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Abstract 

Continuous-wave and passively Q-switched solid-state 
microchip lasers in the near-infrared 

 –  Josep Maria Serres Serres  – 

This text discusses the characterization of compact solid-state lasers, as a first approach 

to the study of the microchip laser concept applied to several rare earth-doped crystalline 

hosts, and reports the results of studying the thermal lens required for microchip laser 

operation and continuous wave and passive Q-switched laser operation in microchip 

configuration. 

In the experiments, the microchip concept is defined as a quasi-monolithic laser cavity. 

This concept is studied for laser emissions at ~1.06 µm from Yb3+ and Nd3+ ions, at ~1.3 µm from 

Nd3+, at ~1.95 µm from Tm3+ and at ~2.05 µm from Ho3+.  

The continuous wave regime is examined in detail for the above mentioned trivalent 

lanthanide ions embedded in several crystalline hosts with the aim of comparing the potential 

of each gain material. In addition, the pump sources used depend on the needs of each laser 

material. Slope efficiencies attained in this study are very close to the theoretical limit improved 

by the quantum defect. 

Microchip solid state lasers passively Q-switched with several saturable absorbers are 

also discussed. For this purpose, novel nanomaterials such as MoS2, carbon nanostructures 

(SWCNTs, single- and multi-layer graphene) and SESA are used as saturable absorbers. Besides, 

the most conventional Cr:YAG (~1.06 µm)  and Cr:ZnS (~1.9 µm) are examined and compared. 

 

 

Keywords:  Microchip lasers, Diode-pumped, Thermo-optic effects, Laser materials, Q-switched 

laser, Saturable Absorber. 
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               1.   

Motivation for the work                     

    

                                

In less than 60 years, the word “laser” has changed from being associated with popular 

science fiction, with big monsters emitting light from their eyes, to having real scientific 

applications in our daily lives.  Since the first demonstration of lasers using a synthetic ruby in 

the 1960s all classes of lasers have developed at great speed [1, 2]. The number of scientific 

reports has increased exponentially and have explored new materials, pump schemes, 

temporal regimes, wavelengths, applications, etc. Emerging companies have started to 

commercialize different kinds of these novel lasers and have found a multitude of applications 

in medicine, the military, micromachining, automobile engines, scientific development, and 

many other fields. In solid-state lasers, SSL, emerging active ions (transition metals or rare-

earths) are divalent (Sm2+, Dy2+, Tm2+, Ni2+, Co2+ and V2+) or trivalent (Nd3+, Er3+, Ho3+, Ce3+, Tm3+, 

Pr3+, Gd3+, Eu3+, Yb3+ and Cr3+) [3-9]. These can generate light in different regions of the 

electromagnetic spectrum, from ultraviolet to mid-infrared. In former times, it was only 

possible to achieve a few milli-watts of output power but the new pump systems and improved 

materials have helped to achieve multi-watt operation. The new powerful semiconductor laser 
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diodes (LDs) can be used to explore the limits of solid-state materials, and to investigate, 

improve and achieve optimal optical-to-optical light conversions for the optical, mechanical and 

thermal properties of each active medium [10]. 

Thanks to the new pumped sources developed, high efficiency, reliability, flexibility and 

compactness can be achieved at several laser wavelengths, which makes it possible to study 

such new doped-crystals (laser materials) as garnets, sesquioxides, borates, vanadates, 

fluorides, monoclinic double tungstates (MDTs), and explore the combination of dopant and 

host that is most suited to the desired application. Cubic crystals, such as garnets or 

sesquioxides, are very attractive SSL materials because of their simple crystalline structure, high 

thermal conductivity and small thermal expansion, among other properties [11-14]. They are 

well known, and have been studied and commercialized. Neodymium-doped YAG is the most 

common laser in research and commercial applications emitting at 940, 1120, 1064 and 1440 

nm in CW and pulsed regime. Besides, it is frequency doubled or tripled. With the same host, 

other ions (Yb3+, Er3+, Tm3+ and Ho3+) have been studied in the range 1 and 3 µm and have been 

found to perform well. As an example, the Yb:YAG in thin-disk geometry is the most promising 

laser material operating at 1 µm for power scaling purposes [15-17].  

The practical focus of this study is the emissions at ~1 µm (Yb3+ and Nd3+), ~1.3 µm 

(Nd3+) and ~2 µm (Tm3+ and Ho3+) from several crystalline hosts as laser materials. These lasers 

can potentially be applied in deontology, laser ignition, material processing, range finding, 

surgery and hair removal (at ~1 µm, ~1.3 µm) and in spectroscopy, LIDAR, tissue ablation, 

kidney stone removal and atmospheric applications (at ~2 µm) [18-26]. For this purpose, we 

study not only laser performance but also several properties (thermal and optical) to optimize 

the laser parameters. Comparing the ions in various crystals gives more detail about such laser 

parameters as wavelength, tuning range, crystal fracture, optical-to-optical efficiency, 

maximum output power, etc. 

Laser generation can be either in continuous-wave (CW) or pulsed mode.  Of the 

different ways to generate laser pulses, the so-called Q-switched technique generates short 

and very energetic laser pulses with practical applications in the real world [18, 19, 27-29]. This 
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technique can be either active or passive. The active materials that generate pulses modulate 

the intensity of the laser oscillating in the cavity and convert acoustic, electric or mechanical 

modulation to optical modulation [30-33]. A second way to generate laser pulses is passive Q-

switching (PQS), which uses passive materials (namely saturable absorbers [SAs]) for optical 

modulation [34-37]. The most common SAs are the Cr:YAG crystal for lasers at 1 μm and Cr:ZnSe 

for lasers at 2 μm [38,39]. In recent years, huge efforts have been made to explore new SAs 

based in nanomaterials to improve the generation of laser pulses. Good examples are those SAs 

based on carbon nanostructures, such as graphene, single- or multi-walled carbon nanotubes 

(SWCNTS, MWCNTs), etc. [40-43]. These materials have very fast recovery times, low saturation 

intensities, and high damage thresholds while their modulation depth is somehow 

“customized” (for example, by controlling the concentration of SWCNTs the modulation depth 

can also be controlled [44-47].  

The laser cavity geometry plays an important role in achieving the desirable output 

results: devices are required to be economic to fabricate, reliable, alignment-free, simple, 

compact and robust. One laser cavity that can provide these results is the microchip concept. 

The microchip laser setup consists of a plano-plano cavity with optical coatings deposited 

directly on the active material. This concept can be applied in both CW and PQS [28, 29, 48-53]. 

Novel nanomaterials can be deposited directly on the active materials and then be covered with 

a specific dielectric mirror to generate laser oscillation at the proper wavelength. The most 

important feature of the microchip laser concept is the thermo-optical properties of the laser 

material. Due to the geometry of the laser cavity (two planar mirrors), the laser mode needs to 

be stabilized by introducing a focusing element. This is provided by the laser material itself if it 

has a positive thermal lens (TL). In addition, if the TL is weak, the astigmatism will be weak and 

the laser beam will be quasi circular with good quality factor at high absorbed power. 

In this thesis, the microchip lasers studied, either CW or pulsed, are intended to 

operate at 1, 1.3 and 2 μm. 
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Introduction  

 

2. 1. Microchip Lasers ..................................................................................................................... 6 

2. 2. Host materials ......................................................................................................................... 7 

2. 3. Rare-Earth ions ....................................................................................................................... 8 

2. 4. Thermal lens ......................................................................................................................... 10 

2. 5. Q-switching mechanism ........................................................................................................ 14 

2. 6. Passive Saturable Absorbers ................................................................................................. 16 

 
 
This second chapter gives an overview of some of the most important issues associated with 

SSLs. The mechanism and the advantages of microchip lasers are discussed (2.1). The thermal, 

optical and mechanical properties of several host materials (2.2) are overviewed and the active 

ions studied (Yb3+, Nd3+, Tm3+ and Ho3+) are described (2.3). The TL is a key parameter for 

understanding the mechanism of mode stabilization in the plan-parallel configuration of the 

laser cavity (2.4). The Q-switching mechanism that produces short and high energetic laser 

pulses is also explained (2.5) and, finally, the main properties of the SAs for generating laser 

pulses are shown (2.6).  
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2. 1. Microchip Lasers  

SSLs are assembled with discrete optical components, most of which need to be 

carefully aligned. This generally makes them expensive, fragile and unattractive for many 

commercial and scientific applications. Emerging SSLs were rapidly developed thanks to the 

advances made in pump sources, especially semiconductors because they cover the absorption 

band of most transition metals and rare-earth ions [54-58]. The cost per watt was quickly 

decreased by low-cost mass production, simple setup, robustness, compactness and 

inexpensive automation, and many regions of the electromagnetic spectrum were also covered. 

Two decades ago, the MIT Lincoln Laboratory built a novel device called “a microchip laser” to 

overcome the problems of cost, robustness, reliability and size [48-51]. This concept of laser 

consists of a thin active material with dielectric coatings/mirrors directly applied to its plane 

surfaces to form a “sandwich” in the laser resonator. With this concept, many applications 

changed from being “unattractive” to “attractive”.  

End-pumped microchip lasers offer advantages such as high-power efficiency, 

simplicity, robustness and compactness with moderate output powers [59]. Moreover, diode 

pumped microchip SSLs offer a such advantages as high beam quality, small linewidth, output 

stability (amplitude noise is typically below <1%), high energy pulses (the upper state lifetime 

of most of the active ions can exceed several hundred microseconds, which makes them 

attractive for Q-switching) [60-64]. The main disadvantage of this type of laser resonator, in 

which the gain medium is longitudinally pumped, is the temperature dependence along the 

beam direction [65]. The absorption of the pump produces thermal gradients that directly 

affect the refractive index of the laser material, which makes the thermo-optic coefficients 

govern the laser mode. These thermo-optic coefficients are key to the stability of the laser 

mode in this plan-parallel resonator because they affect the beam quality.  The microchip 

concept can be applied in CW, PQS and the self-mode-locking with excellent performance. It 

also makes it possible to fabricate frequency-doubled lasers and Raman lasers, etc.  
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2. 2. Host materials  

The active material in a laser consists of a host and the ion. The former is a passive 

element, while the absorption and emission processes take place in the active ions depending 

on distribution of their energy levels (see 2.3).  

The passive behaviour of the host induces the mechanical, optical and thermal 

properties of the laser material (see Table 2). Ideally it should have high thermal conductivity, 

low thermal expansion coefficients, low mechanical-thermal stress, a high damage threshold, 

limited scatter loss and hardness. It is important that the quality of the active materials (host + 

active ions) be high if laser performance is to be good. When the active ions substitute a passive 

ion in the structure, the crystallinity of the laser materials should not be affected too much [66-

70]. As for the active ions, they must have strong absorption bands and high quantum efficiency 

in the emission process. In this thesis, the active ions studied are Yb, Nd, Tm and Ho embedded 

in several hosts. Table 1 shows how the ionic radius affects the suitability of the active ions to 

substitute for passive ions. The table shows the ionic radius that depends on the coordination 

in the structure of the active ion substituting the passive ion. The coordination depends on the 

host (VI or VIII as an example).  

