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Preface

This thesis is about providing security and privacy to new emergent appli-

cations which are based on special-purpose networks. More precisely, we

study different aspects regarding security and privacy issues related to sen-

sor networks, mobile ad hoc networks, vehicular ad hoc networks and social

networks.

Sensor networks have a wide variety of applications related to event

surveillance like emergency response or habitat monitoring. Two contribu-

tions providing scalable and secure transmission of sensed data are presented.

Ad hoc networks are suited for use in situations where deploying an in-

frastructure is not cost effective or is not possible for any other reason. When

the nodes of an ad hoc network are small mobile devices (e.g. cell phones

or PDAs), such a network is called mobile ad hoc network. If mobile nodes

are embedded in cars, then that network is called vehicular ad hoc network.

Different schemes providing secure and private information transmission in

both types of ad hoc networks are presented.

Social networks differ from the special-purpose networks commented above

in that they are not physical networks. Social networks are applications that

work through classic networks. They can be defined as a community of web

users where each user can publish and share information and services. A

privacy-preserving resource access protocol for social networks is presented.

v
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Chapter 1

Introduction

1.1 Situation and objectives

The transformation from the Industrial Society to the Information Society

started somewhere between the 1970s and today. In the former, the economy

is based on material goods and how to produce them. In the latter, the

knowledge is the main engine that moves the progress and the development

of humankind. To be useful, the knowledge must be properly managed. It

means that we need effective ways to generate it, store it and process it.

The Information Society is based on the use of computers and the ex-

change of information between them. Two computers communicate (ex-

change information) through a connection (wired or wireless). Different com-

puters connected between them form a computer network.

Computers sharing resources and cooperating between them can solve

large problems which otherwise would be impossible to address by the same

computers working alone [Fost02]. Networked devices can even enable the

emergence of new models and scenarios which represent new opportunities

and challenges. According to that, computer networks are considered an

1
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2 Introduction

important advance. Note that the “resource” concept includes the whole

range of things that can be shared in a connected computer system: from

hardware components such as printers to several sources of information: files,

databases, video/audio streams, etc.

Computer networks are everywhere. The most important one is the In-

ternet which is a very huge network composed of several smaller networks.

The Internet allows computers to connect to other computers easily, wher-

ever they may be across the world. This global computer network is one

of the most important innovations of our time, bringing substantial benefits

to economies and societies, but also driving change in the way we live and

work [Euro08].

Despite the big importance of the Internet, the society can still grow. In

this way, researchers continue developing new applications and their com-

munication paradigms. Part of these new proposals are based on special-

purpose networks. Some of such special networks are physically different

from the classic network which consists of static full-fledged computers with

permanent connections between them. Examples of these networks are the

following:

• Sensor networks. These networks consist of resource-constrained wire-

less devices with sensor capabilities. This emerging technology has a

wide variety of applications related to event surveillance like emergency

response, habitat monitoring or defense-related networks.

• Mobile ad hoc networks (MANETs). Such networks are formed by

mobile nodes which are connected in a self-organized way without any

underlying hierarchical infrastructure. Small devices enabled with wire-

less communications technologies (e.g. cell phones or PDAs) are usually
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1.1 Situation and objectives 3

used as nodes in MANETs. Ad hoc networks are suited for use in sit-

uations where deploying an infrastructure is not cost effective or is not

possible for any other reason. One of many possible uses of MANETs is

to provide crisis management services applications, such as in disaster

recovery, where the entire communication infrastructure is destroyed

and reestablishing communication quickly is crucial [Jhu07]. Another

useful situation for MANETs is a scenario without fixed communication

systems where there is the need for any kind of collaborative computing.

Such situation can occur in both business and military environments.

• Vehicular ad hoc networks (VANETs). When the mobile nodes of a

MANET are embedded in cars, such a network is called Vehicular Ad

hoc Network (VANET). This kind of networks can be very useful to

increase the road traffic safety and they will be deployed for real use in

the forthcoming years. As a proof of that, eight important European

vehicle manufacturers have founded the CAR 2 CAR Communication

Consortium [C2cc08]. This non-profit organisation is dedicated to the

objective of further increasing traffic safety and efficiency by means of

inter-vehicle communications.

Sensor networks, MANETs and VANETs differ from classic networks in

the hardware that they use and in the way the nodes are connected between

them. Nonetheless, there are special-purpose networks which are only ap-

plications that work through classic networks. This is the case for social

networks.

Nowadays, social networks have become an important web service [Staa05]

with a broad range of applications: collaborative work, collaborative service

rating, resource sharing, searching new friends, etc. They can be defined as

a community of web users where each network user can publish and share
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4 Introduction

information and services (personal data, blogs and, in general, resources).

Social networks have become an object of study both in computer and social

sciences, with even dedicated journals and conferences.

The special-purpose networks described above provide a wide range of

new services and applications. Even though they are expected to improve

the society in several ways, these innovative networks and their related ap-

plications bring also security and privacy issues that must be addressed.

In this thesis, we solve some security and privacy issues related to such

new applications and services. More specifically, our work focuses on:

• Secure information transmission in many-to-one scenarios with resource-

constrained devices such as sensor networks.

• Secure and private information sharing in MANETs.

• Secure and private information spread in VANETs.

• Private resource access in social networks.

1.1.1 Many-to-one information transmission for sensor

networks

Communications can be classified according to the number of involved senders

and receivers. Single-sender paradigms are: one-to-one (unicast) in which a

single sender transmits data to a single receiver; one-to-all (broadcast) in

which one source sends data to all nodes of a network; and one-to-many

(multicast) where a single source transmits to a given subset of nodes.

Efficient one-to-many (and one-to-all) communications are implemented

using a tree communication model. The root of the tree is the source which
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1.1 Situation and objectives 5

sends the data, the intermediate nodes are the routers which receive the con-

tent from their parent node and retransmit it to their child nodes (replicating

it for each child), and the leaves are the receivers. This model provides scal-

ability because the number of receivers can be increased without increasing

the workload nor the bandwidth needs at the source.

At some point, one-to-many applications may require the root of the

tree to collect data from all users. This situation results in many-to-one

communication [Mill99]. If the number of transmitting nodes is large, the

receiver may be overwhelmed by the incoming traffic. This problem is known

as implosion [Quin01].

Implosion resistance is a challenging issue in the design of many-to-one

communication protocols. Such protocols also follow a tree topology. In

this case, the leaves are the senders; the intermediate nodes are routers that

collect messages coming from their children and aggregate them into a single

message that is transmitted up to their parent; finally, the root is the receiver.

Scalability depends on the aggregation operation performed by intermediate

routers.

In addition to their being scalable, many-to-one communications often

need to be secure. Security requirements include confidentiality (an intruder

should not be able to learn the transmitted data), integrity (any data alter-

ation should be detectable by the receiver) and authentication (the source of

the data should be verifiable by the receiver).

There is a general consensus that in scenarios where nodes are resource-

constrained devices the high cost of public-key cryptography is usually not

affordable. Researchers assume that in such scenarios symmetric cryptog-

raphy and hash functions constitute the tools of choice to provide security.

UNIVERSITAT ROVIRA I VIRGILI 
SECURITY AND PRIVACY ISSUES IN SOME SPECIAL-PUROPSE NETWORKS 
Alexandre Viejo Galicia 
ISBN:978-84-691-8852-1/DL:T-1274-2008 
 



6 Introduction

However, public-key technology can be selectively deployed in those environ-

ments too. In [Bene05] the author argues that the RSA [Rsa78] public-key

cryptosystem with a small public exponent and Rabin’s [Rabi79] public-key

cryptosystem have fast algorithms for encryption and digital signature ver-

ification which can be used on constrained devices. In contrast, their de-

cryption and signature generation are slow and resource-demanding. Elliptic

curve cryptosystems (ECC, [BlaB05]) provide not only lightweight encryp-

tion and signature verification, but also lightweight decryption and signature

generation which make them suitable for resource-constrained devices.

Sensor networks are an example where secure many-to-one communica-

tions are required in low-cost and resource-constrained devices. Here, the

sensor nodes (which may be very numerous) transmit data to a single col-

lecting center. Security requirements arise when the networks are deployed

in hostile areas.

Due to the relevance of this emerging technology, new lightweight proto-

cols providing secure many-to-one communications should be designed.

1.1.2 Information sharing in MANETs

New-generation mobile devices (e.g. cell phones, PDAs ...) are enabled with

wireless communications technologies which paves the way to a broad range

of services based on mobile ad hoc networks.

MANETs are extremely dynamic. Thus, nodes are constantly changing

their location. This can cause any pair of nodes to be temporarily uncon-

nected. According to that, communication systems for this kind of networks

should not depend on centralized authorities that need to be accessible all

the time.

Information transmission between peers is a basic process in MANETs.
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1.1 Situation and objectives 7

Such networks rely on the data forwarding service to transmit data between

users. It consists of correctly relaying the received packets from node to node

until they reach their final destination. A survey presented in [Djen05] states

the following threads in this procedure:

• Eavesdropping. Malicious nodes can eavesdrop packets in transit and

analyze them to obtain confidential and sensitive information. It is

considered a passive attack.

• Tampering. Dishonest nodes can tamper with the forwarded data to

get some benefits.

• Dropping data packets. Transmitted packets follow multi-hop routes

and pass through mobile nodes. A malicious node which participates

in the routing can drop all packets it gets to forward.

• Selfish behavior. Nodes involved in a MANET usually do not belong

to a single authority and do not pursue a common goal. Therefore,

nodes are not directly interested in forwarding packets for others. In

consequence, there is no reason to trust nodes and assume that they

will cooperate. Even though this is not an intentional attack, it is as

harmful as dropping data packets.

Data eavesdropping and data tampering are commonly solved using cryp-

tography. Cryptography-based secure communications in MANETs have

been widely addressed in the literature [Djen05].

Providing incentives to relaying nodes is a way to prevent peers from

dropping data packets (it can be done intentionally or as a result of a selfish

behavior) [Butt00, Butt03, Sale03]. Nevertheless, provision of incentives to
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8 Introduction

nodes in a secure way for both the payer and the payee is not straightforward

and must be addressed properly.

Last but not least, MANET applications may require the interaction be-

tween some devices in order to trade certain goods or services. Such in-

teraction may imply the disclosure of some information related to the in-

volved users. A third party collecting such information may be able to track

users and obtain confidential data about their habits and whereabouts which

represents a serious menace. According to that, communication protocols

for MANETs must be privacy-preserving. Privacy includes anonymity and

unlinkability. Anonymity refers to the requirement that a user should be

able to participate in the network without revealing her identity. However,

anonymity must not imply impunity for dishonest users who try to disrupt

the system. Unlinkability means that different interactions between a specific

user and the network communication system cannot be related to each other

neither by the system nor by an external observer. Note that, if a system is

anonymous but the different actions by the same user are linkable, the user’s

roaming pattern can be obtained from such linkage; this might suffice to infer

the user’s identity (the roaming pattern typically includes going home, going

to a certain job location, etc.).

Due to the mobility inherent in MANETs, new applications which exploit

this property must be developed. Such new schemes must provide incentives

to the participant nodes while achieving security and privacy.

1.1.3 Information spread in VANETs

Vehicular ad hoc networks permit a vehicle to automatically warn nearby

vehicles about its movements (braking, lane change, etc.) to avert dangerous

situations. These alert messages only require a limited dissemination (less
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1.1 Situation and objectives 9

than a hundred meters) but have very strong real-time requirements (they

must be processed very quickly).

VANETs also allow a car to send announcements about road conditions

(traffic jams, accidents, icy spots) to other vehicles so that the latter can take

advantage of that information to select routes avoiding troublesome points.

Such announcement messages require a longer dissemination range. However,

their requirement of real-time processing is much less strict than in the case

of alerts, so that advanced cryptography can be used to make such messages

secure and trustworthy.

Privacy (anonymity and unlinkability) is a key aspect in vehicular ad hoc

networks. The fact that a vehicle is equipped with communication capabili-

ties should not render profiling its driver’s habits (locations visited, driving

pattern, etc.) any easier. Indeed, as noted in [Dötz06] a lot can be inferred

on the driver’s personality if the whereabouts and the driving pattern of a

car can be tracked.

Security in car-generated announcements sent over a VANET is funda-

mental. It is particularly important that the system does not permit an

intruder (external attacker) or a dishonest driver (internal attacker) to at-

tack integrity by either inserting fake announcements or modifying announce-

ments sent by others. Tampered announcements could seriously disrupt traf-

fic or cause dangerous situations for other vehicles.

Our interest in this field focuses on the design of protocols which en-

able vehicles to generate and spread announcement messages compromising

neither the privacy of the users nor the security of the network.
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10 Introduction

1.1.4 Resource access in social networks

In some social networks, users can specify how much they trust other users

by assigning them a trust level [Ashr06, Saba06]. It is also possible to estab-

lish several types of relationships among users (for example, “colleague of”,

“friend of ”, etc.). The trust level and the type of relationship are used to

decide whether access is granted to resources and services being offered.

As pointed out in [Carm07, Mikr07], the availability of information on

relationships (trust level, relationship type) has increased with the advent

of the Semantic Web and raises privacy concerns: knowing who is trusted

by a user and to what extent discloses a lot about that user’s thoughts and

feelings. See [Barn06] for an analysis of related abuses.

These privacy issues have motivated some social networks [Face08, Vide08]

to enforce simple protection mechanisms, according to which users can decide

whether their resources and relationships should be public or restricted to

themselves and those users with whom they have a direct relationship. Unfor-

tunately, such straightforward mechanisms result in too restrictive policies.

Regarding this topic, we focus on enabling private relationships in social

networks while preserving the network functionality.

1.2 Structure of this thesis

This thesis is organized as follows.

Chapter 2 presents a state of the art of the different topics covered in this

thesis. It is divided in four main sections. The first one deals with the appli-

cation of security in many-to-one communications. The second one focuses

on secure and private information sharing in mobile ad hoc networks. The

third section reviews current work related to private and secure information
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1.2 Structure of this thesis 11

spread in VANETs. Finally, the last part of this chapter deals with privacy

issues when accessing to resources in social networks.

Chapter 3 presents our contributions to secure many-to-one symbol trans-

mission for resource-constrained devices. First, a protocol that minimizes

bandwidth usage is presented. Therefore, this proposal is useful in environ-

ments where the bandwidth is a scarce resource and it is critical to make the

most of it. Next, a protocol that offers secure many-to-one symbol transmis-

sion for sensor networks is presented. It provides an optimal message length

and the computational cost at nodes is reduced enough to work properly on

lightweight nodes. We refer to the computational capabilities on real sensor

devices to prove the deployability of this proposal in real environments.

Chapter 4 presents our contributions to information sharing in mobile ad

hoc networks. The first section presents an information system where the

information servers are static nodes and the users who request information

are mobile nodes. The main objective of such system is to give information

just in time and just in place to users in an certain urban area. A typical

application of this construction would be provision of touristic information.

The second section presents a new scheme designed to disseminate advertise-

ments through mobile ad hoc networks. This scheme exploits the capabilities

of mobile ad hoc networks to increase the visibility of the products being of-

fered by merchants. It outperforms current proposals in the literature. A new

approach to reward nodes that collaborate in the dissemination is provided

too.

In Chapter 5, our contributions to private and trustworthy informa-

tion spread in vehicular ad hoc networks are presented. More precisely, we

present a new system that provides secure vehicle-generated announcements
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on VANETs. This scheme relies on a priori measures against internal attack-

ers (vehicles in the VANET sending fake messages). It outperforms current

proposals in the literature. Regarding privacy, three different variants of the

system are proposed to achieve privacy without losing trustworthiness. The

feasibility of this scheme is studied using simulations.

Chapter 6 presents our contributions to private resource access in social

networks. More specifically, we present a new protocol which offers private

relationships allowing resource access through indirect relationships without

requiring a mediating trusted third party (although an optimistic trusted

third party is used which only acts in case of conflict). This scheme addresses

the functionality and privacy drawbacks found in current proposals in the

literature. Empirical evidence is provided about the proposed protocol being

scalable and deployable in practical social networks.

The concluding remarks and a summary of the results presented in this

thesis can be found in Chapter 7. Some guidelines for future research are

given in that chapter as well.
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Chapter 2

State of the Art

In this chapter, we present the state of art of the different topics covered in

our research. This chapter will serve as a basis to identify unsolved subjects

that will be later addressed in this thesis.

2.1 Many-to-one information transmission

As stated in [Wolf03], the solution to implosion in many-to-one scenarios

is obtained by intermediate routers combining received messages into a sin-

gle message that is routed towards the base station (the root of the tree).

This process is called aggregation. The authors in [Wolf03] present a gen-

eral framework for scalable many-to-one communication where intermediate

nodes collect messages from their children, aggregate them and send a single

aggregated message up to their parent. In this way, the base station receives

a single message containing all the readings from the leaves. This solution is

scalable (permitting an unlimited amount of senders) as long as aggregated

data do not grow in size. Two scenarios are then possible:

• Lossy aggregation. In this case, the message output by aggregation

13
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14 State of the Art

contains less information than the set of messages input to aggregation.

Thus, the size of the output can stay the same as the size of each input.

Some examples of lossy data aggregation are:

– If data is a temperature, different temperatures can be aggregated

by computing their average. Information loss comes from the fact

that the base station will not know the temperature obtained by

each node but only the average of all readings.

– If data is a counter, different counters can be aggregated by addi-

tion. Information loss comes from the base station not being able

to find out the exact contribution by each node.

– If data sent is a binary value indicating an alarm, it can be aggre-

gated using a logical OR operation. The base station will know

an alarm has been raised but not its exact origin.

On the whole, lossy approaches can not be used in scenarios where the

root must know the specific data sent by each leaf.

• Lossless aggregation. This situation occurs when no information loss

is affordable during aggregation. It happens in applications where the

root multicasts a data request to the leaves and the leaves react by

sending one q-ary symbol each (data sent by each leaf can be modeled

as an integer ranging from 1 to q). At the end of the process, the

root knows which symbol was transmitted by each leaf. In this case,

the only possibility left is for leaves to use a message length such that

all information they transmit can be aggregated in a single message

of that length (the message reaching the root). This implies that the

actual informational content transmitted by leaves will be less than the

bitlength of the messages they use.
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2.1 Many-to-one information transmission 15

The framework presented in [Wolf03] works fine in these two scenarios.

However, it does not address security. This fact represents a major drawback

which disqualifies it when security requirements arise.

Some proposals for secure many-to-one communications in both scenar-

ios exist in the literature. We summarize them in the following two sub-

sections: Secure many-to-one lossy transmission and Secure many-to-one

lossless transmission.

2.1.1 Secure many-to-one lossy transmission

Few researchers have proposed solutions which provide security in this kind

of lossy communications. In [Przy03] the authors present a framework for de-

signing secure data aggregation protocols. They propose concrete protocols

within this framework for securely computing the median, securely finding

the minimum and maximum values, securely estimating the network size and

securely computing the average of measurements. This framework assumes

the existence of special nodes called aggregators which receive the readings

from the sensor nodes and aggregate them. The authors state that a user

can verify that a certain aggregation given by an aggregator is a good ap-

proximation of the true value even when such aggregator and a fraction of

the sensor nodes are corrupted. However, there are some shortcomings in

this framework:

• It only offers data confidentiality against external attackers eavesdrop-

ping the path from a particular sensor node to the aggregator. Since

aggregators must know the sensor readings that they are aggregat-

ing and their sources, when an aggregator becomes compromised, the

confidentiality of all the messages which traverse such node becomes

compromised too.
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16 State of the Art

• The framework presented in [Przy03] is designed to work with only

one aggregator. The authors admit that in case of too large a sen-

sor network, an aggregator alone may not be capable of handling the

whole network. In this case, they propose to use several aggregators

to perform a process named hierarchical aggregation. Even though this

solution works with some functions like Min/Max and average compu-

tation, there are other functions which can not be treated in this way.

The authors leave the research on new aggregation types as future work.

• This proposal assumes that a static network is used. Sensor nodes and

aggregators share preloaded secret keys and they must be deployed in a

deterministic way. Therefore, this framework is not feasible in scenarios

where the nodes are randomly deployed.

In [Jadi04] the authors present a secure aggregation protocol that pro-

vides confidentiality as well as integrity guarantees. This protocol aggregates

encrypted data directly, without requiring decryption at intermediate nodes.

This preserves the confidentiality of the data while they traverse the network

towards the base station. However, this protocol only enables the intermedi-

ate nodes to compute an addition of the received sensor readings. Therefore,

such a protocol is unsuitable for certain kinds of queries like Min/Max. The

authors leave this issue as part of their future work. Besides, the authors

admit that a collusion by a certain parent and one of its child nodes can

misrepresent the readings of the whole subtree without being detected. In

addition to that, the presented protocol does not work in scenarios where the

nodes are randomly deployed.

[Dimi05] and [Dimi06] deal with how to set up the network when the

sensor nodes are deployed randomly. Even though they incentivize the use of

aggregation in intermediate nodes, such proposals do not present any concrete
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2.1 Many-to-one information transmission 17

protocols to aggregate the sensor readings and the author leaves this as an

open issue.

2.1.2 Secure many-to-one lossless transmission

Regarding security in many-to-one lossless communications. There are some

schemes in the literature which address this scenario. Such proposals can

be divided into two categories described below: secure acknowledgment and

secure symbol transmission.

Secure acknowledgement

These schemes provide the root with an undeniable and unforgeable proof

that a certain set of leaves have received a specific content. The information

sent by the leaves to the root is unary in the sense that, after receiving a

piece of data, every leaf will either respond with a positive acknowledgement

(a digital signature) in case of correct reception or will stay silent otherwise.

The systems proposed in [Nico04] and [Cast05] fall into this category.

The former uses the multisignature scheme in [Bold03] constructed over a

Gap Diffie-Hellman group (GDH) [Bone01]. The latter is a construction

whose security rests on the hardness of the discrete logarithm problem. Both

solutions provide non-repudiation and are scalable (O(n) message length) as

long as the set of acknowledging leaves remains stable.

These systems only provide non-repudiation; other security properties

are not addressed. For instance, the root is unable to distinguish a voluntary

non-transmission from malicious erasure of acknowledgements by intruders.

The authors in [Nico04] and [Cast05] leave this issue for future work. Thus,

integrity is not ensured. Confidentiality is not achieved either since any
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18 State of the Art

intruder listening to the communication can ascertain which leaves are ac-

knowledging and which are not.

Secure symbol transmission

Such schemes assume a tree communication model where the root multicasts

a data request to the leaves. Upon reception of this request, the leaves react

by sending one q-ary symbol each. These messages will be aggregated by

intermediate nodes. From the received message, the root will obtain the

symbol sent by each leaf.

It can be proven that symbols sent by n leaves can not be aggregated

in a message whose length is below O(n) when all symbols have the same

probability of being sent. Current research in secure symbol transmission

focuses on designing systems whose actual length of messages is as short as

possible (within the O(n) length class). Note that this fact does not permit

an unlimited amount of senders.

In [Domi04] the authors propose a system using super-increasing se-

quences and additive privacy homomorphisms. The length of messages is

O(n), where n is the number of leaves of the multicast tree. If implemented

using the Okamoto-Uchiyama cryptosystem [Okam98] for binary transmis-

sions the message length asymptotically tends to 6n. The scheme is easily

extensible to accommodate q-ary alphabets with message length tending to

3tn (where q ≤ 2t − 1).

