis and flu are similar because both are disorders of the respiratory 
system). On the other hand, the more general concept of semantic relatedness 
does not necessary relies on a taxonomic relation (e.g., car and wheel or pencil 
and paper); 

A plethora of measures are currently available in the literature.  According 
to the knowledge sources exploited during the semantic assessment, they can 
be classified into distributional and ontology-based measures. The former 
measure semantic relatedness according to the relative co-occurrence in 
corpora of the textual terms used to refer to the concepts to be compared. 
Ontology-based measures, on the other hand, rely on the structured semantic 
relationships that link concepts modeled in an ontology. In our work, we focus 
on ontology-based measures because of the following reasons [16]: 

 
(i) Since they are based on explicit semantic evidences (i.e., manually 

modeled semantic relationships) they usually provide more accurate 
assessments than distributional measures.  

(ii) They are much more efficient to calculate than distributional measures, 
which require analyzing a large amount of textual resources to create co-
occurrence matrixes. 

(iii) By mapping nominal data to concepts in the ontological domain (as 
detailed in the previous section), we avoid the language ambiguity that 
may affect distributional approaches (e.g. the concepts to be compared 
may be refereed in corpora with different textual terms and a textual term 
may have several meanings).   
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Different ontology-based measures have been proposed in the literature 
[16]. Among them, we can distinguish several different approaches according 
to the techniques employed and the knowledge exploited to perform the 
assessment. Ontology-based measures can be classified into Edge-counting 
measures, Feature-based measures and measures based on Information 
Content as depicted in the following sections. 

4.3.1 Edge counting-based measures  

Edge-counting measures evaluate the number of semantic links (typically is-a 
relationships) separating the two concepts in the ontology [85-87]. In general, 
edge-counting measures are able to provide reasonably accurate results when a 
detailed and taxonomically homogenous ontology is used [87]. They have a 
low computational cost compared to approaches relying on textual corpora and 
they are easily implementable and applicable. Among the classic edge 
counting-based measures, there are the following ones:  
 

 Path Length [85] is the simplest method to estimate the semantic distance 
between two concepts c1 and c2. Its calculation relies on obtaining the 
length of the shortest taxonomic path connecting c1 and c2. The taxonomic 
path between c1 and c2, denoted by pathLinks(c1, c2), is the number of is-a 
links or edges in the taxonomy that connects both concepts. Therefore, the 
longest the path, the more semantically distant the concepts will be. 

   1 2 1 2( , ) min ( , )pL i
sd c c pathLinks c c


   (4.3) 

 
 

This measure outputs non-normalized values. 

 Leacock and Chodorow [86] propose a measure to evaluate the semantic 
similarity in a normalized way. Its calculation relies on dividing the 
length of the taxonomic path between two concepts c1 and c2 by the 
double of the maximum depth of the taxonomy in a non-linear fashion. In 
this case, the taxonomic path, denoted by pathNodes(c1, c2), is the number 
of nodes the taxonomy that connects both concepts, included themselves.  
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  (4.4) 

 
 

where depth is the longest defined as 

  max ( , )
i idepth pathNodes c root


   (4.5) 

 
 

 Wu and Palmer [87]. A problem of path-based measures is that they rely 
on the notion that all links in the taxonomy represent a uniform distance. 
Those measures omit the fact that equally distant concept pairs belonging 
to an upper level of the taxonomy should be considered less similar than 
those belonging to a lower level because they present different degrees of 
generality. In an attempt to address this shortcoming, Wu and Palmer 
present a measure that takes into account the depth of the concepts in the 
hierarchy. 

1 2
1 2

1 2 1 1 2 2 1 2

2 ( ( , ))
( , ) ,

2 ( ( , )) ( , ( , )) ( , ( , ))WP

depth LCS c c
sim c c

depth LCS c c pathLinks c LCS c c pathLinks c LCS c c




  
 

  
  (4.6) 

 
where LCS(c1,c2) is the most specific concept in taxonomy subsuming 
both c1 and c2;  depth(LCS(c1,c2)) is the number of nodes in the longest 
taxonomic path between the node LCS(c1,c2) and the node root of the 
taxonomy, including both LCS(c1,c2) and root; pathLinks(c1,LCS(c1,c2)) is 
the number of taxonomic links in the shortest path between c1 and 
LCS(c1,c2), similarly for pathLinks(c2,LCS(c1,c2)). The use of the depth 
normalizes and weights the similarity of concept pairs. Specifically, 
equally distant concepts by path in an upper level of a taxonomy are 
considered less similar than those in a deeper level because concept 
specializations become less semantically distinct as they are recursively 
specialized [87]. 
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4.3.2 Feature-based measures  

Feature-based measures, based on the Tversky’s model of similarity [88], 
estimate the similarity between concepts as a function of their common and 
non-common ontological features. The exploited ontological features are 
mainly taxonomic and non-taxonomic relationships, sets of synonyms 
(synsets) and glosses. Common features tend to increase similarity and non-
common ones tend to diminish it. Since the additional knowledge helps to 
better differentiate concept pairs, they tend to be more accurate than edge-
based measures [89]. Below, we depict three of the most representative 
feature-based measures:  
 

 Tversky [88] proposes a similarity measure based on similarities between 
synsets. 

 
1 2

1 2 1 2

( , ) ,
( , ) \ (1 ( , )) \t

A B
sim c c

A B c c A B c c B A 



   

 (4.7) 

 
where A and B are the synsets for the concepts c1 and c2, respectively; A\B 
is the set of terms in A but not in B, i.e., non-common terms of A; B\A the 
set of terms in B but not in A, i.e., non-common terms of B; and γ(c1, c2) is 
computed as a function of the depth of c1 and c2 in the taxonomy, such 
that  
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  (4.8) 

 

 Rodriguez and Egenhofer [90] consider that two concepts are similar if 
the synsets and glosses of their concepts and those of the concepts in their 
neighborhood are lexically similar. For that, they propose to evaluate the 
semantic similarity as the weighted sum of similarities between synsets, 
distinguishing features (i.e., meronyms, functions and attributes) and 
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semantic neighborhood of the evaluated concepts. A semantic 
neighborhood set of a concept ci is the concept set whose distance to ci is 
less than or equal to a non-negative integer named the radius of the 
semantic neighborhood. 

 
1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ),  

                                                                                                , , 0

RE synsets features neighborhoodssim c c w S c c u S c c v S c c

w u v

     


  

  (4.9) 
 
where w, u and v are the parameters that weight the contribution of each 
component and S  represents the overlapping between the different 
features. 

Despite exploiting more semantic knowledge, these measures are not able 
to significantly outperform the accuracy of edge-counting measures, as 
evidenced by a study performed in [89]. The study attributes this fact to that 
some concept features, such as non-taxonomic relationships, are a form of 
knowledge partially modeled in most ontologies [84]. Thus, those measures 
limit their applicability to ontologies in which this information is available. To 
overcome this limitation, a new feature-based approach was proposed in [89]: 

 Sánchez and coworkers [89] suggest to measure the semantic distance 
between two concepts by using only their taxonomic features. 
Specifically, this measure is defined as the ratio between the number of 
non-common taxonomic ancestors and the total number of taxonomic 
ancestors from the compared terms. 

 

1 2 1 2
log 1 2 2
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S c S c S c S c
sd c c

S c S c

   
    

  (4.10) 

 
where S(c1) is the set of taxonomic subsumers of the concept c1, including 
itself. The advantage of this measure is that it implicitly considers all 
taxonomic paths between concept pairs which appear due to multiple 
taxonomic inheritance, while retaining the efficiency and scalability of 
path-based measures.  
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4.3.3 Information content-based measures  

Information content-based measures combine the taxonomic features of the 
evaluated concepts with their probability of occurrence in a given text corpus. 
Specifically, the occurrence frequency is used to estimate concept specificity, 
i.e., infrequent concepts are considered more specific because they convey 
more information and, therefore, semantics. These measures rely on 
quantifying the amount of information, i.e., Information Content (IC), that 
concepts have in common [91-93]. The IC of a concept states the amount of 
information provided by the concept when appearing in a context. On the one 
hand, the commonality between the concepts to compare is assessed from the 
taxonomic ancestors they have in common, which is referred as the least 
common subsumer, LCS (equation (4.1)). On the other hand, the 
informativeness of concepts is computed either extrinsically from the concept 
occurrences in a corpus [91-93] or intrinsically, according to the number of 
taxonomical descendants and/or ancestors modeled in the ontology [94-96]. In 
classical approaches [91-93] IC of a concept c is computed extrinsically as the 
inverse of the probability P(c) of occurrence of c in a given corpus, such that, 
infrequent concepts obtain a higher IC [91]. 
 

 
( ) log(P( ))IC c c    (4.11) 

 
Below, we detail three classical IC-based similarity measures: 

 According to Resnik [91], semantic similarity depends on the amount of 
shared information between two terms, a dimension which is represented 
by their LCS in an ontology. The more specific the subsumer is (higher 
IC), the more similar the terms are, as they share more information. 
Similarity is computed as the IC of the LCS.  
 

 
1 2 1 2 )( , ) ( ( , )ressim c c IC LCS c c   (4.12) 

 
One of the problems of Resnik’s proposal is that any pair of terms having 
the same LCS results in exactly the same semantic similarity. Both Lin 
[92] and Jiang and Conrath [93] extended Resnik’s work by also 
considering the IC of each of the evaluated terms.  
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 Lin [92] proposes similarity measure that depends on the relation between 
the information content of the LCS of the evaluated concepts c1 and c2 and 
the sum of the information content of the individual concepts, 

 

1 2
1 2

1 2

2 ( ( , ))
( , )

( ) ( )lin

IC LCS c c
sim c c

IC c IC c





  (4.13) 

 

 The measure proposed by Jiang and Conrath [93] is based on quantifying 
the length of the taxonomical links as the difference between the IC of a 
concept and its subsumer. When comparing term pairs, they compute 
their distance by subtracting the sum of the IC of each term alone from 
the IC of their LCS.  
 

 
& 1 2 1 2 1 2( , ) ( ( ) ( )) 2 ( , )j c resdis c c IC c IC c sim c c      (4.14) 

 
However, due to their dependence on corpora, these measures present some 

issues: accuracy depending on the size and adequacy of the corpus, high 
computational cost and language ambiguity problems. To overcome the 
disadvantages that present the corpus-based IC approaches, new methods 
propose to intrinsically compute the IC of a concept according to the number 
of hyponyms in the taxonomy [94, 95]. In comparison to corpora-based IC 
computation models, intrinsic IC computation models consider that abstract 
ontological concepts with many hyponyms are more likely to appear in a 
corpus because they can be implicitly referred in text by means of all their 
specializations. In consequence, concepts located at a higher level in the 
taxonomy with many hyponyms or leaves (i.e. specializations) under their 
taxonomic branches would have less IC than highly specialized concepts (with 
many hypernyms or subsumers) located on the leaves of the hierarchy. Three 
of the main methods to compute the intrinsic-IC of a concept are:  

 

 Seco and coworkers [94] propose to compute the intrinsic-IC of a concept 
c as follows: 

 
seco

log( ( ) 1)
( ) 1 ,

log( _ )
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IC c
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
    (4.15) 
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where hypo(c) is the number of hyponyms of the concept c and 
max_nodes is the number of hyponyms of the root node of the taxonomy. 
The denominator ensures that IC values are normalized in the range 
[0..1]. This approach only considers hyponyms of a given concept in the 
taxonomy; so, concepts with the same number of hyponyms but different 
degrees of generality appear to be equally similar. 

 Zhou [95]. In order to overcome the shortcoming of ICseco, Zhou and 
coworkers proposed to complement hyponym-based IC computation with 
the relative depth of each concept in the taxonomy.  

 

log( ( ) 1) log( ( )
( ) 1 (1 ) ,

log( _ ) log( _ )zhou

hypo c depth c
IC c k k

max nodes max depth

   
      

   
 (4.16) 

 
where depth(c) represent the depth of the concept c in the taxonomy and 
max_depth the maximum depth of the taxonomy. 

 In [96], the p(c) is estimated as the ratio between the number of leaves in 
the taxonomical hierarchy under the concept c (as a measure of c’s 
generality) and the number of taxonomical subsumers above c including 
itself (as a measure of c’s concreteness). This ratio is normalized by the 
least informative concept (i.e. the root of the taxonomy), for which the 
number of leaves is the total amount of leaves in the taxonomy 
(max_leaves) and the number of subsumers including itself is 1. To 
produce values in the range [0..1] (i.e., in the same range as the original 
probability) and avoid log(0) values, 1 is added to the numerator and 
denominator.  
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  (4.17) 

 
Intrinsic IC-based approaches overcome most of the problems observed for 

corpus-based IC approaches (specifically, the need of corpus processing and 
data-sparseness). Moreover, they achieve a similar, or even better accuracy 
than corpus-based IC calculation when applied over detailed and fine grained 
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ontologies [96]. However, for small or very specialized ontologies with a 
limited taxonomical depth and low branching factor, the resulting IC values 
could be too homogenous to enable a proper differentiation of concepts’ 
meanings [96]. 

4.4 Semantic mean 

An averaging operator, such as the mean, is usually employed to select a 
prototypical value from a sample, which acts as the central point of such 
sample. For the calculation of the mean, we use the notion of centroid of a 
sample of discrete values [97]. The centroid of a set of values is the least 
distant element of the domain to all the values in the sample. As discussed in 
Chapter 3, centroids are used in many clustering and data analysis algorithms 
to construct representative values of clusters or to find out the central or 
average value of a discrete dataset.  

Among the different alternatives to calculate the centroid depicted in 
Chapter 3, we propose to use the technique in [97], which yields semantically-
coherent outcomes by considering both the semantics and the distribution of 
the data during the calculation of the centroid. By applying this technique to 
the semantic domain defined in Section 4.2, and by using the semantic 
distance discussed in Section 4.3, we formulate the mean of a nominal 
attribute as follows: 
 

Definition 4. The semantic mean of a nominal attribute aX , denoted by
( )aXsMean , is the concept c from associated taxonomy ( )aX  that minimizes 

the sum of the semantic distances with respect to all a
ix  in aX .  
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 
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With this definition, any concept in τ( aX ) can be the mean of the attribute, 

regardless whether it was present in aX or not. In this manner, we expand the 
set of mean candidates to obtain a more accurate discretization. When more 
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than one candidate minimizes the distance, all of them are equally 
representative, and any of them can be selected as the mean of the attribute. 

4.5 Semantic variance 

The variance is used to measure the dispersion of the data in a sample. In data 
distortion mechanisms, the variance of a sample of values is relevant to 
configure the magnitude of the noise to be added to the input data. From a 
semantic perspective, [98] presents a measure that quantifies the semantic 
dispersion of an ontology, which we adapt here to measure the semantic 
variance of a sample.   

By strictly following the mathematical notion of the arithmetic variance, 
the semantic variance of a nominal attribute should take into account the 
semantic differences between each value of the attribute and its semantic 
mean. Again, these semantic differences can be computed from the semantic 
distances between the values of the attribute and the mean, which we use to 
measure the semantic dispersion of a nominal attribute, as follows. 
 

