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Foreword 
 
The accepted wisdom regarding the research process is that the first step consists of 

turning an idea into a research question. The sequence which then must follow is a 

thorough literature review, a proper design of the methodology and tools that will be 

applied, the collection of data, analysis of that data and interpretation to get to a 

discussion of the results obtained. However, I think that the first step must be initiative 

and motivation. One must first of all ask the question “why do I want to dedicate time to 

clarifying aspects of a scientific topic?” Once this question is answered and a personal 

objective is fixed, it is time to begin with the research process.  

 

My personal objective was to give myself some more time to grow and discover which 

were my best abilities and skills whilst building on my educational training, not just in a 

theoretical way, as during my undergraduate studies. When I finished my 

Environmental Sciences degree, I knew that I could enjoy working on practical 

solutions to the world’s environmental problems and that some more technical 

knowledge would be very useful. Doing research and becoming a doctor in a Chemical 

Engineering department, in a research group focussed on reaction processes for waste 

water and sludge treatment seemed to me an excellent opportunity to achieve my 

personal objective. By this point I have fulfilled most of my expectations and have 

learnt a few other things I did not expect, so I think I am ready to go into the next stage 

of my personal research process. 

 

I wish to express my sincere gratitude to all members of the Chemical Engineering 

Department at Universitat Rovira i Virgili and the Chemical Reaction Engineering and 

Process Intensification Group. I especially wish to thank my supervisor Dr. Azael 

Fabregat and Drs. Josep Font and Agustí Fortuny for their constant help throughout the 

production of this thesis.  
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I must attribute a large part of my achievements to the research stay I did at 

Universidad Rey Juan Carlos, in the Grupo de Ingeneriería Química y Ambiental, under 

the supervision of Dr. Fernando Martínez and Dr. Juan A. Melero. I must also thank Dr. 

Angel Botas, Dr.-to-be Isabel Pariente and the rest of the group. It is essential to go 

and see other ways of thinking and of working and being part of this research group 

was a very fruitful and personally constructive experience.  

 

I would also like to acknowledge the kindness of Dr. J. Lafuente, Dr. J. Font, Dr. M.J. 

Martín, Dr. F. Martínez and Dr. R.M. Quinta-Ferreira for accepting to participate in the 

examining committee of this PhD. thesis, as well as Dr. A. Fortuny and Dr. J. Carrera 

who are the substitute members of the committee. 

 

I will forever be indebted to Dr. María Eugenia Suárez-Ojeda for all the time she has 

dedicated to this project. I have learned by watching her and she has given me all the 

necessary tools to grow as a scientist. 

 

My best wishes to María Eugenia, Carmelo, Luizildo, Esther, Xavier, Isabel, Ana, Rita 

and Santi who I met at University but with whom I share many other things apart from 

work. I would not have enjoyed producing this thesis nearly as much without you being 

around for the last five years. I am sure we will continue to share experiences, even 

though our paths will take us in different directions, sometimes more than a thousand 

kilometres apart. 

 

This research would not have been possible without the economic support provided to 

me by the Universitat Rovira i Virgili and Ministerio de Educación y Ciencia through the 

PhD grants I was awarded and also through the project REN2002/03565/TECNO from 

the Ministerio de Ciencia y Tecnología and project REMOVALS (FP6-018525) from the 
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Resum 
 

La creixent complexitat dels efluents residuals així com la manifesta oposició 

pública cap a determinades tècniques convencionals per a la gestió de residus, com és 

la incineració, ha accelerat el desenvolupament de tractaments econòmics i 

respectuosos amb el medi ambient. Hi ha pocs dubtes sobre que els processos de 

degradació biològica continuïn sent els més utilitzats pel tractament d’aigües residuals. 

Malgrat això, quan els processos biològics s’apliquen al tractament d’efluents 

industrials, no sempre arriben a nivells de depuració satisfactoris, ja que moltes 

substàncies orgàniques produïdes per les indústries químiques són inhibidores, 

tòxiques o resistents a l’oxidació biològica. L’Oxidació Humida Catalítica (CWAO, de 

l’anglès Catalytic Wet Air Oxidation) és una de les tecnologies més prometedores per 

al tractament d’aigües que continguin una alta càrrega orgànica o amb presència de 

contaminants biotòxics. A més a més, el procés CWAO ha demostrat recentment la 

seva eficàcia com a pretractament químic, produint efluents que poden ser tractats 

posteriorment mitjançant un sistema biològic. Una opció per suavitzar les condicions 

d’operació de la CWAO o per al tractament de contaminants resistents a aquest procés 

és afegir petites quantitats d’un oxidant més potent que l’aire, com ara el peròxid 

d’hidrogen. Aquest procés s’anomena Oxidació Humida Catalítica Promoguda amb 

Peròxid d’Hidrogen (PP-CWAO, de l’anglès Peroxide Promoted Catalytic Wet Air 

Oxidation). Per a l’estudi d’aquest procés recentment desenvolupat, l’activitat i 

l’estabilitat del carbó actiu (AC) s’han provat a la PP-CWAO de solucions aquoses de 

fenol. Aquest compost s’ha elegit com a model degut a que els residus fenòlics són 

uns dels contaminants més habituals als efluents de les indústries químiques, que a 

més es caracteritzen per una elevada toxicitat i una escassa biodegradabilitat. A 

aquesta tesi, les solucions fenòliques s’han tractat en un reactor de llit fix de goteig a 

condicions de pressió i temperatura mitjanes (<15 bar, <150 ºC), amb aire com a 

principal agent oxidant i peròxid d’hidrogen com a promotor de la oxidació. En primer 

lloc, s’ha estudiat l’efecte sinèrgic o promotor de l’H2O2 per a facilitar la reacció 

d’oxidació del fenol sobre AC. A continuació, el procés PP-CWAO s’ha aplicat al 

tractament d’altres compostos fenòlics a unes condicions d’operació seleccionades. 

Finalment, s’han preparat uns catalitzadors de ferro suportat sobre AC i s’han aplicat a 

la oxidació de fenol. Els resultats d’aquest estudi s’han avaluat en funció de la reducció 
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de la càrrega orgànica i l’augment de la biodegradabilitat de les solucions tractades. Es 

pot concloure que el procés PP-CWAO podria ser inclòs entre els pretractaments 

químics aplicables a aigües residuals tòxiques o concentrades, que, un cop optimitzat, 

produiria efluents innocus per un posterior tractament biològic. 
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Resumen 
 

La creciente complejidad de los efluentes residuales así como la oposición 

pública hacia algunas técnicas convencionales para la gestión de residuos, como es la 

incineración, está forzando el desarrollo de tratamientos de residuos económicos y 

respetuosos con el medio ambiente. Existen pocas dudas sobre que los procesos de 

degradación biológica sigan siendo los más extendidos para el tratamiento de aguas 

residuales. Sin embargo, cuando los procesos biológicos se aplican al tratamiento de 

efluentes industriales, no siempre dan lugar a resultados satisfactorios, ya que muchas 

substancias orgánicas producidas por las industrias químicas son inhibidoras, tóxicas 

o resistentes a la oxidación biológica. La Oxidación Húmeda Catalítica (CWAO, del 

inglés Catalytic Wet Air Oxidation) es una de las tecnologías más prometedoras para 

el tratamiento de aguas con alta carga orgánica y/o que contengan contaminantes 

biotóxicos. Además, el proceso CWAO recientemente ha demostrado ser efectivo 

como pretratamiento químico, dando lugar a efluentes que pudieran ser tratados con 

un posterior tratamiento biológico. Una opción para suavizar las condiciones de 

operación en la CWAO o para el tratamiento de contaminantes resistentes a este 

proceso es añadir pequeñas cantidades de un oxidante más potente que el aire, como 

es el peróxido de hidrógeno. Este proceso se ha denominado Oxidación Húmeda 

Catalítica Promovida con Peróxido de Hidrógeno (PP-CWAO, del inglés Peroxide 

Promoted Catalytic Wet Air Oxidation). Para el estudio de este recientemente 

desarrollado proceso, la actividad catalítica y la estabilidad del carbón activo (AC) se 

ha probado en la PP-CWAO de soluciones acuosas de fenol. Este compuesto se ha 

elegido como compuesto modelo ya que los residuos fenólicos son unos de los 

contaminantes más habituales en los efluentes de la industria química, además de que 

se caracterizan por una elevada toxicidad y una escasa biodegradabilidad. En la 

presente tesis, las soluciones fenólicas se han tratado en un reactor de lecho fijo de 

goteo a condiciones de presión y temperatura medias (<15 bar, <150 ºC), usando aire 

como principal agente oxidante y peróxido de hidrógeno como promotor de la 

oxidación. En primer lugar se ha estudiado el efecto sinérgico o promotor del H2O2 

para facilitar la reacción de oxidación del fenol sobre AC. A continuación, el proceso 

PP-CWAO se ha aplicado al tratamiento de otros compuestos fenólicos a unas 

condiciones de operación seleccionadas. Finalmente, se han preparado catalizadores 
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de hierro soportado sobre AC y se han aplicado a la oxidación de fenol. Los resultados 

de este estudio se han evaluado en términos de reducción de la carga orgánica de las 

soluciones tratadas, así como del aumento de su biodegradabilidad. Puede concluirse 

que el proceso PP-CWAO podría incluirse entre los pretratamientos químicos 

aplicables a aguas residuales tóxicas o concentradas, que, una vez optimizado, daría 

lugar a efluentes inocuos para un posterior tratamiento biológico. 
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Summary 
 

The increasing complexity of wastewater streams as well as the unfavourable 

public opinion about some conventional waste management techniques, e.g. 

incineration, is forcing the development of cost-competitive and environmentally 

acceptable waste treatments. There is little doubt that biological processes will 

continue to be employed as a baseline treatment processes for most wastewater. 

However, when biological processes are applied to treatment of industrial effluents, 

they do not always give satisfactory results, sine many organic substances produced 

by the chemical and related industries are inhibitory, toxic and/or resistant to biological 

oxidation. The Catalytic Wet Air Oxidation (CWAO) process is one of the most 

promising technologies for the remediation of concentrated and/or biotoxic water 

pollutants, when a stable and active catalyst can be provided. In addition, CWAO has 

recently proved to be effective as chemical pre-treatment that could give effluents 

suitable for a subsequent biological end treatment. An alternative to lower CWAO 

operation conditions or to treat some refractory compounds is to supply little amount of 

a stronger oxidant such as hydrogen peroxide in a process referred as to Peroxide 

Promoted Catalytic Wet Air Oxidation (PP-CWAO). To study the potentialities of this 

newly developed oxidation process, the catalytic activity and stability of activated 

carbon (AC) was tested in the PP-CWAO of phenolic aqueous solutions. Phenol was 

chosen as model compound because of phenolic wastes are one of the most prevalent 

forms of chemical pollutants, characterised by a high toxicity and a poor 

biodegradability. In this work, phenolic water was treated in a trickle bed reactor (TBR) 

at mild pressure and temperature conditions (<15 bar, <150 ºC), using air as main 

oxidant agent and hydrogen peroxide merely being a promoter. First, the synergistic or 

promoting ability of H2O2 to facilitate the oxidation reaction of phenol over AC was 

analysed. Secondly, some selected conditions were tested for the oxidation of other 

phenolic compounds such as o-cresol and p-nitrophenol. Finally, iron containing AC 

catalysts were prepared and applied to the oxidation of phenol. Results were evaluated 

in terms or organic load removal and biodegradability improvement. It can be 

concluded that this newly developed process could be included among chemical pre-

treatments for toxic and concentrated wastewater that, once optimised, could lead to 

innocuous effluents for a subsequent biological process. 
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1. Introduction 

1.1. Wastewater management 

Human ingenuity has produced well over fourteen million chemicals substances 

which have never before been part of the terrestrial environment and the rate of 

discovery is increasing every day as illustrated on Figure 1.1 [1]. Some of these newly 

synthesised compounds, such as substances containing heavy metals and persistent 

organic pollutants, have been known to be dangerous for many years already, while 

fears have been raised about many others recently. [2]. The world-wide chemicals 

industry produced 400 million tons of chemicals in 1995. Europe is the largest 

chemicals-producing region in the world, accounting for 38 % of the total; Western 

Europe alone accounts for 33 % [3]. Chemicals production and use provide 2 % of 

Europe’s gross domestic product (GDP) and 7 % of its employment. Chemicals 

production grew roughly in line with GDP until 1993 when it began to grow faster. 

Thus, the “chemicals intensity” (i.e. the volume of chemicals per unit of GDP) of 

Europe’s economy is now considerably higher than it was years ago [3].  

 

Figure 1.1. Rapid growth of chemical knowledge [1]. 
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The number of existing chemicals on the market is large, but the exact number 

is unknown. Over 100000 were registered in the European Inventory of Existing 

Commercial Chemical Substances in 1981, but the current estimate of marketed 

chemicals varies widely, from 20000 to as many as 70000 [3]. Several hundred new 

substances are marketed each year after some basic premarket toxicity testing and 

these are registered in the European List of Notified Chemical Substances, which 

presently contains about 2000 chemicals [3]. 

In addition to chemicals that are placed on the market, either as intermediates 

within a production process, or as part of final products, there is the unintentional 

formation of chemical by-products in many industrial processes, which can also impact 

on the environment. Clearly, solutions must be tailored to the properties and uses of 

each particular chemical and groups of chemicals, as well as to each country’s unique 

circumstances. But action must be taken quickly. Each year that passes without 

effective action will result in decades of additional, unintended exposure to chemicals 

that are likely to be harmful to human health and the environment. 

Water is a key resource for our quality of life. Access to clean water for drinking 

and sanitary purposes is a precondition for human health and well-being. Most people 

in Europe have access to drinking water of good quality. However, in some parts the 

quality still frequently does not meet basic biological and chemical standards.  

Almost all human activities can and do impact adversely upon the water. 

Discharges from wastewater treatment plants and industry cause pollution by oxygen 

consuming substances, nutrients and hazardous substances. The adverse impacts 

depend very strongly upon the degree to which (if at all) such discharges are treated 

before reaching waterways.  

In 2002, 90 % of the European Union’s (25 countries) population was 

connected to sewage networks [4]. However, some of this wastewater is discharged 

either without or with only limited treatment. Regional differences in sewage treatment 

exist. For example, in the central European and Nordic countries more than 90 % of 

the population is connected to wastewater treatment plants, while the percentage in 

southern Europe and new Member States varies between 50 to 80 %. Over the last 

twenty years, marked increases have occurred both in the proportion of the population 

connected to wastewater treatment as well as in wastewater treatment technology.  

Figure 1.2 illustrates the water stress in European countries by means of the 

Water Exploitation Index, which is the mean annual total abstraction of freshwater 

divided by the mean annual total renewable freshwater resources in each country [4]. 
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Figure 1.2. Water stress in Europe (2000) [4]. 

 

In Europe, on average about 21 % of the annually renewable freshwater 

resources are abstracted. In southern European countries, the pressure on water 

resources can be severe during summer when water abstraction to meet demands 

from the agricultural and tourist sectors is highest. Climate change and increasing 

water abstraction are expected to exert additional pressures on water resources, 

particularly in southern and Eastern Europe, and no differences on the map presented 

in Figure 1.2 are expected by year 2030 [4]. 

Therefore, in the world’s consumer-based economy, the sustainable 

wastewater management is a critical issue associated to this rapid industrial and 

scientific development. The environmental concern is nowadays expressed by more 

and more governmental regulations imposing lower pollutant discharges limits. So, for 

many industrial sectors, pollution prevention, waste minimisation and reuse are being 

increasingly integrated in their environmental policies. Thus, challenges faced by 

chemical and related industries, due to unprecedented market demands and public 

environmental concern, are to imagine efficient and cost-competitive remediation 

processes and minimisation strategies for water pollution problems [1]. 
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Wastewater typically can be divided in two categories: urban and industrial. In 

the urban residues, the main pollutant load is organic, mostly non toxic and 

biodegradable. Usually, this kind of wastewater is treated in conventional wastewater 

treatment plants (WWTP) based on biological oxidation. On the contrary, industrial 

effluents usually have a very complex and toxic composition, depending on the 

industry that generates them, which often requires more severe remediation 

treatments. Examples of toxic and therefore non biodegradable organic pollutants are 

phenols, surfactants, chlorinated compounds, pesticides, aryl and chlorinated 

alkysulfonates, polyethylene and aromatic hydrocarbons, among many others [5]. 

Despite the banned or severely restricted use of all those chemicals since the 

late 1970s, their continued presence in groundwater, soil, sediment, surface water, 

and living tissues emphasises the concern regarding their persistence in the 

environment. Organic pollutants tend to accumulate in the tissues of animals and 

plants, often becoming more concentrated as they move up through the food chain. 

Many times, the symptoms of contamination may not manifest themselves until several 

generations after initial contact with the chemical of concern [6]. 

The importance of phenolic effluents, a part from their potential toxicity, is 

outlined by the high quantities that are eventually rejected in the environment. In 

addition, phenol is considered to be an intermediate product in the oxidation pathway 

or higher-molecular-weight aromatic hydrocarbons. Thus, it is usually taken as a model 

compound for wastewater treatment studies, as it is for the present research work. 

Table 1.1 lists the amount of phenolic compounds released by some European 

countries in terms of direct emissions to water as well as the indirect emissions by 

transfer to an off-site wastewater treatment plant. It is noticeable that Spain releases 

the highest fraction of direct emissions (i.e. 44 %), which points out the deficiency of 

effective and cost-competitive wastewater processes in this country as well as the lack 

of severe environmental legislation on discharge limits for selected pollutants. 

There is no doubt that water pollution is a continuing and even growing problem 

that arises from human activities. No unique solution seems possible for destroying all 

kind of water pollutants due to the heterogeneous composition of real wastes as well 

as the diversity of new chemical compounds that are continuously being synthesised. 

Some waste treatments merely transfer the toxic component from one phase to 

another. While this may serve to concentrate the wastes in a more readily disposable 

form, it does not alter the chemistry of the pollutants. Other processes use chemical 

reactions to transform the wastes into less toxic by-products or harmless end products 

such as CO2 and water. It is clear that the selection of the correct process or the 

combination of treatments is a difficult task and should be generally made depending 
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on the treated wastewater characteristics (e.g. concentration of target pollutants, 

degree of refractoriness, flow rate) and the destination of the effluent (i.e. natural 

media or subsequent treatment plant). 

Table 1.1. European emissions of phenolic compounds to water (2004) [7]. 

Direct emissions Indirect emissions 
Country 

Total (t year-1) 
% of European 

emissions 
Total (t year-1) 

% of European 
emissions 

Latvia -- -- 0.208 0.01 
Slovenia -- -- 0.125 0.01 
Portugal 0.1138 0.02 3.15 0.14 
Finland 0.156 0.02 3.56 0.16 
Austria 0.47 0.09 340.13 15.63 

Denmark 0.4645 0.09 1.20 0.06 
Ireland 0.692 0.13 0.049 0.00 
Belgium 0.7162 0.14 2.28 0.10 

Czech Republic 0.9623 0.18 611.60 28.10 
Hungary 1.34 0.26 -- -- 
Greece 1.85 0.35 -- -- 

Netherlands 3.07 0.59 22.20 1.02 
Slovakia 3.13 0.60 108.00 4.96 
Sweden 7.82 1.50 -- -- 
Germany 13.45 2.58 841.97 38.68 

Italy 21.75 4.17 149.82 6.88 
France 35.54 6.82 10.13 0.47 
Poland 38.13 7.32 18.99 0.87 

United Kingdom 162.38 31.16 55.47 2.55 
Spain 229.06 43.96 7.82 0.36 

TOTAL 521.095 100.00 2176.702 100.00 
 

 

Oxidation processes aim at the mineralisation of the contaminants to carbon 

dioxide, water and inorganic compounds or, at least, at their transformation into 

harmless products. There are four types of oxidative processes to treat wastes 

polluted with organic matter [8]: 

 Biological treatment, which is not suitable for toxic waters or with a chemical 

oxygen demand (COD) >10 g L-1 and produces large amounts of sludge, although 

it is the most economical and extended process. 

 Wet oxidation, well suited for COD loads ranging from 10 to 100 g L-1 and able to 

treat toxic wastes, under high temperature and pressure [9]. 
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 Advanced chemical oxidation processes at mild temperature and pressure 

conditions and using strong oxidisers (like chlorine, ozone or hydrogen peroxide), 

which are well suited to treat low concentrations of highly toxic or biological 

refractory organic pollutants.  

 Incineration, which is appropriate for effluents having COD >100 g L-1, although 

with high energetic costs, and being not environmental friendly due to the 

dissemination of dust to the atmosphere and related problems as the production of 

dioxins [9]. 

 

Figure 1.3 shows a technology map classifying several technologies available 

depending on their applicability depending on total organic carbon (TOC) 

concentration and effluent flow rate. The map outlines the areas where technologies 

are most effective, although boundaries should be only used as a guide [11]. As it can 

be seen in the map, biological treatment is the most versatile technique. Due in part to 

its cost effectiveness and versatility in handling a wide variety or organic pollutants, the 

attention traditionally received by biological oxidation processes far exceeds that of the 

other remediation processes. However, the presence of toxic chemicals in the waste 

streams makes difficult a biological treatment with a non-acclimatised culture. Then, 

when biological treatment is unfeasible, Wet Oxidation and Advanced Oxidation 

Processes (AOP) lead normally to the best yields in pollutant destruction [9,10]. 

 

 

Figure 1.3.Technology map for the selection of suitable wastewater treatments [11].  
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1.2. Wet Oxidation 

Wet oxidation, also known as hydrothermal treatment, refers to the process of 

oxidising materials suspended or dissolved in liquid water with dissolved oxygen at 

elevated temperature. The wet oxidation technology has been successfully 

commercialised for 50 years. Over 200 full scale wet oxidation systems have been 

constructed and operated for a variety of applications ranging from elimination of 

hazardous wastes to the production of vanilla flavouring agent [12]. 

1.2.1. Wet Air Oxidation and Catalytic Wet Air Oxidation 

The Wet Air Oxidation (WAO) process was originally developed by F.J. 

Zimmermann and its first industrial applications appeared in the late 1950s [13]. 

According to this method, the dissolved or suspended organic matter is oxidised in the 

liquid phase by some gaseous source of oxygen, which may be either pure oxygen or 

air. Typical operating conditions are in the range of 100-300 ºC and 0.5-20 MPa [9]. At 

high temperatures in aqueous solutions, the form in which oxygen participate in the 

chemical reaction is complex. The elevated temperatures necessary can lead to the 

formation of oxygen radicals, O·, which in turn can react with water and oxygen to form 

peroxide, H2O2, ozone, O3, so that these four species (i.e. O2, O·, H2O2, O3) are all 

capable of participating in the organic compounds oxidation [14]. 

WAO is one of the few processes that do not turn pollution from one form to 

another, really makes it disappear. This process can achieve easily 90 to 95 % 

conversion [15], which usually is not enough to meet effluent discharge regulations 

despite biodegradability had been improved. Therefore, most WAO units are followed 

by a biological treatment step. Acetic and propionic acids appear to be the refractory to 

WAO. However, by increasing the temperature up to 310 ºC, all the compounds, 

including the previously mentioned acids, can be oxidised to over 90 %. Besides, 

organic nitrogen compounds are easily transformed into ammonia, which is also very 

stable in WAO conditions [16]. This in an attractive treatment for waste streams which 

are too diluted to incinerate and too concentrated for biological treatment. The main 

differences between the distinct industrial applications consist in the reaction type used 

and the incorporation, or not, of a catalyst. 

A generalised kinetic model based on a simplified reaction scheme with acetic 

acid as the rate-limiting intermediate has been proposed by Li et al. (1991) [17], as 

presented in Figure 1.4. It is usually used to represent the kinetic data of WAO 

reaction with reasonably good fits [18]. Also it has been the starting point for more 
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complex models accounting for other refractory reaction intermediates different from 

acetic acid [19]. 
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Figure 1.4. Simplified kinetic model for Wet Air Oxidation [17]. 

 

The challenging operating conditions of WAO provided a strong driving force to 

investigate catalysts which could allow substantial gains on temperature, pressure and 

residence time. Another major benefit of using catalysts in the WAO, the so called 

Catalytic Wet Air Oxidation (CWAO) process, is the possibility to oxidise refractory 

compounds, namely acetic acid and ammonia, at much lower temperatures than in the 

absence of catalyst. Compared to conventional WAO, CWAO offers lower energy 

requirement and much higher oxidation efficiencies. Commercial CWAO processes 

rely either on supported precious metal and/or base metal oxide catalysts or on 

homogeneous catalysts such as Fe or Cu. Although increasing the catalyst 

concentration can markedly increase the oxidation rate, an overloading of the catalyst 

would result in separation problems reducing the interest of such catalytic technique 

[20]. 

Up to date, the main drawback of CWAO, preventing it from a broad industrial 

application, consists in the catalyst deactivation, which occurs mainly due to active 

phase leaching or formation of carbonaceous deposits during the oxidation process. 

The most prominent catalysts affected by leaching of the active phase are mixed oxide 

catalysts [21]. Nevertheless, catalysts based on cerium oxide have recently shown a 

promising behaviour for the CWAO process of refractory compounds [22]. On the other 

hand, the carbonaceous deposits are related both to the nature of the organic pollutant 

and the reactor type used. The enhanced formation of such species has been 

confirmed by several authors in slurry reactors [23] with a characteristic high liquid to 

catalyst ratio that promotes the homogeneous polymerisation reactions. Comparative 

studies for different types of reaction systems have shown that the extent of these 

                   k1 

Organic compounds + O2                CO2 

 

             k2                                                         k3 

 

            CH3COOH + O2 
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parallel side reactions in the liquid phase is significantly reduced in Trickle Bed 

Reactors (TBR) [24,25]. In addition, the large experience on the operation of TBRs in 

industrial hydrotreatment processes as well as the possibility to operate in different 

flow regimes (i.e. cocurrent downflow or upflow and countercurrent) makes them the 

first choice for the performance of CWAO reactions [26]. 

The pathways and mechanism of CWAO reactions have been studied in detail 

only for pure compounds. In the case of phenol, the existing reaction schemes 

available in the literature are generally based on the pioneer work of Devlin and Harris 

(1984) [14]. These authors in a study of the non-catalytic WAO of phenol carried out a 

deep analysis both to identify the most important intermediate products and to propose 

the reaction pathway as illustrated in Figure 1.5. More recent studies on the catalytic 

phenol oxidation showed similar intermediates in the presence of solid catalysts 

[27,28].  

 

1.2.2. Wet Peroxide Oxidation and Catalytic Wet Peroxide Oxidation 

As opposed to WAO, which uses a gaseous oxidising agent (molecular oxygen) 

and within a two step process (transfer plus oxidation), Wet Peroxide Oxidation (WPO) 

uses a liquid oxidising agent (hydrogen peroxide) which eliminates mass transfer 

problems. This process is adapted from Fenton’s reaction but operates at a 

temperature of about 100-140 ºC, so higher TOC removal efficiency can be obtained 

(usually >25 % than with classical Fenton process). Unlike WAO, which is capital 

intensive, WPO needs limited capital but generates higher operating costs. The 

oxidation mechanism is the same as for Fenton’s reaction, both based in the hydroxyl 

radical [8]. 

The main problem of WPO is the inefficient use of H2O2. Obviously, the best 

results are obtained when all the radicals are trapped by the organic species. This can 

be favoured by step by step addition of H2O2 throughout the run in both batch and 

continuous reactor [8]. If hydrogen peroxide is efficiently used, the stoichiometric 

amount quantity can be sufficient to obtain nearly complete removal of pollutants [29].  

In order to obtain higher pollutant removal using milder conditions, the 

development of the Catalytic Wet Peroxide Oxidation (CWPO) processes has received 

considerable interest. The comparison of homogeneous and heterogeneous CWPO 

processes is presented by Centi et al. (2000) [30]. Unlike homogeneous systems, 

heterogeneous systems can be recuperated by means of a simple separation 

operation  
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Figure 1.5. Proposed reaction pathway for phenol oxidation by molecular oxygen [14]. 
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operation and reused in the next run. Besides, heterogeneous catalysts have a higher 

reactivity and a reduced dependence on the pH of the solution. A review of the kinetics 

and mechanisms of the H2O2 decomposition by complexes of Cu(I), Cu(II), Fe(II), 

Fe(III), Mn(II), Mn(III), Ru(III), Ru(IV), V(V) and Ti(IV) has been recently published [31] 

and some specific soluble transition metal salts have shown to enhance the overall 

performance of WAO processes in presence of hydrogen peroxide [32-33]. Recently, 

novel materials such as iron containing zeolitic materials [34] or SBA-15 based 

nanocomposites [35] have shown a great potential for the CWPO of phenolic aqueous 

solutions. However, the main drawback of solid catalyst is its higher rate of hydrogen 

peroxide decomposition to water and oxygen.  

 

1.3. Advanced Oxidation Processes  

Advanced oxidation processes are alternatives to the incineration of wastes, 

which has many disadvantages. Conventional incineration is commonly thought to be 

a feasible alternative to landfill, but as presently practised, incineration may bring 

about serious problems due to releasing toxic compounds such as polychlorinated 

debenzodioxins and polychlorinated dibenzofurans into the environment via the 

incinerator off-gas emissions and/or fly ash [36]. 

The AOPs have proceeded along one of the two routes: 

 oxidation with O2 in temperature ranges intermediate between ambient conditions 

and those found in incinerators and WAO processes in the region of 1-20 MPa and 

200-300 ºC; and 

 the use of high energy oxidants such as ozone and H2O2 and/or photons that are 

able to generate highly reactive intermediates (·OH radicals) [36]. 

 

In 1987, Glaze et al. [37] defined AOPs as “near ambient temperature and 

pressure water treatment processes which involve the generation of hydroxyl radicals 

in sufficient quantity to effect water purification”. The hydroxyl radical (·OH) is a 

powerful non-selective chemical oxidant (as illustrated by Table 1.2), which acts very 

rapidly with most organic compounds (as illustrated by Table 1.3). The reaction rate 

constants of molecular ozone with different organic compounds are also given in Table 

1.3. These reaction constants vary in quite a wide range from 0.01 to 104 M-1 s-1. Once 

generated, the hydroxyl radicals aggressively attack virtually all organic compounds. 

Depending upon the nature of the organic species, two types of initial attack are 

possible: the hydroxyl radical can abstract a hydrogen atom from water, as with 
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alkanes or alcohols, or it can add itself to the contaminant, as in the case of olefins or 

aromatic compounds [36]. 

Table 1.2. Relative oxidation power of some oxidising species [36].  

Oxidising species Relative oxidation power 
Chlorine 1.00 

Hypochlorus acid 1.10 
Permanganate 1.24 

Hydrogen peroxide 1.31 
Ozone 1.52 

Atomic oxygen 1.78 
Hydroxyl radical 2.05 

Positively charged hole on TiO2
+ 2.35 

 

Table 1.3. Reaction rate constants (k, M-1 s-1) of ozone vs. hydroxyl radical [36]. 