Table 1. List of RE with the substituted active to passive atom in the host. #* bests radii-matching 

Passive/Active 
ionic radii 

ACTIVE ION 

Yb Nd Tm Ho 

P
A

SS
IV

E 
IO

N
 

  

Lu 0,9883* 0,8522 0,9758* 0,9412 

Y 1,0489* 0,9045 1,0357* 0.9989* 

Gd 1,0932 0,9477* 1,079 1,0411* 

Sc 0,8683 0,7487 0,8573 0,8269 

Mg 0.8392 0.7236 0.8285 0.7991 

Na 1.1888 1.025* 1.1738 1.1321 

The materials studied are classified as isotropic and anisotropic materials. The isotropic 

ones are crystals that have the same refractive index in all optical directions [71]. In these 

groups, we find garnets, spinels, sesquioxides and others. Hence, the anisotropic crystals are 

divided into uniaxial and biaxial crystals, which are those whose refractive index depends on 

the direction of the light propagation [71]. Here, fluorides and MDTs are found, among others.  
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2. 3. Rare-Earth ions  

Rare-earth ions are commonly used for laser applications [10, 18, 72, 73]. They are 

located in the periodic table of the elements after lanthanum. The group of lanthanides has the 

electronic configuration [Xe] 6s2 5d0 4fn (where n is the number of 4f electrons from 0 < n < 14, 

but La, Ce, Gd and Lu exceptionally have 5d1 instead of 5d0). Lanthanides are commonly 

incorporated as trivalent cations. In this oxidation state, the electronic configuration is [Xe] 4fn 

(see Table 3). The electrons are only filled in the 4f shell, and the electrons in the 6s and 5d 

shells are lost. In fact, the valence electrons are responsible for their absorption/emission 

transitions.  

 Table 3. The number of 4f electrons (n) in the 3+ oxidation state 

Ion La3+ Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+ Lu3+ 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

  The Ytterbium ion is the simplest system because only one excited state is possible 

corresponding to the 2F7/2→2F5/2 transition. At room temperature, this correspond to a quasi-

4-level laser system. The absorption broadband for Yb3+ is between 880-1000 nm depending on 

the host [74-77]. This in-band pumping system shows very efficient the laser generation, 

reducing the fractional heat load (low losses by no-radiative processes) and very low quantum 

defect (<10%) providing high slope efficiencies and high optical-to-optical conversions. The 

simple energy level scheme avoids the up-conversion (UC) and the excited-state absorption 

(ESA processes).  

The Neodymium ion is a 4-level laser system that can be pumped at ~808 nm. The 

studied emissions correspond to the of 4F3/2 → 4I11/2 transition at ~1067 nm and the 4F3/2 → 4I13/2 

transition at ~1350 nm. The pure 4-level laser systems present a very low threshold (4I9/2 is the 

ground state) and high optical-to-optical laser efficiency [78-82].   
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Properties Double tungstate 
(KLuW) 

Garnet 
(YAG) 

Sesquioxide 
(Lu2O3) 

Vanadate 
(LuVO4) 

Fluoride 
(YLF) 

Oxyborate 
(YCOB) 

Borate 
(YAB) 

Aluminate 
(CALGO) 

Tungstate 
(MgWO4) 

Crystal system monoclinic Cubic Cubic Tetragonal Tetragonal Monoclinic Trigonal Tetragonal Monoclinic 

Refractive index 
@1 um 

Ng = 2.084 

1.842 1.911 

no = 1.998 no = 1.448 X = 1.657 no = 1.758 no = 1.925 X = 2.1255 

Nm = 2.030 
ne = 2.234 ne = 1.470 

Y = 1.688 
ne = 1.688 ne = 1.941 

Y = 2.1400 

Np = 1.995 Z = 1.698 Z  = 2.2731 

Refractive index 
@2 um 

Ng =  2.05 

1.813 1.896 

no = 1.975 no = 1.442 X = 1.654  no = 1.754 no = 1.905 X = 2.1047 

Nm = 1.99  
ne = 2.158 ne = 1.464 

Y = 1.686 
ne = 1.684 ne = 1.924 

Y = 2.1182 

Np = 1.94 Z = 1.696 Z = 2.2455 

Hardness  (Mohs scale) 4 - 5.5 8.2 - 8.5 7 5 4  – 5 6 - 6.5 7.5 8  4.5 

Transparency range (nm) 365 - 5110 200 - 6000 350 - 5500 450 - 5000 200 - 6700 210 - 2600 Not found Not found 400 - 4000  

Space group/ Class C2/c - 2/m Ia3d Ia3 I41/amd I41/a Cm R32 I4/mmm P2/c 

Lattice parameters 

a = 1.0576 nm 

a = 1.21 nm a = 1.04 nm 
a = 0.702  nm a = 0.516 nm 

a = 0.8077 nm 
a = 0.9293 nm a = 0.3663 nm 

a = 0.4697 nm 

b = 1.0214 nm b = 1.6019 nm b = 0.5678 nm 

c = 0.7487 nm c = 0.629 nm c = 1.074 nm c = 0.3531 nm c = 0.7245 nm c = 1.2010 nm c = 0.4933 nm 

B = 130.680 B = 900 B = 900 B = 900 B = 900 B = 101.170 B = 900 B = 900 B = 90.770 

Z = 4 Z = 8 Z = 16 Z = 4 Z  = 4 Z = 2 Z = 3 Z = 4 Z = 2 

Unit cell volume  (nm3) 0.6133 1.73 1.11 0.307 0.286 0.434 0.625 0.162 0.13154 

Density  (g/cm3) 7.69 4.56 9.42 6.26 3.95 3.31 3.7 5.97 6.89 

Thermal conductivity 
@298K  (W/mK) 

K1 = 3.09 

13 12.2 

a = 11 a = 5.3 ax = 2.6  
4.7 

(arbitrary 
orientation) 

a = 6.9  
8.7  

(arbitrary 
orientation)   

K2 =2.55 
c = 4.4 c = 7.2 

ay = 2.33  
c = 6.3 

K3 = 4.4 az = 3.1 

Thermal  Expansion 
α (10-6K-1) 

Ng = 14.55 

8 7.9 

a = 4.4 a = 14.31 ax = 10.8 
Ka = 7.7 Ka = 10 

a = 10.47 

Np = 11.19 
c = 11 c = 10.05 

ay = -8.8 b = 15.68 

Nm = 3.35 az = 3.4 Kc = 6 Kc = 16 c = 10.75 

References 70, 83, 84, 85, 86 86, 87, 88 86, 89, 90 86, 91, 92 86, 93, 94 86,95 , 96 86,97, 98  86, 99, 100, 101 86, 102, 103, 104 

Table 2. Structural, optical, thermal and mechanical properties of the hosts studied  
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The thulium ion is one of the most suitable and efficient systems for lasers at 2 µm due 

to the high quantum efficiency (>75% in the worst case) caused by the so-called cross-relaxation 

mechanism (CR), which reduces heat loading. The ~2 µm emission corresponds to the 3F4→3H6 

transition. The CR mechanism allows for 2 Tm ions to be excited to the 3F4 level with only one 

pump photon [105-108]. 

The holmium ion generates light at ~2.1 µm corresponding to the 5I7→5I8 transition 

[109-111]. To reduce the fractional heat load, it is typically pumped at ~1.9 µm, directly to the 

upper laser level, providing highly efficient lasers.  

Co-doped systems such as Yb3+ - Tm3+ or Tm3+ - Ho3+ are a possible alternative to the 

above ions. The first ion acts as a sensitizer of the emission of the second ion. The co-doped 

systems make it possible to use conventional laser diodes for pumping. However, the main 

drawback is the limited energy transfer efficiency between the ions, which limits the efficiency 

of the laser and the power scalability potential [112].  

2. 4. Thermal lens  

 When light interacts with matter, heat is generated. This is basically due to the 

absorption of light because part of the absorbed energy is converted into lower energy photons 

(releasing less energy than is absorbed, and transferred to the host, thus increasing its 

temperature [113-114].  

This thesis gives particular importance to thermo-optic effects because they are mainly 

responsible for limiting power scaling, modifying the refraction index, depolarization, altering 

the stability domains in the cavity, efficiency and the degradation of the quality of the laser 

beam. This is especially true in plan-plan cavities [115-116].  

The TL phenomena are generated because of the non-uniform transversal and 

longitudinal temperature distribution in the active material [117]. The transverse gradient of 

the refractive index due to the hotter centre of the beam, together with the changes caused by 

thermally induced mechanical stress can lead to bulging at the end of the crystal faces. As is 
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well known, these contributions are dominated mainly by the thermal expansion and thermal 

conductivity coefficients, which depend on the active material.  

At low absorbed power, the thermal effects are not significant. However, the thermal 

focal length changes with the absorbed power, meaning that the laser mode undergoes some 

changes. This can be corrected in long laser cavities with a curved mirror [118] by readjusting 

the position of the mirrors or using internal cavity lenses at a specific pump power. It is more 

of a problem in a plan-plan cavity because it is at the border of the mode stability (D = 0) (see 

Fig. 1) A positive (D > 0) or negative (D < 0) sign means focusing or defocusing, respectively, 

which makes the configuration stable or unstable. A positive, focusing, thermal lens is required 

to keep the laser action within the stability region.  

       

Figure 1. a) Diagram of the mode stability with positive or negative sign of D in a plan-plan laser 

cavity (reproduced from [119]) and b) Thermal aberrations in the active material 

The thermo-optic coefficient is given by:  

∆= 𝑑𝑛
𝑑𝑇⁄ + 𝑃𝑃𝐸 + 𝑄𝑑𝑖𝑠𝑡 .                                                          2.1 

In optical materials, the refractive index is not constant with temperature, 𝑑𝑛
𝑑𝑇⁄ . The 

second factor is the photo-elastic effect, 𝑃𝑃𝐸, which means that the refractive index depends 

on thermally induced stress. It depends on  𝑛3𝛼𝑇𝑄𝐴(𝐵) where 𝑄𝐴(𝐵) is the so-called photo-  
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Table 4. Thermo-optic coefficients of several laser materials doped with Yb ions 

Active material  
dn/dt 

10-6K-1 

Ppe 

10-6K-1 

Qdist 

10-6K-1 
Ref. 