Definition 5. The semantic variance of a nominal attribute aX , denoted by 

sVar( aX ), is the average of squared semantic distances between each concept 
a
ix  in aX  and the semantic mean sMean( aX ). 
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(4.19) 

 

where n is the number of values in aX . Numerically, when the semantic 
variance is equal to 0, it indicates that all values are identical, whereas a high 
dispersion indicates that concepts are very spread out from the reference center 
(sMean) and from each other, thus being well differentiated. 
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4.6 Semantic distance covariance and correlation 

The standard covariance and the correlation coefficient, which is the 
normalized version of the covariance, are used to measure the dependence 
between two numerical attributes. In the numerical domain, the calculation of 
the covariance and the correlation relies on the ability to define a total order 
over the variables to compare. Specifically, when the greater values of one 
variable mainly correspond to the greater values of the other variable and the 
same holds for the smaller values, the covariance is positive because the 
variables show a similar behavior. In the opposite case, when the greater 
values of one variable mainly correspond to the smaller values of the other, the 
variables tend to show opposite behaviors and the covariance is negative. 
Therefore, the covariance shows the tendency towards linear relationships 
between variables. To be able to capture this relationship, a total order over the 
domains of the two variables must exist, so that we can differentiate "large 
values" and "small values". However, most semantic domains lack a total 
order; that is, nominal values can be ordered in as many different ways as 
reference points. Hence, we cannot identify "large values" and "small values", 
but just pairwise distances between concepts. For this reason, it is not possible 
to carry out a direct adaptation of the numerical covariance to the semantic 
domain, as we did for the variance.  

To address this issue, we opted for alternative measures of statistical 
dependence that rely on distances between values rather than a total order: the 
distance covariance and the distance correlation. These measures were 
recently introduced by Székely [99] and use the distance between value pairs 
as the fundamental part of its calculation. Essentially, these measures quantify 
up to which point the two variables are directly or independently dispersed, 
where dispersion is measured according to the pairwise distances between all 
pairs of values of each variable. Unlike the Pearson correlation coefficient, 
equation (2.7), the distance correlation is capable of detecting a wider variety 
of dependence relationships: whereas the Pearson correlation coefficient only 
recognizes linear dependencies, the distance correlation recognizes linear and 
nonlinear dependencies. Moreover, because these measures compare 
dispersions rather than actual values, they can be employed on pairs of 
variables of different cardinality. Even though being new, these measures have 
been applied in a variety of scenarios [100, 101]; however, as far as we know, 
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our work is the first incorporating semantics into the definition of the distance 
covariance and correlation measures in order to measure the semantic 
dependence between nominal attributes.  

Let aX  and bX  be two nominal attributes of a dataset X. If their samples 
have n records, we obtain the following set of value pairs 

, ) :1,( , ) {( },a b a b
i i nX X x x  where the pair ,( )a b

i ix x represents the value of 

the attributes aX  and bX  for the record i. For example, in a dataset X of n 

patients from a hospital, where the attribute aX  stores diagnoses and the 

attribute bX  stores medical procedures, the pair ,( )a b
i ix x represents the 

diagnosis and the medical procedure of the patient i. 
According to Székely, the first step to compute the distance covariance is to 

obtain a distance matrix for each attribute, which captures the dissimilarity of 
the values of an attribute. Subsequently, the distance matrices are used to 
compute double centered distance matrices. In the semantic domain, we 
propose using semantic distances to measure the dissimilarity between the 

values of a nominal attribute. In this way, we define aXSD as the (nn) 

semantic distance matrix of the attribute 1 , ,( )a a a
nX x x  and bXSD as the 

matrix of the attribute 1 , ,( )b b b
nX x x  , such that 

 
   

, 1 , 1
,     ,

a b nn
X X
ij ij

i j i j
a bX X

sd sdSD SD
 

 
 

(4.20) 

 

where elements 
aX

ijsd  and 
bX

ijsd are semantic distances. Thereby, 

( , )
aX a a

ij i jsd sd x x is the semantic distance between the values of the attribute 

aX  in positions i and j. In line with the previous example, 
aX

ijsd  would 

express the semantic distance between the main diagnoses of patients i and j. 

Analogously, 
bX

ijsd represents the semantic distance between the values of the 

attribute bX  in positions i and j, which, in our example, expresses the 
semantic distance between the medical procedures of patients i and j. 
Therefore, to build a semantic distance matrix it is necessary to compute all 
the pairwise semantic distances between the values of the corresponding 

attribute. Note that both aXSD and bXSD have a zero diagonal because the 

semantic distance between two identical concepts is zero.  
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By means of the semantic distance matrices, we can compute the double 
centered semantic distance matrices. In short, these matrices are semantic 
distance matrices with the row and column means subtracted and the grand 

mean added. Formally, let aX and bX be two (nn) double centered 

semantic distance matrices whose elements 
aX

ij and 
bX

ij are computed from 

their respective matrices aXSD and bXSD as follows 

 

 

 

 

. . ..
, 1 , 1

. . ..
, 1 , 1

a a aa a

b b bb b

nn X X XX X
i jij

i j i j

nn X X XX X
i jij

i j i j

a

b

ij

ij

X

X

sd

sd

sd sd sd

sd sd sd





 

 

   

   

    
 

    
 

  (4.21) 

  

where .

aX
isd is the mean of i-th row from matrix aXSD , .

aX
jsd is the mean of j-

th column from matrix aXSD  and ..

aX
sd is the mean of all values from matrix 

aXSD : 
 

 
2.

1 1 1
. ..

1 1 1
, ,

a a an n n
X X X
ij ij ij

a a aX X X
i

j i ij
jsd sd sd sd sd sd

n n n  
      (4.22) 

 

Note that, when i is equal to j, .

aX
isd is equal to .

bX
jsd by the commutative 

property of the semantic distance measure. Analogously, .

bX
isd is the mean of i-

th row from matrix bXSD , .

bX
jsd is the mean of j-th column from matrix bXSD  

and ..

bX
sd is the mean of all values from matrix bXSD . 

With all the above elements computed in the semantic domain, we propose 
measuring the semantic dependency of two nominal attributes by means of the 
following definitions: 

 
Definition 6. The semantic distance covariance between two nominal 

attributes aX  and bX , denoted by ( ),a bsdCov X X , is the square root of the 

arithmetic mean of the product 
a bX X

ij ij  . 
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 

, 1

1
,

n a b

i j

a b X X
ij ijsdCov X X

n
 



    (4.23) 

 

According to [99], the distance covariance satisfies ( ), 0a bsdCov X X  . 

Further, ( ), 0a bsdCov X X   if and only if aX  and bX  are independent. This 

property is a consequence of dealing with centered distances and allows 
measuring nonlinear associations. 

  
Definition 7. The semantic distance correlation between two nominal 

attributes aX  and bX , denoted by ( ),a bsdCov X X , is the nonnegative number 

obtained by dividing the distance covariance by the product of the distance 
standard deviations of the attributes.   
 

( , )
, ( ) ( ) 0

( , ) ,( ) ( )

0,     ( ) ( ) 0

a b
a b

a b a b

a b

sdCov X X
sdVar X sdVar X

sdCor X X sdVar X sdVar X

sdVar X sdVar X

 
 

 







 

  (4.24) 
 

In the above equation ( )asdVar X  and ( )bsdVar X are the semantic distance 

variances of aX  and bX . The distance variance is a particular case of 
distance covariance where the two attributes are identical; therefore, the 

semantic distance variance ( )asdVar X of aX  is the nonnegative number 

defined by ( ),a bsdCov X X , similarly for the attribute bX . 

 

 

   

   
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, 1

1
,

1
,

n

n

a a

b b

i j

i j

a a a X X
ij ij

b b b X X
ij ij

sdVar X sdCov X X
n

sdVar X sdCov X X
n

 

 
















  (4.25) 

The semantic distance variance of an attribute is equal to zero if and only if 
all its values are identical. As in the numerical domain, the semantic distance 
standard deviation is the square root of the distance variance. 
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The semantic distance correlation satisfies 0 ( , ) 1a bsdCor X X  , and 

( ), 0a bsdCor X X  if and only if aX  and bX  are semantically independent. 

Values close to zero of sdCor indicate very weak association between the 

meanings of aX and bX . Greater values of sdCor suggest a stronger semantic 

association. If ( , ) 1a bsdCor X X   then there is a linear relationship between 
aX  and bX  and exists a vector v, a non-zero real number c and an orthogonal 

matrix R such that B= v+cAR.  

4.7 Semantic sorting operator 

Some privacy-preserving methods (e.g., rank swapping) require from an order 
relation on the values of the input attribute in order to sort them. To enforce 
this operation on nominal data, it is necessary to define a binary relation that 
allows sorting all nominal values of the attribute. However, because nominal 
data are non-ordinal, a priori, it is not possible to carry out such operation. 
Below, we discuss this issue and propose a solution. 

An order relation describes the criterion whereby a collection of values is 
organized in a sequence following statements such as “x is less than or equal to 
y”. In natural numbers, we say that a number x is less than or equal to a 
number y, i.e., x ≤ y, if there exists another natural number z such that x + z = 
y. According to this criterion, the position of natural numbers in the order 
sequence is determined by the quantity they represent. In the domain of 
nominal data, this order relation cannot be applied directly because the 
meanings of nominal values (i.e., the concepts they refer to) do not denote 

quantities; e.g., in the following sample of the disease attribute aX ={coma, 
hepatic coma, disorder of nervous system} it does not make sense to say that 
coma is less or greater than hepatic coma. If nominal data could be sorted 
according to a magnitude, those data should be considered ordinal categorical 
data. An example of ordinal categorical attribute may be color, where the 
different categories may be sorted on basis of their wave lengths. 

Nonetheless, beyond artificial orders such as the alphabetical order, 
nominal data may be sorted while considering their semantics by applying 
statements such as “x is a y” or “x is part of y”, as formalized in a background 
ontology. By applying the statement “x is a y”, we can determine if a concept 
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specializes another one. For example, if we consider the fragment of the 
medical ontology SNOMED-CT shown in Figure 4-1, whose edges represent 
is-a relationships, we can say that coma is a disorder of nervous system. 
Formally, the binary relation “x is a y” (and, similarly, for “x is part of y”) 

applied on a nominal attribute aX  mapped on an ontology O, denoted by
aX , 

is an order relation that holds the following properties for all a
ix , a

jx  and a
lx  in

aX : 

 Reflexivity:
aa a

i i
Xx x .  

 Antisymmetry: if 
aa X a

i jx x  and 
aa X a

j ix x then a a
i jx x .  

 Transitivity: if 
aa X a

i jx x  and 
aa X a

j lx x then 
aa a

i l
Xx x .  

 

Now, thanks to 
aX , the above sample can be sorted considering the 

semantics of its values as follows: hepatic coma  coma  disorder of nervous 

system. However, 
aX lacks a feature that is key to be able to sort all values of 

an attribute: the totality property. This property gives rise to a total order on a 
set that satisfies reflexivity, antisymmetry and transitivity since each element 
can be compared to any other element; e.g., in natural numbers, any pair of 
numbers is comparable under ≤, i.e., x ≤ y or y ≤ x. However, as we can see in 

the following sample aX  = {hypoglycemic coma, coma, hepatic coma, 
disorder of nervous system}, there are nominal values that are incomparable 

under 
aX , e.g., neither hypoglycemic coma

aX  hepatic coma nor hepatic 

coma
aX  hypoglycemic coma.  

 

 

Figure 4-1 Example of taxonomy associated to the domain Disease, extracted from the 
SNOMED-CT medical ontology 

 

Disorder of 
nervous system

Coma

Hypoglycemic 
comaHepatic coma

Neuropathy
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Therefore, to be able to sort all values of an attribute, we require a binary 
relation that fulfills the totality property as an alternative to the partial order 

aX . In an attempt to construct a totally ordered set from a partial order that 

permits to sort the non-comparable data, Torra [75] proposes defining a total 
topological order consistent with the partial order. Subsequently, a cumulative 
function of the frequency of the nominal values in the attribute defined on this 
topological order is used to rank the attribute. However, if this order relation is 

applied on the partial order 
aX , the sorted attribute would lack semantic 

coherence because the result is partially determined by the attribute frequency 
distribution, rather than the semantics underlying to the values; that is, the fact 
that two nominal attributes are equally frequent in a sample, does not imply 
that they have equal or even similar meanings.  

To obtain a semantically-coherent result, we propose an order relation 
based on the notion of closeness to a reference point. Given a reference value

a
refx  in aX , a value a

ix  is less than or equal to a value a
jx , if a

ix is closer of a
refx

than a
jx . Because the closeness of a nominal value to another of reference is 

determined by the difference between the semantics they convey, we can use 
the notion of semantic distance for this purpose. For example, if we want to 
sort the nominal values {disorder of nervous system, coma, neuropathy, 
hepatic coma, hypoglycemic coma} mapped into the taxonomy of Figure 4-1, 
firstly, we must select a value in the set as reference point for the order 
relation. Secondly, we must calculate the semantic distance between each 
value of the set and that reference point. With this, the values of the set can be 
coherently sorted according to the computed distances. In the example, if the 
reference point was the concept coma, the sorted set would follow the 
sequence shown in Figure 4-2  (the semantic distances have been computed 
with the Wu and Palmer measure). As we can see, if we change the reference 
point, we obtain a different sort sequence, as shown in Figure 4-3. Therefore, 
this order relation generates as many rank sequences as different values has the 
dataset.  
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Figure 4-2  Example of ascending sorted sequence when the reference point is Coma.  

 

 

Figure 4-3  Example of ascending sorted sequence when the reference point is Neuropathy. 

 

A formal definition of the order relation on nominal data based on the 
closeness to a reference point is provided below.  
 

Definition 8. The order relation on a nominal attribute X
a
, given a 

reference value a
refx  in X

a
, denoted by a

refx , is defined as a binary relation 

where a value a
ix  is less than or equal to a value a

jx , i.e., a
ix a

refx a
jx , if and 

only if the semantic distance , sd(·,·), between a
ix  and a

refx  is less than or equal 

to the semantic distance between a
jx  and a

refx . 

 

 
 , : | ( , ) ( , )a a

ref ref

a
i j i j i ref j refx x

x x X x x sd x x sd x x    
 

(4.26)
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The relation a
refx  holds the following properties for any a

ix , a
jx  and a

lx  in 

X
a
: 
 
 Reflexivity:  a

ref

a a
i ix

x x .  

 Transitivity: if a
ref

a a
i jx

x x  and a
ref

a a
j lx

x x then a
ref

a a
i lx

x x .  

 Totality: a
ref

a a
i jx

x x  or a
ref

a a
j ix

x x , i.e., any pair of values in X
a
is 

comparable under the relation a
refx . 

 
Note that, a

refx  is a total preorder relation (or weak order relation), but not 

a total order relation because, despite fulfilling the totality property, it does not 
satisfy the antisymmetric property.  
 

The antisymmetry holds if a
ref

a a
i jx

x x  and a
ref

a a
j ix

x x then a
ix  = a

jx ; but, as 

shown in Figure 4-1, this condition does not fulfill in all cases, e.g., Hepatic 
coma Coma Hypoglycemic coma and Hypoglycemic coma Coma Hepatic coma, 

but Hepatic coma ≠ Hypoglycemic coma. The fact that a
refx  lacks 

antisymmetric property implies that there may be different values tied in 

semantic distance w.r.t.
 

a
refx . 

 
The sequence of values of X

a
 sorted in ascending order according to a

refx is 

represented by (1) ( ), ,  a a
n

aX x x  


. Note that a
ix and ( )i

ax represent the ith-

unordered and ith-ordered value of X
a
, respectively, i.e., ( )( )i

arank ix  . 