Compound O3 ·OH 
Chlorinated alkenes 103-104 109-1011 

Phenols 103 109-1010 
N-Containing organics 10-102 108-1010 

Aromatics 1-102 188-1010 
Ketones 1 109-1010 
Alcohols 10-2-1 108-109 

 

A common reaction is the abstraction of hydrogen atom to initiate a radical 

chain oxidation can be summarised by Equations 1.1 to 1.5, as follows: 

 

RH + ·OH → H2O + ·R     Eq. 1.1 

2 ·OH → H2O2       Eq. 1.2 

·R + H2O2 → ROH + ·OH     Eq. 1.3 

·R + O2 → ROO·      Eq. 1.4 

ROO· + RH → ROOH + ·R     Eq. 1.5 

 

The attack by the ·OH radical, in the presence of oxygen, initiates a complex 

cascade of oxidative reactions leading to mineralization of the organic compound. The 

exact routes of these reactions are still not quite clear. For example, chlorinated 

organic compounds are oxidised first to intermediates, such as aldehydes and 

carboxylic acids, and finally to CO2, H2O and the chloride ion. Nitrogen in organic 
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compounds is usually oxidised to nitrate or to free N2, sulphur is oxidised to sulphate 

[36]. 

As a rule or thumb, the rate of destruction of a contaminant is approximately 

proportional to the rate constant for the contaminant with ·OH radical. From Table 1.3 it 

can be seen that chlorinated alkenes are treated most efficiently because the double 

bond is very susceptible to hydroxyl attack. Saturated molecules (i.e., alkenes) react at 

a much slower rate and, therefore, are more difficult to oxidise. 

Glaze et al. (1991) [38] conducted a bench scale study of the oxidation of 

concentrated nitrobenzene solutions using different AOPs: ozone at elevated pH, 

O3/H2O2, H2O2/UV and O3/UV. This study showed the existence of severe limitations of 

the application of typical AOPs for the treatment of concentrated wastewaters. In 

contrast to the oxidation of some micro-pollutants in fairly pure water (groundwater, 

process water of semiconductors, etc.), the treatment of organic compounds in water 

at relatively high concentrations (>1000 mg C L-1) in complex matrices is energy and 

oxidant consuming. Therefore, taking into account that the efficiency of AOPs is 

compound specific, the final choice of the AOP system can be made only after 

preliminary laboratory tests.  

Table 1.4 list a classification on AOP depending on whether UV light was used 

for the generation of radicals or not. The radical generation stage is the main 

difference among the following AOPs, since the substrate attack occurs similarly in all 

cases. 

Table 1.4. Classification of AOP [36]. 

Non-photochemical processes Photochemical processes 
Ozonation 

Ozonation + Hydrogen peroxide (O3/H2O2) 
Fenton systems (Fe2+/ H2O2) 

Electrochemical oxidation 
Radiolysis and electron-beam treatments 

Non-thermal plasma 
Ultrasounds 

Ozonation + UV light (O3/UV) 
Hydrogen peroxide + UV light (H2O2/UV) 

O3/H2O2/UV 
Photo-Fenton (Fe2+/ H2O2/UV) 

Photocatalytic oxidation (UV/TiO2) 

 

1.3.1. Hydrogen peroxide 

Hydrogen peroxide is a clear, colourless liquid which is completely miscible 

with water. Some physical constants of the main commercially available grades are 

recorded in Table 1.5 [39]. 
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Table 1.5. Physical properties of commercial H2O2 solutions [39]. 

H2O2 strength (wt%) 
Property 

35 50 70 
Density at 20 ºC (g cm-3) 1.1312 1.1953 1.2886 

Viscosity at 20 ºC (mPa s) 1.11 1.17 1.23 
Freezing point (ºC) -33 -52.2 -40.3 
Boiling point (ºC) 107.9 113.8 125.5 

 

The decomposition of hydrogen peroxide (Equation 1.6) is extremely important 

in handling and storing because the generation of gas and heat (-98.3 kJ mol-1) may 

cause safety problems. The rate of decomposition increases with temperature and 

decomposition can be further accelerated by the presence of impurities, e.g. metal 

ions or metal oxides, or by increasing pH [39]. 

 

2 H2O2 → 2 H2O + O2     Eq. 1.6 

 

H2O2 is a strong oxidant (standard potential 1.80 and 0.78 V at pH 0 and 14, 

respectively) and its application in the treatment of various inorganic and organic 

pollutants is well established. Numerous applications of H2O2 are known in the removal 

of pollutants from wastewater, such as suphites, hypochlorites, nitrites, organic 

compounds and chlorine [40]. Oxidation by H2O2 alone is not effective for high 

concentrations of certain refractory contaminants, such as highly chlorinated aromatic 

compounds and inorganic compounds (e.g. cyanides), because of low rates of reaction 

at reasonable H2O2 concentrations. Transition metal salts (e.g. iron salts), ozone and 

UV-light can activate H2O2 to form hydroxyl radicals which are strong oxidants, as 

previously mentioned. 

A great advantage or H2O2 compared to other common low cost oxidants 

comes from the active oxygen content, as reported in Table 1.6. This active oxygen 

content is calculated as the ratio between the weight of oxygen that can be transferred 

to a suitable substance and the molecular weight of the oxidant [39]. As can be seen, 

H2O2 largely exceeds all the other oxidants, with the exception of ozone which has 

important drawbacks such as the costly equipment required for its generation as well 

as its potential noxious effects. Then, from Table 1.6 it can be extracted that the price 

per kilo of H2O2 corresponds to 470 g of active oxygen, while in the case of e.g. NaBrO 

it drops down to 134 g.  
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Table 1.6. Active oxygen content of some common oxidants [39]. 

Donor % Active oxygen Product 
H2O2 47.0a H2O 
O3 33.3 O2 

t-BuOOH 17.8 t-BuOH 
NaClO 21.6 NaCl 
NaBrO 13.4 NaBr 
HNO3 25.4 NOx 

KHSO5 10.5 KHSO4 
NaIO4 7.2b NaIO3 
PhIO 7.3 PhI 

a calculated on 100% H2O2  
b assuming only one oxygen atom is utilised  

 

Industrially, hydrogen peroxide is used mainly as a non-selective oxidant, i.e. 

for paper, textile and cellulose bleaching, water purification and, particularly in Europe, 

in the manufacture of perborate and percarbonate used in detergents [39]. 

Hydrogen peroxide can be activated in the presence of transition metals with 

the general aim of increase its reactivity by converting H2O2 into a different, more 

active species. This is accomplished by three general methods [39]: 

 By reacting H2O2 with metals capable to generate metal peroxy or hydroperoxy 

species, where the peroxo bond remains intact, resulting in an increase of either 

the electrophilic or the nucleophilic character of the peroxygens with respect to the 

initial oxidant. 

 By using H2O2 as a monoxygen donor to produce highly reactive metal-oxo 

species, which is a typical behaviour of biomimetric systems based for example on 

Fe(II), Ru(II) and Mn(II).  

 Through a radical decomposition of H2O2 with one-electron redox couple like 

Fe(II)/Fe(III) or Ti(III)/Ti(IV). These are the basis for the well known Fenton and 

Udenfriend systems, respectively, and a way for generating the highly reactive HO· 
radical. Although these systems are not very selective they do have some 

interesting applications such as in the wastewater treatment field. 

 

1.3.2. Fenton process 

Fenton’s reagent was discovered more than 100 years ago, but its application 

as an oxidising process for destroying toxic organics was not applied until the late 

1960s [41]. Fenton reaction wastewater treatment processes are known to be very 

effective in the removal of many hazardous organic pollutants from water. The main 
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advantage is the complete destruction of contaminants to harmless compounds, e.g. 

CO2, water and inorganic salts. 

Fenton’s reagent is a mixture of H2O2 and ferrous iron. The ferrous iron initiates 

and catalyses the decomposition of H2O2, resulting in the generation of highly reactive 

hydroxyl radicals [42,43,44]. The generation of the radicals involves a complex 

reaction sequence in an aqueous solution [40]: 

 

Fe2+ + H2O2 → Fe3+ + OH· + OH-  k1.7 ≈ 70 M-1 s-1          (chain initiation)          Eq. 1.7 

OH· + Fe2+ + → OH- + Fe3+   k1.8 = 3.2·108 M-1 s-1  (chain termination)      Eq. 1.8 

 

Moreover, the newly formed ferric ions may catalyse hydrogen peroxide, 

causing it to be decomposed into water and oxygen (this reaction is referred to as a 

Fenton–like reaction). Ferrous ions and radicals are also formed in the reactions. The 

reactions are as shown in Equations 1.9-1.13. 

 

Fe3+ + H2O2 ↔ Fe-OOH2+ + H+  k1.9 = 0.001-0.01 M-1 s-1                       Eq. 1.9 

Fe-OOH2+ → HO2· + Fe2+         Eq. 1.10 

Fe2+ + HO2· → Fe3+ + HO2
-    k1.11 = 1.3·106 M-1 s-1    Eq. 1.11 

Fe3+ + HO2· → Fe2+ + O2
 + H+  k1.12 = 1.2·106 M-1 s-1   Eq. 1.12 

OH· + H2O2 → H2O + HO2·   k1.13 = 3.3·107 M-1 s-1    Eq. 1.13 

 

As seen in Equation 1.13, H2O2 can act as an OH· scavenger as well as an 

initiator (Equation 1.7). Since k1.13 = 3.3·107 M-1 s-1 while k1.18 = 3.2·108 M-1 s-1, Equation 

1.13 can be made unimportant by maintaining a high ratio of organics to H2O2.  

 Hydroxyl radicals can add to the aromatic or heterocyclic rings (as well as to 

the unsaturated bonds of alkenes or alkynes) [40], as illustrated by Equation 1.14. 

 

 

Eq. 1.14 

 

 

Hydroxyl radicals can also oxidise organics by abstraction of protons producing 

organic radicals (R·), which are highly reactive and can be further oxidised [40]: 

 

RH + OH· → H2O + R· → further oxidation      (chain propagation)          Eq. 1.15 
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The organic free radicals produced in Equation 1.15 may then be oxidised by 

Fe3+, reduced by Fe2+ or dimerised according to the following reactions [40]: 

 

R· + Fe3+-oxidation → R+ + Fe2+       Eq. 1.16 

R· + Fe2+-reduction → R+ + Fe3+       Eq. 1.17 

2R·-dimerisation → R – R        Eq. 1.18 

 

The sequence of Equations 1.7, 1.8, 1.15 and 1.16 constitute the present 

accepted scheme for the Fenton’s reagent chain. Reaction rates with Fenton’s reagent 

are generally limited by the rate of ·OH generation (i.e. concentration of iron catalyst) 

and less so by the specific wastewater being treated.  

Fenton oxidation process has been successfully applied to wastewater, sludge 

or contaminated soil, with the effects being: organic pollutant destruction, toxicity 

reduction, biodegradability improvement, colour and odour removal [45]. Nevertheless, 

it should be noted that Fenton’s chemistry is not a universal solution as there are many 

chemicals which are refractory towards Fenton’s reagent such as acetic acid, acetone, 

carbon tetrachloride, methylene chloride, n-paraffins, maleic acid, malonic acid, oxalic 

acid, trichloroethane, etc. Moreover, it may happen that a certain compound in the 

waste stream is oxidised to some of the above-mentioned compound, which still acts 

as a pollutant and may not be allowed to be discharged, e.g. iso-propanol may be 

oxidised to acetone [46]. 

 

1.4. Activated Carbon 

Carbon as a solid covers all natural and synthetic substances consisting mainly 

of atoms of the element carbon, such as single crystals or diamond and graphite, as 

well as the full variety of carbon and graphite materials [53]. Because of the increasing 

interdisciplinary importance of this group of materials in science and technology, the 

International Union of Pure and Applied Chemistry (IUPAC) took responsibility and 

recommended some terminology of “carbon as a solid” to facilitate consistency within 

the scientific nomenclature. The resulting definition for activated carbon is: a porous 

carbon material, a char, which has been subjected to reaction with gases, sometimes 

with the addition of chemicals, e.g. ZnCl2, before during or after carbonisation in order 

to increase its adsorptive properties [47].  

Any cheap material with a high carbon content, low in inorganics, can be used 

as a raw material for the production of activated carbon (AC). In early production 
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procedures, preference was given to fossil materials such as wood, peat and wastes 

from vegetable origin, which included fruit stones and nutshells [48]. The current trend, 

however, is toward waste valorisation using different materials such as waste lignin 

[49] and sludge from biological treatment facilities [50].  

The adsorbent properties of AC are essentially attributed to their large surface 

area, a high degree of surface reactivity and favourable pore sizes. The commercially 

available AC have a specific surface area of the order of 800-1500 m2 g-1 [48]. This 

surface area is contained predominantly within micropores, which have effective 

diameters smaller than 2 nm, but also within mesopores with diameters between 2 and 

50 nm and macropores, having diameters greater than 50 nm, according to the 

Dubinin classification officially accepted by the IUPAC [51]. The macropores do not 

contribute much to the surface area but facilitates the access to micropores and 

mesopores, where most of the adsorption takes place. This classification is not entirely 

arbitrary, as it takes into account differences in the behaviour of molecules adsorbed in 

micropores and in mesopores. It appears that from pore widths exceeding 1.5 to 2.0 

nm, the adsorbate condenses in a liquid-like state and a meniscus is formed. As a 

consequence, a hysteresis loop appears on desorption and its interpretation can lead 

to the distribution of the mesopores in the solid [48]. The limit between mesopores and 

macropores at 50 nm is more artificial and it corresponds to the practical limit of the 

method for the pore size determination based on the analysis of the hysteresis loop. 

At the present time, the average structure of AC can be imagined as stacks of 

flat aromatic sheets cross-linked in a random manner, as shown in Figure 1.6 [54] and 

in agreement with Transmission Electron Microscopy direct observations. 

 

Figure 1.6. Schematic representation of the structure of AC [54].  
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Besides the physical structure, AC has also a chemical structure that strongly 

influences the adsorption capacity. AC is associated with appreciable amounts of 

heteroatoms such as oxygen and hydrogen, but may also contain atoms of chlorine, 

nitrogen and sulphur, derived from the raw material or the activation process for the 

production of the carbon. These heteroatoms are chemically bonded at the edges of 

the aromatic sheets and form surface compounds or heterocyclic ring systems if they 

are incorporated within the carbon layers. Some of the surface oxygen groups found 

on AC are schematically represented on Figure 1.7 [53]. 

 

Figure 1.7. Examples of postulated oxygen functional groups existing on carbon surfaces [53]. 

 

Carbons have an acid-base character, developed as a result of surface 

oxidation depending on the history of its formation and the temperature at which it was 

oxidised. The surface oxygen structures are generally quite stable even under vacuum 

at temperatures below their formation temperature. However, when they are heated at 

higher temperatures they decompose to produce CO2 and H2O at lower temperatures 

and CO and H2 at higher temperatures [48].  

Boehm [52] differentiated the acidic group present on oxidised charcoals and 

carbon blacks by selective neutralisation techniques using bases of different strengths. 

In this method the carbon sample was agitated for at least 16 hours with 0.05 N 

solutions of NaHCO3, Na2CO3, NaOH and C2H5ONa (sodium ethoxide). The strongly 

acidic groups neutralised by NaHCO3 were postulated as carboxyl groups, whereas 

those neutralised by Na2CO3 but not by NaHCO3 were believed to be lactones. The 

weakly acid groups neutralised by NaOH but no by Na2CO3 were postulated as 

phenols. The reaction with C2H5ONa was not considered a true neutralisation reaction 

since it did not involve exchange of H+ by Na+ ions. The groups reacting with C2H5ONa 
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but not with NaOH were suggested to be carbonyls. The nature of the basic groups is 

less known an although structures of ether, chromene or pyrone type (see Figure 1.7) 

have been proposed, and which would be neutralised by HCl in the Boehm’s 

neutralisation method, their structure is still under discussion [53].   

Activated carbon is the most versatile adsorbent because of its large surface 

area, polymodal porous structure, high adsorption capacity and variable surface 

chemical composition. As a consequence, there are numerous applications in many 

different fields either in gas-phase or liquid phase. Liquid-phase applications require 

AC with larger pore size than gas-phase uses, because of the need for rapid diffusion 

of the liquid to the interior of the carbon particles and because of the large size of 

many dissolved molecules to be retained. Classically, the two main applications in 

liquid-phase have been water purification and sugar and sweeteners decolourisation 

[53]. 

There are three applications for AC in the treatment of wastewater. AC can be 

used as an adsorbent after primary and secondary biological processes, as an 

independent physico-chemical AC treatment of it can be added to biological aeration 

tanks and used as part of the secondary biological treatment. The choice of an 

appropriate treatment depends on the nature and contaminant loading of the 

wastewater, the scale of operation, specific requirements for effluent purity and the 

cost of carbon regeneration compared with alternative available treatments. 

Growing concern over the treatment of industrial wastewater provides good 

opportunities for AC due to its ability to adsorb a wide variety of pollutants, including 

aromatic compounds, hydrocarbons, detergents, soluble dyes, chlorinated solvents, 

phenols and hydroxyl derivatives [53].  

Removal of phenolic compounds by adsorption on AC has been extensively 

reviewed [48] and it has been found to be function of the surface area as well as the 

oxygen-containing surface structures. While the presence of an acidic group 

decreases adsorption of phenols, the presence of carbonyl oxygen enhances the 

adsorption. The choice of the carbon for the removal of phenols from aqueous 

solutions should favour AC having large surface areas but low acidic oxygen content, 

such as carbon prepared at high temperatures. 

A part form their properties as adsorbents, carbon materials are well 

established, commercially available catalysts supports. Activated carbon is essential 

as support material for precious metal catalysts, which are widely used in the synthesis 

of high-value-added chemical products [53]. The fundamental properties that confer 

unique virtues to carbon as support are [54]: 
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 the possibility of tailor the physical surface properties of the support (i.e., pore size 

distribution and surface area); 

 the possibility to modify, over a very wide range, the chemical surface properties of 

the support; and 

 the possibility to modify the nature of the (generally week) metal/support 

interaction. 

 

Nevertheless, few large-volume catalytic processes currently use carbon-

supported catalyst, despite the steady research in some promising areas such as 

glyphosate synthesis (a very efficient herbicide sold under the name of Roundup®) or 

the oxidation of cyclic ketone to dicarboxylic acids [55]. This situation is in part due to 

the lack of reliability that carbon enjoys as a support, both in industry and academia 

[53]. Since most manufacturers use a small fraction of their products for catalyst 

support applications, both the quality control methods and the batch-to-batch 

reproducibility of the product leave much to be desired. This leads to the undesirable 

situation in which under very similar reaction conditions, widely differing catalyst 

performance is achieved not only when different carbon supports are used, but also 

when one uses supports that are thought to be identical. Therefore, as already stated 

by Marsh et al. [53], the future growth of this industry depends on a better 

understanding and control of the chemistry of the carbon surface, which can then be 

exploited in the design of truly unique catalysts.  

 

1.4.1. AC as catalyst in the CWAO process 

As previously commented, AC has been most commonly used as adsorbent 

and catalyst support. Only in the last 10 years, AC without any additional active phase 

has shown to posses a long term catalytic activity in the oxidation of phenol [56,57], 

that could even surpass that of a conventional copper catalyst as shown in Figure 1.8. 

More recently AC has shown to be active for the oxidation of o-cresol, o-chlorophenol 

and aniline, while nitrophenol, sulpholane and nitrobenzene are extremely refractory to 

the CWAO process at the conditions tested by Suárez-Ojeda (2006) [58] (i.e. 140-       

160 ºC and 2-9 bar of PO2 in a trickle bed reactor). Parallel studies performed by 

Santos et al. (2006) [59] reach almost total phenol, o-cresol, p-cresol, o-nitrophenol 

and p-nitrophenol using AC but at more severe operation conditions (i.e. 160 ºC,        

16 bar of PO2 in a fixed-bed reactor). 
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Figure 1.8. Comparison of phenol conversion profiles at 140 ºC and 4.7 MPa using AC in 

nitrogen ( ) or air ( ) and Cu0803 in air ( ) [56]. 

 

Fortuny et al. (1998) [56] compared phenol conversion when using AC and a 

commercial copper catalyst (Cu0803) and both catalysts shown a continuous drop in 

phenol conversion for a 10 days run. For the case of Cu0803, the loss of activity was 

found to be due to leaching of the copper phase. On the other hand, the loss of AC 

efficiency could be attributed to its consumption during the experiment, since carbon 

and phenol oxidation are competitive reactions. 

The key issue for the development and application of any CWAO process is the 

stability and deactivation of catalyst used under the given conditions. During phenol 

CWAO carbon textural and surface properties are likely to undergo modifications. On 

one hand the deposition of carbonaceous material on the carbon surface can 

physically block the pores giving rise to undesired catalyst fouling. On the other hand 

the soft attack of oxygen, if not leading to important burn-off, may continuously 

produce new surface oxide groups altering the original catalytic activity of the carbon 

[60]. 

The underlying mechanisms that are responsible for the catalytic activity of AC 

in CWAO are far from being well understood. To bring some light in this open aspect, a 

wide recompilation on carbon materials and CWAO of organic pollutants in wastewater 

has been carried out by Stüber et al. (2005) [60]. This review points out that special 

efforts have been made to assess the catalytic activity, stability and reactor 

performance rather than to elucidate the role of textural properties and surface groups 
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in the oxidation reaction over AC. Nevertheless, it is now recognised that the carbon 

surface chemistry plays a key role on the origin of its activity. However, surface area 

and pore size distribution mainly control the access of reactants to the active sites of 

AC, thus being also of equal importance. Moreover, the last review prognostics an 

increasing catalytic use of AC for a wide range of commercial processes and a 

potential application in fine chemicals, fuel cells and environmental friendly 

technologies. 

 

1.5. Combined processes 

In general, a chemical oxidation method aiming at complete mineralization 

might become extremely cost-intensive since the highly oxidized end-products that are 

formed during chemical oxidation tend to be refractory to total oxidation by chemical 

means. A potentially attractive alternative to complete oxidation through chemical 

means is the use of a chemical oxidation pre-treatment step to convert initially 

biorecalcitrant organics to more readily biodegradable intermediates, followed by 

biological oxidation of these intermediates to biogas, biomass and water [61].  

As illustrated by Figure 1.9, coupling chemical pre-oxidation and biological 

post-treatment is conceptually beneficial as it can lead to increased overall treatment 

efficiencies compared to the efficiency of each individual step [61,62]. It can be 

observed that, based on the molecular size of the pollutant, there is a breakpoint 

beyond which biological treatment is more attractive than chemical oxidation in terms 

of rate of C-C bond scission. This behaviour is though to be due to the increased 

difficulties of chemical oxidation processes (i.e. reduction of rate of C-C bon scission) 

with decreasing molecular size. 

 

Figure 1.9. The concept of integrated chemical and biological treatment [61]. 
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Following this emerging concept, studies integrating WAO with biotreatment 

were done by Mantzavinos et al. (1999) [63], by Otal et al. (1997) [64] and by 

Patterson et al. (2002) [65]. These authors concluded that the overall reactor space 

time required during the integrated treatment is almost an order of magnitude less than 

that for a direct biological treatment of polyethylene glycol, p-coumaric acid and a 

mixture of linear alkylbenzene sulfonates, thus making the integrated process an 

attractive option. Besides, Donlangic and Levec (1998) [66] reported that CWAO yields 

products more biodegradable than WAO as a pre-treatment step. Finally, Suárez-

Ojeda (2006) [58] has recently found that effluents from CWAO, using AC as catalyst 

for the oxidation of high strength o-cresol solutions, could be successfully combined 

with a conventional WWTP using non-acclimatised activated sludge in a pilot scale 

study. Thus, even in the case of non-toxic pollutants, process integration could be an 

advantageous option.  

 

1.5.1. Biodegradability measurement 

If an effluent from a chemical treatment is sent to a biological oxidation 

process, the characterisation of the effluent’s biodegradability would be a key point to 

protect the biological system and assure the viability of such process combination. 

Some of the biodegradability determination tests that can applied to assess 

wastewater toxicity are: the Biochemical methane potential test, Biological Oxygen 

Demand (BOD) test and comparisons based on the BOD/COD ratio, 

Nitrification/denitrification inhibition, Respirometry, Ademosine triphospahate 

luminescence, Enzyme inhibition, the Vibrio fishceri bioassay (Microtox®) and 

Molecular based sensors [67,68]. However, the literature indicates that 

bioluminescence and respirometry based methods received much attention in recent 

research. 

The drawbacks of using BOD for assessing the aerobic biodegradability of 

organics have been recognised since the early 1950s [61]. The limitations of the BOD 

test arise mainly form the fact that the microorganisms may not be adapted to utilise 

the organic compounds tested, while the rate of biodegradation also appears to vary 

with the pollutants concentration. On the other hand, most of the previously mentioned 

methods are either time consuming or not able to establish the biodegradability, 

toxicity or inhibitory effects of an organic compound over a non-acclimated biomass. 

Thus, its implementation to monitor and control a WWTP is not straightforward. What 

is more, for the evaluation of the potential toxicity of a compound, the preferred 

biological material should be activated sludge itself, since results obtained with any 
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other biological material would be just an approach to reality. Therefore, although 

bioluminescent assays proved to have higher sensitivity to toxicants, they are less 

representative of effects on activated sludge compared to respirometry [69,70]. 

The basis of respirometric tests is that the respiration rate of activated sludge 

can be reduced in the presence of toxicants. The most common measure of bacterial 

respiration rate is the oxygen uptake rate, i. e. the amount of oxygen per unit volume 

and time that is consumed by the microorganisms [71]. Respirometry is a widely used 

technique to characterise wastewater toxicity to activated sludge and is a well-

established procedure to assess the state of microbial activity and the quality of 

substrate and for calibrating microbial kinetic models [72]. Also, this technique can be 

applied to control and monitor WWTP [73] and it has just recently been applied to test 

biodegradability, toxicity or inhibition effects of WAO and CWAO effluents [58]. 

 

1.6. Peroxide Promoted Catalytic Wet Air Oxidation 

The Peroxide Promoted CWAO (PP-CWAO) technique is a combination 

between WPO and WAO in which H2O2 is added at a low dose in order to promote 

radical reactions. When hydrogen peroxide is added to the WAO process, it may be 

assumed to decompose thermally by breaking the oxygen-oxygen bond resulting in the 

generation of two hydroxyl radicals. This results in the availability of free radicals at the 

very beginning of the process, thereby enhancing the degradation of the parent 

compound and eliminating the induction period [74].  

The use of hydrogen peroxide in WAO systems offers the advantages of 

reduced residence times and lower capital costs. Its use may therefore be 

economically advantageous, especially when disposing of wastes from industries that 

already used hydrogen peroxide in the production process, such as textile industries 

[74]. 

This method was tested by Debellefontaine et al. (1996) [8] using a completely 

mixed batch reactor, loaded with phenol and ferrous sulphate (10 mg L-1) solution at a 

convenient acidic pH (3.5). The total amount of hydrogen peroxide injected was 

usually 10 % of the amount necessary for a stoichiometric oxidation. The promoting 

effect of H2O2 on molecular oxygen at 160 ºC is shown in Figure 1.10. At that 

temperature, the initiating period with H2O2 was shorter and the final removal of TOC 

increased form 76 to 90 %. It can be seen that H2O2 promoted the oxidation reaction 

since the oxidation efficiency actually observed (i.e. curve 3 in Figure 1.10) was higher 

than that expected by adding the efficiencies of molecular oxygen and H2O2 if separate 
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(i.e. curve 2 in Figure 1.10). The authors also found that WAO promoted with H2O2 

gave better oxidation efficiencies at 160 ºC than conventional WAO at 220 ºC, 

therefore turning a high pressure process into a medium pressure one. Also, the 

promoting effect of peroxide was more marked at 160 ºC than at 220 ºC, where rapid 

thermal decomposition occurred. On the other hand, doses higher than 15 % did not 

significantly increase the efficiency and doses as small as 0.2 % had quite significant 

effect on the process performance. Finally, the work from Debellefontaine et al. (1996) 

[8] also shows that the oxidation intermediates identified were the same as during 

conventional WAO. Thus, both processes follow similar reaction pathways. 

Imamura (1999) [20] found that the addition of H2O2 on the CWAO of phenol 

was neither very pronounced at 130 and 150 ºC, when phenol is quite stable, nor at 

temperatures of 180 and 200 ºC, when phenol shows enough reactivity and can be 

readily oxidised without H2O2. Thus, H2O2 addition only could exhibit its effect at 

moderate temperatures between 150-180 ºC. 

 

Figure 1.10. Effect of hydrogen peroxide during WAO of phenol at 160 ºC [8]:                                       

 no peroxide;  calculated curve from the addition of the theoretical effect of peroxide                

on curve 1;  with peroxide. 

 

Table 1.7 summarises the most relevant contributions on CWAO processes 

using H2O2 for the oxidation of organic pollutants. It can be seen that usually the 

reactions were performed in batch reactors and using metal based catalysts. It was not 

until Paradowska (2004) [29] that the PP-CWAO process was conducted in a 

continuous reaction system and using AC as catalyst without any metal supported 
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species. This author found that addition of 20 % of the stoichiometric H2O2 for 

complete mineralisation lead to 92 % phenol removal, while 40 % H2O2 was necessary 

to remove 76 % of p-nitrophenol and only 10 % H2O2 for removing 92 % of aniline at 

170 ºC in a packed bed reactor (τ =0.11 h). 

In this research work, the performance of the PP-CWAO process will be tested 

for the oxidation of phenolic aqueous solutions taking advantage of the combined 

effect of H2O2 and the classical CWAO process over a highly adsorbent and catalytic 

material such as activated carbon and in a trickle bed reactor configuration, as already 

presented in Rubalcaba et al. (2007) [77]. 
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Table 1.7. Review of CWAO processes using H2O2 for the oxidation of organic pollutants. 

Substrate Operation conditions Catalyst Reactor configuration Removal efficiency Ref. 

phenol 
160-200 ºC, excess O2, 

pH 3.5, 
0.2-20 % H2O2 

Fe(SO)4 
10 mg L-1 batch XCOD = 90 % 

Debellefontaine et al. 
(1996) [8] 

m-chlorophenol,         
m-cresol and  
p-ethylphenol 

150 ºC, PO2 0.5 bar,  
3 g H2O2/ 1 g COD L-1 

-- batch XCOD = 90 % 
Lin and Wu (1996) 

[75] 

dyeing wastewater 
(TOC0= 4300 mg L-1) 

200 ºC, excess O2 Cu supported on AC batch 
XTOC = 72 % 

80 % colour removal 
Lei et al. (1998)  

[76] 

phenol 
0.01 mol L-1 

328-468 K, pH 2-13, 
PO2 0.4 MPa, 

H2O2 0.01-0.04 mol L-1 

Cu2+, Co2+, Mn2+ 
10 mg L-1 

batch Xphenol= 100 % 
Rivas et al. (1999) 

[33] 

phenol (1750 mg L-1) 
acetic acid 

(5000 mg L-1) 

100-200 ºC, 
PO2 1 MPa, 

H2O2 1000 mg L-1 

Cu(NO3)2 for          
acetic acid  

batch 
XTOC = 100 % for 

phenol 
XTOC = 15 % for acetic 

Imamura (1999) 
[20] 

phenol, p-nitrophenol 
and aniline  

(5000 mg L-1) 

170 ºC, PO2 3.4 bar, 
H2O2 10-40 % 
stoichiometric,  

τ = 0.010-0.167 h 

activated carbon packed bed reactor 
Xphenol= 92 % 

Xp-nitrophenol= 76 % 
Xaniline= 92 % 

Paradowska (2004) 
[29] 

phenol, o-cresol and 
p-nitrophenol 
(5000 mg L-1) 

140 ºC, PO2 2 bar, 
H2O2 20 % 

stoichiometric,  
τ = 0.12 h 

activated carbon trickle bed reactor 
Xphenol= 64 % 
Xo-cresol= 64 % 

Xp-nitrophenol= 49 % 

Rubalcaba et al. (2007) 
[77] 
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2. Hypotheses and objectives 

2.1. Hypotheses 

 

The treatment and safe disposal of hazardous organic waste materials in an 

environmentally acceptable manner and at reasonable cost is a topic of great universal 

importance. There is little doubt that biological processes will continue to be employed 

as a baseline treatment processes for most wastewaters since they fulfil the above two 

requirements. Nonetheless, biological processes do not always give satisfactory 

results, especially when applied to the treatment of industrial wastewaters, because 

many organic substances produced by the chemical and related industries are 

inhibitory, toxic and/or resistant to biological oxidation [1]. In view of these challenges, 

advances in chemical wastewater treatments are essential. 

