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Abstract 

Biosensors are analytical devices based on the specific interaction between a biological 

sensing element and its target molecule in combination with a transducer for signal 

processing. They have been exploited in many practical applications in several research fields, 

ranging from medical diagnostics to environmental analysis, and have great potential for 

commercialization. However, despite these great expectations, there are only a few examples 

of commercial biosensors, with the market mainly being driven by glucose sensors which 

accounts for approximately 85 % of the world biosensor market. This slow penetration into the 

market could be attributed to the elevated development and production costs and some 

important technological hurdles, such as sensitivity, reproducibility, real sample matrix effects, 

stability and quality assurance.  In this work, we report on an easy strategy to reduce 

manufacturing costs by simplifying the surface immobilisation method of receptor proteins to 

a single step.  This approach was achieved by the chemical introduction of disulfide groups into 

the protein structure and was applied to both antibodies and antigens for the optical and 

electrochemical detection of ischemic stroke and celiac disease related proteins respectively. 

Several potential advantages, such as miniaturisation, integration, multiplexing analysis, as 

well as the use of low cost disposable chips, should be exploited for the biosensors to impact 

on the market and migrate from sophisticated laboratories to the point-of-care. Working in 

that direction, we also report on a procedure for the multiplexed amplification and detection 

of seven genetic markers for breast cancer with a single tumour cell sensitivity using a low-

density electrode microarray manufactured on standard low-cost printed circuit board (PCB) 

substrates.  This approach provides a novel strategy for the genetic profiling of tumour cells via 

integrated “amplification-to-detection”. 
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1.1 Summary 

This chapter presents a brief overview of the field of biosensors, from their origins to their 

current status, highlighting the key achievements and some of the more exciting trends and 

challenges in the field.  Biosensors are then illustrated in more detail, describing the main 

characteristics and the different types, focusing more particularly on electrochemical 

immunosensors and genosensors. Surface chemistry methodologies for immobilisation of 

biological receptors on transducer surfaces are reviewed, as well as the fabrication techniques 

for the production of low-density electrode arrays as well as different nucleic acid 

amplification methods. Finally the objectives of my thesis are outlined. 

1.2 Past, present and future of biosensors 

Biosensors are analytical devices used for the detection of molecules based on the specific 

interaction between a biological sensing element and its target molecule in combination with a 

transducer for signal processing. The biorecognition element responds to the target compound 

and the transducer converts the biological response to a measurable signal, which can be 

detected electrochemically, optically, acoustically, mechanically, calorimetrically, or 

electronically, and then correlated with the analyte concentration.  The research field in 

biosensors started in 1962 with the pioneering work on enzyme electrodes by Clark and Lyons 

[1], who invented the first glucose biosensor that established the basis of the glucose sensor 

used daily by millions of diabetics. This biosensor consisted on a thin layer of glucose oxidase 

(GOx) on an oxygen electrode. The amount of glucose in the sample was determined by 

measuring the amperometric signal from the reduction of oxygen.  In 1973, Guilbault et al. 

demonstrated that, the hydrogen peroxide produced can also be electrochemically oxidized to 

determine the glucose concentration [2].  Two years later, in 1975, Yellow Springs Instruments 

launched the first successful commercial biosensor, which was based on the hydrogen 

peroxide approach [3], however it was mainly used in clinical laboratories due to its high cost. 

During the 1970s and 1980s, the works of Schläpfer et al., Cass et al. and Di Gleria et al. based 

on artificial redox mediators, demonstrated that ferricyanide [4] and ferricinium [5, 6] ions 

could be efficient electron acceptors for GOx. Moreover, the low detection potential of these 

mediators (about +0.3 V versus Ag/AgCl reference electrode), suppressed electroactive 

interfering species such as uric and ascorbic acids. This attractive approach formed the basis 

for successful commercialisation of a pen-size glucose biosensor for home use by MediSense 

Inc.  (now owned by Abbott) in 1987.  
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Since then, the field of biosensors has experienced an exponential growth with more than 

4500 publications in 2015 according Scopus® from Elsevier B. V. (Figure 1.1). Since 2000, the 

increase in publications was more accentuated due to the explosion of nanotechnology, which 

brought new nanomaterials with enhanced chemical, physical and electronic properties for the 

preparation of the sensors, with the publications concerning immunosensors and DNA sensors 

exhibiting excellent growth. Genosensors are garnering more attention than immunosensors, 

probably due to the inherent characteristics of the nucleic acids as compared to traditional 

antibodies or enzymes, such as the high stability in non-physiological conditions, ease of 

production through chemical synthesis, ease of modification with reporter molecules, small 

size and high efficiency of the target recognition event via DNA hybridisation.  

 

Figure 1.1. Graph of a search of the terms “biosensor”, “immunosensor” and “DNA biosensor” during the 

period 1980 to 2015, using Scopus® from Elsevier B. V. Inset: Close-up graph of the annual publications for 

immunosenors and DNA biosensors. 

 

Biosensor research has rapidly expanded from chemistry, biochemistry and genetics to 

other subject areas (Figure 1.2) and have shown many practical applications from several 

research fields, including medical diagnostics, food quality assurance, environmental 

monitoring, industrial process control to biological warfare agent detection [7]. The field is 

mainly dominated by electrochemical and optical transducers, which found their market niche 

principally in medical diagnostics and R&D, respectively. The other transduction strategies 

have not had the same success to date. However, despite the great expectations, there are just 
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a few examples of commercial biosensors, the market mainly being driven by the glucose 

sensors for people with diabetes, representing approximately 85 % of the world market, and to 

a smaller extent by the pregnancy test strips based on lateral flow formats [8]. This slow 

penetration into the market could be attributed to the elevated development and production 

costs and some important technological hurdles, such as sensitivity, reproducibility, matrix 

effects in real samples, stability and quality assurance [9]. Several potential advantages, such 

as miniaturisation, integration, multiplexing analysis, as well as the use of low cost disposable 

chips, should be exploited for the biosensors to impact on the market and migrate from 

sophisticated laboratories to the point-of-care. This will result in the development of new 

point-of-care devices (POCDs) which will play an important role in healthcare and more 

specifically in personalised medicine, the most significant trend likely to impact on biosensors. 

Working in that direction Bayer had the idea to integrate blood glucose testing into the world 

of videogames.  The Bayer's DIDGETTM is the first and only blood glucose meter that connects 

directly to Nintendo DS and DS Lite and allows children to make sugar testing fun. It helps 

children to manage their diabetes by rewarding them for consistent testing habits with points 

to unlock new game levels and options.  

 

Figure 1.2. Graph of publications organized by subject area based on a search of the term “biosensor” during 

the period 1980 to 2015, using Scopus® from Elsevier B. V.  
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Recent advances in several fields of science have led to the discovery of new molecular 

receptors, which provide more robust, versatile and widely applicable sensors, and new 

nanomaterials, which facilitates the highly sensitive and efficient transduction of the 

recognition event. Concerning the biorecognition element, new alternatives to antibodies such 

as aptamers, affibodies, peptides and molecularly imprinted polymers have emerged as viable 

ways to construct affinity biosensors. These new receptor molecules can be designed against 

toxic analytes and other targets that are difficult to raise antibodies to. Aptamers were 

discovered almost simultaneously in 1990 by Larry Gold and Jack Szostak using the process of 

systematic evolution by exponential enrichment (SELEX) to produce novel binding partners.  

They are artificial specific single-stranded (ss) DNA or RNA oligonucleotides with the ability to 

bind to non-nucleic acid target molecules, such as peptides, proteins, drugs, organic and 

inorganic molecules or even whole cells, with high affinity and specificity [10]. Aptamers are 

also referred to as “chemical antibodies” since they interact with their targets via folding into 

specific three-dimensional (3D) structures, in a process similar to that of an antigen-antibody 

reaction [11]. Many works can be found in the literature describing the use of aptamers as 

receptor molecules in sensors for the detection of highly diverse targets [12]. Affibodies are 

non-immunoglobulin proteins used in imaging, diagnostics and therapeutics, which can also be 

used as biological receptors in sensors. They are considered single-domain proteins and 

engineered protein scaffolds, which possess the molecular recognition properties known in 

antibodies, with improved characteristics, such as small size (6.5 KDa), high binding affinity 

(sub-nanomolar level) and specificity and high stability [13, 14]. Affibodies have already been 

used as an alternative to antibodies in biosensors for the detection of cancer markers [15]. 

Molecularly-imprinted polymers (MIPs) are gaining quite some interest as fully synthetic 

receptors since they are able to provide the desired sensitivity and selectivity with improved 

stability and reproducibility [16]. The basic idea was originally elucidated by Günter Wolf and 

Klaus Mosbach in the 1970s and their synthesis was based on the self-assembly of functional 

monomers around a target molecule acting as a template, which can be a small molecule, 

peptide or whole protein, followed by polymerisation and subsequent removal of the analyte. 

This created polymer structures with “molecular memory”, having specific binding sites for the 

target analyte, as if it was a “plastic antibody” [17]. The use of MIPs as molecular receptors a 

have already been demonstrated for the detection of marker proteins for cardiac, cancer and 

Alzheimer's disease [18]. 

Nanotechnology has had a great impact on the biosensor research since the beginning of 

the last decade, basically in two major areas. One of this areas is in the nanofabrication of 
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biosensing interfaces, where the discovery of self-assembled  monolayers (SAMs) opened up a 

new world of possibilities for immobilising receptors on a variety of transducer surfaces [19–

23]. This technology rapidly expanded when in 1983 Nuzzo and Allara showed that SAMs of 

alkanethiolates on gold could be prepared from dilute solutions of dialkyl disulfides [24]. Many 

molecular systems are able to undergo the process of self-assembly, which generally consist in 

a long carbon chain with two functional groups, one at each end of the molecule.  One group 

acts as an anchor to spontaneously chemisorb at the surface and the other one is used to link 

the biorecognition element via chemical coupling. The attractive of this approach lays on its 

simplicity, flexibility, the capability to control the packing density of the immobilised receptors 

and the possibility to mimic naturally occurring molecular recognition processes [25]. The 

other major area is the application of new nanomaterials, such as nanoparticles, nanotubes, 

nanowires, nanoporous materials or hybrid nanostructures.  Such materials are reported to 

have good electronic properties enhancing the electron-transfer reaction between the 

electroactive molecule and the transducer surface. Moreover, the use of high surface area 

nanomaterials promotes the immobilisation of the receptor molecules which results in 

biosensors with greater sensitivity and shorter responses times [26, 27]. 

Despite the tremendous success of glucose sensors, the emergence of new semi-synthetic 

and synthetic receptors coupled with recent advances in material science and the explosion of 

nanotechnology should guarantee a promising future for the field of biosensors.   

1.3 Biosensors: definition and classification 

A chemical sensor is a device that transforms chemical information, ranging from the 

concentration of a specific sample component to total composition analysis, into an 

analytically useful signal. Biosensors are a specific type of chemical sensor in which the 

recognition system utilizes a biochemical mechanism [28]. The most accepted definition was 

described by the International Union of Pure and Applied Chemistry (IUPAC) as a self-

contained integrated device, which is capable of providing specific quantitative or semi-

quantitative analytical information using a biological recognition element (biochemical 

receptor) which is retained in direct spatial contact with a transduction element [29]. Basically 

a biosensor consists of three main parts, a biological recognition element, a transducer and a 

signal processing system. The bioreceptor is generally immobilized at the transducer surface 

and is able to detect the specific target analyte. These biocomponents are mainly composed of 

antibodies, nucleic acids, enzymes and cells.  The transducer converts the biochemical changes 

produced from the reaction between the analyte and bioreceptor (such as the production of a 
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new chemical, release of heat, flow of electrons and changes in pH or mass) into an electrical 

signal, which is proportional to the analyte concentration. Finally, this electrical signal is 

amplified and sent to a microelectronics and data processor system [30]. 

 

 

Figure 1.3. Main components in a biosensor 

 

1.3.1 Classification 

Several classifications can be found in the literature [3, 29, 30]. Generally, biosensors can 

be classified either by the type of biological signalling mechanism (catalytic or affinity) or by 

the type of signal transduction used (electrochemical, optical, piezoelectric and calorimetric). 

Furthermore, the biosensors can be classified either by the sensing element attached to the 

transducer (enzymes, antibodies, nucleic acids, cells, tissues, etc) or by their discovery order. In 

the latter case they can be divided in first generation biosensors, which involves direct 

detection using natural mediators (e.g. enzymes) for electron transfer; the second generation 

uses artificial redox mediators like ferrocene, ferricyanide and quinones for electron transfer 

and lastly, the third generation uses redox enzymes that are immobilised on the electrode 

surface to allow the direct electron transfer between the enzyme and the transducer.  

According to the biological specificity-conferring mechanism, they can be arranged in two 

classes: catalytic or affinity biosensors.  In the former case, the sensors are based on a reaction 

catalysed by macromolecules, which are present in their original biological environment, have 

been isolated previously or have been manufactured. Thus, a continuous consumption of 

Analyte

Bioreceptor

SIGNAL

TR
A

N
SD

U
C

ER

Data processing and readout

UNIVERSITAT ROVIRA I VIRGILI 
STUDY OF SURFACE CHEMISTRY STRATEGIES TO ENHANCE THE ELECTROCHEMICAL DETECTION OF PROTEINS AND DNA MARKERS 
Josep Lluís Acero Sánchez 
 
 
 



18 
 

substrate is achieved by the immobilized biocatalyst incorporated into the sensor [29]. The 

three types of biocatalyst commonly used are: enzymes, cells and tissues. The high specificity 

of the interaction between the enzyme and its substrate and the usually high turnover rates of 

the enzymes are the basis of the sensitive and specific enzyme-based biosensor devices. 

Glucose oxidase (GOD) and horseradish peroxidase (HRP) are the most used enzymes based 

biosensors reported in literature [31].  In the case of the affinity biosensors, the recognition 

element forms a complex with the analyte which is based on equilibrium reactions that can be 

monitored by the integrated detector [29]. These sensors generally use antibodies or antigens 

and nucleic acids as receptor molecules, however, in the recent years, new semi-synthetic or 

synthetic receptors, such as aptamers, affibodies and molecularly imprinted polymers (MIPs) 

have emerged as promising alternatives. 

1.3.2 Immunosensors 

Immunosensors are based on the highly specific interactions between an antibody and an 

antigen, one of them being immobilised at the transducer surface. An antibody (Ab), also 

known as immunoglobulin (Ig), is a large Y-shape protein consisting of two heavy chains and 

two light chains which form a functionally bivalent monomer that is produced by B cells 

receptor used by the immune system to identify and neutralize foreign objects (antigens) such 

as bacteria and viruses [32]. There are five classes of Igs: IgG, IgM, IgA, IgD and IgE, which can 

be distinguished by the type of heavy chain found in the molecule, which defines the function 

of the antibody. Generally they exist as monomers (IgG, IgD and IgE), however some 

antibodies may form dimeric (IgA) and pentameric (IgM) structures. Because of their 

abundance in human serum and excellent specificity toward antigens, IgG is the main antibody 

used in immunological research and clinical diagnostics [33]. 

IgG antibodies are large molecules with a molecular weight of 150 kDa approximately. 

They consist of two types of polypeptide chains: one, of approximately 50 kDa, is known as the 

heavy or H chain, and the other, of 25 kDa, is named the light or L chain (Figure 1.4). Each IgG 

molecule consists of two heavy chains and two light chains. The two heavy chains are linked to 

each other by disulfide bonds and each heavy chain is linked to a light chain by a disulfide 

bond. In any immunoglobulin molecule, the two heavy chains and the two light chains are 

identical, giving an antibody molecule two identical antigen-binding sites, and thus the ability 

to bind simultaneously to two identical antigenic molecules [34]. The amino-terminal variable 

(V domains) of the heavy and light chains (VH and VL, respectively) together make up the V 

region of the antibody and confer on it the ability to bind specific antigens. The constant 
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domains (C domains) of the heavy and light chains (CH and CL, respectively) form the C region. 

The various heavy-chain C domains are numbered from the amino-terminal end to the carboxy 

terminus, for example CH1, CH2 and CH3. The two identical fragments that contain the antigen-

binding site are called Fab fragments (Fragment antigen binding). These fragments contain the 

complete light chains paired with the VH and CH1 domains of the heavy chains. Antibodies 

posses another fragment with no antigen-binding activity but was originally observed to 

crystallize, and for this reason was named the Fc fragment (Fragment crystallizable), which 

corresponds to the paired CH2 and CH3 domains [34]. 

 

 

Figure 1.4. Schematic representation of an antibody molecule. 

 

Nowadays, immunosensors play an important role in areas such as clinical chemistry, food 

quality, and environmental monitoring [35, 36]. Immunosensors are becoming important tools 

for the detection of the early stages of cancer, since traditional methods are poor in sensitivity 

and time consuming [37–39]. Electrochemical and optical are the two transduction methods 

most used in immunosensors, however the former type is gaining more attraction since 

enables a fast, sensitive, simple and economical detection. Enzyme labels incorporated to the 

antibodies or antigens, such as horseradish peroxidase (HRP) and alkaline phosphatase (AP) 

are used to increase the sensitivity of the sensor. The affinity between antibodies and antigens 
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is very strong but of non-covalent nature, which allows the regeneration and reusability of the 

immunosensor. The regeneration can be carried out by using a basic solution (NaOH/NaCl) or 

more commonly by use of glycine/HCl buffer solution (pH 2 - 3) via exposure for a few minutes, 

and then washing with distilled water or buffer several times to desorb the bound analyte [32]. 

1.3.3 DNA biosensors 

Since the discovery of the deoxyribonucleic acid (DNA) by Fiedrich Miescher in 1869 [40], 

the field on DNA research has attracted  enormous attention, since this molecule stores the 

hereditary information for the development and functioning of all known living organisms and 

many viruses. In 1953, Watson, Crick, Wilkins and Franklin proposed the double helix structure 

of the DNA [41, 42], marking one of the most important scientific discoveries. Another 

important event that revolutionized the field took place in 1983, when Kary Mullis developed 

the polymerase chain reaction (PCR) [43]. This method allowed the exponential amplification 

of a low number of DNA copies from samples in a rapid, sensitive and cost-effective manner.  

This technique use a polymerase enzyme, deoxyribose nucleoside triphosphates (dNTPs) and 

two primers, which determine the sequence of the gene that will be amplified. These 

achievements, among many others, resulted in the launch of the human genome project in 

1990. This project aimed to sequence the whole human genome, which was completed in 

2003, opening a new era for unveiling and understanding the information contained in genes.  

DNA-based sensors (also called genosensors) rely on the recognition of the 

complementary strand of single stranded (ss) DNA to form a stable hydrogen bond between 

two nucleic acids to form double stranded (ds) DNA. To achieve this, a ssDNA containing a base 

sequence complementary to the DNA target is immobilised at the surface of the transducer.   

The most widely used biomolecule for such sensors is DNA, however other DNA-derived 

probes are also used, such as peptide nucleic acids (PNAs), dendrimers and molecular beacons 

[44].  

 A DNA molecule consists of two long polynucleotide chains (also called strands) composed 

of four types of nucleotide subunits. Each of these subunits is composed of three main 

elements: a five-carbon sugar to which are attached one or more phosphate groups and a 

nitrogen-containing base. In the case of the nucleotides in DNA, the sugar is deoxyribose 

attached to a single phosphate group, and the nitrogenous base can be either adenine (A), 

cytosine (C), guanine (G), or thymine (T). These same symbols (A, C, G, and T) are also 

commonly used to denote the four different nucleotides, that is, the bases with their attached 
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sugar and phosphate groups. The nucleotides are covalently linked together in a chain through 

the sugars and phosphates, which thus form a “backbone” of alternating sugar-phosphate-

sugar-phosphate (Figure 1.5).  The way in which the nucleotide subunits are lined together 

gives a DNA strand a chemical polarity, with two distinguishable ends, one with a 3’hydroxyl 

and the other with a 5’phosphate. This polarity in a strand is indicated by referring to one end 

as the 3′ end and the other as the 5′ end. A DNA molecule is composed of two DNA strands 

forming the so-called double helix, which is held together by hydrogen bonds between the 

paired bases of the different strands in a process called Watson-Crick base-paring. A always 

pairs with T forming two hydrogen bonds, whereas C pairs with G forming three hydrogen 

bonds. This base-pairing can only occur if the two polynucleotide chains that contain them are 

antiparallel to each other [45].  

 

 

Figure 1.5. Schematic representation of a nucleotide, a double stranded DNA molecule and the four types of 

nitrogenous bases. 

 

DNA detection technologies exploit this DNA base-pairing through hybridisation assays. 

Conventional nucleic acid hybridization methods, like Southern blotting, are usually lengthy 

and labour-intensive. DNA microarrays, which make use of this sequence-specific DNA 

hybridization, generally suffer from the large size of biological samples, their complex 
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treatment and high cost, which impedes their application for point-of-care diagnostics. 

However, DNA biosensors have shown the potential to overcome these inconveniences, 

allowing easier, faster and cheaper results than in traditional hybridisation based assays, whilst 

maintaining high sensitivity and specificity of detection [46]. Moreover, DNA sensors can also 

be integrated in generic lab-on-a-chip platforms for DNA isolation, purification, amplification 

and detection of genes associated with diseases with the possibility of automation. Such 

integrated and automated devices are expected to play an important role in POC diagnostics, 

especially in personalized medicine.  

Genosensors are of great importance in the field of molecular diagnostics and have found 

applications in many fields, such as DNA diagnostics, gene analysis, fast detection of biological 

warfare agents, and forensic applications. Detection of genetic mutations at the molecular 

level opens up the possibility of performing reliable diagnostics even before any symptom of a 

disease appears [44]. As in the case of immunosensors, both electrochemical and optical are 

the two transduction technologies more frequently used. Detection of DNA hybridisation can 

also be carried out directly (label-free) or indirectly with the use of labels. The second 

approach generally shows a higher sensitivity, however is more difficult to implement in 

POCDs. Labels such as radioisotopes, enzymes, nanoparticles, fluorophores, redox species and 

quantum dots are often used to monitor the recognition event. Due to the physical nature of 

the bond between the capture molecule and the target, these sensors offer the possibility to 

be reused by simply removing the target and leaving the capture probe at the transducer 

surface. This can be achieved by denaturing the DNA with the use of the suitable solutions or 

buffers as previously explained.   

1.3.4 Electrochemical biosensors 

Electrochemical biosensors are the most widely used type of biosensors with applications 

in several areas and especially in the field of clinical diagnostics, offering a real alternative to 

the conventional laboratory methods due to their high sensitivity, speed, low cost, small 

sample volume, simple instrumentation, potential for multitarget analysis and possibility for 

miniaturisation and integration in point of care devices,  [47, 48].  

This type of sensor uses an electrode as the transduction element. Generally, 

electrochemical sensing requires three electrodes: a working electrode, a reference electrode 

and a counter or auxiliary electrode. The working electrode acts as the transduction element 

of the biochemical event, while the counter electrode establishes a connection to the 
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electrolytic solution so that a current can be applied to the working electrode. The reference 

electrode is commonly made of silver or silver chloride (Ag/AgCl) and is responsible for 

maintaining a known and stable potential at the working electrode. The working electrodes 

should be both conductive and chemically stable and they are mainly made of gold, platinum, 

carbon (e.g. graphite) and silicon compounds are commonly used, depending on the analyte 

[49]. Electrochemical sensors are based on the measurement of an electrical signal resulting 

from the biorecognition process, which is proportional to the analyte concentration. 

Depending on the nature of these electrochemical changes, these sensors can be divided in 

four categories: amperometric, potentiometric, impedance and conductometric.  

Electrochemical sensing can also facilitate direct label-free transduction of the 

biorecognition process via the use of electrochemical impedance spectroscopy or, in the 

particular case of genosensors, also by electrochemical reduction of DNA. Although label-free 

detection simplifies the assay and reduces time and costs of analysis, the level of sensitivity 

achieved is lower when compared to labelled-detection systems [50]. Thus the majority of 

electrochemical systems rely on labelled-detection technologies which typically require the 

introduction of electroactive species in one of the recognition partners or in the solution being 

analysed, or alternatively the addition of secondary labelled species. Among the most used 

labels are enzymes such as peroxidase, glucose oxidase, alkaline phosphatase, catalase or 

luciferase, redox mediators such as ferrocene, Fe(CN)6
3−/4−, Ru(bpy)3

3+/2+, Os(bpy)3
3+/2+ and 

methylene blue (MB) as well as nanomaterials such as gold nanoparticles [51]. In genosensors, 

another indirect detection technology involve the use of DNA-intercalating or groove-binding 

redox indicators, which have a higher affinity for the resulting hybridised DNA duplex  as 

compared to the single-stranded probe. Frequently used indicators involve organic dyes like 

Hoechst 33258, and methylene blue, organic drug small molecules such as daunomycin, 

doxorubicin and anthraquinone, and metal-cation compounds like Co(phen)3
3+, [Ru(NH3)6]3+ 

[52]. 