Yb:CALGO 

(9 at.%Yb) 

a-cut -7.6 
0 (E||a) +8.9 (E||a) 

120, 121 
-5.3 (E||c) +14.2 (E||c) 

c-cut -8.6 
-0.1 (E||a) +9.3 (E||a) 

/ / 

Yb:KluW 

(3 at.% Yb) 

Ng-cut -6.5 
+2.2  (E||m) 

+13.3 

122, P3 

+0.4  (E||p) 

Np-cut -6.5 
+5.4  (E||m) 

+3.4 
-1.1  (E||g) 

Nm-cut -14.6 
+4.8  (E||g) 

+11.0 
-2.4  (E||p) 

Yb:YAG 

(8 at.% Yb) 
/ 

+9 -0.66 +7.2 123, 124 

Yb:Lu2O3 

(1.5 at.% Yb) 
+5.8 Not found +10.3 123, 125 

Yb:YVO4 

(1 at.% Yb) 

a-cut +13.8 

Not found 

+3.5 (E||a) 

126, 127 
-3.4 (E||c) 

c-cut +8.0 
+14 (E||a) 

/ 

Yb:YLF 

(5 at.% Yb) 

a-cut -4.6 

Not found 

+6.41 (E||a) 

128, 129 
+6.7 (E||c) 

c-cut -6.6 
+4.5 (E||a) 

/ 

Yb:YCOB 

(15 at.% Yb) 

X-cut -2.5 
-1.7  (E||Y) 

+10.6 

130, P18 

-1.2  (E||Z) 

Y-cut -2.5 
+1.9  (E||X) 

+2.3 
+3.4  (E||Z) 

Z-cut -1.2 
+1.9  (E||X) 

+4.9 
+1.1  (E||Y) 

Yb:YAB 

(7 at.% Yb) 

a - cut +3.5 

Not found 

+1.2 (E||a) 

131 
+1 (E||c) 

c - cut +6.0 
+6.5 (E||a) 

/ 

Yb:YALO 

(5 at.% Yb) 

a-cut +7.7 

Not found 

+7.5 (E||b) 

132 

+8.08 (E||c) 

b-cut +11.7 
+2.2 (E||a) 

+8.2 (E||c) 

c-cut +8.3 
+2.2 (E||a) 

+7.7 (E||b) 
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elastic constant. The last factor is the non-uniform expansion due to the thermal heat 

in the active media. This factor depends on the refractive index and the coefficient of the 

thermal expansion along the light propagation axis. The bulging of the crystal end faces is due 

to a non-uniform thermal expansion coefficient defined as   𝑄𝑑𝑖𝑠𝑡 = (1 − ν)(𝑛 − 1)𝛼𝑇. Table 4 

shows the thermo-optic coefficient ( 𝑑𝑛
𝑑𝑇⁄ ,  𝑃𝑝𝑒 𝑎𝑛𝑑 𝑄𝑑𝑖𝑠𝑡) of several laser materials in the 

literature. These thermo-optic coefficients depend on the ion and the doping level.  

For end-pumped bulk crystals the optical power of the TL can be determined as: 

𝐷 =
𝑃𝑎𝑏𝑠·𝜂ℎ

2·𝜋·𝑤𝑝
2·𝐾

∆,                                                                  2.2 

where  𝑃𝑎𝑏𝑠 is the absorbed power in the crystal, and 𝜂ℎ is the fractional heat load, which is 

usually determined by 1 −
𝜆𝑝

𝜆𝑙
⁄  where  𝜆𝑝 is the pump wavelength and 𝜆𝑙 the laser 

wavelength, 𝑤𝑝 is the pump spot radius and K the thermal conductivity. In this study,  𝑤𝑝 was 

considered to be higher than the radius incident pump so the beam quality is less influenced by 

thermally-induced aberrations. When  𝑤𝑝 < 𝑤𝑙 , the beam quality is degradated because of the 

wave-front distortion introduced by non-parabolic phase aberrations of the TL [133]. 

The dioptric power, M, is calculated as 𝑓−1 = D. Another factor that describes the 

changes in the optical power of TL with the absorbed power is the sensitivity factor. It is defined 

as: 

𝑀 =
𝑑(1

𝑓⁄ )

𝑑𝑃𝑎𝑏𝑠
,                                                                2.3 

The difference in the sensitivity factors of the two meridional planes is the astigmatism, 

defined as: 

𝑆 = 𝑀𝑣 − 𝑀𝐻,                                                            2.4 

where 𝑀𝑣 or 𝑀𝐻 are the sensitivity factors for the vertical and horizontal planes, respectively. 

The astigmatism degree evaluates the ellipticity of the laser beam.  
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2. 5. Q-switching mechanism  

Q-switching is a mode of laser operation that provides short and energetic laser pulses. 

It modulates intracavity losses and thus the quality factor Q of the laser resonator. The latter is 

defined as the ratio of the energy stored in the cavity to the energy loss per cycle: 

Q = Estored / Eloss                                                                  2.5 

The technique consists of storing energy in the amplifying medium by optical pumping 

while preventing lasing. This is done by loss insertion, which increases the threshold. The energy 

stored and the gain of the active medium will be high. 

 

Figure 2. Evolution of power, loss and gain during the formation of a laser pulse with the Q-

switching technique, reproduced from [134] 

The time for which the atoms remain excited in the upper laser level depends on the 

fluorescence lifetime f. The longer this is, the better. For passive Q-switching the losses are 

modulated with an SA, an optical component with a certain optical loss, which is reduced at 

high optical intensities. It acts as a passive modulator, because it inserts a certain amount of 

losses in the cavity. When the optical intensity reaches a particular value, the losses are 

reduced, and a pulse is generated (see Figure 2). The pulse duration achieved with Q switching 

is typically in the nanosecond range or even shorter. 
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The main characteristics of a Q-Switched laser are the following: the pulse energy (𝐸𝑝), 

the repetition rate (𝑓𝑟𝑒𝑝)  and the pulse duration (𝑡𝑝). These values can be determined 

experimentally or modelled with theoretical formulas.  

The pulse energy can be estimated as follows: 

𝐸𝑝 =
ℎ𝛾𝐿

𝜎𝐿
· 𝐴 · ∆𝑅 ·

𝑇

𝑇+𝐴𝑛𝑠
,                                                          2.6 

where ℎ𝛾𝐿  is the photon energy at the lasing wavelength, 𝜎𝐿  the emission cross section of the 

laser material, 𝐴 is the pump spot area in the resonator, ∆𝑅 is the modulation depth of the SA, 

𝑇  is the transmission of the output coupler and 𝐴𝑛𝑠 is the non-saturable losses. 

The repetition rate shows linear behaviour by changing the pump: 

𝑓𝑟𝑒𝑝 =
𝑃𝑎𝑣

𝐸𝑝
=

𝜂𝑠·(𝑃𝑝−𝑃𝑡ℎ)

𝐸𝑝
,                                                             2.7 

where  𝜂𝑠 is the slope efficiency, 𝑃𝑝 is the pump power and 𝑃𝑡ℎ is the threshold pump power 

threshold.  

The intracavity power of a Q-switch microchip configuration with an ideal 𝑠𝑒𝑐ℎ2 

function provides a symmetric Gaussian peak in the regime of interest (𝑙 ≫ 𝑞0), where 𝑙 is the 

sum of losses in the output coupler plus the parasitic losses in the absorber and 𝑞0 is the 

unbleached values for the absorber. The pulse duration can be estimated at Full Width at Half 

Maximum (FWHM) by: 

𝑡𝑝 ≈
3.52·𝑇𝑟

∆𝑅
=

7.04·𝑛·𝐿

𝑐·∆𝑅
  ,                                                            2.8 

where 𝑛 is the refractive index of the active material, 𝐿 is the cavity length and 𝑐 is the speed 

of light in vacuum. The pulse duration is directly proportional to the cavity length, which makes 

the microchip laser concept very attractive for providing very short laser pulses [29, 48, 50]. 
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2. 6. Passive Saturable Absorbers 

An SA is an optical element whose transmission changes with intensity. The material 

becomes more transparent as the intensity increases, and at high intensity values the losses 

"saturate" and the material is said to “bleach” [135]. The bleaching process is due to the 

saturation of a quantum transition, which depends on the material. 

The most important properties of SAs are the modulation depth, the non-saturable 

losses, the damage threshold, the recovery time and the saturation fluency (intensity). The 

modulation depth is the maximum possible change in optical loss where a higher modulation 

depth increases the peak energy. The non-saturable losses are the parasitic losses that cannot 

be saturated and which, ideally, must be zero. The damage threshold is the limit at which the 

material can operate to save its properties. The recovery is the time it takes for the excitation 

to decay after an excitation pulse. This determines how fast the SA is and should not be too 

long. Saturation intensity is the intensity required to reduce the absorption to half of its 

unbleached value and it should be low. 

Table 5. Properties of some saturable absorbers studied in this thesis 

  
SWCNTs 

(2 µm) 

1L-G 

(2 µm) 

3L-G 

(2 µm) 

4L-G 

(2 µm) 

MoS2 

(2 µm) 

SESA 

(2 µm) 

Saturation Intensity MW/cm2 7 0.6 0.8 1 0.5 23 

Modulation Depth % 0.52 0.23 0.29 0.32 0.32 0.55 

Refractive index (SiO2) n0 1.43 1.43 1.43 1.43 1.43 / 

  
Cr4+:YAG 

(1 µm) 

V3+:YAG 

(1 µm) 

Cr2+:ZnS 

(2 µm) 

Cr2+:ZnSe 

(2 µm) 

Ground state absorption 

cross section 
σgsa  (x 10-18 cm2) 4.5 7.27 0.67 1.3 

Excited state absorption 

cross section 
σesa (x 10-18 cm2) 1 7 ~ 0 0.02 

Saturation fluency J·cm-2 0.04 0.03 0.15 0.08 

Recovery time ns 4000 12 5000 8000 

Refractive index n0 1.82 1.82 2.27 2.45 

In this thesis, SAs consisting of carbon nanostructures (graphene and carbon 

nanotubes) are studied as well as semiconductor materials (SESAM, MoS2 and PbS QD in a glass) 
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and dielectric materials doped with chromium (Cr:ZnS and Cr:YAG). Table 5 shows some 

properties of the SAs studied.  

Carbon nanotubes can be used as SAs because it is a nanostructured material with 

unique electric and optical properties and a zero band-gap. In particular, single-walled carbon 

nanotubes, SWCNTs, can be used as saturable absorbers. They have a very broad saturable 

absorption band. Their properties are mainly determined by the roll direction of the graphene 

sheet, and they have fast recovery times, relatively low saturation intensities and high damage 

thresholds [40, 43, 46]. 

Graphene is another carbon structure whose properties are similar to those of 

SWCNTS. The flat honeycomb can be used in single or multiple layers of graphene in the 

broadband of the spectrum. Graphene is a sp2 hybridisation and has an atomic thickness of 

~0.4nm, which corresponds to the universal transmission of a single-layer graphene, T ≈97.7%. 

Multiple graphene layers decrease transmission and produce higher modulation depth, which 

gives high energy pulses [40-42, 44, 47]. 

2D MoS2 structures exhibit broadband absorption saturation in a broad spectral range 

extending from the visible to ~2.1 μm. Their saturation fluency is relatively low, the recovery 

time of the initial absorption is ultrafast, and the mechanical properties are good. This effect is 

related to the finite density of states in the conduction band in accordance with the Pauli 

blocking principle, so that at a certain intensity of the incident light, the excitation of carriers 

from the valence band to the conduction band is blocked and bleaching occurs [136, 137]. 

The most common dielectric material in passive Q-switching is Cr4+:YAG [38, 138]. This 

crystal can be used at ~1 µm as a saturable absorber. Another possibility is V3+:YAG [139], which 

can also be used at ~1 and ~1.3 µm. Both crystals have slow saturation that can be used in 

passive Q-switching (up to several ps of pulse duration). These doped:YAG crystals have a 

transparent window from UV to NIR emission, a high absorption cross section, and thermal, 

chemical and mechanical properties that are suitable for laser applications. 

Another configuration of crystals doped with chromium is the oxidation state of two 

cations, Cr2+. The most common hosts are ZnS and ZnSe [39, 140]. Doped chromium zinc 

chalcogenides have a broadband absorption between 1.5 and 2.1 µm. The low absorption at 
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around 2 µm, the fast decay time of the electrons in the excited level and the good mechanical, 

thermal and optical properties make it possible to use this active material as a saturable 

absorber. However, these crystals are typically designed for laser emission between 1.8 and 3.5 

µm.  