WAO is suitable for effluents that are either too dilute for incineration of too toxic 

and concentrated for biological treatment. Using a catalyst such as activated carbon in 

WAO process [2], lead to employ both milder temperatures and pressures to oxidise 

refractory contaminants in water, since on AC surface there are active sites capable to 

generate oxygen radicals. When CWAO is applied, the oxidised effluents are more 

biodegradable allowing the combination of chemical oxidation with a subsequent 

biological treatment [3]. At the conditions typically employed in CWAO, hydrogen 

peroxide is a known source of highly reactive hydroxyl radicals [4]. According to the 

radical nature of CWAO processes, the use of hydrogen peroxide as a free radical 

promoter increases the rate of oxidation, speeding up the initiation step of reaction [5].  

All these evidences permit to propose the following: 

 The addition of H2O2 to the CWAO process would promote the oxidation reactions 

leading to a higher organic removal than when only molecular oxygen is used. 

 Active carbon would be able to decompose H2O2 much faster than when H2O2 

decomposes freely. So, H2O2 could give the initial radical concentration that help 

starting the oxidation chain. 

 Combination of catalytic and adsorption characteristics of AC and promotion of 

CWAO with H2O2 would give more biodegradable effluents. 
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2.2. Objectives 

According to the conclusions extracted from the literature review, there is a 

need for new technologies to enhance detoxification and biodegradability of industrial 

effluents. To address this emerging concept, the here named Peroxide Promoted 

Catalytic Wet Air Oxidation Process will be developed as the main objective of this 

doctoral research. In particular, the following specific tasks were formulated in order to 

meet with the main objective: 

 

1. To study of the classical Fenton process (hydrogen peroxide oxidation with iron 

salts as catalyst) in a batch reaction system, aiming to: 

 Select suitable analytical techniques for samples containing H2O2. 

 Study the dependence of phenol degradation on H2O2, Fe2+ catalyst, pH 

and reaction temperature. 

 

2. To study of effect of H2O2 in the CWAO process in a TBR using AC as catalyst, 

by means of: 

 Supply different amounts of H2O2 for the CWAO of phenol. 

 Perform control tests over an inert support to highlight the catalytic and 

adsorption properties of AC. 

 Perform control tests in inert atmosphere to discriminate the promoting 

or synergistic effect of combining O2 and H2O2 in a single process. 

 Apply the PP-CWAO for the treatment of substituted phenolic 

compounds different from phenol. 

 Produce iron containing AC that could be applied to the PP-CWAO as a 

Fenton-like catalyst. 

 Characterise the biodegradability enhancement of oxidised effluents as 

an indicator of the viability of PP-CWAO as a chemical pre-treatment 

that could be combined with a classical biological treatment. 
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3. Methodology 

This chapter describes in detail the materials, experimental set-ups and 

analytical techniques used for characterising the effluents from the Fenton and PP-

CWAO processes as well as the AC and the FeAC catalysts employed. These 

characterisation techniques were selected and adapted to deal with the complex matrix 

found in the outlet samples from phenolic compounds oxidation on one hand, and on 

the other hand to shed some light on the catalytic performance of AC. 

3.1. Materials 

3.1.1. Model compounds 

Deionised water and analytical grade phenol, o-cresol, p-nitrophenol and 2-

chlorophenol were used to prepare 5 g L-1 initial solutions. Some technical information 

about these model compounds is given in Table 3.1. 

Table 3.1. Model compounds referenced in this study. 

Compound 
Molecular Formula 

and Structure 
Molecular mass 

(g mol-1) 
Solubility in water  

(g L-1 at 20 ºC) 
Purity    
(%) 

Supplier 

phenol 
C6H6O  

 

94.11 90 99.0 Panreac 

o-cresol 

C7H8O  

 

108.14 20 99.0 Aldrich 

p-nitrophenol 

C6H5NO3  

 

139.11 16 98.0 Aldrich 

 

3.1.2. Oxidants 

Hydrogen peroxide was supplied by Panreac as a 30 % w/v aqueous solution. 

The gaseous oxidant was high purity synthetic air (C45), 99.9995% purity, from 

Carburos Metálicos. 

OH

OH 

HO 

O- 

O 

N+ 

UNIVERSITAT ROVIRA I VIRGILI 
PEROXIDE PROMOTED CATALYTIC WET AIR OXIDATION OF PHENOLIC AQUEOUS  SOLUTIONS USING 
ACTIVATED CARBON AS CATALYST 
Alícia Rubalcaba Mauri 
ISBN: 978-84-691-0372-2/ DL: T.2190-2007 
 



42 

3.1.3. Catalysts 

For Fenton experiments, Fe2+ salt used as catalyst was ferrous sulphate           

7-hydrate (FeSO4·7H2O). It was obtained from Panreac at 99% purity. 

Activated carbon was supplied by Merck (Reference 2518) in the form of         

2.5 mm pellets. Some characteristics of this carbon are in Table 3.2. Prior to use, AC 

was crushed and sieved. The size fraction between 25 and 50 mesh (0.7-0.3 mm) was 

chosen for experiments in the trickle bed in order to minimise both pressure drop and 

internal mass transfer limitations [1]. This fraction was washed with deionised water to 

remove all fines, then dried at 105±1 ºC overnight, allowed to cool and stored under 

inert atmosphere until use. This AC was selected based on a previous study from 

Fortuny et al. (1999) [2]. 

Table 3.2. Physical characteristics of AC as supplied by the manufacturer. 

Source Charcoal 
Ash content (%) 3.75 

Surface area (m2/g) 1140 
Average pore diameter (nm) 1.4 

Pore volume (cm3/g) 0.48 
 

3.1.3.1. Fe containing activated carbon materials (FeAC) 

This section describes the preparation of different FeAC materials obtained 

during a research stay in the Grupo de Ingeniería Química y Ambiental (GIQA) from 

the Universidad Rey Juan Carlos in Móstoles (Madrid). 

 

a) Materials:  

The AC was the same as when used as direct catalyst (Merck ref. 2518). 

Chlorohydric acid (35%), nitric acid (37%), hydrogen peroxide (30% wv) and sulphuric 

acid (98%) used in AC oxidation treatments were from Sigma-Aldrich. Ammonium 

persulphate (ACS) and iron nitrate (Fe(NO3)3·9H2O) were from Acros Organics. 

 

b) Preparation:  

First of all, to prepare the FeAC catalysts, the 25-50 mesh fraction of 

commercial AC (AC-M) was washed with HCl 2N overnight under reflux in order to 

remove all traces of metals and any other impurity that may be present [3]. Then it was 

washed with ultrapure water until the pH of the rising waters reached a value of 6, and 

finally it was dried overnight at 105±1 ºC. Secondly, this demineralised AC (AC-L) was 
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submitted to three different oxidation treatments following the study by Salame et al. 

(1999) [4]. The first treatment was carried out in nitric acid for 24h at room temperature 

and the second in a mixture (50:50) of hydrogen peroxide and 1M sulphuric acid for 1 h 

at 50 ºC. The third oxidation treatment took place in a saturated solution of ammonium 

persulphate in 1M sulphuric acid, for 18h at room temperature. These oxidised carbons 

were named after the three oxidation treatment methods as it appears in Table 3.3. All 

three oxidized carbons were then allowed to adsorb iron from an iron nitrate solution 

prepared to be 10% of Fe in weight with respect to the AC-L sample for 24h at room 

temperature. Finally these FeAC catalysts were calcined in two different ways to gain 

stability by fixing the iron species into the AC matrix and to remove the less stable 

oxygen surface groups [5]. The first calcination took place at 250±5 °C for 2h in air 

atmosphere. The second calcination was carried out under inert N2 atmosphere at 

500±5 °C for 5h. Eventually, 6 different FeAC catalysts were available (Table 3.3). 

Table 3.3. Description of all carbon materials used in this study. 

Carbon material Description 
AC-M Commercial AC (25-50 mesh) 
AC-L AC-M after washing with HCl 
AC-CN AC-L oxidised with HNO3 
AC-HP AC-L oxidised with H2O2/H2SO4 
AC-APS AC-L oxidised with NH4S2O8 
AC-M-Fe AC-M after iron impregnation 
AC-L-Fe AC-L after iron impregnation 
AC-CN-Fe AC-CN after iron impregnation 
AC-HP-Fe AC-HP after iron impregnation 
AC-APS-Fe AC-APS after iron impregnation 
AC-CN-Fe-500 AC-CN-Fe calcined at 500ºC in N2 
AC-HP-Fe-250 AC-CN-Fe calcined at 250ºC in air 
AC-APS-Fe-500 AC-HP-Fe calcined at 500ºC in N2 
AC-CN-Fe-250 AC-HP-Fe calcined at 250ºC in air 
AC-HP-Fe-500 AC-APS-Fe calcined at 500ºC in N2 
AC-APS-Fe-250 AC-APS-Fe calcined at 250ºC in air 
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3.2. Fenton process 

3.2.1. Experimental set-up 

Figure 3.1 schematically shows the batch reactor used for Fenton experiments. 

The equipment consists of three main sections: the thermostatic bath, the reaction 

system and the hydrogen peroxide pumping block. 

The thermostatic bath (Haake, model T3) filled with water was used as a 

heating system to control the operating temperature. The reaction system consists of a 

250 mL jacketed glass reactor, which allowed the flow of heating water. The vessel 

was magnetically stirred. A thermometer placed inside allowed measuring the 

temperature. Hydrogen peroxide was initially added using a 25 mL burette which was 

changed by a Micro Pump (Bio-Chem Valve, Series 120 SP) to better control the rate 

of oxidant addition, fixed at 2 mL min-1. Samples were periodically withdrawn using a 

10 mL glass syringe. 

 

Figure 3.1. Experimental set-up for Fenton Oxidation Process: (1) thermostatic bath, (2) 

jacketed glass reactor, (3) magnetic stirrer, (4) Micro Pump, (5) H2O2 reservoir, (6) sampling 

port, (7) H2O2 injection port and (8) thermometer. 

 

3.2.2. Experimental procedure 

The reactor was filled with 150 mL of phenolic compound solution (5 g L-1), then 

the initial pH was measured and in some cases adjusted to 2.8 with H2SO4. Before 

adding the corresponding amount of ferrous catalyst, the system was allowed to reach 

the operating temperature. The reaction time started when hydrogen peroxide addition 

began. Batch experiments were performed for 60 minutes. Samples (2 mL) were 

periodically withdrawn every approximately 1, 3, 5, 10, 15, 30 and 60 minutes of 
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reaction and placed in the refrigerator at 4±1 ºC or basified with NaOH to stop the 

reaction.  

Organic compounds were analysed by high performance liquid chromatography 

(HPLC) or occasionally by gas chromatography (GC). Chemical Oxygen Demand 

(COD), Total Organic Carbon (TOC) and pH were also measured to all the samples. 

The operating parameters studied for phenol were: 

 H2O2 concentration: the stoichiometric quantities for phenol complete 

mineralization, according to Equation 3.1, and the double of that stoichiometric 

quantity, were used. 

 

C6H5OH(aq) + 14 H2O2 (aq) → 6 CO2 (g) + 17 H2O(l)    Eq. 3.1 

 

 Catalyst concentration: high concentrations of Fe2+ catalyst, expressed as 1/10 or 

1/5 w/w of the amount of H2O2 (ranging from 450 to 1700 mg L-1 of Fe2+), and also 

low concentrations, ranging from 5 to 100 mg L-1 of Fe2+, were tested. 

 pH: experiments were performed adjusting the pH of the initial solutions to pH 2.8 

using H2SO4 and also without adjustment.  

 Temperature: 30, 50 and 85 ºC were fixed as operating temperatures.  

The previous parameters can be combined to give four different experimental 

sets at high concentrations of catalyst (A, B, C and D, in Table 3.4), which have been 

tested for each temperature and for the two pH giving a total number of 24 variables 

combination. From those results, the best combination of temperature, pH and 

hydrogen peroxide concentration was selected to study the effect of low concentrations 

of catalyst (E, F, G and H, in Table 3.4). 

Table 3.4. Operating parameters for Fenton Oxidation Process. 

Experimental set H2O2*  Fe2+ Molar ratio 
organic:H2O2:Fe2+ 

A 100 % 1/5 w/w of H2O2 1:14:0.343 
B 200 % 1/5 w/w of H2O2 1:28:0.685 
C 100 % 1/10 w/w of H2O2 1:14:0.171 
D 200 % 1/10 w/w of H2O2 1:28:0.343 
E 100 % 100 mg L-1 1:14:0.034 
F 100 % 50 mg L-1 1:14:0.017 
G 100 % 10 mg L-1 1:14:0.003 
H 100 % 5 mg L-1 1:14:0.002 

*% of stoichiometric H2O2 for complete mineralisation to CO2 and H2O (Eq. 3.1). 
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3.3. Peroxide promoted catalytic wet air oxidation 

3.3.1. Experimental set-up 

The original experimental set-up was designed by Fortuny (1996) [6] to study 

the CWAO of phenol in cocurrent downflow Trickle Bed Reactor (TBR) using copper-

based catalysts. The fixed bed reactor was chosen to reduce polymerisation reactions, 

which take place in slurry systems as was demonstrated by Fortuny et al. 1998 [7] and 

Stüber et al. 2001 [1]. The original standard TBR configuration was modified as the 

experimental methodology was being optimised by adding a parallel pumping system 

to be able to feed the organic and the oxidant influents in two separated pipe lines. 

Figure 3.2 shows a detailed scheme of the system used in this work. The 

original standard TBR configuration was modified as the experimental methodology 

was being optimised by adding a parallel pumping system to be able to feed the 

organic and the hydrogen peroxide influents in two separate pipe lines, which were 

joined before entering the oven. Therefore, the experimental set-up contains two 5 L 

stirred tanks for the liquid feed solutions (i.e. phenolic and H2O2 aqueous solutions), 

which are connected to two high precision metering pumps (Eldex, Recipro HP Series 

model AA-100-S-2-CE) that can deliver up to 500 mL h-1 at a maximum pressure of 350 

bar. These pumps feed a TBR made of a titanium tube (20 cm long and 1.1 cm i.d.) 

filled with the catalytic material. A thermocouple is inserted axially into the reactor to 

measure the temperature inside the bed. The AC is retained by a sintered metal disk at 

the bottom of the reactor.  

The reactor is placed in a temperature-controlled air convection oven (±1 ºC). 

The air comes from a high pressure cylinder equipped with a pressure regulator to 

maintain the operating pressure constant. The gas and the liquid streams are mixed 

and pre-heated before entering the reactor. There are two vessels to separate the 

outlet effluent, and a 2 mL tube for sampling. A rotameter placed at the end line allows 

to measure and control the air flow rate. Besides the reactor itself, all the piping system 

is made of stainless-steel 316. 
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Figure 3.2. Trickle bed reactor and experimental set-up for the PP-CWAO: (1) feed vessels, (2) 

high pressure liquid pumps, (3) pulse dampeners, (4) oven, (5) trickle bed reactor, (6) gas liquid 

separation system, (7) sampler, (8) gas flow meter and (9) gas cylinders. 

 

3.3.2. Experimental procedure 

Each experiment in the TBR was conducted for 72 h since usually this was the 

necessary time for the system to achieve the steady state. The air flow rate was held 

constant at 2.4 mL s-1 (STP conditions) to guarantee excess oxygen. The liquid hourly 

space velocity (LHSV) was set to 8.2 h-1, which is equivalent to a space time (τ) of    

0.12 h, i.e. a liquid flow rate of 57 mL h-1, according to the weight of the catalytic bed 

(usually 7.00 g). Phenolic compound feed concentration was 5 g L-1. Three different 

temperatures were tested (120, 140 and 160 ºC) at an oxygen partial pressure of 2 bar, 

respectively giving a total working pressure of 11.5, 13.1 or 15.6 bar depending on the 

reaction temperature. In the above conditions, the fixed bed reactor operates in trickle 

flow regime [8]. 

The above conditions were selected in order to achieve phenol conversions in 

the range 40-80% according to previous results [9], so a better comparison of results 

can be done. Higher temperatures or lower liquid flow rates would give too high phenol 

conversions and, on the other hand, lower temperatures or higher liquid flow rates 

would yield very low phenol conversions [10]. 
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Some experiments were performed with nitrogen instead of air, keeping the 

same working pressure and hydrodynamic conditions. Also, some experiments were 

performed without AC, using SiC as inert support (IS) to reproduce the trickle flow 

regime. 

A given amount of H2O2 corresponding to 10, 15, 20 or 30% of the 

stoichiometric amount needed for complete phenol mineralization (see Equation 3.1) 

was added directly to the feed tank. This tank was refilled with new solution every 24 h, 

to avoid any loss of H2O2 by decomposition. After the TBR configuration was modified 

to feed the phenolic aqueous solution and the oxidant though separated lines, it was no 

longer necessary to prepare new daily initial solutions. 

The H2O2 dose for the oxidation of o-cresol and p-nitrophenol aqueous solutions 

was calculated according to the following equations: 

 

C7H8O(aq) + 17 H2O2 (aq) → 7 CO2 (g) + 21 H2O(l)   Eq. 3.2 

 

C6H5OH(aq) + 14 H2O2 (aq) → 6 CO2 (g) + 16 H2O(l) + NO3
- + H+  Eq. 3.3 

 

The starting-up of the experiments begins by filling the reactor with the 

corresponding mass of catalyst or inert support. Then the system is pressurised with N2 

to check possible leaks. After that, the oven is turned on and set to the reaction 

temperature, while the gas (N2) is allowed to flow and adjusted until the required 

pressure is reached. In the meantime, the phenolic and H2O2 solutions are prepared 

and placed in the feed vessels. When the reactor temperature is close to the set point, 

the liquid flow is started and controlled through a mass flowmetre. The reaction is 

considered to start (i.e. time on stream= 0 h) once the liquid flow, the reaction pressure 

and temperature are stable. When necessary, this is the moment in which the gas flow 

is changed to air. 

Outlet liquid samples were periodically withdrawn and stored at 4 ºC until they 

were analysed for organic removal, COD or TOC reduction. pH was also measured to 

all the samples. At the end of each run, the AC was dried at 105±1 ºC under nitrogen 

flow, weighted and stored under inert atmosphere until characterisation. 

All the experiments were performed twice and results showed an acceptable 

experimental error of ±5 %. 
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3.3.3. Process calculations 

a) Liquid flow rate: 

The operation liquid flow rate was calculated according to the fixed LHSV and 

the weight of the catalytic bed as follows:  

 

)hmL(
·

m
LHSV

m
Q 1

L

AC

L

AC
L

−

τρ
=⋅

ρ
=      Eq. 3.4 

 

where, QL: liquid flow rate (mL h-1) = 57.4 mL h-1 

mAC: catalyst weight (g) = 7.00 g 

ρL: liquid density (g mL-1) ≈ 1 g mL-1 

LHSV: liquid hourly space velocity (h-1) = 8.2 h-1 

τ: space time (h) = 0.12 h 

 

b) Total pressure: 

It can be considered that Ptotal = Pair + Psolution ≈ PO2 + PN2 + PH2O2. Then, knowing 

that the air composition is 21% O2 and 79% N2, and if the O2 partial pressure is fixed at 

2 bar, the partial pressure for N2 is 7.52 bar. The water vapour pressure can be 

obtained from steam tables [11] for each reaction temperature studied. So, the system 

total pressure easily calculated is listed as summarised in Table 3.5.  

Table 3.5. Total system pressure at the reaction temperatures tested. 

T (ºC) PO2 (bar) PN2 (bar) Pv
H2O (bar) Ptotal (bar) 

120 1.9854 11.5 
140 3.6138 13.1 
160 

2 7.52 
6.1806 15.7 

 

c) Conversion: 

The disappearance of organic compounds (X), COD (XCOD) or TOC (XTOC) was 

calculated as: 

(%)100·
C

CC
X

0

0e −=     Eq. 3.5 

 

where, X: conversion of the reported variable (%) 

Ce: concentration in the effluent (mg L-1) 

C0: concentration in the influent (mg L-1) 
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3.4. Analytical procedures 

3.4.1. Effluent characterisation 

3.4.1.1. Hydrogen peroxide interference and analysis 

Hydrogen peroxide has three properties which may cause it to interfere with 

conventional analytical procedures [12]: 

1. it is an oxidising agent: H2O2 + 2H+ + 2e- → 2 H2O (1.776 mV) 

2. it may also be a reducing agent: H2O2 + 2OH- → O2 + H2O + 2e-  (-0.146 mV) 

3. it liberates oxygen: H2O2
 → O2 + H2O 

The best remedy to prevent possible interferences due to hydrogen peroxide 

special properties is to remove it prior to the analyses either by selective separation or 

destruction through decomposition. [12,13,14,15] 

Liquid samples from Fenton experiments contained unreacted peroxide that 

interferes in COD determination, increasing the real value of COD in the samples [12-

15]. It was especially noticeable in experimental sets using low amounts of ferrous 

catalyst, were lower organic removals were achieved. This interference also reflected 

that refrigeration of samples at 4 ºC was not enough to stop the oxidation reaction. 

Therefore, it was necessary to look for an effective method to decompose or neutralise 

residual H2O2. The applied procedures were: decomposition of peroxide to oxygen and 

water by catalase enzyme [12,16], chemical neutralisation using sodium thiosulphate 

[12,16] and increasing the pH [12]. 

Hydrogen peroxide concentration was determined following the Standard 

Iodometric Method 4500-CI B [17]. 

 

a) Enzymatic decomposition by catalase enzyme:  

Catalase enzyme destroys H2O2 with high efficiency [16]. The mechanism of 

removal is catalytic decomposition of H2O2 to oxygen and water (Equation 3.8). The 

amount of enzyme added depends on its activity and the time permitted before 

analysis. In using this procedure is important to quantify the impact of the enzyme in 

the analysis. This is better done by adding an identical amount of enzyme to a sample 

of deionised water, performing the analysis on this sample and subtracting the value 

from the pre-treated sample. 

 

2 H2O2 → 2 H2O + O2      Eq. 3.6 
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To test the capability of catalase to remove peroxide interference in the COD 

analysis, the corresponding amount of catalase from bovine liver (Sigma, 1870 

units/mg solid) was added to the Fenton samples. As presented in Figure 3.3, catalase 

was unable to avoid the peroxide interference in the COD determination. It can be due 

to the strong acidic conditions (between 3 and 1) of the oxidised samples which would 

inhibit catalase activity that has its optimal pH around 7. Consequently, for removing 

H2O2 by means of an enzymatic reaction, a different form of catalase enzyme such as 

Aspergillis niger would be recommended, since it has the advantage of retaining 

activity over a wider range of pH [15]. 

 

b) Chemical neutralisation using sodium thiosulphate:  

Sodium thiosulphate (Na2S2O3) reacts quickly to remove residual H2O2 

(Equation 3.7), as it does with other oxidants. However, over-addition may impact the 

analysis, and quantifying the effect is not as straightforward as with catalase enzyme. 

 

2 Na2S2O3 + H2O2 → Na2S4O6 + 2 NaOH    Eq. 3.7 

 

The stoichiometric dose needed for sodium thiosulphate to destroy 1 mg L-1 

H2O2 is 9.29 mg L-1, according to Equation 3.7. Due to the high concentration of 

organic compound in the initial solutions under study (5 g L-1), samples from the Fenton 

process could have as much as 25.3 g L-1 of H2O2. Therefore, a high concentration of 

sodium thiosulphate is needed to neutralise all peroxide, which then required a huge 

number of dilutions prior to COD determination. After some tests, this method was 

discarded due to the difficulty in quantifying the effect of unreacted thiosulphate and its 

oxidised form, tetrathionate (Na2S4O6).  

 

c) Chemical decomposition by basification: 

The rate of H2O2 decomposition (to oxygen and water) increases several fold as 

pH increases. For treated samples of wastewater containing several hundred mg L-1 

H2O2, it may be eliminated raising the pH to 10-12 and allowing the sample to sit 

overnight [15].  

On this basis, a fixed amount of NaOH was added to the samples for increasing 

the pH between 11 and 12. COD determination was performed after 24 h. As it can be 

seen in Figure 3.3, this procedure was capable to avoid peroxide interferences giving 

reasonable results in the COD analysis. Accordingly, this last methodology was chosen 

to remove residual H2O2 on the Fenton samples and to avoid its interference on COD 

determination. Increasing the pH has no effects on organic conversion. However it is 
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necessary to re-acidify the samples before HPLC analysis in order to have all 

substances in its protonated form for its better identification, thus introducing another 

source of experimental error. 

 

Figure 3.3. Different methods for removing H2O2 interference on COD determination           

(Molar ratio of phenol:H2O2:Fe2+ as 1:14:0.034).  

 

In order to determine the possible remaining H2O2 in the PP-CWAO effluents, 

which could also have adverse effects on sample storing and interferences with COD 

determination, a control test (140 ºC, 2 bar PO2) with a H2O2 solution (30 % of the 

stoichiometric amount for phenol mineralization) as inlet flow was performed. H2O2 

conversion was close to 99% in all the samples through all the 72 h run, confirming that 

no residual H2O2 can be found in the TBR effluents. Therefore, any of the previous 

treatments was applied to PP-CWAO samples, which could be kept refrigerated until its 

analysis. 

 

3.4.1.2. High performance liquid chromatography analyses  

Liquid samples from Fenton experiments were analysed by means of an high 

liquid performance chromatograph (Beckman System Gold) using a C18 reverse phase 

column (Tracer Extrasil ODS-2, 5 µm, 25 x 0.4 cm). To properly separate phenol from 

the partial oxidation products, the mobile phase was a 35:65 vol. mixture of methanol 

(99.9 %, Sigma-Aldrich) and deionised water, slightly acidified, at a flow rate of             
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1 mL min-1. The detection of phenol was performed by UV absorbance at a wavelength 

of 254 nm.  

To analyse the samples from the rest of experiments, the previous method was 

adapted to a new chromatograph (Agilent Technologies 1100 Series), using a C18 

reverse phase column (Hypersil ODS, 5 µm, 25 x 0.4 cm from Agilent Technologies). 

With the aim of separating the phenolic target compound from its oxidation products, a 

gradient high liquid performance chromatography (HPLC) method was developed using 

the same column, as in a previously published method [18] (see Table 3.6). The flow 

rate was 0.75 mL min-1 and the wavelengths used in the diode array detector (DAD) 

were 210 and 254 nm, depending on the identified compound.  

Table 3.6. Mobile phase composition for the HPLC gradient method. 

Mobile phase composition (%) Time period  
(min) 

Gradient 
segment  Acidified ultrapure water Methanol 

0.0 0 100 0 
25.0 1 50 50 
32.0 2 50 50 
34.0 Reset to initial 100 0 

 

Figure 3.4 presents a typical HPLC chromatogram from a standard calibration 

mixture containing all phenolic compounds tested and their common reaction products, 

listed in Table 3.7 [19]. 

 

Figure 3.4. HPLC chromatogram from a standard calibration mixture [19]. 
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Table 3.7. List of compounds identified by HPLC analyses as it appears in Figure 3.4. 

Peak number Compound Retention time (min) 
1 Glyoxylic acid 2.826 
2 Oxalic acid 2.923 
3 Formic acid 3.245 
4 Malonic acid 4.157 
5 Acetic acid 4.433 
6 Maleic acid 5.499 
7 Succinic acid 6.204 
8 Fumaric acid 7.111 
9 Acrylic acid 7.342 
10 Hydroquinone 7.884 
11 Propionic acid 8.110 
12 Resorcinol 10.547 
13 p-Benzoquione 11.091 
14 Catechol 11.640 
15 trans,trans-Muconic acid 13.809 
16 cis,cis-Muconic acid 15.856 
17 4-Hydroxibenzoic acid 16.202 
18 Phenol 16.566 
19 Salicyladehide 22.688 
20 o-Cresol 23.661 
21 1-Indanone 25.727 
22 Salicylic acid 26.894 
23 1,3-Benzodioxole 28.813 
24 2,2’-Biphenol 31.154 
 

3.4.1.3. Gas chromatography analyses 

Occasionally, liquid samples were analysed by GC (Agilent Technologies GC 

6890) when the HPLC was not available due to technical problems. The analytical 

method used an HP-5 (5% phenyl-methyl-siloxane, 30 m x 0.32 mm i.d. x 0.25 µm film 

thickness, Agilent Technologies) capillary column with a constant temperature program 

for the oven at 40 ºC for 6.30 min, then the temperature raised up to 60 ºC (at                       

20 ºC min-1) and finally a second raise from 60 ºC to 120 ºC (at 30 ºC min-1). The 

injection volume was 0.5 µm and the injector temperature was 250 ºC. The carrier gas 

was helium (99.99 % pure, 13.5 ml min-1) and phenol was detected using a flame 

ionisation detector (FID) at 300 ºC. Results from GC, using this method, are 

comparable to those from HPLC in terms of phenolic model compounds. Intermediate 

reaction products can not be measured by this method. 
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3.4.1.4. Chemical Oxygen Demand 

The Chemical Oxygen Demand is the amount of oxygen consumed to 

completely chemically oxidise the organic water constituents in inorganic end products. 

COD is commonly used to indirectly measure the amount of organic compounds in 

water, being a useful measure of its quality. Remaining COD in the liquid stream was 

analysed by the Closed Reflux Colorimetric Standard Method 5220D [17], which 

consists of digesting a sample for two hours in an acidic medium in the presence of a 

strong oxidant as potassium dichromate (K2Cr2O7) and a silver sulphate catalyst. 

Mercury sulphate is usually added to eliminate possible interferences from chloride 

ions. During the test, organic compounds are oxidised and the orange coloured 

dichromate (Cr2O7
2+) is reduced to green coloured chromate (Cr3+), which is then 

detected colorimetrically. The relation between Cr3+ absorbance and COD 

concentration is established by calibration with a standard solution of hydrogen 

phthalate, in the range of COD values between 25 and 500 mg L-1. As the COD in 

samples was up to 25 times higher, all samples were accordingly diluted before 

digestion. 

