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Simplicity, carried to an extreme, becomes elegance.

Jon Franklin

Before software can be reusable it �rst has to be usable.

Ralph Johnson

Knowing is not enough, we must apply. Willing is not enough, we must do.

Bruce Lee

As a rule, software systems do not work well until they have been used, and

have failed repeatedly, in real applications.

Dave Parnas
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Abstract

Large-scale environments in which distributed applications are executed ex-

periment continuous changes. These changes include those resulting from

workload variations, resource unavailability, or host failures, among others.

Developing wide-area applications that can be aware of such situations may,

in many cases, be not cost e�ective. In contrast, middleware services can be

provided to applications, thus permitting a transparent way to overcome such

problems.

Many solutions are focused in adding some mechanisms to typical archi-

tectures (e.g., web servers). However, these mechanisms are usually ad-hoc

solutions (e.g., add-ons) that cannot be applied easily to other versions, or

related software. In addition, these changes are not suitable for runtime envi-

ronments without re-deploying existing applications.

Composition is the technique that helps us to design and implement adap-

tive software. It can provide static and dynamic software composition to

achieve new goals which were not predicted during the design, load-time, or

runtime phases. Therefore, modern programming paradigms like component-

oriented programming, re�ective computing, or separation of concerns ap-

peared to improve adaptive software development.

The separation of concerns principle, for instance, addresses a problem

where a number of concerns should be identi�ed and completely separated

(without dependencies). Aspect Oriented Programming (AOP) is a modern

paradigm that increases modularity by allowing the separation of crosscutting

concerns. In addition, dynamic AOP allows less interdependence between the
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aspects of software architectures in runtime. However, these solutions do not

take into account separation of distributed concerns (e.g., load-balancing).

Distributed AOP is a novel and promising paradigm that introduces dis-

tributed interception in these scenarios. It de�nes many new concepts like

remote pointcuts, which are similar to traditional remote method calls, since

the execution of interception code is performed remotely; component-aspects,

which try to merge the component-oriented and aspect-oriented worlds; and

aspect group notions. Thus distributed AOP establishes a context where as-

pects can be deployed in a set of hosts. Nevertheless, as far as we are con-

cerned, there exist no approaches in distributed AOP that ful�ll large-scale

requirements satisfactorily.

In this setting, the trend seems to focus on decentralization. Examples

of decentralization scenarios include peer-to-peer (P2P) networks, which are

a serious alternative to traditional client-server systems for some application

domains. These models take advantage of the computing at the edge paradigm,

where resources available from any computer in the network can be used, and

are normally made available to their members.

However, the development of distributed applications in decentralized and

large-scale environments has always been a complex task. Developers are usu-

ally faced with the same typical technique implementation over and over again,

including distribution, location, load-balancing, replication, or caching, just to

name a few. It is not practical to address these challenges every time we want

to develop an application of this scope. For these reasons, a middleware archi-

tecture that provides the necessary abstractions and mechanisms is required

to construct distributed applications in these kinds of networks.

In this dissertation, we present a distributed AOP middleware proposal for

large-scale development. Our main motivation is to enable distributed con-

cerns in a transparent way to applications which were not speci�cally designed

for large-scale environments. Our approach bene�ts from a P2P substrate

and a dynamic AOP framework to implement its services in a decentralized,

decoupled, and e�cient way. It provides a scalable deployment platform where

distributed aspects are deployed and activated in individual or grouped hosts.

Moreover, we introduce a distributed composition model that envisages sepa-
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ration of distributed concerns, taking the necessary features from component

models, like distribution facilities and connectors, and from computational re-

�ection, like introspection and meta-levels. Our composition model is recursive

and fully distributed, allowing low dependency and high cohesion among dis-

tributed aspects. This model reduces the development complexity and enables

interesting services like recomposition at runtime. Finally, we present an im-

plementation prototype of this middleware proposal, called Damon, which has

been tested in a real large-scale network.

Damon has a wide applicability due to the distributed interception bene�ts

in large-scale scenarios. This is demonstrated by two main use case approaches.

First, we have developed a collaborative wiki application based on structured

P2P systems, called UniWiki. This distributed application is activated in

a group of hosts around the network. A set of distributed aspects enable

distribution and replication of wiki pages, and supervision of data consistency

under concurrent modi�cations. Secondly, we have integrated Damon with a

web server in order to create an adaptive web platform: SNAP. This platform

o�ers distributed deployment and management of web applications, applying

several distributed concerns, like dynamic load-balancing, session tracking, or

self-activation of applications.

In summary, in this thesis we aim to support distributed concerns in large-

scale scenarios using distributed AOP paradigm.

Categories and Subject Descriptors : C.2.4 [Computer-Communication Net-

works]: Distributed Systems; D.2.7 [Software Engineering]: Software Architec-

tures; J.8 [Internet Applications]:Middleware

General Terms : Design, Languages, Performance, Experimentation

Keywords : Distributed AOP, Peer-to-Peer, Middleware, Adaptive Soft-

ware, Separation of Concerns, Composition, Large-Scale Networks
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Resumen

Los entornos de gran escala donde las aplicaciones distribuidas son ejecutadas

experimentan continuos cambios en su comportamiento. Estos cambios in-

cluyen los derivados en las variaciones de la carga de trabajo, la indisponi-

bilidad de recursos o fallos en los servidores, entre otros. El desarrollo de

aplicaciones de área extensa puede ser consciente de tales situaciones pero,

en muchos casos, no resulta rentable. Por el contrario, los servicios middle-

ware son proporcionados a las aplicaciones de forma trasparente, permitiendo

superar estos problemas.

Muchas soluciones se centran en la adición de algunos mecanismos a las

arquitecturas típicas (e.g., servidores web). Sin embargo, estos mecanismos

son generalmente soluciones ad-hoc (e.g., add-ons) que no puede aplicarse fá-

cilmente a otras versiones, o sistemas similares. Además, estos cambios no son

adecuados en tiempo de ejecución, dada la necesidad de volver a cargar de

nuevo el sistema en estas soluciones.

La composición es la técnica que nos ayuda a diseñar y aplicar software

adaptativo. Dicha técnica puede proporcionar composición de software es-

tática y dinámica para alcanzar nuevas metas que no se han previsto durante

las fases de diseño, tiempo de carga, o tiempo de ejecución. Por lo tanto,

los paradigmas de programación modernos como la programación orientada

a componentes, re�exión computacional, o la separación de preocupaciones

aparecen para mejorar el desarrollo de la composición de software adaptativo.

El principio de la separación de preocupaciones se basa en solucionar un

problema, diferenciando e identi�cando una serie de preocupaciones que es-

vii
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tán completamente separadas (sin dependencias entre ellas). La programación

orientada a aspectos (AOP) es un paradigma moderno que incrementa la mod-

ularidad, permitiendo la separación de preocupaciones transversales. Además,

el AOP dinámico reduce la interdependencia entre aspectos en las arquitecturas

software en tiempo de ejecución. Sin embargo, estas soluciones no tienen en

cuenta la separación de preocupaciones distribuidas (e.g., balanceo de carga).

De esta forma el AOP distribuido llega a ser un nuevo y prometedor

paradigma que introduce intercepción distribuida en este tipo de escenario.

Este de�ne muchos conceptos nuevos como pointcuts remotos, que son simi-

lares a las tradicionales llamadas remotas de métodos, ya que está implícita

en la ejecución de una máquina remota; componentes-aspectos, que tratan de

combinar los mundos orientados a componentes y aspectos, y la noción de

grupo de aspectos. Así el AOP distribuido establece un contexto en que los

aspectos se despliegan en un conjunto de máquinas. No obstante, por lo que a

nosotros se re�ere, no existen aproximaciones en AOP distribuido que cumplan

satisfactoriamente con las necesidades de los sistemas de gran escala.

En este contexto, generalmente se tiende hacia la descentralización. Ejem-

plos de estos sistemas descentralizados incluyen el paradigma peer-to-peer

(P2P), siendo una seria alternativa a los sistemas tradicionales cliente-servidor

en algunos ámbitos de aplicación. Estos modelos se aprovechan del paradigma

de la computación en los extremos, donde los recursos disponibles en cualquier

máquina de la red están a disposición de todos sus miembros.

Sin embargo, el desarrollo de aplicaciones distribuidas, tanto en entornos

descentralizados como de gran escala, siempre es una tarea compleja. Los

desarrolladores normalmente se enfrentan con las típicas problemáticas una y

otra vez, como pueden ser la distribución, la ubicación, el balanceo de carga,

replicación, o el almacenamiento en caché, por nombrar algunos ejemplos. Por

lo tanto, no es práctico hacer frente a los mismos retos cada vez que queremos

desarrollar aplicaciones en este ámbito. De ahí que se requiera una arquitectura

middleware que ofrezca las abstracciones y los mecanismos necesarios para

poder construir aplicaciones distribuidas en este tipo de redes.

En la siguiente tesis presentamos una propuesta de middleware de AOP

distribuido para el desarrollo de aplicaciones de gran escala. Nuestra prin-
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cipal motivación es permitir que las preocupaciones distribuidas puedan

integrarse de forma transparente en aplicaciones que no fueron diseñadas es-

pec�camente para entornos de gran escala. Nuestro enfoque se bene�cia

de los sustratos de P2P y AOP dinámico para implementar estos servicios de

manera descentralizada, desacoplada y e�ciente. Esta arquitectura middle-

ware proporciona una plataforma escalable de despliegue donde los aspectos

distribuidos han sido introducidos en la red y activados en máquinas individ-

uales o en grupos de máquinas.

Además, introducimos un modelo de composición distribuido que contem-

pla la separación de preocupaciones distribuidas, adoptando las características

necesarias de los modelos de componentes, como los mecanismos de distribu-

ción y conectores, y de re�exión computacional, como la introspección y los

meta-niveles. Nuestro modelo de composición es recursivo y totalmente dis-

tribuido, y a su vez permite niveles bajos de dependencia y altos de cohesión

entre los aspectos distribuidos. Por otro lado, este modelo reduce la compleji-

dad en el desarrollo de aplicaciones distribuidas gestionando las interacciones,

y habilitando interesantes servicios como la recomposición en tiempo de ejecu-

ción. Por último, aportaremos un prototipo de la implementación para nuestra

propuesta de middleware, llamado Damon, el cual ha sido probado en una red

real de gran escala.

Damon tiene una amplia aplicabilidad debido a los bene�cios de la in-

tercepción distribuida en entornos de gran escala. Esto se demuestra con la

propuesta de varias aproximaciones de casos de uso. En primer lugar, hemos

desarrollado una aplicación wiki colaborativa, llamada UniWiki, basada en sis-

temas P2P estructurados. Esta aplicación forma un grupo de instancias a lo

largo de la red que replican parcialmente las páginas wiki y que mantienen

la consistencia de los datos en un entorno con modi�caciones concurrentes.

En segundo lugar, hemos integrado Damon con un servidor web, con el �n

de crear una plataforma web adaptativa: SNAP. Esta plataforma ofrece un

entorno de despliegue y de gestión de aplicaciones web totalmente distribuido.

En ella se aplican varias preocupaciones distribuidas, como el balanceo de

carga dinámico, el mantenimiento de sesión, o la activación de aplicaciones

automática.
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En conclusión, en esta tesis se pretende dar soporte a las preocupaciones

distribuidas en redes de gran escala, haciendo uso del AOP distribuido.

Categorías y Descriptores de Asunto: C.2.4 [Redes de Comunicaciones]:

Sistemas Distribuidos; D.2.7 [Ingeniería del Software]: Arquitecturas Software;

J.8 [Aplicaciones de Internet]: Middleware

Términos Generales : Diseño, Lenguajes, Rendimiento, Experimentación

Palabras Clave: AOP distribuido, Peer-to-Peer, Middleware, Software

adaptativo, Separación de preocupaciones, Composición, Redes de gran escala
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Chapter 1
Introduction

The development of distributed applications in decentralized and large-scale

environments has always been a complex task. Developers are usually faced

with the same problems over and over again, including distribution, location,

load-balancing, replication, or caching, just to name a few. It is not practical

to address these challenges every time we want to develop an application of

this scope.

For these reasons, a middleware architecture that provides the necessary

abstractions and mechanisms is required to construct distributed applications

in these kinds of networks.

In order to provide a complete solution, we present a distributed AOP

middleware proposal for large-scale development. Our main motivation is to

enable distributed concerns in a transparent way to applications that were

not speci�cally designed for large-scale environments.

Our approach bene�ts from a P2P substrate and a dynamic AOP frame-

work to implement its services in a decentralized, decoupled, and e�cient way.

It also provides a scalable deployment platform where distributed aspects are

deployed and activated in individual or grouped hosts.

Moreover, we introduce a distributed composition model that envisages

separation of distributed concerns, taking the necessary features from compo-

nent models, like distribution facilities and connectors, and from computational

re�ection, like introspection and meta-levels. Our composition model is recur-

sive and fully distributed, allowing low dependency and high cohesion among

1
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2 Introduction

distributed aspects.

Our middleware solution reduces the complexity of distributed application

development managing interactions, and enabling interesting services like re-

composition at runtime.

In this introduction we �rst explain the problem statement and goals of this

thesis scenario. Subsequently, we set the objectives that a successful approach

must ful�ll in this research line. Finally, we enumerate our contributions, and

we give an overview of this dissertation.

1.1 Problem Statement

Distributed computing studies the coordinated use of physically separated

computers. Furthermore, the increase in computing capacity, the reduction of

hardware and communication costs, and the massive use of wide-area networks,

have been changing the way distributed applications are being developed.

However, the development of distributed applications in large-scale envi-

ronments has always been a complex task. Such complexity is determined by

several factors like distributed application development, deployment or man-

agement.

The client-server approach is the classic and most used model, because it

is the easiest scenario to deal with these issues. There are only two types of

di�erent entities: the server, which o�ers all services, and the client, which

uses them. In this model, all services, like message dissemination or data

persistence, are o�ered by the server itself, being responsible to propagate and

store information.

When a server is unable to withstand system load, more servers can be

added, adopting clustering strategies or server federation techniques, mainly

depending on the local or remote machines location. In either case, adoption

of these strategies implies an economic overhead, charged to the institution

which hosts the servers.

The alternative to the previous model is decentralization. The idea is that

all components in the distributed system have the same responsibilities act-

ing both as clients and servers. However, this kind of solutions increases the
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1.1 Problem Statement 3

complexity of the system, implying new problems to address.

Nowadays, large-scale scenarios already su�er three important chal-

lenges of distributed systems:

• Scalability [62]: is not easy to establish the criteria that a distributed

system must ful�ll to be considered scalable. By de�nition, a scalable

system is the one that grows in the numerical and the geographical di-

mensions:

� Numerical dimension is the capacity of the system to continue to

function e�ciently when the size of the network is increased as

well as the number of elements. A system possesses three main

countable elements: the number of hosts, the number of data pieces

(e.g., objects) or resources, and the number of services. Thereby,

a big number of hosts produce a high amount of communication,

and it thus a�ects the load on speci�c zones of the network. For

these reasons, we need to take some measures to avoid bottlenecks,

promoting decentralization.

� Geographical dimension is the ability to perform e�ciently commu-

nication tasks in wide-area networks. However, one of the reasons

why it is currently hard to scale existing distributed systems is

because they are based on one-to-one and synchronous communica-

tion.

• Availability [12]: refers to the fact that access to any resource must

be guaranteed at all times. In traditional client-server architectures,

the majority of resources for an application execution are managed and

hosted on the main server. However, the idea of availability usually

comes in the form of resource replication.

So redundancy guarantees an improvement of availability. This idea is

not new, since several already existent applications have exploited this

goal (e.g., SETI@Home [7]). Moreover, we consider this like a require-

ment that must be ful�lled by a distributed system, since we cannot rely

on resources located in a single remote server.
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4 Introduction

• Transparency [90]: means that any form of distributed system should

hide its distributed nature from its users, appearing and functioning as

a typical centralized system. This property can be studied in may ways,

like location, access, persistence, or replication transparency.

Location transparency is when any form of distributed system should hide

its distributed nature from its users, appearing and functioning as a local

system. Regardless of how resource access and representation has to be

performed on each individual computing entity, with access transparency

the distributed system users should always access resources in a single,

uniform way.

Persistence transparency is successful when the user is unaware of the

�nal resource storage (e.g., volatile memory or disk device). This kind of

transparency also enables to store data in di�erent systems like simple

tables, or complex data store (e.g., databases) or in di�erent serialized

formats (e.g., XML). In replication transparency the di�erent copies of

a resource should appear to the user as a unique single resource. The

system is the responsible to handle these copies, updating them on mod-

i�cation operations, and controlling the uniqueness of resources, and the

concurrent accesses.

Finally, although full transparency is an important goal, it is hard to

achieve due to the inherent problems of distributed systems. As an ex-

ample, there will always be more latency on accessing remote resource

than local resources.

As a matter of fact, a distributed system for large-scale scenarios should

be scalable numerically and geographically, it should make its resources (e.g.,

data or services) easily accessible, and it should hide its distributed nature.

1.2 Goals

Indeed, it is not trivial to develop distributed applications on top of a large-

scale network, since no middleware infrastructure is available. Specially, when

developers need to re-implement common mechanisms over and over again,

UNIVERSITAT ROVIRA I VIRGILI 
DISTRIBUTED AOP MIDDLEWARE FOR LARGE-SCALE SCENARIOS 
Ruben Mondejar Andreu 
ISBN:978-84-693-5426-1/DL:T-1417-2010 



1.3 Contributions 5

thus wasting precious development time, which could be dedicated to other

tasks. In this dissertation, we aim to propose a middleware architecture suit-

able and �exible enough to allow large-scale application development.

In this line, the goals of this dissertation are to facilitate the creation and

development of distributed applications in large-scale scenarios. To achieve

this, we require a middleware approach that abstracts all common services

needed by developers, so that implementing a distributed application on top

of a large-scale substrate is as easy as possible.

Therefore, in this dissertation we plan to achieve the following goals:

• De�nition of a layered architecture that enables the modularization of

distributed concerns on large-scale scenarios during the application de-

velopment phases. Thus, this architecture should simplify the design and

implementation of applications, as well as provide a uniform access to

middleware services in a transparent way.

• De�nition of a development model for distributed concerns completely

abstracted from the complexities of the underlying layers. In addition,

this model should allow the necessary mechanisms like discovery, loca-

tion, deployment, or activation in the middleware proposal.

• Implementation of the proposed generic model by two main layers that

include a distributed composition model and a scalable deployment plat-

form for large-scale distributed concerns.

• Finally, our ultimate goal will be to demonstrate the viability and ap-

plicability of our proposal. Consequently, we will validate the platform

with novel distributed applications (i.e., proofs of concept) in large-scale

scenarios. As a consequence, these applications will have scalability,

availability, and transparency properties.

1.3 Contributions

On the basis of the goals listed above, we plan an approach which de�nes a

complete middleware architecture proposal, abstracting the underlying layer
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complexities, and even allowing the distributed concerns encapsulation, de-

ployment, and composition. Furthermore, we outline the next contributions:

• The distributed composition model allows local and remote interactions

among distributed concerns. The innovative contributions of this model

are :

� Our �rst contribution is the encapsulation of distribution con-

cerns from distributed applications in completely separated and

modulated true distributed entities. Providing a detailed architec-

ture description language and grammar that clari�es entity de�ni-

tion and connections. The descriptor also allows the de�nition of a

recursive entity, and promotes third party development.

� Our second contribution is the de�nition and implementation of

a distributed meta-level model for distributed concerns. This model

enables a distributed meta-concern entity and its meta-level connec-

tions. These meta-connections are able to intercept the local and

remote interactions among running distributed concerns. Thus, its

contribution allows a new level of transparency in our middleware.

� Our third contribution is the event-based nature of our middle-

ware that allows runtime recon�guration capabilities, through its

decoupled connection model, and re�ection techniques. Therefore,

this contribution enables dynamic composition of entities and/or

meta-entities, and to change their connections without stopping the

system execution.

• Although the composition model is generic, and can be applied to other

scenarios (e.g., mobile networks [31]) in this dissertation we are fully

focused on the large-scale arena. Therefore, we need a deployment plat-

form layer that provides the necessary abstractions and services for the

upper layer, and satisfying the requirements of a large-scale distributed

system (Section 1.1) :

� Our fourth contribution is the decentralized container that o�ers

location and discovery services, and provides the distributed con-
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1.4 Thesis Structure 7

cern life cycle. Each host of the system owns a part of the container.

This location service allows distributed concerns to be located and

inserted into our distributed generic platform. This decentralized

approach is similar to traditional container systems, but it extends

them with availability and scalability properties.

� Our �fth contribution is a set of decentralized functionalities and

abstractions that are based on asynchronous and synchronous com-

munications mechanisms for one-to-one and one-to-many (groups)

scenarios. Moreover, the abstractions provide new ways and more

�exible manners to perform distributed concerns functionalities.

• Our �nal contribution is the demonstration of the viability and ap-

plicability of our approach.

� An implementation prototype, which follows the model that we have

de�ned in this work. Moreover this prototype is validated via ex-

perimentation in a real large-scale network.

� Several distributed concerns in di�erent proof-of-concepts. Con-

cretely, we present two proof-of-concepts, a collaborative applica-

tion (i.e., wiki) and a web deployment platform that bene�ts di-

rectly from our proposal to integrate new distributed concerns.

1.4 Thesis Structure

The structure of this dissertation is summarized as follows:

• Chapter 2. Background. This chapter presents the background on the
two main areas that a distributed middleware requires: an adaptive and

re�ective substrate and a large-scale network infrastructure. In addition,

we focus our research on implicit middleware, focusing on distributed

interception techniques.

• Chapter 3. Distributed AOP Middleware for Large-Scale Sce-

narios. In this chapter, we describe our middleware proposal to develop

UNIVERSITAT ROVIRA I VIRGILI 
DISTRIBUTED AOP MIDDLEWARE FOR LARGE-SCALE SCENARIOS 
Ruben Mondejar Andreu 
ISBN:978-84-693-5426-1/DL:T-1417-2010 



8 Introduction

distributed applications in large-scale environments. We outline the via-

bility of our proposal by presenting our practical implementation in the

form of a prototype (Damon). To conclude this chapter, we include some

experimentation results to verify the e�ectiveness of our proposal.