Amperometric detection is based on the measurement of current resulting from the 

oxidation or reduction of an electroactive species in a biochemical process. If the current is 

measured at a constant potential it is known as amperometry, whereas if the current is 

measured at variable potentials it is referred to voltammetry. Depending on the way the 

potential varies, there are also many types of voltammetry, including polarography, linear 

sweep, differential staircase, normal pulse, reverse pulse, differential pulse [53]. 

Amperometric sensing typically involves a three-electrode system, which is used to apply a 
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specific potential between the working and the reference electrode, which produces the 

oxidation or reduction of the electroactive species at the working electrode. This causes a 

transfer of electrons which results in a measurable current that is directly proportional to the 

concentration of the electroactive species. This detection system requires the use of 

electrochemically active labels (directly or as product of an enzymatic reaction). The most 

commonly used labels in amperometric biosensors are enzymes, since they provide great 

signal amplification and also there is a large number of enzyme-conjugated species 

commercially available.  Despite the disadvantage of the labelled-based detection, 

amperometric devices offer a sensitivity superior to potentiometric devices [30, 53].  

Potentiometric biosensors are based on the measurement of the potential difference 

between the working electrode and reference electrode when zero or negligible current flows 

through them [48]. Basically, they provide information about the ion activity in an 

electrochemical process. The working electrode may be an ion selective electrode (ISE) based 

on thin film or permselective membranes. The ISE converts the biorecognition event into a 

potential response to provide analytical information. This potential signal is governed by the 

Nernst equation, which establishes the relationship between the logarithm of the 

concentration of the substance being measured and the potential difference [54]. ISEs can 

detect ions such as F-, I-, CN-, Na+, K+, Ca2+,H+, NH4-, or gas (CO2, NH3) in complex biological 

matrices. ISEs are mainly used in clinical chemistry for the measurement of relevant 

electrolytes in physiological fluids and also in analytical chemistry and biochemical/biophysical 

research, where measurements of ion concentration in an aqueous solution are required [55]. 

Conductimetric devices rely on the measurement of the electrical conductivity in a solution 

at constant voltage, produced by biochemical reactions which specifically generate or consume 

ions. Conductivity varies with changes in the concentration of the ionic species. Enzymes are 

typically used in these biosensors, since they produce a change in the ionic strength, and thus 

the conductivity, of a solution as a result of an enzymatic reaction. Some of the advantages of 

this type of sensor are the low cost and simplicity, since no reference electrodes are needed. 

However, only a few clinical applications have been reported using these devices. The main 

reasons are the variable ionic background of clinical samples and the necessity to measure 

relatively small conductivity changes in media of high ionic strength [49].  

As mentioned previously, another electrochemical technique that holds the potential of 

becoming a powerful tool for clinical diagnostics is electrochemical impedance spectroscopy 

(EIS). The impedance of a system is generally determined by applying a voltage perturbation 
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with a small amplitude to an electrochemical cell and measuring the current response [56]. 

The main advantages of EIS are its high sensitivity and the possibility to perform a label-free or 

reagentless detection, which makes the technique suitable for real time monitoring. The 

measurements should be performed under well controlled conditions, otherwise the system 

may suffer from a lack of reproducibility. In faradaic impedance the measurements are 

performed in the presence of redox specie, such as iron ferrocyanide, which undergoes 

oxidation and reduction at the surface of the electrode at a certain potential applied during 

the measurement. As the analyte binds, the surface availability for redox reaction decreases 

while impedance increases [57]. Traditionally EIS has been used for the determination of 

corrosion mechanisms and for the characterisation of charge transport across membranes and 

membrane/solution interfaces. In recent years, the technique has become very popular for 

biosensing, especially for the monitoring of biorecognition events at the transducer surface. 

EIS have been widely used for the detection of proteins, antibodies, antigens, nucleic acids, 

whole cells and microorganisms [57]. 

1.3.5 Immobilisation of the recognition element 

An ideal biosensor results from the integration of a biological recognition element onto a 

transducer surface, in such a way that the native specificity of the bioelement is not altered 

and the recognition event is efficiently transferred to the transducer. The development of 

techniques for immobilization of the biomaterials plays an important role in biosensor 

research. The immobilization process not only ensures the intimate contact of the biological 

entities with the transducer but also aids in the stabilization of the biological system, 

enhancing its operational and storage stability. Numerous immobilization strategies have been 

developed to address some of the major issues in biosensor manufacturing, such as the 

robustness of the link between the bioelement and the transducer surface, the amount of 

active bioelement immobilized, and the complexity of the immobilization process. The 

selection of the coupling method depends on both the surface material and the bioreceptors. 

This section is focused on immobilization techniques for antibodies and DNA. The methods can 

be classified in three groups: physical, chemical and bioaffinity immobilization [44, 58]. These 

methods can form two- or three-dimensional (2D or 3D respectively) molecular architectures. 

The 2D architectures can be achieved by the direct attachment of the ligand to the surface by 

physisorption or chemisorption, the attachment to a SAM forming a covalent bond, or the 

coupling to capturing molecules by bioaffinity interactions previously immobilized on the 

surface. In 3D systems, the ligand can be immobilized by physical or chemical entrapment on a 

gel or membrane (Figure 1.6).  The 3D architectures generally increase the loading capacity 
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and do not disturb the potential functional sites of the protein; moreover, the aqueous 

environment of the gel reduces protein denaturation. However, the gel structure can 

represent a barrier to diffusion and the molecular recognition events may require longer 

incubation times.  

 

Figure 1.6. Schematic representation of different antibody immobilisation approaches: a) physisorption of 

unmodified Abs, b) chemisorption of chemically modified Abs, c) covalent immobilisation through a SAM, d) 

bioaffinity-based immobilisation, e) physical entrapment and f) covalent immobilisation on a matrix containing 

reactive groups. 

 

To achieve an efficient immobilization the substrate surface should be free of 

contaminants. The physical method of exposure to ultraviolet-ozone (UV-O3) is generally 

effective for removing organic contaminants from surfaces.  Another widely used chemical 

method is based on Piranha solution, which is composed of a 3:1 mixture of H2SO4:H2O2. This 

solution is highly oxidative and removes metals, organic and inorganic contamination. 

Alternatively, a cleaning based on KOH: H2O2 solution can also be used with similar results to 

those obtained by Piranha solution. Electrochemical methods can also be applied for surface 

cleaning, i.e. cyclic voltammetry between two defined potentials in the presence of H2SO4 or 
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HCl. However, these methods are generally more time-consuming and less compatible with 

mass-manufacture. 

1.3.5.1 Physical methods 

Physical immobilization methods basically include adsorption and entrapment. Direct 

adsorption of biomolecules onto solid supports is the simplest method since the bioelement is 

used in its native state, offering the advantage of being particularly easy and rapid. This can be 

achieved by immersing the solid support in a solution containing the biomolecules for a 

defined amount of time. The bioreceptors are adsorbed on the surface by physical 

interactions, which are generally weak, sensitive to changes in pH, temperature or salt 

concentration and offer a poor control over the orientation of the biomolecules. The non-

covalent nature of these interactions (hydrogen bonding, electrostatic  and hydrophobic 

interactions and van der Waals forces), typically results in biosensors that suffer from poor 

analytical performance due to lower operational and storage stability [59]. However, several 

successful examples of the immobilization by adsorption can be found in the literature for both 

antibodies [60, 61] and DNA [62, 63]. Another interesting approach is the physical entrapment 

of biomolecules in gel or membrane coated surfaces [64, 65]. This technique has been 

reported to improve the stability of the biomolecules due to the hydrophilic nature of the gel, 

however as mentioned already, the entrapment materials add a diffusional barrier that results 

in a slower mass transfer [66].  

1.3.5.2 Chemical methods 

Chemical immobilization methods result in the formation of covalent bonds between the 

ligand and the surface and basically include chemisorption and covalent attachment on 

functionalized surfaces. Chemisorption consists of the direct immobilization of ligands on the 

surface through covalent bonds, generally using thiol-metal interactions. The strong affinity of 

the thiol groups for noble metal surfaces allows the formation of covalent bonds between the 

sulphur and gold atoms [67]. 

  Biomolecule-SH + Au                   Biomolecule-S-Au  +  e-  +  H+ 

This can be achieved via the introduction of sulphur-containing molecules into the 

bioelement structure prior to its chemisorption onto gold. In this thesis, this approach was 

applied to both antibodies and antigens for the optical and electrochemical detection of 

ischemic stroke and celiac disease related proteins, as described in chapters 2 and 3 

respectively. Generally, thiol groups are easily incorporated into the DNA molecule through 
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the 5’ or 3’ end. Plethora of biosensors have been developed using thiol-modified DNA probes 

[68–71]. In the same manner, sulphur-containing molecules can be introduced into the 

antibody structure. Antibodies have several functional groups suitable for modification 

including lysine ε-amine, N-terminal α-amine groups, and C-terminal aspartic acid and glutamic 

acid residues. Primary amine groups are known to have a high nucleophilic behaviour at basic 

pH.  In the presence of an active ester, the free electron pair of the amine group can easily 

attack the electrophilic carboxylic carbon of the ester. Introduction of  disulphides by this 

synthetic route can be performed by reacting terminal primary amines and lysine residues of 

IgG with a disulphide-containing active ester, giving rise to a covalent attachment between 

disulphide groups and IgG [72] (Figure 1.7).  Terminal carboxylic acids and glutamic acid 

residues are also available for modification. At acidic pH, carboxylic acids can react with 

carbodiimide derivates in the presence of N-hydroxysuccinimide and form an active ester, 

whilst at basic pH, primary amines can easily attack the electrophile carbon of the ester [72] 

(Figure 1.8). 

 

 

Figure 1.7. Reaction scheme of the introduction of disulphides via –NH2 residues. 
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Figure 1.8. Reaction scheme of the introduction of disulphides via –COOH residues. 

 

Chemical conjugation reactions with antibody molecules are generally more successful at 

preserving activity if the functional groups utilized are present in limiting quantities and only at 

discrete sites on the molecule. Such “site-directed conjugation” schemes make use of cross-
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the immunoglobulin surface, usually chosen to be well removed from the antigen binding sites. 

Two site-directed chemical reactions are especially useful in this regard. The disulphide in the 

hinge region that holds the heavy chains together can be selectively cleaved with the 
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antigen binding site [72]. The second method of site-directed conjugation is based on the 

modification of antibodies via their carbohydrates. This method takes advantage of the 

carbohydrate chains, which are located in the CH
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of the polysaccharide sugar residues with sodium periodate generates aldehyde groups, which 

then can be used for coupling to another molecule [72]. By proper selection of the conjugation 
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the formation of Schiff bases (Figure 1.9). Alcohols groups of carbohydrates can be partially 

oxidised in aldehydes under the oxidative power of periodate (IO4-), in an acidic medium. 

These aldehydes then easily react with primary amines and form Schiff bases. The unstable 

imines formed have to be reduced (reductive amination), under the action of borohydride, to 

stable secondary amines. The precise location of carbohydrates on the constant region of 

antibodies is particularly interesting to achieve an optimal oriented immobilization [58]. 

 

 

Figure 1.9. Reaction scheme of the introduction of disulphides via carbohydrates. 

 

Another interesting approach of chemical immobilization is the covalent attachment of 

biomolecules on surfaces functionalized with SAMs. Self-assembly is the spontaneous 

formation of complex structures of molecules that are held together by non-covalent 

intermolecular interactions. A self-assembled monolayer is a single layer of ordered molecules 

that are formed spontaneously at the solid-liquid interface by chemisorption between the solid 

substrate and the head group of the molecule [23]. Typical molecules used in SAM formation 

consist of three parts: a head group for coupling with the surface, an end group for the 

chemical cross-linking with the biomolecule and a chain or backbone, which holds together the 

two terminal groups and is important for stabilization and order. There are a number of head 

groups that bind to specific metals, metal oxides, and semiconductors. Several types of 

biological receptors, including proteins, enzymes, antibodies and their receptors, and even 

nucleotides for DNA recognition, can be coupled to SAM-modified surfaces [73].  
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SAMs on surfaces are generally prepared by immersion of the clean substrate into a 

solution containing an appropriate amphiphile. Several molecular systems are able to undergo 

the process of self-assembly [74]: long chain carboxylic acids (CnH2n+1COOH) at metal oxide 

substrates, organosilane species (RSiX3, R2SiX2 or R3SiX, where R is an alkyl chain and X a chloro 

or alkoxy group) at hydroxylated substrates, such as glass, silicon and aluminium oxide; and 

organosulfur-based species at noble metal surfaces. Sulphur-containing compounds, such as 

alkanethiols, dialkyl disulfides and dialkyl sulfides, have a strong affinity for noble metal 

surfaces. The most used class of SAMs is derived from the adsorption of alkanethiols on gold, 

silver, copper, palladium, platinum and mercury [75]. The process of formation of self-

assembled structures on surfaces can be modeled using the Langmuir equation: 

  

  
                                           

where θ is the coverage of the surface, and k is the rate constant [76]. The model indicates 

that the SAM formation rate is proportional to the uncovered surface.  Kinetic studies have 

shown that the process of the self-assembly of alkanethiols compounds onto gold occurs in 

two steps: an initial step in which the sulphur-containing compound is rapidly chemisorbed in 

several minutes onto the metal substrate resulting in 80 – 90 % SAM formation, and a second 

slower step in which the alkyl chains rearrange themselves due to inter-chain van der Waals 

and electrostatic interactions to produce an extended close packed molecular layer. This 

molecular reorganization can proceed for up to 12 – 16 hours [77].  The alkyl chains have been 

found to be tilted from the perpendicular to the gold surface an angle between 26 and 28° 

[78]. Gold substrates have been widely used for SAM formation as gold is an inert element 

which has a low toxicity to biological systems and therefore a high biocompatibility. 

Additionally, thin gold films are very easy to pattern through lithography and chemical etching. 

Other commonly used metals are silver, copper and palladium [79].  

The use of SAMs for creating single molecular films of biological ligands offers multiple 

advantages, such as, a) the ease of preparation of the self-assembled structures, b) the 

possibility of modifying the surface properties by simply changing the end group, c) SAMs 

permit reliable control over the packing density and lateral spacing of the bioelement, d) the 

ability to mimic naturally occurring molecular recognition processes,  e) since SAMs are in 

intimate contact with the support surface, the recognition event can be more efficiently 

transferred to the transducer, and f) can be used as as building blocks in more complex 

structures, e.g., for coupling additional layers to a surface [78, 80]. Moreover, SAMs do not 
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only allow the coupling of biomolecules, but also serve as nonfouling material to prevent the 

nonspecific adsorption of molecules to the surface. This can be achieved using highly hydrated 

molecular systems such as poly (ethylene glycol) (PEG)-based SAMs, which have been 

demonstrated for their superlow-fouling ability to resist nonspecific protein adsorption and 

cell adhesion [81].  The use of SAMs in the construction of biosensors is one of the preferred 

immobilization strategies with multiple examples in the literature [21, 82–85]. One of the most 

commonly used covalent reactions to couple the biomolecules to the SAM-modified surface is 

based on the use of 1-ethyl-3-(3-dimethylaminopropyl)cabodiimide (EDC) with or without N-

hydroxysuccinimide (NHS). In this one-step reaction, the EDC activates the carboxylic groups 

present in either the biomolecules or the SAM, which can then react with the primary amines 

from the functionalized surface or the ligand. 

1.3.5.3 Bioaffinity immobilization 

Bioaffinity immobilization is another non-covalent method for anchoring biomolecules on 

surfaces and is based on reversible interactions between the bioreceptor and an intermediate 

affinity molecule attached to the surface.  Compared to the classical non-covalent 

immobilization strategy (i.e physical adsorption), this technique can provide a higher control 

over the antibody orientation. In the case of the antibodies, bioaffinity immobilisation 

methods basically rely on the use of protein A and G, avidin-biotin interactions and affinity 

tags, whereas in the case of the DNA, these methods are generally reduced to the use of the 

avidin-biotin system.  

Antibodies can be immobilized via an intermediate protein directly attached to the 

surface, such as protein A and G, which have five and two binding domains specific to the Fc 

region of antibodies, respectively.  This technique predominantly gives a tail-on orientation, 

resulting in the full availability of the two antigen-binding sites. Several studies have 

demonstrated an improvement of biosensor performance by orienting the antibodies using 

protein A or G [86–88]. Alternative immobilization strategy that provides orientation is based 

on the fusion of a polyhistidine (His6) affinity-tag on the C- or N-terminus of the antibody [89–

91]. The His6 tag shows a high affinity (K = 107 M-1) to Ni2+, Co2+ and Cu2+ surfaces. The chelating 

agent nitrilotriacetic acid (NTA) has a strong affinity for bivalent metal ions such as Ni2+ which 

have six coordination sites. Four of these are chelated to NTA, leaving two sites free to 

coordinate other groups. Several amino acids, including His, have a moderate affinity to Ni2+-

NTA complexes [58]. This has been exploited for the of immobilization His-tagged proteins to 

biosensor surfaces previously modified with NTA [92, 93].    
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The use of avidin (or streptavidin)-biotin interactions has been widely used to immobilize 

enzymes, antibodies and DNA. This specific interaction is one of the strongest non-covalent 

interactions known in biology with an association constant (Ka) of 1015 M-1 [44].  Both avidin 

and strepavidin are tetrameric proteins that have four identical binding sites for biotin. Avidin 

(66 KDa) is a highly cationic glycoprotein with an isoelectric point of about 10.5, while 

streptavidin (52.8 KDa) is a non-glycosylated protein with a near-neutral isoelectric point.  

Avidin has been reported to exhibit higher non-specific binding than spreptavidin. This is 

attributed to its positively charged residues and its oligosaccharide component, which can 

react non-specifically with negatively charged cell surfaces and nucleic acids, causing 

background issues [94]. Generally the bioreceptors are conjugated to biotin molecules and 

subsequently immobilized on streptavidin-modified surfaces. In the case of the DNA, the biotin 

is typically introduced to the 5’ or 3’ end by chemical cross-linking, leaving the entire DNA 

molecule available for hybridization with its complementary target [95–97]. Antibodies can be 

immobilized in an oriented or random mode depending of the biotinylation procedure used. 

Oriented methods are based on the site-specific introduction of biotin molecules via the hinge 

region, C-terminus and sugar moieties and they have been reported to increase the binding 

signal [98–100].  

1.4 Fabrication of low-density electrode arrays 

Advances in microfabrication have led to the replacement of traditional “beaker-type” 

electrochemical cells and bulky electrodes with small and cost-effective easy-to-use sensing 

devices. This has also driven great advances in the development of miniaturized 

electrochemical sensors and sensor arrays, which can now be integrated in complex fluidic 

microsystems, the so-called lab-on-a-chip devices. Electrochemical biosensors consist of a 

system of electrodes made up of metals which need to be patterned on top of a substrate.  

Most of these sensors have been fabricated on silicon or glass substrates using standard 

photolithography techniques and thin or thick film technology. The three basic 

microfabrication techniques for these biosensors are identical with those used in integrated-

circuit (IC) fabrication: deposition, patterning and etching (Figure 1.10). Initially a thin layer is 

deposited on a substrate, followed by the deposition of a light-sensitive photoresist layer. 

Subsequently, this layer is patterned by photolithography using the desired mask. The pattern 

is then transferred from the photoresist layer to the substrate by an etching process. Finally, 

the remaining photoresist is removed, resulting in a specific configuration of the reference, 

counter and working electrodes deposited onto the substrate.  
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Figure 1.10. Flow diagram of an integrated circuit (IC)-based fabrication process using the three basic 

microfabrication techniques: film deposition, photolithography and etching. 

 

Metallic layers are used as electrode material and are generally deposited using two thin-

film deposition methods, chemical vapour deposition (CVD) and physical vapour deposition 

(PVD), such us sputtering and evaporating. Film thicknesses achieved by these processes are of 

tens of nanometres to up to a few micrometers. A great variety of metals can be deposited, 

including gold, silver, platinum, palladium, copper or alloys [101].  In the photolithographic 

process, a pattern is transferred to a certain substrate using a mask with the desired pattern. A 

photoresist layer is spin-coated onto the material to be patterned and subsequently exposed 

to UV light through the mask using a mask aligner. Depending on the type of photoresist used, 

positive or negative, the exposed or the unexposed photoresist areas are removed during the 

resist development process. The remaining photoresist acts as a protective layer during the 

etching process, which transfers the pattern onto the underlying material.  This thin-film 

photolithographic process is widely used and employs atomic or molecular deposition which 

results in good quality electrodes with sub-micrometers resolution and highly reproducible. 

However, this process has a high associated cost.   

A widely used technique in industry for the production of electrode arrays is screen-

printing. This process is based on thick film technologies and unlikely photolithography, does 
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not require a complicated flow process and its operation is simple and inexpensive. Paste 

material is printed onto a matrix directly through a mask-net with a designed pattern resulting 

in thicknesses of a few to hundreds micrometers [102]. Electrodes are usually made by screen-

printing patterns of conductors and insulators by a special printer. The desired patterns are 

defined by precision screens that are made of stainless-steel wire. Paste materials include 

carbon nanotubes (CNTs), platinum, silver, gold, carbon, graphite and dielectrics [103]. Each 

ink is applied individually with the corresponding screen pattern to create the final electrode 

configuration. This technology is relatively inexpensive and suitable for portable and single use 

electrode systems, such as disposable screen-printed enzyme strips, widely used by diabetic 

patients for self-monitoring of their blood glucose levels [104]. The major drawback of this 

process is the limited resolution after photolithography [103]. 

Another metal micro-patterning technique for the low-cost mass production of 

electrochemical sensor arrays is based on standard printed circuit board (PCB) technology. This 

technique offers several metallic surface finishes, such as gold, copper and silver, compatible 

with a variety of surface chemistries for the immobilization of biomolecules. PCBs, also called 

“printed wiring boards” or “printed wiring cards”, are widely used in electronics industry for 

the manufacturing of integrated circuits. Before the arrival of the PCB, electronic circuits were 

produced through a tedious process of point-to-point wiring, which was prone to failures at 

wire junctions and short circuits when wire insulation began to age and crack. PCBs are 

basically composed of copper sheets laminated onto a non-conductive substrate. The most 

commonly used substrate is the FR-4 (Flame Resistant 4), a woven fiberglass cloth 

impregnated with an epoxy resin, with a thin layer of copper foil laminated on one side (single 

sided PCB) or both sides (double sided PCB) [105]. The two layers can be electrically connected 

with the use of vias. The copper sheets, usually of 35 m thickness,can be photopatterned 

with the desired mask and etched, resulting in features with dimensions as low as 50 m. The 

exposed copper layer can subsequently be coated with thin layers of gold, silver or nickel 

either via electrolytic, electroless or immersion metal deposition techniques. Electrolytic 

plating is achieved by passing an electric current through a solution (electrolyte) containing 

dissolved metal ions allowing the metal to deposit on the conductive surface of the PCB. 

Electroless deposition uses chemical reducing agents to supply the electrons needed for metal 

deposition on the copper layer. This process generally results in harder and more brittle 

deposits than electroplating. Immersion plating is based on a galvanic displacement reaction, 

which causes exchange of metal atoms on the surface with those in the solution.  
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The most commonly used surface finish types are Imm Ag (Immersion Silver), Imm Sn 

(Immersion Tin), ENIG (Electroless Nickel/Immersion Gold), ENEG (Electroless Nickel / 

Electroless Gold) and electrolytic Ni /Au (Electrolytic Nickel / Gold). An intermediate layer of 

nickel of approximately 1 to 4 m is generally plated in between the copper and gold layer to 

prevent the solid-state diffusion of the copper atoms into the gold atoms of the surface. Both 

electroless and immersion plating of gold generally results in a heterogeneous surface of gold 

contaminated by the underlying layers (i.e. nickel), which makes these processes inadequate 

for the fabrication of electrode arrays.  In contrast, electrolytic Ni /Au plating results in a 

homogenous layer of 99.9 % purity of gold of approximately 1 to 3 m thick, compatible with 

electrochemistry and surface modification chemistries and therefore suitable for biosensing 

applications [106, 107]. 

1.5 Nucleic acid amplification techniques 

The first nucleic acid amplification technique was the polymerase chain reaction (PCR). 