For COD analyses, Velp ECO8 thermoreactors were used as sample digesters 

and a Dinko 8500 UV/Vis Spectrophotometer was used for excess dichromate 

detection. Potassium dichromate and silver sulphate reagents were from Riedel-de 

Haën. 

The theoretical COD for phenol and for the rest of phenolic compounds tested 

can be calculated using the following equations. 

 

C6H5OH(aq) + 7 O2 (g) →  6 CO2 (g) + 3 H2O(l)   Eq. 3.8 

 

2 C7H8O(aq) + 17 O2 (g) → 14 CO2 (g) + 8 H2O(l)   Eq. 3.9 

 

C6H5NO3(aq) + 5 O2 (g) → 6 CO2 (g) + H2O(l) + 4NH3(aq)      Eq. 3.10 

 

 

Equation 3.10 does not include the oxygen demand caused by the oxidation of 

ammonia into nitrate, the nitrification process. Since dichromate does not oxidise 

ammonia into nitrate, this nitrification can be safely ignored in the standard COD test 

[20]. 
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3.4.1.5. Total Organic Carbon 

The Total Organic Carbon is the amount of carbon bound in an organic 

compound and is often used as a non-specific indicator of water quality. The Non-

Purgeable Organic Carbon (NPOC) Combustion Infrared Standard Method 5310B [17] 

was used for TOC determination, which involves purging an acidified sample with 

carbon-free air to remove all inorganic carbon prior to measurement. The sample is 

injected into a combustion chamber which is raised up to 850 °C. Here, all the carbon 

reacts with oxygen forming carbon dioxide, which is then flushed into a cooling 

chamber, and finally into the non-dispersive infrared spectrophotometer detector. TOC 

concentration is also established by calibration with a standard solution of hydrogen 

phthalate in the range of 30 to 2000 mg L-1, which in some cases requires sample 

dilution. 

For TOC analyses two different equipments were used. First, it was a Shimatzu 

TOC analyser belonging to Tratamientos y Recuperaciones Industriales, S.A. (TRISA), 

and lately an Analytic Jena TOC Analyser (model multi N/C 2001), recently 

incorporated to the CREPI laboratories. 

The theoretical COD and TOC for phenol and for the rest of phenolic 

compounds studied can be calculated using equations 3.8 to 3.10 and they are 

summarised in Table 3.8. 

Table 3.8. Theoretical COD and TOC values for the phenolic compounds studied. 

Compound 
Theoretical COD  

(g O2 g compound-1)  
Theoretical TOC 

(g C g compound-1) 
phenol 2.38 0.76 

o-cresol 2.51 0.78 
p-nitrophenol 1.51 0.52 

 

3.4.1.6. Iron leaching 

Effluents from PP-CWAO experiments using FeAC were analysed for 

determining the amount of iron leached from the catalyst. Analyses were done by 

means of a Perkin Elmer atomic adsorption spectrophotometer (Model 3110) using a 

multicomponent lamp set at 248.8 nm for Fe determination. Calibration with solutions of 

known Fe concentration up to 10 mg L-1 was used to determine the exact Fe 

concentration in the samples, which usually did not require any dilution or further 

preparation. 
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3.4.1.7. Respirometric tests 

Respirometry is the measurement and interpretation of the biological oxygen 

consumption rate under well-defined experimental conditions. Because oxygen 

consumption is directly associated with both biomass growth and substrate removal, 

respirometry is a useful technique for modelling and operating the activated sludge 

process [21]. As already commented in the Introduction chapter, respirometry was 

chosen over other conventional techniques such as Microtox® because it allows 

determining biodegradability, toxicity and inhibitory effects over a real sample of 

microorganisms from a WWTP, thus being a more realistic analysis than those using a 

specific strain of bacteria. Moreover, this technique is applied as an instrument-based 

alternative to Biological Oxygen Demand (BOD) test and therefore, is a valuable tool 

for biodegradability characteristics estimation. 

 

a) Analytical set-up and procedure:  

The respirometer used in this work is a LFS (liquid-flow-static) type, where 

dissolved oxygen concentration (So) is measured in the liquid phase which is static and 

continuously aerated [21]. The air flows through a pressure manoreductor and through 

a gas rotameter to ensure constant flow. The vessel (1 L) is magnetically stirred to 

guarantee total mixing and placed in a thermostatic bath set at 31.0±0.5 ºC. The pH, So 

and temperature are measured with probes connected to a computer for data 

acquisition. Figure 3.5 shows a schematic representation of the equipment used in the 

respirometric tests. 

 

 

Figure 3.5. Experimental set-up for respirometry: (1) thermostatic bath, (2) activated sludge 

reactor, (3) pH and O2 probes, (4) air diffuser, (5) magnetic stirrer and (6) recorder. 

 

Air 
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The activated sludge used in this respirometric determinations came from the 

municipal biological WWTP in Tarragona (Catalonia, Spain), which was not adapted to 

metabolise phenolic compounds. After collecting the sludge, it was aerated overnight to 

ensure that the biomass was under endogenous conditions before each respirometric 

test. Determination of total suspended solids (TSS) and volatile suspended solids 

(VSS) was done according to the Standard Methods 2540D and 2540E, respectively 

[17]. The average value of biomass concentration in the respirometer was 2550±300 

mgVSS L-1. A 1-allyl-2-thiourea solution (20 mg L-1) was added to the biomass to avoid 

any interference from nitrifying microorganisms.  

Biodegradability characterisation was performed using an off-line respirometric 

procedure [22] to determine inhibition, toxicity and fraction of readily biodegradable 

COD (%CODrb) present in the PP-CWAO effluents. This procedure follows a sequence 

of 4 steps summarised as follows: 

1. A pulse of 20 mgCOD L-1 of a control substrate (sodium acetate) is added to the 

activated sludge in the respirometer vessel. 

2. After the control substrate is consumed (i.e. the S0 has recovered the 

equilibrium level), a pulse of the sample tested usually having also                  

20 mgCOD L-1 is added. The fraction of CODrb in the sample can be assessed in 

this step (Equations 3.15 and 3.16).  

3. When the S0 equilibrium is recovered, a pulse of control substrate at the same 

concentration than in step 1 is added. Comparing the Oxygen Consumption 

(OC) profiles obtained in steps 3 and 1, the toxicity in the sample can be 

determined (Equation 3.13). 

4. Finally, new biomass is placed in the respirometer and the control substrate    

(20 mgCOD L-1) and the sample pulse (in the same concentration than in step 2) 

are fed together. The fraction of inhibitory COD in the sample can be assessed 

by comparing the Oxygen Uptake Rate (OUR) from steps 1, 2 and 4 of this 

procedure (Equation 3.14). 

 

b) Biodegradability parameters calculation: 

Figure 3.6 shows a typical respirogram obtained by Guisasola et al. (2003) [22] 

with the LFS respirometer. The respirogram starts with the aeration stopped in order to 

measure the value of endogenous OUR (OURend), which is equal to the slope value of 

the dissolved oxygen (DO) profile. Then, the vessel is aerated again and the DO level 

increases until it reaches a constant value called Soe that balances the external oxygen 

transfer due to aeration with the OURend.  
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Figure 3.6. LFS respirogram (a) and the OUR profile (b) obtained with 10 mgN-NH4+ L-1 [22]: (1) 

OURend, (2) reaeration profile, (3) initial peak slope, (4) peak area, (5) peak height, (6) Soe, (7) 

SoMIN, (8) OURMAX, (9) oxygen consumed (OC), (10), consuming time, (11) OUR model. 

 

The value of global oxygen transfer coefficient (kLa) must be estimated for OUR 

profile calculation. The kLa of the system is estimated from the reaeration profiles 

through a non-lineal least square regression according to Equation 3.11: 

 

[ ])t(SS·k
dt

dS
0oeLa

0 −=      Eq. 3.11 

 

When a pulse of substrate is added, because of the OUR due to the external 

substrate (exogenous OUR or OURex), S0(t) decreases as follows: 

 

[ ] ex0oeLa
0 OUR)t(SS·k

dt
dS

−−=     Eq. 3.12 

 

Then, when the substrate is totally consumed, the DO level returns again to the 

Soe level, since at this moment the OUR value equals the OURend. The OUR profile is 

obtained mathematically from the LFS respirogram by solving the oxygen balance in 

the liquid phase in each point of the respirogram (Equation 3.12). In addition, other 

indirect parameters such as the maximum OUR (OURMAX) and the total oxygen 

consumption (OC) can be obtained, which in combination with the direct parameters 

allow assessing the toxicity (Equation 3.13) and inhibition (Equation 3.14) of a given 

substrate sample.  
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100·
OC

OCOC
toxicity%

1step

3step1step

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=     Eq. 3.13 

 

( )
100·

OUR
OUROUROUR

inhibition%
1MAXstep

2MAXstep4MAXstep1MAXstep

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=   Eq. 3.14 

 

The biological COD removal is a process where part of the substrate is directly 

used for new biomass growth and the rest is oxidised for energy production. In this 

context, the heterotrophic yield coefficient (YH) represents the fraction of substrate used 

for production of new biomass. This coefficient can be calculated also using 

respirometric techniques [23]. For this work the YH was 0.71 mgCOD mgCOD
-1, as in a 

previous work using biomass coming form the same WWTP and calculated based on 

intermediate products from CWAO of phenol [19]. 

Once the OC is obtained from the respirometric tests, the CODrb can be 

calculated using Equation 3.15.  

H

2step
rb Y1

OC
COD

−
=       Eq. 3.15 

 

Then, the CODRB fraction of CWAO effluents is calculated according to: 

100·
COD

COD
COD%

2stepadded

rb
rb =      Eq. 3.16 

 

c) Examples for the interpretation of results obtained from respirometry: 

To illustrate the different biodegradability parameters measured by 

respirometry, some typical cases will be presented extracted from the research work by 

Suárez-Ojeda (2006) [19]. Figure 3.7 shows the OUR profiles of selected compounds. 

The respirometric experiment with 5 mgL-1 of maleic acid (Figure 3.7) showed 

that this compound was non-readily biodegradable, since there is no oxygen 

consumption (OC) (i.e. the area below the OUR curve) in step 2 from the applied 

procedure. Besides, given that OUR and OC from steps 1, 3 and 4 were similar, with   

±10 % as acceptable reproducibility, and that any toxic or inhibitory effect could be 

observed, maleic acid can be classified as inert reaction intermediate. 
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Figure 3.7. OUR profiles for maleic acid, catechol, p-benzoquinone and phenol [19]                    

(the numbers in the figure refer to each step in the experimental procedure). 

 

The OUR profile for catechol (Figure 3.7) shows some OC in step 2, which 

means that this compound is readily biodegradable, at some extent. However, the 

decrease in the OURmax in step 4 with respect to step 1 is a sing on inhibition. 

On the other hand, there is no OC in step 2 for p-benzoquinone, which means 

that it is not biodegradable. Moreover, the absence of OC also in step 3 and the 

pronounced decrease of OURmax observed in step 4 points out that p-benzoquinone 

has a high toxic effect for non-acclimatised biomass at this concentration. 

Finally for the case of phenol, respirometric tests demonstrate that this 

compound is not readily biodegradable since there is no OC in step 2. Nevertheless, 

the slightly higher OC found in step 3 compared to step 1 indicates that, at this 

concentration, phenol is not toxic and that probably it can be biodegraded though      

cometabolic pathways thanks to the presence of other readily biodegradable 

compounds such as acetate [24]. 
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3.4.2. Activated carbon characterisation 

Characterisation of AC samples was systematically done by thermogravimetric 

analyses (TGA) in order to quantify the weight change due to chemisorption of 

polymeric compounds or direct AC combustion during reaction. In the iron containing 

AC samples, some other techniques to determine the surface oxygen groups, the BET 

area, the iron loading and the isoelectric point of surface charge (also known as point 

of zero charge) were also applied. 

 

3.4.2.1. Thermogravimetric analyses 

At the end of each experiment, the AC was recovered and dried overnight at 

105 ºC under nitrogen flow. Later, each sample of used AC was subjected to 

Thermogravimetric Analyses (TGA, Perkin-Elmer thermobalance, model TGA7). One 

fraction of the sample was kept at 400ºC for 60 minutes under N2 atmosphere to 

remove physisorbed compounds and subsequently weighted to measure the catalyst 

mass change after reaction (∆W) as follows: 

 

100·
W

WW
W

105

105400 −=∆      Eq. 3.17 

 

where, W400 is the weight of AC after TGA at 400 ºC and W105 is the used AC 

weighted after drying at 105 ºC. 

Another fraction was heated from 100 to 900 ºC under N2 flow at a heating rate 

of 10 ºC min-1, allowing measuring the total weight loss (TWL) for each AC, in a similar 

way than in Equation 3.17. From the TWL it is possible to calculate the remaining AC 

mass (mfAC) after removing physisorbed and chemisorbed compounds by TGA, using 

Equation 3.18. 

 

105105fAC W·
100
TWLWm −=     Eq. 3.18 

 

3.4.2.2. Boehm titration 

Surface oxygen groups (SOG) on AC surface were determined by Boehm 

titrations, following a procedure described elsewhere [24-27]. [25,26,27,28].  

In order to selectively neutralise the acidic groups on AC surface, different 

samples of 1 g of AC-L were left in contact for 24 h with 0.05M solutions of NaOH, 
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Na2CO3 or NaHCO3. Afterwards, the solutions were filtered and titrated with 0.05M HCl 

in order to quantify the excess base that had not been neutralised. The number and 

type of acidic sites were calculated by considering that NaOH neutralises carboxylic, 

lactonic and phenolic groups, that Na2CO3 neutralises carboxylic and lactonic groups 

and that NaHCO3 neutralises only carboxylic groups. Carboxylic groups were therefore 

quantified by direct titration of residual NaHCO3. The difference between the groups 

neutralised by Na2CO3 and those neutralised by NaHCO3 was assumed to be lactones, 

and the difference between the groups neutralised by NaOH and those neutralised 

Na2CO3 was assumed to be phenols.  

Basic sites were determined by titration with 0.05M NaOH of a 1 g AC-L sample 

in contact with 0.05M HCl for 24h. 

 

3.4.2.3. Nuclear Magnetic Resonance spectroscopy 

Nuclear Magnetic Resonance (NMR) is a physical phenomenon based upon the 

quantum mechanical magnetic properties of an atom's nucleus, which occurs when the 

nuclei of certain atoms are immersed in a static magnetic field and exposed to a 

second oscillating magnetic field. All nuclei that contain odd numbers of protons or 

neutrons have an intrinsic magnetic moment and angular momentum. The most 

commonly measured nuclei are hydrogen-1 (the most receptive isotope at natural 

abundance) and carbon-13, although nuclei from isotopes of many other elements can 

also be observed. 

NMR spectroscopy is the use of the NMR phenomenon to obtain physical, 

chemical, electronic and structural information about molecules. It is a powerful and 

theoretically complex analytical tool that can provide detailed information on the 

topology, dynamics and three-dimensional structure of molecules in solution and the 

solid state. In NMR, the chemical shift describes the variation in the resonance 

frequency of a nuclear spin due to the chemical environment around the nucleus. The 

chemical shift (δ) is usually expressed in parts per million (ppm) by frequency [29]. 
13C Magic Angle Spinning NMR spectra of original and oxidised AC powdered 

samples were recorded at 100.52 MHz using pulse decoupling acquisition with a 4 mm 

probe in a 400-Varian NMR equipment with a spinning frequency of 12000 kHz and a 

pulse delay of 12 seconds.  
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3.4.2.4. Ultimate analyses 

Ultimate analyses were performed to determine the hydrogen, nitrogen, sulphur 

carbon and oxygen content in AC and FeAC samples. This technique is based on the 

complete combustion at 1150 ºC of all constituents in the sample, giving rise to the 

elements C, H, N, S and combustion gases (i.e., N2, CO2, H2O, NOx, SO2 and SO3) that 

are reduced at 850 ºC using a copper catalyst to CO2, H2O, SO2 and N2. Then, these 

compounds are driven by means of a gas carrier (He) through specific columns for 

separation by thermal desorption. Those gases pass through a thermal conductivity 

detector that gives a signal proportional to the concentration of each elemental 

compound in the sample.  

The analytical equipment used was an Elemental Analyser CHNOS, model 

Vario EL III from Elementar Analysesysteme GMHB.  

 

3.4.2.5. Isoelectric Point of charge 

The Isoelectric Point (IEP), of a solid placed in an electrolyte corresponds to the 

pH value at which the surface of the solid is electrically neutral. This IEP was 

determined by mass titration [30], i.e. by measurement of pH in the system to which the 

solid sample is added in subsequent portions. In order to cover a pH range of interest, 

at least two experiments should be performed; one with a low pH and the other with 

high initial pH. Following this method, various amounts of each carbon sample were 

added to solution of constant ionic strength and resulting pH values were measured 

after one day of equilibration. Initial pH was adjusted by addition of HNO3 or NaOH. A 

constant ionic strength of 0.001 mol L-1 was controlled by NaNO3. The pH was 

measured by the combined (glass-Ag/AgCl) electrode from a Crison Compact Titrator. 

Typical values of carbon concentration in the NaNO3 solutions were 0, 2, 5, 10, 15, 20, 

25 g L-1. The increase in mass concentration causes a change in pH so that the value 

asymptotically approaches the IEP, as illustrated in Figure 3.8 for AC-L. 
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Figure 3.8. Isoelectric point determination by mass titration for AC-L. 

 

The terms Isoelectric Point and Point of Zero Charge (PZC) are often used 

interchangeably, although under certain circumstances it is important to make the 

distinction. In the absence of positive or negative charges, the surface is best 

described by the PZC. If positive and negative charges are both present in equal 

amounts, then this is the IEP. Thus, the PZC refers to the absence of any type of 

surface charge, while the IEP refers to a state of net neutral surface charge [31]. 

Therefore, the difference between the two is quantity of charged sites at the point of net 

zero charge. In the case of AC, the term IEP is more suitable.  

 

3.4.2.6. Nitrogen adsorption/desorption isotherms 

Nitrogen adsorption/desorption isotherms at 77 K were performed to determine 

the surface area and pore volume of all AC samples prepared. Before adsorption, 

samples were degasified submitting them to vacuum for 5h at 250 ºC in order to 

remove all substances initially adsorbed on the AC surface. These analyses were 

carried out in a Micromeritics Tristar 3000 equipment. Specific surface area was 

calculated by the BET method (after Brunauer, Emmett and Teller) [32]. The total pore 

volume (VT) was measured at P/P0 = 0.975 whereas the micropore volume (Vmicropore) 

was determined using the t-plot method [33].  
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3.4.2.7. Iron content  

Bulk iron content in the commercial AC and in the prepared FeAC catalysts was 

obtained by atomic emission spectroscopy with induced coupled plasma (ICP-AES) 

analysis collected in a Varian Vista AX system. Before this determination, it was 

necessary to calcinate and to give an acidic attack to the AC matrix in order to remove 

all organic matter from the samples. The calcination was done for 60 minutes at 500 ºC 

and following 5 hours at 750 ºC in a muffle oven. The remaining solid residue was 

digested with HF and HCl to get an iron solution from the ashes. This acidic solution 

was then solved with distilled water for its ICP-AES analysis. Iron concentration in the 

acidic solutions obtained was determined by interpolation to a standard calibration 

performed using different solutions of known iron concentration. 
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4. Fenton process 

Fenton oxidation process was investigated as a screening tool to learn about 

the potential of H2O2 for the oxidation of phenolic aqueous solutions, at different 

operating conditions and in a batch reactor configuration. Most importantly, this 

process helped to develop an experimental procedure and some analytical techniques 

required for the later study of the PP-CWAO process. 

As previously presented in the Methodology section, the operation parameters 

studied for the Fenton oxidation of phenol were: H2O2 and catalyst concentration, initial 

pH and temperature. First of all, the results referring to the effect of the different 

operation conditions using high concentrations of Fe2+ in phenol oxidation are 

discussed. Secondly, the oxidation capacity of the system using low concentrations of 

ferrous catalyst was tested and it helped to determine the effect of residual H2O2 on the 

analytical methods and in the sample conservation. With this information it was 

possible to deal with samples from other processes using hydrogen peroxide, as in the 

PP-CWAO. 

 

4.1. Phenol oxidation: kinetic studies 

Several series of experiments on phenol oxidation using the Fenton reagent 

(i.e. iron salts and hydrogen peroxide) were conducted varying the temperature        

(30-85 ºC), the initial concentration of H2O2 (100-200 % of the stoichiometric demand 

according to Equation 3.1), the Fe2+:H2O2 ratio (1:5-1:10 w:w) and the initial pH 

(adjusted to 2.8 and without initial adjustment). Table 4.1 summarises the values of 

these operating variables and the results in terms of phenol conversion, COD removal. 

Table 4.1 also includes the pseudo-first order kinetic rate constant (k) for phenol 

degradation, which will be discussed later. The initial phenol concentration was 5 g L-1 

in all cases. 
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Table 4.1 Results for Fenton process using high concentration of Fe2+ catalyst. 

Molar ratio 
Ph:H2O2:Fe2+ 

Fe2+:H2O2 
ratio (w:w) 

H2O2 
(%)* 

T  
(ºC) 

pH0 
Xphenol    
(%) 

XCOD        

(%) 
k  

(s-1) 
30 100 94 7.21 
50 100 93 2.14 1:14:0.343 1:5 100 
85 

2.8 
100 96 0.82 

30 100 91 3.62 
50 100 95 0.33 1:28:0.685 1:5 200 
85 

2.8 
100 96 0.22 

30 100 73 167.50 
50 100 73 4.25 1:14:0.171 1:10 100 
85 

2.8 
100 84 3.97 

30 100 91 30.59 
50 100 89 0.50 1:28:0.343 1:10 200 
85 

2.8 
100 93 0.86 

30 100 89 18.49 
50 100 97 2.53 1:14:0.343 1:5 100 
85 

free 
100 91 1.47 

30 100 92 3.47 
50 100 91 0.59 1:28:0.685 1:5  200 
85 

free 
100 94 0.57 

30 100 86 82.22 
50 100 92 3.80 1:14:0.171 1:10 100 
85 

free 
100 92 3.68 

30 100 90 9.10 
50 100 92 0.50 1:28:0.343 1:10 200 
85 

free 
100 93 0.62 

* Percentage of the stoichiometric amount for complete mineralisation. 
 

The chemical oxidation of the Fenton process can be expressed in a simple 

way as: 

[ ] [ ] [ ] [ ]p22
n2m OHFephenolk

dt
phenold +−=   Eq. 4.1 

 

where k is the reaction rate constant, t the time and m, n and p are the reaction orders 

with respect to phenol, Fe2+ and H2O2, respectively. Assuming a first-order reaction for 

the oxidation of phenol, the above equation becomes: 

 

[ ]
[ ] [ ] [ ] tOHFek
phenol
phenolln p

22
n2

0

+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
   Eq. 4.2 
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in which [phenol]0 is the initial phenol concentration. In this case, a plot of 

ln([phenol]/[phenol]0) vs. time in every experiment must lead to a straight line with the 

slope corresponding to an observed reaction rate constant (kobs).  

Figure 4.1 show these plots for experiments in which the temperature and initial 

Fe2+:H2O2 ratio were varied. As it can be observed, points lie in satisfactory straight 

lines with correlation coefficients greater than 0.9. As the reaction evolved so fast, 

complete phenol removal was reached in less than ten minutes. Therefore, in some 

cases, only two points were available to build the ln([phenol]/[phenol]0) vs. time plots. 
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Figure 4.1. Determination of the observed reaction rate (initial pH not adjusted):                          

a) 100% stoichiometric H2O2 and b) 200% stoichiometric H2O2. 
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The observed reaction rate constants obtained in from Figure 4.1 are, in fact, a 

function of Fe2+ and H2O2 concentrations. Taking rate order for Fe2+ as 1.67 and the 

rate order for H2O2 as 0.68 [1], the first-order kinetic constant for phenol degradation 

can be expressed using Equation 4.3. These constants are included in Table 4.1 and 

will be later used in an attempt to evaluate the activation energy (Ea) of the phenol 

oxidation by the Fenton reagent. 

 

68.0
22

67.12
obs

]OH[]Fe[
k

k
+

=     Eq. 4.3 

 

4.1.1. Influence of initial pH 

Fenton process is efficient only in the pH range 2-4 and it is usually most 

efficient at around pH 2.8. This is particularly due to the precipitation of ferric 

oxyhydroxide (FeOOH) and Fe(OH)3, which have low catalytic activity, at pH > 3-4 

(depending on the iron concentration) [2]. Also, the oxidation potential of HO· radical is 

known to decrease with an increase in the pH [3]. 

In this study, phenol oxidation was done adjusting the initial pH to 2.8 but also 

without modification, with a pH around 5.9 which corresponds to the 5 g L-1 phenol 

solution. As it can be seen in Table 4.1, phenol was completely removed whatever the 

reaction conditions used. Since complete elimination of phenol was achieved in less 

than ten minutes, results will be discussed in terms of COD removal. The difference in 

COD conversions between experiments performed at the same reaction conditions but 

varying the initial pH was ±5 % in all cases except for the molar ratio 1:14:0.171, i.e., 

when using the lowest initial concentrations of H2O2 and Fe2+. This difference can be 

considered as acceptable experimental error. For the molar ratio 1:14:0.171, variations 

in COD conversion were between 10 and 26%, higher for experiments without initial pH 

adjustment. Therefore it seems that the initial pH adjustment is not necessary at the 

present conditions since even at initial pH around 5.9, some active iron species are 

present ant they are able to establish an effective redox system for the generation of 

hydroxyl radicals with H2O2. Moreover, the generation of organic acids from phenol 

degradation leads to a drop in pH, which in all cases reached values between 1 and 2. 

Figure 4.2 illustrates the typical pH profile of Fenton oxidation of phenol, 

supporting the viability of the process without acidification of the initial solution. The first 

inflection is caused by the addition of FeSO4 catalyst which typically contains some 

residual H2SO4. A more pronounced drop in pH occurs when the H2O2 is added, and 

continues gradually at a rate which is largely dependent on catalyst concentration [4]. In 
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the present reaction conditions, the quite high amounts of Fe2+ used may have ensured 

the availability of catalyst for the generation of hydroxyl radicals and consequently, the 

complete elimination of phenol. 

 

Figure 4.2. Typical pH profile of phenol Fenton oxidation [4].  

 

The influence of initial pH is also noticeable from observation of the calculated 

kinetic constants. It can be seen in Table 4.1, that usually the rate constant was higher 

if the initial pH was not adjusted for the molar ratios 1:14:0.343 and 1:28:0.685 (i.e. for 

the highest Fe2+:H2O2 ratio, 1:5 w:w). On contrary, the higher rate constants were found 

when initial pH was set to 2.8 for the molar ratios using the lowest Fe2+:H2O2 ratio (1:10 

w:w), 1:14:0.171 and 1:28:0.343. This fact points out that the relationship between Fe2+ 

and H2O2 is important for the initial reaction stages, although similar results are found 

for similar reaction times. 

  

4.1.2. Influence of H2O2 concentration 

It has been generally observed that the percentage of degradation of an organic 

pollutant increases with an increase in the dosage of hydrogen peroxide [5]. Results in 

Table 4.1 show very little improvement when using the stoichiometric or double of the 

stoichiometric H2O2 quantity. However, for a given Fe2+:H2O2 ratio, COD removals were 

slightly higher at the highest stoichiometric H2O2 dose.  

On one hand, this behaviour could be due to the enhanced thermal 

decomposition of hydrogen peroxide into water and oxygen when temperature is 

greater than 50 ºC [4]. On the other hand, if peroxide is present in very large quantities 

it can act as a scavenger for the generated hydroxyl radicals [6], as shown in Equation 

4.4. 

 

OH· + H2O2 → H2O + HO2·     Eq. 4.4 
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Moreover, as already discussed in the Methodology section, residual hydrogen 

peroxide contributes to COD and must be removed before analyses. Also, the 

presence of H2O2 is harmful to many microorganisms [5] and so it should be eliminated 

from the process out streams. Therefore, the loading of H2O2 should be adjusted in 

such a way that the entire amount is used for the oxidation reactions. In this case, the 

stoichiometric quantity of peroxide was enough to achieve the complete elimination of 

phenol and COD reductions from 86 to 97%, without initial pH adjustment. 

With regard to the influence of H2O2 concentration on the process kinetics, no 

clear trend can be extracted from values presented in Table 4.1. Thus, it has to be 

concluded that H2O2 thermal decomposition, radical scavenging reactions and 

oxidation processes are all present and competing, which increases the process 

complexity for the range of conditions in this study.  

 

4.1.3. Temperature influence 

Not many studies are available focused on the effect of temperature on the 

degradations rates and usually ambient conditions can safely be used with good 

efficiency [5]. The rate of reaction with Fenton’s reagent increases with increasing 

temperature, with effect more pronounced at temperatures higher than 20 ºC. 

However, as temperature increases above 40-50 ºC, the efficiency of H2O2 utilization 

declines, due to its accelerated decomposition into oxygen and water [4]. Nevertheless, 

reaction temperatures up to 100ºC have been tested in the CWPO processes [7] or the 

Fenton process using heterogeneous iron based catalysts [8]. Therefore, in this 

research three different temperatures mostly covering the conventional working range 

were tested to check the effects on phenol oxidation but also on H2O2 performance. 

Unexpectedly and as it can be seen in Table 4.1, the kinetic rate constants 

found significantly decrease with an increase of the reaction temperature from 30 to   

50 ºC. Moreover, a rise of temperature from 50 to 85 ºC produce a further decrease in 

the phenol reaction rate, which could be explained by thermal decomposition of H2O2 

as previously stated. Nevertheless, after 60 minutes of reaction, irrespective of the 

temperature, both phenol and COD elimination are quite comparable. These results 

agree with most authors [4-5,9-10], which recommend between 20 and 50 ºC for 

Fenton oxidation, since at higher temperature the increase in the COD removal is 

marginal. Therefore, in the present work, the lower temperature of 30 ºC was fixed for 

the study of phenol reaction at lower Fe2+ concentrations.  
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Figure 4.3 illustrates the small effect that temperature has on phenol and COD 

removal. As reported on Table 4.1, all reaction conditions reached 100 % phenol 

conversion and COD removals higher than 80 %, without initial pH adjustment. 
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Figure 4.3. Temperature effect on a) phenol and b) COD conversion                                             

(initial pH not adjusted and 100% stoichiometric H2O2). Lines represent trends. 
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In an attempt to determine the activation energy for the oxidation of phenol 

using the Arrhenius Equation (Equation 4.5), the natural logarithm of the previously 

calculated rate constants was plotted against the inverse of each temperature tested 

and it is presented in Figure 4.4. Then, the activation energy could be calculated from 

the slope of each series in Figure 4.4 using Equation 4.6, where A is the frequency 

factor, R the gas constant and T the temperature. 

 
RT/Eae·Ak −=   (Arrhenius Equation)  Eq. 4.5 

                                             
RT
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Alnkln a−=                                                Eq. 4.6 

0,0028 0,0030 0,0032 0,0034
-3

-2

-1

0

1

2

3

4

5

6

 

 

                          Molar ratio
    Symbol      phenol:Fe2+:H2O2    pH

          1:14:0.343          2.8
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Figure 4.4. Plot of lnk vs. 1/T for the degradation of phenol using high Fe2+ concentration. 