Other semiconductor materials for SAs are SESAM and SESA. The difference between 

them is how they are used – in the transmittance or reflectance mode – or what material the 

SA is made of. This kind of material has also become a key component for fast lasers. It was not 

until the 1990s, when theoretical predictions and experimental results indicated the presence 

of pulse emission. The SESAM is designed as a Fabry-Perot structure with dielectric Bragg 

mirrors that can be adjusted to reduce the saturation fluency and the losses in the laser cavity, 

and so determine the modulation depth of the SA device [141-142].    
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           3.   

Objectives                      

 

 

 

 

 

 

 

 

 

 

The general objective of this study is to develop compact, efficient and robust SSLs in 

the near-infrared using different ion-host combinations. This kind of laser can be implemented 

in numerous applications so that they can be used by people without technical experience and 

do not need to be aligned.  
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This study focuses on microchip lasers at several laser wavelengths, particularly at 1 

and 2 µm. The general objective outlined above can be subdivided into three specific objectives: 

 The study of TL effects in active materials. 

 CW laser generation in several active materials using the microchip configuration.  

 The study of PQS microchip lasers by novel SAs.  

To accomplish the first objective the active materials were studied using diode 

pumping in a plan-concave linear cavity. The study largely focused on MDT crystals, essentially 

KLuW doped with Yb, Tm and Ho ions. Borates and garnets (doped with Yb3+) and fluorides and 

sesquioxides (doped with Tm3+) were also studied. 

Once the sign of the TL in these materials had been determined, the second objective 

was to demonstrate CW laser operation by applying the microchip concept. To this end, a large 

number of materials were studied: MDTs (doped with Yb3+, Nd3+, Tm3+ and Ho3+), garnets 

(doped with Yb3+ and Ho3+), vanadates (doped with Yb3+ and Tm3+), borates (doped with Yb3+), 

fluorides (doped with Tm3+) and sesquioxides (doped with Tm3+). In all cases, the study was 

performed by pumping with LD, with the exception of Ho3+; Ho:YAG was pumped by a Tm-fibre 

laser and the Ho-doped MDTs were pumped by a home-made Tm SSL.  

The PQS laser performance of the microchip lasers was studied with standard and novel 

absorbers. Graphene, Single-Walled Carbon Nanotubes (SWCNTs), MoS2, Cr:YAG and V:YAG 

were studied at 1 µm and graphene, SWCNTS, MoS2, Cr:ZnS, PbS quantum dots and SESAM 

were studied at 2 µm. 

To fulfil these objectives, research groups from all over the world have provided the 

necessary active materials: SAs, pump sources, suitable mirrors, crystals holders, etc. 
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             4.   

Results                       
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This section is divided into three parts, one for each of the specific objectives. The most 

important results are summarized in tables and each topic is discussed in greater depth in the 

reported papers. The results were grouped according to the active ions of Yb, Nd, Tm and Ho. 

Most of the results have already been published, but the work is ongoing and more results are 

expected to be published in short.  
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4. 1. Continuous-wave laser operation   

The Yb ions were studied as a dopant in several crystalline hosts. The hosts studied 

were isotropic gallium garnets (Lu3Ga5O12 (LuGG), Y3Ga5O12 (YGG), Ca3(Nb1.5Ga0.5)Ga3O12 

(CNGG), Ca3Li0.275Nb1.775Ga2.95O12 (CLNGG), Y3Al5O12 (YAG), tetragonal aluminates (CaGdAlO4 

(CALGO) and CaYAlO4 (CALYO)), the anisotropic trigonal (YAl3(BO3)4 or YAB) and monoclinic 

(Ca4Y(BO3)3 or YCOB) borates, and the MDTs (KLu(WO4)2 (KLuW) and KLuIn(WO4)2 (KLuInW)) (see 

Table 6).  

Table 6. The most important CW results with Yb3+ 

Yb3+ 
Pump  

source 
Cut 

Doping 

(at.%) 

Thickness 

(mm) 
Polariz. 

Max. 

Abs. 

(%) 

Slope 

(%) 

Max.  

Pow. 

(W) 

Laser 

Emission 

(nm) 

Ref. 

KLuW 

Ti:Sap. 

Ng 

25 0.9 

E//Nm 

54 91 0.308 1059 - 1061 
P26, C23 

5 2.6 57 83 0.201 1043 - 1046 

LD975 3 
3 50 40 0.992 1051 P3 

2.6 
44 65 4.4 1049 P6, C10 

LD981 

1.5 62 78 8.7 1025 

In preparation 3 
2.6 66 86 10.4 1050 

3.3 80 42 4.8 1032 

5 2.6 72 83 9.4 1042 

KLuInW LD975 3.5 3 E//Nm 52 78 4.11 1042 - 1048 P25, C31 

YAB LD975 c 5 3 E//a 70 67 7.18 1041 - 1044 C29 

CALGO 
LD975 

σ 

8 6 E// σ 
70 84 7.79 1057 - 1065 C25, C30 

LD981 83 63 9.8 1043 - 1059 In preparation 

CALYO 
LD975 

3 3 E// σ 
55 91 5.06 1048 - 1056 C25, C30 

LD981 62 67 5.91 1041 - 1055 In preparation 

LuGG 
LD932 

/ 

7.5 

6 

Unpol. 

73 75 8.97 
1040 

P14, C16 

LD969 76 65 9.31 

YGG 
LD932 

6.02 
75 61 8.4 

1042 
LD969 65 71 8.68 

CNGG 
LD932 

5.8 8 
71 37 5.05 

1051 
LD969 57 42 4.25 

CLNGG 
LD932 

5 3.14 
47 54 6.18 

1039 
LD969 42 64 6.18 

YAG 
LD932 

3 3 
42 58 0.9 

1032 P11, C6 
LD969 55 36 0.6 
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YCOB LD975 

X 

3 15 

E//Z 
50 68 4.16 1043 - 1058 

P18, C19 
Y 70 78 4.94 1038 - 1050 

Z E//X 60 
79 4.65 

1035 - 1039 
70 8.35 

 The Yb - doped crystals studied emit light in the 1 - 1.1 µm range. The emission 

corresponds to the 2F5/2 → 2F7/2 transition. The crystals that provide the highest output power 

in the microchip geometry are the ones with a high degree of symmetry in the crystallographic 

structure: the garnets. The high thermal conductivity of these crystals provides high output 

powers and high slope efficiencies. Similarly, the borates show very good laser performance. A 

systematic study was made of MDTs in an attempt to improve and optimize the output 

characteristics for power scaling. The study optimized the setup for different doping levels, 

pump sources, crystal thicknesses, etc. achieving output powers as high as 10 W and slope 

efficiencies of 91 %. Tables, figures and the complete discussion of each study are included in 

the papers.    

Table 7. The most important CW results achieved with Nd. *Double peak laser oscillator 

Nd3+ 
Pump  

source 
Cut 

Doping 

(at.%) 

Thickness 

(mm) 
Polariz. 

Max. 

abs 

(%) 

Slope 

(%) 

Max.  

Pow. 

(W) 

Laser 

Emission 

(nm) 

Ref. 

KGW 

LD805 

Ng 

3 3 

E//Nm 

54 61 4.02 

1067 
P21 

10 0.8 72 71 1.05 

Ti:Sap. 
3 0.25 

68 74 0.341 

LD805 42 33 0.906 

Ti:Sap. 10 0.9 39 74 0.340 P26, C23 

SYSO 

LD805 σ 

0.8 3.02 

E//a 

24 
50 1.03 1079 

In preparation 

16 0.26 1350 - 1390* 

CALGO 1 6.37 74 
25 1.75 1081 

5 0.16 1350 - 1390* 

CALYO 0.8 5.05 65 
35 4.01 1082 

8 0.37 1350 - 1390* 

The Nd ions were studied as a dopant in KGd(WO4)2 (KGW), silicate Sc0.2Y0.8SiO5 (SYSO), 

and the tetragonal aluminates CALGO and CALYO (see table 7).  
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The closer atomic radius of Gd and Nd makes KGW the most suitable of the MDTs. It 

was studied in various scenarios (Table 7) and the maximum slope efficiency was limited by the 

quantum defect. With highly doped crystals, slope efficiencies were high while power scaling 

was demonstrated at lower doping levels. Future work will focus on optimizing the doping 

level/thickness ratio.  

Table 8. The most important CW results achieved using Tm3+ 

Tm3+ 
Pump 

 source 
Cut 

Doping 

(at.%) 

Thickness 

(mm) 
Polariz. 

Max. 

Abs. 

(%) 

Slope 

(%) 

Max.  

Pow. 

(W) 

Laser 

Emission 

(nm) 

Ref. 

KLuW 

LD805 Ng 3 2.5 

E//Nm 

62 44 0.88 1950 P1, C1 

62 50.4 3.2 1946 P2, C2, C10 

Ti:Sap. Ng 

15 2.5 83 77 0.785 1957 - 1965 

P26, C23 5 4 42 73 0.525 1950 - 1961 

8 2.9 51 74 0.504 1949 

Lu2O3 

LD805 / 

1.8 3 

Unpol. 

32 50 3.3 2064 

P30, C26 
4 1.7 28 33 2.15 2068 - 2075 

Y2O3 2.5 2.3 30 27 2.04 2049 - 2065 

Sc2O3 2 2.2 20 30 1.14 1991 - 2002 

LuVO4 LD802 
σ 

4 
3 

E// σ 75 39 1.9 1930 - 1960 In preparation 

Na2La4(WO4)7 LD805 1.36 E// π 18 31 0.65 1937 C32 

MgWO4 

LD802 
Z 

0.9 
3.05 

E//Y 
30 

39 0.775 2017 - 2034 P29, C33 

LD805 
50 3.09 2022 - 2034 

P33 
X 1.86 14 50 0.805 2020 - 2057 

GYF 

LD792 

σ 

8 

2.7 

E// σ 

27 65 1.87 1902 - 2005 

P32, C28 
YLF 3.38 38 72 3.1 1903 - 2018 

LLF 
2.63 26 38 1.3 1925 - 2012 

12 3.54 37 52 2.65 1915 - 2010 

KYF 
LD802 

8 2.8 22 79 1.280 1850 
In preparation 

CALGO 3 3 30 37 0.695 1950 

In the case of the silicate and aluminate crystals, a longer laser wavelength might make 

these lasers more attractive for specific applications. The laser wavelength was observed at 

~1.08 µm. Moreover, we demonstrated laser emission for the 4F3/2 → 4I13/2 transition (emission 

from 1.3 to 1.4 µm). Dual laser wavelength at 1.35 and 1.39 µm was observed for the three 

crystals with relatively low slope efficiencies. The laser emission may oscillate at these two 
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wavelengths depending on the gain cross-section spectra. Tables, figures and the complete 

discussion of each study are included in the papers.   

The Tm ions were also studied in several host materials: the MDT KLuW, the tetragonal 

tungstates (Na2La4(WO4)7 and MgWO4), the isotropic cubic sesquioxides (Lu2O3, Y2O3 and 

Sc2O3), the tetragonal fluorides (LiLuF4 (LLF), LiYF4 (YLF), LiGdF4 (GYF) and YKF4 (KYF)) and the 

tetragonal aluminate (CALGO) and vanadate (LuVO4) (see table 8). Moreover a co-doped MDT 

Yb,Tm:KLuW laser has been reported at 2 µm (table 9).  

