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Resumen

Palabras clave: Adsorcion de polimeros, paredes planas, particulas coloidales, teoria
Single Chain Mean Field, Simulaciones de Monte Carlo, teorias de escala

El estudio de las propiedades Fisico Quimicas de superficies con capas poliméricas, es
un area de gran interés tanto a nivel cientifico como tecnolégico. El trabajo que se
presenta es orientado al desarrollo de técnicas de modelizacién, tanto analiticas como
computacionales, y su aplicaciéon a la descripcion de la estructura de la capa de polimeros
adsorbida en superficies heterogéneas. Con este propésito, la metodologia conocida como
Single Chain Mean Field (SCMF), utilizada anteriormente para el estudio de agregados
micelares, ha sido modificada para describir la adsorcién de polimeros. Asi se han podido
calcular numéricamente propiedades medibles experimentalmente como los perfiles de la
fraccion en volumen de mondmeros, adsorbancia o el espesor de la capa adsorbida, para
geometrias de la superficie absorbente tanto plana como esférica. En su comparacién con
otras metodologias, ya establecidas para la simulacién numérica dentro de la fisica de
polimeros, la aplicacién de esta nueva versién del Single Chain Mean Field (SCMF) ha
resultado ser mas eficiente debido a un mejor muestreo del espacio de configuraciones de
las cadenas poliméricas. De este modo, comparando los resultados obtenidos a partir del
SCMF, con aquellos obtenidos mediante técnicas de simulacion Monte Carlo o la teoria
desarrollada en los anos 80 por Scheutjens y Fleer (SCF), se ha podido encontrar un
buen acuerdo en las propiedades calculadas para el caso de la adsorcion en superficies
planas. Debido a la dificultad intrinseca del estudio de la adsorciéon en superficies cur-
vadas, nuestros resultados son los primeros que presentan predicciones cuantitativas sobre
la estructura de la capa que se forma sobre una particula coloidal. Finalmente, en este
trabajo se ha desarrollado, también, una teoria analitica para la descripcién de la mezcla
polimero-coloide. De este modo, los resultados numeéricos obtenidos con el SCMF han
podido ser comparados con dicha teoria, obteniendo, de nuevo, un buen acuerdo, ademas
de predecir comportamientos colectivos como la formacion de geles.






Abstract

Keywords: Polymer adsorption, flat surfaces, colloidal particles, Single Chain Mean
Field theory, Monte Carlo simulations, scaling theory

The study of the Physico-Chemical properties of surfaces with adsorbed polymeric
layers is of interest both from a scientific as well as from technological point of view. The
present work aims to develop appropriate numerical and analytical modelling techniques,
which can describe the structure of a polymeric layer adsorbed on a heterogeneous sur-
faces. In the first place, the methodology known as Single Chain Mean Field (SCMF),
originally used to study micellar aggregates, was modified to apply on polymer adsorp-
tion problems. In this way, it was possible to calculate numerically properties that can be
experimentally measured, such as monomer volume fraction profiles, adsorbance or the
thickness of the adsorbed layer. The structure of the polymeric layer was examined both
for flat and spherical (colloidal particles) surface geometries. When compared with other
well established methodologies for the numerical simulation of polymeric systems, this
new version of SCMF was found to be more efficient due to the improved sampling of the
polymer chain configuration space. Thus, SCMF method results for flat surfaces compare
well with those obtained either with Monte Carlo simulations or with the method devel-
oped in the 80s by Scheutjens and Fleer. Due to the luck of studies focusing to polymer
adsorption on colloidal particles, our results have been the first to present quantitative
predictions of the structure of the polymeric layer adsorbed on a spherical surface. Finally,
in this work an analytical approach for the description of polymer-colloidal mixtures, has
been developed which compares well with the numerical results obtained from the SCMF
methodology. Furthermore, the analytical approach is able to predict system behaviours,
as for example the formation of gels.
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Chapter 1

Introduction

A polymer is a large molecule constructed from many smaller structural units called
monomers joined together by covalent bonds. Polymers have existed in natural form since
life began and those such as DNA, RNA, proteins and polysaccharides are some of the
most important macromolecules found in plant and animal life. From the earliest times,
the man has used many of these polymers as materials for providing clothing, decoration,
tools, weapons and other requirements. However, the origins of today’s polymer industry
commonly are accepted as being in the nineteenth century when important discoveries
were made concerning the modification of certain natural polymers, as cellulose and Gutta-
percha. In our days, the name polymer is mostly used for molecules with a few repeating
monomeric units, usually artificially made. [1]

The use of synthetic and natural polymers as stabilisers for colloid systems (sols,
dispersions, microemulsions, etc.) is becoming more important everyday in contemporary
life. Polymer additives can be applied in preconcentrations and dehydration of suspensions
in mineral processing, purifications of drinking and wastewater and even in nutritional
and pharmaceutical emulsions. These properties are controlled by the manipulation of a
very large number of variables, which will determine the molecular composition and the
morphology of the material. Examples of these variables can be the molecular architecture
of homopolymer (linear, star, long-branched), the molecular weight distribution or the
processing conditions used as, for example, the temperature-pressure history or the flow
field. However, in industrial practice is frequent to find problems in materials design in
both their synthesis and processing. These problems have to be solved subject to strong
financial and time constraints, which are crucial factors in the success and survival of
a given industry. An example of the kind of problems to be solved is the search for
chemical modifications to reduce the permeability of a semicrystalline plastic in order to
increase the shelf-life of beverage bottles, made with this polymer, without affecting their
mechanical properties. Traditionally, these problems are solved experimentally studying a



2 CHAPTER 1. INTRODUCTION

large sets of homologous systems, helped by phenomenological correlations (systematized
in convenient algebraic forms) between chemical constitution, morphology and physico-
chemical properties, but with large remains of trial-and-error procedures.

In the mid-1980s, the importance of the design of new polymeric materials in addition
to the use of quantum, statistical theories and simulations, in order to help or replace
these phenomenological correlations, suffered an important rise. These kinds of modelling
approaches, based on a fundamental molecular description, present many advantages over
phenomenological correlations, based on macroscopic observations. On the one hand,
these theories can be used in situations in which the experimental data are scarce and
difficult to be obtained, or even prohibitively expensive. On the other hand, they give
the possibility to study a very wide range of properties using a minimal set of model
parameters.

However, the use of these molecular methods also present disadvantages. Computer
simulations are limited to small systems by the excessive demand of computer time when
the number of degrees of freedom to be described is large. In molecular simulations the
conformations of polymer chain are generated via many random moves, where the interac-
tions present in the systems as well as the consideration of self-avoidance chains are taken
into account. In all many-body simulations, it is essential to perform an adequate sampling
of the phase space of the model system, which is an important problem for systems of
long chain molecules, particulary at high densities, when the number of conformations
grows exponentially with the number of monomers of the chain. As far as molecular
simulation methods are concerned, it can be mentioned the Monte Carlo methods (MC)
and Molecular dynamics (MD). The original MC algorithm was developed by Metropolis et
al. in 1953 [2] and has been applied in various areas of statistical physics including polymer
physics problems [3, 4, 5. MC method uses a statistical sampling of the conformation
space, where only energetically significant conformations are taken into account. Thus,
many properties of the system as, for example, the polymer density profile, are calculated
as an average over all the sampled conformations with its statistical weight. Many MC
schemes have been proposed to sample the configuration space in both homogenous and
confined polymeric system. Among these methods, we can distinguish the Configurational-
Bias Monte Carlo (CBMC) technique, developed by Siepmann and Frenkel [6], which
has been used in many applications such as the simulation of phase equilibria of chain
molecules [7] or the simulation of polymer adsorption on surfaces [8]. Molecular dynamics
simulations solves the integration of Newton’s equations of motion in real space for each
particle that constitutes the polymer chain, and whose interactiones are directly taken
into account by means of inter-atomic potentials. However, important computational
limitations are found due to its difficult to study slow processes that need large time
frames (larger than hundreds of picoseconds), such as the dynamics of polymer adsorption
and relaxation. Despite of these drawbacks, MD models have been succesful in gaining
physical insight in various areas of polymer science. Thus, applying MD simulations,



polymer adsorption phenomena have been studied, for example, by Murat et al. [9] and
Kramarenko et al. [10], among others.

Together with the simulation method, many analytical theories have been developed to
describe the structure of adsorbed polymeric layer. Most of these theories are based on a
classical mean-field approxzimation [11, 12] or on a phenomenological scaling approach [13].
Such theories do not take into account directly the details of the chain chemical structure
and the nature of the intermolecular potentials. Mean-field theories essentially describe
one chain in an effective potential field, known as the mean-field potential, which is self-
consistently determined from the solution of the mean field problem, taking into account
all the segment-segment interactions found in the system. The application of the mean-
field theories is limited by the assumption that it is assumed that spatial fluctuations in
the local segment density are negligible. From a general point of view mean-field theories
for polymer adsorption extended the standard Flory-Huggins picture of polymer solutions
allowing the calculation of free energies in systems with concentration gradients.

In the early 80’s, de Gennes analyzed the behaviour of polymers adsorbed at interfaces
considering a mean-field approach. The properties of the adsorbed polymeric layer are
obtained by the minimization of an appropiate surface free energy functional constructed
including a local swelling of the chain and the proper functional form of the osmotic pres-
sure, such that the adequate scaling laws are obtained. This approach is very illustrating
since, as the work done in chapters 2, 3 and 4 of this thesis, shows that proper scaling
laws are compatible with a mean-field treatment. The approach of de Gennes has been
used, through one order parameter theory, to analyze polymer layers under different sol-
vent conditions [14, 15, 16, 17]. Previous approaches were based on Edwards treatment
[18] in the Ground State Dominance approzimation [19] and reproduce the scaling laws
proper of ideal chains. However, all these approximations based on one-order parameter
theories give no description of finite size effects. It is thus only valid for extremely long
chains and restrictred to the region close to the surface. More recently, Semenov et al.
[20] presented a theoretical description based on a mean-field approximation within the
framework of ideal chains but going beyond the standard ground state dominance appro-
ximation. Thus, in this approach using two coupled order parameters, the finite size of
the polymer chains is taken into account as well as the relative contributions of loops,
tails and free chains to the polymer concentration at a given distance from the adsorbing
layer.

However, the mean-field theory based on ideal chain behavior breaks down under good
solvent conditions. The ideal chain mean-field description is correct under the so-called
marginal solvency conditions, in which the excluded volume is weak and can be treated
perturbatively. To include the effect of these excluded volume correlations in an analytical
theory, it is necssary to introduce the ideas used by renormalization group theory, which
was originally developed to study of critical phenomena. The basic idea of this theory is
to see the change observed in the macroscopic properties of the system when the basic
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scales of the model are altered. The scaling approach presented by de Gennes [13] is
also reminiscent of critical phenomena in this sense. De Gennes argued that, in a good
solvent, long flexible chains strongly adsorbed on a solid wall build a self-similar diffuse
layer with no characteristic length. Thus, the local correlation length, depending on the
local monomer concentration, should scale as the distance to the wall. De Gennes found
that the overall concentration profile falls off from the wall as ¢(z) ~ z=*/3, in contrast to
the mean field prediction where c(z) ~ z72. In the mid-1990s, Semenov and Joanny [21]
presented another version of the scaling theory in which the structure of the adsorbed
layer is considered as separated into two regions being the inner domined by loops while
the tails dominate the region beyond a characteristic distance z* ~ N4 where N is
the polymerization index and d the space dimension. The existence of a characteristic
length in the adsorbed layer is the most important theoretical results of these authors.
Later, also a mean-field theory based on the statistics of ideal chains was developed to
account for the new structure of the layer [20, 22].

All the theoretical approaches discussed previously have their applicability limited to
very long chains. In this context, an important complement to the analytical theories is the
use of computers to solve the statistical mechanical problem of polymers near interfaces,
which yield results far from the asymptotic regimes studied by the analytical treatments.
One of the most known techniques is the numerical lattice Self-consistent Field (SCF),
which offers a numerical solution of the mean-field problem for chains of finite size. In
this direction, the first works developed in adsorption of polymers were done by DiMarzio
and Rubin [23, 24], being extended by Scheutjens and Fleer [25, 26]. The SCF solves the
Schrédinger or modified diffusion equation due to Edwards [18], giving the propagator
or statistical weight of one chain in a self-consistent field, from which all other physical
properties are derived. The main characteristic in the use of this theory is the markovian
nature of the chains, i.e. without excuded volume correlations along the chain, since they
are considered as being ideal chains embedded in a mean-field.

This work aims at developing appropriate numerical and analytical modelling tech-
niques, which can describe the structure of a polymeric layer adsorbed on a solid surface,
taking into account the excluded volume correlations along the chain. In the first place,
the methodology known as Single Chain Mean Field (SCMF), originally developed by
Ben-Shaul, Szleifer and coworkers [27, 28|, has been modified to include an importance
sampling methodology, suitable for polymer adsorption problems. In this way, it has been
possible to numerically calculate properties that can be experimentally measured, such
as monomer volume fraction profiles, adsorbance or thickness of the adsorbed polymer
layer, and compare with the results issued from other methodologies. The theoretical
background concerning the use of this importance sampling method and a review of the
SCMF theory is given in chapter 2.

To check the efficiency of our method, firstly, we concentrated our attention in the
study of polymer adsorption on flat surfaces. The SCMF results with self-avoiding chains



have been compared with lattice multi-chain Monte Carlo simulations, for the same values
of the chain length, adsorption energy and bulk concentrations. In this part of the work,
presented in chapter 3, we have calculated the properties of the adsorbed layer such as
the total, loop and tail monomer density profiles, adsorbance and thickness obtaining, in
all these cases, the same density dependence for both methods, SCMF and MC. For com-
pleteness, the results obtained with our method, employing ideal chains in the sampling
of the phase space, were compared with those obtained from self-consistent method of
Scheutjens and Fleer (SCF) [26]. The results found are in very good agreement with the
calculations in each case.

In spherical surfaces, the influence of the curvature on the structure of grafted polymer
layers has been the subject of numerous studies from theoretical and numerical point of
view [29, 30]. In the case of the adsorption, we can mention theoretical and experimental
works [31, 32, 33, 34]. However, there are only a few studies [35] that analyse the structure
of the layer, studying the total density profile, adsorbance or the thickness of the adsorbed
layer for a wide range of radii, from a numerical point of view. Thus, up to the best of our
knowledge no detailed analysis of the structure of the adsorbed layer formed by relatively
short polymers on spherical particles has been given. Hence, our results, obtained from the
modified SCMF method, are the first giving quantitative predictions about the structure
adsorbed polymeric layers onto spherical particles. We present this analysis in chapter 4.

Finally, chapter 5 is devoted to the introduction of an scaling analysis suitable for the
treatment of polymer-colloid mixtures, which complements the studies done in previous
chapters. In this latter chapter the scaling point of view adopted in ref. [21] for flat
surfaces is used as an starting point for adsorption of polymers onto small particles [36].
In particular, we have paid special attention to the interaction between different particles
mediated by polymers as well as the structure of a system of isolated particles and many
polymers adsorbed on them. One of the key problems of polymer-colloid systems is the
prediction of the types of structures formed as a result of interaction of macromolecules
with the particles. It has been shown experimentally [37] that if the density of colloids
and polymers is sufficiently large, the adsorption onto the colloidal surface can lead to
physical crosslinking and to the formation of a gel. The analytical theory developed in this
work has been focussed to study the formation of star-shaped complexes from the dilute
polymer-colloid solutions as well as the formation of this gelation transition, produced in
semidilute conditions from the formation of similar complexes.

Summarizing, this disertation can be naturally divided into three parts. The first part
is this introduction, which includes a review of general aspects of polymer solutions and
polymer adsorption, as well as of the other theoretical treatments of polymer solutions in
general, which will serve to grasp the context in which our work is inserted. The reader
familiar with the phenomenology and theoretical background of polymer adsorption can
skip the rest of this chapter. The second part is related to the development and application
of the new SCMF theory, which embraces chapters 2, 3 and 4. The third part, which only
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contains chapter 5, corresponds to a scaling description of the polymer adsorption on
colloidal particles in colloid-polymer mixtures. Finally, in chapter 6 we propose possible
applications of the developed methodology as suggestion of future work.
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1.1 Polymers in solution

1.1.1 General aspects

Polymer chains can be characterized by their degree of flexibility. It is possible to find
flexible macromolecules, in which a substantial bend can be formed over a length of
several links (Fig. 1.1.a), as a result of the rotation around the backbone bonds. Stiff-
chain macromolecules are those in which bend needs much greater lengths to become
appreciable (Fig. 1.1.b) and macromolecules without any kind of flexibility behave as
stiff rods or rigid general conformations (Fig. 1.1.c).

Figure 1.1: Representation of different types of polymers depending on their degrees of flexibility. a.
Flexible chain; b. Stiff chain; c. Rigid chain.

Each polymer molecule in solution is bombarded by the solvent molecules and the
other polymers, due to the thermal energy of the system. Thus, polymers not only
diffuse in solution and rotate but also move through a huge range of conformations, whose
number increases exponentially with the number of segments of the chain. The average
conformation is neither fully extended nor fully compressed, since both are highly ordered
states, but polymers present in solution a high conformational entropy thus adopting a
fuzzy coil-like structure. In the presence of interfaces as, for instance, an adsorbing wall,
the resulting structure will be given by the competition between the tendency to a maximal
disordered state and the energetic gain that implies be in contact with the adsorbing wall.

Therefore, due to their configurational entropy, polymers in solution would tend to
adopt, on average, an intermediate conformation called random coil, more or less sphe-
rical, with a relatively high concentration of monomer units in the central region and a
more dilute pheriphery. The monomer-monomer interactions, however, introduce a con-
figurational constraint, preventing the monomers to overlap, due to a high energy penalty



8 CHAPTER 1. INTRODUCTION

issued from the repulsive molecular potentials. This effect is known as the excluded-
volume interaction, which plays a crucial role in the understanding of polymer solutions.
The excluded volume interaction is a collective effect that depends on the relative inten-
sity of the mutual monomer-monomer and monomer-solvent interactions. If the monomer
solvent attraction is dominating, then the polymer dissolves well in the solvent and the
latter is referred to as good solvent. As such, the excluded volume interaction is dependent
on the temperature. The temperature at which the second virial coefficient vanishes is
known as the #-temperature, and the conformational entropy of the polymer determines
its behavior. If the excluded volume interaction is independent of the temperature, in a
given range, then the solvent is referred to as athermal [13, 38, 39].

Ideal Chains

There are several theories whose main objective is to explain those physico-chemical pro-
perties depending on the overall polymer structure. These properties are universal in the
sense that, a part from the values of certain coefficients, the qualitative behavior is the
same independently of the chemical structure. We will briefly discuss how the models are
constructed. We will start with the simple case, in which the excluded volume interactions
are neglected.

The simplest model considers the polymer as an ideal chain whose the bonds between
atoms in the backbone are treated as vectors connecting volumeless points without inte-
raction with each other. Therefore the polymer is modelled as freely jointed chain of N
segments each of length [. Each segment, known as Kuhn segment, does not correspond
to a chemical monomeric unit, but to a sequence of monomers which reflect the local
intrinsic stiffness of the backbone [40]. An example would be the model used by Szleifer
[41] to sudy the adsorption of protein molecules on PEO grafted surfaces, in which each
segment represents a (CHy — CHy — O) group with an effective length 1.

In the random flight model, the polymer is modeled as a sequence of N segments
whose orientation in space is completely random. There is no restriction on the direction
of each segment and on the overlap, so that the conformation resembles the trajectory of
a particle diffusing under the action of a random force or Brownian movement. The chain
is Markovian, in the sense that dividing the chain into two parts, each part is statistically
independent of the other. This Markovian property is inherent to all the self-consistent
field theories based on Edwards equation, which will be discussed later on [39].

It is interesting to derive some simple properties from the random flight model, which
will serve us to introduce properties of ideal chains in solution. The conformation of a
chain can be represented by N + 1 position vectors {R,,} with n =0... N, or also by the
set of bond vectors {r, } where
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r, = Rn — Rn—l (11)

In the random flight model the bond lengths have to be fixed (|Rn — Rny1| = ). The
distance between the end points of the chain is the root mean square end-to-end distance,
Rend-

2

Rl..=((Ro—Rn)?) = <<§1 rn) > (1.2)

where the brackets represent the average over all configurations that the chain may adopt.
The mean end-to-end distance, Re,q, is a measure of the size of the chain and, in fact,
could be considered as being the mean coil diameter. Since there is no correlations between
segments, then one has

Ty Tm = Onm (1.3)

where 0,,, stands here for the Kronecker ¢ symbol, being its value 1 if n = m and zero
otherwise. The mean square displacement is proportional to N, the index of polymeriza-
tion. Thus,

N N N
Rly= Y (tntm) =3 (r2)+2 > (tn 1) = NI’ (1.4)
n,m=1 n=1 n>m

as ry and r, are statistically independent, according to eq. (1.3). Thus, the end-to-end
distance corresponding to the ideal chains satisfies a power-law behavior in the polymer
size N, with an exponent 1/2, which is characteristic of the ideal chain behavior.

The size of the coil can be also measured in terms of the radius of gyration, R,, which
is the root mean-square distance of the segments from the centre of mass of the chain,
Rem = ( fio R;)/(N +1).

1.
g N+1 N+1 (15)

R? — <E£\£0(Ri - Rcm)2> _ <EO§i§j§N(Ri - Rj)2>
The radius of gyration of a polymer in solution can be obtained experimentally by elastic
light scattering. Thus, the radius of gyration of a gaussian coil is related with end-to-end
distance by the relation
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R = (RZ,/6) = %NZQ (1.6)
Therefore, the both measures of the overall size of the chain obey a square root law
with the index of polymerization. This exponent, known as exponent of Flory, v [42], is
independent of the type of polymer considered and the only condition is that the chain
has to be very flexible, no excluded volume interactions present, and sufficiently long.
Furthermore, since the model does not incorporate microscopic details on the nature of
the monomers, such a behavior is universal and independent of the chemical composition,
provided that the just mentioned properties of the chain are given.

The statistical distribution of the end-to-end vector of an ideal polymer is
gaussian

Again, it is considered a freely jointed chain of independent IV vectors randomly oriented.
If the length of the chain is very large (N — o0), since all the segments are statisti-
cally independent and according to the central limit theorem, the probability distribution
function, corresponding to the end-to-end vector (Py(Rena)), is a Gaussian distribution,
ie.

Py(Rena) = (27N1/3) % exp [<3R2,,/ (2N )] (1.7)

where the factor (27 N/ /3)_3/ ? is obtained from the normalization condition,

/PN(Rend)dRend =1 (18)

In general, for any pair of monomers n and m, the probability distribution of the vector
R., — R, is also Gaussian, provided that |m — n| > 1 [39].

Since the polymer chain is an object bearing a large number of degrees of freedom, we
can assign a conformational entropy per chain. Effectively, fixing the end-to-end distance,
as a measure of the overall size of the polymer, one can use Boltzmann formula to write

3kR2,
N (1.9)

S(Rend) ~ kln PN(Rend) ~ S() -

where Sy is a residual entropy independent of the extension of the chain, and k is Boltz-
mann’s constant. From this entropic consideration, it is also possible to regard the chain
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as a Hooke spring, whose tension is the product of the entropy reduction associated to
the decrease of the conformations compatible with a large R.,q, times the temperature.
This apparent elasticity of the polymer coil has been used as a base of simple statistical
mechanical models of polymers [38, 39]. Let us write the free energy F' as

3kT _,
F(Rend) — U() - TS(Rend) — FO + WRend

(1.10)
where Uy and Fj are contributions independent of the chain extension. Thus, the effective
spring constant can be identified as being

kT

H=-"2
NI

(1.11)

which depends on the temperature. This simple argument has been used to give an
explanation of the temperature dependence of rubber elasticity [1].

Excluded volume

In the ideal chain model, the volume of the segments and the solvency effects are ignored.
It gives a reasonable description in poor solvents, where the segments do not experiment a
net preference for the solvent molecules (the second virial coefficient is very small), hence
more compact conformations are energetically preferred. However, as mentioned, in the
case of solutions of polymers in good solvents the excluded volume becomes important. In
these conditions, the interaction between monomers and solvent molecules is favourable in
front of the monomer-monomer interactions, which becomes effectively repulsive. The ex-
cluded volume interactions cause a swelling of the polymeric coil, which prefers to sacrify
some entropy to reduce the monomer-monomer interactions. However, when this interac-
tion is relevant, there appear significant changes in the statistical behavior of polymers.
Effectively, the overall size of the polymer no longer scales as N/2, but with a different
Flory exponent v [13]. The Markovian nature of the ideal chain is lost due to the fact
that two segments of the chain can be correlated if they meet close in space, regardless
how far are along the chain backbone. These excluded volume correlations are crucial in
the understanding of the properties of polymers in good solvents.

