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Abstract

For a class of reduced games satisfying a monotonicity property, we introduce

a family of set-valued solution concepts based on egalitarian considerations and

consistency principles, and study its relation with the core. Regardless of the re-

duction operation we consider, the intersection between both sets is either empty

or a singleton containing the lexmax solution (Arin et al., 2003). This result

induces a procedure for computing the lexmax solution for a class of games that

contains games with large core (Sharkey, 1982). We extend the previous analysis

by using the notion of the anti-dual game (Oishi and Nakayama, 2009). We find

parallel results for the lexmin solution.

A class of balanced games, called exact partition games, is introduced. Within

this class, it is shown that the egalitarian solution of Dutta and Ray (1989) be-

haves as in the class of convex games. Moreover, we provide two axiomatic

characterizations by means of suitable properties such as consistency, rationality

and Lorenz-fairness. As a by-product, alternative characterizations of the egali-

tarian solution over the class of convex games are obtained. Using the notion of

anti-duality to axioms (Oishi et al., 2016), we obtain additional axiomatizations

of the egalitarian solution on the domain of exact partition games but also on

the domain of convex games. On the domain of balanced games, new axiomatic

characterizations of the Lorenz maximal core are obtained.

We introduce the Lorenz stable set and provide an axiomatic characterization

III
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IV Abstract

in terms of constrained egalitarianism and projection consistency. On the domain

of all coalitional games, we find that this solution connects the weak constrained

egalitarian solution (Dutta and Ray, 1989) with its strong counterpart (Dutta

and Ray, 1991).
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Introduction

This dissertation focuses on egalitarianism-based solution concepts in the frame-

work of cooperative games with transferable utility (games hereafter). One of

the main goals of game theory is to describe rules (or solution concepts) that

will lead to binding agreements among a set of agents so that the output of a

joint venture can be distributed. Nevertheless, in many real-life situations there

is a tension between cooperation and private interests. Thus, the rules proposed

must be supported by a set of properties (or axioms).

In this setting, and under the assumptions that agents believe in egalitari-

anism, as a social value, but their individual preferences dictate selfish behav-

ior, Dutta and Ray (1989) introduce the weak constrained egalitarian solution

(WCES). This solution concept is defined in a recursive manner and it selects the

Lorenz maximal allocation within the Lorenz core, which is a proper extension of

the core (Gillies, 1953). Although the WCES prescribes, at most, one allocation

for the whole group of agents, in general this solution fails to satisfy existence

and it is difficult to compute. However, for convex games (Shapley, 1971), Dutta

and Ray (1989) provide an algorithm to determine the WCES and show that it

exists, lies in the core and Lorenz dominates every other core element. From an

axiomatic viewpoint, Dutta (1990) was the first to characterize the WCES using

two properties: consistency (or reduced game property), with respect to the max

reduced game (Davis and Maschler, 1965) and the self reduced game (Hart and

3
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4 Introduction

Mas-Colell, 1989), and constrained egalitarianism. Consistency is an outstanding

property widely used in the axiomatic approach that relates the solution of a

game to the solution of the reduced game that results from some players leaving.

Constrained egalitarianism is a prescriptive property that fixes the solution for

two person games. Alternative characterizations of the WCES over the domain

of convex games can be found, among others, in Klijn et al. (2000), Hougaard

et al. (2001) and Arin et al. (2003). Recently, Oishi et al. (2016) obtained new

axiomatic characterizations of the WCES on the domain of convex games, by

applying the notion of anti-dual axiom.

As we have mentioned above, the WCES lacks general existence properties. To

overcome this drawback, the Lorenz maximal allocations can be used from a set

of payoff vectors satisfying some minimal requirements. Although the output of

this approach is not necessarily a unique distribution, all of them are on the same

Lorenz curve. On the domain of balanced games, this approach was suggested

by Dutta and Ray (1989), and latter assumed by Arin and Iñarra (2001) and

Hougaard et al. (2001). To deal with the question of uniqueness, Arin and Iñarra

(2001) and Yanovskaya (1995) introduced the lexmin solution, and Arin and

Iñarra (2001) introduced the lexmax solution. Both are single-valued solutions,

dual to each other, based on the lexicographical order. On the domain of weak

superadditive games, Dutta and Ray (1991) introduced the strong constrained

egalitarian solution (SCES), a solution concept that selects the Lorenz maximal

allocations within the equal division core (Selten, 1972). On the domain of all

games, and inspired by the algorithm of Dutta and Ray (1989), Branzei et al.

(2006) introduced the equal split-off set, a discrete set-valued solution concept

that coincides with the WCES on the domain of convex games.

The present dissertation aims to contribute to the study of egalitarianism in

the framework of games from a theoretical point of view as follows. First, on the
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Introduction 5

domain of all games, we introduce a family of discrete set-valued solutions that

extends some of the aforementioned well-established egalitarian rules to certain

domain of games. These solutions are defined sequentially and, at each step of

the process, the payoffs to the players are determined by applying principles of

fairness and consistency. We analyze the intersection between these solutions

and the core, and we show that, for a kind of reduction operation satisfying

monotonicity in payments, it is either the empty set or a singleton containing the

lexmax solution. This result induces a procedure for finding the lexmax solution

on a domain that includes games with large core. We extend the previous analysis

by making use of the notion of anti-dual game (Oishi and Nakayama, 2009), and

we find parallel results for the lexmin solution. All these results are collected in

Chapter 1.

Second, we extend Dutta and Ray’s-analysis (1989) by introducing the class of

exact partition games, rich enough to include convex games, dominant diagonal

assignment games (Solymosi and Raghavan, 2001) and also non-superadditive

games, where the WCES behaves as it does in convex games. Within this class,

we provide axiomatic characterizations of the WCES that can be extended to the

class of convex games. One of this axiomatizations can be applied to the class of

balanced games characterizing the Lorenz maximal core. Using the notion of anti-

duality to axioms (Oishi et al. 2016), we obtain additional axiomatizations of the

WCES on the domain of exact partition games but also on the domain of convex

games. On the domain of balanced games, new axiomatic characterizations of

the Lorenz maximal core are obtained. The first part of Chapter 2 contains these

results.

Third, in the last part of Chapter 2 we focus on the axiomatic approach

of the Lorenz maximal allocations in the imputation set. Within the domain

of essential games, we observe that this solution is single-valued and admits a
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6 Introduction

characterization of the WCES similar to that given by Dutta (1990), but using

the projected reduced game (Funaki, 1998). We call this solution the Lorenz

stable set. The reason is that it can be interpreted as a sort of stable set à la

von Neumann-Morgenstern (1944) although the usual order in R is replaced by

the Lorenz order. Finally, we connect the WCES and the SCES by means of the

Lorenz stable set.

All the chapters contain a section with concluding remarks that highlight our

main contributions and give some directions about possible future research.

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON EGALITARIANISM-BASED SOLUTION CONCEPTS FOR COOPERATIVE TU-GAMES 
Llúcia Mauri Masdeu 
 



Bibliography
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Chapter 1

Reduced games and egalitarian

solutions1

1.1 Introduction

Transferable utility coalitional games (games, for short) describe situations in

which a group of agents (or players) can get benefits from joint efforts. The

question is how to distribute all the gains from cooperation among the players

by making use of suitable properties. A solution is a mapping that assigns a set

of feasible payoff vectors to each game. In this context, several solution concepts

have been defined with the aim of accommodating egalitarianism and some par-

ticular interests. That is, to allocate the total worth of a coalition as equally as

possible among its agents, while satisfying some individual requirements. One of

the best known concepts is the weak constrained egalitarian solution (Dutta and

Ray, 1989). For convex games, Dutta and Ray (1989) devised an algorithm to

1Some results of this chapter have been published at International Journal of Game The-

ory. Reference: Llerena, F. and Mauri, Ll. (2016) Reduced games and egalitarian solutions,

International Journal of Game Theory, 45: 1053-1069.
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12 Chapter 1: Reduced games and egalitarian solutions

find their egalitarian allocation and show that it belongs to the core and Lorenz

dominates every other core element. Hokari (2002) generalizes their algorithm by

defining non-symmetric extensions of this solution. Unfortunately, the class of

convex games is the only standard class of games for which existence is guaran-

teed. In order to widen the domain of games for which egalitarian solutions exist,

Dutta and Ray (1991) introduced the strong constrained egalitarian solution, a

parallel concept that selects the Lorenz-maximal imputations in the equal division

core (Selten, 1972). Related studies are Arin and Iñarra (2001), Hougaard et al.

(2001) and Arin et al. (2003, 2008), who introduced other egalitarian solutions

based on the notion of the core. Inspired by the Dutta and Ray (1989) algorithm,

Branzei et al. (2006) introduced the equal split-off set, a non-empty set-valued

solution that is well defined for all games.

Consistency (or the reduced game property) is an outstanding property that

plays an important role in the axiomatization of a considerable number of solu-

tions. Informally, a solution is consistent if it makes coherent choices in both the

original game and the reduced game.2 In this chapter, we introduce a family of

solution concepts based on egalitarian considerations and consistency principles,

and study its relation with the core. The central idea is that agents in a coalition

that maximizes average worth share this value equally among them and leave the

game. Then, the remaining agents play a suitable reduced game, in which agents

in a coalition with the highest average worth again divide it equally among its

members. The process stops when all agents have been paid. The output of this

sequencial procedure is a finite set of efficient allocations that can be supported

by an egalitarian criterion and a weak consistency property.

The chapter is organized as follows. Section 1.2 contains notation and ter-

minology. In Section 1.3 we introduce the concept of admissible subgroup corre-

2See Thomson (2011) for an essay of consistency.
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Notation and terminology 13

spondence α and the associated α−max reduced game. For a given α, we define

the α−reduced equal split-off set. This set and the core have different qualitative

properties. For instance, the α−reduced equal split off set is always non-empty

and finite, while the core is convex and its non-emptiness is not granted, except

in balanced games. However, the intersection between them provides surprising

results. For any admissible subgroup correspondence α satisfying a monotonicity

property, weaker than the transitivity of the reduction operation, we find that

when the intersection between both sets is non-empty, it becomes a singleton

containing the lexmax solution of Arin et al. (2003). In Section 1.4, for a class

of games that includes games with a large core (Sharkey, 1982), we show that

the reduced equal split-off set à la Davis and Maschler (1965) turns out to be a

singleton and it coincides with the lexmax solution. We also provide a procedure

for finding the lexmax solution on this domain. To end this section, we connect

the Davis and Maschler reduced equal split-off set with the weak constrained

egalitarian solution on the domain of convex games. Section 1.5 complements

the previous analysis by introducing, for a given α, the anti-dual solution of the

α−reduced equal split-off set, and studying its relationship with the core.

1.2 Notation and terminology

The set of natural numbers N denotes the universe of potential players. A coali-

tion is a non-empty finite subset of N and let N := {N | ∅ 6= N ⊆ N, |N | < ∞}

denote the set of all coalitions of N. A transferable utility coalitional game

(a game) is a pair (N, v) where N ∈ N is the set of players and v : 2N −→ R

is the characteristic function that assigns to each coalition S ⊆ N a real number

v(S), with the convention that v(∅) = 0. Given S, T ∈ N , we use S ⊂ T to indi-

cate strict inclusion, that is, S ⊆ T but S 6= T . By |S| we denote the cardinality

of the coalition S ∈ N . By Γ we denote the class of all games.
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14 Chapter 1: Reduced games and egalitarian solutions

Given N ∈ N , let RN stand for the space of real-valued vectors indexed

by N , x = (xi)i∈N , and for all S ⊆ N , x(S) =
∑

i∈S xi, with the convention

x(∅) = 0. For each x ∈ RN and T ⊆ N , x|T denotes the restriction of x to

T : x|T = (xi)i∈T ∈ RT . Given two vectors x, y ∈ RN , x ≥ y if xi ≥ yi, for all

i ∈ N . We say that x > y if x ≥ y and for some j ∈ N , xj > yj. Given N , a

set π = (P1, . . . , Pm), where Pi ⊆ N for all i ∈ {1, . . . ,m}, with m ≤ |N |, is a

partition of N if the following conditions hold: (i) Pi 6= ∅ for all i ∈ {1, . . . ,m},

(ii) ∪m
i=1Pi = N and (iii)Pi ∩ Pj = ∅, for all i, j ∈ {1, . . . ,m}, i 6= j.

The set of feasible payoff vectors of a game (N, v) is defined by X∗(N, v) :=

{x ∈ RN | x(N) ≤ v(N)}. A solution on a class of games Γ′ ⊆ Γ is a mapping σ

which associates with each game (N, v) ∈ Γ′ a subset σ(N, v) of X∗(N, v). Notice

that σ is allowed to be empty. A solution on a class of games Γ′ ⊆ Γ is said

to be single-valued if |σ(N, v)| = 1 for all (N, v) ∈ Γ′. The pre-imputation

set of (N, v) is defined by X(N, v) := {x ∈ RN | x(N) = v(N)}, and the set

of imputations by I(N, v) := {x ∈ X(N, v) | xi ≥ v({i}), for all i ∈ N}. A

game is essential if it has a non-empty imputation set. By ΓEss we denote the

class of essential games. The core of (N, v) is the set of those imputations where

each coalition gets at least its worth, that is C(N, v) = {x ∈ X(N, v) | x(S) ≥

v(S) for all S ⊆ N}. A game (N, v) is balanced if it has a non-empty core.

By ΓBal we denote the class of balanced games. A game is superadditive, if

v(S)+v(T ) ≤ v(S∪T ) for all S, T ⊆ N with S∩T = ∅. A game (N, v) is convex

(Shapley, 1971) if, for every S, T ⊆ N , v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). The

class of convex games is denoted by ΓCon. Recall that ΓCon ⊂ ΓBal ⊂ ΓEss.

Given N ∈ N , for any x ∈ RN , denote by x̂ = (x̂1, . . . , x̂n) the vector obtained

from x by rearranging its coordinates in a non-increasing order, that is, x̂1 ≥ x̂2 ≥

. . . ≥ x̂n. In a similar way, for ∅ 6= T ⊆ N, x̂|T denotes the vector obtained from

the restriction of x to T by ordering its coordinates in a non-increasing way:
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Reduced equal split-off set and the core 15

x̂|T 1
≥ x̂|T 2

≥ . . . ≥ x̂|T t
, where t = |T |. In addition, denote by x̄ = (x̄1, . . . , x̄n)

the vector obtained from x by rearranging its coordinates in a non-decreasing

order, that is, x̄1 ≤ x̄2 ≤ . . . ≤ x̄n. For any two vectors y, x ∈ RN , we say

that y Lorenz dominates x, denoted by y ≻L x, if
∑k

j=1 ȳj ≥
∑k

j=1 x̄j, for

all k ∈ {1, . . . , |N |} with at least one strict inequality. If y(N) = x(N), Lorenz

domination can be defined equivalently as follows: y ≻L x if
∑k

j=1 ŷj ≤
∑k

j=1 x̂j,

for all k ∈ {1, . . . , |N |} with at least one strict inequality.

1.3 Reduced equal split-off set and the core

The egalitarian solution of Dutta and Ray (1989) is the output of a sequential

procedure where the game is reduced each time the payoffs to players in a coalition

maximizing average worth are assigned. Then, a reduced game is defined by only

taking into account the whole group of players outside the game. Following this

idea, but taking into account other notions of reduced games that allow for more

coalitional options, we define a family of solutions and study its relation with the

core. The equal split-off set of Branzei et al. (2006) turns out to be a particular

case when we reduced the game à la Moulin (1985).

A single-valued egalitarian solution that will play an important role in our

analysis is the lexmax solution of Arin et al. (2003). For any two vectors x, y ∈

RN , we say that x �lex y if x = y or x1 < y1 or there exists k ∈ {2, . . . , |N |} such

that xi = yi for 1 ≤ i ≤ k− 1 and xk < yk. For a balanced game (N, v), the lex-

max solution is defined as Lmax(N, v) = {x ∈ C(N, v) | x̂ �lex ŷ for all y ∈ C(N, v)}.

For any balanced game (N, v), the lexmax solution is a singleton and it is Lorenz

undominated within the core.

Next we introduce the concept of admissible subgroup correspondence

inspired by the work of Thomson (1990) and also used by Izquierdo et al. (2005).
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16 Chapter 1: Reduced games and egalitarian solutions

Definition 1. An admissible subgroup correspondence α : N → N is a corre-

spondence that associates with each N ∈ N a non-empty list α(N) of coalitions

of N .

We denote by A the set of all admissible subgroup correspondences. Given

α, α ′ ∈ A, we write α ≤ α ′ if for all N ∈ N , α(N) ⊆ α ′(N).

Now we introduce the α−max reduced game by using the notion of ad-

missible subgroup correspondence α. This game is defined over a set of agents

where each subgroup evaluates its worth by considering the coalitional restric-

tions determined by α. Examples of admissible subgroup correspondences α can

be given by taking into account several aspects of coordination between players:

communication, hierarchies, geographical areas, law requirements, or the size of

the subgroups.

Definition 2. Let (N, v) be a game, α ∈ A, ∅ 6= N ′ ⊂ N and x ∈ RK where

N \ N ′ ⊆ K ⊆ N . The α−max reduced game relative to N ′ at x is the game
(
N ′, rN

′

α,x(v)
)
defined by

rN
′

α,x(v)(S) =





0 if S = ∅,

max
Q∈α(N\N ′)

{v(S ∪Q)− x(Q)} if ∅ 6= S ⊂ N ′,

v(N)− x(N \N ′) if S = N ′.

(1.1)

The interpretation of the α−max reduced game is as in Davis and Maschler

(1965) but here the options of members in N ′ to cooperate with members in

N \N ′ are restricted by the admissible subgroup correspondence α. The Davis

and Maschler reduced game is a particular case when α(N) = 2N for all

N ∈ N . Other well-known reduced games can also be obtained by taking a

suitable admissible subgroup correspondence. For instance, the complement

reduced game proposed by Moulin (1985) is defined by α(N) = {N} for all

N ∈ N , or the projected reduced game (Funaki, 1998) by α(N) = {∅} for all
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Reduced equal split-off set and the core 17

N ∈ N . Another example is α(N) = {∅, N}, for all N ∈ N . This correspondence

formalizes a dichotomous situation where each coalition may stand alone or join

the whole group of players. The above reduction operations will be denoted by

αDM , αM , αP and αD, respectively.

A well-known property related with the notion of reduced game is consis-

tency.

Definition 3. Let σ be a solution on Γ′ ⊆ Γ. Given α ∈ A, we say that σ satisfies

α−consistency on Γ′ if for all N ∈ N , all (N, v) ∈ Γ′, all N ′ ⊂ N, N ′ 6= ∅, and

all x ∈ σ(N, v), then
(
N ′, rN

′

α,x(v)
)
∈ Γ′ and x|N ′ ∈ σ

(
N ′, rN

′

α,x(v)
)
.

On the domain of convex games, the weak constrained egalitarian solution of

Dutta and Ray (1989) satisfies αDM−consistency (Dutta, 1990). On the domain

of balanced games, the core also satisfies αDM−consistency (Peleg, 1986). Using

the same proof as Peleg (1986), it can be easily shown that the core satisfies

α−consistency for all α ∈ A.

Proposition 1. On the domain of balanced games, the core satisfies α-consistency,

for all α ∈ A.

Proof. Let (N, v) be a balanced game, α ∈ A and x ∈ C(N, v). Take ∅ 6= N ′ ⊂

N . For every S ⊂ N ′, there exists Q∗ ∈ α(N \N ′) such that

rN
′

α,x(v)(S) = max
Q∈α(N\N ′)

{v(S ∪Q)− x(Q)} = v(S ∪Q∗)− x(Q∗)

≤ x(S ∪Q∗)− x(Q∗) = x(S).

Moreover, rN
′

α,x(v)(N
′) = v(N) − x(N \ N ′) = x(N) − x(N \ N ′) = x(N ′).

Then, x|N ′ ∈ C(N ′, rN
′

α,x(v)) and (N ′, rN
′

α,x(v)) is balanced.

It is quite straightforward to see that the lexmax solution is αDM -consistent

on the domain of balanced games. Let (N, v) be a balanced game and x =

Lmax(N, v). Take ∅ 6= N ′ ⊂ N and suppose x|N ′ 6= Lmax
(
N ′, rN

′

αDM ,x(v)
)
. By
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18 Chapter 1: Reduced games and egalitarian solutions

αDM−consistency of the core, x|N ′ ∈ C
(
N ′, rN

′

αDM ,x(v)
)
, and thus it holds ŷ �lex

x̂|N ′ , where y = Lmax
(
N ′, rN

′

αDM ,x(v)
)
. Notice that z =

(
y, x|N\N ′

)
∈ C(N, v).

But ẑ �lex x̂, which leads a contradiction.3 This completes the proof of the

following proposition.

Proposition 2. On the domain of balanced games, the lexmax solution satisfies

αDM -consistency.

However, as shown Example 1 bellow, the lexmax solution is not α-consistent

for any α ∈ {αM , αP , αD}.

Example 1. (Dutta and Ray, 1989) Let (N, v) be a balanced game with set of

players N = {1, 2, 3, 4} and characteristic function as follows,

S v(S) S v(S) S v(S) S v(S)

{1} 0 {12} 0 {123} 1.05 {1234} 2

{2} 0 {13} 0 {124} 0

{3} 0 {14} 0 {134} 1.9

{4} 0 {23} 1.05 {234} 1.9

{24} 0

{34} 1.9

Let us first show that x = (0, 0.1, 0.95, 0.95) is the lexmax solution. Notice that

x ∈ C(N, v) and x̂ = (0.95, 0.95, 0.1, 0). Suppose that x 6= Lmax(N, v) = y.

Then, ŷ �lex x̂. Since y ∈ C(N, v), y3 + y4 ≥ v({34}) = 1.9. If y3 > 1.9
2

= 0.95

or y4 > 1.9
2

= 0.95, then ŷ1 > 0.95 in contradiction with ŷ1 ≤ x̂1 = 0.95. Thus,

y3 = y4 = 0.95, ŷ1 = ŷ2 = 0.95 and ŷ3 ≤ x̂3 = 0.1. Since y2+y3 ≥ v({23}) = 1.05

3The following property is well known (see, for instance, Potters and Tijs, 1992). For any

n ∈ N we define the map θ : Rn −→ Rn which arranges the coordinates of a point in Rn

in non-increasing order. Take x, y ∈ Rn such that θ(x) is lexicographically not greater than

θ(y). Take now any z ∈ R p and consider the vectors (x, z), (y, z) ∈ Rn+p. Then, θ(x, z) is

lexicographically not greater than θ(y, z).
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Reduced equal split-off set and the core 19

and y3 = 0.95, we have that y2 ≥ 0.1, which implies ŷ3 ≥ 0.1. But then ŷ3 = 0.1

and, by efficiency, ŷ = x̂. Finally, taking into account that the lexmax solution is

a singleton we conclude that x = Lmax(N, v).

