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Notation 
 
x                Horizontal coordinate of the pixel. 
y              Vertical  coordinate of the pixel. 
I t(x, y)        2D color image in time t 
c                 Class to which an objects belongs 
N                  Number of objects of interest 
N+1          Class reserved for the background 
pt(x,y)    Probabilities of the pixel (x,y) at time t 
pc

t(x,y)       Probability that  the pixel (x,y)  at time t belongs to class c 
pc

0(x,y)     Initial probability that the pixel (x,y) belongs to class c 
Tc

t(x,y)    A posteriori tracking image in time t for class c 
( )yxT t

c ,ˆ    A priori prediction tracking image in time t for class c 
Tc

0(x,y)       Initialization tracking image for class c 
Tc

t-1(x,y)    Previous tracking image in time t for class c 
),(1 yxT t

N+         A tracking image for the background in time t 
Qc

t(x,y)   Estimated probability that the pixel (x,y) belongs to class c given 
by the static recognition module 

r Recognition function for static class probabilities 
f                 Update function  for the dynamic class probabilities 
d    Decision function for tracking 
v(x,y)         Feature vector for pixel (x,y) 

1−t
cmr       Previous movement vector  
t
cmr      Movement weighted average vector for object c 

B               Special class c=N+1 reserved for the background, 
k                Identifier of an object (non-background) class between 1 and N,  
Hk             Histogram for class k 
Ck              Total count of the histogram for class k 
P(v | k)       Conditional probability of  features v given class k  

αc
t                    Parameter that weights the influence of the previous probabilities 

in the dynamic recognition module for class c 
Ac

t , Ac
t-1 , Ac

t-2    Areas of the object c 
Cc

t, Cc
t-1 , Cc

t-2    Mass centers of object c 
 ˆ t

cC     A priori estimate of mass center of object of class c in time t.  
t
cÂ     A priori estimate of area of the object of class c in time t.  
1−t

cr  , 2−t
cr     Estimate of the object radius  

cd      Estimate of the displacement of the object  
max
cd     Maximum displacement  

cs      Scale change ratio 
Oc

t , Oc
t-1 , Oc

t-2    Occlusion flag for the object c 
ε , δ   Constant parameters related to uncertainties in movements 

prediction 
εc

t , δc
t  Adaptive parameters related to uncertainties in movements 

prediction 
MC(Tc

t)    Mass center of the 1-valued region in Tc
t(x,y)  
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MC( t
cT̂ )    Mass center of the 1-valued region in ( )yxT t

c ,ˆ  
β  Positive parameter between 0 and 1 for computation of the 

movement weigthed average vector 
t
cvr      Current movement vector for object c 

N (p, q)   Normalized central moments of order two 
wmc(o,f)    Weighted mass center  
ns(o,f)    Number of spots classified as object o in frame f  
p(o|s)     A-posteriori class probability of object o for spot s 
a(s)       Area of s. 
mc(s)     Mass center of s.  
SO     Spatial overlap 
GTk     Ground truth in frame k 
STk     System track in frame k 
Dist      Euclidean distance  
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SUMMARY 
 
 
 
 

Recognition and tracking of multiple objects in video sequences is one of the main 
challenges in computer vision that currently deserves a lot of attention from researchers. 
Almost all the reported approaches are very application-dependent and there is a lack of 
a general methodology for dynamic object recognition and tracking that can be 
instantiated in particular cases. In this thesis, the work is oriented towards the definition 
and development of such a methodology which integrates object recognition and 
tracking from a general perspective using a probabilistic framework called PIORT 
(probabilistic integrated object recognition and tracking framework). It include some 
modules for which a variety of techniques and methods can be applied. Some of them 
are well-known but other methods have been designed, implemented and tested during 
the development of this thesis. 
 
The first step in the proposed framework is a static recognition module that provides 
class probabilities for each pixel of the image from a set of local features. These 
probabilities are updated dynamically and supplied to a tracking decision module 
capable of handling full and partial occlusions. The two specific methods presented use 
RGB colour features and differ in the classifier implemented: one is a Bayesian method 
based on maximum likelihood and the other one is based on a neural network. The 
experimental results obtained have shown that, on one hand, the neural net based 
approach performs similarly and sometimes better than the Bayesian approach when 
they are integrated within the tracking framework. And on the other hand, our PIORT 
methods have achieved better results when compared to other published tracking 
methods. All these methods have been tested experimentally in several test video 
sequences taken with still and moving cameras and including full and partial occlusions 
of the tracked object in indoor and outdoor scenarios in a variety of cases with different 
levels of task complexity. This allowed the evaluation of the general methodology and 
the alternative methods that compose these modules. 
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RESUMEN 
 
 
 
 
El reconocimiento y  seguimiento de múltiples objetos en secuencias de vídeo es uno de 
los principales desafios en visión por ordenador que actualmente merece mucha 
atención de los investigadores. Casi todos los enfoques reportados son muy 
dependientes de  la aplicación y hay carencia de una metodología general para el 
reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos 
particulares. En esta tesis, el trabajo está orientado hacia la  definición y desarrollo de 
tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una 
perspectiva general usando un marco probabilístico de trabajo llamado PIORT 
(Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos 
módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de 
ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y 
probados durante el desarrollo de esta tesis. 
 
El primer paso en el marco de trabajo propuesto es un módulo estático de 
reconocimiento que provee probabilidades de clase para cada pixel de la imagen desde 
un conjunto de características locales. Estas probabilidades son actualizadas 
dinámicamente y suministradas a un modulo decisión  de seguimiento capaz de manejar 
oclusiones parciales o totales. Se presenta dos métodos específicos usando  
características de color RGB pero diferentes en la implementacion del clasificador: uno 
es un metódo Bayesiano basado en la máxima verosimilitud y el otro método está 
basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, 
por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas 
veces mejor que el enfoque bayesiano cuando son integrados dentro del marco 
probabilistico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado 
mejores resultados comparando con otros métodos de seguimiento publicados. Todos 
estos métodos han sido probados experimentalmente en varias secuencias de vídeo 
tomadas con cámaras fijas y moviles incluyendo oclusiones parciales y totales del 
objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de 
complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos 
alternativos que componen sus módulos. 
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SCOPE OF THIS THESIS 
 
This thesis describes thoroughly and in detail the current state of a probabilistic 
integrated object recognition and tracking (PIORT) methodology that we have 
developed in the latest years, as well as two particular methods derived from it. It also 
presents a collection of experimental results in test video sequences obtained by PIORT 
methods and alternative tracking methods. Previous stages in the development of 
PIORT, together with preliminary results, have been partially reported elsewhere 
[Amezquita, 2006, 2007, 2008; Alquézar, Amézquita, 2009].  
 
In this thesis, we define an integrated recognition and tracking model and we develop 
some algorithms to solve multiple object tracking in video sequences. The main aim of 
this work is to reduce to the minimum the learning process and to avoid the application 
dependence, although we know that it may be to the detriment of the effectiveness. 
 
We have initially taken some video sequences in an office, with corridors, doors and 
windows. Moreover, there are usual objects as chairs, tables, computers and so on. We 
have used static and moving cameras also showing walking people and mobile robots. 
We do not use stereo techniques to infer 3D data; just process the sequence taken by a 
single camera. 
 
We want the learning process to be as easy as possible. For this reason, we have rejected 
the 3D models that represent very accurately the objects to learn. Some 2D images 
taken from the objects have to be enough to learn the main features of them. For this 
reason, it is not possible to model the 2D projection in the image of the 3D object and 
so, to predict the deformation of the 2D shape from one frame to the other. 
 
We propose a silhouette shape representation of the objects and colour as the main 
feature of the object appearance. The silhouette is represented by the inner regions of 
the object obtained by the recognition and tracking processes. The recognition process 
is based on a (supervised learnt) classifier. We have not used the contour of the object 
since the objects are modeled by few 2D images and their 3D shape is not available. 
Then, it is not possible to model the 2D projection of the contour of the object. 
 
This thesis is detailed in the following chapters. In Chapter 1, basics of object 
representation and recognition and tracking processes are introduced. Chapter 2 
describes the objectives and the assumptions and constraints that were imposed. Chapter 
3 presents the state of the art in dynamic object recognition and silhouette tracking. In 
chapter 4, the problem addressed (i.e. recognition and tracking of multiple objects in 
image sequences) is formally defined and expressed in a probabilistic framework for 
object recognition and tracking, As shown in Fig. 3, the system  is divided in three 
subproblems or modules that we have named “static recognition”, “dynamic 
recognition” and “tracking decision module”, respectively. As far as we know, this 
global approach is original in the field. The implemented methods used for the static 
recognition module are specified in section 4.1. Neural networks and Bayesian method 
have been used for static recognition; this is, to recognize objects in single still images. 
Although this is not new, the use of features extracted from the image regions resulting 
from an image segmentation process permits to assign a-posteriori class probabilities to 
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every image pixel using the outputs of a (previously trained) neural net, and this is a 
novel way to manage the object classification results provided by the net.  
 
The dynamic recognition module is explained in section 4.2 and basically consists of a 
formula to update the class probabilities of each pixel that combines the static 
recognition results from the current image with the evidence accumulated in the 
previous images of the sequence. A slow apparent motion of the objects in the sequence 
is assumed, but the formula is parameterized to allow different weighting combinations 
related to different motion speeds. The tracking decision module is described in detail in 
Section 4.3 to compute the tracking decision for each object in each image, representing 
the result as a binary image for each object. The current system, that uses the tracking 
method based on prediction, is able to recognize and track fairly several objects of 
interest selected in the test sequences, which show some variations in translation, scale 
and orientation resulting from their motion in the scene or the camera motion. To this 
end, the system uses very simple features extracted from image segmentation regions 
and does not involve any geometric model of the objects.  
 
A software system has been designed to implement and test both the global approach 
presented in chapter 4 and the techniques proposed for each module in sections 4.1 to 
4.3. This system has been incrementally developed and applied to several image 
sequences acquired in both indoor and outdoor environments. The experimental work 
and the results obtained so far are described in chapter 5, which is divided in two parts: 
the first part presents the experiments only related with the static recognition module, 
while the rest include the experiments with dynamic recognition and tracking (in which 
the static recognition module also is involved). Finally, conclusions and future work are 
discussed in chapter 6. 
 
As a conclusion, the aim of this thesis is to define a new general methodology for object 
recognition and tracking that assumes that there is really few information about the 
objects to be recognized and tracked. With few initial images in the learning step, the 
object model learnt by a classifier captures the distinguishing features of the object 
appearance (nowadays, the colour). After the recognition and tracking steps, the system 
has to obtain the identity and the position of each object, although the 2D shapes vary 
significantly along the sequence. Finally, we are aware that the results presented in 
some of the papers reported in the tracking literature, may be better than ours; 
nevertheless, they usually need a more complicated learning process and also, they are 
much more application dependent.  
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Chapter 1. Introduction 
 
Object tracking can be defined as the problem of estimating the trajectory of an object 
in the image plane as it moves around the scene. The estimation of the trajectory of an 
object is pertinent in the following tasks between others: motion-based recognition 
(human identity based on gait, automatic object detection), automated surveillance, 
video indexing, human-computer interaction (gesture recognition, eye gaze tracking), 
traffic monitoring or vehicle navigation. The process of tracking objects can be very 
complex and application dependent due to: the projection of the 3D world to a 2D 
image, noise in images, complex object motion, non-rigid or articulated objects, partial 
and full object occlusions, complex object shapes, scene illumination changes or real-
time processing requirements. Nevertheless, in most of the methods presented 
elsewhere, the tracking process is simplified by imposing constraints on the motion or 
appearance of objects. For example, almost all tracking algorithms assume that the 
object motion is smooth with no abrupt changes. Another usual simplification is to have 
prior knowledge of about the number and size of the objects or the object appearance 
and shape. 
 
The location and tracking of objects in indoor and outdoor environments is one of the 
most challenging problems that a mobile robot has to confront. For this end, the object 
models have to be defined or learned in conjunction with some associated recognition 
and tracking procedures. There are several issues that have to be considered while 
dealing with object locating and tracking which deserve some discussion. The first 
important issue is to determine the type of object model to learn which usually depends 
on the application environment. In our case, we want a mobile robot equipped with a 
camera to locate and track general objects (people, other robots, balls, wastepaper bins 
…) in both indoor and outdoor environments. A useful object model should be 
relatively simple and easy to acquire from the result of image processing steps. For 
instance, the result of a colour image segmentation process, consisting of a set of 
regions or spots, characterized by simple features related to colour, may be a good 
starting point to learn the model. Although structured models like attributed graphs or 
skeletons can be synthesized for each object from several segmented images [Ali, 
2001,Foresti, 1999], we have decided to investigate a much simpler approach in which 
the object is just represented as an unstructured set of pixels. 
 
One of the main drawbacks of structural methods is that the segmented images can be 
quite different from one frame to the other, and therefore it is difficult to match the 
structure in the current frame with the previous ones. The starting point of our approach 
is to accept these differences between segmented images and use a more rudimentary 
model in which the basic element is not the spot or region of the segmented image but 
its pixels. An example of structural method was reported in [Foresti, 19992], where the 
object model was based on the skeleton of the object obtained in the segmented images. 
Since the skeletons resulting from two almost equal images can be very different, the 
applicability of such approach is limited. The tracking step was performed in [Foresti, 
19992] by an extension of the Kalman filter in which the skeleton and other geometrical 
features were considered. Numerous approaches for object tracking have been proposed. 
These primarily differ from each other based on the way they approach the three 
following questions: 
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- Which object representation is suitable for the tracking? 
- Which image features should be used? 
- How should the motion, appearance and shape of the object be modeled? 
 

The answers to these questions depend on the context in which the tracking is 
performed and the use for which the tracking information is being sought. A large 
number of tracking methods have been proposed which attempt to answer these 
questions for a variety of scenarios. In the following section, we first describe the object 
shape representations followed by the appearance representations of the objects. In 
section 1.2 we comment the main features used to describe the objects. And in section 
1.3, we describe the two main processes involved in a tracking system: object detection 
(or recognition) and object tracking. 
 

1.1 Shape and Appearance Representation 
In a tracking scenario, an object is anything that is of interest for our application. For 
instance, boats on the sea, fish inside an aquarium, vehicles on a road, planes in the air, 
people walking in the street. Objects can be represented by their shapes and 
appearances. In this section, we first describe the object shape representations 
commonly employed for tracking. After that, we address the appearance representations 
and we finish with the joint shape and appearance representations. 

- Point. The object is represented by a point (figure 1.a) [Veenman, 2001] or a set 
of points (figure 1.b) [Serby, 2004]. This representation is useful for objects that 
occupy small regions in the image. 

- Primitive geometric shapes. The object is enclosed in a geometric shape as a 
rectangle or an ellipse (figures 1.c and 1.d) [Comaniciu, 2003]. This 
representation is useful for simple and rigid objects, although it can be used as 
an approximation of non-rigid objects. 

- Object contour. Contour representations define the boundary of an object 
(figures 1.g and 1.h) [Yilmaz, 2004]. This representation is useful for complex 
and non-rigid objects that their edges can be easily extracted. 

- Object silhouette. A silhouette representation defines the region inside the 
object (figure 1.i) [Haritaoglu 2000; Yilmaz, 2004]. Similarly to contour 
representations, the silhouette is also useful for non-rigid objects. Besides, it can 
be used in the applications which it is difficult to extract the edge of the object. 

- Articulated shape models. Articulated objects are composed of body parts that 
are held together with joints (figure 1.e). The constituent parts are usually 
modelled by cylinders or ellipses and the joints or relationships between the 
parts are governed by kinematics’ motion models as joint angles. Thesse models 
are used for non-rigid objects composed by rigid parts. 

- Skeletal models. Skeletal models represent the object by their skeleton (figure 
1.f). The skeleton of an object is usually extracted applying the medial axis 
transform to the object silhouette [Ballard, 1982, chapter 8]. This model is used 
for both rigid and non-rigid objects [Ali, 2001], nevertheless, non-compact 
objects obtain better representations. 
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Figure 1 Object representation, (a) Centroid, (b) multiple points, (c) rectangular patch (d) elliptical patch, (e) part-
based multiple patch, (f) object  skeleton, (g) complete object contour, (h)control points on object contour, (i) object 
silhouette. 

There are few representations that encode only the appearance without considering the 
shape. The most commonly used is: 

- Probability densities. In this representation, the probability densities of the 
object appearance features such as colour or texture are estimated. They can be 
either parametric, such as Gaussian [Paragios, 2002], or non-parametric such as 
Parzen windows [Elgammal, 2002] or histograms [Comaniciu, 2003]. 

 
In the last methods, shape representations are combined with appearance representations 
[Cootes, 2001]. Some of them applied on the context of object tracking are: 

- Templates. The appearance of the object is represented by a set of simple 
geometric shapes or silhouettes [Fieguth, 1997] that each contain some 
appearance information. Templates, however, only encode the object appearance 
generated from a single view. Thus, they are only suitable for tracking objects 
whose pose does not vary considerably during the course of tracking. 

- Active appearance models. Active appearance models are generated by 
simultaneously modeling the object and the appearance [Edwards, 1998]. In 
general, the object shape is defined by a set of landmarks that reside on the 
boundary of the region. For each landmark, an appearance vector is stored which 
is in the form of colour, texture or gradient magnitude. This representation 
requires a training phase where both the shape and its associated appearance is 
learned from a set of samples using, for instance, the principal component 
analysis. 

- Multiview appearance models. These models encode different views of an 
object. Usually, the different views of the object are represented by a subspace 
from the given views. Subspace approaches as Principal Component Analysis or 
Independent Component Analysis have been used for both shape and appearance 
representation [Mughadam, 1997; Black, 1998]. Similar to Active appearance 
models, this representation also requires a training phase. One limitation of 
multiview appearance models is that the appearances in all the view (or almost 
similar views) are required ahead of time. 
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- Training a set of classifiers. Another approach to learn the different views of 
an object is by training a set of classifiers. The most common models are 
Support vector machines [Avidan, 2001] or Bayesian networks [Park, 2004]. 
Similar to multiview appearance models, these classifiers require a training 
phase in which almost similar views are required ahead of time. Nevertheless, 
they can learn the shape, the appearance or both. 

1.2 Feature Selection 
Selecting the right features plays a critical role in tracking. In general, the most 
desirable property of a visual feature is its uniqueness so that the objects can be easily 
distinguished in the feature space and they do not vary from one image to another. 
Feature selection is closely related to the object representation. For example, colour is 
used as a feature for histogram-based appearance representations or object edges are 
used as features for contour-based representations. The details of common visual 
features are as follows: 

- Colour. A variety of colour spaces have been used in tracking due to it is no last 
word on which colour space is more efficient. To represent the colour, the two 
most common spaces have been the RGB and HSV. Nevertheless, the 
differences between the colours in RGB do not correspond to the colour 
differences perceived by the humans [Paschos, 2001]. In contrast, L*u*v* are 
perceptually uniform colour spaces while HSV is an approximately uniform 
colour space but sensitive to noise [Song 1996]. 

- Edges. Edges have been extensively used in tracking due to its simplicity and 
accuracy. The most common edge extractors are [Canny, 1986; Bowyer, 2001]. 
An important property of edges is that they are less sensitive to illumination 
changes compared to colour features. Nevertheless, in some applications, it is 
not possible to obtain reliable edges due to the nature of the objects and images. 