Flory was the first to understand the influence that excluded volume plays in polymer
solutions. He devised an easy way to obtain the exponent v for all dimensionalities, by
means of simple arguments. We can begin considering an isolated polymer coil in solution
of a certain unknown radius, R. Then, the internal monomer concentration would scale
as
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N
Cint = Tg (1.12)
where d is the dimensionality of the space. There is a certain repulsive energy inside
of the coil due to the segments repel each other. This energy, of the order of k7T per
contact, is proportional to the number of contacts present inside of the coil. An estimate
of the number of monomer-monomer contacts is given by the product of the total excluded
volume of the chain (proportional to vV, being v, the excluded volume per monomer) with
the local monomer concentration c. Hence, this repulsive energy would be proportional
to

1 N?
Urep ~ §kTUCN ~ kTvﬁ (1.13)

The excluded volume parameter is assumed to be of the order of the volume of one
monomer, v ~ [%. The arguments presented are mean field in nature since all the corre-
lations between monomers are ignored.

The repulsive energy leads to coil expansion. But this swelling may be too large and
unfavorable for the entropic contribution of the coil. Flory considered the two opposite
effects, writing

F(R) vN?  R?
T :U_TSNW—FN—[Z (1.14)

The minimum of this free energy gives us the dependence between the size and polyme-
rization index of the polymer, yielding

oF
R (1.15)
being the exponent v = %. As we can see, the value of this exponent v will depend

on the dimensionality of the space. Hence, in the case of ideal (gaussian) chains, where
v = 1/2, the value of d would be 4. Thus d = 4 is the critical dimension for the
excluded volume problem in polymer solutions, at which the contact between monomers
is irrelevant. At d = 3, then, the excluded volume interaction becomes important. In this
case, the exponent v would be 3/5. Because swelling of the chain, its spatial dimensions
are proportional to a higher power of N than 1/2 (ideal chains), so the radius of gyration
would scale with N as R,/l ~ N 3/5 The value of v given by Flory calculations is only
approximate in d = 3 although exact at d = 4 and d = 2. Group of Renormalization
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theories give a value of v around 0.588 ~ 0.6 after an € expansion up to a second order.
These values of the exponent have been experimentally verified [43]

In the Flory notation v = (1 — 2x)I¢ where [? is the monomer volume and x is the
Flory-Huggins interaction parameter, which measures the excess affinity of segments for
each other over that of the solvent, in the Flory-Huggins equation of state. If the value of
X = 0 (or with small x), we refer to a solution of polymers in good solvents. If x = 1/2
the behaviour of the polymer molecule is ideal. At these conditions the net excluded
volume that causes an expansion of the coil is balanced by the unfavourable polymer-
solvent interactions so the polymer chain adopt unperturbed dimensions. This condition
is known as 6 point, as mentioned.

1.1.2 Semidilute polymer solutions
Scaling theory

In the previous section we have analyzed solutions of polymers in conditions such that
whose monomer concentration is low enough so that, on average, the distance between
molecules is greater than the radius of gyration of a single molecule (Fig. 1.2.a). In
such a dilute regime, all the monomers of the chain are correlated due to exluded volume
interactions. Moreover, the concentration fluctuations become important. Thus, it is
expected that, in these situations, mean-field calculations fail in properly describing the
properties of the system. However, if the polymer concentration is increased, the coils will
end up being forced to interpenetrate. The concentration at which the molecules begin
to overlap is called overlap concentration and is symbolized by ¢* (see Fig. 1.2.b). At this
concentration, by definition, the polymer coils in solution just fill the available volume
without overlapping. Thus, if we consider a polymer of polymerization index N, with a
radius of gyration Ry, the value of c* can be assigned by the equation

3N
Y= 1.1
¢ 47TR2 (1.16)

Thus, the overlap concentration scales, using the Flory result for the radius of the chain,
as N~%/% for non-ideal chains (N~ if the chains are ideal), and is a decreasing function of
the polymer size. If we increase the concentration beyond c*, the fluctuations of segment
concentration become less important. However, mean field treatments still fail in this
regime, known as semidilute concentration regime, due to the fact that excluded volume
correlations are still present at distances smaller than the bulk correlation length (£°).
However, since the relationship stablished by de Gennes between polymeric solutions and
critical phenomena, the dilute and semidilute regime can be studied by the scaling theory
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[13]. Hence, mean field treatments only provide a qualitative picture of the problem but
can give values of the coefficients. Scaling laws are able to provide the correct power-law
behavior of the magnitudes of interest, but can neither produce values for the coefficients
nor crossover behaviors.

c<c* c~ct
a b
3
c>c*
C

Figure 1.2: Crossover between dilute and semidilute solutions: a. corresponds to the dilute conditions,
b. overlap treshold and c. semidilute concentration.

From a scaling point of view, in the semidilute regime the solution resembles a transient
network with an average mesh size proportional to the bulk correlation length £ (see Fig.
1.2.c). If we select one of the chains corresponding to the network of Fig. 1.2.c and
increase the magnification, it is possible to see a mesh volume of size £ that contains a
number of monomers g of length [, belonging to a same chain. Thus, our selected molecule
can be viewed as a sequence of blobs of diameter & (see Fig. 1.3), inside which excluded
volume correlations prevail. Thus, one can write
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£~ 1g*° (1.17)

Figure 1.3: The blob picture of a chain in a semidilute solution; some of the interacting chains are
shown as dashed lines.

With the increase of the polymer concentration, the size of the blobs (i.e. &) becomes
smaller. Therefore, in semidilute solutions, it is expected that the correlation length does
not depend on the chain length, but only on the concentration, if N — oo. Thus, using
scale invariance together with the fact that & ~ N° one ends up writing [13]

€0 ~ Ry (2)" (118

C*

where R, is the size of the coil in dilute solutions that depends on the degree of polymeri-
sation according to R, ~ [ N”, and the ratio ¢/c* is invariant under a redefinition of the
number of segments of the chain and the length of each segment. From the eq.(1.16) and
considering that £ does not depend on N, it is possible to find the value of the exponent
m in good solvents, yielding m = —3/4. Thus, arrives at the non-trivial result
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E(e) ~ et (1.19)

The bulk correlation length is the more important length in semidilute polymer solutions.
Some properties can also be deduced from scaling arguments, as for instance, the variation
of the global size of a polymer coil as the concentration is varied. To see this, let us assume
that the renormalized chain of blobs has a Gaussian distribution since excluded volume
correlations are screened beyond £. Hence, treating the blob chain as a gaussian chain
then

N
R? ~ 552 (1.20)

where £ plays here the role of the size of the effective monomer, and N/g is the number
of these effective monomers in the chain, g being defined from eq. (1.17). By replacing g
from eq.(1.17) and taking into account eq.(1.19), we obtain

2 2 —1/4
R2 ~ NPPc™Y/ (1.21)

Therefore, the main conclusion is that the radius of gyration as well as the correlation
length decrease with the increasing of the concentration for semidilute conditions. Fur-
thermore, if we are in melt conditions, the monomer concentration is ¢ ~ 1. Thus,
according to this, we obtain that the chains are ideal in melts. Eq. (1.21), therefore, per-
mits an appropriate crossover between the excluded volume statistics of isolated chains
in solution and the ideal behavior of chains in a melt. Due to the fact that the density
fluctuations are small in a melt, is precisely in this regime where mean-field approaches

may be used without error because all the segments experience, on average, the same
force field.

To end this section, it is interesting to note that the eq. (1.15) predicts that the chains
in a spatial dimensionality d = 4 are ideal. Thus, scaling arguments can also be used to
predict the behavior of chains in d = 4 since the expected results issued from mean-field
theories based on ideal Markovian chains will be in agreement with these scaling laws
predicted in this dimensionality, provided that the length of the chains is sufficiently
large, eventually N — oo.

Effectively, if the ideal behavior is assumed, then the Flory exponent is v = 1/2, so
that we can write

¢~ (1.22)
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for the overlap concentration, with R, ~ IN'/2 and

4~ 1g*? (1.23)

for the correlation length. Here, the subscript 4 is introduced to emphasize that this
corresponds to a higher dimensionality space. Then, the dependence of the correlation
length with the concentration gives

fi(e) ~ By (2) ~ N0 () ~ e 12 (1.24)

which is a different dependence in the concentration than that found in the case of chains
with excluded volume interactions in d = 3. Finally, the radius of gyration of the chain
becomes independent of the concentration in four dimensions, in contrast with the weak
dependence given in eq. (1.21).

Markovian self-consistent field theory

After having reviewed a few aspects of the behavior of polymers in solution, here we
introduce more in detail the self-consistent mean-field theory due to Edwards, in which
chains in solution are treated as ideal chains in an external field that reflects the excluded
volume repulsion due to the local presence of monomers. The main aspects of this theory
is the Markovian nature of the chains, as far as connectivity is concerned, and the self-
consistent determination of the concentration profile from the solution of the one-chain
problem. This theory is at the base of the so-called Scheutjens-Fleer numerical procedure
that will be described more in detail in the next section.

In inhomogeneous systems, the imposition of composition gradients affects the free
energy, essentially in the case where the composition gradients are on the level of the poly-
mer radius of gyration. In 1965, Edwards [18] presented an interesting analogy between
the problem of interacting polymers and the classical problem of interacting electrons,
where the paths are assimilated to polymer conformations. This analogy was the base to
the development of the self-consistent field theory that we are going to describe.

A polymer in solution is characterized by the magnitude G(r,r'; N), namely the pro-
pagator, which is the statistical weight of a chain of length N that starts at a position r’
and ends at r. The analogy between an ideal polymer conformations and random walk
trajectories of a Brownian particle, makes that the propagator or an ideal, isolated chain
(without excluded volume interactions) obeys a diffusion equation of the form



18 CHAPTER 1. INTRODUCTION

Gy, I2_,

— = —-V°CG 1.25

ON 6 (1.25)
where [?/6 is the analogous of the diffusion coefficient in Brownian movement. The formal
solution of this equation can be expressed as a path integral over all the conformations of
the chain with fixed end-points. That is

rn[y]=r 3 N ora[v] 2
I N = D _— 1.2

where the simbol D~ stands for a sum over all the conformations. In an interacting
system, the random walk is not free, but is affected by a spatially varying field U(r).
Thus, statistical weigths of the different steps are not equivalent because their dependence
on the Boltzmann factor. Thus, the formal solution for the propagator takes the form

rn[7]

G(r,r';N) = /rlm::rD’y exp [—%/IN dn <8151757]>2 _ %/IN dn U(rn[fy])] (1.27)

where U(r) is the potential energy per segment. Considering this latter expression, the
diffusion equation is then modified as

oG I,

This is the basic equation of the self-consistent field theory, which has the same form as the
Schrodinger equation. The first term of the equation takes into account the connectivity
of the chain, the second corresponds to the tendency of entropic effects to disperse the
segments and the third accounts for the action of the potential U(r). If U(r) = 0, the
balance between the first and the second term of the equation determines the propagator.
If the value of U(r) > 0 then the density of configuration is locally reduced, excluding the
chain from that region of space; if U(r) < 0, we have the opposite case.

Eq. (1.28) is however empty if the functional form of U(r) is not given. In the
self-consistent field approach, the energetic contribution is due not only to the action of
external fields, but also to the repulsion due to excluded volume interactions from the
local monomer density. Therefore, one writes

U(r) = ve(r) 4 Uey(r) (1.29)
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where Up,; is the external field and ¢(r) stands for the average monomer concentration.
Furthermore, the average local monomer density is an implicit function of the propagator,
which must be self-consistently determined. Thus, the monomer concentration at the
space point r is given by

dn [dr'dr"G(xr,r";n)G(r",r; N — n)
[ [drde'G(r",r; N)

N
C(I‘) — prl (130)
— COGLNC /an(r, n)Z(r, N —n)

where the magnitude A, is the number of polymer chains in the solution volume, ¢° is the
bulk monomer concentration, and Z(r,n) is the partial partition function obtained from
the propagator or Green function by means of the integral

Z(r,n) = /dr'G(r,r';n) (1.31)

The partial partition function is the statistical weight of a chain segment with length n
in which one of the terminal links (indexed 1) is fixed in space while the another one is
anywhere. From this new magnitude, the diffusion-type eq.(1.28) is rewritten as

7 2 0,uNc°
g_n _ %WZ . <%/Z(r, n)Z(x, N —n)dn + ert> Z (1.32)

obtained by the integration of the eq.(1.28) with respect to r, using the definition of
eq. (1.31) and the relation eq.(1.30). Finally, the denominator in eq. (1.30) has to be
explicitly considered. Effectively, the double integral of the propagator gives the total
statistical weight of a polymer chain in the system, that is the total partition function.
Thus, the following relation holds

NPN e—vNc0

//dr'dr "G(x" r'; N) = Nye #o/FT = 5 (1.33)
v
where the polymer chemical potential is given by
1,0 L o (1.34)
— = In— .
kv "N

as it follows from eq. (1.33) and the solution of eq. (1.28) for an homogeneous system of
fixed concentration c°.
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Along this work we will often refer to what we have denoted as Markovian connectivity,
which has been already mentioned several times. This intrinsic property of a given chain
model can be stated as

G(r",r;N) = /dr'G(r',r;n)G(r",r';N— n) (1.35)

In a more intuitive way, this property indicates that the number and the statistical weight
of the conformations of a segment of chain of n monomers is independent of the conforma-
tions taken by the rest of the N — n monomers of the chain. This property, expressed in
eq. (1.35), is implicitly used in the relationship stablished between the average monomer
density and the propagator, as given in eq. (1.30). Obviously, if excluded volume in-
teractions are exactly taken into account (not in mean), this property is not going to
be satisfied. In the literature it is customary to associate mean field calculations with
the so-called Gaussian statistics. However, we will demonstrate along this work that the
mean-field nature of the calculations is not the most distinctive aspect to explain the
qualitative different results found in scaling calculations and Edwards self-consisten field
findings. What makes the difference is in fact whether in the calculations the excluded
volume correlations are taken into account or not, that is, whether the connectivity of
the chain is Markovian or not. Therefore, along this work we will refer to Markovian and
non-Markovian mean field theories, to make clear such a distinction.

1.1.3 Other theories

Although the analytical simplicity of the Markovian self-consistent field theories make
them widely used, we have already pointed out that the methodology fails in describing
the quantitative behavior of dilute and semidilute solutions. The explicit consideration
of the many-body correlations into the description is done by means of the Renormali-
zation Group techniques [43]. However, the calculations involved in this procedure are
significantly more complex. Going beyond the merely asymptotic regime is an almost
impossible task. From a more numerical point of view, the Monte Carlo (MC) method
permits the explicit treatment of the inter and intra chain correlations in an explicit way.
Thus, the MC results are widely used. However, the large number of conformations of
relatively small chains makes this method to be very expensive when applied to polymeric
systems. Thus, results on the behavior of isolated chains can be found but data on polymer
adsorption are, for instance, very scarce. However, the interest of this methodology is that
it suposes a complete solution of the statistical mechanical problem.

In the case of melts, Flory and Huggins devised an equation of state for the ther-
modynamic behavior of polymers. This equation of state is implicit in the treatment of
Edwards of inhomogeneous systems and suffers from the same drawback when applied to
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semidilute solutions.

1.2 Polymer adsorption

After the description of general properties and modelisation of polymer solutions, in the
following a brief of the different theories on polymer adsorption will be given. In particular,
we will center our attention on the so-called Scheutjens and Fleer numerical method [26]
and the analytical treatment known as the two order parameter theory due to Semenov,
Joanny and coworkers [20, 22]. Furthermore, we will also discuss some of the properties
that can be experimentally measured.

1.2.1 Scaling Theory of polymer adsorption

In 1981 de Gennes [44] used scaling arguments to characterize the concentration profile
at an adsorbing interface. The concepts of the scaling theory for homogeneous solutions
were also applied to polymers in a good solvent next to the adsorbing surface. The
main conditions needed for the scaling view to be valid are that an important fraction
of the adsorbed layer stays in the semidilute regime. From this point of view, for very
long polymers it is possible to derive power laws for the different regimes in which the
structure of the layer can be divided. The first one, known as proximal regime, is the
nearest region to the surface and its extension is similar to the size of the monomer /. In
this region the density profile is dominated by the segment-surface contacts (depends only
on the adsorption strength) and should be treated by means of especial methods[45]. The
second region is the central regime, characterized by being far from surface as well as
from the edge of the layer. In this region and due to the overlapping of the chains due to
the presence of the adsorbing wall, that makes the local concentration be higher than the
overlap concentration, one can define a local correlation length, according to eq. (1.19),
depending on the position through ¢(z). The main assumption of the scaling argument
then states that since the adsorbed layer has no characteristic length (the edge of the
layer is very far) any length should be proportional to the distance to the wall, the only
relevant length. Thus, one can write & ~ z or, in other words, the profile is self-similar
(Fig. 1.4). Therefore, making use of eq. (1.19) one can write

c(z) ~ E(z) 43 ~ 243 (D < z<¢&Y (1.36)

where the distance D is determined by the adsorption strength and is larger than the size
of the segment [ and £° is the bulk correlation length
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Figure 1.4: Presentation of the adsorbed polymer layer as a self-similar mesh in the semidilute regime.
At a distance z from the adsorbing surface, the size of the correlation length, &, is itself of order z.

The last region described by de Gennes is the distal regime. It is the outer part
of the profile for ¢(z) being again characterized by a single length scale, the correlation
length of the bulk solution in this approach. It should decay exponentially towards ¢ as

o(z) = (1 +e2/€) (z > £°) (1.37)

The scaling and Markovian self-consistent field approaches to polymer adsorption are
very different in philosophy, and both give different predictions for the relevant power-laws
in good solvents in the central regime of the layer. De Gennes predicts that the concen-
tration profile decays with a power law regime of the form ¢(z) ~ 2=/, independently of
the bulk density ¢ and of the dimension of the chain length N. However, from scaling
arguments we can also infer the predictions of theories based on ideal chains, that is, of
Markovian mean-field theories. To this end, we have to assume that the space dimensio-
nality is d = 4 in which, according to the discussion in the paragraph after eq. (1.15), the
chains behave as ideal and, therefore, satisfy a Markovian connectivity since the excluded
volume correlations along the chain can be ignored. Thus, in four dimensions, it is found
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that the correlation length depends on the inverse square root of concentration, according
to eq. (1.24). Therefore, the concentration profile would scale like the inverse square of
the distance

c(z) ~ 22 (1.38)

This scaling law was effectively obtained from self-consistent field calculations from Ed-
wards equation (1.28) [19] as well as using the Scheutjens and Fleer self-consistent method
[46], described later on. In the latter, the predictions indicated, in the limit of infinitely
long chains and vanishing bulk volume fraction, a power law similar to the eq. (1.38)
but with corrections for finite size of the chains and non-zero bulk concentrations. Hence,
working in a cubic lattice, these authors found the following value for the exponent of the
decay of the concentration profile in the central regime

o= —2+ 1.87(In(¢°))/N*® (1.39)

being « the exponent of the expression ¢(z) ~ z* and N the degree of polymerization.

1.2.2 Markovian self-consistent field description of polymer ad-
sorption

After having reviewed the main features of polymer adsorption onto plane walls, we will
briefly discuss the predictions found from the solution of Edwards equation (1.28) or,
equivalently, eq. (1.32). In particular, we will introduce the description in terms of two
order parameters that has served to introduce a new view in the internal structure of
the adsorbed polymeric layer. The elements of this description will be often used in our
Single Chain Mean Field analysis of forthcoming chapters.

Ground State Dominance

The Edwards eq. (1.28) is still valid for inhomogeneous systems being, moreover, the
starting point of the pioneering works on polymer adsorption. As mentioned, the mean
field treatment, based on the Markovian nature of the chain propagator (eq. (1.35)), is
able to give a qualitative picture of the problem, although the power-law behaviors will
differ from scaling predictions.

The treatment of confined systems, as it is the case in adsorption, permit some sim-
plifications in the analytical solution of the mean-field problem described by eqs. (1.28)
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or (1.32). Effectively, taking into account the mapping between n in Edwards equations
onto an imaginary time 7t of the analogous Schrodinger equation, if the energy spectrum
is discrete, the behavior is dominated by the ground state [19]. The time evolution of
the eigenfunctions in the latter equation, |e¥s!| = 1, becomes exponentially decreasing
function in the former, e~%:" making this approximation possible for polymers. More
in detail, this approximation known as Ground State Dominance starts with the spectral
decomposition of the propagator in terms of its eigenfunctions and eigenvalues, i.e.

G(r,r;N) = io%(r) s ()™ N == o (r) Yo (x')e =N (1.40)

being E; the eigenvalues and v the corresponding eigenfunctions, which only depend
upon the position. Notice that if there is a confining potential, Fy is negative, so that
the exponent is positive. Thus, from this approximation and the eq. (1.30), the monomer
volume fraction, ¢ = vc is equal to

o(r) ~ %05 (1.41)

Therefore, under this approximation the Edwards equation can be rewritten as

2
%V%O — ™3 — Egtpg =0 (1.42)

where g is referred to as order parameter [19, 13], in analogy with critical phenomena.
This last equation embeds an eigenvalue problem since the energy FEj is not known a
priory, and has to be found to match boundary conditions usually at the wall and at the
infinity. This approach has been used to analyze the behaviour of polymers adsorbed at
interfaces under © [15] and poor solvent [17] conditions. Under good solvent conditions, de
Gennes [14] introduced a similar equation but that takes into account the local swell of the
chain due to excluded volume correlations, based on Widom’s trick. Such a treatment is
essentially mean field but is able to reproduce the appropriate scaling behavior. However,
all one parameter theories give no description of finite size effets, and as such are valid
for extremely long chains and near the walls, in which the tails are greatly outnumbered
by loops. Thus, this theory only describes the region close to the surface.

Description in terms loops and tails: Two order parameters theory

The description of the adsorbed layer in terms of trains, loops and tails (Fig. 1.5) have
been analyzed from mean field [20, 22] and scaling (will be explained with more detail in
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the chapter 5) points of view [21]. Semenov et al. used a self-consistent approach based on
the Edwards propagator equation (1.28), which was worked out to introduce two coupled
order parameters to describe the concentration profile in the adsorbed layer. The finite
size of the polymer chain is taken into account in the framework of this theory.

Tail

Trains

Figure 1.5: Loops-tails-trains conformations of a homopolymer adsorbed on a plane surface

One of the results from this two order parameters approach is that the adsorbed layer
has a double layer structure with an inner layer dominated by loops and an outer layer
dominated by tails, in agreement with the numerical results obtained by Scheutjens and
Fleer [25, 26], in their approach to the full solution of Edwards equation. The change
from loop-dominant to tail-dominant region is produced at a distance z* from the surface
(referred to as crossover distance, from now on, see Fig. 1.6). The distance z*, for very
long chains, is much longer than the monomer size, but much shorter than the coil size
R,. It depends, only, on the polymerization index and the dimension of space, and scales
as z* ~ 1/N41 in the limit N — oo.

The two coupled equations that describe the two order parameter can be derived from
Edwards equation which, for convenience, we rewrite here. That is,

0z I’_,

— ==VZ-U(r)Z 1.43

07 vz Ut (1.43)
where mean-field potential, U(r), is calculated (compare with eq. (1.30)) from the equa-
tion
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Figure 1.6: Division of the adsorbed polymeric layer on loops and tails regions. z* is the crossover
distance and A is the thickness of the adsorbed layer being of the order of the radius of gyration of the
polymer, Rg ~ [NV, in a dilute solution.

U(r) = Upgs(r) + <%O/Z(r; n) Z(r; N —n)dn — ¢° (1.44)

where ¢° is the bulk volume fraction and Z(r;n), the partition function corresponding to
a portion of the chain of length n with one of its ends at r and the other one anywhere.
Here we have redefined the partition function introduced in eq. (1.31) according to the
transformation Z — exp(—¢°n)Z, for simplicity’s sake. The first term on the right
hand side of this equation is the adsorption potential of the surface and the second term
proportional to the local concentration of monomers. The third term is the background
bulk potential that has appeared due to the redefinition of the partition function.

The wall potential is not negligible only in a thin layer close to the wall. The effect
of a local potential U,ys(r) can be reduced to an effective boundary condition for the
propagator that reads [13]

oG

1
=—2@G 1.4
ar Z b |z:0 ( 5)

=0
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where b is the extrapolation length, which in strong adsorption conditions, it is of the
order of the monomer size .

