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Resumen 
 
 
Excepto para contaminantes químicos comunes considerados de prioridad, las 
propiedades fisicoquímicas clave de un gran espectro de compuestos tienden a ser 
desconocidas. Esta falta de datos se vuelve crítica si el número de compuestos a 
monitorear respecto a su distribución ambiental en múltiples medios se incrementa 10 
veces más a causa de la adopción de nuevas regulaciones, como la impulsada por 
REACH en Europa. Para monitorear estos “nuevos” compuestos y decidir si requieren 
evaluaciones adicionales, muchas de las propiedades fisicoquímicas necesarias 
deberán ser estimadas por medio de relaciones cuantitativas de estructura y actividad 
(QSARs), reglas experimentales que relacionan la estructura molecular de los 
compuestos con actividad química. Por esta razón, dentro del paquete de trabajo 2.4 
del proyecto NOMIRACLE, se ha investigado la posibilidad de analizar la 
distribución o destino en el ambiente de contaminantes químicos usando información 
molecular y algoritmos de aprendizaje. 
 
Se sabe que las variables de salida de modelos ambientales de múltiples medios 
(MEMs) se ven afectados no sólo por las premisas del modelo (procesos ambientales, 
métodos de cálculo, escalas, etc.) sino también por la incertidumbre en sus variables 
de entrada. Este estudio analiza la posibilidad de evaluar la distribución ambiental de 
compuestos, expresada como fracciones másicas adimensionales, directamente a 
partir de su información molecular en vez de usar MEMs con propiedades 
fisicoquímicas estimadas por QSARs. Con este fin, se han comparado predicciones de 
la distribución o destino de compuestos en el ambiente generadas por: a) SimpleBox 
3, un MEM de nivel III basado en fugacidades, propagando incertidumbres ya 
reportadas de propiedades fisicoquímicas por medio de un muestreo estadístico 
(simulaciones de Monte Carlo); y, b) regresiones de vectores soporte (SVRs) 
actuando como relaciones cuantitativas de propiedad y destino (QPFRs) o como 
relaciones cuantitativas de estructura y destino (QSFRs), relacionando fracciones 
másicas con, respectivamente, propiedades fisicoquímicas relevantes o descriptores 
moleculares de un juego de compuestos de entrenamiento. 
 
Los análisis de este estudio se refieren a 468 compuestos (incluyendo compuestos 
prioritarios) emitidos hipotéticamente en aire o agua, en un escenario geográfico fijo 
representando los Países Bajos (Holanda) como un juego de cinco compartimientos 
(aire, agua, sedimentos, suelo y vegetación). De los 468 compuestos considerados, 
375 se han utilizado como compuestos de trabajo, para entrenar y probar modelos 
QPFR o QSFR. Los 93 compuestos restantes fueron reservados para la validación 
externa de los modelos. 
 
Los compuestos de entrenamiento y prueba de cada QPFR ó QSFR fueron 
seleccionados, por medio del algoritmo de mapas autoorganizativos (SOM), a partir 
del juego de 375 compuestos de trabajo. El SOM se ha utilizado para establecer 
mapas de los compuestos en un espacio multidimensional conformado por las 
variables de entrada (propiedades fisicoquímicas o descriptores moleculares) y salida 
(fracciones másicas) de cada modelo, agrupando compuestos de trabajo que tienen 
variables de entradas y salida similares en cada una de las unidades del SOM. En el 
espacio multidimensional de cada modelo, los compuestos de trabajo más cercanos y 
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más alejados a cada unidad del SOM conforman el juego de datos de entrenamiento, 
mientras que los compuestos de trabajo restantes conforman el juego de datos de 
prueba. El tamaño de cada SOM se ha ajustado para producir una proporción de 
compuestos de entrenamiento y de prueba de cerca de, respectivamente, 80 % y 20 % 
el número de compuestos de trabajo disponibles. El SVR de cada QPFR o QSFR se 
desarrolló con sus compuestos de entrenamiento, mientras que sus parámetros se 
ajustaron para predecir de la mejor manera el destino de sus compuestos de prueba. 
Este paso se ha hecho para garantizar que cada modelo sea capaz de predecir tan bien 
como sea posible las fracciones másicas de compuestos que, sin ser parte del modelo, 
comparten ciertas similitudes con los compuestos de trabajo. Finalmente, cada modelo 
fue validado con los 93 compuestos de validación, no utilizados en ninguna fase del 
desarrollo de los modelos. El comportamiento de cada modelo con respecto a las 
predicciones del destino de juegos de compuestos se ha medido en términos del 
coeficiente cuadrático predictivo (q2) y de la media de errores absolutos (MAE). 
QPFRs o QSFRs se han considerado óptimos cuando muestran tanto valores altos de 
q2  como valores bajos de MAE, no sólo en los juegos de compuestos de 
entrenamiento y prueba, sin también en el juego de compuestos de validación. 
 
Aunque varios casos fueron considerados en los reportes del proyecto NOMIRACLE, 
por simplicidad la mayoría de los análisis descritos aquí se realizaron considerando 
fracciones másicas ambientales en aire y agua, resultantes de emisiones en agua. En 
general, compartimientos con fracciones másicas muy bajas mostraron los más altos 
rangos de variación en estas variables, cuando se propagaba la incertidumbre de 
propiedades fisicoquímicas a lo largo del MEM de referencia, en algunos casos de 
hasta 12 unidades logarítmicas (para 468 compuestos: los índices de predicción en 
aire fueron q2 = 0.87 y MAE = 0.82; mientras, los índices de predicción para agua 
fueron q2 = 0.82 y MAE = 0.18). QPFRs usando propiedades clave, coeficientes de 
partición y constantes de degradación, produjeron predicciones muy certeras (para 
468 compuestos: los índices de predicción en aire fueron q2 = 0.99 y MAE = 0.10; 
mientras, los índices de predicción para agua fueron q2 = 0.99 y MAE = 0.06). Sin 
embargo, dado que la disponibilidad de datos de partición y degradación se restringe a 
un número limitado de compuestos, la aplicabilidad del método de análisis ambiental 
basado en QPFRs se restringe también a tales compuestos. 
 
Los modelos QSFR estiman el destino de contaminantes, no utilizados en el desarrollo 
de estos modelos, a partir de sus descriptores moleculares y no sus propiedades 
fisicoquímicas. Una gran ventaja, cuando estas últimas se desconocen. QSFRs se 
desarrollaron usando uno de dos grupos de descriptores moleculares: el primer grupo 
comprendía peso molecular (MW) y propiedades moleculares estimadas 
semiempíricamente con la aproximación PM3 de la teoría de orbitales moleculares, el 
segundo grupo comprendía MW y el número de constituyentes moleculares en cada 
compuesto (átomos, enlaces, grupos funcionales y anillos). Las mejores predicciones 
hechas con QSFRs (para 468 compuestos: los índices de predicción en aire fueron q2 
= 0.78 y MAE = 1.01; mientras, los índices de predicción para agua fueron q2 = 0.80 y 
MAE = 0.33) se produjeron a partir del segundo grupo de descriptores (MW y el 
número de constituyentes moleculares). El algoritmo de SVR pudo estimar el destino 
en el ambiente de nuevos compuestos (de prueba o validación) con una exactitud 
aceptable, al comparar compuestos respecto a las secciones de cada molécula en vez 
de hacerlo respecto a propiedades moleculares promedio. 
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Para mejorar las predicciones de QSFRs, se investigó el agrupamiento de compuestos 
en clases para luego desarrollar QSFR específicos para cada clase. Predicciones 
mejoradas de fracciones másicas resultaron al agrupar compuestos, no con respecto a 
su degradación en agua (para 468 compuestos: los índices de predicción en aire fueron 
q2 = 0.72 y MAE = 1.13; mientras, los índices de predicción para agua fueron q2 = 
0.57 y MAE = 0.31) sino con respecto a su composición molecular (para 468 
compuestos: los índices de predicción en aire fueron q2 = 0.79 y MAE = 0.84; 
mientras, los índices de predicción para agua fueron q2 = 0.86 y MAE = 0.16); 
porque, de las predicciones de clase en el primer caso se obtuvo una rata de 
verdaderos positivos del 77.4 % y una rata de falsos positivos del 22.6 %, mientras 
que de las predicciones de clase en el segundo caso fueron inferiores, con una rata de 
verdaderos positivos del 100.0 % y una rata de falsos positivos del 0.0 %. Los átomos 
de un compuesto se pueden calcular fácilmente de su formula molecular, mientras que 
sus propiedades fisicoquímicas son objeto de variación debido a la incertidumbre en 
procedimientos tanto experimentales como de estimación. Cualquier falla en la 
predicción de la clase de un nuevo compuesto lleva a su análisis por medio de un 
QSFR inapropiado, produciendo resultados extremadamente erróneos. Para tener 
predicciones correctas del destino de un compuesto, éste debe ser analizado con un 
QSFR perteneciente a la misma clase química. 
 
Se ha estudiado la predicción de compuestos dentro y fuera de los dominios de 
aplicabilidad de QSFRs específicos, para clases de compuestos con respecto a su 
composición, en tres casos: Caso I, basados en el SOM e información sobre 
constituyentes moleculares; Caso II, basados en el SOM y componentes principales de 
constituyentes moleculares; y Caso III, la intersección de Casos I y II). Se ha 
demostrado que las fracciones másicas de nuevos compuestos (de prueba y 
validación) dentro de dominios de aplicabilidad de QSFRs por cada clase (Caso III: 
los índices de predicción en aire para 48 compuestos fueron: q2 = 0.92 y MAE = 0.54; 
mientras, los índices de predicción en agua para 53 compuestos fueron: q2 = 0.93 y 
MAE = 0.16) han sido más precisas que aquellas de compuestos fuera de los DOAs 
(Caso III: los índices de predicción en aire para 120 compuestos fueron: q2 = 0.59 y 
MAE = 1.50; mientras, los índices de predicción en agua para 117 compuestos fueron: 
q2 = 0.42 y MAE = 0.35). Extendiendo este estudio a emisiones en aire, tendencias 
similares se obtuvieron al analizar los mismos compuestos dentro de los DOAs (Caso 
III: los índices de predicción en aire para 48 compuestos fueron: q2 = 0.94 y MAE = 
0.20; mientras, los índices de predicción en agua para 53 compuestos fueron: q2 = 
0.92 y MAE = 0.27) y fuera de los DOAs (Caso III: los índices de predicción en aire 
para 120 compuestos fueron: q2 = 0.53 y MAE = 0.66; mientras, los índices de 
predicción en agua para 117 compuestos fueron: q2 = 0.61 y MAE = 0.51). 
 
Adicionalmente, se han comparado los índices de predicción en aire y agua. Se ha 
observado, al emitir compuestos en uno de estos compartimientos, que los mejores 
índices de predicción se obtuvieron en un solo compartimiento cuando las emisiones 
ocurrían en él mismo y no otro en compartimiento. Esto se ha confirmado, tanto para 
el compartimiento de agua (considerando 53 compuestos dentro de los DOAs en el 
Caso III: para emisiones en agua, los índices de predicción en agua fueron: q2 = 0.93 y 
MAE = 0.16; para emisiones en aire, los índices de predicción en agua fueron: q2 = 
0.92 y MAE = 0.27) como para el compartimiento de aire (considerando 48 
compuestos dentro de los DOAs en el Caso III: para emisiones en agua, los índices de 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 iv

predicción en aire fueron: q2 = 0.92 y MAE = 0.54; para emisiones en aire, los índices 
de predicción en aire fueron: q2 = 0.94 y MAE = 0.20). 
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Summary 
 
 
Except for common priority chemical pollutants of current concern, environmental 
key physicochemical properties tend to be unavailable to a wide spectrum of 
chemicals. This lack of data becomes critical if the number of chemicals to be 
screened for multimedia exposure increases over ten-fold due to the adoption of 
regulatory actions such as REACH in Europe. Most of the properties needed to screen 
these "new" chemicals and decide if they require further evaluation, will most likely 
have to be estimated from current Quantitative Structure-Activity Relationship 
(QSAR) models, understood as a set of experimental rules that relate chemical 
structure to chemical activity. For this reason, within the work package 2.4 of the 
NOMIRACLE project, research has been carried out to study the feasibility of 
assessing the environmental fate of chemical pollutants using molecular information 
and learning algorithms. 
 
It is known that the outputs of Multimedia Environmental Models (MEMs) are 
affected by not only the assumptions of the model (environmental processes, 
calculation methods, scales, etc.) but also by the uncertainty in input parameters. This 
study analyses the prospect of assessing the environmental distribution of chemicals 
directly from their molecular information, rather than using MEMs with several 
physicochemical properties estimated from QSARs. To this end, predictions of the 
environmental distribution or fate of chemicals, expressed in dimensionless 
compartmental mass ratios, have been compared between: a) SimpleBox 3, a Level III 
fugacity MEM, propagating reported uncertainty of key physicochemical properties 
via statistical sampling (i.e., Monte Carlo simulations); and, b) Support Vector 
Regressions (SVRs) acting as either Quantitative Property-Fate Relationships 
(QPFRs) or Quantitative Structure-Fate Relationships (QSFRs), linking mass ratios to, 
respectively, key physicochemical properties or molecular descriptors of a set of 
training chemicals. 
 
The assessments of this study were referred to 468 chemicals (including priority 
chemicals) emitted hypothetically in either air or water, in a fixed geographical 
scenario representing the Netherlands as a set of five compartments (air, water, 
sediments, soil and vegetation). Out of the 468 chemicals, 375 were used as work 
chemicals, for training and testing QPFR or QSFR models. The remaining 93 
chemicals were reserved for the external validation of the models. 
 
The training and test chemicals of every QPFR or QSFR model were selected, by 
means of the Self-Organizing Map (SOM) algorithm, from the set of 375 work 
chemicals. The SOM mapped the chemicals in a multidimensional chemical space 
conformed by the input variables (properties or molecular descriptors) and target 
(mass ratio) variables of each model, clustering work chemicals with similar inputs 
and targets in each of the SOM units. In the multidimensional space of each model, 
the closest and farthest work chemicals to each SOM unit conform the training data 
set, while the remaining chemicals conform the test data set. The size of each SOM 
was adjusted to yield a proportion of training and test chemicals of about, 
respectively, 80 % and 20 % the number of available work chemicals. The SVR of 
every QPFR or QSFR was developed with the training chemicals, while its parameters 
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were tuned to predict as well as possible the fate of the test chemicals. This step was 
meant to guarantee that every model was able to predict as much as possible the mass 
ratios of chemicals that, without being part of the model, share similarities with the 
training chemicals. Finally, every model was validated with the 93 validation 
chemicals, not used in at all in the development of the models. The performance of 
every model predicting mass ratios with respect to a data set was measured in terms of 
the square predictive coefficient (q2) and the mean absolute error (MAE). QPFR or 
QSFR models were considered optimal when showing both high q2 values and low 
MAE values, not only on the training and test data sets, but also on the validation set. 
 
Even when various cases were considered within the NOMIRACLE project, for 
simplicity most of the assessments described here were carried out considering 
environmental mass ratios in air and water, resulting from emissions in water. In 
general, compartments with low mass ratios of chemicals showed the highest ranges 
of variation in such variables, when propagating the uncertainty of physicochemical 
properties throughout the reference MEM, in some cases of up to 12 logarithmic units 
(for 468 chemicals: the performances in air were q2 = 0.87 and MAE = 0.82; while, 
the performances in water were q2 = 0.82 and MAE = 0.18). QPFRs using key 
physicochemical properties, partition coefficients and degradation rates, provided 
very accurate fate predictions (for 468 chemicals: the performances in air were q2 = 
0.99 and MAE = 0.10; while, the performances in water were q2 = 0.99 and MAE = 
0.06). However, since the availability of partitioning and degradation data is restricted 
to a limited number of chemicals, the applicability of the QPFR approach is thus 
restricted to such chemicals. 
 
QSFRs estimate the fate of new chemicals, not used in the development of these 
models, from their molecular descriptors, not their physicochemical properties. A 
great advantage, when the latter are unknown. QSFR models were developed using 
one out of two groups of molecular descriptors, the first group comprised molecular 
weight (MW) and molecular properties estimated semi-empirically with the PM3 
approximation of the Molecular Orbital (MO) theory, the second group comprised 
MW and counts of molecular constituents (atoms, bonds, functional groups and 
rings). Best QSFR performances (for 468 chemicals: the performances in air were q2 
= 0.78 and MAE = 1.01; while, the performances in water were q2 = 0.80 and MAE = 
0.33) resulted when using the second group of descriptors (MW and counts of 
molecular constituents). The SVR algorithm could estimate the fate of new chemicals 
(in test or validation data sets) with acceptable accuracy, when comparing chemicals 
in terms of the sections of every molecule rather than to average molecular properties. 
 
For improving the performance of QSFR models, it was investigated the clustering of 
chemicals in classes for later developing class-tailored QSFR models. Improved fate 
predictions resulted when clustering chemicals, not with respect to water degradation 
(for 468 chemicals: the performances in air were q2 = 0.72 and MAE = 1.13; while, 
the performances in water were q2 = 0.57 and MAE = 0.31) but with respect to their 
molecular composition (for 468 chemicals: the performances in air were q2 = 0.79 and 
MAE = 0.84; while, the performances in water were q2 = 0.86 and MAE = 0.16); 
because, class predictions in the first case yielded a true positive rate of 77.4 % and a 
false positive rate of 22.6 %, while class predictions in the second case were much 
lower than that, a true positive rate of 100.0 % and a false positive rate of 0.0 %. The 
atoms of a chemical can be easily calculated from its molecular formula, while its 
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physicochemical properties are subject to variation due to uncertainties in both 
experimental and estimation procedures. Any failure in the class prediction of a new 
chemical leads to its assessment with an inappropriate QSFR model, yielding 
extremely wrong results. For having the fate of a new chemical well predicted, it must 
be assessed with a QSFR related to the same chemical class. 
  
The prediction of chemicals in and out the domain of applicability of class tailored-
QSFRs, with respect to molecular composition, was studied in three cases: Case I, 
using the SOM algorithm and information about molecular constituents; Case II,  
using the SOM algorithm and principal components of molecular constituents; and 
Case III, the intersection of Cases I and II). It was demonstrated that the 
environmental mass ratios of new chemicals (test and validation chemicals) within the 
domains of applicability (DOAs) of class-tailored models (Case III: the performances 
in air for 48 chemicals were: q2 = 0.92 and MAE = 0.54; while, the performances in 
water for 53 chemicals were: q2 = 0.93 and MAE = 0.16), were way more accurate 
than those of outlying chemicals (Case III: the performances in air for 120 chemicals 
were: q2 = 0.59 and MAE = 1.50; while, the performances in water for 117 chemicals 
were: q2 = 0.42 and MAE = 0.35). Extending these assessments to emissions in air, 
similar trends were obtained when analyzing the same chemicals within the DOAs 
(Case III: the performances in air for 48 chemicals were: q2 = 0.94 and MAE = 0.20; 
while, the performances in water for 53 chemicals were: q2 = 0.92 and MAE = 0.27) 
and out of the DOAs (Case III: the performances in air for 120 chemicals were: q2 = 
0.53 and MAE = 0.66; while, the performances in water for 117 chemicals were: q2 = 
0.61 and MAE = 0.51). 
 
Additionally, comparing the performances of environmental fate predictions in air and 
water, while emitting chemicals in one of these two compartments, it was observed 
that best predictive performances were achieved for a single compartment when 
emissions occur in itself and not in other compartment. This confirmed for both the 
water compartment (considering 53 chemicals within the DOAs in Case III: for 
emissions in water, the performances in water were: q2 = 0.93 and MAE = 0.16; for 
emissions in air, the performances in water were: q2 = 0.92 and MAE = 0.27) and the 
air compartment (considering 48 chemicals within the DOAs in Case III: for 
emissions in water, the performances in air were: q2 = 0.92 and MAE = 0.54; for 
emissions in air, the performances in air were: q2 = 0.94 and MAE = 0.20) of the 
scenario considered.  
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How to read this thesis book 
 
 
This manuscript is a doctoral thesis derived from a research work originally prepared 
for the NOMIRACLE project in form of public deliverables, poster and oral 
presentations at international conferences and an article at a specialized journal. This 
document demonstrates how both learning algorithms and molecular information can 
be used to estimate the environmental fate of chemical pollutants, known sufficient 
examples of environmental fate for training chemicals. It comprises five chapters. 
Chapter 1 states the motivation, background, hypothesis, objectives and contributions 
of this research work. Chapter 2 describes the methods and tools employed, covering 
relevant technical disciplines: multimedia environmental modeling, statistical 
sampling, molecular modeling and pattern recognition. Chapter 3 describes the data 
sets used in the experiments; while Chapter 4 discusses the results of different 
computerized experiments carried out sequentially following a similar order to that 
used in the NOMIRACLE project, but applying updated work practices. Chapter 5 
states the conclusions of this work, discusses the applicability of the QSFR approach 
to multimedia environmental analysis, and outlines possible research areas for further 
developments. Supporting materials are presented in annexes containing: preliminary 
research works (Annex A), program codes (Annex B), lists of chemicals used in the 
assessments (Annex C) and data used (Annex D). Since the amount of information 
contained in some annexes may exceed the capacity of this manuscript, relatively 
small annexes have been printed and presented with a majuscule letter followed by a 
dot and number (e.g., like Annexes A.1, B.1, B.2…). Large annexes are only available 
as standard computer files in the accompanying CD of this manuscript and presented 
with a majuscule letter followed by a dot, a minuscule letter and a number (e.g., like 
Annexes A.a1, A.a2, A.a3, A.a4, A.b1, A.b2, A.b3, A.c1…). 
 
The computerized experiments of this thesis work implied the use of techniques and 
terminology used in very dissimilar disciplines that, when unknown to the reader, 
might be difficult to understand when studied in a first time. So, an effort has been 
made to make the information presented in this thesis as clearly as possible to wide 
audiences. The list of contents of this thesis should be considered as a map, ready to 
help lost readers find ways to digest this work. Graphs and tables are discussed in 
every section of the thesis, but they also have extended captions for helping the reader 
get concise explanations or specific details from an item of interest. Since the 
accumulated knowledge of each of the involved disciplines is vast, references have 
been listed at the end of each chapter, helping to associate every section of the thesis 
work with relevant knowledge or previous research works. 
 
For those interested in having a deep understanding of the findings of this study, the 
data and models presented in the Annexes can be of great help. They can give the 
necessary feeling for enhancing the visualization of the trends and results presented in 
this manuscript. 
 
Please note that the preliminary research works in the Annexes (reports, posters, oral 
presentations and papers) were edited in series or parallel to the evolution of this 
study and so their vocabulary, symbols and abbreviations may differ. However, their 
findings have being used in every step for updating the modeling of QSFRs. 
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GCaldehyde Count of aldehyde [dimensionless] 
GCamide Count of amide [dimensionless] 
GCamine Count of amine [dimensionless] 
GCsec-amine Count of sec-amine [dimensionless] 
GCcarbonyl Count of carbonyl [dimensionless] 
GCcarboxyl Count of carboxyl [dimensionless] 
GCcarboxylate Count of carboxylate [dimensionless] 
GCcyano Count of cyano [dimensionless] 
GCether Count of ether [dimensionless] 
GChydroxyl Count of hydroxyl [dimensionless] 
GCmethyl Count of methyl [dimensionless] 
GCmethylene Count of methylene [dimensionless] 
GCnitro Count of nitro [dimensionless] 
GCnitroso Count of nitroso [dimensionless] 
GCsulfide Count of sulfide [dimensionless] 
GCsulfone Count of sulfone [dimensionless] 
GCsulfoxide Count of sulfoxide [dimensionless] 
GCthiol Count of thiol [dimensionless] 
RCall Count of all rings [dimensionless] 
RCaromatic Count of aromatic rings [dimensionless] 
RCsmall Count of small rings [dimensionless] 
RC5-m Count of 5 membered rings [dimensionless] 
RCa-5-m Count of aromatic 5 membered rings [dimensionless] 
RC6-m Count of 6 membered rings [dimensionless] 
RCa-6-m Count of aromatic 6 membered rings [dimensionless] 
RC7-12-m Count of 7-12 membered rings [dimensionless] 
RCa-7-12-m Count of aromatic 7-12 membered rings [dimensionless] 
  
QPFR and QSFR models 
  

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 xxiii

C Matrix of environmental fate estimations, of size [N×G] 
Cair Concentration of a pollutant in air [g/mol] 
Csed Concentration of a pollutant in sediments [g/mol] 
Csoil Concentration of a pollutant in soil [g/mol] 
Cveg Concentration of a pollutant in vegetation [g/mol] 
Cwater Concentration of a pollutant in water [g/mol] 
D Matrix of molecular descriptors, of size [N×D] 
D Number of molecular descriptors [dimensionless] 
E Vector of site-specific parameters, of size [N×J] 
fMEM Function that works as multimedia environmental model 
fQPFR Function that relates physicochemical properties to fate estimations (QPFR) 
fQSFR Function that relates molecular information to fate estimations (QSFR) 
G Number of environmental compartments [dimensionless] 
J Number of environmental compartments in which emissions may occur [dimensionless] 
K Number of physicochemical properties [dimensionless] 
K* Number of available physicochemical properties, with K*<K [dimensionless] 
log10 Base 10 logarithmic scaling of data 
MAE Mean absolute error 
N Number of chemicals, number of samples [dimensionless] 
n Chemical n, sample n 
N[-1,1] Linear normalization of data in the range [-1,1] 
P Matrix of physicochemical properties, of size [N×K] 
P* Matrix of physicochemical properties, partially incomplete (with missing values),of size [N×K*] 
Pest Matrix of physicochemical properties obtained by experimental methods, of size [N×K] 
q2 Predictive squared coefficient 
q2

tr Predictive squared coefficient that compares predictions of a data set to training targets 
S Vector of site-specific parameters, of size [M×1] 
wair Mass ratio of a pollutant in air [dimensionless] 
wsed Mass ratio of a pollutant in sediments [dimensionless] 
wsoil Mass ratio of a pollutant in soil [dimensionless] 
wveg Mass ratio of a pollutant in vegetation [dimensionless] 
wwater Mass ratio of a pollutant in water [dimensionless] 
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Chapter 1 

Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This thesis study aims to contribute to the environmental modeling of chemical 
pollutants lacking of partitioning and degradation data. To this end, learning 
algorithms, widely used in artificial intelligence applications, have been trained to 
predict the fate of chemicals directly from their molecular structure known 
representative modeling examples. This introductory chapter explains the motivation, 
background, hypothesis, objectives and main contributions of this work.  
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1.1 Motivation 
 
 
There is concern about the presence of chemicals in the environment with the capacity 
to affect ecosystems and human health. For considering how hazardous a chemical 
can be, it is necessary to evaluate not only its toxicity and reactivity but also its 
quantity, location and exposure time. The fate of chemical pollutants released in the 
environment is determined by their tendency or not to persist, bioaccumulate and 
transport. 
 
Multimedia environmental models are tools used for estimating quantitatively the 
distribution of pollutants in the environment (Mackay, 2001), which otherwise would 
be difficult or unpractical to measure in real conditions. These models solve mass 
balances of pollutants undergoing various environmental processes (e.g., partitioning, 
transportation, degradation, etc.) in compartments representing different media (e.g., 
air, water, soil, etc.). Multimedia environmental models estimate concentrations of 
pollutants in all compartments, which can be subsequently related to toxicity and 
exposure parameters in standard risk assessments for regulatory and decision making 
tasks. 
 
Multimedia models require large amounts of data concerning geographic site-specific 
parameters, emission rates and physicochemical properties of the chemical to assess. 
Most data are difficult to obtain, site-parameters depend on geographical 
characterizations (Mackay, 2001) and emissions depend on scarce source data 
(Breivik et al., 2004; Breivik et al., 2006; Lohmann et al., 2007). In relation to 
physicochemical properties of chemicals, both experimental data and estimation 
methods have been compiled for their use in environmental modeling; even so, there 
is still the need of characterizing not only most existing chemicals but also new 
chemicals that have yet to be synthesized (Boethling et al., 2004). So, the availability 
or uncertainty of input data must be taken into account for most multimedia 
environmental fate assessments (Wania and Mackay, 1999a). 
 
Solely the lack of physicochemical properties of chemicals constitutes a very 
important issue: they remain unknown until their experimental determination. The 
large and constantly increasing number of chemicals complicates their complete 
characterization. The number of chemicals has experienced an exponential growth 
during the past 200 years (Schummer, 1997a), greatly influenced by the production of 
new chemicals for varied purposes (Schummer, 1997b). The CAS registry, one of the 
largest substance registry databases, maintained by the American Chemical Society 
through the Chemical Abstract Service (CAS) division, reported about 37 million 
substance and 60 million sequence records by the end of the year 2007 (CAS, 2008). 
By September 2009, it was reported the 50-millionth unique chemical substance of the 
CAS registry (Toussant, 2009). 
 
Problems in the experimental determination of physicochemical properties are not 
only restricted to a matter of costs and time; there are several chemicals for which 
properties cannot be appropriately measured with current technology, producing noisy 
values. In the same trend, estimation methods for missing properties may suffer the 
same kind of limitations as they are usually based on known data of chemicals already 
characterized. Property estimations may be carried out by a large pool of methods, all 
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of them with different levels of uncertainty (Boethling et al., 2004). In general, 
properties related to partitioning (e.g. melting point, vapor pressure, Henry’s law 
constant, water solubility, etc.) (Boethling et al., 2004; Mackay, 2000) are easier to 
measure and estimate than properties of degradation processes (Aronson et al., 2006; 
Howard et al., 1991; Klöpffer and Wagner, 2007; Raymond et al., 2001). Using 
different experimental or estimation methods, a property may have assigned a wide 
range of values. With this panorama, the applicability of multimedia environmental 
models is thus confined to well known chemicals, those for which there are reliable 
physicochemical data. 
 
Given the gigantic amount of chemicals and little information about them, the 
attention of regulators have been oriented towards updatable lists of few priority 
substances. The most known priority lists have been prepared by: the European 
Commission Community (EEC) (EEC, 1993); the United Nations Economic 
Commission for Europe (UN-ECE) (UN-ECE, 1998); the United Nations 
Environment Programme (UNEP) (UNEP, 2001); and, the Comprehensive 
Environmental Response, Compensation, and Liability Act (CERCLA) (ATSDR and 
EPA, 2007). 
 
The importance of assessing the multimedia environmental fate of priority chemicals 
is in no doubt, but chemicals not included in these lists may not be correctly assessed 
or even considered for risk assessments. So, motivated by the lack of information 
concerning most commercial chemicals and the risk that they represent for human 
health and the environment, new regulatory conditions are about to apply in 
industrialized countries (Tickner et al., 2005). These rules aim to collect information 
about the characteristics, emission rates and existing volumes of commercial 
chemicals in order to facilitate decision making tasks regarding the authorization or 
banning of the latter. The European Union, by means of the REACH regulation 
(Registration, Evaluation, Authorization and Restriction of Chemicals) (European 
Commission, 2006), plans to register substances produced in volumes equal or higher 
than 1 t/year and compile risk assessments for substances produced at rates equal or 
higher than 10 t/yr. Meanwhile, the United States implements the Inventory Update 
Rule (US-EPA, 2006) with similar purposes. 
 
Characterizing the massive amount of existing chemicals is a heavy task. 
Consequently, time may pass before enough and reliable physicochemical data are 
compiled for assessing the fate of most chemicals. Estimations methods based on 
molecular structure have proven to be appropriate for predicting chemical activity by 
means of relationships between analogous chemicals (Hugo, 2002), usually termed 
Quantitative Structure Relationships (QSARs). They represent an alternative to costly 
experiments, especially in environmental modeling (Devillers, 2003; Mackay et al., 
2003; Mackay and Webster, 2003). QSARs and alike have been widely used for 
estimating physicochemical properties, environmental parameters, toxicity and health 
effects of chemical pollutants for regulatory assessments (Cronin et al., 2003; Walker 
et al., 2002). Moreover, it is expected that newer regulatory initiatives will depend 
more on QSARs for filling information gaps (Fjodorova et al., 2008; Worth et al., 
2007), as databases evolve to contain more and more parameters and assessments of 
chemicals. 
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In most environmental assessments, missing physicochemical properties are usually 
estimated for their posterior use in multimedia environmental models. However, the 
more properties are estimated the more uncertain fate estimations may be, collecting 
the uncertainty propagated by each input parameter. Screening methods are thus 
required for evaluating the fate of chemical pollutants when their physicochemical 
properties are incomplete or noisy, situations in which standard multimedia 
environmental models tend to be highly uncertain. 
 
 

1.2 Background 
 
 

1.2.1 Multimedia environmental models 
 
 
Chemical pollutants may affect organisms at different levels, depending on factors 
like quantity, exposure time, toxicity and the media in which they are dissolved in. 
The importance of this matter is as high as its complexity, forcing the need of 
developing environmental models as simple as possible for describing the fate of 
pollutants and adding complexity when required (Mackay, 2001). 
 
The environment can be described as a set of homogeneous compartments or phases 
(typically air, water, sediments, soil, vegetation and biota) with fixed volumes in 
which gradients of concentration and temperature are negligible. Figure 1-1 shows a 
representation of the environment as a set of boxes and the pathways that a pollutant 
may follow as arrows from outside the system and throughout the system, from one 
compartment to another. Degradation processes in each compartment remove 
pollutants from the system modifying their structure and generating sub products. 
 
Since transportation and degradation of chemicals may occur in each compartment, 
mass balances can be set for accounting the rates at which a pollutant i accumulates or 
disappears in a given phase g of a geographical region: 
 
[Accumulation rate]i,g = [Inflow rate]i,g – [Outflow rate]i,g – [Degradation rate]i,g  (1-1) 
 
which allows the evaluation of average concentrations in each compartment once that 
the quantity of pollutant in each compartment is determined. 
 
Mass balances can be solved assuming the presence or not of steady state conditions, 
equilibrium or flow. Mackay classified multimedia environmental models in four 
levels of complexity, according to the assumptions applying in their mass balances 
(Mackay, 2001). Figure 1-2 shows the assumptions involved in such classification by 
comparing concentrations of a single pollutant in two-phase systems. 
 
In the absence of perturbation, closed systems (Level I, Figure 1-2a) reach 
simultaneously both chemical equilibrium and steady state conditions: equilibrium 
concentrations remain constant with time. In equilibrium, the proportion of solute 
dissolved in each phase remains constant (Kab = Ca/Cb) regardless of the total amount 
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Figure 1-1 Representation of the environment as a set of homogeneous 
compartments. 
In the environment, every medium can be considered a box of homogeneous density and composition that 
imports and exports chemicals by means of different transport processes. Some chemicals may be partially or 
totally removed by degradation (deg), other chemicals simply persist. Compartmental multimedia environmental 
models estimate the tendency of chemicals to distribute through different media, simultaneously, applying mass 
balances for each media. 

 
 
of pollutant in the system. 
 
In open systems, the presence of flow allows different sets of conditions: outflows 
may experience steady state conditions with constant pollutant concentrations that 
may be equal or not to equilibrium concentrations, depending, respectively, on the 
availability (Level II, Figure 1-2b) or not (Level III, Figure 1-2c) of time for reaching 
chemical equilibrium within the system. In the same manner, changing concentrations 
(Level IV) in outflows may reach (Figure 1-2d) or not (Figure 1-2e) equilibrium. 
 
In some cases, the complexity of a multimedia model can be adjusted for avoiding 
unnecessary calculation costs. When real conditions change slowly with time, Level 
III assumptions can be applied for standard multimedia environmental modeling 
without appreciable inconveniences (e.g., pollutants with the tendency to persist in the 
environment for relatively long periods of time). Changing conditions are best 
modeled with Level IV assumptions. 
 
Environmental models have been readily developed for describing individual 
environmental processes (process models), describing biological uptake (biological 
uptake models), evaluating the fate of chemicals in generic conditions (evaluative 
models) and describing the fate of chemicals in real locations at small (regionalized 
models) and large scales (spatially resolved models) (Wania and Mackay, 1999a). 
 
Process models constitute the core of more specialized models, as the former are 
added into the latter to account the effect that processes occurring simultaneously 
exert on the final distribution of chemical pollutants. In the mass balances of 
multimedia environmental models (Equation 1-1), each term represents a specific 
environmental process that raises or drops the quantity of chemical pollutants in a 
medium or more. 
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Figure 1-2 Applicable conditions to mass balances of multimedia 
environmental models. 
Compartmental multimedia environmental models are usually classified, according to conditions applying in their 
mass balances, as Level I (a), Level II (b), Level III (c) or Level IV (d and e). The more complex a model is, the 
higher its level. (Adapted from Mackay, 2001). 

 
 
Multimedia models usually represent media like air, water, sediments, soil and biota 
(vegetation and animals). However, when modeling processes between medium 
boundaries, other media may also be considered. For example, air may contain 
aerosols that participate in sorption processes or fall to soil or water compartments by 
dry and wet deposition processes. Similarly, water may contain suspended sediments 
that may be deposed, re-suspended and buried. The soil compartment, despite of not 
being a fluid medium may be affected by the amount of organic matter and water 
(evaporation, runoff to water, percolation to ground water, etc.) that it contains. All of 
these compartments may contain biota in different proportions. 
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Since the assumption of medium homogeneity is commonly in most multimedia 
models, average estimations of steady state or time dependent concentrations are 
obtained from, respectively, Level III and Level IV calculations. Models based on 
homogeneous compartments may be reasonably used for evaluative and regional 
assessments. As the volume of the region to assess increases, temporal and spatial 
variability may be also considered. Environmental media may differ greatly, spatially 
and temporally, in terms of pressure, temperature, volume, continuity, chemical and 
physical composition. Spatially resolved models divide each medium into several 
homogeneous compartments, estimating concentrations for each subdivision of the 
environment. In some cases, fluid phases may be modeled by 3D differential 
equations using Eulerian or Lagrangian approaches, i.e., with fixed or moving 
coordinates, respectively. 
 

Available multimedia environmental models 
 
Environmental models have been used for describing generic portions of the 
environment in a large variety of configurations, known the properties of the 
chemicals to assess, emission rates and site-specific parameters. Table 1-1 lists 
models with very different features, some of them widely used by modelers and 
regulators. The models contained in Table 1-1 are listed approximately in accordance 
to their application as evaluative, regionalized or spatially resolved models. General 
features of these models are also listed: scales, media, inputs and outputs. Specific 
details can be obtained from their respective references or manuals. 
 
Evaluative models have been widely used for assessing generic conditions. The 
QWASI model (Mackay et al., 1983) has been originally intended for modeling the 
fate of pollutants in lakes, in a system composed of air, water, sediments, fish and 
suspended solids. Some models incorporated soil and vegetation compartments for 
expanding their use to other locations; good examples are the CEMC models (Level I, 
Level II, Level III) (Mackay, 1991; Mackay and Paterson, 1991; Mackay et al., 
1992a), the EQC model (Mackay et al., 1996a; Mackay et al., 1996b; Mackay et al., 
1996c) and ELPOS (Beyer and Matthies, 2001). A modification of the Level III 
CEMC model (Mackay and Paterson, 1991), the ppLFER model (Breivik and Wania, 
2003), incorporated a small set of linear solvation parameters, instead of typical 
partitioning properties, in an attempt to improve fate estimations for polar organic 
chemicals. BasinBox (Hollander et al., 2006) is a Level III generic model developed 
for describing upstream, midstream and downstream sections of rivers. 
 