- Optical flow. Optical flow is a dense field of displacement vectors which 
defines the translation of each pixel in a region [Horn, 1981; Barrow, 1994]. It is 
used as a feature in motion-based segmentation. 

- Texture. Texture is a measure of the intensity variation of a surface which 
quantifies properties such as smoothness and regularity [Tomita, 1990]. 
Compared to colour, textures requires a processing step to generate the 
descriptors. Similarly to edge features, textures are less sensitive to illumination 
changes compared to colour. Moreover, textures can be extracted although it is 
not possible to obtain reliable edges.  

1.3 Recognition and Tracking Processes 
Every tracking method requires an object detection or recognition mechanism either in 
every frame or when the object first appears in the video. Two different approaches can 
be distinguished considering the temporal information. In the static approaches, the 
object detection and recognition is performed using the information in a single frame. 
The dynamic approaches make use of the temporal information computed from a 
sequence of frames to increase the recognition ratio and to reduce the number of false 
detections. Given the regions that the recognizer has considered that there is an object, it 
is then the tracker’s task to perform object correspondence from one frame to the next to 
generate the tracks. 
In the rest of the section, we first depict the most common models for object detection 
and recognition using the static and dynamic approaches. After that, we comment the 
most common tracking methods. 
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1.3.1 Object detection and recognition 
In the static models for object detection, the only information considered is the current 
frame. The most common models are: 

- Interest points. Interest points in the images are the pixels that have an 
expressive texture in their respective localities. They have been long used in the 
context of motion, stereo and tracking problems. A desirable quality of an 
interest point is its invariance to changes in illumination and camera viewpoint. 
For a comparative evaluation of interest point detectors, we refer the reader to 
the survey [Mikolajczyk, 2003]. 

- Segmentation. The aim of the segmentation algorithms is to partition the image 
into perceptually similar regions. Every segmentation algorithm addresses two 
problems, the criteria for a good partition and the method for achieving efficient 
partitioning [Shi, 2000]. 

- Supervised learning. Object detection can be performed by learning different 
object views automatically from a set of examples by means of supervised 
learning mechanism. Learning of different object views waives the requirement 
of storing a complete set of examples, then, the learning methods generate a 
function that maps inputs to desired outputs. A standard formulation of 
supervised learning is the classification problem where the learner approximates 
the behavior of a function by generating an output in the form of a class label. In 
the context of object detection, the learning examples are composed of pairs of 
object features and an associated object class where both of these quantities are 
manually defined. The learning methods include, but are no limited to, neural 
networks [Rowley, 1998] adaptive boosting [Viola, 2003], decision trees 
[Grewe, 1995] and support vector machines [Papageorgiu, 1998]. 

 
The dynamic methods make use of the current frame and some previous frames or 
knowledge taken from them to detect the objects. The principal approach is: 

- Background subtraction. In this method, object detection is achieved by 
building a representation of a scene called the background model and then 
finding deviations from the model for each incoming frame. Any significant 
change in image region from the background model signifies a moving object. 
The pixels constituting the regions undergoing change are marked for further 
processing. Usually, a connected component algorithm is applied to obtain 
connected regions corresponding to objects. This process is referred to as the 
background subtraction [Wren, 1997]. 

1.3.2 Object tracking 
The aim of an object tracker is to generate the trajectory of an object over time by 
locating its position in every frame of the video. The object tracker may also provide the 
complete region in the image that is occupied by the object at every time instant. The 
tasks of detecting the object and establishing the correspondence between the object 
instances across frames can either be performed separately or jointly. In the first case, 
possible object regions in every frame are obtained by means of an object detection 
algorithm and then, the tracker corresponds objects across frames. In the latter case, the 
object region and correspondence is jointly estimated by iteratively updating object 
location and region information obtained from previous frames. We now briefly 
introduce the main tracking models. 
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- Point tracking. Objects are represented by Points. The recognition algorithm is 
based on Interest points. The detected points in consecutive frames are tracked 
based on the previous point state which can include point position, speed and 
acceleration (figure 2.a). There are basically two main categories, deterministic 
methods [Veenman, 2001] and statistical methods [Streit, 1994]. 

- Kernel tracking. Objects are represented by Primitive geometric shapes. The 
recognition algorithm is based on Segmentation or Supervised learning. The 
kernel can be a rectangular or elliptical shape with an associated histogram 
(figure 2.b). Objects are tracked by computing the motion of the kernel in 
consecutive frames. This motion is usually in the form of a parametric 
transformation such as translation, rotation and affine [Schweitzer, 2002]. 

- Silhouette tracking. Objects are represented by the silhouette. The recognition 
algorithm is based on Segmentation or Supervised learning. Tracking is 
performed by estimating the object region in each frame. Silhouettes are tracked 
by either shape matching or contour evolution (figure 2.c and 2.d). Both of these 
methods can essentially be considered as object segmentation applied in the 
temporal domain using the priors generated from the previous frames 
[Huttenlocher, 1993]. 

 
 

 
 
 
 
 
 
 
 
Figure 2 Different tracking approaches. (a) Point tracking (b) Parametric transformation of a rectangular patch, (c, d) 
Two examples of contour evolution. 
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Chapter 2. Objectives  
 

2.1 General objective. 
 
The main objective of this Ph.D. thesis was to design, implement and test a general 
methodology for dynamic integrated object recognition and tracking in video sequences. 
This included devising adequate methods for each module in the methodology. 
 
To this end, the following assumptions and constraints were imposed: 
 

- the video sequences to deal with show indoor or outdoor scenes perceived by a 
color vision system that can move (relatively) slowly through the environment, 
or can be in fixed position; (this is quite realistic for most applications in 
practice); 

 
- the objects of interest are 3D and can be rigid (e.g. a static object like a monitor 

or a wheel-driven mobile robot) or articulated (e.g. a person or a legged mobile 
robot); 

 
- the objects of interest are defined and learned off-line using some kind of 

supervised classifier trained from different views of the 3D objects; 
 

- no geometric model of the object 3D shape is built or learned; 
 

- the representation of object appearance and 2D shapes may be distinguished 
from other objects and the background based on simple features like color. This 
is internal to the classifier used (for instance, conditional probability densities of 
the classes given the input features in the case of using a neural network), 
though these features may experiment slight variations during the image 
sequence; in fact, this is a requirement of the classifiers we currently use for 
static recognition and could be relaxed or changed if the classifier in this module 
were replaced or used a different set of object’s appearance features; 

 
- the apparent motion and size of the objects of interest in the sequence (either 

caused by the motion of the camera or by their own motion) is smooth with no 
abrupt changes between consecutive frames (non-rigid deformable objects are 
thus allowed); we think this is not a strong assumption if a typical video 
acquisition rate is used, as large changes in shape, motion and size are allowed 
for the whole sequence; 

 
- objects of interest can partially or fully occlude each other during some frames 

and they can also disappear or enter in the scene from one frame to the next 
(typically through the image borders, assuming a smooth slow motion), but their 
motion does not change abruptly during occlusion; this last assumption is 
certainly stronger and may fail in some cases, but it is caused by the need of 
predicting an approximate position of the object during occlusion based on its 
previous trajectory.  
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- the object 2D shape representation employed for tracking is the object silhouette 
(the region inside the object), considered as an unstructured set of points. 

 
 

2.2 Specific objectives. 
 

• To study, review and analyze the state-of-the art in dynamic object recognition 
and integrated object recognition and tracking in video sequences, with a special 
attention to the techniques based on silhouette tracking.  

 
• To develop a probabilistic framework for integrated object recognition and 

tracking in image sequences.  
 

• To design, implement and test static object recognition methods using features 
extracted from image segmentation regions and from the original images. 

 
• To design, implement and test some dynamic object recognition method using 

the results of static recognition on the current frame and feed-back from the 
previous image sequence and results. 

 
• To design, implement and test some silhouette tracking methods in accordance 

with the imposed assumptions and constraints (that have been listed before). 
 

• To develop a prototype system implementing and integrating all the techniques 
proposed. 

 
• To devise adequate experiments covering a variety of cases, like partial and full 

occlusions, objects disappearing and entering in the scene, presence of multiple 
objects of the same class, noisy backgrounds, illumination changes, etc.  

 
• To evaluate the proposed methodology from these experiments and to compare 

it with alternative state-of-the-art techniques applicable under the same 
assumptions and constraints. 

 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 9

Chapter 3. State of the art in dynamic object recognition and silhouette 
tracking 
 
In this section, we comment the most relevant papers that use a framework similar to 
the one presented in this work. The two main features of the following models are: first, 
there is a feedback from the tracking to the recognition processes. That is, one of the 
parameters of the recognition process is the tracking knowledge of objects in the 
previous frame, i.e., the position, speed, acceleration. Second, the shape representation 
is based on the silhouette. That is, in the segmentation process, the region inside the 
object is obtained. Then, in the recognition process, we consider the features of the 
obtained region; and in the tracking process, we track the object through the dynamic 
features of this region. 
 

3.1 Dynamic recognition and integrated recognition and tracking 
 
A relevant issue, which generally is not so mentioned, is to integrate the recognition and 
tracking steps in a common framework that helps to exploit some feedback between 
them. To the best of our knowledge there are few existing works that combine 
recognition and tracking in an integrated framework [Tu, 2003, Lee, 2005]. Object 
recognition and tracking are usually performed sequentially and without any feedback 
from the tracking to the recognition step [Foresti, 1999]. These tasks often are treated 
separately and/or sequentially on intermediate representations obtained by the 
segmentation and grouping algorithms [Zhu, 1996- Tu, 2002]. Sometimes, they are 
applied in a reverse order, with a first tracking module supplying inputs to the 
recognition module, as, for instance, in gesture recognition [Chen, 2003]. 
 
Tracking and recognizing people through their faces is one of the most important 
problems solved by the tracking applications. One of the recent works was presented in 
[Lee, 2005]. In this paper, an integrated framework for tracking and recognizing faces 
was defined that had the property of tightly coupling the recognition and tracking 
processes. This was a new framework because, since now, this problem had been solved 
through a conventional video-based face recognition model plus a tracking module. In 
contrast, an architecture was defined in [Lee, 2005] that couples these two components 
within a single framework. The complex and nonlinear appearance manifold of each 
registered person was partitioned into a collection of sub-manifolds where each one 
modeled the face appearances of the person in nearby poses. During the training step, a 
clustering algorithm was used to partition the training images into clusters. The images 
in each cluster usually came from neighboring poses. The PCA technique was applied 
to the images in each cluster to yield a low dimensional linear subspace approximation. 
The recognition module kept a detailed appearance model for each registered individual 
at each frame. The tracker only used a portion of the appearance model of an individual 
identified by the recognizer. 
 
Tracking and recognition techniques have been applied to gesture recognition problems 
[Chen 2003]. In this work, the model has a real-time hand tracking and extraction 
algorithm to trace the moving hand and extract the hand region. The spatial features are 
extracted by a Fourier descriptor and the temporal features are obtained by a motion 
analysis model. The combination of the spatial and temporal features of the input image 
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sequence is used to extract a feature vector. Then, the gesture is classified by a Hidden 
Markov Model.  
  
In [Zhou 2004], an observation model and a velocity motion model were defined. The 
observation model was based on an adaptive appearance model, and the velocity motion 
model was derived using a first-order linear predictor approximation based on the 
appearance difference between the incoming observation and the previous particle filter 
configuration.  

3.2 Silhouette tracking 
 
Silhouette tracking is employed when tracking of the complete region of an object is 
required. In the context of region tracking, the precision and recall measures are defined 
in terms of the intersection of the hypothesized and correct object regions. The precision 
is the ratio of the intersection to the hypothesized region and recall is the ratio of the 
intersection to the ground truth. Important advantage of tracking silhouettes is their 
flexibility to handle a large variety of object shapes. Silhouettes can be represented in 
different ways. The most common silhouette representation is in the form of a binary 
indicator function, which marks the object region by ones and the nonobject regions by 
zeros. For contour-based methods, the silhouette is represented either explicitly or 
implicitly. Explicit representation defines the boundary of the silhouette by a set of 
control points. Implicit representation defines the silhouette by means of a function 
defined on a grid. The most common implicit contour representation is the level sets 
representation. 
 
The representations chosen by the silhouette-based object trackers can be in the form of 
motion models, appearance models, or shape models or a combination of these. Object 
appearance is usually modeled by parametric or nonparametric density functions such as 
mixture of Gaussians or histograms. Object shape can be modeled in the form of 
contour subspace where a subspace is generated from a set of possible object contours 
obtained from different object poses [Blake and Isard 2000]. Additionally, object shape 
can be implicitly modeled via a level set function where the grid positions are assigned 
at the distance generated from different level set functions corresponding to different 
object poses [Yilmaz et al. 2004]. Appearance-based shape representations are also 
commonly used by researchers who employ a brute force silhouette search. For edge-
based shape representation, Hausdorff distance is the most widely used measure. 
However, Hausdorff measure is known for its sensitivity to noise. Hence, instead of 
using the maximum of distances, researchers have considered using an average of the 
distances [Baddeley 1992]. 
 
Silhouette based methods provide an accurate shape description of the objects that have 
complex shapes, i.e., hands, head and shoulders and that cannot be well described by 
simple geometric shapes. The goal of a silhouette-based object tracker is to find the 
object region in each frame by means of an object model generated using the previous 
frames. This model can be in the form of a colour histogram, object edges or the object 
contour. There are two categories, shape matching and contour tracking. Shape 
matching searches the object silhouette in the current frame. Contour tracking evolves 
an initial contour to its new position in the current frame by either using the state space 
models or direct minimization of some energy functional. 
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Shape Matching. In shape matching the object silhouette and its associated model is 
searched in the current frame. The search is performed by computing the similarity of 
the object with the model generated from the hypothesized object silhouette based on 
previous frame. Here, the silhouette is assumed to only translate from the current frame 
to the next, therefore non-rigid object motion is not explicitly handled. 
The object model is usually in the form of an edge map, it is reinitialized to handle 
appearance changes in every frame after the object is located. This update is required to 
overcome tracking problems related to viewpoint and lighting condition changes as well 
as non-rigid object motion. In the context of matching using an edge-based model, 
Hausdorff distance measures the most mismatched edges. Due to this, the method 
emphasizes parts of the edge map that are not drastically affected by object motion. For 
instance, in the case of a walking person, the head and the torso do not almost change 
their shape, whereas the motion of the arms and legs makes the shape change. 
Therefore, removing the edges of the arms and legs improves the tracking performance. 
In a similar way, Li et al. [2001] propose using the Hausdorff distance for verification 
of the trajectories and pose estimation problem. 
 
Another approach to match shapes is to find corresponding silhouettes detected in two 
consecutive frames and establishing silhouette correspondence. Silhouette matching 
makes use of object appearance features, whereas point matching uses only motion and 
position-based features. Silhouette detection is usually carried out by background 
subtraction. Once the object silhouettes are extracted, matching is performed by 
computing some distance between the object models associated with each silhouette. 
Object models are usually in the form of density functions (colour or edge histograms), 
silhouette boundary (closed or open object contour), object edges or a combination of 
these models. To match silhouettes in consecutive frames, Haritaoglu et al. [2000] 
model the object appearance by the edge information obtained inside the object 
silhouette. In particular, the edge model is used to refine the translation of the object 
assuming constant velocity. This refinement is carried out by performing binary 
correlation between the objects edge in the consecutive frames. In contrast to looking 
for possible silhouette matches in consecutive frames, tracking silhouettes can be 
performed by computing the flow vectors for each pixel inside the silhouette such that 
the flow that is dominant over the entire silhouette is used to generate the silhouette 
trajectory.  Following this observation, Sato and Aggarwal [2004] proposed to generate 
object tracks by applying Hough transform in the velocity space to the object silhouettes 
in consecutive frames. Binary object silhouettes are detected using background 
subtraction. Then, from a spatio-temporal window around each moving region pixel, a 
velocity Hough transform is applied to compute voting matrices for the vertical flow v 
and the horizontal flow u. These voting matrices provide the so-called Temporal Spatio-
Velocity (TSV) image in 4D (x, y, u, v) per frame. TSV image encodes the dominant 
motion of a moving region pixel and its likelihood in terms of number of votes such that 
a threshold operation will provide regions with similar motion patterns. In contrast to 
appearance-based matching of silhouettes, TSV provides a motion-based matching of 
the object silhouettes and is less sensitive to appearance variations, due to different 
object views (e.g., front and back of the object may look different).  
 
Contour Tracking. Contour tracking methods evolve an initial contour in the previous 
frame to its new position in the current frame. This contour evolution requires that some 
part of the object in the current frame overlap with the object region in the previous 
frame. Tracking by evolving a contour can be performed using two different 
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approaches. The first approach uses state space models to model the contour shape and 
motion. The second approach directly evolves the contour by minimizing the contour 
energy using direct minimization techniques such as gradient descent.  
 
Tracking Using State Space Models. The object’s state is defined in terms of the shape 
and the motion parameters of the contour. The state is updated at each time instant such 
that the contour’s a posteriori probability is maximized. The posterior probability 
depends on the prior state and the current likelihood which is usually defined in terms of 
the distance of the contour from observed edges. Terzopoulos and Szeliski [1992] 
define the object state by the dynamics of the control points. The dynamics of the 
control points are modeled in terms of a spring model, which moves the control points 
based on the spring stiffness parameters. The new state (spring parameters) of the 
contour is predicted using the Kalman filter. The correction step uses the image 
observations which are defined in terms of the image gradients. In 1998, Isard and 
Blake defined the object state in terms of spline shape parameters and affine motion 
parameters. The measurements consist of image edges computed in the normal direction 
to the contour. The state is updated using a particle filter. In order to obtain initial 
samples for the filter, they compute the state variables from the contours extracted in 
consecutive frames during a training phase. During the testing phase, the current state 
variables are estimated through particle filtering based on the edge observations along 
normal lines at the control points on the contour. 
 
 Tracking by Direct Minimization of Contour Energy Functional. In the context of 
contour evolution, there is an analogy between the segmentation methods. The contour 
energy is defined in terms of temporal information in the form of the temporal gradient 
(optical flow). Bertalmio et al. [2000] computes the flow only on the object boundary, 
his approach is motivated by computing the flow vector for each pixel inside the 
complete object region in a circular neighborhood with radius r using a brute force 
search. Once the flow vectors are computed, the contour energy, which is based on the 
brightness constancy constraint, is evaluated. This process is iteratively performed until 
the energy is minimized.  In 2003, Cremers and Schnorr also used the optical flow for 
contour evolution, and constraint such that an object can only have homogeneous flow 
vectors inside the region. Their energy is a modified form of the common Mumford-
Shah energy [Mumford and Shah 1989], which evolves the contour until a region with 
homogeneous flow vectors is achieved. They also incorporated the shape priors to better 
estimate the object shape. The shape priors are generated from a set of object contours 
such that each control point on the contour has an associated Gaussian with a mean and 
standard deviation of the spatial positions of the corresponding control points on all the 
contours. An alternative to using the optical flow is to exploit the consistency of the 
statistics computed inside and outside the object region from one frame to the next. This 
approach requires initialization of the contour in the current frame with its previous 
position. In this context, Ronfrad [1994] defines the energy functional governing the 
contour evolution based on the piecewise stationary image models formulated as Ward 
distances. Ward distance can be considered as a measure of image contrast [Beaulieu 
and Goldberg 1989]. However, Ward distance can not be analitycally defined; hence, 
Ronfard’s approach individually evolves each contour point based on its local 
neighborhood.  In a similar vein, Yilmaz and Shah [2004] evolve an object contour 
using the colour and texture models generated in a band around the object’s boundary. 
The width of the band serves as a means to combine region and boundary-based contour 
tracking methods into a single framework. In contrast to the aforementioned methods, 
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Yilmaz et al. [2004] model the object shape and its changes by means of a level 
setbased shape model. In this model, the grid points of the level set hold the means and 
the standard deviations of the distances of points from the object boundary. The level 
set-based shape model resolves the object occlusions during the course of tracking. 
 