The proposal in [Sebe07a] reduces the message length with respect to the

scheme presented in [Domi04] for biased binary communication –i.e., where

the probability of leaves transmitting a ’1’ symbol is less than the probability

of their transmitting a ’0’ symbol. This scheme offers an O(k log k log n)

message length with n being the number of leaves and k being an upper
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2.1 Many-to-one information transmission 19

bound on the number of leaves that wish to transmit simultaneously the

least likely symbol. Both systems provide confidentiality, authentication and

integrity. Non-repudiation is not provided.

In spite of their bandwidth efficiency, both proposals present a high

computational cost. Both use additive public-key privacy homomorphisms,

whose cleartext message length grows like O(n) for [Domi04] and grows like

O(k log k log n) for [Sebe07a]. The costly cryptographic operations on long

messages required by these schemes render them ill-suited for implementation

on resource-limited hardware like the sensor nodes used in sensor networks.

Regarding integrity, both systems permit data corruption to be detected

but identifying the corrupting nodes is not straightforward. This must be

done using a tracing procedure described in [Sebe07a] (which can also be ap-

plied for [Domi04]) in which the root traces and identifies corrupting nodes.

In Section 3.1 a scalable tree-based protocol for secure many-to-one sym-

bol transmission is proposed. This protocol saves more bandwidth and it is

computationally simpler than previous proposals in the literature. However,

this new scheme is still not enough lightweight to work properly in sensor

nodes. Section 3.2 presents a new protocol for secure many-to-one symbol

transmission in which nodes are only required to perform very simple opera-

tions. This makes it suitable for implementation in resource-constrained sce-

narios such as sensor networks. Both new schemes provide their own methods

designed to identify the corrupting nodes when data corruption is detected.

Such procedures are more efficient than the one presented in [Sebe07a] for

this purpose.
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2.2 Information sharing in MANETs

As stated previously, successful information sharing models in MANETs must

address issues related to data eavesdropping, data tampering, packet drop-

ping and selfish behaviour. The first three attacks can be addressed by ap-

plying cryptography-based secure communications. The last one is addressed

by giving incentives to the collaborative nodes of the network. In addition

to that, communication protocols for MANETs must be privacy-preserving.

Provision of incentives while offering security and privacy to the users is a

challenging task.

We next introduce the existing proposals in the literature regarding pri-

vacy, security and incentives in MANETs.

2.2.1 Privacy, security and incentives

Preservation of user privacy sometimes contradicts security requirements.

For example, a system offering services needs users to authenticate themselves

to be sure it will receive a correct payback. Another example occurs when a

certain user has an inappropriate behavior in the network. The system has

to identify the intruder in order to take proper measures. Measures to secure

these situations may affect the user’s privacy.

In [News04] a system is proposed where all nodes are registered. As a

result, the system is secure against external or internal attackers but this

approach does not respect the privacy of the users.

User authentication and privacy in MANETs are addressed in [Weim04].

In this work the authors present a protocol that allows nodes in a MANET

to recognize each other when meeting again. This scheme provides provably
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2.2 Information sharing in MANETs 21

secure authentication against passive adversaries and secure message authen-

tication against active adversaries. Besides, it provides privacy while keeping

immutable and non-migratable identities. The shortcoming of this proposal

is that users can freely change their identities, which can be exploited by dis-

honest users to disrupt the system. Therefore, this protocol is not suitable

for real environments with active adversaries.

Privacy issues become worse when incentives should be given to the col-

laborative nodes of the network. As stated in [Vass03], the motivation of

users to participate is a crucial factor for the success of a system designed

for wireless ad hoc networks. However, providing motivation to nodes who

offer services to other users implies the need for a secure and private way for

collecting the rewards from the served users.

Secure electronic payment is a profusely studied research topic. From

electronic money to e-coupons [Blun05], there are several electronic payment

methods suitable for mobile devices. Nevertheless, for the specific case of

secure and private incentive-based schemes, the literature is rather scarce.

[Raja05] and [Vish03] propose incentive-based schemes where the net-

work nodes have an account and the content provider gives them credit de-

pending on the information they have uploaded. The network nodes can use

their credit to increase their download rate or change it for money. Nonethe-

less, these proposals are not designed for a mobile ad hoc network, and the

security is only focused toward the protection of the copyrighted content.

Thus, the credit of the network node can be tampered with. In addition to

that, privacy issues are not considered.

In [Pan07], the authors propose a lightweight and cheat-resistant micro-

payment scheme to stimulate and compensate collaborative peers that sacri-

fice their resources to relay packets for other peers. This scheme focuses on
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providing a secure and stable channel to exchange data between two peers

within an ad hoc network. Intermediate nodes are incentivized to keep this

channel operative. Even though this proposal provides security to informa-

tion provision services in MANETs, it does not preserve the privacy of the

users. A certain node involved in this scheme relies on its identity to receive

information and communicate with other peers. In addition to that, its iden-

tity is related to its reputation (e.g. cooperativeness in relaying) and wealth

(e.g. collected credits for its cooperation) in the system. If a peer is found

to be malicious, either persistently or opportunistically, such node can be

excluded from the system by identity blacklisting.

A different method for sharing information in MANETs is introduced

in [Stra04]. In this work, the authors present AdPASS. This is a new sys-

tem to disseminate information in MANETs exploiting the mobility prop-

erty inherent in this kind of networks. The authors focus their work in an

M-commerce1 application which spreads digital advertisements among inter-

ested users present in a MANET. Each user specifies her interests in a profile

that is stored in her mobile device. When a certain user gets an adver-

tisement of another user’s interest, she spreads it every time she finds new

interested users around. If a customer uses the acquired advertisement to

buy something in the source shop, all the users who have cooperated in the

dissemination of the advertisement will receive some bonus. Such bonus can

later be exchanged by goods in the source shop. Even though this scheme

is supposed to provide security and privacy to the users who disseminate

advertisements, it is weak against dishonest nodes which cooperate to steal

bonuses from other users. Another shortcoming of this proposal is that the

1M-commerce stands for electronic trading of goods and services made through mobile
devices.
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2.2 Information sharing in MANETs 23

authors only explain how to get the bonus points but they do not mention

how such points are later spent. This issue must be addressed since privacy

could be compromised at this point. Besides, this approach requires the

users to register themselves to a trusted authority named mediator which

acts as anonymizer and keeps track of the user’s accumulated bonus points.

We claim that a system which is designed to work in MANETs should not

require the presence of a trusted third party (TTP).

In addition to that, the bonus points scheme in AdPASS offers no guaran-

tees of fairness: even though a reasonable behavior can be expected, the fact

is that each user disseminating an advertisement can take as many points as

she wishes, regardless of how many she actually deserves. Worse yet, collu-

sions are conceivable where colluders exclude other users from dissemination

in order to monopolize bonus points. AdPASS must definitely be repaired

to thwart those roguish attitudes. Last but not least, the total number of

bonus points assigned by the merchant to an advertisement is a de facto

upper bound on the number of feasible transfers to new disseminators: due

to the limited range of MANET nodes, this implies some limitation in the

geographical dissemination range and the sales potential.

On the whole, several proposals in the literature use incentives to avoid

node misbehavior. However, applying privacy and security to incentivized

information sharing in mobile ad hoc networks has not been investigated

enough.

In Section 4.1 an architecture for a peer-to-peer mobile ad hoc network

offering distributed information provision is presented. The proposed archi-

tecture is specified as a protocol suite taking security, privacy and incentive

aspects into account. Section 4.2 describes a secure and private scheme to
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disseminate advertisements in mobile ad hoc networks where collaborating

nodes are incentivized by giving them e-coins.

2.3 Information spread in VANETs

As explained later, VANETs demand protocols which enable vehicles to gen-

erate and spread announcement messages without compromising the privacy

of the users nor the security of the network.

Security against insertion of fake announcements by external attackers

is easy to achieve using well-known cryptographic authentication techniques

(digital signatures or message authentication codes). Such techniques require

the sender of a message to access some secret key material only available to

legitimate, registered users —and therefore unavailable to external attackers.

Dealing with internal attackers is a thornier issue. The reason is that

legitimate system users, and thus internal attackers, have access to the secret

key material required to send authenticated fake messages (for instance, to

announce a false traffic jam with the aim of diverting traffic from a certain

area where some kind of crime is being committed). Countermeasures against

fake messages from internal attackers fall into two classes: a posteriori and

a priori.

2.3.1 A posteriori countermeasures against fake mes-

sages

A posteriori countermeasures consist of taking punitive actions against users

who have been proven to have originated fake messages (e.g. the offenders

can be banished from the network). These countermeasures in anonymous

systems require the presence of a trusted third party able to revoke the key
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2.3 Information spread in VANETs 25

material of such dishonest users. In this way, they will be excluded from the

system.

Digital signatures have been extensively used in most of the protocols that

offer a posteriori countermeasures: from plain digital signatures [Raya06a,

Raya07a, Raya07b, Armk07] until more sophisticated distributed signatures,

such as group signatures in [Guo07] or ring signatures in [Lin07]. The latter

paper and [Gama06] also consider ID-based ring signatures.

2.3.2 A priori countermeasures against fake messages

A priori countermeasures attempt to prevent the generation of fake messages.

In this approach, a message is not considered valid unless it has been endorsed

by a number of vehicles above a certain threshold. Those vehicles must be

in a position to confirm what is reported in the message: for a traffic jam

announcement, other jammed vehicles are potential endorsers (automatically

or after intervention of their drivers); for an ”icy road” message, nearby

vehicles whose traction system has detected slippery ground can be automatic

endorsers. This approach is based on the assumption that most users are

honest so that they will not endorse any message containing false data.

Under this approach, the risk that a collusion of dishonest vehicles reaches

the size necessary to generate fake messages always exists. The natural strat-

egy against collusions is to choose a threshold sufficiently high so as to render

successful collusions unlikely. However, this threshold should not be so high

that it prevents honest vehicles from sending true announcements in situa-

tions with a low density of vehicles.
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The a priori approach is compatible with driver privacy: since false an-

nouncements are thwarted without resorting to punitive actions, uncondi-

tional vehicle anonymity is allowable (in contrast, a posteriori countermea-

sures assume that offenders are identified and punished).

The use of a honest majority to prevent generation of fake messages has

previously been proposed in [Goll04, Parn05, Oste07, Raya06b]. A brief

discussion of those papers is next given.

In [Goll04] a framework is presented to validate received data in VANETs.

In this approach, a vehicle receives alerts from different neighbors and com-

pares them in order to infer the correctness of a certain event. This scheme

suffers from high communication overhead due to the lack of aggregation

techniques. Besides, the proposed framework has not been empirically tested.

The paper [Parn05] presents a contribution that remains quite vague: VANET

security issues are identified, some security primitives are enumerated, but

no complete protocol is actually described. In [Oste07], a system that eval-

uates the plausibility of received danger warnings is proposed. This system

estimates the trustworthiness of a reported hazard by taking a vote on the

received danger messages. The paper provides a simulative analysis of dif-

ferent voting schemes, but privacy remains unaddressed and security is not

completely covered. Finally, [Raya06b] describes a detailed protocol deploy-

able in real VANET environments (the authors show this via simulation)

which systematically deals with security threats and reduces communication

overhead by aggregating messages.

According to the above discussion, [Raya06b] seems the most competitive

scheme in the literature on the a priori approach, so we concentrate on it in

what follows. That paper presents three variants offering a priori counter-

measures against fake messages: concatenated signatures, onion signatures
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and hybrid signatures.

In the variant based on concatenated signatures, a vehicle generates an

announcement and sends it, its signature and its public-key certificate to a

nearby car which will endorse it by computing its own signature on it. This

new signature and the corresponding public-key certificate will be appended

to the frame that will be retransmitted to the next vehicle. An announcement

is considered valid after it has been endorsed by at least the number of

vehicles determined by the threshold. This approach has several drawbacks:

• It does not offer unlinkability since different signatures made by the

same user can be linked through the public key that verifies them.

Anonymity is however feasible by using pseudonyms.

• Announcement generation is delayed due to the sequential communi-

cation pattern (the delay is proportional to the number of endorsing

vehicles).

• It requires the verifier to check several signatures upon receiving an an-

nouncement (as many verifications as vehicles have endorsed the mes-

sage). These verifications involve checking the validity of public-key

certificates and probably revocation lists as well.

Therefore, there is room for improvement both in terms of privacy and effi-

ciency (communication and computation costs).

The variants based on onion signatures and hybrid signatures are similar

and designed to reduce the overall message length. Both variants use the

so-called oversignatures: instead of appending its signature, each new en-

dorsing car signs the signature by the previous endorsing car (this is called

oversigning). In an oversignature, a verifier can check the last endorser’s

signature, but not the signatures by the previous endorsers. Since this is a
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serious design flaw, we will only consider the concatenated signatures variant

for comparison in the rest of this paper.

In Section 5.2 a new scheme is presented following the a priori protection

paradigm that reduces the verification cost of endorsed messages to one signa-

ture verification. In this proposal, vehicles volunteering to generate and/or

endorse trustworthy announcements do not have to sacrifice their privacy

(anonymity and unlinkability).

2.4 Resource access in social networks

In the introduction of this thesis, we have pointed the existence of some social

networks [Face08, Vide08] which use too restrictive protection mechanisms to

preserve their users’ privacy when performing a resource access. Nonetheless,

those are not the only proposals in the literature which address this topic.

In [Carm06], a more flexible access control scheme is described, whereby

a requestor can be authorized to access a resource even if he has no direct

relationship with the resource owner, but he is within a specified depth in

the relationship graph. Access rules are used, which specify the set of access

conditions under which a certain resource can be accessed. Access conditions

are a function of the relationship type, depth and trust level. Relationship

certificates based on symmetric-key cryptography are used by a requestor to

prove that he satisfies some specific access conditions. To access resources

held by a node with whom the requestor has no direct relationship, the

requestor retrieves from a central node the chain of relationship certificates

along the path from the resource owner to himself. Clearly, the central node

is a trusted third party, as it knows the relationships of all nodes in the
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network.

In [Wang06] a mechanism to protect personal information in social net-

works is described where nodes in the network are anonymous and cannot be

linked to specific users; in contrast, the data and the relationships are public,

which might facilitate user re-identification.

An innovative privacy-preserving approach is described in [Carm07] which

leans on the access model in [Carm06] and focuses on relationship protec-

tion: a user can keep private that he has a relationship of a given type and

trust level with another user. Relationship certificates are encrypted and are

treated like a resource in their own right: access to a certificate is granted

using a distribution rule for that certificate, where the distribution condi-

tions to be satisfied by users wishing to access the certificate are specified.

If a user satisfies the distribution rule for a certificate, he receives the cor-

responding symmetric certificate key allowing him to decrypt the certificate.

In [Carm07] a rather complex scheme is proposed to manage and distribute

certificate keys. Encrypted certificates are stored at a central node; due to

encryption, the central node does not have access to the cleartext certificates,

so it does not need to be trusted in this respect. However, the central node

needs to be trusted in the following aspects:

• Trust level computation when several relationship certificates are chained

(indirect relationship between a resource requestor and a resource owner).

• Certificate revocation enforcement when a relationship ceases to exist

(the central node must maintain a certificate revocation list and inform

the other nodes about new revocations).

In [Domi07] a protocol is proposed which overcomes the shortcomings
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detected in [Carm07]. Specifically, the author presents a public-key proto-

col which achieves relationship protection without the presence of a central

node working as trusted third party. In addition to that, this protocol avoids

revealing the content of relationships to the resource requestor and substan-

tially simplifies relationship revocation. Nevertheless, this scheme has some

shortcomings that we next summarize:

• For each resource access, a user tries to get the backing of the nodes

with whom he is related. If a related node is temporarily unreachable

or refuses to collaborate, it is hoped that other nodes related to the

requestor will be available to act as intermediate nodes. However, a

user with a small number of relations is likely to stay isolated at certain

periods of time (e.g. early in the morning). This issue is an open

problem which must be addressed.

• The protocol in [Domi07] prevents the resource requestor from seeing

any of the relationship certificates that will be used by the resource

owner to decide whether the requestor is granted access. However, the

resource owner learns the relationships, and their trust level, between

the users who collaborate in the resource access. This represents a ma-

jor privacy toll which would justify that some intermediate nodes might

refuse collaboration. This fact also has implications for the previous

point explained above: nodes which refuse to collaborate add to nodes

which are unreachable and both categories disrupt in the same way the

normal network operation.

In Section 6.2 a new protocol for resource access in social networks is

presented. This proposal offers the same features of [Carm07] and [Domi07]
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while providing a solution which addresses the drawbacks left open in [Domi07].
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Chapter 3

Efficient and secure

many-to-one symbol

transmission

In Section 2.1 we pointed out the need to design efficient protocols providing

secure many-to-one symbol transmission for sensor networks. In this chapter,

we present our contributions to this field.

Sensor networks are formed by devices with limited computational ca-

pabilities and limited battery power. Therefore, this kind of networks need

protocols which provide reduced bandwidth usage and low computational

cost at the sensor nodes.

Section 3.1 presents a scheme for many-to-one symbol transmission that

has been published in [Sebe07b]. It provides an optimal message length. In

this way, bandwidth usage is reduced to the minimum. According to that,

this proposal is useful in environments where the bandwidth is a scarce re-

source and it is critical to make the most of it. It also provides immediate

detection of corrupted messages. This scheme uses multisignatures over Gap

33
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34 Efficient and secure many-to-one symbol transmission

Diffie-Hellman (GDH) groups [Bold03]. Note that these cryptographic oper-

ations may not be suitable for implementation in resource-limited networks

like sensor networks.

Section 3.2 presents the first proposal in the literature that offers secure

many-to-one symbol transmission for sensor networks. It has been published

in [Viej08]. This scheme is based on [Sebe07b]. It also provides an optimal

message length but replaces the use of GDH cryptography with hash func-

tions. In this way, computational cost at nodes is reduced. As a result, this

proposal is suitable for resource-constrained devices, which are quite com-

mon in sensor networks. This scheme does not permit immediate detection

of corrupted messages. This detection is performed using an a posteriori

tracing algorithm.

3.1 Secure many-to-one communications based

on GDH multisignatures

In this section, we introduce a scalable and secure protocol for many-to-one

symbol transmission that offers an optimal message length and is computa-

tionally simpler than previous proposals in the literature [Domi04, Sebe07a].

In addition to that, nodes can immediately check the correctness of received

messages and detect data corruption without requiring any extra error trac-

ing procedure. In previous proposals, message corruption was detected by

the root of the tree communication model. Identification of dishonest nodes

was done using a tracing algorithm. Last but not least, computational cost

at nodes is lower than in previous proposals. This is proven in Section 3.1.5.

As stated previously, the construction we present uses multisignatures

over a Gap Diffie-Hellman group [Bold03]. Next, we briefly introduce its
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3.1 Secure many-to-one communications based on GDH multisignatures 35

mathematical background. Later, we describe our protocol in detail.

3.1.1 Multisignatures over Gap Diffie-Hellman groups

A Gap Diffie-Hellman (GDH) group G is an algebraic group of prime order q

for which no efficient algorithm can compute gab for random ga, gb ∈ G, but

such that there exists an efficient algorithm D(ga, gb, h) to decide whether

h = gab. Let 1G be the neutral element of G. GDH groups are suitable

for public-key cryptography. The secret key is a random value x ∈ Zq and

its corresponding public key is y ← gx. The signature on a message m is

computed as σ ←H(m)x (H is a cryptographic one-way hash function). The

validity of a signature can be tested by checking D(y,H(m), σ).

GDH groups are convenient to compute multisignatures. Given two sig-

natures of the same message m under two different public keys y1, y2, a

signature of m under the combined public key y ← y1y2 = g(x1+x2) can be

obtained as H(m)x1H(m)x2 = H(m)x1+x2 .

3.1.2 General assumptions

Our protocol assumes a tree communication model in which the the root

is the final receiver, internal tree nodes are reverse multicast routers and

the leaves correspond to senders. The root S has a private key xS and its

corresponding public key yS ← gxS . This public key is accepted by all the

nodes in the tree. Each leaf Ui has several private/public key pairs. The

public keys are accepted as valid by intermediate routers and the root. Each

node in the multicast tree knows its parent node and the public keys of nodes

belonging to the subtree rooted at it. Each node also knows the public key

of the root.
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3.1.3 Reverse bit transmission

In this section we detail our proposal for binary communication, where each

leaf Ui transmits a “0” or “1” bit (denoted by bi). We assume the multicast

tree contains n leaves Ui, 1 ≤ i ≤ n. Each leaf Ui has two secret keys xi,a and

xi,b. Its corresponding public keys are yi,a ← gxi,a and yi,b ← gxi,b. We also

require each leaf Ui to share a secret key Ki with the root. This value can be

agreed upon by using the Diffie-Hellman key exchange protocol. In this way,

leaf Ui obtains Ki from one of its private keys and the root’s public key, that

is, Ki = (yS)xi,a; the root can also obtain Ki by computing Ki = (yi,a)
xS .

The protocol works as follows:

1. Challenge. The root multicasts to the leaves a challenge consisting

of a random value v (v may include a description on the requested

information).

2. Message generation.

(a) Upon receiving v, each leaf Ui computes a pseudo-random bit

ci ← lsb1(H(v||Ki)), where lsb1(·) is a function returning the least

significant bit of its argument.

(b) If ci ⊕ bi = 1 then Ui computes σi := H(v)xi,a.

If ci ⊕ bi = 0 then Ui computes σi := H(v)xi,b.

(c) If ci ⊕ bi = 1 then Ui generates a 2n-bit sequence Ii so that its

2i-th bit is “1”. The rest of bits are set to “0”.

If ci ⊕ bi = 0 then Ui generates a 2n-bit sequence Ii so that its

(2i− 1)-th bit is “1”. The rest of bits are set to “0”.

(d) Ui sends the pair (Ii, σi) up to its parent node.
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3. Message aggregation. An intermediate router R or the root S

receives messages from its child routers/leaves and does the following:

(a) For each received pair (Ij , σj):

i. Let i := 1. Let y := 1G.

ii. While i ≤ n loop

• If Ij [2i] = 1 and Ij [2i− 1] = 0 then y := y · yi,a

• If Ij [2i] = 0 and Ij [2i− 1] = 1 then y := y · yi,b

• If Ij [2i] = 1 and Ij [2i− 1] = 1 then ERROR 1

• i := i + 1

iii. It checks D(y,H(v), σj). If this check fails, then ERROR.

(b) Once all expected messages {(Ij, σj)}j have been received and

checked (for the sake of simplicity, we describe the protocol assum-

ing no errors were found), R or S aggregate them by computing

I =
∨

j Ij (∨ denotes the bit-wise OR operation) and σ =
∏

j σj .

(c) If the aggregating node is an intermediate node R, it sends (I, σ)

up to its parent node. Else, if it is the root S this is the final

aggregated message.

4. Symbol extraction. From the final aggregated message (I, σ), the

root S obtains the bit sent by each leaf as follows:

(a) Let i := 1

(b) While i ≤ n loop

• Compute ci ← lsb1(H(v||Ki))

• If I[2i] = 1 and I[2i− 1] = 0 then di := 1 and bi := di ⊕ ci

1Section 3.1.6 describes how to handle erroneous situations.
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38 Efficient and secure many-to-one symbol transmission

• If I[2i] = 0 and I[2i− 1] = 1 then di := 0 and bi := di ⊕ ci

• If I[2i] = 0 and I[2i− 1] = 0 then bi := NULL

• i := i + 1

(c) Return B = (b1, . . . , bn)

Note. No verification of the signature σ is needed during the extraction

step, because σ is the aggregation of signatures σj which have been verified

at each aggregation step (in the last aggregation step, verification has been

carried out by the root itself).