The fate of pollutants at a global scale has been generically modeled with simple 
evaluative models like ChemRange (Scheringer, 1996; Scheringer et al., 2004; 
Scheringer et al., 2002), a one-dimensional homogenous circular system, and 
CliMoChem (Scheringer et al., 2004; Scheringer et al., 2000), a two dimensional 
system composed of several latitudinal zones with different volumes and 
temperatures. Globo-POP (McLachlan et al., 2002; Wania, 2003; Wania and Daly, 
2002; Wania and Mackay, 1993; Wania and Mackay, 1995; Wania and Mackay, 
1999b; Wania et al., 1999), a zonally averaged multimedia model, divides the 
atmosphere in 4 layers and describes time dependent processes. 
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Table 1-1. Features of available multimedia environmental models. 
Modela,b Purpose 

┌───┴───┐ 
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QWASI+,3-4 √ - - √ - - - √ √la √ - - √ √ √ - - √ - √fu 
CEMC suite+,1-3 √ - - √ √ - - √ √w,fi,ss √ √ - √ √ √ - - √ - √fu 
EQC model+,1-3 √ - - √ √ - - √a,ae √w,ss √ √ - √ √ √ - - √ - √fu 
ELPOS+,3 √ - - - √ - - √ √ √ √ √ √ √ √ - - √ - √op 
ppLFER+,3 √ - - √ - - - √ √ √ √ - √ ep √ √ - - √ - √op 
ChemRange+,3 √ - - - - - √ √ √suw - √ - √ √ √ - - √ - √sr 
CliMoChem+,4 √ - - - - - √ √ √suw - √cs - √ √ √ - - √ - √sr 
MPI-MBM+,4 √ - - √ - - - √ √ - √ √ √ √ √ - - √ - √ 
MPI-MCTM3D √ - √ √ √ - - √ √sw,ice √ √ √ √ √ √ √ - √ √ √de 
GLOBO-POP+,4 √ - - - - - √ √la √fw,sw √ √cs,us - √ √ √ta - - √ - √fu 
SimpleBox+,n,3-4 √ - - √ √ √ √ √ √fw,sw √fw,sw √√cs,us √ √ √ √ - - √ - √mf 
EUSES+,n,3-4 √ - - √ √ √ √ √ √fw,sw √fw,sw √√cs,us √ √ √ √ - - √ - √ri 
CoZMo-POP+,3-4 √ - - √ √ √ - √ √ √ √ √ √ √ √ - - √ - √mf 
BasinBox+,3 √ - - √ - - - √ √ri √ √un,sa √ √ √ √ - - √ - √ 
CHEMGL+,3 √ - - √GR - - - √bl,ft,ls √sw √ √sus,vz,gw √pf,pr √ √ √ - - √ - √odp 
ChemFrance+,3 √ √ - √FR √FR - - √ √sw,gw √ √s,gw - √ √ √ - - √ - √fu 
CalTOX+,3-4 √ √ - √US √US √US - √ √suw √ √gs,rs,vz √le,ls √ √ √ - - √ - √ri 
ChemCAN+3 √ √ - - √CA √CA - √ √ √ √ √ √ √ √ - - √ - √fu 
TRIM.FaTE+,3-4 √ √ √ - √US √US - √ √ √ √ √ √ √ √ √ √ √ - √ri 
POPCYCLING-B.++,4 - √ √ - √BA - - √ √fw,sw √ √ √ √ √ √ta - - √ - √ 
BETR-NA++,4,GIS - √ √ - √US √US - √ √fw,cw √ √ √ √ √ √ √ √ √ √ √ 
BETR-Europe++,4,GIS - √ √ - √EU √EU - √ √ √ √ √ √ √ √ √ √ - √ √ 
BETR-World++,4,GIS - √ √ - √GL √GL √GL √ √ √ √ √ √ √ √ √ √ - √ √de 
BETR-Global++,4,GIS - √ √ - √GL √GL √GL √ √ √ √ √ √ √ √ √ √ - √ √ 
IMPACT-2002++,4,GIS - √ √ - √EU √EU - √ √ √ √ - √ √ √ √ - - √ √ 
EUROS++,eu  - √ - - √EU - √la,pm √ - √ - √ √ √ - √ - √ √ 
LOTOS++,4 - - √ - - √EU - √at - - - - √ √ √ - √ - √ √de 
LOTOS-EUROS++,4 - √ √ - - √EU - √la √fw,sw - √la,cs,us - √ √ √ √ - - √ √ 

 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 9

Table 1-1. Features of available multimedia environmental models (Continued). 
Modela,b Purpose 

┌───┴───┐ 
Scalesc 

┌──────┴───────┐ 
Mediad 

┌─────────┴─────────┐ 
Inpute 

┌─────────┴─────────┐
Outputf 
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MSCE-POP++,4 - √ √ - - - √ √ √cr √ √ √ √ √ √ √ √ - √ √de 
G-CIEMS++,3-4 - - √ - √JP - - √ √ri,cw - √ √ √ √ √ √ √ √ √ √ 
DEHM-POP3D,eu,4 - √ √ - √AP √AP - √ √ - √ - √ √ √ √ √ - √ √de 
FANTOM3D,eu,4 - √ √ - √NS - - √ √ss √ - - √ √ √ √ - - √ √de 
GEM/POPs3D,4 - √ - - √CA - - √ √ - √ - √ √ √ - √ - √ √ 
Polair3D-POP3D,eu,4 - √ √ - √EU √EU - √ √ - √ - √ √ √ - √ - √ √ 
a Models (in alphabetical order): BasinBox (Hollander et al., 2006), BETR-Europe (Prevedouros et al., 2004), BETR-Global (MacLeod et al., 2005), BETR-North America 
(MacLeod et al., 2001), BETR-World (Toose et al., 2004), CalTOX (McKone and Enoch, 2002; McKone et al., 1997; UCLA, 1995), CEMC (Mackay, 1991; Mackay and 
Paterson, 1991; Mackay et al., 1992a), ChemCAN (Mackay et al., 1991; Webster et al., 2003; Webster et al., 2004), ChemFrance (Devillers et al., 1995), CHEMGL (Zhang et al., 
2003), ChemRange (Scheringer, 1996; Scheringer et al., 2004; Scheringer et al., 2002), CliMoChem (Scheringer et al., 2004; Scheringer et al., 2000), CoZMo-POP (Wania et al., 
2006), DEMH-POP (Hansen et al., 2004), ELPOS (Beyer and Matthies, 2001), EQC model (Mackay et al., 1996a; Mackay et al., 1996b; Mackay et al., 1996c), EUROS (Leeuw 
and Rheineck Leyssius, 1990; Matthijsen et al., 2002; Van Loon, 1994; Van Loon, 1995), EUSES (Lijzen and Rikken, 2004; Vermeire et al., 2005; Vermeire et al., 1997), 
FANTOM (Ilyina et al., 2006), GEM/POPs (Gong et al., 2007; Huang et al., 2007), G-CIEMS (Suzuki et al., 2004), GEM-POPs (Gong et al., 2007; Huang et al., 2007), Globo-
POP (McLachlan et al., 2002; Wania, 2003; Wania and Daly, 2002; Wania and Mackay, 1993; Wania and Mackay, 1995; Wania and Mackay, 1999b; Wania et al., 1999), LOTOS 
(Builtjes, 1992; Schaap et al., 2004), LOTOS-EUROS (Schaap et al., 2005; Schaap et al., 2008), MPI-MBM (Lammel, 2004), MPI-MCTM (Lammel et al., 2001; Semeena et al., 
2003), Polair3D-POP (Quéguiner and Musson-Genon, 2008), POPCYCLING-Baltic (Breivik and Wania, 2002; Wania et al., 2000), ppLFER (Breivik and Wania, 2003), QWASI 
(Mackay et al., 1983), SimpleBox (Brandes et al., 1996; den Hollander and van de Meent, 2004; den Hollander et al., 2004; van de Meent, 1993), TRIM.FaTE (US-EPA, 2002a; 
US-EPA, 2002b). 
b Methods for solving mass balances (+ = few homogeneous compartments, ++ = several homogeneous compartments or grid, 1 = level I, 2 = level II, 3 = Level III, 4 = Level IV, m-n 
= Levels m to n, n = nested, 3D = 3D equations, eu = Eulerian, la = Lagrangian, GIS = retrieval of site-specific data from GIS databases). 
c Scales covered by the models: local, regional, continental, global. Some models have been developed for real geographic locations (AP = Artic Pole, BA = Baltic, CA = Canada, FR = 
France, GL = Global, GR = Great Lakes, EU = European Union, JP = Japan, NS = North Sea US = United States). 
d Representation of the environment in standard media: air, water, sediments, soil  and vegetation. Some models include other media as well (ab= air boundary layer, at = 
atmosphere, ae = aerosol, cr = cryosphere, cs = cultivated soil, cw = coastal water, fi = fish, ft = free troposphere, fw = fresh water, gs = ground-surface soil, gw = groundwater, ice = ice, la 
= layers, le =plant leaves, ls = plant leaf surfaces, lt = lower troposphere, lw = lake water, pm = particulate matter, rs = root-zone soil, rw = river water, sa = saturated soil ss = suspended 
sediments, sus =surface soil, suw = surface water, sw = sea water, un = unsaturated soil, us = uncultivated soil, vz = vadose-zone soil). 
e Input of models: physicochemical properties (ep = solvation energy parameters instead of partitioning properties), emission rates, environmental parameters, geophysical 
parameters and meteorological parameters. 
f Output of models: concentrations, concentration fields and others (LRTP = long range transport potential, ov = overall persistence, cc = cold condensation potential, de = deposition, fu 
= fugacity, hi = history, m%= mass percentages, odp = ozone depletion potential, ri = risk, sr = spatial range, s-r = source to receptor relationships). 
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Some evaluative models have been widely used for regional environmental fate 
assessments (Table 1-1). In one hand, there are models specifically adapted to regions 
of concern, like CHEMGL (Zhang et al., 2003), ChemFrance (Devillers et al., 1995), 
ChemCAN (Mackay et al., 1991; Webster et al., 2003; Webster et al., 2004) and 
CalTOX (McKone and Enoch, 2002; McKone et al., 1997; UCLA, 1995). On the 
other hand, there are models designed with several generic compartments for their 
posterior adaptation to specific regions; this is the case of SimpleBox (Brandes et al., 
1996; den Hollander and van de Meent, 2004; den Hollander et al., 2004; van de 
Meent, 1993), TRIM.FaTE (US-EPA, 2002a; US-EPA, 2002b) and CoZMo-POP 
(Wania et al., 2006). SimpleBox is a special case, since it is composed of sets of up to 
10 compartments nested at different scales (local, regional, continental and global). 
Some evaluative models linked to exposure and risk models have been widely used 
for regulatory purposes and risk assessments, CalTOX and TRIM.FaTE are typically 
used in the United States, while in the European Union it is the case of EUSES 
(Lijzen and Rikken, 2004; Vermeire et al., 2005; Vermeire et al., 1997), which is 
based on SimpleBox. 
 
Temporal and spatial variability is a typical feature of more recent multimedia 
models, requiring more data than the standard evaluative models, usually in form of 
meteorological and geophysical parameters. Some models retrieve data from large 
databases supported on the Geographic Information System (GIS). Spatially resolved 
models offer different resolution levels, depending on how calculations are performed 
in their mass balances. There are models that divide large regions into smaller 
interconnected sections (composed of standard homogenous compartments), while 
other models perform 3D calculations in fluid mediums. Some models use both 3D 
calculations in fluid media of interest and homogeneous compartments for 
neighboring media. 
 
Most spatially resolved models are based on several homogeneous compartments. 
POPCYCLING-Baltic (Breivik and Wania, 2002; Wania et al., 2000), based on 85 
homogeneous compartments (4 in the atmosphere, 26 in water, 25 in sediments, 10 in 
forest canopy, 10 forest soil and 10 agricultural soil boxes), has been used to describe 
the historical fate of some POPs in the Baltic region. BETR-North America 
(MacLeod et al., 2001) divides the upper part of the American continent into 24 
regions. BETR-Europe (Prevedouros et al., 2004) divides the Europe into 50 regions, 
while IMPACT-2002 divides the continent into 135 irregular watershed areas (land 
zones) and 156 separate air zones. BETR-World (Toose et al., 2004) and BETR-
Global (MacLeod et al., 2005) divide the terrestrial globe, respectively, into 25 and 
288 regions. The model G-CIEMS (Suzuki et al., 2004) represents the air 
compartment as a grid and rivers and soil as basins, achieving a resolution of up to 
5x5 Km2 in Japan. 
 
Spatially resolved atmospheric models, suitable for volatile pollutants, use either grids 
or 3D calculations. LOTOS (Builtjes, 1992; Schaap et al., 2004) and EUROS (Leeuw 
and Rheineck Leyssius, 1990; Matthijsen et al., 2002; Van Loon, 1994; Van Loon, 
1995), were developed independently for modeling dispersion and chemical 
transformation of pollutants in Europe, at the lower troposphere; these models have 
been merged into LOTOS-EUROS (Schaap et al., 2005; Schaap et al., 2008) to 
account distribution of pollutants in water and soil compartments as well. There are 
other atmospheric models, like DEMH-POP (Hansen et al., 2004), MSCE-POP and 
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GEM/POPs (Gong et al., 2007; Huang et al., 2007), Polair3D-POP (Quéguiner and 
Musson-Genon, 2008). A recent model, FANTOM (Ilyina et al., 2006), has been 
specifically designed for modeling spatial and temporal variability in the ocean, at the 
North Sea. 
 
Given the large variety of models available, selecting one model in particular depends 
on the chemicals and region of interest, features in available models (i.e., description 
of processes, scales, calculation methods, etc.) and data availability. Special care must 
be taken when selecting parameters for the landscape of interest, since small 
variations in their values may lead to large variations in chemical fate predictions 
(Webster et al., 2004). 
 
Environmental models require the management of several variables and assumptions, 
so it is recommended to use them for the same conditions for which they were 
developed (Fenner et al., 2005). They produce reasonable results for limited ranges of 
applicability. Studies comparing the performances of different multimedia models 
demonstrate how accurate predictions can be and their limitations (Armitage et al., 
2007; Hollander et al., 2007; Kawamoto et al., 2001; Lammel et al., 2007; Shatalov et 
al., 2005; Shatalov et al., 2004), however most comparisons are based on few 
chemicals, those for which physicochemical properties and emission history are 
known. All models are expected to undergo further modifications and tests for 
improving modeling techniques, process descriptions and evaluation of spatial and 
temporal variability. 
 
Assessments involving spatial and temporal resolution are desirable, but they are 
limited by the availability of data (accounting temporal and spatial variations) and 
resources to perform complex calculations. Standard evaluative models with 
homogenous compartments have proven to give reasonable estimations, making them 
suitable for screening inexpensively large groups of chemicals without geophysical 
and meteorological data, as an alternative to spatially resolved models. 
 

Uncertainty in input data 
 
The availability of sufficient and reliable input data is crucial for performing reliable 
environmental assessments. Multimedia environmental models require large amounts 
of data. Most measurements and estimations are uncertain, propagating substantial 
errors throughout the models and affecting the interpretation of analysts, regulators 
and decision makers. In one hand, field measurements tend to be scarce (records of 
historical emissions, spatial and temporal variability in media, etc.), forcing the use of 
average environmental parameters. On the other hand, measurements under laboratory 
conditions, aside of economical limitations, may be limited technically, leading to 
scarce or noisy data as well. 
 
Known that difficulties may arise in both field and laboratory measurements, 
uncertainty analysis is a must in environmental modeling (Wania and Mackay, 
1999a). It is known that site parameters (Meyer and Wania, 2007; Webster et al., 
2004) and emission rates (Breivik et al., 2004; Breivik et al., 2006; Lohmann et al., 
2007) affect the output of environmental models. The same occurs with the properties 
of chemicals. Physicochemical properties measure the tendency of chemicals to 
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participate in different environmental processes and to which extent. It has been 
observed that errors in data regarding the biodegradation and partitioning of 
chemicals in the environment may have a significant affect in the output of both 
standard (Citra, 2004; Eisenberg et al., 1998; Kawamoto et al., 2001; Kühne et al., 
1997) and spatially resolved environmental models (Toose et al., 2004). 
 
Despite of neglecting spatial variability, environmental models based on 
homogeneous compartments may suffer less uncertainty than spatially resolved 
models, the latter require more data in form of equilibrium or kinetic parameters 
(Fenner et al., 2004). Since physicochemical properties are present in the terms 
accounting mass flows in every mass balance (Equation 1-1), their impact on the 
output of multimedia environmental models depend on the magnitude of the different 
environmental processes taking place. 
 
 

1.2.2 Physicochemical properties required in 
environmental assessments 
 
 
Partitioning and degradation processes usually influence the most on the distribution 
of chemicals in the environment, so properties measuring the capacity of chemicals to 
participate in such processes constitute the major input for multimedia environmental 
models (Mackay, 2001). The tendency of chemicals to go to one media or another is 
usually assessed by screening and analyzing the magnitude of these properties (Gouin 
et al., 2000). 
 

Equilibrium properties 
 
The modeling of chemicals in environmental partitioning processes is typically based 
on partition coefficients, i.e., the ratio of equilibrium concentrations of two bordering 
media a and b (heterogeneous equilibrium): 
 

b

a
ab C

C
K       (1-2) 

 
The value of a partition coefficient indicates the proportion in which a chemical 
distributes in two phases in equilibrium. Partition coefficients are usually determined 
for systems of air-water (Kaw), octanol-water (Kow) and octanol-air (Koa, obtained 
from the ratio Kow/Kaw) since they can be subsequently related to partition coefficients 
of other systems by means of different correlations. 
 
Kaw can be estimated from the ratio of vapor pressure (Pv, Pa) and water solubility 
(Sw, mol/m3) or from Henry’s law constants (H, Pa.m3/mol), multiplying in both cases 
by 1/RT for obtaining dimensionless values (where R is the ideal gas constant 8.314 
J/(mol·K) and T is the temperature of the system in K): 
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
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





RT

1
HK aw   (1-3) 

 
Kaw values are usually referred to properties experimentally determined. Pv is the 
pressure exerted by the vapor of a substance in a closed system; Sw is measured 
accounting the amount of substance dissolved in a given volume of water reaching 
saturation; and, H can be obtained from saturation concentrations of a substance in air 
and water. Difficulties arise when measuring Pv for non volatile chemicals or Sw for 
highly hydrophobic chemicals, improvements on measurement methods are usually 
required for overcoming these limitations (Mackay et al., 1992b). 

 
Octanol is not present in the environment as a phase, but its similarity, in terms of 
properties and composition, to different organic phases (like sediments, soil and fat) 
makes it an ideal substitute of the latter. This facilitates the generation of equilibrium 
data between water and organic phases from Kow. Kow values are experimentally 
determined by shaking a closed octanol-water system containing a chemical of 
interest, measuring equilibrium concentrations of the chemical in both phases and 
later calculating their ratio (Co/Cw). Experimental errors in Kow values may result 
from quantities of emulsified octanol that remain suspended in water during the 
experiments. Kow values may be also uncertain when determined for highly 
hydrophobic chemicals. Kow can be used to estimate the organic carbon partition 
coefficient (Koc, L/kg), since both properties have been found to be somewhat 
proportional (Karickhoff, 1981): 
 

owoc 0.41KK      (1-4) 

 
The relationship between Koc and Kow may be variable and different correlations have 
been proposed to estimate Koc, but their reliability tend to be uncertain due to the lack 
of sufficient experimental Koc values (Gawlik et al., 1997). The soil-water partition 
coefficient, Ksw, may be estimated knowing Koc, the organic carbon content (CORG, 
g/g) and the density of the solids (ρsolid-soil, kg/L) as follows (Mackay, 2001): 

 

ocsoil-solidp KCORGρK      (1-5) 

 
Other partition coefficients can be further derived for accounting partitioning in more 
specific systems, like lipid-water, fish-water, aerosol-air, vegetation-air, etc. The only 
restriction is the availability of more basic partition coefficients for multiplying them, 
invert them or using them in specific correlations (Mackay, 2001). 
 

Kinetic properties 
 
Degradation. Degradation of chemicals is usually expressed in terms of degradation 
half lives t1/2, the time required by a certain amount of a chemical to reach half of its 
original concentration in a first order reaction controlled by a constant degradation 
rate k: 
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kC
dt

dC
       (1-6) 

 
The equation above, when solved for the time in which the concentration is half of the 
original concentration, yields: 
 

























 

o

o

1/2 C

C
2

1

ln
k

1
t     (1-7) 

 
which gives the relation between a half live and its corresponding degradation rate: 
 

k

693.0
t1/2       (1-8) 

 
Measurement of half lives or first order rate constants for most chemicals in the 
environment represents a challenging problem, environmental degradation processes 
depend not only on the inherent properties of chemicals but also on the nature of the 
media they are located (Klöpffer and Wagner, 2007). A common practice is to 
estimate the mean half live value of a chemical in a medium according to a range of 
observed half live values. Mackay defined a tabulation of mean half live values for 9 
ranges of values (Mackay et al., 1992b), such classification is shown in Table 1-2.  
 
 
Table 1-2. Mackay’s criteria for the classification of chemicals according 
to their degradation half lives*. 

Class Mean t1/2 (h) Range of t1/2 (h) 
1 5 <10 
2 17 (~ 1 day) 10-30 
3 55 (~ 2 days) 30-100 
4 170 (~ 1 week) 100-300 
5 550 (~ 3 weeks) 300-1000 
6 1700 (~ 2 months) 1000-3000 
7 5500 (~ 8 months) 3000-10000 
8 17000 (~ 2 years) 10000-30000 
9 55000 (~ 6 years) >30000 

* (Mackay et al., 1992b). 

 
 
Diffusion. The transportation of a chemical pollutant can occur macroscopically by 
advection and microscopically by diffusion. In advection processes, the chemical is 
moved by a fluid in motion, calculating the pollutant flow (mol/s) from the product of 
the rate flow of the fluid (m3/s) and the corresponding pollutant concentration 
(mol/m3). Microscopically, the flow of a pollutant i, driven by a concentration 
gradient in the fluid, occurs towards the region with the lowest concentration. For 
steady state conditions and one dimension (X), the diffusion process is described by 
Fick’s first law: 
 

dX

dC
DJ a      (1-9) 
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where Da (m
2/s) is the diffusion coefficient of a chemical in a medium a. 

 
 

1.2.3 Estimation of physicochemical properties from 
molecular structure 
 
 
The need of estimating unavailable physicochemical and toxicity data has raised the 
demand of quantitative structure-activity relationships (QSARs) (Devillers, 2003; 
Mackay et al., 2003; Mackay and Webster, 2003). QSARs and alike have been widely 
used in regulatory assessments (Cronin et al., 2003; Walker et al., 2002). QSARs 
relate information from the molecular structure of chemicals to a variety of processes, 
like chemical reactivity, chemical properties or toxicity (Winkler, 2002). When 
dealing with biological properties, these estimation models are usually referred to as 
QSARs; but, when used for modeling physicochemical properties, biodegradation or 
toxicity they are termed, respectively, quantitative structure-property relationships 
(QSPRs), quantitative structure-biodegradation relationships (QSBRs) or quantitative 
structure-toxicity relationships (QSTRs). 
 
QSAR hystory. Studies that relate chemical information to a variety of processes 
have been developed from somewhat independent research lines. The physiological 
action of substances has been linked to its chemical composition and structure (Crum 
Brown and Fraser, 1868) and the narcotic potency of a set of organic chemicals was 
found to be related to their olive oil/water partitioning coefficients (Meyer, 1899; 
Overton, 1899). Melting points and boiling points were predicted for a series of 
homologous series of chemicals in a work that is considered to be the first QSPR ever 
reported (Mills, 1884). The ionization of bases and weak acids was studied, in terms 
of their molecular structure, under bacteriostatic activity (Albert, 1985; Albert et al., 
1945; Bell and Roblin, 1942). Works for the explanation of substituent effects on 
organic reactions (Hammet, 1935; Hammett, 1970) and the separation of polar, steric 
and resonance effects (Taft, 1952) were foundations for the posterior development of 
the QSAR paradigm. Usually, the birth of QSAR models is attributed to works 
developed, independently, by Hansch and Fujita (1964) in one side and by Free and 
Wilson (1964) on the other. Structure-activity relationships of plant growth regulators 
and their dependency on Hammet constants and hydrophobicity were developed and 
published by 1962 (Hansch et al., 1962). The relative hydrophobicity of a substituent, 
, was defined (Fujita et al., 1964) for the partition coefficients of a derivative and the 
parent molecule, PX and PH, respectively: 
 

   HXX PlogPlogπ      (1-10) 
 
These hydrophobic constants were combined with Hammet’s electronic constants into 
the linear Hansch equation and several of its variations (Hansch and Leo, 1995) to 
describe different types of biological activities: 
 

cκbπaσ
C

1
log 








    (1-11) 
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The equation formulated by Free and Wilson independently considered that all 
logarithmic biological activity values are the sum of the biological activity of the 
reference chemical and the group contributions of all substituents attached to different 
positions of the molecule: 
 

μxa
C

1
log

n

1
ii 






 

i

     (1-12) 

 
Learning algorithms. Research on QSAR has advanced rapidly supported on the 
introduction of non-linear equations in the models, potent computer based 
calculations and the definition of thousands of molecular descriptors measuring large 
varieties of molecular features (Hugo, 2002; Todeschini and Consonni, 2000). 
Nowadays, the relationship between a chemical process and molecular structure is 
given by a function, usually unknown and complex, in which parameters of the first 
(y) are related to a set of molecular descriptors (xi): 
 

   n21 x,...,x,xfylog      (1-13) 
 
with the purpose of predicting the activity of chemicals not used in its development. 
QSARs must undergo different test stages for assessing their robustness, prediction 
ability and applicability domain. Thus, the selection of the data sets for training and 
testing the models constitute an important issue. 
 
QSARs have greatly benefited from the introduction of artificial neural networks 
(ANNs) (Basheer and Hajmeer, 2000), like backpropagation networks (BPNs) 
(Hornik et al., 1989; Rumelhart et al., 1986) and radial basis functions (RBF) (Lo, 
1998), for fitting data without a prior knowledge of involved functionality. However, 
finding optimal ANNs is a time consuming problem in which overfitting (Hawkins, 
2004) may occur and very different models result from the same training data. 
Support vector regressions (SVRs) (Drucker et al., 1996), based on support vector 
machines (SVMs) (Cortes and Vapnik, 1995; Vapnik, 2000) have proven to yield 
slightly better results and be more robust than classical ANNs, e.g., in classification 
(Byvatov et al., 2003) and predictive tasks (Bhasin and Raghava, 2004; Hua and Sun, 
2001). Additionally, models based on SVRs can be reproduced, i.e., a SVR model can 
be reconstructed with the same training data used in its development, contrasting 
ANN based models. SVMs are expected to replace ANNs in QSAR developments as 
fast as new software packages include SVM-based algorithms in their libraries (Xu et 
al., 2006). Methods typically used in pattern recognition problems (Jain et al., 2000; 
Wood, 1996) have also been incorporated in the repertoire of QSAR modeling 
techniques for manipulating large data sets by clustering, classifying or selecting 
relevant features (Lavine, 2006). 
 
Uncertainty in QSAR predictions. Assuming that chemicals with similar molecular 
structure show similar properties, QSARs are meant to estimate chemical activity 
covering the chemical space as widely as possible (Willighagen et al., 2006). 
However, small structure differences may lead to large differences in activity 
(Nikolova and Jaworska, 2003). The predictive performance of QSARs is greatly 
affected by recurrent factors (Cronin and Schultz, 2003) like the quality of available 
training data (Stouch et al., 2003), the presence of outliers (Furusjö et al., 2006), the 
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selection of input features (Saeys et al., 2007) from large number of descriptors 
(Bredow and Jug, 2005; Burden et al., 2009; Duca and Hopfinger, 2001; Senese et al., 
2004; Todeschini and Consonni, 2000), the selection and tuning of learning 
algorithms for building relationships (Basheer and Hajmeer, 2000; Xu et al., 2006), 
the risk of overtraining (Byvatov et al., 2003), the external validation of the models 
(Golbraikh and Tropsha, 2002; OECD, 2007; Schüürmann et al., 2008) and the 
definition of applicability domains (Weaver and Gleeson, 2008). The simultaneous 
optimization of all these elements is a problem that leads to almost infinite posibilites, 
resulting in a process that forces both modelers and users undergo cycles of optimism 
and frustration about the benefits of QSAR models (Johnson, 2008). 
 
The development of QSARs is a matter of compromise between understanding, 
complexity and applicability of the models (Ferenç Darvas et al., 2006). So, QSAR 
models must not be considered universal and definitive models, but updatable tools 
that allow data estimations from available resources. Recent developments attempt to 
generate new types of molecular descriptors (Duca and Hopfinger, 2001; Senese et 
al., 2004; Todeschini and Consonni, 2000) or simply replace their use with molecular 
graphs (Goulon et al., 2005; Goulon et al., 2007). However, some time must pass in 
order to assimilate the applicability of new research trends in molecular modeling to 
practical applications. 
 

Quantitative structure-property relationships 
 
QSPRs have been developed for estimating basic properties of chemicals, most of 
them required in standard environmental fate assessments, using different 
combinations of molecular descriptors and methods (Devillers, 2003). Generally, the 
accuracy of estimation methods based on QSPRs is no better than that of 
experimentally determined properties, with some exceptions. Prediction accuracy 
close to experimental measurements have been achieved in QSPRs restricted for some 
families of chemicals or QSPRs using sets of test chemicals from their working 
database, but their performance with independent sets of chemicals have been limited 
(Taskinen and Yliruusi, 2003). Factors like quality of training data, correlation 
methods employed and external validation of models has been a matter of debate  in 
the development of QSPRs. For these reason, it is difficult to catalogue any of them as 
definitive. 
 
When experimentally determined properties can not be obtained from available 
databases, their estimation from molecular structure is recommended, especially from 
models accounting a large variety of chemicals and tested for large sets of chemicals 
not used for their training (Boethling et al., 2004). Among several estimation methods 
using molecular information, the collection of methods included in the free software 
package EPI suiteTM (SRC, 2008), based mostly on correlations of molecular 
fragments, has been traditionally recognized to be appropriate for a wide range of 
chemicals (Boethling et al., 2004). 
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Quantitative structure-biodegradation relationships 
 
Known that for certain chemicals degradation or biodegradation processes influence 
greatly their fate in the environment, several attempts for training QSBRs have been 
carried out (Raymond et al., 2001). Experimental measurements of degradation are 
scarce and noisy, so most QSBRs are limited to sets of homologous chemicals. The 
output from these models may be expressed numerically (e.g., half lives, degradation 
rates, etc.) or discretely, in which a class is assigned to the chemicals (e.g., persistent 
or not). The model developed by Boethling et al. (Boethling et al., 1994), based on 
group contributions, has shown to be better than other models for predictive 
screenings of a large variety of chemicals, mainly because of the quality and size of 
its training data set (Raymond et al., 2001). It calculates the probability of a chemical 
to degrade or not within a range from 1 to 0, respectively. This model has been 
programmed and named BIOWINTM, included in EPI SuiteTM. 
 
BIOWINTM has undergone different modifications. BIOWINTM was originally 
intended to estimate the probability of a chemical to degrade rapidly or slowly in 
aerobic conditions (Howard et al., 1992). After a revision of fragments and molecular 
weight, it was set to estimate the probability of biodegradation from experimental data 
and estimate primary/ultimate biodegradation times using evaluations of 200 
chemicals by 17 experts in the field (Boethling et al., 1994). BIOWIN has included in 
its fifth and sixth versions (respectively, BIOWIN 5 and BIOWIN 6), 884 chemicals 
with biodegradation tests from the Japanese Ministry of international Trade and 
Industry (MITI) (JETOC, 1992), 385 classified as “readily degradable” and 499 
classified as “not readily degradable” (Tunkel et al., 2000). The models (linear and 
non-linear) in this version, based on a total of 42 fragments and MW, have been 
trained and validated with MITI chemicals selected randomly, predicting correctly 
83% of the training chemicals and 81% of the validation chemicals. The MITI 
experiments are considered to have an appreciable quality because the uniformity in 
their test conditions (Alikhanidi and Takahashi, 2004). 
 
Despite of the improvements carried out in BIOWINTM, its use is recommended 
solely for screening purposes until the availability of more accurate degradation 
models. In general, its degradation predictions must be considered with caution. 
Environmental degradation processes are highly variable and correlations to 
molecular structure are still likely to fail (Aronson et al., 2006). In an attempt to 
predict degradation half lives of chemicals for their use in multimedia environmental 
models, a model based on the similarity of molecular structure have been developed 
and compared to the models of EPI SuiteTM (Kühne et al., 2007). The comparison 
criteria was the capacity of these models to predict correctly the representative classes 
of 293 chemicals in 4 compartments (air, water, sediments and soil), in accordance to 
the 9-class scheme proposed by Mackay (Mackay et al., 1992b) and shown in Table 
1-2. The model based on structure similarity was said to be superior to the 
degradation models in EPI SuiteTM, according to Kühne et al. (2007). However, the 
performance of the former with chemicals different than those in the training set has 
not been tested yet. 
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1.2.4. Multimedia environmental modeling from 
molecular structure 
 
 
Uncertainty in the input data of multimedia environmental models affects most 
environmental assessments. Especially, when it is associated to physicochemical 
properties of chemicals for which reliable experimental data is unavailable or poorly 
estimated with current methods. This problem, already pointed out by Wania and 
Mackay (1999a), is very likely to continue in the future as multimedia models rely on 
properties that must be determined by experimental or estimation procedures, in 
which uncertainty may be reduced but not completely eliminated. 
 
Standard multimedia models are meant mostly for organic pollutants, but other types 
of pollutants requires special treatments (e.g., dissociating pollutants, metals, etc.) 
(Mackay, 2001). The use of partition and degradation properties in most multimedia 
environmental models limits the application of the latter to chemicals for which such 
properties can be easily obtained. For these reason, it is required to improve the 
description of environmental processes and enhance their range of applicability to 
more chemicals. 
 

Poly-parameter liner free energy relationships 
 
In an attempt to improve multimedia environmental assessments for polar organic 
chemicals, Breivik and Wania (2003) modified a standard level III model (CEM) by 
substituting the use of standard partitioning coefficients with solvation parameter 
models of the form (Abraham, 1993): 
 

  x
H
2

H
2

H
22ab vVβbαasΠrRcKlog       (1-14) 

 
or 
 

   16H
2

H
2

H
22ab LlLogβbαasΠrRcKlog      (1-15) 

 
where partition coefficients (Kab) are related to five solute descriptors: excess molar 
refraction (R2), dipolarity/polarizability (π2

H), overall hydrogen-bond acidity (α2
H), 

overall hydrogen bond basicity (β2
H) and McGowan’s characteristic volume (Vx) or 

the distribution constant of a chemical pollutant in n-hexadecane at 25ºC (Log(L16)). 
The remaining symbols are constants (c, r, s, a, b, v, l). 
 
The model proposed by Breivik and Wania, named ppLFER (poly-parameter linear 
free energy relationships), establishes a functionality between its output and the 
characterization of polar chemicals based on both degradation data and solvation 
parameters (Equations 1-14 and 1-15). After evaluating the model with theoretical 
solute descriptors for 40 chemicals, Breivik and Wania pointed out the possibility of 
using chemical structure for describing partitioning behavior and the need of 
additional research (Breivik and Wania, 2003). In a posterior work, the ppLFER 
model was assessed with 3 pharmaceuticals, showing that this model may be suitable 
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for pharmaceuticals with uncertain Kow values (Zukowska et al., 2006). However, it 
was also found that half lives of chemicals in water have a major influence on the 
output of the model and accuracy in such input data is also required. 
 

Structure-fate relationships 
 
Another attempt of linking molecular information to environmental fate assessments 
involved the use of partial orders and Hasse diagrams to represent structure-fate 
relationships (Brüggemann et al., 2006) on 19 organic chemicals monitored in the 
river Main, Germany, for explaining simultaneously four environmental processes, 
namely, volatilization, sedimentation, persistence and advection. This approach was 
an effort to derive theoretical relationships between the molecular structure of 
chemicals and their fate in the environment, but the complexity of the approach makes 
difficult its extension to a wide number of chemicals as several parameters must be 
estimated and it is still not clear how to do it properly.  
 

Quantitative structure-fate relationships 
 
The NOMIRACLE project, “NOvel Methods for Integrated Risk Assessment 
CumuLative stressors in the Environment”, studied in its work package 2.4, 
denominated “Region specific environmental fate”, the use of supervised algorithms 
to estimate the environmental fate of chemicals when key physicochemical properties 
are unavailable. The output of such study comprised the project deliverables D.2.4.4 
(Martínez et al., 2006c; Annex A.1), D.2.4.9 (Martínez et al., 2007b; Annex A.a2), 
D.4.12 (Martínez et al., 2008d; Annex A.a3) and D.2.4.13 (Martínez et al., 2008a; 
Annex A.a4). 
 
Considering emission rates in one of various compartments, backpropagation 
networks were trained to predict level III environmental concentrations of chemicals 
in five compartments simultaneously (air, water, sediment, soil and vegetation) from 
reduced sets of properties (Martínez et al., 2006c; Annex A.1), mainly partition 
coefficients and degradation rate constants. 
 
Since partition and degradation data are usually unavailable for most chemicals, it 
was proposed the training of supervised learning algorithms to link molecular 
descriptors to the output of MEMs (Martínez et al., 2007b; Annex A.a2), like standard 
QSARs linking molecular descriptors to chemical activity (Equation 1-13). The 
advantage of this approach, here named quantitative structure-fate relationships 
(QSFRs), with respect to its predecessors (like ppLFER or structure-fate relationships, 
described above) is that QSFRs are multivariate functions with parameters that can be 
easily tuned if enough training chemicals are available. 
 
Several experiments were carried out on algorithms using semi-empirical molecular 
descriptors (Martínez et al., 2007b; Annex A.a2) or descriptors counting molecular 
constituents (Martínez et al., 2008a; Annex A.a4), yielding better results the latter 
ones. Other studies considered the extrapolation of scenarios through the use of output 
sensitivities (Martínez et al., 2007b; Annex A.a2) or the clustering of chemicals for 
improving fate estimations with class-tailored QSFRs (Martínez et al., 2008d; Annex 
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A.a3), but the need of improving the tuning of QSFR models was the main focus of 
the research within NOMIRACLE (Martínez et al., 2008a; Annex A.a4). 
 
This study, titled “Quantitative structure-fate relationships for multimedia 
environmental analysis”, discusses about the applicability of QSFRs to estimate the 
fate of chemicals for which physicochemical properties are unavailable. As explained 
later (Sections 1.3 to 1.5), it builds on experiments (Chapters 2, 3, 4) meant to update 
the findings within the NOMIRACLE project (Section 5.1), proposing better practices 
adaptable for future assessments (Sections 5.2 and 5.3). 
 
 

1.3 Hypothesis 
 
 
There is a need of estimating the fate of chemicals for which most properties are 
missing or uncertain, when standard multimedia environmental models are likely to 
be uncertain as well. Thus, the following hypothesis is formulated: 
 
Since molecular structure is related to partitioning properties and to degradation 
data, relationships between molecular structure and the output of multimedia 
environmental models must be expected as well. In addition, such relations may 
overcome the uncertainty that properties estimated individually usually propagate 
throughout multimedia environmental models. 
 
 

1.4 Objectives 
 
 
The general objective for testing the hypothesis of this work is to relate the molecular 
structure of chemicals to the output of a standard multimedia model. This implies 
using machine learning algorithms for establishing quantitative structure-fate 
relationships (QSFRs) and evaluating the prediction of chemicals not included in the 
training process. With the general purpose in mind, the following specific objectives 
have been stated: 
 
1st objective: Compile data for modeling a reference pollution scenario, to which all 
analyses will be referred to, which implies: first, compiling input and output data 
from a standard Level III MEM for two sets of chemicals, one for training and testing 
learning algorithms (to be used as QPFR, QSFR, classifiers) and the other for their 
external validation, emitted at hypothetical constant rates in the same geographical 
scenario; and, second, compiling molecular data for the chemicals to assess. 
 
2nd objective: Train learning algorithms to perform environmental fate estimations 
directly from reduced sets of physicochemical properties, instead of all the properties 
required by the reference MEM, establishing quantitative property-fate relationships 
(QPFRs). 
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Figure 1-3 Scheme of how QSPRs, QSBRs, QPFRs and QSFRs are used in 
this work. 
This work studies the estimation of environmental fate by means of quantitative property-fate relationships 
(QPFRs) and quantitative structure-fate relationships (QSFRs). Given constant emission rates and geographical 
parameters, QPFRs and QSFRs are meant to be alternatives to standard level III multimedia environmental 
models (MEMs) when large sets of properties must be estimated from either quantitative structure-activity 
relationships (QSARs) or quantitative structure-biodegradation relationships (QSBRs). The proposed approach is 
supported on the use of data mining techniques along with multimedia modeling examples, from a parent MEM, 
for training QPFRs and QSFRs. 

 
 
3rd objective: Train learning algorithms to perform environmental fate estimations 
directly from molecular information, establishing quantitative structure-fate 
relationships (QSFRs). 
 