 

It can be seen in Figure 4.4 that although all series of experiments preformed 

could be fitted to a straight line, they followed the opposite trend expected from the 

Arrhenius Equation, i.e., positive slopes. This behaviour leads to negative values for Ea, 

meaning that the higher reaction temperature, the lower the reaction rate, which has no 

physical sense. So, it was not possible to obtain Ea from the experiments performed. 

This observation could be expected from the previous discussion on the influence of 

each variable studied and from the values of the kinetic constants obtained.  

Thus, it has been demonstrated that hydrogen peroxide consumption by 

oxidation, thermal degradation and radical scavenging reactions must be considered 

for an accurate kinetic modelling of the Fenton reaction at the temperature range 

covering 30 to 85 ºC. 
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4.2. Phenol oxidation at low Fe2+ concentration 

For homogeneous Fenton processes, there is a direct correlation of phenol 

removal efficiency with iron concentration, up to a certain concentration, where further 

addition of iron becomes inefficient. Typical Fe:H2O2 ratios are 1:5/1:10 w:w, though 

iron concentrations of less than 25-50 mg L-1 can require excessive reaction times [11]. 

In order to determine the process performance using low concentrations of 

catalyst, phenol oxidation in the range of 5-100 mg L-1 Fe2+ was studied. The operating 

conditions chosen from the previous experiments were set at 30 ºC, pH not adjusted 

and stoichiometric H2O2 dose.  

The discussion in this section will be based on phenol and TOC conversions, 

since interferences of H2O2 in COD determination were found due to the presence of 

unreacted peroxide in the samples. Then, the investigation of methods to quench or 

remove unreacted H2O2 from the samples was started using the following series of 

experiments and reliable COD analyses were not available for all tests. 

Figure 4.5 presents phenol and TOC removals for experiments using 5, 10, 50 

and 100 mg L-1 of Fe2+. As expected, phenol disappearance proceeds faster as Fe2+ 

concentration increases. However, for 50 and 100 mg L-1 of Fe2+ differences are 

undetectable because conversion is already complete in just a few minutes. 

As it can be seen, similar results were obtained for phenol conversion when 

using 100 or 50 mg L-1 of catalyst and also comparable results were found for 5 and 10 

mg L-1 of catalyst. On the other hand, the improvement on TOC removal is clearly 

dependent on Fe2+ concentration. Therefore it can be concluded that a Fe2+ dosage 

above 50 mg L-1 can not increase phenol removal because it is already completed, but 

there is an effect on the overall TOC conversion. Given the uncertainty with regard to 

the precise mechanism of the Fenton reaction, the results only show how important is 

the concentration of ferrous ions for the production of hydroxyl radicals or hydroxyl 

radical-like species (such as particularly, the ferryl species FeO2+) considered being the 

active species for the oxidation reactions to proceed [2]. 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
PEROXIDE PROMOTED CATALYTIC WET AIR OXIDATION OF PHENOLIC AQUEOUS  SOLUTIONS USING 
ACTIVATED CARBON AS CATALYST 
Alícia Rubalcaba Mauri 
ISBN: 978-84-691-0372-2/ DL: T.2190-2007 
 



80 

 

 

 

0

20

40

60

80

100

 

 

X ph
en

ol
 (%

)

 100 mgL-1 Fe2+

 50 mgL-1 Fe2+

 10 mgL-1 Fe2+

 5 mgL-1 Fe2+

 
 

 

 

 

 

 

 

 

 

 

Figure 4.5. Phenol conversion and TOC reduction using low concentrations of Fe2+        

(T=30ºC, initial pH not adjusted, 100% stoichiometric H2O2). 
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4.3. Overview 

The study of several variables in the Fenton Oxidation Process has been the 

starting point on the research for an oxidation process capable to use hydrogen 

peroxide efficiently in order to achieve good results in the elimination of phenolic 

compounds. 

The effects of operating variables such as pH, temperature and ratio of H2O2 to 

Fe2+ on the treatment performance have been explored. Experimental results show that 

there is no need of adjusting initial pH when dealing with concentrated phenolic 

aqueous solutions (i.e. 5 g L-1). This is due to the formation of organic acids as the 

reaction proceeds, which leads to a drop in pH within the 1.5-2.5 range. It has been 

found that neither using double of the stoichiometric dose for phenol mineralisation nor 

operating at temperatures higher than 30 ºC leads to significant benefits, since all 

reaction conditions tested reached similar results, i.e., complete phenol conversion in 

just 10 minutes of reaction and COD removals higher than 70 % after 60 minutes of 

reaction. 

A kinetic model for the Fenton treatment could not be proposed since at the 

temperature range studied, the process is affected by hydrogen peroxide thermal 

decomposition and radical scavenging reactions that must be considered as well as 

phenol oxidation.  

 When phenolic solutions were treated using low concentrations of iron catalyst, 

a Fe2+ dosage above 50 mg L-1 already lead to complete phenol removal after 10 

minutes, but TOC conversion increased with increasing Fe2+ concentration. This last 

set of experiments helped to choose the procedure to avoid interferences with the 

analytical methods due to residual H2O2 in the samples as already presented in the 

Methodology (see section 3.4.1.1). This information was critical to deal with oxidised 

samples from other processes using hydrogen peroxide, such as the Peroxide 

Promoted CWAO. 
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5. Peroxide Promoted Catalytic Wet Air 

Oxidation of phenol over activated carbon 

This chapter includes the results and discussion obtained from the here called 

Peroxide Promoted Catalytic Wet Air Oxidation process. The main purpose of the 

experiments performed was to find out whether it is possible to improve the 

mineralisation capacity of CWAO or to enhance the biodegradability of oxidised 

effluents to acceptable values for a subsequent biological treatment. 

In the first section, the effect of adding under stoichiometric amounts of 

hydrogen peroxide to the classical CWAO process has been investigated for the 

removal of phenolic aqueous solutions in a TBR configuration, using activated carbon 

as catalyst and at three different reaction conditions (120, 140, 160ºC). Secondly, 

control tests in which an inert support was used instead of AC and in which air was 

replaced by N2 were performed in order to distinguish between the effect that could be 

attributed to the addition of H2O2 and to the promoting or synergistic effect derived from 

its combination with O2 and AC catalyst. Following, the AC performance is discussed 

based on the results from thermogravimetric analyses. Finally, the characterisation of 

the oxidised effluents and the possibility of its combination with a biological treatment 

are also commented.  

Process performance was evaluated by characterising the effluent (organic 

load, pH, biodegradability and iron leaching when necessary), but also the weight 

changes on the AC used as catalyst.  

The nomenclature used in this chapter is listed in the following table (Table 5.1). 
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Table 5.1. Nomenclature used in the PP-CWAO experiments. 

Experiment Reactor bed filling Atmosphere H2O2 (%)* 
AC-O2-00 0 
AC-O2-10 10 
AC-O2-15 15 
AC-O2-20 20 
AC-O2-30 

AC Air 

30 
AC-N2-10 10 
AC-N2-20 20 
AC-N2-30 

AC N2 

30 
IS-N2-10 10 
IS-N2-20 20 
IS-N2-30 

IS N2 

30 
IS-O2-10 10 
IS-O2-20 20 
IS-O2-30 

IS Air 

30 
* Stoichiometric amount of H2O2 according to Equation 3.1. 
 

5.1. Effect of hydrogen peroxide on the CWAO 

Based on previous studies from our research group, the initial temperature 

tested was 140 ºC [1-2]. However, to test the influence of the temperature on the     

PP-CWAO performance, experiments at 120 ºC and 160 ºC were also conducted and 

will be discussed along this section. 

Figure 5.1 shows the phenol, COD and TOC conversions obtained for the 

experiments with AC at 140 ºC and 2 bar of PO2 without hydrogen peroxide (AC-O2-00) 

and when different stoichiometric ratios of H2O2 for the complete phenol mineralisation 

were added to the initial 5 g L-1 phenol solutions: 10 % (AC-O2-10), 15 % (AC-O2-15), 

20 % (AC-O2-20) and 30 % (AC-O2-30). 

It must be pointed out that the experiments using AC as catalyst are initially 

influenced by an adsorption period. Roughly, three different zones can be distinguished 

in all the profiles using AC. An initial adsorption-dominating period results in an 

apparent total conversion until the AC bed is equilibrated. Then, a sudden decrease in 

phenol conversion is observed when the breakthrough comes out. Finally, the AC bed 

reaches a pseudo-equilibrium that gives a roughly constant conversion at the steady 

state [3-4]. 
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Figure 5.1. Conversion profiles for the PP-CWAO process at 140 ºC.                                                     

Symbols: ( ) AC-O2-00, ( ) AC-O2-10, ( ) AC-O2-15, ( ) AC-O2-20, ( ) AC-O2-30. 
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The adsorption-dominating period lasts for about 8-10 h, mostly in agreement 

with both adsorption capacity and bed loading. The saturation time according to the 

flow-rate and adsorption capacity calculated from the Freundlich equation at 20 ºC is 

10 h for phenol [4], as it will be discussed in Chapter 6. The difference between the 

experimental and theoretical saturation time could be due to the fact that the adsorption 

capacity decreases as temperature increases [5], and it must be noted that the 

adsorption isotherms were obtained at 20 ºC while the experiments were done at     

140 ºC. In any case, these initial profiles do not affect the steady state conversion 

achieved, so it is not relevant for the further discussion of the results. 

Along the experiments, intermediate compounds and polymeric chains of high 

dimensions are formed and can be irreversibly adsorbed on the AC, blocking the 

micropores and surface active sites [6-7]. In these pores and active sites AC is sought 

to concentrate the reactants and to generate active species from both dissolved 

molecular oxygen and H2O2 [8-9], which are responsible for phenol oxidation. These 

processes lead to a slow but progressive decrease of the AC performance observed in 

the conversion profiles, more significant when using higher amounts of peroxide, as 

Figure 5.1 shows. Since the AC surface is continuously changing, under some reaction 

conditions it is not possible to reach a true steady-state. Therefore, in the present work, 

the considered steady-state conversions will be those obtained from the average 

results between 64 and 72 h of time on stream. 

The presence of H2O2 in the reaction gave significantly higher phenol removals, 

as can be seen in Figure 5.1. Besides, higher overall mineralisation was achieved, 

since the enhancement on COD and TOC removals was even higher than for phenol 

removal itself. Then, phenol removal increases from 45 % (AC-O2-00) to 64 %        

(AC-O2-20) after adding 20 % of H2O2, while COD conversion increased from 30 % to 

63 % and TOC removal from 21 % to 51 %, as summarised in Table 5.2. It is 

noticeable that conversion enhancements are reduced when increasing the amount of 

H2O2 supplied. Thus, possibly there is some inefficient use of the oxidant at these 

reaction conditions. A similar behaviour was observed in the work of Debellefontaine et 

al. (1996) [10], who concluded that H2O2 doses higher than 15 % did not significantly 

increase the process efficiency (in a stirred batch reactor, using ferrous sulphate as 

catalyst, 160ºC and excess oxygen for the oxidation of phenol), while stoichiometric 

doses as small as    0.2 % already had a significant effect. 

In the light of the results, having achieved very similar conversions whether 20 

or 30 % H2O2 was used, it can be concluded that the critical amount of H2O2 for the    

PP-CWAO at 140 ºC is 20% of the stoichiometric demand for complete phenol 

mineralisation.  
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Table 5.2. Steady-state conversions of PP-CWAO effluents at 140 ºC. 

Experiment Xphenol (%) XCOD (%) XTOC (%) pH 
AC-O2-00 45 30 21 2.70 
AC-O2-10 52 47 40 2.36 
AC-O2-15 57 50 43 2.26 
AC-O2-20 64 63 51 2.27 
AC-O2-30 62 58 45 2.26 

 

The pH profiles for the experiments conducted at 140 ºC are plotted in       

Figure 5.2. Initially, phenol solutions have a pH around 5.9 that quickly goes down 

when the reaction products appear as the AC bed equilibration approaches. As it will 

be discussed in a following section, these reaction intermediates are mostly organic 

acids, which account for the pH decrease up to 2.3-2.7 depending on the extent of the 

oxidation process. The lower pH obtained for the PP-CWAO runs agrees with the 

higher organic removals achieved, although no significant differences could be 

detected just from the measured pH. 
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Figure 5.2. pH profiles of the PP-CWAO tests at 140 ºC.  
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PP-CWAO was also tested at a 160 ºC and the obtained conversions are 

presented in Figure 5.3. At this temperature is rather difficult to distinguish an 

adsorption-dominating period since the conversion continuously decreases along the 

time on stream tested. Yet, pseudo steady-state results taken as the average from the 

last 8 h of process are summarised in Table 5.3. From this table and from observation 

of Figure 5.3, it is noticeable that although H2O2 slightly improves phenol removal, COD 

and TOC abatements remain invariable. Taking into account that the rate of H2O2 

decomposition increases with temperature [11], thermal decomposition must be an 

important reason for the inefficient use of peroxide compared to the results obtained at 

140 ºC. At these conditions and only based on conversion results, it would not be 

recommended the use of hydrogen peroxide as oxidation promoter. It is obvious that 

the low benefits obtained would not overcome the increased cost of adding H2O2 to 

CWAO and, as it will be discussed later, the AC consumption. 

Table 5.3. Steady-state conversions of PP-CWAO effluents at 160 ºC. 

Experiment Xphenol (%) XCOD (%) XTOC (%) pH 
AC-O2-00 78 65 62 3.22 
AC-O2-10 78 70 55 2.57 
AC-O2-20 85 70 66 2.67 
AC-O2-30 91 72 67 2.67 

 

It is surprising that although at 160 ºC organic removals are higher than at           

140 ºC, pH values in the effluents were less acidic. Nevertheless, since phenol, COD 

and TOC conversion values were so close, it is expected that the effluent composition 

is mainly unreacted phenol. While on the contrary, at 140 ºC the presence of carboxylic 

acids from phenol partial oxidation gives the more acidic properties found in the 

oxidised effluents. Still, different compositions in terms of acidic intermediates could 

give very different pH, so this could be the reason for the measured pH values. An 

extended discussion on the effluents composition will be given in a following section. 
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Figure 5.3. Conversion profiles for the PP-CWAO process at 160ºC.                                                      

Symbols: ( ) AC-O2-00, ( ) AC-O2-10, ( ) AC-O2-20, ( ) AC-O2-30. 
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Conversion profiles found for experiments at 120 ºC are shown in Figure 5.4. 

Because experiments were still performed in the TBR over AC catalyst, the same 

adsorption-dominating and saturation effects observed for the process at 140 ºC are 

found at this reaction temperature. However, what is significantly different is that 

conversion profiles seem more stable and only a slow decrease is observed at the 

highest H2O2 dose (AC-O2-30). Consequently it appears that any loss of AC catalytic 

activity is less accentuated at these conditions. 

Table 5.4 lists the steady-state results for phenol effluents treated at 120 ºC. It 

was possible to observe an increase of the phenol conversion from 15 % (AC-O2-00) 

to 51 % (AC-O2-30) after adding 30 % of H2O2. Besides, as also found at 140 ºC, 

higher overall mineralization was detected, with TOC conversions increasing from 2 % 

to 37 % and COD removals from 6 % to 38 %. Even though the improvement over the 

classical CWAO process is not proportional to the amount of H2O2 supplied, since 

conversions increase at higher oxidant doses supplied, it seems that peroxide is very 

efficiently used at this temperature. It has not been proved that adding higher H2O2 

percentages would not lead to higher organic abatements. Nevertheless, AC-O2-30 is 

considered the optimal condition at this temperature, because adding more than one 

third of the stoichiometric demand for complete phenol mineralisation could not be 

considered just as a promoted process but a CWPO process under an oxic 

environment. 

Table 5.4. Steady-state conversions for PP-CWAO effluents at 120 ºC. 

Experiment Xphenol (%) XCOD (%) XTOC (%) pH 
AC-O2-00 15 6 2 2.90 
AC-O2-10 28 25 18 2.69 
AC-O2-20 43 33 19 2.10 
AC-O2-30 51 38 37 2.09 

 

pH profiles followed the same trend as in Figure 5.2, although as it can be seen 

in Table 5.4, lower pHs were obtained at higher conversions, i.e., when using higher 

doses of H2O2. In accordance with this lower pHs, more oxidised products are 

expected at these reaction conditions as it will be discussed later. The lower pH values 

found at 120 ºC than at 140 or 160 ºC can be attributed to the presence of carboxylic 

acids and other reaction products more acidic than those obtained at higher 

temperatures. 
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Figure 5.4. Conversion profiles for the PP-CWAO process at 120 ºC.                                                    

Symbols: ( ) AC-O2-00, ( ) AC-O2-10, ( ) AC-O2-20, ( ) AC-O2-30. 
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5.1.1. Control tests: Air vs. N2 atmosphere over AC or inert support 

In order to find out the direct effects of adding H2O2 to the classical CWAO 

process, control tests were performed using silicon carbide (SiC) as inert support 

instead of AC and replacing air by N2. In Table 5.5, phenol, COD and TOC conversions 

at 140 ºC are presented. Three distinct blocks can be identified: a set of experiments 

conducted with AC in an inert atmosphere, but also tests made over an IS in an inert 

atmosphere and tests using IS and air.  

Table 5.5. Summary of control tests at 140 ºC. 

Experiment Xphenol (%) XCOD (%) XTOC (%) pH 
AC-N2-10 11 9 5 3.21 
AC-N2-20 30 17 13 2.59 
AC-N2-30 36 27 22 2.34 
IS-N2-10 12 10 4 3.17 
IS-N2-20 27 23 6 2.78 
IS-N2-30 30 26 9 2.74 
IS-O2-10 25 17 10 
IS-O2-20 46 29 12 

2.83 
2.52 

IS-O2-30 56 33 15 2.37 
 

If no oxygen is used in the reaction media, similar results for phenol removal are 

obtained when using either AC or IS as bed filling. Nevertheless, one can observe a 

higher mineralisation for the activated carbon. In fact, besides the capacity of 

decomposition of the O2 molecule, AC is also capable of decomposing H2O2 molecules 

into hydroxyl radicals [8-9] and other active species. Therefore, the contact between 

phenol and active radicals at the carbon surface is enhanced due to the presence of 

H2O2 from the very beginning of the process as also found by Rivas et al. (1999) [12]. 

In addition, it is noticeable from experiments IS-10-N2, IS-20-N2 and IS-30-N2 that the 

degree of mineralisation achieved, i.e., TOC conversion, was smaller than the 

corresponding fraction of H2O2 supplied, therefore, a Fenton-like effect due to a 

possible metal contribution of the system pipes was not detected. 

With an IS and O2 atmosphere the results are significantly improved, showing 

that although in the absence of catalyst the combination of oxygen and hydrogen 

peroxide is profitable. However, it is worth mentioning that a blank test at 140 ºC, over 

an inert support and air at 2 bar PO2 gave negligible phenol conversion in the same 

reaction system [13]. 

Coming back to Table 5.2, if the performance of AC when using 10 % of the 

stoichiometric hydrogen peroxide demand (AC-O2-10) is compared with that conducted 
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over IS (IS-O2-10 in Table 5.5), both of them in an air atmosphere at 140 ºC, phenol 

conversion is twice that  obtained  over the IS (i.e. 25 % in IS-O2-10 against  52 % in 

AC-O2-10). It must be noted that, when using IS it is necessary to use 20 % H2O2      

(IS-O2-20) to reach the same phenol conversion than in presence of AC without H2O2 

(AC-O2-00). Using 30 % H2O2 (IS-O2-30) does not give a significant benefit neither in 

COD conversion nor in TOC removal compared to IS-O2-20, which shows a non-

efficient use of H2O2 at high doses, as also found for AC-O2-30. Then, radical 

scavenging effects, also identified in the Fenton process, may compete with the 

reaction of hydroxyl radicals and organic molecules when excess oxygen and 30 % of 

H2O2 are present in the reaction media. 

In conclusion, the combination of oxygen and hydrogen peroxide improves the 

oxidation capacity even in the absence of catalyst. However, over AC, adding H2O2 

significantly increases phenol mineralisation (i.e. increasing COD and TOC removals).  

Even though AC is known to decompose H2O2 [8,14], the limited hydrogen 

peroxide availability could explain that phenol oxidation extent was similar for 

experiments using either AC or IS. Nevertheless, AC is also capable to adsorb oxygen 

and to activate H2O2 on its surface involving the formation of oxygen active species 

[15], which could be the reason for the improvement in terms of phenol mineralisation 

using simultaneously both oxidants over AC catalyst. These results are in agreement 

with the work of Lüking et al. (1998) [16] who examined iron powder, graphite and AC 

for the oxidation of 4-chlorophenol with H2O2. These authors concluded that, although 

highest reaction rates were found for the Fenton reactions induced by dissolved iron 

powder, AC acts as a heterogeneous catalyst for the activation of hydrogen peroxide 

and can be used for the oxidation of organic substances. In addition, they also 

suggested that the granular structure with a high specific surface area of AC could be 

advantageous in the case of fixed bed reactors, such as the TBR. 

The hydrogen peroxide decomposition-activation mechanism is not completely 

understood but several electron transfer processes have been suggested to take place 

during the reaction. Oliveira et al. (2004) [9] proposed a competitive mechanism for the 

peroxide decomposition and organic oxidation in the presence of AC. In their work, 

reducing sites in the AC surface, i.e., basic oxygen surface groups, could promote the 

decomposition of hydrogen peroxide and the oxidation of organic compounds (phenol 

and hydroquinone). These reactions seem to take place by a radical mechanism 

probably initiated by an electron transfer from the reducing site in the AC to the 

hydrogen peroxide molecule to produce species such as ·OH and ·OH2. Other authors 

[8,14-16] mainly assume that the H2O2 decomposition on AC involves the exchange of 

a surface hydroxyl group with a hydrogen peroxide anion (Equation 5.1). The formed 
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surface peroxide is regarded as having an increased oxidation potential which enables 

the decomposition of another H2O2 molecule with the release of O2 and regeneration of 

the carbon surface (Equation 5.2). [14,15,17] 

 

AC-OH + H+OOH- → AC-OOH + H2O     Eq. 5.1 

AC-OOH + H2O2 → AC-OH + H2O + O2    Eq. 5.2 

 

Apart form the decomposition reaction in Equation 5.2, considering that AC acts 

as an electron transfer catalyst, H2O2 can also be activated on AC surface involving the 

formation of free radicals (Equations 5.3 and 5.4). Nevertheless, heterogeneous 

decomposition of hydrogen peroxide on AC may also be considered to depend on both 

the carbon porosity and the chemical properties of the surface, which are associated 

with surface and bulk diffusion of the hydrogen peroxide molecules [8]. 

 

AC + H2O2 → AC+ + OH- +OH·      Eq. 5.3 

AC+ + H2O2 → AC + HO2· + OH·      Eq. 5.4 

 

Control tests were also performed at 160 and 120 ºC and results are 

summarised in Table 5.6 and 5.7. Again three distinct blocks can be distinguished for 

experiments over AC in nitrogen atmosphere and for tests over IS either in nitrogen or 

air atmosphere. At 160 ºC, conversion profiles at AC-N2-10 conditions oscillate in a 

range around 0 ± 10 %. As it will be discussed later, this fact points out that 

consumption of AC during reaction not only takes place by direct combustion. It must 

be also some disintegration or dissolution of AC that contributes to increase the organic 

load found in the effluent leading to negative conversion values. Since it is not possible 

to distinguish between the fraction of COD or TOC that comes from phenol oxidation 

and that coming from AC contribution, conversion values given should be considered 

observable results, lower than those corresponding to process capacity in terms of 

phenol removal. On this basis, although results at 160 ºC must be considered carefully, 

it can be said that the use of AC in N2 atmosphere does not allow observing a 

significant improvement over the process using IS apart from a slightly higher 

mineralisation for AC-N2-30. Meanwhile, although very similar results are found for 

experiments using IS, slightly higher phenol removal and mineralisation are found 

when combining O2 and H2O2 than in N2 atmosphere. 
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Table 5.6. Summary of control tests at 160 ºC. 

Experiment Xphenol (%) XCOD (%) XTOC (%) pH 
AC-N2-10 -- -- -- -- 
AC-N2-20 17 15 12 2.94 
AC-N2-30 40 36 25 2.56 
IS-N2-10 12 6 4 3.24 
IS-N2-20 32 18 16 2.28 
IS-N2-30 60 20 17 2.40 
IS-O2-10 23 13 4 
IS-O2-20 47 27 19 

2.77 
2.54 

IS-O2-30 59 34 22 2.34 
 

Table 5.7. Summary of control tests at 120 ºC. 

Experiment Xphenol (%) XCOD (%) XTOC (%) pH 
AC-N2-10 16 14 7 2.90 
AC-N2-20 33 28 18 2.44 
AC-N2-30 47 38 29 2.31 
IS-N2-10 10 2 1 3.08 
IS-N2-20 19 7 2 2.84 
IS-N2-30 28 10 5 2.80 
IS-O2-10 11 4 2 
IS-O2-20 14 5 4 

2.31 
3.05 

IS-O2-30 27 18 16 3.07 
 

At 120 ºC, comparing experiments over AC or IS in an inert atmosphere it can 

be seen that higher organic removal was obtained for activated carbon. The same 

effect was observed at 140 ºC, which means that at this temperature AC is able to 

produce hydroxyl radicals from H2O2 and facilitate its reaction with the organic 

compounds. With IS and N2 atmosphere the results are not much different from those 

in the presence of O2, since being the inert support unable to decompose the O2 

molecule in active radicals, it is not possible to profit from the oxidation conditions in 

the IS-O2-10/20/30 tests.  

Figure 5.5 summarises all control tests discussed in this section for its better 

comparison. 

UNIVERSITAT ROVIRA I VIRGILI 
PEROXIDE PROMOTED CATALYTIC WET AIR OXIDATION OF PHENOLIC AQUEOUS  SOLUTIONS USING 
ACTIVATED CARBON AS CATALYST 
Alícia Rubalcaba Mauri 
ISBN: 978-84-691-0372-2/ DL: T.2190-2007 
 



 96 

0

10

20

30

40

50

60

70

 

 

X 
(%

)

 phenol
 COD
 TOC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Control tests at different temperatures: a) 120 ºC, b) 140 ºC, c) 160ºC. 
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5.1.2. Promoting or synergistic effect 

First of all it would be very useful to define what is exactly understood by a 

promoting or synergistic effect. To promote is to raise, to advance or to contribute to 

the growth progress. Then, a promoting effect will be the one which helps increasing 

the starting value of a given parameter. On the other hand, a synergistic effect is that 

capable of producing synergy, which is the interaction of two or more agents or forces 

that produce a combined effect greater than the sum of their individual effects; the 

cooperative interaction among groups that creates an enhanced combined effect.  

To study whether the oxidation capacity of combining O2 and H2O2 over AC is 

greater than that predicted by knowing their separate effects (i.e. the sum of AC-O2-00 

and AC-N2-10/20/30), experimental and predicted results for phenol, COD and TOC 

conversions at 140 ºC are plotted in Figure 5.6. 

In general terms, it can be noticed that results form the PP-CWAO process   

(AC-O2-10, AC-O2-20 and AC-O2-30) in Figure 5.6 are higher than those 

corresponding to CWAO (AC-O2-00), which means that H2O2 has a promoting effect 

over the CWAO process (AC-O2-00) that increases its oxidation capacity. Adding 10 % 

of the stoichiometric demand of H2O2 leads to predicted values of phenol conversion 

slightly higher than those experimentally obtained (i.e. 52 % for AC-O2-10 against and 

expected 56 %). However, if COD and TOC reductions are compared, the experimental 

conversions found were higher than expected, e.g. 47 % for XCOD against a predicted 

39 %, and 40 % for XTOC against an expected 26 %. For experiments using 20 and     

30 % H2O2, the same effect was obtained: lower phenol conversions than those 

predicted, but higher COD and TOC removals than the expected ones just from the 

addition of AC-O2-00 and AC-N2-20/30 experiments. In fact, the much higher TOC and 

COD reduction actually obtained result in a preferential use of the oxygen radicals to 

degrade partial oxidation products with a slight detrimental effect on the phenol 

conversion. This means that the beneficial effect of using small doses of a stronger 

oxidant in the reaction media mainly lies in the degree of phenol mineralisation. 

Therefore, adding H2O2 to the classical CWAO at 140 ºC over AC has a promoting 

effect for phenol removal and a synergistic effect in terms of mineralisation, i.e., over 

enhanced COD and TOC removals. Surprisingly, the major improvement was for 20 % 

H2O2 and not from the addition of 30 % H2O2. Also observed in Figure 5.1, the higher 

concentration of oxygen and hydroxyl radicals present in AC-O2-30 may be affected by 

radical scavenging phenomena [18] that prevents from an efficient use of the oxidation 

potential at this reaction conditions. 
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Figure 5.6. Promoting or synergistic effect of H2O2 on CWAO at 140 ºC. 
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As can be extracted from Tables 5.3 and 5.6 for experiments at 160 ºC, 

supplying H2O2 to the classical CWAO process leads to slightly higher organic 

removals. However, the experimental values found were always lower than the 

predicted for AC-O2-20 and AC-O2-30. Since AC-N2-10 results could not be clearly 

extracted, predicted values for 10 % H2O2 can not be speculated. As commented for 

Figure 5.2, an enhanced thermal decomposition of peroxide can be inferred at this 

temperature. Thus, hydrogen peroxide would still have some promoting functions but it 

will not keep the synergistic capacity to improve phenol mineralisation. 

For experiments at 120 ºC (data shown in Tables 5.4 and 5.7), usually the 

predicted values for phenol conversion were slightly lower than the experimental ones, 

but different trends were obtained when comparing COD and TOC removals. When 

using 10 % of stoichiometric H2O2, COD (25 %) and TOC (18 %) reductions were 

respectively 5 and 9 % higher than the predicted values (COD: 14+6=20 %; TOC: 

7+2=9 %), which means that higher mineralisation of partially oxidised compounds was 

achieved and that synergistic effects able to increase the process efficiency were 

present. What can be inferred is that the higher occurrence of reaction intermediates in 

AC-O2-10 facilitates the reaction between a hydroxyl radical and a partially oxidised 

compound resulting in an enhanced mineralisation efficiency of the process. However, 

for experiments AC-O2-20 (COD: 33 %) and AC-O2-30 (COD: 38 %), the previously 

found synergistic processes are not so significant and for COD conversions the trend is 

even opposite, having worse experimental results than what could be predicted (34 % 

COD, for AC-O2-20 and 44 % COD, for AC-O2-30). In turn, TOC closely reached the 

expected reductions for experiment AC-O2-20 (TOC: 19 % versus a predicted 20 %) 

and gave just 6 % of improvement for AC-O2-30 (TOC: 37 % versus a predicted 31 %). 