3.1.4 Security analysis

We next analyze how our proposal provides confidentiality, authentication,

integrity and non-repudiation.

Confidentiality

The confidentiality property refers to the fact that only the root should be

able to obtain vector B = (b1, . . . , bn) containing the bit transmitted by each

leaf. An intruder eavesdropping messages of the form (I, σ) can determine

for each leaf Ui located below the sniffing point in the tree whether the leaf

transmitted σi = H(v)xi,a, σi = H(v)xi,b or did not transmit by observing I

(exactly the bits at I[2i] and I[2i− 1]).

From knowledge of σi the intruder is able to determine ci ⊕ bi. But since

ci is only known to Ui and the root (it is computed from the challenge v

and the shared secret key Ki), nobody but them is able to determine the

transmitted value bi.

Note that an intruder can determine which leaves did not transmit. In

applications where this fact causes information leakage, non-transmission
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3.1 Secure many-to-one communications based on GDH multisignatures 39

should not be permitted.

Authentication

This property requires that intruders cannot generate false messages that

will be accepted as valid by the system. The creation of a message that will

be accepted as authentic coming from Ui requires knowledge of its private

key xi,a or xi,b. This is because the message sent by Ui includes a signature

σi over H(v) computed from xi,a or xi,b. As long as secret keys are not

compromised and the signature scheme is unforgeable (a valid signature can

only be computed if the secret is known) the system provides authentication.

The use of a different challenge v at each execution prevents replay attacks.

Integrity

This property requires being able to detect substitution or suppression of

messages by an intruder. Given a message (I, σ), the field σ is a multisig-

nature on H(v). Without loss of generality, let us take the case of a leaf Ui

whose message has been aggregated into (I, σ) and assume that Ui transmit-

ted σi = H(v)xi,a. Further, assume that the value σi = H(v)xi,a is known to

an attacker who could have obtained it by capturing the first message sent

by Ui.

An attacker wishing to replace Ui’s contribution with σ′
i = H(v)xi,b needs

to replace σ with σ′ so that σ′ = σH(v)xi,b (H(v)xi,a)−1. If this was possible,

an attacker able to compute σ′ would get H(v)xi,b := σ′σi

σ
which is a signature

on H(v) which would be validated using the public key yi,b. This would

contradict the unforgeability property of the GDH signature. In this sense,

the system provides integrity against malicious alteration of the value bi sent

by a given leaf.
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An intermediate node could dishonestly decide to suppress and not ag-

gregate a message received from some of its child nodes. This fact would

be interpreted by the root as a non-transmission. Also, the contribution by

Ui could be suppressed by an attacker who knew the value σi (H(v)xi,a or

H(v)xi,b). This can be done by computing σ′ = σ(σi)
−1 (the corresponding

alteration of I is trivial).

In order to avoid these suppression attacks, the protocol should not per-

mit non-transmissions. In this way, if the root gets nothing from a leaf, a

suppression attack is signalled.

Non-repudiation

This property requires that no leaf be able to deny having sent a given

value that has been received by the root. A valid message (I, σ) reaching

the root contains a value σ that is a multisignature on H(v). The non-

repudiation property of the multisignature scheme guarantees that each leaf

having contributed to the signature cannot deny having signed under the

private key corresponding to one of its two public keys yi,a or yi,b. Therefore,

a leaf Ui cannot repudiate the value ci⊕bi she sent. Deriving non-repudiation

on bi from ci ⊕ bi requires prior declaration by Ui of the procedure used to

obtain ci. This procedure must be later reconstructable in front of a third

party.

3.1.5 Performance analysis

Performance will be analyzed in terms of message length and computational

cost. We compare our protocol with [Domi04]. On the other hand, [Sebe07a]

is not included in this comparison because it was designed for biased scenarios

and we are focused on non-biased scenarios.
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Message length

In our proposal, the length of messages stays constant in the way from the

leaves towards the root. A message consists of the pair (I, σ). The bitlength

of component I is 2n (being n the number of leaves) while the component

σ is a multisignature constructed over a Gap Diffie-Hellman group [Bone01].

This group can be constructed over non-supersingular elliptic curves to get a

bitlength of approximately 170 bits which provides a security level similar to

320-bit DSA signatures or 1024-bit RSA signatures [Bone01]. Thus, messages

have a bitlength 2n + O(1). For large values of n, this length tends asymp-

totically to 2n. This improves on the message length offered by [Domi04],

which tends asymptotically to 6n.

Computational cost

The calculations performed by the protocol can be classified into four cat-

egories: message generation, message verification, message aggregation and

data extraction. We next quantify the computation in each category.

Generation. Generation of (Ii, σi) by leaf Ui takes time O(n) to generate the

binary sequence Ii plus the time to compute the signature σi. Since this

latter time does not depend on n, we take it as O(1) in our analysis.

Verification. An intermediate node receives and checks messages {(Ij, σj)}j
from its child nodes. For each (Ij , σj), the node computes y and then

checks the validity of the multisignature σj . Computation of y requires

one operation over the GDH group for each leaf that contributed to the

message. The verification time of the signature does not depend on n,

so we take it O(1). Since there are O(n) leaves in the tree, the overall

amount of multiplications spent by one node computing the y’s for all
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{(Ij, σj)}j is at most O(n). The amount of signatures to be verified

depends on the number of child nodes of the intermediate router. In

any case, this amount cannot grow faster than O(n).

Aggregation. Aggregation of {(Ij, σj)}j into (I, σ) requires at most O(n)

bitwise OR operations over O(n)-long messages during the computa-

tion of I and at most O(n) operations (each one with cost O(1)) over

the GDH group to compute the new multisignature. This results in a

maximal O(n2) cost.

Extraction. Finally, the extraction of vector B = (b1, . . . , bn) by the root

node is done by processing component I in time O(n).

Table 3.1 compares our system with respect to [Domi04]. The cubic cost

(O(n3)) of message generation and data extraction in [Domi04] is due to the

encryption of O(n) long messages using the Okamoto-Uchiyama homomor-

phic cryptosystem.

Table 3.1: Performance comparison with [Domi04]
Our proposal [Domi04]

Message length (for n ↑↑) 2n 6n
Cost of message generation O(n) O(n3)
Cost of message aggregation O(n2) O(n3)

Cost of data extraction O(n) O(n3)

3.1.6 Error handling

Upon message reception, intermediate nodes perform several checks on the

messages (Ij, σj) received from their child nodes prior to composing the ag-

gregated message they will transmit. The checks that are always performed
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are:

• Check that Ij does not contain Ij[2i] = Ij[2i − 1] = 1 for any Ui

(message generation does not permit this situation).

• Check that multisignature σj is consistent with the aggregated public

key y computed from Ij.

If some of the above checks fail, the node will consider its sender (one of

its child nodes) liable. This is because the child node either ought to have

detected and reported these problems when performing its checks (if it was

an intermediate node) or is causing the problems itself. In particular, if the

child node is a leaf, it should have constructed an error-free message. Upon

identification of a disrupting node, appropriate measures are taken against

it (for instance, removal of the node from the multicast tree).

If non-transmission by leaves is not permitted, some additional require-

ments arise:

• First of all, an intermediate node has to receive one message (Ij, σj)

from each of its children. If some of them are missing this will be inter-

pretated as a malicious non-transmission by the corresponding children.

• Each intermediate node needs to know the list of leaves present in the

subtree rooted at each of its child nodes. When checking each message

(Ij, σj), it needs to check that all leaves present in this subtree are

contributing. If this is not the case, this node will consider its sender

child liable for having suppressed such contributions.

Note that neither the reception of a corrupted message nor a non-reception

may be caused by the sender, but by an attacker disrupting the communi-

cation link between the sender and the receiver. In any case, the receiver
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cannot distinguish between both situations. The receiver simply perceives

that messages coming from that child are not reliable any more; upon this,

the receiver can take the appropriate measures.

3.1.7 Generalization to q-ary transmission

The system can easily be generalized from binary to q-ary communications.

We will represent each symbol from the q-ary alphabet by a different integer

from the set {1, . . . , q}. First of all, the smallest integer t such that q ≤ 2t−1

is chosen. Each leaf Ui has t secret keys xi,1, . . . , xi,t, with their corresponding

public keys yi,1 ← gxi,1, . . . , yi,t ← gxi,t accepted as valid by the intermediate

routers and the root. Like in the binary protocol, the root S shares a secret

key Ki with each leaf.

The generalized protocol is as follows:

1. Challenge. The root multicasts a challenge consisting of a random

value v (v may include a description on the requested information.).

2. Message generation.

(a) Upon receiving the challenge v, each leaf Ui computes a pseudo-

random t-bit sequence (c1, . . . , ct)← lsbt(H(v||Ki)), where lsbt(·)
is a function returning the t least significant bits of its argument.

(b) Let (b1, . . . , bt) be the binary representation of the symbol to be

transmitted. Leaf Ui computes the sequence (d1, . . . , dt) by doing:

• If (b1, . . . , bt) = (c1, . . . , ct) then (d1, . . . , dt) := (b1, . . . , bt).

Else (d1, . . . , dt) := (b1 ⊕ c1, . . . , bt ⊕ ct)

(c) Ui generates a tn-bit sequence (where n is the number of leaves) Ii

and sets the bits from the subsequence ranging from the t(i−1)+1
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to the ti positions so that they match (d1, . . . , dt). The remaining

bits are set to “0”.

(d) Ui computes σi := H(v)
∑t

p=1 dp·xi,p

(e) Ui sends the pair (Ii, σi) up to its parent node

3. Message aggregation. An intermediate router R or the root S

receives messages from its child routers/leaves and does the following.

(a) For each received pair (Ij , σj):

i. Let i := 1. Let y := 1G.

ii. While i ≤ n loop

• y := y ·∏t
p=1 y

Ij[t(i−1)+p]
i,p

• i := i + 1

iii. It checks D(y,H(v), σj). If this check fails, then ERROR.

(b) Once all expected messages {(Ij , σj)}j have been received, R ag-

gregates them by computing I =
∨

j Ij (∨ denotes the bit-wise

OR operation) and σ =
∏

j σj .

(c) If R is an intermediate node, it sends (I, σ) up to its parent node.

Else, if it is the root, this is the final aggregated message.

4. Symbol extraction. From the final aggregated message (I, σ), the

root obtains the symbol sent by each leaf as follows,

(a) Let i := 1

(b) While i ≤ n loop

• Compute (c1, . . . , ct)← lsbt(H(v||Ki))

• If (I[t(i−1)+1], . . . , I[ti]) = (c1, . . . , ct) then (bi,1, . . . , bi,t) :=

(c1, . . . , ct)
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• Else (bi,1, . . . , bi,t) := (I[t(i− 1) + 1]⊕ c1, . . . , I[ti]⊕ ct)

• i := i + 1

(c) Return B = ((b1,1, . . . , b1,t), . . . , (bn,1, . . . , bn,t)), where (bi,1, . . . , bi,t)

is the binary representation of the symbol transmitted by Ui.

The security and cost analysis of this extension is not included since it

would be done in the same manner described for the binary protocol. In this

case, the message length tends asymptotically to tn.

Note that Step 2b above ensures that the sequence (d1, . . . , dn) does not

have all its elements equal to 0. If this was the case, the signature σi would

equal 1 and would lose its non-repudiation and integrity properties.

3.2 Secure many-to-one communications for

resource-constrained devices

In Section 3.1, we presented [Sebe07b]. This protocol offered:

• Optimal message length.

• Lower computational cost than previous proposals in the literature.

• Immediate detection of corrupted data without requiring any extra

error tracing procedure.

However, due to the use of GDH multisignatures, such protocol may not

be adequate for resource-constrained devices.

In this section, we present a novel system for secure many-to-one symbol

transmission which provides the same message length than [Sebe07b] but

replaces the use of GDH cryptography with hash functions. This reduces the
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computational cost at nodes. According to that, such a system is suitable

for implementation in sensor networks. In addition to that, we also give

an optimization of the proposed protocol to improve the efficiency of the

message length and reduce the energy consumption at sensor nodes due to

communication.

This system does not permit immediate detection of corrupted messages

(like the previous scheme). Corrupted nodes are identified using an a pos-

teriori tracing algorithm. Note that this tracing procedure is more efficient

than the one presented in [Sebe07a].

3.2.1 General assumptions

Our protocol assumes a tree network where the root is the base station re-

ceiving data from the leaves (which may be sensor nodes). For the sake

of simplicity, we assume that only the leaves send data. Intermediate nodes

simply act as routers. Extending the proposed solution to accommodate data

transmission from intermediate nodes is straightforward.

The base station (BS) is a full-fledged computer. Leaves and intermediate

nodes are low-cost devices. The base station owns a private key SKBS. The

corresponding public key PKBS is known and accepted as valid by all nodes

in the tree. Let n be the number of leaves and Ui, 1 ≤ i ≤ n, denote the

leaves. Each leaf Ui shares a secret key Ki with the base station.

3.2.2 Many-to-one q-ary transmission

We represent each symbol from the q-ary alphabet by a different integer from

the set {1, . . . , q}. Parameter t is chosen as the smallest integer satisfying

q ≤ 2t− 1. Parameter s is a security parameter (see Sections 3.2.4 and 3.2.5

for details about s). A protocol execution consists of the following steps:
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1. Challenge. The base station generates a random value v and signs

it to obtain {v}SKBS
. The signed value is multicast by the base station

to all leaves.

2. Message generation.

(a) Upon receiving v and verifying its signature, each leaf Ui computes

a pseudo-random t-bit sequence (c1, . . . , ct)← lsbt(H(v||Ki)), where

lsbt(·) is a function returning the t least significant bits of its ar-

gument, H is a one-way hash function and || is the concatenation

operator.

(b) Each Ui computes a sequence (d1, . . . , dt) as follows. Let (b1, . . . , bt)

be the binary representation of the q-ary symbol to be transmitted

by Ui.

• If (b1, . . . , bt) = (c1, . . . , ct) then (d1, . . . , dt) := (b1, . . . , bt)

Else (d1, . . . , dt) := (b1 ⊕ c1, . . . , bt ⊕ ct)

Note that this step ensures that the sequence (d1, . . . , dt) does not

have all its elements equal to 0. This all zeroes value is reserved

to identify non-transmittal by leaves.

(c) Ui computes an s-bit pseudo-random integer σi as follows:

σi ← lsbs(H(d1, . . . , dt||v||Ki))

(d) Each Ui generates a tn-bit sequence (n is the number of leaves) Ii

and sets the bits from the subsequence between positions t(i−1)+1

and ti so that they match (d1, . . . , dt). The remaining bits are set

to “0”.

(e) Ui sends the pair (Ii, σi) up to its parent node.
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3. Message aggregation. An intermediate node R (or the base sta-

tion) receives messages from its child routers/leaves and does the fol-

lowing:

(a) Store each received pair (Ij, σj) (they may have to be checked

later).

(b) Once all expected messages {(Ij , σj)}j have been received, aggre-

gate them by computing I =
∨

j Ij (∨ denotes the bitwise OR

operation) and σ =
∑

j σj (mod 2s).

(c) If R is not the base station, send (I, σ) up to its parent node.

Else, this is the final aggregated message.

4. Symbol extraction. From the final aggregated message (I, σ),

the base station obtains, for each leaf Ui, the binary representation

(bi,1, . . . , bi,t) of the symbol sent by the leaf. It is obtained from the se-

quence (di,1, . . . , di,t), previously generated by Ui (see Step 2b), which

is contained in I. Then the base station computes the pseudo-random

integer linked to (di,1, . . . , di,t) (see Step 2c), which will be used to

check the integrity of the whole aggregated message. We next give the

pseudo-code related to this process:

(a) Let i := 1, ω := 0.

(b) While i ≤ n loop

• Compute (c1, . . . , ct)← lsbt(H(v||Ki)).

• If (I[t(i−1)+1], . . . , I[ti]) = (c1, . . . , ct) then (bi,1, . . . , bi,t) :=

(c1, . . . , ct).

• Else (bi,1, . . . , bi,t) := (I[t(i− 1) + 1]⊕ c1, . . . , I[ti]⊕ ct).

• Compute φi ← lsbs(H(I[t(i− 1) + 1], . . . , I[ti]||v||Ki)).
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• ω := ω + φi (mod 2s).

• i := i + 1.

(c) If ω = σ then return B = ((b1,1, . . . , b1,t), . . . , (bn,1, . . . , bn,t)),

where (bi,1, . . . , bi,t) is the binary representation of the symbol

transmitted by Ui. The base station also multicasts a signed ac-

knowledgment {“Ack”||v}SKBS
to the leaves. This message con-

tains the challenge v to avoid replay attacks. Upon receiving this

message, intermediate routers remove messages stored at Step 3a.

If ω 	= σ the base station launches the error-tracing procedure

detailed in Section 3.2.3.

Figure 3.1 shows the message flow generated by a protocol execution in

a simple scenario with a base station (BS), two intermediate nodes (R1 and

R2) and four leaves (U1, . . . , U4). In Figure 3.1.a the base station broadcasts

a challenge to all leaves (Step 1 in the protocol execution). In Figure 3.1.b,

message (1) sent by U1 corresponds to the pair (I1, σ1) while message (2)

sent by U2 represents the pair (I2, σ2) (Step 2 in the protocol execution).

Node R1 constructs message (3), which corresponds to (I, σ), by aggregating

messages (1) and (2) (Step 3 in the protocol execution). The same process

occurs in the subtree rooted by R2. The latter node constructs message (6) by

aggregating messages (4) and (5), which correspond to the pairs (I3, σ3) and

(I4, σ4), respectively. Eventually, the base station BS aggregates messages

(3) and (6) to get the final aggregated message. After that, BS extracts the

symbols transmitted by the leaves (Step 4 in the protocol execution).
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Figure 3.1: Message flow in a protocol execution

3.2.3 Procedure to deal with corrupted messages

During symbol extraction, the base station checks the integrity of the received

message. If this verification fails, the base station identifies the message as

corrupted. The following procedure allows to remove the corrupting nodes

from the tree.

1. From the received I component, the base station computes the valid σi

associated to each Ui:

(a) For i = 1 to n do

• (di,1, . . . , di,t) := (I[t(i− 1) + 1], . . . , I[ti])

• σi ← lsbs(H(di,1, . . . , di,t||v||Ki))

(b) The base station sends to all nodes the signed message

{I||σ1, . . . , σn||v}SKBS

2. Upon receiving {I||σ1, . . . , σn||v}SKBS
and verifying its signature and

the value v, each intermediate node R checks each stored message

(Ij, σj) received from its children. For each (Ij , σj), R does:
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52 Efficient and secure many-to-one symbol transmission

(a) For each leaf Ui with nonzero contribution to Ij (that is, (I[t(i−
1) + 1], . . . , I[ti]) 	= (0, . . . , 0)), check that the contribution to Ij

equals the contribution to I. If some of these checks fail, the

point of corruption is above R’s position and R stops the checking

procedure.

(b) Else, R computes the sum modulo 2s of the σi associated to each

Ui who contributes to Ij. If the sum is equal to σj , the child who

sent this message is considered innocent. If the result is different,

that child is considered guilty.

When a malicious node has altered a message (note that a malicious node

can corrupt a message at each protocol execution or only once in a while),

all nodes located in the path from the corruption point to the root detect

this corruption. However, the nodes detecting the corruption cannot decide

whether corruption was caused by the child who sent the corrupted message

or by another node located in the subtree rooted at this child. A simple

solution would be to delete the entire suspicious subtree. This would entail

the loss of a big part of the network due to a single corrupted message.

We propose the following procedure to minimize the number of nodes to be

eliminated:

1. The base station and all intermediate nodes have a pre-loaded integer

λ associated to each child.

• Initially, an intermediate node assigns a value λ = 1 to those of

its children that are leaves.

• If a child is an internal node, the initial assigned value corresponds

to the number of leaves in the subtree rooted at that child.
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2. When a node detects a corrupted message, it decrements the λ value

assigned to the child from which this message comes from. Note that

the λ values of all nodes located between the point of corruption and

the base station will be decremented.

3. When the λ value assigned to a child becomes zero, the node closes

communication with such a suspicious child (thus pruning the subtree

rooted at this child).

The initial value assignment ensures that a corrupted leaf is pruned the

first time it sends a bad message (λ = 1). The initial value assignment for

an internal node is done assuming that it always acts honestly so that it

only needs to be removed from the tree after all the leaves in its subtree

have already been removed (in this case no more messages will come from

its subtree). This procedure ensures that a dishonest internal node will be

removed, although not necessarily the first time it corrupts and forwards a

message.

3.2.4 Security analysis

We next explain the adversary model and the possible attacks the system has

to be robust against. We refer to those attacks to justify the security prop-

erties achieved by our scheme: confidentiality, authentication and integrity.

We also give the success probability of each possible attack.

Adversary model

Our attacker model considers an adversary who can control nodes (thus turn-

ing them into compromised nodes) and who can also access communication
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Table 3.2: Possible attacks and their success probabilities
Attack Success probability

Message eavesdropping Not possible
Leaf impersonation 1/((2t − 1)2s)
Leaf contribution alteration 1/2s

Leaf contribution removal Not possible
Message aggregation disruption Not possible

lines to capture, modify and retransmit messages. The attacker’s computa-

tional power does not permit her to break current computationally secure

cryptosystems.

We consider that an adversary can try the following attacks:

• Eavesdrop messages.

• Impersonate a certain leaf Ui.

• Alter the contribution of a certain leaf Ui.

• Remove the contribution of a certain leaf Ui.

• Disrupt the aggregation of messages received from some child nodes.

More specifically, an external attacker can try the first four attacks while

an adversary who has compromised some nodes could also try the last one.

Attacks and security properties

Table 3.2 summarizes the success probabilities of each possible attack in

scenarios where non-transmittal is disallowed. We next justify the values in

the table.
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Message eavesdropping. This attack refers to the confidentiality property.

An adversary eavesdropping messages of the form (I, σ) at some point

(called sniffing point from now on) in the communication tree can dis-

cover, by observing the bits ranging from I[t(i − 1) + 1] to I[ti], the

sequence (di,1, . . . , di,t) transmitted by each leaf Ui located below the

sniffing point. The attacker will be unable to decrypt this sequence

because decryption requires knowledge of the secret key Ki.

The σ value does not provide any useful information to the attacker

either.

From I, an adversary can determine which leaves transmitted and

which ones did not. In applications where this fact causes informa-

tion disclosure, non-transmittal should not be allowed.

Leaf impersonation. This attack refers to the authentication property. An

intruder (who does not know Ki) trying to send a given symbol coming

from Ui faces several difficulties.

First of all, the q-ary symbol is encrypted prior to encoding it inside Ii.

Since the attacker does not know the encryption key, she can only fill

the corresponding t bits in Ii randomly. The probability that decryp-

tion of those bits leads to the desired q-ary symbol is 1/(2t − 1).

On the other side, the redundancy σi is also computed using Ki. In this

way, the probability of randomly guessing the appropriate σi is 1/2s.

Leaf contribution alteration. This attack refers to the authentication and

integrity properties. In case the attacker captures and alters the contri-

bution of a leaf, the difficulty comes from the low probability of guessing

σ, which is 1/2s. A sufficiently large value s exponentially reduces the

chances of a corrupting attacker to stay undetected.
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Leaf contribution removal. The contribution of Ui can be easily erased if

σi is known. This fact will be considered as a non-transmittal by the

base station. To detect these erasure attacks, non-transmittal should

be disallowed.