Since its discovery in 1983, it has had a tremendous impact in several fields, such as research, 

clinical medicine, gene cloning, agriculture, and more specifically in relation to this thesis, in 

the field of DNA biosensors. The technique allowed the rapid generation of multiple copies 

from a sample containing just a few target copies, which provides a great improvement on the 

assay sensitivity. Progress of research has resulted in the development of alternative 

amplification methods with a higher speed, lower cost and improved portability, mostly 

focused on isothermal processes and multiplexing ability. The most commonly used isothermal 

techniques are recombinase polymerase amplification (RPA), loop mediated isothermal 

amplification (LAMP), nucleic acid sequence based amplification (NASBA), strand displacement 

amplification (SDA) and rolling circle amplification (RCA). These techniques obviate the use a 

thermal cycler since the reaction occurs at a constant temperature, however only NASBA and 

RCA facilitate multiplexing [108].  Alternative multiplexing techniques include universal 

multiplex PCR (UM-PCR), isoPCR and ligase chain reaction (LCR), however these techniques 

require the use of several primers sets to amplify the desired regions of the genome [109–

111]. The presence of multiple primers may lead to cross hybridization with each other and the 

possibility of mis-priming with other templates as well as leading to differences in 

amplification efficiency. The introduction of the multiplex ligation-dependent probe 

amplification (MLPA) provided an elegant solution avoiding the need for several primers.  

MLPA is a multiplex-PCR based technique with the ability to amplify up to 50 nucleic acid 

sequences with a resolution down to the single nucleotide level with a single primer pair [112]. 
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MLPA is based on the hybridisation of probes to target DNA, followed by ligation and 

quantitative PCR amplification of the ligated products. Each probe generally consists of two 

oligonucleotides, the left hybridisation oligonucleotide (LHO) and the right hybridisation 

oligonucleotide (RHO).  The LHO is usually the shorter of the two probes (typically 45–70 nt) 

and is chemically synthesized. It is composed of a unique annealing sequence and a universal 

PCR forward primer common to all probes. The RHO can be up to 440 nt and are generally 

produced using M13 cloning vectors, although it can also be chemically synthesised. RHOs are 

composed of stuffer sequences of different lengths in between a target-specific sequence and 

a universal reverse primer. Initially, the DNA target is denatured and incubated with a mixture 

of specific probes. The hybridizing sequences of the LHO and RHO are directly adjacent, 

permitting the two oligonucleotides to be ligated when both are hybridized to their target 

sequence. Ligated probes are then PCR amplified resulting in products of between 130 and 

480bp in length, each one of a unique size, which can be separated by size using capillary 

electrophoresis. Probes that are not ligated contain only one primer sequence and cannot be 

amplified.  

Currently there are more than 300 probe sets commercially available with applications in 

several fields, such us prenatal and postnatal testing (Down syndrome, metal retardation, 

microdeletions, etc.), cancer diagnosis (breast, stomach and colon cancer, cutaneous 

melanoma, etc.) and neurogenetic testing (Alzheimer and Parkinson diseases, epilepsy, etc.) 

among others. Most of these MLPA kits have been developed by MRC-Holland and the semi-

quantitative detection of probe amplification products is generally carried out by capillary 

electrophoresis, since the amplified products vary in length. An alternative electrochemical 

quantification technique based on a barcode approach is described in Chapter 4 of this thesis. 

Basically, this approach consists of the replacement of the stuffer sequences of the RHO of 

each probe set by unique DNA sequences (i.e. barcodes), which are used as a recognition sites 

by complementary capture probes immobilised at the surface of the electrochemical 

transducer. This approach was successfully used for the amplification and detection of gene 

markers related to breast cancer [107].     

MLPA offers several advantages over other multiplex PCR techniques, such as the use of a 

single PCR primer pair for amplification, which eliminates the differences in primer annealing 

efficiency. Another advantage is that the protocol is simple with a limited number of steps and 

PCR conditions for all MLPA applications are identical. Finally, the steps in the MLPA process, 

probe hybridization, ligation of probes, and PCR amplification of ligated products, go to 
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completion. This makes MLPA less sensitive to differences in PCR conditions, such as changes 

in reaction times, reaction temperatures, DNA concentration, and several other parameters 

[113]. 

Advances in the MLPA technique have resulted in the development of reverse 

transcriptase MLPA (RT-MLPA) [114]. This method can be used for mRNA profiling as an 

alternative to real-time PCR and micro-arrays, due to its simplicity, lower cost and moreover, 

there is no need to perform a sample labelling reaction. In this method, firstly the RNA in 

converted to cDNA using a reverse transcriptase enzyme and a special RT primer mix, which 

contains one RT primer for each of the MLPA probes. The conversion into cDNA is a mandatory 

step, since the probes that are used in the subsequent MLPA reaction are complementary to 

the cDNA, not to the mRNA. Moreover, the ligase-65 enzyme used in MLPA, cannot ligate DNA 

probes that are hybridized to RNA sequences. This method then proceeds as the traditional 

MLPA technique. The RT-MLPA technique combined with the electrochemical detection based 

on the barcode approach was used for mRNA profiling of single cancer cells (Figure 1.11), as 

described in chapter 5. 

 

 

Figure 1.11. Schematic representation of the simultaneous barcode-based electrochemical detection of 

multiple breast cancer related mRNA markers from a single tumour cell using RT-MLPA. 
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1.6 Thesis objectives 

The general objective of this doctoral thesis is the development of cost-effective 

electrochemical detection platforms for the quantification of protein and DNA biomarkers 

related to human diseases.   

The first part of my thesis is focused on the development of electrochemical 

immunosensors for the detection of neuron specific enolase and anti-tissue transglutamise 

antibodies, an ischemic stroke and celiac disease markers respectively. To achieve this goal the 

following specific objectives were defined: 

- To develop different strategies for covalent self-assembly of both antibodies and 

antigens onto bare gold substrates by introducing disulphide groups in the protein 

structure. 

- To assess the developed surface chemistries using surface plasmon resonance and 

apply the optimal chemistry to electrochemical biosensors.  

- To compare the developed approach with other covalent immobilisation methods 

for proteins such as, cross-linking to self-assembled monolayers or to a 

carboxylated dextran matrix. 

- To evaluate the suitability of the optimal surface chemistry for real sample 

analysis. 

The second part of my thesis aimed at the development of a genosensor for the multiplex 

detection of genetic markers for breast cancer with single cell sensitivity. The following sub-

objectives were carried out to accomplish this task: 

- To develop surface chemistries for the covalent attachment of DNA at the 

transducer surface. 

- To develop a method for the multiplex amplification and electrochemical 

detection of seven genetic markers for breast cancer with single cell sensitivity. 

- To design, manufacture and assess low-cost electrode arrays.  

Overall, the main contribution of this thesis to the field of biosensors is that it provides a 

simple method for the covalent attachment of proteins directly on the transducer surface 

limiting the immobilisation to a single step. Additionally, it also presents a flexible and cost-

effective strategy for the multiplex amplification and detection of DNA from tumour cells with 

a potential applicability for genetic profiling. 
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2.1 Abstract 

The interface between the sample and the transducer surface is critical to the 

performance of a biosensor. In this work we compared different strategies for covalent self-

assembly of antibodies onto bare gold substrates by introducing disulfide groups into the 

immunoglobulin structure, which acted as anchor molecules able to chemisorb spontaneously 

onto clean gold surfaces. The disulphide moieties were chemically introduced to the antibody 

via the primary amines, carboxylic acids and carbohydrates present in its structure. The site-

directed modification via the carbohydrate chains exhibited the best performance in terms of 

analyte response using a model system for the detection of the stroke marker Neuron Specific 

Enolase. SPR measurements clearly showed the potential for creating biologically active 

densely packed self-assembled monolayers (SAMs) in a one step protocol compared to both 

mixed SAMs of alkanethiol compounds and commercial immobilization layers. The ability of 

the carbohydrate strategy to construct an electrochemical immunosensor was investigated 

using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) 

transduction. 

2.2 Introduction 

Immunosensors have been developed for a plethora of applications, including medical 

diagnostics and environmental analysis and have great potential for commercialization, but 

still face a challenge in achieving a simple, robust and inexpensive surface functionalisation 

method compatible with mass-manufacturing techniques. Generally, functionalisation 
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processes require the biochemical modification of either the sensor surface or the antibody or 

both, and this usually involves several steps that in some cases are time consuming, costly and 

difficult to implement in large-scale production process.  

The immobilization of antibodies on solid support transducers is a critical issue for the 

sensor performance, as the affinity, orientation and stability of the antibodies are affected by 

the immobilization strategy selected [1].  A variety of surface chemistry methods  have been 

reported with those introducing orientation and maintaining native antibody conformation 

being of greatest relevance [2, 3].  Specific orientation should expose free antigen-binding 

regions of the antibody following surface anchoring, resulting in increased analyte binding and 

improved sensitivity. Passive adsorption of biomolecules on solid substrates has been widely 

explored [4] due to its simplicity, but results in unstable adsorption with no control of 

orientation, and often results in protein unfolding [5, 6]. Alternatively, the use of self-

assembled monolayers (SAMs), with two terminal functional groups, one  enabling binding to 

the sensor surface, and the other allows coupling of the biocomponent, has been widely used 

[7-11], due to the high diversity of functionalized SAMs and chemical cross-linkers available, 

and provides a strong and stable attachment. Nevertheless, it needs a previous 

functionalisation of the surface and the molecules attached to the SAMs can be randomly 

oriented [12]. To minimize random orientation and uniformly orientate the antibodies on the 

surface, several strategies have been developed, including the use of receptors that bind the 

Fc portion of the antibody (e.g. proteins A, G, L, anti-Fc), which improves sensitivity [1, 13-15], 

but also requires an initial surface modification. Immobilization via antibody fragments 

through sulfhydryl groups also improves the sensitivity [16-19] but may form a very compact 

layer, giving rise to significant steric hindrance effects [20] and the potential loss of biological 

activity of the antibody fragments [21]. Oxidized oligosaccharide moieties of the antibodies 

coupled to amine or hydrazine modified solid supports, have also been provided to providing 

great sensitivity [22-24], but again require a surface pre-functionalisation step.  

A single immobilization step can be achieved via the introduction of sulfur-containing 

molecules into the bioelement structure prior to its chemisorption onto gold [23, 25] (Scheme 

2.1).  Antibody molecules possess a number of functional groups suitable for modification 

including lysine –amine, N-terminal α-amine groups, and C-terminal aspartic acid and 

glutamic acid residues. Chemical conjugation reactions with antibody molecules are generally 

more successful at preserving activity if the functional groups utilized are present in limiting 

quantities and only at discrete sites on the molecule. In one approach, the disulphide in the 
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hinge region of the antibody that holds the heavy chains together can be selectively cleaved 

with a reducing agent such as 2-mercaptoethylamine to create two half-antibody molecules, 

each containing an antigen binding site [26]. An alternate method is based on the modification 

of antibodies via their carbohydrates, which are located in the CH
2 domain within the Fc region. 

Mild oxidation of the polysaccharide sugar residues with sodium periodate generates aldehyde 

groups, which can then be used for coupling to another molecule [26]. By proper selection of 

the conjugation reaction and knowledge of antibody structure, antibodies can be oriented so 

that their bivalent binding potential for antigen remains available. 

 

 

Scheme 2.1. Functionalization strategies of bare gold substrates via direct bio-SAM using disulphide-

containing antibody chemically modified via their primary amines (A), carbohydrates (B) and carboxylic acids (C) 

and via classic SAM (D) using unmodified antibodies attached on a long-chain of alkanethiols previously self-

assembled onto a bare gold substrate. 

 

In this work, we developed a simple one-step surface functionalisation method based on 

the covalent coupling of antibodies by chemical introduction of sulfur-derivative molecules 

into the antibody structure prior to its adsorption onto gold via the primary amines, carboxylic 

acids and carbohydrates present in its structure. Additionally, a classic SAM approach was also 

evaluated using unmodified antibodies attached to a long-chain of alkanethiols previously self-

assembled onto a bare gold substrate. The model antibody-antigen system applied to carry out 

this work consisted of two monoclonal antibodies, a capture anti-NSE21 antibody and a 

reporter anti-NSE17 antibody, against neuron specific enolase (NSE), a dimeric isoenzyme of 

the glycolytic enzyme enolase and derives from neuronal cytoplasm and neuroendocrine cells 
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[27].  Several studies have demonstrated significantly lower NSE concentrations in serum in 

healthy subjects, with levels lower than 12.5 ng/ml, than in patients with acute ischemic stroke 

[28], and has thus been identified as a possible biological marker for the diagnosis of ischemic 

stroke [29] and used in an electrochemical sensor, achieving a detection limit of 0.18 ng/ml 

[30].  A Biacore® 3000 surface plasmon resonance (SPR) system was employed to characterize 

the different immobilization techniques and monitor the antibody-antigen interactions, and 

the optimal antibody modification applied in an immunosensor, achieving a clinically relevant 

detection limit of 4.6 ng/ml. 

2.3 Experimental 

2.3.1 Chemicals and materials  

Neuron specific enolase (NSE), anti-NSE21 monoclonal antibody (MAb) and anti-PSA66 

(Prostate Specifc Antigen) MAb were kindly supplied by Fuijirebio Diagnostics (Gothenburg, 

Sweden). Human CEA (Carcino Embryonic Antigen) was purchased from SCIPAC (Sittingbourne, 

UK). Both anti-PSA66 MAb and human CEA were employed for non-specific binding studies as 

non-specific ligand and as non-specific marker, respectively. Bare gold substrates (SIA-kit), gold 

substrates mounted in chip (Au chip) dextran-coated gold substrates (CM5 chip) and HEPES 

buffered saline (HBS) (10 mM 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid, 150 mM 

NaCl, 3.4 mM ethylenediaminetetraacetate, and 0.005% Tween 20 (pH 7.4)) were purchased 

from Biacore (GE Healthcare, Barcelona). Thiolated polyethylenglycol 1-(mercaptoundec-11-

yl)-tetra(etlyleneglycol) (PEG) was supplied by SensoPath Technologies (Bozeman, USA). 

Cystamine dihydrochloride, 1-Ethyl-3-(3-dimethylamino-propyl) carbodiimide (EDC), N-

hydroxysuccinimide (NHS), sulfo-NHS, dithiopropionic acid succinimidyl ester (DTPS), 16-

mercapto-1-hexadecanoic acid (16-MHA), 11-mercapto-1-undecanol (11-MUOH), and 

carbonate-bicarbonate capsules for preparation of carbonate buffer (0.05 M, pH 9.6) were 

purchased from Sigma (Barcelona, Spain). Ethanol, acetone, dimethyl sulfoxide (DMSO), 

sodium di-hydrogen phosphate (NaH2PO4) and di-sodium hydrogen phosphate (Na2HPO4) were 

obtained from Panreac Química (Barcelona, Spain). Sodium chloride (NaCl), sodium hydroxide 

(NaOH), potassium chloride (KCl), sodium acetate, acetic acid and sodium periodate were 

supplied by Scharlau (Barcelona, Spain). Centrifugal filter membranes of 100 molecular weight 

cut off (MWCO) and 0.2 m membrane filters were supplied by Whatman GmbH (Dassel, 

Germany). Deionised water was produced using a Milli-Q RG system (Millipore Ibérica, Madrid, 

Spain). The concentration of the chemically modified antibodies was determined using a Cary 

100 UV-Vis spectrophotometer supplied by Varian (Barcelona, Spain). To evaluate the different 
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immobilization techniques a Biacore® 3000 Surface Plasmon Resonance (SPR) system was 

used. 

2.3.2 Chemical modification of biocomponents  

Disulphide groups were covalently introduced into the structure of both anti-NSE21 and 

anti-PSA66 via its primary amines, carboxylic acids and carbohydrates, whereas the anti-NSE17 

was used in its' unmodified state as second primary antibody for sandwich assay experiments. 

Chemical introduction of disulphides in anti-NSE21 antibody using -NH2 residues. 

Introduction of disulphides by this synthetic route was performed by reacting terminal primary 

amines and lysine residues of IgG with a disulphide-containing active ester, giving rise to a 

covalent attachment between disulphide groups and IgG. Anti-NSE21 (3.6 x 10-9 mol) diluted in 

0.5 ml of 0.01 M carbonate buffer pH 9.5 was mixed with 0.07 mg of dithiopropionic acid 

succinimidyl ester (DTPS) (1.8 x 10-7 mol) prepared in 0.05 ml of DMSO. The mixture was 

allowed to react in dark conditions for 5 hours at room temperature under vigorous stirring. 

The excess of DTPS was removed by ultrafiltration (100 kDa Molecular Weight Cut Off (MWCO) 

membranes) and the modified antibody was recollected in PBS buffer pH 7.4. The 

concentration of the modified antibody was determined by UV-Vis spectrophotometry at 280 

nm using an extinction coefficient of 1.38 ml/mg•cm for 1 mg/ml IgG solutions in a 1-cm path 

length [31]. 

Chemical introduction of disulphides in anti-NSE21 antibody using carbohydrates. 

Polysaccharide residues were oxidized to aldehydes that react with primary amine groups of 

cystamine via the formation of Schiff bases. Initially, 0.5 mg of anti-NSE21 was diluted in 100 l 

of 0.01M acetate buffer pH 5.0, and then a 5 mM solution of sodium periodate was added to 

the antibody solution. The mixture was left to react in the dark and under stirring conditions 

for 1 h at room temperature. The oxidized antibody solution was slowly added to 900 l of a 

0.1 M cystamine solution diluted in 0.05 M carbonate buffer (pH 9.5) and left to react for 3 

hours at room temperature. In the next step, unstable imines were reduced to amine bonds by 

dropping 10 mM cyanoborohydride into the solution. Finally, the antibody solution was 

purified from the large excess of cystamine by filtration using 100 kDa MWCO membranes and, 

the modified antibody subsequently recollected in PBS buffer pH 7.4. 

Chemical introduction of disulphides in anti-NSE21 antibody using –COOH residues. 

Disulphides were covalently attached to the IgG structure through the terminal carboxylic 

acids and the glutamic acid residues. Firstly, 0.5 mg of anti-NSE21 antibody (3.6 x 10-9 mol), 7.8 
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mg of sulfo-NHS (3.6 x 10-5 mol) and 6.9 mg of EDC (3.6 x 10-5 mol) were mixed and allowed to 

react for 10 min under stirring conditions at room temperature in 100 μL of 10 mM acetate 

buffer pH 4.5. Subsequently, this mixture was added to 900 μL of 50 mM HEPES buffer pH 8.5 

containing 20 mg of cystamine (9 x 10-5 mol). Nucleophilic substitution took place during 2 

hours at room temperature under vigorous stirring conditions. Excess reagents and by-

products were removed by filtration (100 kDa MWCO membranes) and the antibodies were 

dissolved in PBS buffer pH 7.4.  

2.3.3 Biological functionalization of bare gold substrates 

Different biological functionalisation strategies of bare gold substrates were characterized 

using a Biacore® 3000 SPR system [32]. Surface functionalisation was exploited using two 

different approaches: (i) Direct bio-SAM using the chemically modified antibodies containing 

disulphide groups and (ii) Classic SAM using unmodified antibodies attached to a long-chain of 

alkanethiols previously self-assembled onto a bare gold substrate (Scheme 2.1). Additionally, 

the efficiency of these two approaches was compared with the performance of both a 

commercial carboxymethylated dextran surface (CM5 chip) and the immobilization of the 

unmodified antibody directly on gold substrates.  

Direct bio-SAM approach. Bare gold substrates were rinsed with acetone and incubated 

for 15 min in an UV/O3 chamber to remove all organic contaminants on gold substrates [33]. 

Covalent immobilization of chemically modified antibodies containing disulphide groups was 

achieved by injecting 100 l of the modified antibody solution (100 g/ml in PBS buffer pH 

7.4), followed by injection of 35 l of a 1 mM PEG solution in order to block remaining free 

sites on the surface. A continuous flow of HEPES buffered saline (HBS) (10 mM 4-(2-

hydroxyethyl) piperazine-1-ethanesulfonic acid, 150 mM NaCl, 3.4 mM 

ethylenediaminetetraacetate, and 0.005% v/v Tween 20 (pH 7.4)) at 5 l/min was maintained 

during the immobilization step. To test the non-specific adsorption of NSE on the PEG blocking 

layer, a control experiment was performed by injecting 100 l of the non-specific PSA66 

antibody (100 g/ml in PBS buffer pH 7.4) previously modified with disulphides via its primary 

amines, carboxylic acids and carbohydrates as described above. Subsequently, the surface was 

backfilled by an injection of 35 l of a 1 mM PEG solution.  NSE detection experiments were 

performed by injecting serial dilutions of NSE (3.1 – 200 ng/ml) prepared in HBS buffer over 

the antibody-immobilized surface at a flow rate of 20 l/min. After 6 min of association, the 

sample solution was replaced by a HBS buffer flow for 7 min, allowing the complex to 

dissociate. Regeneration of the surface was performed by injecting two pulses of 10 mM 
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glycine (pH 2.2) between each analyte injection. The recognition experiments were carried out 

at 25 °C.  Specificity of the recognition layer for NSE was tested by injecting two concentrations 

of human CEA (1 and 10 g/ml) as a non-specific marker. 

In addition to the NSE recognition experiments, sandwich assays were also performed to 

test the specificity of the NSE binding. These assays consisted of a NSE recognition step by 

injecting both 100 ng/ml and 200 ng/ml of NSE for 6 min, followed by a 10 μg/ml solution of 

unmodified NSE17 for a further 6 min. Subsequent to association, the sample solution was 

replaced by a HBS buffer flow for 7 min at 20 l/min.   

Classic SAM approach. Immediately after cleaning, the gold substrates were immersed in a 

mixture of 5% 1mM 16-mercapto-1-hexadecanoic acid (16-MHA) and 95% 1mM 11-mercapto-

1-undecanol (11-MUOH) in ethanol. Mixed SAMs were prepared in glass recipients cleaned 

with 2M NaOH for at least 1 h. After 3 h of SAM deposition, the substrates were thoroughly 

rinsed with ethanol and dried under a stream of nitrogen, producing stable and fully covered 

SAMs on gold [34]. The mixed SAM used is considered as optimal for obtaining a high degree 

of antibody immobilization with maximal elimination of non-specific adsorption due to the 

high content of thiols with OH end groups [35].  

Covalent immobilization of unmodified anti-NSE21 monoclonal antibody was accomplished 

via coupling to their primary amines. A continuous flow of HBS at 5 l/min was maintained 

during the immobilization step. The carboxylic groups of the mixed SAM were activated by 

injection of 50 l of a 1:1 mixture of 400mM EDC and 100 mM NHS in deionized water. 

Subsequently, 100 l of the antibody solution (100 g/ml in 10 mM acetate buffer pH 5.0) was 

injected, followed by injection of 35 l of ethanolamine (1.0 M in deionized water, pH 8.5) in 

order to block remaining NHS ester active groups, followed by two 10 l injections of 10 mM 

glycine (pH 2.2) in order to remove non-specifically bound molecules from the surface. To test 

the non-specific binding of NSE, a control experiment was performed by injecting 100 l of 

unmodified anti-PSA66 solution (100 g/ml in 10 mM acetate buffer pH 5.0) as control 

antibody. The experiments were carried out at 25 °C.  

Bio-functionalisation of CM5. A commercial carboxymethylated dextran surface (CM5 

chip) was used to immobilize the unmodified anti-NSE21. Immobilization was achieved via 

coupling to their primary amines to the previously activated carboxylic groups of the dextran 

matrix. Immobilization was performed in the same manner as described above for the classic 

SAM approach.  
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Direct immobilization on gold substrates of unmodified anti-NSE21. Immobilization of 

unmodified anti-NSE21 was carried out by injecting 100 l of the antibody solution (100 g/ml 

in PBS buffer pH 7.4), followed by an injection of 35 l of a 1 mM thiolated PEG solution.  

2.4 Electrochemical instrumentation 

Electrochemical measurements were performed on a PC controlled PGSTAT12 Autolab 

potentiostat (EcoChemie, The Netherlands) with an in-built frequency response analyzer FRA2 

module. Electrochemical impedance measurements were performed using a standard three-

electrode configuration (reference electrode: Ag/AgCl(sat), counter electrode Pt wire) in 1 mM 

Fe(CN)6
3-/4- in 0.1 M KCl, as previously described [36].     

Electrochemical characterization of SAM formation of anti-NSE21-CHO modified 

electrodes. For the impedimetric study of SAM formation, clean gold electrodes were 

functionalized by immersion in a freshly prepared 1 g/ml solution of disulphide modified anti-

NSE21 in PBS for fixed times followed by rinsing with copious amounts of PBS-Tween. After 

each modification and washing, Faradaic EIS were recorded [36]; the electrodes were then 

washed with Milli-Q water and argon dried. 

Electrochemical immunosensor construction and optimization. The incubation time of 

the specific recognition of NSE was optimized by immersion of the antibody modified 

electrode in a 100 ng/mL solution of NSE in PBS at different incubation times (0-60 min) and 

recording the change in Rct of the faradaic response 1 mM Fe(CN)6
3-/4- in 0.1 M KCl.  