Next we show that the lexmax solution is not α-consistent for any α ∈ A∗ =

{αM , αP , αD}. Indeed, consider the α-max reduced game
(
{12} , r{12}α,x (v)

)
. It can

be checked that, for any α ∈ A∗,

r
{12}
α,x (v)({1}) = r

{12}
α,x (v)({2}) = 0 and r

{12}
α,x (v)({12}) = 0.1.

Hence, Lmax
(
{12} , r{12}α,x (v)

)
= (0.05, 0.05) 6= (0, 0.1) = x|{12}.

Associated with α ∈ A we introduce the α−reduced equal split-off set.

Definition 4. Let (N, v) be a game and α ∈ A. We say that π = (T1, . . . , Tt) is

an α−ordered partition of N if

T1 ∈ arg max
∅6=S⊆N

{
v(S)

|S|

}
and Tk ∈ arg max

∅6=S⊆N\T1∪...∪Tk−1

{
r
N\T1∪...∪Tk−1
α,xk−1 (v)(S)

|S|

}

for each k = 2, . . . , t, where

• x1 =
(

v(T1)
|T1|

, . . . , v(T1)
|T1|

)
∈ RT1 and

• xk ∈ RT1∪...∪Tk is recursively defined as follows:

xk,i =





xk−1,i if i ∈ T1 ∪ . . . ∪ Tk−1,

r
N\T1∪...∪Tk−1
α,xk−1 (v)(Tk)

|Tk|
if i ∈ Tk.

(1.2)

We call the payoff vector xt ∈ RN as the α−reduced equal split-off allocation

generated by π.

Definition 5. Let (N, v) be a game and α ∈ A. The α−reduced equal split-

off set of a game (N, v), denoted by φα(N, v), is the set of all α−reduced equal

split-off allocations.
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20 Chapter 1: Reduced games and egalitarian solutions

For α = αM we recover the equal split-off set of Branzei et al. (2006). The

next example illustrates the above procedure.

Example 2. Let (N, v) be a game with set of players N = {1, 2, 3, 4} and char-

acteristic function:

S v(S) S v(S) S v(S) S v(S)

{1} 1 {12} 4 {123} 9 {1234} 11

{2} 2 {13} 4 {124} 7

{3} 3 {14} 6 {134} 6

{4} 2 {23} 5 {234} 9

{24} 6

{34} 6

The procedure to obtain an α−reduced equal split-off allocation, α ∈ A, is as

follows. In the first step of the process we take an arbitrary coalition T1 that

maximizes the average worth of the game (N, v). Then, every player i ∈ T1

receives xi = v(T1)
|T1|

. If T1 6= N , we consider the α−max reduced game relative

to N \ T1 at x|T1 ∈ RT1. Again, we choose an arbitrary coalition T2 ⊆ N \ T1

that maximizes the average worth in this reduced game and every player i ∈ T2

receives xi =
r
N\T1
α,x (T2)

|T2|
. The process stops when a partition of N of the form

π = (T1, T2, . . . , Tt), for some 1 ≤ t ≤ |N |, is reached. Repeating this process

for each of the coalitions that maximize the average worth of the original game

and the successive reduced games, we obtain the set of α−reduced equal split-off

allocations.

The following diagrams show how are obtained both φαP (N, v) and φαDM (N, v).
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Reduced equal split-off set and the core 21

αP−reduced equal split-off allocations:

S v(S) v(S)
|S|

S v(S) v(S)
|S|

S v(S) v(S)
|S|

{1} 1 1 {12} 4 2 {123} 9 3

{2} 2 2 {13} 4 2 {124} 7 2.
⌢

3

{3} 3 3 {14} 6 3 {134} 6 2

{4} 2 2 {23} 5 2.5 {234} 9 3

{24} 6 3 {1234} 11 2.75

{34} 6 3

T1 = {234}

( , 3, 3, 3)

T1 = {24}

( , 3, , 3)

T1 = {123}

(3, 3, 3, )

T1 = {14}

(3, , , 3)

T1 = {34}

( , , 3, 3)

T1 = {3}

( , , 3, )

S r
{124}
αP ,x (v)(S)

r
{124}
αP ,x (v)(S)

|S|

{1} 1 1

{2} 2 2

{4} 2 2

{12} 4 2

{14} 6 3

{24} 6 3

{124} 8 2.
⌢

6

S r
{12}
αP ,x(v)(S)

r
{12}
αP ,x(v)(S)

|S|

{1} 1 1

{2} 2 2

{12} 5 2.5

T2 = {4}

(3,3,3,2)

T2 = {1}

(2,3,3,3)

S r
{13}
αP ,x(v)(S)

r
{13}
αP ,x(v)(S)

|S|

{1} 1 1

{3} 3 3

{13} 5 2.5

S r
{23}
αP ,x(v)(S)

r
{23}
αP ,x(v)(S)

|S|

{2} 2 2

{3} 3 3

{23} 5 2.5

T2 = {24}

( , 3, 3, 3)

T2 = {14}

(3, , 3, 3)

T2 = {3}

(3, , 3, 3)

T3 = {2}

(3,2,3,3)

T2 = {3}

( , 3, 3, 3)

T3 = {1}

(2,3,3,3)

T2 = {12}

(2.5,2.5,3,3)

T3 = {1}

(2,3,3,3)

T3 = {2}

(3,2,3,3)

Thus, the αP−ordered partitions of N , π1 = ({14} , {3} , {2}) and π2 =

({3} , {14} , {2}), generate the payoff vector (3, 2, 3, 3). The αP−ordered parti-

tions π3 = ({24} , {3} , {1}), π4 = ({234} , {1}) and π5 = ({3} , {24} , {1}) gener-

ate the payoff vector (2, 3, 3, 3). In addition, the allocation (2.5, 2.5, 3, 3) is gen-

erated by π6 = ({34} , {12}) and the allocation (3, 3, 3, 2) by π7 = ({123} , {4}).
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22 Chapter 1: Reduced games and egalitarian solutions

αDM−reduced equal split-off allocations:

S v(S) v(S)
|S|

S v(S) v(S)
|S|

S v(S) v(S)
|S|

{1} 1 1 {12} 4 2 {123} 9 3

{2} 2 2 {13} 4 2 {124} 7 2.
⌢

3

{3} 3 3 {14} 6 3 {134} 6 2

{4} 2 2 {23} 5 2.5 {234} 9 3

{24} 6 3 {1234} 11 2.75

{34} 6 3

T1 = {234}

( , 3, 3, 3)

T1 = {24}

( , 3, , 3)

T1 = {123}

(3, 3, 3, )

T1 = {14}

(3, , , 3)

T1 = {34}

( , , 3, 3)

T1 = {3}

( , , 3, )

S r
{124}
αDM,x(v)(S)

r
{124}
αDM,x(v)(S)

|S|

{1} 1 1

{2} 2 2

{4} 3 3

{12} 6 3

{14} 6 3

{24} 6 3

{124} 8 2.
⌢

6

S r
{12}
αDM,x(v)(S)

r
{12}
αDM,x(v)(S)

|S|

{1} 3 3

{2} 3 3

{12} 5 2.5

T2 = {4}

(3,3,3,2)

T2 = {1}

(2,3,3,3)

S r
{13}
αDM,x(v)(S)

r
{13}
αDM,x(v)(S)

|S|

{1} 3 3

{3} 3 3

{13} 5 2.5

S r
{23}
αDM,x(v)(S)

r
{23}
αDM,x(v)(S)

|S|

{2} 3 3

{3} 3 3

{23} 5 2.5

T2 = {24}

( , 3, 3, 3)

T2 = {12}

(3, 3, 3, )

T2 = {14}

(3, , 3, 3)

T2 = {4}

( , , 3, 3)

T2 = {3}

(3, , 3, 3)

T2 = {2}

(3, 3, , 3)

T3 = {3}

(3,3,2,3)

T3 = {2}

(3,2,3,3)

T2 = {3}

( , 3, 3, 3)

T2 = {1}

(3, 3, , 3)

T3 = {1}

(2,3,3,3)

T3 = {3}

(3,3,2,3)

T2 = {1}

(3, , 3, 3)

T2 = {2}

( , 3, 3, 3)

T3 = {2}

(3,2,3,3)

T3 = {1}

(2,3,3,3)

T3 = {1}

(2,3,3,3)

T3 = {2}

(3,2,3,3)

T3 = {4}

(3,3,3,2)S r
{12}
αDM,x(v)(S)

r
{12}
αDM,x(v)(S)

|S|

{1} 3 3

{2} 3 3

{12} 5 2.5

T3 = {1}

(3, , 3, 3)

T3 = {2}

( , 3, 3, 3)

T4 = {2}

(3,2,3,3)

T4 = {1}

(2,3,3,3)
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Reduced equal split-off set and the core 23

The allocation (3, 2, 3, 3) is generated by the αDM -ordered partitions π′
1=({14} , {3} , {2}),

π′
2=({3} , {4} , {1} , {2}), π

′
3 = ({3} , {14} , {2}) and π′

4 = ({34} , {1} , {2}). The

partitions π′
5 = ({234} , {1}), π′

6 = ({24} , {3} , {1}), π′
7 = ({34} , {2} , {1}),

π′
8 = ({3} , {4} , {2} , {1}) and π′

9 = ({3} , {24} , {1}) produce (2, 3, 3, 3). More-

over, π′
10 = ({14} , {2} , {3}) and π′

11 = ({24} , {1} , {3}) produce the alloca-

tion (3, 3, 2, 3); and both π′
12 = ({123} , {4}) and π′

13 = ({3} , {12} , {4}) provide

(3, 3, 3, 2).

Similarly, we can calculate the α−reduced equal split-off set for α ∈ {αM , αD}.

As we can see in table below, the different α−reduced equal split-off sets are finite

and different from each other.

Allocation φαM (N, v) φαP (N, v) φαDM (N, v) φαD (N, v)

(2, 3, 3, 3) X X X X

(3, 3, 3, 2) X X X X

(3, 2, 3, 3) X X X

(3, 2.5, 2.5, 3) X

(3, 3, 2, 3) X

(2.5, 2.5, 3, 3) X

In order to analyze the relation between the α−reduced equal split-off set and

the core of a game, we consider a family of admissible subgroup correspondences

that satisfies a monotonicity property.

Definition 6. Let α ∈ A. We say that α satisfies monotonicity in payments if

for all N ∈ N , all (N, v) ∈ Γ, and all x ∈ φα(N, v) generated by π = (T1, . . . , Tt),

it holds that for all k < h ≤ t, xi ≥ xj for all i ∈ Tk and all j ∈ Th.

We denote by Amon the set of admissible subgroup correspondences satisfying

monotonicity in payments.
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24 Chapter 1: Reduced games and egalitarian solutions

A natural requirement on α ∈ A is that the associated α−max reduced game

should be transitive, in the sense that the repeated use of the reduced game does

not depend on the order that players leave the game.

Definition 7. Let α ∈ A. The α-max reduced game is said to be transitive if

rN
′′

α,x|N′

(
rN

′

α,x(v)
)
= rN

′′

α,x(v), for all N ∈ N , all (N, v) ∈ Γ, all coalitions ∅ 6= N ′′ ⊂

N ′ ⊂ N and all payoff vector x ∈ RK with N \N ′′ ⊆ K ⊆ N.

We denote by At the set of admissible subgroup correspondences such that

the associated α−max reduced game is transitive. It can be easily checked that

αP , αM ∈ At. To show that αDM ∈ At see, for instance, Chang and Hu (2007).

The next lemma states a sufficient condition on α ∈ A to guarantee transitivity

of the associated α−max reduced game.

Lemma 1. Let α ∈ A. If for all N ∈ N and all ∅ 6= N ′′ ⊂ N ′ ⊂ N it

holds α (N \N ′′) ⊇ {Q1 ∪Q2 | Q1 ∈ α(N ′ \N ′′) and Q2 ∈ α(N \N ′)} , then the

associated α−max reduced game is transitive.

Proof. Let N ∈ N , (N, v) a game, ∅ 6= N ′′ ⊂ N ′ ⊂ N and x ∈ RK , where

N \N ′′ ⊆ K ⊆ N.

For T = ∅ or T = N ′′, the equality rN
′′

α,x|N′

(
rN

′

α,x(v)
)
(T ) = rN

′′

α,x(v)(T ) follows

straightforwardly.

For every ∅ 6= T ⊂ N ′′, there is Q1 ∈ α(N ′ \ N ′′) and Q2 ∈ α(N \ N ′) such

that

rN
′′

α,x|N′

(
rN

′

α,x(v)
)
(T ) = max

Q∈α(N ′\N ′′)

{
rN

′

α,x(v)(T ∪Q)− x(Q)
}

= rN
′

α,x(v)(T ∪Q1)− x(Q1)

= max
Q∈α(N\N ′)

{v(T ∪Q1 ∪Q)− x(Q)} − x(Q1)

= v(T ∪Q1 ∪Q2)− x(Q2)− x(Q1)

≤ max
Q∈α(N\N ′′)

{v(T ∪Q)− x(Q)}

= rN
′′

α,x(v)(T ).
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Reduced equal split-off set and the core 25

On the other hand, there is Q∗ ∈ α(N \ N ′′), Q∗ = Q∗
1 ∪ Q∗

2 with Q∗
1 ∈

α(N ′ \N ′′) and Q∗
2 ∈ α(N \N ′), such that

rN
′′

α,x(v)(T ) = v(T ∪Q∗)− x(Q∗)

= v(T ∪Q∗
1 ∪Q∗

2)− x(Q∗
1 ∪Q∗

2)

≤ max
R∈α(N\N ′)

{v(T ∪Q∗
1 ∪R)− x(R)} − x(Q∗

1)

= rN
′

α,x(v)(T ∪Q∗
1)− x(Q∗

1)

≤ max
S∈α(N ′\N ′′)

{
rN

′

α,x(v)(T ∪ S)− x(S)
}

= rN
′′

α,x|N′

(
rN

′

α,x(v)
)
(T ).

Hence, rN
′′

α,x|N′

(
rN

′

α,x(v)
)
(T ) = rN

′′

α,x(v)(T ), which concludes the proof.

The next two propositions state that transitivity is a sufficient but not neces-

sary condition to satisfy monotonicity in payments.

Proposition 3. At ⊂ Amon.

Proof. Let (N, v) be a game, α ∈ At and x ∈ φα(N, v) generated by π =

(T1, . . . , Tt), with t > 1. For k ∈ {1, . . . , t− 1}, let us denoteNk = N\T1∪. . .∪Tk.

Let N0 = N and v = rN0
α,x(v). For k ≤ t− 1, i ∈ Tk and j ∈ Tk+1, we have

xi =
r
Nk−1
α,x (v)(Tk)

|Tk|
and xj =

rNk
α,x(v)(Tk+1)

|Tk+1|
=

rNk
α,x|Nk−1

(
r
Nk−1
α,x (v)

)
(Tk+1)

|Tk+1|
. (1.3)

We distinguish two cases:

• Case 1: Tk+1 = Nk. In this situation, for j ∈ Tk+1,

xj =
r
Nk−1
α,x (v)(Nk−1)− r

Nk−1
α,x (v)(Tk)

|Nk|
. (1.4)

Suppose xj > xi, for i ∈ Tk and j ∈ Tk+1. Then, combining (1.3) and (1.4)

we obtain

rNk−1
α,x (v)(Nk−1) >

r
Nk−1
α,x (v)(Tk)

|Tk|
(|Nk|+ |Tk|)
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26 Chapter 1: Reduced games and egalitarian solutions

or, equivalently,

r
Nk−1
α,x (v)(Nk−1)

|Nk−1|
>

r
Nk−1
α,x (v)(Tk)

|Tk|

in contradiction with the fact that Tk ∈ arg max
∅6=T⊆Nk−1

{
r
Nk−1
α,x (v)(T )

|T |

}
.

• Case 2: Tk+1 ⊂ Nk. In this case, there is Q∗ ∈ α(Tk) such that, for all

j ∈ Tk+1,

xj =
r
Nk−1
α,x (v)(Tk+1 ∪Q∗)− |Q∗|

r
Nk−1
α,x (v)(Tk)

|Tk|

|Tk+1|
. (1.5)

If xj > xi for i ∈ Tk, then combining (1.3) and (1.5) we have

rNk−1
α,x (v)(Tk+1 ∪Q∗) >

r
Nk−1
α,x (v)(Tk)

|Tk|
(|Tk+1|+ |Q∗|)

or equivalently,

r
Nk−1
α,x (v)(Tk+1 ∪Q∗)

|Tk+1 ∪Q∗|
>

r
Nk−1
α,x (v)(Tk)

|Tk|
,

in contradiction with the fact that Tk ∈ arg max
∅6=T⊆Nk−1

{
r
Nk−1
α,x (v)(T )

|T |

}
. Hence,

xj ≤ xi for all i ∈ Tk, all j ∈ Tk+1 and all k ∈ {1, . . . , t− 1}, which con-

cludes the proof.

Proposition 4. αD ∈ Amon but αD 6∈ At.

Proof. Let (N, v) be a game and x ∈ φαD(N, v) generated by π = (T1, . . . , Tt),

with t > 1. For k ∈ {1, . . . , t− 1} let us denote Nk = N \ T1 ∪ . . . ∪ Tk. Let

N0 = N and v = rN0
αD,x(v). For k ≤ t− 1, i ∈ Tk and j ∈ Tk+1 we have

xi =
r
Nk−1
αD,x (v)(Tk)

|Tk|
and xj =

rNk
αD,x(v)(Tk+1)

|Tk+1|
.

If k < t− 1, we distinguish two cases:
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Reduced equal split-off set and the core 27

• Case 1: xj =
v(Tk+1)

|Tk+1|
.

In this situation,

xj =
v(Tk+1)

|Tk+1|
≤

r
Nk−1
αD,x (v)(Tk+1)

|Tk+1|
≤

r
Nk−1
αD,x (v)(Tk)

|Tk|
= xi,

where the first inequality follows from the definition of αD and the second

one from the fact that Tk ∈ arg max
∅6=T⊆Nk−1

{
r
Nk−1
αD,x (v)(T )

|T |

}
.

• Case 2: xj =
v(T1∪...∪Tk∪Tk+1)−x(T1∪...∪Tk)

|Tk+1|
.

Notice first that x(Tk) = r
Nk−1
αD,x (v)(Tk). Then,

xj =
v(T1 ∪ . . . ∪ Tk ∪ Tk+1)− x(T1 ∪ . . . ∪ Tk−1)− x(Tk)

|Tk+1|

≤
r
Nk−1
αD,x (v)(Tk ∪ Tk+1)− x(Tk)

|Tk+1|

=
r
Nk−1
αD,x (v)(Tk ∪ Tk+1)− r

Nk−1
αD,x (v)(Tk)

|Tk+1|

≤
r
Nk−1
αD,x (v)(Tk)

|Tk|
= xi,

where the first inequality follows from the definition of αD and the second

one from the fact that Tk ∈ arg max
∅6=T⊆Nk−1

{
r
Nk−1
αD,x (v)(T )

|T |

}
.

If i ∈ Tt−1 and j ∈ Tt, then xj = v(T1∪...∪Tt−1∪Tt)−x(T1∪...∪Tt−1)
|Tt|

. Thus, as in

the above Case 2 it can be shown that xj ≤ xi.

To see that αD /∈ At, consider the game (N, v) with set of playersN = {1, 2, 3, 4, 5}

and characteristic function as follows:

v({4}) = 0.95 , v({14}) = v({134}) = 1.9 , v({23}) = v({123}) = 1.05,

v({34}) = 1 , v({234}) = 2.8 , v({1234}) = 2 , v({12345}) = 3.8

and v(S) = 0, otherwise.
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28 Chapter 1: Reduced games and egalitarian solutions

Take x =
(
0.95, 0.6

⌢

3 , 0.6
⌢

3 , 0.95, 0.6
⌢

3
)
. Routine verification shows that

r{235}αD,x|{1235}

(
r{1235}αD,x (v)

)
({23}) = 1.85 > r{235}αD,x (v) ({23}) = 1.05.

Our main result in this section (Theorem 1) states that for any α ∈ Amon,

the intersection φα(N, v) ∩ C(N, v) is either the empty set or the lexmax solu-

tion. Before doing this, we need some preliminary results. The first one states

that if the grand coalition N is a coalition maximizing average worth, then any

α−reduced equal split-off set, α ∈ Amon, is a singleton containing the equal

split-off allocation.

Proposition 5. Let (N, v) be a game and α ∈ Amon. If N ∈ arg max
∅6=S⊆N

{
v(S)

|S|

}
,

then φα(N, v) =
{(

v(N)
|N |

, . . . , v(N)
|N |

)}
.

Proof. Let (N, v) be a game and α ∈ Amon. If N ∈ argmax∅6=S⊆N

{
v(S)
|S|

}
,

then x =
(

v(N)
|N |

, . . . , v(N)
|N |

)
∈ φα(N, v). Suppose there is y ∈ φα(N, v), y 6= x,

generated by πy = (S1, . . . , Ss). For all i ∈ S1, yi = xi =
v(N)
|N |

. By efficiency,

y(N) = x(N), and thus y(N \ S1) = x(N \ S1). Moreover, since α ∈ Amon, we

have yi ≤
v(S1)
|S1|

= v(N)
|N |

= xi, for all i ∈ N \ S1. This inequality, together with

y(N \ S1) = x(N \ S1), imply xi = yi, for all i ∈ N .

Combining monotonicity in payments with Proposition 5, we obtain an inclu-

sion between the intersections of the α−reduced equal split-off sets with the core,

depending on the order of the admissible subgroup correspondences α ∈ Amon.

Proposition 6. Let α, α ′ ∈ Amon such that α ≤ α ′. Let (N, v) be a balanced

game and x ∈ φα(N, v) ∩ C(N, v). Then, x ∈ φα ′
(N, v) ∩ C(N, v).

Proof. Let (N, v) be a balanced game and α, α ′ ∈ Amon with α ≤ α ′. Notice

first that for all ∅ 6= N ′ ⊂ N and all y ∈ RN , it holds

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON EGALITARIANISM-BASED SOLUTION CONCEPTS FOR COOPERATIVE TU-GAMES 
Llúcia Mauri Masdeu 
 



Reduced equal split-off set and the core 29

rN
′

α ′,y(v)(R) ≥ rN
′

α,y(v)(R), (1.6)

for all R ⊆ N ′.

Let x ∈ φα(N, v)∩C(N, v) be generated by πx = (T1, T2, T3, . . . , Tt) and z1 ∈

φα ′
(N, v) be generated by πz1 = (T1, S2, . . . , Ss). If t = 1 then, by Proposition

5, φα(N, v) = φα ′
(N, v) =

{(
v(N)
|N |

, . . . , v(N)
|N |

)}
. Assume t > 1. For all i ∈ T1,

xi = z1i , and by α ′−consistency of the core

x|N\T1 ∈ C
(
N \ T1, r

N\T1

α ′,z1
(v)

)
. (1.7)

By monotonicity in payments, for all i ∈ T2 and all j ∈ S2, it follows xi ≥ xj.