In case the adversary does not know the σi value generated by Ui, she

must guess the appropriate σi with a probability of success 1/2s.

Disruption of the aggregation of child node messages. A dishonest inter-

mediate node can decide not to aggregate a message received from

some of its child nodes. The base station will consider this fact as

a non-transmittal. To detect this situation non-transmittal should be

disallowed.

3.2.5 Performance analysis

We next evaluate the protocol performance in terms of message length and

computational cost at the sensor nodes. We also give an optimization of the

proposed protocol to improve the efficiency of the message length and reduce

the energy consumption at nodes due to communication.

Table 3.3 summarizes the performance results obtained. The values in

the table are justified below.

Message length

Our protocol keeps the length of messages constant on their way from the

leaves towards the base station. Each message consists of the pair (I, σ).

Component I encodes the q-ary symbol transmitted by each leaf and its

bitlength is tn, where n is the number of leaves of the multicast tree and

q ≤ 2t−1. Since t is a constant, the bitlength of I is O(n). Component σ has
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Table 3.3: Performance results
Item Cost

Message length (for n ↑↑) tn
Message length in the error-tracing procedure (for n ↑↑) (t + s)n
Cost of message generation O(n)
Cost of message aggregation O(n2)
Cost of symbol extraction O(n)
Cost of error tracing at intermediate nodes O(n2)

a constant length of s bits. So its length is O(1). In this way, messages have a

bitlength O(n)+O(1). For large values of n, this length asymptotically tends

to tn. Note that this length is linear, which represents a limitation on the

total amount of leaves which can participate in the network. However, it can

be proven that symbols sent by n leaves cannot be aggregated in a message

whose length is below O(n) when all symbols have the same probability of

being sent.

In the event of a corrupted message, the base station multicasts a message

which contains (I||σ1, . . . , σn||v). The first component has tn bits, the second

one sn bits and the last one O(1) bits. Thus, this special message has a

bitlength of O(n). For large values of n, this length asymptotically tends to

(t + s)n.

Computational cost

Next, we analyze the time complexity of the protocol in four operations: mes-

sage generation, message aggregation, symbol extraction and error tracing at

intermediate nodes.

Message generation. Each message has two components (Ii, σi). Leaf Ui em-

ploys O(n) time to generate the binary sequence Ii. The computation
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of σi does not depend on n, so it is O(1). During message generation,

each leaf verifies one signature and computes two hash functions and

at most t bitwise XOR operations.

As mentioned in Section 1.1.1, there are fast algorithms for digital

signature verification in resource-constrained environments. As a real

example, the authors of [BlaB05] implement the Elliptic Curve Digi-

tal Signature Algorithm [Ecds99, John01] on a MICA2 mote [Berk04,

Mica08], designed by researchers at the University of California at

Berkeley. This device offers an 8-bit, 7.3828-MHz ATmega 128L pro-

cessor, 4 kilobytes (KB) of primary memory (SRAM), and 128 KB of

program space (ROM). According to their results, an ECDSA signa-

ture verification in such a device takes about 24.17 seconds (this time

can only be expected to decrease as technology progresses).

The remaining operations (hash functions and bitwise operations) take

negligible time. Thus, our scheme is suitable for resource-constrained

leaves.

Message aggregation. An intermediate node receives and aggregates mes-

sages. Aggregation of {(Ij, σj)}j into (I, σ) requires at most O(n) bit-

wise OR operations over O(n)-long messages during the computation of

I. Computation of the new σ requires at most O(n) additions modulo

2s (each with cost O(1)). This results in a maximum O(n2) cost. Note

that intermediate nodes compute only bitwise operations and additions

modulo 2s. These operations are appropriate for resource-constrained

nodes.

Symbol extraction. The base station extracts the contribution of each leaf
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in a vector B = ((b1,1, . . . , b1,t), . . . , (bn,1, . . . , bn,t)) by processing com-

ponent I (total length tn bits). Since t is a constant, this time is O(n).

Integrity checking does not increase this cost.

Since the base station is a full-fledged device, we consider that all op-

erations executed in this step are affordable.

Error tracing at intermediate nodes. This procedure is only invoked in case

of a corrupted message event. An intermediate node may need to verify

a signature and check the value Ij sent by each of its children. Each

check takes O(n) time. Since the number of children may also be O(n),

the maximum time spent on this operation is O(n2). Checking σj has

at most the same cost.

In this step we require one signature verification. As explained above,

this operation is affordable on real sensor nodes like the MICA2 mote.

In addition to that, intermediate nodes must execute O(n2) additions

modulo 2s. These operations are suitable for resource-constrained nodes

too.

Message length optimization

Our system is designed for nodes that are resource and power-constrained

devices. This motivates the need to reduce energy consumption as much as

possible. Reducing the length of messages is one way to achieve this.

In our protocol, leaf Ui sends (Ii, σi) where Ii is a tn bit long binary

sequence. Useful information within Ii is contained in bits located between

positions t(i− 1) + 1 and ti. The remaining bits of Ii are set to 0.

This information could be represented in a more compact way using log n

bits to code index i and t bits for useful information. In this way, the length
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of Ii would be t+log n. Aggregation of vectors Ii would be done by concate-

nation. In this way, the length of a vector I containing data from j leaves

would be j(t + log n) bits.

For small values of j this results in shorter messages than those described

in our protocol above (i.e. when j(t + log n) < tn). Low values of j appear

at nodes that are far from the root. However, when j grows towards n this

new coding results in longer messages than those described above.

Therefore using this alternative coding when j satisfies j(t + log n) < tn

(near the leaves) and switching to the initial coding when messages get near

the root is a way to minimize the length of transmitted data.
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Chapter 4

Secure and private information

sharing in MANETs

In this chapter we present two contributions related to information sharing

in mobile ad hoc networks. Both contributions provide security and privacy

for the users of the network. Incentives are given to thwart user misbehavior.

Section 4.1 presents an information system aiming to provide information

just in time and just in place in a specific area. This system is deployed in a

city within which a user, regardless of her location, can request information

any time using her mobile device and its wireless connection. Access to

information is made possible by a metropolitan ad hoc network based on

peers enabled with wireless technology. A typical application of this system

would be tourist information: a person touring a city can query the system

to obtain a list of museums near her current location or some information

about a given historical building she is currently visiting. This proposal has

been published in [Cast07].

Section 4.2 presents a new scheme designed to disseminate advertisements

through mobile ad hoc networks. This proposal exploits the capabilities
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of mobile ad hoc networks to increase the visibility of the products being

offered by merchants. The starting point is a merchant who generates an

advertisement that is subsequently disseminated by citizens who carry mobile

devices acting as network nodes. This scheme has been published in [Viej07].

4.1 Distributed information provision

In this section, we present an architecture for mobile ad-hoc networks which

has been published in [Cast07]. This scheme offers distributed information

provision in urban environments. It requires some collaborative users to

become information providers. Such volunteers are rewarded for their work.

The proposed architecture is specified as a protocol suite taking security and

privacy aspects into account.

4.1.1 System overview

We focus on an environment where some end-user nodes build a wireless ad

hoc network and act as information providers. These nodes devote some of

their computational resources (storage, bandwidth, processing power) to stor-

ing and serving information. In this way, when another user in the network

requests some information, those nodes storing the requested information can

supply it.

Volunteering to become an information provider is rewarded depending

to the amount of served information requests. Every time a server provides

information to some user, it obtains a receipt allowing it to prove that it

has performed the service. Periodically, the server contacts the main content

provider (i.e. the main source of content, in our case study the city tourist

office) to get paid according to the number of requests it has served. This is a
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4.1 Distributed information provision 63

way to encourage users to devote more resources to provide information. The

more information a server stores, the more requests it will be able to serve,

and thus, the more money it will receive for its service. A server located at

a certain place will probably contain information that may interest nearby

users.

4.1.2 System architecture

In this section we present the system components: entities, messages ex-

changed between entities and protocols between entities.

Entities

• Content Source (CS). This is the entity offering the information service.

In the aforementioned example about tourist information, this entity

may be the tourist office of a city holding information of particular

interest for residents or visitors. Some examples could be:

– Information on historical landmarks, including short multimedia

videos, audio streams and digital documents on them.

– Schedule of cultural and leisure activities, like cinema or theater,

including trailer viewing options.

– Information about restaurants: opening hours, menus, prices.

– Location of services: police stations, hospitals, pharmacies.

• Users. Users whose devices form the ad hoc network. We distinguish

two kinds of users:

– Those that query the system when they need information. Nor-

mally, they use a mobile device and request information through
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64 Secure and private information sharing in MANETs

the ad hoc network. We refer to them as end-users (EU).

– Those that devote part of their computational resources to stor-

ing and serving some of the information supplied by the content

source. These users not necessarily use a mobile device. They

could store information in their desktop PC with an ad hoc net-

work interface. We refer to these users as server-users (SU).

Messages

We distinguish two types of communication:

• The first type follows a client-server paradigm and involves the content

source CS. We have chosen this approach because the communication

between CS and the other two entities (SU, EU) only occurs at very

specific moments and is unlikely to cause a bottleneck.

• The second type of communication, the dialog between an EU and a

SU, follows a peer-to-peer (P2P) paradigm.

Messages consist of two parts. The first part contains the message itself,

divided in two or three sections: message type, sender identifier (in the P2P

environment) and message body. The second part contains the cryptographic

data: the signature on the first part of the message, the algorithm used to

calculate the signature and the digital certificate for the sender’s public key.

This structure allows the receiver to verify the validity of the message.

Protocols

We use the following notations to describe our protocols:

• Pentity, Sentity: Asymmetric key pair of entity, where Pentity is the public

key and Sentity is the private key.
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4.1 Distributed information provision 65

• Sentity[m]: Digital signature of message m by entity. By digital sig-

nature we refer to computing the hash value of message m using a

collision-free one-way hash function and encrypting this hash value us-

ing the private key of entity.

• Eentity(m): Encryption of message m under the public key of entity.

• Dentity(c): Decryption of message c under the private key of entity.

• H(m): Hash value of message m using a collision-free one-way hash

function.

• m1||m2: Concatenation of messages m1 and m2.

We next detail the different protocols used by the entities participating

in the system:

End-user registration. To register as an end-user, a candidate user must

contact the CS and install the necessary application software. e.g. in

our tourist information case study we assume that there exist several

places in the city (e.g. airport, railway station or tourist office) where

a user can register.

The end-user registration protocol is as follows:

Protocol 1

1. The user does:

(a) Obtain the following information from the CS:

• Internet address from which to download the application

software.
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• Validity period, i.e. time window during which the user

will be allowed to use the system.

• Access code to download and install the software.

(b) Connect her device to the Internet and download the applica-

tion software.

(c) Install the application software.

(d) Run Procedure 1 below and obtain the private key SEU in

a PKCS#8 file [Pkcs08], and a Certificate Signing Request

(CSR).

(e) Send the CSR to the Content Provider.

2. The CS does:

(a) Issue the user’s certificate using the CSR.

(b) Add the issued certificate to the CS database.

(c) Send the issued certificate to the user.

3. The user stores the following information in a PKCS#12 [Pkcs08]

file:

• User private key SEU .

• User certificate.

• CS certificate.

Procedure 1

1. Generate a private/public RSA key pair [Rsa78].

2. Store the private key in a PKCS#8 file.

3. Generate a Certificate Signing Request (CSR). The file must use

the PKCS#10 [Pkcs08] standard.
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4. Return the PKCS#8 file and the CSR.

Server-user registration. A user wishing to register as a server-user con-

tacts the CS from whom she will receive a unique identifier and the

software that will enable her to serve information. Afterwards, the

user generates a private/public key pair and sends her public key and

her identifier to the CS in order to get the corresponding certificate.

Finally, the user indicates the desired information items and downloads

them to her hard disk.

More formally, the server-user registration protocol is as follows:

Protocol 2

1. The user does:

(a) Sign a contract with the CS specifying the user’s rights and

duties.

(b) Send the user’s bank data for future payments to CS. For con-

fidentiality, these data are sent encrypted under the public key

of CS.

2. CS does:

(a) Generate a unique identifier Id.

(b) Send to the user the unique identifier Id and the software that

will enable the user to serve information. For confidentiality,

Id is sent encrypted under the public key PEU (the candidate

server-user is assumed to be already an end-user with a pri-

vate/public key pair (SEU , PEU)).

3. The user does:
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68 Secure and private information sharing in MANETs

(a) Run Procedure 1 to obtain the private key SU in a PKCS#8

file, and a Certificate Signing Request (CSR).

(b) Send the CSR to CS.

4. CS does:

(a) Issue the user’s certificate using the CSR.

(b) Add the issued certificate to CS’s database.

(c) Send the issued certificate to the user.

(d) Send the catalog information.

5. The user stores the following information in a PKCS#12 file:

• User private key SU .

• User certificate.

• CS certificate.

Information request. When an end-user requests an information item, the

query reaches several server-users. Among these, those holding the re-

quested item return a positive acknowledgment. Then, the end-user

downloads the requested information from a particular server-user se-

lected among those which have sent positive acknowledgment. Finally,

the end-user sends a receipt to the selected server-user. As we will see

later on, the SU will use this receipt in order to claim the corresponding

reward from the CS.

Formally, the information request protocol is as follows:

Protocol 3

1. The end-user EU computes a request in order to obtain a specific

information, where the request consists of the following data:
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• Description of the requested item, I.

• Date and time of the request, Tr.

• Digital signature of I and Tr, S1 = SEU [I||Tr].

This query spreads using a broadcast approach. Therefore, all SU

who are close to EU receive her request.

2. Each server-user SU who receives the query does:

(a) Verify the digital signature S1 using EU’s public key.

(b) Search for the information.

(c) If I is in SU’s database, reply to EU. The reply contains the

following data:

• User’s request, REU = I||Tr.

• Date and time of the answer, Ta.

• Digital signature on REU and Ta, that is, S2 = SSU [REU ||T ].

3. EU does:

(a) Collect the replies from the SUs. Without loss of generality,

assume that the set of SU replying to EU is SU1, SU2, · · · , SUn.

See Section 4.1.4 below on the value of n.

(b) Verify the digital signatures of the SUs, that is, S21, S22, S23, · · · , S2n

using the public keys of each SU.

(c) Choose one server-user SU’ ∈ {SU1, SU2, · · · , SUn}. This

choice can be performed in a way to maximize privacy (see

Section 4.1.4 below).

(d) Send a request to SU’ with the following data:

• Description of the requested information, I.
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• Date and time of the request, Tr.

• Identifier of the node this request is addressed to, IdSU ′.

• Digital signature on I, Tr and IdSU ′, that is, S3 = SEU [I||Tr||IdSU ′].

4. SU’ does:

(a) Verify the digital signature S3 using the public key PEU .

(b) Send the following message:

• Description of the requested information, I.

• Requested information, Info.

• Date and time of the answer, Ta.

• Digital signature of the I, Info and Ta, that is, S4 =

SSU ′[I||Info||Ta].

5. EU does:

(a) Verify the digital signature S4 using PSU .

(b) Check whether the received data correspond to the information

requested.

(c) If the check is OK, issue a receipt and send it to SU’ with the

following data:

• Description where EU asserts that she has received the

item described as I from SU’.

• Date and time, T .

• Identifier of SU’, IdSU ′.

• Digital signature on I, T , and IdSU , that is, S5 = SEU [I||T ||IdSU ].

6. SU’ does:

• Receive the receipt.

• Verify S5 using PEU
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• Store the receipt.

Server-user payment. As previously described, server-users get a receipt

every time they serve information. These receipts are stored. Once a

large enough batch of receipts has been collected, a server-user contacts

CS to get paid for the services provided. Note that sending receipts

one at a time to CS would be very inefficient. The reason is that, since

the reward for a single service is very low, the processing costs of such

a payment would be too significant.

The protocol to redeem a batch of receipts is as follows:

Protocol 4

1. SU sends the receipts to CS.

2. CS does:

(a) Verify the digital signature of each receipt

(b) Check for duplicated receipts

(c) Compute the money that must be paid to the information node

(d) Transfer the money to the bank account of SU

4.1.3 Security analysis

Our communication protocols use different types of messages to be trans-

mitted in each phase. Every exchanged message contains a plaintext part

and a valid signature. The plaintext part contains the information transmit-

ted between nodes and the signature provides authentication, integrity and

non-repudiation to such messages.
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Confidentiality

In principle, confidentiality is only implemented in the server-user registra-

tion protocol, when the user sends her bank data to CS and CS returns

a unique identifier (Steps 1 and 2 of Protocol 2). The rest of messages

are assumed to be non-confidential, which is plausible for most applications

(e.g. tourist information). However, if confidentiality is required, it can

be achieved by encrypting messages under the public key of the intended

receiver.

Collusion security

Collusion between end-users and server-users to obtain unlawful rewards is

conceivable: some end-users perform a huge amount of information requests

to certain server-users, and the latter then share with the former the rewards

obtained from the CS.

A possible solution is to charge the end-users a small fee for enjoying

the information service. This payment can be performed using offline elec-

tronic checks as stated in [Chau90] or any micropayment system (e.g. Pay-

Word, [Rive96]).

However, one must acknowledge that collecting payment from the end-

users can jeopardize the success of many applications, like the tourist infor-

mation system. Therefore, a preferred countermeasure against user collusion

is for the CS to record and analyze the number of receipts submitted by the

SUs and the number of receipts issued by the same EU. Since each receipt

contains the exact time and date when it was issued, a limit on the number

of requests that an EU can perform within a period of time can easily be

enforced. The CS will not honor any receipts beyond those that can be is-

sued by a certain user; furthermore, as soon as CS detects that an end-user
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has issued more receipts than allowed, CS alerts the SUs to stop serving any

further request from that suspect SU. The SUs receive this alert when they

synchronize resources with the CS or when they redeem their receipts. In

this way, the effects of possible user collusions are tolerably mitigated.

4.1.4 Privacy analysis

In any information service, end-user profiling is a real threat. Indeed, in-

formation providers can keep track of the requests submitted by end-users,

with a view to investigating their tastes, preferences, locations, etc. This is

clearly a potential privacy violation.

In a conventional information service where end-users get information di-

rectly from a single information provider, one often assumes that information

provider to be trusted or at least not to be interested in violating the pri-

vacy of end-users. At any rate, if there ever were any provable violation, the

information provider would be liable and could be charged accordingly.

In a peer-to-peer mobile ad hoc information service, the privacy problem

is much more serious. End-users obtain information through server-users

who are occasional information relayers and cannot be trusted to the same

extent as to privacy preservation.

End-user privacy can be significantly increased by using an alias when

registering as an end-user and by properly tuning Protocol 3:

• When the end-user application detects that there are server-users among

the n replying to Step 3a who already replied to more than p requests

from the same end-user in the past (p is a privacy parameter), the

application warns the end-user of a potential privacy problem. The

end-user has two choices: either move to a different area where she will

find different server-users or to go ahead and jeopardize her privacy.
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• In Step 3c, a wise policy is for the end-user application to choose the

server-user which has replied to least requests to the end-user in the

past.

Of course, we are assuming that the server-user application has not been

tampered with, so that: i) it replies when the server-user hears a request

for an information item it holds; ii) it forgets about requests for information

items the server-user does not hold.

In the presence of malicious server-users, a combination of the following

two strategies can be useful:

• Use short validity periods for end-users, which will force end-users to

frequently re-register under a new alias.

• Avoid issuing many information request from the same place, which

should be easy for a roaming end-user (e.g. tourist visiting a city).

Moving to another area is a way to get rid from the current server-

users, both the legitimate and the malicious ones.

4.2 Advertisement dissemination

In this section, we propose an advertisement dissemination model which has

been published in [Viej07]. This scheme exploits the capabilities of mo-

bile ad hoc networks to increase the visibility of the products being offered

by merchants. It offers incentives to stimulate the collaboration of nodes.

Cryptographic techniques are used to prevent manipulation and preserve the

privacy of users. Specifically, the AdPASS [Stra04] system is outperformed

in the following aspects:
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• Security is achieved against (individual or colluding) dishonest nodes

trying to modify transmitted advertisements in order to unlawfully in-

crease their share of incentives.

• Privacy is preserved without resorting to any trusted third party. Our

system only requires a certification authority (CA) to certify the mer-

chant’s public key. In any case, this authority can not disclose users’

identities.

• The incentives rewarding a certain purchase are distributed among all

co-operating users given on how long they have held the advertisement

leading to that purchase before transferring it to another user. This is a

fair proposal which does not restrict the advertisement’s dissemination

range.

Our scheme uses multisignatures over a Gap Diffie-Hellman group [Bold03].

The required mathematical background has been previously introduced in

Section 3.1.1.

4.2.1 System overview

Our protocol assumes the existence of a merchant and several mobile nodes

that communicate through a MANET. We assume the existence of dishonest

users (who may act individually or in collusion) interested in obtaining a

higher reward than the one they are entitled to. We do not require the users

to be registered with any central entity. Thus, our system is appropriate for

very dynamic environments where connectivity to a central entity may not

be guaranteed.

Functionally speaking, a user holding an advertisement actively contacts

users within her range and sends them the content of the advertisement.
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Initially, the advertisement is held by the merchant. Some of the contacted

nodes may purchase the advertised good and/or be interested in holding the

advertisement themselves for further dissemination.

On the occasion of a purchase request, the buyer sends to the merchant

the advertisement (if any) which has motivated her purchase; attaching the

advertisement entitles the buyer to a discount. The incentives rewarding that

purchase are distributed among the nodes in the path from the merchant to

the buyer proportionally to the time they have held the advertisement. E-

coins are used to pay those incentives.

In order to facilitate the distribution of incentives, when an advertisement

is transferred to a new holder, a time stamp indicating the moment of the

transfer is added to the advertisement. In this way, when an advertisement

comes back to the merchant together with a purchase request, the merchant

can ascertain the incentive that corresponds to each collaborating node. The

system is totally anonymous, i.e., the information that nodes add to an ad-

vertisement does not allow to identify them. Also, different contributions of a

node to different advertisements cannot be related. In this way, unlinkability

is also provided. Obviously, we are assuming that the appropriate measures

are being taken to avoid node tracking by other means (for instance, frequent

change of MAC and IP addresses).

The above system is sustainable for the merchant, who never loses money,

because incentives are only paid for advertisements which generated a pur-

chase.

4.2.2 Set of protocols for advertisement dissemination

We next describe the six protocols that conform the proposed system.
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Advertisement generation

Merchant M has its public key, PKM , and its digital certificate issued by a

Certification Authority, CertAut{PKM}. We denote by SKM the secret key

corresponding to PKM .

1. When M wants to promote a product, it generates an advertisement

α containing its public key certificate, the offer description and the

expiration time of this offer:

α = {CertAut{PKM}, Description, ExpirationT ime}

This advertisement is signed by M to obtain {α}SKM
.

2. A node Ui interested in disseminating the advertisement contacts M

and receives the following message:

β = {α, PubKeyChain, Multisignature, T imeChain}

The fields of β are initialized as follows:

• PubKeyChain is an ordered list initially left empty;

• Multisignature is initialized to {α}SKM
;

• T imeChain is an ordered list initially containing a single element

that is a tuple formed by T ime and its signature {T ime}SKM
;

T ime corresponds to the time this operation has been performed.

