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Porous materials are widely used in many branches of modern science and technology,
such as catalysis, separation of mixtures, purification of fluids and fabrication of
membranes. A successful application of porous solids requires a precise characterization
of their surface and structural properties, as well as a good understanding of the physical
and chemical behavior of fluids inside the pores. Some materials, such as zeolites, have
well defined porous structures, but others, such as porous oxides, carbons and
controlled-porous glasses, are quite amorphous. Therefore, a proper characterization of
this kind of materials is an important topic, and more often than not, a complicated one.
For many years, gas adsorption has been used to study properties of porous solids, since
it is fast, simple and informative. Many methods were developed to extract information
about porosity and surface properties of materials from adsorption isotherm data. In the
last two decades, with the aid of the increasingly faster computers, the use of molecular
modeling techniques has been gaining relevance. In this context, the general objective
of this thesis is to develop tools at the molecular level using statistical mechanics for the
characterization of adsorbent materials.

After a brief introduction on the topic (chapter 1), chapter 2 is devoted to a review of the
basic methodology employed in this work. In chapter 3 we have implemented the
Fundamental-Measure density functional theory (FMT) due to Kierlik and Rosinberg to
describe the adsorption of Lennard-Jones molecules in cylindrical pores. To our best
knowledge, this is the first time that this theory is applied to a cylindrical geometry. The
accuracy of the theory in predicting adsorption isotherms and density profiles is
checked by comparison with Grand Canonical Monte Carlo simulations for a wide
range of pore sizes, showing very good agreement in all cases. In addition, the theory
has been applied to the adsorption in slit-like pores to study the influence of the pore
geometry on this property. The results indicate that the confinement of the cylindrical
geometry introduces significant differences in the shape of the adsorption isotherms and
density profiles. These differences are relevant for the characterization of porous
materials. Our results indicate that a layering behavior takes place in the smallest
cylindrical pore considered, while the adsorption in a planar pore of the same size needs
a much higher chemical potential to achieve a significant adsorption. As the pore size
increases, the influence of the geometry becomes less important, although a certain shift
in the capillary condensation transition can still be observed. Additionally, for wider
pores, we obtain multilayer adsorption with capillary condensation at high chemical
potentials, with the same qualitative behavior observed for both geometries. When the
diameter size reaches the limit where the curvature effects are not of further relevance,
the cylindrical pores reduce to the same quantitative behavior of the slit-like pores. The
formation of a thin adsorbed layer at intermediate and large pore sizes seems to
correspond to a second order thermodynamic phase transition, for the range of
parameters used and the thermodynamic conditions studied. However, the results found
seem to indicate some relationship between this behavior and the prewetting transition
observed in semi-infinite geometries, especially in the vicinity of the critical end point
of the prewetting line. The effect of the confinement is very important in this crossover
behavior. From the comparison of Fundamental-Measure density functional theory
calculations versus non-local density functional theory results, we conclude that the
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FMT 1is an excellent tool for the study of the behavior of fluids in confined
cylindrical geometries.

In chapter 4 we have applied the FMT in conjunction with a regularization method to
estimate the pore-size distribution (PSD) of model porous glasses. We have chosen this
particular material because it was developed with molecular modeling techniques, and a
direct comparison can be made with the theory used here. An additional advantage of
these model materials, versus experimental ones, is that in this case the size and shape
of the pores is well known, as well as the position of the atoms in the surface, making it
a perfect material to check the accuracy of the theoretical characterization methods
available. Since there are several solutions of the adsorption integral equation
compatible with the experimental adsorption isotherm, and several factors can hide
defects of the molecular model, we have done the characterization in a systematic
manner: we have first checked the accuracy of the FMT and the independent pore model
for predicting the “experimental” adsorption isotherms using the geometrical PSD
already known for the materials. This has been done with individual cylindrical and slit-
like pores. Secondly, once the adsorption isotherm was successfully reconstructed, we
inverted the integral adsorption isotherm with a regularization procedure. The accuracy
of the inversion method has also been checked before estimating the PSD of the
different materials. Finally, once the method has been proved to be correct, we used it to
estimate the PSD of four materials. We have also studied the influence of choosing
different values of molecular parameters for the fluid-fluid and the solid-fluid
interaction on the adsorption behavior of these systems. We have obtained that the
independent pore model is adequate for the four materials investigated here. The slit-
like geometry seems to represent the overall adsorption behavior better than the
cylindrical geometry. As far as the PSD obtained with our procedure is concerned, the
distributions obtained by inversion of the integral are in better agreement with the
geometrical distributions than the ones calculated with the Barrett-Joyner-Halenda
(BJH) method. The locus of the peak is at the same pore size, and all of them are
unimodal, while the BJH distributions show a maximum systematically located at
smaller pores, underestimating the PSD of the material, and they are not unimodal.
Regarding the geometry of the individual pores that form the material, we can say that,
although the PSD is broader than the geometrical ones, the adsorption predicted by a
collection of individual slit-like pores is in almost quantitative agreement with the
“experimental” adsorption isotherm.

Finally, in chapter 5 we have characterized three different samples of y-alumina, one of
them without treatment and the others two calcined in a furnace during several hours at
823 and 1,023K. For this we have measured adsorption isotherms of nitrogen at 77.35K
in a Micromeritics ASAP 2000 apparatus. Additionally, we have used the PSD’s
provided by the software of the experimental equipment using the BJH method. We
have calculated theoretical isotherms by the FMT approach. We have inverted the
adsorption integral equations with the regularization method and, finally, we have
obtained the PSD’s for our three samples of alumina, and the corresponding adsorption
isotherms. In this way we have observed the influence of the calcination of alumina on
its PSD. Moreover, we have tested the accuracy of the FMT/Regularization method in a
systematic way. When we compared the PSD’s obtained with the corresponding BJH
distributions, we verified that in the two first cases (untreated alumina and alumina
calcined at 823K) the BJH method underestimated the size of the pores, giving PSD’s
shifted to smaller sizes. In the case of alumina calcined at 1,023K, in which the
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sintering process has produced the disappearance of the smallest pores, favoring the
wider ones, the BJH PSD’s and the FMT/regularization PSD’s perform very similar.
With this, we corroborated the known fact that the BJH method is quite accurate in the
macroporous region. Finally, we have predicted an adsorption isotherm of a different
fluid (ethane) at a different temperature (333K) in one of the characterized materials
(untreated alumina) with the aim of establishing the robustness of the PSD obtained.
The agreement obtained shows that it is possible to use this characterization method and
extrapolate the results at other conditions, provided that a enough number of different
pore sizes are used to calculate the desirable isotherm, and the solid-fluid interaction
parameters are well chosen.






RESUME

Los materiales porosos se utilizan en muchas ramas de la ciencia y la tecnologia, por
ejemplo, se usan como catalizadores, en la separaciéon de mezclas, en la purificacion de
fluidos, y en la fabricacion de membranas. Su aplicaciéon adecuada requiere de la
caracterizacion precisa de sus propiedades superficiales y estructurales, ademas del
conocimiento del comportamiento fisicoquimico de los fluidos cuando se encuentran
dentro de los poros. Algunos materiales, como las zeolitas, tienen estructuras porosas
bien definidas, pero otros en cambio (6xidos porosos, carbones, vidrios porosos con
tamafio controlado) son bastante amorfos. Por lo tanto, una caracterizacion correcta de
los materiales porosos es un area de estudio muy importante, la cual en algunos casos es
una tarea sencilla pero en la mayoria no. Durante muchos afios la adsorcidon de gases ha
sido empleada para estudiar las propiedades de so6lidos porosos, dado que es bastante
facil, simple y se puede obtener mucha informacién. Se han desarrollado muchos
métodos para interpretar los datos experimentales y determinar la porosidad, las
propiedades superficiales y la distribucion de los tamafios de los poros de los materiales
a partir de las isotermas de adsorcion. En las dos ultimas décadas, con la ayuda de las
computadoras cada vez mas rapidas, se ha extendido mucho el uso las técnicas de la
mecanica estadistica para realizar esta tarea. En este contexto, el objetivo general de
esta tesis consiste en desarrollar herramientas a escala molecular utilizando la mecénica
estadistica para la caracterizacion de materiales adsorbentes.

Después de una breve introduccion en el tema (capitulo 1), el capitulo 2 est4 dedicado a
hacer una revision de la metodologia basica empleada en este trabajo. En el capitulo 3
hemos implementado la teoria funcional de la densidad de medidas fundamentales
(FMT, del inglés Fundamental-Measure density functional theory) de Kierlik y
Rosinberg para describir la adsorciéon de moléculas Lennard-Jones dentro de poros
cilindricos. Hasta donde sabemos, ésta es la primera vez que esta teoria es aplicada a
geometria cilindrica. La exactitud de la teoria en predecir las isotermas de adsorcion y
los perfiles de la densidad es verificada por comparacion con simulaciones Monte Carlo
en el colectivo Gran Candnico para un amplio intervalo de tamanos de poros,
observandose una buena concordancia en todos los casos. Adicionalmente, la teoria ha
sido aplicada a la adsorcidon en poros planos para estudiar la influencia de los poros en
esta propiedad. Los resultados indican que el confinamiento de la geometria cilindrica
introduce diferencias significativas en la forma de las isotermas de adsorcion y de los
perfiles de la densidad. Estas diferencias son relevantes para la caracterizacion de los
materiales porosos. Nuestros resultados indican que un comportamiento de formacion
de capa tiene lugar en el poro cilindrico, mientras que la adsorcion en un poro plano del
mismo tamafio necesita un potencial quimico mucho més alto para alcanzar una
adsorcion significativa. Cuando el tamafio de poro se incrementa, la influencia de la
geometria se vuelve menos importante, pero aiin se observa un cierto desplazamiento
del lugar en el cual se da la transicion de la condensacion capilar. Adicionalmente, para
poros mds anchos, tenemos formaciéon de multicapas con condensacién capilar a
potenciales quimicos altos, observandose el mismo comportamiento cualitativo en
ambas geometrias. Cuando el didmetro alcanza el limite en donde los efectos de la
curvatura ya no son relevantes, el comportamiento cuantitativo de los poros cilindricos
y de los planos es muy similar. La formacién de una fina pelicula adsorbida a tamafios
de poro grandes e intermedios parece corresponder a una transicion de fase
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termodindmica de segundo orden, para el intervalo de pardmetros usado y a las
condiciones termodinamicas estudiadas. Sin embargo, los resultados encontrados
parecen indicar que existe una relacion entre este comportamiento y el de una transicion
de pre-mojado observada en geometrias semi-infinitas, especialmente en la vecindad del
punto final critico de la linea de pre-mojado. El efecto del confinamiento es muy
importante en este comportamiento de transicion. A partir de la comparacion de los
calculos hechos con FMT y los hechos con la teoria funcional de la densidad no-local,
concluimos que la FMT es una excelente herramienta para el estudio del
comportamiento de los fluidos en geometrias cilindricas confinadas.

En el capitulo 4 hemos aplicado la FMT en combinacion con un método de
regularizacion para estimar la distribucion de tamafios de poros (PSD, del inglés Pore-
Size Distribution) de materiales modelo que imitan a los vidrios porosos. Hemos elegido
este material en particular porque fue desarrollado con técnicas de modelado molecular,
y se puede hacer una comparacion directa con la teoria aqui usada. Una ventaja
adicional de estos materiales modelo, con respecto a los materiales reales, es que en este
caso la forma y tamafio de los poros se conoce exactamente, ademas de que se sabe la
posiciéon de los 4tomos en la superficie, convirtiéndolo en un material ideal para
verificar la exactitud de los métodos de caracterizacion tedricos disponibles. Dado que
existen varias soluciones de la ecuacidon integral de adsorcidon compatibles con la
isoterma de adsorcion experimental, y que varios factores pueden ocultar los defectos
del modelo molecular, hemos hecho la caracterizacion de una manera sistematica:
primero hemos probado la exactitud de la FMT y del modelo de poros independientes
para predecir las isotermas de adsorcion “experimentales” usando la PSD geométrica ya
conocida para estos materiales. Esto ha sido hecho tanto con los poros cilindricos como
con los planos. En segundo lugar, una vez que la isoterma de adsorcion fue
reconstruida, invertimos la isoterma integral de adsorciéon con un procedimiento de
regularizacion. La exactitud del método de inversion ha sido verificado antes de estimar
la PSD de los diferentes materiales. Finalmente, una vez que se ha establecido que el
método es correcto, lo usamos para estimar las PSD’s de estos cuatro materiales. Hemos
estudiado también la influencia de elegir diferentes valores de los parametros
moleculares para la interaccion fluido-fluido y para la soélido-fluido en el
comportamiento de adsorcion en estos sistemas. Los resultados indican que el modelo
de poros independientes es adecuado para los cuatro materiales aqui investigados. La
geometria plana parece representar el comportamiento de adsorcion global mejor que la
cilindrica. En cuanto a lo que las PSD’s obtenidas con nuestro procedimiento se refiere,
las distribuciones resultantes a través de la inversion de la integral presentan una mejor
concordancia con las distribuciones geométricas que las calculadas con el método
Barrett-Joyner-Halenda (BJH). El maximo del pico esta localizado en el mismo tamafio
de poro, y las distribuciones son unimodales, mientras que las BJH’s muestran un
maximo sistematicamente localizado a poros mas pequenos, subestimando las PSD’s
del material, y éstas no son unimodales. Respecto a la geometria de los poros
individuales que conforman el material, se puede decir, a pesar de que las PSD’s son
mas dispersas que las geométricas, que la adsorcion predicha por una coleccion de poros
planos individuales tiene una concordancia casi cuantitativa con la isoterma de
adsorcion experimental.

Finalmente, en el capitulo 5 hemos caracterizado tres muestras diferentes de y-alimina,

una de ellas sin ningun tratamiento, y las otras dos calcinadas en un horno durante
varias horas a 823 y a 1,023K. Para ello hemos medido isotermas de adsorcion de
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nitrogeno a 77.35K en un equipo Micromeritics ASAP 2000. Adicionalmente, hemos
usado las PSD’s calculadas con el método BJH que proporciona el software del mismo
equipo experimental para comparar. Hemos calculado las isotermas teoricas utilizando
la FMT. Hemos invertido las ecuaciones integrales de adsorcion con el método de
regularizacion y, finalmente, hemos obtenido las PSD’s para las tres muestras de
alimina, y las correspondientes isotermas de adsorcion. De esta manera hemos podido
observar la influencia de la calcinacion de la alimina en su PSD. Mas atn, hemos
probado la exactitud del método combinado FMT/Regularizacion de una manera
sistematica. Cuando hemos comparado las PSD’s obtenidas con las correspondientes
BJH’s, hemos verificado que en los dos primeros casos (alumina sin tratamiento y
alimina calcinada a 823K) el método BJH subestima el tamafio de los poros, dando
PSD’s desplazadas a tamafios de poros mas pequefios. En el caso de la alumina
calcinada a 1,023K, en la cual el proceso de sinterizacion ha producido la desaparicion
de los poros més pequefios en beneficio de los grandes, las PSD’s BJH y las PSD’s
FMT/Regularizaciéon son muy similares. Con esto corroboramos el hecho conocido de
que el método BJH es bastante exacto en la region de los macroporos. Para terminar,
hemos predicho la isoterma de adsorciéon de un fluido diferente (etano) a una
temperatura también diferente (333K) en uno de los materiales caracterizados (alimina
sin tratar) con la idea de comprobar si la PSD obtenida es transferible a otras
condiciones o no. La concordancia observada muestra que es posible usar este método
de caracterizacion y extrapolar los resultados a otras condiciones, procurando que se
utilice un niimero suficiente de tamanos de poro diferentes para calcular la isoterma
deseada, y se elijan bien los parametros de interaccion s6lido-fluido.
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Els materials porosos s’utilitzen ampliament en moltes branques de la ciéncia i
tecnologia modernes com la catalisi, la separacio de mescles, la purificacié de fluids i la
fabricacio de membranes. Per a que els solids porosos puguin aplicar-se amb exit cal
disposar d’una caracteritzacié precisa de la superficie i de les propietats estructurals,
aixi com també una bona comprensié del comportament fisico-quimic dels fluids dins
dels porus. Alguns materials, com les zeolites, tenen estructures poroses ben definides,
perd d’altres, com els oxids porosos, carbons i vidres de porus controlat, son bastant
amorfs. Per aixo, un tema clau i, sovint, complicat, és la caracteritzaci6é adequada d’
aquests tipus de materials. Durant molts anys, 1’adsorci6 de gasos s’ha emprat per
estudiar les propietats de solids porosos, degut a que €és un metode rapid, simple i que
proporciona prou informaci6. Es van desenvolupar molts metodes per extraure dades
sobre la porositat i les propietats de la superficie de materials a partir d’isotermes
d’adsorcid. En les dues tltimes deécades, amb 1’ajuda dels ordinadors, cada cop més i
més rapids, 1’as de les técniques de modelat molecular ha anat guanyant rellevancia. En
aquest context, I’objectiu general d’aquest treball de tesi és desenvolupar eines a escala
molecular emprant la mecanica estadistica 1 aplicant-la a la caracteritzacio
de materials adsorbents.

Després d’una breu introduccid en el tema (capitol 1), en el capitol 2 presentem una
revisio de la metodologia basica emprada en aquest treball. En el capitol 3 hem
implementat la teoria funcional de la densitat de mesures fonamentals o FMT (de
I’angles, Fundamental-Measured density functional theory), publicada per Kierlik 1
Rosinberg, per descriure 1’adsorcié de molécules Lennard-Jones en porus cilindrics. Pel
que sabem, aquest és el primer cop que la teoria s’aplica a la geometria cilindrica.
L’exactitud de la teoria en predir isotermes d’adsorcid i perfils de densitat de particules
es compara amb simulacions Monte Carlo en el col-lectiu gran candnic per un rang
ample de mides de porus. Aquesta comparacié mostra que la concordanga és molt bona
en tots els casos. Addicionalment, s’ha aplicat la teoria a 1’adsorcid en porus plans per
estudiar la influéncia de la geometria del porus en aquest fenomen. Els resultats
indiquen que el confinament de la geometria cilindrica introdueix diferéncies
significatives en la forma de les isotermes d’adsorci6 i els perfils de densitat. Aquestes
diferéncies son rellevants a I’hora de caracteritzar materials porosos. Els resultats
indiquen que té lloc un comportament per capes en el porus cilindric més petit que s’ha
considerat, mentre que I’adsorcié en un porus pla de la mateixa grandaria necessita un
potencial quimic molt més alt per aconseguir una adsorci6 significant. A mida que el
diametre del porus augmenta, la influéncia de la geometria es fa cada cop menys
important, encara que es pot observar una certa desviaci6 en la transicidé de condensacio
capil-lar. Addicionalment, per porus més amples, obtenim una adsorci6 multicapa amb
condensaciod capil-lar a potencials quimics alts, amb el mateix comportament qualitatiu
observat en ambdues geometries. Quan el diametre assoleix el limit on els efectes de
curvatura ja no son rellevants, el comportament quantitatiu del porus cilindric es redueix
al mateix que el del porus pla. La formacié d’una capa fina adsorbent en mides de porus
intermedies 1 grans sembla correspondre a una transicid de fase termodinamica de segon
ordre, per al rang de parametres utilitzat i les condicions termodinamiques estudiades.
No obstant, els resultats semblen indicar una interrelaci6 entre aquest comportament i la
transici6 pre-mullada (de la paraula anglesa prewetting) que s’observa en geometries
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semi-infinites, especialment al voltant del punt final critic de la linia pre-mullada.
L’efecte del confinament és molt important en aquest comportament crossover (de pas).
De la comparacid de calculs FMT amb resultats de la teoria funcional de la densitat no
local, concloem que la FMT és una eina excel-lent per a I’estudi del comportament de
fluids en geometries cilindriques.