4th objective: Compare the fate predictions of the reference pollution scenario (1st 
objective), to fate predictions obtained by alternative paths: a) using the reference 
MEM with physicochemical properties, previously estimated by publicly available 
QSPRs and QSBRs; b) using QPFRs with reduced sets of physicochemical properties; 
c) using QPFRs with reduced sets of physicochemical properties, previously 
estimated by publicly available QSPRs and QSBRs; and, d) using QSFRs with 
available molecular information. 
 
As stated above, for setting a common ground of comparison, all the experiments and 
analyses of this research work are referred to level III fate predictions of chemicals, 
emitted hypothetically on a fixed geographical scenario. If others chemicals and 
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geographic scenarios were used other results could be obtained, but the applicability 
of the proposed methodology remains unchanged. The multimedia model selected for 
reference of QPFRs and QSFRs (1st Objective) is SimpleBox 3 (den Hollander and 
van de Meent, 2004; den Hollander et al., 2004). The reasons of selecting this model 
are based on: first, its previous comparison to field data in The Netherlands (Struijs 
and Peijnenburg, 2002) ; second, its previous comparison to other multimedia models 
(Armitage et al., 2007; Hollander et al., 2007; Lammel et al., 2007; Shatalov et al., 
2005; Shatalov et al., 2004); and third, its extended use within EUSES (Lijzen and 
Rikken, 2004; Vermeire et al., 2005; Vermeire et al., 1997). 
 
Figure 1-3 represents a scheme of the relationships with multimedia environmental 
fate estimations used and tested here. The direct inputs and outputs of SimpleBox 
3,the reference MEM (1st objective), have been used as reference for the QPFR and 
QSFR models of this study (considering training, test and validation chemicals). 
QPFRs have been set to predict the fate of chemicals with reduced sets of 
physicochemical properties (2nd Objective); while, QSFRs have been set to do so 
directly from molecular structure, bypassing the use of properties for test and 
validation chemicals (3rd Objective). The uncertainty analysis on the direct inputs of 
the MEM (physicochemical properties getting values form statistical distributions), 
and thus simulating the path of using molecular structure to predict properties and 
using the latter in the MEM., was meant to compare the resulting fate predictions to 
those of QPFRs and QSFRs (4th Objective). 
 
 

1.5 Contributions 
 
 
This thesis work has been based on research carried out for the work package 2.4 of 
the project NOMIRACLE (Novel Methods for Integrated Risk Assessment of 
Cumulative Stressors in Europe), financed by the European Commission (FP6 
Contract No. 003956). Table 1-3 lists the research works supporting this manuscript, 
four reports, three posters, two oral presentations and a paper. During the execution of 
the NOMIRACLE project, preliminary findings concerning QPFRs and QSFRs were 
documented in reports (Annexes A.a1, A.a2, A.a3 and A.a4) while results were 
presented, almost simultaneously, through posters (Annexes A.b1, A.b2 and A.b3) 
and oral presentations (Annexes A.c1, A.c2). With basis on such preliminary findings, 
a final paper has been prepared (Annex A.1) for discussing optimal results with 
QSFRs, considering 375 work chemicals and 80 validation chemicals, demonstrating 
the capabilities of the QSFR approach to the scientific community and discussing 
about its application in the assessment of new chemical pollutants.  
 
The preliminary works within NOMIRACLE (Table 1-3) studied extensively QPFRs 
for emission rates in different compartments, QSFRs with different learning 
algorithms (like backpropagation networks, radial basis functions and support vector 
regressions) and sets of molecular descriptors, and class-tailored QSFRs. The present 
study presents results and discussions for the same geographical scenario used in such 
works, but implementing a more compact format that shows the evolution of the 
development of updated QPFRs and QSFRs, considering 375 work chemicals and 93 
validation chemicals, aiming to demonstrate updated best practices in the QSFR 
approach. 
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This chapter has stated the problem of assessing the environmental fate of chemicals 
lacking of reliable properties and a proposal for solving it. The methods and 
algorithms used in the simulation experiments are described in Chapter 2. Chapter 3 
describes both reference multimedia environmental data and molecular data of revised 
QPFR and QSFR models. Chapter 4 presents results and discussions, while Chapter 5 
presents the conclusions of this work, its applicability in multimedia environmental 
analysis and guidelines for future improvements. 
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Table 1-3. List of research works supporting this study. 
Type 

┌────────────┴────────────┐ Item Date Title 
report poster 

oral 
presentation 

paper 

1 
March 
2006 

Cognitive neural network-based intelligent 
system to identify the most important 
variables for the differences found in 
partitioning behaviour, transport pathways 
and exposure routes between chemicals 
(Martínez et al., 2006c; Annex A.1).  

√    

       

2 
May 
2006 

Modelling chemical multimedia partitioning 
with neural networks (Martínez et al., 
2006a; Annex A.b1). 

 √   

       

3 
Nov 
2006 

A Method for Modeling Chemical 
Multimedia Partitioning with Neural 
Networks and Classifiers (Martínez et al., 
2006b; Annex A.c1). 

  √  

       

4 
April 
2007 

Report on the most suitable artificial neural 
network architectures and molecular 
descriptors to estimate environmental 
multimedia behavior, including a sensitivity 
analysis of the effect of compartment sizes 
on multimedia concentrations (Martínez et 
al., 2007b; Annex A.a2). 

√    

       

5 
May 
2007 

Estimation of environmental multimedia 
partitioning of pollutants from molecular 
descriptors using artificial neural networks 
(Martínez et al., 2007a; Annex A.b2). 

 √   

       

6 
April 
2008 

Report on the most suitable deterministic 
and probabilistic algorithms to pre-classify 
chemicals into families according to their 
partitioning with the aim of better 
predicting multimedia concentrations on 
artificial neural networks for each chemical 
family (Martínez et al., 2008d; Annex 
A.a3). 

√    

       

7 
April 
2008 

Estimating fate with neural network models 
(Martínez et al., 2008c; Annex A.c2). 

  √  

       

8 
May 
2008 

Clustering the chemical space to estimate 
environmental multimedia partitioning of 
pollutants with kernel methods and 
molecular information (Martínez et al., 
2008b; Annex A.b3). 

 √   

       

9 
Dec. 
2008 

Report on the feasibility of predicting 
multimedia chemical partitioning with 
artificial neural network models by using 
functional group counts as input 
information (Martínez et al., 2008a; Annex 
A.a4). 

√    

       

10 2010 

Multimedia environmental chemical 
transport and distribution from molecular 
information (Martínez et al., 2010; Annex 
A.1) 

   √ 

 
 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 26

References 
 
 
Abraham MH. Scales of solute hydrogen-bonding: their construction and application to physicochemical and 
biochemical processes. Chem. Soc. Rev. 1993; 22: 73 - 83. 
 
Albert A. Selective Toxicity: The Physicochemical Bases of Therapy. London: Chapman and Hall, 1985. 
 
Albert A, Rubbo S, Goldacre R, Davey M, Stone J. The influence of chemical constitution on antibacterial activity. 
Part II: A general survey of the acridine series. Br. J. Exp. Pathol. 1945; 26: 160. 
 
Alikhanidi S, Takahashi Y. Pesticide Persistence in the Environment - Collected Data and Structure-Based 
Analysis. Journal of Computer Chemistry, Japan 2004; 3: 59. 
 
Armitage JM, Cousins IT, Hauck M, Harbers JV, Huijbregts MAJ. Empirical evaluation of spatial and non-spatial 
European-scale multimedia fate models: results and implications for chemical risk assessment. Journal of 
Environmental Monitoring 2007; 9: 572-581. 
 
Aronson D, Boethling R, Howard P, Stiteler W. Estimating biodegradation half-lives for use in chemical 
screening. Chemosphere 2006; 63: 1953. 
 
ATSDR, EPA. 2007 CERCLA priority list of hazardous substances that will be the subject of toxicological profiles 
and support document. ATSDR, EPA, 2007. 
 
Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. Journal of 
Microbiological Methods 2000; 43: 3. 
 
Bell PH, Roblin RO. Studies in Chemotherapy. VII. A Theory of the Relation of Structure to Activity of 
Sulfanilamide Type Compounds. J. Am. Chem. Soc. 1942; 64: 2905-2917. 
 
Beyer A, Matthies M. Criteria for Atmospheric Long-Range Transport Potential and Persistence of Pesticides and 
Industrial chemicals. Institute of Environmental Systems Research (University of Osnabrück), German 
Environmental Federal Agency, 2001. 
 
Bhasin M, Raghava GPS. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 2004; 22: 
3195. 
 
Boethling RS, Howard PH, Meylan W, Stiteler W, Beauman J, Tirado N. Group contribution method for 
predicting probability and rate of aerobic biodegradation. Environ. Sci. Technol. 1994; 28: 459-465. 
 
Boethling RS, Howard PH, Meylan WM. Finding and estimating chemical property data for environmental 
assessment. Environmental Toxicology and Chemistry 2004; 23: 2290-2308. 
 
Brandes LJ, Hollander Hd, Meent. Dvd. SimpleBox 2.0: a nested multimedia fate model for evaluating the 
environmental fate of chemicals. RIVM, Bilthoven,  The Netherlands, 1996, pp. 156. 
 
Bredow T, Jug K. Theory and range of modern semiempirical molecular orbital methods. Theoretical Chemistry 
Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 2005; 113: 1. 
 
Breivik K, Alcock R, Li Y-F, Bailey RE, Fiedler H, Pacyna JM. Primary sources of selected POPs: regional and 
global scale emission inventories. Environmental Pollution 2004; 128: 3. 
 
Breivik K, Vestreng V, Rozovskaya O, Pacyna JM. Atmospheric emissions of some POPs in Europe: a discussion 
of existing inventories and data needs. Environmental Science & Policy 2006; 9: 663. 
 
Breivik K, Wania F. Evaluating a Model of the Historical Behavior of Two Hexachlorocyclohexanes in the Baltic 
Sea Environment. Environ. Sci. Technol. 2002; 36: 1014-1023. 
 
Breivik K, Wania F. Expanding the Applicability of Multimedia Fate Models to Polar Organic Chemicals. 
Environmental Science and Technology 2003; 37: 4934. 
 
Brüggemann R, Restrepo G, Voigt K. Structure-Fate Relationships of Organic Chemicals Derived from the 
Software Packages E4CHEM and WHASSE. Journal of Chemical Information and Modeling 2006; 46: 894. 
 
Builtjes PJH. The LOTOS - Long Term Ozonhe Simulation - project. TNO-MEP, Apeldoorn, The Netherlands, 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 27

1992. 
 
Burden FR, Polley MJ, Winkler DA. Toward Novel Universal Descriptors: Charge Fingerprints. Journal of 
Chemical Information and Modeling 2009; 49: 710-715. 
 
Byvatov E, Fechner U, Sadowski J, Schneider G. Comparison of Support Vector Machine and Artificial Neural 
Network Systems for Drug/Nondrug Classification. J. Chem. Inf. Comput. Sci. 2003; 43: 1882-1889. 
 
CAS. CAS Statistical Summary 1907-2007. American Chemical Society, 2008. 
 
Citra MJ. Incorporating Monte Carlo analysis into multimedia environmental fate models. Environmental 
Toxicology and Chemistry 2004; 23: 1629-1633. 
 
Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995; 20: 273. 
 
Cronin MT, Walker JD, Jaworska JS, Comber MH, Watts CD, Worth AP. Use of QSARs in international decision-
making frameworks to predict health effects of chemical substances. Environmental Health Perspectives 2003; 
111: 1376-90. 
 
Cronin MTD, Schultz TW. Pitfalls in QSAR. Journal of Molecular Structure: THEOCHEM 2003; 622: 39. 
 
Crum Brown A, Fraser TR. On the connection between chemical constitution and physiologic action. Part 1. On 
the physiological action of salts of the ammonium bases, derived from strychnia, brucia, thebia, codeia, morphia 
and nicotia. Trans. Roy. Soc. 1868; 25: pp.151-203. 
 
den Hollander HA, van de Meent D. Appendix to SimpleBox 3.0: A multimedia mass balance model for 
evaluating the environmental fate of chemicals. RIVM, 2004. 
 
den Hollander HA, van Eijkeren JCH, van de Meent D. SimpleBox 3.0. RIVM, Bilthoven, The Netherlands, 2004. 
 
Devillers J. A decade of research in environmental QSAR. SAR and QSAR in Environmental Research 2003; 14: 
1 - 6. 
 
Devillers J, Bintein S, Karcher W. CHEMFRANCE: A regional level iii fugacity model applied to France. 
Chemosphere 1995; 30: 457. 
 
Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V. Support Vector Regression Machines. Advances in 
Neural Information Processing Systems 1996: 155-161. 
 
Duca JS, Hopfinger AJ. Estimation of Molecular Similarity Based on 4D-QSAR Analysis: Formalism and 
Validation. Journal of Chemical Information and Computer Sciences 2001; 41: 1367-1387. 
 
EEC. COUNCIL REGULATION (EEC) No 793/93 of 23 March 1993 on the evaluation and control of the risks of 
existing substances. EEC, 1993. 
 
Eisenberg JNS, Bennett DH, McKone TE. Chemical Dynamics of Persistent Organic Pollutants: A Sensitivity 
Analysis Relating Soil Concentration Levels to Atmospheric Emissions. Environ. Sci. Technol. 1998; 32: 115-123.
 
European Commission. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 
December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), 
establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation 
(EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and 
Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. European Commission 
http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm, Brussels, Belgium, 2006. 
 
Fenner K, Scheringer M, Hungerbühler K. Prediction of overall persistence and long-range transport potential with 
multimedia fate models: robustness and sensitivity of results. Environmental Pollution 2004; 128: 189. 
 
Fenner K, Scheringer M, MacLeod M, Matthies M, McKone T, Stroebe M, et al. Comparing Estimates of 
Persistence and Long-Range Transport Potential among Multimedia Models. Environ. Sci. Technol. 2005; 39: 
1932-1942. 
 
Ferenç Darvas, Oliver Kappe, Gisbert Schneider, Michael Wiese, Kubinyi H. QSAR/QSPR Modelling - Finding 
Rules in Noisy Data? QSAR & Combinatorial Science 2006; 25: 811-812. 
 
Fjodorova N, Novich M, Vrachko M, Smirnov V, Kharchevnikova N, Zholdakova Z, et al. Directions in QSAR 
Modeling for Regulatory Uses in OECD Member Countries, EU and in Russia. Journal of Environmental Science 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 28

and Health, Part C 2008; 26: 201 - 236. 
 
Free SM, Wilson JW. A Mathematical Contribution to Structure-Activity Studies. J. Med. Chem. 1964; 7: 395-
399. 
 
Fujita T, Iwasa J, Hansch C. A New Substituent Constant, π, Derived from Partition Coefficients. J. Am. Chem. 
Soc. 1964; 86: 5175-5180. 
 
Furusjö E, Svenson A, Rahmberg M, Andersson M. The importance of outlier detection and training set selection 
for reliable environmental QSAR predictions. Chemosphere 2006; 63: 99. 
 
Gawlik BM, Sotiriou N, Feicht EA, Schulte-Hostede S, Kettrup A. Alternatives for the determination of the soil 
adsorption coefficient, KOC, of non-ionicorganic compounds -- a review. Chemosphere 1997; 34: 2525. 
 
Golbraikh A, Tropsha A. Beware of q2! Journal of Molecular Graphics and Modelling 2002; 20: 269. 
 
Gong SL, Huang P, Zhao TL, Sahsuvar L, Barrie LA, Kaminski JW, et al. GEM/POPs: a global 3-D dynamic 
model for semi-volatile persistent organic pollutants &ndash; Part 1: Model description and evaluations of air 
concentrations. Atmos. Chem. Phys. 2007; 7: 4001. 
 
Gouin T, Mackay D, Webster E, Wania F. Screening Chemicals for Persistence in the Environment. Environ. Sci. 
Technol. 2000; 34: 881-884. 
 
Goulon A, Duprat A, Dreyfus G. From Hopfield nets to recursive networks to graph machines: Numerical machine 
learning for structured data. Theoretical Computer Science 2005; 344: 298. 
 
Goulon A, Picot T, Duprat A, Dreyfus G. Predicting activities without computing descriptors: graph machines for 
QSAR. SAR and QSAR in Environmental Research 2007; 18: 141. 
 
Hammet LP. Chem. Rev. 1935; 17: 125-136. 
 
Hammett LP. Physical Organic Chemistry. New York: McGraw-Hill, 1970. 
 
Hansch C, Fujita T. ρ-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. 
J. Am. Chem. Soc. 1964; 86: 1616-1626. 
 
Hansch C, Leo A. Exploring QSAR. Fundamentals and Applications in Chemistry and Biology. Washington, DC: 
American Chemical Society, 1995. 
 
Hansch C, Maloney PP, Fujita T, Muir RM. Correlation of Biological Activity of Phenoxyacetic Acids with 
Hammett Substituent Constants and Partition Coefficients. Nature 1962; 194: 178. 
 
Hansen KM, Christensen JH, Brandt J, Frohn LM, Geels C. Modelling atmospheric transport of Î±-
hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP. Atmos. Chem. 
Phys. 2004; 4: 1125. 
 
Hawkins DM. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004; 44: 1-12. 
 
Hollander A, Huijbregts MAJ, Ragas AMJ, Meent D. BasinBox: a generic multimedia fate model for predicting 
the fate of chemicals in river catchments. Living Rivers: Trends and Challenges in Science and Management, 
2006, pp. 21. 
 
Hollander A, Sauter F, den Hollander H, Huijbregts M, Ragas A, van de Meent D. Spatial variance in multimedia 
mass balance models: Comparison of LOTOS-EUROS and SimpleBox for PCB-153. Chemosphere 2007; 68: 
1318. 
 
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural 
Networks 1989; 2: 359. 
 
Howard PH, Boethling RS, Stiteler WM, Meylan WM, Hueber AE, Beauman JA, et al. Predictive model for 
aerobic biodegradability developed from a file of evaluated biodegradation data. Environmental Toxicology and 
Chemistry 1992; 11: 593-603. 
 
Howard PS, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM. Handbook of environmental degradation 
rates. Chelsea, MI: Lewis Publications, 1991. 
 
Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 29

support vector machine approach. Journal of Molecular Biology 2001; 308: 397. 
 
Huang P, Gong SL, Zhao TL, Neary L, Barrie LA. GEM/POPs: a global 3-D dynamic model for semi-volatile 
persistent organic pollutants; Part 2: Global transports and budgets of PCBs. Atmos. Chem. Phys. 2007; 7: 4015. 
 
Hugo K. From Narcosis to Hyperspace: The History of QSAR. Quantitative Structure-Activity Relationships 2002; 
21: 348-356. 
 
Ilyina T, Pohlmann T, Lammel G, Sündermann J. A fate and transport ocean model for persistent organic 
pollutants and its application to the North Sea. Journal of Marine Systems 2006; 63: 1. 
 
Jain AK, Duin RPW, Jianchang M. Statistical pattern recognition: a review. Pattern Analysis and Machine 
Intelligence, IEEE Transactions on 2000; 22: 4. 
 
JETOC. Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the Chemical Substances 
Control Law (CSCL Japan). Japan Chemical Industry Ecology-Toxicology & Information Center (JETOC), 
Tokyo, 1992. 
 
Johnson SR. The Trouble with QSAR (or How I Learned To Stop Worrying and Embrace Fallacy). Journal of 
Chemical Information and Modeling 2008; 48: 25-26. 
 
Karickhoff SW. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. 
Chemosphere 1981; 10: 833. 
 
Kawamoto K, MacLeod M, Mackay D. Evaluation and comparison of multimedia mass balance models of 
chemical fate: application of EUSES and ChemCAN to 68 chemicals in Japan. Chemosphere 2001; 44: 599. 
 
Klöpffer W, Wagner B. Persistence revisited. Environmental Science and Pollution Research 2007; 14: 141. 
 
Kühne R, Breitkopf C, Schüürmann G. Error propagation in fugacity level-III models in the case of uncertain 
physicochemical properties. Environmental Toxicology and Chemistry 1997; 16: 2067-2069. 
 
Kühne R, Ebert R-U, Schüürmann G. Estimation of Compartmental Half-lives of Organic Compounds - Structural 
Similarity versus EPI-Suite. QSAR & Combinatorial Science 2007; 26: 542-549. 
 
Lammel G. Effects of time-averaging climate parameters on predicted multicompartmental fate of pesticides and 
POPs. Environmental Pollution 2004; 128: 291. 
 
Lammel G, Feichter J, Leip A. Long-range transport and global distribution of semivolatile organic compounds: A 
case study on two modern agrochemicals. Max Planck Institute for Meteorology, Hamburg, Germany, 2001, pp. 44 
pp. 
 
Lammel G, Klöpffer W, Semeena V, Schmidt E, Leip A. Multicompartmental fate of persistent substances. 
Environmental Science and Pollution Research 2007; 14: 153. 
 
Lavine BK. Pattern Recognition. Critical Reviews in Analytical Chemistry 2006; 36: 153 - 161. 
 
Leeuw FAAM, Rheineck Leyssius HJ. Modeling study of SOx and NOx transport during the January 1985 SMOG 
episode. Water, Air, & Soil Pollution 1990; 51: 357. 
 
Lijzen JPA, Rikken MGJ. European Union System for the Evaluation of Substances 2.0 (EUSES 2.0); background 
report. RIVM, Bilthoven, the Netherlands., 2004, pp. 454. 
 
Lo JT-H. Multilayer perceptrons and radial basis functions are universal robust approximators. IEEE International 
Conference on Neural Networks - Conference Proceedings. 2, 1998, pp. 1311. 
 
Lohmann R, Breivik K, Dachs J, Muir D. Global fate of POPs: Current and future research directions. 
Environmental Pollution 2007; 150: 150. 
 
Mackay D. Multimedia Environmental Models - The Fugacity Approach. Chelsea, MI: Lewis Publishers, 1991. 
 
Mackay D. Multimedia Environmental Models - The Fugacity Approach. Boca Ratón: Lewis Publishers, 2001. 
 
Mackay D, Di Guardo A, Paterson S, Cowan CE. Evaluating the environmental fate of a variety of types of 
chemicals using the EQC model. Environmental Toxicology and Chemistry 1996a; 15: 1627. 
 
Mackay D, Di Guardo A, Paterson S, Kicsi G, Cowan CE. Assessing the fate of new and existing chemicals: a 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 30

five-stage process. Environmental Toxicology and Chemistry 1996b; 15: 1618-1626. 
 
Mackay D, Di Guardo A, Paterson S, Kicsi G, Cowan CE, Kane DM. Assessment of chemical fate in the 
environment using evaluative, regional and local scale models: Illustrative application to chlorobenzene and linear 
alkylbenzene sulfonates. Environmental Toxicology and Chemistry 1996c; 15: 1638-1648. 
 
Mackay D, Hubbarde J, Webster E. The role of QSARs and fate models in chemical hazard and risk assessment. 
QSAR & Combinatorial Science 2003; 22: 106-112. 
 
Mackay D, Joy M, Paterson S. A quantitative water, air, sediment interaction (QWASI) fugacity model for 
describing the fate of chemicals in lakes. Chemosphere 1983; 12: 981. 
 
Mackay D, Paterson S. Evaluating the multimedia fate of organic chemicals: a level III fugacity model. Environ. 
Sci. Technol. 1991; 25: 427-436. 
 
Mackay D, Paterson S, Shiu WY. Generic models for evaluating the regional fate of chemicals. Chemosphere 
1992a; 24: 695. 
 
Mackay D, Paterson S, Tam DD. Assessments of chemical fate in Canada: continued development of a fugacity 
model., 1991. 
 
Mackay D, Shiu W-Y, Ma KC. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for 
Organic Chemicals: Lewis Publishers Inc., 1992b. 
 
Mackay D, Wan-Yiu Shiu. Physical-Chemical Properties and Environmental Fate Handbook on CD-ROM. 
Chapman & Hall / CDCnetBASE, 2000. 
 
Mackay D, Webster E. A perspective on environmental models and QSARs. SAR and QSAR in Environmental 
Research 2003; 14: 7. 
 
MacLeod M, Riley WJ, McKone TE. Assessing the Influence of Climate Variability on Atmospheric 
Concentrations of Polychlorinated Biphenyls Using a Global-Scale Mass Balance Model (BETR-Global). Environ. 
Sci. Technol. 2005; 39: 6749-6756. 
 
MacLeod M, Woodfine DG, Mackay D, McKone TE, Bennett DH, Maddalena RL. BETR North America: A 
regionally segmented multimedia contaminant fate model for North America. Environmental Science & Pollution 
Research; Journal Volume: 8; Journal Issue: 3; Other Information: Journal Publication Date: 2001; PBD: 1 Mar 
2001 2001. 
 
Martínez I, Espinosa G, Grifoll J, Cohen Y, Giralt F. Modelling chemical multimedia partitioning with neural 
networks. SETAC Europe 16th Annual Meeting, The Hague, The Netherlands, 2006a. 
 
Martínez I, Espinosa G, Rallo R, Grifoll J, Cohen Y, Giralt F. A Method for Modeling Chemical Multimedia 
Partitioning with Neural Networks and Classifiers. AICHE Annual Meeting, San Francisco, United States, 2006b. 
 
Martínez I, Espinosa G, Rallo R, Grifoll J, Cohen Y, Giralt. F. Estimation of environmental multimedia 
partitioning of pollutants from molecular descriptors using artificial neural networks. SETAC Europe 17th Annual 
Meeting, Oporto, Portugal, 2007a. 
 
Martínez I, Grifoll J, Giralt F, Rallo R, Espinosa G. Report on the feasibility of predicting multimedia chemical 
partitioning with artificial neural network models by using functional group counts as input information. 
Universitat Rovira i Virgili, Tarragona, Spain, 2008a. NOMIRACLE Report 2.4.13 
 
Martínez I, Grifoll J, Giralt J, Rallo R and Cohen Y. Multimedia environmental chemical transport and distribution 
from molecular information. STOTEN. To be submitted in 2010. 
 
Martínez I, Grifoll J, Giralt F, Rallo R, Espinosa G, Cohen Y. Clustering the chemical space to estimate 
environmental multimedia partitioning of pollutants with Kernel methods and molecular descriptors. SETAC 
Europe 18th Annual Meeting, Warsawa, Poland, 2008b. 
 
Martínez I, Grifoll J, Rallo R. Cognitive neural network-based intelligent system to identify the most important 
variables for the differences found in partitioning behaviour, transport pathways and exposure routes between 
chemicals. Universitat Rovira i Virgili, Tarragona, Spain, 2006c. NOMIRACLE Report 2.4.4 
 
Martínez I, Grifoll J, Rallo R, Espinosa G, Giralt F. Estimating fate with Neural network models. NoMiracle 
Workshop on Chemical Exposure, UFZ Leipzig, Germany, 2008c. 
 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 31

Martínez I, Grifoll J, Rallo R, Giralt F. Report on the most suitable artificial neural network architectures and 
molecular descriptors to estimate environmental multimedia behavior, including a sensitivity analysis of the effect 
of compartment sizes on multimedia concentrations. Universitat Rovira i Virgili, Tarragona, Spain, 2007b. 
NOMIRACLE Report 2.4.9 
 
Martínez I, Grifoll J, Rallo R, Giralt F. Report on the most suitable deterministic and probabilistic algorithms to 
pre-classify chemicals into families according to their partitioning with the aim of better predicting multimedia 
concentrations on artificial neural networks for each chemical family. Universitat Rovira i Virgili, Tarragona, 
Spain, 2008d. NOMIRACLE Report 2.4.12 
 
Matthijsen Jg, Sauter F, De Waal ES. Modelling of particulate matter on a European scale. In: Keller J, Andreani-
Aksojoglu S, editors. GLOREAM Symposium, Wengen, Switzerland, 2002. 
 
McKone TE, Enoch KG. CalTOX™, A Multimedia Total Exposure Model Spreadsheet User’s Guide Version 4.0 
(Beta). Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory., Berkeley, 
California, United States., 2002. 
 
McKone TE, Hall D, Kastenberg. WE. CalTOX Version 2.3 Description of Modifications and Revisions. Human 
and Ecological Risk Division Department of Toxic Substances, Control California Environmental Protection 
Agency, Sacramento, California, US., 1997. 
 
McLachlan MS, Czub G, Wania F. The Influence of Vertical Sorbed Phase Transport on the Fate of Organic 
Chemicals in Surface Soils. Environ. Sci. Technol. 2002; 36: 4860-4867. 
 
Meyer H. Zur Theorie der Alkoholnarkose. Erste Mittheilung. Welche Eigenschaft der Anästhetica bedingt ihre 
narkotische Wirkung? Arch. Exp. Pathol. Pharmakol. 1899; 42: pp. 109–118. 
 
Meyer T, Wania F. What environmental fate processes have the strongest influence on a completely persistent 
organic chemical's accumulation in the Arctic? Atmospheric Environment 2007; 41: 2757. 
 
Mills E. On melting-point and boiling-point as related to chemical composition. Philosophical Magazine 1884; 17: 
pp. 173-187. 
 
Nikolova N, Jaworska J. Approaches to Measure Chemical Similarity - a Review. QSAR & Combinatorial Science 
2003; 22: 1006-1026. 
 
OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] 
Models. OECD Series on Testing and Assessment 69., 2007. 
 
Overton E. Studien über die Narkose.  1899; 4: pp. 88-135. 
 
Prevedouros K, MacLeod M, Jones KC, Sweetman AJ. Modelling the fate of persistent organic pollutants in 
Europe: parameterisation of a gridded distribution model. Environmental Pollution 2004; 128: 251. 
 
Quéguiner S, Musson-Genon L. Modelling of Atmospheric Transport of POPs at the European Scale with a 3D 
Dynamical Model Polair3D-POP. Air Pollution Modeling and Its Application XIX, 2008, pp. 669. 
 
Raymond JW, Rogers TN, Shonnard DR, Kline AA. A review of structure-based biodegradation estimation 
methods. Journal of Hazardous Materials 2001; 84: 189. 
 
Rumelhart DE, Hinton GE, Williams. RJ. Learning representations by back propagating errors. Nature 1986; 323: 
533-536. 
 
Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23: 
2507-2517. 
 
Schaap M, Roemer M, Sauter F, Boersen GAC, Timmermans RMA, Builtjes PJH. LOTOS-EUROS: 
documentation. TNO, Apeldoorn, The Netherlands, 2005. 
 
Schaap M, Timmermans RMA, Roemer M, Boersen GAC, Builtjes PJH, Sauter FJ, et al. The LOTOS EUROS 
model: description, validation and latest developments. International Journal of Environment and Pollution 2008; 
32: 270. 
 
Schaap M, van Loon M, ten Brink HM, Dentener FJ, Builtjes PJH. Secondary inorganic aerosol simulations for 
Europe with special attention to nitrate. Atmos. Chem. Phys. 2004; 4: 857. 
 
Scheringer M. Persistence and Spatial Range as Endpoints of an Exposure-Based Assessment of Organic 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 32

Chemicals. Environ. Sci. Technol. 1996; 30: 1652-1659. 
 
Scheringer M, Salzmann M, Stroebe M, Wegmann F, Fenner K, Hungerbühler K. Long-range transport and global 
fractionation of POPs: insights from multimedia modeling studies. Environmental Pollution 2004; 128: 177. 
 
Scheringer M, Stroebe M, Held H. Chemrange 2.1—A Multimedia Transport Model for Calculating Persistence 
and Spatial Range of Organic Chemicals. Swiss Federal Institute of Technology Zürich, Potsdam Institute for 
Climate Impact Research, 2002. 
 
Scheringer M, Wegmann F, Fenner K, Hungerbuhler K. Investigation of the Cold Condensation of Persistent 
Organic Pollutants with a Global Multimedia Fate Model. Environ. Sci. Technol. 2000; 34: 1842-1850. 
 
Schummer J. Scientometric studies on chemistry I: The exponential growth of chemical substances, 1800–1995. 
Scientometrics 1997a; 39: 107. 
 
Schummer J. Scientometric studies on chemistry II: Aims and methods of producing new chemical substances. 
Scientometrics 1997b; 39: 125. 
 
Schüürmann G, Ebert R-U, Chen J, Wang B, Kühne R. External Validation and Prediction Employing the 
Predictive Squared Correlation Coefficient - Test Set Activity Mean vs Training Set Activity Mean. Journal of 
Chemical Information and Modeling 2008; 48: 2140-2145. 
 
Semeena VS, Feichter J, Lammel G. Effects of various scenarios upon entry of DDT and γ-HCH into the global 
environmental on their fate as predicted by a multicompartment chemistry-transport model. Fresenius 
Environmental Bulletin 2003; 12: 925-939. 
 
Senese CL, Duca J, Pan D, Hopfinger AJ, Tseng YJ. 4D-Fingerprints, Universal QSAR and QSPR Descriptors. 
Journal of Chemical Information and Computer Sciences 2004; 44: 1526-1539. 
 
Shatalov V, Mantseva E, Baart A, Bartlett P, Breivik K, Christensen J, et al. POP Model Intercomparison Study. 
Stage II. Comparison of mass balance estimates and sensitivity studies, 2005. 
 
Shatalov V, Mantseva E, Baart A, Bartlett P, Breivik K, Christensen J, et al. POP Model Intercomparison Study - 
Stage I.  Comparison of descriptions of main processes determining POP behaviour in various environmental 
compartments. In: East MSC-, editor, 2004. 
 
Syracuse Research Corporation. EPI Suite v4.00. SRC, 2008. 
 
Stouch TR, Kenyon JR, Johnson SR, Chen X-Q, Doweyko A, Li Y. In silico ADME/Tox: why models fail. Journal 
of Computer-Aided Molecular Design 2003; 17: 83. 
 
Struijs J, W.J.G.M.Peijnenburg. Predictions by the multimedia environmental fate model SimpleBox compared to 
field data: Intermedia concentration ratios of two phthalate esters. RIVM, Bilthoven, 2002, pp. 62. 
 
Suzuki N, Murasawa K, Sakurai T, Nansai K, Matsuhashi K, Moriguchi Y, et al. Geo-Referenced Multimedia 
Environmental Fate Model (G-CIEMS): Model Formulation and Comparison to the Generic Model and 
Monitoring Approaches. Environ. Sci. Technol. 2004; 38: 5682-5693. 
 
Taft RW. Polar and Steric Substituent Constants for Aliphatic and o-Benzoate Groups from Rates of Esterification 
and Hydrolysis of Esters. J. Am. Chem. Soc. 1952; 74: 3120-3128. 
 
Taskinen J, Yliruusi J. Prediction of physicochemical properties based on neural network modelling. Advanced 
Drug Delivery Reviews 2003; 55: 1163. 
 
Tickner J, Geiser K, Coffin M. The U.S. Experience in Promoting Sustainable Chemistry (9 pp). Environmental 
Science and Pollution Research 2005; 12: 115. 
 
Todeschini R, Consonni V. Handbook of Molecular Descriptors: Wiley-VCH, 2000. 
 
Toose L, Woodfine DG, MacLeod M, Mackay D, Gouin J. BETR-World: a geographically explicit model of 
chemical fate: application to transport of [alpha]-HCH to the Arctic. Environmental Pollution 2004; 128: 223. 
 
Toussant M. A scientific milestone. Chemical & Engineering News 2009; 87: 3. 
 
Tunkel J, Howard PH, Boethling RS, Stiteler W, Loonen H. Predicting ready biodegradability in the Japanese 
Ministry of International Trade and Industry test. Environmental Toxicology and Chemistry 2000; 19: 2478-2485. 
 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 33

UCLA. CalTOX™, A Multimedia Total Exposure Model For Hazardous-Waste Sites Spreadsheet User’s Guide 
Version 1.5.  1995. 
 
UN-ECE. Protocol to the 1979 convention on long range transboundary air pollution on persistent organic 
pollutants and executive body decision 1998/2 on information to be submitted and the procedure for adding 
substances to annexes I, II or III to the protocol on persistent organic pollutants. UN-ECE, United Nations, New 
York and Geneva, 1998. 
 
UNEP. Final act of the conference of plenipotentiaries on the Stockholm convention on persistent organic 
pollutants. UNEP, United Nations, 2001. 
 
US-EPA. TRIM-FaTE Technical Support Document. Volume I: Description of Module. US Environmental 
Protection Agency, North Carolina, 2002a. 
 
US-EPA. TRIM-FaTE Technical Support Document. Volume II: Description of Chemical Transport and 
Transformation Algorithms. US Environmental Protection Agency, North Carolina, 2002b. 
 
US-EPA. Inventory Update Rule. Office of Pollution Prevention and Toxics, Environmental Protection Agency 
http://www.epa.gov/oppt/iur/, Washington, 2006. 
 
van de Meent D. SIMPLEBOX: a generic multimedia fate evaluation model. RIVM, Bilthoven, The Netherlands, 
1993. 
 
Van Loon M. Numerical smog prediction, I: the physical and chemical model. CWI, Amsterdam, The Netherlands, 
1994. 
 
Van Loon M. Numerical smog prediction, II: grid refinement and its application to the dutch smog prediction 
model. CWI, Amsterdam, The Netherlands, 1995. 
 
Vapnik VN. The Nature of Statistical Learning Theory: Springer-Verlag New York, Inc., 2000. 
 
Vermeire T, Rikken M, Attias L, Boccardi P, Boeije G, Brooke D, et al. European union system for the evaluation 
of substances: the second version. Chemosphere 2005; 59: 473. 
 
Vermeire TG, Jager DT, Bussian B, Devillers J, den Haan K, Hansen B, et al. European Union System for the 
Evaluation of Substances (EUSES). Principles and structure. Chemosphere 1997; 34: 1823. 
 
Walker JD, Carlsen L, Hulzebos E, Simon-Hettich B. Global Government applications of analogues, SARs and 
QSARs to predict aquatic toxicity, chemical or physical properties, environmental fate parameters and health 
effects of organic chemicals. SAR and QSAR in Environmental Research 2002; 13: 607. 
 
Wania F. Assessing the Potential of Persistent Organic Chemicals for Long-Range Transport and Accumulation in 
Polar Regions. Environ. Sci. Technol. 2003; 37: 1344-1351. 
 
Wania F, Breivik K, Persson NJ, McLachlan MS. CoZMo-POP 2 - A fugacity-based dynamic multi-
compartmental mass balance model of the fate of persistent organic pollutants. Environmental Modelling & 
Software 2006; 21: 868. 
Wania F, Daly GL. Estimating the contribution of degradation in air and deposition to the deep sea to the global 
loss of PCBs. Atmospheric Environment 2002; 36: 5581. 
 
Wania F, Mackay D. Modelling the global distribution of toxaphene: A discussion of feasibility and desirability. 
Chemosphere 1993; 27: 2079. 
 
Wania F, Mackay D. A global distribution model for persistent organic chemicals. Science of The Total 
Environment 1995; 160-161: 211. 
 
Wania F, Mackay D. The evolution of mass balance models of persistent organic pollutant fate in the environment. 
Environmental Pollution 1999a; 100: 223. 
 
Wania F, Mackay D. Global chemical fate of α-hexachlorocyclohexane. 2. Use of a global distribution model for 
mass balancing, source apportionment, and trend prediction. Environmental Toxicology and Chemistry 1999b; 18: 
1400-1407. 
 
Wania F, Mackay D, Li Y-F, Bidleman TF, Strand A. Global chemical fate of α-hexachlorocyclohexane. 1. 
Evaluation of a global distribution model. Environmental Toxicology and Chemistry 1999; 18: 1390-1399. 
 
Wania F, Persson J, Di Guardo A, McLachlan MS. The POPCYCLING-Baltic Model. A Non-Steady-State 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 34

Multicompartment Mass Balance Model of the Fate of Persistent Organic Pollutants in the Baltic Sea 
Environment. Norwegian Institute for Air Research, Kjeller, Norway, 2000. 
 
Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. Journal of Molecular 
Graphics and Modelling 2008; 26: 1315. 
 
Webster E, Hubbarde J, Mackay D. Upgrading the ChemCAN Model: Version 4.95 to 6.00. Canadian 
Environmental Modelling Centre, Trent University., Peterborough, Ontario K9J 7B8, CANADA., 2003. 
 
Webster E, Mackay D, Di Guardo A, Kane D, Woodfine D. Regional differences in chemical fate model outcome. 
Chemosphere 2004; 55: 1361. 
 