Since xi = xk for all i, k ∈ T2, we have xi =
x(T2)
|T2|

≥ maxj∈S2{xj} ≥ x(S2)
|S2|

. Thus,

taking all this into account together with (1.6) and (1.7), we obtain the chain of

inequalities

r
N\T1
α,x (v)(T2)

|T2|
=

x(T2)

|T2|
≥

x(S2)

|S2|
≥

r
N\T1

α ′,z1
(v)(S2)

|S2|
≥

r
N\T1

α ′,z1
(v)(T2)

|T2|

≥
r
N\T1

α,z1
(v)(T2)

|T2|
=

r
N\T1
α,x (v)(T2)

|T2|
,

which implies

r
N\T1
α,x (v)(T2)

|T2|
=

r
N\T1

α ′,z1
(v)(S2)

|S2|
=

r
N\T1

α ′,z1
(v)(T2)

|T2|
.

Thus, there is z2 ∈ φα ′
(N, v) generated by πz2 = (T1, T2, R3, . . . , Rr) and

such that z2i = xi for all i ∈ T1 ∪ T2. Again by α ′−consistency of the core we

have x|N\T1∪T2 ∈ C
(
N \ T1 ∪ T2, r

N\T1∪T2

α ′,z2
(v)

)
, and by monotonicity in payments

xi ≥ xj, for all i ∈ T3, j ∈ R3. Since xi = xk for all i, k ∈ T3, we have

xi =
x(T3)
|T3|

≥ maxj∈R3{xj} ≥ x(R3)
|R3|

. Thus, as before, we have that

r
N\T1∪T2
α,x (v)(T3)

|T3|
=

r
N\T1∪T2

α ′,z2
(v)(R3)

|R3|
=

r
N\T1∪T2

α ′,z2
(v)(T3)

|T3|
.
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30 Chapter 1: Reduced games and egalitarian solutions

Hence, there is z3 ∈ φα ′
(N, v) generated by πz3 = (T1, T2, T3, P4, . . . , Pp) and

such that z3i = xi for all i ∈ T1 ∪ T2 ∪ T3.

Following this process step by step we find that x ∈ φα ′
(N, v) ∩ C(N, v).

Remark 1. Observe that φα(N, v) ∩ C(N, v) ⊆ φα ′
(N, v) ∩ C(N, v), whenever

α ≤ α ′. However, in general, φα(N, v) * φα ′
(N, v), as shown the next example.

Example 3. Let (N, v) be a balanced game with set of players N = {1, 2, 3, 4}

and characteristic function:

S v(S) S v(S) S v(S) S v(S)

{1} 0 {1, 2} 10 {1, 2, 3} 13 {1, 2, 3, 4} 15

{2} 5 {1, 3} 8 {1, 2, 4} 11

{3} 3 {1, 4} 6 {1, 3, 4} 10

{4} 2 {2, 3} 8 {2, 3, 4} 10

{2, 4} 6

{3, 4} 5

It is not difficult to verify that φαP (N, v) = {x = (5, 5, 3, 2), y = (4, 5, 4, 2)},

where x is generated by πx = ({1, 2}, {3}, {4}) and y by πy = ({2}, {1, 3}, {4}).

Moreover, φαM (N, v) = φαD(N, v) = φαDM (N, v) = {(5, 5, 3, 2)}.

Now we have all the tools to state the main result of this section.

Theorem 1. Let (N, v) be a balanced game, α ∈ Amon and x ∈ φα(N, v) ∩

C(N, v). Then, Lmax(N, v) = {x}.

Proof. Let (N, v) be a balanced game, α ∈ Amon and x ∈ φα(N, v) ∩ C(N, v).

Since α ≤ αDM , from Proposition 6 we know that x ∈ φαDM (N, v). Let π =

(S1, S2, . . . , Ss) be an αDM−ordered partition of N generating x. If s = 1, then,

by Proposition 5, x =
(

v(N)
|N |

, . . . , v(N)
|N |

)
= Lmax(N, v). If s > 1 suppose, on the

contrary, x 6= Lmax(N, v). Let y = Lmax(N, v). As αDM ∈ Amon, we know
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Reduced equal split-off set and the core 31

that for all i ∈ S1, xi =
v(S1)
|S1|

≥ xj for all j ∈ N . Since y ∈ C(N, v), there is

i1 ∈ S1 such that yi1 ≥
v(S1)
|S1|

, and thus ŷ1 ≥ yi1 ≥
v(S1)
|S1|

. This inequality together

with the fact that ŷ �lex x̂ imply yi1 = xi1 . If S1 \ {i1} 6= ∅, then y(S1 \ {i1}) =

y(S1)−
v(S1)
|S1|

≥ v(S1)−
v(S1)
|S1|

= |S1 \ {i1} |
v(S1)
|S1|

. Hence, there exists at least some

player i2 ∈ S1 \ {i1} such that yi2 ≥ v(S1)
|S1|

= xi2 . Since ŷ|N\{i1} �lex x̂|N\{i1}, we

conclude that yi2 = xi2 . Following this process we can check that yk = xk for all

k ∈ S1, and so ŷ|N ′ �lex x̂|N ′ where N ′ = N \S1. Now consider the reduced game
(
N ′, rN

′

αDM ,y(v)
)
. Since y|S1 = x|S1 , by αDM−consistency of the core, x|N ′ , y|N ′ ∈

C
(
N ′, rN

′

αDM ,y(v)
)
. Moreover, as αDM ∈ At, x|N ′ ∈ φαDM

(
N ′, rN

′

αDM ,y(v)
)
being

π|N ′ = (S2, . . . , Ss) an αDM−ordered partition ofN ′ generating x|N ′ . On the other

hand, by αDM−consistency of the lexmax solution y|N ′ = Lmax
(
N ′, rN

′

αDM ,y(v)
)
.

Now from the reasoning above we can see that yk = xk for all k ∈ S2. Following

this line of argument we conclude that x = y.

Remark 2. It is worth to point out that monotonicity in payments is a necessary

condition to guarantee that the intersection between the core and the α−reduced

equal split-off set, whenever non-empty, coincides with the lexmax solution. In-

deed, let α ∈ A be defined as follows: for each N ∈ N

α(N) := {∅, N, S ⊆ N such that |S| = 2} .

Consider the balanced game (N, v) where N = {1, 2, 3, 4, 5, 6} and the char-

acteristic function is given by: v({1, 2}) = 6, v({3, 4}) = 5, v({1, 3, 5}) = 8.5,

v(N) = 14 and v(S) = 0 for any other S ⊆ N. It can be checked that φα(N, v) =

{x = (3, 3, 2.5, 2.5, 3, 0)} where x ∈ C(N, v) and it is generated by the α-ordered

partition πx = ({1, 2} , {3, 4} , {5} , {6}). Notice that x3 = x4 = 2.5 < 3 = x5, which

shows that α /∈ Amon. Moreover, φαDM (N, v) = {y = (3, 3, 2.75, 2.25, 2.75, 0.25)}.

Since y ∈ C(N, v) and αDM ∈ Amon, from Theorem 1 we know that y =

Lmax(N, v), being y 6= x.
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32 Chapter 1: Reduced games and egalitarian solutions

From Theorem 1, a natural question arises: given a balanced game (N, v), is

there some α ∈ Amon such that Lmax(N, v) ∈ φα(N, v)? Although in general

this fact is not true (see Example 4 below), in Section 1.4 we will see that for

some classes of games the lexmax solution can be interpreted as an αDM−reduced

equal split-off allocation.

Example 4. Let (N, v) be a balanced game with set of players N = {1, 2, 3} and

characteristic function:

S v(S) S v(S) S v(S)

{1} 0 {1, 2} 1 {1, 2, 3} 1

{2} 0 {1, 3} 1

{3} 0 {2, 3} 0

For all α ∈ A, φα(N, v) = {(0.5, 0.5, 0), (0.5, 0, 0.5)} and Lmax(N, v) =

(1, 0, 0).

1.4 Davis and Maschler reduced equal split-off set

and the lexmax solution

In this section, we show that on a class of games that includes games with large

core (Sharkey, 1982) the lexmax solution turns out to be the unique αDM -reduced

equal split-off allocation. We first show that the Davis and Maschler reduced

equal split-off set becomes a singleton when intersects with the core. Before

proving it, we need a technical lemma.

Lemma 2. Let (N, v) be a game, M1=arg max
∅6=T⊆N

{
v(T )
|T |

}
, N1={i ∈ S | S ∈ M1}

and x ∈ φαDM (N, v) generated by the αDM−ordered partition πx = (T1, . . . , Tt).

Let T1 ∪ . . . ∪ Tq∗ = {i ∈ N | xi ≥ xj for all j ∈ N}. If N1 6= N , then N1 =

T1 ∪ . . . ∪ Tq∗ .
4

4As shown Example 4, Lemma 2 does not hold if N1 = N.
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Davis and Maschler reduced equal split-off set and the lexmax solution 33

Proof. Let (N, v) be a game and x ∈ φαDM (N, v) generated by πx = (T1, . . . , Tt).

Let T1 ∪ . . . ∪ Tq∗ = {i ∈ N | xi ≥ xj for all j ∈ N}. Notice first that q∗ < t

since, otherwise, x =
(

v(N)
|N |

, . . . , v(N)
|N |

)
which implies N ∈ arg max

∅6=T⊆N

{
v(T )

|T |

}
, in

contradiction with N1 6= N .

First we show that T1∪ . . .∪Tq∗ ⊆ N1. Let i ∈ T1∪ . . .∪Tq∗ . If i ∈ T1, clearly

i ∈ N1. If i ∈ Th for some h ∈ {2, . . . , q∗}, then there is Q∗ ⊆ T1 ∪ . . .∪Th−1 such

that

xi =
v(T1)

|T1|
=

r
N\T1∪...∪Th−1
αDM ,x (v)(Th)

|Th|
=

v(Th ∪Q∗)− |Q∗|v(T1)
|T1|

|Th|
. (1.8)

Reordering terms in (1.8), we have that v(T1)
|T1|

= v(Th∪Q
∗)

|Th∪Q∗|
, which implies Th ∪

Q∗ ∈ arg max
∅6=T⊆N

{
v(T )

|T |

}
, and thus i ∈ N1.

To show the reverse inclusion, take i ∈ N1 and suppose i 6∈ T1 ∪ . . . ∪ Tq∗ .

Then, there is R∗ ∈ M1 such that i ∈ R∗. Next we show that R∗ \ T1 ∪ . . . ∪

Tq∗ 6= Tq∗+1 ∪ . . . ∪ Tt. Indeed, if R∗ \ T1 ∪ . . . ∪ Tq∗ = Tq∗+1 ∪ . . . ∪ Tt, then

N = T1 ∪ . . . ∪ Tq∗ ∪ R∗. As we have seen before, T1 ∪ . . . ∪ Tq∗ ⊆ N1. This

inclusion, together with R∗ ∈ arg max
∅6=⊆N

{
v(T )

|T |

}
, imply N1 = N , a contradiction.

Hence,

v(T1)
|T1|

>
r
N\T1∪...∪Tq∗
αDM,x (v)(Tq∗+1)

|Tq∗+1|
≥

r
N\T1∪...∪Tq∗
αDM,x (v)(R∗\T1∪...∪Tq∗ )

|R∗\T1∪...∪Tq∗ |

≥
v(R∗)−x(R∗∩{T1∪...∪Tq∗}

|R∗\T1∪...∪Tq∗ |
=

v(R∗)−|R∗∩{T1∪...∪Tq∗}|
v(T1)
|T1|

|R∗\T1∪...∪Tq∗ |
,

(1.9)

where the first inequality follows from the definition of T1 ∪ . . . ∪ Tq∗ , the second

one from Tq∗+1 ∈ arg max
∅6=T⊆N\T1∪...∪Tq∗

{
r
N\T1∪...∪Tq∗

αDM ,x (v)(T )

|T |

}
, and the last one from

the definition of the αDM−max reduced game and the fact that R∗ \ T1 ∪ . . . ∪

Tq∗ 6= Tq∗+1 ∪ . . . ∪ Tt. From (1.9) it follows v(T1)
|T1|

> v(R∗)
|R∗|

, in contradiction with

R∗ ∈ arg max
∅6=T⊆N

{
v(T )

|T |

}
. Hence, i ∈ T1 ∪ . . . ∪ Tq∗ and N1 = T1 ∪ . . . ∪ Tq∗ .
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34 Chapter 1: Reduced games and egalitarian solutions

Theorem 2. Let (N, v) be a game. If x ∈ φαDM (N, v)∩C(N, v), then φαDM (N, v) =

Lmax(N, v) = {x}.5

Proof. Let x ∈ φαDM (N, v)∩C(N, v). From Theorem 1 we know that Lmax(N, v) =

{x}. Suppose there is y ∈ φαDM (N, v) \ C(N, v). Let πx = (T1, . . . , Tt) and

πy = (S1, . . . , Ss) be two αDM−ordered partitions of N generating x and y, re-

spectively. Let

T1 ∪ . . . ∪ Tq∗ = {i ∈ N | xi ≥ xj for all j ∈ N}

S1 ∪ . . . ∪ Sp∗ = {i ∈ N | yi ≥ yj for all j ∈ N}.
(1.10)

Denote M1 = arg max
∅6=T⊆N

{
v(T )

|T |

}
and N1 = {i ∈ S |S ∈ M1}. We distinguish

two cases.

• Case 1: N1 = N

If T1 = N then, by Proposition 5, φαDM (N, v) = {x}. If T1 6= N , then

for all i ∈ T1, xi =
v(T1)
|T1|

. Let k ∈ {2, . . . , t} and i ∈ Tk. Since N = N1,

there is R ∈ M1 such that i ∈ R. As x ∈ C(N, v), x(R) = x(R \ T1) +

x(R ∩ T1) ≥ v(R) or, equivalently, x(R \ T1) ≥ v(R)− x(R ∩ T1) = v(R)−

|R ∩ T1|
v(T1)
|T1|

= v(R)
(
1− |R∩T1|

|R|

)
= v(R)

|R|
|R \ T1| = v(T1)

|T1|
|R \ T1|. Since

αDM ∈ Amon, for all i ∈ R \ T1, we have xi ≤ v(T1)
|T1|

. Combining both

inequalities we obtain, for all i ∈ R \ T1, xi = v(T1)
|T1|

. Therefore, for all

i, j ∈ N , xi = xj. Finally, by efficiency, x =
(

v(N)
|N |

, . . . , v(N)
|N |

)
and, by

Proposition 5, we conclude φαDM (N, v) = {x}.

5Yanovskaya (2009) provides a similar result proving that if the equal split-off set of Branzei

et al. (2006) intersects with the core, then it is single-valued and coincides with the weak

constrained egalitarian solution of Dutta Ray (1989). However, for arbitrary α ∈ Amon this

statement is not true. For instance, in Example 3, φαP (N, v) = {(5, 5, 3, 2), (4, 5, 4, 2)} and

(5, 5, 3, 2) ∈ C(N, v).
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Davis and Maschler reduced equal split-off set and the lexmax solution 35

• Case 2: N1 6= N

Let q∗ and p∗ as defined in (1.10). Notice that q∗ < t and p∗ < s since,

otherwise, N ∈ M1 contradicting N1 6= N . From Lemma 2, N1 = T1 ∪

. . . ∪ Tq∗ = S1 ∪ . . . ∪ Sp∗ , which implies xi = yi for all i ∈ N1. Thus,

the reduced games
(
N \N1, r

N\N1
αDM ,x(v)

)
and

(
N \N1, r

N\N1
αDM ,y(v)

)
coincide.

By αDM−consistency of the core, x|N\N1 ∈ C
(
N \N1, r

N\N1
αDM ,x(v)

)
. Since

αDM ∈ At, x|N\N1 , y|N\N1 ∈ φαDM

(
N \N1, r

N\N1
αDM ,x(v)

)
.

Now define

Tq∗+1 ∪ . . . ∪ Tk = {i ∈ N \N1 | xi ≥ xj for all j ∈ N \N1}

Sp∗+1 ∪ . . . ∪ Sh = {i ∈ N \N1 | yi ≥ yj for all j ∈ N \N1}.

Denote M2 = arg max
∅6=T⊆N\N1

{
r
N\N1
αDM ,x(v)(T )

|T |

}
and N2 = {i ∈ S |S ∈ M2}.

If N2 = N \ N1 then, as in Case 1, xi = yi for all i ∈ N \ N1, and thus

x = y. Otherwise, again from Lemma 2, we have that N2 = Tq∗+1∪. . .∪Tk =

Sp∗+1 ∪ . . . ∪ Sh and xi = yi for all i ∈ N2. Repeating this argument we

conclude that x = y.

Let us denote by ΓαDM
the subclass of balanced games such that (N, v) ∈ ΓαDM

if and only if φαDM (N, v) ∩ C(N, v) 6= ∅.

Remark 3. It is worth to mention that there are games (N, v) and admissible

subgroup correspondences α ∈ Amon such that φα(N, v) ∩ C(N, v) 6= ∅ with α 6=

αDM . For instance, the class of games under the assumption of Proposition 5

satisfies the condition above for all α ∈ Amon. Another example is the class

of convex games. As we have commented before, on the domain of all games

the equal split-off set of Branzei et al. (2006) coincides with φαM . For convex

games, these authors show that φαM reduces to a singleton containing the weak

constrained egalitarian solution of Dutta and Ray (1989), which is a core element.
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36 Chapter 1: Reduced games and egalitarian solutions

This fact, together with Proposition 6, means that φα(N, v) ∩C(N, v) 6= ∅ for all

α ≥ αM , α ∈ Amon, and all convex games (N, v).

Next we show that the class of games with large core is strictly included in

ΓαDM
.

The concept of large core is based on the notion of aspiration. An aspiration

of the game (N, v) is a vector x ∈ RN such that x(S) ≥ v(S) for all S ⊆ N . We

denote by A(N, v) the set of aspirations of the game (N, v).

Definition 8. The core of a game (N, v) is large if for all y ∈ A(N, v), there

exists x ∈ C(N, v) such that x ≤ y.

By Γlc we denote the class of games with large core.

Theorem 3. Γlc ⊂ ΓαDM

Proof. Let (N, v) be a game with large core and x ∈ φαDM (N, v) generated by

π = (T1, . . . , Tt). We will see that x = Lmax(N, v).

Denote M1 = arg max
∅6=S⊆N

{
v(S)

|S|

}
and N1 = {i ∈ S |S ∈ M1}.

We distinguish two cases.

• Case 1: N1 = N

From Arin et al. (2003) it follows that Lmax(N, v) =
{(

v(N)
|N |

, . . . , v(N)
|N |

)}
.

Hence, N ∈ M1 and, by Proposition 5, φαDM (N, v) = Lmax(N, v).

• Case 2: N1 6= N

Take S ∈ M1 and define y1 ∈ RN1 as follows:

y1i :=
v(S)

|S|
, for all i ∈ N1. (1.11)

Let T1∪. . .∪Tq∗ = {i ∈ N | xi ≥ xj for all j ∈ N}. Notice that q∗ < t since,

otherwise, N ∈ M1, in contradiction with N1 6= N . Since T1∪ . . .∪Tq∗ = N1

(Lemma 2), we have that x|N1 = y1.
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Davis and Maschler reduced equal split-off set and the lexmax solution 37

Let (N \ N1, w
1) be the reduced game relative to N \ N1 at y1 defined as

follows:

w1(∅) = 0 and w1(R) = max
Q⊆N1

{v(R ∪Q)− y1(Q)}, for allR ⊆ N \N1.

(1.12)

Denote M2 = arg max
∅6=S⊆N

{
w1(S)

|S|

}
and N2 = {i ∈ S |S ∈ M2}.

Take S ∈ M2 and define y2 ∈ RN1∪N2 as follows:

y2i := y1i if i ∈ N1, and y2i :=
w1(S)

|S|
, if i ∈ N2, (1.13)

where y1 is defined in (1.11).

• Case 2.1: If N2 = N \ N1, from (1.12) and (1.13) it is not difficult

to verify that (a): y2 ∈ A(N, v) and (b): for a given i ∈ N , there is

Ri ⊆ N such that i ∈ Ri and y2(Ri) = v(Ri). Since (N, v) has a large

core, there is z ∈ C(N, v) such that z ≤ y2. This inequality, together

with both conditions (a) and (b), imply y2i ≤ zi for all i ∈ N . Hence,

y2 = z ∈ C(N, v). From the efficiency of y2, it follows that

M2 = arg max
∅6=S⊆N

{
w1(S)

|S|

}
= arg max

∅6=S⊆N

{
r
N\N1
αDM ,x(v)(S)

|S|

}
,

and r
N\N1
αDM ,x(v)(S) = w1(S), for allS ∈ M2.

(1.14)

We claim that N2 = N \N1 ∈ M2. Indeed, suppose that N2 6∈ M2. For all

i ∈ N2, y
2
i = w1(S)

|S|
, where S ∈ M2. Since y2 is efficient, v(N) = y2(N1) +

y2(N2) = y1(N1) + |N2|
w1(S)
|S|

> y1(N1) + w1(N2) ≥ y1(N1) + v(N1 ∪ N2) −

y1(N1) = v(N), getting a contradiction. Thus, N2 ∈ M2. By Proposition 5,

and taking into account (1.14), we have that φαDM

(
N \N1, r

N\N1
αDM ,x(v)

)
={

y2|N\N1

}
. By definition, and considering that N1 = T1 ∪ . . . ∪ Tq∗ and

αDM ∈ At, we get x|N\N1 ∈ φαDM

(
N \N1, r

N\N1
αDM ,x(v)

)
. Thus, x|N\N1 =
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38 Chapter 1: Reduced games and egalitarian solutions

y2|N\N1
. Since x|N1 = y1, we have that x = y2. As y2 ∈ C(N, v), from

Theorem 2 we conclude that φαDM (N, v) = Lmax(N, v) = {x} .

• Case 2.2: If N2 6= N \N1, first observe that expression (1.14) holds. Let

Tq∗+1 ∪ . . . ∪ Tp∗ = {i ∈ N \N1 | xi ≥ xj for all j ∈ N \N1}. From Lemma

2 we know that N2 = Tq∗+1 ∪ . . . ∪ Tp∗ .

Let (N \ N1 ∪ N2, w
2) be the reduced game relative to N \ N1 ∪ N2 at y2

defined as follows:

w2(∅) = 0 and w2(R)= max
Q⊆N1∪N2

{v(R∪Q)−y2(Q)}, for allR ⊆ N \N1∪N2.

(1.15)

Denote M3 = arg max
∅6=S⊆N

{
w2(S)

|S|

}
and N3 = {i ∈ S |S ∈ M3}.

Take S ∈ M3 and define y3 ∈ RN1∪N2∪N3 as follows:

y3i := y2i if i ∈ N1 ∪N2, and y3i :=
w2(S)

|S|
, if i ∈ N3, (1.16)

where y2 is defined in (1.13).

• Case 2.2.1: If N3 = N \ N1 ∪ N2, following the arguments above, we

obtain that x = y3 ∈ C(N, v) and φαDM (N, v) = Lmax(N, v) = {x}.