3.3 Occlusion handling  
 
Occlusion handling is another important aspect of silhouette tracking methods. Usually 
methods do not address the occlusion problem explicitly. A common approach is to 
assume constant motion or constant acceleration where, during occlusion, the object 
silhouette from the previous frame is translated to its hypothetical new position. Few 
methods explicitly handle object occlusions by enforcing shape constraints [Mac-
Cormick and Blake 2000; Yilmaz et al. 2004]. Another important issue related to 
silhouette trackers is their capability for dealing with object split and merge. For 
instance, while tracking a silhouette of a person carrying an object, when the person 
leaves an object, a part of the person’s contour will be placed on the left object (region 
split). These topology changes of region split or merge can be handled well by implicit 
contour representations.  
 
A desidered objetive is to provide the tracking procedure with the capacity of 
determining occlusions and re-emergencies of tracked objects, i.e. occlusion handling. 
Over recent years, much research has been developed to solve the problem of object 
tracking under occlusions, because, in real-world tracking, a target being partly or 
entirely covered by other objects for an uncertain period of time is common. Occlusions 
pose two main challenges to object tracking systems. The first challenge is how to 
determine the beginning and the end of an occlusion. The second challenge is how to 
predict the location of the target during and at the end of the occlusion. 
 
Determining occlusion status is very hard for the trackers where the only knowledge 
available on the target is its initial appearance. When some parts of an occluder are 
similar to those of the target, the occluder and the target are mistaken. Various 
approaches that analyze occlusion situations have been proposed. The most common 
one is based on background subtraction [Senior, 2006]. Although this method is 
reliable, yet it only works with a fixed camera and a known background, which is not 
our case in mobile robotics. Other approaches are based on examining the measurement 
error for each pixel [Nguyen, 2004]. The pixels that their measurement error exceeds a 
certain value are considered to be occluded. These methods are not very appropriate in 
outdoor scenarios, where the variability of the pixel values between adjacent frames 
may be high. A mixture of distributions is used in [Jepson, 2003] to model the observed 
value of each pixel, where the occluded pixels are characterised by having an abrupt 
difference with respect to a uniform distribution. Contextual information is exploited in 
[Ito, 2001, Hariharakrishnan, 2005]. These methods have better performance in terms of 
analysing occlusion situations but tracking errors are observed to frequently occur and 
propagate away. In addition, in the case of using these approaches in a mobile robot 
application, there is a need of knowing a priori the robot surroundings. 
 
Determining the re-emergence of the target and recapture its position after it is 
completely occluded for some time is the other main challenge. Setting a similarity 
threshold is one method, yet the optimal threshold value is difficult to determine. This 
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problem is circumvented in [Nguyen, 2004], where the image region that matches the 
best with the template over a prefixed duration is assumed to be the reappearing target. 
In [Zhou,2004], an observation model and a velocity motion model were defined. The 
observation model was based on an adaptive appearance model, and the velocity motion 
model was derived using a first-order linear predictor. Both approaches are defined in 
the framework of particle filter, with provisions for handling occlusion. 
 
In the scenarios where the motion of the target is not smooth neither predictable most of 
the aforementioned methods would fail. Recently, new object tracking methods that are 
robust to occlusion have been reported with very promising results [Zhu, 2008, Pan, 
2007]. The method reported in [Zhu,2008] relies on background subtraction (it works 
only for static cameras) and a k-NN classifier to segment foreground regions into 
multiple objects using on-line samples of object’s appearance local features taken 
before the occlusion. The method described in [Pan,2007] relies on an adaptive template 
matching but it only handles partial occlusions and the matching process seems to be 
computationally costly. 
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Chapter 4. A probabilistic framework for integrated object recognition 
and tracking 
 
Let us assume that we have a sequence of 2D color images I t(x,y)  for t=1,…,L, and that 
there are a maximum of N objects of interest in the sequence of different types 
(associated with classes c=1,…,N, where N≥1), and that a special class c=N+1 is 
reserved for the background.  Furthermore, let us assume that the initial position of each 
object is known and represented by N binary images, pc

0(x,y), for c=1,…,N,  where 
pc

0(x,y)=1 means that the pixel (x,y) belongs to a region covered by an object of class c 
in the first image.  If less than N objects are actually present, some of these images will 
be all-zero and they will not be processed further, so, without loss of generality, we 
consider in the sequel that N is the number of present objects to track. 
 
Hence, we would like to obtain N sequences of binary images  Tc

t(x,y), for c=1,…,N,  
that mark the pixels belonging to each object in each image; these images are the 
desired output of the whole process and can also be regarded as the output of a tracking 
process for each object. We can initialize these tracking images (for t=0) from the given 
initial positions of each object, this is 
 

    ),(),( 00 yxpyxT cc =                                                 (1) 

 
In our approach, we divide the system in three modules. The first one performs object 
recognition in the current frame (static recognition) and stores the results in the form of 
probability images (one probability image per class), that represent for each pixel the 
probabilities of belonging to each one of the objects of interest or to the background, 
according only to the information in the current frame.  This can be achieved by using a 
classifier that has been trained previously to classify image regions of the same objects 
using a different but similar sequence of images, where the objects have been 
segmented and labeled. Hence, we assume that the classifier is now able to produce a 
sequence of class probability images Qc

t(x,y)  for t=1,…,L and c=1,…,N+1, where the 
value Qc

t(x,y) represents the estimated probability that the pixel (x,y) of the image I t(x,y)  
belongs to the class c, which has been computed taking into account a local feature 
vector (see section 4.1).  In general, the probability images Qc

t(x,y) can be regarded as 
the output of a static recognition module defined by some function r on the current 
image: 
 

( ) ),(),( yxIryxQ tt
c =                                              (2) 

 
In the second module (dynamic recognition), the results of the first module are used to 
update a second set of probability images, pc , with a meaning similar to that of Qc but 
now taking into account as well both the recognition and tracking results in the previous 
frames through a dynamic iterative rule. More precisely, we need to store and update 
N+1 probability images pc

t(x,y), for c=1,…,N+1,  where the value pc
t(x,y)  represents the 

probability that the pixel (x,y) in time t belongs to an object of class c (for c=1,…,N) or 
to the background (for c=N+1). In general, these dynamic probabilities should be 
computed as a certain function f of the same probabilities in the previous step, the class 
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probabilities given by the classifier for the current step (which have been obtained from 
the actual measurements) and the tracking images resulting from the previous step: 
 

( ) ),(),,(),,(),( 11 yxTyxQyxpfyxp tttt
c

−−=                     (3) 

 

 
 
Figure 3 Block diagram of the dynamic object recognition and tracking process. 
 
 
The update function f used in our system is described in section 4.2, which incorporates 
some additional arguments coming from the tracking module to adapt its parameters. 
Finally, in the third module (tracking decision), tracking binary images are determined 
for each object from the current dynamic recognition probabilities, the previous tracking 
image of the same object and some other data, which contribute to provide a prediction 
of the object’s apparent motion in terms of translation and scale changes as well as to 
handle the problem of object occlusion. Formally, the tracking images Tc

t(x,y) for the 
objects (1≤ c ≤N) can be calculated dynamically using the pixels probabilities pt(x,y) 
according to some decision function d: 
 

 ( ) ),(),,(),( 1 yxTyxpdyxT t
c

tt
c

−=                                    (4) 

 
in which some additional arguments and results may be required (see (12) and Section 
4.3 for a detailed description of the tracking decision module). 
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Figure 4 Images of PIORT modules.  I t(x,y) input image, Qc

t(x,y) static probability image, Pc
t(x,y) dynamic  

probabilitiy image, ( )yxT t
c ,ˆ  a priori tracking image, Tc

t(x,y) a posteriori tracking image, Gc
t(x,y) graphic overly of the 

contours of the a posteriori tracking image on the input image. 

4.1 Static recognition module 
 
In our PIORT (Probabilistic Integrated Object Recognition and Tracking) framework, 
the static recognition module is based on the use of a classifier that is trained from 
examples and provides posterior class probabilities for each pixel from a set of local 
features. The local features to be used may be chosen in many different ways. A 
possible approach consists of first segmenting the given input image I t(x,y) in 
homogeneous regions (or spots) and computing some features for each region that are 
afterwards shared by all its constituent pixels. Hence, the class probabilities Qc

t(x,y) are 
actually computed by the classifier once for each spot in the segmented image and then 
replicated for all the pixels in the spot. For instance, RGB color averages can be 
extracted for each spot after color segmentation and used as feature vector v(x,y) for a 
classifier. In the next two subsections we present two specific classifiers that have been 
implemented and tested within the PIORT framework using this type of information. 
 

4.1.1 A simple Bayesian method based on maximum likelihood and background 
uniform conditional probability 
 
Let c be an identifier of a class (between 1 and N+1), let B denote the special class 
c=N+1 reserved for the background, let k be an identifier of an object (non-background) 
class between 1 and N, and let v represent the value of a feature vector. Bayes theorem 
establishes that the posterior class probabilities can be computed as 
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Our simple Bayesian method for static recognition is based on imposing the two 
following assumptions: 
 

a) equal priors: all classes, including B, will have the same prior probability, i.e. 
P(B)=1/(N+1) and P(k)=1/(N+1) for all k between 1 and N. 

b) a uniform conditional probability for the background class, i.e. P(v|B)=1/M, 
where M is the number of values (bins) in which the feature vector v is 
discretized.   

 
Note that the former assumption is that of a maximum likelihood classifier, whereas the 
latter assumes no knowledge about the background. After imposing these conditions, 
equation (5) turns into 

                      ( ) ( )
( )∑

=

+
= N

k
kvP

M

cvPvcP

1
| 1

|  |                                                   (6) 

 
and this gives the posterior class probabilities we assign to the static probability images, 
i.e. Qc

t(x,y) = P(c | v(x,y)) for each pixel (x,y) and time t.  
 
It only remains to set a suitable M constant and to estimate the class conditional 
probabilities P(v | k) for all k between 1 and N (object classes). To this end, class 
histograms Hk are set up using the labeled training data and updated on-line afterwards 
using the tracking results in the test data.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5  Two examples of probability images given by bayesian method in the static recognition module.  
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For constructing the histograms, let v(x,y) be the feature vector consisting of the original 
RGB values of a pixel (x,y) labeled as belonging to class k. We uniformly discretize 
each of the R, G and B channels in 16 levels, so that M =16×16×16= 4096. Let b be the 
bin in which v(x,y) is mapped by this discretization. To reduce discretization effects, a 
smoothing technique is applied when accumulating counts in the histogram as follows:  

   ( ) ( )
( ) ( ) bbbHbH

bneighborsbHbH

kk

kk

 ofneighbor  a is ' if1' : '
))(#10( : 

+=
−+=                            (7) 

where the number of neighbors of b (using non-diagonal connectivity) varies from 3 to 
6, depending on the position of b in the RGB space. Hence, the total count Ck of the 
histogram is increased by ten (instead of one) each time a pixel is counted and the 
conditional probability is estimated as P(v | k) = Hk(b) / Ck  where b is the bin 
corresponding to v. The above smoothing technique is also applied when updating the 
histogram from the tracking results; in that case the RGB value v(x,y) in the input image 
I t(x,y) of a pixel (x,y) is used to update the histogram Hk (and the associated count Ck) if 
and only if Tk

t(x,y)=1. 
 

4.1.2 A neural net based method 
 
In this method, a neural net classifier (a multilayer perceptron) is trained off-line from 
the labeled training data. The RGB color averages extracted for each spot after color 
segmentation are used as feature vector v(x,y) and supplied as input to the network in 
both training and test phases. To the contrary of the Bayesian method described 
previously, training data for the background class are also provided by selecting some 
representative background regions in the training image sequence, because the network 
needs to gather examples for all classes including the background. The network is not 
retrained on-line using the tracking results in the test phase (this is another difference 
with respect to the Bayesian method described). 
 
It’s well known that using a 1-of-c target coding scheme for the classes, the outputs of a 
network trained by minimizing a sum-of-squares error function approximate the 
posterior probabilities of class membership (here, Qc

t(x,y) ), conditioned on the input 
feature vector [Bishop, 1995]. Anyway, to guarantee a proper sum to unity of the 
posterior probabilities, the network outputs (which are always positive values between 0 
and 1) are divided by their sum before assigning the posterior probabilities. 
 
In this module we use a feed-forward 2-layer perceptron architecture (i.e. one hidden 
layer of neurons and an output layer) using standard backpropagation as training 
algorithm. Hyperbolic tangent and sine functions were used as activation functions in 
the hidden layer and the output layer, respectively. A modified version of the PDP 
simulator of Rumelhart and McClelland [Rumelhart and McClelland, 1986] was 
employed for the experiments, setting a learning rate of 0.003 and a momentum 
parameter of zero for backpropagation, and a maximum number of 2,000 training 
epochs for each run. 
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Figure 6 Neural network. Feed-forward 2-layer perceptron. 
 
 

 
Figure 7 Two examples of probability images given by neural network method in the static recognition module.   
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4.2 Dynamic recognition module 
 
Even though the static recognition module can be applied independently to each image 
in the sequence, this does not exploit the dynamic nature of the problem and the 
continuity and smoothness properties that are expected in the apparent motion of the 
objects through the sequence. Hence, a dynamic update of the pixel class probabilities 
pc

t(x,y) is desired that takes into account these properties. To this end, not only the 
previous probabilities pc

t-1(x,y) and the results of the current static recognition Qc
t(x,y) 

have to be combined but also the binary results of the tracking decision in the previous 
step Tc

t-1(x,y) have to be considered, since this permits to filter some possible 
misclassifications made by the static classifier. Typically, some background spots are 
erroneously classified as part of an object and this can be detected if these spots are 
situated far from the last known position of the object. 
 
Therefore, the update function f for the dynamic class probabilities can be defined as 
follows (for some adaptive parameters αc

t, 0<αc
t <1): 
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Figure 8 Dynamic probability images coming from (a) neural network, (b) Bayesian method, in the dynamic 
recognition module.   
 
A tracking image for the background, which is required in the previous equation, can be 
defined simply as  

⎩
⎨
⎧ ≤≤∀=

=+ otherwise0
1:0),(if1

 ),(1
NccyxT

yxT
t

ct
N                                 (9) 

and computed after the tracking images for the objects. 
 
The parameter αc

t that weights the influence of the previous probabilities must be 
adapted depending on the apparent motion of the tracked object of class c. If this motion 
is very slow, αc

t should reach a maximum αmax closer to 1, whereas if the motion is very 
fast, αc

t should reach a minimum αmin closer to 0. In order to a set a proper value for αc
t 
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the areas (Ac
t-1 and Ac

t-2) and mass centers (Cc
t-1 and Cc

t-2) of the object in the two 
previous tracking images are used in the following way. 
 
Let π11 −− = t

c
t
c Ar  and π22 −− = t

c
t

c Ar  be the estimates of the object radius in the two 

previous frames obtained by imposing a circular area assumption. Let 21 −− −= t
c

t
cc CCd  be 

the estimated displacement of the object in the 2D image and let 21max −− += t
c

t
cc rrd  be 

the maximum displacement yielding some overlapping between the two former circles.  
 
 

 
Figure 9 Rough estimate of object’s motion using circular area assumption (a) Slow motion, (b) Fast motion, (c) 
Decreasing size,(d) Growing size. 
 
If  max

cc dd ≥  we would like to set minαα =t
c , whereas if 0=cd  then the value of αc

t 
should be set according to the change of the object apparent size: Let 

( )2121 ,max −−−− −= t
c

t
c

t
c

t
cc rrrrs  be a scale change ratio. If 0=cs  (unchanged object 

size) then we would like to set maxαα =t
c  whereas in the extreme case 1=cs  then we 

would set minαα =t
c  again. Combining linearly both criteria, displacement and scale 

change, we define the prior value 
 

   ( ) ( ) ccc
t
c sdd minmax

max
minmaxmax  ˆ αααααα −−−−=                            (10) 

 
(which satisfies maxˆ αα ≤t

c ) and finally the parameter αc
t is set as follows: 
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The constants αmin and αmax were set to 0.1 and 0.6, respectively, in our experiments 
(see Chapter 5). 
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4.3 Tracking decision module 
 

As depicted in Figure 3, the tracking images Tc
t(x,y) for the objects (1 ≤ c ≤ N) can be 

calculated dynamically using the pixels probabilities pt(x,y) according to some decision 
function d. However, this function involves some additional arguments and results, as 
explained next. 
 
To give an initial estimate of the foreseen translation and rescaling of the object in the 
current step, the measurements of both the object mass center and area in the tracking 
images of the two previous steps are required. Hence, the areas Ac

t-1 and Ac
t-2 and the 

mass centers Cc
t-1 and Cc

t-2, already used in the dynamic recognition module as we have 
seen, must also be supplied here. The application of the estimated transformation to the 
previous tracking image Tc

t-1(x,y) will serve to reduce the image area to explore using 
the class probabilities while filtering (blacking) the rest. This strategy alone permits to 
track visible objects reasonably well [Amézquita, 2006,2007] but it fails completely if 
the object becomes occluded for some frames [Amézquita , 2009].  
 
In order to cope with occlusion, more information is needed in the decision function d. 
The key point is to distinguish between the a posteriori tracking image Tc

t(x,y) and an a 
priori prediction ( )yxT t

c ,ˆ , which could maintain some relevant information of the object 
before the occlusion such as area and movement. The object mass center Cc

t and area Ac
t 

needed for tracking should be measured either from Tc
t(x,y) or ( )yxT t

c ,ˆ  depending on 
whether the object is visible or occluded. Hence, an occlusion flag Oc

t has to be 
determined as an additional result. Moreover, the two previous flags Oc

t-1 and Oc
t-2 help 

to know whether the object is entering or exiting an occlusion. In addition, t
cmr  is a 

movement weighted average vector that represents the past trajectory direction of the 
tracked object, which is useful to solve some ambiguous cases that happen when the 
object crosses or exits an occlusion by another object with a similar appearance (same-
class occlusion). Finally, it should be taken into account that the uncertainty in the 
prediction ( )yxT t

c ,ˆ  grows as the number of consecutive frames the object is occluded 
increases. In the original method described in [Amézquita, 2007], two constant 
parameters ε and δ were used to define an uncertainty region around each pixel 
transformation. Since we want to adjust the level of uncertainty based on the duration of 
the occlusion, these parameters have to be adaptive for each object, i.e. εc

t and δc
t. 