3. Ui checks β (see the protocol for advertisement checking). If all checks

are correct, Ui accepts the advertisement from M and starts its dis-

semination.
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Advertisement dissemination

Upon accepting an advertisement, Ui informs other nodes about the offer it

contains. Due to the inherent mobility in the nodes, Ui is likely to disseminate

the offer quite far from M .

Additionally, when Ui contacts a nearby node Uj , Ui asks whether Uj is

interested in disseminating the advertisement (our scheme is not linked to

any specific framework to perform such initial contact between users, the

one presented in AdPASS [Stra04] can be used). If she is, they will start the

advertisement transfer. In order to guarantee anonymity and unlinkability,

nodes must change their MAC and IP addresses after each contact.

Note that, after an advertisement transfer from Ui to Uj , Ui still holds the

advertisement and can continue its dissemination and transfer to other nodes.

In this way, the number of nodes disseminating a certain advertisement can

grow exponentially.

Advertisement transfer

The advertisement transfer protocol requires users U to have a public/private

key pair (PKU/SKU). To provide unlinkability, this key pair has to be

changed after each execution. Before renewing her key pair, a user stores the

secret key. This key will be needed in order to receive the incentives (as will

be detailed next in the incentive payment protocol).

1. A user Uj interested in an advertisement α held by another user Ui asks

Ui to transfer it.

2. Ui appends her public key to the value PubKeyChain in β. This is

PubKeyChain′ := PubKeyChain ∪ PKUi

UNIVERSITAT ROVIRA I VIRGILI 
SECURITY AND PRIVACY ISSUES IN SOME SPECIAL-PUROPSE NETWORKS 
Alexandre Viejo Galicia 
ISBN:978-84-691-8852-1/DL:T-1274-2008 
 



4.2 Advertisement dissemination 79

3. Ui Computes the signature sig := {α}SKUi
. Then she computes

Multisignature′ := Multisignature · sig

4. Ui obtains the current time, signs it and appends the signed time to the

time chain, that is: T imeChain′ := T imeChain∪{T ime || {T ime}SKUi
}

(at the end).

5. Ui generates

β ′ := {α, PubKeyChain′, Multisignature′, T imeChain′}

and sends it to Uj.

6. Ui stores the secret key SKUi
and generates a new key pair that will

be used at the next transfer.

7. Uj checks β ′ (see the protocol for advertisement checking). If all checks

are correct, Uj informs other nodes about the offer in β ′.

Advertisement checking

A user Ui receiving a message β should check its validity prior to accepting

it. This is done as follows:

1. Check the validity of CertAut{PKM} (obtained from α). This requires

checking the signature by the authority, its expiration date and, if

possible, its revocation status.

2. Compute the product of all public keys contained in PubKeyChain

and PKM . Let us denote by GlobalKey the result of this operation.
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3. Check that Multisignature is a correct signature over α that is vali-

dated using GlobalKey.

4. Check that ExpirationT ime (obtained from α) has not expired.

5. Check that the first element of T imeChain is a correct signature gen-

erated by the Merchant.

6. For each key contained in PubKeyChain, check that the j-th public key

in PubKeyChain can validate the (j + 1)-th signature in T imeChain.

7. Finally, check that the values of elements in T imeChain are sorted in

ascending order and that the last element corresponds to the current

time.

Advertisement deposit

A user Ui interested in the product advertised in β contacts the merchant

and buys it. By sending β to the merchant, Ui will obtain the price reduction

detailed in β. This price reduction motivates users to deposit advertisements.

Incentive payment

Once a merchant sells a product to a customer who has deposited an adver-

tisement, it has to pay the incentives to all users who have collaborated in

its dissemination.

The merchant gives a fixed amount of money for each received adver-

tisement. This amount of money is divided between collaborating nodes

proportionally to the time each collaborating node has held the advertise-

ment along the path from the merchant to the buyer (see Section 4.2.4 for

details about the model used to reward incentives). This information can be
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obtained from the values in T imeChain. The merchant does not know the

identity of the nodes that collaborated in the advertisement distribution. It

only knows their public key. For each payment the merchant authorizes her

bank to issue an e-coin. Let us assume user Ui (who remains anonymous and

is only known by her public key) has to receive an e-coin for a given value v.

The merchant sends a message to her bank indicating that she can issue an

e-coin with value v to any person providing password p. Then, the merchant

publishes a message in a public repository containing p encrypted with the

public key of Ui. This indirect procedure through a public repository is

needed because Ui is anonymous and may be temporarily out of range.

Later, Ui checks the repository, decrypts the message and obtains p. Us-

ing this password, the bank permits her to obtain an e-coin (through the

corresponding e-coin issuing protocol). The e-coin system must be anony-

mous such as the one proposed by Chaum in [Chau89]. This is because the

e-coin may later be spent non-anonymously (for instance, if the purchased

product has to be delivered by courier). If the e-coin system was not anony-

mous, it could be possible to link the identity of the person spending the

e-coin to the public key used in the dissemination protocol.

4.2.3 Example of an advertisement dissemination

We next clarify the operation of this scheme following the communication

steps described above. We base our explanation on the graphical example

shown in Figure 4.1.

1. Advertisement generation. The merchant wants to promote a

certain product and generates an advertisement and informs about it
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Figure 4.1: Graphical example of an advertisement dissemination

the users within range. User A is interested in disseminating this adver-

tisement and contacts the merchant to request transfer of the advertise-

ment β. Then A checks the validity of β and starts its dissemination.

This occurs at time T0.

2. Advertisement dissemination. A roams around while informing

other nodes she meets about advertisement β. Then, A transfers the

advertisement to two interested nodes B and D at times T0 + T1 and

T0 + T1 + T2 respectively. At time T0 + T1 + T3, node B transfers the

advertisement to node C.

3. Advertisement transfer. In each transfer, the node which receives

the advertisement checks its correctness (see the protocol for advertise-

ment checking) prior to accepting it.

UNIVERSITAT ROVIRA I VIRGILI 
SECURITY AND PRIVACY ISSUES IN SOME SPECIAL-PUROPSE NETWORKS 
Alexandre Viejo Galicia 
ISBN:978-84-691-8852-1/DL:T-1274-2008 
 



4.2 Advertisement dissemination 83

4. Advertisement deposit. User C is interested in the product ad-

vertised in β. Therefore, she contacts the merchant and buys it. By

sending β to the merchant, C will benefit from the price reduction

detailed in the offer.

5. Incentive payment. The merchant uses the values in the T imeChain

embedded in β to determine that A has carried this advertisement dur-

ing time T0 + T1 and B has carried it during T3. Then, the merchant

sends a message to its bank indicating that it can issue two e-coins

for values v1(T0 + T1) and v2(T3) to any person providing passwords p1

and p2 respectively. The joint value of those two e-coins is the fixed

amount that the merchant is willing to pay for each completed sale of

the product. Finally, the merchant publishes p1 and p2 encrypted with

the public key of A and B respectively in a public repository.

Later, A and B check the repository and obtain their respective pass-

word. Then, they contact the bank and obtain their respective e-coin

through the corresponding e-coin issuing protocol.

4.2.4 Comparison to other reward models

As explained before, in our scheme the merchant divides a fixed amount

of money between the nodes which have collaborated in an advertisement

dissemination. The money earned by a certain node is proportional to the

time which such a collaborating node has held the advertisement along the

path from the merchant to the buyer. We next explain the advantages of

this approach in comparison with the model presented in [Stra04] and with a

simple model where each node receives money each time it collaborates (this

scheme does not consider how long a node has held the advertisement, only
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84 Secure and private information sharing in MANETs

if the node has held it or not).

In [Stra04], the merchant fixes an amount of points as reward to a certain

advertisement. Each user who collaborates in the dissemination will claim

the number of points that she desires. This means that if a greedy user

Ui claims too many points, the advertisement will not be disseminated by

any other user since there will not be enough remaining points. Thus, this

represents a strong restriction in the advertisement’s dissemination range.

Besides, users are not rewarded in a fair way and this motivates the users to

apply strategies for keeping and passing along points instead of collaborating

in the dissemination.

The simple model is fairer than [Stra04]. Each Ui which takes part in a

dissemination will receive the same amount of money. However it has two

main problems:

1. If there is no limit in the number of hops, there is no limit either in

the amount of money that the merchant must give as incentives. This

represents a major concern for the merchant. We can solve this problem

by enforcing an upper limit but then the advertisement dissemination

range will be restricted like in [Stra04].

2. Since the merchant gives incentives to each user who collaborates, a

certain user with n identities can transfer a certain advertisement to

herself n− 1 times (using her n− 1 alternative identities). At the end

of the process, this user will get incentives for each of her n identities.

To solve these two problems we propose to add a second dimension (how

long a user holds an advertisement) to the simple model. Besides, the mer-

chant establishes a fixed amount of money (incentives) that will be divided

between the collaborating users. We next explain how our proposal affects
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the two problems stated:

1. The merchant after each sale divides the money assigned to pay adver-

tisement dissemination between collaborating nodes proportionally to

the time each collaborating node has held the advertisement. It means

that the merchant never loses money. Besides, users will always receive

incentives, although a node which has held a certain advertisement for

a short time in comparison with others will probably get a very small

amount of money.

2. A certain user which holds an advertisement for n epoch (interval of

time) will get the same amount of money than a dishonest user which

has n different identities and holds the advertisement for one epoch

with each identity.

4.2.5 Security and privacy analysis

We next explain the adversary model and the possible attacks the system has

to be robust against. We refer to such attacks to prove the security properties

achieved by our scheme: integrity, authentication and non-repudiation. We

also explain how privacy (anonymity and unlinkability) is obtained.

Adversary model

In our system, an adversary is any entity or group of entities wishing to

disrupt normal system operation or aiming to collect information on nodes

who have collaborated in advertisement dissemination. The nodes that can

take part in a dishonest coalition are:

• The merchant. It may wish to identify and/or trace nodes who col-

laborate by spreading announcements. It may also repudiate having
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generated a certain offer.

• The bank. It may wish to identify and/or trace nodes who collaborate

in message dissemination.

• Dishonest users. They may wish to alter advertisements so as to in-

crease the amount of their assigned reward. They may also wish to

inject false disrupting data or identify and/or trace other users.

On the whole, an adversary can try to perform the following attacks:

• Modify the offer description.

• Repudiate having issued a certain advertisement (when the adversary

is the merchant).

• Remove the contribution made by some user to message dissemination.

• Issue a fake advertisement.

• Collect incentives corresponding to other users.

• Obtain the identity of a collaborating node and/or profile her by relat-

ing different interactions.

Attacks and security/privacy properties

Modification of an offer description. This attack refers to the integrity

property. Offer descriptions are issued by the merchant, so we assume

the merchant does not take part in the coalition. In our system, an

advertisement consists of a message with the following structure:

β = {α, PubKeyChain, Multisignature, T imeChain}
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4.2 Advertisement dissemination 87

The advertisement itself is α which contains its public key certificate,

the offer description and its expiration time:

α = {CertAut{PKM}, Description, ExpirationT ime}

Integrity of the offer description is ensured since α is signed by the

merchant (this signature is included in the Multisignature field) and

the signature scheme is unforgeable.

Advertisement repudiation. In our scheme, the merchant cannot repudi-

ate having issued an advertisement since it has been signed and the

signature on it is verifiable with a certified public key.

Note that, since collaboration in advertisement dissemination is anony-

mous, users do not need to repudiate having collaborated.

Removal of user contribution to dissemination. Another integrity aspect to

be considered is whether users having contributed to the distribution of

an advertisement can be unlawfully dropped and forgotten about. Let

us assume an advertisement coming from merchant M that has been

distributed by users U1, U2, . . . , Un. Let us assume that an intruder

wishes to remove Ui from β. The intruder must remove the public key

PKUi
from PubKeyChain and remove {T ime || {T ime}SKUi

} from

T imeChain. Both removals can be done without any difficulty.

The difficulty for the intruder is to alter the Multisignature field. This

field contains the value

Multisignature = H(α)SKM+SKU1
+SKU2

+...+SKUn .
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88 Secure and private information sharing in MANETs

The intruder must be able to obtain

Multisignature′ = Multisignature · (H(α)SKUi)−1

Since discrete logarithms are hard to compute in a GDH group, the only

way to obtain such value by an intruder is to get the Multisignature

field before Ui’s contribution. This value can only be obtained if the

intruder contacts directly the user who transferred β to Ui. This cannot

be done due to the anonymity of the system.

Issuance of a fake advertisement. This attack refers to the authentication

property. Our system requires the merchant to sign advertisements

using a public key certified by an accepted authority. Generation of a

certain advertisement that will be accepted as authentic coming from

a valid merchant M requires knowledge of its private key SKM . As

long as this secret key is not compromised and the signature scheme

is unforgeable (a valid signature can only be computed if the secret is

known) the system provides authentication and remains secure against

this attack.

Collecting incentives from other users. This situation refers to the authen-

tication property too. In our system, E-coins given as incentives can

only be collected by the users who have earned them. This is ensured

by the incentive payment procedure. During this procedure, the mer-

chant publishes the password required to obtain an e-coin encrypted

with a public key whose corresponding private key is only known by

the authentic user. In this way, only the authentic user will be able to

obtain this password and request the e-coin.
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4.2 Advertisement dissemination 89

Disclosure of the identity and/or tracing of users. This attack compromises

the privacy of the users. This property consists of two components that

must be guaranteed:

• Anonymity: Interaction with the system should not reveal the

identity of the user.

• Unlinkability: It should not be possible to relate different interac-

tions by the same user.

The anonymity of users collaborating in the dissemination of an ad-

vertisement is ensured because they simply are requested to provide a

public key that does not reveal anything about their identity. Obtain-

ing the password that permits to request an e-coin does not require

the user to identify herself either. Finally, an anonymous e-coin system

like [Chau89] also provides anonymity when obtaining and spending an

e-coin.

Unlinkability is provided if users use a different key pair each time they

perform an advertisement transfer. Each user U is able to randomly

generate a new public/private key pair (SKU/PKU) at will and there

is no connection between all the key pairs used by a certain user. Thus,

two different public keys from the same user cannot be related by an

observer.
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Chapter 5

Private and trustworthy

information spread in VANETs

Vehicular ad hoc networks allow vehicle-to-vehicle communication and, in

particular, vehicle-generated announcements.

As explained in Section 1.1.3, announcements are spread to inform about

road conditions (traffic jams, accidents). Vehicles which receive such an-

nouncements can take advantage of that information to select routes avoid-

ing troublesome points. In contrast, alert messages are transmitted to warn

nearby vehicles about dangerous movements (braking, lane change, etc). Ac-

cording to that, announcement messages require a longer dissemination range

than alert messages. Besides, they demand a real-time processing which is

much less strict than in the case of alerts. Therefore, advanced cryptogra-

phy can be used to make such messages secure and trustworthy. Provided

that the trustworthiness of such announcements can be guaranteed, they can

greatly increase the safety of driving.

In this chapter, we present a new system designed to spread vehicle-

generated announcements through VANETs. This work has been published

91
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92 Private and trustworthy information spread in VANETs

in [Daza08].

Trustworthiness is provided by following the a priori protection paradigm

(see Section 2.3 for detailed discussion about protection paradigms). Internal

attacks are thwarted by using an endorsement mechanism based on threshold

signatures. Our system outperforms [Raya06b] in message length and com-

putational cost. To the best of our knowledge, [Raya06b] is the most compet-

itive scheme in the literature that follows the a priori protection paradigm.

Regarding privacy, we describe three different privacy-preserving variants

of our system which ensure that vehicles volunteering to generate and/or

endorse trustworthy announcements do not have to sacrifice their privacy

(anonymity and unlinkability). The protocol detailed in [Raya06b] did not

preserve the privacy of the volunteer vehicles.

Section 5.1 gives some cryptographic background needed to understand

the proposed system. Section 5.2 presents our scheme in detail.

5.1 Cryptographic background

5.1.1 Secret sharing

A secret sharing scheme is a method by means of which a special figure, called

dealer, distributes a secret s among a set P = {P1, . . . , Pn} of n players. The

dealer secretly sends to each player Pi his share si of the secret s in such a

way that only authorized subsets of players can recover the secret.

A (t, n)-threshold secret sharing scheme is a particular case in which au-

thorized subsets are those composed of at least t players. Shamir’s threshold

secret sharing scheme [Sham79] gives a solution to this problem. Indeed, let

Zq be a finite field with q > n and s ∈ Zq be the secret to be shared. The

dealer picks a polynomial p(x) of degree at most t− 1 at random, whose free
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5.1 Cryptographic background 93

term is the secret s, that is, p(0) = s. The polynomial p(x) can be written

as p(x) = s +
∑t−1

j=1 ajx
j , where aj ∈ Zq has been randomly chosen.

Each player Pi is assigned a known value αi ∈ Zq. Then, the dealer

privately sends to player Pi his share si = p(αi), for i = 1, . . . , n.

Therefore, a set A ⊂ P of at least t players can recover the secret s = p(0)

by interpolating the set of shares they hold:

s = p(0) =
∑
Pi∈A

siλ
A
i =

∑
Pi∈A

si

⎛
⎝ ∏

Pj∈(A\Pi)

−αj

αi − αj

⎞
⎠

Values λA
i are called the Lagrange coefficients. It can be proven that less

than t players cannot obtain any information about the secret s.

5.1.2 Threshold signatures

Digital signatures allow to send authenticated and non-repudiable messages.

The message sender is required to have a public/private key pair. Signature

generation is an algorithm that takes as input the message, m, and the

sender’s private key, SK. Its output is the signature σ(m) on m. Signature

verification is performed by the receiver. Its algorithm takes as input the

message m, its signature σ(m) and the sender’s public key PK. It outputs

”yes” or ”no” to reflect the validity of σ(m). A valid signature convinces the

receiver about the integrity of m and is taken as a proof that the message

was generated by the authentic sender (the only party knowing SK).

A (t, n)-threshold signature distributes the signing operation among a

group of n participants. Each participant in a distributed signature scheme is

given a share, SKi, of the secret key, SK, in such a way that to sign a message

every participant computes a partial signature, σi(m), using his share of the

secret key. Then, any set of at least t participants can compute a valid
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94 Private and trustworthy information spread in VANETs

signature σ(m) on the message by combining their partial signatures. The

resulting signature is equivalent to the one that results in the non-distributed

case (it is also verifiable using PK). A distributed signature scheme is said to

be non-interactive if every participant can compute his partial signature on

a message m without interacting with the rest of participants. Signatures in

[Shou00, Bold03, Fouq01, Damg01] are examples of non-interactive threshold

signature schemes.

For the sake of concreteness, we next recall an efficient threshold signature

scheme, namely the one in [Bold03], a distributed version of the signature

scheme by Boneh, Lynn and Shacham (BLS, [Bone01]). Both schemes work

over Gap Diffie-Hellman (GDH) groups – see original papers for more details.

In a nutshell, these signature protocols based on pairings are quite efficient

as the signing process only requires hash operations and modular exponen-

tiations and the verification process two pairing computations. In [Barr02]

a fast implementation of the Tate pairing computation was given and the

BLS signature scheme was compared with an RSA signature on a Pentium

PIII processor at 1 GHz. Using RSA with a modulus length |n| = 1024 bits

and a private exponent length |d| = 1007 bits, signing took 7.90 ms and

verifying took 0.4 ms. Using the BLS signature with elliptic curves over F397 ,

signatures were 160 bits long (which yields a similar security as the above-

mentioned 1024-bit RSA signature), and signing and verifying took 3.57 ms

and 53 ms, respectively. So there exist threshold signatures with reasonable

computational cost.

Let G be a GDH group, g =< G > be a generator of the group and p

be the order of the group. Using methods described in [Genn96], every par-

ticipant Pi obtains a share SKi. The set of shares realizes a (t, n)-threshold

access structure, that is, t parties can retrieve the secret key SK whereas
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less than t cannot obtain any information on the secret key. The retrieval

process can be performed by means of Lagrange interpolation and also yields

the matching public key PK = gSK . To sign a message m, a participant Pi

computes his partial signature as σi(m) = H(m)SKi (H is a public one-way

and collision-free hash function) and broadcasts σi(m). After a set A of at

least t participants have broadcast their partial signatures σi(m) for message

m, a standard signature σ for the message can be computed as

σ(m) =
∏
i∈A

σi(m)λA
i = H(m)

∑
i∈A λA

i SKi = H(m)SK

where λA
i are the Lagrange coefficients.

5.1.3 Privacy in secret sharing

In short, an anonymous secret sharing scheme is one where participants can

co-operate in the retrieval of the secret while keeping their identity undis-

closed (anonymity) and without successive co-operations by the same partic-

ipant being linkable (unlinkability). Shamir’s (t, n)-threshold secret sharing

scheme described in Section 5.1.1 does not offer unlinkability: each Lagrange

coefficient corresponds to a certain participant Pi and, even if that corre-

spondence is kept secret for anonymity (i.e. by using the underlying αi

as pseudonyms), successive co-operations by the same participant can be

linked because the Lagrange coefficient of the participant appears every time.

Anonymous secret sharing schemes in the literature present a very high cost

that limits their practical applicability [Blun97].

Note that, if the secret sharing scheme underpinning a threshold signature

protocol is not anonymous, the resulting threshold signature is either linkable

(successive partial signatures by a participant can be linked) or requires a
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96 Private and trustworthy information spread in VANETs

trusted third-party and is thus unsuitable for a VANET.

5.2 Trustworthy privacy-preserving announce-

ments in VANETs

In this section, a new system for secure announcements in VANETs is pre-

sented. It uses digital signatures to prevent external attackers from being

able to inject false messages and follows the a priori approach to thwart

fake announcements sent by internal attackers. An announcement will only

be considered as being valid if it has been endorsed by at least t different

vehicles.

5.2.1 Non-private protocol

For clarity, let us begin with a protocol which can offer anonymity but not

unlinkability.

• Set-up: During this stage, the carmakers set up a (t, n)-threshold sig-

nature scheme, where n is the maximum number of vehicles allowable

in the VANET. To do this, the carmakers must agree on a polynomial

of degree (t−1) that will be evaluated at points αi, for i = 1 to n. The

range of n points is partitioned into several subranges, each of which is

assigned to a carmaker. The number n can be very large without scala-

bility problems. Next, a public key PK and n shares SKi, i = 1, . . . , n

of the secret key SK are generated. Each vehicle Pi is equipped with

the public key PK and its secret key share SKi; the share SKi is held

in a smart card plugged into the vehicle (tamper-resistance is assumed

for the card in what follows). When input the hash value H(m) of a
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message, the smart card returns a partial signature on that hash value,

that is, σi(m) = H(m)SKi. Anonymity is obtained by not linking SKi

with the identity of the vehicle; this makes sense for other reasons too

because, smart cards being removable, several smart cards each holding

a different secret key share could alternatively be used with the same

vehicle (like several cards can be used with a cellphone).

• Announcement generation: When a vehicle Pi wishes to send an an-

nouncement m, Pi computes the partial signature σi(m) and broadcasts

m and σi(m). An announcement should only reach vehicles that are

close enough to the originating vehicle so as to be able to check the va-

lidity of the announced condition. Since they do not need to reach dis-

tant points, announcement messages are not relayed by VANET nodes

and they travel only up to the range of the broadcast technology used

(even if a maximum range of 1000 meters for car-to-car communication

with the Dedicated Short Range Communication protocol is reported

in [Raba07], typical ranges from 300 to 500 meters on highways and

about 100 meters in cities are mentioned in [Berg07]).