Due to the analogy between the Edwards equation and a Srédinger equation (Sturm-
Liouville problem), we can introduce an expansion in eigenfunctions, which satisfy the set
of equations which, in general, take the form

l2

= SV~ U, (1.46)

_Esw

where 1), are the eigenfunctions and FEj, its corresponding eigenvalues. Thus, the solution
of the eq. (1.43) may be formally rewritten in terms of the eigenfunctions and eigenvalues
as

Z(rin) = 3 e B K, (1) (1.47)

S

where K is an amplitude that satisfies

K, = / ,(r) dr (1.48)

according to the relations between the propagator and the partial partition function. The
spectrum E is in general formed by a continuous branch E, = ¢> > 0 and by a set of
discrete levels (E; < 0), issued by the confinement of the chain due to a potential well. In
the adsorption problem, the discret levels depend on the local attraction to the wall and
domain the adsorption. This part of the spectrum may contain only one bound state if
the adsorption potential is a Dirac’s 6 well. Thus, Ey = —e corresponds to the effective
adsorption energy per monomer, which will be in addition related to the thickness of
the adsorbed layer. Thus, it is necessary, inside the strong adsorption condition, that
eN > kT.

Therefore, taken into account the division of the energy spectrum on discrete and
continuous, the partition function (eq. 1.47) can be separated into

Z(r;n) = Koe™ + > K(q)y(x; q)e_q2” = Zo(r;n) + Zs(r;n) (1.49)

where Z,(r;n) and Z;(r;n) can be identified as the partition functions corresponding to
the adsorbed and free chains, respectively.
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Loops and tails concentration

From the distinction of the partition funtion between adsorbed chains, which have at
least one monomer in contact with the surface, and free chains, without monomers in
contact with surface, we can calculate, self-consistently, the expressions corresponding to
the monomer volume fraction belonging to loops, tails and free chains. Thus, if the total
monomer volume fraction may be split in three contributions, ¢(r) = ¢;(r) +¢:(r) + ¢ (r),
considering the eq. (1.49) (see Fig. 1.7), we can write

Hi(r) = %/ana(r,n)Za(r,N—n) (1.50)
by(r) = 2]‘60 [ dnZy(e,m)Z,(x. N ) (1.51)
6;(r) = ‘% / dnZ;(r,n)Z;(r, N — n) (1.52)

If we develop the integrals from the eq. (1.49), we have for the first two contributions
that

di(r) = °KoeMpg(r) = ¢(r)? (1.53)
bux) = 8 Kotn(x) [V Z4(xm) dn = Bo(r)u(r) (1.54)
where
B = et (1.55)
p(r) = /e_E"Zf(r;n)dn (1.56)

The mean field potential, in terms of the two order parameters introduced, is rewritten
as

U(r) = ¢*(r) + By (r)p(r) — ¢° (1.57)
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L oops Tails Freechains

Figure 1.7: Representation of the loops (¢;), tails (¢;) and free chains (¢¢) of the adsorbed layer, as a
function of their corresponding partition functions. In this picture the variable z is the distance to the
wall.

where ¢ (r) and ¢(r) are the two order parameters whose variation with the distance will
give us the density profiles of monomers corresponding to loops and tails. The normaliza-
tion constant B is obtained from the conservation of the end points, being its dimension
inversely proportional to the length. Because of the full theory is restricted to distances
from the wall smaller than the free chain radius, the theory does not consider the free
chains at the level presented here.

Taking into account that 1 (r) is a solution of the Edwards Schridinger-like equation

(1.43), this parameter satisfies

%v% —(Ux) +e)yp=0 (1.58)

whose boundary conditions are

W = _% W, bz — 00) — 0 (1.59)
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The order parameter ¢(r) is related with the partition function corresponding to the free
chains, which also satisfies the Edwards equation

07 12
a—nf = EVQZf - U(I‘)Zf (160)

Thus, considering eq. (1.49), the equation that satisfies the order parameter o(r) is
obtained upon integration of both members of eq. (1.60) with respect to n and neglecting
the term proportional to exp(—eN)

L U+ =1 o — ) —0 (1.61)

where it has been considered the initial condition Z(n — 0) — 1. Therefore, the two
coupled differential equations that describe the structure of the adsorbed layer are

l2

ng — (W +BYp+e—¢°)yp = 0 (1.62)
—%V% + W+ Byp+e—¢Vp = 1 (1.63)

The two order parameter theory is the first able to give a comprehensive explanation
of the structure of polymer layers and is often used in the interpretation of the data ob-
tained either experimentally or by means of simulations. Furthermore, in ref. [22] Johner
and collaborators have developed a two order parameter theory beyond the Gaussian ap-
proximation, using again the Widom’s trick, as in the original paper of de Gennes [44]
aiming at the recovery of the proper scaling laws from an intrinsically mean-field theory.
Such a theory produces proper scaling laws for the majority of the profiles. However, the
theory also produces a value for the so-called susceptibility exponent ~ different from that
obtained by means of Renormalization Group procedures [43, 47].

The SCF theory of Scheutjens and Fleer

The task of solving the non-linear integro-differential equation (1.28) has been numerically
carried out by Scheutjens, Fleer and collaborators, and their methodology is widely used
nowadays to obtain a qualitative insight about the behavior of polymers near interfaces
[48]. It is thus worth to give a few words about it.

The self-consistent method, referred to as SCF theory, was developed around 1980 by
J.M.H.M Scheutjens and G.J. Fleer, in which a generalized lattice model for the adsorption
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of interacting chains is considered [25, 26]. This theory can be viewed as an extension
of DiMarzio-Rubin model for isolated chains [23, 24|, and is equivalent to the continuum
space Edwards equation for the propagator (1.28), as mentioned. The result is obtained
here by a set of implicit equations which are solved numerically to obtain the self-consistent
solution for the full propagator of the chain. The system is thus Markovian.

In the SCF model developed by Scheutjens and Fleer, the system is formed by two
kinds of molecules: the polymer and solvent molecules. Each polymer segment or solvent
molecule is assumed to occupy one lattice site. Each chain is subdivided into segments
with ranking number s = 1,2, ..../V, and these segments can take only discretized positions
with respect to the surface. Therefore the space is subdivided in lattice layers, numbered
z =1,2..., of spacing [ equal to the bond length « (for simplicity we express all distances
in units of /). In the calculations it has usually been considered a simple cubic lattice,
where each lattice site has six neighbours. Polymer segments can be adsorbed and the
corresponding volumen fraction profile ¢(z) develops perpendicular to the surface. All
inhomogeneities parallel to the surface are ignored. The surface is located at z = 0 so
that polymer segments occupy discrete positions from z = 1, where the adsorption takes
place, until z = M, being M a layer far away from the surface and far enough to ensure
that the bulk values are reached.

The potential u;(2) felt by a segment of a molecule of type i (where i is either polymer
or segment), is considered in a local mean-field approximation

ui(2)JRT = ' (2) + xiz ((5(2)) — %) — Br.2xs (1.64)

for both types of molecule 7 and j in the system (solvent or polymer). In the equation
we can distinguish, the first term u'(z) is the ezcluded volume field which ensures that
every layer is completely filled; the second term contains the Flory-Huggins interaction
parameter, X, which takes into account the polymer-solvent interaction. The (¢;(z)) is a
neighbour average of the volume fraction ¢;(z). In the case of a cube lattice, this average
takes the form

(0i(2)) = (di(z — 1) + 4 ¢i(2) + ¢i(2 +1)) /6 (1.65)

The quantity ¢? is the bulk volume fraction of the i** species (polymer or solvent). The
third term corresponds to the interaction between the polymer segments and the wall
which contains the Silberberg x,; parameter [49, 50]. This parameter indicates a favourable
adsorption energy for a polymer segment over that for a solvent molecule (so xs = 0 for
the solvent). Therefore it can be defined as
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Xs = (U — Uy) /KT (1.66)

where U; is the adsorption energy of species 7, 1 being solvent and 2 a polymer segment.
According to this definition y; is counted positive if there is a net segment-surface attrac-
tion. The Kronecker delta, d; ,, is unity for z = 1 and zero elsewhere: only adsorbed
segments experience the adsorption energy.

The statistical weight of any conformation is generated from [T A;G;(2), where X is the
fraction of nearest neighbour lattice cells occupied by the polymer segment in layer ¢ and
Gi(z) is the one-segment weighting factor (also called free segment distribution function)
in layer ¢ to a distance z from surface

Gi(z) = exp [ui(2)/kT] (1.67)

When the polymer is built in a lattice, we must consider that such chain is formed by
segments connected among them. In the case of a segment s placed in the layer z, the
next segment, s+ 1, may be in the layer z — 1, or in layer z, or in layer z + 1. Thus, from
recurrence relations,

Gi(z,s]1) = Gi(2) (Gi(z, s — 1]1)) (1.68)
Gi(z, s|N) = Gi(2) (Gi(z, s + 1|N)) (1.69)

one can ensure the chain connectivity for segment s in layer z. The quantities G(z, s|1)
and G(z, s|N) are the end-segment distribution functions (G(z, s)) starting from the first
and last segment, respectively. Due to the fact that end points do not have a preceeding
segment, these functions are related with the free segment distribution functions G(z) =
G(z,1]1) = G(z,N|N) (egs. 1.68 and 1.69). The angular brackets indicate a weighted
average over the neighboring lattice layers (a segment has a fraction of its contacts in the
same layer and the others in each of the adjoining layers).

The volume fraction profile can be expresed in u,(z) and G(z, s) which constitutes the
closure relation in the SCF equations. Combining these definitions we obtain the equation
known as the composition law

6:) = X oz 9) = & S 06 smaz s = &
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where the Markovian nature of the chains is used, as in eq. (1.30). The factor e“»(?)
corrects for the double counting of segment s. This equation relates ¢(z) with the po-
tential, u(z), which is also related with the volume fraction profile by eq. (1.64). The
result is obtained by a self-consistent method where the set of coupled equations is solved
numerically under the volume filling constraint, i.e. }°; ¢;(z) = 1 for any z. More details
are contained in the Chapter 5 of the book by J. Lyklema [51].

1.2.3 Other theories

Renormalization Group methods have been also used to study polymer adsorption, al-
though the double layer structure has never been described within this theory [47, 43].
Again, Monte Carlo simulations offer a way to numerically solve the full many body prob-
lem. However, due to the fact that the conformational space of merely a few chains is
overwelmingly large, if the number of monomers is large, only a few simulations of rela-
tively short chains are found in the literature, which will be analyzed more in depth in
forthcoming chapters.

The most interesting alternative to the mean-field theories previously discussed is the
approach of Aubouy, Guiselin and Raphaél [52], based on an heuristic free energy where
the entropy of the loop distribution was explicitly considered. Although there is not an
explicit treatment of the tails, their method is able to correctly reproduce the scaling
behavior of different properties of the layer (not involving tails). We will go back to this
discussion in chapter 4.

1.3 Experimental characterization of polymer inter-
faces

The structure of adsorbed polymers is of fundamental importance in understanding the
mechanisms of steric stability of colloidal dispersions. From this point of view, much
experimental work is reported to obtain the conformations of polymers at interfaces u-
sing several experimental techniques. However, it is important to take into account the
dependence of these results in these techniques since different results can be obtained
when different measuring methods are used.

The structural properties of an adsorbed polymer layer can be described in terms of
four static properties. First, the total adsorbed mass, [', or surface coverage 6. Second,
the layer thickness, A, which can be experimentally obtained from ellipsometric measure-
ments [53] (based on the principle that light undergoes a change in polarizibility when
it is reflected at a surface), from measurements in flow [54] or from photon correlation
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spectroscopy (PCS) experiments [55, 56]. The third property is the average bound frac-
tion of polymer segments, p being obtained from magnetic resonance [57] or FT-IR [58]
measurements. The last property is the polymer volume fraction profile normal to the in-
terface, ¢(z), which is obtained experimentally by small-angle neutron scattering (SANS)
[59], in systems of stable particulate dispersions with high interfacial areas, or also by the
neutron reflectometry [60] measurements.

Another interesting property that will often be discussed in this work is the loops and
tail size distributions. An example of measurement of these distributions is the work pre-
sented by Patel and collaborators [61] about the adsorption of the polydimethyl siloxane
onto silica in solutions of hexane. In this case it is described the relative importance of
loops and tails due to the difference in adsorption, from a good solvent, between cyclic
and linear forms of polydimethyl siloxane, since cyclic polymers do not form tails. In this
case the conformational energy change on adsorption is lower at low relative molecular
masses and small surface concentration. When the relative molecular masses is increased,
the cyclic species form larger loops, thus reducing the entropy change during adsorption.
However, in the linear polymer the behaviour is different due to the fact that the tails
contribution to the entropy change becomes diluted at higher relative molecular masses.
One should keep in mind, however, the fact that ring polymers have additional topological
constraints (polymeric rings remain linked or unlinked during all the process of adsorp-
tion) that can strongly affect the entropic properties of the adsorbed layer and, therefore,
the structure.

1.3.1 Layer thickness

Various methods have been proposed to measure the thickness of an adsorbed layer.
However, different properties of the layer may be determined depending upon the method
used. Thus, the results obtained by hydrodynamic and electrokinetic techniques may
exceed considerably the average thickness obtained from ellipsometry or neutron radiation,
because they are influenced by the effect of the tails.

The small-angle neutron scattering (SANS) and wave methods have been used to
determine directly the first and second statistical moments corresponding to the volume
fraction profile normal to the interface or, what is the same, the mean distance of polymer
segments (belonging to adsorbed chains) from the surface.

The first moment \; and the second moment ) of the profile are given by the equations

IS 2a(2)dz

M= =)z

(1.71)
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7 P ¢a(2)dz

N = )z

(1.72)

where z is the distance to the surface and ¢,(z) is the density profile of the adsorbed
polymer chains.

The quantify A is also known as the root mean-square thickness of the adsorbed layer.

In the case of the measurements of the layer thickness by light ellipsometry not only
are measured reflected intensities, but also the changes in polarization upon reflection. A
flat bare surface usually reflects light of all polarizations. But when the measurements
are carried out at the Brewster angle, i. e., the angle of incidence for which the intensity
of reflected parallel polarisation is a minimum, the reflectance coefficient vanishes. This
cancellation is suppressed as soon as the surface is covered by an adsorbed layer [62]. Thus,
the residual reflectance at the Brewster angle will depend on the number of segments
per unit of area. There are several equations to link the quantity that is measured by
ellipsometry to the theoretical volume-fraction profile. The definition chosen by Fleer et
al. [48] was

)\ _ (fOOO gba(Z)dZ)Q (173)

WP [0 (ha(2))2dz

This is in contrast with the result obtained analytically by de Gennes [14] who concluded
that Ay, corresponds to the first moment of the porfile A;.

Other technique to measure the thickness of the adsorbed polymer layer is through
hydrodynamic methods. They are based on the fact that the adsorbed layer affects the flow
of solvent along the surface, comparing it with flow past the bare surface. To determine the
effective thickness, it is necessary to know the exact shape of the velocity profile which
depends on the shape of the surface (usually simple geometries are chosen as smooth
cylindrical channels or spherical colloidal particles) under scrutiny and on its orientation
with respect to the flow field.

In order to find the relation between the segment density profile and the hydrodynamic
thickness (Apyar), the Debye-Brinkman hydrodynamic model was developed for flow past
a porous layer [48]. The velocity profile in the direction normal to the surface v(z) satisfies
the differential equation d?v/dz? — v/k* = 0, where k is a permeability function which
depends on ¢(z). Therefore, the v(z) is described by the next equation of movement,

d?v ba(2)

7 = Crll= 0a() (-
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where C}, is a permeability constant (whose value is of the order of the unity). For the
resolution of this equation is taken into account the extrapolation to zero of the linear
part of the solution for v(z) and the obtained z is taken as the thickness of the adsorbed
layer.

The comparison of both methods (ellipsometry and hydrodynamic) shows that Apyer
is much bigger than Ay;,. This diference is due to the latter is mainly determined by the
loops, where the density of the layer is large enough to affect the refractive index, while
the hydrodynamic thickness senses the segment density of the tails that extend beyond
the bulk of the layer.

1.3.2 Adsorbed amount

The adsorbed mass, I', is one of the basic parameters in the description of polymer ad-
sorption. Adsorbed mass represents the total number of monomers belonging to adsorbed
chains per unit of area; therefore it is possible to say that the adsorbed amount is mainly
determined by the loops and trains in a flat interface. We will show that this is not the
case in curved interfaces, where the amount due to tails can modify this view. From
simulation data, it is possible to calculate this parameter by the equation

r= /0°° cal2)dz (1.75)

Adsorbed amounts are usually presented in the form of an adsorption isotherm as a
function of the equilibrium bulk polymer concentration at a given temperature. A typical
adsorption isotherm of a monodisperse polymer solutions is shown in the Fig. 1.8. As
we can see, there is a high adsorption even in diluted conditions. However, in higher
concentrations, the isotherm shows an horizontal region, known as pseudo-plateau, which
indicates the saturation of the adsorbing surface in these conditions (For more details
read the ref. [48]).

1.3.3  Volume fraction profile

The determination of volume fraction profiles for adsorbed polymers is important to the
understanding and manipulation of colloidal dispersions. Small-Angle Neutron Scattering
(SANS) has led to the direct determination of the volume fraction profile, ¢(z), in these
systems. However, the SANS method is restricted in its applicability on the one hand
because the samples must be particulate and of the order of 100-500 nm diameter and
on the other hand in that these dispersions must be stable. Therefore, the experiment
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Figure 1.8: An adsorption isotherm for a monodisperse polymer solution.

of nonaqueous dispersions below full polymer coverage cannot be possible if flocculation
occurs [60].

Inside of comparison between theory and scattering experiment, it is interesting the
work presented by Auvray et al [63] in which was compared the prediction of the sca-
ling theory developed by de Gennes [13] to the results obtained from neutron-scattering
experiments. These experiments were performed on a high-molecular weight chains of
polydimethylsiloxane (PDMS with MW=270000), adsorbed on silica in presence of pure
cyclohexane (good solvent). The results obtained were consistent with the scaling laws,
predicting the structure of the polymer layer as self-similar, while the concentration profile
decreases as a function z~*/3. In contrast, measurements made with shorter polymers have
not shown the same behaviour, indicating the limitations of the scaling laws to N — oc.
Thus, we can mention neutron reflectivity measurements of polystyrene (MW=50000)
adsorbed on mica in which the best fits with polymer concentration profiles presented the
form of an exponential decay [60].

In the next section, a non-technical overview of SANS technique is presented.
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Small Angle Neutron Scattering

A SANS experiment on polymer layers proceeds as follows. A dilute dispersion of colloidal
particles is prepared. The scattering length density of the solvent is matched to that of the
substrate particles, a condition commonly referred to as contrast matched. This process
consists on the selective suppression of the scattering from the particles by adjusting
the isotopic composition of the solvent in which the particles are dispersed. Thus, the
measured scattering is only produced by the adsorbed layer, with no contribution from
the substrate particles.

In a SANS experiment, the scattering intensity is measured as a function of the scatte-
ring vector (), which can be calculated from adjustment of the wavelength of the incident
radiation A and the scattering angle, 8, being defined by

Ay . 0

where the neutron refractive index, p, is a derivative of the scattering lengths in the
materials.

The scattering intensity which describes the scattering from a polymer-coated particle
can be understood in terms of the scattering due to the average concentration in the layer

[59], thus

2

(/Ooo c(z) sin(Qr, + Qz)dz) (1.77)

cte

1@ = G-

where r, is the particle radius.

The last equation describes the scattering from the layer assuming that the adsorbing
particle is monodisperse and that the scattering instrument has an infinite () resolution.
In earlier work, it was assumed that neither of both criteria could be considered, so using
certain assumptions this equation was simplified, obtaining

1Q) = c;i ( /0 ¥ c(z)e<in>dz)2 (1.78)

due to the difficulty on obtaining ¢(z) from this equation, two methods have been used to
resolve it. The first one considers the functional nature of ¢(z) and a self-consistent fitting
procedure is used [64], while the latter does not invert the eq.(1.78) but analizes the data
directly for certain features that would be consistent with a predicted layer structure [65]
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Chapter 2

Theoretical approach

The theoretical treatment that we will discuss here is based on the Single Chain Mean
Field theory (SCMF), originally developed by Ben-Shaul, Szleifer and coworkers [1], to
study the structure of micellar aggregates in the absence of solvent molecules, and later
generalized for longer chains in the presence of solvent [2, 3]. The conformational and
thermodynamic behaviour of the grafted polymeric layers has been analysed in great
detail by means of this theory. The details of the SCMF and a comparison with Monte
Carlo simulations devoted to grafted polymeric layers and surfactant aggregates are given
elsewhere [4, 5].

The SCMF theory may be placed between the full-scale computer simulations (Monte
Carlo and Molecular Dynamics) and that of simple analytical approaches based on order-
parameter theories (cf. chapter 1). From the latter, it is possible to obtain information
about wuniversal properties of the system, independent of molecular details. However,
aiming at a quantitative comparison with experimental data or even large-scale simula-
tions, the microscopic information hidden in the value of the coefficients appearing in the
analytical theories, becomes relevant. In the case of computer simulations, they provide
the exact solution of the model system yielding the equilibrium collective properties. The
choice of the model depends on the application. However, in order to obtain these average
properties, it is necessary to compute in detail all the interactions between the different
species (polymer segments and solvent molecules) present in the simulation box, which
dramatically reduces the size of the systems to be studied. In addition, due to this size
limitation, one is forced to deal with one thermodynamic condition at one time.

In the SCMF approach, the main idea is to build a mean field theory centered in
the chain as the reference state, with intramolecular interactions described exactly while
interactions with other molecules (other polymers and solvent) are calculated in a self-
consistent mean-field approximation. Such a procedure differs from the self-consistent
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field approximations based on Edwards equation (1.28), which take an ideal chain as a
reference state. Hence, the ideal chain reference state is Markovian (according to eq.
(1.35)) and has no correlations between segments of the chain, as it has beed discussed
in Chap.1.

The application of the SCMF theory does not assume any particular statistical beha-
vior of the chain, which can be non-Markovian in the sense that distant segments of the
chain can be correlated due to the direct excluded volume interactions. Therefore, the
calculation of any average property of the system requires the knowledge of all possible, or
a representative sample of single-chain configurations of the chain model. Once obtained
the set of configurations and assuming the incompressibility condition, the probability
distribution function for the full configuration (usually referred to as pdf) is calculated as
a function of the thermodynamic variables of the system. From the knowledge of the pdf,
any desirable average property can be obtained.

Thus, the main difference between the SCF and the SCMF theories is the implicit
assumption of ideal chains with Markovian connectivity in the former, according to eq.
(1.35). The propagator, in the spirit of the SCMF theory, would be given by a sum over
the self-avoiding conformations of the chain, weighted with a mean-field Hamiltonian H,,;
(to be described later), keeping the chain ends fixed in space. That is

ry=r

G(r,r';N)z/

ro=r

Dry e HmsDI/KT £ /dr"G(r",r';n)G(I‘,I‘";N —n) (2.1)

/

where 7 is a given conformation and the sum D~ here runs only on the self-avoiding
conformations of the chain. Obviously, this is not a markovian connectivity due to the
fact that the number of available conformations of a given portion of the chain of n
monomers depends on the conformations of the rest of the chain, with N — n monomers.
The propagators of the two portions of the chain are thus correlated. The computational
advantage of the Markovian assumption is that the one-chain conformational space does
not need to be explicitly sampled, and then very long chains can be numerically considered
if the correlations due to excluded volume interactions along the chain are sacrified.

In this work, we have applied the basic ideas underlying the theory to analyze polymer
adsorption, especially the structure of the adsorbed layer. However, due to the narrow
and deep adsorbing well, an optimal sampling of the polymer configurational space has
been developed for the sampling to be statistically significant for the properties that we
want to describe. Previous versions of the SCMF theory use an homogeneous sampling of
the one-chain conformational space, a strategy that gives good results in situations such
as micellar aggregates of short molecules [5], as well as in tethered polymeric layers [4].
However, in polymer adsorption problems, where bulk as well as the interfacial properties
have to be properly described, an homogeneous sampling for chains of about 100 monomers
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already required an overwelmingly large number of conformations. In this chapter we will
review the mathematical framework of the SCMF theory and introduce our importance
sampling strategy that permited us to obtain results with a personal computer, due to the
small number of samples required. The price that we pay is the computer time involved
in the construction of the biased sample that we will use.

2.1 The Single Chain Mean Field theory

The starting point of the theory is to consider that all polymer molecules are equivalent
so the state of the system is completely characterized by the knowledge of the one-chain
configurational probability distribution, P[], together with the solvent molecules number
density field ¢,(r), considered as a continuum. From the probability distribution function,
P[v], one can obtain the polymer density profile and all other average conformational and
thermodynamic properties, together with the solvent density profile. A given configura-
tion of the polymer is denoted by 7, standing for the set of vectors, {r;[y]}, indicating
the position of the centers of the monomers of the chain, with « = 1... N, N being the
polymerization index.