The transition in Tm that corresponds to a ~2 µm emission is the 3F4 → 3H6. This 

transition, after pumping at around 800 nm, leads to the so-called cross-relaxation mechanism 

[18] that significantly reduces the quantum defect, which gives two photons instead of only one 

pump photon.  

Table 9. The most important CW results achieved using co-doped Yb3+-Tm3+ crystals 

Yb3+, 

Tm3+  

Pump  

source 
Cut 

Doping 

(%) 

Thickness 

(mm) 
Polariz. 

Max. 

Abs. 

(%) 

Slope 

(%) 

Max.  

Pow. 

(W) 

Laser 

Emission 

(nm) 

Ref. 

KLuW 

Ti:Sap. 

Ng 

5 - 6 

3 E//Nm 

86 27 0.082 1995 - 2010 P26, C23 

LD975 

5 - 8 
74 

20 0.201 1990 - 2007 

P13, C8 

5 - 6 14 0.142 1994 - 2010 

2.5 - 8 

50 

15 0.156 1990 - 2005 

2.5 - 4 15 0.198 1995 - 2010 

2.5 - 2.5 10 0.125 1975 - 1992 

KLuW was systematically studied with two different pump sources, and several doping 

levels and thicknesses. Power scaling was demonstrated and a record slope efficiency of 77% 

was achieved with Ti:Sapphire laser pumping. Highly doped Tm MDTs are good candidates for 

highly efficient, compact lasers (very short gain medium). In general, the rest of the materials 

studied show very promising results. By optimizing many of them, output powers and slope 

efficiencies can be very high (for example, Tm:MgWO4). However, those with relatively low 

thermal conductivity are limited to power scaling: i.e. Na2La4(WO4)7 with only 31 % and 0.65 W. 

Tables, figures and the complete discussion of each study are included in the papers.  
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The co-doped single crystal with Yb as a sensitizer of the Tm emission was studied as 

an alternative to the pump scheme studied before [143]. The optimal doping ratio was 

determined (Table 9). However, the limited energy transfer from Yb to Tm affects the thermal 

component of the laser system. Due to the pump scheme (pumping at 981 nm), the up-

conversion losses became stronger, leading to an increase in the heat in the crystal, which 

meant that the laser performance was not as good as that of the singly-doped one. The 

optimum doping ration was 5 at.% Tm3+ and 8 at.% Yb3+ at which the output power and slope 

efficiency were maximum. Using a Ti:Sapphire laser as pump source with excellent mode 

matching and a polarization parallel to the Nm principal optical direction helped to make the 

slope of the laser more efficient. A complete study with different cavity schemes and 

transmission of the output couplers can be found in the published papers.  

As for the Ho ion, the MDTs (KLuW and KYW) and a cubic ceramic based on YAG have 

been studied (see table 10). The Ho ions were also studied in a co-doped system with Tm ions 

in a MDT (KluW) and the tetragonal fluoride (YLF) (see Table 11).  

Table 10. The most important CW results achieved using Ho3+ 

Ho3+ 
Pump  

source 
Cut 

Doping 

(%) 

Thickness 

(mm) 
Polariz. 

Max. 

Abs. 

(%) 

Slope 

(%) 

Max.  

Pow. 

(W) 

Laser 

Emission 

(nm) 

Ref. 

KLuW 

Tm:KLuW 

Ng 3 
2.67 

E//Nm 

25.5 
84 0.201 2105 P5, C10 

88 0.53 2080 P10 

Intrac. 

3at%Tm:KLuW 
- 8.3 0.29 2080 P7, C11 

KYW Tm:KLuW 2.7 26 85 0.205 2105 P22, P26, C23 

YAG - 

ceramic 
Tm-Fibre / 1 4 Unpol. 33 88 1.18 2090 P31 

 

The main problem for singly doped Ho crystals is to find suitable pump sources since 

they have to be resonantly pumped at ~1.9 µm. GaSb-based diodes are rather expensive and 

not flexible in the emission wavelength. The alternative to the laser diodes are fibers and SSLs 

that can be tuned to match Ho’s  absorption maximum. However, generally speaking, fiber 

lasers are also relatively expensive while tuned SSL do not have enough pump power. The 
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available Tm-fiber in this study emitted at 1910 nm, which coincided with the absorption band 

of Ho:YAG ceramic.  

Table 11. The most important CW results achieved using co-doped Tm3+- Ho3+ crystals 

Tm3+,  

Ho3+ 

Pump  

source 
Cut 

Doping 

(%) 

Thickness 

(mm) 
Polariz. 

Max. 

Abs. 

(%) 

Slope 

(%) 

Max.  

Pow. 

(W) 

Laser 

Emission 

(nm) 

Ref. 

KLuW 
LD805 

Ng 
5 - 0.5  

2.86 

E//Nm 

60 31 0.45 2081 
P4 

1.5 47 17 0.4 2081 

Ti:Sap. 7 - 0.25 3 52 58 0.32 2061 P26, C23 

YLF LD802 σ 5 - 0.5 3.68 E// σ 40 25 0.378 2065 P32 

A ~3 W home-made Tm:KLuW laser was developed to pump Ho-doped KLuw. The 

excellent beam quality and mode-matching gave a slope efficiency of 88 % with the Ho laser. 

For the intracavity pumping geometry (Table 10) the performance was inferior, largely because 

of the non-optimized doping level, the thicknesses of the crystals and, particularly the fact that 

the crystals were uncoated so the intracavity losses were very high. A complete study with 

different cavity schemes and transmission of the output couplers can be found in the papers.  

To find a more conventional pump source, co-doping with Tm was studied. However, 

as with Yb-Tm, the energy transfer between ions limits the maximum slope efficiency and 

output power reached and there are important up-conversion losses. The optimum co-doping 

ratio is 1:10 for Ho and Tm, respectively (see Table 11). Concentrations higher than 0.5 at.% for 

Ho substantially mitigate the laser performance and clearly damage the samples when pump 

powers were high.  A complete study with different cavity schemes, and transmission of the 

output couplers can be found in the published papers. 
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4. 2. Thermal lens 

 A comparative study of TL for Yb-doped MDTs and oxoborates, both being of which are 

biaxial crystals, was performed along the three principal axes. The results are reported for cubic 

garnet. Table 12 shows the main thermo- optic parameters for the study of the thermal lens. 

The complete study and all data can be found in the published papers.  

Table 12. The most important TL results achieved for Yb3+ 

 Yb3+ Cut Polariz. Plane 
M-factor, 

(m-1/W) 

S degree, 

m-1/W 

S/MMAX 

(%) 

dn/dT 

10-6K-1 

Ppe 

10-6K-1 

Qdistr 

10-6K-1 

X 

10-6K-1 
Ref. 

KLuW 

Ng E//Nm 
pg - plane +2.8 

0.7 20% -6.5 
+0.4 

+13.3 
+7 

P3 

mg - plane +3.5 +2.2 +9 

Nm E//Np 
pm - plane -2 

2.4 120% -14.6 
-2.4 

+11 
-6 

gm - plane +0.4 +4.8 +1.2 

Np E//Nm 
gp - plane -1.6 

2.5 156% -6.5 
-1.1 

+3.4 
-4.2 

mp - plane +0.9 +5.4 +2.3 

YCOB 

X E//Z 
ZX - plane +4.1 

0.3 7% -2.5 
-1.2 

+10.6 
+6.9 

P18, 

C19 

YX - plane +3.8 -1.7 +6.4 

Y E//Z 
XY - plane +1 

0.9 47% -2.5 
+1.9 

+2.3 
+1.7 

ZY - plane +1.9 +3.4 +3.2 

Z E//X 
YZ - plane +2.8 

0.4 14% -1.2 
+1.9 

+4.9 
+5.6 

XZ - plane +2.4 +1.1 +4.8 

CNGG 

/ Unpol. / 

+5 

/ / 

+8.8 +0.6 +5.4 14.8 

P14 
CNLGG +3.9 +8.4 +0.7 +5.3 14.4 

YGG +2 +8.4 +0.6 +4.3 13.3 

LuGG +2.1 +8.1 +0.6 +5.2 13.9 

 

For MDTs the thermal lens is positive only along the Ng principal direction, for 

oxoborate YCOB it is positive along all propagation directions, X, Y and Z, and for all the garnets 

studied it is positive. The positive thermal lens makes it possible to produce microchip lasers 

independent of the laser wavelength. This configuration provides a TEM00 laser mode and the 

degree of circular beam is given by the sensitivity factor of the thermal lens, the M- factor. This 

number can be evaluated by the degree of astigmatism, defined as S.  As for the isotropic 
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garnets with positive TL, the best crystal to operate in the microchip configuration is YGG 

because it gives the lowest S and circular beam at different absorption levels.  To study the 

planes of light propagation in uniaxial and biaxial crystals, the circularity of the laser beam, 

which depends on the sensitivity factor, needs to be evaluated. All planes of propagation in the 

monoclinic oxoborate have positive TL with the lowest values of M along the Y direction. 

However, this cut has stronger astigmatism than the other two cuts, and at high absorbed 

power the circular beam turns elliptical.  

Table 13. The most important TL results achieved using Tm3+ and Tm3+,Ho3+ 

Tm3+ Cut Polariz. Plane 
M-factor, 

m-1/W 

S degree, 

m-1/W 

S/MMAX 

(%) 

dn/dt 

10-6K-1 

Ppe 

10-6K-1 

Qdistr 

10-6K-1 

X 

10-6K-1 
Ref. 

KLuW 

Ng E//m 
pg-plane +12.9 

4.8 37 -5.9 
+1.7 

+13 
+8.8 

P1,  

P2, 

C1, 

mg-plane +8.1 -1.6 +5.5 

Nm E//p 
pm-plane +1.5 

8.1 122 -12.3 
+3 

+10.8 
+1.5 

gm-plane –6.6 -0.5 -2 

Np E//m 
gp-plane +3.4 

9.5 155 -5.9 
+3.3 

+3.3 
+0.7 

mp-plane –6.1 -1.3 -3.9 

YLF 

σ E// σ 

π σ-plane +4 
0.4 10 -5.6 

-2.1 
+12.1 

+4.4 

P32, 

C28 

σ σ-plane +3.6 -2.5 +4.0 

GLF 
π σ-plane +5.6 

1.4 25 -6 
-1.8 

+17.2 
+9.4 

σ σ-plane +4.2 -1.6 +9.6 

LLF 
π σ-plane +4.3 

0.4 9.3 -3.6 
-2 

+12.2 
+6.6 

σ σ-plane +3.9 -3.3 +5.3 

Lu2O3 

/ Unpol / 

+3.7 

/ / 

+9 +2.3 +7.6 +18.9 

P30 Y2O3 +6.9 +7.9 0.7 +7.9 +16.5 

Sc2O3 +8.3 +8.4 +1.9 +8.5 +18.8 

Tm3+, 

Ho3+ 
Cut Polariz. Plane 

M-factor, 

m-1/W 

S degree, 

m-1/W 

S/MMAX 

(%) 

dn/dt 

10-6K-1 

Ppe 

10-6K-1 

Qdistr 

10-6K-1 

X 

10-6K-1 
Ref. 