• Announcement endorsement: If vehicle Pj receives an announcement

m (together with the partial signature on it by the announcement orig-

inator Pi) and wishes to endorse m, then Pj computes its own par-

tial signature σj(m) on m and broadcasts H(m) and σj(m) to return

them to Pi, where H() is the same hash function used in the signature

computation. As in announcement generation, messages with partial

signatures are not relayed.

UNIVERSITAT ROVIRA I VIRGILI 
SECURITY AND PRIVACY ISSUES IN SOME SPECIAL-PUROPSE NETWORKS 
Alexandre Viejo Galicia 
ISBN:978-84-691-8852-1/DL:T-1274-2008 
 



98 Private and trustworthy information spread in VANETs

• Signature composition: The vehicle Pi which generated an announce-

ment stores m and the partial signatures on m it receives (partial signa-

tures on m are identifiable by the hash H(m) they carry). Once Pi has

collected t different partial signatures on m, it can compute a standard

signature σ(m) and broadcast it along with m.

• Announcement reception and verification: Vehicles in the VANET will

only consider as trustworthy those announcements carrying a standard

signature that can be verified using the public key PK. The use of the

threshold signature scheme provides vehicles with the assurance that

such a standard signature can only have been computed if at least t

vehicles have endorsed m by computing their partial signature on it.

These messages, containing a standard signature, will be relayed by

VANET nodes. In this way, they will reach distant vehicles which will

benefit from the information in the messages.

The reason for keeping SKi in a smart card is to prevent the vehicle driver

from learning SKi; otherwise, t colluding drivers could recover the secret key

SK, which would allow any single one of them to sign messages that would

be accepted as trustworthy without any endorsement.

In any case, the choice of t is a trade-off between security and availability.

On one hand, t should be high enough so that the probability of there being

t or more within-range colluding vehicles who could validly endorse fake

messages is reasonably low (security). On the other hand, t should not be so

high that finding t − 1 additional within-range endorsers is too difficult for

an honest announcement generator (availability).

The problem with the above protocol is that it lacks privacy and, more

precisely, unlinkability. This is due to the fact that signature composition

requires computing Lagrange coefficients (see Section 5.1.1). Computation
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of such coefficients requires in turn knowledge of the value αi assigned to

each vehicle Pi having contributed a partial signature. Certainly, it can be

assumed and it is assumed that the correspondence between Pi and αi is

withheld (αi is used a pseudonym for vehicle Pi), which provides anonymity.

However, different partial signatures generated by the same vehicle Pi all use

αi, so they are linkable. Therefore, unlinkability is not achieved.

5.2.2 Cost analysis of the non-private protocol

In this section we compare the cost of our non-private protocol above with

the cost of the concatenated signatures protocol in [Raya06b]. Both protocols

are non-private, so the comparison is fair. In the next subsections, the cost

is analyzed in terms of announcement length, announcement generation time

and announcement verification time.

Announcement length

In the concatenated signatures protocol in [Raya06b], authenticated an-

nouncements contain as many signatures and public key certificates as en-

dorsing vehicles, so their length is O(t). In our proposal, both the partially

signed announcements and the completely signed announcements contain a

single signature, so the length of announcements is O(1).

Since the above comparison in O-notation may be misleading for small

values of t, we next compare both proposals by taking the constant terms

into account. We assume that [Raya06b] uses the concatenated signatures

protocol with the RSA public key cryptosystem with 1024 bit moduli (so,

digital signatures will be 1024 bits long). Let us consider that the information

which is announced is a bits long. The concatenated signatures protocol

in [Raya06b] requires one signature and one public key certificate from t
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100 Private and trustworthy information spread in VANETs

different signers. We will consider that a digital certificate contains an RSA

public key (barely longer than the 1024-bit modulus if a short public exponent

is used), the owner’s pseudonym (which could be a 64-bit serial number) and

a signature by the Certification Authority (1024 bits). According to that, the

total length of an announcement in [Raya06b] is a+ t ·(3 ·1024+64) bits. For

example, if four endorsing vehicles are required (t = 4), this scheme yields

an announcement length of a + 12544 bits. With the same assumptions, our

proposal has a constant announcement length of a + 160 bits (we are using

the BLS signature scheme). As t grows, the advantage of using our system

increases.

Announcement generation delay

In [Raya06b] vehicles sequentially contribute with their signature to endorse

an announcement. This means that a valid message generation takes at least

the time necessary for a message to perform t−1 hops plus the time required

to compute t digital signatures. This is an O(t) cost. Let j be the time

(in milliseconds) necessary for a message to perform one hop. According

to the signature generation time reported in Section 5.1.2, a valid message

generation in [Raya06b] using the RSA cryptosystem with 1024 bit public

keys takes 7.90 · t + (t− 1) · j ms.

In our protocol, vehicles can endorse a message in parallel. So, the delay

due to data transmission required to generate a valid message is fixed to the

time to perform 2 hops (one from the generator to within-range endorsers

and another from endorsers to the generator) plus the time to compute 2

BLS signatures. This time is 2 · (j + 3.57) ms.

After t endorsement messages have been collected in our protocol, a stan-

dard signature is composed by the vehicle originating a message at an O(t)
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cost (the cost of computing a standard signature from t partial signatures).

As can be seen in Section 5.1.2, the cost of this operation is dominated by

the exponentiation of each partial signature to its corresponding Lagrange

coefficient. The cost of each exponentiation is similar to the cost of comput-

ing one digital signature (also consisting of one exponentiation). Thus, the

composition time is approximately t · 3.57 ms.

The overall generation time with our protocol is 2 · (j + 3.57) + t · 3.57

ms. This expression can be rewritten as 2 · j + (t + 2) · 3.57 ms. This is a

shorter time than the one required by [Raya06b]. As t grows, the advantage

of using our system increases.

Announcement verification time

In [Raya06b] announcement verification requires checking t signatures and t

public key certificates. If certificates are subject to revocation, there is an

additional cost related to checking certificate revocation lists (even this cost

is not explicitly mentioned in [Raya06b]). In any case, the verification cost

is O(t).

In our protocol, an announcement is verified by checking one signature.

Since the public key PK used for verification is always the same and is stored

in the smart card by the carmaker, its validity does not need to be checked.

This is an O(1) cost.

Let us now consider the constant terms for greater accuracy. Assume the

RSA and the BLS signature schemes are used by [Raya06b] and our proposal,

respectively. Section 5.1.2 details the signature verification time for each

signature scheme. In this way, an announcement verification in [Raya06b]

takes 2·0.4·t ms (the verifier checks the certificate and message signatures sent

by each endorsing vehicle). The same operation using our protocol takes 53
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ms. Therefore, with those assumptions, our proposal outperforms [Raya06b]

only when t ≥ 67. In practice, t will be usually less than 67, so that [Raya06b]

will normally be faster than our protocol as far as the computation involved

in signature verification goes.

Nonetheless, if the time and communication needed to check certificate

revocation lists was taken into account, our proposal would be more efficient,

because in [Raya06b] a certificate revocation list may need to be checked for

each certificate to be verified.

Summary of cost analysis

Table 5.1 summarizes the cost of both protocols as a function of the threshold

t. The strong points of our proposal are that the following is constant:

announcement length and announcement verification time.

If a more accurate analysis of the constant terms is performed (which is

necessary when t is small), it turns out that our system still yields shorter

announcements and faster announcement generation than [Raya06b]. An-

nouncement verification, on the contrary, is faster with [Raya06b] at least for

the usual (small) values of t.

However, if the cost of checking certificate revocation lists is consid-

ered in announcement verification, the picture changes dramatically. In-

deed, [Raya06b] requires verifying t certificates, which may require checking

certificate revocation lists t times. This may be very long, as it involves

communication, not just computation. In our proposal, the validity of PK

does not need checking, as explained above. So, when the cost of check-

ing certificate revocation is included, our proposal is more efficient also for

announcement verification.
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Table 5.1: Cost breakdown as a function of the threshold t of the non-private
protocol in [Raya06b] and the non-private protocol in this paper

Protocol [Raya06b] Our protocol

Announcement length O(t) O(1)
Announcement generation time O(t) O(t)
Announcement verification time O(t) O(1)

5.2.3 Group-based private protocol

In this section, a modification of the previous protocol is described in order

to provide unlinkability. The modification mainly affects the set-up phase.

• Set-up: The n vehicles that form the VANET are divided into r groups,

with each group consisting of n/r vehicles (for simplicity, it is assumed

that parameters n and r are chosen so that r divides n, but suitable

rounding can be used in the general case). The carmakers set up a

(t, r)-threshold signature scheme. During this generation, a public key,

PK, and r shares, SKj , j = 1, . . . , r, of the secret key SK are generated

(one share for each group). Each carmaker keeps a copy of each of the

r shares. Each manufactured vehicle Pi is randomly assigned by the

carmaker to a group j; then it is equipped with the public key PK and

the secret key share SKj assigned to its group (as above, SKj is held

in a smart card plugged to the vehicle).

This modification causes vehicles belonging to the same group to be as-

signed the same secret key share. In this way, partial signatures cannot be

related to a single vehicle but to any member of its group. If groups are

large enough, this protocol provides unlinkability. On the other side, a valid

signature σ(m) must now be generated not just by any t vehicles, but by

vehicles belonging to at least t different groups.
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Security, privacy and availability

Parameters t and r of the group-based protocol have an impact on security

against fake messages, on privacy and on availability.

The threshold t should be set high enough so that the probability of there

being t or more colluding vehicles who could validly endorse false announce-

ments is reasonably low.

For a choice of t, parameter r must be chosen considering the trade-off

between unlinkability and availability:

• Unlinkability. The group size g := n/r must be large enough so that

linkability at the group level (which cannot be avoided) does not imply

linkability at the vehicle level.

• Availability. The number of groups r must be large enough so that,

given an announcement, finding t endorsing vehicles from different

groups is easy. Thus, r 
 t.

By construction, this proposal has the same cost as the non-private pro-

tocol (see Section 5.2.1).

5.2.4 Extended group-based private protocol

In the previous group-based protocol, it may be difficult in some cases to find

a value for r striking a balance between unlinkability and availability. This

is the case when the VANET is sparse or consists of an actual number n′ of

vehicles much less than the maximum allowable number n. Since the group

size cannot be too small if unlinkability is to be preserved, the number r of

groups has to be small. In those conditions finding t within-range endorsing

vehicles from different groups may be quite challenging.
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5.2 Trustworthy privacy-preserving announcements in VANETs 105

A solution to mitigate the problem caused by a small r is to use d different

threshold signature schemes so that, if t within-range endorsing vehicles from

different groups cannot be found for the first scheme, they are sought for the

second scheme, and so on. The modified set-up, announcement generation,

endorsement and signature composition phases are:

• Set-up: The n vehicles that form the VANET are divided into r groups,

as in Section 5.2.3. The carmakers set up d different (t, r)-threshold

signature schemes. For k = 1 to d, the k-th scheme consists of a public

key PKk and r shares, SKk
j , j = 1, . . . , r (one share per group). Each

carmaker keeps a copy of all r shares for all d signature schemes. For

i = 1, . . . , n, each manufactured vehicle Pi is equipped with the pub-

lic keys (PK1, . . . , PKd) and the secret key shares (SK1
i1
, . . . , SKd

id
),

where ik ∈R {1, . . . , r} is the group randomly assigned by the carmaker

to Pi for the k-th threshold signature scheme. As above, all secret key

shares are held in a smart card.

The only variation in the extended group-based protocol with respect to

the previous protocols (non-private, group-based) in what respects the an-

nouncement generation, endorsement and signature composition steps is that

now messages in those steps must include a field specifying which threshold

signature scheme among the d possible ones is being used in a particular

execution.

Announcement generation, endorsement and signature composition are

attempted for the first threshold signature scheme as in Section 5.2.3. If,

after a predefined timeout, partial signatures from t different groups have not

been collected, announcement generation and endorsement are re-started for

the second threshold signature scheme. The process stops when a threshold
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signature scheme is found for which endorsements from t different groups can

be collected. In the worst case, all d threshold signatures schemes can fail.

Storage requirements at the vehicles are increased. In this case, each

vehicle stores d key shares and d public keys (compared to one share and one

public key in the previous proposal).

5.2.5 Semi-private protocol for sparse VANETs

The protocol in Section 5.2.4 is not without drawbacks. Even with d different

threshold signature schemes, collecting endorsement from t different groups

may fail in very sparse VANETs. A way to circumvent the above problem is

to drop groups but to keep several threshold signature schemes for privacy.

The modified protocol looks as follows:

• Set-up: The carmakers set up d′ different (t, n)-threshold signature

schemes. Like in the non-private protocol of Section 5.2.1 but for each

signature scheme in this protocol, the range of n points corresponding

to possible vehicles is partitioned into several subranges, each of which

is assigned to a carmaker. For k = 1 to d′, the k-th scheme consists

of a public key PKk and n shares, SKk
i , i = 1, . . . , n (one share per

vehicle). For i = 1, . . . , n, each vehicle Pi is equipped with the public

keys (PK1, . . . , PKd′) and the secret key shares (SK1
i , . . . , SKd′

i ), with

share SKk
i being obtained by evaluating the polynomial of the k-th

scheme at point αk
i , where αk

i is assumed to belong to the subrange of

the carmaker of Pi for the k-th scheme.

• Announcement generation: When a vehicle Pi wishes to send an an-

nouncement m, Pi randomly selects one of the d′ threshold signature

schemes, say scheme k. One can assume that the selection is performed
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5.2 Trustworthy privacy-preserving announcements in VANETs 107

by the smart card in the vehicle so that the selected k is beyond the

user’s control. Then Pi computes its partial signature σk
i (m) on m

and broadcasts the announcement and its partial signature. This solu-

tion also requires messages to include a field indicating which signature

scheme k is being used.

• Announcement endorsement: If vehicle Pj receives the announcement

m (together with the partial signature on it by the announcement orig-

inator Pi) and wishes to endorse m, Pj uses the k-th threshold scheme

to compute its own partial signature σk
j (m) on m and broadcasts H(m)

and σk
j (m), where H() is the same hash function used in the signature

computation.

• Signature composition: The vehicle Pi which generated an announce-

ment stores m and the partial signatures on m it receives (partial signa-

tures on m are identifiable by the hash H(m) they carry). Once Pi has

collected t different partial signatures on m, it can compute a standard

signature σk(m) and broadcast it along with m.

• Announcement reception: Vehicles in the VANET will only consider as

trustworthy those announcements carrying a standard signature that

can be verified using a public key PKk in the set (PK1, . . . , PKd′).

The above semi-private protocol requires vehicles to store d′ shares and

d′ public keys.

Security, privacy and availability

As in the previous protocols, the threshold t is the parameter controlling

security against insertion of fake announcements.
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Unlinkability is related to parameter d′, the number of threshold signature

schemes set up by the carmaker for this protocol. Provided that the threshold

signature scheme is randomly selected, the probability that two successive

participations by Pi can be linked is 1/d′ (this happens if the same threshold

signature scheme is selected in both cases). Thus, unlinkability improves

with respect to the non-private protocol (Section 5.2.1) but it is worse than in

the group-based or extended group-based protocols (Section 5.2.3 and 5.2.4,

respectively). However, the advantage is increased availability in that there

are no constraints on the t vehicles that must endorse an announcement (any

t vehicles will do), so that the endorsement process is easier in very sparse

VANETs with really few vehicles per area unit.

A way to improve unlinkability is by taking a large d′, which does not

affect the announcement verification time. This is different from what hap-

pens in the extended group-based protocol if parameter d is increased: there,

the signature schemes are tried one after the other until a valid signature is

obtained or the d schemes have been tried, so a large d may result in longer

verification times.

5.2.6 Compound protocol

The protocol in Section 5.2.5 can be used as a fallback for the protocol in

Section 5.2.4, which in turn is a fallback for the protocol in Section 5.2.3.

The idea is that vehicles can be set up for all three protocols by the carmaker.

The first option to be tried is the group-based protocol. If traffic sparseness

is such that partial signatures from t different groups cannot be collected

for a certain announcement before a fixed timeout, then the protocol in

Section 5.2.4 is used. If this does not work either, the protocol Section 5.2.5

can be used to get limited unlinkability without increasing the difficulty of
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collecting endorsements with respect to the non-private protocol. According

to that, a compound protocol combining the protocols in Sections 5.2.3, 5.2.4

and 5.2.5 can be specified as follows:

1. Initially, the group-based protocol of Section 5.2.3 is used. Note that

this protocol is a particular case of the extended group-based protocol

where there is only one (t, n)-threshold signature scheme in use. Thus,

hereafter we will consider this step as a part of the next step, where

the extended group-based protocol is used. (In what follows we will

only refer to the extended group-based protocol and the semi-private

protocol. This also applies to the simulation results which will be

presented in Section 5.2.7.)

2. If a complete signature cannot be constructed before a certain time-

out, the extended group-based system of Section 5.2.4 is launched.

Construction of a complete signature by means of d different (t, n)-

threshold signature schemes is attempted. The timeout in use depends

on the value t (the number of different partial signatures required to

compute a standard signature). For each unit increase of threshold t,

the timeout increases by β milliseconds.

Each of the d signature schemes is tried in sequence until a complete

signature is constructed or the timeout expires, so at most d× timeout

milliseconds are spent on the extended group-based system.

3. If the extended group-based system does not work either, the semi-

private protocol (see Section 5.2.5) is tried.
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Compound set-up phase

The compound protocol is composed of three schemes. In previous sections,

we have presented the set-up phase for each of these schemes. We next

explain the compound set-up phase when deploying such a system in a real

environment.

Let us consider the co-existence of m carmakers in a certain area. The i-th

carmaker produces vi hundreds of thousands of vehicles per year. According

to the European Environment Agency [Eea08], the EU-15 area had about 170

millions of vehicles in 2004. Even though the carmakers produce v1+ · · ·+vm

hundreds of thousands of new cars each year, there is also a large quantity of

old vehicles which are eliminated in the same period. Therefore, the size of

the vehicle fleet in a certain area does not undergo a strong increase from year

to year. Value n is the maximum number of vehicles allowable in the system

covering the area. The only assumption on n is that it cannot be greater than

the cardinality of the group used to construct the BLS signature scheme. For

cryptographic security reasons, this cardinality should be at least 2160. So,

we can set a value for n close to this upper limit. Such a huge n ensures that

we will never run out of key shares. As it can be seen in Section 5.1 a huge

n can be used without any negative impact on the system performance.

Our system requires a governmental authority GA in the geographical

area of deployment to ensure a correct set-up phase. Note that this author-

ity is no longer needed when executing the compound protocol. The only

role of the authority is to coordinate share distribution among the vehicles

produced by different carmakers. In this way, GA establishes d signature

schemes and the number r of groups of vehicles in the area. According to

that, each signature scheme generates r shares. Each share is linked to one
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group. Additionally, GA partitions the n possible vehicles into several sub-

ranges, each of which is assigned to a carmaker. It also establishes d′ different

threshold signature schemes. Each one generates n shares. Note that a cer-

tain carmaker receives the shares that correspond to its assigned subrange of

n.

Now, let us consider that a certain vehicle Pi is manufactured. This

car has to be set up by its carmaker for both extended group-base and

semi-private protocols. This process has been explained individually in Sec-

tions 5.2.4 and 5.2.5. We next summarize it:

• Extended group-base protocol. For each signature scheme k = 1, . . . , d,

Pi is randomly assigned by the carmaker to a group jk (where jk ∈
{1, . . . , r}) and it is equipped with the share corresponding to group

jk.

• Semi-private protocol. Pi is equipped with shares (SK1
i , . . . , SKd′

i ),

where the share SKw
i is obtained by evaluating the polynomial of the

w-th scheme at point αw
i , which is assumed to belong to the subrange

of the carmaker of Pi.

The compound set-up phase we have presented relies on the assumption

that an authority GA exists which coordinates share distribution. An open

problem is to devise a compound set-up phase which can work when no GA

is available.

5.2.7 Simulation

Our scheme for secure vehicle-generated announcements over VANETs was

simulated in a realistic environment, where the range of car-to-car broadcasts

was assumed to be 100m (the worst-case, urban range according to [Berg07]).
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The goal of our simulations is to observe the performance of the compound

protocol explained in Section 5.2.6. This protocol requires a timeout that

depends on values β and t. In our simulations, we have fixed β to 50 ms.

According to that, t = 4 represents a timeout of 200 milliseconds.

Simulation set-up

The network simulator ns-2 [Netw08] was used. The VANET scenario was

built using the scenario generator presented in [Saha04]. The road network

considered covered an area of 2.4 km by 2.4 km and is shown in Figure 5.1.

N 25300 m

Figure 5.1: Simulation scenario

In our simulations, the primary indicator examined is the probability for a

certain announcement to get validated. An announcement is validated when

its standard signature is constructed from t different partial signatures gen-

erated by t different cars. Those vehicles can belong to t different groups or

to only one group depending on whether the extended group-based protocol

or the semi-private protocol are used.
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5.2 Trustworthy privacy-preserving announcements in VANETs 113

A second indicator taken into account is the average number of differ-

ent (t, n)-threshold signature schemes which are used when applying the ex-

tended group-based protocol. This indicator determines the time needed to

validate the announcements.

Both indicators are essential to evaluate whether our scheme is usable in

real VANETs.

In the next subsection, the optimal values for the parameters used in

our system are studied. The goal of that study is to select the values for

parameters based on the two indicators stated above for a wide range of

vehicle densities. When the system is running, parameter values cannot

be easily modified, so a parameter choice must be made which works well

under several road conditions. The lessons learned from the simulations are

summarized in the last subsection.

The results given in what follows are average values obtained from 100

executions performed for each parameter choice.

Parameter selection

Vehicle density is expressed in vehicles/km2. This value is changed by varying

the total number of vehicles in the scenario represented in Figure 5.1.

Let t stand for the minimum number of vehicles needed to validate an

announcement. Each vehicle should belong to a different group when using

the extended group-based protocol. Under the semi-private protocol there

are no group constraints.

Table 5.2 shows the average probability p1 of a certain announcement to

be validated using the extended group-based protocol for fixed r and several
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Table 5.2: Average validation probability p1 and average number i of different
threshold signature schemes tried for the extended group-based protocol,
for constant number of groups r = 10. Average validation probability p2

for the semi-private protocol when the extended group-based protocol fails.
Results are given as a function of vehicle density and the minimum number
of validating vehicles t.

Vehic. dens. t = 4 t = 5 t = 6
p1 i p2 p1 i p2 p1 i p2

6.94 0.48 1.67 0.07 0.24 1.81 0.12 0.00 N/A 0.04
8.68 0.64 1.69 0.02 0.33 1.74 0.05 0.04 2.00 0.04
12.15 0.70 1.25 0.01 0.40 1.80 0.04 0.20 1.60 0.11
15.62 0.72 1.22 0.00 0.44 1.70 0.04 0.36 1.85 0.10
17.36 0.76 1.17 0.00 0.68 1.59 0.09 0.52 1.57 0.08
24.31 0.94 1.14 0.00 0.76 1.53 0.02 0.72 1.67 0.11
31.25 0.96 1.13 0.00 0.92 1.17 0.00 0.81 1.51 0.05
38.19 0.96 1.09 0.00 0.94 1.08 0.00 0.89 1.48 0.00
45.14 1.00 1.00 N/A 0.94 1.09 0.00 0.92 1.33 0.00
52.08 1.00 1.00 N/A 1.00 1.00 N/A 0.96 1.26 0.00
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values of t. Value i indicates the average number of different threshold signa-

ture schemes tried (each one is used until a timeout occurs) in order to vali-

date the announcement with the extended group-based protocol. When the

number of different threshold signature schemes tried for a certain announce-

ment reaches the number d of available schemes without the announcement

being validated under any of them, the semi-private protocol is launched.