• Case 2.2.2: If N3 6= N \ N1 ∪ N2, repeating the same procedure, in a

finite number of steps we will get the result.

To see that the set of games with large core is strictly included in ΓαDM
, con-

sider the game (N, v) with set of players N = {1, 2, 3} and characteristic function

v({1}) = v({2}) = 0, v({3}) = −1, v({1, 2}) = v({1, 2, 3}) = 1 and v({1, 3}) =

v({2, 3}) = 0. The core is C(N, v) = {(α, 1− α, 0) ∈ R3 s.t. α ∈ [0, 1]} and

φαDM (N, v) =
{
(1
2
, 1
2
, 0)

}
. Hence, (N, v) ∈ ΓαDM

. Let y = (1, 1,−1) ∈ A(N, v).

Clearly, there is no x ∈ C(N, v) such that x ≤ y. This concludes the proof.

Combining Theorem 2 and 3 we obtain the next result.
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Davis and Maschler reduced equal split-off set and the lexmax solution 39

Corollary 1. Let (N, v) be a game with large core. Then, φαDM (N, v) = Lmax(N, v).

The proof of Theorem 2 provides a procedure for calculating the lexmax so-

lution on ΓαDM
by using the Davis and Maschler reduced game.

PROCEDURE 1: The input is a game (N, v) ∈ ΓαDM
and the output is a

payoff vector Fv ∈ RN .

• Step 1: Let M1 = arg max
∅6=S⊆N

{
v(S)

|S|

}
and N1 = {i ∈ S |S ∈ M1}. Every

player in N1 receives v(T1)
|T1|

, where T1 ∈ arg max
∅6=S⊆N

{
v(S)

|S|

}
. That is, Fv

i =

v(T1)
|T1|

for all i ∈ N1.

• Step 2: IfN1 6= N , let us denote w = r
N\N1

αDM ,x1(v), being x
1 =

(
v(T1)
|T1|

, . . . , v(T1)
|T1|

)
∈

RN1 . Let M2 = arg max
∅6=S⊆N\N1

{
w(S)

|S|

}
and N2 = {i ∈ S |S ∈ M2}. Every

player in N2 receives w(T2)
|T2|

, where T2 ∈ M2. That is, Fv
i = w(T2)

|T2|
for all

i ∈ N2.

• The process stops when an ordered partition (N1, N2, . . . Nt) of N , for some

1 ≤ t ≤ |N |, is reached.

Interestingly, the above algorithm can be applied in a more general setting: if

the input is an arbitrary game, not necessarily belonging to ΓαDM
, and the output

is a core element, then it coincides with the lexmax solution.

Let us denote by Fv
∗ the allocation generated by Procedure 1 when the input

is the game (N, v).

Theorem 4. Let (N, v) be a balanced game. If Fv
∗ ∈ C(N, v), then Lmax(N, v) =

Fv
∗.

Proof. Let (N, v) be a balanced game and π = (N1, . . . , Nt) be the ordered

partition of N generating Fv
∗. Recall that N1 = {i ∈ S | S ∈ M1}, where M1 =

arg max
∅6=S⊆N

{
v(S)

|S|

}
. If N1 = N then, by efficiency, Fv

∗ =
(

v(N)
|N |

, . . . , v(N)
|N |

)
, and
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40 Chapter 1: Reduced games and egalitarian solutions

thus Lmax(N, v) = Fv
∗. If N1 6= N , let Lmax(N, v) = y and suppose y 6= Fv

∗. Let

S ∈ M1. Since αDM ∈ Amon, the same argument used in the proof of Theorem

1 leads to Fv
∗i = yi for all i ∈ S. Consequently, Fv

∗i = yi for all i ∈ N1. Hence,

ŷ|N\N1 �lex F̂v
∗|N\N1

. Now consider the αDM−max reduced game (N \ N1, w),

where w = r
N\N1

αDM ,Fv
∗
(v). Since y|N1 = Fv

∗|N1
, by αDM−consistency of the core

Fv
∗|N\N1

, y|N\N1 ∈ C(N \ N1, w). Moreover, by αDM−consistency of the lexmax

solution y|N\N1 = Lmax(N \N1, w). Since Fv
∗|N\N1

= Fw
∗ , as before we can check

that yi = Fv
∗i for all i ∈ N2. Following this process step by step, and considering

that αDM ∈ At, we conclude that Fv
∗ = Lmax(N, v).

In order to identify other kind of balanced games where the allocation Fv
∗

belongs to the core, let us introduce exact games (Schmeidler, 1972).

Definition 9. A balanced game (N, v) is exact if for every coalition S ⊆ N there

is x ∈ C(N, v) such that v(S) = x(S).

The exactification (N, vE) of an arbitrary balanced game (N, v) is the unique

exact game with the same core as the original game (N, v), that is, for each

S ⊆ N , vE(S) = min {x(S) | x ∈ C(N, v)}.

Note that if for two balanced games (N, v1), (N, v2) we have C(N, v1) =

C(N, v2) 6= ∅, then Lmax(N, v1) = Lmax(N, v2). Thus, the lexmax solution is

invariant with respect to exactification. This open a natural question: on the

domain of exact games, can Theorem 4 be applied? It was noted by Biswas et al.

(1999) that any exact game (N, v) with |N | ≤ 4 has a large core, and therefore

Lmax(N, v) = Fv
∗. By contrast, if |N | ≥ 5, there are exact games (N, v) not

having a large core. Unfortunately, as shown Example 5 for exact games with

more than four players our procedure for finding the lexmax solution does not

work.

Example 5. (Biswas et al. 1999) Let (N, v) be an exact game with |N | = 5,

where the characteristic function is defined by v(S) = min {x(S), y(S)}, being
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Anti-dual reduced equal split-off set 41

x = (1,−1,−1, 0, 0) and y = (0, 1, 0,−1,−1).

S v(S) S v(S) S v(S) S v(S)

{1} 0 {12} 0 {123} −1 {1234} −1

{2} −1 {13} 0 {124} 0 {1235} −1

{3} −1 {14} −1 {125} 0 {1245} −1

{4} −1 {15} −1 {134} −1 {1345} −2

{5} −1 {23} −2 {135} −1 {2345} −2

{24} −1 {145} −2 {12345} −1

{25} −1 {234} −2

{34} −1 {235} −2

{35} −1 {245} −1

{45} −2 {345} −2

We can check that M1=arg max
∅6=S⊆N

{
v(S)

|S|

}
={{1} , {12} , {13} , {124} , {125}}

and N1 = N . Then, Fv
∗ = (0, 0, 0, 0, 0) and Fv

∗ /∈ C(N, v).

We end this section linking the αDM−reduced equal split-off set with the

egalitarian solution of Dutta and Ray (1989).

On the domain of convex games, Dutta and Ray (1989) show that the weak

constrained egalitarian solution, denoted by EL, is the unique Lorenz maximal

allocation in the core, and hence it coincides with the lexmax solution. This,

together with the fact that convex games have large core, leads to the following

corollary.

Corollary 2. Let (N, v) be a convex game. Then, φαDM (N, v) = EL(N, v).

1.5 Anti-dual reduced equal split-off set

To complement the analysis provided in the previous sections, for a given admis-

sible subgroup correspondence α ∈ A we introduce the anti-dual solution of φα,
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42 Chapter 1: Reduced games and egalitarian solutions

denoted by (φα)ad, and study its relation with the core.

The notion of duality applied to solutions and properties has been very suc-

cessful in the axiomatic approach of bankruptcy problems (see, for instance, Au-

mann and Maschler, 1985; Herrero and Villar, 2001; Thomson and Yeh, 2008),

and it has also play a role in the general framework of games connecting different

economic models and solutions. However, its applicability is limited because of

some well-established domains of games are not closed under the dual operator:

for instance, the dual game of a balanced game is not a balanced game, and the

dual game of a convex game is not a convex game. To overcome this difficulty,

Oishi and Nakayama (2009) define the anti-dual game to be the dual game with

opposite sign. They show that both balancedness and convexity of a game are

preserved under the anti-dual operator, and solutions such as the core, the nucle-

olus or the Shapley value of the anti-dual game are obtained by multiplying the

corresponding solution in the original game by −1. In this section, we show that

the anti-dual solution of the lexmax is the lexmin solution (Arin and Iñarra,

2001; Yanovskaya, 1995). Making use of this relation, we provide a characteriza-

tion of the lexmin solution. Finally, we prove that for any monotonic admissible

subgroup correspondence α ∈ Amon, the intersection between (φα)ad and the core

is either the empty set or the lexmin solution. Additionally, we find out that

(φαDM )ad becomes a singleton containing the lexmin allocation when intersects

with the core.

Let us first introduce some additional definitions.

Given a game (N, v), the dual game (N, vd) is defined by setting, for all

S ⊆ N , vd(S) = v(N) − v(N \ S). Let Γ∗ be a class of games such that, for all

N ∈ N , it holds (N, v), (N, vd) ∈ Γ∗. Given a solution σ on Γ∗, the dual solution

of σ, denoted by σd, is defined by setting σd(N, v) = σ(N, vd). A solution σ on

Γ∗ is self-dual if for all (N, v) ∈ Γ∗, σ(N, v) = σd(N, v).
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Given a game (N, v), the anti-dual game is (N,−vd). Let Γ∗∗ be a class

of games such that, for all N ∈ N , it holds (N, v), (N,−vd) ∈ Γ∗∗. The class

of balanced games and the class of convex games are examples of Γ∗∗. Given a

solution σ on Γ∗∗, the anti-dual solution of σ, denoted by σad, is defined by

setting σad(N, v) = −σ(N,−vd). A solution σ on Γ∗∗ is self-anti-dual if for

all (N, v) ∈ Γ∗∗, σ(N, v) = σad(N, v). Some well-known self-anti-dual solutions

are, among others, the core (on the domain of balanced games) and the weak

constrained egalitarian solution (on the domain of convex games).6

Definition 10. For a balanced game (N, v), the lexmin solution is defined as

Lmin(N, v) =
{
x ∈ C(N, v) | −̂x �lex −̂y for all y ∈ C(N, v)

}
.

For any balanced game (N, v), the lexmin solution is a singleton and then

sometimes we write x = Lmin(N, v). It is quite straightforward to see that the

lexmin is the anti-dual of the lexmax solution.

Proposition 7. Let (N, v) be a balanced game. Then,

Lmin(N, v) = Ladmax(N, v).

Proof. Let (N, v) be a balanced game and x = Lmin(N, v). We must check that

−x = Lmax(N,−vd), that is, −̂x �lex ŷ for all y ∈ C(N,−vd). By the definition

of lexmin solution, −̂x �lex −̂y for all y ∈ C(N, v). Now, taking into account

that the core is self-anti-dual, C(N, v) = −C(N,−vd), the above inequality is

equivalent to −̂x �lex ŷ for all y ∈ C(N,−vd). This concludes the proof.

Due to the anti-dual relation between the lexmax and the lexmin solutions,

and a characterization of the former provided by Arin et al. (2008), we get a

similar one for the lexmin solution.

Given a game (N, v) and an allocation x ∈ RN , we say that a coalition S ⊆ N

is tight at x if x(S) = v(S). Let us denote by T (v, x) the set of all tight coalitions

6See Oishi et al. (2016) for others examples of self-anti-dual solutions.
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at x. By T c(v, x) we denote the set of all tight complement coalitions at x, that

is, T c(v, x) = {S ⊆ N | x(N \ S) = v(N \ S)}.

Definition 11. (Arin et al., 2008) Given N ∈ N , let I = (I1, . . . , Ip) be an

ordered partition of N and let C be a collection of subsets of N . We say that the

pair (I, C) has property I if z = (0, . . . , 0) ∈ RN is the unique solution to the

following system of (in)equalities:

(1) z(N) = 0,

(2) z(S) ≥ 0 for all S ∈ C,

(3) for all k ∈ {1, . . . , p}, if zi = 0 for all i ∈ I1 ∪ . . .∪ Ik−1, then zi ≤ 0 for all

i ∈ Ik.

Definition 12. Let N = {1, . . . , n} be a finite set of players and x ∈ RN . We

define the ordered partition of N induced by x, I(x) = (I1, . . . , Ip), as follows:

I1 = {i ∈ N | xi ≥ xk for all k ∈ N} ,

I2 = {i ∈ N \N1 | xi ≥ xk for all k ∈ N \ I1} ,

...

Ip = {i ∈ N \ I1 ∪ . . . ∪ Ip−1 | xi ≥ xk for all k ∈ N \ I1 ∪ . . . ∪ Ip−1} .

Given I(x) = (I1, . . . , Ip), we define the complement ordered partition of N in-

duced by x, Ic(x) = (Ic1, . . . , I
c
p), as Ic1 = Ip, . . . , I

c
p = I1.

Lemma 1 in Arin et al. (2008) says that for a given balanced game (N, v),

x = Lmax(N, v) if and only if (I(x), T (v, x)) has property I.7 Here, the anti-dual

operator bring us a parallel characterization for the lexmin solution in a direct

way.

7The characterization of the lexmax solution provided by Arin et al. (2008) (Lemma 1) has

some resemblance with the characterization of the nucleolus (Schmeider, 1966) enunciated by

Kohlberg (1971) (Theorem 2).
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Lemma 3. Let (N, v) be a balanced game and x ∈ C(N, v). Then, x = Lmin(N, v)

if and only if (Ic(x), T c(v, x)) has property I.

Proof. Let (N, v) be a balanced game and x = Lmin(N, v). By Proposition 7,

Lmin(N, v) = Ladmax(N, v), and from Lemma 1 in Arin et al. (2008) we know

that −x = Lmax(N,−vd) if and only if (I(−x), T (−vd,−x)) has property I.

Taking into account that I(−x) = Ic(x) and v(N) = x(N), we obtain

T (−vd,−x) =
{
S ⊆ N | − x(S) = −vd(S)

}
,

= {S ⊆ N | x(N \ S) = v(N \ S)} ,

= T c(v, x).

Hence, x = Lmin(N, v) if and only if (Ic(x), T c(v, x)) has property I.

Finally, we state the anti-dual results of Theorems 1 and 2.

Theorem 5. Let (N, v) be a balanced game, α ∈ Amon and x ∈ (φα)ad (N, v) ∩

C(N, v). Then, Lmin(N, v) = {x}.

Proof. Let α ∈ Amon and x ∈ (φα)ad (N, v)∩C(N, v). Then, x ∈ −φα(N,−vd)∩

C(N, v) or, equivalently, −x ∈ φα(N,−vd) ∩ C(N,−vd). From Theorem 1 we

know that Lmax(N,−vd) = {−x}. Since Lmin(N, v) = −Lmax(N,−vd), we

conclude that Lmin(N, v) = {x}.

Theorem 6. Let (N, v) be a balanced game. If x ∈ (φαDM )ad (N, v) ∩ C(N, v),

then (φαDM )ad (N, v) = Lmin(N, v) = {x}.

Proof. Let x ∈ (φαDM )ad (N, v) ∩C(N, v). Then, x ∈ −φαDM (N,−vd) ∩C(N, v)

or, equivalently, −x ∈ φαDM (N,−vd)∩C(N,−vd). From Theorem 2 we know that

φαDM (N,−vd) = Lmax(N,−vd) = {−x}. Since Lmin(N, v) = −Lmax(N,−vd),

we conclude that

(φαDM )ad (N, v) = −φαDM (N,−vd) = −Lmax(N,−vd) = Lmin(N, v) = {x}.
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The next example shows that Theorem 6 does not hold on the domain of games

with large core, unlike what happens for the lexmax solution (see Corollary 1).

This example also illustrates that largeness of the core is not preserved by the

anti-dual operator.

Example 6. Let (N, v) be a game with set of players N = {1, 2, 3} and charac-

teristic function v({1}) = −1, v({2}) = v({3}) = 0 and v({1, 2}) = v({1, 3}) =

v({2, 3}) = v({1, 2, 3}) = −1. The core of this game is C(N, v) = {(−1, 0, 0)}

and clearly it has large core since (−1, 0, 0) ≤ x for any aspiration x ∈ A(N, v).

However, for any α ∈ A,

(φα)ad (N, v) = −φα(N,−vd) = {(−0.5,−0.5, 0), (−0.5, 0,−0.5)},

where Lmin(N, v) = {(−1, 0, 0)}.

Notice that φαDM (N, v) = Lmax(N, v) = {(−1, 0, 0)}.

We end this part stating sufficient conditions to guarantee when the output

of Procedure 1 is the lexmin solution.

Theorem 7. Let (N, v) be a balanced game and F−vd

∗ the allocation generated by

Procedure 1 when the input is the anti-dual game (N,−vd). If F−vd

∗ ∈ C(N,−vd),

then Lmin(N, v) = −F−vd

∗ .

Proof. By Theorem 4, Lmax(N,−vd)=F−vd

∗ . Since Lmin(N, v)=−Lmax(N,−vd),

we conclude that Lmin(N, v)=−F−vd

∗ .

1.6 Conclusions

For each admissible subgroup correspondence α ∈ A (Thomson, 1990), we have

introduced the α−reduced equal split-off set, φα, a discrete set-valued solution

concept based on egalitarian and consistency principles. Surprisingly, when we

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON EGALITARIANISM-BASED SOLUTION CONCEPTS FOR COOPERATIVE TU-GAMES 
Llúcia Mauri Masdeu 
 



Conclusions 47

consider any α ∈ A satisfying a monotonicity property in payments, weaker

than the transitivity of the reduction operation, the intersection between φα and

the core is either the empty set or a singleton containing the lexmax solution

(Arin et al., 2003). Moreover, if we make use of the Davis and Maschler (1965)

admissible subgroup correspondence, αDM ∈ A, and φαDM intersects with the

core, then it coincides with the lexmax solution. We have identified a subclass

of balanced games, that includes games with large core (Sharkey, 1982), where

this occurs. Within this subclass, we have provided a procedure to calculate the

lexmax solution. Although on the full domain of balanced games this procedure

does not work, if the output is a core element, then it matches the lexmax solution.

Finally, we find parallel results for the lexmin solution (Arin and Iñarra, 2001;

Yanovskaya, 1995) by considering the anti-dual solution of φα, (φα)ad. Interest-

ingly, for a given balanced game (N, v), if the input in the procedure defined to

calculate the lexmax solution is its anti-dual game (N,−vd) and the final output

is a core element x, then x coincides with the lexmin solution. Unfortunately,

unlike what happens for the lexmax solution, for games with large core this “anti-

dual procedure” does not work. Thus, in future research it could be interesting

to design mechanisms to find the lexmin solution in this domain. Although the

lexmax solution has been axiomatized on the domain of games with large core

(Arin et al, 2003), as far as we know, there is no proper characterization for the

lexmin solution in this domain. This, together with axiomatic characterizations

of φα, could be interesting topics for future investigations. Further studies should

also examine the relation between φα and its anti-dual counterpart (φα)ad with

other egalitarian solutions such as the equal division core (Selten, 1991). Recall

that Dutta and Ray’s strong constrained egalitarian solution (1991) selects the

Lorenz-maximal allocations within the equal division core.
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Chapter 2

On the weak constrained

egalitarian solution and other

Lorenz maximal imputations1

2.1 Introduction

As we have commented in Chapter 1, on the domain of transferable utility coali-

tional games (games, for short), different solution concepts have been motivated

by the idea of egalitarianism. One of the most prominent is the weak constrained

egalitarian solution (WCES), introduced by Dutta and Ray (1989). This solu-

tion is defined in a setting where agents believe in equality as a desirable social

goal, but their individual preferences dictate selfish behavior. The WCES yields,

whenever it exists, the unique Lorenz maximal imputation within the Lorenz

1Some results of this chapter have been published at Mathematical Social Sciences and

Economics Bulletin. Reference: Llerena, F. and Mauri, Ll. (2017) On the existence of the

Dutta-Ray’s egalitarian solution. Mathematical Social Sciences, 89: 92-99. Reference: Llerena,

F. and Mauri, Ll. (2015) On the Lorenz-maximal allocations in the imputation set. Economics

Bulletin, 4: 2475-2481.
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core, which is a proper extension of the core. Although this is a sharp result

because the Lorenz domination generates a partial ranking, this solution lacks

general existence properties. In fact, the class of convex games (Shapley, 1971)

is the only standard class of games in which its existence is guaranteed. On this

domain, Dutta and Ray (1989) describe an algorithm for finding their egalitarian

allocation and show that it belongs to the core and Lorenz dominates every other

core element. Unfortunately, several examples in the same paper show that, in a

general domain, these assertions are not true: there are games with a nonempty

core where the WCES does not exist, and vice-versa, games where both the core

and the WCES exist but the latter does not lie in the core, or games where

the WCES belongs to the core but does not Lorenz dominate every other core

element. On the domain of balanced games, an alternative route, already sug-

gested by Dutta and Ray (1989) and latter adopted by Arin and Iñarra (2001)

and Hougaard et al. (2001), is to focus on the Lorenz maximal allocations within

the core. A problem with this solution concept is that it is not single-valued. To

overcome this drawback, Arin and Iñarra (2001) and Arin et al. (2003) propose

single-valued solutions which are derived from the application of the Rawlsian

criterion on the core. On the domain of convex games all these solution concepts

produce the same outcome.

The characterization of the non-emptyness of the WCES on the full domain of

games is still an open problem and, in our opinion, a nontrivial task. A little step

in this direction is to observe that the statements of both Theorem 1 and Theorem

2 in Dutta and Ray (1989) hold under weaker conditions than convexity. With

this objective, in Section 2.3 we introduce a subclass of balanced games called

exact partition games. This class of games is rich enough to include convex games

and dominant diagonal assignment games (Solymosi and Raghavan, 2001), but

also nonsuperadditive games. On the domain of exact partition games, in Section
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2.4 we use Lorenz order to provide two axiomatic characterizations of the WCES

by means of suitable properties such as consistency (à la Davis and Maschler,

1965), rationality and two new properties inspired by von Neumann and Mor-

gensten’s notion of stable sets (1944). As particular cases, we obtain alternative

characterizations of the WCES over the domain of convex games, and of the set of

Lorenz maximal allocations within the core over the domain of balanced games.

In Section 2.5 we obtain additional axiomatizations of these solutions by making

use of the anti-duality notion for linking solutions and properties as introduced

in Oishi et al. (2016).

In the second part of this chapter, we consider the domain of essential games.

In particular, we interpret the Lorenz maximal allocations in the imputation set as

a kind of stable set à la von Neumann-Morgenstern. There, a stable set is defined

as a subset of imputations satisfying internal stability and external stability, where

the notion of stability is defined by means of a domination relation that uses

the standard order in R. Unfortunately, finding stable sets is a difficult task

and neither existence nor uniqueness are guaranteed. In Section 2.6, we propose

combining the idea of internal and external stability with the Lorenz order. In this

way, a set of imputations V is said to be Lorenz stable if it satisfies internal Lorenz

stability (no element in V is Lorenz dominated by other element in V) and external

Lorenz stability (every element outside V is Lorenz dominated by some element

in V). Clearly, this definition leads to selecting the Lorenz maximal allocations in

the imputation set. We find that the Lorenz stable set is a singleton and can be

computed with a simple formula. We also provide an axiomatic characterization

similar to the ones given by Dutta (1990) to characterize the WCES. Finally,

in Section 2.7 we connect the Lorenz stable set with the WCES and Dutta and

Ray’s strong constrained egalitarian solution (1991) (SCES). Some final remarks

conclude the chapter. We begin with some preliminaries.
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2.2 Notation and terminology

Together with the notation and terminology introduced in Chapter 1, here we

will use the additional one.