The next step is to write the Helmhotz free energy functional of the system in term
of the probability distribution function of one single chain and the density profiles of
polymers and solvent molecules. Then the minimization of the free energy will provide
the functional form of these quantities. The term corresponding to the internal energy
takes into account the inter and intramolecular interactions including the interactions of
the polymer segment with the adsorbing surface. The entropic contribution contains the
conformational entropy of the chains as well as the dispersion of the solvent molecules.
Hence, the mean-field free energy functional of the system polymers-solvent, in a given
volume of space, is given by the expression [3]

FIPples()] = KTA; [ Dy (Pl nP))

+ kT /V dr ¢, (r) In ¢, (r) + / Dy PR Uy, es(t),e(r)]  (2.2)

In this equation, k is the Boltzmann’s constant, and N, is the number of polymers in
the volume. The local volume fraction of solvent molecules is given by ¢s(r) = vscs(r),
where c,(r) is the local solvent number density. Moreover, the symbol D~y denotes here
an integration with respect to all the allowed configurations of the chain, which may be
both ideal or self-avoiding configurations, depending on the model used. The independent
macroscopic variables in the free energy functional eq. (2.2) are T', N, and V, since the
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system is considered as incompressible. Hence, the volume accesible is filled either by
solvent molecules or by polymer segments. Thus, if N, denotes the total number of
solvent molecules in the volume, the incompressibility assumption implies that,

V = v,NN, + vs N (2.3)

where v, and vy are the volume of a polymeric and solvent molecule, respectively.

In eq. (2.2), Uly,cs(r),c(r)] is the energy of a given configuration v in a solvent
density field ¢s(r) and local monomer density ¢(r). Thus, here we assume that, not only,
the interaction energy can explicitly depend on the configuration, but also through the
local monomer number density,

)= [ DyPh] E o —ri) (2.4)

as well as on the solvent density cs(r). This interaction energy can include both intra-
chain and inter-chain interactions, as well as interactions with external fields (as for
example, adsorbing surfaces). Hence, the energy term can be further decomposed into
three contributions, according to

Uly, ¢s(r), ¢(r)] = Uiniralv] + Uinter |75 €5(x), (r)] + Uest[7] (2.5)

The first term on the right hand side of this equation corresponds to the intra-chain
monomer-monomer interactions, which is a function only of every configuration. The
second term stands for the interactions of the chain with the solvent as well as with
monomers of other chains. The third term in eq. (2.5) corresponds to the interaction
with external fields (for example, interaction with adsorbing surfaces).

In the case of the short-range hard-core repulsions, they are taken into account by
means of both the generation of self-avoiding configurations of the chains, as well as
through the volume filling constraint, describing the repulsive interaction with the molecules
of the environment. This condition has to be satisfied at every point in the volume (volume
filling constraint), and is stated as

¢(r) + ¢s(r) =1 (2.6)

where the average monomer volume fraction is given by
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/%PﬂZ% i) = vye(r) (2.7)

Hence, the mean-field interaction is non-homogeneous and varies depending on the dis-
tribution of the monomers of polymer and solvent as a function of the distance from the
surface.

Thus, introducing the constraint as a Lagrange multiplier field 7(r), one can finally
write

F[P[],c,(r)] = kTN, / Dy (Ply] In P[y)) + kT / dr ¢, (r) In ¢, (r) (2.8)

+ [ DyPHIUR ), clr)] + [ drml) {ox) + 6,(x) — 1}

The free-energy functional described by eq. (2.8) deserves some comments. In the first
place, our description involves some degree of coarse graining. Effectively, eq. (2.6) is
meaningful only in a coarse-grained sense since it cannot be strictly satisfied at a length
scale smaller than the size of the monomers and solvent molecules. Therefore, according
to egs. (2.6) and (2.7), our formulation is local, in the terminology of density functional
theories, due to the fact that in the definition of the volume fraction, monomers as well as
solvent molecules are considered as point particles, and no excluded volume correlations
are described. Hence, phenomena such as the oscillatory density profile near an attractive
hard wall, with a wavelength of the order of the monomer (solvent) size, will lie beyond
the scope of this work [6]. In the second place, since inter-chain interactions will be
considered only throughout the local average monomer density, both in the expression
of Uinter|7, ¢s(r), c(r)] as well as in the volume-filling constraint eq. (2.6), the inter-chain
correlations will be ignored. It is then expected that our formalism reproduces mean-field
results in properties such as the dependence of the critical density with the temperature in
polymer phase separation. However, on one hand, our theory is suitable for the description
of properties related to the long length scale features of the polymers, in the spirit of the
usual mesoscopic description of polymers in solution. On the other hand, it is important
to realize that, due to the fact that our formulation keeps up the connectivity and self-
avoidance of the chain into account, it is expected that the description of properties related
to one-chain features will yield the appropriate exponents, unlike mean-field theories based
on Markovian connectivity. We will show the differences with respect to the explicit
consideration of ideal chain conformations in some of the properties analized and shown
in the next chapter.

Density Functional theories (DFT) for polymeric liquids have formal similarities with
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our description [6, 7, 8]. Instead of the volume-filling constraint, in DFT the repulsive
interactions are introduced by means of an excess free-energy depending on local averages
of the monomer densities [9]. Not only, these theories can describe density oscillations near
attractive surfaces with short-range potentials, but also disregard inter-chain correlations,
described only through a local monomer density.

In this work, we will concentrate our attention to the description of the structure
of polymer adsorption onto planar and curved surfaces, for flexible and moderately long
polymers. In the following chapters, the results produced by this method will be further
compared with the results of Monte Carlo simulations as well as with scaling results. To
simplify the forthcoming analysis, it is convenient to introduce here the specific model that
we will use along the next chapters. We will consider here polymers of N monomers, the
latter being described by spherical particles exerting hard-core repulsions between them
and with the solvent molecules. Thus, the intra-chain contribution of the energy is zero.
As far as attractive intermolecular interactions are concerned, we make no distinction
between the solvent molecules and polymer segments (they are similar energetically), thus
the interactions solvent-solvent and solvent-segment of polymer can be ignored. Therefore,
in the right hand side of eq. (2.5) only the contribution due to the interaction with external
fields will be non-zero. In particular, we will consider an attractive square well potential,
of an energy depth ¢ and a range d, of the order of the monomer size, at the surface of
the adsorbing wall, to model the adsorption of monomers at its surface. Therefore, the
energetic contribution is simply given by the expression

N

Uly; es(x), ()] = Uear[y] = 6/ dr6(d — |z — z) 3 d(r —xi[y]) (2.9)

=1

where 2 is the position of the solid repulsive surface and 6 is the Heaviside function, 0(x),
which is 0 when the argument z is negative and 1 elsewhere.

From eq (2.2) by evaluating

oF
oF_ (2.11)
des(r)

one obtains the equations satisfied by the fields that minimize the free energy eq. (2.2)
subject to the constraint given in eq. (2.6). The solution of eq. (2.10) yields the proba-
bility distribution of a given conformation 7,
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Ply] = A e HmsDI/RT (2.12)

The second equation, eq. (2.11), gives the solvent density profile

cs(r) = Be vem)/kT (2.13)

In eq. (2.12), A is a normalization constant issued from the condition

/ Dy Ply] =1, (2.14)

and H,,[v] is the mean-field Hamiltonian for a given conformation ~y

N
Hugly) = [ dr [oyn(@) +26(d = |z = 2] 3 0(r = i) (2.15)
i=1
In eq. (2.13), the constant B is given by the condition
N, = /dr ¢s(r) (2.16)

where N, is the total number of solvent molecules in the volume.

Equations (2.12) and (2.13) explicitly depend on the yet unknown Lagrange multiplier
field 7(r). This field can be determined by using the expressions for the probability
distribution as well as the solvent concentration into the constraint equation (2.6), which
provides an equation in which the only unknown is the Lagrange multiplier. We then
obtain

o~ vom(r) KT J Dy e HmsDIKT N §(r — 1i])
N

Ustf dr e —vs7(r)/kT + Up f D’)/ e_Hmf[’Y]/kT =1 (217)

The solution of the previous equation permits the calculation of the Lagrange multiplier
field 7(r), which completely determine the mean-field probability distributions and, from
the latter, all relevant properties of the system.
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2.1.1 Calculation at a fixed chemical potential

As it has been mentioned, the choice of the total number of chains in the system N,
and the volume V is required to obtain the solution of the mean-field 7(r) from eq.
(2.17). However, since we want to describe inhomogeneous systems, fixing a priori the
total number of chains in the volume does not give us any knowledge of the bulk polymer
density. Thus, it is convenient to eliminate N, in eq. (2.17) in favor of the bulk polymer
density, through the chemical potential p.

With this purpose let us consider the partition function of one chain in the mean field,
as given by the configurational integral

1
2z, = D /ny e HmiDI/KT (2.18)

where [ stands for a characteristic length of the elementary volume of the chain configu-
rational space, being D the dimensionality of such a space. From the mean-field point of
view, we can relate the statistical weight of one chain with the chemical potential from
the relation

Z, = Nye m/k (2.19)

where p, is the polymer chemical potential. For the solvent field, one has

1
E=g /V dr e~V /KT _ N ompis /KT (2.20)

where here g corresponds to the solvent chemical potential. In an incompressible sys-
tem, however, the only independent chemical potential is the so-called exchange chemical
potential p due to the fact that the addition of one chain to the system has to be com-
pensated with the removal of the equivalent volume of solvent molecules. Thus, in our
context u is given by

v
= pp — N> (2.21)
Vs

Therefore, without loss of generality, we can choose ps = 0 in eq. (2.20), which fixes the
scale of the chemical potential of the polymer, and identify yu, with the exchange chemical
potential y in eq. (2.19). In addition, it follows that
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]' —T(r)v
i [, dreT e = N, (2.22)

We will further consider that our system is in thermodynamic equilibrium with an
homogeneous system of the same volume. Hence, both systems share the same chemical
potential. For such an homogeneous system, the one-chain partition function Zg can also
be evaluated from eq. (2.18), with the corresponding mean-field hamiltonian given by

N
HO 4] = /drvp r) S 6 —1y) = v, 1N (2.23)
=1

where no interface has been introduced. The second equality follows from the fact that

79 is a constant if the system is macroscopically homogeneous. Thus, the equilibrium

condition between the inhomogeneous and the homogeneous systems allows us to write

Zy, 7,
Wikl = 28 — 2. (2.24)
N, ~ ND

with

ZO N N 3
p _ Up e—UpWON/kT/D _ Up [_( _¢0)

Nup Jvs
NO TPV DOV ]

/ Dry (2.25)

where we have defined the bulk monomer volume fraction, from the properties of the
homogeneous system as being ¢° = v, NN /V. The second equality follows after elimi-
nating e using eq.(2.22), together with the incompressibility condition eq. (2.6). Hence,
the constraint equation to be solved after the introduction of the bulk monomer density

as an independent parameter is

vp N /v —
Vs unypr | V' lvs/f* ] PN Dy e T DI S (e — wil)

E ol s D =1 (2.26)

Notice the conformational space volume included in the denominator of the second term
on the left hand side of this last expression. This volume too has to be sampled by means
of Monte Carlo techniques, as we will see in the next subsection.
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2.1.2 Importance sampling of the phase space of one single self-
avoiding chain

The solution of the constraint equation, eq. (2.26), involves integrations over the one-
chain configurational space. These integrations can, in principle, be analitically done
for ideal chains, where monomers can overlap. However, in the case of self-avoiding
chains, such an analytic evaluation is virtually impossible for chains with more than a
few monomers. One way to overcome this difficulty is to evaluate the configurational
integrals by means of the Monte Carlo method (appendix A) of sampling of the confi-
gurational space, generating self-avoiding conformation of chains. It is crucial to realize
at this point that the exact description of the self-avoiding chain conformations permits
to keep excluded volume correlations along the chain despite the fact that the interchain
interactions and the effect of the solvent is taken at the mean-field level. The use of ideal
chain conformations in the evaluation of the configurational space integrals transfers all
the intrachain excluded volume repulsions to the mean field 7(r), smoothing out these in-
trachain correlations. Thus, properties depending on one-chain statistics will be sensitive
to the method of evaluation of the configurational space integrals, something that will be
seen in the values of the exponents in the power-law behavior of the different properties
that we will discuss later on. On the other hand, the numerical nature of the generation
of self-avoiding chain conformations restricts the length of the chains that can effectively
be treated in the framework of SCMF in several orders of magnitude, when compared
with calculations based on Markovian statistics that do not rely on an explicit generation
of polymer conformations [10].

It has been customary to use a uniform sampling of the polymer conformation space in
the calculations based on the SCMF theory, in the case of systems with planar geometry, or
a biased sampling with a weight proportional to 1/72, in the case of micelle formation with
spherical geometry [5]. In our case, the presence of an adsorbing potential of strength
of the order of kT and a narrow width, of the order of the monomer size, makes the
uniform sampling uneficient, since the most of the configurations generated in this way
have an irrelevant statistical weight when monomer densities as well as end monomer
density profiles are computed. Therefore, here we will develop the theory for a general
biased sampling and discuss the optimal sampling for a given situation of interest.

To evaluate the integral of a given function f[y] over the configurational space of a
chain by means of the Monte Carlo method, we use the well known formula [11]

/97 fln] =~ % > e (2.27)

where A is the total number of sampling points in the configurational space and Pg[y] is



2.1. THE SINGLE CHAIN MEAN FIELD THEORY a3

the probability distribution of the biased sampling. It is convenient for our purposes to
relate Pg|y] with a statistical weight w[y], to which we will refer later on

w(v]

Paly] = W

(2.28)

Notice that Pp[y] has dimensions of inverse volume of the configurational space, so that
the right hand side of eq. (2.27) has the proper dimensions.

Therefore, aiming at a numerical evaluation of the constraint equation, the conforma-
tional space integrations in the second term on the right hand side of eq. (2.26) can be
rewritten in terms of a sum over the Monte Carlo samples, giving

J Dy e tmi DK SN §(r —rily]) _ Saoy e Pl SN (e — rilva]) /wlva] (2.29)

I Dy Yot 1/wlya]

Notice that the phase space volume in the denominator has also been calculated by means
of the same biased Monte Carlo sampling, so that the normalizing factors [ D~y w[7] cancel
out.

The averages of a given variable A(r, r;[y]) can then be performed in a similar way

<A(I.)> _ fD,Y G_Hmfh]/kTA(I‘, rzh/]) N 22:1 G_Hmfha]/kTA(I‘, ri[/Ya])/w[’Ya]
[ Dy e Hms /KT - A Hon D0l /KT [y [y,]

a=1 e

(2.30)

Finally, to end this section, it is important to also realize that the most efficient
sampling of the conformational space is that done with a distribution given by the absolute
value of the integrand itself, i.e. [11]

why] = [f1V]| (2.31)

Hence, the choice w[y| = e~ HmsDI/KT - although not optimal for a specific property, will be
a convenient choice to make the samples relevant for the problems at hand.

Considering the eq. (2.29), the constraint equation (2.26) is rewritten as

1

vp N /vs _ o
Us o —vgm(e) /KT V¢ l v, /1 ] foe b | e sl KT SN 6 — rilya])/wlya) _

B N |[1—¢° Ya1 1/wlys]
(2.32)



o4 CHAPTER 2. THEORETICAL APPROACH

To numerically find the lateral pressures 7(r), the space will be discretized in layers
of finite thickness ¢ in order to obtain a set of coupled nonlinear equations. Then, the
integrals over the variable r are converted into sums over different finite layers.



2.2. APPENDIX A %)

2.2 Appendix A

2.2.1 Monte Carlo simulation

A standard Monte Carlo simulation (MC) is essentially an iterative process in which a
set of independent configurations is generated for a system of N particles that interact
through a known potential ®(RY). By different random movements, new configurations
are generated which are accepted or not so that the simulation efficiently explores the
space of possible configurations. Hence, the generation of the configurations is following
a probability distribution according to the chosen ensemble.

One of the fundamental tasks of statistical mechanics is to link the microscopic
(atomic-scale) description of a particular substance to its equilibrium macroscopic (ther-
modynamic) properties. Therefore, physical properties are measured as configurational
averages over the sequence of equilibrium configurations of the model system. Thus,
knowing the probability density function, the average value of some observable A can be
formulated as

€<I>(RN )

T Je*®V) gRN

(A) = / AN PEMydr®  P@V) (A-1)

where A(r") denotes the instantaneous value of the observable corresponding to the
configuration r’¥ and P(r?") is the probability density to find the system in a configuration
around r". From this point of view, the Monte Carlo method in equilibrium statistical
mechanics starts from the idea of approximating the exact equation (A-1), where one
integrates over all configurations r" with their proper weights P(r"), by an integration

using a characteristic subset of configurations ({r{v IS CAPS S AN ,rf&,}) generated randomly

in configuration space according to the probability distribution P(r"V); this subset of
configurations is used as a statistical sample. Hence, if one considers M — oo, the
discrete sum

(4) ~ > Ar") (A-2)
)

must approximate (A-1).
The main problem is to find an appropiate method which generates randomly points in

configuration space according to the probability distribution P(r"). One of the solutions
to this problem is the method proposed by Metropolis et al. [12]. From this method, the
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states of the system are sampled with a relative probability proportional to the Boltzmann
factor, e"U")/KT (being U(r") the interaction energy of the conformation r"). First, it
is necesary to define a chain or a set of chains, which we denote by o (old) and with a
Boltzmann factor equal to e~V(9/¥T A new conformation of the system is generated
by flipping or rotating one or more bonds chosen randomly. This new conformation is
denoted as n (new) and its Boltzmann factor is equal to e~U(™/*¥T Now, the next step is
decide if we accept or reject this new configuration. This decision is based on the detailed
balance condition which requires that the frequency of moves from the state o to the state
n should be equal to the frequency of moves out from the state n to the state o. If the
move probabilities are symmetric we obtain that

P(o)acc(o — n) = P(n)acc(n — o) =

~—

acc(o — n

(n) _ —swm-vce)
0

_ P
acc(n -o0) P

In the case of the energy change, —G[U(n) — U(0)], is less than zero, then the trial move
would be accepted. However, if —3[U(n) — U(0)] > 0 the decision about accepting or
rejecting the trial move is through the generation of a random number, «, from an uniform
distribution in the interval [0, 1]. Thus, we would accept the trial move if o < e=#lU(?)=U(°)]
while it would be rejected in the case of o > e AlUM U] [f it happened the system
would be returned to its original state and this state would be counted again, otherwise
we would bias the sampling scheme [13].

The Metropolis rule is a Markov stochastic process, since the probability of a random
move is independent of the history of the system, only on the actual situation. In this
case, the detailed balance condition for the transition probabilities ensures that the proper
thermodynamic equilibrium probability distribution is reached after a large number of
steps.

There are other methods based on the Rosenbluth method of chain regrowth. These
methods have their window of practical applications and may have advantages and disad-
vantages with respect to the Metropolis rule. In this problem, using chain growth would
appreciably fast the process of sampling, since the statistical weight of the samples is
known just after the growth. However, for long chains in complex geometries is possi-
ble that the Metropolis algorithm would lead the conformations to the optimal sampling
condition. The difference between the two methods will be studied in the future.
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Chapter 3

Adsorption on flat surfaces

Polymer adsorption has been extensively studied in recent years from both experimental
and theoretical points of view [1]. Together with the practical applications of polymer
adsorption there is also a more fundamental interest since they are a good example of
confined polymer system, together with polymers in pores, grafted layers, microstructures
in polymer blends and copolymer solutions, among many others.

The internal equilibrium structure of polymers reversibly adsorbed is a matter of some
debate that still needs of much experimental work to reveal all its internal complexity.
Pioneering works on this topic have been those of Jones and Richmond [2] which, star-
ting from the mean-field treatment of Edwards [3], introduced the so-called ground-state
dominance approximation (cf. chapter 1). In this formalism, a free energy functional for
one order parameter is constructed from which the structure of the layer as well as the
density profiles are obtained. Later, de Gennes [4], who used a similar functional properly
modified, was able to reproduce the proper scaling laws that he had already obtained
from more heuristic arguments.

However, subsequent numerical [1] and theoretical [5, 6, 7] work, based on the self-
consistent field approach of Edwards, indicated that the structure of the layer is more
complex than suggested by the one order parameter approaches mentioned. This com-
plexity is due to the important finite size effects that give a particular importance to the
polymer end-points, completely disregarded in one order parameter theories (c.f. chapter
1). Results from the self-consistent field numerical method of Scheutjens and Fleer on
polymer adsorption onto flat surfaces confirm two different aspects. On the one hand,
the complexity of the structure of the layer, decomposed into a loop and tail sublayers, is
in agreement with the theoretical approaches based on two order parameters [7]. On the
other, confirm the validity of the two order parameter approach in the description of the
central and proximal regions of the adsorbed layer.

29
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As far as the effect of the excluded volume correlations are concerned, one can say that
the Markovian nature of Edwards approach is responsible for the exponents obtained in
the different power law regimes disagree with scaling results [5] and experimental data [8].
Thus, in addition with the aforementioned self-consistent field calculations, more detailed
theoretical analysis, based on the Renormalization Group [9, 10], and computational work,
such as Monte Carlo simulations (MC), have been required [11, 12, 13, 14, 15|, aiming
at a more quantitative comparison with the experimentally observable power-law decay
of the profiles. In addition, scaling laws are concerned with very long polymers N — oo,
often lying out of the range of experimentally accessible polymer sizes. Thus, it is also
of crucial interest analyze the behaviour of shorter polymers. Monte Carlo simulations of
polymer adsorption are very difficult due to the large energetic barriers to be overcome
by polymers in the sampling of its configurational space. The relaxation of the structural
details of the adsorbed layer is a difficult matter that has been responsible for the fact that
only a few MC analysis have been done on relatively long polymer adsorption (hundreds
of segments). In fact, MC results are found only from the beginning of the last decade.
One has, for instance, short polymers of N = 32 [12] adsorbed onto a flat wall, or results
for longer chains [11] that disagree with the most of the modern MC data [15]. In this
context, the SCMF theory appears as a suitable tool to analyze long polymer adsorption.
The advantages of this method are, on the one hand, that includes excluded volume
correlations along the chain and thus proper scaling laws are expected to be found in the
long chain limit. On the other, the sampling of the configurational space of one single
chain in a mean field is much simpler than many body MC simulations and, thus, can be
more efficiently carried out.

In this chapter, we will apply the SCMF theory, with the importance sampling de-
veloped in the previous chapter, to polymer adsorption onto a plane wall. The results
obtained will be compared with Monte Carlo simulations under the same conditions to
analyze the differences between the two methods and prove the predictive nature of the
method. Moreover, SCMF results with generation of overlapping chains will be compared
with SCF data obtained from the application of the Scheutjens-Fleer theory. This com-
parison will serve us to study the importance of the excluded volume correlations along
the chain and thus the role of the Markovian/non-Markovian connectivity of the chain in
the reference state as far as the layer properties are concerned.

The chapter is organized as follows. In section 3.1, we will give the numerical details
used in our calculations considering the adsorption of polymers on flat surfaces. In section
3.2, the structure of the adsorbed layer will be analyzed taking into account two different
polymer lengths N=100, 200 and bulk volume fractions ¢°(N = 100) ~ 0.058 and ¢°(N =
200) ~ 0.033. The value of the adsorption energy in both cases will be ¢ = —0.35k7T.
The comparison of the SCMF results with MC simulations data for different bulk volume
fractions will be done in the section 3.3. Finally, in section 3.4, we will also analyze the
structure of the adsorbed layer but considering Markovian chains of length N = 200.
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The results will be compared with results issued from the Scheutjens and Fleer method,
obtained with the same set of parameters.

3.1 Numerical calculation details

The solution of the SCMF problem has been done from a sampling of the configurational
space of off-lattice polymers of 100 and 200 monomers, in a cubic box of size L = 115.321
and L = 226.92(, respectively, being [ the monomer length. The adsorbing wall has a
thickness of 2.721 and it is located at z = 0, occupying the center of the simulation box.
Hence, the repulsive hard surfaces are at the planes z4+1.36 /. The wall is rigid and cannot
be penetrated by the chain beads. Adsorption takes place because we have introduced
a square well potential at the surface of the plane, according to eq. (2.9), whose width
available to monomers is d = 1.86/ and different values of ¢ of the order of kT have been
considered. Since periodic boundary conditions (see Appendix A) are considered, the size
of the box has been chosen such that the chains never reach two surfaces at one time,
even at the state of full extension.

The chains are modeled as pearl necklaces of non-overlapping beads of diameter [,
whose centers are separated a fixed distance equal to its diameter. The excluded volume
per monomer has been taken as being independent of the conformation of the chain,
and estimated to be v, = 1.861%, assumed as constant all over this work. This value
corresponds to an estimate of the net volume excluded per monomer in a chain.

Due to the translational symmetry of the system in the directions parallel to the wall,
the mean-field constraint 7(r) is considered as being a function of the coordinate z only.
Hence, the box has been divided into layers of thickness 1.86 [, parallel to the plane, inside
which 7 is taken as constant. On the one hand, this choice permits us to have a reasonable
precision on the spatial variation of 7 and, on the other hand, the volume of the layer is
large enough for eq. (2.6) to make sense.