The loss of H2O2 mineralisation capacity has to be discussed taking into account the 

changes that AC suffers during reaction. When the activated carbon is used in a 

CWAO process or PP-CWAO as an adsorbent catalyst it is necessary to take into 

account their specific characteristics, which involve physical adsorption of the 

compounds from the solution, oxidation of the organic pollutants, as well as other 

parallel reactions that may include oxidation/combustion of the AC itself and 

condensation reactions of the phenolic compounds resulting in long polymeric chains 

that can be irreversibly adsorbed onto the AC surface [7], as it will be discussed in the 

following section. 
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5.2. Activated carbon performance 

To evaluate the weight change and to highlight the presence of polymeric 

material attached to the AC surface, thermogravimetric analyses were completed at the 

end of each run. Figures 5.7, 5.8 and 5.9 show the thermograms for parent AC, phenol 

saturated AC and AC samples from oxidation experiments at the three temperatures 

studied. Since no identification of the evolving groups was performed, TGA discussion 

will follow the interpretation of Figueiredo et al. (1999) [19], in agreement with other 

studies on this issue [20-22]. This interpretation allows to assign surface groups 

depending on their desorption temperature. [20,21,22] 

As can be seen in Figures 5.7, 5.8 and 5.9, the weight change recorded for the 

used AC was notably higher than for the original AC, since for the latter the weight loss 

is only due to desorption of surface oxygen groups and some water from sample 

humidity. Besides, differences can be observed between the AC used in the CWAO 

process (AC-O2-00) and the samples from the PP-CWAO, which shows that using 

H2O2 has some influence on the formation of carbonaceous deposits on AC surface. 

First derivative on the thermograms highlights the temperature ranges at which higher 

desorption could be detected. The main peaks observed around 200 and 400 ºC in the 

phenol saturated AC correspond to phenol thermal desorption, since at 200 ºC 

physically adsorbed phenol is desorbed while at 400 ºC chemically adsorbed phenol 

desorbs [22]. 

For the AC samples after reaction, all TGA profiles show similar trends with two 

main desorption regions. Since the previous peaks found for phenol saturated AC are 

less marked in AC samples after reaction, some other compounds different from 

phenol should also be adsorbed. According to thermal decomposition of surface 

oxygenated groups on carbon surface [19], the progressive weight loss between 200 

and 400 ºC can be attributed to the decomposition of carboxylic groups that evolve as 

CO2. It must be noted that the used AC gives a much higher weight loss in this zone 

probably due to the reoxidation of the surface during its use or other adsorbed 

compounds present. The weight loss beyond 400 ºC is likely due to the release of 

various oxygen surface groups such as carbonyl, phenolic or ether-type structures that 

evolve as CO. In the range between 400 and 500ºC, the weight loss mainly correspond 

to chemically adsorbed polymers formed by oxidative coupling reactions [6,23].  
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Figure 5.7. TGA data and first derivative of TGA data for reactions at 120 ºC. 
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Figure 5.8. TGA data and first derivative of TGA data for reactions at 140 ºC. 
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Figure 5.9. TGA data and first derivative of TGA data for reactions at 160 ºC. 
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During the oxidation tests, AC simultaneously suffers from burning-off, due to its 

own oxidation and phenol oxidative coupling reactions that lead to carbonaceous 

depositions on AC surface. The AC weight change (∆W) helps to quantify which 

process occurred at a higher extent, since a positive ∆W indicates that oxidative 

coupling prevails over combustion, whereas a negative ∆W implies the opposite effect. 

The ∆W (Equation 3.20) and the TWL resulting from conventional and hydrogen 

peroxide promoted CWAO tests are collected in Table 5.8. It also included the AC 

weight after reaction (mfAC), once physisorbed and chemisorbed compounds have been 

removed during TGA analyses (see Equation 3.8). It is worth mentioning that ∆W was 

obtained applying over the initial AC mass the weight loss recorded for AC samples 

during TGA up to 400 ºC. On the other hand, the TWL is directly the weight loss 

determined for AC samples after TGA up to 900 ºC. 

Table 5.8. Weight changes of original and AC samples after reaction. 

T (ºC) Sample ∆W (%) TWL (%) mfAC (g) 
AC-O2-00 37.70 18.64 8.53 
AC-O2-10 36.81 22.59 8.09 
AC-O2-20 39.64 23.31 8.24 

120ºC 

AC-O2-30 37.76 23.60 8.33 
AC-O2-00 3.61 12.20 7.28 
AC-O2-10 20.97 20.00 7.30 
AC-O2-20 17.63 26.40 6.68 

140ºC 

AC-O2-30 15.51 24.98 6.62 
AC-O2-00 7.40 16.17 7.08 
AC-O2-10 -24.25 27.55 4.15 
AC-O2-20 -28.58 26.16 4.05 

160ºC 

AC-O2-30 -37.89 25.50 3.67 
-- original AC -- 5.36 -- 

 

As it can be observed also in Figure 5.7, the ∆W for reactions at 120 ºC is 

positive and very similar for all oxidation conditions. It does not follow any clear trend, 

which seems to indicate that at this temperature there is no relationship with the 

amount of H2O2 used in the reaction and that carbonaceous deposits prevailed over 

combustion. However, for the TWL, where desorption of long polymeric carbon chains 

are included, the differences between each experiment appear, showing a trend that 

correlates with the amount of H2O2 as well as the phenol, COD and TOC conversions 

obtained. Therefore, it seems that the contribution of hydrogen peroxide promotes 

phenol mineralisation but also phenol polymerisation and chemisorption on AC surface. 
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Reactions at 140 ºC also lead to positive ∆W showing that the extent of 

oxidative coupling reactions was higher than the direct carbon consumption by burning-

off. For experiments AC-O2-10, AC-O2-20 and AC-O2-30 ∆W was positive and up to 7, 

6 and 5 times higher than that of AC-O2-00, respectively. This means that oxidative 

coupling processes occurred in a major extent than AC combustion. Since the total 

weight loss measured from TGA up to 900 ºC was higher for experiments using higher 

doses of H2O2 it seems that an important fraction of polymeric depositions was present. 

However, since carbon depositions could also be burned during reaction, it is not 

possible to assure the exact extent of oxidative coupling or burning just from TGA 

analyses. Nevertheless, the much higher ∆W found in samples form PP-CWAO points 

out that the addition of hydrogen peroxide in the system favours the formation of 

condensed carbonaceous species, as also reported in the study by Santiago et al. 

(2005) for the same reaction system and temperature, but using different activated 

carbons that had been submitted to oxidation pre-treatments [24]. They concluded that 

the deposition of polymeric compounds was influenced by a carbon pre-treatment with 

hydrogen peroxide being an oxidant that enhanced the formation of those species on 

the carbon surface. Moreover, the authors considered the 50 h phenol CWAO 

experiments by themselves as soft liquid phase oxidation treatments of the carbon 

leading to gradual changes in its surface area, progressive carbon consumption as well 

as continuous formation of a carbonaceous deposit on the carbon surface. The last 

effect can be extended to the present results if the 72 h PP-CWAO process is seen as 

a soft liquid phase oxidation of the AC itself. The polymeric compounds condensed on 

the AC could eventually block the surface active sites and be responsible of the 

progressive catalytic activity drop found in experiments using higher amounts of 

oxidant (i.e. experiments AC-O2-20 and AC-O2-30). This adverse effect highlights that 

there is a compromise between having higher organic removals by using H2O2 and 

facilitating the loss of AC catalytic activity by carbonaceous deposits.  

On contrary, for PP-CWAO tests performed at 160 ºC, ∆W turned out to be 

negative. This is that the extent of AC burning-off processes overcame oxidative 

coupling reactions, which as previously commented, are responsible for the continuous 

decrease on AC catalytic activity at this temperature (see Figure 5.3). Thus, results at 

160 ºC are clearly affected by AC consumption, which correspond to a continuous 

decrease of the space time (τ), leading to a fall in conversion as the reaction proceeds. 

On contrary, the ∆W for AC-O2-00 at 160 ºC was positive and in the range scale of the 

weight change recorded for AC-O2-00 at 140 ºC. Therefore, AC weight changes are 

affected by both temperature and presence of H2O2.  
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From Table 5.8 it is noticeable that, regardless the reaction temperature, TWL 

values were very similar, while large differences appeared for ∆W. Since the latter 

values accounted for desorption of physisorbed compounds (see Figures 5.7, 5.8 and 

5.9), once they are removed by heating up to 400 ºC during TGA analyses, what is left 

is AC and the polymeric carbonaceous compounds chemically bonded to its surface. 

From the ∆W obtained, apparently there is no direct relation with reaction temperature 

and only some differences can be observed between AC-O2-00 samples and those 

from the process using peroxide, as previously commented. On the other hand, after 

observation of TWL values, all PP-CWAO samples reached TWL around 20-28 % 

whereas for AC-O2-00 samples this TWL was lower and from 12 to 19 %. Thus, in the 

case of TWL it seems that influence of reaction temperature is not as important as that 

of the addition of peroxide. Yet, processes modifying AC surface can not be assessed 

individually. 

 

5.3. Partial oxidation products 

Characterisation of reaction products present in the outlet stream is a very 

important factor if the combination with a biological end treatment is pursued. The 

effluent composition, assessed by HPLC analyses, will give some light on the 

deepness on the oxidation pathway that has been achieved and together with 

biodegradability characterisation will allow determining the viability of process 

combination. [18,25,26,27] 

Partial oxidation products were identified and quantified by an HPLC method 

designed according to the phenol oxidation pathways proposed in the literature [18,25-

27]. The intermediates considered were as reported in Table 3.7: glyoxilic acid, oxalic 

acid, formic acid, malonic acid, acetic acid, maleic acid, fumaric acid, succinic acid, 

acrylic acid, propionic acid, mucconic acid, 4-hydroxibenzoic acid, salicylic acid, 

quinone-like products, being hydroquinone, p-benzoquinone, resorcinol and catechol. 

The theoretical chemical oxygen demand (ThCOD) of each one of the intermediates 

detected was calculated and then grouped into four categories such as carboxylic 

acids, condensation products (4-hydroxybenzoic acid and salicylic acid), quinone-like 

products and unreacted phenol. These groups were used to build Figure 5.10 that 

gives the effluents composition in terms of fraction of COD compared to the 

experimental COD values obtained. As can be seen in Figure 5.10, the fraction of non-

identified compounds was always less than 10 % of the remaining COD. 
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Figure 5.10. Effluent composition in terms of fraction of COD:                                                           

a) 120 ºC, b) 140 ºC and c) 160 ºC. 
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Figure 5.10 (Continued). 

 

Observation of intermediate distribution points out that the PP-CWAO at 120 ºC 

not only leads to higher phenol removal, but also to higher partially oxidised 

intermediates in the treated effluents. However, using higher amount of H2O2 does not 

directly correlate neither with the occurrence of undesirable quinone-like products nor 

carboxylic acids, since regardless the H2O2 dose used the intermediate distribution is 

very similar for all cases. Besides, it was found that intermediates for AC-O2-00 were 

mainly oxalic, maleic and propionic acids, some hydroquinone and higher amounts of 

p-benzoquinone. For experiments using hydrogen peroxide, some other carboxylic 

acids such as formic, acetic were also found in the effluents. Meanwhile, using 

peroxide increased the amounts of hydroquinone and catechol, but reduced the p-

benzoquinone occurrence. 

At 140 ºC most of the residual COD correspond to unreacted phenol, being     

70 % of all remaining COD for AC-O2-00 and up to 95 % for AC-O2-20. This fact could 

be expected from the very close phenol and COD conversions found for PP-CWAO 

experiments (Table 5.2) that indicate a high degree of mineralisation (i.e. low 

occurrence of partially oxidised products in the effluent). The carboxylic acids present 

were mainly oxalic, formic, acetic, maleic and propionic. At this temperature, the 

concentration of p-benzoquinone was also lower for the process using H2O2 and higher 

amounts of hydroquinone, resorcinol and catechol were produced. 

 Remaining phenol
 Quinone-like products
 Condensation products
 Carboxylic acids
 Non-identified compounds
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For reactions at 160 ºC, the intermediates distribution is roughly the same 

whether hydrogen peroxide was supplied to the reaction or not. Reaction products 

were mainly oxalic, formic, acetic acid and propionic, hydroquinone and p-

benzoquinone, which followed the same trend found for 120 and 140 ºC reactions. This 

is that hydroquinone increased and p-benzoquinone concentrations decreased for the 

process using peroxide if compared to the non promoted CWAO process. 

The identified oxidation intermediates suggest that the CWAO of phenol 

promoted with H2O2 evolves through a pathway similar to CWAO with oxygen as 

unique oxidant, as also observed from Debellefontaine et al. (1996) [10]. 

 

5.4. Implications for integrated treatment 

Coupling chemical pre-oxidation with biological post-treatment is conceptually 

beneficial as it can lead to increased overall treatment efficiencies compared with the 

efficiency of each individual stage [28]. According to Scot and Ollis (1995) [29], four 

wastewater contaminant types are identified which can benefit from combined 

processes: 1) recalcitrant compounds, 2) biodegradable wastes with small amounts of 

recalcitrant compounds, 3) inhibitory compounds and 4) intermediate dead-end 

products. Assuming that wastewater that is toxic, inhibitory or refractory to biological 

cultures can be chemically pretreated to produce biogenic intermediates, respirometric 

techniques were applied to determine which kind of wastewater came out form the    

PP-CWAO and if it would be possible its combination with a subsequent biological 

treatment based on non-acclimatised activated sludge.  

As YH is necessary to calculate the %CODRB (Equation 3.19), an average YH 

was estimated using the data obtained from several respirometric tests [30] performed 

with acetic and propionic acid. Those acids were chosen due to its predominant 

occurrence in all CWAO and PP-CWAO effluents. The obtained YH value was 

0.71±0.02 mg COD mg-1 COD, which is in the range of the reported values in the 

literature (0.61-0.87 mg COD mg-1 COD) [31].  

Biodegradability evaluation of oxidised effluents was done by determining the 

fraction of COD readily biodegradable, the toxicity and inhibition properties. Results for 

the three temperatures studied can be found in Table 5.9. For a better understanding of 

the results, it must be said that for instance a 10 % of toxicity means that the 

microorganisms’ metabolism has been reduced a 10 % with respect to an easily 

biodegradable substrate, such as acetate. Similarly, a certain value of inhibition would 

mean that microorganisms’ metabolism has been inhibited in that percentage. 
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Table 5.9. Biodegradability characterisation of CWAO and PP-CWAO effluents. 

T (ºC) Sample CODrb (%) Toxicity (%) Inhibition (%) 
AC-O2-00 2.1 0.0 30.0 
AC-O2-10 2.9 1.4 31.8 
AC-O2-20 11.7 10.5 34.6 

120ºC 

AC-O2-30 6.4 16.8 38.9 
AC-O2-00 4.3 7.2 41.7 
AC-O2-10 11.1 13.8 44.8 
AC-O2-20 14.3 16.2 44.8 

140ºC 

AC-O2-30 12.7 4.1 48.1 
AC-O2-00 35.9 12.5 63.7 
AC-O2-10 39.7 15.3 74.6 
AC-O2-20 33.2 6.3 57.2 

160ºC 

AC-O2-30 28.7 0.0 39.7 
 

It can be observed that the fraction of CODrb in the effluents significantly 

increases when increasing the reaction temperature. However, for toxicity and 

inhibition different trends are found, depending on the temperature. In addition, 

although higher biodegradability is obtained for the PP-CWAO process if compared to 

the process without peroxide (AC-O2-00), it seems that there is no relation with the 

amount of H2O2 added.  

For experiments at 120 ºC, the highest fraction of CODrb was obtained for     

AC-O2-20, whereas the toxicity decreased and the inhibitory effect increased for      

PP-CWAO effluents with increasing dose of H2O2. At 140 ºC, again the highest fraction 

of CODrb was for AC-O2-20, which also had the highest toxicity, while inhibition levels 

were very similar for all effluents at this temperature. For experiments at 160 ºC, 

CODrb, toxicity and inhibition decreased with increasing doses of H2O2, although still 

the highest inhibition properties were recorded at this temperature. 

This contradictory behaviour that gives more toxic effluents when phenol, TOC 

and COD removals improve can be understood taking into account the biodegradability 

characteristics of each one of the intermediate products identified in the reaction 

effluents. As reported by Santos et al. (2004) [32] using Microtox®, toxicity can be 

directly related to the amount of hydroquinone, which for instance was only 15 mg L-1 in 

AC-O2-00 but from 50 to 75 mg L-1 in the experiments using H2O2 in reactions at      

120 ºC. At 140 ºC, hydroquinone concentrations were 32 mg L-1 for AC-O2-00, but from 

178 to 304 mg L-1 for PP-CWAO experiments. Yet, for reactions at 160 ºC, 

hydroquinone concentration was 21 mg L-1 in AC-O2-00 and ranged between 33 to     

61 mg L-1 in experiments using H2O2. The higher hydroquinone concentration found in 

effluents treated at 140 ºC agrees with the higher toxicity registered. Nevertheless, as 
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recently found by Suárez-Ojeda et al. (2007) [30] using respirometry, although 

hydroquinone and p-benzoquinone were found to be the most toxic CWAO 

intermediates for the aerobic biological treatment, its toxic effect decreased after      

125 days of operation in a pilot scale WWTP. These findings highlight the importance 

of using robust techniques, such as respirometry, that avoid overestimation of the 

toxicity effects of an a priori undesirable compound to the aerobic biomass in a WWTP. 

Likewise, despite of the temperature or presence of H2O2, the inhibitory 

character was significantly high (i.e. 30-75 %), which can be associated to the amounts 

of unreacted phenol still present in the effluents [30]. This inhibitory behaviour of 

phenol leads to a reduction of microorganisms’ effectiveness for the oxidation of 

biodegradable organic matter, expressed in the respirometric tests by a reduction on 

the rate of oxygen consumption. However, inhibition should be distinguished from 

toxicity, since in the former case the inhibitor only hinders the biological oxidation, while 

in the latter case the toxic compound irreversibly blocks the microorganisms’ 

metabolism. Therefore, when phenol would be eventually released from the aerobic 

sludge system, it would recover its treatment capacity. 

In this context, if the final goal of the PP-CWAO process is to produce effluents 

that could be discharged in a municipal WWTP, the oxidation products formed should 

be in the form of biodegradable compounds, increasing the amount of carboxylic acids 

and reducing phenol and quinone-like products concentration. What has been obtained 

from the PP-CWAO process is a mixture of recalcitrant, biodegradable and inhibitory 

compounds that, according to the previously mentioned classification of Scott and Ollis 

[29], could benefit from a combination with a biological treatment.  

It has been reported that although phenol is toxic, 200 and 1000 mg L-1 could be 

decomposed by biological treatment in 40 h and 340 h, respectively [33]. However, the 

actual legislation [34] fixes 2 mg phenol L-1 and 1500 mg C L-1 (TOC) as discharge 

limits to biological WWTP. Therefore, with the PP-CWAO process it was not possible to 

obtain effluents that could be directly sent to a biological WWTP. Nevertheless, the 

enhanced phenol removal points out the potentialities of PP-CWAO as a chemical pre-

treatment and efforts must be focussed on the optimisation of the actual working 

conditions, specifically the space time (τ), which has been kept constant in this study. 
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5.5. Kinetic study 

In order to relate the catalyst mass change during reaction with phenol 

conversion and to find out which is the relationship with the studied range of reaction 

temperature, the experimental results have been fitted to a first-order kinetic model for 

substrate concentration assuming an ideal plug-flow model for the TBR [13], which is a 

reasonable assumption taking into account the high reactor diameter to catalyst 

particles diameter ratio used [3]. For a first order of reaction, integration of the 

differential phenol mass balance in the reactor gives the following expression: 
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L
ap     Eq. 5.5 

 

where kap: apparent kinetic constant (mL h-1 g-1) 

QL: liquid flow rate (mL h-1) = 57.4 mL h-1 

mfAC: AC weight at the end of the test (g) 

 

At the end of each oxidation experiment, the carbon material inside the reactor 

contains the remaining AC, physisorbed compounds (i.e. some unreacted phenol and 

its reaction products) and carbonaceous deposits from oxidative coupling reactions. 

Therefore, the catalyst weight at the end of each oxidation test considered for kap 

calculations is that obtained after heating the samples up to 900ºC during the TGA 

analyses. It is accepted that AC will suffer from different modifications depending on 

the reaction conditions and the oxidation extent achieved. Besides, carbonaceous 

polymers formed during reaction may have prevented AC from being consumed by 

oxidation and since it is not possible to quantify the exact amount of polymers formed, 

it is not possible to assure that all samples would have been affected in the same way. 

In addition, reoxidation of AC surface leading to the formation of new oxygen surface 

groups would also be different depending on the reaction conditions. Yet, once the 

physisorbed and chemisorbed compounds are removed, what is left is the AC material 

with the closest characteristics to the initial AC. Thus, the AC weight after TGA in N2 

atmosphere up to 900ºC (mfAC, according to Equation 3.18) will be considered the 

carbon material that brings catalytic properties to the system and so, which should be 

used for kinetic calculations. 
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The resulting calculated apparent kinetic constants, as well as activation 

energies (Ea) and frequency factors (A) are in Table 5.10.  

Table 5.10. Kinetic parameters for CWAO and PP-CWAO at different temperatures. 

kap (mL h-1 g-1) Experimental 
conditions 120ºC 140ºC 160ºC 

Ea 
(kJ mol-1) 

A 

AC-O2-00 1.09 ± 0.03 4.71 ± 0.06 12.28 ± 0.15 85.7 ± 0.9 3.48 ± 2.30 ·109 

AC-O2-10 2.33 ± 0.04 5.77 ± 0.07 20.94 ± 0.24 77.4 ± 1.2 4.99 ± 2.91 ·108 
AC-O2-20 3.92 ± 0.05 8.78 ± 0.10 26.89 ± 0.36 67.9 ± 1.0 4.69 ± 2.41 ·107 
AC-O2-30 4.92 ± 0.06 8.39 ± 0.09 37.66 ± 0.67 71.4 ± 2.6 1.55 ± 6.35 ·108 

 

To determine the activation energy (Ea) of the phenol oxidation, the first-order 

reaction rate constants were plotted against the inverse of the temperature (Figure 

5.11), as already done in Chapter 4 (see Equation 4.5 and 4.6). Linear regression 

analysis of the data showed values of Ea ranging from 67.9 to 85.7 kJ mol-1, with 

regression coefficients higher than 0.9 for all experimental conditions. The Ea values 

were comparable to those frequently reported in the literature for the oxidation of 

phenol over metal supported catalysts (85 kJ mol-1 for CuO/Al2O3 and CuO.ZnO/Al2O3 

[35-36] and 65 kJ mol-1 for MnO2/CeO2 [37]) or over activated carbon (69.3 kJ mol-1 

[38]). It is not possible to obtain a global value of Ea for the PP-CWAO of phenol at 

reaction conditions tested because the kinetic law (Equation 5.5) employed do not 

account for the concentration of oxidant present in the system, which varied according 

to the different percentages of H2O2 supplied. 

From Table 5.10 it is easily noticeable that temperature has a strong influence 

on the process kinetics, since increasing the temperature from 120ºC to 160ºC 

increases the kinetic constant around 10 times. Also, the effect of H2O2 is noticeable 

but it is much less marked than that of temperature.  

On the other hand, the variations in the activation energies found agree with the 

obtained phenol removals. Thus, the lower Ea do not correspond to the process using 

the highest dose of H2O2 but to the conditions at which the process has the highest 

oxidation capacity, i.e., AC-O2-20. 
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Figure 5.11. First-order kinetic model for CWAO and PP-CWAO of phenol.                                     

Symbols: ( ) AC-O2-00, ( ) AC-O2-10, ( ) AC-O2-20, ( ) AC-O2-30. Lines represent trends. 

 

5.6. Overview 

Tests in a trickle bed reactor at mild total pressure (11-16 bar) and temperature 

(120-160 ºC) and feeding small amounts of H2O2 confirm that AC can be included 

among the catalysts able to be used in the PP-CWAO process. The role of AC is to 

adsorb and concentrate the pollutants on its surface, where surface functional sites are 

able to activate molecular oxygen and hydrogen peroxide. 

Simultaneous use of oxygen and H2O2 as oxidants leads to higher phenol, COD 

and TOC conversions. Although the improvement on the oxidation efficiency was not 

proportional to the amount of H2O2 added, a synergistic effect is outlined by the 

deepness in phenol mineralisation. This synergistic effect was predominant when using 

20 % of the stoichiometric H2O2 (AC-O2-20) for complete phenol mineralisation at    

140 ºC, when it was possible to reach up to 16 % more COD conversion and up to 17 

% more TOC removal than expected by simple addition of isolated contribution of each 

oxidant. These results show that there should be a preferential use of the oxygen 

radicals to degrade partially oxidised products rather than to oxidise phenol. 

On the other hand, TGA on samples after reaction reveal that AC suffers from 

partial burning-off and deactivation by formation of carbonaceous deposits that are 
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favoured by the presence of hydrogen peroxide, being less influenced by the reaction 

temperature. Nevertheless, the low cost of AC should largely offset this drawback. 

Thus, when thinking of an industrial application, it would be affordable to change an 

exhausted or consumed AC as many times as needed, although reaction temperature 

should be kept below 140 ºC to prevent the striking AC burning-off observed at 160 ºC. 

After characterisation of partially oxidised products it seems that the CWAO of 

phenol promoted with H2O2 evolves through a pathway similar to CWAO with oxygen 

alone. Only a slight increase in hydroquinone and a reduction in p-benzoquinone 

concentrations were found for effluents from PP-CWAO.  

Respirometric analyses pointed out that although higher organic conversions 

were accompanied by higher fractions of COD readily biodegradable in the effluents, 

and enhancement on toxicity and inhibition properties was also achieved. This 

contradictory behaviour was related to the increased amount of hydroquinone and to 

the predominant presence of un-reacted phenol in the oxidised effluents. Yet, previous 

results from CWAO coupled to a biological WWTP pointed out the potential suitability 

of PP-CWAO as chemical pre-treatment, since higher organic removals and 

biodegradability fractions were obtained with the promoted process. Therefore, longer 

tests on a pilot scale WWTP would be recommended to ascertain the viability of PP-

CWAO effluents for a biological end treatment. 

The activation energy values obtained ranged between 67.9 to 85.7 kJ mol-1 

and were comparable to those frequently reported in the literature for the oxidation of 

phenol. The lower activation energy was found for the process using 20 % of the 

stoichiometric demand for complete phenol mineralisation, confirming that the highest 

oxidation capacity was obtained for the AC-O2-20 system. 
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6. PP-CWAO of substituted phenols over 

activated carbon 

The aim of section was to study the viability of the PP-CWAO process, using 

activated carbon as catalyst, to increase the biodegradability of phenolic aqueous 

solutions. Typical 72 h experiments were performed in a TBR at 140 ºC and 2 bar of 

oxygen partial pressure. Feed concentrations, in terms theoretical COD, were 11.8 g 

COD L-1 for phenol, 12.6 g COD L-1 for o-cresol and 8.0 g COD L-1 for p-nitrophenol, 

which corresponds to 5 g L-1 of each model compound. Air was used as main oxidant 

and 20% of the stoichiometric amount of H2O2 needed for pollutant complete 

mineralisation was added as oxidation promoter. The results and discussion are 

divided into three sections. In the first one, the performance of each process is 

discussed by means of the organics removal (X, XCOD and XTOC). In the second, AC 

performance is examined and in the last one, the biodegradability enhancement of the 

effluents is presented. 

As previously commented, several simultaneous reactions occur when using 

AC as catalyst in CWAO or PP-CWAO. There is not only the expected oxidation of the 

target compound and its intermediates, but also two parallel reactions of the AC are 

occurring to some extent: on one hand, AC oxidation/burning and, on the other hand, 

oxidative coupling reactions (or irreversible adsorption) of the phenolic compounds 

over the AC. Moreover, physical adsorption of the substrate and of the partial oxidation 

products is also happening at the same time. Therefore, using AC as catalyst in CWAO 

or PP-CWAO increases even more the already high intrinsic complexity of wet 

oxidation processes. Thus, only global information can be taken from the effluent and 

the AC characterisation, attempting to establish the contribution of each one in the 

biodegradability enhancement. 

 

6.1. Model compounds removal  

Figure 6.1 shows the X, XCOD and XTOC profiles obtained from CWAO and      

PP-CWAO tests of phenol, o-cresol and p-nitrophenol, at 2 bar of PO2 and 140 ºC.  
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Figure 6.1. CWAO (full symbols) and PP-CWAO (open symbols) for phenol, o-cresol and         

p-nitrophenol. Symbols: ( , ) X, ( , ) XCOD and ( , ) XTOC. 
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As previously observed [1-2], when using AC as catalyst in CWAO or            

PP-CWAO, three different zones can be distinguished in the conversion profiles 

obtained from the effluent characterisation. First, after the start-up, an adsorption-

dominating period results in an apparent total conversion. Secondly, as the run 

proceeds, the adsorption-equilibration zone progresses and when the breakthrough 

exits the catalytic bed a rapid conversion fall is observed. Finally, conversion almost 

attains steady state. 

Following phenol behaviour, the use of H2O2 as oxidation promoter also leads to 

a remarkable raise in the conversions. For example, as it summarised in Table 6.1, in 

the case of p-nitrophenol, X goes from just 15 % to 49 %. In addition, the beneficial 

effect of using a stronger oxidant in the reaction media leads to an improvement in the 

oxidation performance also in terms of pollutant mineralisation, i.e., higher XTOC, 

leading to more oxidised intermediate products. As it would be discussed in the next 

section, this higher mineralisation should have an impact in increasing the effluents 

biodegradability.  

Because of the presence of partially oxidised products, XCOD should be equal or 

lower than the respective X. The higher the difference between X and XCOD, the higher 

the amount of partially oxidised products in the liquid effluent. In the case of phenol 

oxidation, the PP-CWAO gives closer values of X and XCOD, that clearly indicates a 

higher degree of mineralisation (Table 5.11). The difference between X and XTOC, 

which directly gives the selectivity towards carbon dioxide as X and XTOC get closer, like 

for phenol, the higher degree of mineralisation in PP-CWAO than in CWAO. In the case 

of o-cresol and p-nitrophenol, although higher conversions were achieved, the opposite 

effect was observed when comparing X to XCOD and X to XTOC, showing a higher 

occurrence of partially oxidised reaction products, as it will be discussed later. 

Table 6.1. Steady-state results of phenolic compounds treated by CWAO and PP-CWAO. 

CWAO PP-CWAO Target 
pollutant X (%) XCOD (%) XTOC (%) X (%) XCOD (%) XTOC (%) 
phenol 45 30 21 64 63 51 
o-cresol 33 15 14 64 43 32 

p-nitrophenol 15 13 11 49 45 38 
 

Regardless the use of H2O2 in the reaction and as far as X is concerned, the 

experimental reactivity order is phenol = o-cresol > p-nitrophenol. This reactivity order 

can be explained by the nucleophilic aromatic substitution mechanism [1]. In this 

mechanism, the substituents can be classified by their capacity to stabilise the 

benzonium carbanion. The substituents are strongly deactivating if they withdraw 
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electrons and strongly activating if they release electrons. Hence, the hydroxyl group   

(-OH) is activating and the methyl and nitro groups (-CH3 and –NO2) are weakly or 

strongly deactivating groups, respectively, for the nucleophilic aromatic substitution. 

Therefore, these compounds are expected to be destroyed in the order phenol > o-

cresol > p-nitrophenol, which closely matches the experimental results in this work and 

as also found by other authors for similar reaction conditions [1,3]. 