Obviously, the first value in the ranking is a
refx , i.e., (1)

ax = a
refx . If there are tied 

values w.r.t. a
refx , these will place in contiguous positions in the ranking. 

4.8 Conclusion 

The perturbative techniques depicted in Chapter 2 base their masking process 
on arithmetical operations. As shown in Table 4.1, the numerical noise 
addition mechanism requires calculating the mean and the variance of the 
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input attribute to generate a noise sequence that reflects the degree of 
dispersion of the original values. The correlated noise addition mechanism 
additionally requires computing the covariance between attribute pairs to 
generate the noise sequences that reflect the degree of correlation between the 
attributes. On the other hand, the standard rank swapping mechanism requires 
sorting the values of the input attribute to be able to perform rank-distance 
swaps during the permutation process, thereby restricting and controlling the 
information loss associated to each swap. 

Table 4.1 Semantic operators required in the semantic noise addition and semantic rank 
swapping methods.  

Semantic Operator Noise Addition Rank Swapping 
Difference X X 

Mean X  
Variance X  

Covariance X  
Correlation   

Sorting  X 
 

Numerical data can be directly and easily manipulated and compared by 
means of classical mathematical operators. However, the handling of nominal 
data entails a greater difficulty because they are of a finite, discrete, textual 
and non-ordinal nature. Moreover, because nominal data utility is closely 
related to the preservation of data semantics, any data transformation or 
calculation performed to anonymize data should consider the meaning of the 
values. For such reason, to properly deal with nominal data, perturbative 
methods require adapting the arithmetical operators involved in the masking 
process to the semantic domain.  

The main hypothesis of our work, which will be exploited and evaluated in 
next chapters, is that the use of ontologies allows a better interpretation of 
nominal data during the masking process, thus producing anonymized data of 
higher quality. For such purpose, and by exploiting the formal knowledge 
offered by ontologies, we have defined semantic versions of the difference, the 
mean, the variance, the covariance and the sorting operators. These can not 
only guide the masking process, but they can be employed to measure the 
utility of the protected outcomes in a semantically coherent way.  
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Chapter 5 Semantic Rank Swapping 

 
In this chapter we present a rank swapping method capable of protecting 
nominal categorical data from a semantic perspective by exploiting the formal 
semantics provided by an ontology and using the semantics operators defined 
in Chapter 4. Our objective is to provide mechanisms to control the degree of 
permutation, in order to enforce a certain level of protection while preserving, 
as much as possible, the semantic features, and thus, the analytical utility, of 
the data. In particular, we propose semantically-grounded rank swapping 
solutions to perturb individual nominal attributes and multivariate nominal 
datasets. The latter is especially relevant because it is capable of protecting 
multivariate nominal datasets while reasonably preserving the correlation 
among non-independent attributes (e.g., among symptoms, diagnosis and 
treatments), which is of outmost importance for research. 

5.1 Introduction  

As explained in Chapter 2, rank swapping, which is based on the idea of 
proximity swapping [39], ranks the values of each attribute in ascending order 
for later swapping each value with another one randomly chosen within a 
restricted size range. Thus, the higher the range size, the higher the ambiguity 
in the re-identification inferences and the lower the disclosure risk; but also, 
the lower the data utility, because swapped values would tend to be less 
similar. Concerning data utility, and on the contrary to other data protection 
mechanisms [5], rank swapping perfectly preserves univariate statistics, such 
as the mean, the variance and the frequency distribution, because the values in 
the protected attribute are the same as those in the original attribute but 
permuted. For this same reason, rank swapping also preserves other very 
useful features for data analysis, such as data granularity or outlying values. 
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5.2 Semantic management of nominal data in 
rank swapping  

Due to rank swapping relies on the ability to sort the values of the input 
attribute, as discussed in Chapter 2, it only can deal with numerical and ordinal 
categorical data [5]. To address this issue, we propose to use the semantic 
sorting operator defined in Section 4.7, which enables us to sort all the 
nominal values of an attribute coherently with their underlying semantics 
through a total preorder relation. By using this semantic sorting operator, we 
can adapt rank swapping to the semantic domain of nominal data.  

To carry out the sorting operation, we can use any semantic distance 
measure defined in Section 4.3 on the taxonomy defined in Section 4.2.  

5.3 Semantic univariate rank swapping method  

In this section, we propose a semantically-grounded univariate rank swapping 
method for individual nominal attributes that pursues a twofold objective: 

1. To control and bind the swapping process according to a configurable 
level of permutation. 

2. To maximize data utility by (i) preserving the semantic mean and 
variance of each nominal attribute and (ii) obtaining an information 
loss (error) proportional to the desired level of permutation. 

Because our mechanism is general, it accommodates several variations 
depending on how the swapping ranges are built. The first one intuitively 
adapts the idea of “swapping interval” of the standard rank swapping method 
to nominal data. In a second approach, we propose to dynamically build the 
swapping ranges to minimize the information loss associated to each swap.  

To generate the permuted version X* of the original dataset X, the semantic 
univariate rank swapping method must be independently applied on each 
nominal attribute. Following the notation of Section 2.2.1, let 

1 , ,( )a a a
nX x x   be a nominal attribute in X. Like the numerical method, the 

records of X must be ranked in ascending order by values a
ix of the attribute 
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X
a
. To do this, we use the total preorder relation a

refx defined in equation 

(4.26). As reference point a
refx  of the order relation, we consider the boundary 

of the attribute, i.e. the most semantically-distant value from X
a
. To find the 

most distant value from a set of nominal data in a semantically-coherent way, 
we use the notion of marginality [102]. Specifically, the marginality of a 
nominal value of a sample shows how outlying is that element with respect to 
the remaining values of the sample according to the aggregation of semantics 
distances. On this basis, we propose the following definition of the most 
semantically-distant value of a nominal attribute: 

 

Definition 9. The most semantically-distant value of a nominal attribute X
a
, 

denoted by MostDistantValue(X
a
), is the value xa  from X

a
that maximizes the 

sum of the semantic distances with respect to all a
ix  in X

a
. 

    arg max ,
a

i

a aa

a a
i

x x

a

X X

sMostDistantValue xX d x
 

 
   

 
  (5.1) 

 
On the other hand, in order to offer a configurable level of permutation, and 

thus, to satisfy the first objective of the method, we should allow the user 
defining the length of the swapping interval or range. Similar to numerical 
rank swapping method, this is accomplished through an input parameter k, 
which represents the length of the swapping interval in number of records. 
Notice that related works use p as input parameter, which specifies the 
percentage of the records in X in the interval, i.e., k=p.n/100. In our case, by 
setting k, the rank of two swapped values cannot differ by more than k records, 
which provides a clearer privacy guarantee than the use of percentages. 
Specifically, with our approach, we guarantee that an attacker with access to 
the permuted attribute would only be able to infer the original values with a 
probability at most 1/k. This guarantee against the re-identification fulfills 
probabilistic k-anonymity [26], which is a privacy model that provides the 
same protection level as k-anonymity [4, 31]; but, whereas k-anonymity 
requires each record to be indistinguishable from at least k-1 other records, 
probabilistic k-anonymity only constraints the re-identification probability. 
Notice that when k increases, the dissimilarity or semantic distance between 
the original value (before-swap value) and the permuted value (after-swap 
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value) tends to increase; this prevents re-identifications, but deteriorates the 
permuted data quality because the information loss associated to each swap 
tends to increase. 

The semantic univariated rank swapping method is formalized in SRS-

Algorithm1. Firstly, the taxonomy τ(X
a
) associated to the attribute X

a
is 

obtained from the ontology O by following the procedure detailed in Section 

4.2. Secondly, in line 2, the reference point a
refx used to rank X

a
 is computed by 

using equation (5.1); this value is the most semantically-distant value of X
a
. 

According to a
refx , the values in X

a
 are ranked in ascending order in line 3 by 

using the total preorder relation defined in equation (4.26). Then, in line 4, the 

values of the ranked attribute (1) ( ), ,  a a
n

aX x x  


 are labeled as unswapped. In 

lines 5-12, each unswapped value ( )
a
ix  is permuted by another unswapped 

value randomly chosen within a restricted range through the procedure 
swap_value. This swapping range is composed of the k values following to 

( )
a
ix  in the ranking (1) ( ), ,  a a

nx x   , i.e., the interval ( 1) ( ),  a a
i i kx x 

   . The size of 

the range is kept in k values, except when the index i+k is greater than n, i.e., is 
greater than the size of the attribute. For this reason, the upper limit of the 

interval is the lower value of {i+k, n}, i.e.,  (i 1) (min , ),  a a
i k nx x 

 
  . After each 

swap, in lines 22 and 24, the processed values
 
are labeled as swapped.  
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SRS-Algorithm1. Semantic univariate rank swapping method 

 

*

: nominal attribute with records

: ontology

: length of the swapping interval in number of records

: permuted nominal attribute  
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In SRS-Algorithm1, the attribute is only ranked once at the beginning of 
the process. As discussed in Section 4.7, the total preorder relation a

refx yields 

as many order sequences as different values the attribute has. This means that 
the ranking obtained at the beginning of the process is suitable (w.r.t. bounding 
the maximum semantic permutation resulting from each swap) to build the 
swapping interval of the first treated value, but not to build the intervals of the 
remaining values. Because the attribute is not well-ordered for those remaining 
values, very different values may be swapped from the second swap and 
upwards, thus incurring in an information loss much higher than that expected 
from the permutation level k. This issue is illustrated in Figure 5-1 for a 

sample of the disease attribute X
a
={Disorder of nervous system, Neurological 

varicella, Coma, Neuropathy, Herpes zoster ophthalmicus, Herpes zoster 
auricularis, Hepatic coma, Hypoglycemic coma} and k =2. The nominal 

values of X
a  

have been unequivocally associated with concepts modeled in the 

SNOMED-CT medical ontology. After ranking the values of X
a
w.r.t. the most 

semantically-distant value of X
a
, Neuropathy, we can see that the established 
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ranking is suitable to build the swapping interval of (1)
ax Neuropathy because 

the resulting interval is composed of the two most semantically-similar values 
to Neuropathy (i.e, Disorder of nervous system and Coma). However, for 

(6)  ax Hepatic coma , the swapping interval includes values that are much 

more semantically distant that expected from the value of k (e.g, Herpes zoster 
ophthalmicus, whose semantic distance w.r.t. Hepatic coma is sdwp= 0.67 by 
using equation (6.1) and (4.6)). 
 

 

Figure 5-1. Example of swapping intervals in an ascending ranked attribute w.r.t. 

MostDistantValue(X
a

) = Neuropathy 

 

To solve this issue, we propose a variation of SRS-Algorithm1 that better 
preserves data semantics by swapping the original values with others within a 
semantic distance coherent with the input parameter k, thereby satisfying the 
objective 2(ii). The difference of this approach with respect to the previous one 
lies in the way of generating the swapping intervals during the permutation 
process. In this new approach, we propose to re-rank the attribute for each 

value a
ix  to swap by using a

ix  as reference point, i.e., a a
ref ix x . In this way, 

once the attribute has been ascending ranked w.r.t.
 

a
ix , the swapping range 
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70 
 

will be the set of the k semantically-closest values to a
ix . This range, which we 

name swapping cluster, is formally defined bellow. 
 

Definition 10. The swapping cluster associated to a reference point a
refx  from 

a nominal attribute X
a
, denoted by 

a

a
ref

X

xC  , is defined as the set of the k 

semantically-closest values to a
refx in X

a
, i.e. the k first values in the ranked 

attribute (1) ( ), ,  a a
n

aX x x  


, excluding (1)
ax .    

 

  (2) (1 ), , , 1
a

a
ref

X a a
kx

C kx nx      (5.2) 

 

Because a new cluster 
a

a
ref

X

xC needs to be generated every time a new value a
ix

must be swapped, we call this process dynamic clustering.  

To prioritize the permutation of the most marginal values, which are those 
whose swaps entail more information loss, we propose the strategy of 
clustering at opposite ends, which is inspired by clustering methods such as 
MDAV [46]: each time a new cluster must be generated, it must be as far as 
possible from the previously generated cluster. In other words, the reference 
points of two consecutive clusters must maximize their semantic distance. To 
do this, the method starts by building the swapping cluster at the boundary of 

X
a
; that is, the first element to swap and, thus, the reference point a

refx ' for the 

first cluster, will be the most distant value of X
a
(equation (5.1)). Then, to 

select the second element to swap, and thus, the second reference point a
refx '' , we 

look for the value in X
a
 that is semantically-farthest from a

refx ' , as formalized in 

Definition 4. Note that,
 

a
refx '' must be selected among the still unswapped values 

in X
a
.  

 

Definition 11. The most semantically-distant value to a reference value a
refx in 

a nominal attribute X
a
, denoted as MostDistantValue(X

a
,
 

a
refx ), is the value xa 

from X
a
that maximizes the semantic distance with a

refx . 
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     arg ma, x ,
a a

a a a a
ref

x X
refMostDi sd xstant xValue X x



  (5.3) 

 
If there were several values at the same maximum semantic distance, the 

algorithm selects one at random. Note that MostDistantValue(X
a
,
 

a
refx ) is the 

last value in the ranking of a
refx . 

Once a reference point a
refx  has been selected (by using equation (5.3)), the 

corresponding swapping cluster is built according to equation (5.2). Finally, 
a
refx  is swapped with a value from the cluster randomly chosen among those 

that still have not been swapped. In this way, like SRS-Algorithm1, the rank of 
two swapped values cannot differ by more than k records. 

SRS-Algorithm2 formalizes the above-described procedure. As stated 
above, the first element to swap and, thus, the first reference point, is the most 

semantically-distant value of X
a
, selected by using equation (5.1). Then, in 

line 5, the swapping cluster is built around the reference point by using 
equation (5.2). In line 6, through the procedure swap_value of SRS-

Algorithm1, the value a
refx is swapped with another unswapped value randomly 

chosen within the cluster. Finally, in line 7, the next reference point and, thus, 
the next value to swap, is chosen by applying the strategy of clustering at 

opposite ends (equation (5.3)). This process is repeated until all values in X
a
 

are swapped.  
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SRS-Algorithm2. Semantic univariate rank swapping method based on dynamic clustering at 
opposite ends.  

*
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*  aXreturn

 

 

Regarding the objective 2(i), because the values in the permuted attribute 
are the same as those in the original attribute but swapped, by definition, the 
semantic mean and variance are perfectly preserved for each individual 
attribute. 
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5.4 Semantic multivariate rank swapping 
method  

The rank swapping method presented in the previous section preserves, by 
construction, the semantic mean and the variance of the attributes and incurs in 
an information loss (error) proportional to the desired level of permutation. 
However, because the method is independently applied to each attribute of the 
dataset, the potential correlation among attributes is likely to be significantly 
hampered, as discussed in Section 2.4. To solve this issue, we propose a 
semantic rank swapping method that, in addition to fulfilling the objectives of 
the univariate version, is also capable of reasonably preserving the semantic 
correlation among non-independent attributes. 