Electrochemical Detection of NSE. A SAM of disulphide modified antibody was formed by 

immersion of a clean electrode on a 1 g/ml solution of NSE-CHO in PBS for three hours 

followed by blocking with 1 mM 1-(mercaptoundec-11-yl)-tetra(ethyleneglycol) in PBS for 30 

minutes. The electrodes were then exposed to different concentrations of NSE antigen in PBS 

for 30 min, rinsed with PBS-Tween and further incubated with 10 g/ml of anti-NSE17-HRP 

conjugate in PBS for 10 at room temperature. The differential pulse voltammetry (DPV) 

response was recorded in triplicate in the potential range 0.2 to -0.4 V versus Ag/AgCl using a 

modulation amplitude of 25 mV), a step potential of 5 mV, and a scan rate of 50 mV·s−1) after 5 

min of addition of a mixture of hydroquinone (1 mM) and hydrogen peroxide (1 mM ) in PBS 

pH 6. 
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2.5  Results and discussion 

2.5.1 Immobilization efficiency of modified and unmodified antibodies 

Immobilization efficiency of the different functionalisation strategies was evaluated by 

monitoring the coupling level of the antibodies on the gold substrates. For all immobilization 

strategies, PEG or ethanolamine, depending on the surface, were used to backfill the 

remaining free sites on the surface and to cap any remaining activated groups. Immobilization 

levels were measured after the addition of the backfiller or capping agent depending on the 

experiment (Figure 2.1).  

 

  

Figure 2.1. SPR signals for immobilization of unmodified NSE21 antibody on bare gold substrate, disulphide-

containing antibody chemically modified via their primary amines (-NH2), carbohydrates (-CHO) and carboxylic 

acids (-COOH), unmodified antibody via mixed SAM and unmodified antibody on a commercial layer (CM5 chip). 

 

Based on the linear regression of the response and the amount of protein coated on the 

sensor surface, the theoretical surface concentrations of the antibodies were determined 

assuming that for matrix surfaces, an SPR signal of 1000 RU corresponds to a 1 ng/mm2 of 
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protein [37,38]. For planar surfaces, however, this assumption needs to be corrected by a 

factor 3, so that 3000 RU equals 1 ng/mm2 [39, 40]. Additionally, each sensor's maximum 

antigen binding capacity (Rmax) was also evaluated for each immobilization strategy by using 

the following relation (1): 

Rmax = (MwAnalyte/MwLigand) · RLigand · VLigand   (1) 

where MwAnalyte and MwLigand are the molecular weights of the analyte and ligand 

respectively, RLigand is the SPR response due to the ligand immobilization, and VLigand is the 

valency of the ligand (amount of binding sites). The valency for IgGs is considered to be equal 

to 2 (Table 2.1).  

 

Table 2.1. SPR response due to the ligand immobilization (RLigand), surface concentrations of the 

immobilized species and sensor's maximum antigen binding capacity (Rmax) for each immobilization strategy.  

Immobilization 
Strategy 

RLigand 

(RU) 
Surface conc. 

(ng/mm2) 
Rmax (RU) 

Unmodified (Bare Au) 1100 0.4 1144 

-NH2 2994 1.0 3114 

-CHO 4492 1.5 4672 

-COOH 3514 1.2 3655 

Mixed SAM 2380 0.8 2475 

CM5 chip 31443 31.4 32700 

 

2.5.2 Binding efficiency of the different functionalization strategies 

The affinity of the anti-NSE antibody immobilized using different strategies was evaluated by 

capture assay by injecting serial dilutions of NSE (3.1 – 200 ng/ml) prepared in HBS buffer over 

the antibody-immobilized surfaces for an association time of 6 min. A zero analyte 

concentration was also included to obtain measurements for system related bias. SPR signals 

for NSE recognition levels of gold substrates functionalized with both disulphide-containing 

and unmodified IgGs are depicted in figures 2.2 and 2.3, respectively. The degree of binding 

was calculated by measuring the response signal at the end of the dissociation phase in three 

replicate experiments subtracted by the signal from the control surface (non-specific PSA66 

MAb). In the case of the disulphide-containing antibodies (Figure 2.2), only the antibodies 

UNIVERSITAT ROVIRA I VIRGILI 
STUDY OF SURFACE CHEMISTRY STRATEGIES TO ENHANCE THE ELECTROCHEMICAL DETECTION OF PROTEINS AND DNA MARKERS 
Josep Lluís Acero Sánchez 
 
 
 



58 
 

modified via their carbohydrate moiety exhibited a typical sigmoidal response. Very low 

responses to different NSE concentrations were obtained for the IgGs modified via their amine 

or carboxylate groups. The carbohydrate chains are attached to the CH2 domain within the Fc 

region of the IgGs. This site-directed conjugation orientates the attached molecule away from 

the antigen binding regions, preventing blockage of these sites and thus preserving activity 

[26]. Both amine and carboxylate groups within the three-dimensional structure of an 

antibody is nearly uniform throughout the surface topology [26], and conjugation procedures 

that utilize these groups randomly cross-link to many parts of the antibody molecule, leading 

to a random orientation of the antibody within the conjugate structure, often blocking the 

antigen binding sites, resulting in a decrease in antigen binding activity. The level of non-

specific adsorption of CEA on the surfaces containing the modified IgGs was lower than 9 RU 

and therefore insignificant. 

 

Figure 2.2. SPR signals for NSE binding levels (Capture Assay) of gold substrates functionalized with 

disulphide-containing anti-NSE21 antibodies modified via their primary amines, carbohydrates and carboxylic 

acids and immobilized on a bare gold substrate. Inset: NSE binding levels obtained with the anti-NSE21 modified 

via their primary amines and carboxylic acids. Error bars represent n = 3. 

 

Figure 2.3 illustrates the target response levels for the unmodified anti-NSE21 immobilized 

on a CM5 chip, a mixed SAM and on a bare gold substrate. NSE was only detected using the 

CM5 and mixed SAM functionalized surfaces. Target binding levels on these two 
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immobilization strategies are very similar up to a concentration of 100 ng/ml, and at higher 

antigen concentrations the mixed SAM surface starts to become saturated, as most of the 

antibodies have been associated with the target. On the other hand, the response on the CM5 

keeps increasing linearly. This indicates the capacity of the CM5 chip to accommodate more 

antigen molecules, as was expected taking into account the high immobilization level of 

antibodies obtained for this three-dimensional surface.  

 

Figure 2.3. SPR signals for NSE binding levels (Capture Assay) of gold substrates functionalized with 

unmodified anti-NSE21. The unmodified antibodies were immobilized on a CM5 chip, a mixed SAM and on a bare 

gold substrate. Error bars represent n = 3.  

 

The level of non-specific adsorption of CEA on the surfaces functionalized with unmodified 

IgGs was lower than 5 RU for the both the CM5 and the surface containing unmodified IgG, 

whereas for the mixed SAM the levels were lower than 11 RU. NSE detection using antibodies 

immobilized via the carbohydrate modification, on CM5 or via mixed SAMs were also 

evaluated by measuring assay critical parameters such as the limit of detection (LOD), the 

sensitivity, EC50 (concentration of target needed to obtain a 50 % of the maximum signal) and 

dynamic range. The sensitivity, EC50 and dynamic range was not determined for the CM5 chip 

because the top plateau was not defined by the experimental data and thus, these parameters 

would lack accuracy. The LOD was taken as the mean concentration value obtained for three 
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blanks plus three times the standard deviation of the blank. The low LOD (6.8 ± 2.1 ng/ml) 

obtained for the –CHO modification compared well with the other two strategies, classic SAM 

(1.8 ± 0.3 ng/ml) and commercial layer (3.3 ± 1.3 ng/ml) (Table 2.1). 

 

Table 2.2. Assay performance parameters for the detection of NSE using (i) disulphide-containing NSE21 

modified via their carbohydrates (-CHO) immobilized on a bare gold substrate and  (ii) unmodified NSE21 

immobilized on a mixed SAM. 

Immobilization 
Strategy 

R2 
EC50 

(ng/ml) 
Sensitivity 

(RU/(ng/ml)) 
Dynamic range 

(ng/ml) 
LOD 

(ng/ml) 

-CHO 0.999 171 ± 4 1.32 ± 0.20 17.1 – 603 6.8 ± 2.1 

Mixed SAM 0.999 59 ± 2 1.28 ± 0.05 4.8 – 1170 1.8 ± 0.3 

 

SPR was also used to determine the strength of the antibody-antigen binding by 

calculating the dissociation constant (KD) using the BIAevaluation® software from Biacore. 

Experimental kinetic data was fitted to the 1:1 binding model and the goodness of fit was 

assessed by calculating the chi-square (χ2). The KD for the –CHO, CM5 and mixed SAM 

strategies was of 4.4·10-11 M (χ2=2.3), 4.8·10-12 M (χ2=2.2) and 1.9·10-9 M (χ2=5.1) respectively. 

Besides the low chi-square values obtained that suggested the good fitting to the ideal 1:1 

binding model, differences in the KD of 1 and 2 orders of magnitude were exhibited among the 

different strategies. These results clearly indicate that binding kinetics were affected by the 

immobilization approaches, mass-transfer limitations and surface heterogeneity due to the 

covalent immobilization procedures. The 3D surface of the CM5 chip is prone to mass 

transport limitations and therefore the kinetic parameter is underestimated, probably due to (i) 

the slower transport step of the antigens to the immobilized anti-NSE21 because of the three-

dimensional dextran structure and (ii) the high binding capacity of ligands of this chip. 

Immobilization procedures on both the CM5 and mixed SAM are achieved via coupling primary 

amines of the antibodies, and this can modify the antigen binding sites, resulting in a decrease 

in affinity. On the other hand, the - CHO strategy offers a 2D surface, less subjected to mass 

transfer limitations, where the antibody binding sites have been unaffected by chemical 

reactions and thus, this surface is more reliable for binding kinetic calculations. 

NSE recognition levels did not reach the theoretical maximum antigen binding capacity 

(Rmax) for any of the immobilization techniques. This revealed that all immobilized ligand 
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molecules were not fully accessible or functional, or that the NSE concentration assayed was 

not high enough to interact with all ligand molecules. The stoichiometry of the binding of the 

NSE to antibody was calculated using the molecular mass values for the anti-NSE MAb (150 

kDa) and NSE (78 kDa) and their immobilization degree and response level. To this end, 

experimental stoichiometries of anti-NSE21 were 0.11, 0.20 and 0.03 for carbohydrate 

modification, mixed SAM and CM5 chip, respectively.  

For the recognition experiments, the flow rate was increased to 20 l/min to minimize re-

binding and to reduce mass transport limitations, allowing rapid diffusion of the analyte from 

the bulk solution to the surface. Sensor chips were regenerated by selective dissociation of the 

analyte from the covalently immobilized ligand. Conditions were chosen to achieve complete 

dissociation of the analyte without affecting the binding characteristics of the ligand. 

Regeneration of the surfaces was achieved by injecting two pulses of 10 mM glycine (pH 2.2) 

between each analyte injection [41]. Regeneration efficiencies were higher than the 90 % for 

all experiments. Sandwich assays were performed to test the specificity of the NSE binding, 

consisting of a NSE recognition step by injecting 100 ng/ml and 200 ng/ml of NSE, followed by 

the injection of 10 μg/ml of unmodified NSE17 (Figure 2.4). Binding responses obtained for the 

addition of the second primary antibody demonstrated the higher presence of analyte 

molecules bound on the surface prepared using the –CHO modification, mixed SAM and CM5 

chip, confirming the results obtained for direct capture of NSE. Both carbohydrate 

modification and mixed SAM displayed the highest responses for 100 ng/ml of NSE, while for 

an antigen concentration of 200 ng/ml the best surface was the –CHO modified. Whilst high 

binding levels were obtained for the direct capture of NSE in a CM5 chip, low binding levels of 

NSE17 were observed, which can be attributed to a highly packed surface too dense to 

accommodate the subsequent binding of the second antibody. 
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Figure 2.4. SPR signals for anti-NSE17 binding levels (Sandwich Assay) for a gold substrate functionalized 

with anti-NSE21. Unmodified antibodies were immobilized on a CM5 chip, a mixed SAM and on a bare gold 

substrate. Disulphide-containing antibodies were modified via their primary amines, carbohydrates and 

carboxylic acids immobilized on a bare gold substrate. Error bars represent n = 3. 

2.5.3 Electrochemical detection of NSE 

The immobilization of CHO-modified anti-NSE on gold electrodes was for use as an 

electrochemical immunosensor was explored. Impedance changes following different antibody 

immobilization times were monitored. Charge transfer resistance (Rct) values, indicative of the 

opposition of the interface to the passage of electrical current from an electroactive probe 

present in solution, were obtained from simulation of the equivalent circuit shown in Scheme 

2.2, where Cdl is the double layer capacitance and Rs is the solution resistance of the circuit.  

 

 

Scheme 2.2. Equivalent circuit used to model the impedance data (Rs: solution resistance, Rct: resistance to 

charge tranfer, Cdl: double layer capacitance). 
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The Rct values increased steadily with time (Figure 2.5), reaching saturation after 3 hours. 

This impedance increase does not account for multilayer formation since each point 

represents the constant impedance value obtained after repeated washings to remove 

physically adsorbed molecules. The maximum deposition time for NSE-CHO is considerably 

lower than that observed for the formation of SAMs of alkanethiols, which usually require an 

overnight exposure of the electrodes to the modifying solution in order to form a compact 

monolayer, highlighting the advantage of the direct attachment of modified antibodies on 

surfaces in immunosensor construction. The same procedure was employed in order to 

optimize the time required for the specific recognition of NSE (Figure 2.5, inset). The 

impedance response increased up to saturation after 30 minutes of interaction and this time 

was thus used in the detection experiments. Electrochemical determination of NSE was carried 

out using anti-NSE17-HRP conjugate as reporter antibody with differential pulse voltammetric 

detection.  Figure 2.6a shows the DPV responses of the immunosensor with increasing 

concentrations of NSE in the potential range 0.1 to –0.4 V. As can be seen from Figure 2.6b the 

peak height increased with NSE concentration and showed a linear relationship with the 

logarithm of the NSE concentration. The limit of detection (4.6 ng/ml) was calculated with a 

linear relationship between 0-25 ng/ml.   

 

Figure 2.5. Complex impedance plot (in 1 mM K3Fe(CN)6 solution in PBS pH 7.4) for the formation of a SAM of 

NSE21-CHO at gold electrodes at different exposure times. Inset: Impedance variations for the specific interaction 

of NSE with NSE21-CHO modified surface. 
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Figure 2.6. a) DPV responses at NSE21-CHO modified immunosensor in PBS (pH 7.4) at different NSE 

concentrations. b) Dependence of the peak height with NSE concentration. Inset: Logarithmic calibration plot. 

 

2.6 Conclusions 

Different strategies have been developed for antibody immobilization, based on the 

chemical modification of their functional groups with disulphide “anchors” able to 

spontaneously chemisorb onto gold, with no need for surface pre-functionalisation. Among 

the three chemical routes investigated, the site-directed conjugation of antibodies via their 

carbohydrate chains exhibited a good analyte response in both capture and sandwich assays 

using SPR. Surfaces prepared with this approach also compared well with both the classic two 

step SAM scenario and the 3D-CM5 chip in terms of analyte response, LOD and sensitivity, 

suggesting that the immobilization of carbohydrate-modified antibodies driven by 

chemisorption of their disulphide moieties represents a successful approach for creating 
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biologically active dense monolayers on gold devices due to an optimisation of orientation of 

the capture (primary) antibody. The chemical specificity of the reaction toward carbohydrate 

residues opens up an attractive option for oriented antibody immobilization since their sugar 

moieties are specifically located on the constant region of the immunoglobulins. Finally, in 

terms of simplicity, required time, and minimal use of reagents, the use of modified 

carbohydrate residues presents an extremely effective approach for antibody immobilization 

with application in electrochemical, optical, and gravimetric immunosensors. 
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3.1 Abstract 

A simple and rapid immunosensor for the determination of the coeliac disease related 

antibody, anti-tissue transglutaminase, was investigated. The antigenic protein tissue 

transglutaminase was chemically modified introducing disulphide groups through different 

moieties of the molecule (amine, carboxylic and hydroxyl groups), and self-assembled on gold 

surfaces and used for the detection of IgA and IgG autoantibodies. The modified proteins were 

evaluated using enzyme linked immunosorbent assay and surface plasmon resonance, which 

showed that only introduction of disulphide groups through amine moieties in the tissue 

transglutaminase preserved its antigenic properties. The disulphide-modified antigen was co-

immobilised via chemisorption with a poly (ethylene glycol) alkanethiol on gold electrodes. The 

modified electrodes were then exposed to IgA anti-tissue transglutaminase antibodies and 

subsequently to horse radish peroxidase labelled anti-idiotypic antibodies, achieving a 

detection limit of 260 ng/mL. Immunosensor performance in the presence of complex 

matrixes, including clinically relevant serum reference solutions and real patient samples was 

evaluated. The introduction of disulphides in the antigenic protein enabled a simple and 

convenient one-step surface immobilisation procedure involving only spontaneous gold-thiol 

covalent binding. Complete amperometric assay time was 30 minutes. 

3.2 Introduction 

Immunosensors offer an alternative to classical methods like enzyme-linked 

immunosorbent assays (ELISA) in point-of-care and portable testing scenarios [1], with 

characteristics including portability, low cost, miniaturizability and high sensitivity, facilitating 

their used in a wide range of applications including environmental control, food analysis and 

clinical diagnostics [2-6]. Integration with other technologies allows continuous operation and 
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multiplexed analysis [7]. A plethora of immunosensors applied to clinical diagnosis have been 

reported using both electrochemical [8-11] and optical transduction [12, 13]. 

Despite of the high number of immunosensors reported, a simple, robust and low-cost 

surface functionalisation strategy is still unavailable. Different procedures have been used to 

ensure the immobilisation of immunoreactants to solid supports and to form an 

immunoaffinity layer, i.e., physical adsorption [14]; polymer entrapment [15], sol-gel 

entrapment [16], covalent attachment [17], Langmuir–Blodgett deposition [18] or self 

assembled monolayers (SAM) [19, 20]. One of the main requirements for immobilisation is the 

maintenance of the biological properties of the immobilised molecule, which in the case of 

immunoreactants is mainly related to the maintenance of their functionality and protein 

conformation to ensure the occurrence of antigen-antibody recognition events [21]. 

A widely reported immobilisation method of biomolecules onto metallic solid supports for 

biosensor application is the chemisorption of a monolayer of molecular thickness, also known 

as a self-assembled monolayer (SAM). They can be formed directly by adsorbing a molecule 

that contains a ligand with affinity towards the surface or by attaching the molecule to an 

already SAM-modified surface [22]. Modified proteins with thiol/disulphide groups can form 

ordered SAMs on gold surfaces,   reducing the steps and time of immobilisation. 

Functionalisation of whole molecules or just fragments with thiol/disulphide groups, and 

subsequent attachment to gold surfaces has been successfully implemented in biosensor 

devices [23-26]. 

Coeliac disease (CD) is an autoimmune disorder that is triggered in persons genetically 

predisposed by ingestion of gluten and related proteins [27,28] and typical symptoms range 

from malabsorption of nutrients to chronic diarrhea, weight loss, abdominal distension and 

general malnutrition [29]. The only successful treatment against celiac disease is a gluten free 

diet [30], with recorded improvements in days or weeks after adherence to a gluten free 

program [31]. The detection of anti-tissue transglutaminase (tTG) IgA and anti-endomysium 

antibodies (EMA) IgA are highly sensitive and specific for the detection CD in children and 

adults >95% [32]. Due to poor sensitivity anti-gliadin antibody (AGA) tests have mainly been 

discarded, but are sometimes used for children below 18 months [33]. The need for the 

development of cost-effective CD detection platforms has focused the interest of many 

researchers. Köger et. al. performed an epitope mapping of tTG with a series of peptides using 

a label-free parallel method, reflectometric interference spectroscopy (RIfS), adapted to a high 

throughput screening format which provided an important step towards a fast non-surgical 
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test for the detection of anti-tTG antibodies [34]. Habtamu et al. developed an immunosensor 

based on an electrogenerated chemiluminescence readout, using membrane-templated gold 

nanoelectrode ensembles with a detection limit for anti-tTG of 0.5 ng/ml [35]. Several 

electrochemical sensors for anti-tTG detection have also been reported using different 

immobilisation strategies of the tTG antigen. Dulay et al. used self-assembled monolayers of a 

carboxylic group terminated bipodal alkanethiol to covalently link the tTG on gold electrodes 

[10]. Glassy carbon electrodes functionalized with gold nanoparticles and subsequently 

derivatized with a SAM of 11-mercaptoundecanoic acid was used by Giannetto et. al. for the 

covalent anchoring of the enzyme [36]. Neves et al. developed a sensor using screen printed 

carbon electrodes nanostructured with a carbon–metal hybrid system. This involved the 

modification of the electrodes with multiwalled carbon nanotubes in a first step and the 

electrochemical deposition of gold nanoparticles in a second step [37, 38].  Although the 

reported sensors performed well in terms of sensitivity, their surface immobilisation strategies 

of tTG involve several steps which may result in costly and time-consuming approaches, 

difficult to implement in large scale production process. In this work the introduction of 

disulphide groups through the carboxylic, carbohydrates and amino moieties of tTG was used 

to immobilize the antigenic protein for the subsequent detection of anti-tissue 

transglutaminase antibodies. The modified tTG was evaluated using ELISA and SPR and the 

optimum modification employed in electrochemical immunosensors.  The developed sensors 

were applied to the detection of anti-tTG antibodies in real patient samples. The introduction 

of disulphides on the antigenic protein enabled a simple and convenient one-step surface 

modification procedure involving only spontaneous gold-thiol covalent binding.  

3.3 Experimental  

3.3.1  Chemicals and materials  

Potassium ferrocyanide (III) and potassium ferrocyanide (II), strontium nitrate, cystamine 

dihydrochloride, N-(3-dimethylaminopropyl) - N - ethylcarbodiimide (EDC), N-

hydroxysuccinimide (NHS), sodium cyanoborohydride (NaCNBH3),  HEPES (4-(2-hydroxyethyl) 

piperazine-1-ethanesulfonic acid) buffer, phosphate-buffered saline (PBS) with 0.05 % v/v 

Tween 20 (PBS-Tween), carbonate bicarbonate capsules for preparation of carbonate buffer 

(0.05 M, pH 9.6), ready to use 3,3,5,5- tetramethylbenzidine (TMB) liquid substrate and 

dithiopropionic acid succinimidyl ester (DTSP) were purchased from Sigma-Aldrich (Spain). 

Ethanol, acetone, dimethyl sulphoxide (DMSO), hydrochloric acid, sodium di-hydrogen 

phosphate (NaH2PO4) and di-sodium hydrogen phosphate (Na2HPO4) were obtained from 
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Panreac Quimica (Barcelona, Spain). Sulfuric acid (H2SO4), sodium acetate, acetic acid, 

potassium hydroxide, sodium chloride, potassium chloride, ethylene glycol, sodium periodate 

and sodium hydroxide were purchased from Scharlau (Barcelona, Spain). 2-(2-(2-(11-

mercaptoundecyloxy) ethoxy) ethoxy) ethanol (PEG-SH) was obtained from SensoPath 

Technologies (Bozeman, USA). Anti-tissue transglutaminase rabbit produced polyclonal 

antibody was purchased from Zedira (Darmstadt, Germany). Anti-human IgA and anti-human 

IgG labeled with HRP antibodies used for electrochemical measurements were provided in the 

commercial Eu-tTG ELISA kits; tissue transglutaminase (tTG) was supplied from EUROSPITAL 

(Trieste, Italy). Each kit contained five human serum calibrators with titers expressed in 

arbitrary units (AU) per milliliter (0, 10, 20, 50 and 100 AU/mL).  Real patient samples were 

provided by King's College London (UK). Centrifugal filter membranes 0.5 mL (MWCO 30 kDa) 

were purchased from Whatman GmbH (Dassel, Germany). Nunc MaxiSorp flat-bottom 96-well 

plates were purchased from VWR International Eurolab (Barcelona, Spain). Aqueous solutions 

were prepared using de-ionized water from a Milli-Q RG system, Millipore (Madrid, Spain) and 

all reagents were used as received. 

3.3.2 Chemical modifications of tissue transglutaminase antigen 

Disulphide groups were covalently introduced into the structure of tissue transglutaminase 

protein via its amines, carboxylic acids and carbohydrates according to the protocols 

previously reported [24]. The modification procedures are depicted in Scheme 3.1. 