En el capitol 4 s’explica com hem aplicat la FMT juntament amb un meétode de
regularitzacid per estimar la distribucié de mides de porus o PSD (de I’angles, Pore-Size
Distribution) de vidres porosos model. Hem escollit aquest material perqué va ser
desenvolupat mitjangant técniques de modelat molecular, i es pot comparar directament
amb la teoria utilitzada en aquest treball. Un avantatge addicional d’aquests materials
model, enfront els experimentals, és que, en el primer cas, la mida i forma dels porus
son ben conegudes, aixi com també la posicid dels atoms en la superficie, esdevenint
aixi un material perfecte per comprovar I’exactitud dels meétodes de caracteritzacio
teorica disponibles. Com que hi ha diferents solucions de I’equacio6 integral d’adsorcio
compatibles amb la isoterma d’adsorcio experimental, i diversos factors poden amagar
els defectes del model molecular, hem realitzat la caracteritzaci6 d’una forma
sistematica: primer hem comprovat I’exactitud de la FMT 1 el model de porus
independent per predir les isotermes d’adsorcid “experimentals” utilitzant la PSD ja
coneguda per als materials. Aix0 s’ha efectuat amb porus individuals plans i cilindrics.
En segon lloc, un cop la isoterma d’adsorcié va ser reconstruida amb ¢éxit, vam invertir
la isoterma d’adsorcid integral amb un procediment de regularitzaci6. L’exactitud del
metode d’inversid s’ha comprovat també abans d’estimar la PSD de materials diferents.
En ultim lloc, un cop demostrat que el metode és correcte, I’hem utilitzat per estimar la
PSD de quatre materials. També hem estudiat la influéncia d’escollir alguns valors
particulars de parametres moleculars per les interaccions fluid-fluid i solid-fluid en el
comportament adsorbent d’aquests sistemes. Hem obtingut que el model de porus
independent és adequat per als quatre materials investigats en aquest treball. La
geometria plana sembla representar millor que la geometria cilindrica el comportament
adsorbent global. Pel que fa a la PSD obtinguda amb el nostre procediment, s’observa
que les distribucions obtingudes mitjangant la inversié de la integral estan en millor
concordanga amb les distribucions geometriques que les calculades amb el métode
Barrett-Joyner-Halenda (BJH). El locus del pic esta situat a la mateixa mida de por, i
tots ells son unimodals, mentre que les distribucions BJH mostren un maxim localitzat
sistematicament a porus més petits, estimant per sota la PSD del material, i no son
unimodals. En quan a la geometria dels porus individuals que formen el material podem
dir que, encara que la PSD és més ampla que les geometriques, 1’adsorcio que es prediu
per un conjunt de porus plans individuals estd en un acord quasi quantitatiu amb la
isoterma d’adsorcié experimental.

Finalment, en el capitol 5 exposem com hem caracteritzat tres mostres diferents de
y-alimina, una d’elles sense tractament i les altres dues calcinades en un forn durant
unes hores a 823 1 1023K. Per fer-ho hem mesurat isotermes d’adsorcié de nitrogen a
77.35K en un equip Micromeretics ASAP 2000. A més, hem aprofitat les PSD’s
proporcionades pel programari de I’equip emprant el métode BJH. Hem calculat
isotermes tedriques mitjancant 1’aproximacié FMT. Hem invertit les equacions integrals
d’adsorcié amb el metode de regularitzacio i, finalment, hem obtingut les PSD’s per les
tres mostres d’alimina, 1 les corresponents isotermes d’adsorcid pels tres materials.
D’aquesta forma hem observat la influéncia de la calcinacié de ’alimina en la seva
PSD. A més, hem comprovat 1’exactitud del métode FMT/de regularitzaci6 de manera
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sistematica. Quan comparem les PSD’s obtingudes amb les corresponents distribucions
BJH, hem verificat que, en els dos primers casos (alimina no tractada i aliumina
calcinada a 823K), el metode BJH estima per sota la mida dels porus, proporcionant una
PSD desviada cap a mides més petites. En el cas de 1’alimina calcinada a 1,023K, en la
que el procés de sinteritzacio produeix que els porus més petits desapareguin, afavorint
els més grans, les PSD’s del métode BJH 1 les PSD’s de la FMT/regularitzaci6é sén molt
semblants. Amb aixo0 es corrobora el fet conegut de que el métode BJH és forca acurat
en la regid6 macroporosa. Finalment, hem predit la isoterma d’adsorci6 d’un fluid
diferent (eta) a una altra temperatura (333K), en un dels materials caracteritzats
(alimina no tractada), amb I’anim d’establir la robustesa de la PSD obtinguda. La
concordanga obtinguda mostra que €s possible utilitzar aquest meétode de caracteritzacio
1 extrapolar els resultats a altres condicions, mentre s’empri un nombre suficient de
mides de porus per calcular la isoterma desitjada, i els parametres d’interaccid solid-
fluid es triin adequadament.
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1. INTRODUCTION

1.1 Motivation

Porous materials are widely used in many branches of modern science and technology,
such as catalysis, separation of mixtures, purification of fluids and fabrication of
membranes. A successful application of porous solids requires a characterization of
their surface and structural properties, as well as a good understanding of the physical
and chemical behavior of fluids inside the pores. Some materials, such as zeolites and
molecular sieves, have well defined porous structures, but others, such as porous oxides,
carbons and controlled-porous glasses, are quite amorphous. Therefore, a proper
characterization of this kind of materials is an important topic, and more often than not,
a complicated one.

For many years, gas adsorption has been used to study properties of porous solids
[Rouquerol et al., 1999], since it is fast, simple and informative. Many methods were
developed to extract information about porosity and surface properties of materials from
adsorption isotherm data. In the last two decades, with the aid of the increasingly faster
computers, the use of molecular modeling techniques has been gaining relevance.

In molecular modeling of adsorption, one starts from a well-defined molecular model of
the system and then calculates the adsorption properties from statistical mechanics. The
model is specified by defining equations to describe the fluid-fluid and solid-fluid
interactions, and by defining the molecular structure of the solid material; the pore sizes
and shapes, positions and species of the wall atoms, and any laws governing motion of
the wall atoms. The equations of statistical mechanics for this model are then solved
either by theoretical approximations, or by numerical methods (molecular simulation).

This molecular approach has several advantages: firstly, the observed properties are
directly related to the underlying molecular model. Secondly, when agreement with
experimental data is inadequate, systematic improvement of the molecular model is
possible. And finally, such models can be used to investigate the effects of a variety of
variables (adsorbate, pore size and shape, nature of material) in a systematic way; such
an approach is usually not possible in the laboratory.

The principal difficulties in modeling adsorption processes are usually a lack of precise
knowledge of the structure of the porous material and inadequate or unsuitable
experimental results with which to refine the models and to compare with calculations.



1. Introduction

The inappropriate experimental measurements arise in part due to the fact that many
workers still use older and more classical methods of interpretation. Some examples of
this are the Brunauer-Emmett-Teller equation for surface area, Kelvin-based methods
for pore-size distributions, efc. [Rouquerol et al., 1999]. These methods have little
molecular basis, and in particular do not rely on any model of the intermolecular
interactions. Molecular-based methods of interpretation require low-pressure adsorption
measurements to check the solid-fluid interaction models, and also rely on knowledge
of the molecular nature of the surfaces involved. Thus, while molecular methods are
more difficult to apply and may require more careful measurements, they provide
fundamental insight into the adsorption processes.

1.2 Objectives

The general objective of this thesis is to develop tools on a molecular scale from a
statistical mechanics perspective in order to apply them to the characterization of porous
materials. We will use two techniques, density functional theory and Monte Carlo
simulations applied to some selected materials.

The particular objectives are enumerated as follows:

e Implementation of the Fundamental-Measured density functional theory due to
Kierlik and Rosinberg [1990] to describe the adsorption of Lennard-Jones molecules
in cylindrical pores.

e To test the accuracy of the theory versus Monte Carlo simulation.
e Comparison of the adsorption behavior in cylindrical and slit-like pores.

e Implementation of a technique to obtain pore-size distributions by means of the
regularization inversion method of the adsorption integral equation.

e To verify the hypothesis of the independent pores model using two simple
geometries for individual pores: cylindrical and slit-like shapes; well-characterized
porous materials (controlled-porous glasses), and density functional theory.

e Characterization of y-alumina to obtain the pore-size distribution using density
functional theory and to study the effect of the calcination of the material in the
pore-size distribution.

e To establish the prediction capability of the pore-size distribution obtained to
calculate the adsorption isotherm of the ethane on y-alumina at different
thermodynamic conditions.

1.3 Methodology
1.3.1 Density functional theory

In density functional theory the first step is to define the molecular model of the system
of interest, to construct the equations of statistical mechanics for this model, and to
solve them by some approximation method. In this approach a van der Waals type
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approximation is made for the free energy; that is, an approximate expression for the
free energy is written as a sum of a short-range repulsive (hard-sphere) contribution and
a long-range attractive contribution. This expression involves the density profile, p(r),
and the free energy is then minimized with respect to p(r) in order to find the true
equilibrium density profile. Once this is known, it is possible to calculate the free
energy, adsorption isotherm, and other equilibrium properties. Density functional theory
is easy to apply to systems of simple geometry and to pure and mixed fluids composed
of spherical molecules. The principal disadvantages of such an approach are that it is
difficult to apply to complex systems, e. g. non-spherical molecules, pores of complex
geometry, or heterogeneous surfaces and, that some approximations need to be made.
Molecular simulations are much more flexible in these regards.

1.3.2 Molecular simulation

An alternative approach is molecular simulation, in which the rigorous equations of
statistical mechanics are written down for the model system, and then solved
numerically. Provided that the solution is correctly carried out (e. g. large enough
system, long enough runs, boundary conditions and long-range corrections applied
properly) the simulation will yield an exact answer (within some statistical uncertainty
that can be estimated) for the model system. There are two principal methods: Monte
Carlo and molecular dynamics. The Monte Carlo approach relies on the development of
a Markov chain, by randomly trying different types of moves, and applying suitable
acceptance criteria to these movements. Equilibrium properties of the system, such as
adsorption, density profiles, isosteric heats of adsorption, selectivities, efc., can be
obtained by averaging over the Markov chain using the laws of statistical mechanics.

1.4 Contents

The rest of this thesis is organized as follows. In chapter 2 we review the fundamentals
of the different molecular modeling tools used in this work. Chapter 3 is devoted to the
Fundamental-Measured density functional theory applied to cylindrical and slit-like
pores, along with a comparison with Monte Carlo simulation results of cylindrical
pores. In chapter 4 we present and discuss our results of the pore-size distribution
obtained with the independent pore model using cylindrical and slit-like pores of
controlled-pore glasses. In chapter 5 we discuss the pore-size distribution of y-alumina
calculated using experimental adsorption isotherms of nitrogen at 77.35K and the
inversion of the adsorption integral equation. Also, we study the effect of the calcination
of the alumina over the pore-size distribution, and the capability to predict of the
adsorption isotherms of ethane on alumina at other thermodynamic conditions using this
pore-size distribution. Finally, chapter 6 gives a briefly summary of this work and gives
some recommendations for future work.
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2. METHODOLOGY

2.1 Introduction

Three primary methods exist for studying nearly any basic problem in science:
experimentation, theoretical calculations, and molecular scale computer simulations.
When performing an experiment, the researcher is able to directly measure the
properties of the real system. However, most of the times the range and the amount of
the data, which may be obtained, are limited by several situations, such as the difficulty
to achieve some experimental conditions, the cost of equipment, efc. Additionally,
sometimes a model to interpret the experimental data is necessary due to the
measurement of the desired property is not directly extracted.

In this sense, adsorption data and mercury porosimetry are widely used to characterize
porous materials [Gregg and Sing, 1982], the classical methods for interpreting such
data rely on equations that are more than 50 years old, and are of uncertain validity,
particularly for micropores and small mesopores. The most important of these equations
are those of Brunauer, Emmet and Teller (BET), Kelvin, and Dubinin and
Radushkevitch (DR) and their modified forms [Gregg and Sing, 1982]. The BET
equation neglects adsorbate-adsorbate interactions, heterogeneity of the surface, and
variations in properties of adsorbed layers after the first; nevertheless, it usually gives a
good account of low-pressure adsorption, especially for nonporous materials. The
Kelvin equation assumes a) the vapor phase is ideal, b) the liquid phase is
incompressible, with a molar volume that is negligible compared to the gas, and c) the
system is large enough for the surface tension to be defined. Assumptions a) and b) will
lead to significant errors at higher temperatures, especially as the capillary critical point
is approached, while approximation c) will lead to increasing errors as the pore size
decreases. As well, a breakdown occurs in using the Kelvin equations as the pore size
decreases [Thompson et al., 1984] The DR equation introduces a single adjustable
parameter to characterize the pore-fluid system, and is essentially empirical in nature.

Statistical mechanics provides a more reliable and general approach for the
interpretation of adsorption and porosimetry experiments. At the present time the two
most promising approaches are density functional theory (DFT) and direct molecular
simulation. The simulation approach has the advantage that the statistical mechanical
equations are solved exactly for the prescribed model of the pore geometry and
intermolecular interactions; it is relatively easy to incorporate surface structure and
heterogeneity, and a variety of pore geometries and irregularities. The DFT approach
involves some approximations, but provides a more systematic procedure to study the
physical behavior of systems. In general, applications of the DFT have until recently
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been limited to problems where the density profiles are uniform in two dimensions. The
result is a 1D numerical problem that must be solved. This is an important limitation to
apply DFT to structured walls, where the heterogeneity of the walls produces a 3D
problem, with the need to perform nested integrals. These integral equations are
expensive both in evaluation time and in memory requirements; however, intelligent
algorithms and the use of parallel computers can mitigate the expense [Douglas Frink
and Salinger, 2000]. In synthesis, both methods, the molecular simulation and DFT
calculations give more detailed insight and higher accuracy than the classical methods
currently in use to characterize porous materials.

In this chapter we briefly explain the fundamentals underlying on the molecular model
techniques used in this work. First, the density functional theories, and in second place,
the molecular simulation Monte Carlo method in the Grand Canonical ensemble. After
that, we defined the pore-size distribution and we expose the methodology used to
obtain it. At the end, we present the details of the procedure used, at which the
experimental adsorption isotherms were measured.

2.2 Fundamental Measure density functional theory (FMT)

In the formulation of the DFT used along this work we essentially follow the work of
Kierlik and Rosinberg [1990]. The free energy density, F/p(r)], is expressed as
[Evans, 1979]

Flom)]=k,T [drp@[in(Apm)-1]+ £, [p)]. @.1)

where the first term on the right-hand side represents the ideal contribution, while the
second term is the excess free energy density. In this expression

A s( o’ j : 2.2)
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where A is the de Broglie wavelength, 7 is Planck’s constant over 2m, m is the mass of
the particle, k5 is Boltzmann’s constant and 7' is the absolute temperature. In fluids with
interactions such as those described through the Lennard-Jones (LJ) intermolecular
potential, the excess free energy is further decomposed into a contribution of a reference
system of hard spheres plus the contribution due to the attractive interactions, usually
treated under a mean-field approximation, according to

F, [p(r)]l=Fylp®)]+F,[p(r)). (2.3)

In the FMT formulation, the excess free energy contribution of the reference system of
hard spheres is further expressed in terms of fundamental geometrical measures of the
particles [Kierlik and Rosinberg, 1990; Rosenfeld, 1989]. In particular, the functional
proposed for the excess free energy of the hard-sphere fluid, Fus/p(r)/, yields the
Percus-Yevick (PY) compressibility equation of state for an homogeneous fluid
[Wertheim, 1963; Thiele, 1963; Lebowitz, 1964], or the scaled particle theory (SPT)
[Reiss et al., 1959; Helfand et al., 1961]. In choosing this particular recipe of DFT, we
take into account the fact that its predictions of the structural and thermodynamic
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properties of the fluid are obtained as consequences of the theory itself, without further
assumptions common to other theories [Evans, 1992]. This DFT for the hard-sphere
fluid might be considered as a generalization of the SPT free energy to non-uniform
situations. Another advantage of this DFT recipe is that the density-independent
expression of the weighting functions avoids the need to calculate them anew for each
point in the pore. Moreover, the extension to mixtures is straightforward, and specific
versions are designed to deal with the crossover to one and zero-dimensional systems
[Rosenfeld et al., 1997; Tarazona, 2000].

With the aim at studying the adsorption of LJ particles on pores, it is convenient to work
under constant chemical potential p. Therefore, we will focus our attention on the grand
potential of the system, defined from the Helmholtz free energy according to

Qfp )= Flpm)]- [drp@)u-9,.(1)], (2.4)

where the first term on the right-hand side is the intrinsic Helmholtz free energy
functional, and in the second term the expression ¢(7)., takes into account the potential
imposed by the wall.

In the FMT formulation the grand potential hence takes the form
Ap(0)]=k, 7 [drp([In(A’p (1))~ 1]+ &, T [ drd(fm, (r)})

(2.5)
+ s drfdr p@p,, (r=1f)- [dro(0n -9, (0]

In this expression, the first term stands for the ideal gas contribution to the free energy.
The second term is the excess free energy of the hard-sphere reference system in a
weighted density approximation [Kierlik and Rosinberg, 1990]. The third term
describes the effect of the attractive interactions between particles, ¢, introduced in a
mean-field way. The functional dependence of ¢, stresses the fact that we will only
consider here isotropic interactions. The last term represents the contribution of the bulk
chemical potential as well as the effect due to the walls of the pore, introduced through
the external field ¢ (7).

According to Kierlik and Rosinberg [1990] the excess free-energy density of the
reference system of hard spheres, kzT®({n, (r)}), is assumed to be a function of the

weighted densities, the latter defined as
7, ()= [dr'o®(r-rp@), (2.6)

with o = 0, 1, 2, and 3. The four weight functions o® (v) are related to the Heaviside
step function, ®(r), and its derivatives. These weight functions are independent of the
density and are given by
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o®(@)=0(R-r)
o®(r)=5(R-r)

o®(r) = 1s (R-r) 2.7)
8n

o O(r) = —ia”(R—r)+L5‘(R—r),
&n 2nr
where R is the effective radius of the hard-sphere reference fluid, d(7) is the isotropic
Dirac delta function, and the primes denote successive derivatives of the delta function

with respect to r. In particular, the hard-sphere excess free energy has the form [Kierlik
and Rosinberg, 1990]

—— —3
mn, 1 n,

o({7, })=—n, In(1—7,) + i—a ey =

(2.8)

At this point, the equilibrium properties of the fluid can be obtained by minimizing the
grand potential functional, Eq. 2.5, with respect to the local density, according to
3Qfpm)] _, (2.9)

=Y,

op(r)

at constant chemical potential, p, and under appropriate boundary conditions [Evans,
1979]. The above requirements result in the Euler-Lagrange equation

H= kBTln(A3p(r”))+J'dr;w(a)(lr _r,,)aﬁai)r)

+[drp(en,,(r=r)+0,,0"), (2.10)

which is an implicit relationship to be satisfied at every space point r", whose
functional inversion yields the density profile in terms of the chemical potential, the
attractive and external potential fields and the geometry of the particles.

2.3 Non-local density functional theory

The most advanced non-local version of DFT (NLDFT) was first developed by
Tarazona [1985], who introduced the smoothed (or weighted) densities, and thereafter
modified by Tarazona et al. [1987], Rosenfeld [1989], Denton and Ashcroft [1991],
Kierlik and Rosinberg [1990], and Patra and Ghosh [1993]. NLDFT has recently been
successfully employed for analyses of a number of quite complicated problems in
interfacial and adsorption equilibrium, phase transition, complex fluids, etc. A brief
review of most of its applications in confined fluids is described in the next chapter.

The Tarazona DFT gives good results for the hard sphere direct correlation function, the
results being only very slightly different from the PY values at a high (liquid-like)
reduce density po® = 0.8, while at lower densities the two theories are usually
indistinguishable. This DFT has the advantages of being both quite accurate and
relatively easy to use in numerical calculations for realistic intermolecular potentials
such as Lennard-Jones. It is also able to predict solid-fluid transitions, in contrast to
some other forms of DFT. However, it also has several shortcomings:
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o It is difficult to use for mixtures, since the extension to several components involves
some ambiguity in the definition of the weighting functions [Tan et al., 1989].

e The weighting factors depend on the smoothed density, and so must be calculated
afresh for each point in the pore.