Two games (N, v) and (N, v′) are strategically equivalent if there is a

vector (d1, . . . , dn) ∈ RN and α > 0 such that for all coalitions S ⊆ N , v′(S) =

α v(S) +
∑

i∈S di. A solution σ on Γ′ ⊆ Γ satisfies covariance if for all two

strategically equivalent games (N, v), (N, v′) ∈ Γ′, σ(N, v′) = ασ(N, v)+
∑

i∈N di.

A coalition S is an equity coalition of (N, v) if S ∈ argmax∅6=R⊆N

{
v(R)
|R|

}
.

In addition, S is a maximal (w.r.t. inclusion) equity coalition of (N, v)

if S ∈ argmax∅6=R⊆N

{
v(R)
|R|

}
and there is no T ∈ argmax∅6=R⊆N

{
v(R)
|R|

}
such

that S ⊂ T . Given a coalition S ∈ N and a set A ⊆ RS, EA denotes the

set of allocations that are Lorenz undominated within A. That is, EA :=

{x ∈ A | ∄ y ∈ A such that y ≻L x} . Given a game (N, v), the Lorenz core is

defined in a recursive way as follows. The Lorenz core of a singleton coalition

is L({i} , v) = {v({i})}. Now suppose that the Lorenz core for all coalitions of

cardinality k or less have been defined, where 1 < k < |N |. The Lorenz core of a

coalition S ⊆ N of size (k + 1) is defined by

L(S, v) =
{
x ∈ RS | x(S) = v(S) and ∄ T ⊂ S and y ∈ EL(T, v) such that y > x|T

}
.

Note that, for all S ⊆ N, C(S, v) ⊆ L(S, v). The WCES, denoted by EL,

selects the vectors that are Lorenz undominated within the Lorenz core. For

all (N, v) ∈ Γ, |EL(N, v)| ≤ 1 (Dutta and Ray, 1989). The strong Lorenz

core (Dutta and Ray, 1991) is defined in a similar way, but replacing > by

≫. Dutta and Ray (1991) show that the strong Lorenz core, denoted by L∗,

coincides with the equal division core when the coalition structure is N and

there are no restrictions on coalition formation (see Selten, 1972 for details).

That is, given an essential game (N, v), L∗(N, v) = {x ∈ I(N, v) | for all ∅ 6=
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S ⊂ N, there is i ∈ S with xi ≥
v(S)
|S|

}. The SCES, denoted by EL∗, chooses the

vectors Lorenz-undominated within the strong Lorenz core. The constrained

egalitarian solution, denoted by CE, is a single-valued solution defined for

two person games as follows: let (N, v) be a game with N = {i, j} and suppose,

without loss of generality, v(i) ≤ v(j), then CEj(N, v) = max
{

v(N)
2

, v(j)
}

and

CEi(N, v) = v(N)− CEj(N, v).

The next two observations will be useful to prove our results.

Remark 4. (Hougaard et al. 2001 p. 153) Let N be a finite set of players, and

let S ⊆ N , S 6= ∅. If xS, yS ∈ RS, xS(S) = yS(S) and zN\S ∈ RN\S, then xS

Lorenz dominates yS if and only if
(
xS, zN\S

)
Lorenz dominates

(
yS, zN\S

)
.

Remark 5. Let N be a finite set of players, c ∈ R and (x1, . . . , xn) ∈ RN . It is

well-known that if
∑

i∈N xi = nc, then x is Lorenz dominated by (c, . . . , c) ∈ RN .

If
∑

i∈N xi > nc, let ǫ =
∑

i∈N xi − nc and define xǫ = (x1 −
ǫ
n
, . . . , xn −

ǫ
n
). Note

that x̂ǫ
i = x̂i −

ǫ
n
< x̂i, for all i ∈ N . Thus, xǫ is Lorenz dominated by (c, . . . , c)

which implies, for all k = 1, . . . , n, x̂1 + . . .+ x̂k > x̂ǫ
1 + . . .+ x̂ǫ

k ≥ kc.

2.3 Exact partition games

On the domain of convex games, Dutta and Ray (1989) show that the WCES

picks the payoff vector that is obtained by the following algorithm.

Let (N, v) be a convex game and EL(N, v) = {x}.

Step 1: Define v1 = v. Then find the unique coalition T1 ⊆ N such that for all

T ⊆ N , (i) v1(T1)
|T1|

≥ v1(T )
|T |

, and (ii) if v1(T1)
|T1|

= v1(T )
|T |

and T 6= T1, then |T1| > |T |.

Uniqueness of such a coalition is guaranteed by convexity of (N, v). For all i ∈ T1,

xi =
v1(T1)

|T1|
.

Step k: Suppose that T1, . . . , Tk−1 have been defined.
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Let Nk = N \ {T1 ∪ . . . ∪ Tk−1} and let (Nk, vk) be the marginal game defined

as follows:

vk(S) := v(T1 ∪ . . . ∪ Tk−1 ∪ S)− v(T1 ∪ . . . ∪ Tk−1), (2.1)

for all S ⊆ Nk.

It can be shown that (Nk, vk) is convex. Then find the unique coalition Tk ⊆ Nk

such that for all T ⊆ Nk, (i)
vk(Tk)
|Tk|

≥ vk(T )
|T |

, and (ii) if vk(Tk)
|Tk|

= vk(T )
|T |

and T 6= Tk,

then |Tk| > |T |. For all i ∈ Tk,

xi =
vk(Tk)

|Tk|
=

v(T1 ∪ . . . ∪ Tk)− v(T1 ∪ . . . ∪ Tk−1)

|Tk|
.

By construction, theWCES satisfies the following conditions: if π = (T1, . . . , Tt)

is the ordered partition of N induced by EL(N, v) = {x}, then

• (C1): xi = xj for all i, j ∈ Tk and k = 1, . . . , t,

• (C2): x(T1 ∪ . . . ∪ Tk) = v(T1 ∪ . . . ∪ Tk), for all k = 1, . . . , t,

• (C3): xi > xj if i ∈ Tk, j ∈ Th, and k < h ≤ t.

The idea underlying this procedure is that agents in the unique maximal

(w.r.t. inclusion) coalition T1 maximizing the average worth v(T1)
|T1|

share equally

the amount v(T1) among them and leave the game. Then, the remaining agents

N \ T1 play a suitable reduced convex game where, again, agents in the unique

maximal coalition with highest average worth divide its worth equally among its

members. The process stops when all agents have been paid.

Theorem 2 in Dutta and Ray (1989) states that, on the domain of convex

games, the output of this algorithm is the WCES and that it belongs to the core.

Theorem 3 in the same paper tells us that, for convex games, the WCES Lorenz

dominates every other core element. Nevertheless, an analysis of the proofs of

the aforementioned results reveals that much weaker conditions than convexity

are sufficient to guarantee the same results.
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Definition 13. Let N = {1, . . . , n} be a finite set of players and x ∈ RN . We

define the ordered partition of N induced by x, π = (N1, . . . , Nm), as follows:

N1 = {i ∈ N | xi ≥ xk for all k ∈ N} ,

N2 = {i ∈ N \N1 | xi ≥ xk for all k ∈ N \N1} ,

...

Nm = {i ∈ N \N1 ∪ . . . ∪Nm−1 | xi ≥ xk for all k ∈ N \N1 ∪ . . . ∪Nm−1} .

Theorem 8. Let (N, v) be a balanced game, x ∈ C(N, v) and let π = (N1, . . . , Nm)

be the ordered partition of N induced by x. If x (N1 ∪ . . . ∪Nk) = v (N1 ∪ . . . ∪Nk),

for all k = 1, . . . ,m, then EL (N, v) = {x} and x ≻L y, for all y ∈ C (N, v)\{x}.

Proof. First we show that x ≻L y, for all y ∈ C (N, v) \ {x}.

Assume, without loss of generality, that x1 ≥ x2 ≥ . . . ≥ xn. Then, the vector

obtained from x by rearranging its coordinates in non-increasing order is x̂ = x.

Let us denote

ck =





v(N1)
|N1|

if k = 1

v(N1∪...∪Nk−1∪Nk)−v(N1∪...∪Nk−1)

|Nk|
if k > 1

for all k = 1, . . . ,m, (m > 1).

Notice that xi = ck for all i ∈ Nk and k = 1, . . . ,m. Let y ∈ C (N, v), y 6= x.

From Remark 4 we may suppose, without loss of generality, xi 6= yi for all i ∈ N .

Since y(N1) ≥ v(N1) = x(N1) = c1|N1|, and by Remark 5, we have that for all

t = 1, . . . , |N1|,

tc1 ≤ ŷ|N11
+ . . .+ ŷ|N1 t

, (2.2)

with at least one strict inequality.

Next we are going to prove that, for all t = 1, . . . , |N2|,

x(N1) + tc2 ≤ y(N1) + ŷ|N21
+ . . .+ ŷ|N2 t

. (2.3)
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If y(N2) ≥ x (N2) = |N2|c2, again by Remark 5, tc2 ≤ ŷ|N21
+ . . . + ŷ|N2 t

, for all

t = 1, . . . , |N2|. This set of inequalities, together with (2.2), lead to expression

(2.3).

If y(N2) < x(N2), let us denote ϕ1 = y(N1) − x(N1) ≥ 0 and β1 = x(N2) −

y(N2) > 0. Let z ∈ RN2 defined as zi = yi +
β1

|N2|
for all i ∈ N2. Since x(N2) =

y(N2) + β1 = z(N2), by Remark 5 we have c2 ≤ ẑ1 = ŷ|N21
+ β1

|N2|
≤ ŷ|N21

+ β1,

which implies β1 ≥ c2 − ŷ|N21
. This last inequality, together with y (N1 ∪N2) ≥

v (N1 ∪N2) = x (N1 ∪N2) , lead to

ϕ1 = y(N1)− x(N1) ≥ x(N2)− y(N2) = β1 ≥ c2 − ŷ|N21
. (2.4)

Now from (2.4) it follows

x(N1) + c2 ≤ y(N1) + ŷ|N21
. (2.5)

If |N2| ≥ 2 and

|N2|∑

i=2

ŷ|N2 i
≥ (|N2| − 1) c2, then from Remark 5, tc2 ≤ ŷ|N22

+

. . .+ ŷ|N2 t+1
, for all t = 1, . . . , |N2| − 1, which leads, together with (2.5), to (2.3).

Otherwise, if |N2| ≥ 2 and

|N2|∑

i=2

ŷ|N2 i
< (|N2| − 1) c2, let us denote

ϕ2 = y(N1) + ŷ|N21
− x(N1)− c2 and β2 = (|N2| − 1) c2 −

|N2|∑

i=2

ŷ|N2 i
> 0.

From (2.4) it follows ϕ2 ≥ β2 > 0. Next we show that β2 ≥ c2 − ŷ|N22
. Choose

k ∈ N2 such that yk ≥ yi for all i ∈ N2 and define z ∈ RN2\{k} as zi = yi +
β2

|N2|−1

for all i ∈ N2\{k}. Since z(N2\{k}) = y(N2\{k})+β2 = x(N2)−c2, by Remark

5 we have c2 ≤ ẑ1 = ŷ|N22
+ β2

|N2|−1
≤ ŷ|N22

+ β2, which implies β2 ≥ c2 − ŷ|N22
.

Since ϕ2 ≥ β2, we obtain

ϕ2 ≥ c2 − ŷ|N22
. (2.6)

Now from (2.6) it can be checked that x(N1) + 2c2 ≤ y(N1) + ŷ|N21
+ ŷ|N22

.

Applying the same reasoning for t = 3, . . . , |N2| we obtain (2.3).
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Following the same line of argument it can be proved that, for all k = 3, . . . ,m

and all t = 1, . . . , |Nk|,

x (N1 ∪ . . . ∪Nk−1) + tck ≤ y (N1 ∪ . . . ∪Nk−1) +
t∑

j=1

ŷ|Nk j
. (2.7)

Finally, combining (2.2), (2.3) and (2.7) we get

x1 = c1 ≤ ŷ|N11
≤ ŷ1

x1 + x2 = 2c1 ≤ ŷ|N11
+ ŷ|N12

≤ ŷ1 + ŷ2
...

x1 + . . .+ x|N1| = x(N1) ≤ y(N1) ≤ ŷ1 + . . . ŷ|N1|

x1 + . . .+ x|N1|+1 = x(N1) + c2 ≤ y(N1) + ŷ|N21
≤ ŷ1 + . . . ŷ|N1|+1

...

x1 + . . .+ x|N1|+|N2| = x (N1 ∪N2) ≤ y (N1 ∪N2) ≤ ŷ1 + . . . ŷ|N1|+|N2|

...

x1 + . . .+ xn = x (N1 ∪ . . . ∪Nm) = y (N1 ∪ . . . ∪Nm) = ŷ1 + . . .+ ŷn,

with at least one strict inequality,2 which means that x ≻L y.

To see that EL(N, v) = {x}, we replicate the induction argument used by

Dutta and Ray (1989) to prove their Theorem 2 (step 2).3

Note first that EL (N1, v) =
{
x|N1

}
. Next we see that for all t = 1, . . . ,m−1, if

EL (N1 ∪ . . . ∪Nt, v) =
{
x|N1∪...∪Nt

}
, then EL (N1 ∪ . . . ∪Nt+1, v) =

{
x|N1∪...∪Nt+1

}
.

Suppose that EL (N1 ∪ . . . ∪Nt, v) =
{
x|N1∪...∪Nt

}
but EL (N1 ∪ . . . ∪Nt+1, v) 6=

{
x|N1∪...∪Nt+1

}
, for some t. Since x (N1 ∪ . . . ∪Nt+1) = v (N1 ∪ . . . ∪Nt+1) and

x ∈ C (N, v), we have

x|N1∪...∪Nt+1 ∈ C
(
N1 ∪ . . . ∪Nt+1, v|N1∪...∪Nt+1

)
⊆ L (N1 ∪ . . . ∪Nt+1, v) ,

2This strict inequality follows from expression (2.2).
3We describe in detail the induction argument for the convenience of the reader.
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and thus there exists y ∈ L (N1 ∪ . . . ∪Nt+1, v) with y ≻L x|N1∪...∪Nt+1 . Then,

ŷ1 ≤ x1

ŷ1 + ŷ2 ≤ x1 + x2

...

ŷ1 + . . .+ ŷ|N1∪...∪Nt+1| = x1 + . . .+ x|N1∪...∪Nt+1|

(2.8)

with at least one strict inequality.

Since y (N1 ∪ . . . ∪Nt+1) = x (N1 ∪ . . . ∪Nt+1), if yj ≥ xj for all j ∈ N1∪ . . .∪

Nt+1 then we would have y = x|N1∪...∪Nt+1 , in contradiction with y ≻L x|N1∪...∪Nt+1 .

As a consequence, the set J := {j ∈ N1 ∪ . . . ∪Nt+1 | yj < xj} must be non-

empty. Take then q∗ = min {k ∈ {1, . . . , t+ 1} |J ∩Nk 6= ∅}. We claim that,

yi ≤ xi for all i ∈ Nq∗ .

Indeed, if q∗ = 1, for all i ∈ N1 it follows from (2.8) that yi ≤ ŷ1 ≤ x̂1 = xi. If

q∗ > 1, from yi ≥ xi for all i ∈ N1 and expression (2.8) we have yi = xi for all

i ∈ N1.Then, again from (2.8), we obtain ŷ|N1|+1 ≤ x|N1|+1. The repetition of the

same argument leads to yi = xi for all i ∈ N1 ∪ . . . ∪ Nq∗−1. Now, taking into

account (2.8) and the definition of π we obtain, for all i ∈ Nq∗ ,

yi ≤ ŷ|N1∪...∪Nq∗−1|+1 ≤ x̂|N1∪...∪Nq∗−1|+1 = xi.

Note that q∗ ≤ t, since otherwise y (N1 ∪ . . . ∪Nt+1) < x (N1 ∪ . . . ∪Nt+1).

So, denote T = N1 ∪ . . . ∪Nq∗ . By hypothesis, EL(T, v) =
{
x|T

}
. But then,

since yi ≤ xi for all i ∈ T and there exists j∗ ∈ Nq∗ such that yj∗ < xj∗ , we

conclude that y 6∈ L (N1 ∪ . . . ∪Nt+1, v), getting a contradiction. This means

that EL(N, v) = {x}.

Remark 6. Under some conditions of positivity, a similar result was stated by

Sánchez-Soriano et al. (2014). In that paper, Proposition 2 says the following:

The vector a = (1n1a1, 1n2a2 . . . , 1nt
at) such that a1 ≥ a2 ≥ . . . ≥ at > 0 and
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∑t

i=1 ni = n, where 1ni
= (1, . . . , 1) ∈ Rni for all i = 1, . . . , t, Lorenz dominates

each other element x ∈ Rn satisfying
∑n1

i=1 xi ≥ n1a1,
∑n1+n2

i=1 xi ≥
∑2

i=1 niai,

. . .,
∑n−nt

i=1 xi ≥
∑t−1

i=1 niai, and
∑n

i=1 xi =
∑t

i=1 niai.

In our context, this implies v(N1 ∪ . . . ∪ Ni) > 0, for all i = 1, . . . ,m, being

(N1, . . . , Nm) a partition of N as described in Definition 13. At this point, it is

important to point out that the WCES fails to satisfies covariance (see Dutta and

Ray, 1989) and so the problem of existence of the WCES and the properties of

Lorenz domination can not be solved just by looking at positive games.

Let us show an example to illustrate this point. Let (N, v) be a game with

N = {1, 2, 3} and v({1}) = 0.8, v({2}) = −1, v({3}) = −2, v({12}) = −0.1,

v({13}) = −0.8, v({23}) = −3.5 and v({123}) = −1.5. Let x = (0.8,−0.9,−1.4) ∈

C(N, v). Then, the ordered partition of N induced by x is π = ({1} , {2} , {3}),

with x1 = v({1}) > 0, x1 + x2 = v({1} ∪ {2}) < 0 and x1 + x2 + x3 =

v({1} ∪ {2} ∪ {3}) < 0. From Theorem 8, EL(N, v) = {x} and x Lorenz dom-

inates every other core element. However, this last assertion can not be derived

from Proposition 2 in Sánchez-Soriano et al. (2014).

Theorem 8 generalizes both Theorem 2 and Theorem 3 in Dutta and Ray

(1989), and it can be useful to check that a core element is the WCES.

Let us introduce the class of games that satisfies the conditions stated in

Theorem 8.

Definition 14. A game (N, v) is an exact partition game if there exists a core

element x such that the ordered partition of N induced by x, π = (N1, . . . , Nm),

satisfies x(N1 ∪ . . . ∪Nk) = v(N1 ∪ . . . ∪Nk), for all k = 1, . . . ,m.

Let ΓEP denote the class of exact partition games. This class is large enough

to include convex games and dominant diagonal assignment games,4 but also

4Using different arguments, Llerena (2012) shows that on the class of dominant diagonal

assignment games, the τ -value (Tijs, 1981) satisfies the requirements of Theorem 8.
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nonsuperadditive games.

Example 7. Let (N, v) be a balanced game with set of players N = {1, 2, 3} and

characteristic function:

S v(S) S v(S) S v(S)

{1} 1 {12} 0 {123} 9

{2} 1 {13} 7

{3} 1 {23} 0

This games is not supperadditive since v({12}) < v({1}) + v({2}), but (N, v) ∈

ΓEP . Indeed, take x = (3.5, 2, 3.5) ∈ C(N, v). The ordered partition of N induced

by x, π = ({13} , {2}), satisfies x1 + x3 = v({13}) and x(N) = v(N). Hence,

EL(N, v) = {x} and (N, v) ∈ ΓEP .

2.4 Axiomatic characteritzations

The main concern of this section is to characterize the WCES over the domain

of exact partition games, ΓEP . As particular cases, we obtain new axiomatic

characterizations over the class of convex games.

On the domain of convex games, the first characterization was provided by

Dutta (1990) by means of constrained egalitarianism and consistency with respect

to both the max reduced game (Davis and Maschler, 1965) and the self reduced

game (Hart and Mas-Colell, 1989). Constrained egalitarianism is a prescriptive

property that imposes to select, for two person games, the Lorenz maximal al-

location within the core. Consistency is a sort of internal stability requirement

that relates the solution of a game to the solution of an associated game when

some players leave the original game.

A solution σ on Γ′ ⊆ Γ satisfies
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• Constrained egalitarianism if for all N ∈ N with |N | = 2, and all

(N, v) ∈ Γ′, it holds σ(N, v) = CE(N, v).

Note that any two person exact partition game is convex. Thus, the WCES

satisfies constrained egalitarianism on ΓEP .

To define consistency, we need to introduce the notion of reduced game.

Definition 15. (Davis and Maschler, 1965) Let (N, v) be a game, ∅ 6= N ′ ⊂ N

and x ∈ RN . The max reduced game relative to N ′ at x is the game
(
N ′, rN

′

M,x(v)
)

defined by

rN
′

M,x(v)(S) =





0 if S = ∅,

max
Q⊆N\N ′

{v(S ∪Q)− x(Q)} if ∅ 6= S ⊂ N ′,

v(N)− x(N \N ′) if S = N ′.

(2.9)

Remark 7. The max reduction operation is transitive (see, for instance, Chang

and Hu, 2007). That is, rN
′′

M,x|N′

(
rN

′

M,x(v)
)
= rN

′′

M,x(v), for all N ∈ N , all (N, v) ∈

Γ, all coalitions ∅ 6= N ′′ ⊂ N ′ ⊂ N and all payoff vector x ∈ RN .

In the max reduced game (relative to N ′ at x), the worth of a coalition S ⊂ N ′

is determined under the assumption that S can choose the best partners in N \N ′,

provided they are paid according to x. Max consistency says that in this max

reduced game, the original agreement should be confirmed.

A solution σ on Γ′ ⊆ Γ satisfies

• Max consistency if for all N ∈ N , all (N, v) ∈ Γ′, all N ′ ⊂ N, N ′ 6= ∅,

and all x ∈ σ(N, v), then
(
N ′, rN

′

M,x(v)
)
∈ Γ′ and x|N ′ ∈ σ

(
N ′, rN

′

M,x(v)
)
.