Summarizing, the decision function d involves the following arguments and results: 
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This function is described in detail in the next subsections, which cover the different 
independent sub-modules of the tracking decision module. Figure 10 illustrates 
graphically some of the calculations that are explained in what follows. 
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4.3.1 A priori prediction of the tracked objects 
 
The first step is to give a priori estimates of the mass center and area of the object in 
time t. The mass center is predicted as follows: 
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Figure 10 Geometrical illustration of the tracking process. Estimates of object’s area and mass center for step t are 
computed from previous values in t-1 and t-2. For each pixel in step t a rectangular region in step t-1 is determined 
which allows the assignment to the pixel of one of three labels: “certainly belonging to the object” (yellow diagonal-
bar-shaded region), “uncertain” (blue brick-shaded region) and “certainly not belonging to the object” (the rest of the 
image). 
 
When the object is exiting an occlusion, Cc

t-2 is not reliable enough to be used together 
with Cc

t-1 to predict the next movement; therefore, a conservative estimate is given, just 
the previous measured value. In the rest of cases (the object is visible, is occluded or is 
entering an occlusion), a constant rate prediction is used. Note, however, that when the 
object is occluded, the mass center is not measured on the a posteriori tracking image, 
but on the a priori one, as we will see later.  
 
It is interesting to notice that the above constant rate prediction can be proved to be 
equivalent to the one given by a linear Kalman filter for a particular setting of the filter 
parameters and equations. Let t

c
t
c

t
c

t
c uBwAw ω++=+  1  and t

c
t
c

t
c wHd ν+=  be respectively 

the state and measurement equations of a linear Kalman filter (KF) for predicting the 
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mass center of object c. If we set A=I, B=I, H=I, dc
t =Cc

t as the measurement, uc
t = Cc

t - 
Cc

t-1 as the input and Rt=0 as the covariance matrix of the measurement noise νc
t (which 

is assumed to be zero), then the a priori and a posteriori estimates of state wc
t given by 

the KF are 2Cc
t-1 - Cc

t-2 and Cc
t respectively.  

 
The a priori estimate of the object area is calculated as follows: 
 

     ( )  
otherwise

ifˆ
1

12221

⎪⎩

⎪
⎨
⎧ ¬∧¬=

−

−−−−

t
c

t
c

t
c

t
c

t
ct

c
A

OOAAA                                        (14) 

 
If the object has been visible in the two previous frames, a constant rate of a scale factor 
is used to predict the area. It can be proved that this prediction is equivalent to the one 
given by a (non-linear) extended Kalman filter for a particular setting of the filter 
parameters and equations. Let ( )t

c
t
c

t
c

t
c uwfw ω,, 1 =+  and ( )t

c
t
c

t
c whd ν, =  be the state and 

measurement equations, respectively, of an extended Kalman filter (EKF) for predicting 
the area of object c. If we set ( ) t

c
t
c

t
c

t
c

t
c

t
c uwuwf ωω +=,, , ( ) t

c
t
c

t
c

t
c wwh νν +=, , dc

t=Ac
t as the 

measurement, uc
t = Ac

t /Ac
t-1 as the input and Rt=0 as the covariance matrix of the 

measurement noise νc
t (which is assumed again to be zero), then the a priori and a 

posteriori estimates of state wc
t given by the EKF are (Ac

t-1 )2/ Ac
t-2 and Ac

t respectively. 
In the rest of cases (the object is occluded or is entering or exiting an occlusion), the 
area is supposed to remain constant.  
 
From these predictions, a change of coordinates transformation can also be estimated 
that maps each pixel Pc

t-1 = (xc
t-1,yc

t-1) of the object c in step t-1 (maybe occluded) into 
its foreseen position in step t: 

 

( ) 111 ˆˆ ˆ −−− −+= t
c

t
c

t
c

t
c

t
c

t
c AACPCP                                           (15) 

 
Actually, we are interested in applying the transformation in the inverse way, i.e. to 
know which is the expected corresponding position in time t-1, ( )111 ˆ,ˆˆ −−− = t

c
t
c

t
c yxP , of a 

given pixel  Pc
t = (xc

t, yc
t) in t: 

      
( )

1

11

ˆ

ˆ
 ˆ

−

−− −
+=

t
c

t
c

t
c

t
ct

c
t

c
AA

CP
CP                                                      (16) 

 
This is enough to compute the a priori tracking image ( )yxT t

c ,ˆ  in time t, either from the 
previous a posteriori or a priori tracking image, depending on the previous occlusion 
flag: 

 

     ( ) ( )
( )  

otherwiseˆ,ˆˆ
ifˆ,ˆ

,ˆ
111

1111

⎩
⎨
⎧ ¬

=
−−−

−−−−

t
c

t
c

t
c

t
c

t
c

t
c

t
ct

c yxT
OyxT

yxT                                    (17) 

 
where the values of 11 ˆ,ˆ −− t

c
t
c yx  are clipped whenever is necessary to keep them within 

the range of valid coordinates.  
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4.3.2 First computation of the tracking images 
 
To compute the a posteriori tracking image Tc

t(x,y), the pixel class probabilities pt(x,y) 
are taking into account only in some image region that is determined from Tc

t-1(x,y) or 
( )yxT t

c ,ˆ 1−  (depending on Oc
t-1) and the tolerance parameters εc

t and δc
t. Since the 

estimates of the translation and scale parameters in the coordinate transformation can be 
inaccurate, we define a rectangular region of possible positions for each pixel by 
specifying some tolerances in these estimates. To this end, we use the adaptive 
parameters εc

t and δc
t, which must be positive values to be set in accordance with our 

confidence in the translation and scale estimates respectively (the most confidence the 
smallest tolerance and vice versa), and which are adjusted according to the following 
rules: 

 
( )

 
otherwise

if,min 121
max

⎩
⎨
⎧ ∨+

=
−−−

ini

t
c

t
cincr

t
ct

c
OO

ε
εεε
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( )

 
otherwise

if,min 121
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⎩
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⎧ ∨+

=
−−−

ini

t
c

t
cincr

t
ct

c
OO

δ
δδδ

δ                              (19) 

 
where εini, δini are default values, εmax, δmax are the maximal allowed values and εincr, 
δincr are the respective increases for each successive step under occlusion. Note that the 
tolerances keep on growing when exiting an occlusion until the object has been visible 
in the two previous frames; this is needed to detect and track the object again. 
 
Let ( )111 , −−− = t

Cc
t
Cc

t
c yxC  and ( )t

Cc
t
Cc

t
c yxC ˆ,ˆˆ =  be respectively the previous mass center and 

the a priori estimate of the current mass center. The four vertices of the rectangular 
uncertainty region centered at 1ˆ −t

cP  are denoted (top-left) TLc
t-1 = (xinfc

t-1, yinfc
t-1), (top-

right) TRc
t-1=(xsupc

t-1, yinfc
t-1),  (bottom-left)  BLc

t-1=(xinfc
t-1, ysupc

t-1) and (bottom-right) 
BRc

t-1 = (xsupc
t-1, ysupc

t-1), where:  
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The values of xinfc

t-1, yinfc
t-1, xsupc

t-1 and ysupc
t-1 are clipped whenever is necessary to 

keep them within the range of valid coordinates.  
 
Now, each pixel Pc

t = (xc
t,yc

t) is labeled, with respect to object c, as one of three labels 
(“certainly belonging to the object c”, “certainly not belonging to the object c” or 
“uncertain”) as follows.  
 
If Oc

t-1 is false then: if all the pixels in the rectangular region delimited by TLc
t-1, TRc

t-1, 
BLc

t-1, BRc
t-1 have a common value of 1 in Tc

t-1(x,y), it is assumed that Pc
t is definitely 

inside and certainly belongs to object c; to the contrary, if they have a common value of 
0 in Tc

t-1(x,y), it is assumed that Pc
t is clearly outside and certainly does not belong to 

object c; otherwise, the rectangular region contains both 1 and 0 values, the pixel Pc
t is 

initially labeled as “uncertain”. 
 
However, if Oc

t-1 is true, Tc
t-1(x,y) will represent a totally or partially occluded object 

and we cannot rely on it, but on the predicted ( )yxT t
c ,ˆ 1− , which is based on information 

previous to the occlusion. If all the pixels in the rectangular region delimited by TLc
t-1, 

TRc
t-1, BLc

t-1, BRc
t-1 have a common value of 0 in ( )yxT t

c ,ˆ 1− , it is assumed that Pc
t does 

not belong to object c; otherwise (the rectangular region contains both 1 and 0 values or 
only 1 values), the pixel Pc

t is labeled as “uncertain”.  
 
Only for the uncertain pixels (x,y) the dynamic probabilities pt(x,y) will be used. Recall 
that these probabilities will have been updated previously from the object recognition 
results in time t, Q t(x,y), also expressed as probabilities. More precisely, we propose the 
following rule to compute the value of each pixel of the a posteriori tracking image for  
object c in time t: 

⎪
⎪
⎪

⎩
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⎪

⎨
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+=

otherwise0

 1 and 1between   allfor  maximum
 theis),(anduncertainisit
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4.3.3 Post-processing of the tracking images 
 
Sometimes, the tracking images Tc

t(x,y) obtained by applying eq. (24) contain 
disconnected regions of 1-valued pixels, or, said in other words, more than one 
connected component t

ciT , Ii ≤≤   1 , 1>I . This may be produced by a variety of causes, 
mainly segmentation or recognition errors, but also may be due to possible partial 
occlusions of the target object by an object of a different class. In addition, a particular 
problem that leads to object split occurs immediately after a same-class crossing or 
occlusion: when the target object has just finished crossing another object or region 
which is recognized to be in the same class (distracter), then the tracking method is 
misled to follow both the object and the distracter. It is very difficult to devise a general 
method that can always distinguish between erroneous components due to noise or 
distracters and correct object components, especially if separated components are 
allowed to cope with partial occlusions, but some useful heuristics based on properties 
such as size, movement or shape may be defined that work reasonably well in a 
majority of cases.  
 
In order to eliminate noisy regions and to circumvent the same-class crossing problem, 
while handling partial occlusions at the same time, we propose a post-processing step 
that removes from Tc

t(x,y) some possible artifacts or distracters (setting some initially 1-
valued pixels to zero). In fact, this step is only carried out if Tc

t(x,y) contains more than 
one component. In such a case, we need to choose which components t

ciT  to keep (one 
or more) and which to discard. To this end, three heuristic filters are applied 
sequentially, whenever two or more components remain before the filter application. 
 
The first filter is aimed at deleting small noisy regions and is solely based on their size. 
Let t

ciA  be the area of the i-th connected component t
ciT  and let )(Area t

cT  be the total 
area covered by 1-valued pixels in Tc

t(x, y). The i-th component is removed if the ratio 
)(Area t

c
t
ci TA  is below a given thresholdκ , e.g. κ = 0.15.  

 
The next images show an example of application of this first filter, if the ratio 

)(Area t
c

t
ci TA <0.15 delete region t

ciA . 

 
Figure 11 Application of first filter on the intermediate tracking.Region 1 red area =61, Region 2 blue area=23, 
Region 3 white area=899, )(Area t

cT =983; )(Area76
11

t
cTA =61/983=0,0620; )(Area76

12
t

cTA =23/983=0,0233; 

)(Area76
13

t
cTA =899/983=0,9145. 
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The following image shows the selected region that passed the area ratio threshold. 
 

Figure 12 First filter results. (a) Binary final tracking, (b) The final tracking area highlighted in the original image. 
 
The second filter is aimed at deleting distracters, including those appearing after same-
class occlusion, and is based on a comparison between the apparent movement of the 
remaining components and the previous recent trajectory of the tracked object 
represented by the movement vector 1−t

cmr . Let t
ciC  be the mass center of the i-th 

connected component t
ciT  and define an associated movement vector 1−−= t

c
t
ci

t
ci CCzr  for 

each component. Then,  
 

      
1

1,
θcos

−

− 〉〈
=

t
c

t
ci

t
c

t
ci

ci mz
mz
rr

rr

                                                     (25) 

 
is a measure of the alignment between the vectors 1−t

cmr  and t
cizr , which is only reliable 

for our purposes if both vectors have a sufficiently large norm. Otherwise, the angle θci 
can be considered rather random, since may be affected a lot by adding small 
perturbations on the vectors. Consequently, abrupt trajectory changes (greater than 90 
degrees) are penalized if we remove the i-th component t

ciT  when the condition  

λλ ≥∧≥∧< −10θcos t
c

t
cici mz rr  holds, where λ is another threshold, e.g. λ = 3. 

However, to guarantee that at least one component is kept, the remaining component for 
which t

cizr is the most collinear vector with respect to 1−t
cmr , i.e. the component i such that 

      
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ 〉〈

=
−

t
ci

t
c

t
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z
mz

i r

rr 1,
max arg                                                 (26) 

is never removed by this second filter. 
 
The following figures show an example of application of this second filter. 
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Figure 13 Application of second filter on the intermediate tracking. Blue arrow repesents the  1−t
cmr  previous recent 

trajectory of the tracked object, the red arrow represents the most collinear vector with respect to 1−t
cmr , and green, 

magenta arrow repesent the other t
cizr  vectors. 

 

 
Figure 14 Second filter result.  (a) Binary final tracking, (b) Final tracking area highlighted in the original image. 
 
The third filter is also aimed at deleting distracters and is based on a comparison 
between the shapes of the components and that of the a priori prediction of the target 
object (represented by the 1-valued region in ( )yxT t

c ,ˆ ). For each remaining 
component t

ciT , the a priori prediction of the target object is moved from its original 

center t
cĈ  to the component center t

ciC , thus resulting in a translated copy ( )yxT t
ci ,ˆ , and 

the spatial overlap between both shapes is then measured as follows: 
 

     
( )
( )t

ci
t

ci

t
ci

t
ci

ci TT
TT

SO ˆ   Area

ˆ   Area
  

∪

∩
=                                                   (27) 

 
The components having a spatial overlap 243.0<ciSO  (which is the overlap obtained 
between two circles of the same size when one of the centers is located in the border of 
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the other circle) are deleted in this third filter, unless ciSO  is the maximum spatial 
overlap of the remaining components. This exception guarantees the persistence of at 
least one component in the final tracking image. 
The following figures show an example of how the spatial overlap between  t

ciT and t
ciT̂  

is calculed for one of the regions in the intermediate tracking image. 
 
 
 
 
 
 
                      
 
 
 
 
 (a) Intermediate tracking. Blue color R1                               (b) A priori prediction of the target object. 
 White color R2, Red color R3. 
 
 
 
 
                      
 
 
 
 
 
 
 
 

(c) Tracking Rregion R2 displaced.                                        (d) Region R2 of t

ciT̂ A priori prediction. 
 
 
 
 
 
 
         
 
 
 
 
 
(e) AND image between R2 region of t

ciT̂   and                    (f) OR image   between R2 region of t

ciT̂  and 

R2 region of  t

ciT                                                                     R2 region of  t

ciT  
 
Figure 15 Application of third filter on the intermediate tracking. 
 

In the example above, the overlap resutls for each region of  t
ciT are 

= 11SO 70/433=0.161663 
= 12SO 329/467= 0.704497 
= 13SO 218 /437= 0.498856 
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The region R1 of  t
ciT is deleted because 243.0<ciSO  while R2 and R3 remain. 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 16. Final tracking. R2 and R3 regions selected area highlighted in the original image  
 
As a result of the post-processing, the pixels of all the components t

ciT  removed by any 
of the three filters are set to zero in the final tracking image Tc

t(x, y).  
 

4.3.4 Determination of occlusion and geometric measurements 
 
Once both Tc

t(x, y) and ( )yxT t
c ,ˆ  have been determined, it is possible to detect the 

occurrence of an occlusion (i.e. to set the current occlusion flag) in the following way.  
Let Area (Tc

t) be the measured area of the 1-valued region in the final Tc
t(x,y) and let 

Area( t
cT̂ ) be the measured area of the 1-valued region in ( )yxT t

c ,ˆ . Then, 
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where 0 < r1 < r2 < 1 (for instance, r1=0.5, r2=0.75). Note that the condition for 
remaining in occlusion mode is harder than the condition for initiating an occlusion. 
This facilitates the recovery of the object track when exiting an occlusion or when a 
false occlusion has been detected. 
 
Next, the a posteriori estimates of the object mass center and area are selected between 
those of the a priori and a posteriori tracking images based on the value of the 
occlusion flag: 

( )
( )  

otherwiseˆ
if

⎩
⎨
⎧ ¬

= t
c

t
c

t
ct

c TMC
OTMC

C                                                  (29) 

 
where MC(Tc

t) is the measured mass center of the 1-valued region in the final Tc
t(x,y) 

and MC( t
cT̂ ) is the measured mass center of the 1-valued region in ( )yxT t

c ,ˆ , and 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 33

( )
( )  

otherwiseˆArea
ifArea
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Finally, the movement weighted average vector t

cmr  is updated afterwards as follows:  
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where β is a positive parameter between 0 and 1, e.g. β=0.2, and t

cvr  is the current 
movement defined by 1−−= t

c
t
c

t
c CCvr . Note that the second row in (31) is a typical 

moving average computation, while the first row denotes a simple average for the 
starting steps, and both give the same result for t=1/β. 
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Chapter 5. Experimental work and results 
 
The experiments that have been performed are presented next divided in two sections. 
The first section presents the preliminary experiments that were realized without object 
occlusion. These include both the feature selection and static recognition results and the 
intial experiments on dynamic recognition and tracking (in which the static recognition 
module also is involved).  
 
In the second section, a set of comparative tracking experiments including object 
occlusions are presented. These are also divided in two parts: the experimental results 
on video sequences taken with a still camera and the experimental results on video 
sequences taken with a moving camera. 

5.1 Preliminary experiments without object occlusion 
 
Two video sequences of 88 color images each, that correspond to the left and right 
sequences of a stereo vision system installed on the MARCO mobile robot at the IRI1 
research centre, were employed for an initial validation of the proposed approach. They 
show an indoor scene with slight changes in perspective and scale caused by the robot 
movement. In this scene we selected N=3 objects of interest: a box, a chair and a pair of 
identical wastebaskets put together side by side; and the objective was to discriminate 
them from the rest of the scene (background) and locate them in the images.  Figure 17 
displays three frames of the right sequence; the whole right sequence can be obtained in 
http://www.lsi.upc.edu/~alquezar/ris.avi. The slow relative motion of the objects in the 
sequences is due to the slow motion of the mobile robot during its navigation in an 
indoor environment, and this small displacement of the objects is an expected 
characteristic of the video sequences we wish to deal with. 
 

 
 

Figure 17 Three consecutive frames of the right sequence. 
 
Before segmentation, the images in the sequences were preprocessed by applying a 
median filter on the RGB planes to smooth the image and reduce some illumination 
reflectance effects and noise. Then, all images in both sequences were segmented 
independently using the Felzenszwalb-Huttenlocher algorithm [Felzenszwalb, 98], 
which is a pixel merge method based on sorted edge weights and minimum spanning 
tree. Figure 18 displays three frames of the segmented right sequence. 
 

                                                 
1 IRI is an acronym for the Institute of Robotics and Industrial Informatics, CSIC-UPC, in Barcelona. 
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Figure 18 Three consecutive frames of the segmented right sequence. 
 
The output of the segmentation process for each image consists of a list of regions 
(spots) that partition the image in homogeneous pieces, where each region is defined by 
the set of coordinates of the pixels it contains. For each spot, its mass center and several 
features listed in the following subsection were computed. 
 
The experimental work carried out with these image sequences can be split in two parts: 
the former covers the experiments related only to feature selection and the performance 
of the static recognition module (subsection 5.1.1), whereas the latter includes the 
experiments related mainly to dynamic recognition and tracking (subsection 5.1.2). This 
presentation order also coincides with the temporal order in which the experiments were 
performed. This is relevant because the static recognition module is also involved in the 
dynamic recognition and tracking results, so that the results of the first experiments 
were taken into account for the subsequent work. 
 