• Chapter 4. Building a Scalable Collaborative Wiki Application.

In this chapter, we introduce the �rst proof-of-concept scenario that uses

our generic model features. Concretely, we present a distributed collab-

orative application (wiki) that uses three distributed concerns (distri-

bution, replication, and consistency) and it is suitable for large-scale

scenarios.

• Chapter 5. Enabling Web Applications over Wide-Area Net-

works. Subsequently, in this chapter we present the second proof-of-

concept for our middleware proposal. In this case, we present an adap-

tive large-scale web system that is composed by a web server and the

necessary distributed concerns, like load-balancing and session tracking.

• Chapter 6: Conclusions. This chapter presents the conclusions that
ensue from this thesis. We �nish the chapter by describing some other

prospective future uses for our large-scale middleware proposal.
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Chapter 2
Background

In this chapter we will be studying the state of the art in some di�erent dis-

ciplines that can help us to achieve the goals of this dissertation. As we shall

explain below, we can di�erentiate three important properties in distributed

systems: scalability, availability, and transparency.

For this reason, we focus our study in three related research lines : dis-

tributed middleware related to scalability, adaptive middleware for availability,

and implicit middleware for transparency.

Therefore, in the following sections we will introduce the background of

each research line.

2.1 Distributed Middleware

Middleware sits above the network layer and below the application layer and

abstracts the heterogeneity and complexity of the underlying environment. It

provides an integrated distributed environment whose objective is to simplify

the task of implementing distributed systems, and also to provide value-added

services such as location or persistence to enable distributed application devel-

opment. Middleware is about integration and interoperability of application

and services running on heterogeneous computing and communication devices.

Distributed middleware is a mature technology for developing distributed

applications. Its popular acceptance in distributed settings has led to a consid-

9
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10 Background

erable level of sophistication and support. In order to build scalable systems

we explore two kind of distributed middleware in this section:

• Peer-to-Peer Middleware : to solve scalability problems (e.g., bottle-

necks) of our middleware platform.

• Event-Based Middleware : to manage asynchronous communication and

decoupled architectures.

We start explaining the P2P networks, and later we will focus on event-

based systems, specially on the P2P based.

2.1.1 Peer-to-Peer Networks

Any communication substrate which is intended to be used for large-scale sce-

narios needs to be responsible for routing messages between network nodes

in an e�cient and fault tolerant way. It is important that this routing sub-

strate is as autonomous as possible so as it can handle node failures, arrivals,

departures and other exceptional events in a transparent way to the upper

layers.

Nowadays, the way Internet applications tend to be organized is in a rela-

tively small number of powerful servers, which provide service to many client

nodes. In fact, this is the standard operation way of the World Wide Web

(WWW): a centralized client-server architecture. Once the application host-

ing server becomes overwhelmed with requests from many clients, it clearly

becomes a bottleneck. Moreover, if such server crashes, the application be-

comes unusable, unless redundant servers take care of this unavailability issue.

Therefore, the centralized architecture seems to be a non-adequate alternative

for low-cost large-scale fault tolerant massive application accessibility.

Some large-scale successful applications (e.g., eMule [88]) which support

high numbers of concurrent connected users have advocated the use of peer-

to-peer (P2P) technologies to solve the scalability problem. These applications

use the decentralization paradigm in order to avoid bottlenecks. Consequently,

there is not only one unique server holding all application data, but a bunch of

nodes which support the application working together. If a service node goes
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2.1 Distributed Middleware 11

down, another one can take its place and continue serving requests. The same

happens when trying to load balance requests: if there exist more servers

than just one for serving these requests, load can be balanced throughout

all available servers. This approximation driven to the extreme is the P2P

philosophy: all nodes are treated as equal peers.

However, P2P architectures tend to be non-reliable. This non-reliability

comes from the fact that there can be constant joins and leaves, and that re-

sources have to be relocated on the �y. The wide diversity of node capacities,

operating systems and system architectures which conform the network, give

to P2P this heterogeneity factor. In order to support these particular features,

P2P networks must be self organizing and self repairing, as well as fault tol-

erant. Their typical objective is to make good use of the shared distributed

resources (e.g., CPU time, bandwidth, storage capacity, etc.) among all nodes.

P2P networks can be classi�ed in a wide variety of ways. In this line,

one of the principal challenges of such systems is how to locate any particular

resource. Since this can be a very complex problem, several approaches have

been taken to overcome it. They are, in chronological order, the central index

location scheme (e.g., Napster [58]), and the unstructured location scheme,

also known as unstructured P2P networks (e.g., Gnutella [2, 77]). However,

resource location is non-deterministic, because a resource could not be found

e�ciently although it is in the network. Lastly, the key-based routing [89]

or distributed hash table schemes [48], based on structured P2P networks,

appear.

2.1.1.1 Structured Peer-to-Peer

The premise of this kind of networks is : if a speci�c resource is into the

network, it should be found in a determined number of hops. For this purpose

these networks start becoming structured node groupings. Nodes are arranged

in a structured fashion, typically following ring [89] o tree [80] formations. The

objective is to assign particular nodes to store particular content. When a node

looks for a resource, it must be redirected to the node which is supposed to

hold it.

The challenges of such structured P2P networks are as follows:
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12 Background

• Bottleneck avoidance in particular nodes, thus distributing responsibili-

ties evenly among the existing peers.

• Adaptation to nodes joining or leaving (or failing). As a consequence, it

is logical to give new responsibilities to joining nodes, and redistribute

responsibilities from leaving nodes.

These challenges match perfectly the idea of a Distributed HashTable (DHT),

where the key is hashed to �nd the resource responsible peer node, obtaining

data and load balancing across nodes (see Figure 2.1). In traditional hash

tables, each data item is associated with a key. The key is hashed to �nd

its corresponding bucket in the hash table. Each bucket is expected to hold

#items/#buckets items. In order to map such data structure to the distributed

problem, it is considered that nodes are the buckets in the global Distributed

Hashtable.

As a consequence, we can de�ne Distributed Hashtables as a class of decen-

tralized distributed systems that partition ownership of a set of keys among

participating nodes, and can e�ciently route messages to the unique owner of

any given key. Each node is analogous to a bucket in a hash table. DHTs are

typically designed to scale to large numbers of nodes and to handle contin-

ual node arrivals and failures. This infrastructure can be used to build more

complex services, such as distributed �le systems, P2P �le sharing systems,

cooperative web caching, multicast, anycast, and domain name services.

Even though this approach seems to solve the problems introduced with

both central index and unstructured P2P network schemes, it also brings sev-

eral issues to be taken care of, dynamicity and size.

Dynamicity : when we use a hash function, virtually every key will change

its location whenever a node is added or removed. In order to solve this prob-

lem, a method called consistent hashing [42], and adopted by the Chord

[89] routing algorithm, is currently used by the major DHT designers. Con-

sistent hashing implies de�ning a �xed hash space where all hash values fall

within, and do not depend on the number of peers. As a consequence, each key

falls into the peer closest to its ID in hash space, according to some proximity

metric. Such concept is further detailed when the Chord routing algorithm is
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Figure 2.1: Distributed Hashtable Abstraction. In a normal hash table, hash
buckets are stored in local memory. However, in a DHT, hash buckets corre-
spond to network physical nodes, and (key,value) pairs are stored on them.

explained in Section 2.1.1.2.

Size: all nodes must be known to insert or lookup data. Such approach

works well with small and static server populations. Nevertheless, when talking

about wide-scale P2P networks, it is impossible to assume that every single

node is to be connected to all others, since the maintenance overhead would

kill the entire network. The only possible solution is to allow each peer to know

only a few neighbours. Messages are therefore routed through neighbours via

multiple hops, using an overlay routing scheme.

When designing an e�cient DHT, hosts con�gure themselves into a struc-

tured network such that mapping table lookups require a small number of hops.

The DHT abstraction provides a minimal access interface, which is mainly

data-centric. It naturally supports a wide range of applications, because it

imposes very few restrictions: keys have no semantic meaning, and values are

application dependent. Therefore, DHTs can be used as a decentralized data

insertion and location facility.

It is important to note that DHTs provide the mechanisms to insert and

locate data in a decentralized fashion, by using its principal programming

interface: put (key, value) and get (key) → value.

This kind of structured P2P overlay networks are often called Key Based

Routing (KBR) substrates, since message routing depends upon node identi-
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�ers. The relatively new structured P2P protocols appeared during the last

years seem to provide a solid base for supporting many P2P future develop-

ments. This is the reason why we consider structured P2P key-based routing

substrates a very interesting alternative for being the basis for our proposed

generic model. These substrates provide neat features like self-organization,

self-healing, fault tolerance, e�cient message routing, and many others, thus

ful�lling some of the requirements we had in mind: scalability, dynamicity,

fault tolerance, etc. There exist many systems which adopted such scheme,

as for example Chord [89] or Pastry [80]. Such protocols are described in the

following sections.

2.1.1.2 Chord

Chord [89] is a KBR substrate approach. The Chord protocol speci�es how to

�nd the locations of keys, how new nodes join the system, and how to recover

from the failure (or planned departure) of existing nodes. At its heart, Chord

provides fast distributed computation of a hash function, and mapping keys to

nodes responsible for them. It uses consistent hashing [42], for assigning key,

value pairs to their hash buckets, which correspond to physical nodes.

With high probability the hash function balances load (all nodes receive

roughly the same number of keys). Also with high probability, when an N th

node joins (or leaves) the network, only an O(1/N) fraction of the keys are

moved to a di�erent location : this is clearly the minimum necessary to main-

tain a balanced load. Chord improves the scalability of consistent hashing by

avoiding the requirement that every node knows about every other node. A

Chord node needs only a small amount of routing information about other

nodes. Because this information is distributed, a node resolves the hash func-

tion by communicating with a few other nodes. In an N -node network, each

node maintains information only about O(log N ) other nodes, and a lookup

requires O(log N ) messages. Chord must update the routing information when

a node joins or leaves the network; a join or leave requires O(log2 N ) messages.

The consistent hash function assigns each node and key an m-bit identi�er

using a base hash function such as Secure Hash Algorithm 1 (SHA-1 ). A node

identi�er is chosen by hashing the node IP address, while a key identi�er is
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2.1 Distributed Middleware 15

produced by hashing the key. The identi�er length m must be large enough

to make the probability of two nodes or keys hashing to the same identi�er

negligible.

N1

N14

N32

N21

N38

N42

N51

N56

K54

+32 +16

+8

+4

+2

+1

lookup(K54)

N8

N48

m=6
0

+32 +16

+8

+4

+2

+1

Finger Table

N8+1 N14

N8+2 N14

N8+4 N14

N8+8 N21

N8+16 N32

N8+32 N42

2m-1

Figure 2.2: A Chord ring consisting many nodes. Notice how the �nger table
is organized and how K54 is looked up following Chord algorithm.

Consistent hashing assigns keys to nodes as follows. Identi�ers are ordered

in an identi�er circle modulo 2m. Key k is assigned to the �rst node whose

identi�er is equal to or follows (the identi�er of) k in the identi�er space. This

node is called the successor node of key k, denoted by successor(k). If identi�ers

are represented as a circle of numbers from 0 to 2m - 1, then successor(k) is the

�rst node clockwise from k. Consistent hashing is designed to let nodes enter

and leave the network with minimal disruption. To maintain the consistent

hashing mapping when a node n joins the network, certain keys previously

assigned to its successor now become assigned to n. When node n leaves the

network, all of its assigned keys are reassigned to its successor.

Each node maintains information about only a small subset of the nodes in

the system in its routing table, called �nger table. The search for a node moves

progressively closer to identifying the successor with each step. A search for

the successor of f initiated at node r begins by determining if f is between r

and the immediate successor of r. If so, the search terminates and the successor
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of r is returned. Otherwise, r forwards the search request to the largest node

in its �nger table that precedes f ; call this node s. The same procedure is

repeated by s until the search terminates.

Chord includes this procedure in a simple form and known as stabilization

protocol. This protocol is fault resilient, self-organizing and self-healing, and

with an acceptable performance even in the face of concurrent node arrivals

and departures. Nevertheless, this stabilization protocol simplicity is also one

of its biggest problems, since it involves too much communication between

nodes.

2.1.1.3 Pastry

Pastry [80] is a structured P2P network routing substrate that is de�ned as a

self-organizing overlay network of nodes, where each node routes client requests

and interacts with local instances of one or more applications.

Each node in the Pastry P2P overlay network is assigned a 128-bit node

identi�er (nodeId). The nodeId is used to indicate a node position in a circular

nodeId space, which ranges from 0 to 2128 - 1. The nodeId is assigned randomly

when a node joins the system. It is assumed that nodeIds are generated such

that the resulting set of nodeIds is uniformly distributed in the 128-bit nodeId

space. For instance, nodeIds could be generated by computing a cryptographic

hash of the node public key or its IP address. As a result of this random

assignment of nodeIds, with high probability, nodes with adjacent nodeIds are

diverse in geography, ownership, jurisdiction, network attachment, etc.

Assuming a network consisting of N nodes, Pastry can route to the nu-

merically closest node to a given key in less than log2bN steps under normal

operation (b is a con�guration parameter with typical value of 4). Despite con-

current node failures, eventual delivery is guaranteed unless |L|/2 nodes with

adjacent nodeId fail simultaneously (|L| is a con�guration parameter with a

typical value of 16 or 32). Therefore, Pastry routes to any node in the overlay

network in O(log N ) steps in the absence of node failures, and it maintains

routing tables with O(log N ) entries.

For the purpose of routing, nodeIds and keys are thought of as a sequence

of digits with base 2b. Pastry routes messages to the node whose nodeId is
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Figure 2.3: State of a hypothetical Pastry node. With nodeId 10233102, b =
2. All numbers are in base 4. The top row of the routing table is row zero.
The shaded cell in each row of the routing table shows the corresponding digit
of the present node nodeId. The nodeIds in each entry have been split to show
the common pre�x with 10233102 - next digit - rest of nodeId. The associated
IP addresses are not shown.

numerically closest to the given key. This is accomplished as follows. In each

routing step, one node normally forwards the message to another node whose

nodeId shares with the key a pre�x that is at least one digit (or b bits) longer

than the pre�x that the key shares with the present node id. If no such node is

known, the message is forwarded to a node whose nodeId shares a pre�x with

the key as long as the current node, but is numerically closer to the key than

the present node id. To support this routing procedure, each node maintains

a routing table, a neighborhood set and a leaf set.

One important feature about Pastry is its locality awareness. This fea-

ture guarantees that the route chosen for a message is based on the proximity

metric. Pastry notion of network proximity is based on a scalar proximity

metric, such as the number of IP routing hops or geographic distance. It is

assumed that the application provides a function that allows each Pastry node

to determine the distance of a node with a given IP address to itself. A node
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K2120

lookup(K2120)lookup(K2120)
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Figure 2.4: Pastry State and Lookup. For each pre�x, a node knows some other
node (if any) with the same pre�x and di�erent next digit. When multiple
nodes are available, the topologically-closest is chosen, thus maintaining good
locality properties.

with a lower distance value is assumed to be more desirable. An application

is expected to implement this function depending on its choice of proximity

metric, using network services like traceroute or Internet subnet maps, and

appropriate caching and approximation techniques to minimize overhead.

The original version of FreePastry (i.e. Pastry implementation) was shipped

with a minimal API which allowed programming of several applications like

PAST [22] and Scribe [17]. This API was extended to support the Common

API for structured P2P overlay networks [20].

2.1.1.4 Common API

In this scenario, the complexity of P2P applications development and inter-

operation was increased, since several structured P2P systems were designed,

and many applications was implemented on top of them. To use these P2P

applications on top of di�erent structured overlays without changing their im-

plementations, a Common API [20] was proposed.

The Common API for structured P2P overlays attempts to identify the
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2.1 Distributed Middleware 19

fundamental abstractions provided by structured overlays and to de�ne APIs

for the common services they provide. As the �rst step, a Key-Based Rout-

ing (KBR) API is de�ned, which represents basic (tier 0) capabilities that

are common to all structured overlays. The KBR is easily implemented by

existing overlay protocols and makes possible to e�ciently implement higher

level services and a wide range of applications. Thus, the KBR is the common

denominator of services provided by existing structured overlays. In addition,

a number of higher level (tier 1) abstractions are identi�ed and it is shown how

they can be built upon the basic KBR. These abstractions include Distributed

HashTable (DHT), group anycast and multicast (CAST), and Decentralized

Object Location and Routing (DOLR).

Key-Based Routing Layer (KBR)

Scribe OceanStoreTier 2

Tier 1

Tier 0

BayeuxCFS PAST

Distributed Hash Table

Layer (DHT)

Group Multicast and 

Anycast Layer (CAST)

Decentralized Object Location 

and Routing Layer (DOLR)

Figure 2.5: Common API Diagram Basic abstractions and APIs, including
Tier 1 interfaces: distributed hash tables (DHT), group anycast and multicast
(CAST), and decentralized object location and routing (DOLR).

Figure 2.5 illustrates how these abstractions are related. Key-Based Rout-

ing is the common service provided by all systems at tier 0. At tier 1, we have

higher level abstractions provided by some of the existing systems. Most appli-

cations and higher-level (tier 2) services use one or more of these abstractions.

TheDHT abstraction provides the same functionality as a traditional hash

table, by storing the mapping between a key and a value. This interface

implements a simple store and retrieve functionality, where the value is always
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Method signature Description
forwards a message M, towards the root

void route (key: K, msg: of key K. The optional hint argument
M, NodeHandle hint) speci�es a node that should be used

as a �rst hop in routing the message.
is invoked at each node that forwards

void forward (key: K, msg: message M, including the source node,
M, NodeHandle nextHopNode) and the key root node. This call informs

the application that message M with key K
is to be forwarded to nextHopNode.

void deliver (key: K, is invoked on the node that is the root
msg:M) for key K upon the arrival of message M.

produces a list of nodes that can be
NodeHandle[] local_lookup used as next hops on a route towards,

(key: K, int: num, key K such that the resulting route
boolean:safe) satis�es the overlay protocol bounds

on the number of hops taken.
NodeHandle[] neighborSet produces an unordered list of neighbours

(int: num) (nodehandles) of the local node in the ID
space. Up to num nodehandles are returned.

NodeHandle[] replicaSet returns an unordered set of nodehandles
(key: K, int: max_rank) on which replicas of the object with

key K can be stored.
is invoked to inform the application that

void update (NodeHandle: node n has either joined or left the
n, boolean: joined) neighbour set of the local node as that set

would be returned by the neighborSet call.
boolean range (NodeHandle: N, provides information about ranges of keys
rank: r, key: lkey, key: rkey) for which node N is currently a r-root.

Table 2.1: Brief description of KBR interface methods

stored at the live overlay node(s) to which the key is mapped by the KBR

layer. Values can be objects of any type.

The CAST abstraction provides scalable group communication and coor-

dination. Overlay nodes may join and leave a group, multicast messages to the

group, or anycast a message to a member of the group. Because the group is

represented as a tree, membership management is decentralized. Thus, CAST

can support large and highly dynamic groups. Moreover, if the overlay that

provides the KBR service is proximity aware, then multicast is e�cient and

anycast messages are delivered to a group member near the anycast originator.
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2.1 Distributed Middleware 21

The DOLR abstraction provides a decentralized directory service. Each

object replica (or endpoint) has an objectID and may be placed anywhere

within the system. Applications announce the presence of endpoints by pub-

lishing their locations. A client message addressed with a particular objectID

will be delivered to a nearby endpoint with this name.

DHT DOLR CAST
put (key, data) publish (objectId) join (groupId)
remove (key) unpublish (objectId) leave (groupId)

value = get (key) sendToObj (msg, multicast (msg, groupId)
objectId, [n]) anycast (msg, groupId)

Table 2.2: Summary of all DHT DOLR CAST interface methods

The Table 2.2 shows the Common API Tier 1 API All services de�ned at

tier 1 require interfacing with the lower key-based routing API layer (tier 0),

which is the core all structured overlay network implementations must provide.

As we can clearly observe, the Common API provides the upper levels

with three interaction layers which perfectly �t into the layers we have de�ned

throughout this section: a large-scale routing layer (KBR), an application-level

multicast layer (CAST), and an object persistence layer (DHT).

2.1.2 Event-Based Systems

In event-based middleware architectures, applications essentially communicate

through the propagation of events, which have some data. The main advantage

of event-based systems is that applications are inherent loosely coupled. In

this way, what makes these middleware solutions important is the distribution

transparency degree that they provide.

Then, event dissemination has typically been associated with the pub-

lish/subscribe systems [26]. In this kind of systems, subscribers (or consumers)

express their interest in a speci�ed content by subscribing to it. From the mo-

ment of the subscription, they will start receiving events from publishers (or

producers) on the content.
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2.1.2.1 Publish/Subscribe

Nowadays, the architecture of distributed systems is dominated by client/server

platforms relying on synchronous request/reply. This architecture is not well

suited to implement event-based applications (e.g., dissemination of auction

bids) due to the coupled nature of synchronous communication.

In contrast, publish/subscribe performs the intrinsic behaviour of event-

based applications, where asynchronous communication is indirect and initi-

ated by producers of events (i.e., publish noti�cations) and these are delivered

to subscribed consumers by the support of a noti�cation service (e.g., JMS

[40]).

In this line, subscribers express interest in one or more kind of messages,

receiving only the messages that are of interest, without knowledge of pub-

lishers. This abstraction between publishers and subscribers allows dynamic,

decoupled, and scalable network infrastructures.

A publish/subscribe event system can be classi�ed by the di�erent ways of

specifying how to subscribe to and publish particular content:

• Topic-based : Participants publish noti�cations and subscribe to speci�c

subjects, which are represented by keywords.

• Type-based : The name-based topic classi�cation scheme is replaced by

other �ltering events according to their type. This enables the language

and the middleware to be more closely integrated.

• Content-based : A subscription scheme based on the properties of the

noti�cations is used. In other words, events are not classi�ed according

to some pre-de�ned external criterion (e.g., topic name), but according

to properties of the events themselves.