In this approximation [Tarazona, 1985; Tarazona et al., 1987] the free energy of the
hard-sphere fluid is evaluated at the smoothed density p(r)

Fyslp(r)]=[drp(r)fys[p(r)]. (2.11)

Here f, [f)(r)] is the excess free energy per particle, which is calculated from the

Carnahan-Starling equation of state [Carnahan and Starling, 1969]. The smoothed
density is defined as

p(r) = [dr p (el ', p(r)), (2.12)

where w@r—r',ﬁ(r)) is the weighting function. Tarazona proposed the following

expansion for the weighting function

w(r, p) = wy (1) + wm(r)p +w(r)p”. (2.13)

The coefficients wy(r), w;(r), and wy(r) were found from the requirements that the
functional approximates the PY two-particle direct correlation function of the
homogeneous hard-sphere fluid [Hansen and McDonald, 1991]. Explicit expressions for
the weighting functions are given by the follow equations and are taken from
Tarazona et al. [1987]

3
s r<o,
wy(r) =1 4nc’
0, r>ao,
r Y
0.475—0.648(j+0.113(j , r<o,
c c
c r P\
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2.4 Monte Carlo simulation method

In the past three decades, computer “experiments” have come to play a major role in
fluid-state physics. Their importance, from the theoretician’s point of view, rests on the
fact that they provide essentially exact, quasi-experimental data on well-defined models.
As there is no uncertainty about the form of the interaction potential, theoretical results
can be tested unambiguously in a manner that is generally impossible with data obtained
in experiments of real systems. It is also possible to obtain information on quantities of
theoretical importance that are not readily measurable in the laboratory
[Hansen and McDonald, 1991].

Simulation studies have been used in two ways. On the one hand, the results can be
compared with those from an approximate theory based on statistical mechanics and
using the same set of intermolecular forces. This provides a test of the approximations
made in the latter theory, which does not depend upon knowledge of the forces, or on
experimental artifacts. Simulations used in this way to furnish exact data for a model are
often referred to as “machine experiments”. On the other hand, the simulation results
may be compared with real (physical) experiments, when they provide a test of the
assumptions employed in the model and, in particular, those concerning the
intermolecular forces. Machine experiments are often limited by the existence or
otherwise of suitable materials for study. In both cases it is, of course, nature that is the
source of inspiration and ultimate object of interest as in any other scientific work.

Two distinct methods are available [Hansen and McDonald, 1991], and have been
widely used: the Monte Carlo method of Metropolis et al. [1953] and the method of
molecular dynamics pioneered by Alder and Wainwright [1959]. This type of
calculation provides what may be regarded as essentially exact results for a given
intermolecular force law, thereby eliminating the ambiguity that invariably arises in the
interpretation of experimental data on real systems. Their usefulness rests ultimately on
the fact that a model containing a relatively small number of particles, typically several
hundreds is in most cases sufficiently large to simulate the behavior of a
macroscopic system.

In the method of molecular dynamics, the classical equations of motion of a system of
interacting particles are solved, and equilibrium properties are determined from time
averages taken over a sufficiently long time interval. The Monte Carlo method involves
the generation of a series of configurations of the particles of a model in a way that
ensures that the configurations are distributed in phase space according to some
prescribed probability density. The mean value of any configurational property
determined from a sufficiently large number of configurations provides an estimate of
the ensemble-averaged value of that quantity, the character of the ensemble average
being independent on the particular sampling procedure that is used. The major
advantage of molecular dynamics is that it allows the study of time-dependent processes
[Hansen and McDonald, 1991]. For the calculation of thermodynamic properties,
however, the Monte Carlo method is often more suitable. We are interested in
equilibrium thermodynamic and structural properties; therefore, we use Monte Carlo
in this work.

10
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As the name suggests, a probabilistic element is an essential part of any Monte Carlo
computation. In a classical Monte Carlo calculation, a system of N particles interacting
through some known potential is assigned a set of arbitrarily chosen initial coordinates;
a sequence of configurations of the particles is then generated by successive random
displacements. Not all configurations that occur are accepted, the decision whether to
“accept” or “reject” a particular configuration is been made in such a way as to ensure
that, asymptotically, the configuration space is sampled according to the equilibrium
probability density appropriate to a chosen ensemble. The ensemble average of a
function of the coordinates of the particles, such as the potential energy, is then obtained
as an unweighted average over the resulting set of configurations. The particle momenta
do not enter the calculation, there is no time scale involved, and the order in which the
configurations occur has no special significance [Hansen and McDonald, 1991].

The only input information in a computer simulation, apart from the fixed parameters
and the chosen initial conditions, are the details of the particle interactions. There is no
restriction on the form of the inter-particle potential, but in practice it is nearly always
assumed to be pair-wise additive. For economy in computing time, it is customary to
truncate the interaction at a separation » = r. < %L, where r, is the cut-off radius and L
is the length of the simulation box. The effect of the neglected interactions on bulk
properties of the system can be allowed for by making an appropriate “tail corrections”
(long-range corrections) [Hansen and McDonald, 1991].

Grand Canonical Monte Carlo (GCMC)

The GCMC method simulates an open system specified by fixed temperature 7, volume
V" and chemical potential p. It is the staple technique for the simulation of an adsorbed
fluid (or fluid mixture) in equilibrium with a bulk fluid reservoir, which is frequently
the situation encountered in experimental studies of confined fluids. The method was
first used in studies of bulk fluids [Adams, 1975; Norman and Filinov, 1969], and was
quickly extended to adsorbed systems [Van Megen and Snook, 1982; 1985].

GCMC, like the rest of the Monte Carlo methods used in molecular simulation, is based
on the use of a Markov chain to generate a series of molecular configurations [Ross,
1997] with the correct distribution of energy and density. In the grand canonical
ensemble, the probability associated with any given (classical) state s of the system is
[Allen and Tildesley, 1987]

P(s) o exp[- B(v (s) = Nu)-InN'-3NInA + NInV], (2.15)

where A is the de Broglie wavelength, B = 1/kT, v(s) is the total intermolecular
potential energy of the system, and N is the number of molecules in the system. Most
simulators use the original prescription for generating the Markov chain proposed by
Norman and Filinov [Norman and Filinov, 1969; Allen and Tildesley, 1987], In this
method [Allen and Tildesley, 1987; Frenkel and Smit, 1996], subsequent steps in the
chain are generated by modifying the current molecular configuration in one of three
ways: either creating a new molecule at a random position, destroying an existing
molecule, or displacing an existing molecule by a random vector. These “moves” are
then accepted or rejected according to the following criteria based on the temperature
and chemical potential

11
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Pispice = min{l,exp(= BAV )]
= min[l,exp(— BAv )+ p —In(N +1)], (2.16)
= min[l,exp(— PAv )— p + In(N )]

P

create

P

destroy

where P;, the probabilities of each type of “move” are equal. Thermodynamic quantities
of interest can be estimated by averaging their microscopic counterparts over a large
number, M, of these configurations, for instance, the average internal energy <U> is

estimated by the average of the instantaneous potential energy, 1/M wav (s) In

general, there is considerable freedom in choosing the parameters controlling the
simulation, and statistically efficient choices of these parameters, as well as the total
simulation length, vary widely between different systems.

The thermodynamic potential appropriate to the grand canonical ensemble is the grand
free energy, (2, given by

Q=F-p(N), (2.17)

where F is the Helmholtz free energy, F = U-TS and <N> is the average number of
molecules (for a mixture the last term on the right-hand side of Eq. 2.17 is replaced by

sum over all components, Za H, <Na>). For a pore of general shape the exact

differential of Q) is given by
dQ=-SdT — BdV — (N )du +ydA, (2.18)

where S is the entropy, P, is the bulk phase pressure, y is the solid-fluid interfacial
tension and A is the surface area. From this equation the form of the Gibbs adsorption

isotherm is obtained
8Q)
——(N). 2.19
(au (N) (2.19)

TV, 4

In this work, adsorption isotherms and density profiles have been obtained through a
GCMC scheme. The temperature 7, the volume ¥V, and the chemical potential p inside
the pore are thus fixed. To obtain the adsorption isotherms, we ran the simulation at
values of the activity, defined as

o = oxp/ksT) (2.20)
c
corresponding to bulk chemical potential, equal to those used in the density functional
theory calculations.

2.5 Pore-Size Distribution (PSD)

As we mentioned in the beginning of this section, there exist two main classes of
methods to interpret adsorption data with the aim to obtain PSD information. The
methods based on classical thermodynamics and the methods based on statistical

12
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mechanics. In this work, we are dealing only with the last methods, although, we use the
Barrett-Joyner-Halenda (BJH) method for comparison.

2.5.1 Methods to obtain PSD by statistical mechanics

The behavior of the experimentally measured adsorption isotherms can be related in a
simple way using an independent pore model [Seaton ef al., 1989]. This means that an
experimental adsorption isotherm can be represented as a set of independent, non-
interconnected pores of ideal and simple geometry of different sizes; usually these are
of slit shape for activated carbons, and of cylindrical geometry for glasses, oxides,
silicas, efc. Therefore an experimental adsorption isotherm I'(P) represents an average
over all values of the pore sizes existing on the porous material

I'(P)= T;E(P,H) f(H)dH , (2.21)

H
min

where p”(P,H) represents the theoretical isotherm at some specific size (H), f(H) is

the PSD and the sum is over the range of pore sizes (Hyi, to Hyay). To obtain the PSD is
necessary to invert this integral equation. In this section we briefly expose a review of
the various methods available in the literature for carrying out this inversion process.

It is important to stress at the outset that the integral equation relating the adsorption
isotherm to the local isotherm and the distribution function (Eq. 2.21) when applied to a
set of experimental points provides an “ill-posed” set of simultaneous equations. Their
solution can be performed reliably to obtain stable results only if highly accurate
experimental adsorption isotherms are available, covering a wide range of pressures:
four or five orders of magnitude are usually considered necessary. Since all
experimental points are subject to inherent random errors, the experimental data usually
need to be smoothed before subjecting them to numerical analysis. Smoothing of
experimental data is often achieved by a least squares quadratic fit to a quadratic curve.
Alternatively the smoothing may be carried out using spline-fitting techniques.

The methods available for the evaluation of PSD functions fall into two main groups:
those in which a general analytical form of the distribution function is postulated, and
the parameters describing it are calculated from the experimental data, and those in
which no a priori assumption is made about the shape of the distribution. An excellent
source with the details of these methods is the book of Rudzinski and Everett [1992]
applied to adsorption energy distributions, but the integral equations are essentially
the same.

The work of Seaton et al. [1989] was the first one in which nitrogen adsorption
measurements were used to determine PSD in porous carbons using a molecular model.
In this study, they used local DFT [Evans and Tarazona, 1984; Evans et al., 1986a;
1986b] to model nitrogen isotherms, and it is an example of the application of the first
kind of methods described above to obtain PSD. They fitted a bimodal log-normal
distribution. Following this work, later, Lastoskie et al. [1993] used a log-normal

13
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distribution and a gamma distribution to describe microporous carbons using nitrogen
isotherms. In this work they demonstrated that NLDFT provides a more accurate
interpretation of the PSD that classical methods and the local DFT, and they found that
a sufficiently large sample data (typically 30-50 points) constraints the shape of f(H). Of
such a way that the numerical values of the pore-size distribution will essentially be the
same, provided a sufficiently flexible functional form is chosen for the PSD. They used
two different functional forms to test the numerical uniqueness of PSD of carbons,
obtaining the same distribution. El-Merraoui et al. [2000] used a bimodal log-normal
function to describe the PSD of activated carbon fiber.

Included in the second group using the Tikhonov regularization method we can find the
work of Neimark et al. [1998], in which they obtain the PSD of MCM-41 type
adsorbents (cylinder pores) by means of nitrogen and argon adsorption using NLDFT.
Additionally the work of Ravikovitch ef al. [2000] in where they show that using N,
Ar, and CO; adsorption isotherms with the same methods (NLDFT and Tichonov
regularization) obtain very similar PSD of microporous carbonaceous materials (slit-
shaped pores). Gusev and coworkers [1997], and Davies and Seaton [2000] have used
GCMC simulations combined with regularization method to obtain PSD of activated
carbons. Davies et al. [1999] and Davies and Seaton [1999] have addressed in detail the
problem of calculating PSD’s from adsorption data. They have stressed the importance
of the identification of an optimal smoothing parameter to be used in the analysis.

2.5.2 The BJH method

The BJH method for calculating PSD [Barrett et al., 1951] is one of a family of methods
[Gregg and Sing, 1982] based on a model of the adsorbent as a collection of cylindrical
pores. The method accounts for capillary condensation in the pores using the classical
Kelvin equation. In each pore the total excess adsorption is given by a surface layer
thickness #(P) plus a pore-filling term; the pore is filled if the pressure satisfies

P_ -2V 1

Ln—2
F, RT r

c

: (2.22)

where 7. = r — t(P) and r is the radius of the pore. V; is the molecular volume of the
liquid, v is the surface tension, and Py is the vapor pressure. Thus, the Kelvin equation is
only applied to the “core” fluid in this treatment. In the original BJH formulation, a
simplification was introduced in which the parameter c, the ratio of core radius to pore
radius, is assumed constant. In the results taken from literature [Gelb and Gubbins,
1999] and shown here (section 4.4) for comparison, this assumption is relaxed and
therefore this is their only deviation from the original approach [Barrett ef al., 1951].

This analysis requires independent determination of vy, Vi, Py, and the reference
isotherm #(P). Gelb y Gubbins [1999] have determined V; and P, using Gibbs Ensemble
Monte Carlo simulations of the bulk fluid. The surface tension was interpolated from
previous simulations of a LJ liquid [Holcomb et al., 1993; Chapela et al., 1977]; the
value used were y* = 0.389 at 7" = 0.809, in reduced units [Gelb y Gubbins, 1998].
These data were fitted with a modified BET isotherm [Brunauer et al., 1969] to provide
an analytical function of #(P).

14
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2.6 Experimental adsorption isotherm

All equipment designed to measure surface area, adsorption/desorption isotherms or
pore volume by adsorption actually determines the quantity of gas condensed on a solid
surface at some equilibrium vapor pressure [Lowell and Shields, 1991]. The surface
area or pore volumes and pore sizes are then calculated by means of an appropriate
theory used to treat the adsorption and/or desorption data. Depending on the apparatus
employed, the adsorbed quantity is measured as volume or weight. The accuracy of an
adsorption apparatus is, therefore, dependent upon its ability to measure correctly either
of these quantities.

Many types of vacuum adsorption apparatus have been developed. However, all
vacuum adsorption systems have certain essential features, including a vacuum pump,
two gas supplies, a sample container, a calibrated volume, manometer and a coolant.
Micromeritics house builds two very different types of instruments, which employ very
different techniques. They are identified as static volumetric method and the flowing
gas, or dynamic, method [Webb and Orr, 1997].

Static volumetric methods are those by which adsorption is measured using mass
balance equations, appropriate gas equation of state, and measured pressures. During
analysis the sample most frequently is maintained at cryogenic temperature, generally
that of liquid nitrogen. Gas usually is supplied at near ambient temperature and at
precise pressures through a manifold having accurately known volume and temperature.
The molar quantity of gas adsorbed at equilibrium is computed by following gas
pressure changes as quantities of gas are admitted from a manifold to a sample
[Webb and Orr, 1997].

Figure 2.1 shows a schematic diagram of the essential elements of a volumetric
adsorption apparatus. It consists basically of three valves, one to admit the adsorptive,
one to connect to an evacuation system, and one to isolate the sample; three transducers
to permit measuring gas pressures from very low to above ambient; the sample holder
which can either be heated or cooled (the cryogenic bath is shown); and interconnecting
passageways which, collectively, comprise what 1is called the manifold
[Webb and Orr, 1997].
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Fig. 2.1. Schematic diagram of the elements of a volumetric adsorption
apparatus (taken from Ref. Webb and Orr, 1997.

Sample holders come in various sizes and shapes to accommodate materials of different
quantities and forms, which displace various volumes. Therefore to know accurately the
free volume within a particular sample holder, both the sample holder and sample
volumes must be known or the free space must be determined. This determination is
accomplished by following gas pressure changes as quantities of gas are exchanged
between the gas manifold and the sample holder at the same temperature. Only after all
system volumes are firmly established can the quantity of gas adsorbed by the sample
be established with accuracy. Precise measurements require careful accounting of gas
quantities and close attention to each and every step [Webb and Orr, 1997].
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3. ADSORPTION IN PORES*

3.1 Introduction

The thermodynamic and structural properties of inhomogeneous classical fluids
constitute a fundamental problem for physics and chemistry. During the last years a
great effort has been devoted to the molecular modeling of these properties within the
framework of interfacial phenomena, freezing, fluids in confined geometry, efc. Despite
the important advances achieved with the combination of modern theories and computer
molecular simulations, inhomogeneous situations are not yet completely understood.
Even simple spherical fluids show a complex behavior when confined in well-defined
geometries. When the pore size is on the order of the correlation length, the presence of
walls causes a dramatic change in the behavior of these confined systems compared to
that exhibited in the bulk phase. In particular, energetic interactions and geometrical
confinement modify the character of phase transitions, shift critical points, and new
observable metastable states and hysteresis phenomena appear, among other features
[Gelb et al., 1999].

A very successful and general method for determining the thermodynamic and
structural properties of inhomogeneous fluids is undeniably density functional theory
[Evans, 1992]. This method is based on the formulation of the free energy for an
inhomogeneous fluid as a functional of the spatially varying one-particle density p(r).
The density functional approach provides all relevant thermodynamic functions, such as
surface tension, solvation forces, adsorption isotherms, density profiles, efc.
Unfortunately, the exact free energy functional is only known for a few simple models
and, consequently, the cornerstone of the theory is to provide suitable approximations
for the free energy [Evans, 1992].

It is customary to separate the ideal from the excess contributions to the free energy.
Moreover, the excess free energy functional is further split, somewhat arbitrarily, into
two parts: the hard-sphere contribution and the attractive part usually treated under the
mean-field approximation. Within this framework, density functional approaches are
further classified into local and non-local theories, depending on how the hard-sphere
contribution to the excess free energy density is modeled. In the local approximation,
the excess free energy density at a point r is formulated as dependent on the local
particle density at the same position r. Although local theories can adequately describe

* The results presented in this chapter are in press (Journal of Chemical Physics, Issue: 22 Dec. 2002).



3. Adsorption in pores

relevant properties in inhomogeneous situations [Sullivan and Telo da Gama, 1986;
Dietrich, 1988; Evans, 1990; Tarazona and Evans, 1983; Tarazona et al., 1983;
Tarazona and Evans, 1982; Evans and Parry, 1989] this formulation fails when
predicting oscillatory density profiles, such as those observed in confined fluids, since
short-range correlations are neglected [Evans, 1992]. On the other hand, in the non-local
or weighted density functional theories, the excess free energy for the hard-sphere
reference system is function of the particle density in the neighborhood of the point r,
through smoothed densities. The latter are constructed from appropriate averages of the
particle density over a given local volume, thus accounting for the short-range
correlations. Different recipes of the weighted density can be found in the literature
[Nordholm et al., 1980; Johnson and Nordholm, 1981; Freasier and Nordholm, 1983,
1986; Tarazona, 1984; 1985; Curtin and Ashcroft, 1985; Meister and Kroll, 1985;
Percus, 1981; 1982; 1988; Robledo and Varea, 1981].

A new kind of non-local free energy density functionals has been developed in the last
two decades. The Fundamental-Measure theory free energy functional was originally
proposed by Rosenfeld in 1989 [Rosenfeld, 1989]. This procedure is based on the
convolution decomposition of the excluded volume for a pair of convex hard spheres in
terms of characteristic functions for the geometry of the two individual bodies. In the
original formulation [Rosenfeld, 1989], the excess free energy density of the hard-
sphere fluid is obtained from four scalar and two vector weighting density-independent
functions. Later on, Kierlik and Rosinberg [1990] proposed a new fundamental-measure
functional, defined by only four scalar weighting functions. Although the functional
forms of the Rosenfeld and Kierlik and Rosinberg theories are different, it has been
proved that both approaches represent the same fundamental density functional
[Phan, et al., 1993].