5.1.1 Feature selection and static recognition results.  
 
In order to be processed as a pattern by a neural network, a spot must be described by a 
feature vector. Table 1 displays the 14 variables that were initially considered to form 
the feature vector for training and testing the networks. In this subsection we will 
present classification results obtained from several different subsets of these 14 
variables.  
 
Two types of information were extracted from the spots: color and geometry. With 
regards to color, average and variance values for each one of the three RGB bands were 
calculated for each spot on the basis of the corresponding intensity values of the spot 
pixels in the original image (not in the segmented image, for which spot color variance 
would be zero). This is, the result of the segmentation algorithm served to identify the 
pixels of every spot, but the color characteristics of these pixels were taken from the 
original RGB image.  
 
The geometrical information might include features related to position, orientation, size 
and shape. Because of the robot movement, we were mainly interested in shape 
descriptors that were invariant to translation and scale, and to this end, we decided to 
use the seven invariant geometric moments defined by Hu [Hu, 62]. In addition and 
since the range of variation of the objects’ size was rather limited in the video sequence, 
we also calculated and used the size of each spot, i.e. its area measured in number of 
pixels. 
 
For the calculation of the moments corresponding to a spot, all the pixels that form the 
spot are involved (not only its boundary pixels). More precisely, the seven invariant 
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moments, independent of position and size of the region, that we used are defined by the 
following equations: 
 

I1=N(2,0)+N(0,2)            (32)

I2=( N(2,0)-N(0,2))2+4(N(1,1))2            (33)

I3=( N(3,0)-3N(1,2) )2 +( 3N(2,1)-N(0,3) )2             (34)

I4=( N(3,0)+N(1,2))2+(N(2,1)+N(0,3) )2            (35)

I5=(N(3,0)-3N(1,2) )(N(3,0)+N(1,2))[ (N(3,0)+N(1,2))2 -
3(N(2,1)+N(0,3) )2] +(3N(2,1) –

N(0,3))(N(2,1)+N(0,3))[3(N(3,0)+N(1,2))2-(N(2,1)+N(0,3) )2] 

           (36)

I6=( N(2,0) – N(0,2) ) [ (N(0,3)+N(1,2))2-( N(2,1)+N(0,3))2 ]  
+4N(1,1)(N(3,0)+N(1,2) )(N(2,1)+N(0,3) ) 

           (37)

I7=(3N(2,1)-N(0,3)) (N(3,0)+N(1,2) )[ ( N(3,0)+N(1,2) )2-
3(N(2,1)+N(0,3) )2] +(3N(1,2)-N(3,0) )(N(2,1)+N(0,3) )[ 

3(N(3,0)+N(1,2)2 )-(N(2,1)+N(0,3) )2]   

           (38)

 
where N (p, q) are the normalized central moments of order two, which are given by: 
 

N (p, q) = MC (p, q) / MCβ (0, 0)  ; β = ((p + q) / 2) + 1            (39)

MC(p,q) = ∑∑ (x-X) p (y-Y) q f(x,y)            (40)

MC(0,0)= ∑∑ f(x,y)              (41)

  
where f (x,y) is the intensity value of the pixel (x,y) in the segmented image, as given 
by the average of the three planes RGB, and (X,Y) are the mean coordinates of the spot. 
It must be noted that, in this case, all pixels in the same spot share the same value f(x,y), 
which depends on the color assigned to the spot as result of the segmentation process. 
 
 
 
 
 
 
 
 
 
 
 

Table 1.  Initial set of variables that form the feature vector for every spot. 

 

Number of variable Feature 
1 Size of spot 
2 Average red plane 
3 Average green plane 
4 Average blue plane 
5 I1RGB invariant moment 
6 I2RGB invariant moment 
7 I3RGB invariant moment 
8 I4RGB invariant moment 
9 I5RGB invariant moment 
10 I6RGB invariant moment 
11 I7RGB invariant moment 
12 Variance red plane 
13 Variance green plane 
14 Variance blue plane 
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For object learning, spots selected through ROI (region-of-interest) windows in the left 
image sequence were collected to train the neural networks. These windows were 
manually marked on the images with a graphics device to encompass the three objects 
of interest and a large region on the floor. Figure 19 shows one of the images and its 
segmentation together with the ROI windows on them. 
 
 

 

 
 

Figure 19 ROI windows. One of the original images (left) and the corresponding segmented image (right), with four 
boxes marked on them.Spot mass centers are also displayed in the right image. 
 
The remaining set of spots, those with its mass center inside the ROI windows, was 
further filtered by removing all the spots with a size lower than 100 pixels, with the 
purpose of eliminating small noisy regions caused by segmentation defects. Hence, 
from the 88 images, a total number of 3,411 spots were finally chosen. 
 
The inputs of the neural nets are the spot features and the target is the class that we 
impose to the spot. In order to assign a class label to each spot, to be used as target for 
the spot pattern in the neural network training and test processes, a simple decision was 
made: each one of the four ROI windows constituted a class and all the spots in a 
window were assigned the same class label. Note that this is a rough decision, since 
several background spots may be included in the ROI windows of the objects 
(especially in the case of the chair) and therefore are not correctly labeled really. 
Incorrectly labeled patterns are a clear source of error that puts some bounds on the 
level of classification accuracy that the learning system, in this case a neural net, may 
reach. However, we preferred to carry out this simple but more practical approach 
instead of manually labeling each spot, which is obviously a very tedious task. 
 
For illustrative purposes, the spots of figure 19 that were assigned to the three classes 
associated with the objects of interest are displayed in figure 20; for each class, the 
union of selected spots is shown in the left and isolated spots that belong to the class are 
shown in the right. 
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Figure 20 Selected spots.Labeling of the object spots from the segmented image in figure 19 
 
In all the experiments we used neural nets with a feed-forward two-layer perceptron 
architecture using standard gradient descent through backpropagation as training 
algorithm. After some preliminary experiments, we set the number of hidden units to 
180, although we observed that the results were not very sensitive to this choice. 
Hyperbolic tangent and sine functions were used as activation functions in the hidden 
layer and the output layer, respectively. For backpropagation, we set a learning rate of 
0.003, a momentum parameter of zero and a maximum number of 500 training epochs 
for each run.  
 
As mentioned before, a dataset containing 3,411 labeled patterns (spots) was available 
after the image segmentation and feature calculation processes described previously. 
For each subset of features that was tried, a double cross-validation procedure was 
carried out that generated 90 different partitions of the dataset, each including 80% of 
the patterns for the training set, 10% for the validation set and 10% for the test set. The 
validation sets were used for early stopping the training phase. Actually, the network 
chosen at the end of the training phase was the one that yielded the best classification 
result on the validation set among the networks obtained after each training epoch.   
 
The results of the double cross-validation procedure obtained for different subsets of 
features are displayed in Table 2, ordered decreasingly by test classification 
performance. For each one of the three sets (training, validation and test set), the 
classification performance is measured as the average percentage of correctly classified 
patterns in the 90 cross-validation partitions, evaluated in the networks selected after 
training (the ones that maximize the performance on the validation set). It can be noted 
that similar results are obtained if the average RGB color features are taken into 
account, but the performance falls down dramatically when they are not used. The best 
result was 92.93% test classification performance for a subset comprising color features 
(both RGB averages and variances) and spot size (and without the shape invariant 
moments). Using only the seven invariant moments, the performance was almost as 
poor as that of a random classification decision rule. 
 
In addition, starting from the architecture selected for the full set of features, a 
sequential backward selection method [Romero, 03] was applied trying to determine a 
good subset of input features by eliminating variables one by one and retraining the 
network each time a variable is temporarily removed. In this case, each partition of the 
cross-validation procedure divided the dataset in 60% of patterns for training and 40% 
for test (no validation set) and the training stop criterion was to obtain the best result in 
the training set for a maximum of 2,000 epochs. The results of the sequential backward 
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feature selection clearly confirmed that invariant moments and RGB color variances 
were practically useless (since they were the first features removed without significance 
performance degradation) and that RGB color averages provided almost all the relevant 
information to classify the spots. 
 

Classification performance (with feature subsets) 

             Feature subsets Training Validation Test 
spot size, average and variance RGB  94.20 93.38 92.93 
spot size and average RGB  93.29 93.26 92.75 
all 14 features 94.58 93.19 92.72 
spot size, average RGB and three first moments 93.47 92.92 92.22 
average RGB and three first invariant moments 92.11 92.37 91.93 
average RGB and the seven invariant moments 92.04 92.35 91.60 
spot size and variance RGB 62.12 63.54 63.06 
spot size, variance RGB and three first moments 62.46 63.52 62.79 
seven invariant moments  and variance RGB 55.98 57.48 57.33 
seven invariant moments 32.29 32.49 32.38 

 
 
Table 2 classification results. It presents the classification results for several groups of selected variables to assess the 
relative importance of the different types of features (size, color averages, color variances and shape invariant 
moments). 
 
The following experiment consisted in adding a reclassification module based on 
clustering to check whether the classification performance could be improved using spot 
spatial distributions in the image (see figure 21). Hence, a final step for spot 
classification involved the detection and reclassification of possibly misclassified spots 
based on the context information provided by the mass centers of the spots classified as 
the same class (or object) in the same frame. 
 
For each one of the classes (or objects) o and for each frame f, a weighted mass center 
wmc(o,f) was computed as  
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(42)

            
where ns(o,f) is the number of spots classified as object o in frame f, p(o|s) is the a-
posteriori class probability of object o for spot s given by the net, and a(s) and mc(s) are 
respectively the area and mass center of s. Then, for every spot in the segmented image 
classified by the net as an object, the distance between its mass center and the weighted 
mass center of the assigned object was computed. If this distance exceeded a given 
threshold, the spot was marked as possibly misclassified and it was optionally 
reclassified to the object with the nearest mass center. Note that this step is a kind of 
spot clustering process that is inspired in both the dynamic and k-means clustering 
algorithms, but starting from the clusters (class assignments) given by the neural 
network. 
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Figure 21 Classification process based on three main steps: first, the extraction of the spots and features; second, spot 
classification based on a neural net; and third, reclassification of the spots based on their distances with respect the 
other spots within the same class. 
 
Using spot size and RGB averages and variances as features, the network (and 
associated dataset partition) that gave the best result in the training set (97.25%) was 
selected for computing the weighted mass centers and to assess the effect of the 
clustering process on the spot classification performance. Table 3 compares the results 
obtained without clustering with those obtained after clustering and reclassification to 
the nearest object. A 78.8% of the spots misclassified by the network were correctly 
reclassified by the clustering and only a 0.1% of the correctly classified spots were 
incorrectly reclassified. 
 

Classification performance (with the best feature subsets) 

Classifier Training Validation Test 
    

Only the neural network 97.25 95.01 96.18 
Combining the neural net and the clustering 99.34 98.53 99.71 
  

 
Table 3 Spot classification. Spot classification results before and after clustering using the net that maximized the 
result in the training set. 
 
Figure 22 displays an example of the beneficial effects of performing the structural 
reclassification. In the left hand image, there are two spots that were misclassified by 
the net, one in the chair was classified as wastebasket and one in the wastebasket was 
classified as chair. These spots could be correctly reclassified after the structural 
reclassification, as shown in the right hand image. 
 

  

 
 
Figure 22 Spots classified as belonging to the three objects by the net (left) and the result of the reclassification 
after the clustering (right) 
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Finally, the network selected in the previous experiment (trained from just the left 
image sequence) was applied to classify the spots in the right image sequence but only 
those within the same ROI windows, giving a 90% of correctly classified spots. 
 
However, for the test phase, it is somewhat tricky to restrict the object recognition to 
predefined ROI windows, since we cannot rely on having the ROI windows marked on 
every frame in a realistic experimental scenario. Hence, in the next experiments 
reported in the following subsection, the same neural network trained from selected ROI 
windows in the left sequence was used, but the whole right sequence including all spots 
was taken for testing both object recognition and tracking. ROI windows for each object 
were only defined in the first frame to initialize the tracking images. To the contrary of 
the experiments that have been reported in this subsection, in the following experiments 
we were not so interested in achieving a high spot classification ratio but a sequence of 
tracking images of good quality for each object of interest, as a first validation of the 
methodology proposed in chapter 4. 
 

5.1.2 Dynamic recognition and tracking results  
 
In the next experiment, dynamic object recognition was achieved through the use of 
probability images and the update function given by equation (8) (see Section 4.2) and 
we employed the tracking decision function based on a simple predictive model that has 
been described in chapter 4 (except that occlusion flags were not computed). A block 
diagram of the whole process has been shown in figure 3.   
 
For static object recognition, the trained neural network was applied to estimate the 
class probabilities for all the spots in the right image sequence. As mentioned before, 
the spot class probabilities were replicated for all the pixels in the same spot. In this 
case, the class assignments for each spot ( )),((maxarg),( yxQyxC t

c
c

t =  were not taken 

into account. 
 
For object tracking in the right sequence, ROI windows for each one of the three objects 
were only marked in the first image to initialize the tracking process and the dynamic 
class probabilities.  The α parameter in the probability update function was fixed to 0.5 
for the three clsses. The uncertainty parameters ε and δ used en the computation in the 
tracking image were also fixed to 1 and 0.25, respectively, for the three classes. 
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Figure 23  Tracking of the three objects of interest in the second experiment 
 
Figures 23 and 24 show the results of tracking the three objects of interest in three 
consecutive frames that belong to the right sequence. In Figure 23, the corresponding 
binary images of tracking each object are applied as a transparency mask to the original 
images in order to visualize only the pixels considered to belong to the object (the rest 
of pixels are set to white). Similar results for the whole sequence can be seen in 
http://www.lsi.upc.edu/~alquezar/box.avi, chair.avi and basket.avi, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24 Analysis of tracking process. 
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Figure 24 displays a more informative picture of the tracking process in the same 
frames shown in fig.23. The one-valued pixels of the tracking images are divided in two 
groups: those colored in yellow correspond to pixels labeled as “certainly belonging to 
the object” by the tracking method, and those colored in light blue correspond to pixels 
initially labeled as “uncertain” but with the largest dynamic recognition probability for 
the object class (recall equation (24)). The zero-valued pixels of the tracking images are 
divided in three groups:  those colored in dark blue correspond to pixels labeled as 
“uncertain” and with a low probability, those shown in dark grey correspond to pixels 
labeled as “certainly not belonging to the object” but with a high probability for the 
object class (which are mostly recognition mistakes that are ignored thanks to the 
tracking prediction) and the rest are black pixels with both a low probability and a 
“certainly not belonging to the object” label. Similar results for each object in the whole 
right sequence can be observed in http://www.lsi.upc.edu/~alquezar/box_track.avi, 
chair_track.avi and basket_track.avi, respectively. The preliminar tracking results can 
be considered quite satisfactory for the three objects, especially if we note that 
numerous spots are incorrectly classified by the neural network within the static 
recognition module. The proposed tracking method allows a reasonable recovery of 
these recognition errors without relying on any contour detection and tracking 
procedure. 
 

5.2 Comparative tracking experiments including object occlusion 
 
We were interested in testing both PIORT approaches in video sequences including 
object occlusions and taken with a moving camera. Nevertheless, we also performed a 
first set of validation experiments in video sequences taken with a still camera. In all 
tests we defined N=1 objects of interest to track. 
 
All images in the video sequences were segmented independently using the EDISON 
implementation of the mean-shift segmentation algorithm, figure 33, code available at 
http://www.caip.rutgers.edu/riul/research/code.html. The local features extracted for 
each spot were the RGB colour averages. For object learning, spots selected through 
ROI (region-of-interest) windows in the training sequence were collected to train a two-
layer perceptron using backpropagation and to build the target class histogram. When 
using the neural net in the test phase the class probabilities for all the spots in the test 
sequences were estimated from the net outputs. 
 
     
 
 
 
 
 
 
 
 
 
 
Figure 25 Selected spots.  Labeling of the object spots,(a) (b) from Edison segmented image in the left figure  
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When using the histogram, the spot class probabilities were estimated according to 
equation (6). In both cases, the spot class probabilities were replicated for all the pixels 
in the same spot. For object tracking in the test sequences, ROI windows for the target 
object were only marked in the first image to initialise the tracking process. 
 

 
Figure 26. Layout results of 2 x 3 images for one of the freames in sequence S8 using Bayesian method  in static 
recognition module 
 

 
Figure 27. Layout results of 2 x 3 images for one of the freames in sequence S8 using Neural Net in static recognition 
module 
 
 
The recognition and tracking results for the test sequences of our PIORT approaches 
were stored in videos where each frame (figure 26,27) has a layout of 2 x 3 images with 
the following contents: the top left is the image segmented by EDISON; the top middle 
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is the image of probabilities given by the static recognition module for the current 
frame; the top right is the a priori prediction of the tracking image; the bottom left is the 
image of dynamic probabilities; the bottom right is the original image with a graphic 
overlay that represents the boundaries of the a posteriori binary tracking image (the 
final result for the frame); and the bottom middle is an intermediate image labelled by 
the tracking module where yellow pixels correspond to pixels labelled as “certainly 
belonging to the object”, light blue pixels correspond to pixels initially labelled as 
“uncertain” but with a high dynamic probability, dark blue pixels correspond to pixels 
labelled as “uncertain” and with a low probability, dark grey pixels are pixels labelled 
as “certainly not belonging to the object” but with a high probability and the rest are 
black pixels with both a low probability and a “certainly not belonging to the object” 
label. 
 
In the experimental evaluation carried out, PIORT methods have been compared to six 
state-of-the-art tracking methods of which we were able to get and apply their program 
codes to the test video sequences: 
 

- Template Match by Correlation (TMC) [Comaniciu, 2003];  
- Basic Meanshift (BM) [Comaniciu, 2002];  
- Histogram Ratio Shift (HRS) [Collins, 2005];  
- Variance Ratio Feature Shift (VRFS) [Collins, 2005];  
- Peak Difference Feature Shift (PDFS) [Collins, 2005]; and  
- Graph-Cut Based Tracker (GCBT) [Bugeau, 2008; Boykov, 2001]. 

 
Their codes were downloaded from the VIVID tracking evaluation web site 
www.vividevaluation.ri.cmu.edu, which unfortunately seems not to be accessible 
anymore. All these methods only requiere the ROI window mark in the first frame of 
the sequence. We briefly summarise these methods next. 
 
In the TMC method [Comaniciu, 2003], the features of the target object are represented 
by histograms. These histograms are regularised by an isotropic kernel which produce 
spatially smooth functions suitable for gradient-based optimisation. The metric used to 
compare these functions is based on the Bhattacharyya distance and the optimisation is 
performed by the mean-shift procedure. 
 
In [Comaniciu, 2002] a general non-parametric framework is presented for the analysis 
of a multimodal feature space and to separate clusters. The mean-shift procedure 
(localisation of stationary points in the distributions) is used to obtain the clusters. 
Throughout this framework, a segmentation application is described. 
 