Content-based system is the most expressive one because it allows to eval-

uate �lter predicates over the whole content of a noti�cation. This advantage

compared to the other mechanisms results in increased �exibility facilitating

extensibility and change.

Moreover, this kind of middleware provides a clear bene�t : decoupling.

Publishers are loosely coupled to subscribers, and need not even know of their
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existence. With the topic being the focus, publishers and subscribers are

allowed to remain ignorant of system topology. Each can continue to operate

normally regardless of the other. In the traditional tightly-coupled client-

server paradigm, the client cannot post messages to the server while the server

process is not running, nor can the server receive messages unless the client is

running.

In this setting, the synergy of publish/subscribe systems and P2P networks

starts with approaches like Bayeux [105] and Scribe [17]. These topic-based

event-systems are built like a CAST layer over a KBR substrate (see Section

2.1.1.4).

Finally, content-based P2P-based systems [3] imply more complexity, being

a current research area.

2.1.2.2 Scribe

Scribe is a decentralized event system that is built on top of the Common API,

and uses the Pastry KBR substrate for its underlying route management and

host lookup. Moreover, it can be considered a topic-based publish/subscribe

system. Clients create topics to which other clients can subscribe. Once the

topic has been created, the owner of the topic can publish new entries under

the topic which will be distributed in a multicast tree to all of the Scribe nodes

that have subscribed to the topic.

The system works by computing the hash of the topic name, and it is used

as a Pastry key, and the publisher then routes packets to the node closest to

the key using Pastry routing protocol to create the root node of the topic on

that node. Clients then subscribe to the topic by computing the key from the

topic and publisher name and then using Pastry to route a subscribe message

to the topic towards the root node. When the root node receives the subscribe

message from another node it adds the node ID to its list of children and begins

acting as a forwarder of the topic.

Decentralization is accomplished through having all nodes in the network

snoop on subscribe messages going past them on their way to the topics root

node. If the topic is one to which the current node subscribes, it will stop for-

warding the packet toward the root node and add the node trying to subscribe
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as one of its children. In this way a treelike structure is formed with the root

node at the top sending out to the �rst few subscriber nodes, and then each

of these nodes forwarding the messages on to their children, and so on.

Because packets from random nodes on the Pastry network destined for

the same node often end up traveling along the same path very soon in their

journey, they end up attaching to whatever part of the tree is nearest to them

in the Pastry network. Since each hop along a Pastry route represents what

is locally the best route according to the routing metric in use, the subscribe

message seeks out the closest portion of the tree and attaches itself there.

2.2 Adaptive Middleware

An adaptive system has the ability to change its behaviour and functionality.

Adaptive middleware is software whose functional behaviour can be modi�ed

dynamically to improve its performance depending on the scenario conditions

or requirements. The primary requirements of an adaptive system [81] are

measurement, reporting, control, feedback, and stability.

Component-based

Middleware

Reflection

Adaptive Solution

Separation of Concerns

Figure 2.6: Adaptive Solutions Diagram.

In the distributed domain, we may su�er unpredictable situations like work-

load variations, host failures, and resource unavailability, among others. Adap-

tive software architectures seem to be a good solution to address these prob-

lems. However, there is no complete solution in this area. In summary, the

advances in programming paradigms [67, 51, 45, 30] have also contributed to
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the design of adaptive middleware, complementary to the foundation provided

by the design and implementation of traditional middleware solutions.

In [53] the authors distinguish three basic techniques for software adap-

tations (Figure 2.6): computational re�ection [15], component-based models

[25], and Aspect-Oriented Programming (AOP) [44]). These solutions have

been used during years, and they have their own advantages and disadvan-

tages (listed in Table 2.3).

Although many important contributions have been made in this area, these

three paradigms play key roles in supporting adaptive middleware. Each is

discussed as follows.

Solutions Advantages Disadvantages
has the ability to has not yet proved to be able
inspect itself, and to manage the complexity of

Computational adapt its behaviour. large-scale distributed systems.
Re�ection meta-level concept allows applying re�ection to a broad

separation of adaptations domain of applications is yet
at di�erent levels. to be done.
support adaptation components are less
through composition independent (cohesion) than

Component- techniques. we can expect initially.
based systems may either be solutions that are constructed
Models con�gured statically at with component frameworks,

design time, or dynamically, are not fully transparent
at load and/or runtime. and can be intrusive.

separate system or is a novel paradigm that
Separation application code in needs more research to

of crosscutting concerns. evolve in this area.
Concerns is able to perform has not been successfully
(AOP) powerful interception applied in large-scale

mechanisms. system development yet.

Table 2.3: Summary of advantages and disadvantages of adaptive solutions

2.2.1 Computational Re�ection

Re�ection [15] is the capability of a system to reason about itself, act upon

this information, and adjust to changing conditions. A common de�nition

of re�ection is a system that provides a representation of its own behaviour
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that is suitable to inspection and adaptation and is causally connected to the

underlying behaviour it describes [51].

In a re�ective architecture, a computational system has two sides : the

object model side, and the re�ective side. The aim of object-oriented program-

ming is to solve problems, and return information about an external domain,

while the re�ective part returns information about the system itself.

Base-Level

Meta-Level

MOPs
Structural Behavioural

Introspection

Intercession

Introspection

Intercession

application

object

Figure 2.7: Relationship between base-level and meta-level objects.

In [45] work, Kiczales et. al. combine the re�ection and object-oriented

paradigms in the form of a meta-object protocol (MOP). One innovative notion

of this work was the separation of the system into two levels : base-level and

meta-level [52].

This concept can be extrapolated to other entities. Then, the entities that

deal with the self-representation and the application reside at these two dif-

ferent software levels: the meta-level and the base-level, respectively. Entities

that deal with the functionality of the application are at the base-level. Sim-

ilarly, entities that deal with the application self-representation reside in the

meta-level. Both levels are related in such a way that changes at the base level

are re�ected at the meta-level, in a causal connection way. The meta-level has

access to the information at the base-level, but the base level does not have

any knowledge about the meta-level.

In middleware platforms, two styles of re�ection have emerged. Structural

re�ection is concerned with the underlying structure of objects or components,

therefore, it is possible to inspect interface information, and adapt software
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architecture topology. Behavioural re�ection is concerned with activity in the

underlying system, as for example, in terms of the arrival and dispatching of

invocations.

Research in the re�ective arena is close related to middleware area. We also

note that several re�ective middleware solutions [14, 10, 92] have been proposed

to support development of distributed systems and re�ective middleware. As

we can observe, these works use re�ection within middleware to give developers

the way to resolve the challenges of adaptive middleware.

2.2.2 Software Components

Software components are software units that can be independently imple-

mented by third parties. Components are self-contained: components clearly

specify what they require and what they provide.

Component models [25] extend the object oriented paradigm by adding

new abstractions and concepts that express composition relationships between

system components. A component oriented environment emphasizes the def-

inition of standard interfaces which indicate how their components must be

used. These interfaces de�ne the component as a collection of methods in-

voked whenever a service is required.

The use of components is based on the plug-and-play concept: that is,

we can connect a component as a part of an application without needing to

change it for it to start working. This idea applies to many commercial prod-

ucts, and eases the building of con�gurable applications whose functionalities

depend on their aggregated components. Normally, component-based software

is built on top of frameworks, which provide the life cycle services required by

components. These frameworks may also manage component activation and

passivation, persistence, naming, etc.

One of the most popular approaches is Component-based software devel-

opment (CBSD), which tries to settle the basis for design and development of

reusable software component-based distributed applications. Such discipline

has gained increasing interest from the academic as well as business point of

view.
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Traditional distributed component-based architectures are mainly client-

server based. There are a number of component-oriented architectures that

have been developed over the years. Clear examples are the EJB [87], or Corba

CCM (Component Connection Model) [79] those have proven to be successful

in the adaptive �eld.

• The EJB component model supports adaptation by automatically sup-

porting services such as transactions and security for distributed appli-

cations.

• The Corba CCM supports adaptation by enabling injection of new con-

nections among components. Therefore, component themselves remain

intact, and component functions can be used directly by other compo-

nents without additional preparations.

As a conclusion, component models support adaptation through the com-

position of their components, services, and connections. In particular, connec-

tions [84] are specially useful to deal with adaptation in dynamic scenarios.

2.2.3 Aspect Oriented Programming

Separation of concerns [67] means decomposing an application into distinct

parts (i.e., concerns): cohesive areas of functionality. Thereby, each program-

ming paradigm supports some level of encapsulation of concerns into separate,

independent entities that represent these concerns. However, there exist some

concerns that cannot be cleanly decomposed from the rest. This type of con-

cerns is known as crosscutting concerns and they can be scattered over di�erent

parts of their code, and tangled with other scattered concerns.

Aspect Oriented Programming (AOP) [44] is an emerging paradigm that

presents the principle of separating crosscutting concerns, allowing less inter-

dependence, and more transparency. Thereby, an aspect is a module that en-

capsulates a crosscutting concern, and it is composed of pointcuts and advice

bodies. The interception of an aspect is performed in a join point (a point

in the execution �ow), and de�ned inside a pointcut (a set of join points).
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Figure 2.8: Example of crosscutting concerns in OOP and AOP scenarios.

Whenever the application execution reaches one pointcut, an advice (namely

a callback) associated with it is executed.

This process allows the addition of new behaviours with a clear separation

of concerns, where developers weave (i.e., merge) di�erent aspects into a com-

plete application. As for example security, logging, or persistence crosscutting

concerns (Figure 2.8).

Dynamic AOP [75] promotes the same bene�ts as AOP, but without weav-

ing precompiled aspects. A number of dynamic AOP tools have been de-

veloped, with di�erent weaving techniques like e�cient bytecode rewriting or

dynamic proxies. In addition, crosscutting concerns can be recon�gured (i.e.,

weaved) at load-time (e.g., JBoss AOP [38]) or at runtime (e.g., AspectWerkz

[8]).

Naturally, these bene�ts are important to adaptive middleware. Moreover,

dynamic AOP enables factorization and separation of crosscutting concerns

from the middleware core, which promotes reuse of crosscutting code and fa-

cilitates adaptation. Using dynamic AOP, customized versions of middleware

can be generated for application-speci�c domains.

Nowadays, many developed ad-hoc solutions [74, 33, 34] support dynamic

AOP into the adaptive middleware arena, since such methodology provides

easier extension and reusability than others. Some of these research lines

propose the use of dynamic AOP substrate for policy-based adaptive systems,

or coordination support for distributed changes (DyReS [95]).
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2.3 Implicit Middleware

An implicit middleware [87] is de�ned as a tool that allows developers to re-

main unaware of the middleware services during application development. In

implicit middleware, required services are de�ned in separate code, supported

by annotations and/or descriptor �les. As a consequence, code execution is

governed through a binding mechanism which glues application code with mid-

dleware services.

Indeed, implicit middleware enables transparent interaction between the

original system (e.g., web server) and other new functionalities (e.g., load-

balancing). In order to build this implicit middleware, a common resource for

binding is used: the interceptor. Schmidt et al. [82] de�nes the interceptor like

the architectural pattern, which allows services to be added transparently to a

framework, and triggered automatically when certain events occur. Thereby,

by means of using interceptors, developers enable a clean distinction between

application code and middleware code.

By using such approach, we bene�t from the following set of actions, which

make it easier to :

• Code : connection with the middleware services is transparent, allowing

developers to focus on the application code.

• Maintain : the separation between application and middleware services

is clean and understandable. In addition, changing middleware services

does not require changing application code.

• Support : developers can change needed middleware services by modi-

fying the correspondent binding via annotations or descriptor �les.

• Reuse : middleware services are reusable among other applications, or

versions of the same one, in a simple way. Normally, developers only

need to modify the connection point.

There exist di�erent approaches on implicit middleware, the generic but

normally more intrusive wrapping techniques [13], or ad-hoc interception so-

lutions provided explicitly by the own platform. Examples of this second case,

are Enterprise JavaBeans (EJB) 3.0 [87] or Fractal [16] component models.

UNIVERSITAT ROVIRA I VIRGILI 
DISTRIBUTED AOP MIDDLEWARE FOR LARGE-SCALE SCENARIOS 
Ruben Mondejar Andreu 
ISBN:978-84-693-5426-1/DL:T-1417-2010 



2.3 Implicit Middleware 31

2.3.1 Distributed Interception

If we move these ideas to distributed settings, we logically come up with the

distributed interception concept. We can de�ne this concept like the tech-

nique that allows interception mechanisms in distributed scenarios. In addi-

tion, distributed interception can bene�t from other disciplines like connection-

oriented models [84] or network communication approaches (e.g., RPC [94]).

We can �nd some examples in literature about distributed interception :

• Eternal [59]. The Eternal system can be considered as one of the �rst

contributions in this �eld. Interception in Eternal works by capturing

speci�c system calls (i.e., IIOP) used by the Corba ORB system [79].

Such calls are mapped onto a multicast communication group.

• Chameleon [19]. In the Message-Oriented Middleware (MOM) setting

[24], Chameleon uses message handlers (i.e., interceptors) to extend its

behaviour by means of �lter mechanisms.

• Dermi [66]. Dermi is a P2P remote object middleware that includes an

inner distributed interception functionality suitable for large-scale sce-

narios.

One of the most important limitations of these approaches is that they are

only focused into providing ad-hoc distributed interception. As a consequence,

interception have to be implemented with the provided framework mechanisms.

Therefore, distributed interception is not suitable to be framework service,

meaning that these solutions are not focused to applying interception to other

systems.

As an example, in a MOM scenario we have to implement its own �lters for

intercept messages, but we are not able to use any of these previous frameworks

to intercept or handle the messages of other platforms transparently.

We can solve such limitation by using interception solutions or the Aspect

Oriented Programming (AOP) paradigm. They o�er generic and non-intrusive

local interception to any parts of the system, as well as to other external

systems.
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Going one step further, distributed AOP is an emerging and advanced

implementation of distributed interception. We are going to introduce this

new paradigm in the next section.

2.3.2 Distributed AOP

The term distributed aspect usually refers to crosscutting software modules

that are designed to work transparently, but reside either in multiple computers

connected into a network or in di�erent processes and/or threads inside the

same host. In this way, one aspect sends a request from a local event (e.g.,

pointcut) to another aspect in a remote host/process/thread in order to execute

some routine (e.g., advice).

However, the term could be confused with one of the extensions of the AOP

concept used in the context of distributed computing, such as aspects using

distributed mechanisms or aspectualization of component models:

• Soares et al. [86] propose the use of Java Remote Method Invocation

(RMI) [78] and AspectJ [75]. They report that they use AspectJ for

improving the modularity of their RMI-based programs, splitting code

and remote object logic into local aspects.

• The use of AOP into component-based models tries to settle the crosscut-

ting concerns for designing and developing reusable software component-

based distributed applications. Examples of this aspectualization of com-

ponents or component containers are [70, 71, 5]. This process means

that crosscutting concerns of components models (e.g., location or de-

ployment) are separated in local aspects.

Nevertheless, although they could be considered approximations of AOP

in distributed system area, neither of these works is not considered distributed

AOP [93]. Since they use traditional AOP (i.e. local interception) to separate

crosscutting concerns of distributed systems but in a local way.

For this reason, it is assumed by the literature that the �rst solution was the

work [63], which introduces the remote pointcut mechanism. This abstraction
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is considered the starting point for distributed AOP, and other works have

extended this idea in some way [69, 61, 50, 93, 55].

2.3.2.1 State of the Art

This section focuses on existing distributed AOP technologies that support

distributed aspects with a notion of remote pointcut and remote advice.

DjCutter [63] presents a new AOP language similar to AspectJ [75], but in

a more speci�c scope. Furthermore, DjCutter main innovation was the remote

pointcut concept. This work de�nes a remote pointcut like a function for

identifying join points in the execution of a program running on a remote host.

Thus, it allows developers to code aspects modularizing crosscutting concerns

without explicit network code. The advice bodies in all aspects are executed

in a unique host in the network, thus making this approach inappropriate for

large-scale domains.

JAC [69] or Java Aspect Components, is not a language, is a frame-

work where the main entity is the Component-Aspect. JAC dynamic AOP

framework is extended in order to support distributed pointcuts. Distributed

pointcuts enable de�nitions of crosscutting structures that are not necessarily

located on a single host. JAC simulates the semantics of remote advice by

executing local advices on a local copy of the aspect (aspects are replicated on

each host). Finally, a consistency protocol makes sure that whenever aspects

are deployed on one speci�c host, the same aspects are also deployed on the

other involved hosts. However, JAC does not support any group or context

abstraction, neither remote activation of distributed aspects.

AWED [61] is a declarative language for distributed aspects with syntax

based on AspectJ. It provides remote pointcuts on selected hosts, including

support for remote sequences. It also o�ers distribution (asynchronous and

synchronous) of advice execution. It introduces the group notion in this dis-

tributed aspect area as well. AWED uses this group notion for the deployment,

instantiation and state sharing of aspects. Although other solutions work with

a single or a set of host scopes, AWED was the �rst in using a group com-

munication infrastructure to perform it (JGroups [1]). Nevertheless, its group

abstraction forces activation of the same distributed aspects in each host (total
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replication).

Re�exD [93] is a kernel for distributed AOP. This kernel consists in a

general framework for the implementation of distributed AOP languages. The

main entity is composed of three concepts : distributed cut, action, and bind-

ing. The cut refers to the execution points of an application, and the remote

e�ect is the action. The binding is an explicit entity, which can be manipu-

lated at runtime. Finally, it includes an initial approximation for a distributed

control �ow mechanism based on RMI.

DyMAC [50] is a Component-Aspect based middleware. Its main entity

de�nes remote pointcuts, remote advices, and distributed joinpoint infrastruc-

ture. DyMAC also introduces an extended set of activation and instantiation

scopes. Furthermore, the composition is supported via a set of descriptors.

The component (dependency de�nition similar to EJB), the application (rela-

tions among component-aspect entities), and the deployment descriptor.

2.3.2.2 Comparative Criteria

Having described all the background, we analyzed the related work on existing

distributed AOP systems. As we have seen in the previous section, there exist

some di�erent works in the distributed AOP area. In some way, each of these

approaches implements di�erent distributed mechanisms inside this paradigm.

In addition, comparing our goals in this dissertation with this previous, we

establish the �ve criteria for comparison as follows.

1. Scalability Requirements when the system scales in respect to its size

maintaining its performance and reliability in a wide-area network.

2. Re�ection Capabilities o�er introspection (observation) and intercession

(modi�cation) of the system structure and behaviour.

3. Adaptive Composition allows dynamic recon�guration of the system and

its components in runtime.

4. Access and Location Transparency are allowed thanks to the hiding ca-

pacity of resource discovery and management process.
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5. Persistence and Replication Transparency hide the underlying storage

and replica management mechanisms.

2.3.2.3 Evaluation

In this section, we analyze each criterion from these approaches focus. Table

2.4 summarizes the rank of what we believe each approach provides in regard

to each of the criteria analyzed (legend is as follows: φ : not supported; ν :

supported in some way).

Table 2.4: Summary of considered requirements in the state-of-the-art
Approaches Scalability Re�ection Adaptive Acc. & Loc. Per. & Rep.
Approaches Requirements Capabilities Composition Transparency Transparency
DjCuttter φ φ φ φ φ

JAC φ φ φ ν φ
DyMAC φ φ ν φ φ
Re�exD φ ν φ ν φ
AWED φ φ φ ν ν

Scalability Requirements : The main fact that limits these works is

their network infrastructure. Indeed, most of the current work in distributed

AOP has been based on remote method invocation using a remote object

framework. This infrastructure limits these works to provide only one-to-one

primitives, and makes the construction of group services even harder. Excep-

tionally, AWED is based on a communication group approach (JGroups [1])

that o�ers a one-to-many group abstraction. Nevertheless, these solutions con-

struct their inner services (e.g., naming or registry) in a centralized way, which

eventually becomes a bottleneck.

On the other hand, not only the construction, but the maintenance of the

platform and their installed resources is needed in this dimension. However,

neither fault-tolerance nor churn-resilient mechanisms can be found on any

of the analyzed frameworks. Only Re�exD contemplates solving the binding

failure problem, but as a possible future work line.

In order to guarantee performance and e�ciency in the geographical dimen-

sion it is highly recommended to perform an e�ective use of asynchronous and

proximity-based communication services. In this line, AWED is the unique
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solution that provides asynchronous mode for its remote pointcut mechanism.

However, although some of these works provide new scopes for remote connec-

tions, none of these approaches takes care of the latency in their communication

systems.

When the system grows, host communication may be unreliable, specially

in hosts that are in large size groups. As we commented on before, most of

these works have been namely on non-scalable infrastructures, based on one-

to-one primitives. As a consequence the construction of group services on top

of them is complex. In this sense, AWED is based on a communication group

infrastructure that provides a one-to-many service, but it is not designed for

large-scale scenarios.

Re�ection Capabilities : In general, it seems that these works are not

designed to o�er re�ection capabilities to their developers. Therefore, both

introspection and intercession requirements are not easy to achieve. Only Re-

�exD, which is based on a re�ective platform, provides some basic functionality.

Speci�cally, this re�ective approach models its entities like meta-objects, and

o�ers rei�cation of the involved hosts and its aspect links.

However, any of these solutions o�er a complete interface of introspection

and intercession of its system to enable runtime observation and modi�cation

of its structure and/or behaviour.

Adaptive Composition : Some solutions establish a clear notion of the

distributed aspect entity. However, only DyMAC presents a set of descriptors,

in order to enable separation between entity implementation and its composi-

tion declaration.

On the other hand, popular dynamic AOP implementations [75] (e.g., As-

pectJ or JBossAOP) have the load-time pointcut de�nition restriction (i.e.,

pointcut instances in runtime are not allowed). However, some of these re-

lated works use their own mechanisms to allow runtime interception, as for

example JAC with wrappers, or Re�exD using re�ection.