In view of the Monte Carlo evaluation of the configurational space integrals, as in
eqs. (2.29) and (2.30), a configurational file is created. In this file, the coordinates of
all monomers of the polymer corresponding to a large number of different configurations
(usually 2 x 10*), are stored together with the numerical value of its bias weight w[7].
Then, the sums over all the configurations in the averages will simply be replaced by sums
over the sample of configurations stored in the configurational file. In the beginning of
the simulation, this configurational file is filled by an uniform distribution, w[y] = 1, of
conformations. It contains a collection of statistically independent self-avoiding chains
whose first monomer is randomly located inside the simulation box. It is clear that in
eqs.(2.29) and (2.30) the direct use of this initial sample, stored in the configurational file,
will be rather uneficient. Effectively, due to the narrow and deep adsorbing well, only a few
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of these configurations will be statistically relevant for the adsorption problem (especially
those that will have monomers in the adsorbing well). To overcome this difficulty a bias
field is introduced aiming at gathering a large number of configurations around the most
relevant part of the chain configurational space. Once the bias field has been fixed, the
configurational file is transformed so that the chains are distributed according to the
selected bias w[y]. To obtain this new configurational file, a chain is randomly chosen and
its configuration modified by an elementary movement (crankshaft, reptation or simple
overall translation of the chain, according to a random number that permits us to choose
one of these movements). The statistical weight of the new configuration with respect to
the bias field is then compared with the old one, and accepted or rejected according to the
Metropolis rule [16]. The procedure is repeated a large number of times, until indicators
such as the sum of the energy with respect to the bias field of the conformations in the
configurational file (Fig. 3.1), or that of the conformations in contact with the adsorbing
well, is stationary in a statistical sense (see Fig. 3.2). Once this point is reached, the
stored configurations are distributed according to the prescribed statistical weight w[y].
With respect to multi-chain Monte Carlo simulations, the acceptance rate is much larger
since the topology of the energy space is smoother for a chain in a mean field than in a
multi-chain system.

With the purpose of obtaining a configurational file statistically significant, we have
chosen the Boltzmann weight,

wly] ¢ Hms1/kT (3.1)

where Hp,f[7y] is given in eq. (2.15), as the appropriate bias. Of course, since 7(r) is not
known a priory, an iterative procedure has to be used to recalculate the field while relaxing
the conformations of the configurational file, until a stationary value is obtained. In Figs.
(3.1) and (3.2) are shown, respectively, the evolution of two indicators of the relaxation
of the configurational file, as functions of the MC steps. Notice the sharp jumps due to
the recalculation, in the iterative procedure, of the mean-field Hamiltonian used as a bias
field .

Since the configurations are recorded and the probability distribution of every one is
known, performing averages by means of sums over the configurations in the configura-
tional file has some advantages with respect to the usual procedure used in Monte Carlo
simulations. Effectively, once the samples are correctly distributed in the configurational
file, thus eq. (2.26), making use of eq. (2.29), can be solved for different values of the
parameters that define physical problem, i.e. the adsorption energy ¢ and the bulk den-
sity ¢°. This produces a new Lagrange multiplier field 7 (r) from which the mean-field
Hamiltonian H,,s[y] as well as the physical probability distribution P[] are determined
for the new conditions. Hence, the range of applicability of a given sampling is only
limited by its statistical relevance for the physical conditions that one wants to analyze.
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Figure 3.1: Variation of the energy of the configurational file, E = — 3 Hp(7), with Monte Carlo
(MC) steps for a system with N = 100, ¢° = 0.058 and ¢ = —0.35 k7.
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Figure 3.2: Variation of the average number of adsorbed monomers of the configurational file with
respect to Monte Carlo (MC) steps for a system with N = 100, ¢° = 0.058 and ¢ = —0.35 k7.
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Effectively, a sampling suitable for a dilute bulk solution may not be statistically relevant
when concentrate solutions are used, although it could still be relevant at intermediate
concentrations.

In the case that ideal instead of self-avoiding chains are generated in the sampling,
the procedure followed is the same except for the fact that there is no energy penalty if
monomers overlap. Notice that the generation of ideal chains in the sampling effectively
eliminates the excluded volume correlations along the chains, due to the fact that the
intra chain excluded volume repulsions are incorporated into the mean field 7(r). This
fact leads to a sampling with more compact conformations that will produce a different
behaviour. This effect will be discussed later on.

3.2 Structure of the adsorbed layer as predicted by
SCMF.

Let us introduce the characteristic lengths in polymer adsorption onto flat walls. Firstly,
the bulk correlation length & defines the distance at which density perturbations die out.
The numerical value that we will use in this section will be calculated from the expression
(see eq. 1.18)

¢0 -3/4
E=R (—) 3.2
as obtained from scaling arguments for excluded volume chains [17], with ¢°, the volume

fraction of monomers in the bulk, and ¢* the monomer volume fraction at the overlap
(see also chapter 1). The overlap concentration ¢* is defined as (c.f eq. 1.16)

. 3N

where R, is the radius of gyration of the chain numerically obtained in a homogeneous
system. In the case of ideal chains, we will still use eq. (3.2) but with exponent —1/2 and
the radius of gyration corresponding to that of the markovian chain. The overlap volume
fraction is thus, ¢* = v, c*.

Secondly, the thickness of the layer that we will use along this work will be obtained
from the expression
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o _ [220(2) dz

M=) dz

(3.4)

where ¢, is the volume fraction monomers belonging to adsorbed chains (cf. eq. 1.72).
Similarly, from the volume fraction of monomers belonging to loops and tails their corres-
ponding root mean square thickness \; and \; respectively, are obtained.

As far as the inner structure of the adsorbed layer is concerned, it is customary to
define loops as being portions of the adsorbed chain between two monomers in contact
with the wall, tails are portions of the chain between the last adsorbed monomer and an
end, while trains are sequences of monomers all in contact with the wall [1]. Here, however,
we will make no distinction between trains and loops. The density profiles of monomers
belonging to loops and to tails are, therefore, indicators of this internal structure. Then,
third and last, the crossover length z* is defined in this work as the distance at which
loop and tail monomer concentration profiles, ¢; and ¢;, respectively, cross each other [5],
separating the adsorbed layer into a loop and a tail sublayers. This can be formally stated
as

c(z%) = a(2Y) (3.5)

With regard to the bulk concentration, also different regimes are usually distinguished.
We have already defined the overlap concentration ¢* in eq. (3.3). Since the thickness of
the layer scales as the size of the polymeric coil, Ry, the layer starts to be significantly a-
ffected by the presence of free chains in its vicinity when the bulk concentration approaches
the overlap concentration, that is, when & ~ A. In the second place, the concentration
c; is defined as the concentration at which £ ~ z* so that the loop layer starts to merge
into the bulk free polymers [6]. At higher polymer densities a concentration ¢, can also
be introduced [18], but its analysis lies beyond the scope of this work.

Let us first consider the predictions of one-chain properties for an homogeneous system.
In Fig. 3.3 we show the functional dependence of the end-to-end distance of the chains
with respect to the number of segments N, in a system with a homogeneous polymer
density, as obtained from our SCMF methodology. We compare both, the self-avoiding (or
non-markovian) chains and the markovian chains, that is, non-markovian and markovian
connectivity, respectively. The numerical results of end-to-end distance as well as radius
of gyration for both kinds of chains are listed in Table 3.1.

Notice that the physical problem posed in both cases is exactly the same, but the
methodology differs in the allowed conformations of the chains in the mean field, that
is, in the choice of the reference state on which the mean field is build. The power law
behaviour found for the radius of gyration with self-avoiding chains in the sampling is
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Figure 3.3: End-to-end distance corresponding to self-avoiding and markovian chains, obtained from
SCMF method, as a function of chain length. Solid lines show the fitted power law, N > 100: Renq/l =
1.27N%587  for the case of self-avoiding walk chains (triangles), and Re,q/l = 1.02N%4% for markovian
chains (circles).

N || 32 100 200 1000 A v

RSAW/I 3.69 745 11.29 29.34 0.49 0.593

RSAW/1 |1 9.33 1879 28.22 73.28 1.27 0.587

end

Rg‘ark""/l 232 406 570 1292 041 0.499

RMarkev/] || 559 985 13.88 31.07 1.02 0.495

Table 3.1: Values of radius of gyration and end-to-end distances corresponding to self-avoiding walk
as well as markovian chains, obtained from Single Chain Mean Field method (SCMF), for different chain
lengths. The coefficient A and the exponent v are the results of a fit of the data of Fig. 3.3, for N > 100,
of the form R, cnq/l = ANV
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very close to that observed in excluded volume statistics, R, ~ IN”, with v ~ 3/5 [19, 9].
On the other hand, the results for ideal chains are compatible with Gaussian (ideal chain)
statistics, yielding an exponent v ~ 1/2.

It is important to mention that the results found for R, as well as for R4, by means
of the SCMF calculations for both, self-avoiding and ideal chains, are independent of the
bulk monomer concentration ¢® used in the calculations. Therefore, already at this stage,
two main conclusions can be drawn with respect to the SCMF method and its comparison
with Markovian SCF as well as MC simulations. On the one hand, due to the fact that
the characteristic size of the chain in the bulk is independent of monomer concentration,
the expected crossover between the excluded volume statistics in very dilute solution and
the ideal behaviour of chains in melts, as given by the scaling expression

R, ~ (13BN (3.6)

is not described by the SCMF formulation. Thus, the theory cannot properly predict
the screening of the excluded volume correlations along the chain backbone by the local
monomer concentration [17]. Thus, the chains are excessively swollen even at large bulk
concentrations [20]. This effect is especially noticeable when long chains in semi-dilute
solutions are considered. However, it is irrelevant for short chains, where the SCMF
method has received the major field of application [21], since the overlap concentration
is then much higher. The second conclusion, on the other hand, is that there are signif-
icant qualitative and quantitative differences between solving the mean-field problem by
summing either over self-avoiding or over overlapping configurations, in the description
of the one-chain properties [22]. In the first case, excluded volume correlations along the
chain are preserved, while, in the second, all excluded volume effects are accounted for
the mean field 7 (r), yielding in general to more compact conformations. This difference
will have significant effects on the description of adsorption that we will later discuss.
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Let us consider only self-avoiding chains from now on unless the contrary is indicated.
Fig. 3.4 shows typical results of the internal structure of the layer obtained by means
of SCMF. In this case, we present results for loops, tails and adsorbed monomer volume
fractions for two different chain lengths, N = 100 and N = 200, at bulk monomer fractions
#°(N = 100) ~ 0.058 and to ¢°(N = 200) =~ 0.033, corresponding roughly to half of the
overlap concentration in each case. The adsorption energy is ¢ = —0.35k7T, above the
threshold adsorption energy, the latter estimated to be around ¢ = —0.28k7 [23]. In Fig.
3.5, we have represented the adsorbed monomer volume fraction profile of the previous
systems in a logarithmic scale. The figure shows that there is a regime near the wall that
can be considered as following a power-law decay. The exponent obtained from the fit
is —1.26 for N = 100 and —1.23 for N = 200, both very close to the scaling exponent
—4/3 ~ —1.33, obtained in the limit N — oo [4].

0.1y

G—O N=100
) A—A N=200
0.075— —

Profile adsorbed chains

S 005
Loop monomer volume fraction

Figure 3.4: Representation of loop, tail and adsorbed monomer volume fraction profiles, obtained from
Single Chain Mean Field method (SCMF), corresponding to chains of N = 100 (circles) and N = 200
(triangles) at bulk monomer volume fractions ¢° ~ 0.058 and ¢° ~ 0.033, respectively. In both cases
e=—0.35kT.

Although there is a reasonable agreement between our numerical exponent and the scaling
results under the conditions of concentrations near the crossover, we find that the initial
apparent power-law decay depends on the bulk concentration in this regime of chain
lengths, indicating that we are not in the asymptotic long chain scaling regime. This fact
has already been pointed out in refs. [15, 24].

The characteristic lengths of the adsorbed layers under these representative conditions
are listed in the following table 3.2.
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Figure 3.5: Representation of the adsorbed monomer volume fraction profiles corresponding to chains
of N =100 (circles) and N = 200 (triangles), obtained from Single Chain Mean Field approach (SCMF),
at bulk monomer volume fractions ¢° ~ 0.058 and ¢° ~ 0.033, respectively. In both cases, ¢ = —0.35 kT

N |2/t Ml &/l Ryl

100 || 5.43 7.5 11.87 7.45

200 || 6.46 11.27 17.98 11.29

Table 3.2: Characteristic lengths of the adsorbed layer obtained from Single Chain Mean Field method
(SCMF). For N = 100, the bulk monomer volume fraction is 0.058, and 0.033 for N = 200 monomers.
In both cases, ¢ = —0.35kT.

Since A is close to z*, these results correspond to the so-called starved regime, as it has
been defined in references [6, 7]. In this regime, the central region of the adsorbed layer
is dominated by the loops, the tails being important only near the cutoff of the layer.
The situations that are analyzed in this work all lie in the starved regime. To go beyond
the starved regime and have a neat distinction between the proximal, central and distal
regions (cf. Chapter 1), it is necessary that z* << X which implies that N'/1* >> 1
(conversely, N'/6 >> 1 in the Markovian mean-field), something that requires very long
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chains. In the starved regime, the scaling length for the central region is precisely the
thickness of the layer A instead of z* [7, 25].

It is of particular interest the decay of the tail monomer profile, since it offers a way
to compare the intrinsic behaviour of the models analyzed here. The thickness of the
tail monomer volume fraction profile should scale as the thickness of the whole layer
which, in turn, should be proportional to the radius of gyration of the chain at a given
concentration. In the example that we are analyzing here, one obtains

A(N =200) _ 15.37 _ £~ R,(N = 200)
M(N =100) 10.12 77 R,(N = 100)

200)3/5

=153~ (—
>3 (100

(3.7)

It is rather clear from the previous result that in this particular case the extension of the
tails follows excluded volume statistics. Hence, according to the unscreened nature of the
excluded volume correlations in the SCMF model, such an scaling will be expected all
over the concentration range studied.

Together with the monomer volume fraction profiles, we have also obtained the end-
monomer distribution profile, which is shown in Fig. 3.6 in logarithmic scale. The end-
monomer distribution is a quantity difficult to obtain from simulations, since the sample
points scale as the number of chains in the sample, instead of as the number of monomers.
This number is usually too small to obtain good statistical meaning for a reasonable
computer time. The quality of our data indicates the adequacy of the importance sampling
method introduced in this work in the solution of the SCMF problem. The end-monomer
distribution is of special theoretical interest since its decay near the adsorbing wall involves
the so-called magnetic susceptibility exponent v ~ 1.162 in d = 3 (or v = 1 in d = 4,
which is also the value corresponding to the Markovian mean-field), which is independent
of the Flory exponent v [17]. Scaling arguments predict a decay of the form

Cena(2) ~ 27P1¥ (3.8)

where 8 = (dv—+)/2. The numerical value obtained here is 3/v ~ 1.4 and /v ~ 1.18 for
N =100 and N = 200, respectively, while the scaling predictions are /v ~ 0.532. For
this particular magnitude, the asymptotic predictions and the numerical SCMF results in
the initial decay rate are more disparate than in the case of the total monomer density.
Again, this apparent power-law behaviour is a function of the concentration, giving a
less steeper decay as concentration increases. Again, this fact indicates that our results
cannot be directly compared with scaling predictions because the latter are only valid in
the asymptotic limit N — oo.

To end this section, the end-monomer distribution for different bulk concentrations is
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Figure 3.6: End-monomer distribution profile, corresponding to the adsorbed chains obtained from
Single Chain Mean Field method (SCMF), for N = 100 (circles) and N = 200 (triangles) at bulk
monomer volume fractions ¢° ~ 0.058 and ¢° ~ 0.033, respectively. Dashed line corresponds to a power
law of —0.532. In both cases € = —0.35 kT
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Figure 3.7: End-monomer distribution profile, corresponding to the adsorbed chains obtained from
Single Chain Mean Field method (SCMF), for different bulk monomer volume fractions (¢° =
0.001,0.03,0.13) considering N = 200 and ¢ = —0.35%kT. Dashed line corresponds to a power law of
—0.532.
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represented in Fig. 3.7, in which NV = 200 and € = —0.35 k7. As already observed in the
case of the monomer profiles, the initial power-law decay depends on the concentration
and, therefore, we can again conclude that such short chains do not display the asymptotic
regime expressed by the scaling exponents.

3.3 Comparison with Monte Carlo simulations

Since one of the main objectives of this work is to check the ability of the SCMF method in
producing reliable data on polymer adsorption, in what follows we will focus our analysis
on the behaviour of polymer adsorption as a function of the bulk concentration considering
only a chain length NV = 200. The comparison is done with data obtained from multi-chain
lattice Monte Carlo simulations as given in refs. [15, 23]. There are, however, intrinsic
difficulties in the comparison due to the different nature of the models. We have chosen
to identify the spacing of the cubic lattice defined in these references with our monomer
length /. With this identification, the obtained radius of gyration from both methods for
isolated chains are rather close, Ry(MC)/l = 9.37 as compared with R,(SCMF)/l =
11.29 (one can also compare the parameters of the fitting R,/l = 0.42N%5%* given in ref.
[24], with those given in Table 3.1). Furthermore, we will compare the monomer volume
fraction by simply multiplying our monomer concentration by the monomer volume 1.8613,
according to eq. (2.7). For chains of 200 monomers, the overlap concentration is obtained
from eq. (3.3), giving ¢*(SCMF) = 0.061 and ¢*(MC) = 0.051 [24]. In addition, the
adsorption energy is chosen to be the same in both models and equal to ¢ = —1k7. To
compare the profiles we have chosen that the layer 1 in the MC simulations coincides with
the external border of the adsorbing well. Obviously, this choice of monomer length and
excluded volume parameter can distort the one to one comparison of the data. However,
in our analysis we will center our attention in intrinsic properties of the layer, expressed
in the natural lengths in each case in order to be independent of the particular values
chosen. In addition, aiming at a finer comparison with MC data, we have introduced a
finer division in the simulation box, with layers of thickness 0.93 [, inside which the value
of the Lagrange multiplier field 7(z) has been calculated from the SCMF equation (2.32).

In Figs. 3.8, 3.9 and 3.10 we show the comparison between monomer fraction profiles
obtained from SCMF and MC simulations. In both methods the bulk monomer fraction
is ° = 0.0026, corresponding to a very dilute solution. Despite the fact that the models
used are rather different, the results for the total monomer volume fraction are very good,
as can be seen in Fig. 3.8. The difference in the volume fraction of monomers at contact
with the wall could be attributed to the fact that the value of the volume fraction in this
point is strongly dependent on molecular details of the models, as far as the monomers and
the potential well are concerned. Table 3.3 summarizes the volume fractions at contact
with the wall for four different concentrations.
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Figure 3.8: Comparison of the total monomer volume fraction profiles obtained from Single Chain Mean
Field (SCMF) and Monte Carlo (MC) simulations. Conditions of the system are: N = 200, ¢° = 0.0026
and ¢ = —1 kT. The dashed line corresponds to a power law —4/3. SCMF: triangles and MC: squares
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Figure 3.9: Comparison of the loop volume fraction profiles obtained from Single Chain Mean Field
(SCMF) and Monte Carlo (MC) simulations. Conditions of the system are: N = 200, ¢° = 0.0026 and
€ = —1kT. SCMF: triangles and MC: squares
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Figure 3.10: Comparison of the tail volume fraction profiles obtained from Single Chain Mean Field
(SCMF) and Monte Carlo (MC) simulations. Conditions of the system are: N = 200, ¢° = 0.0026 and
e = —1kT. SCMF: triangles and MC: squares

¢° | ¢5OMF; N =100 ¢9MF; N =200 MY N =200

0.0026 0.47 0.48 0.62
0.022 0.50 0.50 0.63
0.11 0.56 0.56 0.67
0.81 0.91 0.91 0.92

Table 3.3: Volume fraction at contact with the wall for different bulk monomer volume fractions. The
results correspond to an adsorption energy e = —1kT, being obtained by means of Single Chain Mean
Field (SCMF) for polymer lengths N = 100 and N = 200, as well as for Monte Carlo (MC) simulations
for chains N = 200
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Despite the numerical differences in the volume fraction at contact with the wall, MC
and SCMF results are consistent. In the case of SCMF values for N = 100 and N = 200,
they indicate that this magnitude is rather independent of the size of the chain and
only depends on the bulk concentration, for fixed adsorption energy . Furthermore, it
is interesting to observe that, with a smooth increase of the bulk concentration, both
models show that the surface is saturated at high bulk monomer concentration. However,
a detailed analysis of this effect lies beyond the scope of this work.

The straight dashed line plotted in Fig. 3.8 corresponds to a slope of —4/3 which is
the scaling prediction for N — oo, according to eq. (1.36). It is not obvious the existence
of a power-law regime (the exponent in the central region of the profiles would be near
the —2, and smaller near contact). With no doubt, the decay presented in both results is
steeper than the scaling predictions for self-avoiding chains. Although this decay would
seem close to that predicted by scaling arguments with ideal chains (the exponent is —2
for scaling laws with v = 1/2 and d = 4, given in eq. (1.38), c.f. section 1.2), one
should not infer that the decay is correctly given by Markovian mean-field calculations.
Effectively, the solution of the SCMF equations with Markovian overlapping chains shows
an even steeper decay for this chain length. The same kind of behaviour is observed
in the solution obtained with the Scheutjens-Fleer method [15]. This power-law regime,
therefore, depends on bulk concentration for such moderately long chains, very far from
the asymptotic limit where the scaling results would be valid. This effect has already
been discussed in refs. [23, 24] and our data is in agreement with that fact.

In Fig. 3.9 we compare the SCMF and MC results for the loop monomer volume
fraction profile in logarithmic scale. MC data suppresses the value at contact with the
wall, attributed to trains. We observe that again, the agreement is very good, although
the SCMF produces a slightly thicker layer. It is also noticeable that no power-law regime
is identifiable in none of the data sets. Although scaling predicts a power-law decay of
—4/3 for this quantity near the wall, the observed behaviour in the numerical data is in
agreement with a faster initial decay, close to a power —3.

Fig. 3.10 represents the volume fraction profiles of monomers belonging to tails in
a semi-logarithmic scale. In this profile, the differences between the SCMF and MC
results are more pronounced. The decay in the distal part of the layer is close to a single
exponential decay in the MC data. SCMF data is affected by statistical inaccuracy at
the low density part of the profile, but it is rather obvious that the data shows a much
more slow decay. The exponential fit ¢; = A exp(—az) to the distal region of the tail
layer gives an exponent « = —0.244 for the MC data, and —0.160 for the SCMF. This
difference can be analyzed from another perspective, taking into account the fact that
this exponent has to be inversely proportional to the characteristic size of the tails which
can be defined as ZNE’/5. Thus, we can write
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3/5
aMC) 0244 _ 153 o (Nt(SCMF)> (3.9)

a(SCMF) — 0.160 N,(MO)

where the Flory exponent 3/5 has been used since the bulk is very dilute and there
is no screening of the excluded volume correlations. From this equation we can infer
that N(SCMF)/N;(MC) ~ 2.03, which means that the size of the tails predicted is
approximately twice that of the MC data. For consistency, we have verified, in addition,
that our tail profile for NV = 100 agrees very well with the tail profile obtained from MC
data but with NV = 200, confirming our estimation of the size of the tails. This discrepancy
of a factor near 2 is surprising. Although the statistics that we have in our method in
this part of the profile is rather poor, due to the fact that the differences between the
tendencies exist all over the profile, we think that it cannot be attributed to the lack of
statistics. Thus, assuming the correctness of the MC data, we attribute the discrepancy
in the size of the tails, on the one hand, to the difference between the radius of gyration
which is roughly of a factor of 1.53. On the other hand, MC data at contact with the wall
is larger by a 20%, hence negatively contributing to the amount of material in the tail
layer. In any case, the contribution of the tail layer to the profile is small except near the
edge of the layer, where the overall density is small. Thus, this discrepancy is not relevant
for the overall density profile, although has its importance as far as the description of the
structure of the layer is concerned.

In table 3.4 the characteristic lengths of the layer for four different concentrations are
shown

¢ | A NN ¢ R,

0.0026 MC 479 3.85 319 835 91.50 9.76
SCMF 753 445 4.26 11.50 121.53 11.29

0.022 MC 471 536 3.58 991 18.44 9.76
SCMF 760 691 441 14.88 2449 11.29

0.11 MC  4.04 733 4.09 10.77 556  9.76
SCMF 6.32 10.66 5.21 1591 7.33 11.29

0.81 MC 344 793 4.62 9.56 1.25 9.76
SCMF 538 13.52 6.23 16.19 1.65 11.29

Table 3.4: Characteristic dimensions of the adsorbed layer, in units of [, obtained from Single Chain
Mean Field (SCMF) and Monte Carlo (MC) methods, for various bulk volume fractions.
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The thickness of the layer has been calculated to be A = 4.45 while for the tails its value
rises up to A\; = 11.50/, which is close to the value of the radius of gyration of the chain,
11.29(. Notice also that the crossover length z* = 7.531[ is larger than the thickness of
the layer, corresponding to a starved regime. Thus, the profile in the central and distal
regions is dominated by one single length, namely A [25] (or, equivalently, z*). In the
limit N — oo the crossover length in the central regime is z* while )\ is important only
near the cutoff of the layer in the distal region, since z* << A [5, 6].