Chemical introduction of disulphides using -NH2 residues. Introduction of disulphides was 

carried out by reacting lysine residues of the antigen with a disulphide-containing active ester 

to form a covalent bond between disulphide groups and antigen. Therefore, 0.25 mg of tTG 

(3.1 x 10-9 mol) diluted in 0.5 ml of 0.01 M carbonate buffer pH 9.5 were mixed with 0.035 mg 

of dithiopropionic acid succinimidyl ester (DTPS) (0.9 x 10-7 mol) prepared in 0.05 ml of DMSO. 

The mixture reacted for 5 h at room temperature under stirring conditions in the dark. The 

excess of DTSP was eliminated by ultrafiltration using 30 kDa Molecular Weight Cut Off 

(MWCO) membranes and the modified antigen was recollected in PBS buffer pH 7.4.  
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Scheme 3.1. Reaction schemes for the disulphide modification of the antigen protein through the different 

moieties (A) amine, (B) carbohydrates and (C) carboxyl groups. 

 

Chemical introduction of disulphides using carbohydrates. Initially, 0.25 mg of tTG (3.1 x 

10-9 mol) were diluted in 100 µl of 0.01M acetate buffer pH 5.0, and then a 5 mM solution of 

sodium periodate was added to the antigen solution.  The mixture was allowed to react under 

stirring conditions for 1 h at room temperature in dark conditions. The oxidized antigen 

solution was slowly added to 450 µl of a 0.1 M cystamine solution diluted in 0.05 M carbonate 

buffer pH 9.5 and left to react for 3 h at room temperature to allow the formation of Schiff 

bases. Subsequently, unstable imines were reduced to amine bonds by adding 10 mM 

cyanoborohydride into the solution for 1 h. Finally, the antigen solution was purified from the 

excess of cystamine by filtration using 30 kDa MWCO membranes and the modified antigen 

was recollected in PBS buffer pH 7.4. 

Chemical introduction of disulphides using –COOH residues. Firstly, 0.25 mg of tTG (3.1 x 

10-9 mol), 3.9 mg of sulfo-NHS (1.8 x 10-5 mol) and 3.45 mg of EDC (1.8 x 10-5 mol) were mixed 

and incubated for 10 min under stirring conditions at room temperature in 100 µl of 10 mM 
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acetate buffer pH 4.5. Subsequently, the mixture was added to 450 µl of 50 mM HEPES buffer 

pH 8.5 containing 10 mg of cystamine (4.5 x 10-5 mol). The reaction took place for 2 h at room 

temperature under stirring conditions. Excess reagents and by-products were removed by 

filtration (30 kDa MWCO membranes) and the antigen was collected in PBS buffer pH 7.4.  

3.3.3 Evaluation of modified tTG antigenicity 

Enzyme Linked Immunosorbent Assay. The performance of the modified tTG was 

evaluated colorimetrically by an indirect capture ELISA. The absorbance was measured using a 

SPECTRAmax PC plate reader (bioNova científica, Spain). The immobilization of the 

disulphides-containing antigen was carried out using a 5 g/ml solution of antigen dissolved in 

0.05 M carbonate buffer pH 9.6, which was added (50 l/well) on a NUNC MaxiSorp 98 well 

plates for 60 min at 37 °C. After blocking the well surface with 200 l of 0.01M PBS-Tween for 

60 min at 37 °C, various concentrations of rabbit anti-tTG antibodies (0.16 – 10 g/ml) 

prepared in PBS-Tween were added into the corresponding wells and incubated for 60 min at 

37 °C. Then, 50 l of anti-rabbit IgG labelled with HRP enzyme (90 ng/mL) also prepared in PBS-

Tween were added into the well plate and allowed to react for 60 min at 37 °C. Finally, the 

presence of the HRP enzyme was detected using TMB ready-to-use liquid substrate and 

stopping the reaction using 1 M H2SO4 after 20 min. The absorbance was measured at 450 nm. 

Surface plasmon resonance analysis. Biacore gold chips (SIA Au kit), were first cleaned 

using a Piranha’s solution (1:3 v/v H2O2 and H2SO4) (Warning: Piranha's solution is highly 

corrosive and violently reacts with organic materials; this solution is potentially explosive and 

must be used with extreme caution) for 1 min over the surface and then rinsed several times 

with ethanol and repeated twice for each gold chip. Real time analysis was performed using a 

surface plasmon resonance (SPR) Biacore 3000® (GE Healthcare, US); All SPR experiments were 

done using 0.01 M PBS-Tween, filtered and degassed, as running buffer and unless stated in all 

the dilutions used. Gold chips were first conditioned using a 20 L/min flow of running buffer 

until a stable signal was achieved. Protein binding was performed at a flow rate of 5 L/min, 

one channel at a time, injecting 150 L of 0.1 mg/mL of the modified antigen. Subsequently in 

order to block non-specific interactions 100L of 1 mM PEG-SH solution was flowed over all 

the channels, and surface functionalised with PEG-SH alone was used as a control. Antibody 

binding was performed at a flow rate of 20 µL/min recording for 6 minutes association and 

dissociation steps, injecting buffered solution in the presence and absence of target antibody. 

Regeneration of the surface was performed by injecting 20 µL of a solution of 50 % 

ethyleneglycol pH 10 between each analyte injection. 
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3.3.4 Electrode modification  

Gold disk electrodes CHI 101 (CH Instruments Inc, US) were first polished with aqueous 

alumina slurries of 25 and 1 μm (Buehler, US) and then rinsed with Milli-Q water, sonicated for 

1 minute and dried with nitrogen. The electrodes were treated with a mixture of H202 (30%) 

and KOH (0.1 M) for 10 minutes, followed by an electrochemical cleaning in 0.1 M potassium 

hydroxide, performed using  linear sweep voltammetry between -0.2 and -1.8 V [39] using a 

conventional three electrode cell, standard silver/silver chloride (sat. KCl) CHI111 (CH 

Instruments, US) as reference, and a platinum gauze was used as the counter electrode. 

Electrodes were immersed in a solution of 0.1 mg/mL of the modified antigen dissolved in PBS-

Tween 0.01 M pH 7.4 for 1 hour, rinsed with water and dried with nitrogen. To block non-

specific adsorption, the electrodes were immersed in an ethanolic solution of 1 mM PEG-SH for 

30 minutes and then rinsed with ethanol.  

3.3.5 Electrochemical analysis 

Amperometric measurements were carried out at -0.20 V vs Ag/AgCl in a 5 mL 

electrochemical cell containing TMB substrate. All the electrochemical measurements were 

performed at room temperature. The electrodes were incubated for 15 minutes in different 

antibody concentrations, reference serum solutions or patient’s serum followed by another 15 

minutes of the corresponding anti-rabbit or anti-human HRP-labelled antibody. The 

immobilization and detection schematic is outlined in Scheme 3.2.  

 

Scheme 3.2. Architecture of the immunoassay including electrochemical detection 
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3.3.6 ELISA analysis of the reference serum solutions  

The commercial ELISA kit Eu-tTG from Eurospital was used to perform the calibration curve 

for anti-tTG IgG and IgA using the reference serum solutions. tTG was already precoated in the 

well plates. Different concentrations of the reference serum solutions (anti-tTG IgA and IgG 

calibrators) were added into their corresponding wells (50 l/well) and incubated for 45 min at 

room temperature. The plates were washed three times with the washing solution provided in 

the kit and then, 50 l/well of the ready-to-use enzyme-antibody conjugate (anti-human IgA or 

anti-human IgG depending on the case), also provided in the kit, were added and allowed to 

react for 30 min at room temperature. Finally, after washing the plate, the presence of HRP 

label was detected using TMB substrate. The reaction was stopped after 15 min by adding 50 

l/well of 0.5 M solution of H2SO4 and the absorbance was measured at 450 nm. 

3.4 Results and discussion 

3.4.1  Analysis of modified tTG antigenicity 

The antigenicity of the modified protein was first studied using an Enzyme-Linked 

Immunosorbent Assay (ELISA) to investigate if the modifications introduced had resulted in a 

loss of antigenicity of the tissue transglutaminase due to an induced change in structure or the 

epitope sites.  

 

Figure 3.1. ELISA analysis of the antigenicity of the modified tissue transglutaminase 
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As can clearly be seen in Figure 3.1, retention of antigenicity was only observed for amine-

mediated modification, with this modification showing the same antigenicity as the 

unmodified tTG, with both obtaining a detection limit (LOD) of 0.50 µg/mL.  The LOD was 

estimated as the concentration determined from the signal of the zero concentration plus 

three times its standard deviation. 

The immobilisation of the disulphides-containing tTG on gold surfaces was then 

characterized using SPR. The theoretical amount of modified antigen chemisorbed was 

quantified by measuring the immobilisation levels and assuming that for planar surfaces an 

SPR signal of 3000 RU equals 1 ng/mm2 [40, 41]. The surface concentrations obtained were of 

3.0, 1.9 and 3.2 pmol/cm2 for the antigen modified via amines, carbohydrates and carboxylic 

moieties respectively (a molecular weight of 80000 Da was considered for tTG).The results 

showed a similar successful degree of immobilisation onto the gold surface for the different 

modified antigens, with the level of immobilisation of PEG-SH as barrier for non-specific 

adsorption being on average 2.8 x 10-10 moles/cm2, values typical for protein immobilisation 

and thiol monolayer formation [23, 42, 43]. 

The antigenic performance of the modified proteins was then tested using different 

concentrations of polyclonal IgG anti-tissue transglutaminase (Figure 3.2). The response of the 

interaction was calculated by measuring the signal at the end of the dissociation phase. Bulk 

responses were subtracted for all the graphs and signals are an average of two complete 

experiments. In all cases control experiments with only PEG-SH did not show any relevant non-

specific binding (data not shown).  The results confirmed the findings obtained by ELISA, with 

only tTG modified through its amine moiety showing a trend in its antigenic response, 

obtaining a limit of detection obtained was 6.11 µg/mL with a sensitivity of 0.54 RU/µg/mL-1. 

Regeneration of the surfaces was achieved by injecting a 1 minute pulse of a solution of 50 % 

ethyleneglycol pH 10.0 between each analyte injection. Regeneration efficiencies were higher 

than the 90 % for all experiments. 
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Figure 3.2. Surface Plasmon Resonance analysis of the antigenicity of the chemisorbed modified tissue 

transglutaminase. 

 

3.4.2 Electrochemical Detection  

Using electrochemical detection, antibody binding was again only observed with the tissue 

transglutaminase modified through its amine moieties (Figure 3.3), achieving a limit of 

detection of 0.26 µg/mL and a sensitivity of 10 nA/µg·mL-1 with a linear dynamic range from 

0.26 to 6.9 µg/mL. The R2 was of 0.994 and the average relative standard deviation (RSD) of 9.5 

% (n = 6). 

To demonstrate the robustness of the functionalized electrodes with the developed 

surface chemistry, accelerated stability studies were performed. Electrodes were 

functionalized with disulphides-modified tTG via its primary amines and stored at 37 ºC and 4 

ºC for accelerated and real-time stability testing, respectively. The sensors were stored in the 

presence of the commercial StabilCoat Plus® stabilizer (SurModics, Inc., Eden Prairie, USA), 

which was deposited onto the protein-coated electrodes and allowed to dry in a vacuum 

desiccator for 1 h prior to storage of the electrodes. On a weekly basis, the arrays were 

assessed using the reference serum solution of 50 AU/mL form the commercial ELISA kit   over 

a period of 8 weeks. The response was recorded amperometrically and compared with the 
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signal of fresh prepared electrodes. Pre-coated electrodes did not show loss of activity over 

the period of study at any of the storage temperatures assayed with a relative signal response 

in week 8 of 99.4 ± 2 %  and 101.3 ± 6 % for the electrode arrays stored at 4 ºC and 37 ºC, 

respectively. 

 

Figure 3.3. Electrochemical detection of polyclonal antibodies on tissue transglutaminase-modified 

electrodes. 

 

Clinical reference serum solutions from commercial ELISA kits were used in order to 

evaluate the performance of the functionalised immunosensor. The detection of IgG and IgA 

anti-tissue transglutaminase in the presence of the complex serum matrix was explored (Figure 

3.4). The disulphides-modified tTG via its primary amines exhibited a linear response for the 

concentration range assayed, reaching an LOD of 6.2 AU/ml and linear dynamic range from 6.2 

to 72.3 AU/ml for IgG anti-tTG antibodies. In the case of anti-tTG IgA the LOD was of 10.8 

AU/ml with a dynamic range from 10.8 to 71.8 AU/ml. This result clearly demonstrates that the 

immobilised tTG modified via its amine groups maintained its antigenicity and can be used to 

discriminate and quantify IgA and IgG anti-tTG antibodies at clinically relevant concentrations. 
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Figure 3.4. Electrochemical analysis of anti-tissue transglutaminase antibodies isotype IgG (A1) and IgA (A2) 

in reference serum solution. 

 

Finally, the electrochemical detection of real coeliac disease patient's serum was 

compared with the equivalent ELISA assay from the commercial kit for the IgA isotype due to 

its clinical relevance (Figure 3.5). The amperometric signals obtained for each of five patient 

samples were interpolated using a calibration curve generated using reference serum 

solutions, to obtain equivalent arbitrary units and compared to those found when analysing 

the same samples using the Eurospital commercial ELISA kit. According to manufacturer’s 

instructions, normal anti-tTG IgA values are <9 AU/ml, borderline values are between 9 and 16 

AU/ml and positive values >16 AU/ml. As observed the developed amperometric sensor was 

able to identify all coeliac disease patients with an excellent correlation with the ELISA-based 

detection, indicating the potential applicability of the immunosensor for clinical use. 

Moreover, the amperometric sensor exhibited a significantly reduced assay time of 30 min 

compared with the time required for the ELISA kit (90 min). 
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Figure 3.5. Comparison of electrochemical vs. ELISA-based detection of anti-tTG IgA from real coeliac disease 

patient's serum using the disulphide-containing tTG modified through its amine groups. Clinically relevant 

diagnostic cut-off levels are shown. 

 

3.5 Conclusions 

The introduction of disulphides into an antigienic protein through different moieties and 

their immobilisation on gold surfaces was achieved for the detection of coeliac disease related 

anti-tTG autoantibody detection. Using rabbit polyclonal antibodies and ELISA detection with 

simple physical adsorption of the modified antigens, the antigenicity of tissue 

transglutaminase was observed to have been lost when disulphide groups were introduced 

through either the carbohydrate or carboxyl moieties, with only the amine-based modification 

retaining antigenic properties. The developed electrochemical immunosensors were applied to 

the detection of IgA anti-tissue transglutaminase in real patient samples and the results 

compared to that obtained using commercial ELISA kits, with an excellent degree of correlation 

observed, with the entire assay being completed in just 30 minutes. 
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4.1 Abstract 

Asymmetric multiplex ligation-dependent probe amplification (MLPA) was developed for 

the amplification of seven breast cancer related mRNA markers and the MLPA products were 

electrochemically detected via hybridization.  Seven breast cancer genetic markers were 

amplified by means of the MLPA reaction, which allows for multiplex amplification of multiple 

targets with a single primer pair. Novel synthetic MLPA probes were designed to include a 

unique barcode sequence in each amplified gene. Capture probes complementary to each of 

the barcode sequences were immobilized on each electrode of a low-cost electrode 

microarray manufactured on standard printed circuit board (PCB) substrates.  The 

functionalised electrodes were exposed to the single-stranded MLPA products and following 

hybridization, a horseradish peroxidase (HRP)-labelled DNA secondary probe complementary 

to the amplified strand completed the genocomplex, which was electrochemically detected 

following substrate addition. The electrode arrays fabricated using PCB technology exhibited 

an excellent electrochemical performance, equivalent to planar photolithographically-

fabricated gold electrodes, but at a vastly reduced cost (>50 times lower per array).  The 

optimised system was demonstrated to be highly specific with negligible cross-reactivity 

allowing the simultaneous detection of the seven mRNA markers, with limits of detections as 

low as 25 pM. This approach provides a novel strategy for the genetic profiling of tumour cells 

via integrated “amplification-to-detection”. 
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4.2 Introduction 

It has been shown that circulating tumour cells (CTCs) have prognostic value in metastatic 

breast cancer patients and a plethora of methods and technologies have been developed to 

isolate, enumerate and analyse CTCs, which are defined as cancer cells that have detached 

from the primary tumour site and entered the peripheral blood circulation. Isolation and 

enumeration of CTCs may be highly important not only for early detection of metastatic 

disease early but also for monitoring disease progression. Furthermore, molecular 

characterization of the CTCs is of great importance.  Genetic profiling using a limited set of 

genetic markers has potential as a rapid and cost-effective molecular diagnostic tool for 

analysing CTCs [1].   

Multiplex ligation-dependent probe amplification (MLPA) has garnered huge importance in 

molecular diagnostics due to its' accuracy, robustness, low cost, relative simplicity and high 

multiplexability for up to 40-50 different target sequences in one reaction [2,3]. MLPA exploits 

specifically designed MLPA probes (55-80 mer) consisting of two or three oligonucleotides 

(right and left hybridization oligonucleotides, and in some cases also a spanning 

oligonucleotide), containing target-specific sequences and universal PCR primer sequences. In 

the presence of a complementary target sequence, the MLPA probes hybridize next to each 

other and are subsequently ligated, followed by classic exponential amplification using a single 

primer pair. Amplified products vary in length, typically between 130 and 480 bases, 

depending on the probe length and are analysed using capillary electrophoresis [2]. In the 

absence of a complementary target sequence, ligation will not occur and amplification of the 

complete complex of the two MLPA probes does not take place. MLPA is dependent on length-

based discrimination of the products, which requires the use of capillary electrophoresis, and 

also limits the number of probes within a single reaction to 40-50 probe pairs. To analyse a 

higher numbers of targets, array based MLPA assays has been reported where selective DNA 

tag sequences were incorporated into the MLPA probes [4, 6], with detection being based on 

the hybridization of the tag sequence to a surface-immobilized DNA probe, with fluorescence 

read out.  

In recent years, electrochemical detection has been shown to have great potential as an 

alternative to fluorescence for genetic analysis, as it is characterised by high sensitivity, ease of 

use, low cost, rapid response, low power requirements and compatibility with integration in 

microsystems [7, 8]. 
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The use of Printed Circuit Board (PCB) technology in the biosensor field has recently 

emerged as an alternative to standard photolithographic techniques for electrode array 

microfabrication [9-11], as PCB technology offers low cost mass production, not requiring 

clean room facilities.  Clinical Micro Sensors Inc. (now GenMark Diagnostics, Inc.), reported on 

the first use of PCB platform in molecular diagnostics [12, 13], where they reported 

electrochemical sequence specific detection of DNA via sandwich hybridization with a reporter 

probe containing ferrocene moieties. Gassmann and his colleagues [14] developed a PCB 

based DNA chip for amplification and electrochemical detection, while Tseng and his group 

[15] recently described a PCB based electrochemical biosensor array for the quantitative 

detection of PCR amplicons using methylene blue as the redox indicator. 

In this paper, we report the electrochemical detection of seven genes relevant to the 

molecular characterization of breast cancer cells amplified using MLPA incorporating unique 

barcode sequences using a novel low-density electrode array fabricated using standard printed 

circuit board (PCB). The CDH1 gene encoding for epithelial Cadherin 1 is a tumour suppressor 

gene, which expression has been implicated in cancer progression and metastasis. The CDH2 

gene encodes for the protein Cadherin 2 and appears to be a potential breast cancer 

metastases marker. The CD24 and CD44 genes, the ratio “CD44 positive-to-CD24 negative” are 

of particular clinical relevance in breast cancer and are used to classify breast cancer cells with 

stem-like characteristics. The protein CD24 is involved in cell adhesion and found at the surface 

of most B Lymphocytes and differentiating neuroblasts, whilst CD44 is involved in cell-cell 

interactions, cell adhesions and expressed in a large number of mammalian cell types. The 

ERBB2 gene encodes for the protein HER2 (Human Epidermal Growth Factor Receptor 2), of 

which over-expression plays a major role in the development and progression of certain breast 

cancer types. E3 ubiquitin-protein ligase HUWE1 is an enzyme that is encoded by the HUWE1 

gene, which has been identified as being overexpressed in breast, lung and colorectal cancers. 

Finally, the KRT19 gene encodes for the proteins Keratin, type I cytoskeletal 19 known to 

support epithelial cell integrity and that can be used as a reference marker due to its' high 

sensitivity in the diagnosis of disseminated breast cancer tumour cells.  

The microarray consists of 64 individually addressable gold working electrodes sharing 

common reference and counter electrodes. Cancer genetic biomarkers were amplified by 

asymmetric MLPA and the ssDNA amplicons hybridized to capture probes complementary to 

each of the incorporated barcode sequences. The surface bound DNA duplexes were then 

hybridized with a secondary DNA probe labelled with HRP molecule and finally a precipitating 
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TMB substrate for membranes was added and detected using fast electrochemical pulse 

amperometry. Assay conditions such as hybridization time and temperature were optimised 

and the specificity and sensitivity evaluated. 

4.3 Material and methods 

4.3.1 Materials 

Chemicals were purchased from Sigma Aldrich (Spain) unless otherwise stated. Ultrapure 

water was obtained from a Millipore purification system (Millipore, Spain).  

4.3.2 Instrumentation 

Electrochemical characterization of the electrode array was performed using a PGSTAT12 

potentiostat (Metrohm AG, The Netherlands) using an external Ag/AgCl wire reference 

electrode and a platinum counter electrode. The PGSTAT12 was equipped with four MUX 

modules (Metrohm AG, The Netherlands) of sixteen channels each. The MUX module allows 

sequential interrogation of up to 64 working electrodes that share the same reference and 

counter electrode.  

All electrochemical DNA detection assays were performed using a dedicated 64-channel 

measuring system. This system allows simultaneous amperometric measurements of all 

electrodes using the on-chip reference and counter electrodes. The study of the effect of 

mixing on the hybridization efficiency was carried out using a CavroTM syringe pump obtained 

from Tecan Systems (San Jose, CA, USA).  

4.3.3 Electrode chip design 

The electrode chip was designed “in-house” using AutoCAD software (Autodesk Inc, USA) 

and manufactured at Fineline GmbH (Hilden, Germany) using printed circuit board (PCB) 

technology. Its' design was based on a previous sensor chip prototype designed and 

manufactured “in-house” using the same technology [11]. The electrode array is a one-layer 

PCB of 1 mm thick fabricated using the classical FR-4 glass epoxy resin (30 m Cu thickness) as 

rigid substrate and with a surface finish of 3 m soft gold deposited on a nickel layer of 

approximately 4 m. Soft gold surface finish refers to the electrolytic deposition of gold onto 

nickel-protected copper tracks from a gold deposition bath of 99.99% purity as per 

manufacturer's instructions. This PCB-based chip has a square shape with a side-length of 24.6 

mm and consists of 64 individually addressable circular gold working electrodes of 300 µm 

diameter, sharing a common gold counter and common gold reference electrode, also circular 
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and 250 µm of diameter. All electrodes are linked to connection pads, which are located at the 

edges of the PCB, through tracks of approximately 100 µm wide separated by a gap of 175 µm. 

The electrode arrays were insulated with green solder mask with openings to define the 

geometrical area of the connection pads, working, counter and reference electrodes, and to 

avoid exposure of the electrode tracks to fluids (Figure 4.1, A and B).  

 

 

 
 
Figure 4.1. Electrochemical detection platform. A) 64-electrode array realised on PCB; B) Magnified image of 

the PCB chip showing the working (W), counter (C) and reference (R) electrodes; C) Schematic representation of 

the sensor (1. PCB chip, 2. Anisotropic conductive adhesive tape, 3. PCB carrier, 4. Microfluidic channels of 

double-sided adhesive tape and 5. Laser machined PMMA gasket); D) Detection unit fully assembled. 

 

4.3.4 Electrochemical detection unit set-up 

In order to allow the connectivity between the electrode chip and the potentiostat, as well 

as the injection of samples to the array, a laboratory test set-up was designed, fabricated and 

assembled (Figure 4.1, C and D). The unit consists of the PCB sensor, four interface PCBs, and a 

series of connectors and cables coupled to the potentiostat. The PCB chip is first mounted onto 

a PCB carrier with the help of an anisotropic conductive double-sided adhesive gasket (3M, 

USA). This PCB carrier slots through edge connectors into two interface PCBs, which can be 

connected to either the commercial PGSTAT12 potentiostat or the dedicated measuring 

prototype system. To allow the addition of samples to the sensor, simple microfluidic flow cells 

were fabricated using a Fenix CO2 laser (Synrad Inc., USA) to cut and drill 2 mm thick 

poly(methylmethacrylate) (PMMA) sheets and define the microfluidic channels in 100 µm thick 

medical grade double-sided adhesive gasket (Adhesives Research Ltd., Ireland).  
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4.3.5 Oligonucleotide sequences 

DNA probes designed in-silico and synthetic single stranded DNA (ssDNA) were purchased 

as lyophilized pellets from Biomers.net or MWG Operon GmbH (Germany) and reconstituted in 

Rnase and Dnase-free water. The details of the sequences used can be found in the Supporting 

information (SI). 