Nevertheless, recon�guration seems not possible in runtime. Because, none

of these works allow explicit mechanisms like distributed aspect hot redeploy-

ment, decoupled connection mechanisms, or the provision of inner interception

techniques.
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Access and Location Transparency : In this kind of distributed mid-

dleware, the transparency when we are accessing or locating resources must be

guaranteed. One important question is how resources (e.g., hosts or aspects)

are identi�ed. JAC and AWED represent hosts as plain strings. AWED sup-

ports explicit constructs in its pointcut language to specify on which host an

advice should be executed. Also, execution in groups of hosts is transparent.

In addition, AWED allows the use of wildcards to avoid the explicit location

address where the advice must be executed. On the other hand, Re�exD

o�ers a pair name and address (server:port) for instantiation/localization of

distributed aspects. However, none of them allow to move aspects while they

are in use, being this location change process not possible transparently.

Persistence and Replication Transparency : In this last criterion,

only AWED presents a degree of persistence transparency in its state sharing

mechanism. However, this mechanism explicitly needs an auxiliary distributed

aspect, generated at deployment phase, to be able to perform global state

sharing via synchronization tasks. This problem is due to state sharing follows

a centralized solution where all the instances of the same entity would rely on

one speci�c host that holds the shared �eld.

AWED replicates data in all hosts, since all hosts have the same content

in AWED (i.e., activated distributed aspects), although is possible that only a

few use them. In addition, AWED does not introduce any mechanisms to take

advantage of this implicit total replication.

2.3.3 Conclusions

As a main conclusion, the most promising paradigm to support distributed

concerns seems to be the distributed AOP. Since this kind of approach is able

to provide a non-intrusive, distributed, and adaptive middleware solution (See

Table 2.3).

After some works that combine component models and AOP facilities [70],

the remote pointcut primitive [63] �nally established the distributed AOP

starting point. Remote pointcuts are an adaption of pointcuts in a distributed

way, since they invoke the execution of an advice on a remote host. More-
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over, these pointcuts may be propagated in a group of hosts [61], by using, for

example, a common identi�er.

Indeed, remote pointcuts and remote advices are nowadays the di�erential

fact for this kind of frameworks. As a consequence, the main e�ort of these

works is to create the most complete remote pointcut and remote advice model.

In addition, we observe that most of these works have interesting functional-

ities or services like distributed control-�ow [93], support for remote sequences

and state sharing [61], or the distributed joinpoint context-aware infrastructure

[50].

Nevertheless, as we have seen in this chapter, none of these approaches

fully complies with the requirements that we have described in Section 2.3.2.2.

As a consequence, none of them can achieve the goals of this dissertation.

Even though some of these works express that can be suitable for large-scale

systems, we believe this is not possible, because none of them was designed

with the scalability requirement in mind. As a consequence, most of these

works have been built on top of remote object frameworks. This fact limits

them to provide only one-to-one primitives, and makes the construction of

group services even harder.

One special case is AWED, which obtains some good results in this com-

parative thanks to the asynchronous and group communication infrastructure

(i.e., JGroups). Nevertheless, its group scope force it to have exactly the same

aspects deployed on each host (total replication of host content). In addition,

it is well-known that JGroups is not designed for large-scale scenarios. As a

consequence, AWED seems to be more focused into clustering solutions (e.g.,

the cache problem [61]) that imply a small number of hosts per group, where

each host has a similar behaviour.

One of the current trend in distributed computing is to head towards scal-

able and decentralized models. These models bene�t more from the computing

at the edge paradigm, where resources available from any computer can be used

and are normally made available to their members. Middleware architectures

play an important role in achieving such task, and abstracts developers from

the underlying layer issues like persistence, fault tolerance, and load balancing,

among others. Therefore, there is a need for a middleware platform that can
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be used to develop worldwide oriented distributed applications. This middle-

ware must be scalable, must provide availability guarantees, and must o�er a

good degree of transparency in its inner mechanisms and services.

The next chapter introduces our distributed AOP middleware proposal for

large-scale development. Our main motivation is to enable distributed con-

cerns in a transparent way to applications which were not speci�cally designed

for large-scale environments. Our approach bene�ts from a P2P substrate

and a dynamic AOP framework to implement its services in a decentralized,

decoupled, and e�cient way. It provides a scalable deployment platform where

distributed aspects are deployed and activated in individual or grouped hosts.

Moreover, we introduce a distributed composition model that envisages sepa-

ration of distributed concerns, taking the necessary features from component

models, like distribution facilities and connectors, and from computational re-

�ection, like introspection and meta-levels.
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Chapter 3
Distributed AOP Middleware for

Large-Scale Scenarios

In the previous chapter, we have studied the di�erent solutions in distributed

middleware related to the scalability, availability and transparency properties.

We concluded that the most promising solution to provide these properties is

the distributed AOP paradigm. Nevertheless, none of current approaches in

this area are designed to support distributed aspects in large-scale scenarios.

In this chapter we describe our whole distributed AOP middleware

for large-scale scenarios proposal. We introduce the proposed middleware

solution and its innovative services, and describe how it �ts in with the di�erent

layers so that all of its functionalities are provided to the upper layers. Two

distributed middleware disciplines can be considered the foundations of our

model. There are the P2P middleware and the event-based middleware. These

middleware solutions help us to construct distributed systems in a decoupled

and scalable way.

In addition, it is also important to note that what is described here is a

generic proposal for a large-scale AOP middleware approach. It means that

it is not necessarily tied to any speci�c underlying technology. It is clear

that when we implemented our prototype we had to make certain decisions.

However, these were only design decisions, since the generic nature of our

approach means that other foundation layers (e.g., interception logic) could

41
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have been chosen.

The structure of this chapter is as follows: we describe the main innova-

tive contributions our distributed AOP middleware provides, describing the

distributed composition model, the scalable deployment platform, and the

foundation layers, following a top-down design strategy. Later, we include

an overview of prototype implementation called Damon, as well as experimen-

tation and empirical evaluations.

3.1 Introduction

Nowadays, the increase in computing capacity, the reduction of hardware and

communication costs, and the massive use of wide-area networks, have been

changing the way distributed applications are being developed. However, scal-

ability, availability, and transparency still remain strong signi�cant issues for

distributed approaches. Our distributed AOP middleware for large-scale sce-

narios proposal aims to provide these properties to existent or new applications

without modifying them (i.e., non-intrusive).
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Figure 3.1: Proposed Generic Distributed Middleware Architecture.

Our view is to provide two complementary middleware layers, consisting of

a distributed composition model layer, constructed over a scalable deployment
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3.1 Introduction 43

platform layer. As seen in the architectural diagram (Figure 3.1), both layers

sit on top of the same common building blocks, and its order determines its

programming complexity. In addition, both these layers are built on top of the

two main pillars of distribution and interception.

We have adopted a top-down strategy in order to describe our proposal.

It starts from the highest level and breaks down the middleware architecture to

gain insight into its middleware layers. Therefore, access to lower-level layers

is abstracted and made transparent to the application developer.

Each layer and its associated services include the most important contri-

butions (see Section 1.3) of this dissertation:

• Distributed Composition Model: is the upper-layer of our proposal.

This model envisages separation of distributed concerns, taking the nec-

essary features from component models, like distribution facilities and

connectors, and from computational re�ection, like introspection and

meta-levels.

• Scalable Deployment Platform: provides the necessary functional-

ities and services (e.g., re�ection or life-cycle) to the upper layer, and

the deployment for deploy distributed aspects in large-scale scenarios.

Therefore, this platform o�ers a complete life-cycle on the distributed

aspect container.

• Foundation Layers: is composed by two main pillars, the P2P network

layer, which includes the routing, the messaging, and the persistence

layers, and the dynamic AOP layer that consists of the hot deployer and

the aspect weaver.

All these layers allow innovative contributions on our distributed AOP

middleware suitable for large-scale application development. Some examples

are: distributed aspect composition, new abstractions for remote interactions,

and powerful runtime recon�guring mechanisms. Finally, these middleware

features will be further extended throughout this chapter.
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44 Distributed AOP Middleware for Large-Scale Scenarios

3.2 Distributed Composition Model

A distributed component model connects local and/or remote software com-

ponents that will be used to build the system. These components may be

designed from scratch for the new system, or may be brought in from other

projects and/or third party vendors. Components are high level aggregations

of smaller software pieces, and provide a black box building block approach to

software construction.

In this section, we introduce a distributed component model for distributed

AOP, which is the upper level contribution of our middleware (Figure 3.1).

Basically, our model supports interaction in heterogeneous scenarios, by o�er-

ing new composition features. Some of these features come from component

models, like distributed connectors or descriptors, and from computational re-

�ection, like introspection and meta-level services. Furthermore, our model

is designed to provide �exible recomposition techniques, enabling an e�cient

and transparent recon�guration at runtime.

An important question arises regarding when the composition can be per-

formed. Such process can only be executed in any of these stages:

• Design: de�ning the distributed entity, and its properties and connec-

tors (local and remote), in order to generate the descriptors.

• Load-time: using the descriptors to deploy and activate the associated

distributed aspects in the speci�ed host or host group.

• Runtime: allowing rede�nition of activated distributed aspects, without

restarting the system. We stress out the runtime mechanisms since we

use a novel distributed meta-level approach.

Some key challenges in composition models like recursivity (distributed

aspects as part of other distributed aspects) or interoperability (supporting

third party composition) have been considered in our model. In the rest of the

section we explain in detail the composition model focusing on the entities,

connectors, and descriptors.
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3.2 Distributed Composition Model 45

3.2.1 Distributed Aspect Entity

We are mostly interested in distributed concerns where distributed aspects are

executed in a remote host or simultaneously in multiple hosts. Examples of

this kind of concerns are fault-tolerance, load-balancing, replication, synchro-

nization, among others.
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Figure 3.2: Distributed Aspect Diagram.

Indeed, distributed AOP presents a di�erent philosophy than traditional

solutions like remote object or component models. When developers design a

new application, they �rstly obtain or implement the raw application without

any distributed concerns in mind. They may simply design the main concern

by thinking in local, and later implementing the rest of the distributed concerns,

designing the necessary connectors (e.g., remote pointcuts), which conform the

distributed AOP application.

Previous works (e.g., [86]) force developers to take care of communication

issues, mixing them with local aspects techniques. In order to improve this

development, a distributed concern must be modelled as a true distributed

entity.

Therefore, the key feature is the distributed aspect entity. Our solution,

inspired by di�erent distributed disciplines, like connection oriented frame-
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46 Distributed AOP Middleware for Large-Scale Scenarios

works and composition models, makes it easier to wire entities. As a graphical

representation (see Figure 3.2) for our model, we have been inspired by Corba

Component Model (CCM) [79] because it provides enough richness to represent

all elements we need.

Let us outline the main attributes of a distributed aspect entity: the Source

Hook, the Remote Connectors, and the Shared Data.

3.2.1.1 Source Hook

The Source Hook is de�ned as the connector that is responsible for perform-

ing local interception in our model. Our Source Hook Interface is inspired by

Crosscutting Interfaces (XPI) [35], which provide an abstraction to separate

local application code (i.e., advices) from pointcut speci�c implementations.

Summarizing, this mechanism binds transparently the application code with

the distributed aspects. Note that this approach is independent from the un-

derlying AOP language and toolkit ((e.g., AspectWerkz [8])).

In Figure 3.3 we present a sample scenario where we aim to intercept (point-

cut) the JDBC [39] driver interface, in order to distribute the local updates

and queries (advice). This kind of solution has other bene�ts like a major level

of comprehensibility for developers.

Pointcut Instances
<<Source Hook>>

SQL Interface

<<Source Hook>>

SQL Interface
Locator

+update(sql)

+query(sql) : ResultSet

+update(sql)

+query(sql) : ResultSet

java.sql.Statement

+executeUpdate(sql)

+

+executeUpdate(sql)

+executeQuery(sql) : ResultSet

+after : update(joinpoint, sql)

+around :query(joinpoint, sql)

+after : update(joinpoint, sql)

+around :query(joinpoint, sql)

Distributed Aspect MiddlewareAOP InterceptorDatabase Application

Figure 3.3: Example of Source Hook for JDBC.

On the other hand, an important issue is how to deal with of multiple

execution of the same Source Hook. An sample scenario, will be an interception

of the dispatcher of a web server when it is dealing with massive requests of a

popular website. In order to address this problem, we develop an interesting

variation called Static Source Hook. This mechanism follows the singleton

pattern, allowing only one execution at the same time (mutual exclusion) for a
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3.2 Distributed Composition Model 47

speci�c Source Hook. The following executions are waiting, are to be executed

one by one, in a FIFO order.

3.2.1.2 Event-Based Connection Model

Indeed, remote pointcuts and remote advices are nowadays the di�erential fact

for distributed AOP approaches (Section 2.3.2.1). However, many of the exis-

tent solutions used remote invocations to perform remote pointcuts, although

this kind of mechanism is not scalable or �exible enough.

For this reason, we have constructed our model over an event-based infras-

tructure (Figure 3.4). In this model, the event bus is responsible for trans-

mitting to event consumers thrown by producers based on the information

contained in these events. Therefore, we model the distributed aspects con-

nectors like remote events, with a connector identi�er (e.g., alarm or state)

associated dynamically.

As we have seen, each connector has a unique identi�er that de�nes the

topic of the event bus. In addition, the connector is related to a target that

speci�es the context involving an individual host or group of hosts (i.e., topic

subscription identi�er). Furthermore, each host declares its individual iden-

ti�er, or whether it is to join a group dynamically, since this can change at

runtime. As a consequence, we avoid the use of static identi�ers (i.e., IP

addresses) in our host de�nitions.

PRODUCED

ActuatorSensor

Event

Based

Connection

Model

alarm

state

alarm

state

PRODUCED

CONSUMED

CONSUMED

Figure 3.4: Event-Based Connection Model Example.

In our model, all the remote services can use asynchronous/synchronous
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48 Distributed AOP Middleware for Large-Scale Scenarios

communication primitives performed by means of using the underlying mes-

saging event-based functionality. We allow loose coupling connections thanks

to the use of these asynchronous and event-based mechanisms. These remote

connectors can be split into two categories: produced (remote pointcuts or

invocations) or consumed (remote advices or methods) :

• Remote Pointcut and Remote Advice: Once local interception is

triggered, the remote pointcut starts. Thereby, this service us linked

to Source Hooks, which remotely propagates associated joinpoints. Dis-

tributed aspects can disseminate pointcuts to a single host or a group

of them, using the corresponding scope (e.g., one-to-many). Distributed

aspects can be linked themselves together by means of a remote advice.

The receptacle allows a distributed aspect to declare its dependency to a

speci�c remote pointcut. Thus, a remote advice uses the same identi�er

to be noti�ed about its desired remote pointcut.

In the example of Figure 3.4 the Sensor distributed aspect produces

remote pointcuts (alarm) and the Actuator distributed aspect can receive

them. In this way, these distributed aspects work together without being

tightly linked, thanks to our event-based connection model.

• Remote Invocation and Remote Method: Traditional method in-

vocation is also supported on our connection model. It serves a main

purpose of inter-aspect communication on demand. Distributed aspects

are scattered among the network, and they need to execute their own

methods, as found in traditional AOP, but in a distributed way. In such

scenario, methods are dynamically invoked on other hosts.

As seen on Figure 3.4, we can observe that the Actuator distributed

aspect produces remote invocation in order to obtain the state of a spe-

ci�c host under demand. In addition, if this connection (state) is syn-

chronous, our model allows to the Sensor instance to reply this request

into the same communication channel.

Furthermore, these di�erent connectors enable the push and pull models

in our proposal. For the push model, remote pointcuts (producers) gener-

ate events and actively pass them to the event communication channel. On
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3.2 Distributed Composition Model 49

the other side, remote advices (consumers) wait for events to arrive from the

channel. For the pull model, a distributed aspect can actively request events

from another entities using remote invocations. The producers wait for these

requests to arrive from the channel using remote methods. When these pull

requests arrive, event data is generated and triggered.

3.2.1.3 Shared Data

Distributed aspects in our model can be of two types: stateful and stateless.

Stateless distributed aspects do not maintain a state while stateful ones do.

On the other hand, the Shared Data mechanism allows stateful dis-

tributed aspects to save and restore their state information from the persistence

service. Therefore, this mechanism guarantees data recovery after the hosts

that contain distributed aspects or shared data fail. Moreover, this data can

be shared by one, many or all members of the group.

For stateful distributed aspects, it is also necessary to provide a persistence

mechanism to take care of the total disappearance of instances. Usually, if all

instances of the same distributed aspect are gone, their shared state is lost.

Therefore, this mechanism follows a persistence strategy where the state is

maintained in all cases.

As we can observe in Figure 3.4, we have the Actuator distributed as-

pect, which can store the historic information received from Sensors. This

distributed aspect is declared like a stateful entity, and for this reason its data

is saved into the network automatically. If this distributed aspect left the net-

work and returns later, it will also recover its previous state. Moreover, if we

have more Actuators in the network, they will be able to share their own in-

formation, and work together (i.e., collaborate) with global state information.

3.2.2 Distributed Aspect ADL

In our model, we have developed a speci�c Architecture Description Language

(ADL [54]), which provides the way to de�ne an abstract descriptor for our

distributed aspect. Basically, this descriptor must specify the properties, ac-

tivation details, and local/remote connectors of a distributed aspect. As a
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distributed-aspect = name , abstraction , [num] ,

target , state,

{remote-pointcut} , {remote-invocation},

{remote-advice} , {remote-method} ;

name = string ;

abstraction = string ;

num = digit , { digit } ;

target = string ;

state = 'STATELESS' | 'STATEFUL' ;

remote-pointcut = sourcehook , id , [target] , abstraction ,

[num] , method , args , mode ;

remote-invocation = id , [target] , abstraction , [num] ,

method , args , mode ;

remote-advice = id , method ;

remote-method = id , method ;

sourcehook = interface , method ;

method = string ;

args = {arg} ;

id = string ;

mode = 'ASYNCHRONOUS' | 'SYNCHRONOUS' ;

arg = string ;

interface = string ;

digit = '0' | '1' | '2' | '3' | '4'

| '5' | '6' | '7' | '8' | '9' ;

string = '"' , { all characters - '"' } , '"' ;

all characters = ? all visible characters ? ;

Figure 3.5: Distributed Aspect ADL Grammar.

consequence, the distributed aspect descriptor o�ers other bene�ts like the

necessary abstraction and transparency with the underlying implementation.

ADL grammar is shown in Figure 3.5 using Extended Backus-Naur Form

(EBNF [68]), a meta-syntax notation used to express Context-Free Grammars

(CFG [18]) :

• de�nition of production rules where sequences of symbols are respectively

assigned to a non-terminal symbol.

• expressions that may be omitted or repeated can be represented through
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3.2 Distributed Composition Model 51

curly braces.

• can be optionally represented through squared brackets.

• terminals are strictly enclosed within quotation marks.

As we can see, the ADL is the responsible to de�ne the distributed aspect

properties, and connections.

The de�nition of each entity starts with the name, which obviously has to

be unique in the namespace, and needs to be the same as the class name (e.g.,

feedback.Sensor). We continue with the target parameter, which determines

the host or the group of hosts where the aspect will be activated. In the

following line, the activation abstraction is de�ned, thus establishing if the

distributed aspect will be activated in a speci�c host or hosts of the group.

Finally, we can specify the state. If it is stateful, the shared data will be

maintained transparently.

Moreover, with ADL we can specify each connector. The produced (e.g.,

remote-pointcut) or consumed (e.g., remote-advice) connectors are de�ned in a

similar manner. We need to de�ne the identi�er, method name, and arguments.

Moreover, the remote pointcut must de�ne the source hook, which is composed

by its interface and method names. The mode parameter in the produced con-

nectors determines if they are asynchronous or synchronous. The connectors

use the target of the distributed aspect as a default value, but optionally they

can de�ne their own target. Therefore, distributed aspects can produce and/or

consume in di�erent namespaces, but they are only activated in its namespace.

In order to clarify this point, we also include two descriptor examples (Fig-

ure 3.6), based on the sample scenario shown before in Figure 3.4.

These ADL examples (Figure 3.6) de�ne the Sensor and the Actuator dis-

tributed aspects. As we can see Sensors are activated on all members of the

(feedback.net) group via a one-to-many (multi) abstraction, and the Actua-

tor instance is activated in one member of the group using other (any) group

abstraction. As we have seen before, Sensors have no state (stateless), unlike

the Actuator, which is stateful. Moreover, both of them have two declared con-

nections, the alarm remote pointcut and remote advice, and the state remote

invocation and remote method.
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<distributed-aspect>

<name>Sensor</name>

<target>feedback.net</target>

<abstraction>MULTI</abstraction>

<state>Stateless</state>

<remote-pointcut>    

<sourcehook>

<interface>Monitor</interface>

<method>alarm</method>

</sourcehook>

<id>alarm</id>

<abstraction>ANY</abstraction>

<method>alarmDetected</method>

<args><arg>value</arg></args>    

<mode>ASYNCHRONOUS</mode>

</remote-pointcut>

<remote-method>

<id>state</id>

<method>getState</method>

</remote-method>

</distributed-aspect>

<distributed-aspect>

<name>Actuator</name>

<target>feedback.net</target>

<abstraction>ANY</abstraction>

<state>Stateful</state>

<remote-advice>

<id>alarm</id>

<method>alarmNotified</method>

</remote-advice>

<remote-invocation>        

<id>state</id>

<abstraction>DIRECT</abstraction>

<method>obtainState</method>

<args><arg>value</arg></args>    

<mode>SYNCHRONOUS</mode>

</remote-invocation>

</distributed-aspect>

alarm

state

Figure 3.6: Distributed Aspect ADL Examples.

Due to the decoupled properties of our model, if another Actuator instance

is activated in this group (i.e., in the same namespace), it will be connected

to these instances easily. The only requirement consists of the declaration of

a remote advice with the identi�er and arguments of the alarm service of the

Sensor speci�cation.

3.2.3 Distributed Meta-Aspect

One common drawback [75] in current dynamic AOP implementations is the

fact that pointcuts are to be declared in load-time. As a consequence, we are

forced to declare the necessary hooks in this phase, just to let them be used

in execution time.