Figs. 3.11, 3.12 and 3.13 correspond to a higher volume fraction ¢° = 0.11, above
the overlap concentration, considering the same chain length and adsorption energy as
before. The general analysis comes along the same lines as in the previous case. The total
monomer volume fraction of the adsorbed chains obtained from SCMF slightly deviates
from the MC results in all the regime. This fact is rather obvious in the tail monomer
profile, according to Fig. 3.13. This fact is reminiscent of non-screening of the excluded
volume correlations in semidilute solution in our methodology, since the major part of
the tail layer is embedded in the bulk fluid at this concentration. Effectively, the bulk
correlation length has been calculated from eq. (3.2) obtaining & = 7.33(, while the
thickness of the layer is A = 10.661 (see Table 3.4). The thickness of the tail profile is
in turn \; = 15.911. Therefore, it seems rather clear that as the concentration increases,
the lack of screening tends to slightly deviate the profiles from the MC simulation data,
yielding thicker layers. Finally, the calculated value of the crossover length is z* = 6.321.
Notice that £ is very close to z* which indicates that this concentration is very close to
¢1 = vpc; at which the loop layer enters in contact with the bulk polymers.
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Figure 3.11: Monomer volume fraction profiles obtained from Single Chain Mean Field (SCMF) and
Monte Carlo (MC) simulations. Conditions of the system are: N = 200, ¢° = 0.11 and € = —1kT. The
dashed line corresponds to a power law —4/3. SCMF: triangles and MC: squares
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Figure 3.12: Loop volume fraction profiles obtained from Single Chain Mean Field (SCMF) and Monte
Carlo (MC) simulations. Conditions of the system are: N = 200, ¢° = 0.11 and ¢ = —1k7. SCMF:
triangles and MC: squares
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Figure 3.13: Tail volume fraction profiles obtained from Single Chain Mean Field (SCMF) and Monte
Carlo (MC) simulations. Conditions of the system are: N = 200, ¢° = 0.11 and ¢ = —1kT. SCMF:
triangles and MC: squares

In general one can say that SCMF and MC results increasingly deviate as the concen-
tration increases and the behaviour of MC chains tend to be more ideal as the concentra-
tion approaches the melt. To illustrate this point, in Figs. 3.14, 3.15 and 3.16 we present,
respectively, the dependence of the total, loop and tail root mean square (rms)thickness
of the adsorbed layer with the bulk volume fraction as obtained from SCMF and MC
methods. The thickness of the loop layer is more insensitive to the variations of the bulk
concentration, and shows a good agreement in all the studied regimes, as it is seen in Fig.
3.15 (Notice that the scale is finer than for the tail layer, for instance, and, in addition,
there is a shift of about one [ due to the different thickness of the adsorbing well in SCMF
and MC calculations). The thickness of the tail layer, in turn, increases with concen-
tration, essentially due to the progressive competition between chains to cover the same
surface, which induces a decrease in the adsorption energy per chain. The increase of A
and \; with bulk concentration in our model is much more important than that found in
MC calculations, especially beyond the overlap concentration, when the majority of the
distal part of the layer is inside the homogeneous bulk. It is interesting to notice, how-
ever, the decrease of the thickness for concentrations above ¢*, due to the shrinking of the
polymers as concentration increases (reduction of the blob size). Again, the non-screening
of the excluded volume correlations do not produce such a decrease in the SCMF data,
although the increase is slower and, in the case of the tails, even tends to a plateau.
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Figure 3.14: Variation of rms thickness as a function of bulk volume fraction. Conditions of the
system: N = 200 and € = —1kT'. Single Chain Mean Field results (SCMF) are represented by triangles
and Monte Carlo results (MC) by squares.
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Figure 3.15: Variation of loop rms thickness as a function of bulk volume fraction. Conditions of the
system: N = 200 and € = —1 k7. Single Chain Mean Field results (SCMF) are represented by triangles
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Figure 3.16: Variation of tail rms thickness as a function of bulk volume fraction. Conditions of the
system: N = 200 and ¢ = —1kT'. Single Chain Mean Field results (SCMF) are represented by triangles
and Monte Carlo results (MC) by squares. The value of ¢*, obtained from SCMF method, is equal to
0.061.

To end this section, we will present SCMF results of the adsorbance and we will
compare them with simulation data available. The adsorbance has been defined as

r= /0 " al2) dz (3.10)

Thus, the defined adsorbance has dimensions of number of monomers per /2. The adsor-
bance of loop and tail monomers can be obtained from the same expresion, replacing the
corresponding adsorbed monomer concentration.

In Fig. 3.17 we present the adsorbance as a function of the concentration, for the
conditions of chain length and adsorption energy previously used. We observe a good
agreement between both series of data. The increase of the adsorbance starts near the
crossover concentration, where the competition between the polymers to cover the surface
causes them to prefer more elongated conformations, with larger loops and tails. This
is the same effect that causes the thickness of the layer to increase, as has already been
previously mentioned.
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Figure 3.17: Variation of the adsorbance (number of monomers per [?) in function of bulk volume
fraction. Conditions of the system: N = 200 and ¢ = —1kT'. Single Chain Mean Field results (SCMF)
are represented by triangles and Monte Carlo results (MC) by squares

3.4 Comparison with SCF methods based on Marko-
vian chains

In this section the effect of the use of Markovian (Gaussian) chains in the solution of the
SCMF equations and its relationship with other self-consistent field methods, in particular
with Scheutjens and Fleer [1], will be analyzed. In all cases we have used the same set of
parameters as before, N = 200, ¢ = —1k7T and different bulk monomer volume fractions.
For the SCF model, the data correspond to the same value [ for the monomer length,
identifying the parameter y; with the adsorption energy ¢ of our calculations [25, 26].

Figs. 3.18.a and 3.18.b show, respectively, loop and tail monomer volume fraction
profiles from SCMF equations, using overlapping chains in the sampling, in comparison
with the SCF data of Scheutjens and Fleer, at very dilute solution ¢° = 0.0026. In the
case of tail monomer volume fraction profiles, we observe that the initial value differs from
the SCMF calculations because the definition of the tails, in the first layer, is different but
the rest of the layer agrees very well with the numerical SCF calculations in almost three
decades. Notice also that we have plotted the previous SCMF results with self-avoiding
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chains as well as the MC results, which follow a completely different trend. It is hopeless
trying to identify a power-law regime in the figure, but it is obvious the faster decay
shown by the markovian results (SCMF as well as SCF) with respect to the self-avoiding
results, also pointed out by Bitsanis and collaborators [15, 23|. The tail layer profile is
given in Fig. 3.18.b. In this case, the agreement between Markovian SCMF and SCF is
restricted to one decade, due to the inaccuracy in our profile caused by the low value of
the concentration in the distal part of the layer. In addition, the decay of the tail profile
is faster for markovian chains than for self-avoiding. Effectively, an exponential fit of the
form ¢, = Aexp(—az) gives a ~ 0.279 for the Markovian SCMF result and o = 0.313 in
the SCF case, which are very close.

For a semidilute solution with ¢° = 0.11, the agreement between the structure of the
loop layer as resolved by Markovian SCMF and SCF is again very good in at least four
decades, according to Fig. 3.19.a. As before, there is some deviation in the initial decay,
probably due to the essential difference between the models and the lack of representative
data in this proximal region. Again, the decay is much faster than for the self-avoiding
case. The tail profile (Fig. 3.19.b) shows also deviations in the direction of a thicker layer.
Since in this case excluded volume correlations along the chain are disregarded by both,
the SCF model of Scheutjens and Fleer and our Markovian SCMF, the reason for the
deviation has to be found in a lack of statistical meaning of the conformations chosen for
the evaluation of the profiles. A more representative sampling should be used to obtain a
better description of the outer part of the layer.
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Figure 3.18: Loop (a) and tail (b) monomer volume fraction profiles corresponding to markovian and
self-avoiding walk (SAW) chains. Conditions of the system: N = 200, ¢° = 0.0026,& = —1 ¥T. Markovian
results are obtained from Scheutjens-Fleer method (SCF) (circles) and Single Chain Mean Field (SCMF)
method (triangles). In the case of self-avoiding walk results (SAW), they are obtained from Monte Carlo
method (MC), dashed line, simulations and Single Chain Mean Field method (SCMF), full line.
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Figure 3.19: Loop (a) and tail (b) monomer volume fraction profiles corresponding to markovian and
self-avoiding walk(SAW) chains. Conditions of the system: N = 200, ¢° = 0.11, ¢ = —1kT. Markovian
results are obtained from Scheutjens-Fleer method (SCF) (circles) and Single Chain Mean Field (SCMF)
method (triangles). In the case of self-avoiding walk results (SAW), they are obtained from Monte Carlo
(MC), dashed line, simulations and Single Chain Mean Field method (SCMF), full line.
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3.5 Conclusions

The main purpose of this chapter has been to present and validate the results obtained
from SCMF method for the case of the adsorption of polymers at flat surfaces. On the
one hand we have been able to show the efficiency of the importance sampling method,
introduced in chapter 2, applied in the framework of the known Single Chain Mean Field
theory for the problem of polymer reversible adsorption. On the other hand, from our
methodology, it has been possible to obtain results corresponding to self-avoiding and
Markovian chains that have been compared, respectively, with other known methodologies
as Monte Carlo simulations or the Markovian self-consistent field method of Scheutjens
and Fleer. We will briefly discuss both points in what follows.

The advantage of the importance sampling is that all the samples of the one-chain
configurational space contribute to the averages with the same weight, inducing to a
reduction of the number of samples required for a problem such as polymer adsorption,
characterized by a narrow well near a repulsive wall. Our results have been obtained with a
reduced number of configurations (2x10*), that can be handled by common PC’s. To relax
the probability distribution towards the desired bias, we have introduced a Metropolis rule,
viewing the configurational file as a pseudo-system of independent chains in a biasing field.
This procedure is clearly rather time-consuming although efficient enough. In addition,
the procedure permits to arrive to the optimal sampling for each situation, something that
has allowed us to a drastic reduction of the computer memory used in our calculations.
However, other methodologies, such as the Rosenbluth chain regrowth algorithm [27] are
actually being used in this context, with much less intensive use of CPU time [28]. It is
worth mentioning again that the advantage of our SCMF field calculations with respect
to true many-chains MC simulations is that the topology of the configurational space is
much smoother in the former than in the latter and, furthermore, that the sampling file
can be used in many different physical situations, not being necessary the reconstruction
of the sampling in each case.

As far as the results are concerned, we have shown that the agreement between the
SCMF results with self-avoiding chains and MC simulations is very good, despite the
disparate nature of the models used in each case. We have obtained the same density
dependence as found in MC simulations in dilute as well as semidilute solutions, in se-
veral magnitudes such as monomer density profile, loop density profile, adsorbance, etc.
However, the major drawback of our method is the lack of screening of the excluded
volume correlations along the chain. This fact leads to swollen chains under all situations,
independently of the local monomer volume fraction. This effect is especially noticeable in
homogeneous concentrated solutions, where the chain statistics is physically expected to
be Gaussian (ideal), although SCMF results give self-avoiding statistics, typical of dilute
solutions. Hence, tail monomer density profiles are generally thicker than found in MC
simulations and, furthermore, the obtained thickness of the layer is larger than in MC,
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especially for semidilute solutions. This fact has already been recognized in the literature
[20, 22|, and the explicit consideration of the chain excluded volume depending on the
particular configuration of the chain is clearly a way to partially introduce the effect of the
screening of the excluded volume correlations. This particular point will be analyzed in
detail elsewhere. In general, the results of the SCMF theory give a quantitative description
of the behaviour of inhomogeneous polymeric systems.

Last but not least, we have compared the results of our mean-field approach when
overlapping chains are used. This procedure renders our approach conceptually equiva-
lent to the Markovian SCF methodology, based on Edwards propagator, widely used in
polymer chemical physics. Effectively, the profiles predicted by matching the parameters
of the model, with no adjustable parameters, is excellent. Only the distal part of the
adsorbed layer is affected in our case of a lack of representative statistics, and thus indu-
cing to deviations in the tail profile in the last part. The formal relationship between the
SCMF and the SCF methods based on ideal chain statistics has been shown [20, 22]. Here
we have shown that the fundamental difference between the two methods is the explicit
consideration of the correlations along the chain in the former. The SCF methods based
on Edwards propagator [29] make explicit use of the Markovian character of the chain
[30], the monomers interacting only with the self-consistent field. On the other hand, the
SCMF technique with self-avoiding configurations takes into account the non-Markovian
nature of the chain with excluded volume interactions. Of course, when this point is re-
laxed by allowing the generation of chains without internal excluded volume interactions,
the Markovian character of these conformations is recovered and, therefore, Markovian
SCMF and SCF results completely agree.

By our analysis, it is thus made clear the nature of the SCMF calculations and the
importance of the one-chain excluded volume correlations in the problem of polymer ad-
sorption, with relatively long chains. Thus, markovian SCF calculations correspond to
our SCMF theory with overlapping chains. The behaviour predicted in this way quan-
titatively and qualitatively differs from that observed in the MC simulations. On the
other hand, the agreement between our SCMF calculations with self-avoiding chains and
the MC simulations indicate that the structure of the layer is mainly determined by the
excluded volume correlations along one single chain, the many chain correlations being
not so important. This behaviour has the roots in the local swelling of the chain, cor-
rectly accounted for by the SCMF equations. However, in the actual formulation of the
theory, it is also clear that the screening of the excluded volume correlations by the local
monomer density is not properly described.

Finally, despite the good agreement between SCMF with self-avoiding conformations
and MC results for polymer adsorption, it is expected that the former leads to a classical
behaviour in those properties that strongly depend on long wave-length correlations in-
volving many chain behaviour, as in the vicinity of the critical points of phase separation.
Obviously, this is due to the essential mean-field nature of the SCMF free energy.
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3.6 Appendix A

3.6.1 Periodic boundary conditions

Monte Carlo simulations is the computational method of choice because it helps us to
relate the equilibrium properties of polymeric systems (e.g. chains conformations, phase
behaviour) to the atomic structure of these molecules. Therefore, simulations are a useful
aid in the interpretation of experimental data and in addition to allow us to gain a better
insight into the validity of theoretical models.

However, simulations have their limitations as, for example, computer speed and me-
mory. Although computers are more and more capacity, in the most of simulations only
a small sample of particles (only a few thousand of them) can be used, being this number
many orders of magnitude smaller than the ~ 10% typically, found in experimental sam-
ples. Such restrictions lead to finite size effects, that is, spurious artifacts and systematic
discrepancies compared to the bulk limit. Thus, in the case of simulating bulk phases,
the main problem is the ratio of the particles at the surface compared with the size of the
system. Therefore, in order to simulate bulk phases it is necessary to choose boundary
conditions which mimic the presence of an infinite bulk surrounding our system [16].

In this method the primitive cell, containing N particles (in our case the particles
are polymer chains), is considered as the primitive cell of an infinite periodic lattice of
identical cells (Fig. 3.20), so that whether a particle or a polymer chain is moved in the
primitive cell, its own periodic image move in the same way in the other cells, thus the
density is kept constant in all the cells.

Application of this method leads to a high degree of correlation not present in a ma-
croscopic bulk system, and this correlation can be much more important if the system
is too small. Moreover, chain/chain interactions may occur between the chain and its
images, which also introduces a high degree of correlation. Therefore, in practice are only
considered short-range interactions. In that case all intermolecular interactions are trun-
cated beyond a certain cutoff distance r., whose choice will depend on the model system
under study [16].

It is also known the method of the minimum image convention. In this case, the inte-
ractions of a particle with its images are considered until the minimum distance between
them.
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Figure 3.20: Tlustration of periodic boundary conditions in the case of adsorption of polymers. The
part of the conformation (dotted line) that passes the boundary plane is re-inserted in the opposite plane

as a continuation of the original chain
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Chapter 4

Adsorption onto colloidal particles

Mixing colloids and polymers is a common process in the preparation of complex materials
[1]. Many shear thining fluids in paints and food industry are essentially such mixtures,
at or out of equilibrium. Long polymers are also sometimes used to promote protein
crystallisation from solution [2].

Adding polymers to a colloid solution is a versatile way of controlling the stability of
the suspension, as has been shown by extensive fundamental experimental research. There
are two main classes of systems depending on the sign of polymer/colloid interaction. In
the case of repulsive polymer/colloid interaction the polymers induce an effective so-
called depletion interaction between the colloids. Early studies describe large colloids as
compared to the polymer size (or polymer correlation length in solution). In the fifties
Osawa [3] presented a theory for the depletion interaction in mixtures of small and large
colloids. Later, this was extended to colloid/polymer mixtures with proper account of
the polymer structure by Joanny et al. [4]. Since then, the phase diagram of this system
was considered more closely only by the liquid state theorists [5]. Many experimental
data were also produced, among others, in the group of Poon and Pusey (Edinburgh)
[6]. The equilibrium properties of repulsive systems with large colloids seem rather well
understood.

The opposite limit of small colloids was first addressed in a seminal paper by de Gennes
[7], who recognised that the interactions are weak, as it is easy to incorporate a small
colloid in a polymer coil. Recently the colloid/polymer and colloid/colloid interactions
were carefully analysed in a field theoretical approach by Eisenriegler and co-workers [8].
They stress that colloid/colloid interactions induced by the polymer are long ranged and
saturate at contact. Moreover, they show that the variations of the colloid/colloid virial
coefficient are non-monotonic with polymer concentration [9]. Recent work by Sear [10]
and by Fuchs [11], the latter using integral equation methods, describe the phase diagram
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of such mixtures in Mean-Field approach. Erukhimovich [12] is currently developing a field
theoretical description together with A. Johner aiming at a widely accepted description.

Systematic experimental studies of the adsorbing case were undertaken twenty years
ago by Cabane [13]. The understanding of polymer adsorption on flat surfaces was ini-
tiated earlier by Silberberg [14] and de Gennes [15]. An early model by Alexander [16]
applies these ideas to the case of large spheres. A systematic description of curvature e-
ffects for adsorption on a single sphere is proposed by Birshtein and Borisov [17] for ideal
chains and Marques and Joanny [18] for excluded volume chains, the latter also address
surface fractality. Subsequently Aubouy et al. [19] stressed that a sphere of radius R,
small enough to be covered by less than one chain of contour length N, will carry two
long polymer tails, with a size of order N. Following this idea a small sphere satisfies
(R/1)¥' < N. As in earlier work the overall layer thickness (cut off length for tails) is
essentially fixed by the bulk chemical potential. The small sphere criterion by Aubouy
thus corresponds to a radius where loops start feeling curvature, in the picture of a layer
decomposed into a loop and tail sublayers [20, 21].

Despite all the body of knowledge developed in recent years on polymer adsorption,
little is known about the internal structure of the adsorbed layer, to the light of the recent
developments, and how the curvature affects the structure. This is in fact an important
analysis prior to the study of mixed systems colloid-polymer. The methodology developed
in previous chapters is suitable to the analysis of the problem of polymer adsorption onto
spherical (colloidal) particles of different sizes, from solutions of relatively short polymers,
close to those found in many applications. A more theoretical analysis of the colloid-
polymer mixture will be done in the next chapter.

Therefore, in this chapter we will apply the SCMF theory with the importance sam-
pling method, the case of polymer adsorption onto isolated spherical particles of different
radii. The very interesting problem of the bridging interaction between different colloidal
particles will be addressed in a future work. The differences of the structure of the layer,
adsorbance and other properties will be studied as functions of the relative size between
the sphere and the polymer in the bulk as well as of the adsorption energy.

4.1 Numerical calculation details

To solve the SCMF problem, we have considered off-lattice polymers in a cubic box,
adsorbing onto a spherical surface whose center is located at the center of the box. Two
different polymer lengths will be considered, namely chains of N = 100 monomers in a box
of size L = 111.61 + 2R, and N = 200 monomers in a system of L = 223.2[1 + 2R, where
[ is the monomer diameter and R is the radius of the sphere. Since periodic boundary
conditions are considered, the size of the box has been chosen such that the chains can
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never reach two images of the sphere at one time and adsorption on individual particles
can be described. The adsorbing potential is here represented by a square well of width
d and depth ¢ at the surface of the solid sphere. The internal energy term in the free
energy of the SCMF problem shown in eq. (2.9), is thus given by the expression

N

Uly, es(x), ()] = Ueat[y] = 6/ drf(d—|r— R[) 3_d(r - ri[7]) (4.1)

=1

where monomer-monomer, monomer-solvent as well as solvent-particle interactions are
set to zero. This case represents an athermal solvent. In eq. (4.1), 7 = |r| is the distance
to a given point from the center of the sphere, in which has been located the origin of
coordinates. The thickness of the well is d = 1.86/ and different values of ¢, —0.35 kT and
—1kT, have been considered in this work to describe strong adsorption.

As before, the chains are modeled as pearl necklaces of non-overlaping beads of dia-
meter [, whose centers are separated a fixed distance equal to its diameter. The excluded
volume of the whole chain is taken as constant and equal to N-times the excluded vo-
lume per monomer. This excluded volume is again v, = 1.86/* where the overlap of
the exclusion of neighbouring monomers in the chain has been estimated. Due to the
symmetry of the present problem, one can suppose that the mean-field constraint (r)
depends only on the distance to the center of the sphere, . The size of the box chosen is
large enough so that 7 reaches the bulk value far before the boundaries of the box are met.
Therefore, the space around the sphere has been divided from the surface into concentric
layers of thickness 1.86/, inside which 7 has been considered as constant. Although the
volume of each layer is not constant, the smaller one, located at the surface of the colloidal
particle, is sufficiently large to correctly satisfy the constraint equation, eq. (2.6).

The Monte Carlo evaluation of the configurational space integrals of eq. (2.17) has
been done following the same lines as in the case of the plane wall, analyzed in the previous
chapter. In this case, the configurational file contains the location of every monomer of
non-overlapping chains that do not penetrate the spherical particle, stored together with
its bias weight, w[y]. The used number of chains is the same as before, 2 x 10*. In the
same spirit as in the case of the plane wall, we have chosen to gather the chains of the
sampling to the most relevant part of the phase space by choosing a bias field given by
the Boltzmann weight

w[ry] ~ e_Hmf[’Y]/kT (42)

for given suitable physical conditions of adsorption energy ¢ and bulk monomer fraction
#°. The Metropolis rule [22] is used to accept o reject a given change in the conformation
of every chain, which are mutually independent in the mean field approach of this work.
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The same global indicators, average energy and average number of adsorbed monomers,
are used to know wether the system is equilibrated or not after many MC steps. An
example of both magnitudes as a function of the number of MC steps is presented in
Figs. 4.1 to 4.4, for two values of the sphere size (R/l = 1.36 and 55.3) with N = 100,
e = —0.35kT and ¢° = 0.001, in both cases. The fluctuations obtained in the case of
the smallest sphere during the equilibration (Figs. 4.1 and 4.3) are larger than in the
other sphere size (Figs. 4.2 and 4.4). This difference is due to the fact that the effective
adsorption energy decreases if the available area is reduced. In the case of R/l = 55.3
once a polymer has been adsorbed it is more difficult to be desorbed from the spherical
surface than in the case R/l = 1.36 during the MC process. Hence, more MC steps are
necessary to get the system equilibrated because of the energy barriers to be overcome.
In addition, the validity of a particular sampling for a given problem is here conditioned
not only by the disparity between the bias and the physical conditions to be described,
but also by the changes in the size of the sphere. Although it is possible to use the same
bias with different sphere sizes, eliminating the conformations that would penetrate the
sphere, it would be necessary to eliminate a vast majority of the chains, which would
be located in a narrow region at the surface of the sphere, due to the bias process used.
Consequently, the use of the same sampling in different sphere sizes makes the importance
sampling methodology impractical.

4.2 Structure of the layer adsorbed onto a colloidal
particle.

In comparison with polymer adsorption on flat surfaces, adsorption on spherical surfaces
introduces a new length scale into the problem, that is, the radius of the sphere R.
Therefore, the structure of the layer will depend on the relative values of this length, the
overall size of the chain R, the bulk correlation length £ (eq. (3.2)), and characteristic
lengths of the adsorbed layer such as the crossover length z* (eq. (3.5)) and the layer
thickness A\ (eq. (3.4)). We will pay special attention to polymer adsorption from a very
dilute solution, which makes the penetration of the layer by free polymer to be irrelevant.
Thus, finite size effects of the chains are more noticeable due to the fact that the outer
tail layer is not embedded in the bulk solution [23, 24]. Therefore, the bulk correlation
length, which is a length scale much larger than any length related to the polymeric layer,
can be ignored in the analysis [24].