At the selected conditions (140 ºC, 20 % H2O2), control tests to find out the 

contribution of H2O2 and AC to the CWAO process were performed for o-cresol and p-

nitrophenol as previously done for phenol. Results are summarised in Table 6.2. As 

already discussed for phenol, in the absence of oxygen, similar phenolic compounds 

conversion is obtained for the reactions using either AC or IS. However, a slightly 

higher TOC removal was reached over AC for phenol and p-nitrophenol oxidation. 

Control tests with IS and O2 atmosphere lead to higher phenol and p-nitrophenol 

conversions, whereas o-cresol removal remained nearly invariable and TOC removal 

from p-nitrophenol oxidation was reduced. Therefore, the combination of O2 and H2O2 

improves the oxidation capacity of phenol and p-nitrophenol even in the absence of 

catalyst, o-cresol oxidation being less affected.  

Table 6.2. Control tests for phenol, o-cresol and p-nitrophenol. 

phenol o-cresol p-nitrophenol 
Experiment 

X (%) XTOC (%) X (%) XTOC (%) X (%) XTOC (%) 
AC-N2-20 30 13 29 10 38 20 
IS-N2-20 27 6 24 10 43 12 
IS-O2-20 46 15 26 14 53 11 

 

On the other hand, adding H2O2 to the CWAO not only has a promoting effect 

that leads to higher organic removals. It also shows a synergic effect that makes the 

process more efficient than what could be expected from the isolated contribution of 

small amounts of H2O2 to the CWAO over AC. This synergic effect can be observed in 

Figure 6.2 where X and XTOC of each phenolic compound studied are compared for the 

conventional CWAO process (AC-O2-00) and adding 20 % H2O2 under N2 atmosphere 

(AC-N2-20) or air (AC-O2-20). Figure 6.2 also shows the predicted conversions that 

could be expected in the PP-CWAO process if the effect of a small amount of H2O2 

could just be added to the results obtained from the process using only oxygen from air 

as oxidant (AC-N2-20 + AC-O2-00). As it can be seen in Figure 6.2, the predicted 

conversions for phenol and p-nitrophenol are higher than those actually obtained in the 

PP-CWAO. However, if TOC reductions are considered (Figure 6.2), the promoted 

process gives always better results than expected, e.g. 17 % higher TOC removal than 
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the predicted for phenol oxidation. The higher TOC reductions obtained show a 

preferential use of the oxygen radicals to degrade partial oxidation products rather than 

the parent phenolic compound. The explanation of this preferential use should have 

into account that since hydrogen peroxide is already present in the liquid stream when 

it enters the reactor bed, mass transfer problems related to using gaseous oxidants 

such as air are avoided. Therefore, the availability of oxidant to react with a phenolic 

molecule is higher than in the non-promoted process. Consequently, the amount of 

partially oxidised products appearing in the reaction media should also be higher, 

facilitating their oxidation by the oxygen radicals once they are formed and solved in 

the reaction solution. 
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Figure 6.2. Promoting and synergic effect of H2O2 in the CWAO                                                         

for phenol, o-cresol and p-nitrophenol. 
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Regarding to the reaction intermediates, Figure 6.3 summarises the results for 

the effluents characterisation in terms of fraction of COD, in both processes: CWAO 

(AC-O2-00) and PP-CWAO (AC-O2-20). The theoretical COD of each identified 

intermediate was calculated and then grouped into remaining model compound, phenol 

(from o-cresol oxidation), quinone-like compounds (catechol, hydroquinone and          

p-benzoquinone), condensation products (4-hydroxybenzoic acid and salicylic acid), 

carboxylic acids (oxalic, formic, malonic, acetic, maleic, succinic, fumaric and propionic 

acids) and non-identified products. Then, the contribution of each group was compared 

to the experimental remaining COD obtained in the CWAO and PP-CWAO effluents. 

As it can be observed from Figure 6.3, in all the cases, the biggest part of the 

remaining COD corresponds to the remaining model compound. Regarding to the 

quinone-like fraction, it is noticeable that quinone-like compounds only appeared in 

significant amounts in the phenol tests, being negligible for o-cresol and p-nitrophenol 

tests. The carboxylic acids fraction is higher in the PP- CWAO processes than in the 

CWAO process for o-cresol and p-nitrophenol, but the opposite is found in the case of 

phenol. Moreover, the intermediates occurrence in phenol PP-CWAO tests is lower 

than in phenol CWAO (approximately, 10 % and 20 % of the effluent COD, 

respectively), which confirms the higher degree of mineralisation achieved with        

PP-CWAO for phenol. In the case of o-cresol, the intermediates for the CWAO process 

represent less than 4 % of the effluent COD, due to the low conversion achieved, but, 

observing the PP-CWAO process, the intermediates occurrence increase to 30 % of 

the effluent COD, being phenol one of these intermediates (20 % of the effluent COD). 

Finally, for p-nitrophenol, both the intermediates occurrence and distribution were 

similar, although a higher COD removal was achieved when using H2O2 in the reaction 

media. 

 

UNIVERSITAT ROVIRA I VIRGILI 
PEROXIDE PROMOTED CATALYTIC WET AIR OXIDATION OF PHENOLIC AQUEOUS  SOLUTIONS USING 
ACTIVATED CARBON AS CATALYST 
Alícia Rubalcaba Mauri 
ISBN: 978-84-691-0372-2/ DL: T.2190-2007 
 



 125

AC-O2-00AC-O2-20AC-O2-00AC-O2-20AC-O2-00AC-O2-20
0

20

40

60

80

100

p-nitrophenolo-cresolphenol

 

 

C
O

D
 (%

)
 Remaining COD
 Removed COD

Figure 6.3. Distribution of oxidation products in the CWAO and PP-CWAO effluents using 

phenol, o-cresol or p-nitrophenol as target pollutants. 

 

6.2. Activated carbon performance 

The adsorption isotherms of each one of the studied compounds can be found 

in Figure 6.4 These isotherms were obtained at 20 ºC after the equilibration between 

AC and phenolic solution for 4 h in oxic conditions. Oxidative coupling reactions on AC 

surface are thought to be facilitated in the presence of dissolved oxygen. However, 

they could be neglected since, according to the literature [4], these reactions are only 

relevant for contact times between phenols and AC longer than 12 h. These isotherms 

were later fitted to the Freundlich Equation: 

 
n/1kcq =                  Eq. 5.6 

 

where, c is the compound concentration in the bulk solution (mg L-1), q the amount of 

substrate adsorbed in mg per g of AC and k and 1/n are empirical parameters. This 

equation assumes that there is absence of chemical adsorption and that the adsorbent 

has a heterogeneous surface composed by different kinds of adsorption sites. Then, 

values of 1/n close to 0 mean heterogeneous adsorption, while values close to 1 

indicate homogeneous adsorption [5].  

 Remaining model compound
 Phenol
 Quinone-like compounds
 Condensation products
 Carboxylic acids
 Non-identified products
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Figure 6.4. Adsorption isotherms of phenolic compounds studied. Symbols refer to experimental 

data, whereas lines correspond to the Freundlich Equation fitting.  

 

Table 6.3 summarises the parameters obtained from the adsorption capacity 

calculated at 5 g L-1 and the Freundlich parameters of each compound, previously 

included in Suárez-Ojeda (2006) [6]. All correlation factors (R2) found were over 0.98. 

The 1/n values found were below 1, indicating a favourable adsorption on AC surface. 

It is noticeable that the adsorption capacity, following the order p-nitrophenol > 

o-cresol > phenol, follows the same trend found for the solubility in water and the 

molecular weight of the compounds (see Table 3.1), as previously found by different 

authors [1,7-8]. Therefore, also taking into account the reactivity order found in both 

CWAO and PP-CWAO, it can be said that the higher the adsorption capacity, the lower 

the removal obtained, which reinforces the theory that oxidation takes place in the 

liquid phase and not in the AC surface when the organic compounds are adsorbed [1].  

Table 6.3. Parameters of the Freundlich equation and adsorption capacity at 5 g L-1. 

Compound q (mg gAC
-1) k (mg gAC

-1) 1/n (mg-1) 
phenol 395 ± 20 34 ± 1 0.29 ± 0.02 

o-cresol 451 ± 16 37 ± 1 0.29 ± 0.02 
p-nitrophenol 613 ± 20 99 ± 1 0.21 ± 0.02 

 

UNIVERSITAT ROVIRA I VIRGILI 
PEROXIDE PROMOTED CATALYTIC WET AIR OXIDATION OF PHENOLIC AQUEOUS  SOLUTIONS USING 
ACTIVATED CARBON AS CATALYST 
Alícia Rubalcaba Mauri 
ISBN: 978-84-691-0372-2/ DL: T.2190-2007 
 



 127

According to the flow rate in the TBR experiments and the adsorption capacity 

calculated from the Freundlich equation, the AC bed saturation times should be 10 h 

for phenol, 11 for o-cresol and 15 for p-nitrophenol. The adsorption dominating period 

experimentally observed (Figure 6.1) closely matches these values. The differences 

with theoretical saturation times should be attributed to the higher temperature at which 

reaction takes place, since adsorption capacity decreases as temperature increases 

[9]. This deviation can be also due to competition of model organic compound with 

oxidation products that appear in the reaction media, since it is hardly difficult to 

assume constant concentration through the AC bed. 

To study whether the organic compound used in the reaction has any effect on 

the stability of AC and on the formation of carbonaceous deposits, thermogravimetric 

analyses were performed on AC after each run. Table 6.4 summarises the weight 

changes recorded. The ∆W was positive for all the cases, which means that AC weight 

increased due to carbon deposits that could not be desorbed just by heating the 

samples at 400 ºC in an inert environment and not only to physisorbed compounds. 

The TWL was measured from TGA up to 900 ºC and can be used to assess the extent 

of oxidative coupling reactions giving irreversible adsorption of phenols over the AC. In 

general terms, the greater the TWL, the higher the development of oxidative coupling 

reactions and therefore the higher the loss in catalytic activity. It is worth mentioning 

that the AC, before being used in any oxidation process, gives a TWL around 5 % (see 

Table 5.8); therefore the difference with the used AC can be assumed to be mainly 

being due to oxidative coupling reactions, as stated before. From Table 6.4, the TWL in 

PP-CWAO for phenol is twice that obtained for the process not using H2O2, so the loss 

of AC surface by oxidative coupling seems to be greater in PP-CWAO than in CWAO. 

As it could be expected and as previously found when using high amounts of H2O2, this 

loss of catalytic surface affects the conversions profiles and can lead to a decrease in 

the steady state conversions. On contrary, the TWL for o-cresol and p-nitrophenol did 

not significantly change whether H2O2 was used or not in the oxidation process. 

Therefore, it has to be assumed that H2O2 was mainly used to oxidise the substituted 

phenols and did not influence the formation of carbonaceous deposits on the AC 

surface at the present conditions. Moreover, as also observed by Suárez-Ojeda et al. 

[1] for the CWAO of substituted phenols in the same reaction conditions that the ones 

used here, neither the ∆W nor the TWL can explain the reactivity order found, since it 

can not be related to the extent of oxidative coupling induced by the use of H2O2. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
PEROXIDE PROMOTED CATALYTIC WET AIR OXIDATION OF PHENOLIC AQUEOUS  SOLUTIONS USING 
ACTIVATED CARBON AS CATALYST 
Alícia Rubalcaba Mauri 
ISBN: 978-84-691-0372-2/ DL: T.2190-2007 
 



 128 

Table 6.4. Weight loss of AC samples after reaction. 

CWAO (AC-O2-00) PP-CWAO (AC-O2-20) 
Target pollutant 

∆W (%) TWL (%) mfAC (g) ∆W (%) TWL (%) mfAC (g) 
phenol 4 12 7.28 18 26 6.68 
o-cresol 21 24 7.11 21 24 7.38 

p-nitrophenol 11 23 6.58 9 20 6.43 
 

Figures 6.5, 6.6 and 6.7 present TGA data for the AC samples after reaction. 

Original AC and AC saturated with phenol, o-cresol or p-nitrophenol are also included 

for comparison. As it can be seen, the weight change recorded for the used AC was 

notably higher than for the commercial AC, since for the latter the weight loss is only 

due to desorption of surface oxygen groups. Moreover, differences can be observed 

between the AC used in the CWAO process (AC-O2-00) and the samples from the  

PP-CWAO (AC-O2-20), depending on the model compound oxidised, as previously 

commented.  

The first derivative of the thermograms points out the temperature ranges at 

which higher release of gaseous species occurred. The main peaks observed around 

200 and 400 ºC in the AC saturated with phenol, o-cresol or p-nitrophenol correspond 

to thermal desorption of each phenolic compound. In the used AC, these peaks were 

less marked showing that some other compounds different from the phenolics were 

also adsorbed. However, these 200 and 400 ºC peaks are still predominant in             

p-nitrophenol profiles (Figure 6.7), indicating that probably the carbons used in these 

runs contain a high amount of phenolic compounds, which would agree with the lower 

conversions obtained. 

The weight loss up to 400 ºC is believed [10-11] to correspond to phenol and its 

reaction intermediates physisorbed during the oxidation reaction, while the weight low 

up to 900 ºC includes de decomposition of chemisorbed species and the cracking of 

polymers from oxidative coupling reactions, as also observed by Suárez-Ojeda et al. 

(2005) [1] in AC samples used in the CWAO of different phenolic compounds in the 

same experimental installation and reaction conditions that the ones used here. 
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Figure 6.5. TGA data and first derivative of TGA data for phenol. 
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Figure 6.6. TGA data and first derivative of TGA data for o-cresol. 
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Figure 6.7. TGA data and first derivative of TGA data for p-nitrophenol. 
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Trying to relate the catalyst mass change and the conversion, results were fitted 

to a first-order kinetic model as previously done in Section 5.5, applying Equation 5.5. 

The so calculated kinetic constants (kap) for the disappearance of each model 

compound are in Table 6.5. 

Table 6.5. Kinetic constants for CWAO and PP-CWAO experiments at 140 ºC. 

kap (mL h-1 g-1) 
Experimental conditions 

phenol o-cresol p-nitrophenol 
AC-O2-00 4.71 ± 0.06  3.23 ± 0.05  1.42 ± 0.04 
AC-O2-20 8.78 ± 0.10 7.95 ± 0.09 6.01 ± 0.07 

 

As previously discussed, the reactivity order expected for these compounds is 

phenol > o-cresol > p-nitrophenol, which perfectly matches with the calculated values 

for the apparent kinetic constant. Still, what is observed is that using H2O2 doubles the 

reaction rate for phenol and o-cresol, but increases it as much as 4 times for               

p-nitrophenol. On the other hand, it is not possible to relate the catalyst mass after 

reaction (mfAC in Table 6.4) neither with the kinetic constants obtained nor with the 

presence of H2O2 in the reaction, since different trends were found for experiments  

AC-O2-00 and AC-O2-20. Using H2O2 in the oxidation of phenol lead to a reduction of 

the final mass of AC, as also happened in the p-nitrophenol oxidation. On contrary, in 

the case of o-cresol oxidation, AC mass for the non-promoted process was higher than 

for the process using peroxide. In view of this, it can be concluded that in the oxidation 

of phenolic compounds using AC as catalyst many parallel reactions and adsorption 

processes are present, which cannot be uncoupled and studied separately. 

 

6.3. Biodegradability enhancement 

Once the biodegradability parameters (OUR and OC) are obtained by 

respirometry, the fraction of readily biodegradable COD (%CODrb) of an effluent can be 

calculated as explained in the experimental section. The total biodegradable COD 

(CODtb) fraction of an effluent is the sum of the readily (CODrb) and the slowly (CODsb) 

biodegradable fractions, therefore CODrb is always lower than CODtb. Determination of 

CODsb requires long term experiments in a biological pilot plant configuration, which 

would be extremely time-consuming. Therefore, CODrb can be used as a fast method 

to compare the biodegradability enhancement reached in an effluent from different 

oxidation treatments with respect to the initial phenol, o-cresol and p-nitrophenol 

solutions, which have an experimentally determined 0 % of CODrb. 
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Figure 6.8 shows the % CODrb obtained from the respirometric tests performed 

to each effluent coming from CWAO and PP-CWAO experiments. 
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Figure 6.8. Fraction of COD readily biodegradable from the respirometric tests performed to 

effluents from CWAO (AC-O2-00) and PP-CWAO (AC-O2-20). 

 

Figure 6.8 shows that PP-CWAO process gave more biodegradable effluents 

than CWAO, although the maximum %CODrb was only 7.5 % for o-cresol PP-CWAO. 

In the case of o-cresol and p-nitrophenol after CWAO, the operating conditions 

selected were not severe enough to transform the pollutant into an effluent with a 

higher biodegradability. In this way, Arslan and Ayberk (2003) [12] found a %CODrb 

between 3-24 % for wastewaters treated in the Izmit industrial and domestic WWTP 

that included pre-treated industrial wastewaters of various sectors such as tyre, drug or 

chemistry. The comparison of the values obtained in this work and the values 

presented by Arslan and Ayberk (2003) [12] shows that the effluents obtained in this 

work are difficult to handle in a context of integrated management of these pre-treated 

effluents as part of the total influent to a WWTP. Probably, the %CODrb would be 

higher if the remaining model compounds fraction is lowered. For instance, from Figure 

6.3, there are almost 6 % of carboxylic acids COD in the effluent of p-nitrophenol 

CWAO available for microorganisms’ consumption, but a negligible experimental 

%CODrb was obtained, probably because the 70 % of the remaining COD is in form of 

p-nitrophenol, which can have a toxic effect over the biomass. 

Therefore, it can be concluded that the selected conditions of temperature, PO2 

and space time (τ) in both CWAO and PP-CWAO are not effective enough to produce 
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a suitable effluent that could be safely sent to a municipal WWTP, despite having a 

fraction of readily biodegradable compounds up to 7.5 %. Nevertheless, it has been 

proved the potential of H2O2 as oxidation promoter for CWAO process, since higher 

pollutant conversions and higher biodegradability was obtained.  

 

6.4. Overview 

Oxidation tests in a trickle bed reactor at mild total pressure (i.e. 2 bar of PO2, 

13.1 bar) and temperature (140 ºC) conditions, using small amounts of hydrogen 

peroxide validate the suitability of AC as catalyst to be used in the PP-CWAO of 

phenolic compounds.  

The PP-CWAO process leads to higher pollutant removal conversions than the 

CWAO process. Besides, a synergistic effect was found when H2O2 is combined with 

O2 which lead to higher mineralisation of the target pollutants.  

The partial oxidation products found after phenol oxidation was lower for the 

PP-CWAO than for the classical CWAO (approximately, 10 % and 20 % of the effluent 

COD, respectively), which confirms the higher degree of mineralisation achieved when 

H2O2 is used. In the case of o-cresol, the intermediates occurrence increase to 30 % of 

the effluent COD from the PP-CWAO, although phenol was the predominant product. 

For p-nitrophenol, both the intermediates occurrence and distribution were similar, but 

higher COD removal was achieved when using H2O2 in the reaction media. 

Regardless the use of H2O2 in the reaction, the experimental reactivity order in 

terms of pollutant conversion is phenol = o-cresol > p-nitrophenol, which agrees with 

the generally accepted nucleophilic aromatic substitution mechanism. The adsorption 

capacity followed the order p-nitrophenol > o-cresol > phenol, the same trend found for 

the solubility in water and the molecular weight of the compounds. Therefore, also 

taking into account the reactivity order obtained in both CWAO and PP-CWAO, it can 

be said that the higher the adsorption capacity, the lower the removal obtained, which 

reinforces the theory that oxidation takes place in the liquid phase and not in the AC 

surface when the organic compounds are adsorbed.  

On the other hand, it is not possible to relate the catalyst mass after reaction 

neither with the kinetic constants calculated or with the presence of H2O2 in the 

reaction, since different trends were found for CWAO and PP-CWAO experiments. 

Finally, PP-CWAO effluents improved their biodegradability more than CWAO 

effluents. Nevertheless, despite having a fraction of COD readily biodegradable up to 
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7.5 %, reaction conditions still need to be improved to produce suitable effluents that 

could be safely sent to a municipal WWTP. 
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7. PP-CWAO of phenol using FeAC 

materials 

In this section, results form the characterisation of the iron containing AC 

prepared during a research stay in the Grupo de Ingeniería Química y Ambiental 

(GIQA) from Universidad Rey Juan Carlos in Móstoles (Spain) are presented. 

Following, a selected FeAC catalyst was applied in the PP-CWAO for testing its 

catalytic activity and stability for the oxidation of phenol in the TBR at 140 ºC and using 

20 % of the stoichiometric demand of H2O2 for complete phenol mineralisation. 

7.1. FeAC characterisation 

FeAC materials were prepared according to the procedure described in the 

Methodology (Section 3.1.3.1), beginning with an acidic treatment previous to the iron 

wet impregnation and following by a thermal treatment to fix iron species on AC 

surface. 

Characterisation of the carbon materials was performed by different 

conventional techniques. First of all, the changes on the surface oxygen groups after 

the oxidation treatments were determined by Boehm titration, NMR and ultimate 

analyses. After the wet impregnation with iron nitrate, the iron content was measured 

by ICP-AES and it was related to the density of acidic surface groups and the 

isoelectric point of charge developed by each carbon material due to the acidic 

treatments applied. Finally, textural changes induced by the chemical and thermal 

treatments were evaluated by means of N2 adsorption/desorption isotherms. 

7.1.1. Surface oxygen groups 

In order to facilitate the iron anchoring on the AC surface, the demineralised AC 

(AC-L) was submitted to three different oxidation treatments following the procedures 

described by Salame et al (1999) [1].  

Table 7.1 summarises the distribution of the surface oxygen groups identified 

on AC by Boehm titration after the three oxidation treatments tested. As expected, the 

oxidation treatment performed to AC increased the concentration of oxygenated 
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functional groups. Treatment with (NH4)2S2O8 (AC-APS) leads to the highest rise in 

total acidic sites, while treatment with HNO3 (AC-CN) and H2O2 (AC-HP) still render a 

significant increase with respect to the original AC. Demineralisation with HCl (AC-L) 

also produced an increase on the number of acidic groups, since although it was not 

the objective of this treatment it can be considered as an acidic treatment itself. 

Overall, treatment with (NH4)2S2O8 mostly generates carboxylic groups, whereas 

treatment with HNO3 and H2O2 creates both lactones and carboxylic groups. Phenolic 

groups were less affected by the acidic treatments. 

Boehm titration analysis reveals a considerable reduction of basic sites, except 

for AC-HP. The greatest destruction if observed for (NH4)2S2O8 followed by HNO3 and 

H2O2, which is recognised to have the gentler oxidant character [2].  

Table 7.1. Surface oxygen groups on the original and oxidised AC. 

Density of surface oxygen groups (meq g-1 AC) 
Acidic groups 

Carbon 
material 

Carboxylic Lactones Phenolic* Total acidic 
Basic groups 

AC-M 0.106 0.072 0.035 0.213 0.290 
AC-L 0.265 0.078 0.186 0.528 0.069 

AC-CN 0.351 0.364 0.000 0.712 0.168 
AC-HP 0.212 0.419 0.028 0.659 0.290 

AC-APS 0.715 0.072 0.035 0.821 0.037 
* also including carbonyls. 
 

As it can be seen in Table 7.1, the amount of acidic groups increased following 

the order AC-APS > AC-CN > AC-HP. Although the effect of these treatments mainly 

depends on the activated carbon considered, these results are in close agreement with 

the existing literature [1-4] and were also verified by other techniques such as the 

Nuclear Magnetic Resonance (NMR) and ultimate analyses. [1,2,3,4] 

Figure 7.1 shows the NMR 13carbon spectra of the different oxidised carbons, 

where two main bands are present. The one at 115 ppm corresponds to aromatic 

carbon links (C-C), via one double bound and two single bounds, whereas the band 

located between 120-130 ppm can be attributed to chemical shifts of carbon atoms in 

the AC grapheme sheets with bounded carboxylic ((C=O)OH) or lactonic groups 

(O(C=O)R) [5]. Therefore, it can be qualitatively observed that the ratio between 

signals of carbon from aromatic rings and carbon with oxygenated carbon groups 

decrease following the order AC-APS > AC-CN > AC-HP, which seems to be in fairly 

agreement with the amount of total acidic surface groups detected by Boehm titration. 
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Figure 7.1. 13C NMR spectra of commercial and oxidised AC. 

 

The increase in surface oxygen groups is also demonstrated by ultimate 

analyses, which gives the composition of a given sample in terms of nitrogen, carbon, 

sulphur and hydrogen. The amount of oxygen is obtained by difference to 100 %. The 

corresponding results are summarised in Table 7.2. As expected, the oxygen content in 

the oxidised carbons increased and also followed the order found through the Boehm 

titration and the NMR spectra (AC-APS > AC-CN > AC-HP). 

The relatively high amount of oxygen found in the samples accounts for the 

moisture that they still may content, although samples are dried before analyses. As it 

will be discussed later, the pores volume and the surface area are very similar for all 

carbons prior to the thermal treatments. Therefore, it can be assumed that moisture 

content will be also similar since they were all analysed under the same conditions. 

The higher nitrogen content found after HNO3 treatment is probably due to the 

formation of nitrogen-containing species [2,4] which could not be accounted for using 

Boehm titrations due to its inability to dissociate. As expected, demineralisation with 

HCl did not introduce significant changes on the ultimate analysis with respect to the 

parent AC. 
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Table 7.2. Ultimate analyses of original and oxidised AC. 

Carbon material C (%) H (%) N (%)  S (%) O (%)* 
AC-M 85.1 2.6 0.5 0.9 10.9 
AC-L 83.5 2.2 0.5 0.9 12.9 

AC-CN 72.5 2.0 1.1 0.6 23.8 
AC-HP 80.0 2.6 0.5 0.7 16.3 

AC-APS 58.4 2.3 0.4 0.5 38.4 
* calculated by difference to 100 %. 

 

7.1.2. Iron content 

Table 7.3 summarises the iron content for the AC after wet impregnation with 

Fe(NO3)3, measured by ICP-AES, and its relationship with the density of acidic surface 

groups and the isoelectric point (IEP) of charge. Commercial AC (AC-M) and AC after 

demineralisation with HCl (AC-L) were also subjected to wet impregnation as reference 

samples, although the expected iron content was evidently lower than in the 

impregnated carbons. 

Table 7.3. Iron loading of AC materials and its relationship with the amount of                            

surface oxygen groups and the isoelectric point. 

Carbon material Fe (%) acidic SOG (meq g-1 AC) IEP 
AC-M-Fe 0.84 0.213 8.87 
AC-L-Fe 1.13 0.528 3.43 

AC-CN-Fe 1.86 0.712 3.15 
AC-HP-Fe 1.64 0.659 4.33 

AC-APS-Fe 2.61 0.821 2.89 
 

The percentage of iron and the amount of acidic SOG that the samples 

contained follow the same tendency, showing that there is some kind of relationship 

between them. Fixation of acidic groups on the surface of the AC makes it more 

hydrophilic [3,6], increasing the surface accessibility to the metal precursor. Therefore, 

since iron wet impregnation was performed using an iron nitrate aqueous solution, a 

lower hydrophobicity (i.e. a higher content of SOG) must facilitate the impregnation 

process leading to an iron content, as expected, in the order: AC-M-Fe < AC-L-Fe < 

AC-HP-Fe < AC-CN-Fe < AC-APS-Fe. 

The IEP of a solid placed in an electrolyte corresponds to the pH value at which 

the surface of the solid is electrically neutral. When the pH of the solution is lower than 

the IEP the surface is positively charged and negatively charged species are adsorbed, 

for compensation. An opposite process proceeds at pH values higher than the IEP [7]. 
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Figure 7.2 schematically shows the distribution of charges on AC surface in the 

different situations possible (i.e. the amphoteric character) according to the relation 

between the IEP and the solution pH, for a better understanding of these phenomena.  

 

 

Figure 7.2. Illustration of the amphoteric character of carbon materials [8]. 

 

It can be expected than the amount of adsorbed species will be influenced by 

the IEP and therefore, its measurement is important for the preparation and analyses of 

catalysts by wet impregnation. Then, when the AC is placed in an acidic solution, as 

during the wet impregnation with iron nitrate, the surface gets positively charged, which 

in fact leads to the repulsion between the iron cations and the carbon surface. 

However, the lower difference between the IEP of the carbon and the pH during the 

wet impregnation, the highest the final iron content we should get, since the repulsion 

to the iron cations is reduced as the carbon is less positively charged. Taking into 

account that wet impregnation with iron nitrate took place at an initial pH of 0.80, the 

expected iron loading for the three oxidised AC was following the order AC-APS > AC-

CN > AC-HP, which matches with the results found with ICP-AES. 

 

7.1.3. Textural properties 

Textural characterisation of carbon materials was performed by N2 isotherms. 

N2 isotherms were used to obtain information about the porosity and adsorption 

capacity of samples before and after the acidic treatments, iron wet impregnation and 

calcinations.  
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Figure 7.3 shows the typical curves found in N2 adsorption/desorption isotherms 

for microoporous materials. Also, some mesoporosity was present in the carbon 

materials analysed, as deduced by the little hysteris loops obtained on desorption. It 

has been found after analysis of many adsorption isotherms on carbon with different 

types and amounts of oxygen groups [6] that the total amount of surface groups 

controls the relative pressure at which the plateau of the isotherm start, whereas the 

type of surface groups conditions the slope of the isotherm in the initial portion up to 

the plateau. Accordingly, the specific surface area decreased after the three oxidation 

treatments in the same order that the increase of SOG was found to follow (AC-APS > 

AC-CN > AC-HP), although this effect can not be distinguished in the isotherms slope. 
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Figure 7.3. N2 isotherms for commercial and oxidised AC. 

 

Table 7.4 collects the results for the textural characterisation of the different 

carbon materials under study in terms of micropore volume, BET surface and changes 

in BET surface (∆SBET) with respect to the original AC (AC-M) surface. Then, a 

negative value of ∆SBET means a loss of surface area, whereas a positive ∆SBET means 

that surface area has increased. The acidic pretreatments lead to a slight decrease of 

surface area and pore volume. However, the most striking decrease of both BET 

surface and pore volume takes place as a result of the incorporation of iron into the 

microporous carbon matrix, reaching a 17 % loss after treatment with ammonium 
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persulfate (AC-APS) and up to 34 % after Fe incorporation. Coming back to Table 7.3, 

it is noticeable that there is a concordance between the amount of SOG and iron 

incorporated and the loss of area.  

Table 7.4. Textural characterisation of AC samples. 