KLuW Ng E//m 
pg-plane +24.1 

0.8 4 -6 
+2.1 

+13 
+9.1 

P4 
mg-plane +24.9 +2.4 +9.4 

Table 13 shows the study of the TL for Tm- doped MDTs, cubic sequioxides, X2O3 (where 

X= Lu, Y and Sc) and the tetragonal LiXF4 fluorides (where X= Y, Gd and Lu) along the a 

propagation direction. As for Tm and Ho in MDTs, there are no significant differences in S and 
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M compared to the Yb counterparts. We can conclude that they will behave similarly at low-

medium absorbed powers. Also, data for the co-doped Tm, Ho:MDTs are reported. The 

complete study and all data can be found in the published papers. 

The isotropic sesquioxide crystals have positive TL. In this regard, the best crystal to 

operate in the microchip configuration is Lu2O3 because it gives the lowest S and circular beam 

at low-medium absorbed powers. The worst crystal of this family is Sc2O3 with a M of +8.3 m-

1/W. Along the a direction, a-cut, the tetragonal fluorides also have positive TL with the YLF 

crystal having the lowest value of M. The value of S between the two planes is lower than for 

GLF but similar to LLF. The M value of the YLF crystal is closer to zero.  

The TL in co-doped Tm, Ho:KLuW along the Ng principal optical direction has also been 

studied (see Table 13). It has a strong M factor of +24.9 m-1/W but low S. The latter guarantees 

an almost circular laser mode, but the strong deformation of the crystal faces does not allow 

for power scaling. 
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4. 3. Passively Q-switched laser operation 

Yb, Tm and Ho were studied in the microchip configuration by inserting the SA between 

the gain material and the output coupler to reduce the internal losses and the length of the 

cavity. Tables, figures and the complete discussion of each study are included in the papers 

referenced.    

The Yb lasers were studied in the passively Q-switched regime for different hosts (see 

Table 14). Novel nanomaterials, such as single-layer graphene, three-layer graphene, MoS2 and 

SWCNTs were studied. The main conclusion for these novel SAs, however, is that further 

improvement is needed if their modulation depth is to be controlled and, hence, the laser 

results improved. The exception to this are the SWCNTs that have a rather mature technology. 

Moreover, more standard materials like Cr4+:YAG were tested. 

Table 14. The most important Q-switched laser results achieved with Yb3+ 

Yb3+ SA 
Slope 

(%) 

Max. 

Average 

Power 

(W) 

Laser 

Emission 

(nm) 

Peak 

Energy 

(µJ) 

Peak 

Power 

(W) 

Polariz. 
FWHM 

(ns) 

PRF 

(kHz) 
Ref. 

KLuW 

 

1L-Graph. 
6 0.113 1030 0.47 1.7 

E//Nm 

280 240 P17 

12 0.170 1030 0.49 3 165 350 C13 

3L-Graph. 12 0.315 1032 1 7 140 320 P23 

MoS2 7 0.147 1030 0.5 2.2 220 300 P23, C21 

Cr:YAG 
55 0.59 1031 47.6 7000 0.69 12.4 P20, C24 

41 1.51 1038 58 7300  8 26 C9 

YAB Cr:YAG 53 2.82 1042 47 6600 
E//a 

7.1 60 C29 

CALGO SWCNTs 14 0.436 1057-65 1.94 7.54 257 225 In preparation 

LuGG 

1L-Graph. 

15 0.32 1041 1.3 2.7 

Unpol. 

490 245 

P16, C15 YGG 23 0.462 1039 1.8 4.1 440 260 

CNGG 24 0.44 1045 1.9 10 190 235 

YAG 
12 0.185 

1032 
0.65 2.9 228 285 

P11, C6 
9 0.083 0.41 1.3 323 202 

LuVO4 17 0.31 1021 0.94 3.9 E//c 240 330 P17 
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The maximum average output power, higher , shortest pulse durations, etc. were 

clearly given by the standard Cr4+:YAG SA. The processing was high quality and the modulation 

depth was precisely controlled. As mentioned above, the fabrication of the novel SAs needs to 

be further improved.  

As for Q-Switched Tm lasers, several hosts have been studied with the above-

mentioned novel SAs as well as more standard polycrystalline Cr:ZnS. In addition, a SESA was 

also applied only for one crystal for purposes of comparison ( Table 15).   

Table 15. The most important Q-switched laser results achieved using Tm3+ 

Tm3+ SA 
Slope 

(%) 

Max.  

Average  

Power 

(W) 

Laser 

Emission 

(nm) 

Peak  

Energy 

(µJ) 

Peak 

Power 

(W) 

Polariz. 
FWHM 

(ns) 

PRF 

(kHz) 
Ref. 

KLuW 

1L-Graph. 

13 0.31 1948 1.6 6 

E//Nm 

285 190 P8, P27, C5 

11 0.04 
1921 - 

1944 
1 0.3 3700 39 P9, C3 

3L-Graph. 39 1.03 1926 4 20.9 190 260 P23, P27 

SWCNTs 
29 0.7 2131 1.1 44 25 620 P24, C20 

12 0.26 1913 0.51 5.3 97 350 P28, C14, C17 

Cr:ZnS 21 0.146 1847 25.6 3280 0.78 5.6 P12, C18 

MoS2 43 1.27 1929 7.5 42.7 175 170 P23, C21 

LuVO4 

SESA 12 0.27 

1869 - 

1882 

0.77 16 

E//a 

46 350 

In preparation SWCNTs 13 0.312 1.88 55 34 166 

4L-Graph. 15 0.363 0.72 8.5 86 498 

MgWO4 

Cr:ZnS 23 0.872 2017 16.1 1184 

E//Y 

13.6 54.2 

P33 
SWCNTs  22 0.317 

2006 - 

2021 
1.5 12.6 117 215 

1L-Graph. 18 0.274 
2012 - 

2015 
1.2 6 201 229 

LLF MoS2 42 1.130 1920 4.6 31 E//a 147 248 In preparation 

 

Particular effort was made to study graphene as an SA. Commercial graphene as well 

as home- made graphene with single and several carbon layers were studied and compared. 

This was especially true of Tm:KLuW, whose three carbon layers were considered to be 

optimum because of the compromise between modulation depth and scattering losses. 
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The Ho-based lasers were also Q-switched. These lasers consisted of crystals and 

ceramics and can be seen in Table 16. Again, novel SAs such as SWCNTs, MoS2 or SESA were 

studied for these lasers.  In addition, quantum dots (QD) of PbS nanocrystals dispersed in a glass 

were studied as SAs for these lasers because the absorption band of the QDs lies above 2 µm 

in the spectral range which makes them highly suitable for Ho Q-switched lasers. Moreover, the 

co-doped laser system, Tm-Ho was also Q-switched using a single layer graphene and the 

polycrystalline Cr:ZnS SAs as shown in Table 16.  

Table 16. The most important Q-switched laser results achieved using Ho3+ 

Ho3+ SA 
Slope 

(%) 

Max. 

Average 

Power 

(W) 

Laser 

Emission 

(nm) 

Peak 

Energy 

(µJ) 

Peak 

Power 

(W) 

Polariz. 
FWHM 

(ns) 

PRF 

(kHz) 
Ref. 

KLuW 

PbS QD 

glass 
42 0.09 2061 1.2 22 

E//Nm 

30 69 P10, C4, C14 

MoS2 48 0.125 2076 0.46 3 150 271 
C22 

SWCNTs 21 0.05 2079 0.31 3 100 160 

YAG - ceramic SESA 37 0.45 2089 3.2 36.9 / 89 141 P31, C27 

Tm3+, 

Ho3+ 
SA 

Slope 

(%) 

Max. 

Average 

Power 

(W) 

Laser 

Emission 

(nm) 

Peak 

Energy 

(µJ) 

Peak 

Power 

(W) 

Polariz. 
FWHM 

(ns) 

PRF 

(kHz) 
Ref. 

KLuW 
1L-graph. 4 0.074 

2061 
0.2 1 

E//Nm 
200 340 P15, C7, C14 

Cr:ZnS 11 0.131 9 1150 14 14.5 P19, C12 
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             5.   

Conclusions                      

 

 

 

 

 

In conclusion, this study has shown that the microchip configuration is a good option for 

efficient laser generation in several active media with positive TL. The thermo-optic behaviour 

is responsible for stabilizing the mode in this kind of laser resonator and performance is best 

with crystals with very weak astigmatism of the TL. In these cases a near-circular TEM00 output 

beam M2
x,y < 1.2 was achieved in all materials studied. In this study, continuous improvements 

were made to various aspects of the laser: for example, the crystal holder for optimum cooling, 

the pump source, non-“standard” output couplers, crystal size and doping, etc. The microchip 

concept is also a good option for the Q-switched regime, the laser operation of sub-nanosecond 

pulses has been demonstrated and Q-switched lasers have been produced with novel 

nanomaterials such as SAs. The main achievements for each active ion studied here are listed 

below.  
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Ytterbium-doped materials 

 The concept of continuous-wave power scaling was demonstrated in Yb:KLuW crystals. 

Output power was 11 W and slope efficiency 88 %. The TL was studied for light propagation 

along the three principal optical axes, Np, Nm and Ng, of which only Ng gave a pure positive 

thermal lens. Passive Q-switching of this Yb laser was demonstrated with graphene, 

multilayer MoS2, V:YAG and Cr:YAG as saturable absorbers. The shortest pulse duration 

achieved was 690 ps with 47.6 μJ pulse energy at a pulse repetition frequency of 12.4 kHz. 

Self-Raman conversion of the fundamental emission to the first Stokes was demonstrated. 

With suitable mirrors the 120 mW output power achieved might be improved. By pumping 

with a Ti:Sapphire laser, a highly doped crystal (25 at.% thin sample) reached η = 91%. 

Adding indium to the structure did not affect the continuous-wave results in short cavities 

with conditions similar to Yb:KLuW.  

 The monoclinic c-cut Yb:YAB crystal was used in the microchip configuration to achieve 7.18 

W in CW at 1041-1044 nm with a slope efficiency of 67 %. Using a Cr:YAG SA, passively Q-

switching was achieved with an average output power of 2.02 W with 4.9 ns stable pulse 

duration corresponding to 83 µJ pulse energy.  

 The a-cut Yb:CALGO and Yb:CALYO crystals were shown to be highly-efficient diode-

pumped microchip lasers. An 8 at.% doped Yb:CALGO laser generated 7.79 W at 1057-1065 

nm with a slope efficiency of 84 %. Power scaling was verified with a 981 nm VBG laser 

diode and achieved 9.8 W for Yb:CALGO and 5.9 W for a 3 at.% Yb:CALYO crystal limited by 

the pump power of the diode. Both lasers produced linearly polarized output (σ-

polarization). 

 CW microchip laser operation was studied in Yb:LuGG, Yb:YGG, Yb:CNGG, Yb:CNLGG and 

Yb:YAG under 932 and 969 nm pumping. Laser performance was best for Yb:LuGG, 

generating  8.97 W of output power with a slope efficiency of 75% and 9.31 W with a slope 

efficiency of 65%, for the two pump wavelengths, respectively. The TL was studied in all 

crystals. PQS with graphene as an SA was studied in all crystals. For Yb:CNGG, 190 ns/1.9 

µJ pulses at a repetition frequency of 235 kHz were achieved. Further power scaling seems 

UNIVERSITAT ROVIRA I VIRGILI 
CONTINUOUS-WAVE AND PASSIVELY Q-SWITCHED SOLID-STATE MICROCHIP LASERS IN THE NEAR-INFRARED 
Josep Maria Serres Serres 
 



 _____________________________________________________________5. Conclusions 

_________________________________________________________________________ 
37 

feasible by pumping at 969 nm whereas the stronger heat load pumping at 932 nm was a 

limiting factor. 