Most of the initial studies on confined fluids for slit-like and cylindrical pores were
based on the local approximation for the repulsive part of the Helmholtz free energy
[Evans and Tarazona, 1984; Evans and Marini Bettolo Marconi, 1985a; 1985b; 1987,
Peterson et al., 1985; 1986; Evans et al., 1986a; 1986b; Tarazona et al., 1987]. After the
work of Nordholm and co-workers [Nordholm et al., 1980; Johnson and Nordholm,
1981; Freasier and Nordholm, 1983; 1986] and Tarazona [1985], in which the non-local
approach was introduced, a great number of studies based on this approximate method
have been undertaken [Peterson et al, 1988; 1990; Balbuena and Gubbins, 1993;
Lastoskie et al., 1993a]. In the past decade, following the work of Rosenfeld and that of
Kierlik and Rosinberg, a number of analyses have been directed to study the adsorption
behavior of spherical fluids and their mixtures, all of them, however, restricted to slit-
like pores [Kierlik and Rosinberg, 1991; Kierlik et al., 1992; 1994; Jiang et al., 1994;
Phan et al., 1995; Kierlik et al., 1995; Sowers and Gubbins, 1995; Sliwinska-
Gartkowiak et al., 1997; Bryk et al., 1998; Ravikovitch et al., 2001]. As far as
dimensional crossover is concerned, more recently Gonzalez et al. [1998] studied the
behavior of a system confined in a spherical cavity with an analysis based on the
modifications introduced by Rosenfeld et al. [1997] on the original work of Rosenfeld
[1989]. Tarazona [2000], in turn, developed a FMT functional that is able to correctly
account for dimensional crossover. To our knowledge, none of the Fundamental-
Measure approach versions has ever been used to describe the behavior of confined
fluids in cylindrical geometries. This application, however, has a particular importance
since DFT is currently being used to obtain the pore-size distribution from adsorption
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3. Adsorption in pores

isotherms in porous materials, in which cylindrical pores are common [Rouquerol et al.,
1999]. Thus, to establish the validity of this kind of functionals for predicting the
adsorption behavior in cylindrical pores becomes a matter of fundamental interest.

The main goal of this part of the work is to analyze the ability of the FMT free energy
functional, proposed by Kierlik and Rosinberg, to describe the thermodynamic and
structural properties of a Lennard-Jones spherical fluid confined in cylindrical pores. In
particular, the accuracy of the FMT results is tested by comparing them to those
obtained from Grand Canonical Monte Carlo simulations using the same molecular
model and for a wide range of pore sizes, from micropores to mesopores. In addition,
the effect of the geometrical confinement on the adsorption properties is studied
comparing the FMT results for cylindrical pores with the data obtained for slit-like
pores of similar width.

The rest of the chapter is organized as follows. In section 3.2 we briefly review some
details of the FMT, we set out the model potentials and approximations used in this
work, we define the pore properties, and finally, we give details about the molecular
simulations performed. In section 3.3 we present and discuss our results. Finally,
section 3.4 is dedicated to summarize the main conclusions that can be drawn
from this work.

3.2 Molecular model
3.2.1 Density functional theory

This part was already explained in detail in section 2.2. Here we will only add some
specific details of the model used in this work. The inversion of the Euler-Lagrange
equation (Eq. 2.10) in the case of a fluid adsorbing onto cylindrical walls of diameter H,
unbounded in the axial direction, requires the calculation of a series of convolution and
constitutes the main computational effort of this work. These convolutions are
generically expressed as

jdrwqr—r")f(r), (3.1)

where y(|r|) is an arbitrary isotropic kernel, and f{r) a given function of the position
which, for symmetry requirements, depends only on the distance to the axis of the
cylinder r, . Identically and also due to symmetry requirements, the result of each of

these convolutions is a function of the distance to the axis of the cylinder, r/.

To take advantage of the isotropy of the kernel, we have introduced a local coordinate
system around the space point r". The z-axis is perpendicular to the cylinder’s axis
pointing outward in the radial direction, the y-axis is parallel to the cylinder’s axis, and
the x-axis is correspondingly oriented [see Fig. 3.1]. Adopting spherical coordinates
with respect to this local reference system, the distance r, of a given space point can be

obtained according to the transformation
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3. Adsorption in pores

r (r0,0:77)= \/(’1" +rcos® ) + risin’® sin’ (3.2)

which permits the evaluation of the function f(r,). The convolutions are then

calculated by repeated one-dimensional integration, taking advantage of Gaussian
quadratures to increase the velocity of the numerical evaluation. We have not
introduced here a reduction of the multidimensional integration by an appropriate
(although cumbersome for non-planar geometries) coordinate change, as it is the case in
the adsorption on a flat wall [Kierlik and Rosinberg, 1990]. However, there is not a
significant increase in the computational time, since the problem is still one-
dimensional, due to the fact that the density profile is a function which depends only on
the distance to the axis of the cylinder, r,. As a result, the comparison between the

density profiles in slit-like and cylindrical pores shows significant differences near the
axial region due, precisely, to these curvature effects.

rS in® Sing

Fig. 3.1. Projection of the cylindrical pore on a plane orthogonal to cylinder
axis following Eq. 3.2.

It is important to realize that our procedure respects the geometrical properties of the
system, which is especially relevant near the axis of the cylinder, where the radius of
curvature of the “slices” of constant density is of the same order of magnitude as the
radius of the particles themselves.

We have performed FMT density functional calculations as well as GCMC simulations
of adsorption in cylindrical pores of different diameter sizes. We have also calculated
adsorption properties in slit-like pores using FMT. The molecular parameters used were
the same as in the simulation of nitrogen adsorption on model porous glasses of silica
[Gelb and Gubbins, 1998; 1999]. Adsorption was assumed to take place on standard
conditions for the nitrogen at the normal boiling temperature of 77K. The reason of such
a choice is the interest of further applications of our methodology to the determination
of the pore-size distribution in this kind of materials. In some specific cases, we have
calculated the adsorption, desorption and stable branches, as discussed later. For the rest
of the cases we have calculated only the adsorption branch.
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3. Adsorption in pores

3.2.2 Fluid-fluid interactions

In this work, the nitrogen molecule is modeled as a spherical LJ particle, with a “cut-
and-shifted potential”, ¢*/(r). The LJ parameters ¢ and c have been taken from literature
[Maddox et al., 1997] (see also table 3.1). In addition, all the LJ interactions were
truncated at a cutoff radius r. = 2.520c.

We divide the potential into repulsive (reference) and attractive (perturbative)
components, following the conventional Weeks, Chandler, and Andersen (WCA)
perturbation scheme [Week et al., 1971], splitting the potential at the minimum,

oY (ryre r<r,
= min , 3.3
(I)re_/ {O > }"mm ( )
and
b =1 o (3.4)
“ (I)U(r) I/Zrmin’ .
with 7, = 2"%. In this approach, the reference system is replaced by a system of hard

spheres with a temperature-dependent diameter d(7"). We have used the mapping from

LJ to hard spheres developed by Verlet and Weis [1972] and Lu ef al. [1985], described
as follows

d(T") _nT" +n,

o NI +m,

(3.5)

with the reduced temperature, T = kgT/e, and the coefficients n; = 0.3837, n, = 1.035,
n =0.4249, n, = 1, fitted by Peterson et al. [1986] to match the bulk phase diagram
of the LJ fluid.

The excess Helmholtz free energy per particle of the reference system, @, is taken from
the SPT [Reiss et al., 1959; Helfand et al., 1961], or PY equation of state for the
uniform hard-sphere fluid [Wertheim, 1963; Thiele, 1963; Lebowitz, 1964] (Eq. 2.8),
where p(r)=p. Moreover, the weighted densities defined in Eq. 2.6, which coincide with
the variables of the SPT [Reiss ef al., 1959; Helfand et al., 1961], can be written in
terms of fundamental measures characterizing the particle

4

n,=p, A =Rp, m=4mR’p, 7w =%1R’p (3.6)

3.2.3 Solid-fluid interactions

The LJ parameters for the substrate atoms are those used by Gelb and Gubbins [1998;

1999] following the work from Brodka and Zerda [1991], and they can be found in table
3.1. These parameters represent bridging oxygen atoms in silica, since previous
simulations of adsorption on silica gels show that the omission of the silicon atoms is an
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acceptable approximation [Brodka and Zerda, 1991; MacElroy, 1993]. The LJ solid-
fluid parameters (table 3.1) follow the Lorentz-Berthelot mixing rules.

Parameter Fluid-fluid® Solid-solid” Solid-fluid
c(A) 3.75 2.70 3.22
e/kp (K) 95.20 230.00 147.90

Table 3.1. LJ parameters of nitrogen and of porous glasses. * From the work
of Maddox et al. [1997]; ° from the Ref. Gelb and Gubbins 1998; 1999.

We have represented each pore as an infinite cylinder where the atoms are single
spherical LJ sites. These LJ spheres are laid out in 6 concentric layers separated by a
distance A. Each layer is arranged in such a way that consecutive rows of solid atoms
are displaced 0.15nm in the angular and axial directions. The distance between the axes
that define the successive rows is called d. The resulting overall configuration of each
layer can be described as a hexagonal lattice. The values of these parameters are fixed
(d=2.77 A and A = 3.0 A), so that the total density of oxygen atoms in our model, 44.1
atoms/nm’, and a material porosity of 30%, are approximately mimicked [Gelb and
Gubbins, 1999]. The pore diameter H is defined from the center of the particles on
opposite sides of the innermost layer. An example of this cylinder and the disposition of
the atoms can be seen in figure 3.2(a). In the case of slit-like pores, the material is
modeled applying the same principles to a planar geometry, where the parameter H
represents the distance between two identical parallel walls. In figure 3.2(b) a
representation of this pore can be found.

The total potential energy between a fluid molecule probe and the wall is calculated as
the sum of the contributions of all the substrate atoms. However, we have considered an
averaged potential, constructed from the previous one by integrating with respect to the
angular and axial directions, preserving only the radial functional dependence. For slit-
like pores, the potential is averaged over translations parallel to the walls.

3 more layers

4 more layers

Fig. 3.2. Structure of the (a) cylindrical and (b) slit-like pores, and the
definitions of geometrical parameters.
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Tk R

10

b)
Fig. 3.3. Dependence of the wall potential as a function of the distance for
(a) cylindrical and (b) slit-like pores of different size: H = 2.4c, 3.20, 4.80,

and 8.8c, starting from left to right.

In Figure 3.3(a) we have shown the radial dependence of the cylindrical wall potential,
Oex(7), for several pore size diameters. As it can be seen in the figure, the influence of
the wall on the adsorption is expected to be very important for pores whose width is
comparable with the range of the attractive potential of the wall. In particular, for such
narrow pores the adsorbed fluid will have properties significantly different from those
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of the bulk fluid. Conversely, for wider pores one expects the effect of the pore walls to
be important only at low coverage, and capillary condensation to occur at a given
critical pressure. In figure 3.3(b) we present the wall potential as a function of the
distance in the direction perpendicular to the parallel walls, ¢..(z), for slit-like pores of
different width.

The mean pore fluid density, <p>, is defined from the relation

_ Jdrp(r)

<p> '[dr ’

(3.7)

where the integral is extended over the volume of the pore and this volume is
considered a function of H. The excess density is defined as the deviation of the average
density with respect to the bulk values, that is

(P")=(P)= Prus- (3.8)

3.2.4 Monte Carlo simulations

Aiming at a quantitative comparison between the FMT and Monte Carlo simulations,
we have chosen to apply the same molecular parameters for both procedures. It is well
known that the bulk properties predicted by each methodology are different. However,
since both theories are molecular in nature, we have decided to compare the bare results
from the same molecular model and analyze the differences later on. Other authors have
compared DFT results with Monte Carlo simulations based on the same bulk properties
[Lastoskie et al., 1993a; Ravikovitch et al., 2000], although such a procedure implies
the use of different molecular parameters for each approach. Despite the fact that the
latter point of view is legitimate, the different sets of molecular parameters used in that
case represent in fact different systems, although very close in their properties. In our
simulations, adsorption isotherms and density profiles have been obtained through a
GCMC scheme. The values of activities at which the points were obtained correspond
to bulk chemical potential, equal to those used in the density functional
theory calculations.

Three different types of Monte Carlo trials were used in the simulations: creation of a
new adsorbate molecule at a random position inside the pore, removal of a randomly
chosen adsorbate molecule, and move of a randomly chosen adsorbate particle. The
maximum move for a particle translation was fixed at 0.20c, and the ratio between trials
was fixed to be a 50% for translation moves and the remaining 50% for creation-
destruction moves. The length of the simulation box was changed from 60 to 1,000 A,
depending on the pore diameter size, to ensure a sufficient number of particles inside. In
the axial and angular directions, periodic boundary conditions and minimal image
convention were applied. The LJ potential was cut and shifted at a radius of . = 2.52c;
no long-range corrections were used. To equilibrate the system, the simulations were
run for at least 3x10° moves. Averages were then collected from runs over at least
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20x10° configurations after equilibration. The block size to compute averages was
fixed at 500,000 moves.

The excess pore fluid density in this case is defined as

<pE>=@—pr, (3.9)

where (N) is the mean number of particles inside pore and V is the pore volume,

defined in the same way as in Eq. 3.7.

3.3 Results and discussion

We have calculated density profiles and adsorption isotherms for cylindrical pores of
different sizes by means of two approaches, FMT and GCMC. All the calculations were
done at 77K. In addition, FMT calculations for slit-like pores of the same width will
serve us to discuss as well the main differences introduced by the dissimilarity in the
geometry. The pore diameters studied here are in the range from H = 3.2c to H = 17.60,
which covers the region from micropores (whose diameter is less than 20 A), to larger
pores (mesopores, with a diameter between 20 A and 500 A). We have found that our
numerical implementation of the FMT model used here fails to converge for very
narrow pores (H<3.2c, corresponding to H<12 A) which constitutes the limit of the
applicability of our procedure. An analysis of the strictly 1D [Rosenfeld et al., 1997,
Tarazona, 2000] adsorption is out of the scope of this work. The main points to be
discussed in this section will be, on one hand, the comparison of the excess density and
density profiles between FMT and GCMC, to elucidate the limits of the agreement of
both procedures in the analysis of the adsorption in cylindrical pores, when the same
molecular model is used. On the other hand, the effect of the geometry in the profiles
and adsorption isotherms will be briefly discussed by comparing the FMT results for
cylindrical and slit-like pores. This latter point is of relevance in the calculation of pore-
size distributions of real materials from experimental data of adsorption isotherms.

Fig. 3.4(a) shows the adsorption isotherm obtained from FMT corresponding to
cylindrical and slit-like pores of size H = 3.2c, as well as the simulation results for the
cylindrical geometry. As it can be seen, the agreement between predictions from the
theory and simulation data is excellent in the whole range of chemical potentials
considered (from p” = -12.479 to u~ = -3.338), although theoretical predictions slightly
underestimate the amount of fluid adsorbed along the whole adsorption isotherm.
Results corresponding to the adsorption in the slit-like pore are significantly different
from those obtained for the cylindrical geometry. In the former, a very pronounced
jump in the average density is observed at chemical potentials around pu° = —8.0,
followed by a continuous increase of the density as the chemical potential is raised. For
the cylindrical pore, the jump in the density is displaced towards lower chemical
potentials. At higher chemical potentials, the continuous increase in the density is
smoother than in the case of planar geometry. The insets in Fig. 3.4(a) show the
hysteresis existing around the sudden density jump, indicating that it corresponds in
both cases to a first order phase transition inside the pore. A higher degree of
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confinement in cylindrical pores is responsible for the appearance of the mentioned
transition at chemical potentials significantly lower than in slit-like pores. As seen in
Fig. 3.4(b), only one rather localized annular layer is formed at the wall inside the pore,
in the whole chemical potential range studied. Thus, once this layer is build, the
increase of the chemical potential only introduces changes in the height of the density
profile, yielding to the observed continuous increase of the excess adsorption after the
transition in both geometries. The nature of such a transition is not completely clear,
since the confinement of the fluid, the curvature of the wall, as well as the solid-fluid
potential interactions influence the kind of the transition as well as its location in the
space of thermodynamic parameters. However, we attribute this phase transition to the
so-called 0—1 layering transition, previously found by different authors [Ball and
Evans, 1988; Balbuena and Gubbins, 1993; Lastoskie et al., 1993b]. We will come back
to this point later on.

The agreement between theoretical FMT predictions and GCMC simulation results in
Figs. 3.4(a) and 3.4(b) is very good for all thermodynamic conditions, with special
emphasis on the localization and the height of the density peaks at different chemical
potentials. It must be noted, however, that the agreement between both sets of results is
better at low chemical potentials (i.e. pressures). This effect is a consequence of the lack
of accuracy of the FMT approach used in this work to predict the adsorption behavior
for very narrow pores (which would confine the fluid to an almost one-dimensional
behavior). In Fig. 3.4(a) the differences between the adsorption isotherms of cylindrical
and planar pores can be ascribed to the geometrical constraints that crucially determine
the way in which molecules accommodate inside confined geometries.
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Fig. 3.4. (a) Adsorption isotherms in H = 3.2c cylindrical and slit-like pores;
(open squares) FMT calculations, (closed squares) GCMC simulations, both
in the cylindrical pore; (open circles), FMT calculations in the slit-like pore.
The lines are only visual aid. The insets show the hysteresis FMT results in
the slit-like pore in the right-hand side and in the cylindrical pore in the left-
hand side. (b) Density profiles from (lines) FMT calculations and (symbols)
GCMC simulations (symbols) in the cylindrical pore at p* = -10.065 (solid
line and open squares), and -4.031 (dotted line and crosses).

Regarding the adsorption isotherms and density profiles in wider pores, Fig. 3.5(a)
shows the excess adsorbed density versus the chemical potential (adsorption isotherm)
of cylindrical and slit-like pores of size H = 4.8c. The adsorption isotherm
corresponding to the cylindrical pore has also been obtained from Monte Carlo
simulation. As it can be seen, the theory is able to provide a realistic description of the
excess density versus the chemical potential since an almost quantitative agreement
between FMT and GCMC results is found in all the range of chemical
potentials studied.

More in detail, at low chemical potentials (n'<—7.0) a monolayer is formed in both
pores. As the chemical potential is increased a second layer is adsorbed in both
cylindrical and slit-like pores without the appearance of additional layers. However,
important differences between the adsorption isotherms can be observed. The excess
density in the cylindrical pore is higher than that corresponding to the planar geometry
in practically the whole range of chemical potential values (except at the highest
chemical potentials). Also, the increase in density observed when a new layer is formed
is more pronounced in the case of the slit-like geometry; this is especially true in the
formation of the second adsorbed layer. To elucidate the reasons for this behavior we
have also examined the density profiles corresponding to both geometries. Fig. 3.5(b)
shows the density profiles, at two different chemical potentials, inside the cylindrical
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3. Adsorption in pores

pore. At the lowest chemical potential only a single annular layer is adsorbed, with the
density peak located at » = 1.5. This position is consistent with the location of the solid-
fluid potential minimum for a cylindrical pore of H = 4.8c (see Fig. 3.3(a)). As the
chemical potential is increased, a second adsorbed layer appears close to the center of
the cylinder, in agreement with the slight increase of the adsorption isotherm
observed in Fig. 3.5(a).
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Fig. 3.5. (a) Adsorption isotherms in H = 4.8c cylindrical and slit-like pores;
the notation is the same as in Fig. 3.4(a). (b) Density profiles from FMT
calculations in the cylindrical pore at p” = -7.651 (solid line), and -4.031
(dashed line). (c) Density profiles from FMT calculations in the slit-like pore

at six different u*, from bottom to top: -10.065, -8.858, -7.651, -4.995,
-4.513, -3.338.

The isotherm for the planar geometry case, although apparently similar, is in fact
qualitatively different from that of the cylindrical pore. Notice, for instance, that in the
slit-like pore there are particles in the center of the pore at high chemical potential
values (see Fig. 3.5(c)), whereas molecules are strongly excluded from the axial region
of the cylinder. This effect indicates that capillary condensation is likely to occur in the
planar geometry but not in the cylinder of the same dimensions H = 4.8c, in the range
of chemical potentials studied here. A detailed analysis of the hysteresis cycle as well as
of the free energy indicates that the jump in the excess density in the planar geometry
corresponds to a first order phase transition that can be described as capillary
condensation [Evans, 1990]. In the case of cylindrical geometry, the formation of the
second layer does not correspond to thermodynamic phase transition but merely to a
continuous filling of the second layer. In fact, it is worth noting that the average density
is proportional to the first derivative of the free energy, (Eq. 2.5) with respect to the
chemical potential, but the average density does not present a discontinuity, nor does its
slope diverge.

In the planar pore one can also notice the formation of the first layer around p” = -8, a
slightly higher chemical potential than in the H = 3.2 pore. This effect is dominated by
the solid-fluid interaction as it can be seen by the fact that it appears at the same
chemical potential for all slit-like pores of larger width. However, this transition cannot
be considered as being of first order. In fact, in this case, no hysteresis in the average
density is observed around this value of chemical potential, being this quantity (related
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3. Adsorption in pores

to the first derivative of the free energy) continuous across the transition, up to the
accuracy of our numerical method. The sharp slope observed, however, could indicate
that the behavior could correspond to a continuous second order phase transition. In the
case of the cylindrical geometry, the transition is observed at lower chemical potential
and seems to also display such a continuous character.