Polymer adsorption on spherical surfaces from dilute solutions presents different sce-
narios from those of adsorbed layers on infinite planar surfaces, described in the chapter
3. In spherical surfaces, the structure of the adsorbed layer, not only depends on the local
curvature of the interface but also on the finiteness of the particle, which will eventually
limit the number of chains that can be adsorbed. These scenarios are described below.
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Figure 4.1: Variation of the energy of the configurational file, E = — 3~ Hpz(7), with Monte Carlo
(MC) steps in the case of adsorption of polymers on a sphere of radius R/l = 1.36 with N = 100 and
e = —0.35.
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Figure 4.2: Variation of the energy of the configurational file, E = — 37 Hp,z(7), with Monte Carlo
(MC) steps in the case of adsorption of polymers on a sphere of radius R/l = 55.3 with N = 100 and
e = —0.35.
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Figure 4.3: Variation of the average number of adsorbed monomers of the configurational file with
Monte Carlo (MC) steps in the case of adsorption of polymers on a sphere of radius R/l = 1.36 with
N =100 and € = —0.35.
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Figure 4.4: Variation of the average number of adsorbed monomers of the configurational file with
Monte Carlo (MC) steps in the case of adsorption of polymers on a sphere of radius R/l = 55.3 with
N =100 and € = —0.35.
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First, if the size of the sphere is larger than the thickness of the layer, the adsorbed
chains lie in a region of thickness A << R only slightly affected by the curvature of the
interface, so that the same structure as in an infinite plane is expected from the scaling
point of view [23]. In that case, we will observe a loop region crossing over an outer tail
region at a distance z* from the solid surface [23, 24]. The value of z* is this region is
very close to the value 2}, corresponding to a planar interface under the same physical
conditions of adsorption energy and bulk density. One can then write

2F o~ gk~ [N/ (4.3)

This length 2z} will be further used to compare with the actual crossover distance z*
obtained for a curved interface. Moreover, since chains are not very long, we will always
remain in the so-called starved regime [24], where z* and A are comparable. Hence, no
power-law behaviour of the tail layer will be observed, but an exponential decay with the
scale of A\. In an spherical geometry the adsorbance is given by

_ Lo e
= RQ/R drr® cq(r) (4.4)

In this regime, I' is dominated by the loop layer, if strong adsorption conditions are
satisfied. Effectively, the assumption of a self-similar profile for R < r << (R+ z*) yields
a monomer density profile [25, 23] that scales as [%/3¢(r) ~ 1/(r — R)*/® that makes the
integral in eq.(4.4) be dominated by the lower integration limit. Thus [26],

T~ — (4.5)

being d the dimensionality of space. In addition, many chains cover the spherical surface,
since its extent is larger than the surface covered by a single chain. Second, if 2} < R < A,
the distal part of the adsorbed layer will be sensitive to the curvature. Since, by definition
of z;, this distal region is dominated by tails, the curvature effects are going to affect
part of the tail layer. Effectively, only a few tails will go further than a distance R
from the surface, adopting there a mushroom-like structure with little overlap and hence
no self-similar profile beyond R. However, due to the fact that this part of the layer
is subdominant, the overall structure remains unchanged. Effectively, assuming that a
self-similar structure would exist up to the onset of curvature effects in the layer (the
condition z¥ << R should in fact be required), one can estimate that one tail will leave
the inner layer per R? of area, according to the scheme in Fig. 4.5, forming non-overlapping
mushroom structures. According to this argument, there will be a number of long tails
in the outer region of the order of 1. However, the adsorbance I is still dominated by the
inner loop layer and is unaffected by the curvature, according to the argument given for
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the previous case. Therefore, as far as scaling considerations are concerned, this second
scenario is merely a crossover between a layer with properties of a planar surface and the
next scenario.

Figure 4.5: Representation of the adsorbed polymer layer on a particle whose radius R is 2}, < R < A,
where 2* and 2, is the crossover distance corresponding to the adsorption on spherical and planar surfaces,
respectively, and A is the thickness of the layer of order the size of the polymer R,.

Third, if R < 2 the loop layer should merge into the space region r > 2R where the
curvature is relevant. However, large loops of ¢ monomers with /¢g” >> R, v being the
Flory exponent 3/5, are not likely to be found due to the finite size of the adsorbing surface.
Effectively, the equilibrium loop and tail distribution is reached by the competition of
two dynamic processes, namely a) two loops fuse in a larger one by the release of an
adsorbed monomer (or train) from the surface, and b) a large loop breaks into two smaller
by adsorption of at least one loop monomer. Similarly occurs when pairs loop-tail are
involved. Thus, for small loops the surface is locally seen as flat and process a) and b)
are comparable. However, for a couple of large loops, the finite size of the surface makes
the process a) to be more likely than the process b). The repetition of the process and,
hence, the growing of such large transient loop will end up in one chain end, becoming
a long tail. Thus, in the outer part of the layer, mostly tails and a number of transient
large loops of the order of 1 are expected. Therefore, the loop layer in this small sphere
regime is confined to a region of thickness R, having to be the actual crossover distance
as z* ~ R < 2% [27]. Thus, we expect that the tails will start growing larger as the radius
decreases, and the number of adsorbed chains per particle will be close to 1.

Finally, for very small particles R < 2}, the adsorption energy per chain is so small
that strong adsorption no longer takes place.
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The third situation is the most interesting from a theoretical point of view since
the large sphere case R > A ~ R, reduces to the planar interface adsorption, largely
studied in the literature [21, 24|, and analyzed here in the previous chapter. The small
sphere case, R < z;, has an additional importance in applications such as flocculation,
where long polymers can wrap several particles at one time, for instance [28, 29, 27, 30].
It is important to realize that the only two scaling regimes that can be described in
strong adsorption are governed by the ratio between the particle radius and the crossover
distance z; which constitutes a critical radius corresponding to each chain size. Here,
scaling arguments suggest that if R ~ 2z the adsorbance due to loops in the inner layer
is comparable to the amount of polymeric material found in the outer part of the layer,
mostly beared by long tails,

Iy(R.) =T4(R,) (4.6)

To see this, consider a very small particle wrapped by one single polymer coil. The
adsorbance due to the loop layer is thus dominated by the material due to small loops
and trains very close to the surface and, thus, insensitive to the curvature. Hence, the
adsorbance is given by the saturation of the surface

1

Do~ (4.7)

where d is here the dimensionality of space. For the tail outer layer, we can guess that
will bear the rest of the material, due to the fact that there is only one single polymer
wrapping the sphere (in fact, this scaling argument only requires that there are a few
chains, of the order of 1, adsorbed onto the small particle). Hence,

N N 1
Ri—T LY Rat T jaet

Therefore, imposing the condition given in eq. (4.6), we arrive at the conclusion that

(4.8)

R, ~ | NY/@=1) (4.9)

This scaling relation is the same found for the crossover distance 2, in planar geometries
[23], according to eq. (4.3). This fact reinforces the assumption that 27 is the only relevant
length for strong adsorption from a dilute bulk, for both a planar interface as well as for
curved surfaces. Other authors [19] have also described the three scenarios mentioned in
this section. Their analysis is based on the consideration of an entropic contribution due
to the loop distribution, S(n), without making an explicit distinction between loops and
tails. Thus, according to these authors, the crossover region z; < R < A is described as
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a region where long loops grow in the outer region, which differs from our point of view
which states that the outer region, where the curvature is important, is always dominated
by tails if the bulk is dilute. The SCMF calculations shown in this chapter are in support
of this point of view.

4.3 SCMF results for adsorption onto spheres

We will focus our attention to the adsorption of chains of N = 100 monomers, modelled as
self-avoiding chains, whose radius of gyration in a dilute bulk is found to be R, = 7.45[ (see
Table 3.1). We will mainly work in conditions of strong adsorption being the adsorption
energy per monomer ¢ = —(0.35k7". Taking into account that in a very dilute polymer
solution the chain finite-size effects are more noticeable [23, 24|, the value of the bulk
monomer volume fraction considered is ¢° = 0.001 < ¢* ~ N~%3 (¢* ~ N~!, for
Markovian mean-field). The overlap volume fraction is ¢* = 0.11, as follows from eq. (3.3)
and the fact that ¢* = v,c*. Effectively, under these circumstances the bulk correlation
length is much larger than the overall size of the polymer and will not be a relevant length
until the overlap concentration is reached. Moreover, since the thickness of the layer scales
as the radius of gyration of the chain, for fixed chain lengths we will be only concerned
with the variation of the internal structure of the adsorbed layer and its properties as the
sphere radius is changed.

The Fig. 4.6 shows the total monomer volume fraction profile for sphere radii ranging
from R = 1.36/ to R = 55.3(, as a function of the distance to the center of the sphere.
We have also included the profile obtained for the case of adsorption on plane surfaces,
under the physical conditions mentioned above. The first aspect to be noted is the good
agreement existing between the profile for plane surfaces and spheres of a radius much
larger than the radius of gyration of the polymer in the bulk as, for example, in the case
of a sphere of radius R = 55.31 > R, = 7.45!. From a numerical point of view, we will
consider that the curvature starts to affect the layer when the thickness of the tail layer
(M) is of the order of R. Note that \; ~ R, ~ 2\, (being A, the root mean square
thickness of the corresponding adsorbed layer on flat surfaces), which makes this criterion
to agree with the scaling description presented here as far as the different regimes are
concerned.

The profiles look very similar already for R > 18.1/, and start to deviate from the
plane surface results for R < 8.8/ ~ R,, being this value R = 8.8 similar to A, ; = 8.171
obtained in the adsorption on flat surfaces in the same conditions (see Table 4.1). For
a major clarity, we show in Fig. 4.7 the same profiles but in logarithmic scale and as
functions of the distance to the surface. For radii R < 8.8l, we observe a progressive
decrease of the volume fraction at contact. To give an interpretation of this result, in Fig.
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4.8 we show the average energy per adsorbed chain (Hy,f)adsorbea- We observe that in all
cases studied, chains are strongly adsorbed, being [(Hy,)adsorbed| > k1. However, as the
radius decreases, an increase of the average energy per chain is seen indicating, on the
one hand, the onset of curvature effects on the layer when R ~ R, and, on the other, the
competition between chains to cover the available surface at smaller sphere radius (finite
size effects of the adsorbing surface).

Back to the analysis of the monomer volume fraction profiles, our results seem to
indicate a straight section in the central part of the profile to which we can associate a
power-law decay. The associated exponent ranges from —1.84 for the smaller sphere, to
—2.27 to the largest one, which is close to the result for a plane wall (—2.15). However,
the influence of the curvature is important even for the largest sphere, as can be deduced
from the difference found in the volume fraction profiles between the largest sphere and
the plane wall at large distances. In addition, it is more noticeable the lower value of the
monomer volume fraction over all the profile as the radius decreases, something that can
naturally be associated to a decrease in the average adsorption energy per chain. The
extent of the profile, however, seems rather insensitive to the increase of the curvature,
although one could intuitively expect a broadening of the profile as the average adsorption
energy per chain is lowered. Hence, we may guess that the increase of the curvature of
the adsorbing surface causes the outer part of the layer to have more room for the long
tails and loops to accomodate to a mushroom structure, whose typical size would be then
of the order of R,, compensating in this way the loss of effective adsorption energy. From
another point of view, as already observed in the case of the plane wall, the decay of the
monomer volume fraction profile is faster than predicted by scaling arguments. This is
due to the small size of the polymeric chains considered in this work, clearly far from
the asymptotic limit N — oo, where the scaling is valid. This effect has already been
discussed in the previous chapter. In the case of spherical particles, there is a slight
dependence with the radius of the sphere, since the smaller ones show slower decay rates,
which can be explained with the same arguments as for the width of the profile. For
completeness, in Fig. 4.9 we have plotted the adsorbed end-monomer distribution for
three of the radii studied. Besides the overall decrease in the number of chain ends as the
radius decreases, there is not a substantial change in the qualitative behaviour for such
short chains. Furthermore, the profiles do not indicate any power-law decay.

In table 4.2, the average number of adsorbed chain ends for different sphere sizes, in
the ranges r > R as well as r > 2R (being r the distance from the center of the sphere),
is presented. From these results, we can see the different scenarios, mentionated in the
previous section. Effectively, if R < 18.11 the average number of adsorbed chain ends
at distances r > 2R lies between 1 (when R/l = 1.36 << R,/l) and 10, as scaling laws
predicted [27]. However, for radii R > 18.11 this number of adsorbed chain ends decreases
due to the adsorbed chains lie in a region of thickness A\ < R whose structure is similar
to the obtained one on flat surfaces [23, 24].
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Figure 4.6: Total monomer volume fraction profiles for different sizes of sphere (R/l = 1.36 (circles),
5.08 (squares), 8.8 (diamonds), 18.1 (triangles), 36.7 (triangles left) and 55.3 (triangles down)) as a
function to the center of the sphere. The total monomer volume fraction profile corresponding to the
adsorption on flat surfaces (crosses) is also plotted.

R/1]1.36 5.08 88 181 55.3 planewall
z*/1] 416 4.95 5.26 5.63 6.01 6.08
A/1 ] 823 6.64 6.04 541 4.97 4.90
A/l 326 3.06 299 292 2092 291
Ae/1|9.69 882 859 829 8.03 8.17

Table 4.1: Characteristic lengths of the adsorbed layer obtained from Single Chain Mean Field method
(SCMF) for sphere radii ranging from R = 1.36/ to R = 55.3/ and for plane wall case. System conditions:
N =100, ¢° = 0.001 and € = —0.35kT.
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Figure 4.7: Total monomer volume fraction profiles for different sizes of sphere (R/l = 1.36 (circles),
8.8 (diamonds) and 55.3 (triangles down)) as well as for the adsorption on planar surfaces (crosses), as a
function to the distance from the surface. Dashed line shows a power law of —4/3.
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Figure 4.8: Variation of the average energy per adsorbed chain (< H,,s >) with the sphere size.
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Figure 4.9: Variation of the adsorbed end-distribution for different sizes of sphere (R/l = 1.36 (circles),

5.08 (squares) and 55.3 (triangles down)) as well as for the adsorption on plane surfaces (crosses), with
respect to the distance from the surface. Dashed line shows a power law of —0.532.

R/1 [1.36 5.08 88 181 367 553

<n°end > r>R || 26 856 19.09 65.23 243.69 532.86

<n°end > r>2R || 2.6 4.11 283 0.38 0.0 0.0

Table 4.2: Average number of adsorbed chain ends at distances r > R and r > 2R, being r the distance
from the center of the colloidal particle. System conditions: N = 100, ¢° = 0.001 and € = —1kT.
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As far as the distribution of tails and loops are concerned, Figs. 4.10 and 4.11 show
in logarithmic scale the volume fraction profile of monomers belonging to loops and,
respectively, to tails, as a function of the sphere radius for the physical conditions discussed
in this work. In both cases, the profiles are not significantly different from those observed
in adsorption onto planar surfaces. The most noticeable aspect to be commented is on
the fact that the increase of the curvature results in lower values of the monomer volume
fraction of each species, slightly more important for loops (Fig. 4.10) than for tails (Fig.
4.11). However, in both cases their extent is comparable, independently of the size of the
sphere. The loop distribution does not show any tendency to a power-law decay. The tail
profiles are close to an exponential decay (¢; = A exp(—ar))at the wide outer part of the
layer. The exponent corresponding to tail profiles ranges from o = —0.344 in the case
R =1.36l, « = —0.346 for R = 8.8/ to o = —0.327 for R = 55.3! being the latter very
close to the adsorption on flat surfaces (the value obtained for the exponent in the case
of plane surfaces, under these conditions, is &« = —0.322). These differences in the value
of the exponent can be attributed to different average size of the tails.

It is also very interesting to numerically find the value of the crossover length z* for
each radius. In Fig. 4.12 we have plotted the variation of the crossover distance with the
radius of the sphere. In this figure, the straight line corresponds to the value of the planar
wall crossover length z;. The decreasing value of z* with the increase of the curvature
indicates, effectively, that the relative importance of tails with respect to loops is larger
for small spheres than for large spheres. However, our data are not conclusive enough
as to prove that z* ~ R for R << 2z} according to the scaling arguments given above
[27]. In addition, it is interesting to notice that z* is sensitive to the curvature far before
the critical radius R = 2] is reached, and in fact for radii much larger than the overall
size of the chain in the bulk, R,. In this system of relatively short chains, where all
the characteristic lengths are of the same order of magnitude, we cannot expect a sharp
transition between the different regimes, but a broad crossover between the large sphere to
the small sphere behaviours. Effectively, elongated conformations of the chain are sensitive
to the curvature in the outer part of the layer, making that the studied properties differ
from the plane wall results even for very large spheres such as R = 55.31 > R,. In the
Fig. 4.13 is also given the ratio z*/z% as a function of R/z} for the adsorption of chains
with length N = 100 and 200, ¢° = 0.001 and € = —0.35kT. From this figure, it is
suggested that 2 is indeed the relevant length for curved interfaces.

The different sizes of the loop and tail layers can be seen from the dependence of their
root mean square (rms) thickness with the sphere size (Fig. 4.14). Although the average
thickness of both species increases as R decreases, the effect the increasing curvature is
more noticeable in the tail layer, due to the fact that tails dominate the outer part of the
adsorbed layer. The values of the thickness deviate from the planar geometry values far
before the critical radius is reached, again due to contribution of elongated conformations
of the chain, which explore also regions far from the interface (Fig. 4.15).
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Figure 4.10: Loop volume fraction profiles as a function of sphere radius (R/l = 1.36 (circles), 8.8
(diamonds), 18.1 (stars), 36.7 (triangles left) and 55.3 (crosses)). System conditions: N = 100, ¢ =
—0.35kT and ¢° = 0.001.

0.01 T
E 3
0.0001 —

& 0—o R/I=1.36

L o—¢ R/I=8.8 J
E *—* R/[=18.1 3
E <4— R/I=36.7 E
106 — %—x R/[=55.3 ]

1 | 1 1

0 10 20 30 40

Rl

Figure 4.11: Tail volume fraction profiles as a function of sphere radius (R/l = 1.36 (circles), 8.8
(diamonds), 18.1 (stars), 36.7 (triangles left) and 55.3 (crosses)). System conditions: N = 100, ¢ =
—0.35kT and ¢° = 0.001.
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Figure 4.12: Variation of the crossover distance z* with the sphere size. Full line shows the crossover
distance (z) obtained in the adsorption on flat surfaces. System conditions: N = 100, e = —0.35kT

w

and ¢° = 0.001.

1.2 .
11} §
10 A A
09 p ]
08 40 .

¥z, *

06 0 N200

i A N100
0.5 .

04 .
0.3 L ! ! ! ! |

0.7 A .
o

Rlz,*

Figure 4.13: Variation of 2*/z}, as a function of the ratio R/z}, for two chain lengths (N = 100
(triangles) and 200 (circles)), ¢° = 0.001 and € = —0.35kT. The values of 27/l are 6.08 and 7.86 for
N =100 and 200, respectively.
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Figure 4.14: Variation of the loop (triangles) and tail (circles) rms thickness with the sphere radius.
System conditions: N = 100, ¢° = 0.001 and ¢ = —0.35 k7.
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Figure 4.15: Variation of the rms thickness with the sphere radius. System conditions: N = 100,
¢° = 0.001 and € = —0.35kT.
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Another indicator of the behaviour of polymer adsorption with the curvature of the
surface is the adsorbance I' as well as the adsorbances due to loops (I';) and tails (T'y)
defined from eq. (4.4). In Fig. 4.16, we indicate the behaviour of the adsorbance as a
function of the sphere radius. Again, it is observed that the adsorbance increases as the
radius R decreases, showing the same behaviour as other magnitudes as the rms thick-
ness, with the same qualitative explanation. Taking into account this conclusion, we can
mention the work presented by Wijmans et al. [28] using a markovian self-consistent field
theory to study the adsorption of diblock copolymers (A, B,,) onto small colloidal parti-
cles, so that in the limiting case of an adsorbing homopolymer (only A segments), both
magnitudes (adsorbance and layer thickness) presented the same qualitative behaviour.

However, it is interesting to pay some attention to the relative behaviour of the loop
and tail adsorbances shown in Fig. 4.17. Notice that the critical radius R, where [';(R,) =
[y(R.) (see eq. (4.6)), takes the value here R, ~ 5.08(. Notice that this value is very
close to z; /1 = 6.08, as was suggested by the scaling argument. Therefore, the crossover
distance z; is indeed an intrinsic property of the polymeric chain and the dimensionality
of the physical space, whose implications go beyond the crossover between loops and tails
in adsorption onto flat surfaces and as such should be recognized. In the Fig. 4.18 is given
the variation of the loop and tail adsorbance with the sphere size being the chain length
N =200, ¢° = 0.001 and € = —0.35 k7. In this case, the value of critical radius takes the
value R, ~ 8.8, which is very close to z; = 7.861, obtaining the same behaviour as the
adsorption of chain lengths N = 100.
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Figure 4.16: Variation of the adsorbance (number of monomers per [?) with the sphere size. System
conditions: N = 100, ¢° = 0.001 and & = —0.35 kT
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Figure 4.17: Variation of the loop (circles) and tail (squares) adsorbance (number of monomers per /%)
with the sphere size. System conditions: N = 100, ¢° = 0.001 and & = —0.35 kT
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Figure 4.18: Variation of the loop (circles) and tail (squares) adsorbance (number of monomers per /%)
with the sphere size. System conditions: N = 200, ¢° = 0.001 and & = —0.35 kT
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Further insight into the layer structure can be obtained the histograms of loops and
tails (Figs. 4.19 and 4.20), proportional to the probability of finding in the adsorbed layer
a loop, respectively a tail, of » monomers in the rank n+ A, in other words P(n,A). This
quantity can be associated to the entropy of loops and tails in some theoretical treatments
[19]. In our case we have computed these histograms to analyze the effect of the curvature
in the distribution of sizes of the species of the adsorbed layer. Effectively, on one hand,
the loop distribution is rather insensitive to the curvature of the surface. There is a slight
shift of the distribution towards large loops at the smaller sphere considered here, but it
seems that there is no significant change in the behaviour.

On the other hand, the tail length distribution is very sensitive to the curvature.
Initially, for the large sphere case, the distribution is a single exponential. However, with
the increase of the curvature the amount of small tails, very frequent in the large sphere
case, decreases in favor of an increase of the long tails, the inversion taking place at a
lengths between 30 and 75 monomers. Notice that for R/l = 5.08 < z% /I the decay is
very slow, and even becomes bimodal at R/l = 1.36. The bimodal nature of the profile
at the small sphere case, with maxima roughly at n = 9 and n = 60 can be interpreted
as follows. For the small sphere there is on average of about one polymer covering the
sphere. Admitting that on average the chain will cover the whole adsorbing surface, we
can expect that the sum of length of the two tails be rather constant. Thus, a long tail
should be accompanied by a short tail on average. Therefore, the presence of the two
maxima indicates that the preferred conformation for the small sphere case is one long
tail together with a small tail, that is, the sphere being located near one polymer end.

However, if we consider higher adsorption energies of ¢ the behaviour is different. In
the Figs. 4.21 and 4.22, we represent, respectively, the loops and tails histograms taking
into account two values of e = —0.35 and —1 k7T (being R/l = 1.36). In the case of loop
length distribution, the amount of small loops increases with the value of €, as we can see
in the Fig. 4.21. Hence, the probability of finding loops of large size decreases as the value
of € is more negative. For the case of the tails, the length distribution is very sensitive
to €. From these results, represented in the Fig. 4.22, we can see that an increase of the
adsorption energy may produce a high probability of finding the colloidal particle close
to the middle of the polymer chain, instead of being localized near the end.
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Figure 4.19: Histogram of loops for three sphere sizes (R/l = 1.36 (full line), 5.08 (dash dot line) and
55.3 (short dash line)). System conditions: N = 100, ¢° = 0.001 and ¢ = —0.35kT.
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Figure 4.20: Histogram of tails for three sphere sizes (R/l = 1.36 (full line), 5.08 (dash dot line) and
55.3 (short dash line)). System conditions: N = 100, ¢° = 0.001 and ¢ = —0.35kT.
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considering the sphere size R/l = 1.36, N = 100 and ¢° = 0.001.
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Figure 4.22: Histogram of tails for two values of ¢ (—0.35kT (full line) and —1kT (dashed line))
considering the sphere size R/l = 1.36, N = 100 and ¢° = 0.001.
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This conclusion is also confirmed from the Figs. 4.23 and 4.24, in which are represented
the probability that an adsorbed chain has a tail of size n; in the range n; = A and the
other, of size ny in the range ny = A. The sphere size is R/l = 1.36, the polymer length,
N =100, ¢° = 0.001 and two values of ¢ (—0.35 kT (Fig. 4.23) and —1 kT (Fig. 4.24))
have been considered. In the case of ¢ = —0.35 kT, we have an area of higher probability
corresponding to tail sizes of m; between 10 and 20, while the tail size mo takes values
between 60 and 80. Therefore, these results indicate that the colloidal particle is found
near one polymer end, thus confirming the results plotted in Fig. 4.20. However, for the
value of ¢ = —1 kT, the contour plot presents different maxima approximately in the line
my + my = 70 indicating that it is equally probable to find the particle at any location
along the chain, and that the loop and tail material is approximately the same for every
conformation. It is interesting to point out that this conclusion has been also found by
scaling analysis of polymer-colloid systems that we will describe in the next chapter.
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Figure 4.23: Contour plot of tails for the sphere size R/l = 1.36. System conditions: N = 100,
¢° = 0.001 and € = —0.35 kT. We name the shortest tail as n; and the largest as n,.
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Figure 4.24: Contour plot of tails for the sphere size R/l = 1.36. System conditions: N = 100,
¢° = 0.001 and € = —1kT. We name the shortest tail as n; and the largest as ns.