 The Yb:LuVO4 microchip laser was studied in CW and PQS regimes. The use of graphene as 

an SA generated 152 ns/ 0.83 µJ pulses at 1024 nm with an average output power of 300 

mW. 

 The TL was studied in the monoclinic Yb:YCOB with a positive thermal lens in all 

orientations. The Z-cut crystal has the lowest degree of astigmatism because of the large 

thermal expansion and strong photo-elastic effect. CW microchip lasers were produced 

with three cuts while for Z-cut, maximum output power was 8.35 W at ~1040 nm with a 

slope efficiency of 70%.  

Neodymium-doped materials 

 Monoclinic Nd:KGW cut along the Ng axis of the optical indicatrix was studied under diode 

pumping in microchip configuration generating ~4 W of CW at 1067 nm with a slope 

efficiency of 61 %. Highly-doped 10 at.% Nd:KGW, 250 µm thick crystal had a slope 

efficiency of 74 % with Ti:Sapphire laser pumping. The slope efficiency reached the 

theoretical value limited by the quantum defect. 

 The tetragonal Nd:CALGO, Nd:CALYO and Nd:SYSO crystals were also studied by pumping 

at 805 nm. Output power/efficiency was best with a 0.8 at.% Nd:CALYO laser (365 mW/ 8 

% with two laser wavelength oscillating simultaneously at 1350 nm and 1390 nm). All the 

tetragonal structures produced linearly σ polarized output laser. 

Thulium-doped materials 

 Multi-watt continuous-wave laser operation was demonstrated in Tm:KLuW crystals 

achieving 3.2 W with a slope efficiency of 50.4 % at 1946 nm. Pumped by a Ti:Sapphire 

laser, a highly doped crystal (15 at.%) reached a slope efficiency of 77%. The comparative 

study of the TL demonstrates that only Ng-cut crystals provide a pure positive thermal lens. 

PQS was demonstrated with aligned and spaghetti-like Single Walled Carbon Nanotubes, 

multilayer MoS2 and Cr:ZnS with a shortest pulse duration of 780 ps/ 25.6 μJ at a pulse 
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repetition frequency of 5.6 kHz. With a special output coupler (band-pass filter), vibronic 

laser operation was demonstrated at 2130 nm.  

 The sesquioxides Tm:X2O3, where X= Lu, Y and Sc were studied to compare their thermo-

optic properties and their laser performance in microchip configuration. The TL was 

positive in all three crystals. The sensitivity factor of the thermal lens was lowest for 

Tm:Lu2O3. This crystal produced 3.3 W output power at 2063 nm with a maximum slope 

efficiency of 50%. Further power scaling is expected at an optimized Tm doping level. 

 A novel laser crystal, Tm:MgWO4, was reported in CW regime. The first demonstration, 

using a hemispherical cavity reached a maximum output power of 772 mW with a slope 

efficiency of 39%. The power-scaled laser using the microchip configuration up to 3.1 W 

emitted at 2.034 μm. 

 The tetragonal Tm:LiLnF4 crystals, where Ln= Y, Gd and Lu were studied to compare their 

thermo-optic properties and laser characteristics in microchip configuration. For a-cut 

crystals the thermal lens was observed to be positive, weak and nearly spherical. Tm:YLF 

has the minimum degree of astigmatism degree and the best laser performance, which 

generates a maximum output power of ~3 W at 1904 nm and a slope efficiency of 72%. 

Power scaling with the optimization of the Tm doping level is expected. PQS using a 

multilayer MoS2 saturable absorber was studied generating 130 ns/ 4.1 µJ pulses at 1920 

nm with 1050 mW of average output power. 

Ytterbium-thulium co-doped materials 

 A comprehensive laser characterization of the monoclinic Yb, Tm:KLuW crystal was also 

reported. Using a hemispherical cavity and a 5 at.% Yb – 6 at.% Tm doped crystal, a 

maximum of 227 mW of CW output power was achieved at 1983-2011 nm. In the case of 

its performance in microchip configuration, for a 5 at.% Yb – 8 at.% Tm doped crystal a 

maximum output power of 201 mW at 1990-2007 nm was achieved.  
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Holmium-doped materials 

 The CW Ng-cut Ho:KLuW microchip laser in-band-pumped by a Tm:KLuW laser at ~1.96 μm 

was studied. The experiments achieved a maximum slope efficiency of 88%, delivering 530 

mW output power at 2.08 µm.  The PQS of this laser was also reported using several SAs, 

such as graphene, MoS2, single walled carbon nanotubes and PbS QDs. The shortest pulses 

had 30 ns/ 0.5 μJ pulse duration and pulse energy, respectively at a pulse repetition 

frequency of 62 kHz. A compact intracavity-pumped microchip Ho-laser was produced 

using stacked Tm:KLuW/Ho:KLuW crystals pumped by a laser diode at 805 nm. Dual laser 

wavelength with a maximum continuous-wave output power of 887 mW (285 mW from 

Ho) and a slope efficiency of 23 % was achieved operating at 1867-1900 nm (Tm3+ emission) 

and at 2078-2100 nm (Ho3+ emission).  

 Ho:YAG transparent ceramics were also studied in PQS regime with a semiconductor SA. 

The laser generated a maximum average output power of 610 mW at 2089 nm and a 

maximum slope efficiency of 51%. Pulses were as short as ~100 ns/ 2.9 µJ at repetition rates 

of 210 kHz. Increasing the modulation depth of the semiconductor saturable absorber at 

2.1 μm makes it possible to scale the pulse energy and reduce the pulse duration. 

Thulium-holmium co-doped materials: 

 The TL effect in monoclinic Tm, Ho:KLuW cut for light propagation along the Ng optical 

indicatrix axis was measured and was found to be positive in both planes. In microchip 

configuration, laser with a maximum output power of 450 mW and a slope efficiency of 

31% was achieved oscillating in the 2060-2096 nm spectral range. In Q-switched regime 

with Cr:ZnS as an SA, the average output power was 131 mW at 2063.6 nm. The slope 

efficiency was 11 % and the conversion efficiency with respect to the continuous-wave 

regime was 58%. The pulse characteristics were 14 ns / 9 μJ at a pulse repetition frequency 

of 14.5 kHz. The simulations were in good agreement with the experimental results. 
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             6.   

Appendix                      

 

 

 

 

 

 

 

 

 

 

 

 

This section briefly describes the most important equipment used to obtain the results in this 

study. Devices such as pump sources, pump and output coupler mirrors, crystal holders, cavity 

setups, external devices, electrospinning, crystal growth devices, cutting and polishing devices, 

spectroscopy and microscopy equipment are described. 
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6.1 Pump sources 

When working with different active ions, Yb, Nd, Tm and Ho, several pump sources are 

required if the desired laser is to be achieved. The pump source depends on the absorption 

band (energy levels of the active ions) and it is affected by the atomic structure of the host. The 

following pump sources have been used in this study.    

 Ti:Sapphire laser 

A Mode-locked Coherent MIRA 900 Ti:Sapphire laser was used. It has a tuneable laser 

emission from 700 to 1000 nm and a maximum power of 2 W at 800 nm. The Ti:Sapphire laser 

was pumped by a Verdi 532 nm which delivered 10 W with good stability and reliability. For the 

laser experiments, the Ti:Sapphire laser was adapted for CW operation. This laser provides a 

good M2 ~1 factor, polarized light and little divergence, which provides excellent mode 

matching with the laser mode of the microchip resonator. This pump source was used for Tm3+, 

Nd3+ and Yb3+ ions as described in [P26, C23]. 

 Laser Diodes    

A set of commercial fibre-coupled laser diodes operating at ~791 nm, ~802 nm ~805 

nm, ~936 nm, ~969nm, ~980 nm and ~981 nm was used to pump the crystals in the CW and Q-

switched regimes. All of these laser diodes were used with different fibres to provide un-

polarized light. 

The 791 nm AlGaAs laser diode had a core diameter of 105 µm with a numerical 

aperture (NA) of 0.15. The laser diode was temperature-tuned at 25ºC and emitted at 791 nm 

with an air-cooling system at a maximum output power of 10W. The wavelength was shifted ±4 

nm by controlling the peak wavelength and reaching the maximum absorption in the active 

material with a small bandwidth at the peak of emission. This diode was used for the Tm:LiLnF4 

lasers (Ln=Y, Gd, and Lu) [P32, C28]. 
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The 802 nm diode is an AlGaAs laser diode with a core diameter of 105 µm controlled 

by an air-cooling system. The laser diode delivers a maximum output power of 10 W with an 

NA of 0.15. It was used for Tm:MDTs and vanadates [P24, P35, C20]. 

The 805 nm laser module had a core diameter of 200 µm with a spectral width of 6 nm. 

The wavelength could be shifted ±5 nm depending of the temperature of the diode. It delivered 

30 W with an NA =0.22 and was used to pump the Tm:MDTs and sesquioxides. The diode was 

also used to excite the Nd:MDT, aluminate and silicate crystals [P1, P2, P4, P5, P7-P10, P12, P15, 

P19, P21, P22, P27-P30, P37, P39, P40, C1-C5, C7, C10-C12, C14, C17, C18, C21, C22, C26]. 

The 936 nm, 969 nm and 981 nm diode lasers were operated by a water cooling system. 

The core diameters were 105 µm, 200 µm and 105 µm with NAs of 0.14, 0.22 and 0.14, 

respectively. They all had a maximum output power of 27 W. The 936 nm laser had a spectral 

width of ~5.5 nm and a temperature-tuned emission between 928 nm and 939 nm. The 969 nm 

and 981 nm diodes were stabilized by a Volume Bragg Grating with a FWHM of ~0.3 and could 

be shifted ±0.1 nm. The single emitters were controlled by an external power supply. The 932 

nm and 969 nm diode lasers were used to pump the garnets [P11, P14, C6, C16] and the 981 

nm laser was used to pump the Yb:MDTs and aluminates [P33, P34, P38]. 

The 980 nm compact laser diode delivered 50 W of output power with a core diameter 

of the fibre of 200 µm and an NA of 0.22. The influence of the temperature could shift the 

position of the wavelength emission from 968 to 985 nm with a FWHM of ±3 nm. This diode 

was used to pump the Yb-doped borates, MDTs, garnets, aluminates and vanadates [P3, P6, 

P13, P16-P18, P20, P23, P25, P31, P38, C8-C10, C13, C15, C19, C21, C24, C29, C30, C31] 

 Tm Laser    

This TEM00 mode home-made laser delivered a maximum output power of 3 W with 

good stability and polarized light. It consisted of a diode-pumped Tm:KLuW laser operating at 

1946 nm. The details of the Tm:KLuW laser can be found in [P2]. It was used to pump the 

Ho:KREW crystals (RE= Y, Gd, Lu) [P5, P7, P10, P22, P29, C4, C10, C14, C22]. 
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 Tm-fibre Laser 

The Tm-fibre laser emitted up to 5 W at 1910 nm with a core diameter of 400 µm. It 

provided a collimated un-polarized output beam with a spectral linewidth of 0.7 nm. The full 

divergence angle is 0.58 mrad, which corresponds to a M2 =1.05 with very good TEM00 laser 

mode. This fibre laser was used for the Ho:YAG ceramics [C27]. 