4.3.6 Barcode design 

In-house barcode generation software to generate unique barcodes composed of only 

purines or pyrimidines [16] was exploited. Only unique barcodes with no significant 

hybridization with each other or any adapters used in the experiments were considered. The 

uniqueness of barcodes was determined based on how many base changes, insertions or 

deletions (edit distance) were required to convert one barcode to another.  A relatively high 

edit distance (6) to ensure unique mapping after sequencing was chosen. 

Random DNA sequences of 23 bases in length and composed of only purines or 

pyrimidines were generated. Not more than three mono- di- or tri-mer repeats were included. 

Only those with 45% to 65% GC content were taken further. Sequences with low complexities 

(e.g. containing repeats) were removed using the Lempel-Ziv (LZ) compression algorithm [17]. 

Sequences with low complexity were compressed better due to their poor information 

content, whereas those with higher complexity were compressed less, leading to higher 

compression scores. Only sequences with compression score greater than 11 were selected. 

This was done empirically based on the number of sequences eliminated. Only sequences that 

were at least 6 Levenshtein edit distance to each other were considered, i.e. even if five errors 

per barcode were introduced during experiment or sequences, all the barcodes were uniquely 

mapped. Levenshtein distance is the minimum number of changes (insertions, deletions, 

substitutions) to convert one string to another [18]. We paired barcodes to gene-specific 

primers if no significant hybridization formed between them (deltaG >= -5 kcal/mol at 50.0 C). 

Sequences that hybridize to each other were also discarded (maximum Tm = 50.0) [165].  

4.3.7 Asymmetric multiplexed ligand dependant probe amplification 

(MLPA) 

MLPA primers and probes were designed and quality tested by MRC-Holland according to 

their standardized protocols. A universal primer pair (primer X and Y) was used to amplify all 

ligated probes by PCR, (Primer pair obtained from MWG, Supporting Information). A 2.5 μl of a 

positive quality control sample containing a mixture of 10 nM of each cancer biomarker 
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template was used. An initial incubation of 5 min at 98°C was followed by the addition of 1.5 μl 

of a mix containing 0.75 μl MLPA Buffer (MRC-Holland, Amsterdam, the Netherlands) and 0.75 

μl of a solution containing 3 fmol of each target-specific oligonucleotide. The mixture was 

incubated at 95°C for 60 s to denature the probes, after which hybridization took place at 60°C 

for 1 h. Subsequently, ligation of MLPA probes was performed by adding 8 μl of a mix 

containing 1.5 μl ligase buffer A (MRC-Holland, Amsterdam, the Netherlands), 1.5 μl Ligase 

Buffer B (MRC-Holland, Amsterdam, the Netherlands), 1 μl Ligase-65 (MRC-Holland) and 4 μl of 

water.  Ligation was performed for 4 minutes at 54°C followed by an incubation of 5 min at 98 

ºC. 

 

Figure 4.2. A) Design of the MLPA probes. The MLPA probe mix consists of either two or three 

oligonucleotides: a left hybridization oligonucleotide (LHO) consisting of a target-specific sequence and a 

universal primer sequence Y, a right hybridization oligonucleotide (RHO) consisting of a target-specific sequence, 

a unique barcode and a universal primer sequence X. Some of the probes also had a sequence-specific spanning 

oligonucleotide (SO) to increase specificity. B) Schematic representation of the asymmetric MLPA process 

showing the hydridization and ligation of the MLPA probes to the single strand MLPA samples and the 

asymmetric amplification with universal primers. C: Schematic layout of the electrochemical detection using 

unique barcodes and a universal reporter probe labelled with HRP enzyme. 

 

Finally, single stranded DNA amplicons were generated by asymmetric multiplex 

amplification, which was performed by addition of 8 μl of a mix containing 1.2 units SALSA 

Polymerase (MRC-Holland, Amsterdam, the Netherlands), 4 nmol dNTPs, 20 pmol of Cy3-

labeled forward primer Y, 3 pmol of unmodified reverse primer X and 4 µl of Q-solution 
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(Qiagen, Hilden, Germany). Asymmetric amplification consisted of 35 PCR cycles (30 s 95°C, 30 

s 60°C, and 60 s 72°C). After the final cycle of the PCR, the samples were held at 72°C for 10 

min (Figure 4.2, A and B). 

4.3.8 Electrode chip functionalization and assay 

Electrode arrays were successively sonicated for 5 minutes in deionised water, acetone 

and isopropanol and blow dried in a stream of compressed air before being plasma treated for 

20 minutes (5 SSCM O2/ 5 SSCM Ar) using a Orion-8-HV sputter (AJA Internacional Inc., USA). 

Cleaned arrays were subsequently immersed in a 1 mM ethanolic solution of carboxylate-

terminated aromatic dithiol (Sensopath Ltd., USA) overnight. Following extensive washing with 

ethanol, the arrays were immersed for 30 minutes in a solution of 200 mM EDC and 50 mM 

NHS prepared in deionised water, rinsed with water and dried in a stream of compressed air. 

DNA probes were dissolved to a concentration of 10 µM in 50 mM sodium phosphate (pH 8.5) 

printing buffer and spotted onto individual electrodes by contact printing using an XActII 

microarrayer (LabNext Inc., USA). The modified arrays were incubated overnight in a wet 

chamber containing a solution of saturated NaCl to achieve approximately 75% relative 

humidity. Following rinsing with deionised water, the arrays were blocked with ethanolamine 

(50 mM, 0.1M Tris buffer pH 9), rinsed with deionised water and stored at 4ºC until use. 

Negative controls consisted of unspotted sensors blocked with ethanolamine. 

Approximately 10 μL of the diluted ssDNA MLPA products were injected into the 

microfluidic set-up and incubated for 60 minutes at 37 ºC. Channels were subsequently flushed 

with 100 μL of Tris buffer pH 8.0 containing 1 M of NaCl (hybridization buffer) before injecting 

20 μL of HRP-labelled secondary probe prepared at a concentration of 10 nM in hybridization 

buffer and left to incubate for 30 minutes at 37 ºC, before flushing the microfluidics with 100 

μL of hybridization buffer (Figure 4.2.C). The presence of the HRP label was measured by fast 

amperometry following injection of 20 μL of TMB Enhanced HRP membrane substrate (Diarect 

AG, Germany) and measuring the reduction current derived from the reduction of the HRP-

oxidized TMB at -0.2 V (vs. internal reference). 

Data were processed using a Visual Basic macro running under MS Excel to treat the 

current traces recorded at the 64 electrodes. Initially, the current response at 500 ms was used 

as hybridization signal.  Limits of detection were taken as the concentration value 

corresponding to the averaged current response of the negative control sensors over the 

entire concentration range plus three times the average standard deviation. 
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4.4 Results and discussion 

4.4.1 Electrochemical characterization of the PCB-electrode array 

The cost associated with the fabrication of sputtered planar electrode arrays typically 

escalate due to the many lithographic steps that need to be realised in a clean room 

environment. In this process, expensive glass or silicon wafers are first coated with a 

photosensitive lift-off resin, photopatterned by exposure to UV through a photomask followed 

by the development of the pattern, metal coated and finally dipped in a suitable lift-off solvent 

to reveal the metal pattern. In a final step, the electrode tracks are insulated by spin-coating 

another resin that is further photopatterned and developed to create openings at the 

electrode active sites and their connections. The resulting wafer is finally carefully diced to 

release individual sensor chip. This type of process is widely accepted and results in well-

defined electrodes with sub-micrometers resolution. However, the associated cost is high and 

incompatible with inexpensive clinical diagnostics, as well. Thus, for biosensors to truly impact 

on the medical device industry and move from research laboratories settings to the point-of-

care and deliver valuable information on a patient’s conditions, the fabrication costs have to 

be considerably decreased without jeopardising the quality of the data generated.  Metal 

micro-patterning based on current printed circuit board fabrication techniques, is an 

interesting approach for the low-cost mass fabrication of electrochemical sensor arrays. A 

copper-clad FR4 substrate can be photopatterned and etched, and structures with dimensions 

as low as 50 m can be routinely achieved. The copper layer can subsequently be coated with 

thin layers of gold, silver or nickel either via electrolytic or electroless metal deposition 

techniques. Using PCB technology, electronic components can be directly integrated on the 

same device, the thermal conductivity can be adjusted, the electrical conductivity is excellent 

(<1 ohm cm-2) and flexible substrates such as Kapton can also be used, demonstrating the 

versatility and maturity of the technology.  

However, the quality of the biosensor metal surface is of crucial importance, as the 

controlled immobilization of specific biological or synthetic receptors at their surface is 

required. Cleanliness, metal contamination and surface roughness are factors that will affect 

the orientation and density of the immobilized receptors, as well as possibly leading to 

elevated electrochemical background noise.  To address those pitfalls, the PCB arrays were 

manufactured with a surface finish of high purity 3 μm soft-gold electroplated on a 4 μm thick 

nickel layer, which in turn, was electrodeposited on a 30 m thick single copper clad FR4 

substrate. The nickel layer acts as a physical barrier limiting the solid state diffusion of copper 
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into the soft-gold layer and thus preventing the further copper oxidation at the electrode 

surface. In an initial attempt, an electroless nickel immersion gold (ENIG) process [19] was 

used to coat the copper layer with gold. This approach resulted in highly contaminated and 

electrochemically unstable electrodes (data not shown), whilst the soft-gold PCB electrodes 

exhibited electrochemical behaviour comparable to those of polished polycrystalline 

electrodes. As seen in Figure 4.3.A, the voltammogram of a single 300 μm diameter electrode 

presents a well defined gold oxide region centred at 1.1 V and a sharp reduction peak centred 

at 0.733 V as can be expected from a pure gold layer, showing no contamination of the gold 

surface by the underlying copper and nickel layers. Furthermore, three oxidation waves were 

measured at 1.035 V, 1.115 V and 1.216 V. These features indicate the polycrystalline nature of 

the gold surface and can be attributed to the low-index crystallographic planes Au(111), 

Au(100) and (110) for which the stability of an adsorbate is known to differ depending on the 

surface crystallographic orientation of the gold substrate in the order 

Au(1 1 1) < Au(1 0 0) < Au(1 1 0) [20, 21].  

The real-surface area, as described by Trassati et al.  was calculated from the charge 

required to reduce the oxide layer and estimated to 5.16 10-3 cm2, i.e. roughness factor of 7.3 

[22]. In a final test, we immersed the electrodes in a 5 mM ethanolic solution of 3-

mercaptopropionic acid (3-MPA) to assess the ability of the electrolytic gold surface to support 

the formation of high quality self-assembled monolayers. As can be seen in Figure 4.3.B, the 

SAM coating insulated the electrode surface. The bare electrode exhibited well defined 

oxidation and reduction peaks in the presence of 5 mM K2Fe(CN)6 centred at 0.218 V and 0.138 

V of 1.489 μA and -1.413 μA in intensity, respectively. Following immobilization of the 

alkanethiol SAM these peaks were shifted and suppressed indicating the efficient blocking of 

the electrode by the 3-MPA. The intensity of the oxidation wave positioned at 0.294 V 

decreased slightly to 1.117 μA. However, the reduction wave was considerably more affected 

being shifted to 0.007 V and broadened to a current maximum of -0.853 μA. The SAM was 

finally electrochemically desorbed in degassed NaOH to estimate the electrode surface 

coverage. Following three cycles of desorption, the reduction peaks seen at -0.869 V, -1.068 V 

and -1.103 V had effectively disappeared, indicating the efficient removal of the SAM from the 

electrode surface (Figure 4.3.C). A total reduction charge of 50.32 nC was measured, which 

translated into a surface coverage of 1.091 10-10 mol cm-2, in agreement with results previously 

published on the deposition of 3-MPA SAM on polycrystalline gold electrodes [23]. 

Electrochemical impedance spectroscopy was used to further confirm the quality of the SAM 

(Figure 4.3.D). Upon functionalisation of the electrode, the resistance to charge transfer (Rct) 
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increased significantly from 3209.18 for the bare electrode to 81073.7 ohm, and the surface 

coverage calculated as (1 - õ) = Rct0/Rct was estimated to be 96 % of the electrode surface.  

The quality of the electrodes obtained by electrolytic soft-gold plating was therefore found 

equivalent to that of planar photolithographically fabricated gold electrodes. The results of the 

preliminary electrochemical characterization demonstrated the absence of contaminants, such 

as nickel, at the electrode surface as well as the ability of the fold PCBs to support well-

organized SAMs of MPA.  The cost of the electrode array was vastly reduced, with a cost of ca. 

2€ per array as compared to >100€ per array as compared to photolithographically fabricated 

electrodes. 

 

Figure 4.3. A) Cyclic voltammetry in 0.5M sulfuric acid of a single electrode after O2/Ar plasma treatment 

indicating the polycrystallinity nature of the 3 μm thick gold deposited; B) Cyclic voltammetry in 5 mM potassium 

ferricyanide prepared in 10 mM phosphate buffer (100 mV s
-1

) for a bare and an MPA modified 300 μm in 

diameter electrode made on PCB; C) Reductive desorption of the MPA monolayer in 0.1M NaOH; D) 

Electrochemical impedance spectroscopy in 5 mM potassium ferricyanide (10
6
 to 1 Hz, 5 mV sinusoidal excitation, 

at 0 V bias potential vs. OCP) for a bare and an MPA modified electrode. 

4.4.2 Genosensor preparation and assay optimization  

The sandwich assay format exploited offers very high sensitivity, as previously 

demonstrated [24]. The target DNA present in a sample hybridizes to a short complementary 
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DNA probe immobilized on the electrode surface and complementary to a short sequence of 

the targeted DNA sequence. In a second step, a HRP labelled secondary probe is introduced 

and hybridized selectively to a second region of the targeted DNA. Finally, the substrate TMB is 

used to reveal the presence of HRP, which is proportional to the concentration of target DNA 

captured at the electrode surface (Figure 4.2.C). The system however suffered from relatively 

high RSD (relative standard deviation) values and high background signals.  

The high RSD was reduced by automating several preparative steps, improving the sensor-

to-sensor as well as chip-to-chip reproducibility (n=160, 14% RSD and n=5, 11% RSD 

respectively, 10 nM CD24). Physical cleaning methods, such as O2/Ar plasma cleaning, were 

preferred over harsh chemical solutions such as piranha etching. It was also found that if the 

O2 present in the plasma could effectively remove any organic materials left over from the 

microarray patterning process, the Ar plasma in turn helped generating a fresh gold surface at 

an etch rate of approximately 2 nm min-1 [25]. The treated arrays were immediately 

functionalised with -COOH terminated bipodal PEG alkanethiol [26] and kept under vacuum 

until further use. The immobilized SAM served the dual function of protecting the array from 

environmental contamination as well as enabling the coupling of –NH2 terminated DNA probes 

via EDC/NHS carbodiimide chemistry deposited onto individual electrodes using a microarray 

contact spotter.  

The high background signal was found to originate from the active transport of the 

oxidized TMB (TMBox) during its' injection into the microfluidic cell (Figure 4.4.A). Theoretical 

calculations and molecular modelling ruled out the possibility of passive diffusion of TMBox to 

generate such a high background current in the experimental timeframe, as 295 and 374 

seconds were required for the TMBox to migrate to the next electrodes 1.155 and 1.465 mm 

away, respectively (Supporting Information). However, due to TMB:HRP reaction kinetics and 

the fluid dynamics, the TMBox generated at one electrode can be actively transported to the 

next electrode even minutes after the TMB injection, resulting in high background current 

(Figure 4.4.C). To limit the transport of TMBox to adjacent electrodes, different means of either 

slowing down the reaction kinetics or forcing the precipitation of TMBox were investigated. 

Precipitating TMB formulations, which typically contain additives such as alginic acid, methyl 

vinyl ether/maleic anhydride copolymer, dextran sulfate and/or carrageenan, can readily 

precipitate TMBox and are commonly used in immunohistochemistry and Western blotting. The 

use of precipitating TMB as an efficient electrochemical substrate has already been reported 

[27], and the precipitated TMB was found to conserve its' electroactivity, albeit producing 
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lower currents. More importantly, it formed a stable electroactive precipitate at the electrode 

surface that could not be dissolved in aqueous buffer. Consequently, following the 

hybridization and HRP-labelling steps, the arrays were incubated for 5 minutes in precipitating 

TMB and flushed with 100 L of Tris buffer before carrying out the electrochemical 

measurement (Figure 4.4.A).       

Figure 4.4.C presents a comparison of the genosensor array measured under various 

conditions for a CDH1 sensor exposed to a concentration of 1 nM CDH1 (synthetic amplicon). 

Currents measured in conventional TMB substrate (ELISA) averaged 175.9 ± 11.8 nA and a low 

signal-to-background ratio (S/B) of 3.9. Performing the same assay but measuring in p-TMB 

considerably decreased the background signal, as well as the specific signal, although the S/B 

ratio was considerably improved to 10.2. Flushing the electrode array with Tris buffer was 

found to rinse any p-TMB poorly adsorbed at the electrode surface (Figure 4.4.A), further 

reducing the background current to 2.7 ± 0.3 nA whilst not affecting the intensity of the 

specific signal. Under those conditions the S/B was improved by a factor of 7.5. Finally, by 

comparing the raw data for a control electrode and a CDH1 positive electrode exposed to p-

TMB and measured in Tris buffer, as presented in Figure 4.4.B, the final current value could be 

measured after 100 ms which corresponds to the time required by a control electrode to reach 

a steady-state response. Holding the electrode at 0 V for 10 ms followed by a potential step at 

-0.2 V for 490 ms results in the development of a small non-faradaic current, seen as a rapid 

return to baseline at the control electrode. The combination of precipitated TMB and rapid 

redox-cycling by the HRP at the electrode surface leads to the development of a large faradaic 

current that rapidly decays and stabilizes. The measurement was therefore taken at 100 ms to 

limit background signals and conserve a high specific signal, with a S/B of 26.9. 
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Figure 4.4. Schematic representation of the assay designed to suppress background signal. Illustrations a1 

and a2, and b1 and b2 show the injection in the flowcell of TMB-ELISA and TMB membrane respectively. TMB 

ELISA leads to large background signal due to diffusion. Using precipitating TMB, a stable TMB coating forms onto 

the electrode. A buffer flush removes adsorbed TMB and decrease background signals. Representations a3 and 

b3 depicts the state of each system after flushing with buffer; B) Raw data measured in TMB-ELISA for a control 

and a CDH1 specific sensor exposed to 1 nM of CDH1 synthetic amplicon and subsequently HRP-labelled; C) 

Comparison of the signal measured under different conditions (TMB ELISA vs. precipitating TMB, at 500 ms and 

100 ms). 

 

Several aspects also have a remarkable influence on the output of solid phase 

hybridization assays.   In order to further improve the assay performance, the effect x of 

factors such as temperature, time and mixing have were also evaluated. Carboxylate-modified 

PCB electrodes were functionalised with two genetic markers, CD24 and ERBB2, as previously 

described and each assessed with 1 nM synthetic ERBB2 target at various hybridization 
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temperatures (room temperature (RT), 37 and 50 ºC) and times (2, 10, 30 and 60 min). The 

temperature was monitored via the use of a purpose-built temperature-controlled device that 

consisted of a heating element that was mounted beneath the electrode chip. This device 

allowed execution of constant-temperature experiments. Once set at the desired temperature, 

approximately 60 seconds were required to re-establish the experimental temperature upon 

injection of room temperature reagents. As presented in Figure 4.5.A, performing 

hybridization at 37 ºC considerably enhances hybridization efficiency, and for a hybridization of 

30 minutes at 37 ºC, the current values measured were approximately 3.1 times higher than 

those obtained with hybridization at room temperature. At 37 ºC, the current readings for 30 

and 60 min were very similar, indicating saturation of the probe-functionalised surface by 

target DNA. Performing the experiments at 50 ºC considerably reduced the sensitivity of the 

assay, as this temperature adds considerable stringency to the assay, which is translated into 

smaller signals. Increased hybridization temperatures and times did not have a significant 

impact on the background signals measured on both the control and the non-specific CD24 

probe modified electrodes.   

Hybridization depends on the diffusion of a DNA target from the bulk solution to a surface-

bound DNA probe so an efficient DNA diffusion is required. To enhance sample diffusion at the 

electrode surface, the effect of mixing during both the target and the DNA-HRP hybridization 

steps was evaluated. In another array prepared as described above, a concentration of 1 nM of 

synthetic ERBB2 marker was injected into the microfluidic cell and allowed to react for 60 min 

at RT with and without mixing. The mixing was achieved by repeatedly passing the sample back 

and forth over the sensor surface using syringe pumps at withdrawing/dispensing flow rates of 

0.8 µL/s. Following washing, a 10 nM solution of DNA-HRP was injected into the cell and left to 

react for 30 min at RT under static or mixing conditions. As outlined in Figure 4.5.B, higher 

current levels were obtained when mixing was implemented.   
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Figure 4.5. Effect of time, temperature (A) and mixing (B) on the DNA hybridization efficiency of the 

synthetic ERBB2 amplicon.  

 

4.4.3  Assay performances and multiplexed detection of MLPA products  

4.4.3.1 Assay performances using synthetic oligonucleotides 

The sequence and composition of receptor DNA probes have a great impact on the 

specificity and sensitivity of the assay. Based on the optimised electrochemical assay, each 

probe was assessed individually for hybridization efficiency and possible cross-reactivity. The 

electrodes were exposed to known concentrations of their respective synthetic amplicons, 

prepared in hybridization buffer solution. Sensitivities vary for each of the genosensor, from 

59.0 nA·nM-1 for HUWE1 to 171.5 nA·nM-1 for ERBB2. The limits of detection taken as the 

marker concentration equivalent to the current response recorded at a control sensor plus 

three times the standard deviation (n=8) were 53 pM, 29 pM, 258 pM, 161 pM, 36 pM, 25 pM 

and 122 pM for ERBB2, KRT19, CD24, CD44, CDH1, CDH2 and HUWE1, respectively (Supporting 

Information).  

To evaluate the specificity of the assay, a cross-reactivity study was carried out. The 

electrode arrays were functionalised with probes for the detection of each of the seven 

genetic markers, as already described. Subsequently, a concentration of 1 nM of each 

synthetic marker was injected individually to the sensor to test its' interaction with all the 

probes. As can be observed in the Figure 4.6.A, very low cross-reactivity was measured. The 

signals recorded for unrelated probes remain close to that recorded for the negative control 

sensors (i.e. coated with the carboxylate-terminated aromatic dithiol). All assay steps were 

realised at a constant temperature of 37 ºC. Electrochemical measurements were carried out 

using the developed measuring system, which allows the simultaneous reading of the 64 

A B
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working electrodes in less than 5 seconds. The variations in sensor sensitivity are attributed to 

the marker probe design. Whilst the designs were optimised in silico by adjusting the GC 

contents, melting temperature and reducing cross-reactivity between probes, the different 

sequences will lead to heterogeneous hybridization efficiencies. Both the low cross-reactivity 

and low detection limits observed, demonstrate the suitability of the barcode-based detection 

approach and its' ability to accurately assess the levels of DNA amplicons in unknown samples, 

making the developed assay suitable for detection of MLPA amplicons. 

4.4.3.2 Analysis of MLPA product 

To confirm the suitability of the barcode approach for the detection of MLPA amplicons, a 

positive control sample containing all seven gene markers was prepared. The generation of 

ssDNA was carried out by multiplexed asymmetric amplification, which preferably amplifies 

one strand of the DNA target, by limiting the concentration of one of the primers. A PCB sensor 

array was prepared for the simultaneous detection of the seven genetic markers. The ssMLPA 

sample was diluted three times in the hybridization buffer and injected onto the sensor chip 

via the microfluidics. In another microfluidic channel, a solution containing a mixture of all 

synthetic markers at a 1 nM concentration was injected as a calibrator for quantification. All 

gene markers were successfully detected in the MLPA sample with current signals ranging 

from 151 to 214 nA while maintaining low current levels in the control electrodes (12 nA) 

(Figure 4.6.B). Using the current values measured in the reference channel, the concentration 

of each cancer marker present in the sample was estimated by interpolation. The 

concentrations were of 1.8, 2.5, 2.6, 2.9, 2.9, 3.4 and 2.1 nM for CD24, CD44, CDH1, CDH2, 

ERBB2, HUWE1 and KRT19, respectively.  