In the mesopore range we present results for two pore sizes, H = 8.8c and H = 17.60,
which correspond, respectively, to the series of Figs. 3.6(a,b,c) and 3.7(a,b,c,d). In Fig.
3.6(a) we show the adsorption isotherms for cylindrical and slit-like pores of width
H=8.8c. The agreement between the theoretical adsorption isotherm and simulation
data corresponding to this cylindrical pore is better than that obtained for narrower
pores, as expected. The adsorption isotherms for both geometries exhibit the same
qualitative behavior. One observes, on one hand, the crossover from an empty pore to
the formation a monolayer at low chemical potentials, as in the previous cases. This
increase in the adsorbance in planar geometries is located at the same chemical potential
of about 1* = -8.2 in all the studied pores with H>3.2c. However, the local curvature of
the walls in cylindrical geometry shifts the transition region towards lower chemical
potentials as the diameter decreases. In both cases, however, the formation of the thin
layer at the wall seems to be continuous and, as before, such a behavior cannot be
attributed to a first order phase transition.

On the other hand, the sudden increase in the excess density as the chemical potential is
increased corresponds to capillary condensation in both, cylindrical as well as planar
geometries. It is important to note that capillary condensation is shifted towards the
region of lower chemical potential as the degree of confinement increases, due to both,
the change in the geometry (from planar to cylindrical) and by the change in the pore
size¢ [Evans and Tarazona, 1984; Evans and Marini Bettolo Marconi, 1985b;
Evans, 1990].
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Fig. 3.7. (a) Adsorption isotherms in H = 17.6c cylindrical and slit-like
pores; the notation is the same as in Fig. 3.4(a), except that FMT adsorption
in cylindrical pore shown as crosses for clarity. Inset shows the details in the
high chemical potential region. (b) Density profiles from FMT calculations
(lines) and GCMC simulations (symbols) at p” = -3.959 for cylindrical pore.
(c) Adsorption isotherms in the cylindrical pore by FMT calculations,
(circles) adsorption and (crosses) desorption branches. (d) Density profiles
from FMT in the cylindrical pore at seven different u”, from bottom to top
-10.065, -8.858, -4.272, -3.959, -3.887, -3.791, -2.898.
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3. Adsorption in pores

Notice that, while in cylindrical geometry the agreement between calculated and
simulated GCMC results at low chemical potential is excellent above capillary
condensation, the values of the predicted excess density from Monte Carlo simulations
are higher than those corresponding to the theory for both pore sizes (see Figs. 3.6(a)
and 3.7(a)). The choice of the same molecular model leads in fact to a slightly different
thermodynamic behavior in the bulk fluid properties. Hence, these differences are
expected in a region of the isotherm dominated by the bulk fluid. For these two sizes
and below the capillary condensation chemical potential, the excess density predicted
for slit-like pores is lower than that corresponding to cylinders. The difference is less
noticeable as the pore diameter increases, due to the loss of confinement. As in the
previous cases, we have also considered the density profile behavior along the
adsorption isotherms. Fig. 3.6(b) shows density profiles corresponding to a cylindrical
pore of diameter H = 8.8c at different chemical potentials. When capillary condensation
occurs, an increase of the density in the central part of the pore takes place. However,
due to the higher degree of confinement, the fluid still displays a higher order than in
planar geometries under the same conditions. As it can be seen in Fig. 3.6(c), the
adsorption isotherm in the cylinder exhibits hysteresis, clearly indicating that the
discontinuous jump observed in Fig. 3.6(a) must be ascribed to a gas-liquid phase
transition inside the pore.

The adsorption behavior of a second wider mesopore of diameter H = 17.6c is analyzed
in Figs. 3.7(a)-(d). We have also included the adsorption isotherm corresponding to the
slit-like pore of the same size (see Fig. 3.7(a)). The same qualitative analysis as that
regarding the previous pore size can be performed, although the differences between
geometries tend to reduce as the pore size increases. In Fig. 3.7(b) we compare the
density profiles obtained from FMT and simulation for the pore H = 17.6c closely
underneath capillary condensation (u° = -3.959). For this value of the chemical
potential, only three layers are distinguishable. The hysteresis cycle is shown separately
in Fig. 3.7(c) for more details. Finally, Fig. 3.7(d) shows a set of different theoretical
density profiles for a sequence of chemical potential values. As can be seen, capillary
condensation can be detected when the density profiles change from a gas-like to a
liquid-like behavior, giving rise to a finite value of the local density in the central
region of the pore.

Figs. 3.8(a) and (b) summarize the adsorption isotherms for the four pore sizes
analyzed, corresponding, respectively, to cylindrical and planar geometries. In the
cylindrical geometry, the smallest pore size, H = 3.2c, exhibits a behavior completely
determined by wall effects, including the first order 0 to 1 layering transition already
mentioned. Due to the narrowness of this pore, only a single complete layer of
molecules can be accommodated inside the pore. As the pore size is increased, H= 4.8c,
the formation of the first adsorbed layer is located at higher chemical potential than in
the H = 3.2c and, moreover, seems to be thermodynamically of second order. An
additional layer is continuously adsorbed as the chemical potential increases. This effect
can be explained as a liquid-liquid enhanced interaction due to the proximity of opposite
parts of the cylindrical wall that induces the exclusion of particles in the axial region of
the pore and its possible liquid-like behavior and, thus, capillary condensation. A further
increase in the pore size, H = 8.8c and 17.8c, leads to multilayer adsorption with
capillary condensation phase transition at high chemical potential. The formation of the
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3. Adsorption in pores

first layer corresponds to a continuous behavior and its location is affected by the
curvature of the wall, being displaced towards lower chemical potentials as the

curvature increases.
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Fig. 3.8. (a) Adsorption isotherms in cylindrical pores with different
diameter: H = 3.2 (open diamonds), 4.8c (open circles), 8.8c (closed
squares), and 17.6c (open triangles); from FMT calculations. (b) The same
notation as in (a) but in slit-like pores.
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3. Adsorption in pores

In the analysis of the isotherms of pores with planar geometry, summarized in Fig.
3.8(b), we have observed that the pore of width H = 3.2c, also exhibits a 0 to 1 first
order layering transition, as in the case of cylindrical geometry. However, the formation
of the first layer at larger pore widths is located around the same chemical potential,
independently of the pore width, and corresponds to a continuum filling with no
discontinuity in the first derivative of free energy, but with a large value of the second
derivative that could correspond to a divergence. On the other hand, the capillary
condensation is shifted by the confinement towards lower chemical potentials and it
approaches the bulk liquid-vapor phase transition chemical potential as the
pore width increases.

As an example of the effect of the strong geometrical constraint over the adsorption
properties of cylindrical pores, we present the density profiles for different pore widths.
In particular, Fig. 3.9 shows the density profiles corresponding to two cylindrical pores
with H = 4.0c and 4.8c. In the widest pore, geometrical constraints forbid the formation
of a layer over the axis of the cylinder, while in the narrowest pore this layer is strongly
favored, showing a peak much higher than the one close to the wall. In slit-like pores,
although not represented here, the height of the observed peaks shows a progressive
decrease as the molecules approach the center of the pore.

Fig. 3.9. Density profiles from FMT calculations in H = 4.0c (solid line),
and in H = 4.8c (dashed line) cylindrical pores at the same chemical
potential, p* = -3.338.

Having described the phenomena observed for various pore sizes, it is worth to
separately analyze the behavior of the free energy Eq. 2.5. We have identified three
distinct features in the adsorption isotherms, namely, the first order 0 to 1 layering
transition for the narrower pores, capillary condensation, and a sudden increase of the
adsorbance due to the formation of dense thin layers at the solid surface. First, as seen

38
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in Fig. 3.4(a), the isotherm for the pore size H = 3.2 show a weak discontinuity in both
cases, indicating the first order nature of the transition [Evans, 1990]. Fig. 3.10(a)
shows the behavior of the free energy in the vicinity of this transition for the planar
pore, where the discontinuity of the first derivative can be observed, as well as the
metastable lines of the free energy. Second, capillary condensation has been described
as a shift of the bulk liquid-vapor phase transition, induced by the confinement [Evans
and Tarazona, 1984; Evans and Marini Bettolo Marconi, 1985b]. In Fig. 3.10(b) we
present the free energy of the isotherm corresponding to the cylindrical pore width
H=17.6c that shows a jump of its first derivative at the location of the capillary
condensation transition, which serves to place the physical isotherm between the two
metastable branches. Third, the sudden jump in the adsorption isotherm around p'=-8.0,
in pores of planar geometry, could be reminiscent of a prewetting phenomenon existing
for one wall in an infinite system [Evans, 1990; Rowlinson and Widom, 1984]. The
detailed analysis of the free energy around this particular chemical potential, for
H=17.60 (see Fig. 3.10(c)) seems to indicate that this behavior cannot be attributed to a
first order phase transition. The second derivative of the free energy (see Fig. 3.10(d))
shows a sharp peak that could suggest that the formation of the thin dense layer inside
the pore corresponds to a second order phase transition. However, the numerical
accuracy of our analysis does not permit us to distinguish whether the peak is a true
divergence, corresponding to a second order phase transition, or it is finite, in which
case we would identify a mere crossover between two regimes. Even more, the
possibility of a very weak first order transition cannot completely be discarded, in view
of the thermodynamic behavior associated to the formation of the first layer in the
smaller pores analyzed. To be conclusive about the true nature of the transition and the
effect of the wall curvature in its location, an exhaustive analysis beyond the scope of
this work should be undertaken. Nevertheless, everything seems to indicate that the
behavior related to the formation of the thin layer at the wall, in the cases analyzed in
this chapter, could corresponds to phenomenology expected at the vicinity of a critical
point, perhaps related to the critical end point of a prewetting line in
semi-infinite system.
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Fig. 3.10. (a) Changes in the grand-potential energy of the system shown in
the inset of Fig. 3.4(a), FMT calculations in the H = 3.5c planar pore. (b)
Adsorption isotherm (open circles), desorption isotherm (crosses), and stable
isotherm (solid line) in H = 17.6c cylindrical pore. The zigzag line shows
the changes in the grand-potential energy of the system. (c) Changes in the
grand-potential energy of the system H = 17.6c slit-like pore around
1'=-8.0. (d) Second derivative of the grand-potential energy of the
same system in (c).
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Finally, it is interesting to compare FMT results to those obtained using other
formulations of DFT. Fig. 3.11 shows the adsorption isotherm obtained through our
DFT formulation, with a cylindrical potential that takes the form
[Tjatjopoulos et al., 1988]

r -10 2
63| r r 9 9 r
rnR)=n’pe o2 =|-|2-Z|| Fl-Z-Z;/1-=

—4 )
3 L(z_i A3 3 r
o, R 2’ 2 R

where F/o,B,v,%/ are the hypergeometric functions [Press et al., 1992], and p; is the
density of oxygen atoms in the pore wall. Here, R is the radius of the pore of diameter
H=90A (25.180) and o, and &, are the LJ solid-fluid interaction parameters. We have
used here the same parameters as in the work by Ravikovitch et al. [2001] who, in Fig.
5 of their article, show experimental, GCMC and NLDFT [Tarazona, 1985] adsorption
isotherm results. As seen in Fig. 3.11, it is remarkable that the behavior predicted by our
calculations quantitatively agrees with the experimental and simulation results shown in
this reference. However, the adsorption isotherm predicted by NLDFT shows steps
indicating a layering pattern no present in the experimental data. Our FMT calculations
are in good agreement with their GCMC results at low pressures and show a less
pronounced layering than that of Ravikovitch ez al. [2001].
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Fig. 3.11 Adsorption isotherms in H = 90A (25.185) cylindrical pore; (solid
line) FMT calculations of this work; (dashed line) NLDFT calculations
[Ravikovitch, 2001]; (open circles) GCMC simulations [Ravikovitch, 2001];
(dotted line) experimental data on nonporous silica [Deboer et al., 1965].
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3.4 Conclusions

In this work we have analyzed the ability of the FMT due to Kierlik and Rosinberg in
predicting adsorption isotherms as well as density profiles in cylindrical pores, by
comparison with data obtained from GCMC using the same molecular model. This
work is of relevance in the context of the use of DFT calculations for the determination
of pore-size distributions from experimentally obtained adsorption isotherms, as we will
see in the next chapter.

A comparison of FMT for cylindrical pores with GCMC simulations has shown a very
good agreement for the range of pore sizes studied, confirming the ability of the theory
in the description of nearly one-dimensional confined systems. The exact limit of its
validity for very narrow pores lies beyond the scope of this work.

Our results indicate that a layering behavior takes place in the smallest cylindrical pore
considered, H = 3.2, while the adsorption in a planar pore of the same size needs a
much higher chemical potential to achieve a significant adsorption. As the pore size
increases, the influence of the geometry becomes less important, although a certain shift
in the capillary condensation transition can still be observed. Additionally, for wider
pores, such as H = 8.8c and 17.8c, we obtain multilayer adsorption with capillary
condensation at high chemical potentials, with the same qualitative behavior observed
for both geometries. When the diameter size reaches the limit where the curvature
effects are not of further relevance, the cylindrical pores reduce to the same quantitative
behavior as the slit-like pores.

The formation of a thin adsorbed layer at intermediate and large pore sizes seems to
correspond to a thermodynamic second order phase transition, for the range of
parameters used and the thermodynamic conditions studied. However, the results found
seem to indicate some relationship between this behavior and the prewetting transition
observed in semi-infinite geometries, especially in the neighborhood of the critical end
point of the prewetting line. The effect of the confinement is very important in this
crossover behavior. In fact, the local curvature of the solid wall is the only responsible
for the shift observed in cylindrical geometries in our study, although a deeper analysis
is required to shed some light on this particular point.

From the comparison of FMT calculations versus NLDFT results, we conclude that the
FMT is an excellent tool for the study of the behavior of fluids in confined
cylindrical geometries.
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4. PORE-SIZE DISTRIBUTION OF MODEL POROUS GLASSES

4.1 Introduction

Density functional theory, applied to calculate the amount of fluid adsorbed at different
pressures and pore sizes, has proved to be a very useful tool for analyzing the
adsorption behavior of porous materials, and in particular, to obtain the PSD’s of them
[Lastoskie et al., 1993a; Ravikovitch et al., 2000]. However, several important
simplifications should be made when an amorphous material is modeled within this
approach. Thus, to establish the accuracy of these methods is a difficult task, making
impossible to discern what comes from the approximations made in modeling the
individual pores with those coming from the model used for the material as a whole.

In a attempt to use molecular modeling techniques for materials in a more realistic way,
Gelb and Gubbins [1998] proposed a new approach to model porous silica glasses,
using quench molecular dynamic methods that mimic the experimental processes in
which these materials are produced. The resulting model glasses have a pore topology,
porosity, surface area and adsorption isotherm behavior similar to the real glasses. A
major advantage of these model materials is that they are precisely characterized at the
molecular level, and hence they provide the ideal framework to test different approaches
used in practice to characterize amorphous systems, where some approximations and
assumptions need to be made. In particular, Gelb and Gubbins [1998, 1999] have
obtained the nitrogen adsorption isotherms in these materials using Monte Carlo
simulations, and they were able to determine the “real” PSD’s of the model porous
glasses (the geometrical PSD) [Gelb and Gubbins, 1999].

Controlled-pore glasses (CPG’s) are widely used as stationary phase in chromatography
[Haller, 1983; Schnabel and Langer, 1991]. These materials have excellent mechanical
properties and can be prepared with a wide range of porosities and pore sizes [Elmer,
1991]. They can be modified to include a variety of functional groups, and the
adsorption strength of the glasses can be adjusted over a wide range of values [Schnabel
and Langer, 1991]. Although controlled-pore glasses were developed for use in size-
exclusion chromatography, derivatized glasses can show a high chemical affinity for
certain biomolecules, and can even be used as catalytic agents and bioreactors
[Haller, 1983].

Gelb and Gubbins, in their work of 1999 carried out a study of the validity of the BJH
method to obtain the distribution of void volume in model porous glasses. They
concluded that when the BJH method is used, the PSD’s obtained differ in a systematic
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way from those determined directly from the pore structure using spherical probes. The
BJH method yields PSD’s which are narrower, and have a maximum in pore diameters
about 10 A smaller than the exactly known geometric PSD’s. In a different work, Kanda
et al. [2000] developed a new condensation model for cylindrical pores substituting the
Kelvin model to consider a meniscus curvature in a more realistic way. They had
proved this model in nanopores with ideal geometry (cylindrical [Yoshioka et al., 1997]
and slit-shaped [Miyahara et al., 2000]), obtaining good agreement with simulations of
the same systems. With the idea to test their model vs. a realistic geometry, they used
the “system A” from the work of Gelb and Gubbins [1999], and compared the
geometrical PSD vs. the obtained with the Kanda et al. [2000] condensation model. The
agreement obtained is very good, but their study is not systematic, they did the
comparison just in one of the four materials from Gelb and Gubbins’s work, and
actually, it may be fortuitous. They used system A because this one has only a small
hysteresis loop, while one of the other systems exhibits a quite large hysteresis loop. For
the other two samples, desorption branches are not shown and the extent of the
hysteresis cannot be known. There is still argument about which branch to take for pore-
size determination, though adsorption branch is often recommended, and the analysis of
an isotherm with large hysteresis confuses the purpose of this examination.

In the DFT approach to obtain PSD, it is necessary to do approximations of two
different classes; on the one hand, relative to the modeling of the adsorption in each
pore, and on the other hand, referent to modeling the material itself. Regarding the first
point, in the previous chapter an exhaustive comparison between DFT and GCMC
simulations are done, establishing the accuracy of the theory. In this context, the goal of
this part of the work is to analyze these different factors, establishing the relevance of
each one of them. In particular, to prove the hypothesis of the independent-pore model
using simple geometries when the material is amorphous. Additionally, to determine the
most appropriate geometry to model porous glasses.

In this chapter we present the molecular model details and procedures of the Gelb and
Gubbins work [1999] used here as the “experimental” systems. Following, the details of
the molecular models of the fluid, of the wall, and of the calculations concerned with
PSD. After that, we expose the theoretical adsorption isotherms obtained for cylindrical
and slit-like pores. In the next section, we reconstruct the adsorption isotherm using the
set of theoretical isotherms of different sizes weighted with the geometrical PSD’s
[Gelb and Gubbins, 1999] using both geometries. The following part is devoted to
present the PSD’s obtained from the inversion of adsorption integral equations for four
materials using cylindrical and slit-like geometries, along with a test that the methods
works well. Finally, we discuss the variety of possible sources of discrepancies, e. g. the
validity of the wall model studying the adsorption behavior with different &, parameter,
or such as the mean field approximations done when the DFT is solved.
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4.2 Molecular models
4.2.1 Model materials

CPG’s and the related Vycor glasses are highly interconnected mesoporous silica
materials. Their preparation is based on the near-critical phase separation of a binary
liquid mixture, which produces complex networked structures, and were originally done
by Haller [1965], who partially phase-separated a mixture of SiO,, Na,O, and B,03, and
etched out the borosilicate phase, leaving a nearly pure silica matrix with a porosity
between 50% and 75%, and an average pore size between 45 and 4000 A. There is other
kind of materials with very similar features known as Vycor glasses. Those materials
are prepared with a similar procedure and have a porosity near 28% and an average
internal pore diameter between 40 and 70 A [Elmer, 1991; Levitz et al., 1991].

Preparation of model glasses

The procedure employed by Gelb and Gubbins can be found in the original references
[1998; 1999], but for continuity of the presentation of this work, we explain briefly the
way in which they worked.

They mimic the preparation of the real glasses on a computer by simulating a system
that exhibits this kind of phase separation, quenching it, removing one phase, and
relaxing or annealing the resulting structure. This method “naturally” produces a
structure with the same general characteristics as the experimental glasses. By varying
the length of the quench period and the starting mole fraction of the mixture, they could
tune the surface area, porosity, and average pore size over a wide range of values.