Willighagen EL, Wehrens R, Buydens LMC. Molecular Chemometrics. Critical Reviews in Analytical Chemistry 
2006; 36: 189 - 198. 
 
Winkler DA. The role of quantitative structure - activity relationships (QSAR) in biomolecular discovery. Brief 
Bioinform 2002; 3: 73-86. 
 
Wood J. Invariant pattern recognition: A review. Pattern Recognition 1996; 29: 1. 
 
Worth AP, Bassan A, De Bruijn J, Saliner AG, Netzeva T, Patlewicz G, et al. The role of the European Chemicals 
Bureau in promoting the regulatory use of (Q)SAR methods. SAR and QSAR in Environmental Research 2007; 
18: 111. 
 
Xu Y, Zomer S, Brereton RG. Support Vector Machines: A Recent Method for Classification in Chemometrics. 
Critical Reviews in Analytical Chemistry 2006; 36: 177 - 188. 
 
Zhang Q, Crittenden JC, Shonnard D, Mihelcic JR. Development and evaluation of an environmental multimedia 
fate model CHEMGL for the Great Lakes region. Chemosphere 2003; 50: 1377. 
 
Zukowska B, Breivik K, Wania F. Evaluating the environmental fate of pharmaceuticals using a level III model 
based on poly-parameter linear free energy relationships. Science of The Total Environment 2006; 359: 177. 

 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 35

Chapter 2 

Methods 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The environmental assessment of chemical pollutants by means of QPFR or QSFR 
models is founded on techniques of multimedia environmental modeling, molecular 
modeling and pattern recognition. This chapter describes briefly these techniques and 
explains how they can be blended into a methodology that uses computerized 
supervised learning algorithms, common in artificial intelligence applications, for 
relating available examples of multimedia environmental modeling data to key 
physicochemical properties or molecular information in the case of, respectively, 
QPFRs or QSFRs. 
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2.1 Multimedia environmental modeling 
 
 
MEMs estimate the distribution of chemical pollutants in the environment known 
physicochemical properties of pollutants, emission rates and site-specific data 
(Mackay, 2001). Due to computation and data costs, these models are required to be 
as simple as possible, without sacrificing the mathematical description of processes 
taking place in the region of interest. Level III MEMs (Mackay and Paterson, 1991), 
assuming steady state and non-equilibrium conditions, are usually recommended 
because involve a reasonable compromise between computational complexity and 
standard environmental processes (Mackay et al., 1992). 
 

SimpleBox 
 
SimpleBox (Brandes et al., 1996; den Hollander and van de Meent, 2004; den 
Hollander et al., 2004; van de Meent, 1993) is a nested multimedia fate model 
fashioned to Mackay’s style of describing the environment: a set of compartments 
representing homogeneous media with mass balance and transport equations at 
different levels of complexity (Mackay, 2001). SimpleBox may perform Level III and 
Level IV calculations. 
 
Earlier versions of SimpleBox have been used as foundations for the European Union 
System for the Evaluation of Substances (EUSES) (Lijzen and Rikken, 2004; 
Vermeire et al., 2005; Vermeire et al., 1997), designed to not only estimate the fate of 
chemicals but also to evaluate the risk of chemicals to humans and the environment, 
according to requirements from the European Union (Directive 92/32/EC, EC Council 
Regulation (EC) 793/93 and EC Directive 98/8/EC). 
 
SimpleBox 3.0, as its previous versions (Brandes et al., 1996), is a nested multimedia 
model. It consists of four scales (den Hollander et al., 2004): local, regional, 
continental and global. The local scale is contained within the regional scale, which is 
contained within the continental scale and so on. Additionally, the global scale 
contains not only the continental scale but also a moderate zone, a tropic zone and an 
artic zone that work as background for the continental and regional scales (Brandes et 
al., 1996). Both the regional and continental scales are divided in 10 compartments 
representing different media: air, fresh water, sea water, fresh water sediments, sea 
water sediments, natural soil, agricultural soil, other soil, natural vegetation and 
agricultural vegetation. The local scale is divided in 8 compartments representing the 
same media as those contained within the regional and continental scale except sea 
water and sea water sediments. The zones at the global scale contain solely 4 
compartments: air, water, sediments and soil. Default values for parameters in all the 
compartments are already included in SimpleBox 3.0 (den Hollander and van de 
Meent, 2004), but they can be modified by the user of the model according to his/her 
needs. 
 
SimpleBox 3.0 requires as input, physicochemical properties of pollutants, emission 
rates and geographical parameters. The required physicochemical properties are the 
following: molecular weight (MW, g/mol); melting point (Tm); vapor pressure (Pv, 
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Pa); water solubility (Sw, mg/L); diffusion coefficients in air (Dair, m2/s) and water 
(Dwater, m2/s); dimensionless partition coefficients for air-water (Kaw), solids-water 
(Ksw) and octanol-water systems (Kow); and, degradation rates in air (kair, 1/s), water 
(kwater, 1/s), sediments (ksed, 1/s) and soil (ksoil, 1/s). If a property is not given by the 
user (1st option), it is estimated from other properties available (2nd option) or a 
default value is assigned (3rd option) (den Hollander and van de Meent, 2004). 
Internally, SimpleBox 3.0 adjusts temperature dependent properties to temperatures in 
the different scales and zones. 
 
Environmental fate estimations from SimpleBox 3 are mainly expressed in form of 
average concentrations and mass fluxes for Level III calculations and time dependant 
concentrations for Level IV calculations. They are obtained from non-equilibrium 
computations over a set of J mass balance equations (as many as compartments in the 
model), for a given chemical i and several compartments j, with the form (Brandes et 
al., 1996): 
 

j*ji,j*ji,ji,ji,ji,ji,ji,ji,
ji,

j DIFFADVBRLLCHDEGRDEXPIMPEMIS
dt

dC
V      (2-1) 

 
Terms in the equation above (Equation 2-1) have a first order dependency on the 
concentration of chemical i in box j (Ci,j). The linearity of the model can be verified 
by checking that concentrations in each compartment, j, are directly proportional to 
the emission rate. 
 
 

2.2 Statistical sampling 
 
 
Statistical sampling, also referred to as Monte Carlo simulations (Metropolis, 1987), 
is based on the generation of random values for evaluating how numerical models 
respond to several input variables. This methodology is usually employed in models 
for which analytical assessments are quite complex. Given the number of repetitive 
evaluations required, simulations for statistical sampling are best for computer based 
calculations. 
 
For studying the response of a model to different situations, it is essential to define 
which variables remain fixed (deterministic values) and which are affected by random 
values (stochastic values). Subsequently, a planning for studying the response of the 
model is also required. Once that the variables affecting the model have been listed, it 
is necessary to describe how random values occur in each of the stochastic variables. 
This is done by selecting a probability density function, which relates the magnitude 
of possible random values with their probability to occur. 
 
Historical data is required to determine a statistical distribution that best fits the 
variability of such data. When such information is available, it is possible to 
determine the parameters of the selected distribution as well, which will be used later 
in the generation of random values. In some cases, the values of a variable are discrete 
and have the same probability of occurring: for n possible values of x, the probability 
of occurring each value is 1/n (uniform discrete distribution). For continuous 
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variables, functions may be defined for describing equal probabilities in values of a 
definite range (uniform continuous distribution), producing a rough estimate when 
data is scarce (triangular distribution), describing symmetrical probabilities around a 
mean value (normal distribution) or when the logarithms of a variable have a 
symmetrical distribution (log-normal distribution). 
 
The most widely used statistical distribution is the normal distribution (also called 
Gaussian), it accounts very well variability in parameters undergoing a symmetrical 
probability of acquiring values around a mean value. Normal distributions are very 
easy to use, known the mean ( x ) and the standard deviation (SD) of the data, with no 
skewness or kurtosis in the probability distribution of values. x  and SD are generally 
defined, for a set of observations, as follows: 
 





n

1i
ix

N
1

x      (2-2) 

 
and 
 





n

1i

2
i )x(x

N
1

SD     (2-3) 

 
It may occur that the normal distribution fails to fit the continuous values of a process, 
making necessary the evaluation of other statistical functions until fitting correctly the 
parameters to simulate. A typical case in which the normal distribution tends to fail is 
that of parameters resulting from multiplicative effects or defined to be positive and 
close to 0: symmetry is not present in the original scale of such parameters, but 
chances are high that their logarithms fit a normal distribution. For these situations, 
the log-normal distribution can be valid, it fits well the probability distribution of 
small positive values and values that tend to vary several orders of magnitude 
(Limpert et al., 2001). The log-normal distribution may be used to describe typical 
biological and environmental processes, where parameters may experience very 
different orders of magnitude. 
 
Applying statistical sampling to a mathematical model requires a standard set of tasks 
(Doane, 2004).When simulating a process with statistical sampling, it is important to 
identify its inputs and outputs, assigning statistical functions to the input variables in 
which variability is supposed to occur. The output variables of the model vary in 
accordance to the variability generated by each input variable, within the probability 
domain of its statistical function, as propagated throughout the mathematical model of 
the process. Both the inputs and outputs of the model should be stored for later 
evaluating their uncertainty. The whole simulation procedure must be carried out by a 
computer program with the capacity to generate random values, from the selected 
statistical distributions, and evaluate the equations of the model in every realization. 
 
 

2.3 Molecular modeling 
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Molecular modeling is the emulation or explanation of the behavior of molecules, 
applied in a wide number of disciplines (chemistry, physics, biology, engineering, 
etc.). Molecular modeling is fundamental for chemometrics (Brown et al., 1994), the 
application of mathematical or statistical methods to chemical data, which is also the 
core of QSARs and alike (Hugo, 2002). Generally, QSAR models rely on functions 
relating chemical activity to molecular descriptors (Equation 1-15), previously 
calculated by different theoretical methods (Willighagen et al., 2006). 
 
Molecular orbital theory. The molecular orbital theory (MO theory) is a 
methodology that aims to determine molecular structure treating electrons as moving 
elements influenced by the nuclei of the entire molecule, not assigned to the bonds 
between atoms. The development of the MO theory has been based on several 
theoretical developments during the 20th century. One important step in its evolution 
is marked by the Hartree-Fock (HF) method of molecules; which, based on atoms, 
defined molecular orbitals ( iψ ) as eigenfunctions of the self-consistent Hamiltonian 
field (H), leading to coupled differential equations of difficult resolution (Pople, 
1999). 
 
The HF model was later refined with the work of Roothaan (Roothaan, 1951), 
producing a major advance (Zerner, 2000) by assuming that the molecular orbital 
wave function in a molecule ( iψ ) is equivalent to the linear combination of its N 

constituent atomic orbitals ( iχ ): 
 





N

1i
iiji χcψ      (2-4) 

 
where the coefficients cij can be determined by placing the equation above into the 
Schrödinger equation and applying the variational principle. With this approach, the 
determination of molecular structure is linked to solving a set of equations, some of 
them with integrals of still difficult resolution. 
 
Semi-empirical applications of the molecular orbital theory. Determining 
molecular structure with calculations based on the Hartree-Fock method is unfeasible, 
even for small molecule systems. In result, approximations have been introduced in 
the HF theory for allowing the resolution of the equations involved, giving birth to 
methods classified as semi-empirical. The number of semi-empirical methods is vast 
and each of them has inherent advantages and disadvantages when modeling 
molecular structure (Bredow and Jug, 2005). 
 
The most widely used semi-empirical methods are the Austin Model 1 (AM1) (Dewar 
et al., 1985) and the Parameterized Model 3 (PM3) (James, 1989). They are included 
in most standard software packages for computerized molecular modeling. AM1 
based calculations, based on the iterative search of parameters in involved equations, 
are reasonably fast and robust. PM3 calculations, based on a more sophisticated 
optimization algorithm, gives acceptable results for molecules resembling those used 
in the training of the algorithm, but may yield strange predictions when such 
condition is not met. Since AM1 and PM3 are usually the semi-empirical methods of 
choice, their performances have been subject of comparison for different modeling 
problems (Bredow and Jug, 2005). 
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Molecular descriptors. Molecular descriptors encode information from molecular 
structure onto numerical parameters, measuring different characteristics of molecules 
for their posterior use in numerical models, comparisons and analysis (Todeschini and 
Consonni, 2000). These parameters are calculated with basis on different theories and 
methods. The variety of possible molecular structures is large; so, the number of 
possible descriptors for measuring their characteristics is large as well. 
 
There are different types of molecular descriptors, depending on the information 
source used in their determination. Molecular descriptors can be classified as 0D, 1D, 
2D, 3D or 4D. 0D descriptors are those derived from the molecular formula, the 
simplest chemical representation: molecular weight, number and type of atoms. 1D 
descriptors are derived from substructure list representations: functional groups, rings, 
bonds, etc. 2D descriptors measure topological information, describing how atoms are 
bonded in a molecule (considering also types of bonding and specific atomic 
interactions). 3D descriptors are obtained from geometrical representations of 
molecules (three-dimensional models) and may be referred to electronic, steric and 
shape features. 
 
Research on molecular descriptors is still a very active field of research, so new 
descriptors are still being developed for measuring more and more features, especially 
for applications requiring highly complex molecules (pharmaceutics, genetics, 
polymer applications, etc.). Recent works have led to the development of 4D 
descriptors; however, there is still no agreement on which definition should represent 
this new category: one definition is based on the interaction field of molecules 
(Todeschini and Consonni, 2000) while another is based on their different 
conformations (Duca and Hopfinger, 2001; Senese et al., 2004).  
 
In general, the calculation of molecular descriptors is grounded on the generation of 
molecular models for representing the structure of the chemicals to analyze. 
Traditional molecular models are based on 2D or 3D schemes indicating, respectively, 
how the atoms of a molecule are distributed on it, or, the exact location of atoms in 
space (considering atom size, bonds, angles, etc.). 
 
With the aim to allow the modeling of molecules with computers, methods have been 
developed to describe molecular structure in simple ways, for its easy interpretation 
by both humans and computers. One remarkable example is the Simplified Molecular 
Input Line Entry System, known as SMILESTM (Anderson et al., 1987; Weininger, 
1988; Weininger et al., 1989), a simple code introduced in the 1980s and currently 
under development by Daylight Chemical Information Systems Inc. that allows, in a 
single string line, the characterization of most molecules with ASCII characters. 
 
Newer codes are also aiming to describe molecular structure with their own syntax, 
but still they have not achieved the privileged position of the SMILESTM notation, 
which is included in most molecular software packages. Examples of recent molecular 
notation schemes are InChlTM (McNaught, 2006) and OpenSMILES, introduced and 
maintained, respectively, by the International Union of Pure and Applied Chemistry 
(IUPAC) and The Blue Obelisk (Guha et al., 2006). Figure 2-1 shows an example of 
how the molecule of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (CAS: 50-29-3) 
can be represented by means of its corresponding molecular formula (Figure 2-1a), its 
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Figure 2-1. Standard 
schemes for representing 
molecular structures. 
 
The molecular structure of a chemical can 
be represented, at different levels of 
complexity, by its molecular formula (a), 
its SMILESTM code (b), a 2D model (c) 
and a 3D model (d). Note that all 
representations in this figure (a-d) are 
referred to the molecule of 1,1,1-trichloro-
2,2-bis-(4-chlorophenyl)ethane (CAS: 50-
29-3). 

a) Molecular formula:                          C14H9Cl5

c) 2D model

d) 3D model

b) SMILES code: Clc1ccc(cc1)C(c2ccc(Cl)cc2)C(Cl)(Cl)Cl

Cl
Cl

Cl
Cl Cl

Cl
Cl
Cl

Cl Cl

 
 
SMILESTM code (Figure 2-1b), a 2D model (Figure 2-1c) and a 3D model (Figure 2-
1d). 
 
Given a molecular structure, energy-based descriptors are usually estimated through a 
steepest descent algorithm until a conformational minimum energy (CME) is 
achieved, when the structure of interest achieves the most stable geometry. If the 
conformation of a molecule is recalculated several times, different CME values may 
be obtained, as the algorithm encounters different minima during the optimization 
process. Selecting an optimal molecular conformation implies choosing the 
conformation with the lowest energy and discarding all those with higher energy 
values. 
 
Descriptors measuring energy parameters may be easier to interpret than descriptors 
measuring other molecular features by means of abstract indexes. Some of the most 
widely used parameters are the heat of formation (ΔHf), the highest occupied 
molecular orbital (HOMO), the lowest occupied molecular orbital (LUMO), the 
dipole moment (μ), among others. They are usually preferred because their theoretical 
definitions are easy to interpret. 
 
ΔHf represents the change of enthalpy accompanying the formation of 1 mole of a 
substance in its standard state from its conforming elements in their standard states. 
ΔHf gives an indication of how stable a molecule is: the more stable a molecule, the 
lower its ΔHf value. Negative ΔHf values are associated to exotermic reactions of 
formation. The difference between HOMO and LUMO, termed the band gap, is an 
indicator of the excitability of a molecule: the smaller the band gap, the more 
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excitable a molecule is. μ indicates the capacity of a molecule to behave as a dipole, 
and so the capacity of a molecule to be soluble in polar or non-polar phases. 
 
Thousands of descriptors have been defined and others are still under development. 
When optimizing QSAR based models, the molecular descriptors to implement in a 
QSAR may be selected heuristically, by means of mathematical algorithms, or 
according to their theoretical contribution to the understanding of a chemical process 
(Willighagen et al., 2006). Some descriptors measuring very specific molecular 
features may be hard to interpret, and their use in a QSAR model may not necessarily 
improve its performance and utility. In general, a QSAR model should be as simple as 
possible and ready to be employed by users not having the exact same tools of its 
developers. 
 
 

2.4 Pattern recognition 
 
 
Practically, plenty of information can be retrieved from any process or element. 
Excess of information does not necessarily imply better understanding; but, it does 
imply the presence of both useful and pointless information, mixed. The need of 
finding relations from vast amounts of data has been recognized in both quotidian 
activities and specialized fields long time ago (telecommunications, business 
administration, marketing, science and engineering, etc.), leading to a discipline that 
today is termed data mining (Fayyad et al., 1996; Witten and Frank, 2005) and that 
keeps evolving along with computer developments. 
 
Data mining implies the retrieval of potentially useful information from large data 
sets, usually by means of computer algorithms with capacity to identify patterns in 
data. Pattern recognition is referred to information retrieval relying in learning 
algorithms, procedures that allow machines to extract and process information with 
different purposes. Most learning algorithms have their roots on developments for 
machine learning and artificial intelligence (Winston, 1992), which attempt to emulate 
intellectual behavior. 
 
Data preprocessing. The observations of a data set may be called samples, examples 
or instances; the variables or characteristics describing each data point may be called 
features or attributes. When training algorithms for specific processes, most part of 
the work must be dedicated to the preparation of the working data set. Data must be 
collected, cleaned, analyzed and preprocessed prior to its utilization for training 
algorithms and later performing predictions with already developed models. 
 
Errors are most likely to occur during the manipulation of data: collecting data from 
different sources, copying, etc. For this reason, careful selection of data samples is 
required. Once that the data has been collected and cleaned, it must be analyzed to 
determine if it is suitable or not for its processing with the available algorithms. For 
numerical data, it is important to use data with both a wide range of values and a 
homogeneous density of data points all over the numerical space of interest. If these 
conditions are not met, the available data must be transformed (preprocessed) for 
reaching such conditions. 
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c) Normalized and scaled data in the range [-1, 1]
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Figure 2-2. Common pre-processing data techniques. 
In some cases, highly skewed data require transformations for producing smooth data distributions and helping learning 
algorithms to process them. Logarithmic scaling and linear normalization are among the most common pre-processing 
techniques. In this figure, raw Kow values of 383 chemicals (a) are compared to Kow values scaled logarithmically (b) 
and to Kow values scaled logarithmically and later normalizad in the range [-1, 1] (c). Note that the presence of Kow 
values with several orders of magnitude difficults the discrimination of data points in such data set (a), the logarithmic 
scaling of the raw values (b) produces a smoother distribution while a posterior normalization redefines the scale (c).  
 
 
Most learning algorithms may suffer serious efficiency reductions because of 
insufficient computer resources, noisy data or inconsistent data points (outliers). 
Usually, it must be analyzed if within the collected data there are redundant or useless 
variables and data samples. If any of these elements are encountered, they should be 
eliminated from the data set of interest. Direct data observation may be used for doing 
so; however, when the size of the data set is prohibitive, clustering and classifying 
algorithms may be of great help. 
 
Figure 2-2 shows an example of how a variable with different orders of magnitude 
can be adapted to its analysis, the histograms in this figure are referred to Kow values 
for 383 chemicals. Kow can get very small values for highly lipophobic chemicals and 
extremely large values for highly lipophilic chemicals. Figure 2-2a shows that 382 out 
of 383 chemicals have small Kow values, while there is 1 chemical with a marked 
tendency to dissolve in lipids. It is possible to determine that 1 chemical is highly 
lipophilic and that the remaining 382 chemicals are extremely less lipophilic. 
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However, it is not clear to which degree the latter are lipophobic, or lipophilic, among 
themselves. The original scale in which raw Kow values are expressed may affect 
significantly all posterior calculations and analysis, making very difficult the 
discrimination of chemicals with respect to Kow. 
 
Clearly, the distribution of chemicals in Figure 2-2a is highly skewed and 
transformations are required for producing a smoother distribution. Figure 2-2b shows 
how chemicals are distributed in a logarithmic scale. The distribution of chemicals 
with respect to logarithmic Kow values (Figure 2-2b) is smoother than that based 
simply on raw Kow values (Figure 2-2a). Now, a more clear discrimination can be 
performed, different degrees of octanol-water partitioning can be identified in the set 
of selected chemicals: there are 25 lipophobic chemicals with Kow values below 1.00 
(0 in the logarithmic scale), 26 highly lipophobic chemicals with Kow values above 
1.00x106 (6 in the logarithmic scale) and 332 chemical with Kow values between 1.00 
and 1.00x106. 
 
When there are several variables to analyze, their range values may differ greatly and 
some variables may eclipse others. A convenient data transformation technique is the 
normalization of data, which sets uniform weights for the sets of variables to analyze. 
This may be done by forcing all variables of interest to be in the same scale. A linear 
transformation may be used for setting the maximum and minimum of each scale to 
be [0,1] or [-1,1], etc. 
 
For normalizing every data point yn of N samples referred to a given variable (y) in 
the range [-1,1], the following expression is used: 
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where ymin and ymax are, respectively, the minimum and maximum values that can be 
found in the data set, with respect to all the data points and the variable to normalize. 
Figure 2-2c shows a histogram for normalized logarithmic Kow values in the range [-
1,1]. It can be observed that Figure 2-2c tends to preserve the distribution of Figure 2-
2b, but setting a new scale of values. If more physicochemical properties are to be 
analyzed, they should be preprocessed as done with Kow for the example. 
 
There are different approaches that can be applied in the preparation of a data set prior 
to its analysis either manually or by means of computerized learning algorithms. 
However, it all depends on two important factors. First, unnecessary variables and 
data points must be removed; and, second, both past and new data samples must be in 
the same scale. 
 
Artificial neural networks. Artificial neural networks (ANNs) are mathematical 
models of biological neurons, originally developed with the purpose of imitating brain 
activities. With time, the applicability of ANNs has evolved towards the solution of a 
large variety of mathematical problems, especially those in which data are noisy or 
incomplete (Basheer and Hajmeer, 2000). 
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Figure 2-3. Information flow in a single artificial neuron. 
Mathematically, an artificial neuron emulates the functionality (f) of a real biological neuron by generating a signal 
(c) in response to the stimulus provoked by an incoming signal (p) of varied strength (weight, w) and a given bias 
(b). 
 
 
ANNs are based on the same elements that constitute biological neural networks. 
Figure 2-3 shows an scheme of the elements that constitute a single artificial neuron. 
An artificial neuron is conformed by its cell body (transfer function, f), different 
synapses of variable strength (weight, w) to receive signals from other neurons (input, 
p); and, an axon to send signals to other neurons as well (output, c). A signal coming 
out of a neuron follows the same equation: 
 

 b)(wpc  f      (2-6)  
 
For a single layer of S neurons in parallel, the inputs are: a vector p of size R×1 a 
weight matrix W of size S×R and a bias vector b of size S×1 (n = Wp + b). The 
output of a layer of neurons is a vector c of size S×1 calculated as follows: 
 

)( bWpfc      (2-7) 
 
Choosing an ANN architecture requires considering the complexity of the problem to 
solve, the computation capacity available, the stability of the ANN system to use and 
its training algorithm (supervised, unsupervised, etc.). The inputs and outputs of a 
problem correspond to those of a network, while the transfer functions at the output 
layer of the network correspond to the specification of the outputs in the problem. 
ANNs can be configured for processing data in a wide variety of ways, being the most 
common classification and function approximation tasks. 
 
Supervised and unsupervised learning. The way a learning algorithm works defines 
the type of learning it performs, it may be based on ANNs, rules, data vectors, etc. 
Most common algorithms may be supervised and unsupervised. A supervised 
algorithm generates a function for mapping the input of a process to its outputs, 
usually termed targets (the desired output). Unlike supervised algorithms, an 
unsupervised algorithm does not require data labeled with the output of a process, it 
simply processes the input data without external influence. There are other machine 
learning schemes, like transduction (similar to supervised learning, but without 
creating functions), semi-supervised learning (combining labeled and unlabeled data) 
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and reinforcement learning (correcting what has been learned while interacting with a 
guide). 
 
Based on the capacity of learning algorithms to detect patterns in previous data, these 
tools can be used for explaining past observations or predicting future trends or 
events. The process in which a learning algorithm adjusts its internal parameters to fit 
a data set (under any learning scheme) is usually referred to as training; in this stage, 
algorithms “learn” from data. When using a trained algorithm for predicting trends in 
new data, the algorithm compares the patterns in the new data set with the patterns it 
has learned from past data, for later producing a response. 
 
Training. Training is the process in which the inner parameters of a learning 
algorithm are adjusted (for example, the weights and biases of ANNs), with basis on a 
set of data samples, the training data set. A trained algorithm should reproduce what it 
has learned in order to explain past data or perform forecastings. The training data 
provide the required information to do so, but the manner in which they are processed 
by the algorithm affects its own predictive power. For this reason, it is important to 
select training data as diverse as possible and give some freedom to the algorithm to 
fit them. When the algorithms fits very well the training data problems may occur: 
overtrained algorithms, set to identify high standards in the training data, can not find 
similarities in new data and may produce highly erroneous predictions. 
 
Test and validation. The prediction power of any learning algorithm is affected by its 
training; however, for determining how predictive a trained algorithm is, it is required 
to evaluate the algorithm with an independent data set, not used in its training. In this 
manner, it can be determined if a trained algorithm can generalize well or if, on the 
contrary, fails to predict trends in new data. It is usual to evaluate the predictive 
performance of a trained algorithm on test data until optimal training settings are 
achieved, for later evaluating solely its performance on validation data. When the data 
of a process are scarce, selecting data sample for training and validating the models 
becomes an additional problem that can be tackled with n-fold cross-validation (n-
fold CV): the working data set is divided iteratively into n subsets, for training and 
testing n models with, respectively, (n-1)/n and 1/n, fractions of the original working 
data set. The leave one out validation (LOO) procedure is a variation of the n-fold CV 
in which all data vectors except one are used for training while the remaining vector is 
used for validation, n is then equal to the number of data vectors available. The 
performance of an algorithm trained and tested with the n-fold CV or LOO 
procedures is reported by averaging the performance indicators in each independent 
set. 
 
Data mining techniques. There is a large variety of processing techniques based on 
learning algorithms (McClean and Robert, 2001). When there is no prior knowledge 
referred to a high dimensional data set, tasks based on supervised algorithms are 
appropriate for finding subgroups of data with common attributes (clustering) and 
visualizing all data points. When the input and output of process are known, it may be 
of interest using past data for predicting the outputs of a process without using it 
explicitly, because of its involved costs or poor performance; in this case, supervised 
learning algorithms can be used for classifying data points and approximating 
complex functions. 
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2.4.1 Visualization and clustering algorithms 
 
 
Large datasets may be very difficult to analyze at any stage of a data mining project. 
Reducing their complexity becomes an important step for gaining an understanding of 
hidden relationships or improving the performance of computerized algorithms. There 
is a great variety of algorithms (Jain et al., 1999) that can be applied, under different 
learning schemes, for visualizing and clustering complex datasets. 
 

Principal Component Analysis 
 
Principal component analysis (PCA), also known as Karhunen-Loève transform, is an 
unsupervised algorithm widely used for reducing the number of dimensions in data 
sets, extracting features and generating simple data visualizations (Jolliffe, 2002). It is 
defined as a linear projection that minimizes the average projection cost (Pearson, 
1901), expressed as the mean squared distance between data points and their 
projections. 
 
It may also be defined as the orthogonal projection of data onto a linear space 
characterized with lower dimensions, in such way that the variance of the projected 
data is maximized (Hotelling, 1936). Figure 2-4 shows how data points characterized 
by two independent variables (x, y) are projected into an orthogonal space (u1), the 
principal subspace. 
 
For demonstrating how raw data is projected onto orthogonal space, it is assumed that 
a set of N observations  N21 ,...,, xxx , an Euclidean variable (xn) with D dimensions 

and the M dimensions of the orthogonal projection are known. Assuming the case for 
one single dimension (M = 1) in the orthogonal space, the direction of such space can 
be represented by a unit vector with D dimensions u1. The projection of each data 
point xn is given by the scalar n

T
1 xu . The variance of the projected data is given by: 

 

  1
T
1

2N

1n

T
1n

T
1N

1
Suuxuxu 



    (2-8) 

 
where x  is the sample set mean and xT

1u is the mean of the projected data. S is the 
data covariance matrix, defined as: 
 

  



N

1n

T
nnN

1
xxxxS     (2-9) 

 
For maximizing the projected variance, 1

T
1 Suu , with respect to the unit vector, u1, an 

unconstrained maximization is applied, imposing the normalization condition 
11

T
1 uu  by means of the Lagrange multiplier λ1: 
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Figure 2-4. Data 
projections based on the 
principal component 
analysis. 
 
In a PCA projection, original data points 
are projected onto an orthogonal low-
dimensional space that minimizes the 
average projection cost. 
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1  uuSuu     (2-10) 

 
setting the derivative with respect to u1 equal to zero, a stationary point is achieved 
when: 
 

111 λ uSu       (2-11) 
 
indicating that u1 is an eigenvector of S. Multiplying by T

1u from the left side and 

noticing that 11
T
1 uu , the expression above takes the form: 

 

11
T
1 λSuu      (2-12) 

 
from which the first principal component is obtained, the eigenvector u1. This 
component has associated the largest eigenvalue, λ1, and so, a maximum variance. 
 
Other principal components can be defined repeating the procedures used for 
obtaining the first principal component. Every new direction must be chosen in a way 
that the projected variance is maximized, in the middle of all possible directions 
orthogonal to those already found. For M dimensions, this is reduced to the definition 
of M eigenvectors u1,u2,…,uM of the data covariance matrix S, with the 
corresponding eigenvalues λ1,λ2,…,λM. 
 

K-means 
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The K-means algorithm (MacQueen, 1967) is a supervised algorithm that clusters N 
data points into K partitions, known a value K lower than N (K<N). It minimizes a 
distortion measure, given by: 
 


 


N

1n

K

1k

2

KnnkrJ μx    (2-13) 

 
this definition gives the sum of the squares of the distances of each data point, xn, to 
its closest prototype vector, μk (a vector representing the kth cluster). rnk is a binary 
indicator variable (for k = 1,…,K), equal to 1 when a data point is assigned to a 
cluster k (rnk = 1,  for a cluster k) and equal to 0 when not (rnk = 0,  for a cluster j ≠ k). 
The assignment of rnk values to the different data points is usually known as the 1-of-
K coding. 
 
The goal of the K-means algorithm is to find a set of values rnk and a set of prototype 
vectors μk for minimizing J in an iterative procedure. First, rnk values are estimated to 
be 1 or 0 according to a set of initial prototype vectors μk. Secondly, fixed a set of rnk 
values, all prototype vectors are optimized by setting to zero the derivative of the 
distortion measure (Equation 2-13) with respect to μk: 
 

 



N

1n
Knnk 0r2 μx     (2-14) 

 
and solving for μk: 
 






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1n
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1i
nnk

k

r

r x
μ     (2-15) 

 
for estimating again the 1-of-K coding (set of rnk values) and another set of prototype 
vectors (μk) for the data set, until reaching a minimum J. The K-means algorithm may 
be slow or imprecise for some cases, so other clustering algorithms may be more 
suitable instead (Lance et al., 2004). However, its simplicity and functionality make it 
appropriate for exploring the clustering of unknown datasets, prior to further 
assessments. 
 

Self Organizing Maps 
 
The Self-Organizing Map (SOM) (Kohonen et al., 1996), also known as Kohonen 
map, is based on ANNs applying both vector quantization and projection algorithms 
in unsupervised conditions. It is widely used for clustering and visualizing high-
dimensional data sets. 
 
The neurons of a SOM are arranged on a lattice of any regular shape (either 2D or 3D: 
rectangular, hexagonal, cylindrical, etc.) in which each neuron is represented by a 
weight vector of dimensions d, where d is the dimension of the SOM input vectors. 
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Figure 2-5 Distribution of artificial neurons in self organizing maps. 
The neurons of SOMs, also called SOM units, are disposed in lattices of varied spatial configurations. This figure 
shows two SOMs, one with a rectangular lattice and 5 clustered data points (a) and another with a hexagonal lattice 
7 clustered data points (b). Data points clustered in SOM units may have neighbor data points with, until some 
extent, similar characteristics. In this figure, points marked with 0, are surrounded by other data points (marked 
with 1), 4 in the rectangular lattice (a) and 6 in the hexagonal lattice (b). 
 
 
Figure 2-5 shows the lattices of two SOMs with the same number of units, 28 neurons 
(organized in lattices of 7x4 neurons), the first SOM has a rectangular lattice (Figure 
2-5a) while the second one has a hexagonal lattice (Figure 2-5b). 
 
SOMs are trained in an iterative manner. For each epoch in the training of a SOM, 
one sample vector x from the input data is chosen at random and compared with all 
the weight vectors of the SOM via a similarity measure. The distance (or Euclidean 
distance) of a weight vector, m, close to an input vector x is calculated as: 
 

  i
i

BMU min mxmx      (2-16) 

 
where the best matching unit (BMU) is the neuron whose weight vector has the 
greatest similarity or shortest distance with the input sample x. The equation above is 
modified for accounting the contribution of different elements in the selection of 
BMUs: missing data values do not contribute at all ( 0i mx ); and, every variable 

may contribute or not, depending on its associated mask (with values between 0 or 1). 
 
The distance measure used in the selection of BMUs has the form: 
 

 



Kk

2
kkk

2
mxwmx     (2-17) 

 
where K is the set of available variables of the samples vector x. xk, mk and wk are, 
respectively, the kth component of the sample, the kth component of the weight vector 
and the kth mask value. 
 
The goodness of a SOM is assessed in terms of the mean quantization error ( errorq ) 

and the mean topological error ( errort ) (Uriarte and Martín, 2005): 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 51

 

 
iierror N

1
q xmx     (2-18) 

 
and 
 

 



N

1n
ierror N

1
t xu      (2-19) 

 
where: N is the number of data vectors; 

ixm is the best matching unit (BMU, also 

called SOM unit or SOM prototype) of the corresponding data vector ix ;  and, u( ix ) 

is a function that yields 1 if the first and second BMUs of ix  are adjacent and, 0 
otherwise. 
 
After finding the BMUs, the weights of the SOM are updated. After training, each 
neuron of the SOM represents the vectors of the input space that have been classified 
in the cell and its neighborhoods. The rule for updating the weights of each unit i of 
the SOM is given by: 
 

  (t)(t)(t)h(t)1)(t iiBMU,ii mxmm    (2-20)  

 
The neighborhood kernel, hBMU,i(t), formed by a neighborhood function and a learning 
rate function, is a non-increasing function of time and of the distance between unit i 
and the BMU, defining the region of influence that the input sample x has on the 
SOM: 
 

   tαt,h(t)h iBMU,i rr  BMU    (2-21) 

 
Figure 2-6 and Figure 2-7 are referred to a practical example illustrating how a SOM 
can be used to visualize and cluster data. The example has been prepared as follows: 
First, a dataset has been normalized in the range [-1,1] prior to the SOM training, the 
dataset is composed of 383 chemicals characterized by logarithmic values of their 
vapor pressure (Pv), water solubility (Sw) and air-water partition coefficient (Kaw, 
Equation 1-3). Second, a SOM has been set to have, approximately, as many units as 
vectors in the dataset (24x16 units) in a hexagonal lattice. Third the dataset is 
presented to the SOM. During the training phase of the SOM, the prototypes of each 
neuron were adjusted automatically by the SOM itself to fit the dataset as much as 
possible. 
 
Figure 2-6a shows a 2-D PCA projection that confirms that, after the training phase, 
the SOM prototypes have been located very close to most data vectors, fitting well the 
dataset of interest. In Figure 2-6b, it can be observed that the example SOM has 
clustered the 383 chemicals in its neurons (or SOM units): some neurons are empty, 
but there are others clustering 1, 2, 3 or 4 chemicals. Figure 2-6c shows the 
component planes of the SOM, mapping the values assigned to every SOM prototype 
in every of the three logarithmic properties, which are somewhat comparable to the 
values of the fitted dataset and give an insight of the distribution of data vectors in the 
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b) Number of chemicals clustered per SOM unit

a) PCA visualization of both data points and SOM units
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c) SOM component planes

Figure 2-6. Possible data visualization schemes on self organizing maps. 
This figure shows how a SOM, with 24x16 units disposed in a hexagonal lattice, allows the visualization of a set of 383 
chemicals characterized by logarithmic values of Pv, Sw and Kaw: making a PCA projection of both data points and 
SOM units (b), counting the number of chemicals clustered in every SOM unit (b); and, by means of SOM component 
planes (c). 
 
SOM. At first sight, any of the visualization schemes of Figure 2-6 (a, b or c) may 
seem difficult to interpret for the user lacking of experience with SOMs. However, it 
is important to remember that the presented visualization schemes are equivalent. 
They are simply different points of view for the same problem, fitting a dataset with 
the neurons of a SOM. 
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Figure 2-7. Clustering of self organizing maps. 
This figure shows how the SOM of Figure 2.7 can be clustered with basis on its component planes (a), extending the 
clustering to the 383 chemicals already used in its training (b). In this example, cluster 1 and cluster 2 are associated to 
chemicals with, respectively, high Kaw and low Kaw values. 
 
 
The SOM algorithm clusters data points in its neurons. However, further clustering is 
possible. Figure 2-7a shows how the SOM of Figure 2-6 has been clustered with the 
Davies-Bouldin algorithm, very similar to K-means. The number of clusters was set to 
2 in the clustering algorithm, so the SOM was divided into two regions: one referred 
to high Kaw values and another with low Kaw values. The resulting two clusters 
coincide with the high and low-value regions of the Kaw component (Figure 2-6c). In 
the three-dimensional coordinate system of partitioning properties (Pv, Sw, Kaw), 
chemicals with similar partitioning behavior are located close to each other. The 
example SOM has learned to map the partitioning properties of 383 chemicals (Figure 
2-6) and has clustered them with respect to their tendency to partition to air or water 
(Figure 2-7). 
 
Using the SOM for datasets composed of data points with 1 to 3 dimensions may be 
redundant. However, when the number of data points and dimensions are high, the 
applicability of the SOM algorithm may be of great help. Several parameters can be 
adjusted to help a SOM fits its training data: shape, lattice, number of units (neurons), 
learning function, neighborhood kernel, etc. It must be noticed that, in general, 
datasets with several dimensions and few data points may lead to poor fitting. So it is 
up to the user to test different SOM settings when processing his/her working data for 
finding an optimal model. 
 
 

2.4.2 Classifiers 
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Some machine learning algorithms can be used for data classification, known a set of 
previously labeled items of a training data set. Typically, classification problems 
require finding a classifier that best maps the characteristics of new data to their real 
classes. There is no single learning algorithm that works best on all classification 
problems, the performance of each classifier depends on the features of the data to be 
classified. For this reason, it is common practice to test various algorithms for the 
same classification problem and compare their predictions for the test data. 
 