• Weak max consistency if for all N ∈ N , all (N, v) ∈ Γ′, all N ′ ⊂ N

with 1 ≤ |N ′| ≤ 2 and all x ∈ σ(N, v), then
(
N ′, rN

′

M,x(v)
)
∈ Γ′ and x|N ′ ∈

σ
(
N ′, rN

′

M,x(v)
)
.
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• Rich player max consistency if for all N ∈ N , all (N, v) ∈ Γ′ and all x ∈

σ(N, v), if N1 ⊆ N,N1 6= N, is the set of players with highest payoff (w.r.t.

x), then
(
N \N1, r

N\N1

M,x (v)
)
∈ Γ′ and x|N\N1 ∈ σ

(
N \N1, r

N\N1

M,x (v)
)
.

Weak max consistency applies the condition of max consistency to reduced

games with at most two players. Rich player max consistency weakens max con-

sistency just requiring this condition when rich players leave the game. Clearly,

max consistency implies both weak and rich player max consistency.

Proposition 8. The WCES satisfies max consistency on ΓEP .

Proof. For two person games, max consistency clearly holds. Let (N, v) ∈ ΓEP

and x = EL(N, v) with |N | > 2. Since the max reduction operation is transitive

(see Remark 7), it is enough to see that, for all i ∈ N ,
(
N \ {i}, rN\{i}

M,x (v)
)
∈ ΓEP

and x|N\{i} = EL
(
N \ {i}, rN\{i}

M,x (v)
)
.

Let π = (N1, . . . , Nm) be the ordered partition of N induced by x. We distin-

guish two cases:

1) If m = 1, then x =
(

v(N)
|N |

, . . . , v(N)
|N |

)
∈ C(N, v). Let i ∈ N . By max con-

sistency of the core (Peleg, 1986), x|N\{i} ∈ C
(
N \ {i}, rN\{i}

M,x (v)
)
. Hence,(

N \ {i}, rN\{i}
M,x (v)

)
∈ ΓEP and x|N\{i} = EL

(
N \ {i}, rN\{i}

M,x (v)
)
.

2) If m > 1, take k ∈ {1, . . . ,m} and i ∈ Nk. The ordered partition of N \ {i}

induced by x|N\{i} is either π′ = (N1, . . . , Nk−1, Nk \ {i}, Nk+1, . . . , Nm), if

|Nk| > 1, or π′ = (N1, . . . , Nk−1, Nk+1, . . . , Nm), otherwise.

From the max consistency of the core, the definition of max reduced game

and the fact that x(N1∪ . . .∪Nk) = v(N1∪ . . .∪Nk) for all k ∈ {1, . . . ,m},

we have
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• For h ∈ {1, . . . , k − 1},

x(N1 ∪ . . . ∪Nh) ≥ r
N\{i}
M,x (v)(N1 ∪ . . . ∪Nh)

≥ v(N1 ∪ . . . ∪Nh)

= x(N1 ∪ . . . ∪Nh),

which means that

x(N1 ∪ . . . ∪Nh) = r
N\{i}
M,x (v)(N1 ∪ . . . ∪Nh). (2.10)

• For h ∈ {k, . . . ,m},

x(N1 ∪ . . . ∪Nk \ {i} ∪ . . . ∪Nh) ≥ r
N\{i}
M,x (v)(N1 ∪ . . . ∪Nk \ {i} ∪ . . . ∪Nh)

≥ v(N1 ∪ . . . ∪Nk ∪ . . . ∪Nh)− xi

= x(N1 ∪ . . . ∪Nk ∪ . . . ∪Nh)− xi

= x(N1 ∪ . . . ∪Nk \ {i} ∪ . . . ∪Nh),

which means that

x(N1∪. . .∪Nk\{i}∪. . .∪Nh) = r
N\{i}
M,x (v)(N1∪. . .∪Nk\{i}∪. . .∪Nh).

(2.11)

From (2.10) and (2.11) it follows that x|N\{i} satisfies the conditions stated

in Theorem 8 (w.r.t. π′). Hence, we conclude that
(
N \ {i}, rN\{i}

M,x (v)
)
∈

ΓEP and x|N\{i} = EL
(
N \ {i}, rN\{i}

M,x (v)
)
.

To prove that max consistency together with constrained egalitarianism char-

acterize the WCES over the class of convex games, Dutta (1990) invokes converse

max consistency, which is the dual property of max consistency. This property

is crucial in his proof of uniqueness.

A solution σ on Γ′ ⊆ Γ satisfies

• Converse max consistency if for all N ∈ N with |N | ≥ 3, all (N, v) ∈ Γ′

and all x ∈ RN with x(N) = v(N), if for all N ′ ⊂ N with |N ′| = 2,
(
N ′, rN

′

M,x(v)
)
∈ Γ′ and x|N ′ ∈ σ

(
N ′, rN

′

M,x(v)
)
, then x ∈ σ(N, v).
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Converse max consistency says that if the projection of an efficient allocation

x is chosen for every two player max reduced game, then x should be chosen for

the original game.

Unfortunatly, Example 8 bellow reveals that the WCES is in conflict with

converse max consistency on ΓEP .

Example 8. (Arin and Iñarra, 2001) Let (N, v) be a balanced game with set of

players N = {1, 2, 3, 4} and characteristic function:

S v(S) S v(S) S v(S) S v(S)

{1} 0 {12} 0 {123} 0 {1234} 4

{2} 0 {13} 2 {124} 0

{3} 0 {14} 2 {134} 0

{4} 0 {23} 2 {234} 0

{24} 2

{34} 0

Take x = (1, 1, 1, 1) ∈ C(N, v). The ordered partition of N induced by x is

π = ({N}) and x(N) = v(N). Hence, EL(N, v) = {x} and (N, v) ∈ ΓEP . Now

choose y = (2, 2, 0, 0) ∈ C(N, v). Below, we describe the max reduced games
(
N ′, rN

′

M,y

)
relative to N ′ ⊂ N at y with |N ′| = 2,

S r
{12}
M,y (v) S r

{12}
M,y (v)

{1} 2 {12} 4

{2} 2

S r
{13}
M,y (v) S r

{13}
M,y (v)

{1} 2 {13} 2

{3} 0

S r
{14}
M,y (v) S r

{14}
M,y (v)

{1} 2 {14} 2

{4} 0

S r
{23}
M,y (v) S r

{23}
M,y (v)

{2} 2 {23} 2

{3} 0

S r
{24}
M,y (v) S r

{24}
M,y (v)

{2} 2 {24} 2

{4} 0

S r
{34}
M,y (v) S r

{34}
M,y (v)

{3} 0 {34} 0

{4} 0
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Routine verification shows that the corresponding constrained egalitarian so-

lutions associated with the different max reduced game are:

CE
(
{12}, r{12}M,y (v)

)
= (2, 2) = y|{12} CE

(
{13}, r{13}M,y (v)

)
= (2, 0) = y|{13},

CE
(
{14}, r{14}M,y (v)

)
= (2, 0) = y|{14} CE

(
{23}, r{23}M,y (v)

)
= (2, 0) = y|{23},

CE
(
{24}, r{24}M,y (v)

)
= (2, 0) = y|{24} CE

(
{34}, r{34}M,y (v)

)
= (0, 0) = y|{34}.

However, y 6= EL(N, v).

To be precise, Dutta (1990) only uses bilateral max consistency, that is, max

consistency for only two person games, together with constrained egalitarianism,

to characterize the WCES on ΓCon. Let us see that on ΓEP , these two properties

do not characterize the WCES. To do this, we introduce the egalitarian core (Arin

and Iñarra, 2001).

Definition 16. The egalitarian core of a balanced game (N, v), denoted by EgC,

is the set EgC(N, v) = {x ∈ C(N, v) | xi > xj ⇒ Sij(x) = 0}, where Sij(x) =

max{v(S)− x(S) | i ∈ S, j 6∈ S, S ⊂ N}.

Arin and Iñarra (2001) show that the egalitarian core satisfies max consis-

tency and constrained egalitarianism on ΓBal. Note that a two person balanced

games is an exact partition game since the constrained egalitarian solution is a

core element satisfying the conditions stated in Theorem 8. Thus, the egalitarian

core satisfies bilateral max consistency and constrained egalitarianism on ΓEP . In

Example 8, EL(N, v) = {(1, 1, 1, 1)} and (2, 2, 0, 0) ∈ EgC(N, v), which means

that EL(N, v) 6= EgC(N, v). The same example also illustrates that the egal-

itarian core is not max consistent on ΓEP . Indeed, consider the max reduced

game
(
N \ {4}, rN\{4}

M,y (v)
)
with y = (2, 2, 0, 0). As the reader can easily check,

EgC
(
N \ {4}, rN\{4}

M,y (v)
)
= {(2, 2, 0)} and

(
N \ {4}, rN\{4}

M,y (v)
)
6∈ ΓEP .
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The second characterization of the WCES provided by Dutta (1990) uses self

consistency (Hart and Mas-Collel, 1989). This property is defined for single-

valued solutions.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Self consistency if for all N ∈ N , all (N, v) ∈ Γ′ and all N ′ ⊂ N, N ′ 6= ∅,

then
(
N ′, rN

′

S,σ(v)
)
∈ Γ′ and, for all i ∈ N ′, σi(N, v) = σi

(
N ′, rN

′

S,σ(v)
)
,

where
(
N ′, rN

′

S,σ(v)
)
is the self reduced game of (N, v) relative to N ′ and

σ definded as follows:

rN
′

S,σ(v)(R) =





0 if R = ∅,

v(R ∪ (N \N ′))−
∑

i∈N\N ′

σi

(
R ∪ (N \N ′), v|R∪(N\N ′)

)
if ∅ 6= R ⊆ N ′.

(2.12)

In the self reduced game (relative to N ′ at σ), the worth of a coalition R ⊆ N ′

is the worth of R ∪ (N \ N ′) in the original game minus the sum of the payoffs

that the solution assigns the members of N \ N ′ for the subgame faced by the

group R ∪ (N \ N ′). Self consistency states that in this self reduced game, the

original agreement should be accepted. The next example shows that the WCES

fails to satisfies self consistency on ΓEP .

Example 9. Let (N, v) be a balanced game with set of players N = {1, 2, 3} and

characteristic function:

S v(S) S v(S) S v(S)

{1} 2 {12} 4 {123} 4

{2} 1 {13} 2

{3} 0 {23} 1.5

Take x = (2, 2, 0) ∈ C(N, v). The ordered partition of N induced by x, π =

({12} , {3}), satisfies x1+x2 = v({12}) and x(N) = v(N). Hence, from Theorem

8 we have that EL(N, v) = {x} and (N, v) ∈ ΓEP .
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Let N ′ = {13}. Then,

rN
′

S,EL(v)({1}) = v({12})− EL2

(
{12}, v|{12}

)
= 4− 2 = 2,

rN
′

S,EL(v)({3}) = v({23})− EL2

(
{23}, v|{23}

)
= 1.5− 1 = 0.5 and

rN
′

S,EL(v)({13}) = v(N)− EL2(N, v) = 4− 2 = 2.

(2.13)

Note that
(
N ′, rN

′

S,EL(v)
)
has no imputations. Thus, the WCES is not defined and

(
N ′, rN

′

S,EL(v)
)
6∈ ΓEP .

In order to characterize the WCES within the domain of exact partition games,

together with consistency property, we will make use of the following properties.

A solution σ on Γ′ ⊆ Γ satisfies

• Nonemptiness if for all N ∈ N and all (N, v) ∈ Γ′, it holds σ(N, v) 6= ∅.

• Efficiency if for all N ∈ N , all (N, v) ∈ Γ′ and all x ∈ σ(N, v), then

x(N) = v(N).

• Individual rationality if for all N ∈ N , all (N, v) ∈ Γ′, all x ∈ σ(N, v)

and all i ∈ N , then xi ≥ v({i}).

• Core selection if for all N ∈ N , all (N, v) ∈ Γ′, all x ∈ σ(N, v) and all

S ⊆ N , then x(S) ≥ v(S).

• Rich player feasibility if for all N ∈ N , all (N, v) ∈ Γ′ and all x ∈

σ(N, v), it holds x(N1) ≤ v(N1), where N1 denotes the set of players with

highest payoff (w.r.t. x).

• Internal Lorenz stability if for all N ∈ N , all (N, v) ∈ Γ′ and all x, y ∈

σ(N, v), neither x ≻L y nor y ≻L x.

• External Lorenz stability (over the core) if for all N ∈ N and all

(N, v) ∈ Γ′, if x ∈ C(N, v) \ σ(N, v), then there is y ∈ σ(N, v) such that

y ≻L x.
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Efficiency says that all the gains from cooperation should be shared among

the players. Individual rationality means that the proposed solution can not be

improved upon by a single player, while core selection extends this impossibility

to any coalition. Note that core selection, together with the feasibility assumption

of a solution, imply efficiency. Rich player feasibility states that the total amount

received by players with the highest payoff can not exceed what they can get for

themselves. Internal Lorenz stability is a natural requirement in an egalitarian

framework. External Lorenz stability (over the core) gives priority to the social

goal of equality in front of particular interests, in the sense that if a core element

is not an outcome of the solution is because there is an allocation in the solution

which is more egalitarian (w.r.t. the Lorenz criterion).

Next, we state our first characterization result.

Theorem 9. The WCES is the unique solution on ΓEP that satisfies weak max

consistency, individual rationality, internal Lorenz stability and external Lorenz

stability (over the core).

Proof. Proposition 8 implies weak max consistency, and individual rationality

comes from the fact that the WCES selects a core element. Internal Lorenz

stability is because the WCES is single-valued, and external Lorenz stability (over

the core) follows from Theorem 8.

In order to show uniqueness, suppose there is a solution σ 6= EL satisfying

the above four properties. Let (N, v) ∈ ΓEP . Note that external Lorenz stability

(over the core) implies nonemptiness. If |N | = 1, by nonemptiness and individual

rationality (and feasibility) σ(N, v) = EL(N, v). Suppose |N | ≥ 2. We first show

that σ(N, v) ⊆ C(N, v). Let x ∈ σ(N, v) and i ∈ N . Then, weak max consistency

and efficiency for one person game imply xi = r
{i}
M,x(v)({i}) = v(N)−

∑
j∈N\{i} xj,

which proves efficiency. To check coalitional rationality, let ∅ 6= S ⊂ N and i ∈

N \S. Chose k ∈ S and consider the max reduced game
(
{ik}, r{ik}M,x(v)

)
. By weak

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON EGALITARIANISM-BASED SOLUTION CONCEPTS FOR COOPERATIVE TU-GAMES 
Llúcia Mauri Masdeu 
 



Axiomatic characteritzations 73

max consistency, x|{ik} ∈ σ
(
{ik}, r{ik}M,x(v)

)
and, by individual rationality, xk ≥

r
{ik}
M,x(v)({k}) ≥ v(S)−x(S\{k}), which implies x(S) ≥ v(S). Hence, x ∈ C(N, v).

Let us denote x∗ = EL(N, v). If x∗ 6∈ σ(N, v), by external Lorenz domination

(over the core) there is y ∈ σ(N, v) such that y ≻L x∗, a contradiction. Hence,

x∗ ∈ σ(N, v). Finally, by internal Lorenz stability we conclude that σ(N, v) =

EL(N, v).

To see that the properties in Theorem 9 are logically independent we introduce

the following solutions:

• Let σ1 defined as follows: σ1(N, v) = ν∗(N, v), for each (N, v) ∈ ΓEP , where

ν∗ denotes the prenucleolus (Schmeidler, 1969).5 Then, σ1 satisfies weak

max consistency, individual rationality, internal Lorenz stability, but not

external Lorenz stability (over the core).

• Let σ2 defined as follows: σ2(N, v) = C(N, v), for each (N, v) ∈ ΓEP . Then,

σ2 satisfies weak max consistency, individual rationality, external Lorenz

stability (over the core), but not internal Lorenz stability.

• Let σ3 defined as follows: σ3(N, v) = EI(N, v), for each (N, v) ∈ ΓEP . That

is, σ3 chooses the Lorenz maximal allocations in the imputation set. Ller-

ena and Mauri (2015) show that this solution is single-valued and Lorenz

dominates all core elements. Then, σ3 satisfies individual rationality, inter-

nal Lorenz stability, external Lorenz stability (over the core), but not weak

max consistency.

5Given a game (N, v), the excess of a coalition ∅ 6= S ⊆ N at a payoff vector x ∈ RN

is v(S) − x(S). The prenucleolus is the pre-imputation that minimizes, with respect to the

lexicographic order, the vector of excesses over the set of pre-imputations.
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• Let σ4 defined as follows: for each (N, v) ∈ ΓEP

σ4(N, v) =





EL(N, v) if |N | ≥ 3 or |N | = 1,

{(xi, xj) , (xj, xi)} if N = {i, j},

where (xi, xj) = EL({i, j}, v). Then, σ4 satisfies weak max consistency,

internal Lorenz stability, external Lorenz stability (over the core), but not

individual rationality.

It is well-known that the max reduced game of a convex game relative to a

core element is also convex (see, for instance, Hokari, 2002). Moreover, on this

domain the WCES selects the unique Lorenz maximal allocation within the core

(Dutta and Ray, 1989). Thus, Theorem 9 holds on the domain of convex games.

Theorem 10. The WCES is the unique solution on ΓCon that satisfies weak max

consistency, individual rationality, internal Lorenz stability and external Lorenz

stability (over the core).

Defined on the domain of convex games, σ1, σ2, σ3 and σ4 show the indepen-

dence of the properties in Theorem 10.

Although the WCES satisfies nice properties on the domain of convex games,

and some of them are inherited on the domain of exact partition games, its exis-

tence is not linked to the nonemptiness of the core. On the domain of balanced

games, an alternative track is to put the attention on the Lorenz maximal allo-

cations within the core.

Definition 17. The Lorenz maximal core of a balanced game (N, v), denoted by

EC(N, v), is the set EC(N, v) = {x ∈ C(N, v) | ∄ y ∈ C(N, v) such that y ≻L x} .

Example 4 in Dutta and Ray (1989) shows that the Lorenz maximal core is

not single-valued. This instance also confirms that the WCES not always Lorenz

dominates other core allocations when the game is not exact partition. On the
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domain of balanced games, the Lorenz maximal core is a proper subset of the

egalitarian core (Aŕın and Iñarra, 2001), and Example 8 above illustrates that

this feature also holds on the domain of exact partition games. Thus, on ΓEP , the

egalitarian core becomes a singleton if and only if it coincides with the WCES.

By definition, the Lorenz maximal core satisfies individual rationality and

internal Lorenz stability. External Lorenz stability (over the core) follows by

compactness of the core. Arin and Iñarra (2001) and also Hougaard et al. (2001),

show that the Lorenz maximal core satisfies max consistency. Since weak max

consistency and individual rationality imply core selection, uniqueness follows

directly from internal Lorenz stability and external Lorenz stability (over the core).

Thus, properties in Theorem 9 also characterize the Lorenz maximal core on the

domain of balanced games.

Theorem 11. The Lorenz maximal core is the unique solution on ΓBal that sat-

isfies weak max consistency, individual rationality, internal Lorenz stability and

external Lorenz stability (over the core).

Solutions σ1, σ2 and σ3 defined on ΓBal, together with solution σ5 defined

bellow, show that the properties in Theorem 11 are logically independent.

• Let σ5 defined as follows: for each (N, v) ∈ ΓBal

σ5(N, v) =





EC(N, v) if |N | ≥ 3 or |N | = 1,

{(xi, xj) , (xj, xi)} if N = {i, j},

where (xi, xj) = EC({i, j}, v). Then, σ5 satisfies weak max consistency,

internal Lorenz stability, external Lorenz stability (over the core), but not

individual rationality.

Our second characterization is by means of nonemptiness, rich player max

consistency, core selection and rich payer feasibility.

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON EGALITARIANISM-BASED SOLUTION CONCEPTS FOR COOPERATIVE TU-GAMES 
Llúcia Mauri Masdeu 
 



76
Chapter 2: On the weak constrained egalitarian solution and other Lorenz

maximal imputations

Theorem 12. The WCES is the unique solution on ΓEP that satisfies nonempti-

ness, rich player max consistency, core selection, and rich player feasibility.

Proof. Proposition 8 implies rich player max consistency, nonemptiness and core

selection follow from the fact that the WCES selects a core element, rich player

feasibility comes from the structure of the WCES on ΓEP .

In order to show uniqueness, suppose there is a solution σ 6= EL satisfy-

ing the above four properties. Let (N, v) ∈ ΓEP , EL(N, v) = {x} and π =

(N1, N2, . . . , Nm) be the ordered partition of N induced by x. First, we will see

that N1 is the unique maximal equity coalition of (N, v). Let R ⊆ N be an

equity coalition. Recall that xk = v(N1)
|N1|

, for all k ∈ N1. Since x ∈ C(N, v),

there exists i ∈ R such that xi ≥ v(R)
|R|

. Thus, for each k ∈ N1, it holds

xk = v(N1)
|N1|

≥ xi ≥ v(R)
|R|

≥ v(N1)
|N1|

, which means that v(R)
|R|

= v(N1)
|N1|

. Hence, N1

is an equity coalition. Suppose that R \N1 6= ∅. Then,

x(R) =
∑

i∈N1∩R

xi +
∑

i∈R\N1

xi = |N1 ∩R|
v(N1)

|N1|
+

∑

i∈R\N1

xi

< |N1 ∩R|
v(N1)

|N1|
+ |R \N1|

v(N1)

|N1|
=

v(N1)

|N1|
|R| = v(R),

contradicting x ∈ C(N, v). Hence, R ⊆ N1.

By nonemptiness, σ(N, v) 6= ∅. Let y ∈ σ(N, v) and π′ = (R1, R2, . . . , Rk)

be the ordered partition of N induced by y. By core selection and rich player

feasibility, yi = v(R1)
|R1|

for all i ∈ R1. If R1 = N , by core selection y = x.

Otherwise, since x ≻L y, x̂1 ≤ ŷ1 which means that yi ≥
v(N1)
|N1|

for all i ∈ R1.

Hence, v(R1)
|R1|

≥ v(N1)
|N1|

. This, together with the fact that N1 is the unique maximal
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equity coalition of (N, v), leads to R1 ⊆ N1. Suppose that |R1| < |N1|. Then,

x̂1 = ŷ1

x̂1 + x̂2 = ŷ1 + ŷ2
...

x̂1 + . . .+ x̂|R1| = ŷ1 + . . .+ ŷ|R1|

x̂1 + . . .+ x̂|R1| + x̂|R1|+1 > ŷ1 + . . .+ ŷ|R1| + ŷ|R1|+1

in contradiction with x ≻L y. Thus, R1 = N1 and xi = yi for all i ∈ N1,

which imply
(
N \N1, r

N\N1

M,x (v)
)
=

(
N \R1, r

N\R1

M,y (v)
)
. By rich player max con-

sistency, y|N\N1 ∈ σ
(
N \N1, r

N\N1

M,x (v)
)

and x|N\N1 = EL
(
N \N1, r

N\N1

M,x (v)
)
,

with
(
N \N1, r

N\N1

M,x (v)
)
∈ ΓEP . Applying the same arguments as before, it can

be checked that N2 = R2 and xi = yi for all i ∈ N2. Following this reasoning step

by step we reach x = y. Thus, we conclude that σ = EL.