Carbon material Vµpore (cm3) SBET (m2g-1) ∆SBET (%) 
AC-M 0.48 1140 -- 
AC-L 0.49 1151 0.96 

AC-CN 0.44 1017 -10.79 
AC-HP 0.46 1083 -5.00 

AC-APS 0.40 943 -17.28 
AC-CN-Fe 0.44 1014 -11.05 
AC-HP-Fe 0.41 972 -14.74 

AC-APS-Fe 0.32 757 -33.60 
AC-CN-Fe-250 0.41 1017 -10.79 
AC-CN-Fe-500 0.44 1014 -11.05 
AC-HP-Fe-250 0.42 975 -14.47 
AC-HP-Fe-500 0.46 1089 -4.47 

AC-APS-Fe-250 0.24 607 -46.75 
AC-APS-Fe-500 0.37 890 -21.93 

 

The different calcination treatments at which the iron impregnated carbons were 

submitted pursued two different objectives. First, fixing iron on AC surface by 

facilitating the formation of iron oxides under the suitable atmosphere and temperature 

conditions, which is usually applied for the preparation of supported metal catalysts [9-

10]. Second, the removal of the less stable oxygen surface groups [11] and nitrates 

from the Fe(NO3)3 used as precursor during wet impregnation, which could lead to 

some recovery of AC surface. The first objective was partly achieved since a higher 

percentage of iron was measured on the samples, i.e., the relative fraction of Fe 

increased with respect to the AC mass after calcination. However, this was possible 

due to loss of AC by direct combustion, when it was calcined in air, and because of the 

thermal removal of remaining nitrates and sulphates from acidic treatments. Generally 

speaking, air treatment lead to higher loss of area and this is attributed to desorption of 

afore mentioned remaining cations. Calcination under nitrogen atmosphere allowed 

using higher temperatures and some recovering of pores volume, while surface 

remains nearly invariable. 
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7.1.4. Selection of the best FeAC obtained 

After the preparation and characterisation of different FeAC materials, its 

performance as catalysts in the PP-CWAO of phenol was tested. For scheduling 

reasons, only one of the carbon materials was tested. The selection of such material 

was based in the following criteria: 

1. high iron content 

2. preservation of surface area and micropores volume 

Keeping in mind the desired characteristics for a presumably good FeAC 

catalyst for the PP-CWAO process, the selected FeAC was the AC-APS-Fe-250. It is 

noticeable from Table 7.4 that this catalyst has the highest loss of surface area after 

oxidation, wet impregnation and calcination treatments. However, it was also the 

material that reached a higher iron content after calcination (i.e. 3.37 %), which must 

have a direct relation with the surface reduction. Finally, since only one FeAC material 

could be tested, it was preferred to be the one having more differences with respect to 

the original AC. Nonetheless, as extracted from the complete study of the PP-CWAO 

process in Chapter 5 and as also pointed out by Suárez-Ojeda et al. (2005) [12] there 

are evidences that oxidation reaction takes place in the liquid phase and not when the 

target organic compound is adsorbed on AC. Therefore, the high reduction on surface 

area and micropore volume registered for sample AC-APS-Fe-250 should not 

necessarily have a negative impact on the oxidation capacity of the system. 

 

7.2. Catalytic activity of FeAC in the PP-CWAO 

Once the best FeAC was selected based on the previous criteria, its catalytic 

activity for the PP-CWAO (140 ºC, 2 bar PO2, 20 % H2O2) of high concentrated phenolic 

aqueous solutions (5 g L-1) was tested in the TBR. In order to discriminate the possible 

homogenous effect that any iron leaching could have on the process, reaction using 

the non-modified AC and a fixed amount of iron (8 mg L-1) diluted with the feed solution 

was also performed. These reaction conditions will be identified as FeAC-O2-20 and 

AC-O2-20+Fe3+, respectively. At the end, the effect of initial phenol concentration on 

catalyst activity and stability was also tested. 

7.2.1. FeAC performance as catalyst in the phenol PP-CWAO 

Table 7.4, summarises the physicochemical properties of carbon materials used 

in these runs: commercial AC and AC-APS-Fe-250, which for simplicity is referred to as 

FeAC in this section. Boehm titrations could not be easily performed on FeAC since the 
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formation of Fe(OH)3 during the titration of the filtrates caused an increase in the 

amount of NaOH, required to reach the titration end point in the case of basic SOG 

[13]. This fact was also observed when FeAC was placed into basic solutions to 

determine the acidic SOG, as presence of iron was evidenced by a slight change in the 

solutions colour and was verified by ICP-AES measurement. Nevertheless, there is still 

no satisfactory explanation for the catalytic performance of AC depending on the nature 

of their SOG [2]. Therefore, it is expected that the increased Fe content on FeAC would 

be responsible for the catalytic properties that this material could show and not to rely 

on the amount and type of SOG present.  

Table 7.5. Summary of physicochemical properties of AC materials used in the catalytic tests.  

Surface groups density (meq/g AC) 
acidic 

AC  
Materials 

carboxylic lactone phenolic* total 
basic 

SBET 
(m2 g-1) 

Vmicropore 
(cm3 g-1) 

Fe  
(%) 

AC-M 0.106 0.072 0.035 0.213 0.290 1140 0.48 0.54 
AC-APS 0.715 0.072 0.053 0.822 0.073 943 0.40 -- 

FeAC -- -- -- -- -- 607 0.24 3.37 
 * also including carbonyls.  

 

The main monitored parameters in the outlet aqueous stream along the 

reaction, such as phenol removal, TOC conversion, iron concentration and pH solution 

are shown in Figures 7.4, 7.5 and 7.6, respectively. For comparison, the results for the 

CWAO (140 ºC, 2 bar PO2) without using hydrogen peroxide (AC-O2-00) are also 

included in the figures. 

As previously discussed in Chapter 5, it is clearly evident the important role of 

hydrogen peroxide as source of hydroxyl and oxygen radicals in the AC-O2-20 system 

as compared to the catalytic performance attained by the AC and oxygen alone      

(AC-O2-00). When using the iron containing catalyst, a high phenol and TOC 

conversion for the FeAC-O2-20 system was achieved during the first 24 h on stream. 

However, the continuous decrease in the conversion profiles is observed at longer 

times on stream. So, after 48 h, results of phenol or TOC conversion are even lower 

than those corresponding to the AC as direct catalyst in the PP-CWAO. This catalytic 

behaviour could be attributed to the intrinsic loss of AC initial activity because of the 

oxidation treatment. AC-APS used to get the FeAC has a much more oxidised surface 

than AC-M and it is expected to have a lower catalytic activity, as found by Santiago et 

al. (2005) [2]. These authors observed a reduction in phenol conversion when using 

oxidised carbons, which was related to the destruction of basic groups or the 

generation of carboxylic groups that could not be catalytically active. 
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Figure 7.4. Catalytic performance of PP-CWAO process: a) phenol conversion and                      

b) TOC conversion, for: ( ) AC-O2-00, ( ) AC-O2-20, ( ) FeAC-O2-20, ( ) AC-O2-20+Fe3+. 

 

 

a) 

b) 

UNIVERSITAT ROVIRA I VIRGILI 
PEROXIDE PROMOTED CATALYTIC WET AIR OXIDATION OF PHENOLIC AQUEOUS  SOLUTIONS USING 
ACTIVATED CARBON AS CATALYST 
Alícia Rubalcaba Mauri 
ISBN: 978-84-691-0372-2/ DL: T.2190-2007 
 



147 

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

 

Iro
n 

co
nc

en
tr

at
io

n 
(p

pm
)

 

time on stream (h)  

Figure 7.5. Iron concentration in the effluents form the PP-CWAO process,                                 

for: ( ) FeAC-O2-20, ( ) AC-O2-20+Fe3+. 
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Figure 7.6. pH profiles obtained from the PP-CWAO process,                                                       

for: ( ) AC-O2-00, ( ) AC-O2-20, ( ) FeAC-O2-20, ( ) AC-O2-20+Fe3+. 
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In addition, as it will be discussed later, it was found after TGA that FeAC 

suffered a high loss of mass as well as a significant degree of depositions of 

carbonaceous polymers that would also have a negative impact on its catalytic 

performance as time on stream proceed. 

Another problem is the catalyst deactivation caused by the leaching of metal 

ions that, as can be observed in Figure 7.5, reached a maximum of 14 mg L-1 for 

FeAC-O2-20 which decreased until 8 mg L-1 after 72 h of reaction. The metal ions 

leached from the FeAC material act as homogeneous catalyst for the activation of 

hydrogen peroxide which makes it difficult to differentiate between homogeneous and 

heterogeneous catalytic effects. Still, an attempt was made by supplying 8 mg L-1 of 

Fe3+ solved with the phenol initial feed solution in the AC-O2-20 system. This iron 

concentration was chosen since it was the concentration found in the effluent from 

FeAC-O2-20 after 48 to 72 h of time on stream. Homogeneous presence of dissolved 

iron ions in the liquid phase (AC-O2-20+Fe3+) does not promote an enhancement of 

phenol and TOC degradation. A similar decrease of activity is evidenced for the 

homogenous Fenton catalytic system (AC-O2-20+Fe3+), even though less accentuated 

than that observed by the heterogeneous one. In this case, this fact can be accounted 

for the formation of carbonaceous deposits onto the catalyst surface by oxidative 

coupling reactions of phenol in the homogeneous liquid phase, observed after TGA as 

discussed later. Therefore, as reaction proceeds, the catalytic effect of AC in presence 

of homogeneous Fenton reagent would be inhibited by carbon depositions. 

It is noticeable from Figure 7.5 that both profiles had a similar behaviour that 

leads to the increase of iron concentration in the effluent after 24 h of time on stream. 

This behaviour could be related to the AC adsorption capacity, especially for the case 

of AC-O2-20-Fe3+, since it has been reported that AC can be used to remove iron ions 

from solution at pH close to 3 [14]. It seems that at the beginning of the reaction AC is 

capable to adsorb both organic compounds and iron, thus giving the low iron 

concentrations in the effluent until saturation is reached. At this point is when phenol 

and TOC conversions start lowering and for the case of AC-O2-20+Fe3+ it seems that 

iron concentration in the effluent could reach a stable value if eventually the iron 

adsorption/desorption on AC surface is equilibrated.  

Therefore, from the different reaction systems in Figure 7.4, the adsorption 

capacity of AC should be of crucial importance in the oxidation rate overcoming the 

effect of Fenton reagent when using iron either homogeneous or heterogeneously. 

What is observed it that the greater the initial surface of the carbon catalyst, the higher 

the catalytic performance and more importantly, the higher the catalyst stability along 

the reaction.  
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Phenol is a relatively strong acid, which confers acidic properties to the feed 

solution (i.e initial pH around 5.9). In addition, the reaction intermediates from the 

complex oxidation mechanism are mostly organic acids, which account for the 

decrease of pH up to 2.5-3 depending on the extension of the oxidation process, as 

plotted in Figure 5.20. At the same time, the iron species supported into AC are 

susceptible to be leached out due to the acid conditions that the degradation process 

involves, since leaching process is accelerated with decreasing pH [15]. If iron leaching 

is due to the acidic conditions of reaction, the control of pH can be an interesting issue 

in order to keep iron supported over the AC and so to avoid the catalyst deactivation by 

leaching phenomenon. However, as previously reported by Santos et al. (1999) [16] for 

the oxidation of phenol using a commercial copper catalyst in a basket stirred tank 

reactor, basic pH (pH0 10 and 12) gave no benefits in terms of catalyst lixiviation. 

Moreover, assuming first order for phenol concentration, the calculated kinetic constant 

was one order of magnitude lower in basic media than that obtained in acid media (pH0 

3.6) [16]. Nevertheless, in a later work using a fixed bed reactor, Santos et al. (2005) 

[17] found that indeed using basic pH (pH0 8) in the reaction media lead to negligible 

copper catalyst leaching, although phenol conversion obtained under acid conditions 

(pH0 6) was still higher than that achieved at pH 8. On contrary, Miró et al. (1999) [18] 

who tested several copper-based catalyst for phenol oxidation in a TBR, observed that 

catalyst lixiviation and deactivation was largely reduced at basic pH (pH0 8.3, 9 and 

10), but the highest phenol conversions were also reached in these basic conditions. 

Therefore, it has to be concluded that metal leaching from supported catalyst could be 

prevented by using high pH, but its effect on the process performance in terms of 

organic load removal depends on other factors such as catalyst and reactor types. 

At the present conditions, while the Fe concentration in the outlet effluent is 

increased, the catalyst performance in terms of phenol and TOC conversion is 

gradually reduced. This result could be attributed to deactivation of the catalyst by AC 

burning-off. Table 7.6 collects the AC weight changes recorded from TGA performed 

on all AC samples after reaction. 

Table 7.6. Weight loss of original and AC samples after reaction. 

AC materials ∆W (%) TWL (%) 
original AC -- 5.36 
AC-O2-00 3.61 12.20 
AC-O2-20 17.63 26.40 

FeAC-O2-20 -10.75 23.36 
AC-O2-20+Fe3+ 29.14 24.27 
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Values of AC mass change from TGA up to 400 ºC (∆W) clearly evidence that 

AC burning and carbonaceous depositions due to oxidative coupling reactions occurred 

at very different extents depending on the reaction conditions. As previously discussed 

in Chapter 5, the presence of H2O2 in the reaction media promoted phenol 

polymerisation and chemisorption on AC surface leading to a positive ∆W. This 

phenomenon is also observed and even doubled when homogeneous iron is present in 

the reaction media (AC-O2-20+Fe3+). In this case it seems to confirm the deactivation 

of AC by oxidative carbon polymers supported over the carbon surface which 

prevented its burning away in the oxidation process. On the other hand, for FeAC, the 

observed mass change after reaction is negative, which means that AC heavily 

suffered from combustion, although some carbonaceous deposits were also formed as 

a TWL of 23.36 % was obtained from TGA up to 900 ºC. This combustion of AC in the 

FeAC catalyst must be also responsible for the iron concentration found in the effluent, 

since the loss of metal from the catalyst is primarily related to the consumption of the 

support [19]. What is more, AC consumption is accompanied by a continuous decrease 

on the space time (τ), which also explains the observed fall in conversion. 

Figure 7.7 shows the thermograms from AC samples after reaction. 

Thermogravimetric profiles for original AC and phenol saturated AC are also included, 

as reference samples. As expected from the close values found for the TWL, except for 

AC-O2-00, the initial difference in surface groups seems to vanish after reaction. This 

gradual homogenisation of carbon surface has been previously reported for the 

oxidation of phenol [2] and for the oxidative dehydrogenation of ethylbenzene [20]. 

From Figure 7.7.b it can be observed that the greatest release of gaseous species 

takes place around 300 and 650 ºC, except for AC-O2-00. These two peaks of maximal 

desorption correspond with those found for PP-CWAO experiments shown in Figures 

5.7, 5.8 and 5.9. Then, it appears that the formation of carbonaceous deposits is mainly 

promoted by the presence of peroxide, being less affected by the addition of iron to the 

process. Nevertheless, the high loss of AC mass found for FeAC-O2-20 points out that 

simultaneous oxidative coupling of phenol and burning of AC surface took place during 

reaction, both phenomena being responsible of the low stability shown by FeAC on the 

PP-CWAO of phenol at 140ºC. 
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Figure 7.7. Thermogravimetric profiles (a) and first derivative of thermogravimetric profiles (b), 

for: (+) original AC; (ס) phenol saturated AC, ( ) AC-O2-00, ( ) AC-O2-20,                             

( ) FeAC-O2-20, ( ) AC-O2-20+Fe3+. 

 

a) 

b) 

UNIVERSITAT ROVIRA I VIRGILI 
PEROXIDE PROMOTED CATALYTIC WET AIR OXIDATION OF PHENOLIC AQUEOUS  SOLUTIONS USING 
ACTIVATED CARBON AS CATALYST 
Alícia Rubalcaba Mauri 
ISBN: 978-84-691-0372-2/ DL: T.2190-2007 
 



152 

Assuming that the reaction order with respect to phenol is one and the system 

follow an ideal plug-flow model, as previously done in Section 5.5 using Equation 5.5, 

the apparent kinetic constant (kap) for phenol disappearance can be estimated. The 

most relevant results at 72 h for the different catalytic systems tested as well as the 

calculated kinetic constants are summarized in Table 7.7. It is worth remembering that 

the catalyst weight used (mfAC) in the calculations is that obtained for the spend carbon 

samples after TGA up to 900 ºC, when physisorbed and chemisorbed compounds are 

released and just the remaining AC is left (see Equation 3.18).   

Table 7.7. Main results and estimation of apparent kinetic constants for each catalytic system. 

[Fe]effluent Experiment Xphenol (%) XTOC (%) 
(mg L-1) (%)* 

mfAC (g) kap (mL g-1 h-1) 

AC-O2-00 45 21 -- -- 7.28 4.71 ± 0.06 
AC-O2-20 64 51 -- -- 6.68 8.78 ± 0.10 

FeAC-O2-20 46 28 8 12.9 5.23 6.76 ± 0.08  
AC-O2-20+Fe3+ 56 38 6 -- 7.60 6.20 ± 0.07 

* iron leaching degree with respect to the initial iron content of catalyst bed. 
 

As previously commented in Section 5.1, addition of H2O2 to the CWAO process 

leads to a twofold increase in the phenol oxidation rate, which is accompanied by an 

increase on phenol conversion but also by a higher loss of AC after 72 h of time on 

stream. From the calculated kinetic constants, it is clear that adding iron, either 

homogeneous or heterogeneously, increases the reaction rate when compared to AC-

O2-00, but not if compared to AC-O2-20. This is due, on one hand, to the enhanced 

decrease on AC mass for the FeAC-O2-20 system and the continuous lixiviation of iron 

that reduces the catalytic activity of FeAC. In addition, the lower oxidation rates for the 

FeAC-O2-20 system have to be also related to the poor catalytic activity of the oxidised 

AC (AC-APS) used to prepare the FeAC. It has been previously reported for the 

oxidation of phenol in similar reaction conditions that oxidised AC shows a worse 

catalytic activity with an overall kinetic constant of 3.5 mL gAC
-1 h-1 [2], which means a 

60 % reduction in comparison with the original AC-M used in AC-O2-20. On the other 

hand, during the AC-O2-20+Fe3+ the build up of polymers on AC surface was doubled 

if compared to AC-O2-20, as deduced after observation of ∆W in Table 7.6. These 

carbonaceous deposits block the access to the pores and also hinders activated 

carbon’s role as oxygen radical generator [2], negatively affecting the process 

performance. 
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7.2.2. Influence of initial phenol concentration 

In order to test whether the initial phenol concentration has any influence on the 

activity and stability of the selected FeAC catalyst, reactions using 5 and 1 g L-1 of 

phenol were compared. Figure 7.8 plots the obtained phenol and TOC conversions for 

the FeAC-O2-20 and AC-O2-20 systems. 
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Figure 7.8. Influence of initial phenol concentration on phenol and TOC conversion, for:          

( ) FeAC-O2-20, [phenol]0= 5 g L-1; ( ) FeAC-O2-20, [phenol]0= 1 g L-1;                                        

( ) AC-O2-20, [phenol]0= 5 g L-1; ( ) AC-O2-20, [phenol]0= 1 g L-1. 
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It is easily seen in Figure 7.8 that oxidation of less concentrated phenolic 

solutions leads to higher phenol and TOC conversions. A similar effect of the initial 

phenol concentration has been reported for CWAO [21] and CWPO processes [22] 

using different metal based catalysts.  

It can be noticed in Figure 7.8 that phenol conversions for both processes were 

similar for 50 h of reaction. After that, a continuous fall on phenol conversion begins for 

FeAC-O2-20. Meanwhile, as it can be seen in Figure 7.9, the leaching of iron is 

significantly reduced when dealing with 1 g L-1 of phenol as initial concentration, 

although a slight increase is also registered after 45-50 h on stream. This seems to 

point out that presence of soluble iron does not influence the oxidation of phenol as 

much as the chemical nature of the surface in the original AC. Therefore, using lower 

initial phenol concentration helped to highlight the importance of AC as a radical 

generator either from oxygen or hydrogen peroxide, as already observed by other 

authors [23-25]. [23,24,25]  
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Figure 7.9. Influence of initial phenol concentration on iron leaching,                                        

for: ( ) FeAC-O2-20, [phenol]0= 5 g L-1 and ( ) FeAC-O2-20, [phenol]0= 1 g L-1. 

 

In addition to the higher removals reached for the reactions with the lower initial 

phenol concentration, more stable conversion profiles were also obtained. Therefore, it 

seems that lower organic loads improved both catalyst activity and stability in terms of 

conversion, at the present reaction conditions 
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Thermogravimetric analyses were performed on the used catalyst and the 

results are summarised in Table 7.8. It is noticeable that for the AC-O2-20 system, the 

main difference was in terms of phenol removal, since the AC mass change (∆W or 

TWL) remain at similar levels. On contrary, for the FeAC-O2-20 system, the loss of AC 

was significantly enhanced during the oxidation of 1 g L-1 phenol solutions. The highly 

negative value for ∆W indicated that AC combustion prevailed over oxidative coupling, 

as confirmed by the low AC mass obtained after TGA up to 900 ºC (mfAC, calculated 

according to Equation 3.18). Therefore, it can be concluded that at the present 

conditions the iron containing AC is not suitable for the PP-CWAO of phenol regardless 

the initial phenol concentration, since best results have been found for the non-

modified AC. 

Table 7.8. Influence of initial phenol concentration on the AC loss. 

Experiment 
[phenol]0      

(g L-1) 
Xphenol  
(%) 

∆W 
 (%) 

TWL  
(%) 

mfAC  
(g) 

5 64 17.63 26.40 6.68 
AC-O2-20 

1 94 10.01 26.79 6.86 
5 46 -10.75 23.36 5.23 

FeAC-O2-20 
1 80 -51.64 25.38 2.79 

 

A priori the last affirmation contradicts that postulated by Fortuny et al. (1998) 

and for similar reaction conditions in a TBR [26], who suggested that AC would be 

suitable for treating highly concentrated phenol solutions rather than dilute solutions. 

They had observed a faster carbon loss in the absence of phenol in the reaction media 

and concluded that the presence of phenol in the feed solution prevents the AC from 

being rapidly burned. Nevertheless, these authors did not use hydrogen peroxide in the 

reaction, which has been found to be a promoter of phenol polymerisation on the 

carbon surface. In the PP-CWAO process, the formation of a carbonaceous layer on 

the AC surface due to the presence of H2O2 could also have a role preventing the 

carbon from its own oxidation. At the same time, these carbonaceous deposits could 

also be susceptible of being burned. Therefore, it is again confirmed that carbon 

polymerisation and combustion can not be treated independently to clarify the 

preventing role that the initial phenol concentration may have on the process.  
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7.3. Overview  

It has been shown that by modification of the chemical nature of the surface of a 

given carbon, without altering the porosity, it is possible to change the impregnation 

stage of the catalyst preparation, leading to significant changes in the metal loading 

and the subsequent modification in the catalytic behaviour. 

AC, Fe containing AC and homogeneous Fe3+ plus AC in the presence of 

hydrogen peroxide have been used for the CWAO degradation of phenolic aqueous 

solutions. The use of Fenton catalytic systems through FeAC or Fe3+ in PP-CWAO 

shows a negative effect on the life cycle of AC in the operation conditions under study 

(140 ºC, 2 bar PO2, 20 % H2O2). The progressive loss of activity for the Fenton systems 

is attributed to the iron leaching in the case of heterogeneous FeAC catalysts, but also 

to the enhanced carbon consumption during the process. In addition, the poorer 

behaviour with respect to AC-M has to be related to the higher AC burning-off, which 

effectively reduces the space time, or to an intrinsic loss of AC initial activity because of 

the oxidation treatment. The promotion of oxidative coupling reactions in the liquid 

phase leading to carbonaceous deposits on the AC when Fe3+ is directly delivered to 

the catalyst bed is believed to be the reason for the lower performance obtained with 

respect to the process based on non modified AC. 

Oxidation of less concentrated phenol solutions lead to higher phenol and TOC 

removals. Still, the process using non modified AC showed the best performance for 

the PP-CWAO process in terms of catalyst activity and stability. 
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8. Conclusions and Open questions 

8.1. Conclusions 

The effects of operating variables such as pH, temperature and ratio of H2O2 to 

Fe2+ have been explored for the oxidation of phenol by the Fenton process and the 

most relevant conclusions are:  

 Experimental results show that there is no need of adjusting initial pH when 

dealing with concentrated phenolic aqueous solutions, i.e., 5 g L-1, since 

reaction products lead to a sufficient drop in pH for the reaction to proceed. 

  It has been found that neither using double of the stoichiometric H2O2 dose for 

phenol mineralisation nor operating at temperatures higher than 30 ºC leads to 

significant benefits, since all reaction conditions tested reached similar results 

(i.e. complete phenol conversion in just 3 minutes of reaction and COD 

removals between 73 and 97 %, after 60 minutes of reaction).  

 For an accurate kinetic modelling of the Fenton process, side reactions such as 

H2O2 thermal degradation and radical scavenging reactions must be considered 

at the temperature range studied (i.e. 30 to 85 ºC). 

  When phenolic solutions were treated using low concentrations of iron catalyst 

(5-100 mg L-1) it was found that a Fe2+ dosage above 50 mg L-1 does not 

increase phenol conversion, but there is an effect on the overall TOC removal.  

 Residual H2O2 in the samples causes interference with conventional analytical 

procedures. Several methods were tested to remove it from the samples. H2O2 

chemical decomposition to oxygen and water raising the pH to 11-12 was able 

to eliminate this interference. 
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Peroxide Promoted Catalytic Wet Air Oxidation of phenolic aqueous solutions in 

the presence of heterogeneous catalytic systems is shown to be a promising 

alternative to the homogeneous system (Fenton Process) and also to the processes 

using air as an oxidant (CWAO). Additionally, the use of activated carbon as catalyst 

would be a good alternative, since it is a cheap material which does not introduce 

secondary pollution problems due to metal leaching. The most important conclusions 

derived from this part of the research work can be summarised as follows: 

 Tests in a trickle bed reactor at mild total pressure (11-16 bar) and temperature 

(120-160 ºC) and feeding small amounts of hydrogen peroxide confirm that AC 

can be included among the catalysts able to be used in the PP-CWAO process. 

 Activated carbon actually seems to act as a heterogeneous catalyst for the 

activation of hydrogen peroxide and can be used for the oxidation of organic 

substances. 

 Simultaneous use of oxygen and hydrogen peroxide as oxidants leads to higher 

phenol, COD and TOC conversions. Although the improvement on the oxidation 

efficiency was not proportional to the amount of hydrogen peroxide added, a 

synergistic effect is outlined by the deepness in phenol mineralisation. This 

synergistic effect was predominant when using 20 % of the stoichiometric H2O2. 

 Thermogravimetric analyses on samples after reaction reveal that AC suffers 

from partial burning-off and deactivation by formation of carbonaceous deposits 

that are favoured by the presence of H2O2, being less influenced by the reaction 

temperature. 

 Partially oxidised products identified in PP-CWAO effluents indicate that the 

oxidation process evolves through a pathway similar to CWAO. Only a slight 

increase in hydroquinone and a reduction in p-benzoquinone concentrations are 

found in effluents from PP-CWAO. 

 Respirometric analyses pointed out that although PP-CWAO leads to higher 

organic conversions, these were accompanied by higher fractions of COD 

readily biodegradable in the effluents, and an increase of toxicity and inhibition 

properties was also achieved. Therefore, longer tests on a pilot scale WWTP 

dealing with effluents from the PP-CWAO process would be recommended to 

ascertain the viability of such effluents for a biological end treatment. 

 The activation energy values obtained ranged between 67.9 to 85.7 kJ mol-1 

and were comparable to those frequently reported in the literature for the 

oxidation of phenol.  
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 The lower activation energy was found for the process using 20 % of the 

stoichiometric demand for complete phenol mineralisation, confirming that the 

highest oxidation capacity was obtained for the AC-O2-20 system. 

 PP-CWAO for the treatment of o-cresol and p-nitrophenol aqueous solutions at 

the selected conditions of 140 ºC and 20 % of H2O2 validate the process 

suitability to deal with different kind of phenolic compounds. Both higher target 

compound removal and degree of mineralisation can be obtained when H2O2 is 

combined with O2. The fraction of COD readily biodegradable increased up to 

7.5 %, although reaction conditions still need to be improved to produce 

effluents that could be safely sent to a municipal WWTP. 

  The striking enhancement on p-nitrophenol removal for the PP-CWAO 

highlights the potential of H2O2 for the treatment of organic compounds 

refractory to CWAO. 

 Regardless the use of H2O2 in the reaction, the experimental reactivity order in 

terms of pollutant conversion is phenol = o-cresol > p-nitrophenol, which agrees 

with the generally accepted nucleophilic aromatic substitution mechanism. 

 The AC adsorption capacity followed the order p-nitrophenol > o-cresol > 

phenol, the same trend found for the solubility in water and the molecular 

weight of the compounds. Therefore, it can be said that the higher the 

adsorption capacity, the lower the removal obtained, which reinforces the theory 

that oxidation takes place in the liquid phase and not over the AC surface when 

the organic compounds are adsorbed.  

 Modification of AC surface by acidic treatments and iron impregnation to 

produce an iron containing AC (FeAC) lead to significant changes in the 

catalytic behaviour.  

 AC, FeAC and homogeneous Fe3+ plus AC (AC+ Fe3+) in the presence of H2O2 

have been compared for the CWAO degradation of phenolic aqueous solutions. 

The use of Fenton catalytic systems through FeAC or AC+Fe3+ in PP-CWAO 

shows a negative effect on the life cycle of AC in the operation conditions under 

study (140 ºC, 2 bar PO2, 20% H2O2).  

 The low efficiency of Fenton systems is attributed to the iron leaching in the 

case of heterogeneous FeAC catalysts, but also to the enhanced carbon 

consumption during the process. This AC combustion is accompanied by a 

continuous decrease on the space time (τ), which also explains the observed 

fall in conversion. 

 The promotion of oxidative coupling reactions in the liquid phase leading to 

carbonaceous deposits on the AC when Fe3+ is directly delivered to the catalyst 
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bed is believed to be the reason for the lower performance obtained with 

respect to the process based on non modified AC. 

 Oxidation of less concentrated phenol solutions leads to higher phenol, COD 

and TOC removals. Still, the process using non modified AC showed the best 

performance for the PP-CWAO process in terms of catalyst activity and stability, 

since it gave more stable conversion profiles for longer time on stream. 

 

8.2. Open questions 

The Catalytic Wet Air Oxidation process promoted with hydrogen peroxide for 

the treatment of phenolic wastewater combines different areas of chemistry and 

chemical engineering, and obviously all of them can not be exhaustively treated in one 

PhD work. Several open research topics have aroused from this work, which are worth 

to be addressed in detail in order to improve understanding on the PP-CWAO process 

looking for its eventual industrial implementation. 

The first question that rises is the economical implications of using H2O2 in the 

CWAO. Thus, a deeper study of the efficient use of H2O2 in order to economise the 

process would be very practical. In addition, an economic evaluation would be 

necessary for scaling up the process. 

One important option is certainly the kinetic study over a variety of AC and 

organic pollutants to find out the complex mechanism and the role of oxygen surface 

groups on AC in the oxidation reaction. Besides, it would be interesting to test the 

process performance for the treatment of real industrial effluents since usually the 

destruction efficiencies obtained are lower than those achieved for single pollutants. 

Another promising field is the tailored modification or manufacturing design of 

AC for its optimal catalytic performance and increased resistance to burning and 

deactivation during reaction. 

In the context of process combination, efforts must be addressed to the study of 

coupling chemical oxidation followed by biological treatments or the use of combined 

adsorption-reaction cycles and different chemical oxidation stages working in series. 
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