This result shows the potential applicability of the MLPA-barcode-detection approach for 

genetic profiling. The system exhibited great possibilities for miniaturization and integration 

into a stand-alone module for the amplification and detection of DNA.  Indeed, the barcode 

approach could be used to generate generic electrode array platforms for detection of 

different sets of MLPA products on different arrays, but using the same barcode sequences, 

highlighting the huge potential application of the developed approach. 
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Figure 4.6. A) Electrochemical cross-reactivity study carried out for a breast cancer marker set (CD24, CD44, 

CDH1, CDH2, ERBB2, KRT19 and HUWE1). The PCB sensor was functionalized with each one of the thiolated DNA 

capture probes of the set, and then assessed for the detection of a concentration of 5 nM of each synthetic 

amplicons; B) Electrochemical detection of single stranded MLPA generated by asymmetric PCR. In the calibration 

channel, a mixture of each synthetic marker was injected at a concentration of 1 nM. 

 

4.5 Conclusions 

A method for the multiplex amplification and detection of seven genetic markers present 

in circulating breast cancer cells was reported. mRNA detection was based on DNA 

amplification exploiting asymmetric MLPA, which facilitates simultaneous amplification and 

ssDNA generation of multiple genes. The MLPA probes were specifically designed to 

incorporate a unique barcode sequence in each amplified gene, which was subsequently used 

for hybridisation to a surface-immobilised probe. A low-cost, low-density electrode array 

fabricated using standard PCB technology, was designed and fabricated, exhibiting excellent 

electrochemical properties as well as array-to-array and sensor-to-sensor reproducibility. The 

electrochemical measurement was optimised to considerably improve the signal-to-

background ratio as well as enhancing hybridization via mixing, achieving limits of detection as 

low as 25 pM. High specificity was demonstrated, thus facilitating the simultaneous detection 

of seven gene markers. This approach provides a novel strategy for the multiplexed genetic 

profiling of tumour cells and the use of barcodes provides a generic platform for detection of 

other MLPA amplicon sets e.g. lung cancer / prostate cancer, incorporating the same barcodes 

and thus using the same surface-tethered probes on an electrode array. 

 

 

BA
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4.7 Supporting information 

4.7.1 Oligonucleotide sequences used 

 

MLPA primer sequences 

 Sequence (5’ – 3’) 

Forward PCR primer  Cy3-gggttccctaagggttgga 

Reverse PCR primer  ggacgcgccagcaagatccaatctaga 

 

MLPA probes and barcodes 

 

LENGTH  
(bp)  

 MARKER  TARGET SEQUENCE DETECTED (5’-3’) 
Barcode (5’-3’)  
attached to 3`of RHO 

149 
(154) 

CD24 

LHO: caagtaactcctcccagagtacttccaact (30)  

SO: ctgggttggccccaaatccaacta (24)  

RHO: atgccaccaccaaggcggctggtggtgccctgca (34) tctacaggctcgtatatgta (20) 

154 
(157) 

CD44 

LHO: tgccgctgagcctggcgcagatcgattt (28)  

SO: gaatataacctgccgctttgcaggtgtat (29)  

RHO: tccacgtggagaaaaatggtcgctacagcatctc (34) catcgcacgaatataataca (20) 

133 
(137) 

HUWE1 
LHO: ccaccaagctgaagggcaaaatgcagagcaggtttgac (38)  

RHO: atggctgagaatgtggtaattgtggcatctcag (33) attacgacgaactcaatgaa (20) 

130 
(133) 

CDH1 
LHO: ccttggaggaattcttgctttgctaattctgat (33)  

RHO: tctgctgctcttgctgtttcttcggaggagagcg (34) ataggctggttcgtaatcgg (20) 

115 
(118) 

ERBB2 
LHO: cgttctgaggattgtcagagcctg (24)  

RHO: acgcgcactgtctgtgccggtggctgtg (28) ctaagtagccgaattcctag (20) 

170 
(174) 

KRT19 

LHO: tgggccctcccgcgactacagccactactacac (33)  

SO: gaccatccaggacctgcgggacaagattcttgg (33)  

RHO: tgccaccattgagaactccaggattgtcctgcagatcgacaa (42) aaccttagagcggattaggg (20) 

165 
(143) 

CDH2 

LHO: caatcctccagagtttactgccatgacgtt (30)  

RHO: ttatggtgaagttcctgagaacagggtagacatcatagta gctaat 
(47) 

ttaccgttgaaatcgatcga (20) 
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Electrochemical sensor array surface probes (5’ – 3’). 

 
CD24  NH2-T15-tacatatacgagcctgtaga 
CD44   NH2-T15-gtattatattcgtgcgatg 
CDH1  NH2-T15-ccgattacgaaccagcctat 
CDH2  NH2-T15-tcgatcgatttcaacggtaa 
KRT19  NH2-T15-ccctaatccgctctaaggtt 
ERBB2  NH2-T15-ctaggaattcggctacttag 
HUWE1  NH2-T15-ttcattgagttcgtcgtaat 
 
 

Synthetic amplicons (5’ – 3’). 
 
CD24 

gggttccctaagggttggacaagtaactcctcccagagtacttccaactaatccaactaatgccaccaccaaggcggctggtggt
gccctgcatctacaggctcgtatatgtatctagattggatcttgctggcgcgtcc 

CD44 

gggttccctaagggttggatgccgctgagcctggcgcagatcgatttttgaggtgtattccacgtggagaaaaaggtcgctacagc
atctccatcgcacgaatataatacatctagattggat cttgctggcgcgtcc 

CDH1  

gggttccctaagggttggaccttggaggaattcttgctttgctaattctgattctgctgctcttgctgtttcttcggaggagagcgata
ggctggttcgtaatcggtctagattggatcttgctggcgcgtcc 

CDH2 

gggttccctaagggttggacaatcctccagagtttactgccatgacgttatggtgaagttcctgagaacagggtagacatcatagt
agctaatttaccgttgaaatcgatcgatctagattggatcttgctggcgcgtcc 

KRT19 

gggttccctaagggttggatgggccctcccgcgactacagccactactacacgccaccattgagaactccaggattgtcctgcag
atcgacaaaaccttagagcggattagggtctagattggatcttgctggcgcgtcc 

ERBB2 

gggttccctaagggttggacgttctgaggattgtcagagcctgacgcgcactgtctgtgccggtggctgtgctaagtagccgaatt
cctagtctagattggatcttgctggcgcgtcc 

HUWE1 

gggttccctaagggttggaccaccaagctgaagggcaaaatgcagagcaggtttgacatggctgagaatgtggtaattgtggca
tctcagattacgacgaactcaatgaatctagattggatcttgctggcgcgtcc 

 
HRP labelled universal reporter oligonucleotide probe (URP) – Complementary to all 

targets:  

 

HRP- tccaacccttagggaacc 

 

Please note that sequences highlighted with underline bind to corresponding immobilised 

probe and sequences highlighted in bold bind to URP. 
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4.7.2 Analysis for diffusion over a distance of the electroactive oxidised 

TMB. 

Following the equation establishing the relationship for diffusion from a point source 

based on Fick’s first law: 

 X2= qiDt , 

Where X2 is the mean-square displacement, qi a numeral constant depending on 

dimensionality, D the diffusion coefficient and time t. 

Taking the following value: 

 D TMB = 3.1 10-6 cm2 s-1  

qi = 6  to account for the diffusion of TMB in 3 dimensional space 

t = 120 seconds, i.e. the maximum time in TMB before starting the measurement 

 

We come to the conclusion that X is equal to 0.47 mm over a period of 120 seconds.  

The electrode-to-electrode separation being 1.155 and 1.465 mm in X and Y (Figure 4.7 

(SI), it is therefore impossible that sufficient amounts of HRP-oxidised TMB reach the 

neighbouring electrodes in the experiment timeframe. 

 

 

Figure 4.7 (SI). CAD of the 64-electrode array (dimensions in mm) 

 

4.7.3 Calibration curves for the synthetic markers for breast cancer. 

The calibration curves for each of the seven amplicons are presented in Figure 4.8 (SI). The 

electrodes were exposed to known concentrations of their respective synthetic amplicons, 

prepared in hybridization buffer solution. 
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Figure 4.8 (SI). Calibration curve for each of the seven amplicons selected for the preparation of the low-

density electrochemical sensor arrays (n=8).  

 

The assay performance was evaluated by determining both the sensitivity and LOD, which 

were estimated within the linear range 0 – 1 nM (for all curves R2>0.980) (Table 4.1 (SI)). 

Table 4.1 (SI). LOD and sensitivity 
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5 Electrochemical genetic profiling of single cancer cells 
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5.1 Abstract 

Recent understandings in the development and spread of cancer have lead to the 

realisation of novel single cell analysis platforms focused on circulating tumour cells (CTCs). A 

simple, rapid and inexpensive analytical platform capable of providing genetic information of 

these rare cells is highly desirable to support clinicians and researchers alike to either support 

the selection or adjustment of therapy or provide fundamental insights into cell function and 

cancer progression mechanisms. We report on the genetic profiling of single cancer cells, 

exploiting a combination of multiplex ligation-dependent probe amplification (MLPA) and 

electrochemical detection. Cells were isolated using laser capture, lysed and the mRNA 

extracted and transcribed into DNA. Seven specific markers were amplified by MLPA, which 

allows for the simultaneous amplification of multiple targets with a single primer pair, using 

MLPA probes containing unique barcode sequences. Capture probes complementary to each 

of these barcode sequences were immobilized on a PCB manufactured electrode array and 

exposed to single-stranded MLPA products, and subsequently to a single stranded DNA 
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reporter probe bearing a HRP molecule, followed by substrate addition and fast 

electrochemical pulse amperometric detection. We present a simple, rapid, flexible, 

inexpensive approach for the simultaneous quantification of multiple breast cancer related 

mRNA markers, with single tumour cell sensitivity. 

5.2 Introduction 

Metastasis is the major cause of cancer-related deaths [1]. In a metastatic process, tumour 

cells are released from the primary tumour site into the bloodstream and colonize distant sites 

of the body. In recent years, circulating tumour cells (CTCs) have emerged as a marker with 

important diagnostic, prognostic and predictive values for early and metastatic cancers. The 

counting of these cells has already been used as a prognosis marker [2-4], however their rare 

and complex nature requires a deeper analysis of each cell [5-7]. Gene expression analysis of 

single CTCs may help to reveal the biological processes and molecular mechanism of 

tumourigenesis and metastasis and thus there is a need for an easy-to-use, cost-effective 

analytical platform for genetic profiling of individual cells. Moreover, analysis of mRNA 

expression profiles holds great promise for the future paradigm of personalized medicine, 

facilitating optimization of treatment strategies as well as monitoring response therapy [8], 

thus reducing mortality, health care cost and side-effects associated with cancer treatments. 

Genetic profiling is normally achieved via the analysis of a limited set of genetic markers, 

known to be up or down regulated in cancer cells [9, 10]. Once isolated, the cells are lysed, 

mRNA extracted, transcribed and amplified. Several multiplexed gene amplification 

approaches exist [11], however multiplexed ligation-dependant probe amplification system 

(MLPA) provides an elegant solution enabling the simultaneous amplification of up to 100 

markers using a single primer set [12, 13]. MLPA consists of two or three marker-specific 

probes flanked with forward (Fwd) and reverse (Rev) primers, respectively, that are designed 

to hybridise next to each other along the targeted marker. Following hybridization, a ligation 

step fuses the probes into a single DNA probe sequence with Fwd and Rev primers present at 

both ends. This ligated sequence, complementary to the initial target, is then exponentially 

amplified using conventional polymerase chain reaction (PCR). However, if the marker-specific 

pair of probes do not assemble along the targeted DNA, ligation cannot occur and hence 

amplification does not follow. In addition, the MLPA probes can be designed to include short 

sequences, i.e. barcodes, to act as recognition site for subsequent microarray analysis [14-16], 

based on the hybridisation of the barcode sequence to the capture DNA probe, providing an 

accurate and quantitative detection of each target gene.  
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Electrochemical DNA biosensors arrays are currently widely used for multiplex gene 

analysis, offering an alternative to classic DNA microarrays mostly based on fluorescence.  

Electrochemical sensing offer several advantages such as high sensitivity, low cost, multiplexed 

analysis, ease of miniaturisation and integration in microsystems [17-20]. Although the 

associated electronics are relatively inexpensive, the disposable electrode arrays are 

comparatively costly as high end electrodes arrays are ideally photolithographically 

microfabricated using sputtering in a clean room environment [21]. Alternative metal 

patterning techniques such as standard printed circuit board (PCB) technology offers a low cost 

mass production and a number of versatile fabrication options. In recent years, there have 

been some reports of electrochemical arrays manufactured with this technology [15, 22-24]. 

Working towards the development of a fully automated amplification-detection 

microsystem for the genetic profiling of breast cancer CTCs, we developed a MLPA system 

incorporating unique barcode sequences and a functionalised low-density electrode array 

capable of detecting seven genetic biomarkers with single tumour cell sensitivity. The mRNA 

was extracted from single cancer cells from the MCF7 cell line, transcribed into DNA and 

subsequently, the markers of interest were simultaneously amplified and then detected via 

hybridization with a probe surface tethered on individual electrodes of an array, followed by 

amperometric detection. The system was also capable to differentiate between a cancer 

patient and a healthy control when assessed with real CTCs. The electrode array consisted of 

64 gold working electrodes sharing common reference and counter electrodes fabricated using 

standard PCB technology. Some assay conditions and manufacturing considerations such as 

spotting buffer for probe immobilisation, probe immobilisation time and stability of both 

functionalised sensors and DNA reporter probe were assessed. 

5.3 Materials and methods 

5.3.1 Materials 

Dithiolaromatic triethyleneglycol was obtained from SensoPath Technologies Inc. (Bozeman, 

USA); 3,3’,5,5’-Tetramethylbenzidine (TMB) enhanced one component HRP Membrane was 

purchased from Diarect AG (Germany); maleimide activated plates from Thermo Scientific 

(Spain) and 2mm thick polymethylmethacrylate (PMMA) was purchased from Indústria de la 

Goma (Spain) and double-sided medical grade adhesive foil provided by Adhesive Research 

(Ireland).  
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5.3.2 Instrumentation 

SpectraMax 340PC384 microplate reader from Molecular Devices (Madrid, Spain). DNA 

probes were immobilized by contact printing using a XactII microarrayer (LabNext Inc., USA). A 

devoted amperometric measuring system consisting of 64 channels was used for the 

electrochemical analysis, which enables simultaneous readings of   electrodes (Labman 

Automation, UK).   

5.3.3 Electrode chip design 

The printed circuit board (PCB) electrode array was manufactured at Fineline GmbH (Hilden, 

Germany) [15, 24], using FR-4 glass epoxy resin with a Cu thickness of 30 m as substrate with 

a surface finish of 3 m soft gold electrolytically deposited on a nickel layer of 4 m. The PCB-

based chip has dimensions of 54.1 x 61.0 mm2, incorporating 64 individual working electrodes 

organised in four channels of sixteen electrodes (Figure 5.1A). The gold working electrodes 

have a circular shape of 300 µm in diameter and share a common gold counter and common 

gold reference electrode, 250 µm in diameter. The array consists of a two-layer PCB of 1 mm 

thickness, the top layer bearing all electrodes and connection pads and the bottom layer 

containing the tracks that connect half of the electrodes with the pads from the top layer using 

conductive vias of 500 µm, through the PCB. All electrodes are linked to the connection pads 

through tracks of approximately 100 µm width separated by a gap of 175 µm, insulated with 

solder mask. Microfluidic cells were fabricated using a Fenix CO2 laser (Synrad Inc., USA) to cut 

and drill 2 mm thick poly(methylmethacrylate) (PMMA) sheets, with microfluidic channels 

housed within 100 µm thick medical grade double-sided adhesive gasket (Figure 5.1B).   The 

electrochemical detection unit consists of the PCB sensor and an interface PCB, which allows 

connectivity with the dedicated electronic read-out prototype instrument (Figure 5.1C). 

5.3.4 Oligonucleotide sequences 

Synthetic oligonucleotides were designed in-silico and purchased from Biomers.net 

(Germany) as lyophilized pellets and reconstituted in HyClone® nuclease-free deionised 

ultrapure water obtained from Thermo Scientific (Spain). DNA probes were modified at the 5’-

end with a thiol moiety and included both C6 and C18 triethylene glycol spacers for extension of 

the probe from the electrode surface. All amplicons contain both a barcode sequence 

complementary to the capture probe and a specific sequence complementary to the universal 

reporter oligonucleotide probe (URP). The URP was modified at the 5’-end with a C6 spacer and 

a horseradish-peroxidase enzyme. The details of the sequences used can be found in the 

Supporting Information. 
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5.3.5 Reverse Transcriptase Multiplexed Ligation-dependent Probe 

Amplification (RT-MLPA) on single MCF7 cells 

A MCF-7 breast cancer cell line was cultivated at 37°C in a 5% CO2 environment and cells 

were harvested during log-phase growth (60-70% confluency). Single MCF7 cells were 

captured using the CellCut tool for laser capture microdissection (LCM) from Molecular 

Machines and Industry (MMI) coupled to an IX81F-3 microscope with an IX2-UCB external 

power supply (Olympus, Shinjuku, Japan) [14]. MLPA probes incorporated a unique genetic 

barcode specific to each mRNA marker for its subsequent electrochemical detection via 

hybridization assays (Figure 5.2 A and B).  A universal primer pair was used to amplify all 

ligated probes using PCR. 

Single cells were dissolved in lysis buffer (0.2% v/v Tween-20, 0.2% v/v NP-40, 19 mM Tris-

HCl pH 7.5 and 1 ng/µl of the single stranded viral vector M13mp18, heated for 2 min at 80°C 

and then placed on ice. Reagents for reverse transcription and preamplification were added 

yielding a final concentration of 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM DTT 

(dithiothreitol), 1 pmol of each forward and reverse primer, 0.1 mM dNTPs, 5% w/v DMSO, 8 

µg BSA, 40 units Reverse Transcriptase, 0.4 units of SALSA polymerase and 0.048 units of Pfu 

DNA Polymerase. Reverse transcription was performed for 10 min at 42°C, immediately 

followed by 25 cycles of PCR (30 s 95°C, 5 min 54°C, and 60 s 72°C) and 2.5 μl of the pre-

amplification mix was used for MLPA. An incubation of 5 min at 98°C to inactivate the 

polymerase was followed by the addition of 1.5 μl of a mix containing 0.75 μl MLPA Buffer and 

0.75 μl of a solution containing 3 fmol of each target-specific oligonucleotide was added. The 

mixture was incubated at 95°C for 60 s to denature the probes, after which hybridization took 

place at 60°C for 1h. Combined ligation and multiplex amplification was performed using 

reagents from MRC-Holland, (The Netherlands), by adding 16 μl of a mix containing 1.5 μl 

ligase buffer A, 1.5 μl Ligase Buffer B, 4 nmol dNTPs, 5 pmol each of Cy3-labeled primer Y and 

biotinylated primer X, 1 μl Ligase-65, 1.2 units SALSA Polymerase, and 4 µl Q-solution (Qiagen, 

Hilden, Germany). Ligation was performed for 4 minutes at 54°C followed by 5 minutes at 98°C 

for enzyme inactivation followed by 35 cycles of PCR (30 s 95°C, 30 s 60°C, and 60 s 72°C), and 

the samples were then held at 72°C for 10 min. The details of the primers and MLPA probes 

can be found in the Supporting Information. 
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Figure 5.1. Electrochemical detection unit. A. 64-electrode array manufactured on PCB with close up image 

of the PCB array displaying the working, counter and reference electrodes; B. schematic representation of the 

assembly of the sensor and flow cell (1. PCB chip, 2. Microfluidic channels of double-sided adhesive tape and 3. 

Laser machined PMMA gasket); C. Experimental detection set-up showing the connection of the DNA sensor (1), 

the purpose-made 64-channel potentiostat (2) and the control computer. 

 

Single stranded DNA was generated from MLPA products using streptavidin-coated 

Dynabeads M-270 (Life Technologies, USA). 20 µl of magnetic beads were washed with 40 µl 

1x Binding & Washing (B&W) buffer containing 5 mM Tris-HCl, 0.5 mM EDTA and 1 M NaCl. A 

sample volume of 10 µl was incubated with gentle rotation for 10 minutes in 1x B&W buffer 

(total volume 40 µl). The magnetic beads were then washed with 50µl 1x SSC buffer and the 

DNA was denatured in 22 µl 0.1 M NaOH for 10 min, and the supernatant containing the 

forward strand of the MLPA probes transferred to a new tube. The solution was neutralized 

with 18 µl 0.1 M HCl, and the samples mixed with 40 µl of a 2x buffer containing 10x SSC buffer 

and 0.4% w/v SDS (sodium dodecyl sulfate) buffer.  

The MLPA amplified and single stranded DNA fragments were analyzed electrochemically 

and by electrophoresis on the 2100 Bioanalyzer automated system (Agilent Technologies Inc., 

Santa Clara, CA, USA). 

5.3.6 RT-MLPA on a patient sample.  

Blood (4.0 ml) from a metastatic breast carcinoma patient was obtained from the Norwegian 

Radium Hospital (Oslo, Norway). The immu-nomagnetic enrichment of tumour cells was 

carried out using AdnaSelect (BreastCancerSelect, QIAGEN Hannover) according to 

manufactures’ instructions. Cells were subsequently lysed and subjected to RT-MLPA as 

previously described in this article. In parallel, blood sample from a healthy donor was 

subjected to the same treatment and used as negative control. 
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5.3.7 Electrode chip functionalisation by contact pin-spotting 

Electrode arrays were rinsed in deionised water and ethanol and blow dried with nitrogen 

before being treated with a solution containing KOH (50 mM) and H2O2 (25 %) for 10 min [25]. 

Subsequently, the arrays were thoroughly washed in deionized water and ethanol and 

incubated for 20 min in an UV/O3 chamber provided with an ozone producing Mercury Grid 

Lamp [26].  Finally, the electrodes were rinsed in water, dried under nitrogen and used 

immediately for subsequent DNA functionalisation by contact pin-spotting.  

 

Figure 5.2. A. RT-MLPA probes design. The RT-MLPA probe mix consists of either two or three 

oligonucleotides: a left hybridization oligonucleotide (LHO) and a right hybridization oligonucleotide (RHO), both 

composed of a target-specific sequence and a universal primer sequence, and a sequence-specific spanning 

oligonucleotide (SO), necessary in some of the probes. The DNA sample is denatured and incubated with the 

synthetic RT-MLPA probes, further ligated, amplified by PCR and the resulting dsMLPA sample converted to single 

strand. Finally, the ssMLPA is analysed on the electrochemical sensor; B.  Schematic representation of the 

sandwich assay-based electrochemical detection of single stranded MLPA using unique barcodes and a universal 

reporter probe labeled with HRP enzyme (represented as a blue star). 

 

Thiolated DNA probes complementary to the barcode sequences were prepared at a 

concentration of 10 M in several printing buffers containing 100 M of dithiolated aromatic 

triethylene glycol (DT-TEG) as co-immobiliser, to prevent the nonspecific absorption from 

proteins found in PCR products as well as the enzyme label of the reporter probe [27]. To 

minimise the spot-to-spot variation during the array preparation, the DNA/DT-TEG solution 

was spotted on the clean gold electrode array surface by contact printing using a XActII 
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automated microarrayer with a 0.14 mm diameter single capillary pin (LabNext Inc., USA). The 

relative humidity was set to 70 % and the print cycle consisted of the pin wash ethanolic 

solution followed by vacuum drying, DNA sample pick up, pre-spotting on a dummy array and 

final spotting on the specific array. The tip pin wash step consisted of two cycles of 2 s 

exposure to a 70 % ethanol solution followed by a 2s vacuum drying process, and was applied 

between each sample spotted to avoid cross-contamination. Following spotting, the arrays 

were incubated in a humidity chamber containing deionised water. Finally, the electrodes 

were washed in stirred Milli-Q water for 10 min and the DNA arrays were dried in a stream of 

nitrogen and stored in Petri dishes at 4 ºC. Negative controls of electrodes spotted with a 100 

M solution of DT-TEG were included in the electrode array. 

5.3.8 Electrochemical measurement 

The detection assay was based on an enzymatic sandwich assay in which capture probes 

complementary to each of the barcode sequences were immobilized and exposed to single-

stranded DNA samples. The surface bound DNA duplexes were detected with the URP and 

quantified using fast electrochemical pulse amperometry. Upon electrode array 

functionalisation, the polymeric microfluidic system was assembled and mounted on the PCB 

array surface to form four individual microchannels for sample injection. Initially, the array was 

conditioned with 100 μL of 0.05M Tris buffered saline (TBS) pH 8.0 containing 1 M of NaCl 

(hybridization buffer) and then, 20 μL of synthetic DNA markers or 10 μL of ssDNA MLPA was 

injected into the system and incubated for 60 minutes at 37 ºC. Subsequently, 100 μL of 

hybridization buffer were injected in the channels followed by an injection of 20 μL of 10 nM 

URP and an incubation of 30 minutes at 37 ºC, before flushing the microfluidics with 100 μL of 

hybridization buffer. Finally, 20 μL of 3, 3’, 5, 5’-Tetramethylbenzidine (TMB) enhanced HRP 

Membrane were injected and the hybridization event was quantified by measuring the 

reduction current of the HRP-oxidized TMB by pulse amperometry (0 V for 10ms followed by 

−0.2 V for 500 ms).  