The simulation cells that they used were all of 270 A on each side; they contained
initially 868,000 atoms of the quench mixture. These simulation cells were periodic in
all three directions, so that surface effects are not present. The initial mole fraction was
x = 0.7, and quench configurations were taken at 225t (sample “A”), 300t (sample
“B”), 375t (sample “C”), and 450t (sample “D”) to prepare the four samples used in
this study. Here t = (¢/mc”)""? ¢ is the reduced time; 1t corresponds to 0.781 ps, and m is
the mass of one atom. These samples all had porosities very near 30% and average pore
sizes of approximately 33, 39, 45, and 50 A, respectively. These models are fully
connected, in that the void space is a single volume of very complex geometry, rather
than several disconnected volumes. In the next figure (4.1), taken from the literature
[1999], three of four of these materials are illustrated with different 1. A very detailed
explanation of the whole recipe can be consulted in the reference of Gelb and
Gubbins from 1998.
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quench time:

e

| | A
33 nm"A" 39nm"B" 50nm"D"

average pore size

Figure 4.1. Generation of model materials. Samples “A”, “B”, and “D”.
Taken from Gelb and Gubbins [1999].

4.2.2 Theoretical adsorption isotherms

The model employed in this chapter to calculate the adsorption isotherms is the same as
in the previous chapter. The adsorption isotherms on slit-like and cylindrical pores were
obtained by FMT, as described in section 2.2, and with the molecular parameters used
in section 3.2. The fluid employed, nitrogen at 77K, and the substrate are the same as in
chapter 3. The only difference is the way to calculate the average density of nitrogen
inside the pores. The reason to do it in this way is because in chapter 3 we were
interested in a comparison vs. molecular simulation with the aim of establishing the
validity of FMT to predict the adsorption on simple geometries. Instead of that, in this
chapter, we are interested in the description of the best possible way to model materials,
using the same definition of molecular surface than that used by Gelb and Gubbins.
They used the definition known as “Connolly surface” [Connolly, 1983]. The difference
between this and the one used in the previous chapter is shown in the figure 4.2, and in
the equations 4.1 and 4.2. In the case of very long pores these differences are subtle, but
when we are dealing with micro and mesopores these difference gain relevance.
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H- GS.Y

a) b)

Figure 4.2. Two-dimensional representation of the different definitions for a
molecular surface employed in this work: a)Connolly surface, and
b)definition of the internal diameter or separation between two planes, H.
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There is another important point to take into account. The “experimental” adsorption
isotherms represent the amount of fluid adsorbed per unit of volume of the solid
material while the theoretical adsorption isotherms are fluid adsorbed per unit of void
volume. Therefore, it is necessary to use the porosity of material to relate these different
concepts of volume.

4.3 Pore-size distributions

We explain here the different approaches to obtain PSD’s of materials. Although, we
have just calculated the PSD inverting the adsorption integral equation with the
regularization numerical method, for continuity of this thesis, we briefly expose the
most relevant features of the other methods, as well.

4.3.1 Geometrical distribution

The method employed by Gelb and Gubbins [1999] to measure the PSD of their model
materials is illustrated in Fig. 4.3, and it consists in the following. Consider the sub-
volumes of the system accessible to spheres of different radii. Let V,o.(7) be the volume
of the void space “coverable” by spheres of radius » or smaller; a point X is in V()
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only if we can construct a sphere of radius r that overlaps X and does not overlap any
substrate atoms (see Fig. 4.3). This volume is, in fact, equivalent to that enclosed by the
pore’s Connolly surface as it was mentioned before. V,o.(r) is a monotonically
decreasing function of r and is easily compared with the “cumulative pore volume”
curves often calculated in isotherm-based PSD methods [Barret et al., 1951]. The
derivative —dV,..(r)/dr is the fraction of volume coverable by spheres of radius r but
not by spheres of radius r+dr and is a direct definition of the pore-size distribution
[Pfeifer et al., 1991]. The V),.(r) function can be calculated by a Monte Carlo volume
integration [Allen and Tildesley, 1987].

Fig. 4.3*. Two-dimensional illustration of the geometric derivation of the
PSD. Point “X” is only coverable by the smallest (solid) circle, while point
“Y” is coverable by the smallest and midsize (dashed) circles, and point “Z”
is coverable by all three circles. By determining the largest covering circle
for every point in the void volume, a cumulative pore volume curve
it is obtained.

For a material composed of spherical, cylindrical, or slit-shaped pores, this analysis
would give the exact distribution of pore sizes. For an irregular material this geometric
pore size definition is still fully applicable, while the assumptions that underlay many
isotherm-based methods may not apply.

4.3.2 Inversion of integral adsorption equation

The integral isothermal adsorption equation for the case of PSD can be written
as the convolution

H

L) =2 [p(',H)f(H)dH (4.3)

Hmin

* Taken from the work of Gelb and Gubbins, 1999.
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where FV(;,L*) represents the amount of adsorbate like particle number per unit of
volume of adsorbent material (in A), at reduced chemical potential ;,t*; pE(p*,H), the
“kernel” function, describes the adsorption isotherm of an ideally homoporous material
characterized by the pore width (or diameter) H in unit of particle number per volume of
pore (void space in A”), and f{H) is the desired pore volume distribution function with
respect to H. This size H is also in A, while f{H) is given in A™'. Finally, # is a
measurement of the porosity (pore volume fraction per total volume), which is
necessary to take in to account to compare both sides of Eq. 4.3. It is very important to
remember this because it is a frequent source of confusions.

Eq. 4.3 represents an “inhomogeneous Fredholm equation of the first kind”
b
g(x) = [k(x,9)u(s)ds (4.4)

and its solution is well known to be an ill-posed problem [Press ef al., 1986]. However,
the integral equation of Fredholm of the second kind

g(x)= Ik(x,s)u(s)ds + A pu(x) (4.5)

has a unique solution # which dependence on g is continuous, i. e., it is a well-
conditioned problem. Therefore, it would be reasonable to take as an approximated
solution of the equation 4.4, the solution of equation 4.5 with small values of Ag. This is
the base of the general theory of regularization [Press et al., 1986].

Since we are only interested in the numerical values of f{H), we can rewrite equation 4.3
as a summation

Ty(u’) =22 p" (0" H,) [ (H)AH, (4.6)

where T'y(1’) is an experimental adsorption isotherm interpolated at the values of the
chemical potential, ", p“(u’.H;) is a matrix of values for theoretical isotherms, each
row calculated at value of H; at chemical potential p, and f{H;) is the solution vector
whose terms represent the volume in the sample characterized by each pore size H;. The
solution values desired are those that most closely, in a least squares sense,
solve Eq. 4.6.

Since the data I'y(i’) contains some experimental error and the kernel models are not
exact, we can expect the results, f(H;), to be only approximated. Indeed it is a
characteristic of de-convolution processes to be unstable with respect to small errors in
the data. This problem can be mitigated by choice of matrix dimensions. If we consider
m members of the set of H and a vector u* of length n, it is clear that n x m must hold. If
n = m, the solution of vector f{H;) is most sensitive to imperfections in the data. For n >
m, the solution is stabilized because of the additional data constraints. In this work we
use an over-determined matrix for which n > m.
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There are additionally two other independent constraints on the solution that can be
used to improve the stability of the process. One is that each f; should be non-negative.
The second regularization constraint is to require that for any real sample, the pore-size
distribution must be smooth. As a measured of smoothness we use the size of the
second derivative of f{H;). Then, the function to be minimized is

F =i(ﬂ(u}‘-)—@"ﬁpE(H,-,u;’f)f(Hl—)AH,) +k2(d£,(H)] AH?(4)

i

The problem is now reduced to finding the f(H;) such that the first term of the previous
equation is small (a good fit to the data), and that the second one is small too (a smooth
PSD), and f(H;) = 0 (no negative pore volumen). The constant A has been introduced to
give an adjustment to the relative weight, or importance, of the two terms. If the model
is good and the data very accurate, Az should be very small. Large values of Az are
related to the smoothness of the resulting curve. Finding the vector f{H;) that minimizes
F subject to the constraint that f(H;) > 0 is a standard problem in pure linear algebra and
can be solved exactly. In particular, here we have employed the Marquart-Levenberg
method [Press et al., 1986] to find the solution of our problem.

A tolerance of 1x10™'* has been used for all calculations done here. Since there are
several solutions compatible with Eq. 4.7, we have devised a method to choose what we
considered the most appropriate one. We have developed a Monte Carlo algorithm in
which different initial guesses are given, generating random numbers between 0 and 1.
When the program finds a solution of the minimum squared difference, the solution is
kept, and the program runs again. The new solution is also kept, and compared to the
previous one. The program will keep only the small between these two, for comparison
with the next solution, in which the small one will be kept again. We follow this
procedure 100 times, observing not further improvement after this.

4.4 Results and discussion

Since there are different factors that we would affect the estimation of the PSD of
materials, and taking advantage of the fact that we are using molecular models, where
we can systematically study the influence of different parameters in a particular
property, we will proceed in the following way:

1. We first calculate the adsorption isotherms of individual pores (cylinder and slit-like
pores) by FMT; the accuracy of the theory for these geometries and a wide range of
pore sizes were proved in chapter 3.

2. We use the geometrical PSD measured in the work of Gelb and Gubbins [1999] to
weight the individual isotherms, reconstructing the overall isotherm; in this way we
check the accuracy of the independent pore model.

3. We estimate the PSD of the material by inversion of the adsorption integral equation
using regularization methods, considering the two pore geometries.
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4.4.1 Theoretical adsorption isotherms

In order to calculate the pore-size distribution of the material, a series of individual
adsorption isotherms of nitrogen at 77K for both geometries were calculated. For slit-
like pores the distance between walls ranged from 6 to 66 A, with intervals of 3 A. In
the case of cylindrical pores, the pore diameter used in the calculations ranged from 12
to 66A. Although desirable, there are two reasons that restraint us from calculating
thinner cylindrical pores, one of them is that, as mentioned in chapter 3, the FMT does
not accurately predict the one-dimensional limit, and hence it can not be reached in this
approach; and we have also found convergence problems in the numerical solution of
Euler-Lagrange equation (2.10).

We have observed different adsorption behaviors, depending on the pore size and
geometry. Since this has been extensible discussed in the previous chapter, we will
focus here only on using these isotherms to obtain the PSD of the porous glasses.

In figure 4.4(a) and (b) we present the collection of adsorption isotherms calculated for
cylindrical and slit-like pores, respectively. For clarity we show some selected sizes, in
the range of diameters mentioned above. It is interesting to note that in the cylindrical
pores the adsorption occurs at lower pressures that the homologous slit-like pores, and
the total capacity is higher in the slit-like case.

1 0 1 1 1 1 1 1 0
0.8 - 0.8
0.6 L0.6

*/\

“a

V0.4 0.4
0.2 0.2
0.0 ———F—+0.0
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Fig. 4.4. Adsorption isotherms of nitrogen at 77K on (a) cylindrical pores of
the different diameters: H = 3.2, 4.0, 4.8, 5.6, 7.2, 8.8, 10.4, 16.0, and 17.60,
(b) on slit-like pores of the different diameters: H = 1.6, 2.4, 3.2, 4.0, 4.8,
5.6,7.2,8.8,10.4,16.0, and 17.60, starting from left to right.

4.4.2 Adsorption isotherms reconstruction

As a first step on validating our method, we will use the individual adsorption isotherms
obtained by FMT, weighted by the geometric PSD to predict the “experimental”
adsorption isotherm of the four samples obtained by Gelb and Gubbins. A comparison
between the predicted and the real isotherm will allow us to quantify the importance of
considering the material made up of individual cylinders (or slit-like pores), assuming
the same PSD, ignoring the interconnectivity of the real material.

Figure 4.5 shows these results for cylindrical pores. As it can be inferred from the
figure, the reconstructed adsorption isotherm has the same shape as the “experimental”
one, although the predicted adsorption is always higher, except for very low pressures,
for the four materials considered. This discrepancy may have different causes:

e The model used to represent the individual isotherms and the method to obtain them
may not be appropriate.

e The wall of the substrate may not be the same in both cases.
e We began the FMT calculations at pore diameters of 12A, ignoring smaller pores.

e The material is not well represented by a collection of individual cylinders.
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Fig. 4.5 Adsorption isotherms reconstructed using theoretical isotherms of
cylindrical pores obtained with FMT calculations and weighted with the
geometrical PSD’s of Gelb and Gubbins [1999] (squares); compared with
the “experimental” adsorption isotherms taken as well from the work of Gelb
and Gubbins [1999] (circles) for the four different materials, A, B, C, and D
(indicated by the correspondent label).
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Fig. 4.6 Adsorption isotherms reconstructed using theoretical isotherms of
slit-like pores obtained with FMT calculations and weighted with the
geometrical PSD’s of Gelb and Gubbins [1999] (squares); compared with
the “experimental” adsorption isotherms taken as well from the work of Gelb
and Gubbins [1999] (circles) for the four different materials, A, B, C, and D

(indicated by the correspondent label).
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Each of these points opens new possibilities, for instance, the last one may suggest that
either the cylindrical geometry is not well chosen or that the interconnectivity among
the pores is more important than what is usually assumed in this kind of modeling of
adsorbent materials. A way to discern this point is to choose a different pore geometry
and to proceed on the same manner, before further investigating the rest of the points
presented here, trying to capture what are the essential facts that govern the PSD of
these materials.

In figure 4.6 we show results equivalent to figure 4.5, but using a lineal combination of
the individual isotherms of slit-like pores. It is clear that in this case the overall
agreement between the reconstructed isotherms and the “experimental” ones improves
in the four cases considered, showing that CPG are better represented by a collection of
individual slit-like pores, rather than cylindrical pores. However, there are some
discrepancies at low pressures (low chemical potentials), the adsorption predicted by the
planar geometry is much lower than the experimental one, while this was the region
well predicted for the cylindrical geometry (see figure 4.5). At intermediate pressures,
the adsorption in planar pores is still lower, with the inflection of the curve more
pronounced than the experimental one. This last point may be due to the fact that we did
not include enough individual adsorption isotherms in this range of pore sizes, which
would smooth this change. Finally, at high pressures, where the capillary condensation
occurs in the wider pores, and the narrower ones are saturated, the material modeled as
a collection of planar pores slightly over-predicts the adsorption. The behavior
explained is common to the four materials used.

To further investigate what is the influence in the overall isotherm of including smaller
pores in the analysis, we have reconstructed the isotherm as in figure 4.6, but using two
smaller slit-like pores, H = 6 and 9 A, and results are presented in figure 4.7. This can
not be done in our case for the cylindrical pores, as explained before. A comparison of
figures 4.6 and 4.7 shows a better agreement at intermediate pressures, but the
agreement deteriorates at higher pressures. Since their relative weight in the PSD is very
small, and considering that the predictions do not considerably improve, we decide that
it is not essential to include these two small pores for characterization studies of these
materials. However, since we had calculated them, they have been used in the
calculations presented in the next section.
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Fig. 4.7. Adsorption isotherms reconstructed using theoretical isotherms of
slit-like pores obtained with FMT calculations and weighted with the
geometrical PSD’s of Gelb and Gubbins [1999] (squares) using 16 different
pore sizes; compared with the “experimental” adsorption isotherms taken as
well from the work of Gelb and Gubbins [1999] (circles) for the four
different materials, A, B, C, and D (indicated by the correspondent label).
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There are two more points that we have stressed and we would like to further
investigate before proceeding to the inversion of the integral: the importance of the
model used for the fluid, and for the substrate. To investigate the effect of the model
fluid, we have chosen a vapor-liquid equilibrium point of the phase diagram of nitrogen,
at 77K, and fitted ¢ and € using the SPT equation of state, to reproduce the same vapor
and liquid density, and the same vapor pressure as the fluid modeled by Gelb and
Gubbins [1998, 1999]. The results are shown in table 4.1. In figure 4.8 we analyze the
effect of choosing different fluid-fluid parameters for the bulk fluid for material A. As it
can be expected, no significant changes are appreciated at low pressures, where the
adsorption is dominated by the solid-fluid interactions, while changes are important at
high pressures, where the fluid-fluid interaction is dominant, giving a higher adsorption
than that obtained by Gelb and Gubbins for the “experimental” material. From the
individual analysis of each pore (not shown here) we see that the use of different fluid-
fluid parameters is more important for the case of the small pores, while it becomes less
relevant as the pore size is increased. From this part we conclude that to choose a
different set of molecular parameters to exactly reproduce the vapor-liquid equilibria of
the bulk fluid at 77K is not particularly relevant.

Saturation pressure 0.01477
Density of saturated liquid 0.726
Parameter Fluid-fluid Solid-fluid
c(A) 3.64 3.17
e/kp (K) 88.90 142.99

Table 4.1. Values of the pressure and density of the saturated liquid nitrogen
in reduced units, and the molecular interaction parameters fitted with the
SPT equation of state.

Finally, in figure 4.9 we present the individual adsorption isotherm of a planar pore of
H= 33A for two different values of the solid-fluid interaction parameter, &g, the one
used in all the calculations presented here, and a second one corresponding to a more
attractive wall. As expected, the adsorption is much stronger at low pressures for the
second parameter, since the solid-fluid interactions are dominant in this region, and it is
slightly higher in the rest of the isotherm. However, since the fluid-fluid interaction
parameters are the same, the capillary condensation occurs at the same pressure. This
may indicate that the model walls we are using here are slightly less adsorbent than the
model of Gelb and Gubbins [1999].
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To summarize this part: we can conclude that the individual pore model may be
appropriate for CPG, if the appropriate pore geometry and molecular parameters are
chosen. We have observed that the adsorption isotherms obtained by weighting

individual isotherms with the geometrical PSD of the material are in better agreement
with the overall isotherm of the material when using slit-like pores, instead of
cylindrical pores, as a unique geometry. The particular choice of the fluid-fluid and
solid-fluid interaction parameters is less important than the previous point. Once we
have checked that the molecular parameters are accurate and that the individual pore
model is adequate for these materials, we proceed to obtain the PSD’s of these materials
by inversion of the adsorption integral.

4.4.3 PSD by inversion of the adsorption integral equation

To validate our programs, we have fed in equation 4.7 the adsorption isotherms
reconstructed in the previous section, instead of the “experimental” adsorption isotherm.
The parameter values used in these calculations, the areas under the curves and the
deviation between the fitted isotherms and the “experimental” ones are presented in
table 4.2. Results for cylinders are shown in figure 4.10(a), while figure (b) shows the
results for the case of slit-like pores. As observed in both figures, the PSD ({H) in
equation 4.7) obtained is indistinguishable from the geometrical of Gelb and Gubbins.
Since we recover the same results we can conclude that our mathematical procedure and

computer codes to invert the integral are correct. The very small values of Az of table
4.2 are an indicative that in this case it is not necessary any smoothness parameter.
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Fig. 4.10. PSD’s (dashed lines) obtained from the inversion of equation 4.7
using the theoretical isotherms for the case a) the set of isotherms on
cylinders from Fig. 4.4(a); and b) the set of isotherms on slit-like pores from

Fig. 4.4(b). The symbols correspond to the geometrical distribution from the
work of Gelb and Gubbins [1999] of sample A.
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We have also checked the porosity value used in our calculations. The porosity value
can be obtained by using # = 1 when normalizing equation 4.7, i.e., it is fulfilled that

@J- f (H )dH =1.0. Following this procedure we have obtained a value very close to
30%, the same reported by Gelb and Gubbins [1999].

Once we have validated our method, we have inverted the adsorption integral equation
considering both geometries, cylindrical and planar. The results obtained are compared
to those obtained by Gelb and Gubbins with the BJH method, and with the geometrical
one. It should be noticed that Gelb and Gubbins used just the adsorption branch of the
isotherms, since the desorption branches obtained by simulation where very sharp,
leading to PSD with non-physical sense.

Figure 4.11 shows the PSD’s obtained by minimizing equation 4.7 for each of the four
materials using adsorption isotherms for cylindrical pores. The parameters used and the
area under the curve of each curve can see in table 4.3). The resulting isotherms from
the fitting are compared to the “experimental” isotherms in figure 4.12. The percentages
of deviations for each one of the fittings are also given in table 4.3. It is observed that
the distributions obtained by inversion of the integral show, in general, a better
agreement with the geometrical distributions that the ones calculated with the BJH
method. The locus of the peak is at the same pore size, except for material B, and they
all are unimodal. On the contrary, the BJH distributions show a maximum
systematically located at smaller pores than the actual one, and there are not unimodal
for materials A, B, C, showing more than one peak. The discrepancies between the BJH
and the geometrical PSD were attributed to several factors [Gelb and Gubbins, 1999].
One of them is that the BJH method follows the Kelvin equation, which is known to
underestimate the real values, especially for small pores [Gregg & Sing, 1982;
Lastoskie et al., 1993a and b]. Besides, an additional source of error may comes from
the use of the reference standard isotherm, it has been shown in a previous study [Gelb
and Gubbins, 1998] that the surface adsorption in very narrow pores is systematically
higher than for a planar surface of identical characteristics. Finally, since the pores of
these materials have an irregular geometry, a quantitative agreement
should not be expected.