The outcomes of a classifier can be described as true positive (TP), false positive 
(FP), true negative (TN) and false negative (FN). Regarding one class, elements 
classified as members of such class are TP when their classification is correct and FP 
when incorrect; meanwhile, elements classified as member of other classes are TN or 
FN, when correctly or incorrectly classified, respectively. The performance of a 
classifier on a dataset is estimated calculating the rates of true positive (TP) and false 
positive (FP) predictions: 
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and comparing such values in a two-dimensional plot, in which high values of TPrate 
and low values of FPrate for a test data set indicate acceptable predictions. Another 
measurement of the performance of a classifier may be obtained using the F-measure: 
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measure-F     (2-24) 

 

Naive Bayes 
 
The Naive Bayes classifier (George and Langley, 1995), supported on Bayes’s rule of 
conditional probability (Barnard and Bayes, 1958) and widely used in supervised 
learning tasks, works given two assumptions: the predictive attributes are 
conditionally independent given the class; and, no hidden or latent attributes influence 
the prediction process. It says that for a given hypothesis H and evidence X that bears 
on that hypothesis, the probability of the hypothesis conditional on the evidence is as 
follows: 
 

     
 xXp

hH|xXphHp
xX|hHp




    (2-25) 

 
and that, for N pieces of evidence, the term p[X = x | H = h] is given by: 
 

   hH|xXphH|xXp ii

N

i
    (2-26) 
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p[X = x], the denominator in the equations above (Equation 2-24 and Equation 2-25), 
is not estimated and disappears when normalizing so that the sum of p[H = h | X = x] 
is 1. When processing numeric attributes, the classifier is assumed to have a Gaussian 
probability distribution: 
 

 
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2

2

2σ

μx

e
2ππ

1
hH|xXp




  when x lies in [x-ε/2, x+ε/2]  (2-27) 

 
Variations on the Naïve Bayes classifier replace the probability distribution by other 
density estimation methods that may reduce prediction errors on natural and artificial 
data sets. When it is difficult to know the probability distribution to use, a Kernel 
density function may yield good results (George and Langley, 1995): 
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hH|xXp  where h = σ and K = g(x,0,1)  (2-28) 

 

Decision trees 
 
Decision trees are models that characterize the conditions of an event to occur, 
classifying data in every branch of a tree-like graph according to different 
conditioning features. Classification or regressions tasks can be performed with 
decision tree algorithms when processing, respectively, categorical or numerical data. 
Since the outputs of a process are required when training decision tree algorithms, 
these algorithms work under supervised learning conditions. 
 
One of the most simplest tree-based algorithms is the classification and regression 
trees (CART) algorithm (Breiman et al., 1984). Consider a data set with N vectors, in 
which every vector is characterized by a set of D input features, {i1,…, iD} and a 
target feature {t}. When the partitioning of the input space is known and the 
associated error function is minimized (based on a sum of squares), the optimal value 
for a predictive variable in any given region is given by the average values of tn 
running over the data points falling in that region. 
 
When determining the structure of a decision tree, the optimization process of 
minimizing the error function resulting from fitting the algorithm to the training data 
may become infeasible. This process implies the selection of input features and 
thresholds for each branch that, for large multivariate and large datasets, may have 
associated high computational costs. An alternative greedy optimization is usually 
applied, which creates a single-node tree covering the entire input space and adds 
nodes to the tree, one at a time. In every step, a selection of one of the D input 
variables and the associated threshold is carried out by exhaustive search until an 
optimal selection is found, characterized by the local average of the predictive 
variable. The whole greedy optimization process is repeated for all possible input 
variables, selecting the variable with the lowest associated error. 
 
A problem associated to the greedy optimization of tree-based algorithms is when to 
stop the addition of tree nodes during the training process. The simplest approach is to 
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stop the training process when an error threshold is achieved; but, every available split 
reduces slightly the error of the algorithm, resulting in several splits when reaching 
the error threshold. To overcome this problem, usually large trees are extended until 
reaching a limit based on the number of data points associated to the leaf nodes, for 
later pruning back the original tree. 
 
The pruning process balances the residual error of the tree against a parameter 
measuring its complexity. The pruning of a tree, Tr0, is carried out by collapsing 
internal nodes and merging the corresponding regions and generating a subtree of T0, 
T, that complies the condition 0TT  . The leaf nodes of a tree are indexed by τ = 1, 

…, |T|, where |T| is the maximum number of leaf nodes. Every leaf node τ has 
associated a region of the input space, Rτ, and a set of data points, Nτ. The optimal 
prediction for a region Rτ is given by: 
 





τn Rx

n
τ

τ t
N

1
y      (2-29) 

 
with the associated residual sum of squares: 
 

 
2

Rx
τnτ

τn

yt(T)Q 


    (2-30) 

 
The pruning criterion for regression tasks is expressed as: 
 

    TλTQTC
1τ

τ  


   (2-31) 

 
where λ is a regularization parameter that controls the exchange between the overall 
residual sum,  TQ τ , and the number of leaf nodes |T|. λ is usually determined by 

cross-validation. 
 
For classification tasks, the pruning criterion is based on performance measures 
different than those based on errors. Two common performance measurements used in 
the pruning of tree-based classifiers are the Gini index: 
 

   



K

1k
τkτkτ p-1pTQ    (2-32) 

and the cross-entropy: 
 

   



K

1k
τkτkτ plnpTQ    (2-33) 

 
where pτk is the proportion of data points laying in the region Rτ of the class k, given a 
set of K classes (k = 1,…, K). Note that these two performance measurements achieve 
a maximum at pτk = 0.5 and become zero when pτk = 0 and pτk = 1, helping the 
formation of regions in which a large number of data points are clustered in a class. 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 57

In general, decision trees tend to be very sensitive in relation to variations in their 
training data. Different data splits may be obtained for slightly different training data 
sets. However, the graphical representation generated by these algorithms makes them 
suitable for getting an intuitive understanding of the composition of large 
multivariable data sets. There are several algorithms modeling decision trees with 
different variations, some of the most known are: the ID3 algorithm (Quinlan, 1986), 
a decision tree based on the entropy performance measurement meant to produce 
small trees rather than large trees; the C4.5 algorithm (Quinlan, 1993), an extension of 
ID3 that examines the normalized information gain resulting from choosing an 
attribute for splitting the data; the J4.8 algorithm (Quinlan, 1993), meant for 
generating pruned or unpruned C4.5 decision trees; and, the Random Forest algorithm 
(Breiman, 2001), meant for constructing a forest of random trees. 
 

Support Vector Machines 
 
Support vector machines (SVMs) are algorithms that build mathematical structures 
from data vectors selected during the training phase (Cortes and Vapnik, 1995). 
SVMs perform well for classification problems involving two classes, when data are 
either linearly separable or not. 
 
When the available data vectors of a two-class classification problem are linearly 
separable, one may choose from a variety of solutions, depending on how a standard 
classifier algorithm optimizes its errors. Figure 2-8a makes a graphical representation 
of such situation. Instead, SVMs search an optimal solution by establishing a line for 
which the distance, or margin, between itself and vectors lying on the boundaries is 
maximum, as in Figure 2-8b. The solution given by SVMs is unique and “supported” 
on vectors on the boundaries, regardless of any other elements in the data set. 
 
When the data to classify are non-linearly separable, SVMs search for an optimal 
hyper-plane different from the original data space (or input space), a higher 
dimensional space, using projections of the original data by means of a feature 
function φ(x). The feature function meets a necessary condition: the product of the 
feature function φ(x) evaluated on two generic training vectors xi and xj must have an 
equivalent in the input space where the kernel K(xi, xj) operates. 
 
Algorithms depending on the number of support vectors rather than on the 
dimensionality of the feature space have decision functions, non-linear in the input 
space and based on the convolution of the inner product, with the form: 
 

   



N

1i
iii b,Kαtxf xx    (2-34) 

 
equivalent to linear decision functions in the high-dimensional feature space 
ψ1(x), …, ψN(x); where K(xi, x) is a convolution of the inner product in the feature 
space. For finding the coefficients in either the separable case or the non-separable 
case it is enough to find the maximum of the function: 
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margin

support
vectors

a) Multiple solutions from error-based classifiers b) Single solution from a SVM-based classifer

Figure 2-8. Decision boundaries of classifiers. 
This figure shows how data points of a two-class linearly separable dataset are separated by standard error-based 
classifiers (a) and a SVM-based classifier (b). Multiple solutions can be derived from error-based classifiers as they 
find local minima during their training (a). Instead, support vectors provide an unique solution supported on selected 
data points (b). 
 
 

    

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ji,
jijiji
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2

1
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subject to these restrictions: 
 

0  and 



L

i
ii ya

1

0  for i = 1, 2, …, L.  (2-36) 

 
Using different functions for the convolution of inner products, K(x, xi), different 
types of nonlinear decision surfaces can be obtained. The most common are based on 
polynomials, radial basis functions and backpropagation networks: 
 

for a polynomial learning machine:     dii 1,K  xxxx  (2-37)

  

for a radial basis function machine:  










 


2

2

2
expK


i

i

xx
xx  (2-38)

  
for a two-layer neural network:     cv ii  xxxx S,K  (2-39)
 
SVMs may perform classifications with considerable robustness and efficiency when 
compared to algorithms based on standard ANNs. A SVM-based model can be always 
reproduced if its training data remains unaltered. This is not the case of models based 
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on ANNs, which optimize their inner parameters (weights, biases) searching for a 
minimum error, yielding dissimilar models when finding different minima (a 
discussion for backpropagation ANNs is given later in this chapter). 
 
 

2.4.3 Multivariate function approximators 
 
 
Learning algorithms can be used for performing regressions involving several input 
and output variables. Their training process typically requires adjusting the 
parameters of a complex functional structure until closely matching a target 
multivariate function. This involves the training of algorithms under supervised 
learning conditions. 
 
Multivariate regressions are required for predicting the outputs of a process when its 
operation is unpractical, known the inputs and outputs for a set of known cases. 
Several property estimation methods rely on QSARs (Section 1.2.3), grounded on 
multivariate regressions relating molecular descriptors linked to chemical activity 
(Equation 1-15).  With the aim of guiding the development and validation of QSAR 
models, the Organisation for Economic Co-operation and Development (OECD), in 
the 37th OECD's Joint Meeting of the Chemicals Committee and the Working Party 
on Chemicals, Pesticides and Biotechnology (Joint Meeting) agreed on the “OECD 
Principles for the Validation, for Regulatory Purposes, of (Q)SAR Models” (OECD, 
2007): 
 
“To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should 
be associated with the following information: 

1. a defined endpoint; 

2. an unambiguous algorithm; 

3. a defined domain of applicability; 

4. appropriate measures of goodness-of-fit, robustness and predictivity; 

5. a mechanistic interpretation, if possible.” 

which, coupled to a large lists of methods, for the proper integration of QSARs into 
regulatory/decision-making frameworks, should be taken with some flexibility, 
depending on the needs and constraints of specific regulatory authorities. 
 
A simple way of assessing a multivariate function approximator is calculating the 
mean absolute error (MAE) running over an entire dataset: 
 

NG

pt

MAE

G

1g

N

1n
gn,gn,

 


  for N samples and G output variables  (2-40) 
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where the differences between target values ( gn,t ) and the predictions of the algorithm 

( gn,p ) are averaged for all the samples of a data set (n = 1,…,N) and all the output 

variables (g = 1,…,G) in the process. Low MAE values indicate, in average, good 
predictions. 
 
Since the objective of developing multivariate regressions is predicting new trends 
rather than describing known observations, emphasis is made on assessing the 
predictive capacity of trained models. The predictive squared correlation coefficient 
(q2) is meant to indicate how well a single output variable g is individually predicted 
for all the elements of a dataset: 
 

 

 










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1n

2
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1n

2

nn
2

tt

tp
1q  for a dataset and a single output variable g (2-41) 

 
where, in average, the difference between predictions ( np ) and targets ( nt ) is 

compared to the difference between the targets ( nt ) and the average target value in 

the dataset ( datasett ). q2 yields 1 when optimal, 0 when predictions are as good as the 

average values and negative values when the averages are better estimators than the 
actual estimations. It has been suggested that trained algorithms should yield q2 > 0.5 
when evaluated on an external dataset, not used in the training of the models, for 
ensuring their predictive capacity. 
 
However, it has been argued that the q2 coefficient by itself is not enough for 
assessing the predictive capacity of a model, so a set of measurements has been 
proposed by Golbraikh and Tropsha (2002) and Tropsha et al. (2003). These authors 
suggest that a model, when evaluated on an external dataset, should comply with the 
following conditions: 
 

0.5q 2
tr   (2-42)

 
0.6R 2   (2-43)
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(2-45)

 
where: 
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with all sums running over the elements of the external dataset and evaluating the 
average of the targets and predictions of the set, respectively, sett  and setp . Please note 

that tr
2q  (Equation 2-46) especially compares, in average, the difference between 

targets ( nt ) and predictions ( np ) with respect to the difference between targets ( nt ) 

and the average target value of the training set ( trt ), not the average target value in the 

dataset on evaluation ( datasett , as in Equation 2-41). 

 
Recently, it has been noted that the definition of the squared correlation coefficient 
with respect to the training set ( tr

2q ) may overestimate systematically the prediction 

capability of a model, yielding values higher than q2 or R2 when evaluated 
(Schüürmann et al., 2008). So Schüürmann and coworkers have suggested that q2 
should be used instead of 2

trq ; and, that the OECD guidelines for the validation of 

QSARs (OECD, 2007) should be modified to replace tr
2q  by q2. 

 
There is still a lot of controversy on how QSAR models should be validated. 
However, aside of the different kinds of performance measurements that can be 
applied to QSAR models, methods involving the visual inspection of targets and 
predictions generally constitute an important factor for assessing the goodness of 
QSARs. QSARs are dynamic models in the sense that they can be updated, as long as 
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new optimal conditions are found (training data, core algorithms, internal and external 
parameters, etc.). 
 

Backpropagation Networks 
 
Backpropagation networks (BPNs) are multilayer feed-forward neural networks that 
work under supervised learning, in which both the inputs and outputs of a problem are 
presented to the network. BPNs can work as function approximators with 
architectures based on at least one hidden layer of neurons with sigmoid transfer 
functions (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989). They are trained 
with the backpropagation algorithm (Parker, 1985; Rumelhart et al., 1986), which 
minimizes squared errors, using the chain rule for calculating derivatives of the 
squared error with respect to the weight and biases from the last to the first layer of 
the network. 
 
The backpropagation algorithm is explained in the following lines for a BPN of M 
layers. Figure 2-9 shows a concise scheme of how the information is propagated 
through BPNs during their training. First, an input vector (p) is propagated forward 
through the network for calculating the outputs of each layer (cm) with the expression: 
 

 )( m1mmmm bcWfc    for m = 1, …, M,   where c0 = p (2-52)  
 
Second, the sensitivities ( sm ) are calculated and propagated backward through the 
network:  
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M atnFs
.

  for the output layer (the last layer, m = M)   (2-53) 
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Figure 2-9. Training of backpropagation networks. 
Backpropagation networks adjust their internal parameters with basis on the comparison they perform between target 
and predicted values for a given training data set. This figure shows how data flows through a two-layer feedforward 
network trained by the backpropagation algorithm (a), with performance errors decreasing for every training epoch (b). 
In every epoch (a), the input data is presented to the network, the predictions are compared to their corresponding target 
values and the inner parameters (weights, biases) of the network are updated with the backpropagation of sensititivites 
until a minimum performance error is achieved (b). 
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Third, the weights and biases of all the layers in the network are updated by means of 
the approximate steepest descent rule: 
 

 T1mmmm )(α(k)1)(k  asWW    (2-58) 
 

 mmm α(k)1)(k sbb      (2-59)  
 
Fourth, the whole procedure is repeated until minimum errors in the outputs of the 
network are obtained. 
 
The backpropagation algorithm has two major shortcomings, requires long 
computational times and may become unstable for high dimensional data. 
Additionally, there is always the possibility of overtraining when the repetitions of the 
algorithm are not stopped on time; for these reason, an error threshold must be 
specified for stopping the training process when an optimal solution has been 
obtained. There are several variations of the backpropagation algorithm to accelerate 
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its convergence. One of the fastest methods is the Levenberg-Marquadt optimization 
algorithm (Hagan and Menhaj, 1994).  
 

Radial Basin Functions 
 
A radial basis function (RBF) is a two-layer neural network that contains basis 
functions in its hidden layer, usually Gaussian bell functions, and linear functions in 
its output layer (Lo, 1998). RBFs require the determination of the mean and standard 
deviation from the input data to calculate the output from each output neuron, given 
by: 
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where for a given neuron i, ci is its centre, σi is its radius (also called spread) and |x-ci| 
is the Euclidean distance between the input vectors and the ith centre. With the 
prediction of the network calculated according to the expression: 
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1n
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   (2-61) 

 

Support Vector Regressions 
 
SVMs can also be used as multivariate function approximators (Drucker et al., 1996), 
usually referred to as Support Vector Regressions (SVRs). The original SVM 
algorithm is altered with the application of loss functions, usually called ε-insensitive 
loss functions, required for making models not only robust but also sparse. These 
functions are very important for estimating dependencies for large numbers of data 
vectors; the magnitude of ε is inversely proportional to the amount of support vectors 
included in a model. 
 
Given a training dataset {(x1,t1),…,(xN,tN)} with N points composed of inputs (xi) of 
dimension D and targets of dimension 1 (ti), the goal is to establish a regression 
function f(x), as flat as possible, with at most a deviation of magnitude ε for all the 
targets (ti) in the dataset. Errors are accepted only if they are lower than ε, rejecting 
deviations larger than this. For linear functions, f(x) takes the form: 
 

b,f(x)  xw  with: D, Rxw , Rb   (2-62) 

 

in a convex optimization problem in which the norm ( www ,
2  ) is minimized: 
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Figure 2-10. Training of support vector regressions. 
The support vector regression is surrounded by the ε-insensitive tube (a), where ξ = ξ* = 0. Data points outside the ε-
insensitive tube contribute to the cost, identified by the ε-insensitive error function (b). 
 
 
subject to: 
 

εb,t ii  xw     (2-64) 

 
 

εt-b, ii xw     (2-65) 

 
The minimization problem above (Equations 2-61, 2-62 and 2-63) assumes tacitly that 
a function f(x) exists and that it approximates all pairs (xi,ti) with ε precision. Slack 
variables (ξ, ξ*) can be introduced to deal with infeasible constrains of this problem to 
reformulate it as the minimization of the function: 
 
 

 



N

1i

*
ii

2
ξξC

2

1
w     (2-66) 

 
subject to: 
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where C>0, the regularization parameter, determines the swapping between the 
flatness of f(x) and the amount up to which deviations larger than ε are tolerated. This 
leads to the establishment of the ε-insensitive error function, which, when linear, has 
the form: 
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    (2-70) 

 
selecting points that lay outside the e-insensitive tube, the region around the 
regression, as a contribution to the cost insofar, (deviations are penalized linearly). 
Points are assigned ξ > 0 or ξ* > 0, when laying, respectively, above or below the ε-
insensitive tube. Point within the tube have ξ = ξ* = 0. 
 
The new optimization problem (Equations 2-64, 2-65, 2-66, 2-67 and 2-68) can be 
solved by further applying a dual formulation, that allows the extension of the 
algorithm to non-linear functions by the application of Lagrange multipliers, yielding 
the function: 
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a linear combination of the training patterns (xi), independent from the dimensionality 
of the input space (D), dependent solely on the number of support vectors. B can be 
computed with the application of the Karush-Kuhn-Tucker (KKT) conditions 
(Karush, 1939; Kuhn and Tucker, 1950). 
 
The support vector regression (Equation 2-69) can become non-linear, preprocessing 
the input patterns (xi) in the feature space F of a kernel function Φ: RDF. 
 

   



N

1i
i

*
i xααiw ;  thus  




N

1i
i

*
i b,kααif(x) xx   (2-72) 

 
leaving the optimization problem as the search of the flattest function in feature space, 
instead of the original input space. 
 
 

2.5 Multimedia environmental modeling from 
pattern recognition 
 
 

2.5.1 Philosophy of QPFRs and QSFRs  
 
 
MEMs estimate the distribution of chemical pollutants in the environment from data 
describing specific geographical locations and the physicochemical properties and 
emission rates of pollutants of concern (Section 1.2.1). Given the large variety of 
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input and output parameters involved, any MEM can be considered as a multivariate 
function that, in matrix form, can be defined as: 
 

),,(MEM SEPC f     (2-73) 
 
where C is a matrix of environmental fate estimations (in terms of concentrations, 
mass fractions, fugacity values, etc.), P a matrix of physicochemical properties, E a 
matrix of emission rates and S a vector of site-specific parameters. These terms can be 
subsequently defined, for N chemical pollutants characterized by K physicochemical 
properties and emitted on J out of G environmental compartments, as follows: 
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When the emission rates of a set of chemicals remain constant on a fixed geographical 
scenario (E and S constants), it is possible to consider a MEM as a multivariate 
function that relates the physicochemical properties (P) of pollutants to environmental 
fate estimations (C): 
 

)(MEM PC f   if E and S remain constant  (2-78) 
 
simplifying the original multimedia environmental modeling approach (Equation 2-
73) and focusing the environmental assessment of chemicals solely on their 
physicochemical properties. 
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Uncertainty in standard environmental assessments. For assessing the 
environmental fate of chemicals for which physicochemical properties are missing, it 
is common practice to estimate every missing property from available QSPR and 
QSBR methods (Boethling et al., 2004) and evaluate a MEM as usual (Mackay, 
2001), known emission rates and a geographic scenario (Figure 1-4). In result, 
different levels of uncertainty must be expected at the output of the MEM. If Pest is a 
matrix of physicochemical properties totally or partially estimated, the outcome of a 
MEM using Pest as input can be either reasonably approximated to the outcome of the 
same model (C) using a set of reference properties P (Equation 2-78): 
 

)( est
MEM PC f  if estPP     (2-79) 

 
or, in the worst cases, wrongly estimated: 
 

)( est
MEM PC f  if estPP     (2-80) 

 
depending on the amount of estimated properties, the uncertainty associated to each 
value and their role in the equations of the MEM. 
 

Quantitative property-fate relationships. 
 
When some physicochemical properties are unavailable for chemicals of concern, 
alternative environmental fate predictions can be obtained from available 
physicochemical data, using QPFRs (Figure 1-4). Supervised learning algorithms 
(like the ones described in Section 2.4.3) can be used, given a set of training 
chemicals, to establish relationships between reduced set of properties to the outputs 
of a MEM (Martínez et al., 2006a; Martínez et al., 2006b): 
 

)( *
QPFR PC f  if P exists   (2-81) 

 
where C is a matrix of fate predictions generated by a reference MEM for a set of 
training chemicals (Equation 2-78), P is a matrix with all the K properties required by 
the reference MEM and P* is a matrix with a reduced number of properties K* (K*< 
K). The environmental assessment of new chemicals for which some properties are 
available can be performed with QPFRs, as long as the former have the exact set of 
K* available properties required by the latter as input. 
 

Quantitative structure-fate relationships 
 
When key physicochemical properties are either unavailable or extremely noisy for 
chemicals of concern, alternative environmental fate predictions can be obtained from 
molecular information, using QSFRs (Figure 1-4). Supervised learning algorithms 
(Section 2.4.3) can be used, given a set of training chemicals, to establish 
relationships between available molecular information to the outputs of a MEM 
(Martínez et al., 2007a; Martínez et al., 2007b): 
 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 69

)(QSFR DC f   if P exists   (2-82) 

 
where C is a matrix of fate predictions generated by a reference MEM for a set of 
training chemicals (Equation 2-78), P is a matrix with all the K properties required by 
the reference MEM and D is a matrix with L molecular descriptors. Known the 
molecular structure of a new chemical of concern, it is possible to calculate any type 
of molecular descriptors for later assessing its environmental fate through QSFRs. 
 
 

2.5.2 Training supervised learning algorithms to 
emulate MEMs as QPFRs or QSFRs 
 
In this thesis, QPFR and QSFR models have been developed for estimating level III 
mass ratios (Equation 3-1) in compartments of the reference pollution scenario to be 
described in Chapter 3. Every model presented and discussed in Chapter 4 predicts a 
mass ratio wg from either a set of available properties *K1 p,...,p , in the case of 

QPFRs; or, a set of molecular descriptors L1 d,...,d , in the case of QSFRs. These 
models, based on supervised learning algorithms, require the same considerations that 
apply in the development of standard property estimation methods relying on the 
QSAR approach (Section 1.2.3): 
 

 Compiling training data with the highest possible quality (Stouch et al., 2003) 
 Avoiding the presence of outliers (Furusjö et al., 2006). 
 Selecting appropiate input features (Saeys et al., 2007) from large number of 

descriptors (Bredow and Jug, 2005; Burden et al., 2009; Duca and Hopfinger, 
2001; Senese et al., 2004; Todeschini and Consonni, 2000) 

 Selecting and tuning the learning algorithms for building the models (Basheer 
and Hajmeer, 2000; Xu et al., 2006). 

 Overcoming the risk of overtraining in the models (Byvatov et al., 2003). 
 Validating externally the models (Golbraikh and Tropsha, 2002; OECD, 2007; 

Schüürmann et al., 2008). 
 Assessing the domain of applicability of the models (Weaver and Gleeson, 

2008). 
 
The simultaneous optimization of all these factors is a problem that leads to almost 
infinite hypothesis (Johnson, 2008). So, taking this in mind, such factors have been 
adapted and merged into a methodology that builds emulators of any given MEM for 
available well-known chemicals, as described in Table 2-1. For allowing the tuning of 
algorithms in their training phase, available work chemicals must be characterized by 
a set of attributes (physicochemical properties or molecular descriptors) and fate 
estimations (the outputs of a MEM); to be precise, the inputs and targets of the 
algorithms, respectively. For assessing the fate of new chemicals, solely selected 
attributes are needed. 
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Table 2-1. Methodology used for training, testing and validating QPFRs 
and QSFRs in this study. 
Step Action Description 

   

1st 
Pre-processing work 

data 

Work data, conformed by both the input and target variables of a QSFR for a set of 
available chemicals, are pre-processed, per variable, by base 10 logarithmic scaling 
(if having values spanning more than two orders of magnitude) and normalization in 
the range [-1, 1] (according to Equation 2-5). 

   

2nd 
Selecting the input 

variables of a model 

The input variables to use in a model are selected by either expert criteria (supported 
on the literature, assumptions and practical conditions) or empirical data filtering by 
the CFS algorithm (Hall, 1999), depending on feasibility and generalization 
capabilities of the algorithm. 

   

3rd 
Building the training 
and test data sets of a 

model 

For every model, training and test data sets are derived from available work 
chemicals in the reference scenario by means of the SOM algorithm: about 80 % of 
available work chemicals are dedicated to training the model, while the rest of work 
chemicals are reserved for testing its performance while tuning its parameters (3rd 
step). The SOM algorithm, based on the implementation of the SOM toolbox 5 for 
Matlab (Vesanto et al., 2000), has been used to force the diversity of the training 
data set and the representation of the test data set in the former as follows (Annex 
B.1; coupled to Annexes B.2, B.3 where pertinent): 
 
First, SOMs of different sizes are trained to fit all available work chemicals in the 
input-target space of every model. The SOMs are set to have toroidal shapes and 
hexagonal lattices, for diminishing their respective mean quantization errors 
(Equation 2-18) and mean topological errors (Equation 2-19) as much as possible, 
while all chemicals are characterized by the normalized inputs and target variables of 
the model to train. 
 
Second, from each resulting SOM, work chemicals are included into a candidate 
training data set when showing the lowest or highest quantization error with respect 
to the closest SOM unit, having extreme values (the lowest or highest values in the 
whole work data set) in target variables or, in the case of QPFRs, in physicochemical 
properties as well. All work chemicals not following these characteristics are moved 
to the corresponding candidate test data set instead. 
 
Third, pairs of candidate training and test data sets are considered for the 
development of models when the number of training chemicals is about 80 % (±5 %) 
the total number of work chemicals. That is, with a relation of training-test chemicals 
of about 4:1 in which the training chemicals tend to surround the test chemicals in a 
PCA space (Pearson, 1901) conformed by the inputs and targets of the model. 

   

4th 
Pre-processing the 
validation data set 

New data, conformed by the inputs and target variables of a model for a set of 
chemicals not used at all in the development of the models, are preprocessed under 
the same conditions in which the work data was preprocessed, applying base 10 
logarithms if applicable and normalizing in the range [-1, 1] (Equation 2-5) 
according to the minimum and maximum values contained in the work data set. 

   

5th 
Training, testing and 
validating a model 

Any model, based on supervised learning, emulates a reference MEM with a form 
resembling that of standard QSARs (Equation 1-13). QPFRs (Equation 2-81) have 
the form: 
 

               *K101,1-1101,1-QPFRg101,1- plogN,...,plogNwlogN f  

(2-83)
 
while QSFRs (Equation 2-82) have the form: 
 

             L1,1-11,1-QSFRg101,1- dN,...,dNwlogN f      (2-84)

 
where a wg is the dimensionless mass ratio of a compartment g (the target variable, 
defined by the Equation 3-1) and f is the function resulting from the training of a 
supervised learning algorithm as QPFR or QSFR.  
… 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 71

Table 2-1. Methodology used for training, testing and validating QPFRs 
and QSFRs in this study (continued). 
Step Action Description 

5th 
Training, testing and 
validating a model 

… 
 
The models presented in this work are based on the SVR algorithm with RBF kernel 
functions. The ε-SVR implementation in the software package RapidMiner 4.4 
(Mierswa et al., 2006) has been used to build the QPFRs and QSFRs of Chapter 4, 
per compartment g, with basis on a candidate training data set that contains about 
80% of available work chemicals (selected with a SOM, as explained in the 3rd step). 
 
For every compartment and set of input features considered, an iterative evaluation 
of 4000 models is implemented for tuning the parameters of an optimal SVR model 
(Annex B.4): C, γ, ε and p. For every combination of parameters, a SVR is 
developed with the training data set and evaluated on the test and validation data 
sets. An optimal SVR model is selected when having the lowest mean absolute error 
(MAE) on the test data set among the SVRs with the 10 highest squared correlation 
(R2) values on the test data set. This criteria aims to select a model with optimal 
generalization capabilities based on chemicals not included in the training set, but 
somehow represented in it. The MAE and R2 measurements are calculated (Annex 
B.5), respectively, with Equation 2-40 and Equation 2-47, per compartment (G = 1) 
and over the normalized logarithmic mass ratios of all the chemicals of a given data 
set (tr = training, te = test or val = validation). 
 
Having selected a SVR model for an optimal set of parameters, its accuracy is 
estimated by means of both a 10-fold cross validation (CV) and a leave one out 
(LOO) validation procedure running over all the available work chemicals (Annexes 
B.6 and B.7, respectively). In both cases, the MAE and R2 values of all subsets are 
averaged. Note that so far the outputs of the SVRs are normalized logarithms of 
mass ratios. 

   

6th 
Post-processing of 

fate predictions 

Initially, predictions of normalized logarithmic mass ratios for all the data sets 
(training, test and validation sets) are obtained by evaluating them in a QPFR or 
QSFR model, respectively, Equation 2-83 or Equation 2-84. Later, they are 
denormalized using Equation 2-5 backwards, solving yn from N[-1,1](yn), where yn = 
log10(wg), yielding logarithmic mass ratios. 

   

7th 
Measuring the 

performance of a 
model 

For measuring the performance of a compartmental QPFR or QSFR model with 
respect to a single data set, its predictions are compared with respect to the target 
values, i.e., the reference mass ratios originally generated by the reference MEM for 
the pollution scenario considered. 
 
The differences between targets and predictions are estimated, in average, 
calculating a mean absolute error over logarithmically scaled predictions as follows: 
 

   



N

1n

predicted
n10

target
n10 wlogwlog

N

1
MAE            (2-85)

 
the lower the MAE of a data set, the lower the differences between the targets and 
predictions of all chemicals in the set. 
 
The predictive performance of a model is assessed in terms of the predictive squared 
coefficient suggested by Schüürmann et al. (2008), q2, as follows: 
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wlog
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wlog

wlogwlog
1q            (2-86)

 
with the q2 coefficient varying in the range (–∞,1]. Models with q2 values closer to 1 
have a high predictive performance, but when having q2 values equal or lower than 
zero their predictions are worst than simply averaging all targets. 
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Chapter 3 

Reference pollution scenario 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For predicting the environmental fate of new chemicals in the absence of key 
physicochemical properties, it is necessary to have enough examples of the 
environmental distribution of well known chemicals. Such data constitute a reference 
pollution scenario that may allow learning algorithms find relationships between 
environmental fate and either few physicochemical properties or molecular 
descriptors, creating QPFRs or QSFRs, respectively. This chapter describes the 
reference scenario of the algorithms employed and discussed later in Chapter 4. 
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3.1 General description 
 
 
For establishing relationships between key properties or molecular information and 
fate, the inputs and outputs of a multimedia environmental model for several 
chemicals are required. This implies the use of available data for generating fate 
modeling examples for conditions of concern. For developing the models to be shown 
and discussed in Chapter 4, a hypothetical reference pollution scenario has been 
considered: Level III fate estimations for 468 chemical pollutants, 375 work 
chemicals (Annex C.1) and 93 validation chemicals (Annex C.2), emitted at a 
constant rate of 1 ton/yr in either water or air at The Netherlands. This scenario is 
based on chemicals of concern, for which biodegradation in water have been 
thoroughly tested (JETOC, 1992), and a Level III multimedia model originally 
developed and tested for the Netherlands, SimpleBox (Brandes et al., 1996; den 
Hollander and van de Meent, 2004; den Hollander et al., 2004; van de Meent, 1993). 
 
Preliminary versions of the reference pollution scenario, also referred to The 
Netherlands but considering diverse sources of degradation data and emissions in 
various compartments, were used in the preliminary reports of the NOMIRACLE 
project (Martínez et al., 2008a; Martínez et al., 2006; Martínez et al., 2007; Martínez 
et al., 2008b), contained in Annexes A.a1 to A.a4. Since degradation data in water is 
usually a critical input for most multimedia fate models (Aronson et al., 2006), the 
final version of the reference scenario considers chemicals for which degradation 
rates in water have been derived from MITI-I degradability tests (NITE, 2002), as 
explained later in this chapter. 
 
The Netherlands. The Netherlands has been modeled with SimpleBox 3 as a set of 5 
homogeneous compartments (air, water, sediments, soil and vegetation), taking as 
reference an original modeling of the region with SimpleBox (Struijs and 
Peijnenburg, 2002) as an area of 40000 km2 (divided in 1200 km2 of fresh water, 
10800 km2 of natural soil, 24000 km2 of agricultural soil and 4000 km2 of other soil) 
next to 40000 km2 of sea water. The height of the air compartment is 300 m, the wind 
speed is 1.5 m/s and the temperature of the system is 12 ºC. With the exception of the 
landscape parameters specified by Struijs and Peijnenburg (2002), all SimpleBox 3 
default parameters (den Hollander and van de Meent, 2004; den Hollander et al., 
2004) have been left unchanged. These parameters are listed in Table 3-1. 
 
As discussed in section 2.1, SimpleBox 3 describes the environment as a set of 
homogenous compartments at different geographic scales (local, regional, continental 
and global). In the reference pollution scenario, the Netherlands is modeled with the 
regional scale of the SimpleBox 3 model, which comprises originally 10 
homogeneous compartments: air, fresh water, sea water, fresh water sediments, sea 
water sediments, natural soil, agricultural soil, other soil, natural vegetation and 
agricultural vegetation. For simplifying all subsequent analysis, similar compartments 
have been merged, as shown in Table 3-2, into 5 general compartments: air, water, 
sediments, soil and vegetation. Note that SimpleBox 3 models the depth of soil 
compartments in terms of an effective depth for each pollutant that varies according to 
the degradation, diffusion and advection suffered of every chemical pollutant in soil. 
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Table 3-1. Landscape parameters used in SimpleBox 3 for modeling The 
Netherlands. 
Nº Parameter* Symbol Units Value 
1 Area of sea water + AREAsea.R m2 4.00×1010 
2 Area of land+ AREAland.R m2 4.00×1010 
3 Total area in the regional system SYSTEMAREA.R m2 8.00×1010 
4 Total area in the local system++ SYSTEMAREA.L m2 1.00×10-6 
5 Area fraction of fresh water+ AREAFRAC.w1R - 1.50×10-2 
6 Area fraction of sea water + AREAFRAC.w2R - 5.00×10-1 
7 Area fraction of natural soil + AREAFRAC.s1R - 1.35×10-1 
8 Area fraction of agricultural soil + AREAFRAC.s2R - 3.00×10-1 
9 Area fraction of other soil + AREAFRAC.s3R - 5.00×10-2 
10 Height of air compartment + HEIGHT.aR m 3.00×102 
11 Annual precipitation RAINrate.R m/s 2.22×10-8 
12 Water run off from natural soil WATERrun.s1R m3/s 5.99×101 
13 Water run off from agricultural soil WATERrun.s2R m3/s 1.33×102 
14 Water run off from other soil WATERrun.s3R m3/s 2.22×101 
15 Dry aerosol deposition rate DRYDEPaerosol.R m/s 6.68×10-7 
16 Standard mass fraction of organic carbon soil/sed. CORG - 2.00×10-2 
17 Mass fraction of organic carbon in natural soil CORG.s1R - 2.00×10-2 
18 Mass fraction of organic carbon in agr. soil CORG.s2R - 2.00×10-2 
19 Mass fraction of organic carbon in other soil CORG.s3R - 2.00×10-2 
20 Vegetation mass on natural soil VEGmass.v1R kg/m2 1.20×100 
21 Vegetation mass on agricultural soil VEGmass.v2R kg/m2 1.80×100 
22 Leaf area index of natural vegetation LAI.v1R - 3.90×100 
23 Leaf area index of agricultural vegetation LAI.v2R - 2.70×100 
24 Interception of wet aerosol deposition by nat. veg. IFWETaerosol.v1R - 5.00×10-2 
25 Interception of wet aerosol deposition by agr. veg. IFWETaerosol.v2R - 2.50×10-2 
26 Wet density of natural vegetation RHO.v1R kg/m3 9.00×102 
27 Wet density of agricultural vegetation RHO.v2R kg/m3 9.00×102 
28 Effective depth of natural soil~ PENdepth.s1R m 3.00×10-2 to 1.00×100 
29 Effective depth of agricultural soil~ PENdepth.s2R m 3.00×10-2 to 1.00×100 
30 Effective depth of other soil~ PENdepth.s3R m 3.00×10-2 to 1.00×100 
31 Mineral density of sediments and soil RHOsolid kg/m3 2.50×103 
32 Mixed depth of fresh water sediments DEPTH.sd1R m 3.00×10-2 
33 Mixed depth of sea water sediments DEPTH.sd2R m 3.00×10-2 
34 Volume fraction of water in natural soil FRACw.s1R - 2.00×10-1 
35 Volume fraction of water in agricultural soil FRACw.s2R - 2.00×10-1 
36 Volume fraction of water in other soil FRACw.s3R - 2.00×10-1 
37 Volume fraction of air in natural soil FRACa.s1R - 2.00×10-1 
38 Volume fraction of air in agricultural soil FRACa.s2R - 2.00×10-1 
39 Volume fraction of air in other soil FRACa.s3R - 2.00×10-1 
40 Suspended matter in fresh water SUSP.wR kg/m3 1.50×10-2 
41 Suspended matter in sea water SUSP.wR kg/m3 3.00×10-3 
42 Mixed depth of fresh water DEPTH.wR m 3.00×100 
43 Mixed depth of sea water DEPTH.wR m 1.00×101 
44 Net sediment accumulation rate from fresh water NETsedrate.wR m/s 8.69×10-11 
45 Net sediment accumulation rate from sea water NETsedrate.w2R m/s 5.33×10-13 
46 Regional temperature+ TEMP.R K 2.85×102 
47 Mass fraction of organic carbon in f. w. sediments CORG.sdR - 5.00×10-2 
48 Mass fraction of organic carbon in s. w. sediments CORG.sdR - 5.00×10-2 
49 Regional wind speed+ WINDspeed.R m/s 1.50×100 
* All parameters in this table have been assigned SimpleBox 3 default values (den Hollander and van de Meent, 
2004; den Hollander et al., 2004), except when noted: + = Values obtained from the report of Struijs and 
Peijnenburg (Struijs and Peijnenburg, 2002), ++ = Values assigned for removing the local scale, ~ Variable values 
resulting from degradation, diffusion and advection processes in soil per chemical (den Hollander and van de 
Meent, 2004; den Hollander et al., 2004). All other default parameters not included in this table can be found in the 
original documentation of SimpleBox 3 (den Hollander and van de Meent, 2004; den Hollander et al., 2004). 
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Table 3-2. Compartments considered in the reference pollution scenario. 
Compartments in the regional scale of SimpleBox 3  Compartments in the reference pollution scenario 

Air 
┐ 
├ 
┘ 

Air 

Fresh water 
Sea water 

┐ 
├ 
┘ 

Water 

Fresh water sediment 
Sea water sediment 

┐ 
├ 
┘ 

Sediment 

Natural soil~ 
Agricultural soil~ 

Other soil~ 

┐ 
├ 
┘ 

Soil 

Natural vegetation 
Agricultural vegetation 

┐ 
├ 
┘ 

Vegetation 

~ The depths of soil compartments in SimpleBox 3 vary as functions of degradation, diffusion and advection 
processes in soil. 