We have set d = 3 given the values i obtained in preliminary simulations.

This will be further explained below.

Value p2 is the average probability of validating the announcement under

the semi-private protocol when the extended group-based protocol fails. Note

that the semi-private protocol is a tolerable fallback for low vehicle densities.

For higher vehicle densities, the probability p1 of successful validation with

the extended group-based protocol is already very high, so that the instances

in which the semi-private protocol is used as a fallback are very difficult

ones (e.g. very sparse locations); this explains the near zero p2 values for

higher densities. Also, the N/A value for p2 means that there was no need

to call the semi-private protocol. We have set d′ = 20 as the number of

different threshold signature schemes available in the semi-private protocol;

this should yield a good trade-off between unlinkability and implementation

cost in the vehicles.

Results in Table 5.2 are given as a function of vehicle density and the

minimum number of validating groups t. For this experiment, the number of

groups of vehicles was set to r = 10. The dependency on this value r will be

studied below, in Table 5.3.

It can be observed in Table 5.2 that both validation probabilities p1 and

p2 decrease as t increases, no matter whether the VANET is sparse or dense.

This is not surprising because validation is ”easier” for smaller t; however,
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116 Private and trustworthy information spread in VANETs

the price paid is that for smaller t the trustworthiness of a validated message

is lower. Following this argument, it is also expected that for very sparse

networks (vehicle density of 6.94) and high t values (t = 6 for instance) the

extended group-based protocol is unable to validate a single announcement;

in fact, not even the semi-private protocol works properly in that setting

(p2 = 0.04 for a vehicle density of 6.94). As a trade-off between trustwor-

thiness and availability, it is suggested to take t = 4 or t = 5 depending

on the desired trustworthiness level for the announcements. In fact, t = 5

is the highest reasonable value because, even though t = 6 works fine for

dense VANETs (vehicle density above 38.19), it does not for medium-density

(p1 = 0.52 for a density of 17.36) and sparse VANETs. Since a threshold

must be chosen which works properly under several road conditions, it is

better to select t < 6. In what follows, t = 4 is taken.

Simulation shows that the average number i of different threshold signa-

ture schemes tried by the extended group-based protocol decreases when the

vehicle density increases and increases when the threshold t increases. All in

all, usually i ≤ 2 whenever validation is successful, which is the usual out-

come for medium- to high-density VANETs and moderate threshold (t = 4).

For very sparse networks, validation mainly relies on the semi-private pro-

tocol so we can choose the number d of signature schemes for the extended

group-based protocol by considering only medium- to high-density VANETs.

Thus a choice of d = 3 is fair enough and is assumed in what follows; this

implies that at most 3 × timeout milliseconds are spent on the extended

group-based protocol (as said above, for t = 4 we consider timeout = 200

milliseconds, so the overall time spent on the extended group-based protocol

is 600 ms).

Table 5.3 shows the average probability p1 of a certain announcement
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Table 5.3: Average validation probability p1 for the extended group-based
protocol and average validation probability p2 for the semi-private protocol
when the extended group-based protocol fails; average group size g is shown
too. Results are given as a function of vehicle density and number of groups
r, for constant threshold t = 4

Vehic. dens. r = 8 r = 10 r = 15
p1 p2 g p1 p2 g p1 p2 g

6.94 0.33 0.08 5.0 0.48 0.07 4.0 0.54 0.01 2.7
8.68 0.38 0.05 6.2 0.64 0.02 5.0 0.66 0.03 3.3
12.15 0.52 0.04 8.7 0.70 0.01 7.0 0.76 0.00 4.7
15.62 0.67 0.00 11.2 0.72 0.00 9.0 0.76 0.00 6.0
17.36 0.71 0.00 12.5 0.76 0.00 10.0 0.88 0.00 6.7
24.31 0.86 0.00 17.5 0.94 0.00 14.0 0.96 0.00 9.3
31.25 0.93 0.00 22.5 0.96 0.00 18.0 1.00 N/A 12.0
38.19 0.94 0.00 27.5 0.96 0.00 22.0 1.00 N/A 14.7
45.14 0.97 0.00 32.5 1.00 N/A 26.0 1.00 N/A 17.3
52.08 1.00 N/A 37.5 1.00 N/A 30.0 1.00 N/A 20.0

being validated using the extended group-based protocol for fixed t and sev-

eral values of r. If this protocol fails, the semi-private fallback is launched.

Value p2 represents the average probability of validating a message with the

semi-private protocol when the extended group-based protocol fails. Finally,

value g represents the average group size. All results are given as a function

of vehicle density and the number of groups of vehicles r. A value of r must

be set which works fine for very different vehicle densities. Also, r must be

chosen considering the trade-off between unlinkability and availability (see

related discussion in Section 5.2.3): value r should be greater than t in order

to guarantee availability (i.e., so that finding t endorsing vehicles from dif-

ferent groups is easy). However, a big r implies that the group size g is small

(g := n/r). In this way, the unlinkability of a certain vehicle is poor. In con-

trast, for a small r, the unlinkability of a certain vehicle is very high but the
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118 Private and trustworthy information spread in VANETs

validation probability decreases. Table 5.3 reflects the availability problems

of the system in very sparse VANETs when a certain unlinkability level is

demanded. More specifically, we can observe that with a vehicle density of

6.94 and an average group size g = 5.0 (which occurs when r = 8), the prob-

ability p1 of a certain announcement to be validated is 0.33. Note that larger

group sizes (which imply r � 8) will yield worse availability results. When

availability problems arise, the system resorts to the semi-private protocol

(which is less good in terms of privacy, unless d′ is extremely high).

According to the above considerations, r = 10 is taken as a reasonable

trade-off between unlinkability and availability for all vehicle densities.

Note. As mentioned in Section 5.2.3, unlinkability is proportional to the

group size g. One might object that the average group size in the simulations

is small, which is true because the small geographical area considered (2.4

km by 2.4 km) can only accommodate a small number of vehicles. However,

the purpose of the simulation is to evaluate the validation probability, which

is independent of the group size (it only depends on the threshold t, the

number of groups r and the vehicle density). In a real scenario (e.g. the

EU-15 area with 170 million vehicles mentioned in [Eea08], the same t and r

values used in the simulations can be employed, which will result in a very

large group size g guaranteeing high unlinkability.

Lessons learned from the simulation

The probability of successful validation depends on the threshold t, the num-

ber r of groups and the vehicle density, regardless of the group size. For a

fixed density, the greater r with respect to t, the higher the success proba-

bility. The closer r to t, the lower the success probability.

All simulations performed reflect that with the parameter selection used
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5.2 Trustworthy privacy-preserving announcements in VANETs 119

(t = 4, r = 10 and d = 3), our proposal provides message trustworthiness

and vehicle unlinkability under different road conditions. Results show that

our scheme performs best in medium- to high-density VANETs (densities

from 12.15 to 52.08). Nevertheless, it works fair enough in very sparse envi-

ronments as well:

• For a vehicle density 6.94, our scheme achieves a success probability

p1 = 0.48 in announcement validation with the extended group-based

protocol. In the cases when this protocol fails, the semi-private one

works with a probability p2 = 0.07.

• For a vehicle density 8.68, the success probability with the extended

group-based protocol increases to p1 = 0.64. The semi-private protocol

used as a fallback earns an additional p2 = 0.02.

The low success in validation for sparse VANETs should be put in context:

in an area with very low traffic, it is often less critical to get announcements

on road conditions, as there is hardly anyone who can benefit from them.
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Chapter 6

Private resource access in social

networks

In Section 1.1.4, we pointed out the need to design privacy-preserving re-

source access protocols for social networks.

Regarding this topic, the latest proposals [Carm07, Domi07] in the liter-

ature provide private resource access in social networks by enabling private

relationships between the users of the network. Even though [Domi07] over-

comes the limitations detected in [Carm07], it also has some shortcomings

that should be solved, which were discussed in detail in Section 2.4. We next

summarize them:

• In that system, a certain user with a small number of relationships

is likely to stay isolated at certain periods of time (e.g. early in the

morning). At these periods, that user will be unable to get resources

from other users.

• In that proposal, the resource owner learns the relationships between

the users who collaborate in the resource access. This represents a
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122 Private resource access in social networks

privacy threat which would justify that some users might refuse col-

laboration. Nodes that refuse to collaborate cause other nodes to stay

isolated.

In this chapter, we present a new protocol which offers the same fea-

tures of [Carm07] and [Domi07] while addressing the drawbacks left open

in [Domi07]. However, these shortcomings are not solved without cost: we

assume the existence of an optimistic trusted third party (TTP) which only

acts in case of conflict between the users of the social network. The opti-

mistic TTP is not needed during the normal network execution. Therefore,

we argue that this solution performs better than a (non-optimistic) TTP

mediating all access requests.

Our scheme prevents the resource owner from learning the relationships

and the trust levels between the users who collaborate in the resource ac-

cess. In this way, the privacy threat detected in [Domi07] is solved and the

number of users who might refuse collaboration due to privacy concerns is

minimized. As a result, the chances for certain nodes to become isolated at

certain periods of time are reduced.

The protocol we present uses multiplicative privacy homomorphisms. The

needed cryptographic background is provided in Section 6.1. Section 6.2

presents our scheme in detail. This work has been published in [Domi08].

6.1 Multiplicative privacy homomorphisms

Privacy homomorphisms (PHs) are encryption transformations mapping a

set of operations on cleartext to another set of operations on ciphertext. Ba-

sically, PHs are encryption functions E : CT → CT ′ allowing a set F ′ of

operations on a ciphertext domain CT ′ to be carried out without knowledge
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6.2 Homomorphic access control protocol for social networks 123

of the decryption function D. Knowledge of D allows the result of the cor-

responding set F of operations on a cleartext domain CT to be retrieved.

A PH is called multiplicative when its set F of cleartext operations contains

multiplication. A PH is called probabilistic if the encryption algorithm E

involves some random mechanisms to choose the ciphertext corresponding to

a given cleartext from a set of possible ciphertexts.

Privacy homomorphisms that will be used in our proposal below must be

multiplicative, probabilistic and public-key. ElGamal [Elga85] is a probabilis-

tic public-key cryptosystem of integers in the multiplicative group Z
∗
p, where

p is a large prime. This cryptosystem has a multiplicative homomorphic

property which fulfills all these requirements.

6.2 Homomorphic access control protocol for

social networks

We follow the framework from [Carm07] modified according to [Domi07],

that is, we consider that the node owning a resource rid (hereafter, the

resource owner) establishes an access rule AR = (rid, AC) where AC is the

set of access conditions to be simultaneously satisfied to access rid. Several

alternative access rules can be defined for a resource. An access condition

is a tuple ac = (v, rt, tmin) where v is the resource owner. Such node must

have a direct or indirect relationship with the node requesting resource rid

(hereafter, the requestor), and rt, tmin are, respectively, the type and the

minimum trust level that the relationship should have. The trust level t is

a rational value such that 0 ≤ t ≤ 1. We use a privacy homomorphism

to encrypt the trust values contributed by the nodes in the social network.

However, multiplicative homomorphisms are only available for integers in the
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124 Private resource access in social networks

current literature. According to that, we propose to encode rational trust

values as integer fractions; the details of the coding are given in Section 6.2.1.

Even though we use access rules and access conditions in a way similar to

proposals [Carm07, Domi07], note that we differ from such schemes in that we

do not use the maximum depth of the relationship as a requirement in access

conditions. We have eliminated it because knowledge of the depth might

be used by the resource owner to infer the trust level of the relationships

between the users who collaborate in the resource access. We argue that this

does not represent any security loss for the scheme since the minimum trust

level and the type of the relationship are conditions that should be enough

to decide whether a certain user can get access to a certain resource.

Each user Ui in the network owns two key pairs represented by (SKi, PKi)

and (SSKi, PSKi). The former key pair corresponds to a public-key proba-

bilistic multiplicative privacy homomorphism and it is used to encrypt/decrypt.

The latter key pair is used to sign/verify. SKi and SSKi are the private keys.

The corresponding public keys, PKi and PSKi, are assumed to be known

and accepted by all users who have some interest in getting in touch with

Ui. In the rest of this chapter, one-to-one communications are assumed to be

confidential and authenticated (by properly using encryption and message

authentication codes).

We agree with [Domi07] in that access should be enforced based on the

relationship path between requestor and resource owner that yields the max-

imum trust level. This differs from the ideas presented in [Carm06, Carm07]

where the trust level is computed taking into account all paths between re-

questor and resource owner, which might lead to overprotection: a requestor

with a highly trusted direct relationship to the owner might be denied access

just because there is also a requestor-owner indirect relationship with low
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6.2 Homomorphic access control protocol for social networks 125

trust through a third user.

We next explain how to encrypt rational numbers used as trust levels

by means of a homomorphism for integer values. Then, a simple version of

our access control enforcement protocol is described in Section 6.2.2 which

will help the reader to understand the new scheme. After that, the privacy

problems that arise when using such a simple protocol will be discussed.

Then, an enhanced solution will be described. Last but not least, it will

be explained how the resource owner finally transmits his resource to the

requestor (assuming the resource owner accepts the requestor).

6.2.1 Homomorphic encryption of rational values

As explained previously, users cannot encrypt rational numbers directly. Ac-

cording to that, we propose that users send fractions which will represent the

real number linked to a certain trust value. As an example, a certain user Ui

who wants to contribute a trust value of 0.3̂ will send fraction 1/3 instead of

the rational number. Note that the numerator and the denominator of the

fraction are integers which can be encrypted in two different ciphertexts. Two

different users U1 and U2 can multiply their own trust values (represented

as fractions αU1/βU1 and αU2/βU2 respectively) in the ciphertext domain by

performing the following operation:

E(αU1)⊗ E(αU2)

E(βU1)⊗ E(βU2)
=

E(αU1 · αU2)

E(βU1 · βU2)

where E() denotes the encryption of a certain value following the privacy

homomorphism in use and ⊗ denotes the ciphertext operation of such a

cryptosystem corresponding to cleartext multiplication. At the end of the

protocol, a user who is able to decrypt both resulting ciphertexts (E(αU1 ·αU2)
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and E(βU1 · βU2)) can divide the two recovered integer values to obtain the

trust value as a rational number.

Nevertheless, this proposal introduces a privacy vulnerability: the user

who is able to decrypt the ciphertexts may gain some clues from the resulting

numerator and denominator on which fractions have been used to compute

the final trust value. Since such fractions correspond to the trust values

contributed by the users of the network, we argue that such information

disclosure should be prevented. To address this situation we propose that,

prior to encryption, each user Ui generates a random value ωUi
that will be

used to hide into a jumble of factors the numerator αUi
and the denominator

βUi
that represent Ui’s trust. Such hiding process is performed by multiplying

numerator and denominator by ωUi
:

E(αUi
· ωUi

)

E(βUi
· ωUi

)

where ωUi
is generated by multiplying a random sample (without replace-

ment) of the prime numbers between 1 and a parameter n. Each prime is

selected for the sample with probability γ. Each selected prime is raised to

the power of an integer randomly selected between 1 and x (this integer is

different for each prime).

Our scheme relies on multiplicative privacy homomorphisms to preserve

the privacy of the users. Assuming that the privacy homomorphism in use is

defined in the group Z
∗
p, the multiplication of all encrypted values must yield

a result below p; otherwise information loss will occur. For the ciphertext

containing the multiplication of all numerators this means

s∏
i=1

(αUi
· ωUi

) < p (6.1)

UNIVERSITAT ROVIRA I VIRGILI 
SECURITY AND PRIVACY ISSUES IN SOME SPECIAL-PUROPSE NETWORKS 
Alexandre Viejo Galicia 
ISBN:978-84-691-8852-1/DL:T-1274-2008 
 



6.2 Homomorphic access control protocol for social networks 127

where s is the total number of users whose trust is multiplied. An inequal-

ity analogous to Expression (6.1) can be written for the ciphertext containing

the multiplication of all denominators. We next discuss which are the proper

values for the parameters involved in those inequalities.

Parameter selection

As stated above, our scheme requires that the multiplication of encrypted

numerators, resp. denominators, yields a result below p. The numerator αUi

and the denominator βUi
are the two elements of the fraction which represents

Ui’s trust value. Both elements are integers in the range [0, . . . , k]. Value

k is selected depending on the accuracy desired for the trust levels. As an

example, with k = 100 we will guarantee an accuracy of two decimals: 0.93

can be represented by 93/100 or by 15/16 (numerators and denominators

must be equal to or less than k). In what follows, k = 100 is taken.

Expression (6.1) depends on parameter s, which represents how many

trust values will be multiplied together. In Section 6.2.6 we argue that usually

s ≤ 6. Nevertheless, we will fix it to s = 7 to leave enough room for situations

with more trust levels to be multiplied.

In terms of length, the worst case for ω occurs when all prime numbers

in [1, . . . , n] are selected, and all of them are raised to the power of x (the

maximum value). In order to compute the maximum length, we assume that

all n numbers are selected (prime or not). According to that, (n!)x is an

upper bound on ω. It means that
∏s

i=1(αUi
·ωUi

) will be at most (k · (n!)x)s.

The length of this expression is:

|(k · (n!)x)s| = s · log2(k · (n!)x) = s · (log2(k) + x · log2(n!)) (6.2)
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If we set the length of p to 1024 bits, Expression (6.2) must stay below

1024 bits. Given k = 100 and s = 7, Table 6.1 shows values of n and x

such that this requirement holds. It can be observed that for x = 10 (which

is high enough), value n can be taken up to 7. In addition to that, if we

set n = 11 (which is high enough too), x can be increased up to 5. These

results prove that the proposed method for real number encoding is feasible

and works properly.

Note that the considered upper bound on ω is a loose one: all numbers

(prime or not) in 1, . . . , n are selected. An average length for ω considering

only the prime numbers can be computed as

∑

∀ prime i∈(1,...,n)

γ · x/2 · log2(i)

Table 6.1: For k = 100 and s = 7, upper bound given by Expression (6.2)
for different values of n and x

n s · (log2(k) + x · log2(n!))
x = 3 x = 5 x = 10 x = 15 x = 20

3 100.79 136.98 227.45 317.93 408.40
5 191.55 288.25 529.99 771.73 1013.47
7 304.79 476.98 907.45 1337.92 1768.40
11 576.77 930.27 1460.53 2697.81 3581.58
13 729.76 1185.26 2324.02 3462.78 4601.53
16 975.76 1595.26 3144.02 4692.77 6241.53
17 1061.60 1738.32 3430.14 5121.96 6813.77

6.2.2 Simple homomorphic protocol

We present in this subsection a first protocol using homomorphic encryption

to guarantee relationship privacy.
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6.2 Homomorphic access control protocol for social networks 129

Protocol 1 (Simple homomorphic protocol)

1. The resource owner B advertises to the network a certain resource

rid he wants to share. Such an advertisement is signed by B, and

contains all the access rules AR1, . . . , ARr defined for rid. That is,

{AR1, . . . , ARr}SSKB
.

2. The requestor A is interested in rid. In order to gain access to that

resource, A sees to it that the resource owner receives one or several

relationship certificates proving that the requestor satisfies all access

conditions corresponding to at least one of the access rules. Several

cases can be distinguished depending on the relationship depth between

the requestor and the resource owner:

(a) Depth 1. A and B have a direct relationship, that is, A is related to

B through a relationship of type rt and trust level tAB represented

by a tuple (rt, tAB) and B is related to A through a relationship

(rt, tBA). Note that the relevant trust level here is tBA (how much

B trusts A) which is assumed to be unknown to A. In this case

A directly asks B whether he is granted access to the resource on

the basis of (rt, tBA). If B evaluates that rt and tBA satisfy the

set of access conditions targeted by A, then A is granted access.

Otherwise, A is required to resort to other direct relationships or

indirect relationships.

(b) Depth 2. If A and B have no direct relationships (or these are

not enough to buy access to A) then A asks to all users with whom

A is directly related whether they have direct relationships of the

relevant type rt with B. Assume C is directly related to both A
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130 Private resource access in social networks

and B with relationship type rt. Then C sends to B a pair of

messages PKB(rt), PKB(tCA) encrypted under the public key of

the resource owner B.

The trust values are rational values homomorphically encrypted as

fractions as detailed in Section 6.2.1. According to that, PKB(tCA)

corresponds to:

PKB(tCA)⇔ PKB(αCA · ωCA)

PKB(βCA · ωCA)

However, for the sake of readability, we prefer to write PKB(tCA)

instead of the above fraction. Note that the encryption of the re-

lationship type rt is simpler, because it is not a rational number.

After C has sent to B the pair PKB(rt), PKB(tCA), C tells A

that a message was sent to B, but does not reveal its content. At

this point B evaluates whether a relationship of type rt and trust

level tCA · tBC is enough to grant access of A to rid.

(c) Depth 3. If access at depth less than or equal to 2 cannot be

obtained then A requests to users C directly related to him to at-

tempt access with depth 2 on A’s behalf: each C directly related

to A contacts his other directly related users D about possible di-

rect relationships between D and B (similarly to what A did in

Step 2b). If a D with direct relationships to C and B exists, D

must multiply his own trust value related to C times the current

trust value which comes from C. To do that, D computes:

PKB(tCA · tDC) = PKB(tCA)⊗ PKB(tDC)
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where ⊗ denotes the ciphertext operation of the privacy homomor-

phism corresponding to cleartext multiplication. According to the

homomorphic fraction coding described in Section 6.2.1, PKB(tCA)⊗
PKB(tDC) corresponds to:

PKB(tCA)⊗ PKB(tDC)⇔ PKB(αCA · ωCA)⊗ PKB(αDC · ωDC)

PKB(βCA · ωCA)⊗ PKB(βDC · ωDC)

The former expression implies the following correspondence:

PKB(tCA · tDC)⇔ PKB(αCA · ωCA · αDC · ωDC)

PKB(βCA · ωCA · βDC · ωDC)

Finally, D sends a message containing (PKB(rt), PKB(tCA ·tDC))

to B. Upon receiving this message, B evaluates whether a rela-

tionship of type rt and trust level tCA · tDC · tBD is enough to grant

access of A to rid. Note that B receives the product tCA · tDC,

but he cannot discover the individual trust levels which have been

multiplied.

Figure 6.1 represents a path between the requestor A and the re-

source owner B through the social network. The picture shows

the encrypted trust value as computed on its way from A towards

B. The ciphertext containing the relationship type (rt) has been

omitted.

(d) Successive depths. In case of failure at depth 3, successive depths

are tried in a similar way.

Remark. When the resource owner advertises the access rules for a

resource, the access conditions in those rules leak the relationships the owner

is involved in (e.g. if the owner accepts rt = ’Colleague at company X’ this
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A

PKB (tCA)

DC B

PKB (tCA· tDC)

Figure 6.1: Resource request in the simple homomorphic protocol

means that he works at Company X). In [Carm07] the relationship type is

kept confidential through a rather complex symmetric encryption scheme.

A first problem of this scheme arises when the same relationship type is

encrypted using two different keys by two different user communities and

these merge at a later stage; another, perhaps more serious problem is how to

revoke the key used to encrypt a given relationship type. An alternative and

simpler strategy is to “camouflage” the real relationship types among a large

number of bogus relationships; then access conditions are published some of

which use real relationship types and most of which use bogus relationship

types. A bogus relationship type rt′ is one that has never been established by

the owner with anyone, so that no one can request access based on rt′. The

advantage is that a snooper cannot tell bogus relationships from real ones,

so that he does not know which relationships the owner is actually involved

in.