Let X be a dataset with m nominal attributes and n records or tuples, such 
that 1 1( , , ) { ( , , ) : 1, , }m m

i i iX X X t x x i n      , where the tuple
1( , , )m

i i it x x  represents the value of the m attributes for individual i.  
In order to preserve, as much as possible, the correlation among the m non-

independent attributes of X during the permutation process, we propose 
considering each tuple as a unit, which thus conveys the relationship between 
attribute values. In this way, a swapping cluster will be composed of the k 
semantically-closest tuples to a reference tuple. Like SRS-Algorithm2, the 
clusters will be dynamically built at opposite ends to minimize the information 
loss, but now they will encompass records rather than individual attributes. 
After obtaining the swapping cluster of a reference tuple, each value in the 
reference tuple is swapped with another value of the same attribute, randomly 
chosen among those in the cluster that still have not been swapped. Because 
the swap is independently carried out for each attribute value of the reference 
tuple, the resulting records will be different from those in the original dataset, 
thus preventing re-identification. Nonetheless, because the swapping range is 
delimited by semantically similar tuples, attribute values within the swapping 
range will be both semantically similar within each attribute (which minimizes 
information loss) and semantically interrelated with the values of the other 
attributes (which contributes to preserve the attribute correlation). 

Below, definitions 8-11 are adapted to work with nominal tuples rather than 
individual attributes. 
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Definition 12. The order relation on a dataset X of m nominal attributes, 
given a reference tuple reft  in X, denoted by reft , is defined as a binary 

relation where a tuple it  is less than or equal to a tuple jt , i.e. , ti reft tj, if and 

only if the semantic distance between ti and tref is less than or equal to the 

semantic distance between tj and tref, for all it and tj belonging to X. 

 

  , , : | ( , ) ( , ) ,
ref refref i j i j i ref j reft tt t t X t t sd t t sd t t      (5.4) 

 
where the semantic distance between a pair of tuples ti and tj is computed as 
the average of pairwise semantic distances between attribute values: 
 

    
1

1
, ,

m
attr attr
i ji j

attr

sd x x
m

sd t t


   (5.5) 

 
Definition 13. The most semantically-distant tuple in a dataset X of m 
nominal attributes, denoted by MostDistantTuple(X), is the tuple t from X that 

maximizes the sum of the semantic distances respect to all it in X. 

 

   arg max ( , )
i

i
t X t X

X sd tMostDistantTupl te
 

 
   

 
  (5.6) 

 
Definition 14. The swapping cluster associated to a reference tuple tref in a 

dataset X of m nominal attributes, denoted by 
ref

X
tC , is defined as the set of the 

k semantically-closest tuples to tref  in X, i.e. the k first tuples in the ranked set 

( (1) ), ,  nt t , excluding t(1).    

 

  (2) ( 1), , , 1
ref k
X
tC t kt n     (5.7) 

 
Definition 15. The most semantically-distant tuple from a reference tuple reft

in a dataset X of m nominal attributes, denoted by MostDistantTuple(X,tref), is 
the tuple t from X, that maximizes the semantic distance with tref. 
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    arg max, ( , )ref ref
t X

MostDistantTuple t sd t tX


  (5.8) 

 
The method for m attributes is formalized in SRS-Algorithm3. First, in line 

4, all tuples in the input dataset X are labeled as unswapped in X . In line 5, 
the most distant tuple from X is obtained by using the equation (5.6). Similar to 
the SRS-Algorithm2, this tuple is the first to swap and, thus, the first reference 

point 1( , , )m
ref rr f fe et x x  . Then, in line 7, the cluster is built around the 

reference tuple tref  by using the equation (5.7). In lines 8-10, through the 
procedure swap_value of SRS-Algorithm1, the swaps are independently 

undertaken for each attribute. Each value attr
refx in tref is swapped by another 

unswapped value belonging to the same attribute randomly chosen within the 
cluster. Finally, in line 11, the next reference point is chosen by applying the 
idea of clustering at opposite ends (equation (5.8)). This process is repeated 
until all tuples in X are swapped. A tuple is considered swapped when all its 
values have been swapped. 
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SRS-Algorithm3. Semantic multivariate rank swapping method based on dynamic clustering at 
opposite ends. 
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5.5 Conclusion  

In this chapter, we have presented a semantically-grounded alternative to the 
standard rank swapping mechanism that is capable of protecting nominal data 
while preserving their semantic features. Our proposal relies on the ability to 
define a total preorder relation on the nominal values according to their 
semantic similarity; in this way, we limit the information loss resulting from 
each data permutation and, thus, we better retain the utility of the outcomes. 

We have proposed solutions to protect individual nominal attributes and 
multivariate datasets. The latter is especially innovative (because standard rank 
swapping algorithms are univariate) and of great interest for data analysis 
(because it retains the dependence relationship between nominal attributes).    
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Chapter 6 Semantic Noise Addition 

 

In this chapter, we present a noise addition framework capable of distorting 
nominal data from a semantic perspective. Our objective is twofold: (i) to 
semantically manage data during the noise-addition process by exploiting the 
formal knowledge modeled in ontologies, and (ii) to provide mechanisms to 
tune noise addition while preserving the semantic features of the data as much 
as possible. In particular, we propose semantically-grounded noise addition 
solutions to distort individual nominal attributes (uncorrelated noise) and 
multivariate nominal datasets (correlated noise). The multivariate case is 
especially relevant because, unlike the related works focusing on nominal data 
discussed in Chapter 3, our proposal is able to distort multivariate nominal 
datasets while reasonably preserving the semantic correlation among 
attributes. To guide the noise addition process, we use the semantic versions of 
the difference, mean, variance and covariance measures defined in Chapter 4, 
which are able to capture the meaning conveyed by nominal values.  
 

6.1 Introduction 

Noise addition, which distort original values by adding random noise, is 
characterized by its relatively high utility and low disclosure risk [40, 50]. 
Moreover, noise addition has a remarkable advantage over the other 
perturbative methods: it is the only method that is able to fully preserve the 
dependence relation between the attributes, i.e., the correlation structure of the 
dataset. 

On the other hand, unlike aggregation-based and permutation-based 
methods, noise addition is able to deal with records individually, which is a 
very useful feature in scenarios such as in the online anonymization of 
transactional data [27, 103]. While traditional static datasets must be protected 
off-line in a homogenous and monolithic way, transactional data streams 
(dynamic and continuous) need to be protected on the fly. To correlate the 
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noise with the stream behavior, [104] proposes to use the correlations in 
different time series while deciding the noise to be added to any particular 
value. A representative example of private transactional textual data is a user 
performing queries to a Web Search Engine (WSE), which profiles her 
according to such queries to provide personalized search services. In this 
scenario, the user desires to protect the privacy of her profile w.r.t. the WSE 
while not impairing the WSE functionalities (e.g., query disambiguation [105], 
query suggestion and refinement [106]). Because the generated profiles may 
fully characterize the personal features of the users [107, 108], it is desirable to 
add some uncertainty to the user’s queries. In this regard, noise addition could 
create fake but plausible and semantically related queries from the original 
ones in a controlled way. This would help to hide the real user details while 
preserving, as much as possible, the WSE functionalities.  

6.2 Semantic management of nominal data in 
noise addition 

As discussed in Chapter 2, noise addition is commonly seen as a method 
exclusively intended for numerical data because of its mathematical operating 
principle. On the one hand, many of the operations carried out to manage and 
transform data in numerical domain require comparing two values, for 
example, for assessing how far the noisy value must be from the original one 
according to the noise magnitude to be added. This noise magnitude thus 
represents the numerical distance or arithmetical difference between the 
original value and masked one. To work in the nominal domain, Chapter 4 
shows that we can replace the arithmetical difference operator by the notion of 
semantic distance on an underlying ontology O. In this way, nominal values 
can be managed according to the semantics of the concepts to which they 
refer. On the other hand, as shown Chapter 2, the numerical noise addition 
mechanism needs to calculate either the variance of the input attribute to 
generate a random noise sequence that reflects the degree of dispersion of the 
original values (uncorrelated method) or the covariance matrix of the input 
dataset to generate the noise sequences that reflect the degree of correlation 
among the attributes of the dataset (correlated method). To carry out these 
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operations, we can use the semantic versions of the variance and covariance 
measures defined in Chapter 4. 

Because during the noise addition process on an input attribute aX , we 
may obtain noisy values from O different from the original ones, it is 
necessary to determine what concepts of O are candidates to participate in the 
distortion process. To ensure the semantic coherence of the results and, in turn, 
maximize the application range of noise in O, it must be held that: 

 
(i) any value belonging to the attribute domain may be a noisy value 

in the distorted dataset, attribute domain ( )aD X  being the universe 

of values that can take the attribute. 
(ii) the concepts in O used as noisy replacements must be limited to 

the concept hierarchy ≤C (taxonomy) that represents the attribute 
domain; for example, if the attribute domain represents diseases, 
the taxonomy used during the noise addition should be limited to 
the set of all diseases in O, because the noisy values must also be 
diseases.  

 

By applying (i) and (ii) to the semantic domain, the taxonomy τ(X
a
) 

defined in Section 4.2 should be extended to τ(D(X
a
)), that is, the taxonomy 

that encompasses all the concepts in the attribute domain, rather than the just 

attribute sample. Formally, τ(D(X
a
)) is the concept hierarchy extracted from O 

that includes all concepts that are taxonomic specializations of ( ( ))aLCS D X .  

Note that τ(D(X
a
)) delimits the noise application range in O and, therefore, 

determines the set of concepts in O that are candidates to replace the original 

values. By using τ(D(X
a
)) instead of τ(X

a
), we constrain the replacement of 

values within the domain of the attribute while making it independent on the 
attribute sample, as done in the numerical domain.  

Figure 6-1 shows an example of the taxonomy associated with the domain 
of an attribute on a fragment of the medical ontology SNOMED-CT [81]. Let 

aX ={gastritis, hematoma, gingivitis} be a nominal attribute that stores the 

diseases of a set of 3 patients. As ( )aD X  is the set of all diseases in SNOMED-

CT, the ( ( ))aLCS D X  is the concept Disease of SNOMED-CT and τ(D(X
a
)) is 
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the taxonomy consisting of the concepts that are taxonomic specializations of 

( ( ))aLCS D X , which are shown in gray in Figure 6-1. 

 

Figure 6-1 Example of taxonomy associated with the domain of the attribute Disease (gray-
shaded concepts), extracted from the SNOMED-CT medical ontology. 

 
On the other hand, a suitable semantic distance to be applied in a noise 

addition scenario should (i) be computationally efficient, due to the number of 
distance calculations that are needed during the noise addition process, (ii) 
provide values normalized in the range [0..1], where 0 represents the minimum 
distance, i.e., both concepts are the same, and 1 represents the maximum 
distance of concepts in the finite domain of the attribute within the ontology, 
and (iii) perform the calculation of the semantic distance consistent with the 
noise distribution.  

For noise sequences that are normally distributed, sd(.,.) should perform a 
non-logarithmic and non-exponential calculation, so that distances are well 
spread through the range [0..1]. In this way, it would be more likely to find 
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appropriate replacement concepts during the noise-addition process, i.e., 
concepts that are as semantically distant as defined by the noise magnitude. 
However, for other types of noise distributions, such as Laplace, which 
follows a symmetric exponential distribution, non-linear semantic distance 
measures that concentrate the distance mass either in the high or low output 
ranges would be more appropriate [63].  

To determine the most appropriate distance measure to guide the masking 
process of noise addition, in the following, we analyze the different semantic 
similarity measures depicted in Section 4.3. Among the edge-counting 
measures, only [87] provide normalized results and performs a non-
logarithmic and non-exponential assessment. On the other hand, feature-based 
measures [88, 90] estimate the similarity between concepts as a function of 
their common and non-common ontological features, such as taxonomic and 
non-taxonomic relationships. As evidenced in [89], many of these latter 
measures use non-taxonomic relationships, a form of knowledge partially 
modeled in most ontologies [84]. In this regard, [89] proposes a measure based 
on taxonomic features alone, but it is logarithmic. Finally, information 
content-based measures combine the taxonomic features of the evaluated 
concepts with their probability of occurrence in a given text corpus [91, 92]. 
However, due to their dependence on corpora, these measures present some 
issues: accuracy depending on the size and adequacy of the corpus, high 
computational cost and language ambiguity problems. Even though there are 
methods [94, 95] that intrinsically compute the concept specificity according 
to the number of hyponyms in the taxonomy, their calculation is logarithmic 
and counting hyponyms in large ontologies is costly.  

According to the discussion above, for noise sequences following a normal 
distribution, we propose using a normalized edge-counting measure that is 
neither logarithmic nor exponential. Specifically, we use the well-known 
semantic similarity measure proposed by Wu and Palmer, simwp, [87] because 
it fulfills the above requirements and reasonably mimic human judgments on 
semantic similarity by estimating the specificity of concepts from their 
taxonomic depth [15, 89]. Because simwp (equation (4.6)) evaluates the 
similarity between concepts, we formulate sdwp to compute the semantic 
distance, as the opposite of simwp: 

 
 1 2 1 2( , ) 1 ( , )wp wpsd c c sim c c    (6.1) 
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Because the taxonomy considered to measure semantic similarities in a 

noise addition scenario is limited to τ(D(X
a
)), the concepts c1, c2, LCS(c1, c2) of 

the equation (4.6) belong to τ(D(X
a
)) and the concept root of the taxonomy is 

the top node of τ(D(X
a
)). As an example, we show the calculation of the 

semantic distance sdwp for two cases: when the concepts are different 
(gingivitis and gastritis) and when the concepts are the same (gastritis and 
gastritis). The distances have been calculated on the taxonomy associated with 
the domain Disease illustrated in Figure 6-1. 

 
2 6

( , ) 1 0.14
2 6 1 1

2 7
( , ) 1 0

2 7 0 0

wp

wp

sd gingivitis gastritis

sd gastritis gastritis


  

  


  
  

  

 

6.3 Semantic uncorrelated noise addition method 

As discussed in Section 6.2, uncorrelated noise addition needs (i) to calculate 
the variance of the input attribute to generate a noise sequence that reflects the 
degree of dispersion of the original values, and (ii) to compare values for 
assessing how far the noisy value must be from the original one according to 
the random magnitude of noise defined by the user. In the nominal domain, we 
propose using the semantic versions of the variance (Section 4.5) and the 
difference (with the measure selected in Section 6.2). Specifically, the distance 
measure discussed in Section 6.2 enables us to semantically compare nominal 
values while being consistent with a normal noise distribution. In order to 
control data distortion and maximize data utility, we define the following 
objectives for our method:  
 

1. To provide a parameterized noise level. 
2. To replace original values by noisy ones within a semantic distance 

consistent with the desired noise level. 
3. To preserve the semantic mean of individual attributes as much as 

possible. 
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4. To obtain a dispersion proportional to the semantic variance of the 
original data and the desired noise level. 

 

The steps to add noise to an attribute aX  through the uncorrelated noise 

addition method are shown in Figure 6-2. Firstly, the taxonomy τ(D(X
a
)) 

associated with the domain of attribute X
a

 is obtained from the ontology O, as 
described in Section 6.2. Thereby, we delimit the set of concepts from O that 
are candidates to replace the original values during the noise-addition process. 

 

 

Figure 6-2. Semantic uncorrelated noise addition method for a nominal attribute X
a

. 

 

Secondly, in order to provide a user-settable noise and, therefore, to satisfy 
objective (1), it is necessary that the noise sequence added to original data has 
a configurable dispersion. Such as in the numerical uncorrelated noise addition 
method, this is defined by the parameter α, which allows customizing the error 
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sVar(X
a
) of the attribute aX , we use equation (4.19), which requires the 

calculation of the semantic mean sMean(X
a
) by equation (4.18) adapted to 

τ(D(X
a
)). After that, the noise sequence consisting of a vector of n = | aX | 

random numbers 1 , ,{ }a
n

a a    , which follows a normal distribution εa ~ 

N(0, α sVar( aX )) with mean 0 and variance α sVar(X
a
), is generated. Finally, 

after obtaining εa, the error values a
i  are applied to the original values a

ix of 

attribute X
a
. To apply the error values, it is necessary to provide an 

interpretation of the error magnitude and its sign, which helps achieving 
objectives (2) and (3) of the method, and therefore (4). In the following we 
describe in detail this interpretation. 