 
 
Chemicals of concern. In total, 468 chemicals of concern have been considered, 
those for which degradability in water, determined by measuring the biological 
oxygen demand (BOD), agrees in up to 10 % with degradability estimated with total 
organic carbon (TOC) methods (NITE, 2002). There is a high degree of heterogeneity 
in the molecular structures of the selected chemicals. These chemicals have been 
divided randomly in two sets: a first set with 375 work chemicals (Annex C.1) 
reserved for creating training and test data sets for QPFR and QSFR models; and, a 
second set, with 93 chemicals (Annex C.2), reserved for the external validation of the 
models. The only limitation imposed to the validation chemicals is to have each fate 
properties and molecular descriptors within the ranges that characterize the work 
chemicals. 
 
The diversity of the selected chemicals is also manifest in their production volumes. 
Out of the whole set of 468 chemicals, 243 (51.9 %) and 114 (24.4 %) are classified, 
respectively, as High Production Volume (HPV) chemicals and Low Production 
Volume (LPV) chemicals, while the remaining 111 chemicals (23.7 %) are not 
classified neither HPV nor LPV. Currently, the European chemical Substances 
Information System (ESIS) lists 2782 HPV chemicals and 7829 LPV chemicals 
(Allanou, 2005). Figure 3-1 shows, through pie charts, the number of working and 
validation chemicals in the reference pollution scenario that are classified as HPV or 
LPV chemicals 
 
It must be pointed out that some of the 468 selected chemicals appear in various 
priority lists: 57 (12.2 %) are listed in the 2007 CERCLA priority list, 44 (9.2 %) are 
listed in the Online European Risk Assessment Tracking System (ORATS) and 6 (1.3 
%) are listed in the 12-chemical priority list of the United Nations Environmental 
Program (UNEP). 
 
For obtaining molecular descriptors of the structures of the chemicals considered in 
this study, it was required the availability of both SMILES codes and 3D models of all 
the molecules involved.  Both the SMILES codes and 3D molecular structures are 
shown for both the 375 work and 93 validation chemicals in, respectively, Annex C.1 
and Annex C.2. For facilitating the visualizations of both data sets, the chemicals of 
each data set are ordered according to their MW. 
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203 HPV chemicals
(54 %)

83 LPV chemicals
(22 %)

89 unclassified chemicals
(24 %)

40 HPV chemicals
(43 %)

22 unclassified
(24 %)

31 LPV chemicals
(33 %)

a) 375 work chemicals                                                  b) 93 validation chemicals

Figure 3-1 Production volume of chemicals used in the reference pollution 
scenario. 
In total, 468 chemicals of concern have been compiled. They have been divided in two sets, a work set of 375 
chemicals (a) and a validation set of 93 chemicals (b). The majority of these chemicals have been classified as either 
high production volume (HPV) chemicals or low production chemicals (LPV) by the European chemical Substances 
Information System (ESIS) (Allanou, 2005). 
 
 

3.2 Target and input variables for QPFRs and 
QSFRs 
 
 
When building QPFR and QSFR models with basis on supervised learning 
algorithms, both the input and output variables of a reference MEM referred to 
training and test chemicals are required for, respectively, building a  model and tuning 
its parameters (Table 2.1). The same variables are also required for the validation 
chemicals, but only for measuring the performance of a model resulting from the 
training and test phases with chemicals not used in its development . 
 
As mentioned in Section 2.5.2, the target and input variables of the learning 
algorithms are, respectively, the outputs of the reference MEM and attributes of the 
chemicals of concern (physicochemical properties, in the case of QPFRs; or, 
molecular descriptors, in the case of QSFRs). Note that fate estimations for all the 468 
chemicals of concern, in each of the compartments of the reference scenario (air, 
water, sediments, soil and vegetation), were retrieved from SimpleBox 3 (as explained 
in Section 3.1). In the following lines of this section, the inputs and targets of the 
QSPR and QSFR models of this study are described in detail. Which are presented in 
Annex C.a1, in the CD accompanying this manuscript. 
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3.2.1 Target variables of QPFRs & QSFRs: Level III 
environmental mass ratios 
 
 
The output of the reference multimedia model, SimpleBox 3, has been expressed in 
terms of Level III dimensionless mass ratios in air, water, sediments, soil and 
vegetation (all merged compartments listed in Table 3-1). The mass ratio of a 
pollutant in each compartment is calculated as follows: 
 

tE

VC
w

n

ggn,
gn, 
       (3-1) 

 
where Cn,g (g/m3) is the steady state concentration of a pollutant n as estimated by a 
multimedia model for a compartment g of volume Vg (m

3), during a period of time 
t = 1yr for a total emission rate in the system of magnitude En (ton/yr). Note that 
compartmental concentrations estimated by SimpleBox 3 are directly proportional to 
the emission rate in the system (den Hollander and van de Meent, 2004; den 
Hollander et al., 2004). This is the reason why unitary emissions have been 
considered in all the simulation experiments of this reference scenario (Section 3.1).  
 
The targets of QPFRs and QSFRs, mass ratios estimated according to Equation 3-1 
for the 468 chemicals of this study after evaluating their physicochemical properties 
in SimpleBox 3, are presented in Annex C.a1 for emissions in water and air. Table 3-3 
and Table 3-4 list the value ranges of such mass ratios for, respectively, emissions in 
water and air. These value ranges are delimited by the minimum and maximum values 
resulting for the work and validation data sets. 
 
 
Table 3-3. Value ranges of dimensionless level III mass ratios estimated 
by SimpleBox 3 for the work and validation chemicals, considering 
emissions in water. 

Work data set Validation data set 
Mass ratio Symbol Units

min max min max 
Dimensionless mass ratio in air wair - 2.67×10-25 1.11×10-2 5.00×10-18 5.09×10-3 
Dimensionless mass ratio in water wwater - 4.85×10-9 6.28×10-1 1.01×10-6 6.28×10-1 
Dimensionless mass ratio in sediments wsed - 3.36×10-11 7.96×10-3 5.19×10-9 7.57×10-3 
Dimensionless mass ratio in soil wsoil - 3.01×10-22 4.84×10-2 1.10×10-14 4.74×10-2 
Dimensionless mass ratio in vegetation wveg - 8.05×10-25 1.37×10-2 1.40×10-12 9.57×10-3 

 
 
Table 3-4. Value ranges of dimensionless level III mass ratios estimated 
by SimpleBox 3 for the work and validation chemicals, considering 
emissions in air. 

Work data set Validation data set 
Mass ratio Symbol Units

min max min max 
Dimensionless mass ratio in air wair - 7.63×10-12 1.22×10-2 6.47×10-10 5.22×10-3 
Dimensionless mass ratio in water wwater - 1.56×10-9 2.37×10-1 9.23×10-7 2.34×10-1 
Dimensionless mass ratio in sediments wsed - 3.70×10-12 1.46×10-3 1.07×10-9 1.44×10-3 
Dimensionless mass ratio in soil wsoil - 3.31×10-12 1.29×100 4.53×10-10 1.30×100 
Dimensionless mass ratio in vegetation wveg - 1.08×10-9 7.95×10-2 2.30×10-7 5.72×10-2 
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3.2.2 Input variables of QPFRs: Physicochemical 
properties 
 
 
Data of physicochemical properties, at 25 °C, have been collected for the chemicals of 
the reference pollution scenario, giving priority to experimental values whenever 
possible; otherwise, estimations have been used instead. Experimental and estimated 
values for MW, Tm, Sw, Pv, Kow, H and degradation hydroxyl rate constants (kOH·, 
cm3/(mol·s)) have been retrieved from PHYSPROP (SRC), while experimental results 
of ready biodegradability tests in water (MITI-I) have been retrieved from the 
Japanese National Institute of Technology and Evaluation (NITE, 2002). Some of 
these data have been processed further for their use in SimpleBox 3, as explained later 
in this section, the final collection of properties is presented in Annex C.a1. Table 3-5 
lists value ranges of the physicochemical properties compiled for the chemicals in the 
work and validation data sets. 
 
Partitioning coefficients. Dimensionless Kaw values were determined directly, from 
either experimental or estimated H values, using the equation 1-3. Dimensionless Ksw 
partition coefficients were estimated, from either experimental or estimated Kow 
values, using the correlation included in SimpleBox 3: 
 

 
 

1000
ρCORG

)(1.26KK solid0.81
owsw     (3-2) 

 
for an average organic carbon content of 2% and solid soil density of 2.5 kg/L (den 
Hollander and van de Meent, 2004; den Hollander et al., 2004). 
 
Degradation rates. Degradation rates constants in air (kair, 1/s) have been directly 
calculated from degradation rates of chemicals exposed to hydroxyl radicals (kOH·), 
assuming pseudo first order reactions in air. This reaction occurs under a second order 
 
 
Table 3-5. Value ranges of physicochemical properties entered in 
SimpleBox 3 for the work and validation chemicals. 
Physicochemical properties* Symbol Units Work data set Validation data set 
   min max min max 
Molecular weightP MW g/mol 4.41×101 9.59×102 6.01×101 4.31×102 
Melting pointP Tm ºC -1.60×102 3.90×102 -9.50×101 3.12×102 
Solubility in waterP Sw mg/L 9.48×10-4 4.07×1010 1.19×10-3 1.72×108 
Vapor pressureP Pv Pa 2.24×10-21 2.28×106 1.47×10-13 1.45×100 
Octanol-water partition coefficientP Kow - 1.21×10-19 9.67×105 5.93×10-11 4.28×103 
Air-water part. coefficient (Henry’s law)P Kaw - 1.25×10-11 1.00×106 1.44×10-6 1.00×106 
Solid-water partition coefficientS1 Ksw - 5.62×10-3 3.80×1014 7.41×10-3 4.47×1011 
Degradation rate in airP kair 1/s 5.96×10-12 3.59×10-4 1.42×10-7 3.20×10-4 
Degradation rate in waterM kwater 1/s 4.15×10-9 3.81×10-6 4.15×10-9 3.23×10-6 
Degradation rate in sedimentsCF ksed 1/s 1.19×10-9 1.09×10-6 1.19×10-9 9.24×10-7 
Degradation rate in soilCF ksoil 1/s 4.15×10-9 3.81×10-6 4.15×10-9 3.23×10-6 
Diffusion coefficient in airS2 Dair m2/s 1.11×10-7 5.20×10-7 1.66×10-7 4.45×10-7 
Diffusion coefficient in waterS2 Dwater m2/s 1.16×10-11 5.39×10-11 1.72×10-11 4.61×10-11 
* Some properties have been retrieved or converted from: P = PHYSPROP (SRC); M = MITI-I biodegradability 
tests (NITE, 2002). While, other properties have been estimated from: S1 = Kow based correlations (den Hollander 
and van de Meent, 2004; den Hollander et al., 2004); S2 = MW based correlations (den Hollander and van de 
Meent, 2004; den Hollander et al., 2004); or, CF = reported conversion factors (Aronson and Howard, 1999). 
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reaction scheme: 
 

ProductsChemicalOH     (3-3) 
 
with the following degradation rate: 
 

n,airOHOHn,air CCkr      (3-4) 

 
where rair (g/m3·s) is the degradation rate in air, kOH· is the second-order reaction 
constant (m3/g.s) (SRC, 2008) and COH· (g/m3) is the concentration of hydroxyl 
radicals in air. Considering a global average concentration of hydroxyl radicals of 
COH· = 2.66x10-11 g/m3 (Prinn et al., 2001), pseudo first-order degradation rates have 
the form: 
 

Ckr airair   n,airn,airn,air Ckr       (3-5) 

 
where the pseudo first degradation rate constant is: 
 

 OHOHair Ckk      (3-6) 

 
Degradation rates in water (kwater, 1/s) have been calculated from MITI-I 
biodegradability tests (NITE, 2002). These tests have been originally reported to 
measure the degradability (deg%) of a substance, previously incubated in presence of 
activated sludge, by either direct and indirect methods. The direct methods used in the 
MITI-I tests included total organic carbon (TOC), high performance liquid 
chromatography (HPLC) and gas chromatography (GC). Indirect tests measured the 
biological oxygen demand (BOD) of the samples. The degradability has been 
determined in the direct methods as follows: 
 

100
S

SS
deg%

b

ab








 
     (3-7) 

 
where Sb (mg) is the residual mass of the test substance at the end of the test and Sa 
(mg) the mass of substance in a blank test with water only. For indirect measurement 
methods the degradability has been measured with the following equation: 
 

100
TOD

BBOD
deg% 






 

     (3-8) 

 
where BOD (mg) is the biochemical oxygen demand of the test substance, B (mg) is 
the oxygen consumption in the basic culture medium inoculated with the activated 
sludge and TOD (mg) is the theoretical oxygen demand required for complete 
oxidation of the test substance. 
 
Correlations for degradability values determined from BOD and TOC have been 
satisfactory; but, this has not been the case of correlations of BOD and TOC with 
chromatographic techniques, which have shown to be worse (Sedykh and Klopman, 
2007). In this study, kwater has been estimated from the percentage of degradation 
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(deg%) and the corresponding period of time (t, weeks), determined for BOD tests in 
agreement to TOC methods in up to 10%, as follows (using the equation 1-8): 
 



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



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




 

604800

1

100

deg%
1ln

t

1
k water   (3-9) 

 
Please note that degradability values reported to be higher than 99 % or lower than 1 
% have been set to be equal to, respectively, 99 % or 1%. Due to error measurements, 
some degradability values have been originally reported to be higher than 100% or 
negative (NITE, 2002). 
 
Since data for degradation in sediments and soil are usually scarce, conversion factors 
have been used to estimate degradation rates in these two media. It has been reported 
that degradation half lives in water are similar to those in soil, while degradation rates 
in soil tend to be 3 to 4 times faster that degradation rates in flooded soil (Aronson 
and Howard, 1999). With such information, it is assumed that degradation rates in soil 
are equal to those in water and that degradation rates in sediments are 3.5 times 
slower than those in soil (considering that sediments behave as flooded soil): 
 

watersoil kk       (3-10) 

 
and 
 

soiled k
7

2
k 






s     (3-11) 

 
Diffusion coefficients. Diffusion coefficients in air (Dair, m2/s) and water (Dwater, 
m2/s) have been estimated from MW values according to the following correlations 
(den Hollander and van de Meent, 2004; den Hollander et al., 2004): 
 

1000MW
18

102.57D 5
air     (3-12) 

 
and 
 

1000MW
32

102D 9
water     (3-13) 

 
where the molecular weight unit is g/mol. 
 
 

3.2.3 Input variables of QSFRs: Molecular descriptors 
 
 
Molecular descriptors were compiled, from either SMILES codes or 3D molecular 
representations of the chemicals considered in this work (Annexes C.1 and C.2), using 
the CACHE software (Fujitsu, 2004). Such descriptors are presented in Annex C.a1, 
like the physicochemical properties and mass ratios discussed below. 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 86

Table 3-6. Value ranges of theoretical molecular properties of the work 
and validation chemicals. 
Descriptor* Symbol Units Work data set Validation data set 
   min max min max 
Heat of Formation ΔHf kcal/mole -1341.59 145.89 -374.49 45.22 
Molar Refractivity MR m3/mol 11.31 169.07 17.07 123.36 
Polarizability PO Å3 4.43 68.96 7.00 49.54 
Total hybridization dipole moment μhyb debye 0.00 2.60 0.00 2.45 
Total point charge dipole moment μpc debye 0.00 10.14 0.01 8.73 
Total sum dipole moment μ debye 0.00 11.24 0.00 9.67 
Area Area Å2 77.05 622.79 106.50 567.43 
Volume Vol Å3 59.03 709.73 89.13 592.79 
Number of filled levels NFL - 7.00 121.00 13.00 82.00 
HOMO energy HOMO eV -12.97 -7.97 -12.16 -8.39 
LUMO energy LUMO eV -3.15 3.48 -2.52 2.97 
Ionization potencial IP eV 7.97 12.97 8.39 12.16 
Electron affinity EA eV -3.48 3.15 -2.97 2.52 
Connectivity index (order 0, standard) 0χ - 2.00 33.58 3.41 21.42 
Connectivity index (order 1, standard) 1χ - 1.00 21.12 1.91 13.41 
Connectivity index (order 2, standard) 2χ - 0.00 22.10 1.00 11.48 
Valence connectivity index (order 0, standard) 0χv - 1.99 26.05 2.57 19.13 
Valence connectivity index (order 1, standard) 1χv - 0.81 14.41 1.32 13.02 
Valence connectivity index (order 2, standard) 2χv - 0.00 13.07 0.58 9.32 
Shape index (kappa alpha, order 1) 1κ - 2.21 38.07 3.77 26.96 
Shape index (kappa alpha, order 2) 2κ - 0.46 28.00 1.27 25.96 
Shape index (kappa alpha, order 3) 3κ - 0.00 28.00 0.77 25.96 
* All descriptors were estimated semi-empirically with the CACHE software (Fujitsu, 2004). 
 
 
A first group of descriptors, derived from 3D molecular representations, included 22 
diverse theoretical molecular attributes: heat of formation (ΔHf), molar refractivity 
(MR), polarizability (PO), total hybridization dipole moment (μhyb), total point charge 
dipole moment (μpc), total sum dipole moment (μ), area (Area), volume (Vol), number 
of filled levels (NFL), highest occupied molecular orbital energy (HOMO), lowest 
occupied molecular orbital energy (LUMO), ionization potential (IP), electron affinity 
(EA), connectivity indexes (0χ, 1χ, 2χ), valence connectivity indexes (0χv, 1χv, 2χv) and 
kappa alpha shape indexes (1κ, 2κ, 3κ). ΔHf, EA, IP, HOMO, LUMO, μhyb, μpc, and μ 
were calculated at the minimum energy geometry determined by optimization with 
MOPAC and parameters from the Parameterized Model 3 (PM3) (Stewart, 1989). MR 
was calculated using the atom typing scheme of Ghose et al. (1988). The indexes 0χ, 
1χ, 2χ, 0χv, 1χv and 2χv were determined from the atoms and bonds in chemical samples 
at the time of evaluation (Kier and Hall, 1986), while indexes 1κ, 2κ, 3κ were derived 
from counts of one-bond, two-bond and three-bond fragments, each count being made 
relative to fragment counts in reference structures which possess a maximum and 
minimum value for that number of atoms (Hall and Kier, 1992). Table 3-6 lists the 
value ranges of these 22 theoretical descriptors for the chemicals in the work and 
validation data sets. 
 
Another selection of descriptors, derived from SMILES codes, included 43 counts of 
molecular constituents: atoms, bonds, functional groups and rings. The calculation of 
these descriptors calculation is very simple, simple sums of the constituents of every 
molecular model. Table 3-7 lists the value ranges of these 43 simple descriptors for 
the chemicals in the work and validation data sets. 
 
Notice that different types of information are associated to the sets of descriptors 
listed in Tables 3-6 and 3-7. The descriptors in the former set (Table 3-6) provide  
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Table 3-7. Value ranges of molecular constituent counts of the work and 
validation chemicals. 
Descriptor* Symbol Work data set Validation data set 
  min max min max 
Atom Count (all atoms) ACall 5 89 10 81 
Atom Count (bromine) ACbromine 0 10 0 3 
Atom Count (carbon) ACcarbon 1 32 2 26 
Atom Count (chlorine) ACchlorine 0 8 0 6 
Atom Count (fluorine) ACfluorine 0 27 0 3 
Atom Count (hydrogen) AChydrogen 0 60 3 54 
Atom Count (iodine) ACiodine 0 0 0 0 
Atom Count (nitrogen) ACnitrogen 0 6 0 3 
Atom Count (oxygen) ACoxygen 0 8 0 8 
Atom Count (phosphorus) ACphosphorus 0 1 0 1 
Atom Count (silicon) ACsilicon 0 0 0 0 
Atom Count (sulphur) ACsulphur 0 4 0 2 
Bond Count (all bonds) BCall 4 88 10 80 
Bond Count (single bonds) BCsingle 4 88 9 80 
Bond Count (double bonds) BCdouble 0 18 0 8 
Bond Count (triple bonds) BCtriple 0 2 0 2 
Group Count (aldehyde) GCaldehyde 0 1 0 1 
Group Count (amide) GCamide 0 2 0 2 
Group Count (amine) GCamine 0 2 0 2 
Group Count (sec-amine) GCsec-amine 0 2 0 2 
Group Count (carbonyl) GCcarbonyl 0 2 0 2 
Group Count (carboxyl) GCcarboxyl 0 2 0 2 
Group Count (carboxylate) GCcarboxylate 0 0 0 0 
Group Count (cyano) GCcyano 0 2 0 2 
Group Count (ether) GCether 0 4 0 3 
Group Count (hydroxyl) GChydroxyl 0 4 0 3 
Group Count (methyl) GCmethyl 0 9 0 9 
Group Count (methylene) GCmethylene 0 3 0 0 
Group Count (nitro) GCnitro 0 3 0 1 
Group Count (nitroso) GCnitroso 0 1 0 0 
Group Count (sulfide) GCsulfide 0 4 0 2 
Group Count (sulfone) GCsulfone 0 1 0 1 
Group Count (sulfoxide) GCsulfoxide 0 0 0 0 
Group Count (thiol) GCthiol 0 1 0 1 
Ring Count (all rings) RCall 0 12 0 2 
Ring Count (aromatic rings) RCaromatic 0 4 0 2 
Ring Count (small rings) RCsmall 0 7 0 0 
Ring Count (5 membered) RC5-m 0 4 0 1 
Ring Count (aromatic 5 membered) RCa-5-m 0 2 0 0 
Ring Count (6 membered) RC6-m 0 4 0 2 
Ring Count (aromatic 6 membered) RCa-6-m 0 4 0 2 
Ring Count (7-12 membered) RC7-12-m 0 2 0 1 
Ring Count (aromatic 7-12 membered) RCa-7-12-m 0 0 0 0 
* All descriptors have been calculated with the CACHE software (Fujitsu, 2004). 
 
 
information about the overall behavior of molecules, while the descriptors in the latter 
set (Table 3-7) simply provide information about the number of constituents of the 
molecules. Depending on a given problem and available data, different types and 
numbers of descriptors may be more appropriate than others. Theoretical descriptors, 
like those listed in Table 3-6, have been used for predicting some physicochemical 
properties (Devillers, 2003; Raymond et al., 2001; Taskinen and Yliruusi, 2003), 
while descriptors identifying molecular fragments or constituents, similar to those in 
Table 3-7, have been widely recommended for predicting both physicochemical 
properties (Boethling et al., 2004) and degradation data (Raymond et al., 2001). 
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Chapter 4 

Quantitative structure-fate 
relationships 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multimedia environmental models perform reasonable estimations of the fate of 
chemicals, if there are known physicochemical properties of the chemicals to assess, 
emission rates and site-specific parameters. The assessment of a large number of 
chemicals gets complicated when their physicochemical properties are unknown, 
making necessary the use of a large pool of property estimation methods that, 
depending on the assumptions and techniques involved, provide values that may differ 
considerably from experimental values. Here, it is discussed the use of learning 
algorithms to predict, from molecular information, the fate of chemicals for which key 
physicochemical properties are unavailable. 
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4.1 Screening chemicals in level III conditions 
 
 
The environmental screening of chemicals can be roughly estimated by means of their 
partition coefficients, using 2D graphs per pair of independent coefficients for 
suggesting the final distributions in three contiguous media with mass balances at 
level II conditions (Gouin et al., 2000). The advantage of such method is that 
chemicals with extreme partition coefficients may not require some compartmental 
degradation data, especially in the compartments in which their presence is estimated 
to be minimal. However, such approach is no longer valid for level III conditions, in 
which the system is considered to have non-equilibrium and steady state conditions. 
 
Figure 4-1 shows a screening of partition coefficients, degradation data and fate 
estimations for emissions in water (Annex C.a1) referred to the chemicals (Annexes 
C.1 and C.2) in the reference pollution scenario already described in Chapter 3. They 
are displayed in a fashion somewhat similar to that proposed by Gouin et al., but level 
II mass balances are not applied because the reference scenario is not in equilibrium 
and fate estimations based solely on partitioning coefficients would markedly differ 
from those estimated by the reference level III MEM. However, we can still have a 
preliminary view of the functionality between physicochemical properties and fate 
estimations (Equation 2-78) in the reference scenario by inspecting the distribution of 
chemicals in each of the subplots of Figure 4-1. The value ranges of the partition 
coefficients of Figure 4-1I and degradation rates of Figure 4-1II produce, when used 
simultaneously in the reference MEM, the value ranges of mass ratios shown in 
Figure 4-1III. The spaces occupied by the work chemicals in each of the subplots of 
Figure 4-1 give an insight of the DOA of the work data set, referred to the 
functionality of the MEM. The validation chemicals, selected to have properties 
within the ranges reported for the work chemicals, are clearly within the DOA of the 
latter. 
 
The visual screening of available chemicals helps to identify the existence of regions 
with low density of examples, in which few chemicals may behave as outliers with 
respect to the rest. Inspecting Figure 4-1I, it can be noticed that only few of the 
chemicals considered in the reference scenario have partition coefficients markedly 
different than the majority: some are highly hydrophobic (very high Kow values), 
some have a strong tendency to volatilize (very high Kaw values) and others are 
simply non-volatile (very low Kaw values). The degradation data of the reference 
scenario, represented as histograms in Figure 4-1II, indicate roughly that most of the 
chemicals of the scenario tend to undergo degradation faster in air than in water, 
sediments or soil. The level III mass ratios resulting for emissions in water (Annex 
C.a1) in the reference scenario (Chapter 3), represented in histograms in Figure 4-1III, 
indicate that the highest mass ratios occur in the water compartment, where emissions 
take place. Of course, though partitioning properties and degradation rates contain 
relevant information about the tendency of chemicals to behave in the environment, it 
is clear that the final distribution of chemicals is affected by the attributes of the 
geographic scenario selected for the assessment. 
 
Graphically, simple plots of solely partitioning or degradation data can not offer a  
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clear view of the environmental distribution of chemicals of concern in level III 
conditions, a more realistic assessment implies the use of a level III MEM. This is a 
multivariate problem that can be tackled with unsupervised learning algorithms for 
data visualization. 
 
A level III graphic screening of the environmental distribution of pollutants can be 
performed, in a somewhat similar manner to the level II method proposed by Gouin et 
al., by processing all the inputs and outputs of a reference MEM for a population of  

Figure 4-1. Simple graphical screening
of the key inputs and outputs of a
MEM, for emissions in water. 
This figure shows for 375 work and 93 validation chemicals:
I) a 2D plot of key partitioning coefficients (Kow and Kaw);
II) histograms of key degradation rate constants (kair, kwater,
ksed and ksoil); and, III) histograms of level III fate
estimations (wair, wwater, wsed, wsoil and wveg) resulting from a
reference MEM for emissions of 1 ton/yr in water at The
Netherlands. 
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Figure 4-2. Fitting of work chemicals, characterized by all the inputs and 
outputs of a MEM for emissions in water, with a SOM. 
This figure shows: a) the number of work chemicals clustered in each of the units of a SOM; and, b) a visualization 
of the work chemicals and SOM units in simplified 2D visualization of the original 18D multivariate space, 
characterized by the first two principal components of the data with a cumulative variance of 79 %. 

 
 
known chemicals with a multivariate learning algorithm like the SOM (Section 2.4). 
This helps to summarize in one picture the effects that different combinations of 
properties have on the final distribution of chemicals. 
 
Figure 4-2 shows a SOM (Annex D.a1) adjusting the 375 work chemicals (Annex 
C.1) of the reference scenario in a 18D multivariate space conformed by the 
normalized logarithms of all the inputs (MW, Tm, Sw, Pv, Kow, Kaw, Ksw, kair, kwater, 
ksed, ksoil, Dair, Dwater) and outputs (wair, wwater, wsed, wsoil, wveg) of the reference MEM. 
The SOM, with 20x11 units, minimizes the Euclidean distances between the data 
points and the SOM units in the multivariate space. 
 
Figure 4-2a shows the number of chemicals clustered in every SOM unit. Figure 4-2b 
shows a visualization of the 375 work chemicals and the SOM units (identifiable in 
Figure 4-2a through color codes) in a 2D space, characterized by the first two 
principal components of the data (Equations 4-1 and 4-2): PC1 and PC2, respectively, 
the 1st and 2nd principal components of the work data set. The cumulative variance of 
these two components is 79 %, indicating that this pair of variables inherited a great 
deal of relevant information from the original input and output variables of the MEM, 
providing a reasonable 2D approximation of the original 18D space. 
 
The PCA analysis of the 375 work chemicals offers an orthogonal visualization of 
their attributes in low dimensions, in this case, the first and second principal 
components of their properties and environmental mass ratios. Meanwhile, the SOM 
analysis of the same data offers both clustering and visualization of the data. 
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PC1 = 0.092     MWlogN 101,1- -0.377     m101,1- TlogN  

+0.096     sw101,1- KlogN +0.190     aw101,1- KlogN  

-0.037     v101,1- PlogN -0.298     w101,1- SlogN  

-0.194     ow101,1- KlogN -0.094     air101,1- klogN  

-0.034     water101,1- klogN +0.006     sed101,1- klogN  

+0.019     soil101,1- klogN -0.001     air101,1- DlogN  

-0.014     water101,1- DlogN +0.815     air101,1- wlogN  

-0.040     water101,1- wlogN -0.021     sed101,1- wlogN  

-0.000     soil101,1- wlogN +0.000     veg101,1- wlogN  

(4-1)

   
PC2 = 0.069     MWlogN 101,1- -0.288     m101,1- TlogN  

-0.321     sw101,1- KlogN +0.346     aw101,1- KlogN  

+0.245     v101,1- PlogN +0.704     w101,1- SlogN  

-0.273     ow101,1- KlogN -0.200     air101,1- klogN  

+0.027     water101,1- klogN -0.130     sed101,1- klogN  

+0.026     soil101,1- klogN +0.034     air101,1- DlogN  

-0.007     water101,1- DlogN -0.002     air101,1- wlogN  

-0.000     water101,1- wlogN +0.000     sed101,1- wlogN  

+0.000     soil101,1- wlogN -0.000     veg101,1- wlogN  

(4-2)

 
Compared to Figure 4-1, Figure 4-3 provides an enhanced visualization of each of the 
18 dimensions that constitute the chemical space of the 375 work chemicals emitted 
in water (Annex A.c1) in the reference scenario. Every dimension, is represented as a 
SOM plane with colors that indicate the magnitude of each SOM unit (previously 
identified as colored hexagons in Figure 4-1a and colored circles in Figure 4-2a). 
Figure 4-3 shows an enhanced graphical representation of the simple graphs of Figure 
4-1 for the 375 work chemicals in the reference pollution scenario, providing a more 
understandable screening of the inputs and outputs of the used MEM. It can be 
verified the dependency of some properties to those that generated them, as the 
similarity of their respective component planes indicates. Both Dair and Dwater are 
inversely proportional to MW, Ksw is proportional to Kow, and both ksed and ksoil are 
proportional to kwater. In an analogous manner, relationships between the mass ratios 
and the independent properties can be screened through the SOM planes, but giving 
special attention to specific zones of the latter. 
 
Observing the SOM-based visualization in Figure 4-3 and remembering in which 
compartment the chemicals are emitted (in water, in this case) it is possible to analyze 
how they move to other compartments with respect to their properties. The planes of 
wwater and wsed are inversely proportional to Kow, and, because of the magnitude of 
different colored areas, it can be noticed that the majority of the work chemicals are 
hydrophilic while few ones are highly hydrophobic (those chemicals located in the 
center-right zone of the upper part of the SOM have very high Kow values). The  

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 96

 

N[-1,1](log10(MW))   N[-1,1](log10(Dair))  N[-1,1](log10(Dwater))   N[-1,1](log10(Tm))    N[-1,1](log10(Pv))     N[-1,1](log10(Sw))

N[-1,1](log10(Kaw))   N[-1,1](log10(Kow))    N[-1,1](log10(Ksw))   N[-1,1](log10(kair))   N[-1,1](log10(kwater))   N[-1,1](log10(ksed))

N[-1,1](log10(ksoil))    N[-1,1](log10(wair))   N[-1,1](log10(wwater))  N[-1,1](log10(wsed))  N[-1,1](log10(wsoil))   N[-1,1](log10(wveg))

MEM outputs: level III mass fractions

MEM inputs: physicochemical properties

low values high values

Figure 4-3. Multivariate screening, through SOM planes, of the inputs 
and outputs of a MEM for emissions in water. 
This figure shows the values of the SOM prototypes in each of the dimensions conforming the chemical space of 
the 375 work chemicals of the reference pollution scenario: MW, Tm, Sw, Pv, Kow, Kaw, Ksw, kair, kwater, ksed, ksoil, 
Dair, Dwater, wair, wwater, wsed, wsoil, wveg). The work chemicals are characterized by logarithmic properties and mass 
ratios normalized in the range [-1,1]. 

 
 
chemicals in the mid-level part of the SOM are persistent, as the plane of kwater 
indicates very low values for that zone, corroborated with the corresponding medium 
to high wwater values indicated in the wwater plane. Some of these persistent chemicals 
evaporate easily. The persistent chemicals in the extreme left and right zones of the 
mid-part of the SOM remain in water because they have medium to low Kaw values, 
while those in the center of the mid-part of the SOM go to air, reaching later the soil 
and vegetation compartments. Similar analyses can be performed at a more detailed 
level by focusing attention on every SOM unit independently. 
 
For a general overview of the entire set of work chemicals, the SOM can be clustered 
into somewhat big portions as Figure 4-4 indicates. The SOM introduced in Figures 4-
2 and 4-3, was divided into two sections applying the K-means algorithm: one section 
contains chemicals with high water degradability (with half lives, τ½, between 2 days 
and 5.5 months) and another with low water degradability (with half-lives between 
3.3 months and 5.3 years). It can be verified that the clustering of the SOM in Figure  
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Figure 4-4. SOM clustering 
in search of relationships 
between key variables. 

This figure shows how the SOM referred 
to the 375 work chemicals of the reference 
scenario can be divided with basis on their 
water degradability. The two sections were 
identified by the application of the K-
means and Davies-Bouldin algorithm. 
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4-4 is greatly influenced by the kwater values of the work chemicals by tracing a line 
that cuts the center of Figure 4-2b from its upper-left side to its down-right side, 
taking as guide the color code in Figure 4-2a and the SOM plane of kwater in Figure 4-
3. For the current reference scenario (Chapter 3), in which constant emissions take 
place in water, the degradability in this compartment has a great influence on the final 
partitioning of chemicals to other compartments. 
 
For a general overview of the entire set of work chemicals, the SOM can be clustered 
into somewhat big portions as Figure 4-4 indicates. The SOM introduced in Figures 4-
2 and 4-3, was divided into two sections applying the K-means algorithm: one section 
contains chemicals with high water degradability (with half lives, τ½, between 2 days 
and 5.5 months) and another with low water degradability (with half-lives between 
3.3 months and 5.3 years). It can be verified that the clustering of the SOM in Figure 
4-4 is greatly influenced by the kwater values of the work chemicals by tracing a line 
that cuts the center of Figure 4-2b from its upper-left side to its down-right side, 
taking as guide the color code in Figure 4-2a and the SOM plane of kwater in Figure 4-
3. For the current reference scenario (Chapter 3), in which constant emissions take 
place in water, the degradability in this compartment has a great influence on the final 
partitioning of chemicals to other compartments. 
 
The SOM algorithm can be reasonably applied to the graphical screening of 
multimedia environmental modeling data in level III conditions, giving to the modeler 
an insight of how a known set of chemicals of concern can be environmentally 
distributed according to their physicochemical properties. The SOM offers an 
approximate representation of each of the dimensions of a data set that, when referred 
to the attributes of chemicals and the output of a level III MEM, allows the analysis of 
the involved variables from different points of view (one by one, in groups, in map 
sections, etc.) and a clearer understanding of the mechanisms taking place. 
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4.2 Variability in the outputs of MEMs from 
properties estimated with QSPRs and QSBRs 
 
 
The complexity of the factors required for predicting chemical activity from 
molecular information usually limits the accuracy of QSAR-based estimation 
methodologies (Johnson, 2008). Properties of chemicals not used in the development 
of QSPR or QSBR models are known to be estimated with substantial errors 
(Taskinen and Yliruusi, 2003) and so there is consensus on the use of QSARs 
validated externally for large sets of chemicals (OECD, 2007). Under such premise, 
several methods have been largely recommended for predicting partitioning 
(Boethling et al., 2004) and degradation (Raymond et al., 2001) data for a wide range 
of chemicals. Generally, quantitative estimations can be performed for partitioning 
properties (Boethling et al., 2004). In contrast, estimations for degradation data are 
rather qualitative (Aronson et al., 2006). Issues associated to the experimental 
determination of environmental degradation are still difficult to characterize (Klöpffer 
and Wagner, 2007), limiting the availability of reliable training data (Aronson et al., 
2006) for developing QSBR models and, ultimately, limiting key inputs of standard 
MEMs (Kühne et al., 2007). 
 
The uncertainty associated to key physicochemical properties, like partitioning and, 
more notably, degradation data, has been recognized to exert a great influence on the 
outputs of standard MEMs (Citra, 2004; Eisenberg et al., 1998; Kawamoto et al., 
2001; Kühne et al., 1997; Toose et al., 2004). In such cases, wide uncertainties in the 
inputs of a MEM may cause as well wide uncertainties in its outputs (Equation 2-80). 
The QSPR and QSBR methods compiled in EPIsuite (SRC, 2008), developed and 
validated for a wide number of chemicals, are among the most widely recommended 
methods for estimating partitioning properties (Boethling et al., 2004) and the 
degradability or not of chemicals (Raymond et al., 2001) from molecular structure. 
However, the accuracy of its degradability estimation methods are not accurate 
enough to provide numerical degradability measures, limited solely to discrete 
degradation estimates for general purpose environmental screenings (Aronson et al., 
2006). For this reason, the need of methods capable of providing degradation 
estimates ready to use in standard MEMs remains intact (Kühne et al., 2007). The 
large variety of factors affecting the degradability of chemicals in the environment is 
such that there is still a lot of work to be done for measuring and modeling such 
process (Klöpffer and Wagner, 2007). 
 
For simulating the effect that uncertainty in physicochemical properties estimated 
from QSPRs or QSBRs have on standard level III fate estimations, 1000 combinations 
of random property values have been propagated for each chemical throughout the 
reference MEM of the reference pollution scenario (Chapter 3), simultaneously, for 
all independent properties affecting the estimations of the model: Tm, Pv, H, Kow, kair 
and kwater. Uncertainty in all the remaining properties were not considered because of 
their dependency (Dair, Dwater, Ksw, ksed and ksoil), negligible uncertainty (MW) or no 
direct intervention in the model (by definition, Sw has already been considered in the 
ratio H = Pv/Sw). Figure 4-5 shows the resulting cause-effect relationships between all 
properties (inputs) and mass ratios (outputs). Note that the uncertainty analysis is  
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Figure 4-5. Main sources of uncertainty considered on the MEM of the 
reference pollution scenario. 
This fishbone diagram shows a cause-effect relationship between independent properties and level III mass ratios. 
The most important sources of uncertainty are shown with solid arrows, while negligible sources of uncertainty are 
shown with dotted arrows. 
 
 
Table 4-1. Statistical distributions assigned to independent properties 
affecting the reference pollution scenario. 