System Number of  Number of  Number of TR Area under % of
theoretical points of the interpolated the curve  deviation
isotherms  experimental points of the between
employed isotherm  experimental the

isotherm isotherms
A with 14 23 23 0.00001 0.94 0.023
cylinders
A with slit- 16 23 23 0.0000001 0.981 0.010
like pores

Table 4.2. Parameters and results from the fitted of Fig. 4.10. yr is the
regularization parameter.
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Fig. 4.11 PSD’s obtained (solid line) in this work using cylindrical pores
compared with geometrical PSD’s (dotted line), and with BJH PSD’s
(dashed lines) from literature [Gelb and Gubbins, 1999] for each of the four
systems A, B, C, and D (indicated with the corresponding label).
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Fig. 4.12 Adsorption isotherms obtained (squares) in this work using
cylindrical pores to resolve Eq. 4.7, compared with “experimental”
isotherms (circles) from literature [Gelb and Gubbins, 1999] for each of the
four systems A, B, C, and D (indicated with the corresponding label).

The values of A in these cases (table 4.3) show that the sets of data are not very good
and it is necessary to use the smoothness parameter. This fact could be probably solved,
from the FMT part, by using a higher number of pore sizes and by refining the chemical
potential values used in calculating the adsorption isotherms. We have also tried to
interpolate each isotherm with a spline method, but at low chemical potentials the

adsorption gives unphysical results, i.e. negative values.

We observe in figure 4.12 that the fitted adsorption isotherms of materials A and B are
above the “experimental” adsorption isotherms of the material at low pressures, while
there are under the experimental isotherm for the high pressure region, reaching a lower
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saturation level. For materials C and D, we observe an excellent agreement between
fitted and real isotherms, at low pressures, while the agreement clearly deteriorates at
high pressures. Since we have already seen that the independent pore model applies for
these materials, and we are doing a fitting, which effectively should screen the
discrepancies between the real system and the collection of pores, in principle, the
agreement should be better than what we obtain here. Hence, we can conclude that the
discrepancies may come from the fact that the cylindrical geometry is not the most
appropriate for these materials.

System Number of  Number of  Number of YR Area under % of
theoretical  points of the interpolated the curve  deviation
isotherms experimental points of the between
employed isotherm  experimental the

isotherm isotherms
A 14 19 21 10 0.73 20.52
B 15 20 23 10 0.70 25.50
C 19 22 20 15 0.62 19.70
D 20 26 21 25 0.59 22.50

Table 4.3. Parameters and results from the fitted of Figs. 4.11 and 4.12 using
cylindrical pores. yy is the regularization parameter.

The PSD obtained by inverting equation 4.7 using the adsorption in slit-like pores is
shown in figure 4.13, for the four materials considered, and the parameters used, the
area under the curve, and the percentages of deviation are given in table 4.4. It is
observed a clear improvement in the location of the peaks, in all cases, and a better
agreement with the extremes of the distributions. It should be noted that, as mentioned
already, for the case of planar geometry, there are two additional narrow pores in this
case, not included for cylinders. However, by looking at the results we can conclude
that the addition of narrower pores into the analysis of the PSD with cylindrical pores
would not improve the results, since the adsorption in narrow cylindrical pores is very
high at low pressures, rapidly reaching saturation at higher pressures. To improve the
agreement of the isotherms in figure 4.12 we would need more adsorption at high
pressures, but a decrease of the adsorption at low pressures. For the case of planar
geometry, the problem is that the obtained distributions are wider than the geometrical
ones. This decreases the weight of the intermediate pores to the total isotherm,
decreasing the adsorption in the high-pressure region, especially for materials C and D.
As observed in figure 4.14, the overall agreement between the adsorption isotherms is
excellent for the four materials studied, for the case of the slit-like pores. As a
conclusion we can say that the planar pore model seems to be the appropriate model for
materials A and B, describing almost quantitatively their behavior, and it seems to be
very satisfactory for materials C and D. The small values of the regularization parameter
show a better adequacy of the model in this case versus the cylindrical case. Moreover,
in the first two systems (A and B), which fitted better than the two others (C and D) the
value of Ap gives the same importance to the smoothness term respect to the
adsorption term (see Eq. 4.7).
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Fig. 4.13. PSD’s obtained (solid line) in this work using slit-like pores
compared with geometrical PSD’s (dotted line), and with BJH PSD’s
(dashed lines) from literature [Gelb and Gubbins, 1999] for each of the four
systems A, B, C, and D (indicated with the corresponding label).

68




4. PSD of model porous glasses

0'014 " 1 " 1 " 1 " 1 " " 1 " 1 " 1 " 1
0.012
0.010+

0.008 - T

(A%

0.006 1 a 1 o -
0.004- g e

0.002- . + ° -

0.000 T T T T T T T T
12 -10 -8 6 4 -10 -8 6 4 2

0.014 " 1 " 1 " 1 " 1 " " 1 " 1 " 1 " 1

0.012- & | o |

0.010- °
‘ L
0.008- o,
. o | .
0.006 1 4 T ] -
| & g |
0.0044 o T o

(&%)

0.002- ° IS . i

e

0.000
12 -0 -8 -6 -4 10 8 -6 -4 2

Fig. 4.14 Adsorption isotherms obtained (squares) in this work using slit-like
pores to resolve Eq. 4.7, compared with “experimental” isotherms (circles)
from literature [Gelb and Gubbins, 1999] for each of the four systems A, B,
C, and D (indicated with the corresponding label).

Mean field and fluid-fluid interaction

Finally, as we have seen in chapter 3 of this memory, one of the main differences
between the theoretical and the simulation approaches we have used is that there are
some mean field approximations made in the theory when calculating adsorption
isotherms. We have checked the importance of these approximations here and results
are presented in figure 4.15, for a cylindrical pore of diameter H = 66 A. As it is
observed in the figure, the main difference comes from the inability of the theory to
accurately predict the correct pore filling pressure (c.a. p° = -4.0), giving a smoother
capillary condensation, and at lower chemical potentials. Another difference, less
noticeable than the previous one, is the behavior at high pressures, once the capillary
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condensation has taken place. In this case it is observed that the adsorption obtained in
simulations is lower than that predicted by the theory. This can be explained by the fact
that this is the region were the fluid-fluid interactions are dominant, and we are using
the same set of parameters in both approaches (see table 3.1), when actually each model
follows a different equation of state in the bulk.

System Number of  Number of = Number of TR Area under % of
theoretical points of the interpolated the curve  deviation
isotherms  experimental points of the between
employed isotherm  experimental the

isotherm isotherms
A 16 19 21 1 0.88 7.24
B 17 20 23 1 0.85 8.09
C 21 22 20 10 0.77 10.75
D 22 26 21 10 0.73 12.74

Table 4.4. Parameters and results from the fitted of Figs. 4.13 and 4.14 using
slit-like pores. vy is the regularization parameter.
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Fig. 4.15 Adsorption isotherms (circles) obtained in this work using FMT
calculations and (squares) by GCMC simulations for a cylindrical pore of
diameter H = 66A.

4.5 Conclusions

In this chapter we have applied the FMT approach in conjunction with a regularization
method to estimate the PSD of model porous glasses. We have chosen this particular
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material because it was developed with molecular modeling techniques, and a direct
comparison can be made with the theory used here. An additional advantage of these
model materials, versus experimental ones, is that in this case the size and shape of the
pores is well known, as well as the position of the atoms in the surface, making it a
perfect material to check the accuracy of the theoretical characterization
methods available.

Since there are several solutions of the adsorption integral equation compatible with the
experimental adsorption isotherm, and several factors can hide defects of the molecular
model, we have done the characterization in a systematic manner: we have first checked
the accuracy of the FMT and the independent pore model for predicting the
“experimental” adsorption isotherms using the geometrical PSD already known for the
materials. This has been done with individual cylindrical and slit-like pores. Secondly,
once the adsorption isotherm was successfully reconstructed, we inverted the integral
adsorption isotherm with a regularization procedure. The accuracy of the inversion
method has also been checked before estimating the PSD’s of the different materials.
Finally, once the method was proved to be correct, we used it to estimate the PSD’s of
four materials, and to predict the experimental adsorption isotherms. We have also
studied the influence of choosing some particular molecular parameters for the fluid-
fluid and the solid-fluid interaction in the adsorption behavior of these systems.

We have obtained that the independent pore model is adequate for the four materials
investigated here. The slit-like geometry seems to represent the overall adsorption
behavior better than the cylindrical geometry.

As far as the PSD obtained with our procedure is concerned, it is observed that the
distributions obtained by inversion of the integral are in better agreement with the
geometrical distributions than the ones calculated with the BJH method. The locus of
the peak is at the same pore size, and all of them are unimodal, while the BJH
distributions show a maximum systematically located at smaller pores, underestimating
the PSD’s of the material, and there are not unimodal.

Regarding the geometry of the individual pores making up the material, we can say that,
although the PSD are broader than the geometrical ones, the adsorption predicted by a
collection of individual slit-like pores is in almost quantitative agreement with the
“experimental” adsorption isotherm. Hence as a conclusion, the individual pore model,
and the planar geometry are appropriate to characterize these materials using DFT
techniques, and they can be used with confidence to predict their adsorption behavior, a
matter of future work.
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5. PORE-SIZE DISTRIBUTION OF y-ALUMINA

5.1 Introduction

Density functional theory has been applied with remarkable success to model well-
crystalline materials such as zeolites [Cracknell and Gubbins, 1993; Cracknell et al.,
1995], or such as porous glasses as we have done in chapter 4. This technique has also
been applied to amorphous materials such as carbons, with good results for sorbents
where the PSD is not very disperse [Lastoskie ef al., 1993]. However, there is not a
systematic study available at present to characterize alumina from a molecular
perspective. This may be due to the fact that alumina is a quite amorphous material,
with a wide distribution of pore sizes and shapes, and some surface heterogeneities. The
material obtained in the laboratory strongly depends on the conditions present in the
process of fabrication, and in some cases it is hard to reproduce exactly the same
material [Cesteros et al., 1999]. Additionally, this material is very attractive for practical
applications, since it is abundant in nature, it has a relative low cost, and it can be used
as an adsorbent for separation processes, as a catalyst and for the fabrication
of membranes.

A way to check the accuracy of our approach in estimating PSD is to apply it to the
same material modified in a systematic way. In this sense, it is interesting to analyze the
effect in pore sizes when the y-alumina is calcined. In general, when some adsorbent
materials are heated, i.e. for a period of a few hours, at elevated temperature, they
undergo sintering. Their specific surface diminishes, at lower temperatures probably by
more complete adhesion between the particles, at higher temperatures by actual growth
of the large particles at the expense of the smaller; the PSD changes concomitantly,
though in some systems the total pore volume may change but little over a wide range
of temperature [Gregg and Sing, 1978].

y-alumina, one of the transition aluminas (Al,Os3), is widely used as a catalyst and as an
adsorbent [Gates, 1992; Tanabe et al., 1989]. Transition aluminas are metastable solids
formed from AI(OH); when it is heated through temperatures of some hundreds of
Celsius degrees. As the solid is heated in air, it is decomposed into an oxide with a
micropore structure and a high surface area of some hundreds of square meters per
gram. Raising the temperature to about 1,100K leads to further transformation of the
solid, with changes in structure of the primary particles and collapse of the pore
structure, leading to the loss of almost all of the internal surface area, and ultimately
giving the stable, extremely hard, crystalline y-Al,O3 (corundum). The dimensions of
the micropores are determined by the packing of the primary particles (crystallites); the
micropores and some mesopores are the void spaces between those particles and have
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dimensions of the order of 10-100 A. The dimensions of the macropores are related to
the dimension of agglomerates of crystallites [Ruthven, 1984; Suzuki, 1990; Gates,
1992; Tanabe et al., 1989].

Despite the widespread interest in adsorption and catalytic applications of aluminas, and
the great influence of their surface structure on these properties, there is still only a
limited understanding about the real nature of the material. The alumina surface is
certainly extremely complicated. There are several experimental, theoretical and
molecular simulation studies attempting to explain the structure of alumina [Lippens,
1961; Peri, 1965; Knozinger and Ratnasamy, 1978; Alvarez et al., 1992; 1993; 1994;
Vijay et al, 2002; lonescu et al., 2002]. Most of these studies concentrate on finding the
most stable structure, as well as the face shown, and they conclude that the
preferentially exposed faces are (100) and (110). Vijay et al. [2002] have studied the
occurrence of (001) surface of y-alumina. The structure of the surface may affect the
catalytic properties of alumina and its properties as a support. Lippens [1961] did
extensive studies in crystallographic structures of several aluminas. His main
conclusions are that Al,O3; occurs in various crystallographic forms, of which the n- and
y-phases are the most important ones. The oxygen ions are built up by layers of cubic
close-packed stacking, with the aluminum ions arranged in octahedral and tetrahedral
sites between oxygen ions.

Recently, Blas ef al. [1998] have proposed a molecular model from simplified
intermolecular potentials, that successfully describes the adsorption properties of pure
ethane and ethylene on y-alumina and CuCl-y-alumina found experimentally by Yang et
al. [1995; 1996]. The porous solid is described as a single cylindrical pore, with a
diameter of the pore and the solid-fluid energy interaction parameter fitted to
experimental available data, while the fluids are modeled using optimized potentials for
liquid simulations (OPLS) parameters [Jorgensen et al., 1984]. This model gives good
agreement with the experimental data, except at extreme conditions. For the case of bare
alumina, the adsorption of ethane is underestimated at low pressures, and for alumina
activated with CuCl the adsorption of ethylene is underestimated at the higher pressures
studied, showing a plateau while the experimental adsorption of this substance
continuously grows with pressure. The discrepancies between the model and the
experiments are mainly attributed to the fact that this material is polydisperse.
Additionally, it is important to note that, although, the results were very good in the
case of a very simple model, the pore diameter size and the solid-fluid interaction
energy were fitted and their physical values are not realistic.

In this chapter we present a PSD analysis for the interpretation of nitrogen adsorption
isotherms on y-alumina, as well as the experimental results needed for the analysis. The
study is done with the independent pore model previously used for porous glasses
(chapter 4). This model is based on the idea that the real alumina can be treated as an
“effective porous material”, in which all of the heterogeneity of the real material is
approximated by a distribution of pore sizes. Hence, the interconnectivities among the
pores, the different possible pore geometries and the heterogeneity of the real surfaces
are not explicitly considered. With the PSD’s obtained we investigate the sintering
effect when alumina is calcined. The independent pore model analysis requires the
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determination of a large amount of adsorption isotherms at different pressures and pore
sizes, in order to evaluate the PSD’s of the studied material. We have used FMT to fit
the experimental adsorption isotherm of nitrogen on y-alumina at temperature 7 =
77.35K. With the aim to test the predictive capability of the PSD, we present GCMC
simulation results in the same material (untreated alumina) of ethane at 333.15K
compared with experimental results from literature [Yang et al., 1995; 1996].

The remainder of this chapter is organized as follows. In the next section we present the
experimental details and the isotherms measured, followed by the presentation of
molecular model used to describe the nitrogen, the ethane molecules, and the y-alumina.
In section 5.4, we present the results and discussion of the PSD’s and sintering effect in
the same. In section 5.5 the application of PSD to adsorption of ethane on alumina is
exposed, and finally, a summary of results and main conclusions obtained from this
work are given in section 5.6.

5.2 Experimental adsorption isotherms

The y-alumina used in this study was PSD-350 activated alumina from ALCOA
Separations Technology, Inc. Two samples of aluminas were calcined in a furnace at
823.15K and 1,023.15K during several hours. The adsorption isotherms of nitrogen in
the different samples were measured at 77.35K using a Micromeritics ASAP 2000
surface analyzer and the BET surface areas were calculated assuming a nitrogen
molecule cross section of 0.164 nm”. The same apparatus automatically calculates the
pore-size distribution of the solids for pore diameters between 10 and 3,000 A using the
BJH method [Barrett et al., 1951]. These PSD’s are used to compare with the PSD’s
obtained by FMT calculations and regularization method.

5.2.1 BET analysis of adsorption data

The Brunauer-Emmett-Teller (BET) isotherm [Brunauer et al., 1938] is a widely-used,
well-behaved method for extracting effective surface areas and adsorption energies from
isotherm data. The method is based on a model of multilayer adsorption, which satisfies
several conditions:

e Adsorption occurs on adsorbing sites and on top of adsorbed molecules.
e The number of adsorbing sites per layer is constant.
e The energy of the first-layer adsorbing sites is uniform

e Molecules in all layers above the first behave as if in a bulk liquid.

Given these conditions, the statistical mechanical problem may be solved by a variety of
methods to yield the fundamental equation

PP, 1 -1
n(1-P/P) n ¢ C(P/PO) -1

m m
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P/Py is the relative pressure, n is the amount adsorbed (per unit mass of adsorbent), n,, is
the BET “monolayer capacity”, and c is usually related to the net heat of adsorption by
c= exp(q”-q.)/RT, where ¢” is the isosteric heat adsorption in the monolayer and ¢; is
the heat of condensation. Conventionally, adsorption data are plotted as (P/Py)Ln(1-
P/Py) vs. P/Py, and the n,, and ¢ parameters are determined from the slope and intercept
of the resulting line. The monolayer capacity n,, is often divided by some predetermined
“monolayer” density to obtain the “BET surface area” of the system. This quantity is
often quoted in literature describing porous adsorbents and substrates. The monolayer
density is usually taken from adsorption studies of nonporous material, where the
surface are assumes that the average density of the monolayer is transferable between
the two materials. If they area chemically similar, this is a reasonable assumption.

5.2.2 Adsorption isotherms

In the following figures we show the experimental isotherms of nitrogen at 77.35K
measured in y-alumina for this work. In the first one, Fig. 5.1, we can see the adsorption
on the alumina without treatment in furnace. This isotherm corresponds to type IV in
the classification of Brunauer, Deming and Teller (BDDT) [Brunauer et al., 1940]. This
means that this alumina has an important proportion of mesopores but with a non-
negligible proportion of micropores (or strong interaction of the substrate) and that it
presents capillary condensation. The BET surface area obtained was of
315.1354 +2.2654 m*/g.
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Fig. 5.1. Experimental adsorption isotherm of nitrogen at 77.35K on

y-alumina. The squares represent adsorption branch, and the circles

desorption one.
Fig. 5.2 shows an experimental isotherm of nitrogen at 77.35K measured in the
y-alumina treated in a furnace during several hours at 823.15K. It can be appreciated
that although the isotherm can still be classified as type IV, the presence of micropores
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diminishes (the convex curvature in the region of low pressures is less notorious) in
favor of the increase of the larger pores (the total adsorption in the region of high
pressures is enlarge). The capillary condensation occurs at a higher pressure and the
hysteresis loops lightly decreases. The BET surface area in this case was of
227.4075 + 1.8002 m*/g.
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Fig. 5.2. Experimental adsorption isotherm of nitrogen at 77.35K on
y-alumina calcined at 823.15K. The squares represent adsorption branch, and
the circles desorption one.
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Fig. 5.3. Experimental adsorption isotherm of nitrogen at 77.35K on
y-alumina calcined at 1,023.15K. The squares represent adsorption branch,
and the circles desorption one.
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Fig. 5.4. Experimental adsorption isotherms of nitrogen at 77.35K on
untreated y-alumina, (circles and squares); on y-alumina calcined at 823.15K,
(triangles); and on y-alumina heated at 1,023.15K, (crosses).

In Fig. 5.3 we represent the adsorption of nitrogen at 77.35K on alumina calcined
during several hours at 1,023.15K. The evidence of the presence of macropores in
detriment of micro and mesopores is furthermore evident. In this case, the classification
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of isotherm is more suitable in type II that correspond at the adsorption isotherm in a
non-porous material. The BET surface area of this isotherm had a value of
159.0018 + 0.7351 m*/g.

The differences on the features of this three adsorption isotherm are more clearly
showed if we plot the curves in the same figure, as it is done in Fig. 5.4. Once we have
seen that the operating conditions were appropriate for our purpose we can now check
the accuracy of the DFT approach in conjunction with the regularization method for the
PSD in capturing these experimental facts.