To replace the original values by semantically-coherent noisy ones and, 
therefore, satisfy objective (2), it is necessary to interpret the error magnitude 
within the semantic domain. In the numerical domain, the noise represents the 
magnitude to be added to or subtracted from the input values. Therefore, the 

error values define the numerical distances between original values, a
ix , and 

their noisy versions, *a
ix . In the same way, in the semantic domain, error 

values should correspond to semantic distances. These distances are used to 
replace the original values by other concepts in the taxonomy associated with 
the domain that are as semantically distant as defined by the error magnitude, 

i.e., *( , )a a a
i i isd x x   . However, because the semantic domain is discrete, it 

may happen that there is not a concept at the exact required distance. In such 
case, to fulfill the desired noise level, we propose selecting the concept that 
exceeds and best approximates the error magnitude.  

 

 
 *

( ( ))
( , ) | ( , )arg min

a

a a a a
i i i i

c D X
sdx c sdx xc


                       (6.2) 

 
Regarding the preservation of the semantic mean required in objective (3), 

we must examine how the previous additions or subtractions influence this 
feature. In the numerical domain, if a positive error greater than the mean is 
added to an original value, the new value will be further away from the mean 
at the same magnitude. Otherwise, if the error is negative, the new value will 
be closer to the mean at the same magnitude. Because the noise sequence is 
normally distributed around zero, the magnitude of the accumulated additions 



87 
 

and subtractions with respect to the mean will compensate each other. 
Therefore, the mean of the noise-added values will be the same as the mean of 
the original values. In the semantic domain, it will be necessary to balance the 
number of movements towards and away from the mean concept. However, as 
discussed in Section 4.7, the semantic domain lacks a total order; that is, if we 
move away a certain distance from a concept, we cannot guarantee getting 
closer to or away from the mean concept at the same distance. Therefore, if we 
use the original values as reference points to apply the error values, but we do 
this uncontrollably, we will fulfill the expected absolute errors w.r.t. the 
original values, but we cannot ensure that the semantic mean will be 
preserved. 

This problem can be solved by using the error sign to guide the 
replacement of values towards the preservation of the semantic mean. To do 
so, we propose balancing the number of movements towards and away from 
the mean by following a specific strategy: 

 

 If the error a
i  is positive, the concept c in τ(D(X

a
))  that will replace the 

original value a
ix  must be farther from sMean(X

a
) than a

ix , i.e., sd(c, 

sMean(X
a
)) > sd( a

ix , sMean(X
a
)). For example, by applying this 

condition to the original nominal value a
ix =Ulcerative colitis in Figure 

6-3, we obtain several possible concepts for replacement, which are all 
further from the mean concept Disorder of digestive tract than Ulcerative 

colitis. These concepts constitute the set of replacement candidates of a
ix .  

 If the error a
i  is negative, the concept c in τ(D(X

a
)) that will replace the 

original value a
ix  must be closer to sMean(X

a
) than a

ix , i.e., sd(c, 

sMean(X
a
)) < sd( a

ix , sMean(X
a
)). By applying this condition to the 

previous example, the set of replacement candidates would comprise 
concepts that are closer to the mean concept Disorder of digestive tract 
than Ulcerative colitis, as shown Figure 6-4. 
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Figure 6-3. Example of replacement candidates (gray-shaded concepts) for an original value 
a
ix  (Ulcerative colitis) when the error sign is positive. 
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Figure 6-4. Example of replacement candidates (gray-shaded concepts) for an original value 
a
ix  (Ulcerative colitis) when the error sign is negative. 
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concept c that best approximates the error magnitude a
i according to equation 
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the semantic mean. 

Formally, the procedure that applies the noise vector to the original values 

of the attribute aX  is shown in SNA-Algorithm1. Together with aX , τ(D(X
a
)) 

and the noise vector εa, sMean(X
a
) is passed as input parameter to the 

algorithm because it is necessary to balance value replacements with respect to 

the semantic mean of X
a
. In order to select the noise-added values *a
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apply the noise magnitude a
i to each original value a

ix  by replacing it by a 

concept c in τ(D(X
a
)) that ideally matches the error magnitude or that, while 

exceeding the error magnitude, minimizes its distance from a
ix  (lines 7 and 9). 

At this step, the interpretation of the error sign proposed above is used: line 7 

when a
i is positive and line 9 when a

i is negative; if a
i  is zero, the noise-

added value *a
ix is exactly a

ix   (line 3). Finally, when a
ix   matches sMean(X

a
), 

the noise-added value *a
ix  will simply be the concept c in τ(D(X

a
)) that ideally 

matches the error magnitude or that, while exceeding the error magnitude, 

minimizes its distance from a
ix  (line 5). In any case, if no concept c in 

τ(D(X
a
)) with ( , )a a

i isd c x    exists, i.e., we cannot get further enough within 

τ(D(X
a
)), we select the concept that best approximates the condition. Because 

of this truncation and due to the need to discretize error values, the accuracy of 
the noise-added data will be limited by the size and granularity of the 
underlying ontology. 
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SNA-Algorithm1. Method to apply the noise vector to an attribute X
a

 by using the mean 
concept as reference point in the replacements.  

*

: nominal attribute with records

( ( )): taxonomy associated with the domain of     

( ): semantic mean of     

: noise vector     

: noise-added nominal attribute
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a

a a

a

a
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else if then

else if th

e

e

h

n

t n







    

    
( ( ))

*

*

) , ( ) , ( )

( , ) | ( , ) , ( ) , ( )arg min

8 :     is negative

9:        

10 :    
11:

12 :

a

a a a
i i i

a
i

a a a a a
i i i i i

a a

a a

X

a

c D

X X

X

x sd c sMean sd x sMean

sd c x sd c x sd c sMean sd s e Xx M anx

X


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else if then

end if
end for

return







 

 

The computational cost of this algorithm for a single attribute with n 

records is O(nm), where m is the number of concepts in the semantic domain.  
It should be pointed out that, as it was stated in Section 2.3.2.1, to add noise 

to a multivariate dataset with m nominal attributes through uncorrelated noise, 
SNA-Algorithm1 must be applied to each attribute independently. Therefore, 
correlation among attributes will not be preserved. 
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6.4 Semantic correlated noise addition method 

The correlated noise addition mechanism requires computing the covariance 
matrix to generate the noise sequences that reflect the degree of correlation 
between the attributes. By relying on the semantically-grounded versions of 
the distance covariance and distance variance measures proposed in Section 
4.6, we can build the semantic covariance matrix of the input nominal dataset 
and adapt the numerical correlated noise addition method detailed in Section 
2.3.2.1 to the semantic domain defined in Section 6.2. Because attribute 
covariances are now considered during the noise addition process, we will be 
able to preserve the semantic relationships between nominal attributes better 
than with uncorrelated noise.  

In addition to the objectives of the uncorrelated method depicted in the 
previous section, our semantic correlated noise addition method has the 
following ones: 

 
1. To obtain a data dispersion proportional to the covariance matrix of 

the original data and the noise magnitude. 
2. To preserve the correlation between the attributes as much as possible. 

 
For clarity, in the following description of the method, we assume that the 

dataset X has two nominal attributes X
a
 and X

b
 with n records.  

As shown in Figure 6-5, the fundamental difference between this method 
and the uncorrelated one is the procedure employed to generate the noise 
sequence for each attribute. As in the previous method, it is necessary to 
generate noise sequences with a configurable dispersion level. However, the 
noise sequences have to reflect the degree of correlation between attributes. 
Only in this way can this method preserve the association between the 
attributes. For this reason, and according to Section 2.3.2.1, the generated 

noise consists of a (n2) matrix of random numbers 

1 1
, , ,..., ( , )a b a a

n n
a b         that follows a multivariate normal distribution 

,

,
~  (0, )a b

a b

X X
N   with mean the vector 0 and covariance matrix 

,a bX X
 , 

where the parameter α determines the desired degree of semantic noise and 

,a bX X
  represents the semantic covariance matrix of the attributes. In the 
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semantic domain, 
,a bX X

  is a (22) matrix where the diagonal elements are the 

semantic distance variances of the attributes, and the off-diagonal elements are 
the semantic distance covariances between the attributes; both measures are 
obtained by using the equations (4.25) and (4.23) respectively.   

  

 
,

( ) ( , )

( , ) ( )
a b

a a b

X X b a b

sdVar X sdCov X X

sdCov X X sdVar X

 
    

 
                   (6.3) 

    
Finally, as shown in the last step depicted in Figure 6-5, the noise vectors εa 

and εb from εa,b are applied to the attributes X
a
 and X

b
, respectively. To do 

this, we propose three noise addition strategies, which are detailed below.  

 

Figure 6-5. Semantic correlated noise addition method for two nominal attributes X
a

and 

X
b

. 
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The first approach follows the strategy detailed in SNA-Algorithm1: to 
balance value replacements with respect to the semantic mean of the attribute. 
As an alternative, to preserve the correlation between attributes regardless of 
the mean, we propose SNA-Algorithm2. The difference of this approach from 
the previous one lies in the reference point used to select the replacements in 
the noise addition process. In this regard, we must examine how, in the 
numerical domain, the additions and subtractions of error values on attribute 

X
a
 influence attribute X

b
, and vice versa. Specifically, to preserve the 

correlation of the data ( , )a b
i ix x , if a positive error is added to an original 

numerical value a b
i ix x , the noisy value will be further away from b

ix at the 

same magnitude; on the other hand, if the error is negative, the new value will 

get closer to b
ix . Because the noise sequences must reflect the degree of 

correlation of the attributes, the magnitude of the accumulated additions and 
subtractions between value pairs will compensate each other. Therefore, the 
correlation of the noise-added values will be the same as the correlation of the 
original values. Once more, because of the lack of a total order in the semantic 
domain, it will be necessary to balance the number of movements between 
value pairs. For this reason, we propose a new strategy that uses as reference 

point the value b
ix  corresponding to the value a

ix that is being replaced, and 

vice versa.  

Formally, as shown in SNA-Algorithm2, if the error a
i  is positive, the 

concept c in τ(D(X
a
)) that will replace the original value a

ix must be farther 

from b
ix than a

ix , i.e., sd(c, b
ix ) > sd( a

ix , b
ix ), and vice versa. Otherwise, if 

the error a
i  is negative, the concept c must be closer to b

ix  than a
ix , i.e., sd(c, 

b
ix ) < sd( a

ix , b
ix ), and vice versa. Understandably, both attributes must 

belong to the same semantic domain, i.e., τ(D(X
a
)) = τ(D(X

b
)). For each 

attribute SNA-Algorithm2 will be called instead of SNA-Algorithm1 in the 
last step depicted in Figure 6-5. 
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SNA-Algorithm2. Method to apply the noise vector to an attribute aX  by using the values of 

the attribute bX as reference points in the replacements. 

*

, : nominal attributes with records

( ( )): taxonomy associated with the domain of 

: noise vector 

: noise-added nominal attribute
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a
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X

d x
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return 



 

 

A solution for attributes belonging to different semantic domains, i.e., 

τ(D(X
a
)) ≠ τ(D(X

b
)), for example, τ(D(X

a
)) = {diseases} and τ(D(X

b
)) = 

{medical procedures}, is to consider as reference point the most generic 
concept of the taxonomy, i.e., the root concept. In this sense, the root concept 
is seen as the gateway to other domains. This process is formally shown in 
SNA-Algorithm3.  
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SNA-Algorithm3. Method to apply the noise vector to an attribute aX  using the root concept 

of τ(D( aX )) as reference point in the replacements. 
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Further, if the semantic domains of the attributes are modeled in different 
ontologies, we may need to adjust the semantic distance calculation whereby 
distance values obtained from different ontologies with different sizes and 
granularities can be fairly compared. In this respect, some authors [109-111] 
have recently proposed methods to consistently compute the semantic 
similarity across multiple ontologies.  

Concerning the multivariate character of the correlated noise-addition 
method, it should be noted that the algorithms that use the mean or the root 
concept as reference points (SNA-Algorithm1 and SNA-Algorithm3) do not 
constrain the number of attributes they support. This is because the selection of 
replacements of an attribute in the noise addition process does not require 
taking into account the values of the remaining attributes: once the correlated 
noise sequences have been generated, they are applied to each attribute 
separately. On the other hand, SNA-Algorithm2 must be employed on disjoint 
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pairs of attributes because it uses the values of the second attribute as reference 
points to select the replacements of the first. For example, let 

( , , , )  :  {(   1, , , )  }, ,a b c d
i i

a b c d
i iX X X X X x x x ix n     be a dataset with four 

nominal attributes; there are three options to apply SNA-Algorithm2: pairs

( , )a bX X  and ( , )c dX X ; pairs ( , )a cX X and ( , )b dX X , and pairs ( , )a dX X

and ( , )b cX X . As a consequence, the correlation of the pairs would be 

preserved, but we cannot guarantee the same for the overall correlation of the 
dataset.  

Also, notice that due to the discretizations and truncations of noise 
magnitudes inherent to the semantic domain, the accuracy of the noise-added 
outcomes of the three variations of the correlated method depends on the size 
and granularity of the underlying taxonomy, as it also happens for the 
uncorrelated method. 

The computational cost of the three algorithms for two attributes with n 

records is O(nm), where m is the number of concepts in the semantic domain. 

6.5 Conclusion 

We have presented in this chapter semantic solutions to noise addition with 
individual attributes (uncorrelated noise) and to multivariate datasets 
(correlated noise). In order to be able to deal with nominal data, and thereby 
distort data consistently with their semantics, we have used the semantic 
versions of operators used in the standard noise addition mechanism, which we 
defined in Chapter 4. In addition, several strategies have been proposed to 
guide the replacement of values during the noise addition process towards the 
preservation of either the semantic mean or the semantic distance correlation.  

As a summary and guide for practitioners and researchers, Table 6.1 shows 
which of our methods is best suited to distort nominal data according to the 
type of dataset and the analytical utility requirements, that is, the semantic 
feature whose preservation should be optimized.  
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Table 6.1. Best suited methods according to the type of dataset and semantic feature to be 
optimized. 

Dataset 
Optimized 

feature
Suggested method 

One attribute sMean Uncorrelated- SNA-Algorithm1 

Two attributes with the same taxonomy  
sMean 
sdCor 

Correlated- SNA-Algorithm1 
Correlated- SNA-Algorithm2 

Two attributes with different taxonomies 
sMean 
sdCor 

Correlated- SNA-Algorithm1  
Correlated- SNA-Algorithm3 

More than two attributes  
sMean 
sdCor 

Correlated- SNA-Algorithm1 
Correlated- SNA-Algorithm3 
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Chapter 7 Empirical study 

 

In this section, we evaluate the semantic methods we propose in Chapter 5 and 
Chapter 6 with several nominal datasets and w.r.t. different evaluation metrics. 
The metrics we use quantify the data utility preserved in the outcomes from a 
semantic perspective. As baselines, we compare the results provided with our 
methods with those obtained by non-semantic data perturbation methods that 
rely on the distribution of the data. 