6.2.3 Anonymous homomorphic protocol

Protocol 1 above is unsafe if nodes are not anonymous and there is a rela-

tionship of depth 2 between requestor and owner. We next explain why. Let

A be a requestor, C be an intermediate node and B be a resource owner.

During the protocol B gets PKB(tCA) and decrypts it to obtain tCA, that is,
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the trust level assigned by C to A. This represents an unavoidable privacy

problem in Protocol 1, as B needs to compute tCA · tBC in order to evaluate

whether A is trusted enough to access a resource. Of course, one might argue

that B does not know how many nodes there are between C and A (there

might be several, and tCA might be the product of the trust levels between C

and A); however, this seems a rather weak protection, because nodes are not

anonymous. Worse yet, the above weakness can easily spread. Once tCA is

learnt by B, for any path of length 3 D-A-C-B, then B will learn tAD. And

so on.

To avoid that, we propose to enforce anonymity for nodes which are not

directly related. For example, in a path of length 3 A-C-D-B, this kind of

anonymity means that B only knows D and he has no knowledge about which

nodes or how many nodes are behind D; also, D only knows C, but not A.

Furthermore, also for the sake of anonymity, C should not know that A is the

requestor; in order to make himself undistinguishable from an intermediate

node, A sends to C an encrypted trust value, which in A’s case must be an

encryption of the initial neutral trust 1, that is PKB(1) (note that, since

we are assuming the use of probabilistic homomorphic encryption, C cannot

discover that PKB(1) is an encryption of the maximum trust 1).

As mentioned above, node anonymity was previously proposed in [Wang06].

However, node re-identification in that scheme was still possible because rela-

tionship types and trust levels were public. In our scheme, we combine node

anonymity with encryption of trust levels, in order to provide real privacy

for the users of the social network.

A problem which arises is that dishonest users may take advantage of

anonymity to disrupt the system without being punished. We propose a

liability mechanism to thwart such disruption.
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Liability mechanism

In our scheme, anonymity exists in indirect relationships (with depth greater

than one), but direct relationships are non-anonymous: each node knows his

directly related nodes. Furthermore, we require that every pair of directly

connected nodes A and C should not only know but authenticate each other

before engaging in any protocol transaction between them. As a result, a

dishonest user E cannot impersonate a certain node of the social network

(for example node A) and she cannot repudiate being user E.

According to that, an intermediate node C directly related to (and thus

authenticated by) a resource owner B can be held liable by B for any harm

that results from the encrypted trust level that C forwards to B. In turn, C

can extend this liability to his direct relationships along the requestor-owner

path. This liability transmission is the same used in chained subcontracting

in daily life (e.g. the first subcontractor is liable in front of the main con-

tractor, the second subcontractor is liable in front of the first subcontractor

and so on).

Now, let us imagine that a resource owner B has followed the protocol and

he has given an anonymous node access to a certain resource (e.g. a movie).

Later on B discovers that this resource is being unlawfully re-distributed over

the Internet. Following our liability mechanism, B will point C as guilty since

C is the only user in the requestor-owner path known by B. Then B will

take proper countermeasures against C. In turn, C (if he is not the dishonest

user) will do the same with the direct node he knows and so on up to the

requestor.

This mechanism has a major problem: at the end of the process, all

users in the path pay the consequences of the misbehavior by a single node.

Therefore, this situation can discourage users from collaborating in resource
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access. To solve that, we add to our liability mechanism the use of certificates

as a proof of the direct relationship between two users in the access to a

certain resource. For example, in a path of length 3 A-C-D-B, user A will

give a certificate CertAC to C as a proof of their direct relationship in a

certain resource access. In turn, C gives a certificate CertCD to D and so on.

A certificate for a relationship where node N1 forwards the encrypted trust

level to node N2 is constructed as follows:

CertN1N2 ← {id||N1||N2||KN1(tN1N0)||time stamp}SSKN1
(6.3)

In Expression (6.3), id is the identifier assigned to a certain resource access

(which is linked to a certain item); N1 is the identity of the node who con-

structs and sends the certificate; N2 is the receiver; N0 is the node preceding

N1 and KN1(tN1N0) is the trust value that N1 assigns to N0 (encrypted under

a secret key KN1 only known by N1). Note that when N1 is the requestor,

N0 does not exist. In this case tN1N0 is taken to be 1, the neutral value for

multiplication. The certificate is signed by N1 and contains a time stamp

which reflects when it was generated. The public key PSKN1 for verification

is known and accepted as valid by all nodes in the network.

A user U who receives a certificate must store it in a safe place. Later

on, if someone in the relationship path misbehaves, U can use the certificate

to prove his innocence. We next explain how these certificates are used to

protect the system against a misbehaving node (whether it is a requestor or

an intermediate node).

Figure 6.2 represents the same situation shown in Figure 6.1 but following

our proposed anonymous homomorphic protocol. Figure 6.2 shows a resource

request from the point of view of the resource owner (node B). In this

situation, B only knows that the computed trust value contains a trust from
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D (tD?) but he does not know who is behind D. Actually, B does not know

how many nodes are behind D neither who is the requestor.

?

PKB (t??·t??)

D? B

PKB (t??·t??·tD?)PKB (t??)

CertDBCert??Cert??

Figure 6.2: Resource request in the anonymous homomorphic protocol (from
the point of view of the resource owner)

Regarding the computational cost, our anonymous homomorphic protocol

using the proposed liability mechanism requires intermediate nodes involved

in a protocol execution to perform the following operations:

1. Use the privacy homomorphism to encrypt a trust value t.

2. Compute the ciphertext operation of the privacy homomorphism on

the received encrypted trust value t′ and the own encrypted trust value

t.

3. Generate the certificate CertN1N2 required by the liability mechanism.

A resource requestor only executes operations (1) and (3). A resource owner

only decrypts the received ciphertexts containing the final trust value and

the relationship type. Later, the resource owner checks the set of access

conditions in plain text. Note that all these operations are feasible in full-

fledged computers (e.g. desktop computers, laptops, powerful mobile devices,

etc.). The social network that we envisage runs on this kind of devices so we

argue that our protocol will perform properly in terms of computation when

deployed in a real environment.
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Protecting the system by partial revocable anonymity

Nodes in the relationship path can misbehave in two different ways:

• A requestor who has gained access to a certain resource can later un-

lawfully re-distribute it over the Internet.

• An intermediate node can contribute false trust levels to the relation-

ship path.

If the requestor misbehaves, an intermediate node U can use the certificate

he owns to prove to the resource owner that he is only an intermediate node

who has forwarded the encrypted trust level. In this way, node anonymity

vanishes, because each intermediate node publishes his direct relationship in

the path until the requestor is reached, who will be properly punished for

his misbehavior. This procedure has a major problem: a dishonest resource

owner can falsely pretend that a certain requestor has misbehaved in order

to gain knowledge of all the relationships in the owner-requestor path.

We deal with this situation by proposing partially rather than totally

revocable anonymity. According to that, we assume the existence of an

optimistic trusted third party who is able to access the certificates to judge

whether someone is misbehaving. In this way, the resource owner does not

get any information on the requestor-owner path. An optimistic TTP is a

trusted authority who only acts in case of conflict between the users of the

social network. It is not needed during the normal network operation, which

is much more efficient than requiring a (non-optimistic) trusted authority to

mediate all transactions.

We now turn to the second type of misbehavior, in which an intermediate

node contributes false trust levels to the relationship path. Even though

trust values are kept secret, a certain user A having a direct relationship
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with another user B can make a good guess about the value of tBA. There

are two cases:

• If A relies on B’s help to access resources and B misbehaves by con-

tributing a fake tBA lower than the real one, A will end up suffering

a DoS attack. We believe that this situation should be avoided, or at

least limited to the extent possible. Precisely to that end, Expression

(6.3) includes the trust value tN1N0 contributed by the node N1 generat-

ing CertN1N2 . Since tN1N0 is encrypted under KN1 , nobody but N1 can

recover tN1N0 . However, if a user thinks that he is facing a DoS attack

from another user, he can report this situation to the optimistic TTP

who requests the secret key used by each intermediate node; then, the

optimistic TTP checks the trust values contributed by each interme-

diate node and takes action against those behaving dishonestly. Note

that no one but this authority will know the trust value associated to

each direct relationship.

• If an intermediate node contributes a fake trust level higher than the

original one, this can result in access being granted to a non-deserving

requestor. Beyond illegal access, other problems may arise if the re-

questor unlawfully re-distributes the accessed resource or abuses it in

other ways; see subsection above (which details the liability mechanism)

for a description of the defenses against a misbehaving requestor.

6.2.4 Accessing the resource

Our scheme is based on preserving node anonymity as long as nodes behave

honestly. For that reason, a resource owner B who accepts to send a certain

resource rid to a requestor D cannot transmit rid directly to D because the
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identity of the requestor is unknown to B. Instead of that, the resource must

follow in reverse order the same relationship path which was previously used

to decide on the requestor’s access.

If this store-and-forward process involves too much bandwidth consump-

tion for intermediate nodes (e.g. if the resource is a movie or some kind

of large item), an alternative is for the requestor to send together with his

query an ftp address where the resource owner can upload the resource. Note

that this option implicitly assumes the existence of a trusted third party:

by default, ftp downloading is not anonymous and in this case the ftp site

must be trusted to preserve the anonymity of all requestors who use it; if

some anonymizer is used between the requestor and the ftp site, then this

anonymizer is playing the role of a TTP who should preserve the anonymity

of the requestor. Whatever the case, since the TTP can be totally external

and unrelated to the social network or its users, assuming that such an entity

will keep secret the identity of the requestor seems plausible.

6.2.5 Security and privacy analysis

We next explain the assumed adversary model and the possible attacks the

system has to be robust against. Later, we detail the protocol behavior

against each considered attack.

Adversary model

Our attacker model assumes that the adversary is a node in the social net-

work. Such an adversary can collude with others to attack the system. We

consider that the computational power of an attacker does not permit him

to break current computationally secure cryptosystems.
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We divide the possible attacks in four categories. The first three cate-

gories refer to the role adopted by the attacker: intermediate node, resource

requestor and resource owner. The last category refers to collusions between

nodes. We next list the considered attacks within each category.

• Intermediate node.

– Learn the trust levels of the previous nodes in the requestor-owner

path.

– Alter the received trust or contribute a fake one.

– Refuse to collaborate.

• Resource requestor.

– Increase the trust sent by other users in order to get access to a

certain resource.

• Resource owner.

– Learn the trust levels of the nodes in the requestor-owner path.

• Collusion between nodes.

– Learn the trust level of an honest user surrounded by colluders.

Protocol behavior against the considered attacks

Learn the trust levels of the nodes in the requestor-owner path. This attack

can be performed by an intermediate node or by the resource owner.

The resource owner is able to decrypt the encrypted product of trust

levels and get the final trust value. However, the owner cannot learn

from that value which nodes have collaborated nor the individual trust
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level contributed by each of them. An intermediate node is less dan-

gerous than the resource owner, because he does not know the secret

key needed to decrypt the received product of trust levels.

Alter the received trust or contribute a fake one. As said above, an inter-

mediate node can not learn the computed trust value received from his

“upstream” neighbor (the neighbor previous to him in the requestor-

owner path) because it is encrypted. However, the intermediate node

can replace the received trust value with any trust value he desires and

such a behavior will go undetected.

As explained in Section 6.2.3, our proposal uses certificates which con-

tain the trust values contributed by each node. In addition to that, we

assume the existence of an optimistic TTP who is able to check such

values and take action against dishonest nodes. We argue that both

measures will discourage users from performing this attack.

Refuse collaboration. An intermediate node can decide not to collaborate

in a resource access. There is no defense against this. However, in

our scheme there is no price to be paid by the intermediate nodes who

collaborate: the privacy toll in [Domi07] (mentioned in the introduc-

tion) is solved by our scheme and, with the use of an ftp service, an

intermediate node is not even required to spend any of his bandwidth

to enable resource access.

Therefore, intermediate nodes do not have any objective reason to

refuse collaboration. In fact, there is even an incentive for them to

collaborate: a node who routinely refuses collaboration will be in a

bad position when he later seeks collaboration as a resource requestor.

Unlawful trust increase. The resource requestor cannot unlawfully increase
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any trust level in the requestor-owner path because he does not see

any of the relationship messages exchanged between intermediate nodes

that will be used by the resource owner to decide whether the requestor

is granted access.

Collusion between nodes. Collusion between nodes is successful when ad-

versary nodes are surrounding the victim and the resource owner is one

of the colluding nodes. In this situation the colluders learn the trust

value which the victim has assigned to his adversary upstream neigh-

bor. However, we argue that the surrounded victim can decide not to

collaborate if he does not trust his neighbors (upstream or downstream)

or the owner (the identity of the latter is public, since he is offering a

resource).

6.2.6 Simulation

We have simulated our protocol in a realistic environment to observe its per-

formance. The network simulator ns-2 [Netw08] was used for this purpose.

Central to our proposal is the availability of on-line users who have re-

lationships between them and enable a certain requestor to get access to a

certain resource. Therefore, the lack of active users in the network is a po-

tential problem. After pondering this issue, we decided to check the impact

of the shortage of on-line users in small networks. For large networks with

lots of connected users, the problem is less likely. With this in mind, the

proposed scheme was tested in four social networks consisting, respectively,

of 100, 300, 500 and 1000 users.

In each social network, the connection topology between users and their

associated relationships were fixed as follows before starting the simulation:
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• Each user was connected to (i.e. held relationships with) a number

of users ranging between 1 and 30. The precise figure was decided

using the power-law distribution. As stated in [Libe05], typical social

networks are reasonably well approximated using this distribution. As

a result, in our simulated social network 78.76% of the users held a

number of connections ranging between 1 and 15. Also, 31.07% of the

users held only 1 or 2 connections.

• Each node could establish three different types of relationship with

other nodes. Up to one relationship of each type was allowed between

each pair of nodes, so that there could be up to three relationships

between two nodes. Whether there existed a relationship of a certain

type between two nodes was uniformly randomly decided.

• The trust level assigned to each existing relationship was randomly and

uniformly chosen in the range [0.5, 1].

A simulation test consisted of running a request by a requestor to access

a resource advertised by an owner. Both requestor and owner were randomly

chosen. The simulation ended when:

• either the requestor was granted access to the resource, which happened

if the resource owner could compute a trust value greater than or equal

to 0.4;

• or a time-out occurred (this happened when either no path existed

between requestor and owner or the existing paths yielded a computed

trust less than 0.4).

For each social network, several fractions of simultaneous on-line users

were considered: 10%, 30%, 50%, 70% and 90%. For each fraction, 50 tests
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were run and the average results over the 50 tests were computed. The

results for the four social networks considered are shown in Tables 6.2, 6.3,

6.4 and 6.5. The contents of those tables are commented below.

Table 6.2: Results for a social network of 100 users
#on-line average average average average
nodes access prob. # interm. nodes #messages trust level

10 0.09 2.89 192.91 0.42
30 0.20 3.10 886.72 0.48
50 0.36 2.94 1221.30 0.59
70 0.50 3.44 1635.24 0.50
90 0.70 3.29 1825.60 0.46

Table 6.3: Results for a social network of 300 users
#on-line average average average average
nodes access prob. # interm. nodes #messages trust level

30 (10%) 0.11 3.33 260.00 0.50
90 (30%) 0.24 3.92 1298.25 0.49
150 (50%) 0.46 4.09 2493.65 0.45
210 (70%) 0.56 4.07 3009.82 0.42
270 (90%) 0.73 4.03 3616.33 0.44

Simulation results

For each social network and each fraction of on-line nodes (# on-line nodes),

the following results are reported:

• Average access probability. This is the average probability that a certain

access request is granted (i.e. that a computed trust greater than or

equal to 0.4 is obtained).
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Table 6.4: Results for a social network of 500 users
#on-line average average average average
nodes access prob. # interm. nodes #messages trust level

50 (10%) 0.14 4.00 683.75 0.46
150 (30%) 0.28 3.43 1353.14 0.62
250 (50%) 0.49 5.36 2163.32 0.41
350 (70%) 0.66 5.33 3593.15 0.43
450 (90%) 0.82 4.59 3771.22 0.41

Table 6.5: Results for a social network of 1000 users
#on-line average average average average
nodes access prob. # interm. nodes #messages trust level

100 (10%) 0.18 5.20 815.37 0.41
300 (30%) 0.32 4.92 2880.25 0.46
500 (50%) 0.52 5.67 3373.04 0.42
700 (70%) 0.71 5.47 4412.25 0.43
900 (90%) 0.89 4.71 4628.02 0.42

• Average number of intermediate nodes. This is the average number of

intermediate nodes in the path between the requestor and the resource

owner.

• Average number of messages. This is the average total number of mes-

sages generated by the nodes in the social network until the launched

resource request is granted or a time-out occurs.

• Average trust level. This is the average trust level for the accepted

requests.

From the results in Tables 6.2, 6.3, 6.4 and 6.5, it can be observed that

better performance is obtained when there is a higher fraction of on-line
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users: the average access probability is higher and the requestor-owner path

is shorter. This is what one would expect.

It can be seen in those tables that when 30% or less users are on-line it

is difficult to get access to a resource. When 50% or more users are on-line

the system works reasonably well. Note that these results are obtained in

the worst possible scenario for our protocol: relatively small networks where

a big proportion of the users have no more than two, randomly established

connections. Under these circumstances, it is pretty likely that several nodes

find themselves isolated (without connections to other on-line nodes). In a

more realistic scenario with several human user communities with common

interests, it would be more likely for nodes in the same community to be

on-line at the same time and hold more connections between them. This

similarity of habits would render node isolation rarer, even if there is a low

fraction of on-line nodes.

Also, it can be observed that, whatever the proportion of on-line nodes,

the average number of intermediate nodes in a requestor-owner path is no

more than six. This should not be surprising, because social networks are

affected by the “six degrees of separation” phenomenon [Milg67]: long ago,

S. Milgram experimentally showed that any two people in the United States

are connected through about six intermediate acquaintances, implying that

we live in a rather small world. According to the “six degrees of separation”

concept, for huge social networks the separation between any two users will

still be a maximum of six intermediate nodes. This is good news for our

scheme in the sense that the number of generated messages until a resource

request is accepted does not grow linearly with the number of on-line nodes.

In fact, we can observe in Table 6.5 that the total number of messages sent is

quite similar when there are 300 and 900 on-line nodes. These results show
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that our proposal is scalable enough to work properly when deployed in real

social networks.
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Chapter 7

Conclusions

7.1 Concluding remarks

In this thesis, we have pointed out the importance of providing security and

privacy for new emergent applications based on special-purpose networks.

More specifically, we have covered different security and privacy issues related

to some applications based on four types of special-purpose networks. These

are:

• Secure information transmission in many-to-one scenarios with resource-

constrained devices such as sensor networks.

• Secure and private information sharing in mobile ad hoc networks

(MANETs).

• Secure and private information spread in vehicular ad hoc networks

(VANETs).

• Private resource access in social networks.

149
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The primary concern has been to offer a broad overview of current tech-

niques for providing security and privacy in each environment.

Regarding many-to-one communications for resource-constrained devices,

we have focused on secure many-to-one lossless transmission. More precisely,

we have presented two new proposals following this paradigm.

Different models for information sharing in MANETs have been studied.

We have presented two new schemes dealing with security and privacy issues

in this environment.

How to provide trustworthy information spread over VANETs has been

studied in detail. More precisely, we have studied both a priori and a posteri

countermeasures against fake messages from internal attackers. We have

presented a system that relies on a priori countermeasures and provides

secure vehicle-generated announcements on VANETs. The new system has

been compared with current proposals in the literature.

Last but not least, we have addressed how to provide resource access in

social networks while preserving the privacy of the users. A new proposal

has been presented.

7.2 Results of this thesis

We summarize here the results presented in this thesis.

In Chapter 3, our contributions regarding efficient and secure many-to-

one symbol transmission have been presented. First, a new protocol that

provides an optimal message length has been proposed. The new protocol

works properly in environments where bandwidth is scarce. This protocol

uses multisignatures and offers the four basic security properties: confiden-

tiality, integrity, authentication and non-repudiation. Immediate detection
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of corrupted messages is provided too. Next, the first scheme in the literature

that offers secure many-to-one symbol transmission for sensor networks has

been proposed. This protocol also provides an optimal message length and it

is computationally suitable for resource-constrained devices, which are quite

common in sensor networks. We have referred to the computational capabil-

ities of real sensor devices to prove the deployability of this proposal in real

environments. This scheme achieves the following security properties: confi-

dentiality, authentication and integrity. Detection of corrupted messages is

performed using an a posteriori tracing algorithm.

Chapter 4 contains two contributions about information sharing in mo-

bile ad hoc networks. Both of them provide security and privacy for the

users of the network. Incentives are given to avoid user misbehavior. The

first construction provides information in a urban environment. A certain

user, regardless of her location, can request information any time using her

mobile device and its wireless connection. This system provides incentives

to encourage users to become distributed information servers. Regarding

the second contribution, it is a new scheme designed to disseminate adver-

tisements through mobile ad hoc networks. This proposal outperforms the

current proposals in literature by offering security and privacy without re-

quiring the participation of any trusted third party (except for a certification

authority that certifies the merchant’s public key). In addition to that, we

propose a new approach to reward nodes that collaborate in the dissemina-

tion according to how long they have been holding an advertisement. This

proposal does not bound the number of transfers for an advertisement (and

thus its spreading range) and rewards collaborative nodes with e-coins pro-

portionally to their task.

Chapter 5 presents a new system that provides secure vehicle-generated
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announcements on VANETs. This scheme relies on a priori measures against

internal attackers (vehicles in the VANET sending fake messages). Thanks

to the use of threshold signatures, our system outperforms previous proposals

in message length and computational cost. Regarding privacy, three different

variants of the system have been proposed to achieve privacy without losing

trustworthiness: the first variant is a special case of the second one and is

better suited to dense VANETs, whereas the second and third variants can

be used as fallbacks for sparse VANETs. The feasibility of this scheme has

been studied using simulations.

The last chapter of this thesis presents a privacy-preserving resource ac-

cess protocol for social networks. This new protocol achieves protection of

relationship privacy, with the advantage of being fault-tolerant and free of

mediating TTPs (although an optimistic TTP is used in case of conflict).

On the whole, our scheme offers the same features as [Carm07] and [Domi07]

while addressing the functionality and privacy drawbacks of those previous

protocols. The simulated performance of our proposal shows that it can

be successfully deployed in real environments because it is scalable and it

provides reasonable resource availability.

7.3 Future research

We sketch here some open problems that remain to be solved and possible

extensions to some of the presented contributions that will be addressed in

the future.

In the field of many-to-one communications, our future research will be

directed to design schemes for secure many-to-one lossy transmission. More

specifically, our objective is to design a scalable protocol that allows the
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base station to get the result of some mathematical function (e.g. Min/Max,

average computation...) applied to the data stored in the leaves. Such a

system should provide confidentiality, authentication and integrity to the

data transmitted from the leaves towards the root.

More research on vehicular ad hoc networks is planned. Our future work

in this field will be directed to the construction of a scheme that relies on a

posteriori measures against internal attackers.

Regarding private resource access protocols for social networks, the pre-

sented scheme should be extended to eliminate the need for an optimistic

TTP.
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