 

6.2 Optical elements 

The input and output mirrors are crucial for the laser resonator. Table 17 shows the 

mirrors with specific coatings that were needed to produce the lasers studied in this thesis. 

Each mirror consists of two different coatings, the internal and the rear faces with respect to 

the cavity.  

Table 17. Mirrors used in this study for the CW and Q-switched regimes. *1The rear face is HT from 0.9 to 1.1 

µm. *2The rear face is HT from 0.8 - 1.1 µm and 1.3 - 1.5 µm. *3The rear face is HT from 0.8 – 1 µm and HT from 

1.8 – 2.075 µm. *4The rear face is HT from 1.9 – 2 µm. PM= Pump Mirror, HR= High Reflector, HT= High 

Transmission PR= Partial Reflection, OC, output coupler, ROC= Radius curvature of the concave output couplers 

Set of mirrors (internal face) 

 At 1 µm*1 At 1.3 µm*2 At 2 -2.1 µm*3 

 HT (µm) 
HR (PM) or PR(OC)  

(µm) 
HT (µm) 

HR(PM) or PR(OC) 
(µm) 

HT (um) HR(PM) or PR(OC) (µm) 

Plane PM 0.8 – 1 1.02 – 1.2  →   99.9% 0.8 – 0.9 1.3 – 1.5  →  99.9% 
0.77 – 1.05 

1.9 – 2 
1.8 – 2.075 (Tm) 
2.0 – 2.2 (Ho)*4 

Plane OC 

0.9 – 1 
0.9 – 1 
0.9 – 1 
0.9 – 1 
0.9 – 1 
0.9 – 1 
0.9 – 1 
0.9 – 1 

1.064 
1.064 
1.064 
1.064 
1.064 
1.064 
1.064 
1.064 

→ 
→ 
→ 
→ 
→ 
→ 
→ 
→ 

99.5% 
99% 
95% 
90% 
80% 
70% 
50% 
40% 

0.8 – 0.9  
0.8 – 0.9 
0.8 – 0.9 
0.8 – 0.9 

1.36 
1.36 
1.36 
1.36 

→ 
→ 
→ 
→ 

99% 
97.5% 
96% 
95% 

0.77 – 1.05 
0.77 – 1.05 
0.77 – 1.05 
0.77 – 1.05 

1.82 - 2.05 
1.82 - 2.05 
1.82 - 2.05 
1.82 - 2.05 

→ 
→ 
→ 
→ 

98.5% 
97% 
95% 
90% 

Concave OC 
ROC 25 - 50 - 75 

(mm) 

0.9 – 1 
 

0.9 – 1 
 

0.9 – 1 
 

0.9 – 1  
 

1.064 
 

1.064 
 

1.064 
 

1064 
 

→ 
 
→ 
 

→ 
 

→ 
 

99% 
50mm  
93% 
50mm 
95% 
50mm 
90% 
50mm 

- - 

0.8 – 1 
0.8 – 1 
0.8 – 1 
0.8 – 1 
0.8 – 1 

1.82 – 2.05  
1.82 – 2.05  
1.82 – 2.05  
1.82 – 2.05  
1.82 – 2.05  

→ 
→ 
→ 
→ 
→ 

98.5% 
97% 
95% 
91% 
85% 
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Other optical elements were needed to handle the pump beam or to characterize the 

output laser emission. Several lenses were used with focal lengths of 10, 30, 50, 75, 100, 150 

mm and suitable antireflection coatings from ~800 nm up to 2 µm. Several dichroic mirrors 

were also used to separate two laser wavelengths as well as filters and attenuators, etc. 

6.3 Crystal holders for cooling 

The crystal holders for cooling minimize the heating of the active material and help to 

dissipate the heat generated in it more efficiently. Good cooling systems reduce losses, improve 

stability and prevent thermal and mechanical effects by avoiding internal cracks in the crystals. 

A different set of holders made of copper were used to cool two faces (Figure 3a) and four faces 

(Figure 3b) of the active medium. Other crystal holders were also designed for different crystal 

thicknesses (Figure 4). These crystal holders were cooled with water. To improve the thermal 

contact, a sheet of indium was used. 

 

                  

 

 

 

 

Figure 3. a) Cu holder for cooling two faces of the crystals and b) four faces of the crystals 

 

   

 

 

 

 

Figure 4. Cu holders for cooling four faces of the crystals suitable for different thicknesses 

of the active media 

a) c) 

a) b) 

b) 
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6.4 Cavity setups 

The lasers studied here were end-pumped. This means that the pump light is injected 

parallel to the laser beam. Figure 5 shows the scheme of all the setups used in room 

temperature conditions. The setups include the laser diode, the optical elements, active 

material and holder for cooling.   

  

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5. Laser setups used in this thesis to generate CW or PQS laser operation. a) Microchip laser 

with a single active medium, b) microchip intra-cavity pumped laser, c) microchip passive Q-

switched laser, d) hemispherical CW configuration, e) in-band pumped CW laser and f) in-band-

pumped passive Q-switched laser 

 
 

d) 

a) 

c) 

b) 

f) e) 
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6.5 External devices 

To characterize the laser beam various optical detectors are needed, such as a power 

meter, spectrometers and a visible-NIR camera in CW. Additionally, in pulsed regime 

supplementary optical devices are needed to characterize the output beam, such as a fast 

photo-detector connected to an oscilloscope. 

A laser power/energy meter was used to characterize the output beam. It provided 

good signal stabilization with low noise. 

The spectrophotometers were used to detect the laser wavelength emission. Two 

different devices at different working ranges, from 800 to 1600 nm and from 1000 to 2600 nm, 

were used with an optical bandpass of <0.2 nm and <0.5 nm, respectively, and a wavelength 

accuracy of ±0.2 nm.  

A Near-IR Camera model FIND-R-SCOPE 85706 operating in the 400 – 2000nm region 

helped to detect the NIR emission, the quality and the laser beam profile. The camera provided 

high resolution with 25 mm focal f:1.4 manual iris lens. The video image was easily convertible 

with the help of a computer.    

Two different photodetectors were used to detect the single pulses and the pulse train. 

An InGaAs-PIN photodetector and a Ge-PIN photodetector were used depending on the 

sensitivity and resolution of each experiment. The InGaAs photodetector had a rise time of <200 

ps, a bandwidth of >0.3 GHz and a working spectral range from 800 to 2600 nm (sensitivity 

value >0.5). The Ge photodetector had a rise time of <100 ps, a bandwidth of 3 GHz and a 

working spectral range from 400 to 2000 nm (sensitivity value >0.5). The Ge PIN photodetector 

was also used at 2 µm because of its high resolution in the determination of a single pulse. The 

2 GHz oscilloscope used had a sample rate of 10 GS/s.  
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6.6 Electrospinning setup 

The electrospinning experiments were carried out at the DEW (Droplets, intErfaces and 

floWs) research laboratory belonging to the URV’s Department of Engineering. The solution of 

SWCNTs/PMMA studied is described in [P28]. The setup (see Figure 6) consists of a plastic 

syringe (5 ml) and a metallic needle of 0.6 mm core diameter cut and polished for a plane tip. 

The flow was kept constant by the syringe pump at 0.15 ml/h using an infusion syringe pump. 

A high voltage power supply, maximum ±15 kV, was connected parallel to the needle and the 

black plate. This metallic black plate (with a hole in the middle through which the metallic 

needle was passed) generated a homogenous electric field which gave better control over 

nearby objects and oriented the fibres towards the rotatory cylinder. The collector was a 5 cm 

core diameter rotating at 3000 rpm. The distance between the needle and collector was 5 – 15 

cm. The temperature in all experiments was between 20 – 24 oC with a humidity of 30 – 60 

%RH.  

 

Figure 6. Electrospinning setup for the aligned fibers of SWCNTs/PMMA. HV: High Voltage 

 

6.7 Growth, cutting and polishing crystals  

The FICMA-FICNA group has considerable experience in growing MDT crystals by the 

Top-Seeded Solution Growth Slow-Cooling (TSSG-SC) method at high temperature (~1000 oC). 

This method provides single crystals with a high degree of homogeneity and quality, and 

without internal cracks. All the MDT crystals studied in this work were grown in the FiCMA-
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FiCNA laboratories. Other crystals and SAs came from projects with other institutions described 

in the Preface to this dissertation. 

The crystals and SAs were cut and polished with laser quality, flatness and a high 

parallelism degree between the input and output faces. For cutting, the crystals were fixed with 

a resin in a goniometer for the desired orientation. A diamond saw disk 0.12 mm thick was used. 

Once these samples had been cut, they were mounted in a commercial polisher machine for 

polishing. 

 

 6.8 Spectroscopic characterization 

The optical density of the crystals studied and the initial absorption of the SAs were 

measured with a spectrophotometer, the spectral range of which extended from UV at 175 nm 

to NIR at 3300 nm. With a variable slit width, the optimum data resolution was 0.01 nm. The 

equipment took the measurements at room temperature and at low temperature using an 

external chamber at high vacuum.  

To detect the emission of the active ions, two optical spectrum analysers were used 

with a range detection from 0.4 to 1.2 µm and from 1.2 to 2.4 µm. Both instruments gave 

resolutions of 0.02 nm (0.4 – 1.2 µm) and 0.05 nm (1.2 – 2.4 µm) with high sensitivity.  

 

6.9 Microscopic techniques 

The active materials and SAs were characterized by Environmental Electron Scanning 

Microscopy (ESEM), Transmission Electron Microscopy (TEM), Raman spectroscopy and X-Ray 

Diffraction (XRD) at the URV’s Science Service. 

The ESEM model was a FEI QUANTA 600 with an Energy Dispersive X-ray (EDX) Inca 

Analyzer (INCAx-sight model 6427) from OXFORD Instruments. The equipment provides beam 

voltages from 1 kV to 30 kV and can operate in high-vacuum and low-vacuum with a resolution 

of 1.2 nm and 1.5 nm at 30 kV, respectively. The software is an Inca version 4.01 build 28. 
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The TEM model was a JEOL TEM-1011. This equipment is a simple, dependable imaging 

instrument for high throughput of images with excellent contrast definition. The acceleration 

voltage flexibility is 40 to 100 kV, with 0.2 nm line resolution and 0.4 nm point resolution 

suitable for thin science specimens. The software imaging is a Megaview 5.1 build 1276. 

The Raman spectrometer was a Renishaw inVia Raman microscope, which combines 

simplicity of operation with high performance and unparalleled flexibility with a spectral 

resolution better than 1 cm-1. The lasers are 514 nm, 633 nm and 785 nm. The software used 

to treat and collect the data was Wire 4. 

The X-ray diffraction patterns were measured with a Siemens EM-1011BU model 

D5000 X-ray diffractometer. The patterns were obtained using a Kα line copper at λ= 1.54056Å, 

which worked with the Bragg-Brentano para-focusing geometry and θ-θ configuration. 

Moreover, the power diffraction measurements were achieved with a Bruker-AXS D8-Discover 

with a vertical goniometer equipped with a collimator for the X-ray beam of 500 µm. The 

detector was a GADDS with 30×30 cm2 and a 1024×1024 pixel CCD sensor. The radiation was 

achieved by a copper X-ray tube operated at 40 kV and 5 mA. 
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