Statistics reported for recommended QSPRs and QSBRs 

Property 

Assumed 
distribution 

for 
simulations 

Data set Statistic parameters* Units Source 

Tm Normal validation SD = 58.00 K 
(Boethling et al., 

2004) 

Pv Log-normal validation SD = 0.717 mmHg 
(Boethling et al., 

2004) 

H Log-normal training SD = 0.440*,T,3 log10(mg/L) 
(Boethling et al., 

2004) 

Kow Log-normal validation SD = 0.427*,V,4 log10(atm·m3/mol)
(Boethling et al., 

2004) 

kair Discrete training 
P(0) = 0.48, P(±1) = 0.37, P(±2) 

= 0.13, P(±>2) = 0.02 
- (Kühne et al., 2007) 

kwater Discrete training 
P(0) = 0.52, P(±1) = 0.35, P(±2) 

= 0.08, P(±>2) = 0.05 
- (Kühne et al., 2007) 

* For QSPRs, the parameters have been reported in standard deviations, SD, in logarithmic values when 
noted; for QSBRs, the reported parameters are probabilities, P(C), that indicate if a chemical has been 
classified as member of a degradation class C (0 = correct class, ±1 = neighbor category predicted, ±2 
= two categories differing and ±>2 = more than two categories differing) in the 9-class scale proposed 
by Mackay et al. (1992). 
 
 
referred to all the 468 chemicals of the reference pollution scenario (375 work and 93 
validation chemicals) and that the random values have been generated by statistical 
distributions of widely recommended QSPRs (Boethling et al., 2004) and prototype 
QSBRs (Kühne et al., 2007), with statistic parameters listed in Table 4-1. 
 
With the standard deviations (SD) given in Table 1, continuous distributions have 
been assigned for Tm, Pv, Sw, H and Kow. It has been assumed that a variable follows a 
normal distribution if the standard deviation given by Boethling et al. (2004) is in unit 
variables. When the standard deviation is given in logarithmic units, normal-
logarithmic distributions (Limpert et al., 2001) have been considered. Although the  
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Figure 4-6. Ranges of variation in the mass ratios estimated by the MEM 
of the reference pollution scenario for Endrin, resulting from a statistical 
sampling of key independent properties in 1000 iterations, for emissions 
in water. 
This diagram shows statistical distributions for both key input and output variables of the MEM for a single 
pollutant. 
 
 
standard deviation of Pv is given in terms of mmHg, a lognormal distribution has been 
used to avoid negative values in chemicals with very low Pv values. Since degradation 
data is usually predicted in term of classes, non-uniform discrete distributions have 
been chosen for kair and kwater, assuming that a correct prediction for the degradation 
class of a chemical has a probability equal to P(0) and that probabilities for incorrect 
classes below and above the correct class are symmetrical and equal to half the 
probability corresponding to the number of differing categories, as reported in Table 1 
from QSBRs using structural similarity through atom centered fragments (Kühne et 
al., 2007) for predicting degradation classes as listed in Table 1-2. 
 
A graphical representation of the statistical distributions in both input and output 
variables of the MEM used in the reference pollution scenario is given in Figure 4-6 
for Endrin (CAS: 72-20-8), a very persistent organic pollutant. For emissions in 
water, the target logarithmic mass ratios of this chemical in the reference scenario are: 
log10(wair) = -3.11, log10(wwater) = -0.65, log10(wsed) = -2.47, log10(wsoil) = -3.35; and, 
log10(wveg) = -2.05. However, when only six independent properties are varied 
according to the statistics reported in Table 4-1 the logarithmic variation ranges in 
such outputs are, respectively: 2.18, 1.16, 1.33, 3.92 and 3.02. The lowest variation 
range (1.16) occurs in the water compartment, where emissions take place; while, 
higher variation ranges resulted for neighboring compartments. 
 
As discussed in Section 4.1 for emissions in the water compartment, the 468 
chemicals move from such compartment to its immediate neighboring compartments: 
air and sediment; and, from air, the chemicals go directly to soil and vegetation  
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Figure 4-7. Ranges of variation in the mass ratios estimated by the MEM 
of the reference pollution scenario for 468 chemicals emitted in water, 
from a statistical sampling of key independent properties in 1000 
iterations. 
 
Range comparisons among all chemicals, distributed in air (a), water (b), sediments (c), soil (d) and vegetation (e). 
An additional comparison is referred to the minimum and maximum ranges of variation reported for all 
compartments (f). The variations ranges are listed for all 468 chemicals in Annex D.c1. 
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Figure 4-8 Measurement of the predictive capacity of the MEM in the 
reference scenario in terms of MAE and q2 over all 468 chemicals 
emitted in water, resulting from a statistical sampling of independent 
properties in 1000 iterations. 
This figure shows how MAE measurements running over all the 468 chemicals of the reference pollution 
scenario are low for the water and sediment compartments and high for the other compartments (I), despite of 
that fact that high q2 measurements seem to indicate that fate predictions in all compartments seem to be good 
(II). 

 
 
compartments. When random property values are propagated throughout the reference 
MEM using the statistical distributions of Table 4-1 for all chemicals, the lower 
variation ranges occur in the mass ratios estimated for the water compartment (where 
emissions take place); while, much higher variations occur in all the other 
compartments, especially in the air, soil and vegetation compartments. Such 
tendencies can be observed in the subplots a to e of Figure 4-7, which compare the 
mass ratios estimated by the MEM when affected by random properties (prediction 
values) to its reference estimations (target values), originally resulting from the 
reference properties described in Chapter 3. 
 
Since chemical emissions in the water compartment are being analyzed, the water 
compartment concentrates more than 1 % of the mass emission in the system (as 
logarithmic mass ratios above –2 indicate, see subplot b of Figure 4-1III) for most 
chemicals considered. With these ideas in mind, we can see that as chemicals move 
from the water compartment (Figure 4-7b) to immediately neighboring compartments, 
air (Figure 4-7a) and sediment (Figure 4-7c), mass ratios in these compartments 
become smaller and show wider variability with respect to their target values. As the 
considered chemicals reach, from air, the soil (Figure 4-7d) and vegetation (Figure 4-
7e) compartments, the logarithmic mass ratios in the latter inherit the variability 
suffered by the mass ratios in the former. Figure 4-7f shows the minimum and 
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maximum variability of mass ratios reported among all the 468 chemicals; it confirms 
that for the reference pollution scenario, the narrower and wider variations in the 
output of the MEM take place, respectively, in water and air. 
 
When measuring the predictive performance of the reference MEM, interesting 
tendencies can be identified. The evaluation of all the 468 chemicals of the scenario in 
terms of compartmental MAE values (Equation 2-85) reinforces what has been 
already observed in Figure 4.7: differences between target and predicted values tend 
to be minimal in the water compartment, where emissions take place in the scenario, 
as MAE values per iterative simulations on the entire set of 468 chemicals show 
(subplot I of Figure 4.8). However, when the chemicals are assessed in terms of q2 
values (Equation 2-86), the goodness of all the predictions can be overestimated, with 
the exception of those in the sediment compartment, as all compartmental q2 values 
are extremely high (subplot II of Figure 4-8). 
 
As pointed out in the previous section, kwater plays an important role in the final 
environmental distribution of all the chemicals in the scenario; the discrete variability 
of kwater (Table 4-1) distorts the predicted amount of chemicals in water, from which 
partitioning to other compartments takes place. This result is somewhat analogous to a 
previous work, in which the statistical sampling of herbicides emitted in soil was 
shown to affect the estimated overall persistence time in the system, primarily 
because of the variability in soil degradation half-lives (Citra, 2004). Depending on 
the “real” mean reference property values of a chemical, the random property values 
generated by statistical distributions of standard property estimation methods (Table 
4-1) produced variations in the outputs of the reference MEM (Figure 4-7), that were, 
in the worst cases, of several orders of magnitude in logarithmic units. Annex D.c1 
lists variation ranges for emissions in water and emissions in air. In the same manner, 
it can be inferred that, depending on the domain of applicability of available QSPRs 
and QSBRs, the output of standard MEMs should undergo a similar variability. 
 
 

4.3 Fate predictions from QPFRs 
 
 
Chemicals lacking of some physicochemical properties cannot be assessed with 
MEMs because the functionality property-fate cannot be evaluated (Equation 2-78), 
unless every property is individually estimated via standard QSPR or QSBR methods 
(Figure 1-4). Alternatively, the capacity of supervised learning algorithms (Witten and 
Frank, 2005), like ANNs (Basheer and Hajmeer, 2000) or SVRs (Smola and 
Schölkopf, 2004), to recognize patterns from noisy or incomplete data (Jain et al., 
2000) can be used to estimate quantitatively the fate of new chemicals from few 
available properties, simply evaluating available properties in QPFRs (Equation 2-
81). 
 
In preliminary experiments, it was found that BPNs working as QPFRs could emulate 
accurately the property-fate functionality of a reference MEM, predicting level III 
logarithmic concentrations in five compartments simultaneously for The Netherlands, 
from solely partitioning and degradation data of chemicals emitted in one out of  
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Figure 4-9. Predictions from QPFRs, based on SVRs using independent 
but key properties as input (Set 0), for air (a) and water compartments 
(b), considering emissions in water. 
Few partitioning and degradation properties are enough for emulating a reference MEM with supervised learning 
algorithms, producing fate estimations with high accuracy. 
 
 
various compartments (Martínez et al., 2006c; Annex A.a1). Since partitioning and 
degradation properties have a direct influence in the mass balances of the MEM used 
for generating the target values, the information they provide is enough for emulating 
a MEM straightforward. 
 
Considering emissions in water like in Sections 4.1 and 4.2, let’s analyze the air and 
water compartments of the reference pollution scenario, in which the highest and 
lowest fate estimations take place (Figure 4-7f). SVR-based QPFRs were tuned 
(Annex D.b1) and used to predict level III logarithmic mass ratios in these two 
compartments (Annex D.c2) from a set of few but meaningful inputs, independent 
partitioning and degradation properties (Set 0): log10(Kaw), log10(Kow), log10(kair), 
log10(kwater). QPFRs have been trained, tested and validated following the procedure 
listed in Table 2-3: The 18D SOM already presented in Section 4.2 (Figures 4-2, 4-3 
and 4-4) and compiled in Annex D.a1 was used for building the training and test data 
sets with, respectively, 301 and 74 chemicals from the original set of 375 work 
chemicals. Note that both the inputs and target of every QPFR model are, 
respectively, normalized logarithmic properties (Set 0) and a normalized logarithmic 
compartmental mass ratio as shown in Equation 2-83. 
 
Figure 4-9 shows predictions for air and water from two models, respectively, 
QPFR0,air (Figure 4-9a) and QPFR0,water (Figure 4-9b). It can be observed that, as most 
chemicals lie in the diagonal (down-left to up-right) of each subplot of Figure 4-9, 
prediction values are very close to their corresponding target values; also indicated by 
very low MAE and high q2 measurements. It can be observed as well that such QPFRs 
outperform when compared to the statistical sampling of the reference MEM already 
studied in Section 4.2 (Figures 4-7a and 4-7b). Solely with the pair of partition 
coefficients and the pair of degradation rates contained in Set 0, very accurate fate 
predictions were obtained for chemicals not used in the development of the QPFR 
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models: the test and validation chemicals. However, this was possible because the key 
properties of such “new” chemicals were known by the time of the assessment. 
 
It is known that for most chemicals the availability of partitioning and degradation 
data is precisely limited, specially for the latter (Klöpffer and Wagner, 2007). So, the 
applicability of QPFRs is restricted to new chemicals of concern for which accurate 
key physicochemical properties are already available, from either accurate 
measurements or existing estimation methods (QSPRs and/or QSBRs). When 
physicochemical properties are unavailable, fate predictions from molecular 
information might be an alternative for the environmental assessment of chemical 
pollutants, as detailed in Section 4.4, below. 
 
 

4.4 Fate predictions from QSFRs 
 
 
Known the shortcomings of assessing the fate of chemicals with either MEMs relying 
on a wide number of estimated physicochemical properties (Section 4.2) or with 
simple QPFRs (Section 4.3), the availability of another fate estimation methodology 
would be of great interest to environmental modelers. The possibility of estimating 
the fate of new chemicals, bypassing the explicit use of their physicochemical 
properties, with QSFRs (Equation 2-82) implies solely the use of molecular 
information (Figure 1-4). 
 
Several property estimation methods (Devillers, 2003; Raymond et al., 2001; 
Taskinen and Yliruusi, 2003) rely on multivariate correlations using as input a wide 
variety of molecular descriptors (topological, electronic, geometric, etc.) derived from 
semi-empirical approximations of the molecular orbital (MO) theory (Bredow and 
Jug, 2005). Other estimation methods, relating activity to fragment contributions 
derived from the SMILES notation (Weininger, 1988; Weininger et al., 1989), have 
been widely recommended for predicting partitioning data (Boethling et al., 2004) and 
degradation data (Raymond et al., 2001) for a wide range of chemicals, which is the 
case of the models traditionally included in EPI suiteTM (SRC, 2008). So, it seems 
plausible the direct prediction of environmental multimedia fate from molecular 
information via QSFRs (Equation 4-11), grounded on either basic theoretical 
descriptors (derived from semi-empirical MO models) or counts of molecule 
constituents (atoms, bonds, functional groups and rings). 
 
Within the NOMIRACLE project, several experiments were carried out for studying 
QSFRs and identifying best practices for their application in standard multimedia 
environmental modeling (Table 1-3). In one experiment, both QPFR and QSFR 
models were evaluated on the same scenario using, respectively, key physicochemical 
properties (partitioning and degradation data) and semi-empirical molecular 
descriptors for estimating the fate of chemicals emitted in one our of various 
compartments (Martínez et al., 2006b; Annex A.c1): fate predictions from QPFRs 
were more accurate than those from QSFRs; but QSFRs could show rough but 
meaningful fate trends, solely from molecular information. This experiment 
demonstrated that molecular information could be linked to chemical fate, but that 
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special adjustments would be required. For this reason, subsequent experiments 
within the project studied: the use of different supervised learning algorithms, in 
Annexes A.a2 (Martínez et al., 2007b), A.b2 (Martínez et al., 2007a) and A.a4 
(Martínez et al., 2008a); and, the use of different sets of molecular descriptors, in 
Annexes A.a2 (Martínez et al., 2007b), A.b2 (Martínez et al., 2007a), A.a4 (Martínez 
et al., 2008a) and A.b3 (Martínez et al., 2008b). 
 
The selection of supervised learning algorithms for building QSFRs is simply a matter 
of compromise between computational feasibility and applicability (e.g., ANNs may 
be appropriate for QSFRs with several outputs but are very likely to suffer 
overtraining; while, SVRs yield reproducible QSFR, but solely for single outputs). In 
this section, it will be discussed solely the influence of different sets of molecular 
descriptors in the performance of QSFRs. The implementation of QSFRs for 
chemicals belonging to specific chemical classes will be discussed in detail separately 
in section 4.5. 
 
Table 4-2 compares the features and performances of the QPFRs presented in Figure 
4-9 to those of QSFR prototypes, also optimized (Annex D.b1) with the procedure of 
Table 2-3, when modeling fate in the air and water compartments of the reference 
pollution scenario from different sets of descriptors: a) few theoretical descriptors 
selected empirically by the CFS filtering algorithm (Hall, 1999) for each compartment 
from a starting set of 23 descriptors (MW and the 22 semi-empirically estimated 
descriptors): 4 descriptors for air (set i-a: μhyb, μpc, 

0χ, 1χ) and 6 descriptors for water 
(set i-b: MW, μhyb, μpc, HOMO, 2κ, 3κ); b) A unique set of 23 theoretical descriptors 
including MW and the 22 semi-empirically estimated descriptors (set ii: MW, ΔHf, 
MR, PO, μhyb, μpc, μ, Area, Vol, NFL, HOMO, LUMO, IP, EA, 0χ, 1χ, 2χ, 0χv, 1χv, 2χv, 
1κ, 2κ, 3κ); and, c) A unique set of descriptors based on MW and 38 non-zero counts 
of molecular constituents (set iii: MW, 10 atom counts (all atoms, bromine, carbon, 
chlorine, fluorine, hydrogen, nitrogen, oxygen, phosphorus and sulphur), 4 bond 
counts (all bonds, single bonds, double bonds and triple bonds), 16 functional group 
counts (aldehyde, amide, amine, sec-amine, carbonyl, carboxyl, cyano, ether, 
hydroxyl, methyl, methylene, nitro, nitroso, sulfide, sulfone and thiol) and 8 ring 
counts (all rings, aromatic rings, small rings, 5 membered, aromatic 5 membered, 6 
membered, aromatic 6 membered and 7-12 membered)). 
 
Per each QSFR model (Annex D.c2), referred to a set of descriptors (sets i-a, i-b, ii 
and iii) and a compartment, a SOM was trained with the 375 work chemicals for 
generating a pair of optimal training and test data sets (Annexes Da.2 to D.a7). QSFR 
models using few descriptors performed poorly (for wair: QSFRia,air; for wwater: 
QSFRib,water) when compared to those using more descriptors (for wair: QSFRii,air, 
QSFRiii,air; for wwater: QSFRii,water, QSFRiii,water) as their R2

te values indicate, also 
confirmed with the average performances on the 10-fold CV and the LOO procedures: 
R2

10CV and R2
LOO, respectively. Such tendencies are also applicable for the validation 

phase, as R2
val values indicate. Figure 4-10 compares the MAE performances on 

denormalized fate predictions already reported in Table 4-2, i.e, logarithmic mass 
ratios. The lowest errors have been achieved with the QSFRs referred to the 
compartment in which emissions take place, the water compartment, while the highest 
errors resulted from the QSFR models referred to the air compartment. Following  
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Table 4-2. SVR prototypes of QPFRs and QSFRs for the air and water 
compartments of the reference pollution scenario, considering emissions in 
water. 

  Air compartment Water compartment 
    
  QPFR0,air QSFRia,air QSFRii,air QSFRiii,air QPFR0,water QSFRib,water QSFRii,water QSFRiii,water
          

set 0 ia ii iii 0 ib ii iii 
total 4 4 23 39 4 6 23 39 Attributes 
type* PP TD TD CC PP TD TD CC 

          

training+ 301a1 288a2 297a4 300a6 301a1 300a3 307a5 299a7 
test+ 74a1 87a2 78a4 75a6 74a1 75a3 68a5 76a7 

Number of 
available 
chemicals validation 93 93 93 93 93 93 93 93 

          

C 150 1 5 300 150 150 10 25 
γ 1 10 1 0 1 0 1 1 
ε 1.0x10-6 1.0x10-1 2.5x10-1 1.0x10-2 1.0x10-5 2.5x10-1 2.5x10-1 1.0x10-6 

SVR 
parameters 

p 1.0x10-6 1.0x10-5 1.0x10-3 1.0x10-2 1.0x10-6 1.0x10-5 1.0x10-5 1.0x10-1 
          

Support 
vectors 

total 301 271 232 259 301 233 212 124 
          

R2
tr 1.00 0.66 0.93 0.85 1.00 0.19 0.94 0.89 

R2
te 1.00 0.57 0.70 0.86 1.00 0.51 0.70 0.75 

R2
val 0.98 0.05 0.25 0.46 0.98 0.30 0.51 0.67 

MAEtr 0.01 0.10 0.05 0.07 0.01 0.27 0.04 0.07 
MAEte 0.01 0.11 0.10 0.07 0.01 0.08 0.08 0.08 

Prediction 
performances 

on 
normalized 

data‡ 
MAEval 0.02 0.27 0.22 0.16 0.02 0.11 0.11 0.10 

          

R2
10CV 0.95 0.28 0.50 0.76 0.87 0.20 0.40 0.44 10-fold CV 

on 
normalized 

data 
MAE10CV 0.02 0.18 0.16 0.10 0.04 0.12 0.10 0.11 

          

R2
LOO 0.92 0.27 0.48 0.77 0.84 0.15 0.39 0.47 LOO on 

normalized 
data 

MAE2
LOO 0.02 0.18 0.16 0.10 0.03 0.12 0.10 0.10 

          

q2
tr 1.00 0.64 0.93 0.85 0.99 0.20 0.93 0.86 

q2
te 1.00 0.53 0.69 0.86 0.95 0.48 0.65 0.60 

q2
val 0.97 -0.24 0.13 0.42 0.96 0.26 0.50 0.63 

MAEtr 0.06 1.18 0.61 0.81 0.04 0.46 0.17 0.30 
MAEte 0.11 1.28 1.12 0.81 0.08 0.34 0.33 0.34 

Prediction 
performances 

on 
denormalized 

data 
MAEval 0.24 3.04 2.54 1.83 0.10 0.47 0.45 0.42 

          
* Type of input variables: PP = physicochemical properties; MO = semi-empirical MO descriptors; and, CC = MW 
and simple counts of molecular constituents. 
+ Chemicals selected with specific SOMs, presented in: a1 = Annex D.a1, a2 = Annex D.a2, a3 = Annex D.a3, a4 = 
Annex D.a4, a5 = Annex D.a5, a6 = Annex D.a6 and a7 = Annex D.a7. 
‡ Prediction performances obtained during the tuning of the SVR algorithm in each case, presented in Annex D.b1. 

 
 
trends already identified when applying statistical sampling on the reference MEM 
(Figure 4-7). 
 
In standard QSPRs and QSBRs, it is common practice to use as less descriptors as 
possible (Mager and Mager, 1992; Wold, 1992); but, since QSFRs attempt to emulate 
MEMs, in which diverse environmental processes are simulated simultaneously, few 
descriptors seem to offer little information to predict the fate of test chemicals and 
even less information for validation chemicals. This is especially true for the air 
compartment of the reference scenario (Figure 4-10a), in which the variation with 
respect to the reference MEM tends to be higher in any case. 
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Figure 4-10. MAE errors of logarithmic mass ratios in air (a) and water 
(b), predicted for the 93 validation chemicals by QSFR models using 
different sets of molecular descriptors. 
 
Per compartment, best environmental fate estimations are obtained from QSFRs using as input MW and counts of 
molecular fragments (atoms, bonds, groups and rings).  

 
 
QSFRs with a diverse number of semi-empirically determined descriptors can provide 
good performances on test chemicals, selected to be somewhat similar to the training 
chemicals (Table 2-3), as it occurs in the models QSFRii,air and QSFRii,water (Table 4-
2). But, it must be noted that poor fate predictions can also be obtained when 
assessing independent chemicals, not used at all in the optimization of the algorithms: 
QSFRii,air predicted poorly the fate of the 93 validation chemicals in air, with MAE 
and q2 over logarithmic mass ratios of, respectively, 2.54 and 0.13. It must be also 
noted that the prediction accuracy of QSFRs can diminish, if the descriptors of new 
chemicals to assess are estimated with a semi-empirical MO method different than 
that used in the development of the QSFR models, there are marked differences 
between existing semi-empirical MO methods (Bredow and Jug, 2005). 
 
QSFRs using as inputs counts of molecular constituents (atoms, bonds, functional 
groups and rings) have provided the best fate estimations for both test and validation 
chemicals. The fate predictions resulting from QSFRiii,air and QSFRiii,water have been 
superior to all the other QSFR models listed in Table 4-2. Figure 4-11 compares the 
fate predictions of QSFRiii,air (Figure 4-11a) and QSFRiii,water (Figure 4-11b) to the 
variations ranges resulting from the statistical sampling of the reference MEM 
(Figures 4-7a and 4-7b). All predictions values for log10(wwater) are within the 
variation ranges; while, most predictions values for log10(wair) also lie within the 
variation ranges, with some exceptions. After checking the structure of each of the 
468 chemicals of the reference scenario (Annexes A.C1 and A.C2), it has been noted 
that their structures were extremely diverse, not only with respect to the presence of 
rings, but also with respect to their composition (with very dissimilar atom types, like 
bromine, chlorine, fluorine, nitrogen, oxygen, phosphorus and sulphur). This gives an 
insight of why QSFRs using few semi-empirical MO descriptors were poor fate 
predictors: these simply could not provide enough information for discriminating 
chemicals, where constituent counts do that more efficiently. 
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Figure 4-11. Predictions from QSFRs, based on SVRs using optimal 
molecular information as input (Set iii), for air (a) and water 
compartments (b), considering emissions in water. 
MW and simple counts of molecular constituents provide reasonable information for emulating a MEM by 
QSFR. 
 
 
Despite of the fact that QSFR models using simple counts of molecular constituents 
cannot distinguish between isomers that have identical descriptors (in the reference 
pollution scenario there are 175 chemicals having such peculiarity: 150 and 25 
chemicals out of the 375 work and 93 validation chemicals, respectively), the real fate 
differences between these chemicals are not extreme and fate predictions from QSFRs 
are reasonably correct. Chemicals with structures extremely different than those used 
in the training of the QSFR models may still have reasonable fate predictions from the 
latter, as long as their molecular constituents are represented in the training set. 
Molecular constituent counts have a great advantage: they can be easily retrieved or 
calculated, known the molecular formula or structural code of new chemicals (e.g., 
SMILES, InChl, OpenSMILES, etc.); this makes them suitable for simple and rapid 
fate screenings. Since the molecular formula of a chemical is invariable and SVRs 
yield the same model given the same training data and parameters (unlike ANNs, 
which adjust internal parameters in search of a local minimum error), QSFRs using 
these two features can be reproduced easily and exchanged between modelers, 
analysts and collaborators. 
 
 

4.5 Fate predictions from class-tailored QSFRs 
 
 
QSAR models are expected to perform good predictions for chemicals not used in 
their training; but, that ideal becomes unpractical when innumerable factors have to 
be adjusted (Johnson, 2008). QSFRs rely on the same methodology used for 
developing standard QSARs. So, QSAR and QSFR models tend to yield good results 
when estimating activity or fate for chemicals with appreciable similarity to the 
chemicals used in the development of the models. This implies that new chemicals to  
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assess must be within the domain of applicability of a model (Weaver and Gleeson, 
2008), but this is a discussion postponed for the following section (Section 4.6). 
 
In experiments within the NOMIRACLE project, QSFRs were trained to predict the 
fate of chemicals in 2-class schemes considering: the SOM algorithm clustering both 
partitioning and degradation data (Martínez et al., 2008c; Annex A.a3); and, the k-
means algorithm clustering water degradation data (Martínez et al., 2008b; Annex 
A.b3). In this section, the development of class-tailored QSFRs is discussed further 
with basis on new simulations (Martínez et al. 2010; Annex A.1) considering not only 
classes derived from either water degradation (Section 4.5.1), but also classes from 
key molecular features (4.5.2). 
 
 

4.5.1 Chemical families based on key physicochemical 
properties. 
 
 
Chemicals with similar physicochemical properties can have very similar 
environmental fate behavior and, grounded on this idea, experiments within the 
NOMIRACLE project were performed, here presented in Annexes A.a3 (Martínez et 
al., 2008c) and A.b3 (Martínez et al., 2008b). In the first experiment, a SOM mapping 
both partition coefficients and degradation rates was clustered for creating chemical 
classes for which individual QSFR models were trained and tested (Martínez et al., 
2008c; Annex A.a3), it was found that kwater was influencing the development of the 
classes. So, in the second experiment, chemical classes were created automatically by 
the K-means algorithm with basis on kwater (Martínez et al., 2008b; Annex A.b3). In 
both experiments it was found that test chemicals that were correctly classified by 
supervised classifier algorithms got their fate predictions improved when using a 
class-specific QSFR model instead of a general QSFR model. In the same manner, 
chemicals that were assigned incorrect classes got highly erroneous fate estimations 
from the use of improper class-specific QSFR models. 
 
In Section 4.1, the similarity of chemicals emitted in water, with respect to all the 
inputs and outputs of the reference MEM of the Netherlands (Chapter 3, Annex 
A.Ca1), was studied with a SOM (Figures 4-2, 4-3 and 4-4), noticing that kwater 
strongly influences the mass ratios in every compartment of the system and leads to 
the clustering of the SOM into two well-defined sections (Figure 4-4). With such 
information it is possible to generate two QSFR models compartment, one for 
chemicals with high degradability in water (Class H) and the other for chemicals with 
low degradability in water (Class L). 
 
Table 4-3 shows the performances on class-tailored QSFRs predicting fate in air and 
water from MW and 38 constituent counts (set iii), referred to chemicals with high or 
low kwater values (Classes H or L, respectively). Note that the correct classification of 
all chemicals has been used for obtaining the performances in Table 4-3 (the actual 
classes of the validation chemicals are identified by evaluating these chemicals on the 
SOM). With respect to general QSFRs using the set iii of descriptors (Table 4-2), the 
class-tailored QSFRs in Table 4-3 yielded improved fate predictions (with respect to  
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Table 4-3. SVR prototypes of QSFRs dedicated for chemicals with high 
(Class H) or low (Class L) kwater values, for estimating fate in air and 
water compartments, considering emissions in water. 

  Air compartment Water compartment 
    
  QSFRiii,air,H QSFRiii,air,L QSFRiii,water,H QSFRiii,water,L 
      

set iii iii iii iii 
total 39 39 39 39 Attributes 
type* CC CC CC CC 

      

training+ 90a1 211a1 90a1 211a1 
test+ 41a1 33a1 41a1 33a1 

Number of 
available 
chemicals validation 50 43 50 43 

      

C 300 50 1 300 
γ 0 0 0 0 
ε 1.0x10-2 1.0x10-2 1.0x10-2 1.0x10-1 

SVR 
parameters 

p 1.0x10-3 1.0x10-3 1.0x10-3 1.0x10-5 
      

Support 
vectors 

total 90 210 88 196 
      

R2
tr 0.96 0.86 0.56 0.92 

R2
te 0.87 0.78 0.20 0.79 

R2
val 0.61 0.37 0.48 0.51 

MAEtr 0.03 0.07 0.07 0.04 
MAEte 0.08 0.07 0.05 0.05 

Prediction 
performances 

on 
normalized 

data‡ 
MAEval 0.13 0.19 0.10 0.07 

      

R2
10CV 0.81 0.73 0.35 0.66 10-fold CV 

on 
normalized 

data 
MAE10CV 0.10 0.11 0.07 0.07 

      

R2
LOO 0.82 0.73 0.31 0.70 LOO on 

normalized 
data 

MAE2
LOO 0.09 0.11 0.07 0.07 

      

q2
tr 0.96 0.85 0.32 0.92 

q2
te 0.87 0.75 0.15 0.73 

q2
val 0.57 0.35 0.30 0.33 

MAEtr 0.32 0.84 0.28 0.16 
MAEte 0.85 0.75 0.20 0.22 

Prediction 
performances 

on 
denormalized 

data 
MAEval 1.50 2.14 0.40 0.29 

      
* Type of input variables: CC = MW and simple counts of molecular constituent. 

+ Chemicals selected with a single SOMs, presented in this Annex: a1 = Annex D.a1. 
‡ Prediction performances obtained during the tuning of the SVR algorithm in each case, presented in Annex D.b1. 

 
 
performances on denormalized data) for mass ratios in air for chemicals with high 
kwater (QSFRiii,air,H); and, mass ratios in water for chemicals with low kwater 
(QSFRiii,water,L). 
 
The QSFR approach implies solely the use of molecular information in the absence of 
reliable physicochemical properties (Figure 1-4). This implies that for a practical 
application of the models of Table 4-3, it is necessary to predict the class of new 
chemicals for knowing which model to use in every case. A QSBR model for kwater is 
required. EPIsuite (SRC, 2008) includes linear and non-linear QSBR models of MITI-
I degradability tests, respectively, BIOWIN 5 and BIOWIN 6 (Tunkel et al., 2000); 
so, a simple QSBR has been built for correlating the reference log10(kwater) values of 
the 301 training chemicals (selected with the SOM of Figures 4-2 to 4-4) to the 
probability degradation predictions of both BIOWIN models as Figure 4-12 indicates. 
The correlation has the form: 
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Figure 4-12. Correlation of 
log10(kwater) to degradation 
probabilities from BIOWIN 
5 and BIOWIN 6, for 
identifying high or low 
degradability in water. 

This figure uses a correlation to separate 
301 training chemicals according to their 
degradability in water, high (H) or low (L). 
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  8.061.50P1.02Pklog 5
BIOWIN6BIOWIN5water10    (4-3) 

 
that, despite of its poor correlation coefficient (R2 = 0.42), can be used to identify to 
which chemical family, or original SOM cluster, a new chemical belongs to. This 
equation (Equation 4-1) can be used as a simple classification rule: chemicals with 
log10(kwater) > -7 or log10(kwater) ≤ -7 can be considered to have, respectively, high or 
low degradability in water as Figure 4-12 shows. Then, for the reference scenario, we 
can implement ensembles of QSFRs and rules with the form: 
 
 

    
      

      












7)(klogifdN,...,dN

7)(klogifdN,...,dN

wlogN

water10Lg,L1,1-11,1-QSFR

water10Hg,L1,1-11,1-QSFR

g101,1-

f

f

     (4-4) 

 
for every compartment g, where log10(kwater) must be estimated by equation 4-1. 
Figure 4-13 shows fate prediction of ensembles of this type (Equation 4-4) for the air 
compartment (Figure 4-13a) and the water compartment (Figure 4-13b), based on the 
QSFRs developed for chemicals with similar degradability in water of Table 4-3 but 
predicting the chemical class of a chemicals with Equation 4-1. The improved fate 
predictions that can be made by training individual QSFRs with chemicals showing 
similar properties and fate (as Table 4-3) are neutralized by the errors of chemicals 
wrongly classified, with fate predicted by inappropriate QSFR models as Figure 4-13 
shows: most chemicals have predictions very close to their target values, but others 
have extremely wrong predictions. For the 301 training chemicals, 74 test chemicals 
and 93 validation chemicals used, the relation of correct-incorrect classified chemicals 
have been of, respectively, 238 to 63 (79 % to 21 %), 54 to 20 (73 % to 27 %) and 70 
to 23 (75 % to 25 %) chemicals. 
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Figure 4-13. Predictions from pairs of specialized QSFRs, based on SVRs 
using optimal molecular information as input (Set iii) for chemicals with 
high or low degradability in water, for air (a) and water compartments 
(b), considering emissions in water. 
The fate prediction of a chemical in every compartment can be performed by a QSFR for either high or low 
degradability in water. However, new chemicals assigned wrong classes can therefore be evaluated with the 
wrong QSFR model, yielding to highly erroneous predictions. 
 
 
Figure 4-12 offers an insight of the lack of functionality between very similar 
degradation values and chemicals with very different degradation probabilities (or, 
let’s say, tracing back relationships to the SMILES notation through BIOWIN 5 & 6, 
chemicals with very different molecular structures. The functionality between 
degradability data and molecular information is a problem that remains to be solved 
(Aronson et al., 2006). 
 
There is the risk of assessing the fate of a new chemical with inappropriate QSFR 
models if the criterion to define the class of a chemical is simply based on 
physicochemical properties. Especially with respect to degradation data, chemicals 
can show similar properties despite of having very different molecular structures; and, 
thus, the molecular structure of a chemical to assess has a great chance to be out of the 
domain of applicability of a QSFR. Even if having similar properties, the training 
chemicals used in the development of a model may contain molecular structures 
differing greatly from those of new chemicals. This suggests that a better criterion to 
assess the applicability of available QSFRs should rely on molecular structures rather 
than on physicochemical properties. 
 
 

4.5.2 Chemical families based on key molecular 
features. 
 
 
The definition of chemical classes depending on exact molecular features, like 
chemical composition (Martínez et al., 2010; Annex A.1), represents an unambiguous 
approach for determining the class of a new chemical in the boundaries of available 
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classes. Discrete values counting the number of chemical constituents allow the 
implementation of rules for class predictions with a 100 % of true positives, while 
continuous values measuring physicochemical properties lead to rules with rates of 
true positives much lower than 100 % because of the uncertainty of property 
predictions from QSPRs and QSBRs (Section 4.5.1). 
 
Focusing again on the reference pollution scenario, it was considered the development 
of QSFRs for chemical classes depending on molecular information. Different criteria 
could be proposed for creating chemical families with respect to molecular structure, 
but the performance of any class-tailored QSFR is conditioned by the availability of 
sufficient training data. In a preliminary screening of the 375 work chemicals of the 
reference scenario, it was observed that 39 chemicals are composed of solely carbon 
and hydrogen atoms, while the remaining 336 chemicals have at least one heteroatom 
(bromine, chlorine, fluorine, nitrogen, oxygen, phosphorus or sulphur atoms). These 
two groups constitute a starting point for creating two chemical classes, but there is a 
somewhat unbalanced distribution of chemicals if solely 39 chemicals in the first class 
are available for creating the training and test data sets of QSFRs. An adjustment can 
be made to create two chemical families with somewhat similar structure but enough 
training samples, adding oxygen to the class of chemicals formed with carbon and 
hydrogen. This way 146 work chemicals are identified to be constituted by carbon, 
hydrogen or oxygen as the only type of heteroatoms (Class X); while 229 chemicals 
have a least one heteroatom different than oxygen (Class Y). With this final 
clustering, a fair class proportion was achieved without sacrificing much with respect 
to the general properties of the clustered chemicals. 
 
Note that chemicals in class X, having or not oxygen as heteroatom, can be described 
with a reduced set of descriptors (set iv): MW, 4 atom counts (all atoms, carbon, 
hydrogen and oxygen), 3 bond counts (all bonds, single bonds and double bonds), 7 
functional group counts (aldehyde, carbonyl, carboxyl, ether, hydroxyl, methyl and 
methylene) and 8 ring counts (all rings, aromatic rings, small rings, 5 membered, 
aromatic 5 membered, 6 membered, aromatic 6 membered and 7-12 membered). The 
chemicals in class Y, with any type of heteroatoms, are described with MW and the 
38 constituent counts of the set iii of descriptors, Section 4.4). Table 4-4 shows the 
performances of individual QSFRs predicting fate in air or water from MW and 
constituent counts, for chemicals of class X and chemicals of class Y. 
 
Based on the same training and test chemicals selected for the models of Figure 4-11 
(for the air and water compartment, respectively, QSFRiii,air and QSFRiii,water), two 
QSFRs were developed per compartment, one for class X and the other for class Y. 
Then, rules for selecting QSFRs, in terms of the presence of heteroatoms (Class X or 
Y), were implemented for every compartment g (air or water) as follows: 
 

    
        

        








Y ClassifdN,...,dN

X ClassifdN,...,dN

wlogN

Y-gL1,1-11,1-QSFR

X-gL1,1-11,1-QSFR

g101,1-

f

f

  (4-5) 

 
in which a QSFR is selected with an exact criterion based on the amounts of atoms in 
its molecular formula. Figure 4-14 shows fate predictions from ensembles of QSFRs 
considering the content or not, of atoms different than carbon, hydrogen or oxygen  
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Table 4-4. SVR prototypes of QSFRs dedicated for organic chemicals 
containing oxygen atoms (Class X) or any type of heteroatoms (Class Y), 
for estimating fate in air and water compartments, considering emissions 
in water. 

  Air compartment Water compartment 
    
  QSFRiv,air,X QSFRiii,air,Y QSFRiv,water,X QSFRiii,water,Y 
      

set iv iii iv iii 
total 23 39 23 39 Attributes 
type* CC CC CC CC 

      

training+ 119a6 181a6 119a7 180a7 
test+ 27a6 48a6 27a7 49a7 

Number of 
available 
chemicals validation 36 57 36 57 

      

C 300 300 75 0 
γ 0 0 0 1 
ε 1.0x10-3 1.0x10-3 1.0x10-1 1.0x10-3 

SVR 
parameters 

p 1.0x10-4 1.0x10-2 1.0x10-3 1.0x10-2 
      

Support 
vectors 

total 119 165 108 156 
      

R2
tr 0.89 0.93 0.89 0.97 

R2
te 0.93 0.91 0.73 0.72 

R2
val 0.68 0.48 0.78 0.23 

MAEtr 0.06 0.05 0.05 0.02 
MAEte 0.06 0.06 0.04 0.07 

Prediction 
performances 

on 
normalized 

data‡ 
MAEval 0.18 0.18 0.09 0.13 

      

R2
10CV 0.74 0.77 0.58 0.47 10-fold CV 

on 
normalized 

data 
MAE10CV 0.12 0.10 0.07 0.12 

      

R2
LOO 0.76 0.78 0.67 0.43 LOO on 

normalized 
data 

MAE2
LOO 0.11 0.11 0.07 0.12 

      

q2
tr 0.89 0.92 0.88 0.97 

q2
te 0.91 0.91 0.71 0.72 

q2
val 0.61 0.44 0.72 0.23 

MAEtr 0.46 0.59 0.20 0.06 
MAEte 0.41 0.70 0.18 0.19 

Prediction 
performances 

on 
denormalized 

data 
MAEval 1.30 2.00 0.35 0.39 

      
* Type of input variables: CC = MW and simple counts of molecular constituent. 