Our distributed AOP scenario is highly dynamic, where we need to de�ne

dynamic recomposition of distributed aspects. This process involves changing

between alternative compositions of an application in runtime phase. We con-

sider that this phase starts once distributed aspects are scattered and activated

around the network.

For these reasons, we propose in our model a meta-level abstraction for
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3.2 Distributed Composition Model 53

managing distributed aspects in runtime. Such approach introduces a number

of advantages: it supports our loosely coupled approach by designing and man-

aging distributed aspects, and enables recomposition across di�erent scenarios

involving di�erent hosts.

A distributed meta-aspect is de�ned as a distributed aspect that works in

the meta-level, and can intercept other distributed aspects at runtime. We

continue with the previous Sensor and Actuator sample scenario (Figure 3.4),

but introducing the Controller distributed meta-aspect entity (Figure 3.7).

This entity is able to intercept and redirect the remote connections between

Sensor and Actuator distributed aspects. In order to support the ideas of

this example, we create two novel mechanisms inside our model: the remote

meta-pointcut, and the remote meta-advice.

Distributed Concern 

Meta-Level

Controller

ActuatorSensor

2
C

A
C

C

S

3

1

4

<<Source Hook>><<Source Hook>>

Monitor

alarm (value)+alarm (value)

C

A

C

1

3

3 2

2

4

2
3

1

Network

Figure 3.7: Example of Distributed Meta-Aspect Interaction Diagram.

Therefore, our remote meta-pointcut mechanism performs the remote

interception by specifying a remote pointcut or invocation service. Interception

can occur in di�erent moments of the remote service execution (numbers 1, 2,

and 3 in Figure 3.7):

1. Before: it is performed on the host where the remote service originates,

whenever a remote pointcut or remote invocation is triggered.
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2. After: when the remote service gets to the destination host(s), in a re-

mote advice or remote method execution, the remote meta-pointcut is

invoked. This case is the opposite of the previous one, and it occurs just

before the remote service arrives (advice or method execution). Further-

more, re�ection information can be accessed from the remote service.

3. Around: in such case, interception is raised on any of the travelling

hosts between the originator (before) and the destination (after). It

is the most complex case, because we need to �lter the tra�c in the

intermediate hosts and analyze the transient messages.

This remote meta-pointcut allows blocking and cancelling of the original

service execution and/or routing, depending on the time it is performed. In

addition, our distributed meta-aspect service can optionally modify any re�ec-

tion information provided by the remote join point mechanism, as for instance,

the address of the originator host, or the number of visited hosts.

In order to simplify and abstract the model and its implementation, we

introduce another connector to manage the interactions from the meta-level

(number 4 in Figure 3.7). This connector, called remote meta-advice, provides

the way to invoke remote methods or advices of distributed aspects. Further-

more, in this last step developers can perform adaptive techniques. As for

example, the Controller in Figure 3.7 injects events to the Actuator, acting as

a feedback control [104] mechanism.

distributed-aspect = distributed-aspect-previous,

{remote-meta-pointcut},

{remote-meta-advice ;

remote-meta-pointcut = id , [target] , method , type , [ack] ;

remote-meta-advice = id , [target] , abstraction , [num] ,

method , args , mode ;

type = 'BEFORE' | 'AROUND' | 'AFTER' ;

ack = 'TRUE' | 'FALSE' ;

Figure 3.8: Distributed Aspect ADL Grammar Extension.

It is clear that in order to implement these mechanisms we need implicit

interception on the distributed AOP frameworks. Thereby, such facilities must
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3.2 Distributed Composition Model 55

be provided by the framework itself. In this case, we have two options: to use

the observer pattern on the network substrate if it allows message introspec-

tion, or, to use AOP facilities in order to intercept it.

In our architecture, we try to combine both these options, by intercepting

the inner messaging system [80], and providing an internal source hook inter-

face for message sending, forwarding, and delivery. Subsequently, an internal

aspect intercepts these methods, connecting them with the activated remote

meta-pointcuts. Our approach has a low computational cost, remains fully

transparent to the developer, and abstracts the underlying AOP engine.

Furthermore, we can de�ne distributed meta-aspects in our descriptor def-

inition (Figure 3.8), at the same level of the other produced and consumed

remote connectors. Such an example is shown in Figure 3.9, based on the

sample scenario in Figure 3.7.

<distributed-aspect>

<name>Controller</name>

(...)

<remote-meta-pointcut>

<id>alarm</id>

<method>control</method>

<type>AROUND</type>

</remote-meta-pointcut>

(...)

<remote-meta-advice>

<id>alarm</id>

<abstraction>DIRECT</abstraction>

<method>redirect</method>

<args>

<arg>value<arg>

</args>

<mode>ASYNCHRONOUS</mode>

</remote-meta-advice>

(...)

</distributed-aspect>

Figure 3.9: Distributed Meta-Aspect ADL Example.

In this example, the Controller distributed meta-aspect performs redirec-
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tion tasks. In this line, the around meta-pointcut (number 3 in the Figure 3.7)

intercepts the (alarm) remote pointcut when it is routed to its destination

host. On the other hand, a remote meta-advice (number 4) is propagated in

substitution of the intercepted remote pointcut.

Other use case scenarios for our distributed meta-aspect can be those of

distributed monitoring/pro�ling, distributed patterns, modifying service ab-

straction scope, or service propagation to other host(s) or groups.

3.2.4 Composite Distributed Aspect

As �nal contribution, we propose to extend our solution to a recursive compo-

sition model. As a consequence, a distributed aspect can be itself an assembly

of distributed aspects. Indeed, such approach eases the provision for dynamic

adaptation mechanisms whose goal is to allow sub-entities to be added, with-

drawn or replaced, and bindings between distributed aspects to be rede�ned.

Note that the one important di�erence of our composition model among

others (like CCM or Fractal), is the fact that we can establish connections

with the meta-level. Thereby, a composite distributed aspect can interact

with distributed meta-aspects. In addition, a composite entity can contain

distributed meta-aspects itself. In both cases, the idea follows the black box

abstraction, where inner composition remains hidden, and reuse is promoted.

In our recursive model, the composite distributed aspect entity provides

a uniform view of an application across the di�erent abstraction levels. The

initial (i.e., the lowest) abstraction level is where primitive distributed aspects

(e.g., Sensor or Actuator sample entities) reside. On the other hand, the �nal

concerns of a distributed application are situated in the highest abstraction

level. Note that a particular contribution of our work is the transparency

and high functional cohesion (total separation of concerns) that our solution

provides at this �nal abstraction level.

We can brie�y de�ne the di�erence for composite entities during the life-

cycle. When a composite entity is deployed, the system checks the references

to the sub-entities, and it deploys them. Therefore, if any of them is a com-

posite distributed aspect, the recursive deployment is performed. The same
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recursivity is applied later during the activation or passivation. Such process

simpli�es the installation of new distributed concerns just performing a single

step. By means of using re�ection mechanisms developers can choose the most

suitable level for recomposition tasks at runtime.

<distributed-aspect>

<name>Monitor</name>

(...)

<remote-pointcut>

<id>alarm</id>

<ref>Sensor</ref>

(...)

</remote-pointcut>

(...)

<remote-invocation>

<id>state</id>

<ref>Actuator</ref>

(...)

</remote-invocation>

</distributed-aspect>

Figure 3.10: Composite Distributed Aspect ADL Example.

Finally, the notion of composite distributed aspect can be used at design,

load, and runtime phases. By means of an extension of our ADL language,

we can de�ne a distributed aspect descriptor for this composed entity. This

extension is the name of the distributed aspect (ref parameter) in the remote

connectors. Figure 3.10 contains an example of this descriptor, where we de�ne

the Monitor entity that is composed by the Sensor and Actuator entities.

As a consequence, when the Monitor is activated, automatically the other

distributed aspects are also activated.

3.3 Scalable Deployment Platform

In this work, we go one step further joining (1) the inherent distribution

bene�ts of P2P computing, and (2) the powerful interception mechanisms

of AOP. As we can see in Figure 3.1 our middleware proposal is implemented
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as a multi-tiered architecture. On top of the P2P and AOP foundation tiers,

we have built a deployment platform and, on top of it, a composition model.

All these tiers are pieces of the system, which �t together, and provide a

set of common services to upper-level tiers. Finally, upper-level services are

responsible for enabling large-scale distributed aspect development.

As we have stated above, our aim is to provide two complementary mid-

dleware layers, consisting of a distributed composition model, and scalable

deployment platform. In this section we aim to describe the second one, which

is a new middleware layer built on top of the foundation layers.

This platform enables distributed aspect deployment in large-scale scenar-

ios, thus providing :

• Decentralized Container: to manage the life-cycle aspects and e�-

cient resource location.

• Platform Functionalities: enabling persistence, communication and

messaging, re�ection abstractions.

Therefore, access to lower-level layers is abstracted and made transparent

to the application developer.

3.3.1 Decentralized Container

We �nd in literature that some distributed AOP works that are managed by an

aspect container, which is responsible for creating and con�guring the aspects.

For this propose, we have designed a decentralized container in our model.

Note that all hosts that belong to the network are containers, and as such,

they can manage many distributed aspects.

Firstly, our container provides the location and discovery mechanisms

for our middleware platform. In this model, we have adopted an URI-style

naming convention (e.g., p2p://resource.name.net) to perform decentral-

ized services. These P2P locators create an uniform address space enabling

service access regardless of its network location (IP address). This mechanism

can be used to indicate speci�c host locations, the identi�er of a group of hosts,

a speci�c stored value, etc. For example, for speci�c host locations, requests
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are mapped from the P2P locators to the responsible IP addresses (which may

change over time). Following the structured overlay design, every host is re-

sponsible for a range of locators, and if a host fails, another one replaces it in

order to handle those locators.

Secondly, the container is the responsible to manage distributed aspect life

cycle:

• Deployment : entities are serialized and inserted into the network.

• Activation: distributed aspects are recovered from the network and in-

stalled on speci�c hosts.

• Execution: activated entities are running and using the platform func-

tionalities.

• Passivation: distributed aspects are stopped and remain waiting for fu-

ture activations.

Basically, the �rst part of the life cycle involves inserting (deploy) and in-

stalling (activate) distributed aspects into the distributed system. We brie�y

describe the deployment and activation of distributed aspects, and how trans-

parent services are provided to handle them correctly.

In the deployment phase, the distributed aspect is coded to run on our

platform; next, it is inserted in the platform (persistence service) with an

uniquely assigned P2P locator (e.g., p2p://aspect.class.name) and making

it available to any host. Whenever the aspect is needed, it has to be located

using its P2P locator in order to recover the serialized class from the persistence

service.

Naturally, if the host containing the deployed distributed aspects fails, re-

covery would fail as well, as the host that contains this information is missing.

To avoid this problem, data replication mechanisms are used in the persistence

service (i.e., a platform functionality explained in the next section). When a

distributed aspect handle is to be deployed, it is replicated among the near-

est hosts to the target host. This way, if the target host fails, information is

not lost and the distributed aspect handle can be recovered from any of these

closest hosts.
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In the activation phase, distributed aspects are installed in the host(s)

speci�ed using a P2P locator (e.g., p2p://app.group.org), and using some

abstractions (presented in the next section). Brie�y the allowed scopes are:

a speci�c host (direct), responsible host for a determinate key (hopped), one

host of the group (any), some members of the group (many), or each of the

hosts of a group (multi).

Once the aspect is activated, it can make use of the platform functionalities

(persistence, messaging and re�ection) according to its behaviour(s) and/or

requirement(s). Finally, our container is also responsible of the reliability and

integrity of activated aspects. In this line, any activated distributed aspect is

transparently maintained by the fault-tolerance mechanism provided by our

container. Thereby, once a host with any aspect becomes unavailable, and

rejoins the network, all its activated distributed aspects, group membership,

and persistence data are rapidly restored.

3.3.2 Platform Functionalities

We bene�t from the underlying P2P and AOP services to provide a set of

functionalities for distributed aspect development, available in each of the

system hosts.

The persistence service involves serialization of information into the net-

work, which replicates this data among the host closest neighbours. Thanks

to this persistence service, we can guarantee fault tolerance saving this data

into the network in a transparent way. Later, the data is recovered from the

network layer, for the same or any other host. Moreover, this service allows

developers to create multiple contexts, making easier to separate di�erent ap-

plication scopes.

The re�ection service accesses the underlying layers, including system in-

strumentation tools. It de�nes a simpli�ed API, where developers can obtain

information about aspects, hosts, and network. Thus, examples of that API

include obtaining the list of instantiated aspects, host current resource utiliza-

tion like CPU, memory, or disk space, and network topology information (e.g.,

group members, or host latencies).
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Themessaging service enables e�cient routing mechanisms over the rout-

ing layer, using unique identi�ers (P2P locators) that correspond to speci�c

hosts in a determinate period of time. It also creates an event-based message

system on top of the underlying communication layer that allows activation

of distributed aspects by means of exchanging messages using a topic-based

publish-subscribe mechanism.

A set of communication abstractions (see Figure 3.11) are enabled,

which allow new remote scopes for the distributed AOP area. Moreover, these

communication abstractions allow to the upper layer to create di�erent kind

of connectors using them like an attribute.

HOPPED

DIRECT

MANYANY
LOCAL

MULTI

Figure 3.11: Communication Abstractions Diagrams.

3.3.2.1 Hopped Communication

The capabilities provided by the routing substrate are the foundation for what

we call the one-to-one hopped abstraction. The advantage of using a key

to route messages to the host is that we do not know anything about the

destination. Moreover, when the host we are using goes down, the message

would automatically route to another host, in a transparent process, and the

originator continues to use the same key to route messages.

3.3.2.2 Direct Communication

Using the underlying routing mechanism this abstraction sends a message to

the destination that owns the speci�ed locator, doing all the work in only one
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hop. Therefore, hopped abstractions are not as e�cient as direct abstractions.

Depending on the used routing substrate, this approach incurs additional over-

head, because a message is routed by one or more hosts reaching its destination.

This philosophy remains in stark contrast to that of abstraction calls, where

the message is moved directly from source to destination. In one-to-one direct

abstractions we need to know the destination host URL locator, or directly its

real IP address.

3.3.2.3 Multi Communication

On the other hand, one-to-group abstractions are modelled using the mes-

saging system layer by means of disseminating events. Moreover, thanks to

the underlying p2p network, these abstractions bene�t from a proximity-based

topology. To target the destination group we also use P2P URL locators (e.g.,

p2p://app.group.net). Thanks to the utilization of this abstraction we can

guarantee that all communications get to all of the group members in an e�-

cient and scalable way.

3.3.2.4 Any Communication

This remote abstraction uses group mechanisms. Speci�cally, it allows sending

a message to the nearest entity (e.g., distributed aspect) within its group,

which needs to satisfy a parameterized condition. As a consequence, this is an

interesting way to provide remote services that bene�t from network locality.

If the messaging layer provides us with an e�cient anycast primitive, we can

use it to create a call to the destination host that belong to the same group.

The originator is insensitive to which group provides data; it only wants its

request to be served. The idea is to iterate the group members, starting from

the closest member in the network. Once a member of the group is found to

satisfy the condition, it returns an a�rmative result.

3.3.2.5 Many Communication

This abstraction is similar to the any abstraction, but sending a message

to the n nearest hosts within a group, satisfying a speci�ed condition. It
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takes advantage of the many abstraction provided by the messaging layer and

it therefore sends a message to several group members, continuing to route

until it �nds enough members to satisfy a global condition. Similar to the

any abstraction, when a destination host receives an invocation, it �rst checks

whether it satis�es a local condition and, subsequently, checks whether a global

condition is met. The many abstraction is successful when the global condition

is met.

3.4 Middleware Foundations

By making e�cient use of dynamic AOP facilities and structured P2P sub-

strates, we have de�ned the underlying layers that are the foundations for

large-scale distributed aspect deployment (see Figure 3.12.
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Figure 3.12: Proposed Distributed AOP Middleware Architecture.

First of all, an AOP engine is needed to begin with, in order to execute

di�erent aspects in each of the system hosts. This layer enables instantia-

tion and execution of aspects at runtime. It also manages the interception

mechanisms (pointcuts), interception callbacks (advices), and the interception

control accesses (joinpoints).

The �rst actor in this layer is the deployer, which accepts and transforms

the new aspects, or the changes introduced by previous ones. This runtime

ability is performed by hot deployers, and is a required characteristic for
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dynamic AOP engines. Subsequently, the process of integrating deployed as-

pects, or more precisely, the actions for each of these aspects, is called weaving

and is performed by a tool, the aspect weaver.

Therefore, a dynamic weaver allows aspects to be woven, unwoven, or

replaced at runtime. By using an uni�ed interface (facade pattern), to ac-

cess these services, we could swap the engine implementation with any other

dynamic AOP framework.

One problem is that current dynamic AOP frameworks force to declare

in load time the necessary hooks (local pointcuts). However, these kinds of

declarations are not usually simple or clear, and may need to be changed in

the future. Our solution aims to decouple any local advices from any speci�c

AOP language.

As seen in Figure 3.12, our middleware is built on top of a P2P sub-

strate in order to exploit its inherent properties, which include scalability,

fault-resilience, self-organization, routing e�ciency, network proximity organi-

zation, etc. For our middleware proposal we construct a new abstraction layer,

which follows the Common API [20] speci�cation. This API speci�cation stan-

dardizes the Key-Based Routing (KBR) [89], the application level multicast

(CAST) [80], and the Distributed HashTable (DHT) [48] layers

The KBR substrate is a common layer found in all structured P2P overlay

networks (e.g., Pastry [80] or Chord [89]), which allows for e�cient message

delivery based on the message key. Therefore, the message moves closer to the

destination host following an approaching path that depends on the value of

the speci�ed key. Thereby, these KBR routing mechanisms allow the messaging

functionality of the upper layer to send message using at most O(log n) number

of hops, and where n is the number of hosts in the network.

The CAST abstraction provides scalable group communication to the up-

per layer. Overlay nodes may join and leave a group, multicast messages to the

group, or anycast a message to a member of the group. Because the group is

represented as a tree, membership management is decentralized. Thus, CAST

can support large and highly dynamic groups. Moreover, if the overlay that

provides the KBR service is proximity aware, then multicast is e�cient and

anycast messages are delivered to a group host near the anycast originator.
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TheDHT abstraction provides the same functionality as a traditional hash

table, by storing the mapping between a key and a value. This interface

implements a simple store and retrieve functionality, where the value is always

stored at the live overlay host(s) to which the key is mapped by the KBR layer.

As a consequence, this service is used by the persistence functionality of the

upper layer.

Even though these foundation layers de�ne the necessary services to deal

with aspects and P2P networks, they do not fully comply with the requirements

for deploying and activating aspects in P2P scenarios. It is clear that these

layers provide the primitives required to implement many services, but not

the services themselves. This is because such approach is far too low-level for

developers. As a consequence, they may �nd it di�cult to deal with aspects

in distributed settings due to the lack of speci�c services and abstractions for

distributed aspect development.

3.5 Implementation: Damon

In this section we present our prototype implementation, called Damon. This

implementation can be downloaded from http://damon.sf.net. Later in this

section, we test our prototype in a real large-scale network.

3.5.1 Prototype

Among all available KBR substrates, we chose FreePastry 2.1 [80] for its e�-

cient Java implementation of Pastry (KBR) and Scribe (CAST) [80], and its

better awareness of the underlying network topologies.

Scribe, a large-scale decentralized application-level multicast infrastructure

built on top of Pastry, is a publish/subscribe message oriented middleware

(CAST). We chose Scribe because it provides a more e�cient group-joining

mechanism than other existing solutions, and it also follows the Common API

(Section 2.1.1.4).

Additionally, our preferred KBR substrate choice was Pastry because its

routing scheme is e�cient, it takes account locality when routing messages,
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it is self-organizing and can gracefully adapt to node failures. All this makes

Pastry one of the most interesting KBR implementations. Nevertheless, we

could have used any other P2P KBR-based overlay network (or even none of

them), provided that they share the same basic functionalities.

For the AOP part of our prototype we use the AspectWerkz 2.0 [8] imple-

mentation as the dynamic AOP framework. It o�ers rich semantics allowing

runtime access to information about the join point within the advice using

regular types without any casting or object array access. Re�ective access to

runtime information is also possible. Allows weaving (bytecode modi�cation)

at compile time, load time and runtime. It hooks in and transforms classes

loaded by any class loader except the bootstrap class loader.

Therefore, developers can easily transform any (legacy) application or ex-

ternal library both at runtime and compile time. Finally the availability of a

Java implementation at the time this prototype implementation was begun,

eased the adoption process. Like the P2P layer, this AOP engine is able to be

swapped if another implementation is more suitable for runtime aspect weaver

proposes.

3.5.2 Experimentation

In this section, we study the cost property introduced by our middleware

infrastructure in the distributed AOP area. We conducted several experi-

ments to measure Damon viability using the PlanetLab testbed [72]. Planet-

Lab is a globally distributed platform for developing, deploying, and accessing

planetary-scale network services. Any application deployed on it can experi-

ence real Internet behaviour, including latency and bandwidth unpredictabil-

ity.

We concentrated on performing general performance tests, and chose more

than a hundred hosts from distinct and varied geographical locations, including

Canada, Germany, Italy, Spain, Denmark, the UK, China, or the US. We

repeatedly ran the tests at di�erent times of day to minimize the e�ect of

momentary node congestion and failures. Before each test, we estimated the

average latency between nodes to gauge how much overhead the middleware
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services incurred.

Table 3.1: Overhead observed of deployment platform tests in milliseconds
Source Host Destination Host Lat. Dep. Act.
planetlab2.urv.net planetlab4.upc.es 10 70 97
planetlab-5.princeton.edu planetlab02.utoronto.ca 73 206 214
planet1.scs.stanford.edu bonnie.ibds.uka.de 180 520 449
planetlab02.dis.unina.it planet1.manchester.ac.uk 45 244 192
planet1.cs.rochester.edu planetlab-2.it.uu.se 108 440 409

3.5.2.1 Deployment and Activation Experiments

The purpose of this experiment is to quantify the overhead imposed by the de-

ployment platform. Speci�cally, we study the distributed aspect deployment

and activation mechanisms. The values shown in Table 3.1 are the median of all

of the executed tests. Each test was done using 500 random deployments and

activations of random distributed aspects. Basically, the deployment mecha-

nism follows a two-phase protocol (insertion request and acknowledgment). On

the other hand, the activation mechanism is performed by sending a request

message, which instantiates the container on the destination host. To simplify

the test, the aspect class is locally retrieved, since the aspect is activated in

the same host where it is deployed. If the aspect class was remotely retrieved,

the activation time would be increased by the remote retrieval delay.