5.4 Results and discussion 

5.4.1 Optimisation of spotting buffer and immobilisation time 

To increase the reproducibility and reliability of the DNA sensors, the electrode arrays were 

functionalized by automated contact printing using a single pin. During both the spotting and 

post-spotting step, factors such as the spotting buffer, immobilization time, humidity and 

temperature play an important role since they affect the spot morphology and DNA coverage 
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[28, 29]. The pin was submerged in a thiolated DNA solution in a 384-well plate and loaded by 

the action of the capillary force and then contacted with the PCB electrode surface and the 

DNA probe was deposited due to the surface tension between the spotting buffer and 

substrate [30]. Several printing buffers were assayed and evaluated according to their 

hybridization efficiency. The electrode arrays were modified by co-immobilization of a 10 µM 

solution a thiolated DNA probe and 200 µM of the PEGylated alkanethiol, prepared in different 

spotting buffers, followed by 3 h incubation in a humidity chamber. The arrays were then 

assessed with 10 nM solution of the complementary URP-HRP for 30 min (Figure 5.3. A).  

 

 

Figure 5.3. Electrochemical response of both specific (Spec.) and control (Ctrl.) electrodes for (A) various 

spotting buffers for the PCB microarray functionalisation using the LabNext XactII arrayer (10 nM solution of URP 

was used as target); and (B) three immobilization times (1, 2 and 3 hours) of the thiolated CD24 capture probe (5 

nM solution of complementary CD24 was used as target). Each bar corresponds to the average current of 8 

electrodes.  

The buffers assayed were based on 0.01 M phosphate buffered saline (PBS) pH 7.4 solutions 

containing different additives: 50 % (v/v) dimethyl sulfoxide (DMSO), 1.5 M betaine, 50 % (v/v) 
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glycerol, 0.01% (v/v) sodium dodecyl sulfate (SDS), 0.01% (v/v) cetyl trimethyl ammonium 

bromide (CTAB), and 0.01% (v/v) octylphenol poly(ethyleneglycolether)n (Triton X-100). 

Carbonate buffer 0.1 M, pH 9.0 and monopotassium phosphate (KH2PO4) 1 M solution were 

also assessed. Three types of detergent additives were used, non-ionic (Triton X-100), cationic 

(CTAB) and anionic (SDS) and whilst the use of these detergents has been reported to improve 

the spot morphology [31-33], very poor hybridization efficiency was observed when detergent 

additives were used. The use of betaine, DMSO and glycerol reduce the spot evaporation rate 

[34, 35], and unfold any formed DNA structures [29], resulting in more homogeneous spots. 

This was observed in the case of betaine and glycerol, which exhibited a good signal-to-

background (S/B) ratio of 17.0 and 19.9, respectively. However, the specific signal intensity for 

these additives was more than 2.5 times lower compared to the maximum signal, which can be 

attributed to the slower rehydration rate observed, with more than 3 h required to achieve 

complete immobilization.  The best results in terms of high specific and low control signals and 

reproducibility were obtained for those spotting solutions without additives, i.e. KH2PO4, 

carbonate and PBS with S/B ratios of 27.0, 26.6 and 20.2 and relative standard deviations (RSD) 

of 11.3 %, 20.8 % and 18.0 %, respectively. The low RSD exhibited for the KH2PO4 solution also 

indicates a better reproducibility between replicate spots. The results obtained are consistent 

with previously reported works [36, 37]. 

The DNA surface coverage is of critical importance for the optimum performance of 

subsequent target hybridization [38, 39]. The effect of probe immobilization time on the 

hybridization performance was also evaluated as a means to control the probe density on the 

electrode surface. The PCB chips were functionalized with thiolated CD24 probe and PEGylated 

alkanethiol prepared in a 1 M KH2PO4 solution as already described, followed by an incubation 

of 1, 2 and 3 h at room temperature in a humidity chamber. Subsequently, the sandwich DNA 

assay was completed by injecting 5 nM solution of the complementary CD24 marker and 

subsequent injection of the complementary URP. The hybridization signals for each 

immobilization time were measured amperometrically (Figure 5.3B). High binding levels were 

obtained for all probe incubation times assayed with average current signals of -168, -149 and 

-122 nA for an immobilization period of 3, 2 and 1 h, respectively. Results suggested a rapid 

DNA coverage during the first hour, after which it tended to level off with a 28 % improvement 

on the hybridization intensity after 3 h, agreeing with previous reports [37, 40]. 

5.4.2 Stability of DNA-functionalized sensors and URP 

For the true application of biosensors, they must assure stability under storage conditions. 

Accelerated aging studies expose the samples to stress to simulate real time aging for long 
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term storage periods [41].   To demonstrate the robustness of the developed sensor and 

predict the product’s shelf life, accelerated stability studies were performed on the DNA pre-

coated PCBs. Electrodes were functionalized with a thiolated ERBB2 probe and stored at 37 ºC 

and 4 ºC for accelerated and real-time stability testing, respectively. The sensors were stored 

in the absence or the presence of the commercial stabilizer StabilCoat® (SurModics, Inc., Eden 

Prairie, USA), which was deposited onto the DNA-coated electrodes and allowed to dry in a 

vacuum desiccator for 1 h prior to storage of the PCB chips.  

 

 

Figure 5.4. Electrochemical signals corresponding to a stability study of DNA functionalised electrode arrays 

stored under accelerated aging conditions at 37 ºC (A) and at 4 ºC (B). In both cases, the DNA-modified PCB chips 

were treated with and without the commercial Stabilcoat stabilizer. The chips were assessed with a 5 nM 

solution of ERBB2 synthetic amplicon. Each electrode bar corresponds to the average current of 3 electrodes, 

whereas the currents measured in the control electrodes (Ctrl.) correspond to an average of 15 measurements 

performed during the study. 
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On a weekly basis, the arrays were assessed using 5 nM of the complementary ERBB2 target 

over a period of 14 weeks. Pre-coated PCBs showed no loss of activity over the period of study 

at any of the storage temperatures assayed with average currents of 164.6 ± 9.6 nA and 157.7 

± 13.5 nA, observed for the electrode arrays stored at 37 ºC and 4 ºC, respectively (Figure 5.4A 

and B). The use of the stabilising agent improved the S/B ratio since the current for the control 

electrodes decreased between 38 and 50 %, which also demonstrated its suitability as a 

blocking agent. The shelf life of the DNA-coated PCBs was estimated by the Q Rule method, 

which states that a product degradation rate changes exponentially with the temperature, and 

is proportional to (Q10)n, where n is the temperature change (ºC) divided by 10. The value of 

Q10 is typically set at either 2, 3, or 4 because these correspond to reasonable activation 

energies [42]. Therefore, assuming that the functionalized sensors are only stable for the 

period of the study, that is 14 weeks (98 days), an n value of 3.3 ((37 – 4 ºC) / 10 ºC) and a 

conservative Q10 value of 2, the predicted stability of the product at 4 ºC is of at least 2.6 years.  

However, a much longer stability can be expected as no loss in signal was observed after 14 

weeks. 

Additionally, a stability study of the HRP-modified URP was carried out. Several reporter 

probe aliquots of 10 nM were prepared in 0.05 M TBS pH 8.0 containing 1 M NaCl, as well as in 

StabilGuard Choice®, Stabilzyme HRP® and Protein-free stabilizer® (Surmodics, USA). Each 

sample solution was stored at 4 ºC. The URP probe was dissolved in TBS containing 1 M NaCl, 

aliquoted and lyophilised. Dried aliquots were stored at 4 ºC and reconstituted with deionised 

water to prepare a 10 nM solution. To determine the stability of the probe, a single stranded 

DNA probe complementary to the HRP-labelled universal reporter probe (200 nM in PBS pH 

7.4) was immobilized on maleimide activated plates overnight at room temperature followed 

by the addition of 6-mercaptohexanol (100 M in PBS pH 7.4) for 60 min at room temperature. 

The URP probe of each storage condition was then added allowed to hybridize for 30 min at 37 

ºC. Finally, TMB liquid substrate was added and the absorbance measured. A control well 

functionalized with 6-mercaptohexanol was prepared to assess non-specific adsorption. After 

10 weeks, the URP hybridization signals measured in TBS, Stabilzyme HRP® and Protein-free 

stabilizer® were observed to have decreased 73, 81 and 83 %, respectively as compared to 

their initial signal, indicating a loss of the activity of the URP probe, and these solutions were 

thus excluded from further study. As shown in Figure 5.5, the URP-HRP probe preserved its 

activity when stored at 4 ºC dissolved in StabilGuard Choice® stabilizer or in its lyophilized 

form.  
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Figure 5.5. Absorbance signals for the HRP-labelled DNA (10 nM solution) binding levels for different storage 

conditions: i) prepared in StabilGuard® Choice commercial stabilizer and stored 4 ºC and ii) lyophilized, stored at 4 

ºC and reconstituted in TBS containing 1 M NaCl (n =3). 

5.4.3 Electrochemical analysis of MLPA amplicons from single MCF7 

cells 

Three single cancer cells from a MCF7 cell line were isolated by laser capture 

microdissection, lysed, the mRNA extracted, transcribed into DNA and subsequently, seven 

genetic biomarkers of interest were simultaneously amplified using the MLPA-barcode 

technique. A panel of seven markers was selected according to their high prognostic value for 

breast cancer tumours: CD24, CD44, CDH1, CDH2, ERBB2, HUWE1 and KRT19 [4, 43-46]. The 

amplified samples were 1:3 diluted in hybridization buffer prior to their injection to the 

assembled PCB-microfluidic chips. The electrodes of each microfluidic channel were 

functionalized with the capture probes specific for each of the seven markers. The MLPA 

products were analyzed in parallel using gel electrophoresis. Figure 5.6 presents comparative 

plots of the analytical results obtained for each cell. Current values superior to three times that 

of the control sensors (black line) were deemed a positive signal.  Results from both 

techniques are in agreement on all three samples. The electrochemical analysis identified a 

gene expression pattern similar to that measured electrophoretically on cell A, where three of 

the seven markers are clearly expressed, i.e. CD24, KRT19 and HUWE1. The results measured 

for cell B and C also concord. Although the presence of HUWE1 was measured 

electrochemically in cell B, the signal is equal to that of the established threshold and 

therefore considered negative. Similarly, the electrochemical results for cell C are similar to 

those obtained by electrophoresis.   Moreover, the results indicate the genetic heterogeneity 

among cells from the same cell line, in agreement with previous reports [47].  
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Figure 5.6. Comparison of the electrochemical and the electrophoretic genetic analysis of three single MCF7 

cell. 

5.4.4 Electrochemical analysis of MLPA amplicons from a patient 

sample  

Tumour cells from a metastatic breast cancer patient were isolated by immunomagnetic 

enrichment, subsequently lysed and subjected to the amplification of genetic biomarkers using 

the RT-MLPA-barcode protocol as previously described. Alternatively, a blood sample from a 

healthy donor was exposed to the same protocol and used as negative control. The MLPA 

products were injected to the PCB arrays and analysed by electrochemical pulse amperometry 
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as described. Results revealed the presence of CDH1, ERBB2, KRT19 and HUWE1 in the patient 

sample whereas no markers were detected in the control sample, which demonstrate the 

ability of the MLPA-barcode-detection approach for real sample analysis. 

 

Figure 5.7. Electrochemical analysis of MLPA amplicons from a cancer patient sample and a healthy donor 

(negative control). 

 

5.5 Conclusions 

A strategy for the amplification and detection of multiple mRNA markers from CTCs with 

single cell sensitivity was reported. The amplification of the genetic material from an individual 

tumour cell was based on an MLPA-barcode approach, which allows for the simultaneous 

amplification of multiple biomarkers. The same approach was also successfully applied on real 

samples, showing the ability to discriminate between a cancer patient and healty donor. MLPA 

probes were designed to incorporate specifically designed barcodes for use as recognition sites 

for hybridization with the capture probes immobilized on the surface of each electrode of the 

PCB array. The choice of the optimal spotting buffer was critical, having a significant effect on 

DNA surface coverage, hybridization efficiency and a consequential impact on the sensitivity of 

the sensor. Stability studies performed for both the DNA functionalized PCB sensors and the 

electrochemical reporter probe demonstrated their stability for long-term storage periods. 

This result shows the potential applicability of the MLPA-barcode-detection approach for 

genetic profiling with immense potential where amplification is combined with solid-phase 
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hybridization, demonstrating a generic approach that can be applied to the detection of any 

set of biomarkers.  
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5.7 Supporting information 

Sequences of the oligonucleotides used in both the Reverse Transcriptase Multiplexed 

Ligation-dependent Probe Amplification (RT-MLPA) and the electrochemical detection. 

5.7.1 Oligonucleotide sequences used 

 

 

Reverse transcription (RT) primers 

 

Gene Forward primer (5’-3’) Reverse primer (5’-3’) 

CD24 caacaactggaacttcaagtaa gaagagactggctgttgac 

CD44 ctggggactctgcctc tcagcggcctccgtc 

HUWE1 tgaggagcagccacaga ccacccaaaggtcgct 

CDH1 attcctgccattctggggattc ctgggggcagtaagggctcttt 

ERBB2 ccctgttctccgatgtgtaa gctcatggcagcagtcagt 

KRT19 ctggtaccagaagcaggg gaagtcatctgcagccagac 

CDH2 catcacagtgacagatgtcaatg tgatccttatcggtcacagttag 

 

 

MLPA primer sequences 

 Sequence (5’ – 3’) 

Forward PCR primer  Cy3-gggttccctaagggttgga 

Reverse PCR primer  Biotin-ggacgcgccagcaagatccaatctaga 
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MLPA probes and barcodes 

Electrochemical sensor array surface probes (5’ – 3’). 

CD24  SH-T15-tacatatacgagcctgtaga 
CD44   SH-T15-gtattatattcgtgcgatg 
CDH1  SH-T15-ccgattacgaaccagcctat 
CDH2  SH-T15-tcgatcgatttcaacggtaa 
KRT19  SH-T15-ccctaatccgctctaaggtt 
ERBB2  SH-T15-ctaggaattcggctacttag 
HUWE1  SH-T15-ttcattgagttcgtcgtaat 
 
 
 

Synthetic amplicons (5’ – 3’). 
 
CD24 

gggttccctaagggttggacaagtaactcctcccagagtacttccaactaatccaactaatgccaccaccaaggcggctggtggt
gccctgcatctacaggctcgtatatgtatctagattggatcttgctggcgcgtcc 

 

 

ERBB2 

gggttccctaagggttggacgttctgaggattgtcagagcctgacgcgcactgtctgtgccggtggctgtgctaagtagccgaatt
cctagtctagattggatcttgctggcgcgtcc 

 
HRP labelled universal reporter oligonucleotide probe (URP) – Complementary to all 

targets:  

HRP- tccaacccttagggaacc 

LENGTH  
(bp)  

 MARKER  TARGET SEQUENCE DETECTED (5’-3’) 
Barcode (5’-3’)  
attached to 3`of RHO 

149 
(154) 

CD24 

LHO: caagtaactcctcccagagtacttccaact (30)  

SO: ctgggttggccccaaatccaacta (24)  

RHO: atgccaccaccaaggcggctggtggtgccctgca (34) tctacaggctcgtatatgta (20) 

154 
(157) 

CD44 

LHO: tgccgctgagcctggcgcagatcgattt (28)  

SO: gaatataacctgccgctttgcaggtgtat (29)  

RHO: tccacgtggagaaaaatggtcgctacagcatctc (34) catcgcacgaatataataca (20) 

133 
(137) 

HUWE1 
LHO: ccaccaagctgaagggcaaaatgcagagcaggtttgac (38)  

RHO: atggctgagaatgtggtaattgtggcatctcag (33) attacgacgaactcaatgaa (20) 

130 
(133) 

CDH1 
LHO: ccttggaggaattcttgctttgctaattctgat (33)  

RHO: tctgctgctcttgctgtttcttcggaggagagcg (34) ataggctggttcgtaatcgg (20) 

115 
(118) 

ERBB2 
LHO: cgttctgaggattgtcagagcctg (24)  

RHO: acgcgcactgtctgtgccggtggctgtg (28) ctaagtagccgaattcctag (20) 

170 
(174) 

KRT19 

LHO: tgggccctcccgcgactacagccactactacac (33)  

SO: gaccatccaggacctgcgggacaagattcttgg (33)  

RHO: tgccaccattgagaactccaggattgtcctgcagatcgacaa (42) aaccttagagcggattaggg (20) 

165 
(143) 

CDH2 

LHO: caatcctccagagtttactgccatgacgtt (30)  

RHO: ttatggtgaagttcctgagaacagggtagacatcatagta gctaat 
(47) 

ttaccgttgaaatcgatcga (20) 
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Please note that sequences highlighted with underline bind to corresponding immobilised 

probe and sequences highlighted in bold bind to URP. 
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6 Conclusions 
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6.1 General conclusions 

This thesis describes the development of electrochemical immunosensors and 

genosensors for the detection of protein and DNA biomarkers respectively for the diagnosis of 

human diseases such as ischemic stroke, celiac disease and breast cancer. It was developed a 

one-step method for the covalent self-assembly of antibodies on gold surfaces based on the 

chemical introduction of disulphides groups into the antibody structure. An antibody raised 

against the stroke marker NSE was employed in the study and the disulphides were introduced 

through three different moieties of the protein, such as primary amines, carbohydrates and 

carboxylic groups. This strategy exploits the presence functional groups into the protein 

structure to introduce sulphur-containing molecules which form a covalent bond with the gold 

surface. The surface chemistry based on the site-directed modification via the carbohydrate 

chains exhibited the best biosensor performance probably due to a better orientation of the 

antibody at the surface, since the sugar moieties in IgGs are specifically located on the Fc 

region. The results obtained compared well with typical surface chemistries used in biosensing 

for the covalent attachment of the capture antibody, such as the traditional two-step mixed 

SAM and the commercial CM5 chips based on a carboxymethylated dextran matrix.  The same 

methodology was also applied for the direct immobilisation of the tTG antigienic protein in 

gold surfaces, which is used for the detection of the celiac disease related anti-tTG antibody. In 

this case, the introduction of the disulphide groups through the amine moieties exhibited the 

best immunosensor performance. This immunosensor was also assessed successfully with real 

patient samples exhibiting very low background levels, which demonstrates the suitability of 

the developed surface chemistry for real sample analysis. Overall, the introduction of 

disulphides in proteins used as bioreceptor in immunosensors provides a simple and attractive 

approach for a one-step covalent immobilisation, omitting the need for surface pre-treatment.  

Concerning the genosensors, it was developed a novel method for the multiplex barcode-

MLPA-based amplification and detection of seven breast cancer related mRNA markers with 

single tumour cell sensitivity. The DNA amplification was performed using the barcode-MLPA 

approach, which enables the simultaneous amplification of multiple genes and their 

subsequent electrochemical detection via hybridisation of the barcode sequences to 

complementary surface immobilised probes. The use of barcodes enables the development of 

generic detection platforms, since the same barcode sequences can be used for the detection 

of other biomarker sets using the same surface probes. For the multiplex electrochemical 

detection, a low-cost electrode array was fabricated using PCB technology, which exhibited 
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excellent conditions for biomolecules immobilisation, signal transduction and reproducibility. 

The developed system provides an elegant strategy for the multiplex genetic profiling of 

tumour cells with great possibilities for miniaturisation and integration into a stand-alone 

module. 
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7 Appendices 
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7.4 Appendix 3. List of abbreviations 

 

Abbreviation  Definition 

11-MUOH 11-mercapto-1-undecanol 

16-MHA 16-mercapto-1-hexadecanoic acid 

A  Adenine 

Abs Antibodies 

AGA Anti-gliadin antibody 

AP Alkaline phosphatase 

ATP  Adenosine triphosphate 

bp  Base pair 

BSA Bovine serum albumin 

C  Cytosine 

CD Coeliac disease 

Cdl Double layer capacitance 

cDNA  Complementary DNA strand 

CEA Carcino Embryonic Antigen 

CH Constant domain of the heavy chain 

CL Constant domain of the light chain 

CNT Carbon nanotube 

CTAB Cetyl trimethyl ammonium bromide 

CTC Circulating tumour cell 

CVP Chemical vapour deposition 

DMSO Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 

dNTPs Deoxyribose nucleoside triphosphate, also known as nucleotide 

DPV  Differential pulse voltammetry 

dsDNA Double stranded DNA 

DTPS Dithiopropionic acid succinimidyl ester 

DTT Dithiothreitol 

DT-TEG Dithiolated aromatic triethylene glycol 

EC50 Concentration of target needed to obtain a 50 % of the maximum signal 

EDC 1-Ethyl-3-(3-dimethylamino-propyl) carbodiimide 

EDTA  Ethylenediaminetetraacetic acid 

EIS Electrochemical impedance strectroscopy 

ELISA  Enzyme-linked immunosorbent assay 

ELONA Enzyme-linked oligonucleotide assay 

EMA Anti-endomysium antibodies 

ENIG Electroless nickel immersion gold 
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Fab Fragment antigen binding 

Fc Fragment crystallizable 

FR4 Flame retardant 4 

FRA Frequency response analyzer 

Fwd Forward 

G  Guanine 

GOx Glucose oxidase 

GPES  General purpose electrochemical system 

HBS HEPES buffered saline 

HRP  Horseradish peroxidase 

IC Integrated-circuit 

IgA Immunoglobulin A 

IgD Immunoglobulin D 

IgE Immunoglobulin E 

IgG Immunoglobulin G 

IgM Immunoglobulin M 

ISE Ion selective electrode 

IUPAC International Union of Applied Chemistry 

KA Association constant 

KD Dissociation constant 

LAMP Loop mediated isothermal amplification 

LCM Laser capture microdissection 

LCR Ligase chain reaction 

LHO Left hybridization oligonucleotide 

LOC Lab on a chip 

LOD Limit of detection 

MAb Monoclonal antibody 

MCF7 Michigan Cancer Foundation-7 

mer  From Greek meros, "part". The length of an oligonucleotide 

MIP Molecularly-imprinted polymer 

MLPA Multiplex ligation-dependent probe amplification 

MPA Mercaptopropionic acid 

mRNA Messenger RNA 

MWCO molecular weight cut off 

NASBA Nucleic acid sequence based amplification 

NHS  N-hydroxy succinimide 

NSE  Neuron specific enolase 

NTA Nitrilotriacetic acid 

NTC  Non-template control 

PBS  Phosphate-buffered saline 

PC Personal computer 
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PCB Printed circuit board 

PCR  Polymerase chain reaction 

PEG  Polyethilene glycol 

Pfu Pyrococcus furiosus 

PMMA Polymethylmethacrylate 

PNA Peptide nucleic acid 

POC Point of care 

POCDs Point-of-care devices 

PSA Prostate specifc antigen 

PVD Physical vapour deposition 

R&D Research and development 

RCA Rolling circle amplification 

Rct Charge transfer resistance 

Rev Reverse 

RHO Right hybridization oligonucleotide 

Rmax theoretical maximum antigen binding capacity 

RNA Ribonucleic acid 

Rs Solution resistance 

RSD Relative standard deviation 

RT-MLPA Reverse transcriptase MLPA 

RT-PCR Reverse transcriptase polymerase chain reaction 

RU Ressonance units 

S/B Signal-to-background ratio 

SAM Self-assembled monolayer 

sat saturated 

SDA Strand displacement amplification 

SDS Sodium dodecyl sulfate 

SELEX Systematic evolution by exponential enrichment 

SNP Single nucleotide polymorphisms 

SO Spanning oligonucleotide 

SPR Surface plasmon resonance 

SSC Saline-sodium citrate 

SSCM Standard cubic centimeters per minute 

ssDNA Single stranded DNA 

T  Thymine 

TBS  Tris-buffered saline 

TMB  3,3’,5,5’-tetramethylbenzidine 

TRIS  Tris(hydroxymethyl)aminomethane 

tTG Tissue transglutaminase 

U  Uracyl 

UM-PCR Universal multiplex PCR 
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URP Universal reporter oligonucleotide probe 

UV  Ultraviolet 

VH Variable domain of the heavy chain 

VL Variable domain of the light chain 
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