To see that the properties in Theorem 12 are logically independent we intro-

duce the following solutions:

• Let σ6 defined as follows: σ6(N, v) =
{(

v(N)
|N |

, . . . , v(N)
|N |

)}
∩C(N, v), for each

(N, v) ∈ ΓEP . Then, σ6 satisfies rich player max consistency, core selection

and rich player feasibility, but not nonemptiness.

• Let σ7 defined as follows: σ7(N, v) = {x ∈ C(N, v) | x(N1) = v(N1)}, for

each (N, v) ∈ ΓEP , where N1 denotes the set of players with highest payoff

(w.r.t. x). Then, σ7 satisfies nonemptiness, core selection and rich player

feasibility, but not rich player max consistency.

• Let σ8 defined as follows: σ8(N, v) =
{(

v(N)
|N |

, . . . v(N)
|N |

)}
, for each (N, v) ∈

ΓEP . Then, σ8 satisfies nonemptiness, rich player max consistency and rich

player feasibility, but not core selection.

• Let σ9 defined as follows: σ9(N, v) = EL(N, v) if |N | ≥ 3, and σ9(N, v) =

C(N, v) if |N | ≤ 2, for each (N, v) ∈ ΓEP . Then, σ9 satisfies nonempti-
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ness, rich player max consistency and core selection, but not rich player

feasibility.

Theorem 12 also holds on the domain of convex games.

Theorem 13. The WCES is the unique solution on ΓCon that satisfies nonempti-

ness, rich player max consistency, core selection and rich player feasibility.

Definded on the domain of convex games, σ6, σ7, σ8 and σ9 show the inde-

pendence of the properties in Theorem 13.

Finally, let us point out that on the domain of balanced games, the proper-

ties stated in Theorem 13 do not characterize the Lorenz maximal core since it

fails to satisfy rich player feasibility. In fact, nonemptiness, core selection and

rich player feasibility are incompatible on this domain. Indeed, suppose there

is a solution σ on ΓBal that satisfies these three properties and consider Exam-

ple 1 in Dutta and Ray (1989): let (N, v) with N = {1, 2, 3} and v({i}) = 0

for all i ∈ N , v({12}) = v({13}) = v({123}) = 1 and v({23}) = 0. Since

C(N, v) = {(1, 0, 0)}, by nonemptiness and core selection σ(N, v) = {(1, 0, 0)},

in contradiction with rich player feasibility. As was noted by these authors, this

game has no WCES. Nevertheless, Example 4 in the same paper describes a non

exact partition balanced game where the WCES belongs to the core, satisfies

rich player feasibility and its restriction to the complementary set of players with

highest payoff coincides with the WCES of the corresponding max reduced game.

Actually, in this example the WCES coincides with the lexmax solution (Arin

et al., 2003). Let us recall the definition. For any two vectors x, y ∈ RN , we

say that x �lex y if x = y or x1 < y1 or there exists k ∈ {2, . . . , |N |} such that

xi = yi for 1 ≤ i ≤ k − 1 and xk < yk. For a balanced game (N, v), the lexmax

solution is defined as Lmax(N, v) = {x ∈ C(N, v) | x̂ �lex ŷ for all y ∈ C(N, v)}.

For any balanced game (N, v), the lexmax solution is a singleton and it is Lorenz

undominated within the core.
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Next we show that the compatibility of these properties leads to the lexmax

solution.

Theorem 14. Let Γ′ ( ΓBal be a subclass of balanced games such that there

exists a solution σ that satisfies nonemptiness, rich player max consistency, core

selection and rich player feasibility. Then, σ coincides with the lexmax solution.

Proof. Let σ be a solution satisfying these four properties on Γ′. Let (N, v) ∈ Γ′,

x ∈ σ(N, v) and π = (N1, N2, . . . , Nm) be the ordered partition of N induced by

x. If m = 1, by core selection x =
(

v(N)
|N |

, . . . , v(N)
|N |

)
= Lmax(N, v). If m > 1

suppose, on the contrary, x 6= Lmax(N, v) = y. By core selection and rich

player feasibility, x(N1) = v(N1). Moreover, for all i ∈ N1, xi =
v(N1)
|N1|

> xj for all

j ∈ N\N1. Since y ∈ C(N, v), there exists i1 ∈ N1 such that yi1 ≥
v(N1)
|N1|

= xi1 and

thus ŷ1 ≥ yi1 ≥ xi1 = x̂1. This inequality, together with the fact that ŷ �lex x̂,

imply ŷ1 = x̂1 and yi1 = xi1 . If |N | > 1, then y(N1 \ {i1}) = y(N1) − yi1 =

y(N1)−
v(N1)
|N1|

≥ v(N1)−
v(N1)
|N1|

= |N1 \{i1} | ·
v(N1)
|N1|

, which implies y(N1\{i1})
|N1\{i1}|

≥ v(N1)
|N1|

.

Hence, there exists i2 ∈ N1 \ {i1} with yi2 ≥ v(N1)
|N1|

= xi2 . Since ŷ1 ≥ yi2 ≥ xi2 =

x̂1 = ŷ1, we have yi2 = xi2 . Following this process we can check that yk = xk

for all k ∈ N1, which means that
(
N \N1, r

N\N1

M,x (v)
)

=
(
N \N1, r

N\N1

M,y (v)
)
.

Moreover, by rich player max consistency,
(
N \N1, r

N\N1

M,x (v)
)
∈ Γ′ and x|N\N1 ∈

σ
(
N \N1, r

N\N1

M,x (v)
)
. In addition, by max consistency of the lexmax solution,

y|N\N1 = Lmax
(
N \N1, r

N\N1

M,y (v)
)
. Now following the reasoning above we obtain

xk = yk for all k ∈ N2. Repeating this line of argument, we can conclude that

σ (N, v) = Lmax(N, v).

The class of exact partition games, and also the class of convex games, are

instances of subdomains of balanced games satisfying the assumptions of Theorem

14 where the WCES coincides with the lexmax solution. However, there are other

subdomains. Indeed, let Γ′ be the domain of balanced games where the lexmax

solution satisfies rich player feasibility and rich player max consistency. Note
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that Γ′ 6= ∅ since ΓEP ⊂ Γ′. Now consider the following example.

Example 10. (Dutta and Ray, 1989) Let (N, v) be a balanced game with set of

players N = {1, 2, 3, 4} and characteristic function as follows:

S v(S) S v(S) S v(S) S v(S)

{1} 0 {12} 0 {123} 1.05 {1234} 2

{2} 0 {13} 0 {124} 0

{3} 0 {14} 0 {134} 1.9

{4} 0 {23} 1.05 {234} 1.9

{24} 0

{34} 1.9

Here, EL(N, v) = (0.05, 0.05, 0.95, 0.95) /∈ C(N, v) which implies (N, v) /∈

ΓEP . Moreover, x = Lmax(N, v) = (0, 0.1, 0.95, 0.95). Let us check that (N, v) ∈

Γ′. Note first that x3 + x4 = v({34}) = 1.9. Now consider the max re-

duced game
(
{12} , r{12}M,x (v)

)
. Then, r

{12}
M,x (v)({1}) = 0, r

{12}
M,x (v)({2}) = 0.1 and

r
{12}
M,x (v)({12}) = 2 − 1.9 = 0.1. By max consistency of the lexmax solution,

Lmax
(
{12} , r{12}M,x (v)

)
= x|{12} = (0, 0.1). Thus, x2 = r

{12}
M,x (v)({2}). Finally,

Lmax
(
{1} , r{1}M,x(v)

)
= x1 = r

{1}
M,x(v)({1}). Hence, (N, v) ∈ Γ′.

2.5 Anti-dual axioms

Recently, Oishi et al. (2016) apply the notion of anti-duality to axioms in order

to obtain new axiomatic characterizations of the WCES on the domain of convex

games. In this section, we use this approach to provide additional axiomatizations

of the WCES on the domain of exact partition games, that also hold on the

domain of convex games, and of the Lorenz maximal core on the domain of

balanced games.

Let us first remember some definitions on duality.
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Given a game (N, v), the dual game (N, vd) is defined by setting for all

S ⊆ N , vd(S) = v(N) − v(N \ S). Let Γ∗ be a class of games such that, for all

N ∈ N , it holds (N, v), (N, vd) ∈ Γ∗. Given a solution σ on Γ∗, the dual solution

of σ, denoted by σd, is defined by setting σd(N, v) = σ(N, vd). A solution σ on

Γ∗ is self-dual if for all (N, v) ∈ Γ∗, σ(N, v) = σd(N, v).

Given a game (N, v), the anti-dual game is (N,−vd).

Let Γ∗∗ be a class of games such that, for allN ∈ N , it holds (N, v), (N,−vd) ∈

Γ∗∗. The class of balanced games and the class of convex games are examples of

Γ∗∗. Given a solution σ on Γ∗∗, the anti-dual solution of σ, denoted by σad,

is defined by setting σad(N, v) = −σ(N,−vd). A solution σ on Γ∗∗ is self-anti-

dual if for all (N, v) ∈ Γ∗∗, σ(N, v) = σad(N, v). Some well-known self-anti-dual

solutions are, among others, the core (on the domain of balanced games) and the

WCES (on the domain of convex games).6

Making use of the anti-dual solution, Oishi et al. (2016) introduce the concept

of anti-dual axioms.

Definition 18. Given two axioms A and B, we say that

• A and B are anti-dual to each other if for all solution σ satisfying A it

holds that σad satisfies B, and conversely, for all solution σ satisfying B it

holds that σad satisfies A.

• A is self-anti-dual if for all solution σ satisfying A it holds that σad also

satisfies A.

In order to apply the anti-duality approach on the domain of exact partition

games ΓEP , first we need to see if ΓEP is closed under the anti-dual operator.

Proposition 9. The class of exact partition games ΓEP is preserved under the

anti-dual operator.

6See Oishi et al. (2016) for others examples of self-anti-dual solutions.

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON EGALITARIANISM-BASED SOLUTION CONCEPTS FOR COOPERATIVE TU-GAMES 
Llúcia Mauri Masdeu 
 



82
Chapter 2: On the weak constrained egalitarian solution and other Lorenz

maximal imputations

Proof. Let (N, v) ∈ ΓEP . Then, there exists x ∈ C(N, v) such that the ordered

partition of N induced by x, π = (N1, . . . , Nm), satisfies x(N1∪. . .∪Nk) = v(N1∪

. . .∪Nk) for all k = 1, . . . ,m. It is straightforward to check that −x ∈ C(N,−vd)

and the ordered partition of N induced by −x is π′ = (Nm, . . . , N1) satisfying

−x(Nm) = −vd(Nm), −x(Nm ∪ Nm−1) = −vd(Nm ∪ Nm−1), and so on. Hence,

(N,−vd) ∈ ΓEP .

The following remark will be of help to prove that the WCES is self-anti-dual

on the domain of exact partition games, and that the Lorenz maximal core is

self-anti-dual on the domain of balanced. This fact will allow us to detect new

axiomatic characterizations of these solutions by means of the anti-dual axioms

of the ones involved in Theorems 9, 10, 11, 12 and 13.

Remark 8. Given N ∈ N , for any x, y ∈ RN with x(N) = y(N) it holds that

x ≻L y ⇐⇒ −x ≻L −y. (2.14)

For any x ∈ RN , denote by x̄ = (x̄1, . . . , x̄n) the vector obtained from x by

rearranging its coordinates in a non-decreasing order, that is, x̄1 ≤ x̄2 ≤ . . . ≤ x̄n.

Let x, y ∈ RN with x(N) = y(N). We know that

x ≻L y ⇐⇒
k∑

j=1

x̄j ≥
k∑

j=1

ȳj, (2.15)

for all k ∈ {1, . . . , |N |} with at least one strict inequality. Or equivalently,

x ≻L y ⇐⇒
k∑

j=1

x̂j ≤
k∑

j=1

ŷj, (2.16)

for all k ∈ {1, . . . , |N |} with at least one strict inequality, where x̂1 ≥ . . . ≥ x̂n,
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and ŷ1 ≥ . . . ≥ ŷn. Combining (2.15) and (2.16) we obtain,

x ≻L y ⇐⇒
∑k

j=1 x̄j ≥
∑k

j=1 ȳj

⇐⇒ −
∑k

j=1 x̄j ≤ −
∑k

j=1 ȳj

⇐⇒
∑k

j=1 −̂xj ≤
∑k

j=1 −̂yj

⇐⇒ −x ≻L −y

(2.17)

for all k ∈ {1, . . . , |N |} with at least one strict inequality.

Now we have all the tools to state that both the WCES and the Lorenz

maximal core are self-anti-dual.

Proposition 10. On the domain of exact partition games ΓEP , the WCES is

self-anti-dual.

Proof. Let (N, v) ∈ ΓEP and x = ELad(N, v). Notice that x ∈ C(N, v). Then,

x = −EL(N,−vd) ⇐⇒ −x ≻L y for all y ∈ C(N,−vd) (by Proposition 9 and

Theorem 8) ⇐⇒ x ≻L −y for all −y ∈ −C(N,−vd) = C(N, v) (by Remark 8)

⇐⇒ x = EL(N, v).

The same proof can be applied to show that the WCES is self-anti-dual on

the domain of convex games.7

Proposition 11. On the domain of balanced games, the Lorenz maximal core is

self-anti-dual.

Proof. Let (N, v) be a balanced game. We must show that EC(N, v) =

ECad(N, v). Take x ∈ EC(N, v) and suppose that x 6∈ ECad(N, v). Then, −x 6∈

EC(N,−vd) and so there is y ∈ C(N,−vd) such that y ≻L −x or, equivalently,

−y ≻L x (by Remark 8) where −y ∈ −C(N,−vd) = C(N, v), in contradiction

with x ∈ EC(N, v). Similarly it can be checked that ECad(N, v) ⊆ EC(N, v).

7Oishi et al. (2016) use an alternative proof to claim that the WCES is self-anti-dual on the

domain of convex games.
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Now, we are going to determine the anti-dual axioms of the ones that appear

in the above characterizations. It is quite natural to expect that the anti-dual

axiom of individual rationality will recommend that the payoff assigned to a player

should be bounded from above by his marginal contribution to the grand coalition.

Formally, a solution σ on Γ′ ⊆ Γ satisfies

• Upper boundedness if for all N ∈ N , all (N, v) ∈ Γ′, all x ∈ σ(N, v) and

all i ∈ N , then xi ≤ v(N)− v(N \ {i}).

From the Lorenz equivalence formulate in (2.14), it comes that both internal

Lorenz stability and external Lorenz stability (over the core) are self-anti-dual.

In the next two propositions we assume that, if x, y ∈ σ(N, v), then x(N) =

y(N), for all game (N, v) and all solution σ.

Proposition 12. Let σ be a solution on a domain Γ∗∗ such that, for all (N, v) ∈

Γ∗∗ and all x, y ∈ σ(N, v), it holds that x(N) = y(N). If σ satisfies internal

Lorenz stability, then σad also satisfies it.

Proof. Let σ be a solution on Γ∗∗ satisfying the above conditions. Let (N, v) ∈

Γ∗∗ and x, y ∈ σad(N, v). Then, −x,−y ∈ σ(N,−vd). By internal Lorenz stability

of σ, neither −x ≻L −y nor −y ≻L −x. From Remark 8 this is equivalent to

neither x ≻L y nor y ≻L x, which mean that σad also satisfies internal Lorenz

stability.

Proposition 13. Let σ be a solution on a domain Γ∗∗ such that, for all (N, v) ∈

Γ∗∗ and all x, y ∈ σ(N, v), it holds that x(N) = y(N). If σ satisfies external

Lorenz stability (over the core), then σad also satisfies it.

Proof. Let σ be a solution on Γ∗∗ satisfying the above conditions. Let (N, v) ∈

Γ∗∗ and x ∈ C(N, v) \ σad(N, v). That is, x ∈ C(N, v) \ −σ(N,−vd). Since the

core is self-anti-dual, x ∈ Cad(N, v) = −C(N,−vd). By external Lorenz stability
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(over the core) of σ, there is y ∈ σ(N,−vd) such that y ≻L −x. From Remark 8

this is equivalent to −y ≻L x, where −y ∈ −σ(N,−vd) = σad(N, v). Thus, σad

also satisfies external Lorenz stability (over the core).

Oishi et al. (2016) show that max consistency is self-anti-dual, and that

complement consistency (Moulin, 1985) and projected consistency (Funaki, 1998)

are anti-dual to each other. With the aim to generalize these results, we make

reference to the notion of admissible subgroup correspondence (Thomson,

1990).

Definition 19. An admissible subgroup correspondence α : N → N is a corre-

spondence that associates with each N ∈ N a non-empty list α(N) of coalitions

of N .

We denote by A the set of all admissible subgroup correspondences. For a

given α ∈ A, we define the α-max reduced game.

Definition 20. Let (N, v) be a game, α ∈ A, ∅ 6= N ′ ⊂ N and x ∈ RK where

N \ N ′ ⊆ K ⊆ N . The α−max reduced game relative to N ′ at x is the game
(
N ′, rN

′

α,x(v)
)
defined by

rN
′

α,x(v)(S) =





0 if S = ∅,

max
Q∈α(N\N ′)

{v(S ∪Q)− x(Q)} if ∅ 6= S ⊂ N ′,

v(N)− x(N \N ′) if S = N ′.

(2.18)

The max reduced game is a particular case when α(N) = 2N for all N ∈ N .

The complement reduced game (Moulin, 1985) is defined by α(N) = {N} for all

N ∈ N , and the projected reduced game (Funaki, 1998) by α(N) = {∅} for all

N ∈ N . The above reduction operations will be denoted by αDM , αM and αP ,

respectively.

Given α ∈ A and the corresponding α-max reduced game, we introduce α-

consistency.
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Definition 21. Let σ be a solution on Γ′ ⊆ Γ. Given α ∈ A, we say that σ

satisfies α-consistency on Γ′ if for all N ∈ N , all (N, v) ∈ Γ′, all N ′ ⊂ N,

N ′ 6= ∅, and all x ∈ σ(N, v), then
(
N ′, rN

′

α,x(v)
)
∈ Γ′ and x|N ′ ∈ σ

(
N ′, rN

′

α,x(v)
)
.

Given α ∈ A, the associated complement admissible subgroup corre-

spondence, denoted by αc ∈ A, is defined by setting, for all N ∈ N ,

αc(N) = {N \ S | S ∈ α(N)}. (2.19)

For a given α ∈ A, we will show that α-consistency and αc-consistency are

anti-dual to each other. From the observation that αDM = αc
DM and αM = αc

P

(or αP = αc
M), the Oishi’s results can be obtained as particular cases. To do this,

we need a previous lemma.

Lemma 4. Let (N, v) be a game, α ∈ A, ∅ 6= N ′ ⊂ N and x ∈ RK where

N \N ′ ⊆ K ⊆ N . Then, for all S ⊆ N ′,

rN
′

α,−x(−vd)(S) = −
(
rN

′

αc,x(v)
)d

(S). (2.20)

Proof. We can distinguish two cases:

• If ∅ 6= S ⊂ N ′,

rN
′

α,−x(−vd)(S) = max
Q∈α(N\N ′)

{
−vd(S ∪Q) + x(Q)

}

= max
Q∈α(N\N ′)

{−v(N) + v(N \ S ∪Q) + x(Q)}

= −v(N) + max
Q∈α(N\N ′)

{v(N \ S ∪Q) + x(Q)}

= −v(N) + x(N \N ′) + max
Q∈α(N\N ′)

{v(N \ S ∪Q) + x(Q)− x(N \N ′)}

= −v(N) + x(N \N ′)

+ max
Q∈α(N\N ′)

{v((N ′ \ S) ∪ (N \N ′ ∪Q))− x(N \N ′ ∪Q)}

= −

(
v(N)− x(N \N ′)− max

Q∈αc(N\N ′)
{v((N ′ \ S) ∪Q)− x(Q)}

)

= −
(
rN

′

αc,x(v)(N
′)− rN

′

αc,x(v)(N
′ \ S)

)

= −
(
rN

′

αc,x(v)
)d

(S).
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• If S = N ′,

rN
′

α,−x(−vd)(N ′) = −vd(N) + x(N \N ′)

= −(v(N)− x(N \N ′))

= −
(
rN

′

αc,x(v)
)d

(N ′).

Proposition 14. On a domain Γ∗∗, and for a given α ∈ A, α-consistency and

αc-consistency are anti-dual to each other.

Proof. Let σ be a solution on a domain Γ∗∗ satisfying α-consistency, with α ∈ A.

Let N ∈ N , (N, v) ∈ Γ∗∗, x ∈ σad(N, v) and ∅ 6= N ′ ⊂ N . By definition,

x ∈ −σ(N,−vd). Since σ satisfies α-consistency, −x|N ′ ∈ σ
(
N ′, rN

′

α,−x(−vd)
)
. By

Lemma 4, rN
′

α,−x(−vd) = −
(
rN

′

αc,x(v)
)d
, and thus −x|N ′ ∈ σ

(
N ′,−

(
rN

′

αc,x(v)
)d)

.

Hence, x|N ′ ∈ −σ
(
N ′,−

(
rN

′

αc,x(v)
)d)

= σad
(
N ′, rN

′

αc,x(v)
)
, which prove that σad

satisfies αc-consistency. In a similar way it can be showed that if a solution σ

satisfies αc-consistency, then its anti-dual σad satisfies α-consistency.

From the fact that max consistency is self-anti-dual it comes directly that

weak max consistency also does. Hence, by replacing individual rationality by

upper boundedness in Theorems 9, 10 and 11 we obtain the following additional

axiomatizations.

Theorem 15. On the domain of exact partition games ΓEP , the WCES is the

unique solution that satisfies weak max consistency, upper boundedness, internal

Lorenz stability and external Lorenz stability (over the core).

Theorem 16. On the domain of convex games ΓCon, the WCES is the unique

solution that satisfies weak max consistency, upper boundedness, internal Lorenz

stability and external Lorenz stability (over the core).
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Theorem 17. The Lorenz maximal core is the unique solution on ΓBal that sat-

isfies weak max consistency, upper boundedness, internal Lorenz stability and ex-

ternal Lorenz stability (over the core).

To check that properties in Theorems 15, 16 and 17 are independent it is

enough to consider the anti-dual solutions of the ones used to prove the indepen-

dence of the properties in Theorems 9, 10 and 11.

Finally, to obtain the anti-dual results of Theorems 12 and 13, notice first that

nonemptiness and core selection are clearly self-anti-dual. The anti-dual axioms

of rich player max consistency and rich player feasibility are, respectively, the

following.

A solution σ on Γ′ ⊆ Γ satisfies

• Poor player max consistency if for all N ∈ N , all (N, v) ∈ Γ′ and all x ∈

σ(N, v), if N1 ⊆ N,N1 6= N, is the set of players with lowest payoff (w.r.t.

x), then
(
N \N1, r

N\N1

M,x (v)
)
∈ Γ′ and x|N\N1 ∈ σ

(
N \N1, r

N\N1

M,x (v)
)
.