4.4 Conclusions

In this chapter, the problem of polymer adsorption onto spherical surfaces has been addre-
ssed by means of the SCMF theory, based on an importance sampling of the one-chain
conformational space described in chap. 2. Contrary to the case of planar interfaces,
there is little work done on curved surfaces. We expect that the results presented in
this chapter will contribute to shed some light on the interplay of the curvature with the
different length scales describing polymer adsorption. We have centered our attention
on adsorption from a dilute solution due to the fact that the finite size effects are more
noticeable than in semidilute regimes. Effectively, because of the bulk correlation length
does not play any role in the problem and free chain penetration can be completely
ignored in the interpretation of the data. Our results show the variation of the adsorbed
monomer profiles as well as those of monomers belonging to loops and tails, indicating
that the overall effect is small and mostly due to the decrease of the effective adsorption
energy per chain as well as the available adsorbing surface when the radius of the particle
decreases. However, other magnitudes show a much more noticeable variation. Effectively,
the adsorbance, as well as, the layer thickness increase when the curvature is increased, in
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particular, when the loop layer start to be sensitive to the curvature for R < R, ~ z;. The
internal structure of the layer, described along this work, entangles with the curvature
effects in the sense that it seems rather clear that for small spheres the loop layer remains
confined in a layer of thickness R, leaving a few very long tails outside. This structural
information can be of relevance in applications, when functionalized ends come into the
play [31]. We have also found the preferred conformations presented in the polymer
adsorption on small particles, considering the different positions of the adsorbing sphere
along the polymer chain. We have shown that for values of ¢ = —0.35 kT, the sphere seems
to have preference to occupy positions near the edge of the chain, probably to favor the
entropic gain of having many monomers belonging to a long tail. However, increasing the
adsorption energy (¢ = —1kT') has been demostrated that the particle not only may be
located near one polymer end, but also may occupy other positions along the chain. This
conclusion has been confirmed by a scaling analysis [27], described in the next chapter.
Finally, we want to mention again the fact that the crossover length scale 2z seems to
play a very important role in curved interfaces, beyond the already discussed in planar
interfaces. On the one hand, the critical radius at which the adsorbances of loop and tail
monomers are equal scales as 2, which is, in addition, the length that characterize the
onset of the important curvature effects on the structure of the layer discussed above. We
think that in the starved regime, the relevant length is 2 instead of the thickness of the
layer, as suggested in refs. [32].
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Chapter 5

Scaling analysis of polymer-colloid
systems

Having analyzed the problem of polymer adsorption onto isolated spherical particles, in
this latter chapter we will develop a preliminary theoretical analysis on the problem of
colloid-polymer mixtures. To have some idea about the different scenarios that can be
found, we have undertaken here an scaling analysis based on the work of Semenov, Joanny
and collaborators [1], in which the tails were explicitly taken into account. Furthermore,
we have centered our attention on the case of small adsorbing colloids [2] R << zJ, in
which one chain adsorbed on one colloid has two long tails with a size fixed by the overall
contour length N. In the presence of many chains a small colloid may nonetheless carry
two or more chains giving rise to a star-shaped complex. We calculate the abundance of
such complexes in dilute solution. In semi-dilute solution similar polymer stars form on
a colloid, which act as effective crosslinks that percolate on a gelation line.

5.1 Formation of colloid /polymer complexes

5.1.1 Adsorption on a flat wall

As already mentioned in previous chapters, the standard model for the adsorption of a long
neutral chain onto a flat wall was proposed twenty years ago by de Gennes. It starts from
the remark that the local polymer/polymer correlations in the adsorption layer should be
the same as in a homogeneous solution at the local concentration ¢(z), with z the distance
from the wall. The local correlation length [3] in the layer is then given by & = ¢=¥/(d=1)
with v the swelling (Flory) exponent and d the dimension of space. Inside the adsorption
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layer of thickness A the only characteristic lengthscale is the distance to the wall, the local
correlation length £(z) is thus proportional to z. Hence the celebrated power law profile
is equal to

c(z) ~2z7 v (5.1)

where the exponent is approximately —4/3. The fast decay of this profile indicates that
the adsorbance I' is dominated in the strong adsorption limit by the small loops although
this approach does not need to discuss the detailed structure of the layer in terms of loops
and tails, as done by the Dutch group [4]. It is nontheless possible to deduce the loop
distribution under the assumption that loop-monomers dominate over tail-monomers near
the wall. If a self-similar profile is assumed, each loop of size larger than n feels up a
correlation volume of radius z at heights up to n”. The loop-size distribution D(n) can
thus be rewritten in terms of the correlation disk-density at height z:

[ Dty ' = % (5.2)

1/v

This equation is essentially the statement of the existence of a self-similar profile. The
loop-size distribution is obtained by differentiation: D(n) = n=*(¢=1)=1_ The loop-size
distribution is used as a measure of the loop partition function Z;. The tail partition Z,
function is linked to the loop partition by considering that a loop of size n can be built
by connecting two tails of size /2 initially within reach of each other [5]:

nu(dfl)

nud

Zl = ZtQ nlﬂ

(5.3)

The second factor stands for loosing two free chain ends, the last one is a geometric factor
specifying that the tails are within reached (here we make no difference between n and
n/2 as the prefactor remains unknown). This relation is rather general and does not imply
loop-monomer dominance. Assuming loop-monomer dominance, (Z; is known), Z; can be
deduced [5] :

—v(d—2)+y
e |

This partition function in turn determines the chain end distribution: cenq(z) ~ 27 #/*
(c.f. eq. 3.8 ) where (8 is the order parameter exponent linked to the previous critical
exponents by the general relation: 23 = vd — . The relation n” ~ z is used to transform
the contour length n into distance z.
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The tail-monomer concentration can in turn be calculated from the tail partition
function; due to the slow decay of the tail partition function integral is actually dominated
by the upper bound. About 2I'/N ends are located beyond any distance z from the
wall, any of this tails fills a correlation volume at any distance, hence the tail monomer
concentration ¢;(z) is given by :

r
c(z) = = zv 7!

o (5.5)

Comparing the tail-monomer profile to the loop-monomer profile show that the loop-

monomer dominance assumption fails for z = 2 ~ N = (as we described in the section
1.2.2 of the chapter 1.).

At larger distances, tail-monomers dominate over loop-monomers and build up de
Gennes’ power law profile. Each correlation volume is then filled by one tail starting
further from the wall, this sets the end point concentration to cenq(2) = 2~ %. Reverting
the arguments in the loop-monomer dominance regime it is now possible to get the tail
partition function, loop partition function and loop-monomer profile.

_ytvd g ated L _ atrd  —2wd+1-4y
Z, = Nwa-np t7vd-D 7 = Nva@-np - 1m7v24=D ¢ (5) = Nv@nz= » (5.6)

Note the strong power law decrease of the loop-monomer concentration beyond z;, with
an exponent close to —6 for 3D excluded volume statistics.

5.1.2 Adsorption onto colloidal particles: Adsorption Regimes

As we have shown in the previous chapter, the polymer adsorption onto colloidal particles
is influenced by the ratio between the size of the polymer and the sphere. If the colloidal
particle is much larger than the polymer radius of gyration (see Fig. 5.1.a), the particle
is coated by a thin adsorbed layer whose structure is similar to the layer described in
the polymer adsorption on flat surfaces. However, as the radius of the sphere decreases
(R < z;) the number of adsorbed polymer is also reduced until it is close to 1 and the loop
layer is confined in a region of size of the order of the sphere radius, while the tails do not
play any influence in the adsorbed layer. The Fig. 5.1.b represents this situation in which
we can see a very long polymer chain wrapping the sphere and forming a layer with two
long free arms containing most of the monomers [2]. A similar picture has been already
described in the previous chapter from the results obtained by the SCMF methodology.
Thus, considering polymer chains of length N = 100 adsorbed on small spheres (of size
R/l = 1.36 < 2% /1), the average number of tails obtained is of the order of 2 (see table
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4.2). However, an increase of the radius of the sphere, produce a change in the structure
of the adsorbed layer in order to the number of tails that go in beyond R is reduced until
the adsorbed chains lie in a region of thickness less than R (for R/l = 55.3 >> R,/I, the
average number of tails obtained, to distances beyond R, is zero).

In this way, there is the possibility that two or more different chains are adsorbed on
the same colloidal particle forming structures with four or more long free arms escaping
from the sphere. Therefore, in the description of colloidal particles in polymer solution, the
prediction of the types of structures formed as the result of interaction of macromolecules
with the particles, may be an interesting problem. We can mention theoretical works
based on RISM integral equation technique [6], in which the theory is used to understand
the interaction between colloidal particles and macromolecules in the regimes of weak and
strong adsorption, and experimental studies carried out by Cabane and Duplessix [7, 8]
using small-angle neutron scattering in a semidilute aqueous solution of PEO containing
spherical micelles of SDS molecules. The origin of the physical association produced by
the interaction polymer-colloidal particle, will be described in the following sections.

Figure 5.1: Adsorption of polymers onto colloidal particles: large sphere (case a) and small sphere (case
b).

5.1.3 Polymer/colloid star-shaped complexes

Depending on the stoichiometry of the polymer/colloid mixture, different complexes are
expected. If colloids are in excess, one chain wraps several colloids building a necklace.
Though the single chain state is the preferred one if polymer is in excess, some colloids will
accommodate a small number of chains, building star-shaped complexes. In the following
we will mainly comment on star-shaped complexes.

The abundance of those complexes is fixed by a balance between extra interactions of
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the branches and some entropy gain. At large scale a star-shaped complex has the proper-
ties of a star-polymer with polydispersed arms. Duplantier [9] gave a general expression for
the partition function of a polymer (with N monomers) of any topology. This expression
generalises the one for linear chains

Zg =N (5.7)

The new susceptibility exponent v for an arbitrary connected graph G is constructed
from vertex exponents, entering the star description, and depends on the number of
independent closed loops. For symmetric star-polymers with all p arms identical, the
expression reduces to Z = N7 !, The exponent 7, is the same for p = 1 and p = 2 (these
both values of p describe a linear chain), it goes through a (formal) maximum between
p =1 and p = 2 and decreases as a power-law at high p in accordance with the Daoud and
Cotton [10] blob model 7, ~ —p%(@=1) where d is the dimension of space. The exponents
7, are exactly known in 2D [9]. In 3D only a low order e-expansion is known.

For a star with polydisperse arms all of different size ranging from the smallest N; to
the largest [V, the partition function can be constructed step by step: Let first all p arms
have the smallest size /N, the partition Z is Nf”_l, let now grow all chains but one to the
next size Ny, Z becomes NJ?~' Nf”“_l/pr_l_l, in the next step, all outer chains but
one grow to the next size /N3 and so on. As a result,

Zy= NP W NGt NS N (5.8)

Let us first consider the simpler case where only one chain wraps the colloid. Only
ne = 47" R? monomers go into small loops covering the surface of the colloid. The energy
gain upon adsorption of the small loops is F, ~ 47 R? in thermal energy units, in case
of strong adsorption. These small loops are almost of monomeric size and the small-loop
layer ressembles a 2D melt, the partition function of the small loop strand is described by
n)»~1 with ~, as the susceptibility exponent corresponding to adsorbed chain whose value
is assumed to have the same value as in a two-dimensional melt. For chains such that the
two tails are only of length n, = R'/¥ the partition function of the two uncorrelated tails
is the same as on a flat surface, of order n]~"~2. All together, the partition function reads
in this case Z, = R*n)e'n] " exp F, = Z,o exp F, where R? stands for the choice
of the starting point of one tail on the colloid. On the other hand for a very long chain
wraping the colloid, the partition function of the complex scales with the chain size as for
a free chain Z, = N7~!, being v = 1.16 the susceptibility exponent for a polymer chain
in a good solvent [5]. Imposing a smooth crossover between the two limits at N = n;, we
get the partition function of the one chain complex ;
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Zy = Zaomi(N/n)" exp Fy (5.9)

When ¢ chains wrap around the small colloid, a 2g-star shaped complex is obtained. Let
us characterise each chain by the smallest of its two arms (the largest is essentially its
complement to V) and let again N; be the smallest of these p = 2¢ arms (all by definition
smaller than N/2 ). The partition function of the complex can be obtained in a way
similar to Z; , as a result Z, = nZ"'Z{; exp F,I;(¢q) where the small loop contribution is
explicit and the first factor stands for the ways to choose the lengths of the ¢ adsorbed
loop sequences (throughout ¢ is assumed not to be a large number). The last factor stands
for the configuration integral of the large tails :

N/2 fNA\Te+H " s N — N\ e~ Va1 No s Ny\"2a~ 7201 /N _ N\ 1
I,(q) :/ <—q) ( q) qu-../ ’ (—1) ( 1) dN,

¢ Uz Uz ¢ Uz T4
(5.10)

The value of I;(q) strongly depends on whether the integrals are dominated by the lower
boundary or not. After the general shape of the v,(p) plot, the slope fy;(p) becomes very
negative at high p, there is a value p* of p where 7, 1 — 7, becomes smaller than —1.

Let us first suppose that there are not many chains so that 2¢ < p* in that case the

lower boundary can be shifted to zero in all integrals and :

I(q) ~ N* (ﬂ)m_l (29 < p") (5.11)

Uz
The chains in the star-shaped aggregate adopt mainly symmetric configurations.

In the very opposite case ¢ > p* , where there are many chains in one aggregate, all
integrals are dominated by the lower boundary and:

I(q) ~ ni (ﬁyl (¢ >p") (5.12)

Uz

The chains adopt dissymmetric configurations with only one long tail per chain (this
would be expected from Daoud and Cotton blob model [10]).

In the intermediate regime ¢ < p* < 2¢

N\ T —1+P"—¢
L(q) ~ 1 (—) (¢ < p" < 20) (5.13)
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There are essentially p* long tails. Note that the intermediate regime crosses over smoothly
with the previous ones.

In the following we focus on small p-values corresponding to symmetric aggregates
wich are more abundant.

5.1.4 Star-shaped complexes at equilibrium in dilute solution

If the density p of colloidal particles is vey small and if the polymer is in a dilute solution,
each chain complexes at most one particle. We call p, the density of spheres bound ¢
chains. Considering the complex formation as a chemical reaction, the density p, is given
by the mass action law,

Z, [ c\¢
pulbo = 74 (%) (5.14)

where c is the monomer concentration. When F, is large there are almost no free colloids
and most particles are bound to a single chain p ~ p;. High-q agregates are rare and the
only important agregates are those with two chains; their density is

pa = pcng Zogny 1@ N2+ (5.15)

It decreases with NV and increases with the radius of the colloidal particle as a power law.
Inserting approximate values of the critical exponents we get py = pc R>" N=06,

At higher colloid densities one chain carries many colloids and forms a necklace agre-
gate, necklaces in turn form a small fraction of decorated star-shape complexes; these will
not be discussed in this work.

Figure 5.2: Star-shaped complex (q=2, p=4)
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5.1.5 Gelation in semidilute solution

Above the overlap concentration [4c* = N'~% of polymer coils, the polymer form a
temporary network of mesh size &, the correlation length of polymer concentration fluc-
tuations or blob size. Properties of such solutions of long, strongly overlapping chains
are essentially insensitive to the chain length,. This is in particular true for the density
of colloids linked to two blobs. To ensure a smooth crossover at ¢* the density ps in the
semi-dilute should be of the form py = png Z,on! ™ c* with o =1 + 2—'%_4%—1, in which
less than one colloid per correlation volume is assumed.

Each particle bound to two different chains acts as a physical cross-link between chains.
If the density of cross-links is large enough, all the chains are connected and the solution
can be considered as a physical gel. The gelation transtition occurs if there are of order
of two or slightly less cross-links per chain, i.e if the density of cross-links is ps ~ ¢/N [3].
This gives the gelation line of the solution at

(5.16)

As we ignore prefactors throughout, our rough criterion for gelation is sufficient. Inserting
critical exponents we obtain: p, = ¢7%% R=27 N=!. The concentration of colloidal particles
at the gelation threshold decreases both with the monomer concentration and with the
sphere radius. It vanishes when N tens to infinity at fixed polymer concentration; when
the molecular weight is large, there is indeed less than one colloid per polymer mesh for
strongly overlapping polymer solutions.

5.2 Conclusions

In this chapter we present scaling results for mixtures of polymers and small adsorbing
spheres. Special attention is payed to star-shaped complexes that form by adsorption of
several (typically two) chains on the same colloid in dilute polymer solution with polymer
in large excess. It is shown that partition function of complexes comprising only a few
adsorbed chains are dominated by configurations where chains have symmetric long tails.
These configurations have been already confirmed from the numerical results obtained
by SCMF methodology, in which an increase of the adsorption energy demostrated that
the particle may occupy positions along to the chain close to the middle of it (see Fig.
4.23 and 4.24), obtaining, thus, tails of similar sizes or, at least, not preferring a very
asymmetric conformation. In contrast, if many long chains are forced on a colloid, the
partition function is dominated by dissymmetric configuration where each chain only
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contributes one long tail in accordance with results of the Daoud and Coton star-model.
The crossover between different regimes can be expressed in term of the vertex exponents
introduced by Duplantier [9]. The abundance of complexes is calculated as a function of
colloid radius, chain length and concentrations.

Semidilute solutions are described as a transient network of entangled chains by the
standard concentration-blob model. Here again one colloid has some probability to link
to different chains. The abundance of colloids bearing polymer crosses does not depend
on chain length in the strongly overlaping regime and is obtained here from a simple cross
over argument (a different argument is used in ref. [2]). Beyond a critical average number
of crosslinks per chain, the solution undergoes a percolation transition and forms, in that
sense, a gel. The transition is located at vanishing colloid density for very long, strongly
overlaping, chains. This validates a posteriori our assumption that there is less than one
colloid per polymer mesh. This assumption is relaxed in ref. [2].

Our theory is restricted to scaling arguments. It seems difficult to describe the subtle
correlations between star-arms at low (finite) number of arms in more details. Also
are more detailed Markovian Mean-Field theories not well suited here, they are space-
dimension independent an obscure the new physics introduced by curvature (for example
the criteria TR? = N and R = 2, ~ N'/3 are not equivalent and a spurious regime opens).
Therefore, the numerical tools developed in this work seem suitable for an analysis of the
problem of suspensions of colloidal particles and long polymeric chains, especially due to
the fact that the SCMF method keeps track of the excluded volume correlations, as it is
the case of the scaling approach discussed in this chapter. Therefore, this fact opens a
line for much future work.

From a practical point of view the assumption of flexible chains may not always hold at
the level of the colloid radius. The description of a single stiff macromolecule wrapping a
colloid is available [11](also in the charged case [12]). A description of complexes involving
several chains should be possible even in the case of semi-flexible chains at least at the
scaling level. In addition to the latex particles, silica colloids, or micelles used in previous
experiments it should be possible to use fullerenes or modified fullerenes as model colloids
[13, 14]. Again, the incorporation of stiffness in the framework of SCMF theory is not a
complex matter that can be carried out in the near future.
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Chapter 6

Perspectives

In this work, we have modified the methodology known as Single Chain Mean Field
(SCMF) aiming at its application to polymer adsorption problems. The structure of
the polymeric layer has been examined in equilibrium with a bulk solution for different
adsorption energies and molecular weigths, considering both flat and spherical (colloidal
particle) surface geometries. In this way, it has been possible to calculate numerically
properties, which can be also experimentally measured, such as monomer volume fraction
profiles, adsorbance or the thickness of the adsorbed layer.

Thus, our main interest has been the study of solutions of linear, flexible and neutral
chains, in the presence of an attractive solid interface, where the chains can reversibly
adsorb. However, an interesting subject of study may be found in the influence of the
arquitecture of chains that we consider in the structure of the adsorbed polymer layer.

As we have seen during this work, the structure of the adsorbed polymer layer can
be described in terms of loops, trains and tails. However, this picture is only applied to
the case of homopolymer chains on surfaces. Different arquitectures can be distinguished
depending on the structure of the polymer and the nature of the groups involved. Thus,
we can mention the case of chains with star shaped, whose conformation on the surface
may be composed by a number of tails originate from around a central block, chains
containing groups with a preferential affinity to the surface or even chains with different
degrees of flexibility.

It is clear, from this point of view, that for a full description of the structure of
the adsorbed layer it is necessary to know the amount of polymer that is adsorbed, the
type of groups that are in contact with the surface, as well as their proportion, the
thickness of the adsorbed polymer layer or the distribution of polymer segments from
the surface. In that way, many theoretical and numerical studies have been concentrated
on the effects of molecular structure on the adsorbed polymer layer, owing to its several
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applications in science and technology. Thus we can mention simulation calculations
reported by Striolo and Prausnitz [1] in the area of branched polymers. As well in the
area of semiflexible chains whose first works were developed 50 years ago by Krarty and
Porod [2] and, however, this kind of chains are still considered as a nontrivial polymer
problem [3, 4, 5] or even the Monte Carlo simulations of adsorbed random copolymers [6].

In this work, the numerical results, obtained from Single Chain Mean Field approach,
have shown the different scenarios that describe the dependence of the adsorbed polymer
layer with the curvature of the colloidal particle. In all these cases, the homopolymer
chains have been considered as flexible and linear. Therefore, as we have mentioned
above, the adsorption behavior may be changed depending on the arquitecture of the
polymer chain considered. In this way, taking into account the adsorption onto colloidal
particles, it would be interesting to study the variation of the structure of adsorbed layer
depending on the nature of the polymer chain in a wide range of sphere sizes. Furthermore,
the SCMF methodology developed here seems a suitable tool to complement the present
theoretical interest in the resolution of the conformation of the polymer chains adsorbed
on a surface.

Flocculation of colloidal particles through a polymer solution

The addition of polymer into colloidal suspensions has a crucial effect on the aggrega-
tion and kinetic stability of colloidal particles. Therefore, these physical phenomena have
been studied in several experimental [7] and theoretical [8] works.

In the case of adsorption of polymer on colloidal particles, this mechanism produces a
considerable effect in these systems. At strong adsorption, each particle is covered with
a dense polymer layer and a small amount of high molecular weight polymer may induce
to link of colloidal particles by bridging fragments of chains. This mechanism causes the
appearance of macroscopic regions rich in colloidal particles, i.e. the flocculation of the
system.

The presence of small spherical particles (colloidal particles) in a non-adsorbing poly-
mer solution also induce the aggregation mechanism [7]. In this case the influence from
the polymer causes the attraction between two colloidal particles. This behavior is due
to polymer chains are outsed from the gap between both particles thus, the gradient in
polymer concentration, near the particles, leads to a positive surface energy that induces
this attractive interaction.

The thickness of the depletion zone is of the order of R, corresponding to the polymer
chain in dilute conditions and of the order to the correlation length £ in semidilute solu-
tions. Between the analytical theories, we can mention the work developed by T. Odijk
[9], based on the self-consistent approximation and more recently, the work presented
by Tuinier and Lekkerkerker[10] in which the polymer segment concentration profiles ob-
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tained for arbitrary polymer-sphere size ratio are shown. In this way, it is possible to
compare these results with those obtained from SCMF results, considering non-adsorbing
polymer chains, for a wide range of colloidal particles’ sizes and chain lengths.

As we have commented above, the flocculation of colloidal suspensions can be produced
by two different mechanisms, depending on the interaction between the polymer chains
and the colloidal particles. During this work, we have shown the variation presented by
the structure of adsorbed polymer layer depending on the size of the sphere (colloidal
particle) considered. Therefore, taking into account these results, the flocculation of
colloidal particles through bridges formed from the adsorbed polymer layers, may present
different ways of aggregation in order to the size of the colloidal particle is varied. Thus,
from this information, it would be interesting to study, using the SCMF methodology
described in this work, how the structure of the adsorbed polymer layer affects the colloidal
flocculation.

Therefore, these subjects, just reviewed, are part of the possibilities of research that
may be open by the development of mean-field methods which can take into account
correctly both the excluded volume correlations along the chain as well as the screening
of such correlations when semidilute polymer solutions are under study.
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