Data extrapolated from the table indicates that the normalized incurred

deployment overhead is 1.78, and the one imposed by activation is 3.27. See-

ing these results, we consider that our scalable deployment platform does not

impose an excessive overhead.

3.5.2.2 Remote Connections Experiments

In this test scenario we have mainly measured our system reaction to remote

connections (remote pointcuts). Each test triggered 500 random remote point-

cuts from source host to destination host. Values shown in Table 3.2 are the

median of all of the executed tests.
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Table 3.2: Overhead observed of remote tests in milliseconds
Source Host Destination Host Lat. Rem. Pointcut
(0) planetlab5.upc.es (1) planetlab1.diku.dk 113,88 173,22
(1) planetlab1.diku.dk (2) planet1.berkeley.net 178,46 298,33
(1) planetlab1.diku.dk (3) pl2.6test.edu.cn 393,67 546,03

As we can observe, results show that our platform does not impose an

excessive overhead in this kind of operations, since the normalized incurred

remote connection overhead is 1.53.

3.5.2.3 Meta-Level Experimentation Results

In this experiment we measure the distributed meta-aspect interception perfor-

mance and overhead. We reuse the previous experiment approach to construct

a similar scenario as the one shown in Figure 3.7. Thus, the three actors in-

volved in this scenario are the Sensor, the Actuator, and the Controller. The

Sensor is a distributed aspect activated on host 0 (planetlab5.upc.es), and the

Actuator is another distributed aspect which resides on host 2 (planet1.berkeley.net).

The Sensor triggers remote pointcuts using the any abstraction, with the basic

condition of �nding an Actuator. In addition, these remote pointcuts travel

through host 1 (planetlab1.diku.dk).

Our �rst experiment in this scenario consists of measuring the overhead

imposed by the distributed meta-aspect connectors. We aim to measure how

scalable is the distributed aspect composition, especially if the introduction of

remote meta-pointcut interception can degrade the base performance of the

application. Speci�cally, we measure the around case, to demonstrate that

whenever there are several interceptors along several hops, they do not reduce

the throughput.

The conditions for our �rst test include the activation of a set of distributed

meta-aspect Controller instances on host 1. These Controllers only perform

basic tasks like logging, with a minimal (unitary) computation cost. We start

the experiment with a constant rate of 100 requests per second. Again, each

test was done using 500 random remote pointcuts. We repeat the experiment

with variations in the number of activated Controllers. The column values
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Figure 3.13: Empirical Results obtained in Meta-Level Tests.

shown in Figure 3.13a are the median of all of the tests. The overall overhead

average incurred with respect to latency introduced by the Controllers when

n=0 is 1,48, for n=10 is 1,50, for n=50 is 1,51, and for n=100 is 1,56. Note

that n is the number of activated Controllers on host 1.

The second test follows the same structure, but in this scenario we change

the use of Controllers on host 1 by ad-hoc aspects with explicit pointcuts to the

message service. As we have explained in Section 3.2.3, other AOP middleware

solutions are able to implement inner interception mechanisms in an ad-hoc

way. Thereby, we simulate the behaviour of other approaches with this test

scenario. The column values shown in Figure 3.13b are the median of all of

the tests run in these experiments. The improvement average incurred for

Damon with respect to other solutions when n=10 is 1,03, for n=50 is 1,47,

and for n=100 is 2,26. As a conclusion, our solution that provides an inner

interception functionality, is able to achieve these lower computational costs.

3.5.2.4 Recon�guration Experiment

Finally, in our last experiment, we introduce a new Actuator distributed aspect

on host 3 (pl2.6test.edu.cn). This time we modify the runtime behaviour of

the system by using runtime recon�guration. While at runtime, a Controller

distributed meta-aspect is activated. Nevertheless, this time the Controller

performs redirection tasks, where approximately 50% of the remote pointcuts

are redirected to host 3. At the beginning of the experiment, the route : (0)
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- (1) - (2) is followed, but just after second 13, the Controller is activated.

Since it starts working immediately, the second Actuator (on host 3) begins

processing approximately half of the requests. In second 32 the Controller

is passivated, returning the system to the initial behaviour. The Figure 3.14

shows the scenario and the described results.

Based on our measurements on the PlanetLab testbed, we have veri�ed that

Damon does not impose excessive overhead on distributed aspect deployment,

activation; remote connections elegantly �t with the messaging service, and the

any abstraction have obtained good results because of the inherent network

locality. Finally, we claim that the meta-level overhead of Damon is acceptable

for distributed applications, with an elevated number of distributed aspects

and meta-aspects running, and performing recon�guration of the system.

3.6 Summary

In this chapter we have presented our whole distributed AOP middleware

proposal. The main contributions of this work include distributed aspect com-

position, which abstract the developer from the underlying infrastructure, but

o�ering new abstractions for remote interactions, and powerful runtime recon-

�guring mechanisms.

The main block of our entire proposal is a distributed composition model,

which allows composition at design, load-time and runtime phases. In addi-
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tion, the event-based connection model enables decoupled interaction between

remote pointcuts and advices. As consequence, runtime recon�guration of the

connection model is enabled and e�cient.

Furthermore, our composition model builds on top of the deployment plat-

form layer, and it provides a higher level of abstraction to application develop-

ers by permitting the reusability of distributed aspects through applications.

Our model also allows runtime composition thanks to the use of a dis-

tributed meta-aspect solution. The remote meta-pointcut mechanism provides

a new way to perform distributed aspect composition at runtime, to achieve

new goals that were unexpected during the design or load-time phases.

Other distributed AOP approaches lack some or many of these require-

ments, making them di�cult to apply, since many services are not implicitly

provided or are even non-existent. Our proposal is, to the best of our knowl-

edge, the pioneer in envisioning a distributed AOP middleware for large-scale

scenarios based on structured P2P and dynamic AOP substrates, which pro-

vides scalable deployment and distributed composition facilities.

Our middleware implementation, Damon, is a research prototype that can

be downloaded from http://damon.sf.net, under a LGPL license. This im-

plementation includes clarifying code examples and tutorials. Experimenta-

tion of Damon has been conducted on the PlanetLab testbed. We have proven

that our middleware is feasible in large-scale scenarios, and that the system

has acceptable performance.

In the next chapters we present two proof-of-concept implementations of

a large-scale application that use our distributed AOP middleware. These

use case scenarios allow us to stress the bene�ts of our middleware platform,

specially providing new features like scalability, availability, and transparency.

UNIVERSITAT ROVIRA I VIRGILI 
DISTRIBUTED AOP MIDDLEWARE FOR LARGE-SCALE SCENARIOS 
Ruben Mondejar Andreu 
ISBN:978-84-693-5426-1/DL:T-1417-2010 



UNIVERSITAT ROVIRA I VIRGILI 
DISTRIBUTED AOP MIDDLEWARE FOR LARGE-SCALE SCENARIOS 
Ruben Mondejar Andreu 
ISBN:978-84-693-5426-1/DL:T-1417-2010 



Chapter 4
Building a Scalable Collaborative Wiki

Application

In this chapter we present UniWiki, a novel large-scale collaborative applica-

tion. The main motivation of this work is the use of our middleware proposal

to apply scalability transparently to non-scalable applications. In addition,

we reduce the e�ort needed for the implementation, and we make our work

available to other existing wiki applications.

We have designed UniWiki as an e�cient P2P system for transparently

distributing the storage of wiki applications, which allows their extension to

large-scale scenarios. In the following sections we motivate this application,

and we explain the background of this work. Subsequently, we will present our

approach, the prototype implementation, and the experimentation. Finally,

we will draw some conclusions.

4.1 Motivation

With the current increase of popularity of applications like Wikipedia, Google

Docs, Facebook, or Twitter, collaboration has become part of our daily life.

These applications have shown how powerful collaboration can be, leading to

a new interconnected and collaborative world.

In general, distributed collaboration is essential for any application de-
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74 Building a Scalable Collaborative Wiki Application

signed to help people around the globe to work on a common task. An il-

lustrative example is Wikipedia [98], the collaborative encyclopedia that has

collected, until now, over 13,200,000 articles in more than 260 languages. It

currently registers at least 350 million page requests per day, and over 300,000

changes are made daily [99].

Currently, collaborative applications commonly use centralized architec-

tures that, in practice, do not necessarily scale. To handle this problem,

Wikipedia needs a costly infrastructure [11], for which hundreds of thousands

of dollars are spent every year [28].

Another example is Facebook, which appears to be spending on these

types of machines and systems (i.e., data centers) amounts to $ 20 million

in 2009 [27]. In fact, costs will go further, as they are preparing to start an-

other data center in Virginia that is designed precisely to cover the huge energy

demands imposed by the service of millions of users of social networking.

It is clearly a scenario where existing applications need scalability. How-

ever, achieving the same functionality of centralized architectures on a large-

scale system poses numerous challenges. One important problem is related

to the form of access to collaborative processes. Hosts can fail or concurrent

edition of the same resource, and therefore, a collaborative system should be

robust against failures and inconsistent states.

Moreover, because very popular and standardized clients (commonly via

web browser or standard application) are continuously evolving, we need to

introduce these changes transparently.

4.2 Background

Wikis are currently a popular concept, and many mature, fully featured wiki

engines are publicly available. Existing approaches to deploy a collaborative

system on a distributed network include Wooki [97], DistriWiki [56], Repli-

Wiki [76], Distributed Version Control systems [6, 32, 103], DTWiki [23] and

Piki [57].

Several drawback prevent these systems from being used in our target sce-

nario:
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• they may need total replication of content, requiring copies of all wiki

pages at all hosts,

• they do not provide support for all the features of a wiki system such as

page revision,

• they provide only a basic con�ict resolution mechanism that is not suit-

able for collaborative authoring.

As a result of a collaboration stage of four months with the Score Team

(a�liated to Nancy-INRIA), we created the UniWiki project. The main goal

was to integrate the WOOT, (WithOut Operational Transformation) [64] con-

sistency maintenance algorithm into a structured P2P infrastructure.

The WOOT algorithm ensures convergence of content and intention preser-

vation [91], no user updates are lost in case of merging. WOOT is based on

the same principles as operational transformation, but sacri�cing the breadth

of the supported content types to gain simplicity. The WOOT algorithm does

not require central servers nor vector clocks, and uses a simple algorithm for

merging operations locally. Then, every user action is transformed into a series

of WOOT operations, which include references to the a�ected context. Finally,

these operations can be exchanged later in order to distribute its behaviour.

Summarizing, the WOOT local behaviour, the common client-server im-

plementation for wiki applications, and the need of structured P2P substrate,

suggest an ideal scenario to apply our distributed AOP middleware. The result

of this proposal is presented in the next sections, in the form of UniWiki.

4.3 Approach

Over the last few years, many P2P infrastructures (e.g., [80] or [89]) have

been released. These systems take advantage of the computing at the edge

paradigm, where resources available from any computer in the network can

be used and are normally made available. While in the client-server model,

only an expensive number of powerful servers provide all the computing and

storage power to a much larger network of clients.
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Nevertheless, decentralized architectures introduce new issues which have

to be taken care of, including how to deal with constant node joins and leaves,

network heterogeneity, and, most importantly, the development complexity of

new applications on top of this kind of networks. For these reasons, we need a

middleware platform that provides the necessary abstractions and mechanisms

to construct distributed applications.

In this work, we create a system that can be integrated transparently in

existing wiki engines. Our implementation is driven by this transparency goal,

and for achieving it, we rely on powerful distributed interception techniques

(i.e., distributed AOP). The bene�ts of this approach will be:

• Full control of the DHT mechanisms, including runtime adaptations.

• Decoupled architecture between wiki front-end and DHT sides.

• Transparency for legacy wiki front-end applications.

For satisfying the transparency and distributed interception requirements,

we chose as the basis of our implementation the distributed AOP middleware

Damon (Section 3.5). Using this middleware, developers can implement and

compose distributed aspects in large-scale environments. Such distributed as-

pects, activated by local pointcuts (source hooks), trigger remote calls via P2P

routing abstractions.

4.4 Implementation

Traditional wiki applications are executed locally on the wiki front-end. This

scenario is ideal for applying distributed AOP, because we can intercept the

local behaviour to inject our algorithms. Thereby, using Damon, we can model

transparently the necessary concerns:

• Distribution: refers to dissemination and storage of wiki pages into the

system. This dissemination allows a load-balanced distribution, where

each node contains a similar number of stored wiki pages. In addition,

this concern also guarantees that clients can access always to data in a

single and uniform way.
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• Replication: data is not only stored on the responsible node, since it

would become unavailable if this node fails, or leaves the network. Thus,

this concern allows to these nodes to copy their wiki pages in other nodes.

Moreover, they have to maintain these copies, in order to guarantee a

speci�c number of alive replicas at any moment.

• Consistency : when multiple clients are saving and reading concurrently

the same wiki pages, data can become inconsistent. This approach pro-

poses to generate operation logs (i.e., patches) of the wiki pages and

distribute them. Finally, the �nal wiki page is regenerated from stored

patches.

Locator

Distributed Aspect MiddlewareAOP Interceptor

Pointcut Interface
<<Source Hook>>

Wiki Interface

<<Source Hook>>

Wiki Interface

+save (url, page)

+

+save (url, page)

+load (url) : page

wikiapp.Operations

store (id, page)+store (id, page)

+retrieve (id) : page

+around : store (joinpoint, id, page)

+

+around : store (joinpoint, id, page)

+around : retrieve (joinpoint, id)

Wiki Application

Figure 4.1: Wiki Source Hook Example.

Figure 4.1 presents the UniWiki source hook, where we aim to intercept

locally the typical wiki methods of store and retrieve (in this case we use a

generic example), in order to distribute them remotely. In addition, the source

hook solution helps to separate local interception, aspect code, and the wiki

interface. On the other hand, source hooks have other bene�ts, such as a major

level of abstraction, or degree of accessibility for distributed aspects.

In this approach, integration with other wiki applications is quite simple

and can be easily and transparently used for third party wiki applications.

We now describe the UniWiki execution step by step as shown in Figure

4.2, focusing on the integration of the algorithms and the interaction of the

di�erent concerns. In this line, we analyze the context, and extract three main

concerns that we need to implement: distribution, replication and consistency.

In this scenario, the distribution is the basic behaviour of our system, and

thus the most important concern. Moreover, this concern is based on key-

based routing techniques. Two distributed aspects are used to implement this

concern: the Locator (front-end) and the Storage (back-end).
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Later, the replication concern is also based on P2P mechanisms, following

a neighbour replication strategy [49]. Two distributed meta-aspects are used

to implement this concern in the back-end: the Replicator (intercepting the

Storage) and the ReplicaStore instances (many per Replicator).

Finally, as explained in the previous section, the consistency concern is

centered on the deployed consistency algorithm (i.e., WOOT). In this im-

plementation, it allows edition, patching, and merging of wiki pages, and it

performs these operations via distribution concern calls interception. Again,

two distributed meta-aspects are used to implement this concern: the Editor

(front-end) intercepting the Locator, and the Integrator (back-end), inter-

cepting the Storage, and interacting with the ReplicaStore.

Distribution:

1. The starting point of this application is the wiki interface used by the

existing wiki application. We therefore introduce the Wiki Interface

source hook that intercepts the save, and load methods. Afterwards, the

Locator distributed aspect is deployed and activated on all nodes of the

UniWiki network. Its main objective is to locate the responsible node of

the local insertions and requests.

UNIVERSITAT ROVIRA I VIRGILI 
DISTRIBUTED AOP MIDDLEWARE FOR LARGE-SCALE SCENARIOS 
Ruben Mondejar Andreu 
ISBN:978-84-693-5426-1/DL:T-1417-2010 



4.4 Implementation 79

2. These save method executions are propagated using the put remote

pointcut. Consequently, the remote pointcuts are routed to the key owner

node, by using their URL to generate the necessary key.

3. Once the key has reached its destination, the registered connectors are

triggered on the Storage instance running on the owner host. This dis-

tributed interceptor has already been activated on start-up on all nodes.

For request case (get), the idea is basically the same, with the Storage

receiving the remote calls.

4. Finally, it propagates an asynchronous response using the return call

via direct node routing. The get values are returned to the Locator

originator instance, using their own connector.

Once we have the wiki page distribution running, we may add new func-

tionalities as well. In this sense, we introduce new distributed meta-aspects

in order to extend or modify the current application behaviour in runtime.

Thereby, thanks to the meta-level approach, we are able to change active con-

cerns (e.g., new policies), or recon�guring the system in order to adapt it.

Replication:

1. When dealing with the save method case, we need to avoid any data

storage problems which may be present in such dynamic environments

as large-scale networks. Thus, data is not only to be stored on the owner

node, since it would surely become unavailable if this host leaves the

network for any reason. In order to address this problem, we activate the

Replicator distributed meta-aspect in runtime, which follows a speci�c

policy (e.g., neighbour selection strategy [48]). The Replicator has a

remote meta-pointcut called onPut, which intercepts the Storage put

requests from the Locator service in a transparent way.

2. Thus, when a wiki page insertion arrives to the Storage instance, this

information is re-sent (replicate) to the ReplicaStore instances activated

in the closest neighbours.
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3. Finally, ReplicaStore distributed meta-aspects are continuously observ-

ing the state of the copies that they are keeping. If one of them detects

that the original copy is not reachable, it re-inserts the wiki page, us-

ing a remote meta-advice put, in order to replace the Locator remote

pointcut.

Consistency:

Based on the WOOT framework, we create the Editor (situated on the

front-end side) and the Integrator (situated on the back-end side) distributed

meta-aspects, which intercept the DHT-based calls to perform the consistency

behaviour. Their task is the modi�cation of the distribution behaviour, by

adding the patch transformation in the edition phase, and the patch merging

in the storage phase.

1. The Editor distributed meta-aspect owns a remote meta-pointcut (edit)

that intercepts the return remote invocations from Storage to Locator

instances. This mechanism stores the original value in its own session

data. Obviously, in a similar way, the Integrator prepares the received

information to be rendered as a wiki page.

2. Later, if the page is modi�ed, a save method triggers the put mechanism,

where another remote pointcut (patch) transforms the wiki page into the

patch information, by using the saved session value.

3. In the back-side, the Integrator instance intercepts the put request, and

merges the new patch information with the back-end contained infor-

mation. The process is similar to the original behaviour, but replacing

the wiki page with consistent patch information.

4. In this setting, having multiple replicated copies leads to inconsistencies.

We use the antiEntropy technique [21], in order to recover a log of dif-

ferences among each page and its respective replicas. Using the recover

remote invocation, the Integrator sends the necessary patches to be sure

that all copies are consistent.

Finally, we summarize the UniWiki connections (network scheme in Fig-

ure 4.2) among the distributed aspects and meta-aspects:
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• Distribution:

� The put and get pointcuts are forwarded to the host responsible

for the value associated with the current key, using the hopped ab-

straction.

� The return of the requested value from the key owner to the fron-

tend is done as a direct abstraction.

• Consistency:

� The patch and edit meta-pointcuts of the Editor aspect are exe-

cuted locally, on the frontend serving a wiki request.

� Upon receiving a patch, themerge meta-pointcut of the Integrator

aspect is executed locally on the node responsible for the key.

• Replication:

� At the same moment, the onPut meta-pointcut of the Replicator

aspect is executed locally on the node responsible for the key, and:

� Forwards the new content using the replicate remote invocation as

a direct call to all the neighbours responsible for the same key.

� When a new host joins the network, or recovers from a problem, the

Integrator aspect running on it will re-synchronize with a randomly

selected replica, using the recover remote invocation as a direct

call.

4.5 Validation

We have conducted several experiments to measure the viability of our Uni-

Wiki system. We have used Grid'5000. The Grid'5000 platform is a large-scale

distributed environment that can be easily controlled, recon�gured and moni-

tored. The platform is built with 5000 CPUs distributed over 9 sites in France.

Every site hosts a cluster and all sites are connected by a high speed network.
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In this sense, we conducted the experiments using 120 real nodes from

the Grid'5000 network, located in di�erent geographical locations, including

Nancy, Rennes, Orsay, Toulouse, and Lille.

When analyzing our large-scale system we have three main concerns: load-

balancing in data dispersion among all nodes (distribution), failed hosts that

do not a�ect system behaviour (replication), and the operation performance

(consistency).
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Figure 4.3: Empirical results - Distribution.

For distribution, we study the data dispersion in the network.

• Objective: demonstrate that when our system works with a high number

of hosts, is able to store a real large data set of wiki pages, and that all

the information is uniformly distributed among them.

• Description: create a network of 120 hosts, and using a recent Wikipedia

snapshot, we introduce their 5,688,666 entries. The idea is that data

distribution is uniform, and each host has a similar quantity of values

(wiki pages).

• Results : we can see in Figures 4.3 that we have a system working and

the results are as expected. Thereby, the distribution of data trends to

be uniform. Results indicate that each host has an average of 47,406

stored wiki pages, and using an approximate average of space (4.24 KB)

per wiki pages we have 196 MB, with a maximum of 570.5 MB (137,776

values) in one node.
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• Why : Uniform distribution of data is guaranteed by the key-based rout-

ing substrate, and by the hash function (SHA-1) employed to generate

the keys. However, with this number of hosts (120) the distribution val-

ues show that a 54.17% are near the average, and a 37.5% are over the

double of the average. Furthermore, we can see similar results in simu-

lations, with a random distribution of 120 nodes. For these simulations

we have used PlanetSim [73]. PlanetSim is an object oriented simula-

tion framework for overlay networks that also follows the Common API

(Section 2.1.1.4).
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Figure 4.4: Wikipedia data distribution.