7.1 Evaluation data 

As evaluation data, we used a structured database containing patient discharge 
data provided by the California Office of Statewide Health Planning and 
Development (OSHPD), which were collected from licensed hospitals in 

California in 2009 1 . Each record of the database details the healthcare 
discharge of a patient and, among others, it contains several nominal attributes 
stating the principal diagnosis, the secondary diagnosis and the medical 
procedure applied to the patient, which we selected to evaluate our methods.  

As discussed in Chapter 2, discharge patient data are of highly sensitive 
nature and different regulations, such as the Health Insurance Portability and 
Accountability Act (HIPAA) [22] in the United States or the General Data 
Protection Regulation (GDPR) [19] in the European Union, state the need 
to protect them. Consequently, appropriate data protection measures should be 
undertaken by the data controller before making these data available for 
secondary use. In this context, the database provided by the OSHPD is 
especially suitable to illustrate the need for semantic privacy-preserving 
methods because most patient discharge data compiled are nominal. In 
addition, because correlations between medical attributes, such as principal 
diagnosis and medical procedure, are crucial for research, the OSHPD 

                                                            
1 http://www.oshpd.ca.gov/HID/Products/PatDischargeData/PublicDataSet/index.html 
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database allows us to evaluate how well the semantic relationship between the 
attributes is preserved after the masking process. 

To evaluate our methods, we have created several datasets from multiple 
samples of the OSHPD database with different correlation degrees, which we 
detail in the following sections. 

7.2 Underlying ontology used in the study 

Diagnoses and procedure codes in the OSHPD database have been mapped to 
healthcare concepts in the SNOMED-CT2 medical ontology [81], which is 
especially well-suited to assist semantic similarity assessments of medical-
related data because of its large size and fine grained taxonomic detail. 

SNOMED-CT (Systematized Nomenclature of Medicine, Clinical Terms) 
is a domain ontology developed for medical purposes. It is the largest 
structured lexicon of those distributed in the UMLS repository used for 
indexing electronic medical records, ICU monitoring, clinical decision 
support, medical research studies, clinical trials, computerized physician order 
entry, disease surveillance, image indexing and consumer health information 
services.  

The medical terms (e.g., flu) in SNOMED-CT have unique meanings, in 
contrast with other ontologies of polysemic character (e.g., WordNet [79]). 
These terms are grouped into sets of synonyms (synset). A synset is thus a set 
of terms that are interchangeable in some context, because they share a 
commonly-agreed upon meaning without variation (e.g., {flu, influenza, 
grippe}). Each synset represents a distinct concept in SNOMED-CT which is 
identified by a code SCTID (e.g., the synset {flu, influenza, grippe} is 
identified by the SCTID 6142004). 

SNOMED-CT contains more than 311,000 concepts with formal logic-
based definitions organized into 18 overlapping hierarchies: clinical findings, 
procedures, observable entities, body structures, organisms, substances, 
pharmaceutical products, specimens, physical forces, physical objects, events, 
geographical environments, social contexts, linkage concepts, qualifier values, 
special concepts, record artifacts and staging and scales. Each concept in 
SNOMED-CT may belong to one or more of these hierarchies by multiple 

                                                            
2 https://www.nlm.nih.gov/healthit/snomedct/index.html 



101 
 

inheritance or it may inherit from multiple concepts within one of these 
hierarchies. Concepts are linked with approximately 1.36 million relationships. 
Its size and fine-grained taxonomical detail make it especially suitable to assist 
semantic similarity assessments [15, 112]. 

7.3 Evaluation metrics 

To quantify the data utility preserved in the outcomes from a semantic 
perspective, we have considered the following semantic features and 
evaluation metrics:  

1. The semantic mean of the original attribute X
a
, sMean(X

a
), and of the 

permuted attribute X
a*
, sMean(X

a*
) defined in Section 4.4 and the 

semantic distance between both, sd(sMean(X
a*

), sMean(X
a
)). A 

distance value of 0 indicates that the mean has been perfectly 
preserved after the swapping process. 

2. To evaluate the semantic dispersion of permuted attributes, we use the 
semantic distance variance defined in Section 4.6, and the absolute 
difference between the variances of the original and permuted 

attributes, sdVar(X
a
) and sdVar(X

a*
). A difference of 0 indicates that 

the variance has been perfectly preserved after the swapping process. 
On the other hand, to evaluate the semantic dispersion of noise-added 
attributes and according to Section 2.3.2.1, we use the semantic 
variance defined in Section 4.5 and the absolute difference between 
the actual semantic variance of the noise-added attribute values and 
the expected semantic variance after adding noise with a noise 

parameter α, i.e., |sVar(X
a*
)  (1+ α) sVar(X

a
)|. Differences near 0 

indicate that the variance of the noise-added results has been well-
controlled. 

3. To measure the overall loss of information in terms of semantics of the 
masked attributes, we use the root mean square error (RMSE). To 
evaluate loss of semantics in permuted attributes, we measure the root 
average square semantic distance between original and permuted value 

pairs, RMSE(X
a
, X

a *
). To evaluate loss of semantics in noise-added 

attributes, we measure the RMSE between original and noise-added 

value pairs, RMSEActual(X
a
, X

a *
), w.r.t. the target error defined by the 
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desired magnitude of the noise to be added, RMSETarget= εa. In any 
case, small values indicate low information loss, and thus, perturbed 
data with better quality. 

4. The semantic distance correlation of original and perturbed attribute 

pairs, sdCor(X
a
,X

b
) and sdCor(X

a *
,X

b *
), by using equation (4.24), 

and the absolute difference between the actual semantic distance 
correlation of pairs of perturbed attributes and original attributes, i.e., 

|sdCor(X
a *

,X
b *

)  sdCor(X
a
,X

b
)|. Difference=0 indicates that the 

correlation has been perfectly preserved after the masking process. 

7.4 Evaluation of semantic rank swapping  

To evaluate our semantic rank swapping methods defined in Chapter 5, we 
have used two samples from the OSHPD database with different correlation 
degree. 

The first experiment has been carried out with a sample of 1,172 patients 

and two moderately correlated attributes (X
a
=principal diagnosis and 

X
b
=medical procedure) belonging to different semantic domains: attribute X

a
 

belongs to the taxonomy of diseases and X
b
 belongs to the taxonomy of 

procedures, both from SNOMED-CT. The sample of the attribute X
a
 contains 

783 different categories with an average of 1.5 records per category and the 

sample of the attribute X
b
 contains 430 with an average of 2.7.  The semantic 

features of this sample, which we name Dataset1, are depicted Table 7.1. 
 

Table 7.1. Semantic features of Dataset1: 1,172 patients with two moderately correlated 

attributes, X
a

= principal diagnosis, X
b

=medical procedure 

Semantic feature Value 

sMean(X a) Acute appendicitis with peritoneal abscess 

sMean(X b) Endoscopic division of adhesions of peritoneum 

sdVar(X a) 0.1148 

sdVar(X b) 0.1240 

sdCor(X
a
,X

b
) 0.4595 
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We have evaluated the two versions of the univariate method (SRS-
Algorithm1 and SRS-Algorithm2, Section 5.3) and the multivariate method 
(SRS-Algorithm3, Section 5.4). As semantic distance sd(·,·), we have used the 
inverse of the well-known Wu and Palmer semantic similarity measure 
depicted in Section 4.3.  

Table 7.2, Table 7.3 and Table 7.4 depict the semantic features and 
evaluation metrics of the results provided by SRS-Algorithm1, SRS-
Algorithm2 and SRS-Algorithm3, respectively, for several values of the input 
parameter k={2, 5,10, 20, 50, 100}. 

 

Table 7.2. Dataset1: evaluation metrics of rank-swapped attributes values (X
a

= principal 

diagnosis, X
b

= medical procedure) with the univariate method: SRS-Algorithm1. 

Metric k=2 k=5 k=10 k=20 k=50 k=100 

sMean(X
a
)  |  sd(sMean(X

a*
) , sMean(X

a
)) Acute appendicitis with peritoneal abscess | 0 

sMean(X
b
)  |  sd(sMean(X

b*
) , sMean(X

b
)) Endoscopic division of adhesions of peritoneum | 0 

sdVar(X
a
)  |  |sdVar(X

a*
) sdVar(X

a
)| 0.1148 | 0 

sdVar(X
b
)  |  |sdVar(X

b*
) sdVar(X

b
)| 0.1240 | 0 

RMSE(X
a

, X
a *

) 0.4558 0.5423 0.5560 0.5823 0.6018 0.6083 

RMSE (X
b

, X
b *

) 0.3562 0.3712 0.4118 0.4166 0.4650 0.5016 

sdCor(X
a*

, X
b*

) 0.2705 0.2689 0.2649 0.2647 0.2628  0.2520 

|sdCor(X
a*

, X
b*

) sdCor(X
a
, X

b
)| 0.1890 0.1906 0.1946 0.1948 0.1967 0.2075 

 

Table 7.3. Dataset1: evaluation metrics of rank-swapped attributes values (X
a

= principal 

diagnosis, X
b

= medical procedure) with the univariate method: SRS-Algorithm2. 

Metric k=2 k=5 k=10 k=20 k=50 k=100 

sMean(X
a
)  |  sd(sMean(X

a*
) , sMean(X

a
)) Acute appendicitis with peritoneal abscess | 0 

sMean(X
b
)  |  sd(sMean(X

b*
) , sMean(X

b
)) Endoscopic division of adhesions of peritoneum | 0 

sdVar(X
a
)  |  |sdVar(X

a*
) sdVar(X

a
)| 0.1148 | 0 

sdVar(X
b
)  |  |sdVar(X

b*
) sdVar(X

b
)| 0.1240 | 0 

RMSE (X
a

, X
a *

) 0.1439 0.1887 0.2300 0.2782 0.3513 0.4062 

RMSE (X
b

, X
b *

) 0.0544 0.0776 0.1014 0.1413 0.2153 0.2941 

sdCor(X
a*

, X
b*

) 0.4191 0.4092 0.4039  0.3648 0.3235 0.2800 

|sdCor(X
a*

, X
b*

) sdCor(X
a
, X

b
)| 0.0404 0.0503 0.0556 0.0947 0.1360 0.1795 
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Table 7.4. Dataset1: evaluation metrics of rank-swapped attributes values (X
a

= principal 

diagnosis, X
b

= medical procedure) with the multivariate method: SRS-Algorithm3. 

Metric k=2 k=5 k=10 k=20 k=50 k=100 

sMean(X
a
)  |  sd(sMean(X

a*
) , sMean(X

a
)) Acute appendicitis with peritoneal abscess | 0 

sMean(X
b
)  |  sd(sMean(X

b*
) , sMean(X

b
)) Endoscopic division of adhesions of peritoneum | 0 

sdVar(X
a
)  |  |sdVar(X

a*
) sdVar(X

a
)| 0.1148 | 0 

sdVar(X
b
)  |  |sdVar(X

b*
) sdVar(X

b
)| 0.1240 | 0 

RMSE (X
a

, X
a*

) 0.1966 0.2707 0.3130 0.3659 0.4145 0.4656 

RMSE (X
b

, X
b*

) 0.0920 0.1433 0.1613 0.2083 0.2697 0.3745 

sdCor(X
a*

, X
b*

) 0.4567 0.4410 0.4363 0.4160 0.3826 0.3145  

|sdCor(X
a*

, X
b*

) sdCor(X
a
, X

b
)| 0.0028 0.0185 0.0232 0.0435 0.0769 0.1450 

 
First, we can see the semantic mean and the semantic variance are perfectly 

preserved for all the attributes. Because attribute values in the permuted 
outcome are the same as those in the original dataset but swapped, by 
definition, marginal statistics (e.g., mean, variance, min/max values) are 
perfectly preserved for each individual attribute. This contrast with other data 
protection mechanisms discussed in Chapter 2, such as data microaggregation 
or generalization, which protect data by making them more homogenous and, 
thus, reduce the variance and/or granularity of the original data. 

Second, because the k parameter determines the swapping range, the larger 
the k, the larger the permutation and, thus, the larger the RMSE. Specifically, 
RMSEs show that our methods are able to proportionally distort the outcomes 
according to the desired level of protection. In addition, SRS-Algorithm2 and 
SRS-Algorithm3 provide significantly better values for the RMSE than SRS-
Algorithm1. The differences observed between the former and the later 
measure the positive influence of the dynamic clustering at opposite ends 
strategy detailed in Section 5.3, which contributes to minimize the information 
loss resulting from the permutation process by i) limiting the swapping range 
of the original value/tuple to the k semantically-closest values/tuples in the 
dataset, and ii) prioritizing the permutation of those values whose swaps entail 
more information loss. SRS-Algorithm2 provides slightly better RMSEs for 
individual attributes than SRS-Algorithm3 because the former is able to 
optimize the swapping ranges for individual attributes, whereas the latter does 
it for complete tuples, which is likely suboptimal for individual attributes. 

Finally, as expected, correlations between attributes are preserved by the 
multivariate method significantly better than by any of the univariate 
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algorithms, because the former constraints value swapping towards 
maintaining the dependence between the attributes. Regarding univariate 
methods, we can see that SRS-Algorithm2 reasonably preserves correlations 
because, for two correlated attributes, it is reasonable to assume that, if a value 
of the first attribute is closely related to another value of the second attribute, 
values semantically similar to the former one (resulting from the swap) will 
also be related to values semantically similar to the latter. This behavior also 
explains why SRS-Algorithm1 provides such poor correlation results, 
especially for low values of k: correlation differences are proportional to the 
also large RMSEs. So, we can conclude that SRS-Algorithm2 is still valid 
when maintaining attribute correlations is not priority or when dealing with 
non-dependent attributes, because it is able to minimize per-attribute errors 
better than SRS-Algorithm3. 

To contextualize the results of our methods against those of related works, 
in Figures Figure 7-1, Figure 7-2 and Figure 7-3, we compare the outcomes of 
our algorithms with those provided by a non-semantic data swapping 
mechanism, which, due to its impossibility of using a total order on the 
nominal attributes to define the swapping ranges, randomly and 
unconstrainedly swaps values within attribute domains. 
 

 

Figure 7-1. RMSE of attribute X
a

 with data swapping and semantic rank swapping (SRS-
Algorithm1, SRS-Algorithm2 and SRS-Algorithm3) with Dataset1. 
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Figure 7-2. RMSE of attribute X
b

with data swapping and semantic rank swapping (SRS-
Algorithm1, SRS-Algorithm2 and SRS-Algorithm3) with Dataset1. 

 

 
Figure 7-3. Semantic distance correlation for data swapping and semantic rank swapping 

(SRS-Algorithm1, SRS-Algorithm2 and SRS-Algorithm3) with Dataset1. 

 

In comparison to the non-semantic data swapping, we can see that our 
semantic methods, especially SRS-Algorithm2 and SRS-Algorithm3, 
drastically improve the RMSEs and attribute correlations. Specifically, data 
swapping produces a significantly larger permutation that is also non-
configurable and, on the other hand, largely breaks the correlation between 
attributes. 
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To test the generality of our multivariate method (SRS-Algorithm3), a 
second experiment has been carried out with another dataset of 1,012 patients, 

named Dataset2. In this case, the attributes X
a
 =principal diagnosis and 

X
b
=procedure present a stronger correlation than in Dataset1, sdCor(X

a
, X

b
) 

=0.6392. This stronger correlation implies that records are more homogenous 

and frequencies of attribute categories are higher:  X
a
 = 55 different categories 

(average of 18.4 records per category) and X
b
 = 94 different categories 

(average of 10.8 records per category). Table 7.5 depicts the RMSEs and 
semantic correlation metrics of the results provided by SRS-Algorithm3. 