• Bounded minimum payoff property if for all N ∈ N , all (N, v) ∈ Γ′

and all x ∈ σ(N, v), it holds x(N1) ≥ v(N)− v(N \N1), where N1 denotes

the set of players with lowest payoff (w.r.t. x).

Poor player max consistency is a weaker version of max consistency that only

applies when players with the lowest payoffs leave the game. Bounded minimum

payoff property simple says that the total amount received by the set of players

with lowest payoff should be, at least, his marginal contribution to the grand

coalition.

Indeed, let σ be a solution satisfying rich player max consistency on a domain

Γ∗∗. Let (N, v) ∈ Γ∗∗ and x = ELad(N, v). Then, x = −EL(N,−vd). If N1

denotes the set of players with lowest payoff w.r.t. x, then N1 contains the players

with highest payoff w.r.t. −x. Thus, by rich max consistency of σ, we have that
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−x|N1 = EL
(
N \N1, r

N\N1

M,−x(−vd)
)
. By Lemma 4, and taking into account that

max consistency is self-anti-dual, r
N\N1

M,−x(−vd) = −
(
r
N\N1

M,x (v)
)d

. Hence, x|N1 =

−EL

(
N \N1,−

(
r
N\N1

M,x (v)
)d

)
= ELad

(
N \N1, r

N\N1

M,x (v)
)
, which proves that

the anti-dual of the WCES satisfies poor player max consistency.

To check that bounded minimum payoff property is the anti-dual of rich player

feasibility, consider a solution σ satisfying rich player feasibility on a domain Γ∗∗.

Let (N, v) ∈ Γ∗∗ and x = ELad(N, v). Then, x = −EL(N,−vd). As before, if

N1 denotes the set of players with lowest payoff w.r.t. x, then N1 contains the

players with highest payoff w.r.t. −x. By rich player feasibility of σ, −x(N1) ≤

−vd(N1) = −v(N) + v(N \N1) or, equivalently, x(N1) ≥ v(N)− v(N \N1).

Now, by replacing rich player max consistency and rich player feasibility in

Theorems 12 and 13 by poor player max consistency and bounded minimum payoff

property, respectively, we can state the following characterizations.

Theorem 18. On the domain of exact partition games ΓEP , the WCES is the

unique solution that satisfies nonemptiness, poor player max consistency, core

selection and bounded minimum payoff property.

Theorem 19. On the domain of convex games ΓCon, the WCES is the unique

solution that satisfies nonemptiness, poor player max consistency, core selection

and bounded minimum payoff property.

To check that properties in Theorems 18 and 19 are independent it is enough

to consider the anti-dual solutions of the ones used to prove the independence of

the properties in Theorems 12 and 13.

2.6 Lorenz stable set

Until now, we have considered the core as the reference set from which to select

Lorenz maximal allocations. On the domain of exact partition games (an also
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on the domain of convex games) this leads to the WCES. However, on the whole

domain of balanced games, the set of Lorenz maximal core allocations is not

a singleton and the WCES may not exist. To overcome this drawback, Dutta

and Ray (1991) introduce the SCES, a solution concept that chooses the Lorenz

maximal allocations in the equal division core (Selten, 1972). In this section,

we focus on the axiomatic approach of the Lorenz maximal allocation in the

imputation set. We call this solution the Lorenz stable set. The reason is that it

can be interpreted as a kind of stable set à la von Neumann-Morgenstern where

the domination relation is base on the Lorenz order. Finally, we observe that the

WCES and the SCES are connected by the Lorenz stable set.

Given an essential game (N, v), for X ⊆ I(N, v) we denote by Lv(X) the set

of all imputations Lorenz dominated by some imputation of the set X. Formally,

Lv(X) = {y ∈ I(N, v) | ∃ x ∈ X, x ≻L y}. A non-empty set of imputations

V ⊆ I(N, v) is a Lorenz stable set for the game (N, v) if it satisfies the next

two conditions:

1. V is internally Lorenz stable: no imputation in V Lorenz dominates another

imputation in V . Formally, V ∩ Lv(V) = ∅.

2. V is externally Lorenz stable: any imputation outside the set V is dominated

by some imputation in V . Formally, V ∪ Lv(V) = I(N, v).

On the domain of essential games, we find that the Lorenz stable set is a

singleton and admits a formula that has the same flavor of the constrained equal

awards rule for bankruptcy problems. On this domain, we provide an axiomatic

characterization of this solution, similar to the ones provided by Dutta (1991) by

only changing the notion of reduced game.

Definition 22. Let (N, v) be an essential game. The vector Iv ∈ RN is defined

as

Ivi := max{v(i), λ}, (2.21)
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for all i ∈ N, where λ is chosen so as to achieve efficiency.

Theorem 20. Let (N, v) be an essential game. Then, there is a unique Lorenz

stable set V. Moreover, V = {Iv}.

Proof. Let (N, v) be an essential game with N = {1, . . . , n}. Define the game

(N, v∗) as follows: v∗(S) =
∑

i∈S v(i) for all S ⊂ N , and v∗(N) = v(N). Notice

that (N, v∗) is convex and C(N, v∗) = I(N, v). Since for convex games the WCES

Lorenz dominates every other point in the core, we only need to check that

EL(N, v∗) = {Iv}. Assume, w.l.o.g, v(1) ≥ . . . ≥ v(n). If v(1) ≤ v∗(N)
n

, then

EL(N, v∗) =
{
Iv =

(
v∗(N)

n
, . . . , v

∗(N)
n

)}
. Otherwise, take k ∈ {1, . . . , n − 1},

n ≥ 2, and define the vector

yk :=

(
v(1), . . . , v(k),

v(N)− (v(1) + . . .+ v(k))

n− k
, . . . ,

v(N)− (v(1) + . . .+ v(k))

n− k

)
.

Observe that Iv = yk
∗
, where k∗ = min{k ∈ {1, . . . , n − 1} | yki ≥ v(i) for all i ∈

N}. Let P = {S1, . . . , Sm} be the partition of N generated by the Dutta and Ray

(1989) algorithm to compute EL(N, v∗). Denote EL(N, v∗) = {z}. Notice that

m ≥ 2 because v(1) > v∗(N)
n

. It can be easily checked that zi = v(i) for all i ∈ Sh

and all h ∈ {1, . . . ,m−1}, and zi =
v(N)−

∑
i∈N\Sm

v(i)

|Sm|
for all i ∈ Sm. Hence, z = yk

where k = |S1 ∪ . . . ∪ Sm−1|. Suppose k > k∗. By the minimality of k∗, we have

zi ≤ yk
∗

i for all i ∈ {1, . . . , k∗, . . . , k}. Moreover, for all i > k, since i ∈ Sm and

k ∈ Sm−1, we have zi < zk = v(k) ≤ yk
∗

k = yk
∗

i . Then, z(N) < yk
∗
(N) = v(N), a

contradiction. Hence, k = k∗ and EL(N, v∗) = {Iv}.

From Theorem 20 and the characterization of Lorenz domination given by

Hardy et al. (1934),8 it follows that the Lorenz stable solution selects the allo-

cation in the imputation set that minimize the Euclidean distance to the equal

8If x and y are two vectors in Rn with
∑n

i=1 xi =
∑n

i=1 yi, the following statements are

equivalent: (a) x Lorenz dominates y; (b) for any strictly concave function U : R −→ R, we

have
∑n

i=1 U(xi) >
∑n

i=1 U(yi).
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division payoff vector. Formally, for all essential game (N, v),

Iv = arg min
x∈I(N,v)

∑

i∈N

(
xi −

v(N)

|N |

)2

. (2.22)

As we have mentioned before, on the domain of convex games Dutta (1990)

characterizes the weak constrained egalitarian solution (Dutta and Ray, 1989)

by means of constrained egalitarianism and either max consistency or self consis-

tency. Interestingly, on the domain of essential games, replacing max consistency

or self consistency by projected consistency (Funaki, 1998) we characterize the

Lorenz stable set.9

Definition 23. (Funaki, 1998) Let (N, v) be a game, ∅ 6= N ′ ⊂ N and x ∈ RK

where N \ N ′ ⊆ K ⊆ N . The projected reduced game relative to N ′ at x is the

game
(
N ′, rN

′

P,x(v)
)
defined by

rN
′

P,x(v)(S) =





v(S) if ∅ 6= S ⊂ N ′,

v(N)− x(N \N ′) if S = N ′.
(2.23)

In the projected reduced game (relative to N ′ at x), when players in N \ N ′

leave the game, for a proper subcoalition S ⊂ N ′ cooperation is no longer possible

with them. Projected consistency tell us that in the projected reduced game the

initial agreement should be adopted.

A solution σ on Γ′ ⊆ Γ satisfies

• Projected consistency if for all N ∈ N , all (N, v) ∈ Γ′, all N ′ ⊂ N, N ′ 6=

∅, and all x ∈ σ(N, v), then
(
N ′, rN

′

P,x(v)
)
∈ Γ′ and x|N ′ ∈ σ

(
N ′, rN

′

P,x(v)
)
.

The next result connects consistency and constrained egalitarianism with ef-

ficiency.

9Projected consistency has been used to characterize, among others, the equal division core

(Bhattacharya, 2004) or the undominated core (Llerena and Rafels, 2007).
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Lemma 5. Let σ be a single-valued solution on ΓEss that satisfies constrained

egalitarianism and either projected consistency, max consistency or self consis-

tency. Then, σ satisfies efficiency.

Proof. Let σ be a single-valued solution on ΓEss that satisfies constrained egal-

itarianism and projected consistency. Let ({i}, v) be a one-person game and for

some j ∈ N\{i} consider the essential game ({i, j}, v′) defined by v′(i) = v′(ij) =

v(i) and v′(j) = 0. By constrained egalitarianism, σ({i, j}, v′) = (v(i), 0). It is

easy to check that ({i}, v) =
(
{i}, r{i}P,x(v

′)
)
where x = σ({i, j}, v′). By projected

consistency, σ({i}, v) = σ
(
{i}, r{i}P,x(v

′)
)

= σi({i, j}, v
′) = v(i), which implies

efficiency for one-person game. Let N ∈ N with |N | ≥ 2, (N, v) ∈ ΓEss and

i ∈ N . Let us denote x = σ(N, v). By projected consistency and efficiency for

one-person game, σi(N, v) = σi

(
{i}, r{i}P,x(v)

)
= v(N)−

∑
j∈N\{i} σj(N, v), which

proves efficiency.

The same reasoning holds replacing projected consistency by either max con-

sistency or self consistency.

Theorem 21. On the domain of essential games, the only single-valued solution

satisfying projected consistency and constrained egalitarianism is the Lorenz stable

set.

Proof. Constrained egalitarianism is obvious. Next we prove projected consis-

tency. Let N ∈ N , (N, v) ∈ ΓEss, x = Iv and (T, rTP,x(v)) be the projected

reduced game relative to ∅ 6= T ⊂ N at x. Since x|T ∈ I(T, rTP,x(v)), we have

(T, rTP,x(v)) ∈ ΓEss. Let y = Ir
T
P,x(v) be the Lorenz stable set of (T, rTP,x(v)) and

suppose y 6= x|T . Then, y ≻L x|T . Now consider the vector z = (x|N\T , y) ∈ RN .

Since z ∈ I(N, v), x ≻L z, which implies x|T ≻L y, a contradiction.10 Hence,

x|T = y. To prove uniqueness, let σ be a single-valued solution on ΓEss satis-

fying constrained egalitarianism and projected consistency. From Lemma 5 we

10See Remark 4.
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know that these two properties together imply efficiency. For |N | = 1 and

|N | = 2 uniqueness follows from efficiency and constrained egalitarianism, re-

spectively. Let (N, v) ∈ ΓEss with N = {1, 2, . . . , n}, n ≥ 3, and x = σ(N, v).

Let T = {i, j} ⊂ N . By constrained egalitarianism and projected consistency,

x|T = σ(T, rTP,x(v)) = CE(T, rTP,x(v)). Thus, x ∈ I(N, v). If x1 = . . . = xn, then

x = Iv. Otherwise, suppose, w.l.o.g., x1 > . . . > xk+1 = . . . = xn, for some

k ∈ {1, . . . , n−1}. For i ∈ {1, . . . , k}, let T = {i, i+1}. By projected consistency,

x|T = CE(T, rTP,x(v)). Since xi > xi+1, xi = v(i) for all i ∈ {1, . . . , k}. Now, by

efficiency we obtain xi =
v(N)−(v(1)+...+v(k))

n−k
for all i ∈ {k+1, . . . , n}. Thus, for all

i ∈ N, xi = max{v(i), λ} being λ = v(N)−(v(1)+...+v(k))
n−k

, and x = Iv.

The axioms in Theorem 21 are independent. For instance, the single-valued so-

lution σ1 defined, for allN ∈ N and all (N, v) ∈ ΓEss, as σ1(N, v) =
(

v(N)
|N |

, . . . , v(N)
|N |

)
,

satisfies projected consistency but not constrained egalitarianism. The single-

valued solution σ2 defined, for all N ∈ N and all (N, v) ∈ ΓEss, as σ2(N, v) =

CE(N, v) if |N | = 2, and σ2(N, v) = (v(i))i∈N otherwise, satisfies constrained

egalitarianism but not projected consistency.

The above characterization opens an interesting question: on the domain

of essential games, which is the set of rules that emerges from substituting in

Theorem 21 projected consistency by either max consistency or self consistency.

As we will see, the combination of these properties leads to imposibility results.

Theorem 22. There is no single-valued solution on ΓEss that satisfies

1. max consistency and constrained egalitarianism.

2. self consistency and constrained egalitarianism.

Proof.

1. Suppose, on the contrary, there is a single-valued solution on ΓEss that

satisfies max consistency and constrained egalitarianism. By Lemma 5,
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σ satisfies efficiency. Next we see that it also satisfies individual ratio-

nality. Let (N, v) ∈ ΓEss. If |N | = 1 or |N | = 2, by efficiency and

constrained egalitarianism we have that σ(N, v) ∈ I(N, v). If |N | ≥ 3,

choose two arbitrary players i, j ∈ N and consider the max reduced game(
{i, j}, r{i,j}M,x (v)

)
, being x = σ(N, v). By max consistency and constrained

egalitarianism, σ|{i,j}(N, v) = CE
(
{i, j}, r{i,j}M,x (v)

)
≥ (v(i), v(j)). Hence,

σ(N, v) ∈ I(N, v). Let (N, v) ∈ ΓEss with N = {1, 2, 3} and characteristic

function as follows: v(i) = 0 for all i ∈ N , and v(S) = 1 for any other

coalition S ⊆ N . Denote σ(N, v) = x. By individual rationality 0 ≤ xi ≤ 1,

for all i ∈ N . Now consider the max reduced game
(
{1, 2}, r{1,2}M,x (v)

)
.

Note that r
{1,2}
M,x (v)(1) = r

{1,2}
M,x (v)(2) = max{0, 1 − x3} = 1 − x3, and

r
{1,2}
M,x (v)(12) = 1−x3. By max consistency,

(
{1, 2}, r{1,2}M,x (v)

)
∈ ΓEss, which

means that 2(1− x3) ≤ 1− x3 or, equivalently, 1 ≤ x3. This, together with

the fact that x3 ≤ 1, imply x3 = 1. In a similar way, it can be checked that

x1 = x2 = 1, contradicting efficiency.

2. Suppose, on the contrary, there is a single-valued solution on ΓEss that

satisfies self consistency and constrained egalitarianism. By Lemma 5,

σ satisfies efficiency. Let (N, v) ∈ ΓEss with N = {1, 2, 3} and char-

acteristic function as follows: v(i) = 0 for all i ∈ N , and v(S) = 1

for any other coalition S ⊆ N . Now consider the self reduced game(
{1, 2}, r{1,2}S,σ (v)

)
. Recall that r

{1,2}
S,σ (v)(1) = v(13) − σ3

(
{1, 3}, v|{1,3}

)
,

r
{1,2}
S,σ (v)(2) = v(23)−σ3

(
{2, 3}, v|{2,3}

)
and r

{1,2}
S,σ (v)(12) = v(N)−σ3 (N, v).

By constrained egalitarianism, σ3

(
{1, 3}, v|{1,3}

)
= σ3

(
{2, 3}, v|{2,3}

)
= 1

2
.

Hence, r
{1,2}
S,σ (v)(1) = r

{1,2}
S,σ (v)(2) = 1 − 1

2
= 1

2
. By self consistency,(

{1, 2}, r{1,2}S,σ (v)
)

∈ ΓEss, which implies 1
2
+ 1

2
≤ v(N) − σ3(N, v) = 1 −

σ3(N, v) or, equivalently, σ3(N, v) ≤ 0. In a similar way, it can be checked

that σ1(N, v) ≤ 0 and σ2(N, v) ≤ 0, contradicting efficiency.
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2.7 Connecting the weak and the strong con-

strained egalitarian solutions

Dutta and Ray (1991) characterize the class of superadditive games in which

WCES and SCES coincide. Here we show that, on the domain of all games,

the unique weak constrained egalitarian allocation happens to be a strong if

and only if the two set of allocations are singleton containing the Lorenz stable

allocation. Consequently, for superadditive games we find an easy way to check

when coincidence occurs.

Theorem 23. Let (N, v) be an game. Then, the following statements are equiv-

alent:

(i) EL(N, v) ∩ EL∗(N, v) 6= ∅.

(ii) EL(N, v) = {Iv}.

(iii) EL(N, v) = EL∗(N, v) 6= ∅.

Proof. (i) ⇒ (ii): Let EL(N, v) ∩ EL∗(N, v) = {y} and let us assume, w.l.o.g.,

that y1 ≥ y2 ≥ . . . ≥ yn. If y1 = yn, then y =
(

v(N)
|N |

, . . . , v(N)
|N |

)
and so y = Iv.

If y1 > yn, then T = {i ∈ N | yi > yn} 6= ∅. Let j∗ ∈ T , by Lemma 2 of Dutta

and Ray (1991)11 there exists an equity coalition R containing j∗ and such that

v(R)
|R|

= yj∗ and R ⊂ {i ∈ N | yi < yj∗} ∪ {j∗}. If |R| = 1, then yj∗ = v(j∗).

Otherwise, if |R| ≥ 2, then EL(R, v) =
{(

v(R)
|R|

, . . . , v(R)
|R|

)}
. Since y ∈ EL(N, v)

there exists i∗ ∈ R such that yi∗ > v(R)
|R|

= yj∗ , getting a contradiction. Then

R = {j∗}. Thus, yi = v(i) for all i ∈ T and, by efficiency, yi =
v(N)−

∑
j∈T v(j)

|N |−|T |
, for

all i ∈ N \T . We know that Iv =
(
v(1), . . . , v(k),

v(N)−
∑k

i=1 v(i)

n−k
, . . . ,

v(N)−
∑k

i=1 v(i)

n−k

)

11Lemma 2 in Dutta and Ray (1991) states the following: For some S ⊆ N , let y ∈ EL∗(S, v).

For any i ∈ S, if yi > min
j∈S

yj, then there exists an equity coalition T containing i and satisfying:

(i) v(T )
|T | = yi and (ii) T ⊂ {k ∈ S | yk < yi} ∪ {i}.
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where k = min
{
j ∈ N |

v(N)−
∑j

i=1 v(i)

n−j
≥ v(j + 1)

}
. Since y ∈ I(N, v), |T | = t ≥

k. Suppose t > k. For all i ∈ {1, . . . , k}, Ivi = yi = v(i), for all i ∈ {k + 1, . . . , t},

Ivi ≥ v(i) = yi, and for all i ∈ {t+ 1, . . . , n}, Ivi = Ivt ≥ v(t) = y(t) > yi. But

then, v(N) = Iv(N) > y(N) in contradiction with y(N) = v(N). Hence, k = t

and y = Iv.

The implication (ii)⇒ (iii) follows from L(N, v) ⊆ L∗(N, v) ⊆ I(N, v) and the

fact that Iv Lorenz dominates every other point in the imputation set. Obviously

(iii) ⇒ (i).

As a consequence of Theorem 23 we obtain the following corollary for super-

additive games.

Corollary 3. Let (N, v) be a superadditive game. Then, the following statements

are equivalent:

(i) EL(N, v) = EL∗(N, v).

(ii) Iv ∈ C(N, v).

Proof. Notice first that for superadditive games, EL∗(N, v) 6= ∅. From Theorem

23, EL(N, v) = EL∗(N, v) 6= ∅ implies EL(N, v) = EL∗(N, v) = {Iv}. On this

domain, both solution coincide when the unique strong constrained egalitarian

allocation belongs to the core (Dutta and Ray, 1991), thus Iv ∈ C(N, v). Con-

versely, since C(N, v) ⊆ L(N, v) ⊆ L∗(N, v) and Iv Lorenz dominates every other

point in the imputation set, we have EL(N, v) = EL∗(N, v) = {Iv}.

2.8 Conclusions

We have introduced a subclass of balanced games, called exact partition games

ΓEP . This class is large enough to include convex games and dominant diagonal

assignment games, but also nonsuperadditive games. On ΓEP , we have shown that
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the WCES behaves as it does in convex games, that is, it exists, belongs to the

core and Lorenz dominates every other core element. We have also provided two

axiomatic characterizations. The former uses weak max consistency, individual

rationality, internal Lorenz stability and external Lorenz stability (over the core).

The second characterization uses nonemptiness, rich player max consistency, core

selection and rich player feasibility. Interestingly, both characterizations hold over

the domain of convex games. The first one can also be extended to balanced games

characterizing the Lorenz maximal core on this domain. On the full domain of

games, nonemptiness, core selection and rich player feasibility are incompatible.

Nevertheless, we observe that if these properties, together with rich player max

consistency, can be reconciled on an admissible subdomain of balanced games,

then they determine the lexman solution. Although we have not reached any

definitive conclusion, the above characterization leads us to conjecture that if the

WCES exists and belongs to the core, then it coincides with the lexmax solution.

Since the WCES is self-anti-dual (see Oishi et al., 2016), in Section 2.5 we studied

the anti-dual axioms of the ones used in the above characteritzations and found

new axiomatizations.

For future research, it could be worthwhile studying whether the characteriza-

tions of the WCES given by Klijn et al. (2000), Hougaard et al. (2001) and Arin

et al. (2003) over the domain of convex games can be extended to ΓEP . It could

also be interesting to analyze what sort of solutions emerge if the properties used

in these axiomatizations are compatible on the whole domain of balanced games.

On the domain of essential games, we have introduced the Lorenz stable set

and shown that it is single-valued and selects the unique Lorenz maximal alloca-

tion in the imputation set. Dutta (1990) characterizes the WCES on the domain

of convex games by using constrained egalitarianism and either max consistency

or self consistency. On the domain of essential games, we have shown that these
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properties are incompatible together. However, by replacing max consistency and

self consistency with projected consistency we obtain a parallel characterization of

the Lorenz stable set. Finally, we find that this solution connects the WCES with

the SCES. Another interesting issue for future research would be to investigate an

alternative axiomatic characterization of the Lorenz stable set by replacing the

prescriptive property of constrained egalitarianism with other suitable properties.
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