In [Collins, 2005] three different tracking methods are presented. They are based on the 
hypothesis that the best feature values to track an object are the ones that best 
discriminate between the object and the present background. Therefore, with several 
sample densities of the object and also of the background, the system computes the 
separability of both classes and obtains new features. The feature evaluation mechanism 
is embedded in a mean-shift tracking system that adaptively selects the top-ranked 
discriminative features for tracking. In the first method, Histogram Ratio Shift (HRS), 
the weights applied to each feature are dynamically updated depending on the 
histograms of the target and also of the background. In the second one, Variance Ratio 
Feature Shift (VRFS), the ratio between the variance of the target and the surrounding 
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background is computed and considered for selecting the features. Finally, the Peak 
Difference Feature Shift (PDFS) softens the histogram of the features by a Gaussian 
kernel; moreover, it considers possible distracter objects near the target and dynamically 
changes the feature selection. 
  
And finally, in [Bugeau, 2008;Boykov, 2001], a method for direct detection and 
segmentation of foreground moving objects is presented called Graph-Cut Based 
Tracker (GCBT). The method first obtains several groups of pixels with similar motion 
and photometric features. The mean-shift procedure is used to validate the motion and 
bandwidth. And then, the system segments the objects based on a MAP framework. 
 
From the tracking results of all the tested methods, two evaluation metrics were 
computed for each frame: the spatial overlap and the centroid distance [Yin,2007]. 
The spatial overlap SO(GTk,STk) between the ground truth GTk and the system track STk 
in a specific frame k is defined as the ratio 
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and Dist(GTCk, STCk) refers to the Euclidean distance between the centroids of the 
ground truth (GTCk) and the system track (STCk) in frame k. Naturally, the larger the 
overlap and the smaller the distance, the better performance of the system track. 
 
Since the centroid distance can only be computed if both GTk and STk are non-null, a 
failure ratio was measured as the number of frames in which either GTk or STk was null 
(but not both) divided by the total number of frames. Finally, an accuracy measure was 
computed as the number of good matches divided by the total number of frames, where 
a good match is either a true negative or a true positive with a spatial overlap above a 
threshold of 0.243 (which is the overlap obtained between two circles of the same size 
when one of the centres is located in the border of the other circle). 

5.2.1 Experimental results on video sequences taken with a still camera 
 
The first set of comparative experiments comprised three test video sequences taken 
with a still camera that show indoor office scenes where the target to track is a blue ball 
moving on a table. A similar but different sequence was used for training a neural 
network to discriminate between blue balls and typical sample regions in the 
background and for constructing the class histogram of the blue ball (this training 
sequence is available at http://www-iri.upc.es/people/ralqueza/bluetraining.avi).  
 
In the first test sequence, http://www-iri.upc.es/people/ralqueza/S1S2.avi, two blue balls 
are moving on the table and one occludes temporally the other one during some frames. 
Two experiments were performed on this test sequence depending on the initialisation 
of the tracking. In test S1, the tracking was initialised at the right ball and in test S2, the 
tracking was initialised at the left ball. The static recognition module considers that both 
balls belong to the same class. In both tests, the temporal overlapping was correctly 
managed by our methods since the tracked ball is well relocated after exiting the 
occlusion. The corresponding videos displaying the results of PIORT methods (in the 
layout described above) are at http://www-iri.upc.es/people/ralqueza/S1_NN.mpg and 
S2_NN.mpg for the PIORT-Neural net method and at S1_Bayes.mpg and 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 48

S2_Bayes.mpg for the PIORT-Bayesian method. 
 
In the second test sequence (test S3), http://www-iri.upc.es/people/ralqueza/S3.avi, the 
tracked blue ball is occluded twice by a box during 5 and 12 frames, respectively. 
Recognition and tracking results for the whole sequence using the PIORT-Neural Net 
and Bayesian methods are at http://www-iri.upc.es/people/ralqueza/S3_NN.mpg and 
S3_Bayes.mpg, respectively. The tracking of the blue ball is quite satisfactory since 
both occlusions are correctly detected and the ball is correctly relocated when exiting 
the occlusion. 
 
In the last test sequence of this group, http://www-iri.upc.es/people/ralqueza/S4.avi, 
there are again two blue balls and the target moving ball crosses twice, once in front of 
and once behind, the second ball, which does not move. As the recognition module 
classifies both balls in the same class, the same-class occlusion is not detected as an 
occlusion (the two balls are merged into a single blue object), but anyway the target ball 
is well tracked after the two crossings. The videos displaying the results of the PIORT-
Neural Net and Bayesian methods for this sequence are at http://www-
iri.upc.es/people/ralqueza/S4_NN.mpg and S4_Bayes.mpg, respectively. 
 
Table 4 presents the results (mean ± std. deviation) of the spatial overlap (SO) and 
centroid distance (CD) measures together with the failure ratio (FR) and accuracy (Acc) 
of each tracking method for the four tests S1 to S4, emphasizing the best values for each 
measure and test in bold. Our PIORT tracking methods worked fine in the four tests 
obtaining the best values of the four measures (except in the Accuracy measure for test 
S4, where the HRS method gave a slightly superior performance). All methods 
performed quite well in S1; only PDFS method performed comparably to PIORT 
approaches in S2; only PIORT methods worked in S3 while the rest failed; and only 
BM and HRS methods performed comparably to PIORT approaches in S4. 
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SO: Spatial Overlap; CD: Centroid Distance; FR: Failure Ratio; Acc: Accuracy 

Table 4. Results of ball tracking on video sequences taken with a still camera. 

 

Video Sequence Tracking method SO CD FR Acc 
TMC  0.56 ± 0.10 5.07 ± 2.07 0 0.98 

BM 0.60 ± 0.06 3.19 ± 1.21 0 1.00 

HRS 0.46 ± 0.11 6.03 ± 2.05 0 1.00 

VRFS 0.66 ± 0.07 1.15 ± 0.47 0 1.00 

PDFS 0.63 ± 0.10 2.01 ± 0.94 0 1.00 

GCBT 0.64 ± 0.18 13.20 ± 52.52 0.05 0.94 

PIORT-Neural Net 0.84 ± 0.09 1.38 ± 1.39 0 1.00 

S1 
Blue balls crossed 
(Right ball) 

PIORT-Bayesian 0.80 ± 0.07 0.75 ± 0.76 0 1.00 

TMC  0.22 ± 0.27 44.34 ± 52.24 0 0.41 

BM 0.23 ± 0.29 42.51 ± 50.42 0 0.36 

HRS 0.25 ± 0.31 44.93 ± 51.96 0 0.41 

VRFS 0.28 ± 0.35 42.82 ± 52.62 0 0.41 

PDFS 0.50 ± 0.30 36.27 ± 86.95 0.14 0.77 

GCBT 0.20 ± 0.27 70.69 ± 68.80 0 0.36 

PIORT-Neural Net 0.60 ± 0.23 3.94 ± 4.98 0 0.91 

S2 
Blue balls crossed 
(Left ball) 

PIORT-Bayesian 0.46 ± 0.25 15.04 ± 52.64 0.05 0.73 

TMC  0.01 ± 0.04 173.40 ± 68.71 0.22 0 

BM 0.01 ± 0.07 182.54 ± 68.14 0.22 0 

HRS 0 187.85 ± 67.96 0.25 0 

VRFS 0.02 ± 0.18 140.14 ± 93.44 0.20 0.17 

PDFS 0.13 ± 0.41 131.07 ± 106.1 0.42 0.02 

GCBT 0 237.02 ± 134.6 0.74 0.22 

PIORT-Neural Net 0.81 ± 0.42 0.47 ± 0.38 0 1.00 

S3 
Blue ball moving 
occluded by box 

PIORT-Bayesian 0.53 ± 0.37 8.39 ± 48.61 0.03 0.95 

TMC  0.35 ± 0.22 13.10 ± 32.38 0.01 0.75 

BM 0.56 ± 0.15 7.39 ± 29.05 0.01 0.93 

HRS 0.60 ± 0.13 6.21 ± 29.16 0.01 0.96 

VRFS 0.10 ± 0.62 74.68 ± 45.00 0.01 0.14 

PDFS 0.13 ± 0.43 44.39 ± 36.14 0.01 0.17 

GCBT 0.10 ± 0.53 201.60 ± 98.35 0.80 0.18 

PIORT-Neural Net 0.74 ± 0.21 5.90 ± 29.33 0.01 0.94 

S4 
Blue ball moving 
around  still blue 
ball 

PIORT-Bayesian 0.72 ± 0.20 5.58 ± 29.38 0.01 0.94 
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5.2.2 Experimental results on video sequences taken with a moving camera 
 
The second set of comparative experiments comprised another three test video 
sequences where the target is a ball, but this time taken with a moving camera. The first 
of them (test S5) again shows an indoor office scene where a blue ball is moving on a 
table and is temporally occluded, while other blue objects appear in the scene. This test 
sequence can be downloaded at http://www-iri.upc.es/people/ralqueza/S5.avi. The other 
two test sequences in this group show outdoor scenes in which a Segway robot tries to 
follow an orange ball that is being kicked by a person. Both include multiple occlusions 
of the tracked orange ball and differ in the surface over which the ball runs, which is 
pavement in the case of test S6 and grass in test S7 (see http://www-
iri.upc.es/people/ralqueza/S6.avi and S7.avi, respectively). A similar but different 
sequence was used for training a neural network to discriminate between orange balls 
and typical sample regions in the background and for constructing the class histogram 
of the orange ball (this training sequence is available at http://www-
iri.upc.es/people/ralqueza/orangetraining.avi). 
 

SO: Spatial Overlap; CD: Centroid Distance; FR: Failure Ratio; Acc: Accuracy 

Table 5. Results of ball tracking on video sequences taken with a mobile camera. 

 
 

Video Sequence Tracking method SO CD FR Acc 
TMC  0.28 ± 0.48 74.65 ± 91.53 0.19 0.43 

BM 0.23 ± 0.52 78.40 ± 90.33 0.19 0.37 

HRS 0.16 ± 0.45 125.88 ± 11.80 0.43 0.30 

VRFS 0.20 ± 0.38 96.72 ± 134.84 0.39 0.60 

PDFS 0.28 ± 0.57 103.60 ± 36.77 0.41 0.59 

GCBT 0.01 ± 0.29 188.79 ± 18.13 0.75 0.21 

PIORT-Neural Net 0.60 ± 0.40 12.53 ± 59.38 0.05 0.95 

S5 
Blue bouncing 
ball on table  
 

PIORT-Bayesian 0.59 ± 0.39 12.46 ± 59.40 0.05 0.95 

TMC  0.06 ± 0.40 146.35 ± 81.83 0.03 0.14 

BM 0.09 ± 0.43 110.94 ± 76.70 0.03 0.19 

HRS 0.09 ± 0.38 156.99 ± 103.80 0.41 0.21 

VRFS 0.16 ± 0.68 70.46 ± 49.17 0.03 0.21 

PDFS 0.14 ± 0.59 117.09 ± 81.43 0.03 0.21 

GCBT 0.01 ± 0.34 233.56 ± 62.12 0.93 0.06 

PIORT-Neural Net 0.72 ± 0.20 2.67 ± 19.21 0.01 0.98 

S6 
Segway - Orange 
ball  on pavement 

PIORT-Bayesian 0.13 ± 0.73 202.14 ± 99.35 0.81 0.19 

TMC  0.02 ± 0.29 137.93 ± 84.53 0.04 0.04 

BM 0.15 ± 0.27 125.13 ± 116.14 0.34 0.35 

HRS 0.03 ± 0.33 190.63 ± 89.72 0.54 0.08 

VRFS 0.59 ± 0.21 7.93 ± 38.85 0.02 0.95 

PDFS 0.33 ± 0.50 121.46 ± 125.91 0.48 0.51 

GCBT 0.01 ± 0.37 208.39 ± 83.88 0.79 0.04 

PIORT-Neural Net 0.47 ± 0.23 17.02 ± 60.98 0.06 0.88 

S7 
Segway - Orange 
ball on grass 
 

PIORT-Bayesian 0.25 ± 0.49 133.43 ± 126.22 0.53 0.42 
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The tracking results videos for the above test sequences are attainable at http://www-
iri.upc.es/people/ralqueza/S5_NN.mpg, S5_Bayes.mpg, S6_NN.mpg, S6_Bayes.mpg, 
S7_NN.mpg and S7_Bayes.mpg.  
 
Table 5 presents the results (mean ± std. deviation) of the spatial overlap (SO) and 
centroid distance (CD) measures together with the failure ratio (FR) and accuracy (Acc) 
of each tracking method for the three tests S5 to S7, emphasizing the best values for 
each measure and test in bold. Our PIORT-Neural net method worked fine in the three 
tests obtaining the best values of spatial overlap and accuracy measures in tests S5 and 
S6 and yielding results a little bit under the performance of the VRFS method in test S7, 
in which the VRFS method gave the best values of the four measures. Our PIORT-
Bayesian method worked well in test S5 but failed to track the orange ball correctly in 
tests S6 and S7. Only both PIORT methods performed well in S5; only PIORT-Neural 
net method worked in S6 while the rest failed; and only VRFS and PIORT-Neural net 
methods obtained satisfactory results in S7. 
 
The last set of experiments comprised another three test video sequences, taken with a 
moving camera in outdoor environments, where the targets are humans, more precisely, 
some part of their clothing. The first sequence in this group (test S8) is a long sequence 
taken on a street where the aim is to track a pedestrian wearing a red jacket (see 
http://www-iri.upc.es/people/ralqueza/S8.avi) and includes total and partial occlusions 
of the followed person by other walking people and objects on the street. In this case, a 
short sequence of the scene taken with a moving camera located in a different position 
(http://www-iri.upc.es/people/ralqueza/redpedestrian_training.avi) was used as training 
sequence. The other two test sequences in this group, tests S9 and S10, show outdoor 
scenes in which humans riding Segway robots and wearing orange T-shirts are 
followed. In test S9 a single riding guy is followed, whereas in test S10, two men are 
riding two Segway robots simultaneously and crossing each other. These test sequences 
are at http://www-iri.upc.es/people/ralqueza/S9.avi and S10.avi and the training 
sequence associated with them is at http://www-iri.upc.es/people/ralqueza/T-
shirt_training.avi. 
 
The tracking results videos for the above test sequences are attainable at http://www-
iri.upc.es/people/ralqueza/S8_NN.mpg, S8_Bayes.mpg, S9_NN.mpg, S9_Bayes.mpg, 
S10_NN.mpg and S10_Bayes.mpg.  
 
 
Table 6 presents the results of the evaluation measures of each tracking method for the 
three tests S8 to S10, emphasizing the best values for each measure and test in bold. 
Both PIORT methods gave the best results, very similar between them, in tests S8 and 
S9, and PIORT-Neural net method performed clearly the best in test S10. Note that in 
the pedestrian sequence (S8), an occlusion by people carrying red bags distracted the 
attention of the PIORT tracking module and caused a momentarily impairment in 
performance, especially for the centroid distance measure, but the tracker was able to 
recover correctly the target after that occlusion. In this sequence S8, only the PDFS 
method performed comparably to PIORT approaches in terms of accuracy and centroid 
distance, although it achieved a rather lower spatial overlap. In test S9, the HRS, VRFS 
and PDFS methods obtained similar and reasonably well results, but not as good as 
those of PIORT methods. Finally, only the PIORT-Neural net method worked well in 
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test S10, where the PIORT-Bayesian method performed poorly because it followed the 
other Segway-riding man after a crossing between both men. 
 
 
 

SO: Spatial Overlap; CD: Centroid Distance; FR: Failure Ratio; Acc: Accuracy 

Table 6. Results of human tracking on video sequences taken with a mobile camera. 

 
 
 

Video Sequence Tracking method SO CD FR Acc 
TMC  0.44 ± 0.31 25.25 ± 61.10 0.07 0.77 

BM 0.24 ± 0.58 72.08 ± 64.33 0.07 0.34 

HRS 0.35 ± 0.24 13.49 ± 38.27 0.02 0.64 

VRFS 0.45 ± 0.32 34.27 ± 81.13 0.12 0.82 

PDFS 0.50 ± 0.20 11.42 ± 45.11 0.03 0.95 

GCBT 0.04 ± 0.32 194.7 ± 105.3 0.77 0.16 

PIORT-Neural Net 0.79 ± 0.24 11.90 ± 50.87 0.04 0.96 

S8 
Pedestrian with 
red jacket 

PIORT-Bayesian 0.74 ± 0.24 11.15 ± 48.14 0.04 0.95 

TMC  0.10 ± 0.53 130.3 ± 69.75 0.00 0.15 

BM 0.22 ± 0.13 41.30 ± 58.70 0.01 0.40 

HRS 0.53 ± 0.25 22.83 ± 58.43 0.05 0.86 

VRFS 0.69 ± 0.25 27.69 ± 75.15 0.10 0.90 

PDFS 0.56 ± 0.21 29.19 ± 74.65 0.10 0.90 

GCBT 0.14 ± 0.22 101.6 ± 112.7 0.36 0.19 

PIORT-Neural Net 0.73 ± 0.16 3.40 ± 14.78 0.00 0.97 

S9 
Guy on Segway 
with orange T-
shirt 

PIORT-Bayesian 0.74 ± 0.13 3.70 ± 14.61 0.00 0.98 

TMC  0.06 ± 0.39 104.3 ± 83.15 0.03 0.10 

BM 0.29 ± 0.28 42.10 ± 59.06 0.03 0.59 

HRS 0.28 ± 0.30 38.72 ± 65.09 0.06 0.58 

VRFS 0.38 ± 0.34 36.81 ± 64.53 0.06 0.61 

PDFS 0.32 ± 0.36 91.14 ± 119.4 0.35 0.56 

GCBT 0.04 ± 0.31 187.1 ± 103.1 0.72 0.08 

PIORT-Neural Net 0.73 ± 0.18 8.37 ± 40.74 0.03 0.96 

S10 
Men on Segway 
with orange T-
shirts 

PIORT-Bayesian 0.16 ± 0.58 81.36 ± 62.93 0.03 0.22 
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Chapter 6. Conclusions and future work 
 
In this thesis we have described an updated version of the probabilistic integrated 
object recognition and tracking (PIORT) methodology that we have developed in the 
latest years, partially reported in [Amézquita, 2006,2007,2008; Alquézar, Amézquita, 
2009], and presented a collection of experimental results in test video sequences, with 
the aim of comparing two particular approaches derived from PIORT, based on 
Bayesian and neural net methods, respectively, with some state-of-the-art tracking 
methods proposed by other authors.  
 
An improved method for object tracking, capable of dealing with rather long occlusions 
and same-class object crossing, has been proposed to be included within our 
probabilistic framework that integrates recognition and tracking of objects in image 
sequences. PIORT does not use any contour information but the results of an iterative 
and dynamic probabilistic approach for object recognition. These recognition results are 
represented at pixel level as probability images and are obtained through the use of a 
classifier (e.g. a neural network) from region-based features. 
 
The PIORT framework is divided in three parts: a static recognition module, where the 
classifier is applied to single-frame images, a dynamic recognition module that updates 
the object probabilities using previous recognition and tracking results, and a tracking 
decision module, where tracking binary images are determined for each object. This 
third module combines the recognition probabilities with a model that predicts the 
object’s apparent motion in terms of translation and scale changes, while coping with 
the problems of occlusion and re-emergence detection. Moreover, the tracking module 
can deal with object splitting, either due to partial occlusions or same-class object 
crossing, and, in most cases, is able to select and track only the target object after it 
crosses or is occluded by another object which is recognised as belonging to the same 
class, i.e. it is able to re-establish the identity of the target object. 
 