 

Table 7.5. Dataset2: evaluation metrics of rank-swapped attributes values (X
a

= principal 

diagnosis, X
b

= medical procedure) with the SRS-Algorithm3. 

Metric k=2 k=5 k=10 k=20 k=50 k=100 

RMSE (X
a

, X
a*

) 0 0.0129 0.0336 0.0749 0.1965 0.3750 

RMSE (X
b

, X
b*

) 0 0.0288 0.0810 0.1486 0.2300 0.3218 

sdCor(X
a*

, X
b*

) 0.6392 0.6383 0.6371 0.6238 0.5765 0.4658 

|sdCor(X
a*

, X
b*

) sdCor(X
a
, X

b
)| 0 0.0009 0.0021 0.0154 0.0627 0.1734 

 
 

As we can see, for k=2, the RMSE of both attributes is zero, which means 
that the swaps of attribute values have not resulted in values different from the 
original ones. This behavior is consistent with the frequency distribution of 
both attributes in Dataset2: because the cardinality of attribute values, and also 
of tuples of the two attributes, is larger than 2, values within the swapping 
range are equal. From the perspective of k-anonymity, this means that the 
original dataset was already indistinguishable for sets of k=2 records; that is, it 
is already probabilistically-2-anonymous and, also, 2-anonymous. In this case, 
for k=2, the original dataset does not need to be modified to achieve the 
desired level of protection, and so does our algorithm, which enforces 
probabilistic k-anonymity; otherwise, unnecessary information loss would 
occur. 

For k=5 or 10, which are still below the average frequency of attribute 
categories, we obtain very small (albeit not null) errors, whereas for k ≥ 20, 
which exceed the average frequencies, differences are more noticeable. In all 
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cases, the semantic features of the data (in particular the strong attribute 
correlation) are preserved proportionally to the desired permutation level. 

7.5 Evaluation of semantic noise addition 

In this section, we evaluate the semantic noise addition methods we have 
proposed in Chapter 6. For that, we use two samples from the OSHPD 
database with different correlation degrees.  

The first experiment was carried out with a pair of strongly correlated 

attributes X
a
 =principal diagnosis and X

b
=secondary diagnosis, both with the 

same associated taxonomy, that is, the hierarchy of diseases of SNOMED-CT. 
Specifically, we have taken a sample of 1,350 patients, named Dataset1, 
whose semantic features are depicted in Table 7.6.  

Table 7.6. Semantic features of Dataset1: 1,350 patients with two strongly correlated attributes 

X
a

=principal diagnosis and X
b

=secondary diagnosis, both with the same associated taxonomy 

Semantic feature Value 

sMean(X
a

) Furuncle of chest wall 

sMean(X
b

) Viral hepatitis with hepatic coma 

sVar(X
a

) 0.22 

sVar(X
b

) 0.24 

sdCor(X
a

, X
b

) 0.94 

 

The fact that the attributes are strongly correlated, sdCor(X
a
,X

b
) = 0.94, 

allows us to study the behavior of our methods in the most challenging 
scenario: when a strong correlation should be preserved. Specifically, we have 
tested the uncorrelated method discussed in Section 6.3 with the noise-addition 
strategy defined in SNA-Algorithm1 (Uncorrelated-SNA-Algorithm1), the 
correlated method discussed in Section 6.4 with the noise-addition strategy 
defined in SNA-Algorithm1 (Correlated-SNA-Algorithm1) and the correlated 
method with the noise-addition strategy designed to optimize the preservation 
of the correlation between attributes defined in SNA-Algorithm2 (Correlated-
SNA-Algorithm2), since both attributes are drawn from the same taxonomy.  

Table 7.7, 7.8 and 7.9 collect the evaluation metrics of the results provided 
by these methods for several values of the noise parameter α={0.1, 0.3, 0.5, 
1}. 
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Table 7.7. Evaluation metrics of the noise-added dataset obtained with Uncorrelated-SNA-

Algorithm1 for Dataset1 ( aX = principal diagnosis and bX =secondary diagnosis). 

Metric α=0.1 α=0.3 α=0.5 α=1 

sMean(X
a*

) 
Blister of 
axilla with 
infection 

Axillary hydra-
denitis 

suppurativa 

Blister of 
axilla with 
infection 

Blister of axilla 
with infection 

sd(sMean(X
a*

), sMean(X
a

)) 0.20 0.20 0.20 0.20 

sVar(X
a*

) | |sVar(X
a*

)  (1+ α) sVar(X
a

)| 0.24 | 0 0.24 | 0.05 0.25 | 0.08 0.27 | 0.17 

RMSEActual(X
a

, X
a*

) | RMSETarget= εa 0.23 | 0.15 0.31 | 0.25 0.38 | 0.34 0.49 | 0.48 

sMean(X
b*

) 
Viral hepatitis 
with hepatic 

coma 

Viral hepatitis 
with hepatic 

coma 

Viral hepatitis 
 with hepatic 

coma 

Inflammatory 
disease of liver 

sd(sMean(X
b*

), sMean(X
b

)) 0 0 0 0.18 

sVar(X
b*

) | |sVar(X
b*

)  (1+ α) sVar(X
b

)| 0.23 | 0.03 0.24 | 0.07 0.26 | 0.1 0.30 | 0.18 

RMSEActual(X
b

, X
b*

) | RMSETarget= εb 0.19 | 0.15 0.30 | 0.27 0.37 | 0.35 0.50 | 0.51 

sdCor(X
a*

, X
b*

) |  

| sdCor(X
a*

, X
b*

)  sdCor(X
a

, X
b

)| 
0.78 | 0.16 0.65 | 0.29 0.57 | 0.37 0.38 | 0.56 

 

 
Table 7.8. Evaluation metrics of the noise-added dataset obtained with Correlated-SNA-

Algorithm1 for Dataset1 ( aX = principal diagnosis and bX =secondary diagnosis). 

Metric α=0.1 α=0.3 α=0.5 α=1 

sMean(X
a*

) 
Blister of 
axilla with 
infection 

Blister of 
axilla with 
infection 

Blister of 
axilla with 
infection 

Blister of 
axilla with 
infection 

sd(sMean(X
a*

), sMean(X
a

)) 0.20 0.20 0.20 0.20 

sVar(X
a*

) | |sVar(X
a*

)  (1+ α) sVar(X
a

)| 0.24 | 0 0.24 | 0.05 0.26 | 0.07 0.29 | 0.15 

RMSEActual(X
a

, X
a*

) | RMSETarget= εa 0.24 | 0.17 0.33 | 0.28 0.40 | 0.37 0.51 | 0.52 

sMean(X
b*

) 

Viral 
hepatitis 

 with hepatic 
coma 

Inflammatory 
disease of liver 

Mouth-gen. 
 ulcers inflam. 

cartil. synd. 

Mouth-gen. 
ulcers inflam. 
cartil. synd. 

sd(sMean(X
b*

), sMean(X
b

)) 0 0.18 0.45 0.45 

sVar(X
b*

) | |sVar(X
b*

)  (1+ α) sVar(X
b

)| 0.22 | 0.04 0.23 | 0.08 0.24 | 0.12 0.28 | 0.2 

RMSEActual(X
b

, X
b*

) | RMSETarget= εb 0.20 | 0.17 0.30 | 0.28 0.38 | 0.37 0.49 | 0.52 

sdCor(X
a*

, X
b*

) |  

| sdCor(X
a*

, X
b*

)  sdCor(X
a

, X
b

)| 
0.82 | 0.12 0.73 | 0.21 0.69 | 0.25 0.59 | 0.35 
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Table 7.9. Evaluation metrics of the noise-added dataset obtained with Correlated-SNA-

Algorithm2 for Dataset1 ( aX = principal diagnosis and bX =secondary diagnosis). 

Metric α=0.1 α=0.3 α=0.5 α=1 

sMean(X
a*

) 
Blister of 
axilla with 
infection 

Blister of 
axilla with 
infection 

Blister of 
axilla with 
infection 

Granuloma 
inguinale 

sd(sMean(X
a*

), sMean(X
a

)) 0.20 0.20 0.20 0.20 

sVar(X
a*

) | |sVar(X
a*

)  (1+ α) sVar(X
a

)| 0.24 | 0 0.26 | 0.03 0.28 | 0.05 0.32 | 0.12 

RMSEActual(X
a

, X
a*

) | RMSETarget= εa 0.25 | 0.17 0.35 | 0.28 0.41 | 0.37 0.52 | 0.52 

sMean(X
b*

) 
Inflammatory 

disease of liver
Inflammatory 

disease of liver 
Inflammatory 

disease of liver 

Mouth-gen. 
ulcers inflam. 
cartil. synd. 

sd(sMean(X
b*

), sMean(X
b

)) 0.18 0.18 0.18 0.45 

sVar(X
b*

) | |sVar(X
b*

)  (1+ α) sVar(X
b

)| 0.23 | 0.03 0.25 | 0.06 0.27 | 0.09 0.31 | 0.17 

RMSEActual(X
b

, X
b*

) | RMSETarget= εb 0.22 | 0.17 0.32 | 0.28 0.40 | 0.37 0.51 | 0.52 

sdCor(X
a*

, X
b*

) |  

| sdCor(X
a*

, X
b*

)  sdCor(X
a

, X
b

)| 
0.84 | 0.10 0.76 | 0.18 0.71 | 0.23 0.59 | 0.35 

 
 
Evaluation metrics show that, since α determines the amount of applied 

noise, the greater the α, the greater the RMSE and, therefore, the distortion 
applied to the data. The actual RMSEs show that our methods are able to 
appropriately adapt the data distortion to the desired magnitude of noise; that 
is, the actual RMSE is greater than or equal to the target RMSE in all cases 
except for those with a very large noise parameter (α =1). Actual and target 
errors are not expected to be equal with nominal data due to the need to 
discretize error values, and because of the limited scope offered by the 
underlying taxonomy. In the first case, the small differences between actual 
and target RMSEs are caused by the need to discretize noise-added values to 
concepts in the taxonomy; this difference tends to be greater for small values 
of α because, when the error components ϵai and ϵbi are small, the relative 

effect of the discretization is more noticeable over the absolute magnitude. In 
the second case, when the error components ϵai and ϵbi are very large (α =1), 

the number of truncated error values increases due to the limited scope of the 
taxonomy, i.e., cases in which there is no concept in the taxonomy that meets 
or exceeds the error magnitude. When this happens, the actual RMSE may be 
smaller than the target RMSE.  

We can also see that the sMean of the noise-added datasets is largely 
preserved, particularly if the noise level is small. This shows the effectiveness 
of the strategies we propose to guide the replacement process, which tends to 
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balance the distances of the replaced values with respect to the mean concept. 
On the other hand, the difference between the variance of the noise-added 
attribute and the expected variance is maintained below 25% of the parameter 
α. Such as for the RMSE, for nominal data it would be difficult to achieve a 
null difference because of the discretizations and truncated noisy values.  

Finally, as expected, the correlation between attributes is better preserved 
by the correlated methods, especially for large values of α. Therefore, the 
uncorrelated method is well-suited when preserving the correlation is not 
crucial. Regarding correlated methods, we can see that, despite using the same 
noise sequences, Correlated-SNA-Algorithm1 provides a slightly better mean 
than Correlated-SNA-Algorithm2, because Correlated-SNA-Algorithm1 has 
been designed to optimize this feature. On the contrary, the correlation is 
better preserved by Correlated-SNA-Algorithm2 because it guides the 
replacement process towards optimizing the dependence between the 
attributes.  

To compare our results against baseline methods representative of the data 
distortion strategies of related works discussed in Section 3.1, in Figure 7-4, 
Figure 7-5 and Figure 7-6, we compare the accuracy of our algorithms w.r.t. 
two non-semantic data distortion methods based on distributions:  

 

 A naïve distortion, in which original values are randomly replaced by 
other values of the same dataset. 

 A probabilistic distortion, in which the probability of selecting a value as 
replacement corresponds to the occurrence frequency of that value in the 
input dataset. Because the distribution of the data is considered during the 
distortion process, the outcome will preserve the statistical features of the 
data better than with the naïve method. 

In contrast to distortion methods based on the distribution of the data, we 
can see that our methods dramatically improve two evaluation metrics: 
RMSEs and correlations. On the one hand, the former methods tend to add a 
significantly greater amount of noise, which is also non-configurable and, on 
the other hand, they totally break the correlation between attributes. Our 
methods provide better results even when the error magnitude is set to the 
maximum reasonable value (α=1), that is, an α value that tries to match the 
degree of distortion added by the methods based on the distribution of the data. 
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Figure 7-4. Evaluation of the actual RMSE of attribute aX  for the naïve distortion, 
probabilistic distortion and our semantic methods (Uncorrelated-SNA-Algorithm1, Correlated-

SNA-Algorithm1 and Correlated-SNA-Algorithm2) in Dataset1. 

 

 
Figure 7-5. Evaluation of the actual RMSE of attribute X

b
for the naïve distortion, probabilistic 

distortion and our semantic methods (Uncorrelated-SNA-Algorithm1, Correlated-SNA-
Algorithm1 and Correlated-SNA-Algorithm2) in Dataset1. 
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Figure 7-6. Evaluation of the semantic distance correlation for the naïve distortion, 

probabilistic distortion and our semantic methods (Uncorrelated-SNA-Algorithm1, Correlated-
SNA-Algorithm1 and Correlated-SNA-Algorithm2) in Dataset1. 

 

However, distribution-based data distortions are able to preserve the mean 
better in some cases, as shown Table 7.10. This is due to the small spectrum of 
different categories in the dataset, that is, only 17 different diseases for 

attribute aX  and 19 for bX , and the large and even balance of repetitions 
among the categories, which configure a favorable scenario for methods based 
on the distribution of the data. It is expected that distribution-based methods 
produce worse results with fine grained datasets with many different 
categories and uneven distributions.   

Table 7.10. Evaluation of the semantic mean for the naïve distortion, probabilistic distortion 
and our semantic methods (Uncorrelated-SNA-Algorithm1, Correlated-SNA-Algorithm1 and 
Correlated-SNA-Algorithm2) in Dataset1. 

Metric 
Naïve 

distortion 
 

Probabilistic 
distortion 

Uncorrelated 
SNA-1 
(α=1) 

Correlated
SNA-1 
(α=1) 

Correlated 
SNA-2 
(α=1) 

sd(sMean(X
a*

), sMean(X
a

)) 0.20 0.04 0.20 0.20 0.20 

sd(sMean(X
b*

), sMean(X
b

)) 0.27 0 0.18 0.45 0.45 
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To test the generality of our methods, in a second experiment, we 
configured a dataset named Dataset2, with 1,316 patients and two strongly 

correlated attributes belonging to different taxonomies: aX =principal 

diagnosis, which is associated with the taxonomy of diseases and bX =medical 
procedure, which is associated with the taxonomy of procedures, both from 
SNOMED-CT. This allows us to compare Correlated-SNA-Algorithm1 with 
the version designed to optimize the preservation of the correlation between 
attributes with domains in different taxonomies, Correlated-SNA-Algorithm3. 
Table 7.11 depicts the semantic features of Dataset2, which also shows a 
strong correlation of 0.87; Tables 7.12 and 7.13 depict the evaluation metrics 
for Dataset2. 