We make another simulation with 1000 nodes using the same DHT sim-

ulator. The results of this last simulation (Figure 4.4) shows that the

values are: 63.7% over the average and 20.6% over double of the average,

because with a high number of nodes the uniformity is improved.

Secondly, we study the fault-tolerance of our system platform.

• Objective: demonstrate that in a real network with failures, our system

continues working as expected.

• Description: In this experiment we introduce problems on a speci�c frac-

tion of the network. In this case, each host inserts 1000 wiki pages, and

retrieves 1000 randomly. The objective of this test is to check persistence

and reliable properties of our system. After the insertions, a fraction of
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Figure 4.5: Empirical results - Replication.

the hosts fail without warning, and we try to restore these wiki pages

from a random existing host.

• Results : We can see the obtained results in Figure 4.5. Even in the worst

case (50% of network fails at the same time), we have a high probability

(average of 99%) to activate the previously inserted wiki pages.

• Why : The theoretical probability that all the replicas for a given docu-

ment fail is
∏n

i=1 ri = r1 ∗ r2 ∗ ... ∗ rn = (r)n where n is the replication

factor and r the probability that a replica fails. For instance, when r =

0.5, and n = 6, the result is (0.5)6 ≈ 0.015 ≈ 1.5%.

Finally, for the consistency concern we study the performance of our oper-

ations.

• Objective: demonstrate that our routing abstraction is e�cient in terms

of time and network hops.

• Description: similar to the previous experiment, we create a 120 hosts

network, and each host inserts and retrieves 1000 times the same wiki

page. The idea is that the initial value is modi�ed, and retrieved concur-

rently. In this point, we make this experiment twice. The �rst time with

consistency mechanisms disabled (only the put call), and the second time

with these mechanisms enabled (patch and merge). In the last step, the

consistency of the wiki page is evaluated for each host.
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Figure 4.6: Empirical results - Consistency.

• Results : for this experiment, we found that the consistency is guaranteed

by our system. We can see the operation times in Figure 4.6, and for each

operation the number of hops has an average of 2. Therefore, the wiki

page put operation has an average time of 145 ms, and an overall over-

head of: 3.45. For update operations the value is logically higher: 164

ms. with an overhead of 3.90. Finally, the update operation overhead

respects put operation, when the consistency operation is performed, is

1.13.

• Why : Due to the nature of the Grid experimentation platform, latencies

are low. Moreover, we consider that the operation overhead is also low.

Finally, theoretical number of hops is logarithmic respect the size of the

network. In this case, log (120 hosts) = 2 hops.

4.6 Summary

In this chapter we have presented the prototype of an e�cient P2P system for

transparently distributing the storage of wiki applications, which allows their

extension to large-scale scenarios, called UniWiki.

In this setting, some decentralized wiki engines have been proposed such as

DistriWiki [56], Wooki [97], DTWiki [23], Piki [57], or RepliWiki [76]. However,

these approaches have one or more of the following drawbacks or requirement.
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Table 4.1: Summary of drawbacks in P2P Wikis
Approaches Drawbacks

total replication ad-hoc client consistency
DistriWiki ν ν ν
Wooki ν φ φ
DTWiki φ ν ν
Piki φ φ ν

RepliWiki ν φ φ

• total replication: means that all hosts will contain an exact copy of all

the contents of the network. Total replication is simple to implement,

but is not scalable [85]. Therefore, wiki content is fully replicated on

every host, which is not acceptable in the context of a huge wiki.

• consistency : some of them propose an unsatisfactory solution to concur-

rent modi�cations problems by either creating two distinct versions of

the wiki page and delegating the merging task to users, or, by choosing

a transactional approach, and rejecting unelected concurrent contribu-

tions.

• ad-hoc client : contributors install a speci�c rich client application in

order to physically join and participate in the P2P network, and those

clients have to use this application instead of a standard web browser to

contribute or consult any wiki content.

The total replication and consistency drawbacks a�ect to scalability of the

wiki application, and the ad-hoc client drawback to the transparency (access)

of the system. Table 4.1 summarizes these drawbacks (legend is as follows: φ

: not a�ected; ν : a�ected in some way).

In our solution, the scalability and transparency is ensured by a completely

distributed and decoupled architecture, where each component is totally ab-

stracted from the real wiki application and the client (i.e., web browser). Then,

the distributed AOP middleware over P2P networks ensures the communica-

tion with the wiki application, which provides the presentation and business

logic.
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At the storage level, we combine two intensively studied technologies, each

one addressing a speci�c part: DHTs distribution and replication mechanisms,

and the consistency algorithm (e.g., WOOT) ensures that concurrent changes

are correctly propagated and merged for every replica.

Indeed, this proof-of-concept use all the services and bene�ts of our dis-

tributed AOP middleware, like source hooks to intercept wiki applications

transparently, the meta-level approach for dynamic recon�guration, or dy-

namic composition for encapsulate problems in three fully decoupled distributed

concerns: distribution, replication, and consistency.

Validation of UniWiki has been conducted on the Grid'5000 testbed. We

have proved that our solution is viable in large-scale scenarios, and that the

system has acceptable performance. Our experiments were conducted with

real data [100] from Wikipedia which include almost 6 million entries.

The initial prototype, freely available at http://uniwiki.sf.net/, was

developed as a proof-of-concept project, using a simple wiki engine. We are

currently working on re�ning the implementation, so that it can be fully ap-

plied on wikis with more complex storage requirements, such as XWiki [101]

or JSPWiki [41].
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Chapter 5
Enabling Web Applications over

Wide-Area Networks

In this chapter we introduce our second use case for the proposed distributed

AOP middleware architecture. Particularly, this work introduce a solution for

the challenge of availability provision in decentralized scenarios.

In order to address this problem, we present SNAP, which aims to be a

large-scale web application deployment framework, for easy transitioning from

client-server model to large-scale environments.

Our approach, instead of being a traditional cluster with replicated servers;

it is an e�ectively large-scale platform where each server holds di�erent appli-

cations running on top of it. As a consequence, our solution aims to be as

generic as possible, thus supporting more dynamic environments.

Moreover, we have designed our architecture using distributed AOP, which

transparently intercepts the most signi�cant server methods. By using such

a solution we achieve more elegant, modular, and suitable mechanisms than

traditional alternatives.

5.1 Motivation

Web applications are currently associated by the general public to those ap-

plications which are accessible throughout the Internet. Most people may

89
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consider that any web page is a large-scale application. However, this is not

totally true. Even though the World Wide Web (WWW) itself is an appli-

cation whose success transcends to the whole globe, but it mainly follows the

centralized client-server model. This means that in most cases, only one server

is backing up the whole web page or application, meaning that whenever the

server comes down, access to the web page or application is impossible.

In this domain, we may su�er unpredictable situations like workload varia-

tions, server failures, and resource unavailability, among others. For example,

when we are navigating the web, we may �nd the Server is not responding

error message. We often retry again in a few minutes, and if we are lucky, we

will be able to continue navigating. However, if we were in the middle of a

transaction (e.g., �lling a form), or later using an active session, we unfortu-

nately would observe that our data is vanished. In this case, we can observe

that one of the most used applications of the Internet is not fault tolerant.

Hence, it is true that the WWW is accessible to the whole world, but in a

sense, if the whole world tries to use it at the same time, it is not accessible

anymore. In this scenario, servers may stop serving requests if their network

bandwidth is exhausted or their computing capacity is overwhelmed. Large-

scale applications should be accessible e�ciently at any time, and anywhere,

by a massive number of concurrent users. As a consequence, scalability and

availability (Section 1.1) are also two main challenges of web systems.

One way to deal with these challenges is to have several identical servers

and give the user the option to select among them. This approach is sim-

ple, but it is not transparent to the client. An alternative is to rely on an

architecture that distributes the incoming requests among these servers in an

unobtrusive way. A usual solution to this problem comes in the form of clus-

tering or federation of servers. Following a distributed pattern, servers are

made redundant so as when one becomes unavailable, another one can take

its place. Nowadays, many important websites operate in this way, but these

replicated server alternatives are normally expensive to achieve and maintain.

As a matter of fact, the actual trend is to head toward decentralization like

P2P or cloud computing [37] solutions. These models take advantage of the

computing at the edge paradigm, where resources available from any computer
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in the network can be used and are normally made available to their members.

5.2 Background

There exist many di�erent non-AOP solutions to introduce availability in web

environments. Some examples in this area include server mods or plugins,

servlet �lters, or ad-hoc frameworks.

• In this setting, there are a variety of server mods (e.g., load-balancers)

that directly depend on the server implementation. Usually, these mods

are di�cult to bind to a speci�c server.

• Regarding servlet �lters and server mods, the Java Servlet (speci�cation

version 2.3 [83]) introduces a new component type, called �lter. A �lter

dynamically intercepts requests, before a servlet is reached. Responses

are additionally captured after the servlet is left. This interception mech-

anism may transform either a request or a response content.

• Finally, one clear example of ad-hoc framework is WADI Application Dis-

tribution Infrastructure (WADI [96]). This approach aims to solve prob-

lems regarding the state propagation in clustered web servers. Thus,

WADI provides several services useful for clustering on Java EE plat-

forms. Nevertheless, its main drawback is that it needs wrapping exten-

sions for each di�erent server implementation and forth-coming versions.

Nevertheless, none of these proposals are suitable for a large-scale scenario.

In addition, our proposal manages dynamic content and goes further than

other approaches for P2P web hosting (e.g., YouServ [9]) or structured P2P

content distribution networks (e.g., Coral [29]) that handle static content.

Other related projects, like YouServ, o�er web hosting and content sharing

over a P2P network of personal web servers. Although they focus on static

content publishing, they also provide a lightweight plugin architecture for con-

structing small applications. However, YouServ provides a limited proprietary

model for dynamic web applications since they are focused on static content

distribution.
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On the other hand, Coral is a structured P2P content distribution network,

which allows a user to run a web site that o�ers high performance and meets

huge demand. It uses a P2P DNS layer that transparently redirects browsers

to participating caching proxies, which in turn cooperate to minimize load on

the source web server.

5.3 Approach

We foresee promising cross-fertilizations of distributed interception and web

models in the next years. Although both models are already in�uencing each

other, there is still a lack of seamless integration between them in order to

achieve constructive synergies. Our approach aims to bring all the bene�ts of

the distributed AOP to the mature and standardized world of web applications

and services.

In this line, our infrastructure envisages a decentralized structured P2P

network in which every peer hosts a lightweight web server. Using standard

web application models (e.g., Java EE [87]), we permit distributed deployment

of web applications and services in the network of peers.

5.3.1 SNAP 1.0

Application development over a P2P system is a complex challenge. The �rst

approach [65] of the SNAP Project [http://snap.objectweb.org/] was born

to achieve the convergence between P2P and WWW models. This previous

SNAP version is a decentralized platform designed to provide Java EE ap-

plications in wide-area scenarios. Thus, it presents a novel proposal over a

structured P2P network where all nodes are heterogeneous and they also dy-

namically join and leave the system. Thanks to this model we are able to easily

transform a traditional client-server web application into a SNAP application

with minimal changes providing worldwide scalability.

Following such lightweight scheme, all nodes host a modi�ed copy of a

lightweight server, which acts both as a P2P network client and server simul-

taneously. Therefore, clients can connect through their favourite web browser
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to any node of the SNAP infrastructure for accessing any deployed web ap-

plications. In SNAP, every time an application is requested by any client, it

is automatically downloaded from the P2P network, deployed and instanti-

ated on the local web server. All accesses are local to that lightweight server.

However, this only happens whenever no available instances of that web ap-

plication are found already running on the network. In such case, the client is

automatically redirected to the closest web server which hosts that application.

5.3.2 SNAP 2.0

Obviously, the previous project was a novel promising solution, but it has some

limitations, that already exist in Java EE clusters (Section 5.2) like intrusivity

(i.e. modi�cation of web server implementation), stateless solution (i.e., no

session tracking implemented), or static mechanisms (i.e., clustering based on

a �x number of members).

For this reason, we have redesigned the project applying our distributed

AOP middleware proposal in order to provide the necessary distributed aspects

into the web model, which for itself is not suitable for large-scale scenarios.

This approach provides a sample use case for our distributed AOP proposal.

We emphasize how the services provided by our model are used to create this

new distributed aspect application. In summary, this proposal consists of a

web system which is to be transformed into a large-scale distributed system.

Host      

Network
Host

Web Server

Front-EndClients

Damon
Web

Server

Figure 5.1: Adaptive Web System Infrastructure Overview.

As we can see in Figure 5.1, our idea is to have a large-scale network of web

servers that are transparently interconnected via our middleware. In this sce-
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nario, clients are able to access any of the web servers, and use any desired web

application. Our main aim is to avoid having identical server instances with a

total replication of content (applications, user data, etc.). As a consequence,

our objective is to apply more adaptive and dynamic techniques, more similar

to the emergent cloud computing paradigm [37]. In this setting, web servers

that belong to our infrastructure, initially do not have any prede�ned set of

already deployed applications running on them. Instead, these applications

are activated dynamically on demand [85].

5.3.3 Application Life-Cycle

Typically, the web server container is the responsible of web application life-

cycle. In our approach, each host contains a web server and its corresponding

container, but all of them work following a decentralized logic. In this section,

we explain the life-cycle of a web application in the SNAP platform, phase by

phase.

We will illustrate this section with a simple example of a dynamic web

application. This sample is a bid application called eshop where sellers can

publish their ads, and buyers can bid/buy the products.

5.3.3.1 Deployment

The deployment phase starts when uploading the web application into SNAP.

In this phase, all hosts join the system main group (i.e., p2p://snap.objectweb.

org) in order to keep connected. The process where web applications are in-

serted into the network occurs in a transparent way. This process intercepts

the local web upload deployment application running on each host. This way,

deployed web application data is not only stored on one unique host, but

on several of them, by using Damon underlying persistence/replication DHT-

based service. Therefore, applications are automatically replicated for fault

tolerance.
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5.3.3.2 Application Location

Once applications are deployed, any client, with a standard web browser, con-

nects to any of the web servers that are currently available. In addition, clients

access the desired web application, by using the corresponding SNAP appli-

cation locator (e.g., p2p://eshop.app.net)). In the uniform web application

location phase, SNAP internally redirects requests to its applications to the

real IP addresses (which can change over time if nodes fail, new ones join,

and so on). P2P locators make the address space uniform; they also make the

application access independent of its real location (i.e., IP address) and the

service provider. Once the deployed web application is located, the next step

is to activate it.

5.3.3.3 Activation on Demand

Every time a client requests a new application, SNAP automatically downloads

it from the network (i.e., Damon persistence service), deploys it, and instanti-

ates it on the originator web server locally. If the client requires other services,

they are also activated on demand. This activation means the deployment of

the web application in the web server, and the creation of a new P2P group

for this application.

Note that this only happens when SNAP is not able to �nd available,

active instances of the web application already running on the network. This

activation on-demand phase becomes more complex when the network already

has active web application instances. Moreover, each application forms its own

group of instances (e.g., p2p://eshop.app.net).

5.3.3.4 Application Execution

In this last phase, where the application is running, new concerns are involved.

We focus on three important concerns related to the availability property of

the system. Particularly, the main distributed concerns that we aim to solve

are: the workload distribution for service availability, and the session tracking

and the global context for data availability.

Taking the sample of eshop, the application is deployed and activated on
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the SNAP platform, but we need to guarantee its availability on the system.

If an instance has problems or is too popular, it can become overwhelmed.

Therefore, we need mechanisms to load balance the workload of its instances.

This decentralization a�ects the data of the clients and applications. First,

each client owns session with its validated pro�le and its shopping cart. If

they are redirected to other server, a mechanism to restore transparently the

corresponding session data is needed. Secondly, each application in SNAP has

its own context data, as for example, in eshop each ad has its own counter

that calculates all the views of this ad with a global value (the same for all the

distributed instances). Again, a decentralized concern related to availability

appears.

Finally, we have developed the solution for these concerns in the next sec-

tion.

5.4 Implementation

In order to comply with the explained requirements (i.e., availability provision),

we have designed an adaptive large-scale web system, which uses the services

provided by our distributed AOP middleware (Chapter 3).

As we can see in Figure 5.2 we separate the Host entity presented in Figure

5.1 in three tiers: server, distributed concern, and meta-level. This logical

layout allows only interconnection with the closest tier, where the server is

intercepted by distributed aspects, and distributed aspects are intercepted by

distributed meta-aspects.

We have mainly composed three distributed concerns:

• Workload Distribution: that means load-balancing for client requests,

dynamic activation of web applications, andmanagement of distributed

applications running on speci�c web servers.

• Session Tracking : which is performed via distribution and replication

of session attributes of each client-application domain.

• Global Context : it is the distribution, replication, and caching of the

application scope attributes of the global servlet context.
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Web ConcernsWeb Server Meta-Level

<<Source Hook>>

HttpServlet

service(request,response)+service(request,response)
Load Balancing

Global Context

Database Distribution

Activation

<<Source Hook>>

HttpSession

setAttribute(name, value)+setAttribute(name, value)

<<Source Hook>>

ServletContext

<<Source Hook>>

JDBC

update(sql)+update(sql)

+query(sql) : ResultSet

setAttribute(name, value)

+getAttribute(name) : Object

+setAttribute(name, value)

+getAttribute(name) : Object

Session Tracking

Caching

Management

Replication

Figure 5.2: SNAP Distributed Aspects Layout.

Note that our approach design covers the tier of the application servers that

includes the database tier. However, we do not provide an elaborated solution

to scale the database tier, which is another active and proli�c area of research

[46]. The previously presented example in chapter 3 of database distribution

SourceHook (Figure 3.3) and the descriptor of the Locator distributed aspect

(Figure 3.6) shown the way to apply new distributed concerns, leaving the

door open to possible future work in this area.

In conclusion, by implementing these distributed concerns modelled as dis-

tributed aspects, we are able to provide access to web applications in a large-

scale scenario. Moreover, we also obtain a solution with the transparency, de-

coupling, and recon�guration bene�ts. In the rest of this section we describe

in detail how this web system has been implemented, and how it bene�ts from

the services of our implicit middleware solution.

5.4.1 Workload Distribution

It is well known that a web server has limits to support client demands. Thus,

a web server has a well-de�ned workload threshold, because it may handle only
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a limited number of concurrent client connections per address. Additionally,

servers are able to provide a certain maximum number of requests per second

depending on, for example, its own settings, HTTP request type, static or

dynamic content, caching, or server system limits. Whenever a web server is

near to or over its limits, it becomes overloaded and thus unresponsive.

Examples of the symptoms of an overloaded web server are: requests ful-

�lled with long delays, HTTP speci�c errors returned to clients, or client con-

nections being refused or reset before any content is sent to them.

Load balancing is a technique to distribute process and communication

activity evenly across a computer network in order to improve the global per-

formance and no single device is overwhelmed. Such feature is especially im-

portant for distributed systems where it is apparently di�cult to predict the

number of requests that will be issued to any server. For instance, busy web

sites typically employ two or more web servers in a load balancing scheme.

If one server starts to get swamped, requests are forwarded to another server

with more capacity.

5.4.1.1 Solution Proposal

Figure 5.3 shows how the composition of our adaptive web system maps onto

the complex interactions on the network, and among the distributed aspects.

We can also observe how the Load-Balancing entity is a composite distributed

aspect that consists of two primitive distributed aspects. The �rst entity (Redi-

rector) is responsible for capturing and redirecting client requests, and the sec-

ond one (Monitor) performs host state and application instance monitoring.

This is our web system main building block as a distributed concern.

Nevertheless, our system would not be as adaptive as desired if it were not

for the other distributed concerns working together, namely Activation and

Management. Without such concerns, our load balancing system would not

be able to decide whether and how to redirect client requests to other hosts.

However, such decisions would be rather limited because of the inherent lack

of knowledge about the already running instances, and their current state. As a

consequence, we add these complementary distributed concerns, as distributed

meta-aspects.
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Figure 5.3: Workload Distribution Diagram.

We use the meta-level approach in this scenario, because these distributed

concerns (Activation and Management) are linked to the distribution concern

(Load-Balancing). In addition, this approach allows a completely decoupled

integration between previous and new concerns, among other bene�ts (see

Section 3.2.3).

Therefore, the �rst of these meta-level entities is the Activator, responsible

for maintaining the adequate number of running web application instances

in order to satisfy their current demand. The second entity is the Manager,

which helps selecting the best candidate (host) among the activated instances

depending on some policy.

We now proceed to describe system execution step by step, focusing on the

services provided by our distributed AOP middleware.

The �rst actor involved is the Redirector distributed aspect, which is re-

sponsible for listening to and redirecting client requests. Redirector instances

intercept client requests through the (1) HttpServlet SourceHook. Note that

such interception is declared as a Static Source Hook since its mission is to

intercept all servlet requests, and such task could su�er high demand peaks.

If we did not �lter these requests, each of them would trigger a remote point-
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cut. By using this approach, we avoid unnecessary over�ow problems in the

middleware services.

After this phase, the request is propagated through the (2) �nd remote

pointcut. Since all instances of a speci�c web application form a group, we

use the any abstraction to propagate the call to the closest group member. Its

task is to resolve if another host can satisfy the client's demand. This request

is completed when any host of the group satis�es such condition. Afterward,

this host noti�es the source host through the (3) found remote invocation.

Obviously, in the initial case where no instances of the application are

active, this request fails. The Redirector forces a local application activation,

just to satisfy the current client's demand. Therefore, subsequent requests for

such application will be able to �nd at least, this already running instance.

Additionally, there is a Monitor distributed aspect running on each host.

Its main task is to observe and evaluate the state of the host, thus obtaining

resource information (CPU, memory, number of threads, etc.) through re�ec-

tion capabilities, and to analyze request demand using the (4) HttpServlet

Source Hook on servlet requests. The Monitor continuously calculates a nu-

merical estimation. If this estimation surpasses an established threshold, it

then throws an (5) alarm remote pointcut. This alarm noti�es all web appli-

cation groups the host is member of in order to avoid any further redirections.

Additionally, once this invocation occurs on the same host, the local Redirector

starts migrating client requests (the whether condition) to other web servers.