Although the comparative experimental work has been focused on the case of single 
object tracking, the PIORT system is capable of tracking multiple objects of different 
classes simultaneously (as shown in section 5.1.2) and, as demonstrated in the 
experiments, it can be applied to video sequences acquired either by a fixed or a moving 
camera. The size, shape and movement of the target objects can vary softly along the 
sequence, but the appearance features used by the classifier (up to now, colour features) 
should remain rather stable for a successful tracking. It must be taken into account that 
the global performance of the system depends not only on the ability of the tracking 
method but also on the quality of the object recognition probabilities provided by the 
trained classifier. 
 
We have presented two static recognition methods that can be embedded in the first 
module of PIORT, giving rise to two different instances of the methodology. Both 
methods are based on the use of a classifier that is trained from examples and provides 
posterior class probabilities for each pixel from a set of local features. The first 
classifier is based on a maximum likelihood Bayesian method in which the conditional 
probabilities for object classes are obtained from the information of the class histograms 
(for discretized RGB values) and a uniform conditional probability is assumed for the 
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background. The second classifier is based on a neural net which is trained with the 
RGB colour averages extracted for each spot of the segmented images. 
 
Even though the characteristics of these two classifiers are quite different, the 
recognition and tracking results of PIORT using both approaches were excellent and 
very similar in five of the ten test sequences, which might mean that the good ability of 
PIORT to track the objects is mostly due to a smart cooperation of the three inner 
modules and is not very dependent on the specific method used for object recognition. 
However, in the remaining five test sequences, the tracking method based on a neural 
net classifier clearly outperformed the one based on a simple Bayesian classifier, which 
failed in three of these test sequences. 
 
In the experimental comparison with other six methods proposed in the literature for 
object tracking, a PIORT method obtained the best results in nine of the ten test 
sequences and only a slightly inferior performance with respect to best method in the 
other one (VRFS). Except for the case of the first test sequence S1, where all methods 
worked fine, the six alternative methods tested mostly failed to track the target objects 
correctly in the test sequences, due to the difficult instances of occlusions and object 
crossings they contain.  
  
Although further experimental work is needed, the tracking module included in PIORT 
has demonstrated by now to be effective under several-frames occlusions produced by 
an object of a class different to that of the target object. If the occluding and the target 
objects are recognised as belonging to the same class, then the occlusion is not detected 
as such, both objects are merged temporarily, but despite this behaviour, the tracking 
method is able in most cases to recover and track the original target when the same-
class object occlusion or crossing ends. However, as observed in some of the test 
sequences, still there are cases where the behaviour of the tracking decision module of 
PIORT should be improved, particularly in the step of object re-emergence after 
occlusion and when other objects of similar appearance are next to the target. The 
upgrade of this tracking module will be subject of future research.  
 
Our PIORT methodology is based on the iterative and adaptive processing of 
consecutive frames by a system that integrates recognition and tracking in a 
probabilistic framework. The system uses object recognition results provided by a 
classifier, e.g. a Bayesian classifier or a neural net, which are computed from colour 
features of image regions for each frame. The location of tracked objects is represented 
through probability images that are updated dynamically using both recognition and 
tracking results. The tracking procedure is capable of handling quite long occlusions. In 
particular, object occlusion is detected automatically and the prediction of the object’s 
apparent motion and size takes into account the cases of occlusion entering, full 
occlusion and occlusion exiting. In contrast with [Zhu, 2008], our tracking method does 
not rely on background subtraction and a fixed camera and, to the contrary of [Pan, 
2007], it can cope with complete occlusion and it does not involve any template to 
match and update. 
 
We think that PIORT approaches for object tracking are especially suitable in noisy 
environments where segmented images vary so much in successive frames that it is very 
hard to match the corresponding regions or contours of consecutive images. The 
empirical results presented are quite satisfactory, despite the numerous mistakes made 
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by the static recognition module, which can be mostly ignored thanks to the integration 
with the proposed tracking decision module. 
 
As future work, we want to extend the experimental validation of PIORT by applying it 
to new and more difficult image sequences. In addition, we are interested in 
implementing and testing new classifiers in the static recognition module, which could 
exploit other features completely different to the basic colour features used up to now. 
For instance, an SVM classifier could be applied to a set of features formed by Gabor 
filter responses, provided that class probability values were estimated from margin 
values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 56

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 57

Publications derived from this thesis 
 

2009 
 
N. Amézquita Gómez, R. Alquézar, F. Serratosa,"A Probabilistic Integrated Object 
Recognition and Tracking Framework" submitted to Journal on Image and Vision 
Computing, JIVC , ISSN: 0262-8856 ELSEVIER, Chief K.D. Baker, M. Pantic Editors 
 
 
“Experimental Assessment of Probabilistic Integrated Object Recognition and Tracking 
Methods“Proc.14th Iberoamerican Congress on Pattern Recognition, CIARP 2009, 
Guadalajara, Jalisco, México, Springer,LNCS-5856. 
 
 
R. Alquézar, N. Amézquita Gómez, F. Serratosa, “Tracking deformable objects and 
dealing with same class object occlusion”, in: Proc. Fourth Int. Conf. On Computer 
Vision Theory and Applications (VISAPP 2009), Lisboa, Portugal. 

 
2008 

 
N. Amézquita Gómez, R. Alquézar, F. Serratosa, “Dealing with occlusion in a 
probabilistic object tracking method”, in: Proc. IEEE Conf. on Computer Vision and 
Pattern Recognition (CVPR 2008), Anchorage, Alaska, June 2008. 

 
2007 

 
Nicolás Amézquita Gómez, René Alquézar, Francesc Serratosa: “A New Method for 
Object Tracking Based on Regions Instead of Contours”. Proc. 4th IEEE Computer 
Vision and Pattern Recognition, CVPR2007, Minneapolis, USA, pp. 1 -8, 2007 

 
2006 

 
Francesc Serratosa, Nicolás Amézquita Gómez, René Alquézar: Combining Neural 
Networks and Clustering Techniques for Object Recognition in Indoor Video 
Sequences. Proc. 11th Iberoamerican Congress on Pattern Recognition, CIARP 2006, 
Cancún, México, Springer LNCS-4225, pp. 399-405 
 
 
Nicolás Amézquita Gómez, René Alquézar, Francesc Serratosa: Object Recognition and 
Tracking in Video Sequences: A New Integrated Methodology. Proc. 11th 
Iberoamerican Congress on Pattern Recognition, CIARP 2006, Cancún, México, 
Springer LNCS-4225, pp. 481-490 
 

2005 
 
Nicolás Amézquita Gómez, René Alquézar: Object Recognition in Indoor Video 
Sequences by Classifying Image Segmentation Regions Using Neural Networks. Proc. 
10th Iberoamerican Congress on Pattern Recognition, CIARP 2005, La Habana, Cuba, 
Springer LNCS-3773, pp. 93-102 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 58

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 59

Bibliographical references  
 

 
[Ali, 2001] Ali, A. and Aggarwal, J. 2001. Segmentation and recognition of continuous 
human activity. In IEEEWorkshop on Detection and Recognition of Events in Video. 
28–35. 
 
[Alquézar, 2009] R. Alquézar, N. Amézquita Gómez, F. Serratosa, “Tracking 
deformable objects and dealing with same class object occlusion”, in: Proc. Fourth Int. 
Conf. on Computer Vision Theory and Applications (VISAPP 2009), Lisboa, Portugal. 
 
[Amézquita; and Alquézar,2005] Nicolás Amézquita Gómez, René Alquézar: Object 
Recognition in Indoor Video Sequences by Classifying Image Segmentation Regions 
Using Neural Networks. Proc. 10th Iberoamerican Congress on Pattern Recognition, 
CIARP 2005, La Habana, Cuba, Springer LNCS-3773, pp. 93-102 
 
[Amézquita, 2006] Amézquita Gómez N., R Alquézar. and F Serratosa., Object 
Recognition and Tracking in Video Sequences: A New Integrated Methodology, Proc. 
11th Iberoamerican Congress on Pattern Recognition, CIARP 2006, LNCS   4225, pp. 
481 – 490, 2006. 
 
[Amézquita, 2007] N. Amézquita Gómez, R. Alquézar, F. Serratosa, “A new method for 
object tracking based on regions instead of contours”, in: Proc. IEEE Conf. on 
Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, Minnesota, June 
2007. 
 
[Amézquita, 2008] N. Amézquita Gómez, R. Alquézar, F. Serratosa,“Dealing with 
occlusion in a probabilistic object tracking method”, in: Proc. IEEE Conf. on Computer 
Vision and Pattern Recognition (CVPR 2008), Anchorage, Alaska, June 2008. 
 
[Avidan, 2001] Avidan, S. 2001. Support vector tracking. In IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR). 184–191. 
 
[Baddeley 1992]. Baddeley, A. 1992. Errors in binary images and an l version of the 
haus- dorff metric. Nieuw Archief voor Wiskunde 10, 157–183. 
 
[Ballard, 1982]  Ballard D.H. and Brown C.M., Computer Vision, Prentice Hall, New 
Jersey, 1982. 
 
[Barrow, 1994] Barron, J., Fleet, D., and Beauchemin, S. 1994. Performance of optical 
flow techniques. Int. J. Comput.Vision 12, 43–77 
 
[Bar-Shalom, 1988]  Bar-Shalom Y. and Foreman T., Tracking and Data Association, 
Academic Press Inc., 1988. 
 
[Beaulieu and Goldberg, 1989]. Beaulieu, J. and Goldberg, M. 1989. Hierarchy in 
picture image segmentation: A step wise optimization approach. IEEE Trans. Patt. 
Analy. Mach. Intell. 11, 150–163. 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 60

[Bertalmio, 2000] Bertalmio, M., Sapiro, G., and Randall, G. 2000. Morphing active 
contours. IEEE Trans. Patt. Analy. Mach. Intell. 22, 7, 733–737 
 
[Bishop, 95]  Bishop C.M., Neural Networks for Pattern Recognition, Oxford 
University Press, 1995. 
 
[Black, 1998]. Black, M. and Jepson, A. 1998. Eigentracking: Robust matching and 
tracking of articulated objects using a view-based representation. Int. J. Comput. Vision 
26, 1, 63–84. 
 
[Blake and Isard, 2000]. Blake, A. and Isard,M. 2000. Active Contours:The Application 
of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking 
of Shapes in Motion.  
 
[Bowyer, 2001] Bowyer, K., Kranenburg, C., and Dougherty, S. 2001. Edge detector 
evaluation using empirical roc curve. Comput. Vision Image Understand. 10, 77–103. 
 
[Boykov, 2001] Y. Boykov, O. Veksler, R. Zabih, “Fast approximate energy 
minimization via graph cuts”, IEEE Trans. on Pattern Analysis and Machine 
Intelligence 23 (2001) 1222-1239. 
 
[Bugeau, 2008] A. Bugeau, P. Pérez, “Track and cut: simultaneous tracking and 
segmentation of multiple objects with graph cuts”, in: Proc. Third Int. Conf. on 
Computer Vision Theory and Applications (VISAPP 2008), Funchal, Madeira,Portugal. 
 
[Canny, 1986] Canny, J. 1986. A computational approach to edge detection. IEEE 
Trans. Patt. Analy. Mach. Intell. 8, 6, 679–698. 
 
[Chen 2003] F-S. Chen, C-M. Fu and C-L. Huang, Hand Gesture recognition using a 
real-time tracking method and Hidden Markov Models, Image and Vision Computing, 
vol. 21, pp: 745-758, 2003.  
 
[Cremers, and Schnorr, 2003] Cremers, D. and Schnorr, C. 2003. Statistical shape 
knowledge in variational motion segmentation. I.Srael Nent. Cap. J. 21, 77–86. 
 
[Comaniciu, 2002] Comaniciu D. and Meer P., Mean shift: a robust approach toward 
feature space analysis. IEEE Trans. Patt. Analy. Mach. Intell. 24, 5, 603–619, 2002. 
 
[Comaniciu, 2003]  Comaniciu, D., Ramesh, V., and Meer, P. 2003. Kernel-based 
object tracking. IEEE Trans. Patt. Analy. Mach. Intell. 25, 564–575 
 
[Cootes, 2001] Cootes, T., Edwards, G., and Taylor, C. 2001. Robust real-time periodic 
motion detection, analysis, and applications. IEEE Trans. Patt. Analy. Mach. Intell. 23, 
6, 681–685. 
 
[Comaniciu, 2002] D. Comaniciu, P. Meer, “Mean shift: a robust approach toward  
feature space analysis”, IEEE Trans. on Pattern Analysis and Machine Intelligence 24   
(2002) 603-619. 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 61

[Collins, 2005] R. Collins, Y. Liu, “On-line selection of discriminative tracking 
features”, IEEE Trans. on Pattern Analysis and Machine Intelligence 27 (2005),  
1631-1643. 
 
[Edwards, 1998] Edwards, G., Taylor, C., and Cootes, T. 1998. Interpreting face images 
using active appearance models. In International Conference on Face and Gesture 
Recognition. 300–305. 
 
[Elgammal, 2002] Elgammal, A.,Duraiswami, R.,Harwood, D., and Davis, L. 2002. 
Background and foreground modeling using nonparametric kernel density estimation 
for visual surveillance. Proceedings of IEEE 90, 7, 1151–1163. 
 
[Felzenszwalb, 1998]  Felzenszwalb P. and Huttenlocher D., Efficiently computing a 
good segmentation, Proceedings CVPR’98, pp. 98-104, 1998. 
 
[Fieguth, 1997] Fieguth, P. and Terzopoulos, D. 1997. Color-based tracking of heads 
and other mobile objects at video frame rates. In IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR). 21–27. 
 
[Fiesler, 1997]  Fiesler E. and Beale R. (eds.), Handbook of Neural Computation, IOP 
Publishing Ltd and  Oxford University Press, 1997.  
 
[Fiesler E ,1997]. Fiesler E. and Beale R. (eds.), Handbook of Neural Computation, IOP 
Publishing Ltd and Oxford University Press, 1997. 
 
[Foresti ,1999]. G. L. Foresti, “Object recognition and tracking for remote video 
surveillance”, IEEE Trans. on Circuits and Systems for Video Technology 9 (1999) 
1045-1062. 
 
[Gerke, 2001]  Gerke M., Heipke C., Straub B.M., Building extraction from aerial 
imagery using a generic scene model and invariant geometric moments, in Remote 
Sensing and Data Fusion over Urban Areas, IEEE/ISPRS Joint Workshop,  pp.85-89, 
2001. 
 
[Grewe, 1995] Grewe, L. and Kak, A. 1995. Interactive learning of a multi-attribute 
hash table classifier for fast object recognition. Comput. Vision Image Understand. 61, 
3, 387–416. 
 
[Hariharakrishnan,2005] K. Hariharakrishnan, D. Schonfeld, “Fast object tracking using 
adaptive block matching”, IEEE Trans. Multimedia 7 (2005) 853-859. 
 
[Haritaoglu, 2000] Haritaoglu, I., Harwood, D., and Davis, L. 2000. W4: real-time 
surveillance of people and their activities. IEEE Trans. Patt. Analy. Mach. Intell. 22, 8, 
809–830. 
 
[Hoffmann, 1989]  Hoffmann C., Geometric and Solid Modeling, Morgan-Kaufmann, 
San Mateo, CA, 1989. 
 
[Horn, 1981] Horn, B. and Schunk, B. 1981. Determining optical flow. Artific. Intell. 
17, 185–203. 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 62

[Hu, 1962]  Hu M.K., Visual pattern recognition by moment invariants, IRE Trans. on 
Information Theory, Vol. 8 (2), pp.179-187, 1962. 
 
[Huttenlocher, 1993] Huttenlocher, D., Noh, J., and Rucklidge, W. 1993. Tracking 
nonrigid objects in complex scenes. In IEEE International Conference on Computer 
Vision (ICCV). 93–101. 
 
[Ito,2001] K. Ito, S. Sakane, “Robust view-based visual tracking with detection of 
occlusions”, in: Proc. Int. Conf. Robotics Automation, 2001, vol. 2, pp. 1207-1213. 
 
[Jepson,2003] A.D. Jepson, D.J. Fleet, T.F. EI-Maraghi, “Robust online appearance 
models for visual tracking,” IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003) 1296-
1311 
 
[Kerner 2004] B.S. Kerner, H. Rehborn, M. Aleksic and A. Haug, Recognition and 
Tracking of spatial-temporal congested traffic patterns on freeways, vol 12, pp: 369-
400, 2004. 
 
[Lee, 2005] K-C. Lee, J. Ho, M-H. Yang, D. Kriegman, Visual Tracking and 
Recognition using Probabilistic appearance manifolds, Computer Vision and Image 
Understanding, vol. 99, pp: 303-331, 2005.   
 
[Li , 2001] Li, B., Chellappa, R., Zheng, Q., and Der, S. 2001. Model-based temporal 
object verification using video. IEEE Trans. Image Process. 10, 6, 897–908. 
 
 
[Mac-Cormick and Blake, 2000] Maccormick, J. and Blake, A. 2000. Probabilistic 
exclusion and partitioned sampling for multiple object tracking. Int. J. Comput. Vision 
39, 1, 57–71. 
 
[Malik,2001] J. Malik, S. Belongie, T. Leung, J. Shi, “Contour and texture analysis for 
image segmentation”, Int. J. Computer Vision, 43  (2001) 7-27. 
 
[Mikolajczyk, 2003] Mikolajczyk, K. and Schmid, C. 2003. A performance evaluation 
of local descriptors. In IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR). 1615–1630. 
 
[Mughadam, 1997] Mughadam, B. and Pentland, A. 1997. Probabilistic visual learning 
for object representation. IEEE Trans. Patt. Analy. Mach. Intell. 19, 7, 696–710. 
 
[Mumford and Shah, 1989] Mumford, D. and Shah, J. 1989. Optimal approximations by 
piecewise smooth functions and variational problems. Comm. Pure Appl. Mathemat. 42, 
5, 677–685. 
 
[Mutch, 2006] Mutch J. and Lowe D.G., Multiclass Object Recognition with Sparse, 
Localized Features, Proceedings CVPR’06, New York, pp. 11 – 18,  June 2006. 
 
[Nguyen,2004] H.T. Nguyen, A.W.M. Smeulders, “Fast occluded object tracking by a 
robust appearance filter”, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004)  
1099-1104. 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 63

 
[Paragios, 2002] Paragios, N. and Deriche, R. 2000. Geodesic active contours and level 
sets for the detection and tracking of moving objects. IEEE Trans. Patt. Analy. Mach. 
Intell. 22, 3, 266–280. 
 
[Pan,2007] J. Pan, B. Hu, "Robust occlusion handling in object tracking", in:  Proc. 
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis,  
Minnesota, June 2007. 
 
[Papageorgiu, 1998] Papageorgiou, C., Oren, M., and Poggio, T. 1998. A general 
framework for object detection. In IEEE International Conference on Computer Vision 
(ICCV). 555–562. 
 
[Park, 2004] Park, S. and Aggarwal, J. K. 2004. A hierarchical bayesian network for 
event recognition of human actions and interactions. Multimed. Syst. 10, 2, 164–179. 
 
[Paschos, 2001] Paschos, G. 2001. Perceptually uniform color spaces for color texture 
analysis: an empirical evaluation. IEEE Trans. Image Process. 10, 932–937 
 
[Romero, 2003] Romero E., Sopena J.M., Navarrete G., Alquézar R., Feature selection 
forcing overtraining may help to improve performance, Proc. Int. Joint Conference on 
Neural Networks, IJCNN-2003, Portland, Oregon, Vol.3, pp.2181-2186, 2003.  
 