Table 7.11. Semantic features of Dataset2: 1,316 patients with two strongly correlated 

attributes, aX = principal diagnosis, bX = medical procedure with different associated 
taxonomies. 

Semantic feature Value 

sMean(X
a

) Malignant neoplasm of costovertebral joint 

sMean(X
b

) Arthrectomy of hip 

sVar(X
a

) 0.15 

sVar(X
b

) 0.07 

sdCor(X
a

, X
b

) 0.88 
 

Table 7.12. Evaluation metrics of the noise-added dataset provided by Correlated-SNA-

Algorithm1 for Dataset2 ( aX =principal diagnosis and bX =medical procedure). 

Metric α=0.1 α=0.3 α=0.5 α=1 

sMean(X
a*

) 

Second. 
malignant 

neoplasm of 
lumbar 

vertebral 
column 

Malignant 
neo-plasm of 

costo-
vertebral 

joint 

Malignant 
neo-plasm 
of costo-
vertebral 

joint 

Malignant 
neo-plasm of 

costo-
vertebral 

joint 

sd(sMean(X
a*

), sMean(X
a

)) 0.33 0 0 0 

sVar(X
a*

) | |sVar(X
a*

)  (1+ α) sVar(X
a

)| 0.18 | 0.02 0.19 | 0.01 0.2 | 0.03 0.23 | 0.07 

RMSEActual(X
a

, X
a*

) | RMSETarget= εa 0.23 | 0.16 0.32 | 0.28 0.40 | 0.37 0.50 | 0.52 

sMean(X
b*

) 
Arthrectomy

 of hip 
Arthrectomy 

 of hip 
Arthrectomy 

 of hip 
Arthrectomy  

of hip 

sd(sMean(X
b*

), sMean(X
b

)) 0 0 0 0 

sVar(X
b*

) | |sVar(X
b*

)  (1+ α) sVar(X
b

)| 0.08 | 0 0.09 | 0 0.1 | 0.01 0.14 | 0 

RMSEActual(X
b

, X
b*

) | RMSETarget= εb 0.15 | 0.13 0.24 | 0.23 0.30 | 0.29 0.41 | 0.40 

sdCor(X
a*

, X
b*

) | 

| sdCor(X
a*

, X
b*

)  sdCor(X
a

, X
b

)| 
0.68 | 0.20 0.56 | 0.32 0.48 | 0.40 0.42 | 0.46 
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Table 7.13. Evaluation metrics of the noise-added dataset provided by Correlated-SNA-

Algorithm3 for Dataset2 ( aX =principal diagnosis and bX =medical procedure). 

Metric α=0.1 α=0.3 α=0.5 α=1 

sMean(X
a*

) 
Fracture of 

prox. 
end of femur

Fracture of 
prox. 

end of femur 

Recurrent 
 dislocation of 

joint 

Recurrent 
 dislocation of 

joint 

sd(sMean(X
a*

), sMean(X
a

)) 0.23 0.23 0.23 0.23 

sVar(X
a*

) | |sVar(X
a*

)  (1+ α) sVar(X
a

)| 0.2 | 0.04 0.22 | 0.03 0.23 | 0.01 0.26 | 0.04 

RMSEActual(X
a

, X
a*

) | RMSETarget= εa 0.27 | 0.16 0.34 | 0.28 0.41 | 0.37 0.51 | 0.52 

sMean(X
b*

) 
Arthrectomy

 of hip 
Arthrectomy 

 of hip 
Arthrectomy 

 of hip 
Arthrectomy 

 of hip 

sd(sMean(X
b*

), sMean(X
b

)) 0 0 0 0 

sVar(X
b*

) | |sVar(X
b*

)  (1+ α) sVar(X
b

)| 0.08 | 0 0.11 | 0.02 0.13 | 0.03 0.2 | 0.06 

RMSEActual(X
b

, X
b*

) | RMSETarget= εb 0.16 | 0.13 0.25 | 0.23 0.30 | 0.29 0.41 | 0.40 

sdCor(X
a*

, X
b*

) |  

| sdCor(X
a*

, X
b*

)  sdCor(X
a

, X
b

)| 
0.70 | 0.18 0.60 | 0.28 0.54 | 0.34 0.47 | 0.41 

 
 

Such as the preceding case, and for the same reasons, Correlated-SNA-
Algorithm1 better preserves the mean, while Correlated-SNA-Algorithm3 
provides a better-preserved correlation, despite using the same noise sequences 
in both methods. 

7.6 Conclusion 

The empirical study carried on non-independent nominal attributes has shown 
that our methods are capable of permuting (with semantic rank swapping) or 
distorting (with semantic noise addition) values consistently with the desired 
level of perturbation, and incurring in an information loss much lower than 
non-semantic perturbation methods based on the distribution of the data. 
Another strength of our proposal is that both the semantic multivariate rank 
swapping solution and the semantic correlated noise addition solution are able 
to largely preserve the semantic correlation between attributes, while this is 
totally broken by non-semantic methods.  

Our semantic proposals also provide a configurable level of perturbation, 
which is achieved through k in the semantic rank swapping methods and α in 
the semantic noise addition methods. Concerning the preservation of 
univariate statistical features (mean and variance), the permutation-based 
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approach provided better outcomes than the distortion-based approach because 
the former is capable, by construction, of perfectly preserving them.   

These benefits, together with the privacy models that both methods can 
satisfy, make our methods yield protected data that are significantly useful for 
analysis while offering robust privacy guarantees. Specifically, as discussed in 
Section 2.5, rank swapping yields probabilistic k-anonymous datasets, and 
noise addition may be used as sanitization mechanism to attain differential 
privacy.  
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Chapter 8 Conclusions and future work 

 

This thesis has dealt with privacy-preserving methods in microdata releases. 
Among the available methods, we have focused on perturbative mechanisms 
based on data permutation and noise addition, which constitute the basic 
principles underlying data protection [17], and which outstand due to their 
ability to preserve certain features of the data better than other protection 
mechanisms [5]. The focus has been placed on improving the utility of 
protected nominal data that, nowadays, constitutes most of the personal data 
on individuals that is compiled, aggregated and exploited by third parties, and 
which are of outmost importance for research [2]. By exploiting the structured 
knowledge modeled in ontologies and the notion of semantic similarity, we 
have proposed an arsenal of semantically-grounded operators; these enabled us 
to adapt to the nominal domain perturbative data protection mechanisms that, 
in principle, were restricted to numerical data. The empirical experiments we 
carried out on real nominal data supported our starting hypothesis: by relying 
on sound semantic tools, nominal data can be protected while retaining their 
utility significantly better than with methods that neglect data semantics at all. 

8.1 Contributions 

The contributions of our work are the following: 
 

 The accurate management of nominal data is not straightforward because, 
on the contrary to numbers, they take values from a discrete and finite list 
of non-ordinal categories, which are usually expressed by words. In this 
scenario, it is not possible to carry out neither the arithmetical data 
operations nor the data ranking needed by most data protection methods. 
To address this issue, in Chapter 4 we have formalized a set of operators 
(the difference, the mean, the variance, the covariance, the correlation and 
the sort operator) that, by relying on formal knowledge structures, enable 
a semantically-coherent interpretation of nominal data without neglecting 
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their distributional features. In particular, our work is the first that 
incorporates semantics into the definition of the distance covariance and 
correlation measures, in order to assess the semantic dependence between 
nominal attributes. Finally, as sort operator, we have provided a total 
preorder relation that allows semantically sorting all nominal values of an 
attribute. 

 In Chapter 5 we have presented a semantically-grounded permutation-
based mechanism to protect nominal data alternative to the standard rank 
swapping method. To capture and manage the semantics underlying to 
nominal values, our algorithms exploit the formal knowledge modeled in 
ontologies. By using the semantic difference and sort operators defined in 
Chapter 4, data permutation can be done consistently with data semantics. 
In particular, we have proposed solutions to protect individual nominal 
attributes and multivariate datasets which are capable of protecting 
nominal data while preserving their semantic features. The latter is of 
great interest for data analysis, because it is able to protect multivariate 
datasets while reasonably preserving the semantic relationship among 
attributes. In this way, the inferences extracted from the semantic analysis 
of non-independent attributes protected with our method will be similar to 
those drawn from the original data. Our mechanism is also capable of 
limiting the scope of the permutation, which allows controlling the 
perturbation level and, thus, the information loss incurred by data 
protection.  

 In Chapter 6 we have presented the notion and practical enforcement of 
semantic noise, a semantically-grounded version of the standard 
numerical noise addition mechanism that is capable of distorting nominal 
data while preserving their semantics. Like the semantic permutation-
based mechanism presented in Chapter 5, semantic noise captures and 
manages the underlying semantics of the nominal values to be distorted 
by exploiting ontologies and by using several of the semantic operators 
defined in Chapter 4 (the difference, the mean, the variance and the 
covariance). Particularly, we have proposed solutions for the two main 
families of noise addition methods: uncorrelated noise for individual 
attributes and correlated noise for multivariate datasets. The correlated 
solution is able to protect multivariate datasets while reasonably 
preserving their correlation structure. In addition, several strategies have 
been proposed to guide the replacement of values during the noise 
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addition process towards the preservation of either the semantic mean or 
the semantic distance correlation. On the other hand, unlike other 
distortion-based methods discussed in Chapter 3, our algorithms provide a 
configurable distortion level, thus being able to control the information 
loss of the noised-added data. 

 In Chapter 7 we have carried out a comprehensive empirical study of our 
proposals on several nominal multivariate datasets containing real patient 
discharge data provided by the California Office of Statewide Health 
Planning and Development (OSHPD) and by exploiting the medical 
structured knowledge provided SNOMED-CT. Regarding our 
permutation-based data protection proposal, the outcomes show that is 
capable of permuting values consistently with the desired level of 
protection, and incurring in an information loss much lower than non-
semantic swapping methods depicted in Chapter 3. Especially, the 
experiments evidences that our swapping methods yield protected data 
that are significantly useful for analysis because (i) perfectly preserve all 
univariate features of the dataset, such as the mean, variance, frequency 
distribution, outlying values, granularity and cardinality and (ii) largely 
preserve the semantic correlation between attributes, while this is totally 
broken by non-semantic swapping. Regarding data protection, our 
proposal provides the ex-ante privacy guarantees of probabilistic k-
anonymity, which offers the same practical protection against disclosure 
than k-anonymity, but imposing less constraints on the way data should be 
transformed [26]. Regarding our noise-addition mechanisms, the 
empirical study evidences that our methods are capable of replacing 
original values by noisy ones within a semantic distance consistent with 
the desired distortion level significantly better than non-semantic 
distortion methods based on the distribution of the data. Another strength 
of our methods is that they are able to largely preserve the correlation 
between attributes for typical noise levels, while this is totally broken by 
the methods based on the distribution of the data. These benefits, together 
with the preservation of other statistical features such as the mean, ensure 
our methods yield protected data that are still useful for statistical 
analysis.  
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8.2 Publications 

The following publications support the contributions described in this thesis: 
 

 Mercedes Rodriguez-Garcia, Montserrat Batet, David Sánchez, “Semantic 
Noise: Privacy-Protection of Nominal Microdata through Uncorrelated 
Noise Addition”, in: Proceedings of the 27th IEEE International 
Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul 
Mare, Italy, IEEE, 2015, pp. 1106-1113, ISSN: 1082-3409, 
https://doi.org/10.1109/ICTAI.2015.157. CORE B. 

 Mercedes Rodriguez-Garcia, David Sánchez, Montserrat Batet, 
“Perturbative Data Protection of Multivariate Nominal Datasets”, in: 
Proceedings of International Conference on Privacy in Statistical 
Databases, PSD 2016, Dubrovnik, Croatia, Springer International 
Publishing, 2016, pp. 94-106, ISBN 978-3-319-45381-1, 
http://dx.doi.org/10.1007/978-3-319-45381-1_8. CORE C. 

 Mercedes Rodriguez-Garcia, Montserrat Batet, David Sánchez, “A 
semantic framework for noise addition with nominal data”, Knowledge-
Based Systems, Available online 24 January 2017, ISSN 0950-7051, 
http://dx.doi.org/10.1016/j.knosys.2017.01.032. ISI-JCR Impact factor: 
3.325 (1st quartile). 

 Mercedes Rodriguez-Garcia, Montserrat Batet, David Sánchez, “Utility-
preserving privacy protection of medical nominal datasets via semantic 
rank swapping”, Journal of Biomedical Informatics (Submitted - under 
review). ISI-JCR Impact factor: 2.447 (1st quartile). 

8.3 Future Work 

The work presented in this thesis opens several avenues for future research: 
 

 Thanks to the mathematical consistence of our methods, we plan to treat 
heterogeneous data involving numerical and nominal attributes by 
integrating our semantic mechanisms with the standard numerical ones.  
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 Other more sophisticated semantic distance measures exploiting several 
knowledge sources [110, 111, 113, 114] may be also considered to better 
capture the semantics underlying nominal attributes whose values are 
spread through several domains of knowledge. 

 In semantic noise addition, we plan to further refine the strategies used to 
guide the replacement of nominal values whereby we can better preserve 
a particular feature of the data, e.g., the average error or the mean, in case 
the posterior data analysis strongly depends on that feature, or to achieve 
the best balance between all of them. 

 As detailed in Chapter 2, data shuffling [48]  is a permutation-based 
method aimed at protecting numeric confidential attributes that largely 
preserves the correlation structure of the dataset. Since the masking 
process combines additive noise perturbation with data swapping, it could 
also be adapted to the nominal data domain by using our semantic 
approaches. However, as this method is patented, its adaptation would 
require the collaboration of the authors. 
 

Specific applications of noise addition also open lines of future work:  

 

 Because our semantic noise addition method is not linked to a specific 
noise distribution, it can be used to implement other noise-based 
mechanisms on nominal data, such as Laplace noise, which is widely used 
to enforce ε-differential privacy. In this sense, it would be interesting to 
evaluate the performance of different semantic similarity calculation 
paradigms with respect to the desired noise distribution, so that we can 
end with a set of the best suited measures for each type of noise.  

 In the context of Artificial Neural Networks (ANNs), numerical noise 
addition is commonly adopted to reduce overfitting [115]: by adding 
different levels of noise to the training data of ANNs, the system will 
learn to ignore irrelevant information (noise) during the tune-up process, 
thereby improving its response capacity in face of new data. By adding 
different levels of noise to the training data used by ANNs, the system 
will learn to ignore irrelevant information during the tune-up process, 
thereby improving its response capacity in the face of new data. Other 
machine learning paradigms, such as incremental learning [116] and 
online machine learning [117], also apply this technique to build high-
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performance predictive models. Thus, our semantic noise addition 
methods can be used to add a controlled amount of noise to nominal data, 
so that these can be used as input to train machine learning algorithms 
while avoiding overfitting.  

 Unlike permutation-based and aggregation-based data protection, which 
require a set of records as input [5], noise addition is able to deal with 
records one by one. This feature is particularly useful for online 
anonymization of transactional data [27, 103], where data streams are 
dynamic and must be protected on the fly [104]. Mobile aggregation 
applications, such as large-scale mobile surveys or sensor network 
aggregation applications, are emerging cases of data streams in which 
noise addition is used to protect data privacy [118]. This suggests 
exploring the behavior of semantic noise addition in a transactional 
nominal data scenario, such as the online protection of query logs [108, 
119]. To correlate the noise with the stream behavior, one could use the 
correlations in different time series while deciding the noise to be added 
to any particular value, as proposed in [104]. 
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