Until now, this approach o�ers a basic functionality. Similar to a clustering

solution, which involves total replication. In this scenario, our approach can

work �awlessly having a �xed instance number per application group. Never-

theless, in dynamic environments, application instances need to be activated

and passivated on demand to preserve resources and provide scalability (e.g.,

cloud computing). In this setting, we need to add more distributed concerns

in a transparent way by means of the meta-level mechanisms explained in the

Section 3.2.3. From the meta-level perspective, we are able to capture local

and remote interactions between Redirector and Monitor distributed aspects,

and transparently map these calls onto new interactions.

In dynamic load-balancing solutions, it is also necessary to be able to
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change policies at runtime. Examples of these policies are the random, round-

robin, weight-based, least recently used (LRU), last access time, or minimum

load. These policies can be established mainly by the Redirector decisions.

However, while the whether decision is made using the Monitor information,

the how decision is made by using the proximity-aware policy by default. For

this reason we introduce a Manager entity, which is able to change this �xed

strategy and decide the best candidate among application instances, following

a speci�c policy (e.g., the host with minor workload).

An Activator distributed meta-aspect is activated in at least one host of

each application group, in order to be aware of host state changes. For this

reason, the Activator is subscribed to the (6) alarm propagation from the

Monitor. Following a speci�c activation policy and using the knowledge of the

hosts state, the Activator is able to modify the number of instances for each

web application. As a consequence, when an Activator decides to activate or

passivate any application in any speci�c host, it sends the (7) activate remote

invocation to the Manager on this target. Finally, this activation activity is

noti�ed through the (8) update remote invocation to each Manager on the

application group using the multi abstraction.

Concurrently, the Manager intercepts the Redirector �nd requests using

the (9) resolve around remote meta-pointcut. In this process, the Manager

evaluates the requests using the collected global knowledge. If the evaluation is

positive, and the Manager obtains a reliable candidate, it cancels the original

request. Finally, in substitution to the original response, it uses the (10)

found remote meta-advice to send the host information to the Redirector on

the initial host. The Redirector remains unaware of this process, and obtains

the requested information with the best match possible and in only a few hops.

5.4.2 Session Tracking

Sessions are commonly provided in client-server environments, either to impose

security restrictions, or to encapsulate other runtime state information, or

for both these reasons. The problem is to identify which requests belong

to which session, since the HTTP protocol for web access is not connection

UNIVERSITAT ROVIRA I VIRGILI 
DISTRIBUTED AOP MIDDLEWARE FOR LARGE-SCALE SCENARIOS 
Ruben Mondejar Andreu 
ISBN:978-84-693-5426-1/DL:T-1417-2010 



102 Enabling Web Applications over Wide-Area Networks

oriented. This means that each request is independent of any previous or

following requests that actually do belong to the same session.

Moreover, in cluster environments, HTTP sessions from a web server are

frequently replicated in other few servers. Session replication is expensive

for an application server, because session request synchronization usually is

expensive. Therefore, the problem we want to solve is session tracking for

stateful applications.

Certainly, we need to use session migration when a host has been shutdown

(e.g., it crashes) or a load balancer decides to redirect the client to a di�erent

host. A �rst approximation to manage sessions may be having one active

session in each application server instance. Nevertheless, there is an imposed

limitation on the stored cookies that a client may have: browsers are expected

to support 20 cookies for each web server, totalling 300 cookies of 4 KB each.

Therefore, the browser capacity limits the number of simultaneous accesses

to applications which hold several instances in di�erent servers. Also, this

solution is causes ine�ciency on the server, because it has to manage several

inactive sessions.

In a second approximation, we may have a SNAP instance running in our

localhost (i.e., applying a proxy pattern). Consequently, our server invokes

servlet services in other server instances while maintaining the session state

itself. This is an easier method but it forces us to join the P2P network as a

server. Such approach may be acceptable since we are using the P2P paradigm,

and therefore we are compelled to share our resources. Nevertheless, if we are

to provide support for any lightweight devices or low-powered machines, it is

preferable that they do not need to join the P2P network obligatorily.

5.4.2.1 Solution Proposal

As a consequence, we have designed a more compact and generic solution that

overcomes such limitation. This solution is based on Damon and it also uses

distribution and replication concerns, and URL rewriting strategy [47]. For

session DHT persistence we use its session ID to identify it. This approach has

a structural problem though, because session ID is only considered to be unique

in the original host, but this is not applicable to whole network. Therefore, we
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need to replace the session ID generator by means of intercepting the session

creation code.

Nevertheless, this solution forces us to intercept web server speci�c code. It

also invalidates our decoupled and server-abstracted architecture (see Figure

5.2). For this reason, we decided to attach the server host name to the session

ID when we store and retrieve its data on/from the network. Therefore, this

new ID will not collide with any other one in the global space ID.

Once our session data is accessible throughout the network, we need a way

to re-store it whenever a new server becomes responsible for that client. The

idea is to have meta-information that identi�es the session directly embedded

into the URL. This technique is known as URL rewriting, and is used by many

systems like content distributed networks (e.g., YouTube [102] or Akamai [4])

to identify its resources.

Usually, it is used for a variety of purposes, as for example, making URLs

more compacted and compressible, or preventing undesired hot linking be-

haviours. Moreover, URL rewriting was further used in the past for stateful

applications to replace the cookie mechanism for those browsers which do not

support or accept cookies.

We mainly use URL rewriting to report the client session ID to other

servers. URLs are modi�ed before fetching the requested item, attaching the

session ID like a usual request parameter. For instance: http://hostname:

8080/appdomain/index.jsp?JSESSIONID=08445a31a78661b5c746fe�39a9d

b6e4e2cc5cf.

Algorithm 1 shows the SessionTracking Distributed Aspect behaviour. Be-

fore requests are made, the servlet service method is executed. The manage-

Session method checks whether the session ID is among the request parameters

in order to restore previous session information from the network. If it is found

and it is not the initial server, such remote session data is recovered via the

recover remote-pointcut into the new local server session. Lastly, if there is no

session parameter with an active session, then this method attaches the JSES-

SIONID parameter via the sendRedirect servlet method. With this mechanism,

the request is self-redirected to the same host but completing its URL. Note

that getSession method returns the current session associated with this request
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Algorithm 1 manageSession
Input: req /* HttpRequest */
Input: res /* HttpResponse */

1: sid← req.getRequestedSessionId()
2: param← req.getParameter(′JSESSIONID′)
3: if sid = null then
4: sid← param
5: end if
6: if sid 6= null then
7: if param = null then
8: url← req.getRequestedURL()
9: url← attachSessionId(url, sid)

10: res.sendRedirect(url)
11: end if
12: session← req.getSession(false)
13: if session = null then
14: session← req.getSession()
15: data← invoke(sid)
16: restoreSession(session, data)
17: else
18: if sid 6= session.getId() then
19: data← invoke(sid)
20: restoreSession(session, data)
21: end if
22: end if
23: end if

or, if there is no current session and create is true, returns a new session.

Finally, we have to take some considerations into account, as for example,

if the client leaves the session and comes back via a bookmark or link, the

session information may be lost or expired. In such case, there is no problem

because the stored session information will timeout and will be deleted from

the system, therefore starting a brand new session.

5.4.3 Global Context

The last distributed concern that we want to resolve in this chapter is the

global context problem. In this decentralized scenario, we found that the
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Figure 5.4: Global Context Diagram.

application-level data must be disseminated to the group of servers. In order

to move these data to a global context scenario, we apply some distributed

concerns, namely distribution, replication, and caching.

The idea is to intercept the context methods (i.e., setAttribute/getAttribute).

These methods basically store/retrieve an attribute locally. In addition, at-

tribute names should follow the same conventions as package names.

For this purpose, we have implemented three decentralized crosscutting

concerns, namely distribution, replication, and caching. Thanks to our modu-

lar architecture we could partially reuse the distribution and replication con-

cerns (Section 4.4). Following such approach we simplify the integration with

any application. We now describe the global registry execution step by step as

shown in Figure 5, focusing on the services provided by our distributed AOP

composition model. Distribution

1. The starting point of this application is the servlet context interface

used by the web servers locally. We therefore introduce a Source Hook

that intercepts the setAttribute and getAttribute methods. The interface

de�ned by the source hook follows the same structure.

2. Afterwards, the Locator distributed aspect is deployed and activated on

all members of the P2P group of the application. Its main objective is
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to locate the responsible node of the local insertions and requests.

3. These local executions are propagated as remote pointcuts (locateAttr).

Consequently, the remote pointcuts are routed to the key owner node,

by using their name to generate the key through the hopped abstraction.

4. Once the key has reached its destination, the registered remote advices

are triggered on the Storage distributed aspect running on the owner

host. This distributed aspect has already been activated on start-up on

all members of the registry group.

5. For requester methods (getAttribute), the idea is basically the same, with

the Storage receiving the remote pointcuts. However, it propagates later

an asynchronous response using the method invocation (returnAttr) with

the direct abstraction.

6. Finally, the attribute values are returned to the Locator originator in-

stance, using its corresponding remote method.

Once we have the application running, we may add new functionalities as

well. In this sense, we introduce distributed meta-aspects in order to extend

and modify the current application behaviour in load-time or in runtime. More

speci�cally, these distributed meta-aspects add the mechanisms of replication

and caching concerns, as shown right away.

1. When dealing with the setAttribute method case, we need to avoid any

data storage problems which may be present in such dynamic environ-

ments as large-scale networks. Thus, data is not only to be stored on the

owner node, because if this host leaves the network for any reason, its

data would surely become unavailable. For this reason, we activate the

Replicator distributed meta-aspect in runtime, which following a speci�c

policy, tries to address this problem.

2. The Replicator has an after remote meta-pointcut (replicate) that in-

tercepts the Storage requests from the Locator service in a transparent

way.
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3. Thus, when an object insertion arrives to the Storage entity (locateAttr),

this attribute value is to be replicated in the closest Replicator instances

by using the many abstraction.

4. Replicators are continuously observing the state of the copies that they

are keeping.

5. Eventually, if one of them detects that the original copy is not reachable,

it reinserts the object again, using a remote meta-advice (insertAttr) in

order to replace the original remote pointcut (locateAttr).

The Caching distributed meta-aspect is activated on-demand in the host

where there are a high tra�c of put/get remote-pointcuts (between Locator

and Storage distributed aspects). This is because the main function of this

entity is to accelerate the system request. In this case, once the Caching dis-

tributed meta-aspect is activated, it dynamically monitors the remote service

activity. Afterwards it stores the required information about service interac-

tions.

1. The Caching instance owns an around remote meta-pointcut (capture)

that intercepts the put remote pointcut from Locator to Storage dis-

tributed aspects. The idea is that Caching entities store cache values on

the most transited hosts, using its own generated reports about tra�c

on key-value routing paths. In this way, Caching obtains the value inser-

tions that travel throughout its host. In this manner, a temporary copy

can stay in cache during a speci�c time frame.

2. Subsequently, Caching also intercepts the get remote pointcuts, though

the check remote meta-pointcut. During the check execution, it can

decide if the original get remote pointcut can continue to be routed or

not. Thereby, it is here where it veri�es if the key parameter of a request

has a cached value available.

3. Finally, if this query is satisfactory then the get remote pointcut stops

being routed, and the result is sent back directly via remote meta-advice

(return) that substitutes the original return remote method from the

Storage distributed aspect.
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5.5 Summary

In this chapter, we have presented another proof-of-concept for our distributed

AOP middleware: the SNAP framework. SNAP provides scalability and avail-

ability of Java EE compatible applications in large-scale environments.

This approximation is a clear example at how a large-scale application

can be modelled by adding non-intrusive distributed concerns to the original

application or system. Moreover, we can observe that all the potential ben-

e�ts introduced in previous chapters are present in this proof-of-concept too.

For example, composite distributed aspects that encapsulate high-level con-

cerns (e.g., load-balancing), or distributed meta-aspects (e.g., management)

that are working behind the scene, and can be changed in runtime. This hot

recon�guration process occurs painlessly without needing to alter the system

behaviour.

Regarding reusability, it is important to outline that our contributions may

be applicable to other distributed web platforms. Although context, session,

and workload distribution solutions are somehow related to our distributed

AOP middleware implementation (Damon), we have designed it as a generic

and portable infrastructure for web systems.

In addition, the client's experience and usability when browsing web ap-

plications is improved, since load balancing, activation, replication, and the

other concerns run in the background transparently. As a consequence, clients

remain unaware of server problems like server saturation or session loss.

Finally, we are researching new distributed concerns in web scenarios. As

we have explained, distributed aspects can easily be installed into the SNAP

network, thus we can apply new concepts to this �eld. These concerns can be

transversal services like transactions, security, or synchronization, among oth-

ers. Moreover, these additional mechanisms could be implicitly distributed and

composed since they bene�t from the distributed AOP middleware inherent

properties.
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Chapter 6
Conclusions and Future Work

The main contribution of this dissertation is the design, implementation and

experimentation of distributed AOP middleware based on P2P and dynamic

AOP substrates. Other contribution is the support for scalable, available, and

transparent distributed applications and middleware on large-scale scenarios.

We have designed, implemented, and validated several software engineering

and execution platforms that include composition techniques, application de-

velopment, and middleware platforms.

In this chapter, we will draw the conclusions, and discuss the contributions

of our work. Finally, we suggest the new directions in which research on large-

scale distributed application development could evolve.

6.1 Conclusions

The development of a distributed implicit middleware platform for large-scale

scenarios is a complex task. The separation of concerns principle, for instance,

addresses a problem where a number of concerns should be identi�ed and

completely separated (without dependencies). Aspect Oriented Programming

(AOP) is a modern paradigm that increases modularity by allowing the sepa-

ration of crosscutting concerns. In addition, dynamic AOP allows less interde-

pendence between the aspects of software architectures in runtime. However,

these solutions do not take into account separation of distributed concerns
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(e.g., load-balancing). This dissertation presents the design and implementa-

tion of a novel distributed AOP middleware that support the development of

distributed concerns in large-scale scenarios.

Distributed AOP is a novel and promising paradigm that introduces dis-

tributed interception in these scenarios. It de�nes many new concepts like

remote pointcuts, which are similar to traditional remote method calls, since

the execution of interception code is performed remotely; component-aspects,

which try to merge the component-oriented and aspect-oriented worlds; and

aspect group notions. Thus distributed AOP establishes a context where as-

pects can be deployed in a set of hosts.

Nevertheless, as far as we are concerned, there exist no approaches in dis-

tributed AOP that ful�ll large-scale requirements satisfactorily. Thus, nec-

essary services are not implicitly provided or even are inexistent in similar

approaches. In this dissertation we have analyzed already existing solutions

which try to accomplish this objective, and we have stated that none of them

elegantly achieve their goal.

With our work, the main goal is to provide an application with new abili-

ties in the form of distributed concerns in the easiest and transparent possible

way. Therefore, our proof-of-concepts have obtained scalability and availabil-

ity properties in a transparent way though distributed aspects, which can be

deployed and executed in large-scale scenarios.

6.1.1 Contributions Revisited

In this section we will show a digest summary of our contributions (presented

in Section 1.3) in this dissertation as follows:

• Distributed composition model for distributed aspects:

� First contribution is the encapsulation of distribution aspects from

distributed applications in completely separated and encapsulated

true distributed entities.

� Second contribution: is the de�nition and implementation of a dis-

tributed meta-level model, which enables a distributed meta-aspect
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entity, and its remote meta-pointcut and remote meta-advice con-

nections.

� Third contribution: is the runtime recon�guration of distributed

aspects, which take advantages from the decoupled nature of the

event-based connection model and the re�ection techniques.

• Deployment of distributed aspects in large-scale environments:

� Fourth contribution: is the decentralized container that o�ers loca-

tion and discovery services, and provides the distributed aspect life

cycle.

� Fifth contribution: is a set of decentralized functionalities and ab-

stractions for distributed aspects communication, persistence, and

re�ection.

• Viability and applicability of our middleware proposal:

� Final contribution: the viability of our model is validated with our

prototype implementation (Damon), and its experimentation in real

large-scale networks like PlanetLab. On the other hand, the ap-

plicability is demonstrated with proof-of-concepts: a collaborative

wiki system (UniWiki), and a decentralized web platform (SNAP).

These projects bene�t directly from our proposal, integrating new

distributed aspects suitable for large-scale scenarios.

6.1.2 Why Distributed AOP?

After all this research, we conclude that the distributed AOP paradigm presents

an excellent solution to deal with distributed concerns in a transparent way. In

this dissertation we extend the ideas exposed in previous works to large-scale

scenarios, where we need to solve the problems generated by scalability and

availability requirements.

However, like every single innovation in computer science, distributed AOP

has its own advantages, and its open challenges. Therefore, in the rest of this
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section we expose the advantages of distributed AOP from our vision, and the

challenges that need to be further investigated.

6.1.2.1 Advantages

• Non-Intrusive: as we have explained in the �rst chapters, there ex-

ists no other paradigm that permits developers to separate distributed

concerns at this high level of cohesion. This advantage allows develop-

ers to apply new distributed concerns like scalability, availability, and

transparency to existent or new systems. In this work we demonstrate

the bene�ts of combining advanced interception (i.e., AOP) and e�cient

distribution (i.e., P2P) technologies.

• Flexibility: distributed aspects are easily composed, maintained, and

supported, because separation among them is clean and understandable.

Moreover, developers can apply distributed AOP to transparently de-

couple the parts of a system. And, for example, they can replace some

legacy parts with third-party alternatives. Therefore, these distributed

concerns are reusable among other applications, or versions of the same

one, in a simple way.

• Applicability: a wide variety of middleware architectures and applica-

tions can bene�t easily from this paradigm. These systems can apply

the principle of separation of concerns in a distributed way. As a conse-

quence, we can reuse other concerns easily, and apply them to our design

or implementation.

6.1.2.2 Challenges

• Popularity: as we have seen in the background of this dissertation, only
a few research works are produced in this area. Indeed, a lot more of

work is needed to make the Distributed AOP paradigm more popular.

Clearly, developers need to know the advantages and applicability of

this paradigm. This framework has to provide (i) a powerful remote

pointcut language that is preferably extensible, to incorporate domain
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speci�c pointcuts, and (ii) an advanced runtime support for deployment

and activation of distributed aspects.

• Complexity: AOP languages have associated a non-trivial learning

curve, due to its novel syntax and because they are often focused on

complex problems. In addition, developers need a speci�c and detailed

knowledge of the application or system in order to intercept its code.

This knowledge is used to determine the appropriate hooks for intercep-

tion and the expected behaviour that these interceptions can produce.

• Con�icts: deploying distributed aspects on large-scale scenarios might

trigger some con�icts:

� deploying a distributed aspect might raise con�icts among subsys-

tems and dependencies among running distributed aspects. More

di�culties can be found when multiple class loaders are involved.

� security concerns, specially in enterprise scenarios, need to be con-

trolled, where authority is required for secure deployment and acti-

vation of distributed aspects.

6.2 Future Work

In this research work, we have aimed to propose a large-scale middleware

approach that is generic enough to be used in any of the decentralization

and interception paradigms available. Therefore, we think that our ideas are

applicable independently of the underlying infrastructure.

Moreover, we expect this work to be continued in the future, and hope that

these ideas can be exploited in di�erent application domains. In particular,

we believe that this dissertation opens the way for other lines of future work:

• Distributed Patterns

Design patterns [30] capture successful solutions to recurring problems

and are used both to document and to improve the design of software

systems. Moreover, in the last year some works like [36] have applied
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these patterns in a transparent way using AOP. Nevertheless, design

patterns maybe have not been widely adopted on the distributed systems

arena.

We believe that distributed AOP is a very good area to implement dis-

tributed design patterns. As a consequence, new works are emerging,

and we believe our model can be extensively used to accomplish new

future achievements in this line.

One example is [60], where the authors try to argue that the lack of �ex-

ibility of pattern de�nitions is what they consider the major impediment

in distributed environment. For this purpose, they introduce the notion

of invasive patterns that allow modularization of crosscutting enabling

conditions of traditional distributed communication patterns.

• Autonomic Computing

For a system to be considered to be autonomic [43], it must be self-

con�gurable, meaning that it must allow for automatic con�guration of

components; self-healing, meaning it should provide automatic discovery,

and correction of faults; self-optimizing, meaning that resources should

be automatically monitored and controlled to ensure the optimal func-

tioning; and, �nally, self-protecting, meaning that it must allow proactive

identi�cation and protection from arbitrary attacks.

In [33] the authors list a set of properties to implement autonomic sys-

tems over a suitable dynamic AOP framework: apply adaptations dy-

namically and remove easily, encapsulate adaptations, specify relation-

ships, implement �ne grained changes, and apply adaptations to various

points in a system.

In this line, we propose new requirements for implementing autonomic

systems: apply and remove adaptations remotely, distributed adaptation

container, host dynamic linkage (e.g., P2P locator), and several adapta-

tion scopes (e.g., any abstraction). In order to satisfy these requirements

in large-scale environments, we believe that these adaptations can be im-

plemented via our distributed AOP middleware proposal.
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• Cloud Computing

The cloud [37] concept is a metaphor for the Internet, based on how it

is typically depicted in distributed system diagrams, and can be de�ned

as a group of virtualized host resources. Moreover, developers do not

need to take care about the underlying infrastructure in the cloud that

supports them.

In cloud computing, resources are dynamically scalable and often vir-

tualized. These resources are provided like a service over large-scale

networks. In addition, this paradigm allows scalable deployment mech-

anisms through the quick provisioning of virtual hosts or physical ma-

chines (i.e., virtualization).

Indeed, many cloud computing infrastructures depend on Grid facilities,

but cloud computing can be seen as a natural next step from the P2P

services model. Moreover, the combination of distributed AOP inter-

ception technologies and P2P large-scale networks can contribute to the

future scalable and �exible cloud architectures.

In this sense, the main di�erence between our interception approach (i.e.,

distributed AOP) and virtualization, is the scope. While interception is

focused in the code at the application level, virtualization will be focused

on some resource completely (e.g., virtual machine, or operating system).

As a conclusion, we can determinate that our solution uses a �ne-grained

approach, and the virtualization mechanism is more suitable for general

purposes.
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