[Ronfrad, 1994] Ronfard, R. 1994. Region based strategies for active contour models. 
Int. J. Comput. Vision 13, 2, 229–251. 
 
[Rowley, 1998] Rowley, H., Baluja, S., and Kanade, T. 1998. Neural network-based 
face detection. IEEE Trans. Patt. Analy. Mach. Intell. 20, 1, 23–38. 
 
[Rumelhart and McClelland , 1986] Rumelhart D.E., McClelland J.L. and the PDP 
Research Group (eds.), Parallel Distributed Processing: Explorations in the 
Microstructure of Cognition, MIT Press, 1986. 
 
[Sato and Aggarwal, 2004] Sato, K. and Aggarwal, J. 2004. Temporal spatio-velocity 
transform and its application to tracking and interaction. Comput. Vision Image 
Understand. 96, 2, 100–128. 
 
[Sanfeliu, 2004]. A. Sanfeliu, F. Serratosa, R. Alquézar, “Second-order random graphs 
for modeling sets of attributed graphs and their application to object learning and 
recognition”, Int. Journal of Pattern Recognition and Artificial Intelligence 18 (2004) 
375-396. 
 
[Senior,2006]A. Senior, A. Hampapur, Y-L. Tian, L. Brown, S. Pankanti, R. 
Bolle,“Appearance models for occlusion handling”, Image and Vision Computing 24 
(2006)  1233-1243. 
 
[Schweitzer, 2002] Schweitzer, H., Bell, J. W., and Wu, F. 2002. Very fast template 
matching. In European Conference on Computer Vision (ECCV). 358–372. 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 64

[Serby, 2004] Serby, D., Koller-Meier, S., and Gool, L. V. 2004. Probabilistic object 
tracking using multiple features. In IEEE International Conference of Pattern 
Recognition (ICPR). 184–187. 
 
[Serre, 2005] Serre T., Wolf L. and Poggio T., Object recognition with features inspired 
by visual cortex, Proceedings CVPR’05, Volume 2,  pp. 994 – 1000,  2005. 
 
[Shi, 2000] Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation. IEEE 
Trans. Patt. Analy. Mach. Intell. 22, 8, 888–905. 
 
[Song, 1996] Song, K. Y., Kittler, J., and Petrou, M. 1996. Defect detection in random 
color textures. Israel Verj. Cap J. 14, 9, 667–683. 
 
[Streit, 1994] Streit, R. L. and Luginbuhl, T. E. 1994. Maximum likelihood method for 
probabilistic multi-hypothesis tracking. In Proceedings of the International Society for 
Optical Engineering (SPIE.) vol. 2235. 394–405. 
 
[Tanizaki, 1987] Tanizaki H., Non-gaussian state-space modeling of nonstationary time 
series. J. Amer. Statist. Assoc. 82, pp. 1032-1063, 1987. 
 
[Terzopoulos and Szeliski, 1992] Terzopoulos, D. and Szeliski, R. 1992. Tracking with 
kalman snakes. In Active Vision, A. Blake and A. Yuille, Eds. MIT Press. 
 
[Tomita, 1990] F. Tomita, S. Tsuji, Computer Analysis of Visual Textures. Ed. Kluwer 
Academic Publishers. 1990. 
 
[Tu,2003] Z. Tu, X. Chen, A.L. Yuille, S.C. Zhu, “Image parsing: unifying 
segmentation, detection, and recognition”, in: Proc. Ninth IEEE Int. Conf. on Computer 
Vision, 2003, pp 18- 25. 
 
[Tu,2002] Z. Tu, S.C. Zhu, “Image segmentation by data driven Markov chain Monte 
Carlo”, IEEE Trans. on Pattern Analysis and Machine Intelligence 24 (2002)  657-673. 
 
[Veenman, 2001] Veenman, C., Reinders, M., and Backer, E. 2001. Resolving motion 
correspondence for densely moving points. IEEE Trans. Patt. Analy. Mach. Intell. 23, 1, 
54–72. 
 
[Viola, 2003] Viola, P., Jones, M., and Snow, D. 2003. Detecting pedestrians using 
patterns of motion and appearance. In IEEE International Conference on Computer 
Vision (ICCV). 734–741. 
 
[Wren, 1997] Wren, C., Azarbayejani, A., and Pentland, A. 1997. Pfinder: Real-time 
tracking of the human body. IEEE Trans. Patt. Analy. Mach. Intell. 19, 7, 780–785. 
 
[Yilmaz, 2004] Yilmaz, A., Li, X., and Shah, M. 2004. Contour based object tracking 
with occlusion handling in video acquired using mobile cameras. IEEE Trans. Patt. 
Analy. Mach. Intell. 26, 11, 1531–1536. 
 
[Yilmaz, 2006] Yilmaz A., Javed O. and Shah M., Object Tracking: A Survey. ACM 
Computing Surveys 38 (4), Article 13, 2006. 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 65

 
[Yin, 2007]F. Yin, D. Makris, S.A. Velastin, “Performance evaluation of object tracking 
algorithms”, in: Proc. 10th IEEE Int. Workshop on Performance Evaluation of Tracking 
and Surveillance (PETS’2007). 
 
[Zhu,2008] L. Zhu, J.Zhou, J. Song, “Tracking multiple objects through occlusion with 
online sampling and position”, Pattern Recognition 41 (2008) 2447-2460. 
 
[Zhou, 2004] S.K. Zhou, R. Chellamppa and B. Moghaddam, Visual Tracking and 
Recognition Using Appearance-Adaptive Models in Particle Filters, IEEE Trans. Image 
Process.  vol. 13. (11), pp:1491-1506, 2004. 
 
[Zhu, 1996] S.C. Zhu, A. Yuille, “Region competition: unifying snakes, region growing, 
and Bayes/MDL for multiband image segmentation”, IEEE Trans. on Pattern Analysis 
and Machine Intelligence 18 (1996) 884-900. 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 67

Appendix A. Detailed results of the comparative tracking experiments  
 
Frame-based Metrics  
 
Starting with the first frame of the test sequence, frame-based metrics are computed for 
every frame in the sequence. From each frame in the video sequence, first the following 
quantities are computed:  
 
True Negative, TN: Number of frames where both ground truth and system results 
agree on the absence of any object. 
 
True Positive, TP: Number of frames where both ground truth and system results agree 
on the presence of one or more objects, and the bounding box of at least one or more 
objects coincides among ground truth and tracker results.  
 
False Negative, FN: Number of frames where ground truth contains at least one object, 
while system either does not contain any object or none of the system’s objects fall 
within the bounding box of any ground truth object.  
 
False Positive, FP: Number of frames where system results contain at least one object, 
while ground truth either does not contain any object or none of the ground truth’s 
objects fall within the bounding box of any system object.  
 
In the above definitions, the two bounding boxes are said to be coincident if the centroid 
of one of the boxes lies inside the other box. Also, TF is the total number of frames in 
the video sequence. Once the above defined quantities are calculated for all the frames 
in the test sequence, in the second step, the following metrics are computed: 
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Image tracking results for sequences S1- S10 
 
S1 Blue balls crossed. Right ball tracking- 68 frames 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1 tracking for some consecutive frames in S1. 

 
Figure A2 Overlap between ground truth and tracking results for S1. 
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Figure A3 Euclidean distance between ground truth and tracking result centers for S1 
 
 

Table A1 Tracking metrics S1 

 
 
 
 
 
 
 
 
 
 
 
 

S1 Blue balls 
crossed Right ball 

Tracking Algoritm 

False 
Alarm 
Rate 
 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 
 

Negative 
Prediction 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  0.0154 0.9846 NaN 0.9846 NaN 0.0154 NaN 
BM 0 1.0000 NaN 1.0000 NaN 0 NaN 
HRS 0 1.0000 NaN 1.0000 NaN 0 NaN 
VRFS 0 1.0000 NaN 1.0000 NaN 0 NaN 
PDFS 0 1.0000 NaN 1.0000 NaN 0 NaN 
GCBT 0.0161 0.9385 NaN 0.9839  0 0.0615 NaN 
PIORT-Neural Net 0 1.0000 NaN 1.0000 NaN 0 NaN 
PIORT-Bayesian 0 1.0000 NaN 1.0000 NaN 0 NaN 
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S2 Blue balls crossed. Left ball tracking - 67 frames  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure A4 Tracking for some consecutive frames in S2. 

 
Figure A5 Overlap between ground truth and tracking results for S2. 
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Figure A6 Euclidean distance between ground truth and tracking result centers for S2. 
 
 

 
Table A2 Tracking metrics S2 
 
 
 
 
 
 
 
 
 
 
 
 

S2 Blue balls 
crossed Left ball 
Tracking Algoritm 

False 
Alarm 
Rate 
 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 
 

Negative 
Prediction 
 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  0.5909 0.4091 NaN 0.4091 NaN 0.5909  NaN 
BM 0.6364 0.3636 NaN 0.3636 NaN 0.6364  NaN 
HRS 0.5909 0.4091 NaN 0.4091 NaN 0.5909  NaN 
VRFS 0.5909 0.4091 NaN 0.4091 NaN 0.5909  NaN 
PDFS 0.1053 0.7727 NaN 0.8947 0 0.2273 NaN 
GCBT 0.6364 0.3636 NaN 0.3636 NaN 0.6364  NaN 
PIORT-Neural Net 0.0909 0.9091 NaN 0.9091 NaN 0.0909 NaN 
PIORT-Bayesian 0.2381 0.7273 NaN 0.7619 0 0.2727 NaN 
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S3 Blue ball moving occluded by box - 75 frames 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A7 Tracking for some consecutive frames in S3. 
 

Figure A8 Overlap between ground truth and tracking results for S3 
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Figure A9 Euclidean distance between ground truth and tracking result centers for S3. 
 
 

S3 Blue ball moving 
occluded by box 

Tracking Algoritm 

False 
Alarm 
Rate 
 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 
 

Negative 
Prediction 
 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  1 0 0 0 NaN 1 1.0000 
BM 1 0 0 0 NaN 1 1.0000 
HRS 1 0 0 0 0 1 1.0000 
VRFS 1 0 0.7857 0 0.5238 1 0.2143 
PDFS 1 0 0.0714 0 0.0667 1 0.9286 
GCBT 1 0 1.0000 0 0.2258 1 0 
PIORT-Neural Net 0 1 1.0000 1 1.0000 0 0 
PIORT-Bayesian 0.0204 0.9412 1.0000 0.9796 0.8750 0.0588 0 

 
Table A3 Tracking metrics S3 
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S4 Blue ball moving around still blue ball -75 frames 
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Figure A10 Tracking for some consecutive frames in S4. 
 

Figure A11 Overlap between ground truth and tracking results for S4 
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Figure A12 Euclidean distance between ground truth and tracking result centers for S4. 
 
 

 
Table A4 Tracking metrics S4 
 
 
 
 
 
 
 
 
 

S4 Blue ball 
moving around 
still blue ball 
Tracking Algoritm 

False 
Alarm 
Rate 
 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 
 

Negative 
Prediction 
 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  0.2535 0.7571 0  0.7465 NaN 0.2429 1 
BM 0.0704 0.9429 0  0.9296 NaN 0.0571 1 
HRS 0.0423 0.9714 0  0.9577 NaN 0.0286 1 
VRFS 0.8592 0.1429 0  0.1408 NaN 0.8571 1 
PDFS 0.8310 0.1714 0  0.1690 NaN 0.8286 1 
GCBT 0.0769 0.1714 1  0.9231 0.0172 0.8286 0 
PIORT-Neural Net 0.0563 0.9571 0  0.9437 NaN 0.0429 1 
PIORT-Bayesian 0.0563 0.9571 0  0.9437 NaN 0.0429 1 
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S5 Blue bouncing ball on table - 106 frames 
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Figure A13 Tracking for some consecutive frames in S5. 

Figure A14 Overlap between ground truth and tracking results for S5. 
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Figure A15 Euclidean distance between ground truth and tracking result centers for S5. 
 
 

 
Table A5 Tracking metrics S5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S5 Blue bouncing 
ball on table 

Tracking Algoritm 

False 
Alarm 
Rate 
 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 
 

Negative 
Prediction 
 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  0.5673 0.5357 0 0.4327 NaN 0.4643 1 
BM 0.6346 0.4524 0 0.3654 NaN 0.5476 1 
HRS 0.6076 0.3690 0 0.3924 0 0.6310 1 
VRFS 0.0455 0.5000 1 0.9545 0.3333 0.5000 0 
PDFS 0 0.4881 1 1.0000 0.3175 0.5119 0 
GCBT 0.6667 0.0238 1 0.3333 0.2041 0.9762 0 
PIORT-Neural Net 0 0.9405 1 1.0000 0.8000 0.0595 0 
PIORT-Bayesian 0 0.9405 1 1.0000 0.8000 0.0595 0 
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S6 Segway - Orange ball on pavement - 342 frames 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure A16 Tracking for some consecutive frames in S6. 
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Figure A17 Overlap between ground truth and tracking results for S6 
 

 
Figure A18 Euclidean distance between ground truth and tracking result centers for S6. 
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Table A6 Tracking metrics S6 
 
S7 Segway - Orange ball on grass - 407 frames 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A19 Tracking for some consecutive frames in S7. 
 
 
 
 

S6 Segway - 
Orange ball  on 
pavement 
Tracking Algoritm 

False 
Alarm 
Rate 
 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 
 

Negative 
Prediction 
 
 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  0.8601 0.1437 0 0.1399 NaN 0.8563 1.0000 
BM 0.8105 0.1946 0 0.1895 NaN 0.8054 1.0000 
HRS 0.6650 0.2066 0.2222 0.3350 0.0146 0.7934 0.7778 
VRFS 0.7872 0.2186 0 0.2128 NaN 0.7814 1.0000 
PDFS 0.7872 0.2186 0 0.2128 NaN 0.7814 1.0000 
GCBT 0.2857 0.0299 1.0000 0.7143 0.0274 0.9701 0 
PIORT-Neural Net 0.0120 0.9820 1.0000 0.9880 0.8182 0.0180 0 
PIORT-Bayesian 0 0.1707 1.0000 1.0000 0.0315 0.8293 0 
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Figure A20 Overlap between ground truth and tracking results for  S7. 
 
 
 

Figure A21 Euclidean distance between ground truth and tracking result centers for S7. 
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S7 Segway - 
Orange ball on 
grass 
Tracking Algoritm 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 
 

Negative 
Prediction 
 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  0.0463  0  0.0442 NaN  0.9537 1.0000   
BM 0.3625  0  0.4896 0  0.6375 1.0000   
HRS 0.0720  0.2222  0.1429 0.0190  0.9280 0.7778   
VRFS 0.9717  0.4444  0.9474 1.0000  0.0283 0.5556   
PDFS 0.5013  0.7222  0.9606 0.0637  0.4987 0.2778   
GCBT 0.0154  0.6667  0.0769 0.0365  0.9846 0.3333   
PIORT-Neural Net 0.8792  1.0000  0.9396 0.4186  0.1208 0   
PIORT-Bayesian 0.3933  1.0000  0.8793 0.0773  0.6067 0   
 

Table A7 Tracking metrics S7. 
 
 
S8 Pedestrian with red jacket - 215 frames 
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Figure A22 Tracking for some consecutive frames in S8.  
 

Figure A23 Overlap between ground truth and tracking results for S8 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
A PROBABILISTIC INTEGRATED OBJECT RECOGNITION AND TRACKING FRAMEWORK FOR VIDEO SEQUENCES 
Nicolás Amézquita Gómez 
ISBN:978-84-693-3387-7/DL:T.1001-2010 



 86

Figure A24  Euclidean distance between ground truth and tracking result centers for S8. 
 
 
 
S8 Pedestrian 
with red jacket   

Tracking Algoritm 

False 
Alarm 
Rate 
 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 

Negative 
Prediction 
 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  0.2275 0.8274     0 0.7725 NaN 0.1726 1.0000 
BM 0.6635 0.3604     0 0.3365 NaN 0.6396 1.0000 
HRS 0.3700 0.6396 0.7143 0.6300 0.9091 0.3604 0.2857 
VRFS 0.0989 0.8325 0.6429 0.9011 0.3103 0.1675 0.3571 
PDFS 0.0446 0.9797 0.5714 0.9554 0.8889 0.0203 0.4286 
GCBT 0.4118 0.1015 1.0000 0.5882 0.0791 0.8985 0 
PIORT-Neural Net 0.0437 1.0000 0.3571 0.9563 1.0000      0 0.6429 
PIORT-Bayesian 0.0488 0.9898 0.4286 0.9512 1.0000 0.0102 0.5714 
 
Table A8 Tracking metrics S8 
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S9 Guy on Segway with orange T-shirt - 297 frames  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A25 Tracking for some consecutive frames in S9. 
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Figure A26 Overlap between ground truth and tracking results for S9. 
 
 

Figure A27 Euclidean distance between ground truth and tracking result centers for S9. 
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Table A9  Tracking metrics S9 
 
S10 Men on segway with orange T-shirts - 256 frames 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S9 Guy on Segway 
with orange T-shirt 

Tracking Algoritm 

False 
Alarm 
Rate 
 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 
 

Negative 
Prediction 
 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  0.8514 0.1492 0  0.1486 NaN 0.8508 1 
BM 0.5952 0.4034 0  0.4048 0 0.5966 1 
HRS 0.0896 0.8610 1  0.9104 0.0588 0.1390 0 
VRFS 0.0038 0.8949 1  0.9962 0.0323 0.1051 0 
PDFS 0.0038 0.8949 1  0.9962 0.0323 0.1051 0 
GCBT 0.7005 0.1898 1  0.2995 0.0092 0.8102 0 
PIORT-Neural Net 0.0238 0.9729 1  0.9762 0.5000 0.0271 0 
PIORT-Bayesian 0.0170 0.9797 1  0.9830 0.5000 0.0203 0 
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Figure A28 Tracking for some consecutive frames in S10. 
 
 

 
Figure A29 Overlap between ground truth and tracking results for  S10. 
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Figure A30 Euclidean distance between ground truth and tracking result centers for  S10. 
 
 
 
 
S10 Men on segway 
with orange T-shirts 

Tracking Algoritm 

False 
Alarm 
Rate 
 

Detection 
Rate 
 

Specificity 
 

Positive 
Prediction 
 

Negative 
Prediction 
 

False 
Negative 
Rate 
 

False 
Positive 
Rate 
 

TMC  0.8976 0.1053 0 0.1024 NaN   0.8947 1.0000  
BM 0.4134 0.6032 0 0.5866 NaN   0.3968 1.0000  
HRS 0.4000 0.5830 0.4286 0.6000 0.2143   0.4170 0.5714  
VRFS 0.3610 0.6235 0.4286 0.6390 0.2308   0.3765 0.5714  
PDFS 0.1465 0.5425 1.0000 0.8535 0.0722   0.4575 0  
GCBT 0.7969 0.0526 1.0000 0.2031 0.0368   0.9474 0  
PIORT-Neural Net 0.0394 0.9879 0 0.9606 NaN   0.0121 1.0000  
PIORT-Bayesian 0.7756 0.2308 0 0.2244 NaN   0.7692 1.0000  
 
Table A10 Tracking metrics S10 
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