5.3 Molecular models

In this section, we present the details of molecular models used in this part. The model
of the adsorbent material was very similar in both cases, when the adsorbate was
nitrogen and when it was ethane. In the first part (nitrogen) we calculated the adsorption
isotherms wusing FMT approach and in the second one (ethane), we used
GCMC simulations procedure.

5.3.1 Nitrogen on y-alumina

Fluid-fluid interactions

To model the fluid-fluid interactions of nitrogen molecules we have used the spherical
LJ intermolecular potential. This potential was cut at 5o and it was not shifted. We have
used the SPT equation of state outlined in chapter 2 to fit the parameters in order to
reproduce the bulk nitrogen saturated liquid density (0.02887 mol/cm® [CRC, 1981]),
and saturation pressure (1 atm) at the normal boiling point of 77.35K. The potential
parameters obtained in this work are shown in table 5.1. Here, we use the same FMT
model that in chapter 3 in the sense of that the separation of LJ potential in the WCA
fashion was done at 7y = G ® and the hard-sphere diameter was calculated

with Eq. 3.3.

Solid-fluid interactions

We represent each individual pore as a cylinder where oxygen ions are modeled as
spherical Lennard-Jones sites. The LJ potential was cut at 5¢ and it was not shifted.
These LJ spheres are arranged in 6 cylindrical layers, in such a way that the density of
oxygen ions in y-alumina, “true density” = 60.25 O, ions/nm’ [Greenwood and
Earnshaw, 1986], is approximately mimicked. The distance between two oxygen atoms
in angular and axial directions is d. The rest of the consecutive layers forming the
cylinders are separated by a distance A, in the same arranged that it used in chapters 3
and 4 as shown in figure 5.5. To reproduce the experimental density of oxygen ions
inside the material, appropriate values of the geometrical parameters d and A are chosen
(d = 2364 A and A = 3.0 A). The pore diameter is measured from the center of the
oxygen ions on opposite sides of the innermost layer, as indicated in figure 5.5. Each
pore contains, in the radial direction (6) and along the cylinder axis (20), a sufficient
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number of LJ spheres so that the interactions between the adsorbed molecules and the
outer oxygen ions of the pore are negligible. The solid-fluid interaction molecular
parameters, €y, and oy, the segment size and the dispersive energy, shown in table 5.1,
are taken from Cascarini de Torre et al. [1995]. They quantified the parameters of the
interaction between the fluid (N,) and the atoms of the wall (Al,O3), and we use the
Lorenz-Berthelot mixed rules to calculate the solid-solid parameters of the alumina. The
total potential energy between a fluid molecule and the wall is given by the sum of all
the oxygen contributions. It was calculated prior to the adsorption calculations, and was
determined at the same points of the mesh of the DFT calculations. Due to the only
radial dependence of the density profiles of the DFT model, the angular and axial
dependence was integrated in the same way as in chapters 3 and 4.

4 more layers

ooy

H/2

d
A Vol

Fig. 5.5. Structure of one cylindrical pore and the definitions of
geometrical parameters.

Y] (A) e/kp (K) © sf (A) sz/ kg (K) 0o (A) ess/kp (K)

Nitrogen 3.54*  96.20°  3.16° 104.2° 2.78° 112.87¢

Table 5.1. Nitrogen and Al,O; LJ parameters. * Fitted to experimental values
with SPT equation of state; ° from the work of Cascarini de Torre et al.
[1995]; ¢ obtained by Lorenz-Berthelot combining rules.

Pore properties

The volume of the pore in this work is defined as a function of the effective diameter,
Wey, 1n the following way

wy,=H-0, (5.2)

where H is defined in the way showed in Fig. 5.5.
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5.3.2 Ethane on y-alumina

In this part we used a simplified molecular model of adsorption of ethane on y-Al,O3. In
general, the PSD function of a polydisperse material can be approximated in the
following way

F(H)Y~Y e (H-H,) (5.3)

where 0(H-Hj) are the o6-Dirac distribution functions centered at pore sizes Hy, with k =
1, ..., m, and m is given by the number of peaks of the distribution. ¢; are weight
constants associated to each mode. It is straightforward to demonstrate that the
distribution has the same surface pore volume as that obtained from the DFT analysis if
ci 1s given by the area below each mode of the distribution. We will check the validity
of this approximation for y-Al,Os.

Fluid-fluid interactions

Fluid molecules are modeled in the same way that the nitrogen such as spherical LJ
units. The parameters can be found in table 5.2 and were taken from the work of
Cracknell et al. [1993].

c(Ad) ekp(K) o4 (A) eykp(K)

Ethane 3.95%  243.00° 3.37 165.60
Table 5.2. Ethane LJ parameters. * From the work of Cracknell et al. [1993].

Solid-fluid interactions

The molecular parameters of LJ interactions between the atoms in the wall and each
ethane molecule were obtained following the Lorenz-Berthelot combining rules from
the parameters of the solid in the nitrogen-alumina model (table 5.1), and the fluid-fluid
parameters of ethane [Cracknell et al., 1993].

In the ethane isotherms, the model of the alumina was the same that of nitrogen case but
with one important difference. In this case we perform GCMC simulations, which are
done in a continuous space. Therefore, the potential due to the alumina wall was also
calculated prior to the simulations at a large number of grid points inside the pore, the
grid was stored in a file, and the potential in a specific position during the simulation
was calculated by linear interpolation.

Pore properties

The volume of the pore considered is the same as the one we used for the case of
nitrogen in the previous section.
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5.4 Pore-size distributions

In this section we present the theoretical adsorption isotherms calculated using the FMT
approach in cylindrical pores, with the parameters mentioned previously. Additionally,
we show the PSD’s obtained by regularization method using this set of isotherms
together with the experimental isotherms. Finally, we compare the PSD’s extracted with
the respective ones using a BJH analysis obtained directly from the experiments and the
software of the Micromeritics apparatus.

5.4.1 Theoretical adsorption isotherms

The individual pore isotherms of nitrogen on y-alumina have been obtained for an
extensive range of pore sizes from 18 A to 600 A (20 isotherms in total) at 77.35K.
Since not excess adsorption is observed for larger pores, there are not included in the
analysis. The pore sizes values at which the adsorption isotherms were calculated are in
table 5.3 and a representation of these isotherms can be seen in Fig. 5.6. Due to the high
computational cost needed to obtain the FMT isotherms, we have only calculated 19
different points in each isotherm (a suitable grid was chosen). This should not be a
problem, since we could interpolate with a spline numerical method to obtain
additional data.

As expected, different adsorption behaviors have been observed depending on the pore
size range studied. These differences were extensible discussed in chapter 3. We have
just calculated the isotherm branch in each isotherm because this is the branch used
from the experimental isotherms to obtain the PSD’s.

HA) H H(A) H
18 5.1 90 25.4
20 5.6 100 28.2
25 7.1 150 424
30 8.5 200 56.5
35 9.9 250 70.6°
40 11.3 300 84.7
50 14.1 350 98.9
60 16.9 400 113.0
70 19.8 500 141.2
80 22.6 600 169.5

Table 5.3. Pore diameter sizes of the different isotherms calculated
in this work.
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Fig. 5.6. Theoretical adsorption isotherms of nitrogen at 77.35K on
cylindrical pores of y-alumina of different diameters. The pore sizes increase
from the left side to right side, and the values of them are presented

in table 5.3.
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5.4.2 Pore-size distribution calculations

The procedure followed to estimate the PSD from the inversion of the adsorption
integral equation of the three samples treated is the same as the one used in chapter 4.
The PSD obtained with FMT for the untreated alumina is shown in figure 5.7, where,
for comparison, we also show the BJH PSD obtained from the software of the
experimental apparatus. As expected for a material with a significant amount of micro
and mesopores, as the alumina we are analyzing here, the BJH method underestimates
the size of the pores present in the material. A comparison of the experimental and the
isotherm obtained from the fitted PSD is shown in figure 5.8, with the percentage of
deviation from the fitting presented in table 5.4. As we have mentioned already, only
the adsorption branch is shown in both cases. An excellent agreement between
experimental and theoretical results is observed, showing, not only the goodness of the
method for estimating the PSD, but also the adequacy of the cylindrical geometry
for this material.

System Number of  Number of  Number of YR Area under % of
theoretical  points of the interpolated the curve  deviation
isotherms experimental points of the between
employed isotherm  experimental the

isotherm isotherms

Untreated 17 30 19 100 1.20 6.05
alumina

Alumina 18 30 19 1,000 1.38 10.80
calcined at

823.15K

Alumina 18 30 19 10,000 1.56 8.82
calcined at

1,023.15K

Table 5.4 Parameters and results from the fitting of Figs. 5.7-5.13. yy is the
regularization parameter.
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Fig. 5.7. PSD’s of untreated y-alumina, obtained by FMT calculations (solid

line), and by BJH method (dashed line).
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Fig. 5.8. Adsorption isotherm of nitrogen at 77.35K on y-alumina. The
circles represent the experimental data and the crosses the fitted curve
obtained by FMT isotherms weighted for the PSD from Fig. 5.7.
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Fig. 5.9. PSD’s of calcined y-alumina at 823.15K, obtained by FMT
calculations (solid line), and by BJH method (dashed line).
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Fig. 5.10. Adsorption isotherm of nitrogen at 77.35K on y-alumina calcined
at 823.15K. The circles represent the experimental data and the crosses the
fitted curve obtained by FMT isotherms weighted for the PSD from Fig. 5.9.

The PSD obtained for the calcined alumina at 823.15K is shown in figure 5.10, where
we also show the BJH distribution obtained as before. There is still a significant
difference between these two distributions. The maximum in the BJH case is located at
45 A, while the maximum obtained from inversion of the integral equation is located at
100A. The experimental and adsorption isotherms for this calcined material are
presented in figure 5.11. As in the untreated material, the good agreement between both
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of them proves the accuracy of the method, and of the model used in the
theoretical approach.
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Fig. 5.11. PSD’s of calcined y-alumina at 1,023.15K, obtained by FMT
calculations (solid line), and by BJH method (dashed line).

0.014+——t—

0.012 -

0.010+ -

+0O

0.008 - -

0.006 - -

I, (mol/g)

0.004 - ® -

0.002 o 2

0.00+—F—F———F—— 77—
0.0 0.2 0.4 0.6 0.8 1.0

P/P

Fig. 5.12. Adsorption isotherm of nitrogen at 77.35K on y-alumina calcined
at 1,023.15K. The circles represent the experimental data and the crosses the
fitted curve obtained by FMT isotherms weighted for the PSD
from Fig. 5.11.
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Finally, figures 5.11 and 5.12 show the corresponding results obtained for calcined
alumina at 1,023.15K. It is observed than in this case the sintering process has destroyed
the narrowest pores, and the agreement between the PSD obtained from both methods
are in better agreement. This is an expected result, since it is known that the BJH
method is accurate in the meso and macroporous region. In figure 5.12 we observe that
the agreement between the experimental and the theoretical isotherm is excellent.

As we expected, when we calcined the alumina the material suffered a sintering process,
in which the narrow pores progressively disappear, displacing the PSD to wider pore
sizes. This phenomenon can be appreciated in figure 5.13, were the three PSD’s are
shown in the same plot. The distribution associated to the untreated alumina shows a
maximum located at 40 A, and a high proportion of pores located between 20 and 100
A. The maximum is displaced in alumina calcined at 823.15K, and it is located at 100
A, with the distribution centered on this value. Finally, the PSD corresponding to the
alumina calcined at 1,023.15K shows a peak located around 200 A. For this last
material it is observed that there are very few narrow pores. The resulting curves of
Figs. 5.9 and 5.11 should be improved when additional individual isotherms are used in
the region of larger pores. The number of individual isotherms used to obtain the PSD is
small in this pore range, giving sharp curves.
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Fig. 5.13. PSD’s of y-alumina obtained by FMT calculations; dotted line
represent untreated alumina, solid line is for alumina calcined at 823.15K,
and dashed line represent alumina calcined at 1,023.15K.
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5.5 Application of pore-size distributions to predict adsorption isotherms

With the aim of testing the accuracy of the PSD’s obtained in previous section, we have
calculated adsorption isotherms of ethane at 333.15K on untreated alumina. In
particular, our objective is to test the robustness of the method by applying the PSD at
some different thermodynamical conditions of those at which the material was
characterized. It would be a way of establishing the predictive capability of the PSD
obtained from our method.

As a first step, we have verified the validity of the equation 5.3, which establishes the
possibility of to represent the whole adsorption in some material using only selected
isotherms at certain pore size values. We have calculated two isotherms at H = 40 and
250 A of nitrogen on alumina at the same thermodynamical conditions of the
characterization. We have chosen these diameters because they are the maximum in the
PSD of Fig. 5.7. These adsorption isotherms were calculated using GCMC simulations
with the model presented in section 5.3.1. We have used the equation 5.3 to calculate
the total adsorption with a weight factors ¢; of 0.752 and 0.248 for the isotherm on H =
40 A cylindrical pore and on H =250 A cylindrical pore, respectively.

The individual adsorption isotherms are presented in Fig. 5.14. It can be seen that the
isotherm of the larger pore has a very small contribution, while the isotherm at 40 A is
the dominant contribution. As we expected, the use of only two individual isotherms
does not reproduce all the richness of the experimental adsorption isotherm, but it gives
approximate adsorption levels, which can be useful for applications on adsorption of
different fluids. It is clear than the agreement could be improved if some additional
individual isotherms are used. It would be interesting to investigate how many pore
sizes would be necessary to include for obtaining quantitative agreement. The
comparison between the average isotherm obtained with two GCMC isotherms and the
experimental one is shown in Fig. 5.15.
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Fig. 5.14. Adsorption isotherms of nitrogen on untreated y-alumina at
77.35K in two different cylindrical pores by GCMC simulations; (squares)
H=40 A, and (circles) H =250 A.
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Fig. 5.15. Adsorption isotherms of nitrogen on untreated y-alumina from
(solid line) experimental results (the adsorption branch presented in Fig.

5.1), and obtained by a lineal combination of two isotherms by GCMC
simulations at 77.35K.

We have given one step forward on applying molecular modeling techniques in a
“predictive” manner: we have used a different fluid and we have calculated the
adsorption isotherm at a different temperature, using the PSD obtained by FMT and the
regularization method. In this case, we have used ethane at 333.15K. We have chosen
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this system because we have experimental information from the literature [Yang et al.,
1995; 1996]. We have calculated two isotherms at the same values of pore sizes (H = 40
and 250 A) as for nitrogen. These adsorption isotherms were calculated using GCMC
simulations with the model explained in section 5.3.2. The results are presented in Fig.
5.16, showing the comparison between the experimental adsorption isotherm and the
GCMC weighted isotherm. Although, in principle this seems a not very good
agreement, compared to what we have observed in the rests of the calculations
presented here, some comments are in order. First of all, we are doing a first
approximation using the Lorentz-Berthelot combining rules to calculate the fluid-wall
interaction. It would be more appropriate to use very low pressure-adsorption
measurements to determine the value of the energy interaction between the wall and the
fluid. We have chosen this approach because we consider interesting to see the results in
which we are studying a different fluid and the temperature is much higher than that
used to obtain the PSD, without doing any fitting, to see the predictive capability of the
method. In fact, this is the main difference between of this work and the previous one of
Blas et al. [1998], in which they used a unique cylindrical pore and they fitted the
diameter and the solid-fluid energy interaction parameter to the experimental adsorption
isotherm. Here, we are doing a pure prediction.
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Fig. 5.16. Adsorption isotherms of ethane on untreated y-alumina from (solid
line) experimental results [Yang et al., 1995; 1996], and obtained by a lineal
combination of two isotherms by GCMC simulations at 333.15K.

In Fig. 5.17 each individual isotherm at two different values of diameter size are
presented for consistency. The dependence of the adsorption versus P/P, are lineal
because the thermodynamical conditions are supercritical, and at these conditions
capillary condensation is not present.
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Fig. 5.17. Adsorption isotherms of ethane on untreated y-alumina at 333.15K
in two different cylindrical pores by GCMC simulations; (circles) H = 40 A,
and (squares) H =250 A.

Finally, an additional comment is that in the work of Blas and coworkers [1998] they
modeled the ethane as a molecule of two sites, instead of the spherical LJ we have used
here. Additional changes in the model can be done in a gradual way, improving the
molecular model of the fluid.

5.6 Conclusions

In this chapter we have characterized three different samples of y-alumina, one of them
without treatment and the others two calcined in a furnace during several hours at
823.15 and 1,023.15K respectively. To do this we have measured adsorption isotherms
of nitrogen at 77.35K in a Micromeritics ASAP 2000 apparatus. Additionally, we have
obtained the PSD’s provided by the software of the apparatus using the BJH method.
We have calculated the theoretical isotherms using the model presented in section 5.3.1
by the FMT approach from section 2.2. We have inverted the adsorption integral
equations with the regularization method presented in section 4.3, and finally, we have
obtained the PSD’s for our three samples of alumina, and the corresponding adsorption
isotherms for the three materials. In this way we have observed the influence of the
calcination of alumina in its PSD. Moreover, we have tested the accuracy of the
FMT/Regularization method in a systematic way.

When we compared the PSD’s obtained with the corresponding BJH distributions, we
have verified that in the two first cases (untreated alumina and alumina calcined at
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823.15K) the BJH method underestimated the size of the pores, giving PSD’s shifted to
the smaller sizes. In the case of alumina calcined at 1,023.15K, in which the sintering
process has produced the disappearance of the smallest pores favoring the wider ones,
the BJH PSD’s and the FMT/regularization PSD’s are very similar. With this, we
corroborated the known fact that the BJH method is quite accurate in the
macropores region.

Finally, we have checked the validity of representing the polydisperse material by the
adsorption in the main sizes, weighted by the corresponding value in the distribution.
For the case of nitrogen (same fluid and same conditions), the qualitative isotherms is
obtained, although quantitative agreement can not be achieved. The same approximation
has been used in a predictive manner, by studying the adsorption of a different fluid
(ethane), and at other temperature (333.15K) in one of the characterized materials
(untreated alumina). The results show that the method is simple and useful for obtaining
the approximate adsorption levels, although additional pore sizes and better molecular
models are necessary if quantitative agreement is searched.
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6. SUMMARY AND FUTURE WORK

6.1 Summary

This work has been focused in the development and application of a methodology for
the characterization of adsorbent materials using molecular modeling tools. In this
context, the first step has been to use the FMT to model slit-like and cylindrical pores,
testing the accuracy of the results obtained by comparison with molecular simulation
results. It is been studied since from a theoretical perspective the adsorption behavior
depends on the geometry of pores. This part of the work has been devoted to the
modeling of the adsorption in each individual pore. After that, the second step has been
focused on the establishment of the validity of a model used to represent the structure of
the whole material. This model assumes the material as a set of independent pores, all of
them with the same (simple) geometry but of different sizes, and without
interconnection between them. To do that, a well-characterized model material was
been used, and a technique to estimate the PSD, using experimental information and
theoretical information, was implemented. Finally, to apply and to test the range of the
applicability of the developed methodology, a real material was characterized,
modifying its structure by calcination, with the aim of study the influence of these
processes in the PSD. To do that, the material (alumina) was calcined, and the
adsorption isotherms of nitrogen were measured, obtaining the corresponding PSD’s
using the combined technique of FMT/Regularization with cylindrical pores. After that,
the prediction capability of the PSD obtained was estimated. For this, theoretical
adsorption isotherms of ethane on alumina at 333.15K were calculated using GCMC
simulations, and compared to experimental data from the literature. The diameter size of
the pores chosen were the two peaks of the distribution, and the two isotherms obtained
were lineally combined pondered with the ratio of the areas under the curves.

6.2 Future work

Fluids confined within narrow pores, with pore widths of a few molecular diameters,
exhibit a very reach physical behavior. We have studied the nature of some phase
transitions inside the pores in this work. We believe that the local curvature of the solid
wall is the only responsible for the shift observed in cylindrical geometries in our study.
But actually, we don’t have enough time to deeper in this analysis and we think that it
will be interesting to follow investigating about this particular point, and to shed some
light on this topic.

We have presented preliminary results about the comparison of the isotherms obtained
by two DFT versions in a cylindrical pore, but it would be necessary to do a systematic
comparison and constitutes an interesting subject for future work.



6. Conclusions and future work

We are interested in finding an appropriate material for olefin/paraffin separation by
adsorption. With this objective, it would be necessary to deeper in the modeling of this
kind of systems and to use the presented methodology here to do that.

Finally, it would be very interesting to apply this methodology to
other porous materials.
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