+ Chemicals selected with specific SOMs, presented in: a6 = Annex D.a6 and a7 = Annex D.a7. 
‡ Prediction performances obtained during the tuning of the SVR algorithm in each case, presented in Annex D.b1. 

 
 
(Equation 4-5) for the air compartment (Figure 4-14a) and the water compartment 
(Figure 4-14b). These models, denominated QSFRiii,air,X/Y and QSFRiii,water,X/Y, 
respectively, yielded better fate predictions than those from simple QSFRs (Figure 4-
11), as the application of rules and class-tailored QSFRs (Equation 14) produced 
higher q2 and lower MAE values. On average, better fate predictions have been 
achieved for all chemicals (training, test and validation) in air and in water (Figure 4-
14). 
 
Table 4-5 compares q2 and MAE measurements for fate predictions from molecular 
information for the air and water compartments resulting from each of the approaches 
considered in this work: 1000 Monte-Carlo realizations over the reference MEM 
(MC-MEM) for simulating uncertainty in QSPRs and QSBRs (Figure 4-8), simple 
QSFRs (Figure 4-11); QSFRs for chemical classes derived from degradability (Figure  
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Figure 4-14. Predictions from pairs of specialized QSFRs, based on SVRs 
using optimal molecular information as input for chemicals of classes X 
and Y, for air (a) and water compartments (b), considering emissions in 
water. 
Predicting the fate of chemicals with basis on their composition allows accurate class predictions, allowing the use 
of appropriate class-tailored QSFR models. 
 
 
 
Table 4-5. Performance measurements of fate estimation approaches 
relying on molecular information, for emissions in water. 

Performances* per data set0, iii-A, iii-W 
Compartment 

Fate estimation 
approach 

Performance 
measure Training set 

(N = 299-301)
Test set 

(N = 74-76) 
Validation set 

(N = 93) 
All sets 

(N = 468) 
       

q2 0.85a6 0.87a6 0.90 0.87 
MC-MEM 

MAE 0.85a6 0.77a6 0.74 0.82 
      

q2 0.85a6 0.86a6 0.42 0.78 
QSFRiii,air MAE 0.81a6 0.81a6 1.83 1.01 

      

q2 0.79a1 0.75a1 0.44 0.72 
QSFRiii,air,H/L 

MAE 0.93a1 0.98a1 1.87 1.13 
      

q2 0.92a6 0.91a6 0.50 0.84 

Air 

QSFRiii,air,X/Y 
MAE 0.54a6 0.59a6 1.73 0.79 

       

q2 0.84a7 0.56a7 0.87 0.82 
MC-MEM 

MAE 0.18a7 0.19a7 0.18 0.18 
      

q2 0.86a1 0.60a1 0.63 0.80 
QSFRiii,water MAE 0.30a1 0.34a1 0.42 0.33 

      

q2 0.63a7 0.27a7 0.40 0.57 
QSFRiii,water,H/L 

MAE 0.28a7 0.32a7 0.41 0.31 
      

q2 0.94a7 0.78a7 0.60 0.86 

Water 

QSFRiii,water,X/Y 
MAE 0.11a7 0.19a7 0.38 0.18 

       
* q2 and MAE measurements on logarithmic mass ratios, retrieved from Figure 4-8, Figure 4-11, Figure 4-13 and 
Figure 4-14. The training and test data sets contain: a1 301 training chemicals and 74 test chemicals selected with a 
SOM based on the set 0 of properties and 5 mass ratios (Annex D.a1). a6 300 training chemicals and 75 test 
chemicals selected with a SOM based on the set iii of descriptors and mass ratios in air (Annex D.a6). a7 299 
training chemicals and 76 test chemicals selected with a SOM based on the set iii of descriptors and mass ratios in 
water (Annex D.a7). 
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4-13); and QSFRs for chemical classes derived from molecular composition (Figure 
4-14). In general, the discrimination and posterior assessment of chemicals with 
respect to their chemicals composition improved the generalization capability of 
SVRs linking fate to molecular structure (QSFRiii,air,X/Y and QSFRiii,water,X/Y), when 
compared to simple QSFRs (QSFRiii,air and QSFRiii,water) or QSFR for classes 
depending on properties (QSFRiii,air,H/L and QSFRiii,water,H/L) as higher q2 and low MAE 
show (Table 4-5). The QSFR models dedicated to specific chemical compositions 
(QSFRiii,air,X/Y and QSFRiii,water,X/Y) performed as well as the reference MEM under 
uncertainty conditions (MC-MEM). Best overall resulted when assessing the 
similarity of chemicals in terms of invariable molecular information. The 
improvements are due to not only the grouping of chemicals with similar composition 
but also to the 100 % rate of true positives resulting from the class prediction, 
favoring the evaluation of new chemicals with the most appropriate QSFR model. 
 
 

4.6 DOA of QSFRs 
 
 
QSFR models follow the same limitations of QSAR models (Johnson, 2008), for 
instance, predictions beyond the DOA of the models should be avoided. The DOA of 
any model is primarily defined by its training chemicals (Weaver and Gleeson, 2008); 
so, identifying the DOA of an existing QSFR model it is possible to assess, 
approximately, how appropriate the model is for a new chemical. 
 
Reasonable estimations of the DOA of a model can be performed by measuring 
distances or probability density distributions of training data vectors to new data 
vectors (Schroeter et al., 2007), coming either from validation purposes or assessing 
new chemicals of concern. Since the SOM algorithm is based on the distances 
between data vectors in a multivariate space (Kohonen et al., 1996), we can use it to 
define the DOA of QSFR models. As stated in Table 2-3, a work chemical is included 
in the training data set of a QSFR either when having the lowest or highest mass ratio 
among all other work chemicals; or, having the lowest or highest quantization error 
(qerror) in the SOM unit. The work chemicals not following such description form the 
test data set of the QSFR. So, the DOA border of a QSFR model can be defined by the 
total of training chemicals exhibiting the largest qerror with respect to their BMUs, 
while any chemicals with lower qerror values is located within the DOA of the model. 
 
The selection of training chemicals with regard to a SOM is demonstrated in Figure 6, 
which takes as example three SOM units clustering 3, 4 and 5 work chemicals, 
respectively: units K15, O2 and U8. This SOM, used for selecting training and test 
chemicals for QSFRiii,air (Figure 4-11a), is comprised by 40 dimensions (one 
compartmental mass ratio in air and the set iii of descriptors). Within a single SOM 
unit, the more similarities between chemicals, in terms of structure and fate, the lower 
the differences between their qerror values; e.g., between dieldrin and endrin in unit 
K15, or between ethanal, butanal and propanal in unit U8. So, selecting the training 
chemicals, in each SOM unit, as the ones with the lowest and highest qerror  
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forces the diversity of the training set and assures the vicinity of the test chemical 
respect to the training ones. Such vicinity can be practically considered the domain of 
applicability (DOA) of subsequently trained QSFR models, ranging from every SOM 
unit to their corresponding farthest clustered training chemicals. Filled SOM units 

Figure 4-15. Selection of training and
test chemicals with a SOM. 
 
This figure shows how training and test chemicals have been
selected with the SOM algorithm for, respectively, building
and tuning a QSFR model. Chemicals having the highest
and lowest qerror to their best matching unit are selected for
training the model. The DOA border of a model can be
defined, with a SOM, by the training chemicals with the
highest qerror so any chemical with lower qerror values with
respect to its BMU is considered to be within the DOA of
the model. 
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Table 4-6. Performance measurements of specialized QSFR models for 
chemicals in and out the DOAs of the models, in air and water 
compartments, considering emissions in water. 

Chemicals in DOA Chemicals out DOA 
Model 

DOA  
case 

Parameters 
Test Val 

Test & 
val 

Test Val 
Test & 

val 
         

Chemicals 62 30 92 13 63 76 
q2 0.93 0.56 0.87 0.70 0.47 0.50 I 

MAE 0.55 1.11 0.73 0.79 2.03 1.82 
        

Chemicals 36 16 52 39 77 116 
q2 0.95 0.65 0.89 0.86 0.48 0.59 II 

MAE 0.45 1.05 0.63 0.73 1.87 1.49 
        

Chemicals 36 12 48 39 81 120 
q2 0.95 0.78 0.92 0.86 0.47 0.59 

QSFRair,X/Y 

III 
MAE 0.45 0.79 0.54 0.73 1.87 1.50 

         

Chemicals 56 24 80 20 69 89 
q2 0.84 0.87 0.86 0.57 0.31 0.40 I 

MAE 0.15 0.31 0.20 0.29 0.40 0.38 
        

Chemicals 44 19 63 32 74 106 
q2 0.86 0.81 0.83 0.69 0.26 0.44 II 

MAE 0.13 0.38 0.21 0.26 0.38 0.34 
        

Chemicals 40 12 53 36 81 117 
q2 0.91 0.94 0.93 0.66 0.28 0.42 

QSFRwater,X/Y 

III 
MAE 0.12 0.28 0.16 0.26 0.39 0.35 

 
 
Table 4-7. Performance measurements of specialized QSFR models for 
chemicals in and out the DOAs of the models, in air and water 
compartments, considering emissions in air. 

Chemicals in DOA Chemicals out DOA 
Model 

DOA  
case 

Parameters 
Test Val 

Test & 
val 

Test Val 
Test & 

val 
         

Chemicals 62 30 92 13 63 76 
q2 0.95 0.41 0.87 0.51 0.41 0.43 I 

MAE 0.21 0.50 0.31 0.42 0.88 0.80 
        

Chemicals 36 16 52 39 77 116 
q2 0.97 0.68 0.92 0.84 0.41 0.53 II 

MAE 0.16 0.40 0.23 0.33 0.83 0.67 
        

Chemicals 36 12 48 39 81 120 
q2 0.97 0.76 0.94 0.84 0.41 0.53 

QSFRair,X/Y 

III 
MAE 0.16 0.34 0.20 0.33 0.82 0.66 

         

Chemicals 56 24 80 20 69 89 
q2 0.90 0.86 0.89 0.73 0.42 0.53 I 

MAE 0.29 0.31 0.29 0.53 0.58 0.57 
        

Chemicals 44 19 63 32 74 106 
q2 0.92 0.74 0.84 0.81 0.26 0.61 II 

MAE 0.27 0.53 0.35 0.46 0.51 0.49 
        

Chemicals 40 12 53 36 81 117 
q2 0.93 0.92 0.92 0.80 0.41 0.61 

QSFRwater,X/Y 

III 
MAE 0.25 0.33 0.27 0.46 0.54 0.51 

 
 
clustering two or more work chemicals contribute with a maximum of two training 
chemicals; while, SOM units clustering one chemical only make one contribution. 
 
Note that, as explained in Table 2-3, the size of any optimal SOM was set to 
guarantee a number of training chemicals approximately equal to 80 % of the 375 
work chemicals available (per compartment); so, the number of training chemicals for 
every simple QSFR model in this study is about 300 (Table 4-2). 
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The DOA of the best compartmental QSFR models of Table 4-5, QSFRiii,air,X/Y and 
QSFRiii,water,X/Y, were defined according to three different cases: 
 
I) The first approach employs the SOMs used in the selection of training and test data 
sets. Because the qerror of the work chemicals within each SOM unit have been used 
for selecting the training chemicals, the training chemical with the highest qerror 
defines the DOA border. The original SOM (Figure 5) had 40 dimensions (MW, 38 
constituent counts and a mass ratio). When presenting new chemicals to the SOM the 
mass ratio is assumed unknown, so only 39 out of 40 variables are used for 
classification purposes (only molecular descriptors), the error of assessing new 
chemicals with one dimension missing is not significant given the relation 39:1 of 
available-unavailable dimensions. 
 
II) The second approach employs a new SOM, but applying a principal component 
analysis (Pearson, 1901) on the 39 molecular descriptors. It was found that five 
principal components accounted for about 59 % of cumulative variance, so the new 
SOM was trained with these five principal components and, again, the DOA border 
was defined with the highest qerror of the training chemicals in each SOM unit. 
 
III) The third approach implies the intersection of the first two approaches. 
 
Table 4-6 shows q2 and MAE performance measurements for models QSFRair,X/Y and 
QSFRwater,X/Y, for test and validation chemicals belonging or not to the DOAs defined 
above. In the first two cases (I and II), test or validation chemicals with quantization 
errors higher to those of the upper bounding training chemicals are considered to be 
out the DOA of the models. Since the numbers of chemicals within the DOAs from 
the first (I) and second (II) cases differ because of the different variables considered 
and the errors of each SOM, their intersection (III) is preferred because more 
restrictive conditions are achieved. So, using the third case (III) of Table 4-6, its has 
been estimated that the fate of about 48 and 53 “new” (test and validation) chemicals 
can be optimally predicted by, respectively, QSFRair,X,Y (with q2 = 0.92 and MAE = 
0.54) and QSFRwater,X,Y (with q2 = 0.93 and MAE = 0.16). By assessing that new 
chemicals are within the DOA of a QSFR model, the probability of having acceptable 
fate predictions is notoriously increased. 
 
All results discussed so far are referred to emissions in the water compartment (Annex 
D.c2). To check that the QSFR case can be applied to other emission compartments, 
specific models were tuned for emissions in the air compartment (Annex D.b2) for the 
same training chemicals of the models in Table 4-4, yielding comparable fate 
predictions (Annex D.c3). Additionally, Table 4-7 shows q2 and MAE performances 
for air-emission models using the same training, test and validation data sets already 
used for yielding the performances of water-emission models of Table 4-6 with 
respect to DOAs. Table 4-7 shows similar trends than those in Table 4-6: chemicals 
within the DOA of every model have more reliable fate predictions than those 
chemicals out of the DOA. 
 
Concerning the compartment in which emissions take place, another observation can 
be made. Comparing the performances of environmental fate predictions in air and 
water, while emitting chemicals in one of these two compartments (Tables 4-6 and 4-
7, for emissions in water and air, respectively), it was observed that best predictive 
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performances were achieved for a single compartment when emissions occur in itself 
and not in other compartment. Such trend is confirmed for both the water 
compartment (considering 53 chemicals within the DOAs in case III: for emissions in 
water, the performances in water were: q2 = 0.93 and MAE = 0.16; for emissions in 
air, the performances in water were: q2 = 0.92 and MAE = 0.27) and the air 
compartment (considering 48 chemicals within the DOAs in case III: for emissions in 
water, the performances in air were: q2 = 0.92 and MAE = 0.54; for emissions in air, 
the performances in air were: q2 = 0.94 and MAE = 0.20) of the scenario considered. 
 
Since these QSFR models are emulators of the MEM used to generate their training 
data, they inherited its functionality. In Section 4.2, the reference MEM when 
propagating uncertainty in its input properties showed higher variations in 
compartments in which emissions were not taking place. 
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Chapter 5 

Conclusions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The accuracy of the environmental assessment of chemical pollutants by means of 
QSFR models is markedly controlled by the training data of the latter. The assessment 
of new chemicals lying within the domain of applicability of these models is better 
than the assessment of chemicals not following such rule. Since the availability of 
training data is critical for the performance of any QSFR with respect to new 
chemicals, ways for updating the training data of any model should be considered, 
aiming to enhance the coverage of the known chemical space. 
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5.1 Conclusions 
 
 
It is possible to assess the environmental fate of chemical pollutants from molecular 
information by two different approaches: first, estimating missing physicochemical 
properties with QSPR and QSBR models for assessing chemicals with MEMs; and, 
second, assessing chemicals directly with QSFR models. Whenever the uncertainty in 
key properties estimated by QSPRs and QSBRs can affect fate predictions from 
MEM, fate predictions from QSFR models can be a valid alternative as long as the 
chemicals to assess lie within the DOA of these models. 
 
In this work, it was demonstrated for the reference scenario that: 
 

 It is possible to screen the fate of chemicals under level III conditions by 
mapping both the inputs and outputs of a MEM in a SOM, a multivariate 
unsupervised algorithm, for grouping chemicals in terms of their properties 
and environmental distribution. 

 
 MEM models can perform very uncertain fate predictions when several key 

properties, like partition coefficients and degradation rates, show large 
uncertainties. 

 
 QPFR models can perform accurate fate predictions from few 

physicochemical properties. The shortcoming of these models is that they 
require as input variables key partition coefficient and degradation rates, 
which are precisely very difficult to obtain from experiments and literature, 
making unpractical the QPFR approach. 

 
 QSFR models can perform fate predictions from molecular information, at 

different levels of accuracy. QSFR models that use as input counts of 
molecular constituents (atoms, bonds, functional groups and rings) give more 
accurate fate predictions than QSFR models using theoretical molecular 
descriptors. Physicochemical properties are solely required for work 
chemicals, while molecular data are required for both work and new 
chemicals. 

 
 QSFR models can be tailored to predict the fate of specific chemicals classes, 

for allowing clearer relationships between chemicals sharing similar behavior. 
The best way for creating such classes implies the use of invariable molecular 
information, like chemical composition, instead of physicochemical or 
molecular properties that can vary due to estimation or measurement 
procedures. Rules using chemical composition allow class predictions with 
true positives rates of 100%, allowing the selection of tailored QSFR models 
when appropriate. 

 
 New chemicals are best predicted by a QSFR model when they lie within the 

DOA of the model, defined by its training chemicals. For assessing the 
location of new chemicals in the chemical space with respect to the DOA, 
procedures involving multivariate Euclidean distances can be employed. The 
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SOM algorithm can be used to assess the location of the chemicals while they 
are characterized by either the same input variables of the QSFR model or a 
selection of the principal components of such variables. 
 

 Predictions from QSFR models for a given compartment are better when the 
emissions take place in such compartment, due to a less uncertainty from 
partitioning and degradation processes in neighboring compartments. 

 
 

5.2 Applicability of QSFR models 
 
 
Individual physicochemical properties can be estimated from different QSPR and 
QSBR approaches for feeding a given MEM. But, when the number of key properties 
to estimate is elevated, an increase in the uncertainty of the resulting environmental 
fate predictions must be expected. Every property estimation method propagates 
certain level of uncertainty into MEMs; therefore, the simultaneous use of several 
estimated properties in a MEM implies that fate predictions can be affected by high 
levels of uncertainty (Section 4-2). 
 
For extending the applicability of MEMs to chemicals lacking of several key 
properties, the establishment of QSFRs constitute a simple, but effective, approach 
that requires the linkage of fate estimations to molecular information from available 
training chemicals (Figure 1-3). It must be noticed, that QSFRs should not be 
considered definitive substitutes of MEMs, as the former must be developed with 
training data generated, in part, by the latter. The DOA of a QSFR model, like that of 
any QSAR model, is highly dependent on the training chemicals used in its 
development. Estimating the fate of a wide range of new chemicals with the QSFR 
approach requires not only a wide number of training chemicals but also the mapping 
of wide sections of the chemical space. 
 
Figure 5-1 shows a scheme of how the DOA of a QSAR is located in the existing 
chemical space. We can say that a region of the chemical space is known when the 
molecular structures and physicochemical properties of chemicals located in it are 
practically known. In an analogous matter, the DOA of a QSAR is a subsection of the 
known chemical space, occupied by the training chemicals of the model. However, 
since the selection of the training chemicals of a model is a compromise between data 
availability and modeling criteria, the density of training chemicals within the DOA 
may vary from point to point affecting the capacity of the model to estimate the 
activity of chemicals not used in the model training. Wherever the density of training 
chemicals is high the possibilities of estimating accurately the activity of new, but 
enclosed, neighboring chemicals is high as well. For this reason, it is crucial to 
estimate how well the activity of new chemicals can be predicted by checking if they 
are within the DOA of an available QSAR model. 
 
QSFR models should be viewed as dynamic tools that allow environmental fate 
estimations from available work data (molecular information and fate estimation 
examples for a set of work chemicals) that can be updated as more data and better 
learning algorithms become available. This implies that the applicability of a QSFR  
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Figure 5-1. The DOA of QSFR 
models in the chemical space 
The DOA of a QSFR model is delimited by its 
training chemicals, the denser the delimited section 
(in terms of training data samples) the richer the 
DOA region and the better the predictions for new 
chemicals not being part the model and lying in 
such region. 
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should be circumscribed to the moment in which a fate assessment is about to be 
performed and no physicochemical properties are available for a set of chemicals of 
concern. 
 
 

5.3 Future work 
 
 
It has been demonstrated that QSFRs can estimate the final environmental distribution 
or fate of a chemical pollutant lying within their DOA. The QSFR approach can be 
further refined as it is used for environmental assessments and better data and 
algorithms become available. Below, some research lines are proposed for future 
QSFR developments. They can be carried out sequentially or simultaneously.  
 
Make the QSFR approach available to the average environmental modeler. The 
next step in the evolution of the QSFR approach is to have this methodology available 
for standard multimedia environmental assessments. For achieving it, the QSFR 
approach should be implemented in a way that any user (modelers, decision-makers, 
regulators, etc.) can exploit its advantages with little training and data manipulation. 
 
Nowadays, open source software packages, with simple graphical user interfaces, are 
available for molecular modeling (Geldenhuys et al., 2006) and data mining with 
supervised and unsupervised learning algorithms (Mierswa et al., 2006; Witten and 
Frank, 2005). Such tools are free to use by anyone that understands how they work, 
while paid software packages offer extra functions and capacities. With some 
additional programming, both molecular and data mining software could be linked to 
standard MEMs for allowing QSFR-based fate predictions in situ by any user. In such 
case, both a graphical user interface and a standardized routine should be available for 
guiding inexperienced users to estimate the environmental distribution of chemicals 
with QSFRs. If few physicochemical properties for a chemical are missing, the  

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 129

 

CH3 CH3
CH3

CH3

CH3 CH3 CH3

CH3

CH3

N
H

N
H

NH ...

Figure 5-2. Scheme of possible molecular frameworks for creating class-
tailored QSFRs. 
 
If the common framework of several chemicals, conformed by chains and rings, is used to create class-tailored QSFR 
models the capacity of these models can be used to discriminate the environmental fate of new chemicals from small 
structural differences rather than from large ones.  
 
 
QSPR/QSBR approach could be used for estimating them and later assessing the 
chemical with the MEM of preference. 
 
Implementing a QSFR-based fate estimation routine as a plug-in or embedded code in 
standard MEMs can reduce modeling time, facilitating the assessment of chemicals in 
several scenarios. This would also facilitate further research for continuing the 
evaluation and improvement of the QSFR approach as new modeling techniques and 
data become available. 
 
Enhance the DOA of the QSFR models. The DOA of a model is defined by its 
training data set. The wider and denser the DOA of a QSFR model the higher the 
chances of predicting properly the fate of new chemicals, especially when they lie 
within the DOA. For these reason it is of capital importance to collect reliable 
physicochemical properties for training chemicals, they will be used later in a MEM 
for generating examples of environmental fate or distribution, the target variables of 
QSFRs. A great effort should be carried for setting databases of well known 
chemicals to contain every physicochemical property determined experimentally 
under the same conditions for all chemicals. 
 
Another way of enhancing the DOA of QSFR models is restricting them to very 
specific chemical classes, tied to the availability of physicochemical properties for the 
training chemicals of a class of concern. It is known that the molecular structures of a 
great number of chemicals share identifiable framework shapes (Lipkus et al., 2008) 
and that the synthesis of new chemicals from them is still possible like, for example, 
the case of heteroaromatic rings (Pitt et al., 2009). So, the QSFR approach could be 
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specifically applied to chemical classes defined by well known framework shapes, 
like shown in Figure 5-2, letting learning models differentiate chemicals through 
small, rather than huge, structural differences. 
 
Compile physicochemical properties in universal databases for their use in 
MEMs. Current datasets of physicochemical properties are referred to chemicals 
under conditions that may differ from those required by current MEMs. For these 
reason, standard MEMs contain databases with both experimental and estimated 
properties compiled for limited sets of chemicals, limited to the MEM for which the 
latter have been compiled for. For assessing new chemicals, there are several methods 
for estimating partitioning properties (Boethling et al., 2004) but the availability of 
both experimental and estimated degradation data is still poor (Aronson et al., 2006; 
Klöpffer and Wagner, 2007; Kühne et al., 2007). The development of a universal and 
updatable database would significantly improve not only the applicability of MEMs 
but also the applicability of QSFRs, extending the DOA of these models. At present, 
such universal database may seem highly idealized, but its applicability would be 
beyond any doubt. 
 
Perform further research on the input information to use in QSFRs. For every 
new model it is necessary to design, compute and select molecular descriptors. 
Molecular descriptors counting the number of constituents (atoms, bonds, functional 
groups and rings) were found to be a better source of information for QSFR models 
than semi-empirical molecular descriptors describing average molecular properties 
(Section 4.4). This represents a clear advantage over models using as input semi-
empirical descriptors, as these usually vary depending on the specific MO method 
(Bredow and Jug, 2005) used to estimate them. Constituent counts can be easily 
computed when molecular structure is known. However, when using constituent 
counts as molecular descriptors, the environmental fate of some isomeric chemicals 
cannot be distinguished as they may happen to have the same descriptors and 
somewhat different behavior. 
 
There is a recent research trend in the field of QSARs that aims to replace the use of 
molecular descriptors directly by molecular structures, represented as graphs (Goulon 
et al., 2007). It proposes the use of graph machines, which implies that for each 
example in a data set a mathematical function (graph machine) is built, reflecting the 
structure of the molecule under consideration; it is the combination of identical 
parameterized functions, like, for example, feed forward neural network. 
 
The sections of a molecule can provide relevant information about its tendency to 
distribute in the environment. So, it would be interesting to investigate the effect of 
replacing molecular descriptors by graph machines as inputs to QSFRs. It should be 
expected an increase in the generalization capacity of the models as more relevant 
structural information could be available.  
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To be submitted in 2010 to STOTEN 20 
Abstract 21 
 Except for common priority chemical pollutants of 22 
current concern, environmental key physicochemical properties 23 
tend to be unavailable to a wide spectrum of chemicals. This 24 
paper analyses the prospect of assessing the environmental 25 
distribution of chemicals directly from their molecular 26 
information rather than from multimedia models using several 27 
physicochemical properties estimated from QSARs. To this 28 
end, predictions of chemical partitioning, expressed in 29 
dimensionless compartmental mass ratios, have been compared 30 
between: a) SimpleBox 3, a Level III Fugacity model, 31 

propagating reported uncertainty of key physicochemical 32 
properties via statistical sampling; and, b) support vector 33 
regressions acting as quantitative structure fate relationships 34 
(QSFRs), predicting mass ratios from a set of molecular 35 
descriptors comprised by MW and 38 counts of molecule 36 
constituents (atoms, bonds, functional groups and rings). These 37 
assessments comprised 455 chemicals (including priority 38 
chemicals) emitted in a single medium (air or water), in a fixed 39 
geographical scenario representing the Netherlands as a set of 40 
five compartments (air, water, sediments, soil and vegetation). 41 
Out of the 455 chemicals, 375 were used for training and 42 
testing QSFR models, while 80 were reserved for the external 43 
validation of the models. Training and test chemicals were 44 
selected from the set of 375 working chemicals by means of 45 
the self-organizing map (SOM) algorithm. Clustering 46 
chemicals into classes concerning their molecular composition, 47 
the performance of class-tailored QSFRs improved. 48 
Additionally, the domain of applicability (DOA) of these 49 
models, conformed by their training chemicals, was assessed 50 
with SOMs, to demonstrate that mass ratios of new chemicals 51 
(test and validation) within the DOAs are well predicted (in air: 52 
q2 = [0.89 , 0.94], MAE = [0.20, 0.69]; in water: q2 = [0.84, 53 
0.94], MAE = [0.15, 0.35]) compared to those of outlying 54 
chemicals (in air: q2 = [0.68, 0.75], MAE = [1.12, 1.33]; in 55 
water: q2 = [0.38, 0.43], MAE = [0.33, 0.36]). 56 
 57 
Keywords: Multimedia environmental model; uncertainty 58 
analysis; quantitative structure fate relationships; molecular 59 
descriptors; support vector regression; domain of applicability. 60 

61 
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1. Introduction 61 
 Multimedia environmental models (MEMs) are 62 
routinely used to estimate the environmental distribution of 63 
chemical pollutants based on their physicochemical properties, 64 
site-specific parameters and emission rates (Cohen, 1986; 65 
Mackay, 2001; Cohen and Cooter, 2002a, 2002b). In addition 66 
to geographic site-parameters (Cohen, 1986; Cohen and Cooter, 67 
2002a; Mackay, 2001) and emission rates and sources (Breivik 68 
et al., 2004; Breivik et al., 2006; Lohmann et al., 2007; Cohen 69 
and Cooter, 2002a), MEMs serve to screen chemicals with 70 
respect to their persistence in the environment and to provide 71 
information needed to estimate the exposures and associated 72 
risks to human and ecological receptors. 73 
 The reliability of predictions of chemical partitioning 74 
from MEMs are affected by model formulation (i.e., system 75 
definition, included environmental processes, calculation 76 
methods, etc.) and the uncertainties introduced via model 77 
parameters (Webster et al., 2004) including estimates of 78 
physicochemical parameters (Breivik and Wania, 2003; Cohen 79 
and Cooter, 2002a, 2002b). In particular, uncertainty in 80 
partitioning and degradation parameters can significantly affect 81 
MEM predictions (Citra, 2004; Eisenberg et al., 1998; 82 
Kawamoto et al., 2001; Kühne et al., 1997; Toose et al., 2004). 83 
Even small structural differences can lead to large differences 84 
in chemical activity (Nikolova and Jaworska, 2003). Therefore, 85 
it is imperative to develop reliable methods for estimating 86 
chemical physicochemical properties with careful 87 
considerations of data quality and diversity (Furusjö et al., 88 
2006), and accurate discrimination of chemical descriptors that 89 
serve to characterize the chemicals (Cronin and Schultz, 2003, 90 
Stouch et al., 2003). 91 

 The lack of adequate physicochemical and toxicological 92 
information for most commercial chemicals and the risk that 93 
they may represent for human health and the environment has 94 
motivated the development of new regulatory efforts (Tickner 95 
et al., 2005) such as REACH in the European Union and the 96 
Inventory Update Rule (US-EPA, 2006) in the United States. 97 
These rules aim to collect information about the characteristics, 98 
emission rates and existing volumes of commercial chemicals 99 
for facilitating their screening and deciding whether to 100 
authorize or ban their production. Compiling all mandatory 101 
data will be a formidable task given the large number of 102 
chemicals that may be of concern.  For example, in September 103 
2009, the CAS registry, one of the largest substance registry 104 
databases, reported its 50-millionth unique chemical (Toussant, 105 
2009). It is accepted that the regulatory assessments of the 106 
multimedia distribution of chemicals for which 107 
physicochemical properties are lacking will require the use of 108 
estimation methods that rely on quantitative structure activity 109 
relationships (QSARs) (Fjodorova et al., 2008; Worth et al., 110 
2007). 111 
 QSARs are accepted worldwide in standard 112 
environmental assessments and decision-making tasks (Cronin 113 
et al., 2003; Walker et al., 2002). QSARs are based on 114 
establishing quantitative relations between the target 115 
physicochemical (Hugo, 2002), or toxicological properties 116 
(Devillers, 2003; Mackay et al., 2003; Mackay and Webster, 117 
2003) of chemicals and their molecular information. However, 118 
uncertainties are often associated with the use of QSARs, 119 
especially for chemicals that deviate in their molecular 120 
structure from those used in the QSAR development (Taskinen 121 
and Yliruusi, 2003). In general, partitioning data (Boethling et 122 
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al., 2004; Mackay, 2000) are more readily available (from 123 
experiments or estimations) relative to degradation data 124 
(Aronson et al., 2006; Howard et al., 1991; Klöpffer and 125 
Wagner, 2007; Raymond et al., 2001).  Selecting appropriate 126 
chemical descriptors is crucial for the development of accurate 127 
QSARs as demonstrated, for example, for vapor pressure 128 
(Godavarthy et al., 2006; Yaffe and Cohen, 2001), water 129 
solubility (Yaffe et al., 2001), Henry’s law constant (Modarresi 130 
et al., 2007; Yaffe et al., 2003) and octanol-water partition 131 
coefficient (Yaffe et al., 2002). QSAR development must 132 
consider the selection of model input features (Saeys et al., 133 
2007), often from a large number of descriptors (Bredow and 134 
Jug, 2005; Burden et al., 2009; Duca and Hopfinger, 2001; 135 
Senese et al., 2004; Todeschini and Consonni, 2000), the 136 
selection and tuning of learning algorithms for building 137 
relationships (Basheer and Hajmeer, 2000; Xu et al., 2006), the 138 
risk of overtraining (Byvatov et al., 2003), the external 139 
validation of the models (Golbraikh and Tropsha, 2002; OECD, 140 
2007; Schüürmann et al., 2008) and the definition of 141 
applicability domains (Weaver and Gleeson, 2008).  142 
 There are essentially two possible approaches to 143 
estimate the set of chemical properties required for modeling 144 
the environmental multimedia distribution of chemicals. The 145 
first is to estimate the properties of each required chemical 146 
parameter from independent QSPR models. The second is to 147 
consider a single QSPR for the collective chemical properties 148 
whereby given a set of chemical descriptors the various 149 
environmentally relevant physicochemical properties and 150 
reaction rate parameters are predicted by the single QSPR. 151 
However, different levels of uncertainty can be present in any 152 
of these approaches. 153 

There is the need of assessing the fate of chemicals 154 
when physicochemical properties are unavailable or extremely 155 
noisy, even when using QSPR-based estimation approaches. 156 
For this reason, an alternative approach can be conveniently 157 
employed when a given regulatory multimedia model is used 158 
for a given emission scenario for specific geographical and 159 
meteorological settings. Such approach is usually expected to 160 
be linked to the molecular structure of chemicals. Preliminary 161 
proposals have considered the implementation of QSPRs in 162 
standard MEMs (Breivik and Wania, 2003; Zukowska et al., 163 
2006) or the establishment of structure fate relationships by 164 
partial orders (Brüggemann et al., 2006) . Here, we propose the 165 
training of machine-learning models (Witten and Frank, 2005) 166 
to map directly output of MEMs (in terms of chemical 167 
concentrations or media mass distribution) to relevant chemical 168 
descriptors. The resulting correlation model, which is referred 169 
to herein as a quantitative-structure-fate-relation (QSFR), has 170 
the advantage of providing direct information on the 171 
environmental distribution of chemicals using a consistent set 172 
of chemical descriptors with respect to chemically relevant 173 
multimedia model properties. 174 

Note that the term environmental fate is often 175 
associated to the processes by which chemicals move and are 176 
transformed in the environment, but it has also been associated 177 
only to the transformation processes. In this later case, the first 178 
meaning is referred as fate and transport. In this paper we tried 179 
to avoid the use of this term, but we have included it, in its first 180 
meaning, to identify the kind of activity we try to describe. So, 181 
the QSARs developed here have been called quantitative 182 
structure fate relationships (QSFR). 183 
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 The present paper reports on the prospect of assessing 184 
the environmental fate of chemicals directly from their 185 
molecular information (using QSFRs trained with learned 186 
MEM model output) instead of a MEM using all properties 187 
estimated by QSPRs and QSBRs (Figure 1). To this end, 188 
environmental chemical distributions for a set environmental 189 
scenario were compiled (for a set of 455 chemicals) using 190 
SimpleBox 3 (SB3) (Brandes et al., 1996; den Hollander and 191 
van de Meent, 2004; den Hollander et al., 2004; van de Meent, 192 
1993), considering the range of values of key physicochemical 193 
properties (Boethling et al., 2004; Kühne et al., 2007) via 194 
statistical sampling. The mass distribution of a set of working 195 
chemicals, expressed in mass ratios, along with a selected set 196 
of chemical descriptors were then employed to derive QSFR 197 
models based on support vector regressions (SVR) (Drucker et 198 
al., 1996). Figure 1 depicts these two possible approaches: 199 
predict chemical properties from QSPRs and chemical 200 
descriptors to feed a multimedia model to obtain final 201 
concentrations or predict these concentrations directly from 202 
chemical descriptors using QSFRs. Of course, these QSFRs 203 
have to be developed by means of data obtained following the 204 
first approach for well known chemicals.  The QSFR approach 205 
was contrasted with predictions from the SB3 model affected 206 
by variations in its input physicochemical properties. This 207 
study demonstrated that the environmental distribution of 208 
chemicals not used to develop the models can be reasonably 209 
predicted by QSFRs when these new chemicals to assess lie 210 
within the domain of applicability (DOA) of the latter. 211 
 212 
2. Scenario for chemical multimedia distributions 213 
2.1. Multimedia model 214 

 Multimedia environmental simulations were carried 215 
out, using the Level III (steady state with mass transfer 216 
limitations) fugacity model SB3 (Brandes et al., 1996; den 217 
Hollander and van de Meent, 2004; den Hollander et al., 2004; 218 
van de Meent, 1993), to assess the multimedia distribution of 219 
455 chemicals (Martínez, 2010)  in the Netherlands as a model 220 
environment represented for a reference emission rate of 1 221 
ton/yr in a specific medium. A total of 375 working chemicals 222 
were used for training and testing QSFR models, while 80 223 
chemicals were reserved for model validation. 224 

Using site-specific parameters previously reported for 225 
the Netherlands (Struijs and Peijnenburg, 2002), this 226 
geographic region was described for SB3 (den Hollander and 227 
van de Meent, 2004; den Hollander et al., 2004) usage by a set 228 
of 5 homogeneous compartments at the regional scale of this 229 
MEM: air, water (including fresh and sea water), sediments 230 
(including fresh water sediments and sea water sediments), soil 231 
(including natural, agricultural and other soil) and vegetation 232 
(including natural and agricultural vegetation). 233 
 The steady state compartmental chemical mass 234 
distributions calculated from the SB3 model are expressed as 235 
the dimensionless mass ratio of the chemical mass in the 236 
compartment relative to the total amount of the chemical, mt 237 
(g) emitted over a period of one year: 238 

n,g g
n,g

t

C V
w

m
    (1) 239 

where Cn,g (g/m3) is the steady state concentration of a 240 
pollutant n in compartment g of volume Vg (m

3). It is noted 241 
that in the present steady-state (Level III) model, the variation 242 
of mass partitioning among the different chemicals is governed 243 
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only by their physicochemical, transport and degradation 244 
constants since all other parameters are invariant. 245 
 246 
2.2 Physicochemical properties 247 

The SB3 model requires a total of 6 physicochemical, 2 248 
transport and 4 degradation parameters for Level III type 249 
simulations.  The physicochemical parameters included 250 
molecular weight (MW, g/mol), melting point (Tm, K), vapor 251 
pressure (Pv, Pa), octanol-water partition coefficient (Kow, 252 
dimensionless), air-water partition coefficient (Kaw, 253 
dimensionless), and the solid-water partition coefficient (Ksw, 254 
dimensionless). The chemical degradation parameters in air 255 
(kair, 1/s), water (kwater, 1/s), sediment (ksed, 1/s), and soil (ksoil, 256 
1/s) media were all for first-order kinetics, and the fundamental 257 
transport coefficients were the mass diffusivity of the chemical 258 
in air (Dair, m

2/s) and water (Dwater, m
2/s). SB3 uses Tm and Pv 259 

to calculate internally the air-aerosol partition coefficients 260 
according to Junge (1977). 261 

Some parameters (MW, Tm, Pv, and Kow) have been 262 
directly retrieved from the PHYSPROP database (SRC, 2008), 263 
while a set of parameters (Kaw, Ksw, Dair, Dwater, kair) has been 264 
estimated from data in such database and another set of 265 
parameters (kwater, ksed, ksoil) has been estimated from MITI-I 266 
biodegradability tests (NITE, 2006).  267 

Kaw values were estimated from Henry’s law constants 268 
values divided by the ideal gas constant (8.314 J/(mol·K)) and 269 
the reference temperature (298.15 K) (Mackay, 2001). 270 
Assuming for solids an average organic carbon content of 2 % 271 
and a solid soil density of 2.5 kg/L, Ksw values were estimated 272 
from Kow values (European Commission, 2003). Dair and Dwater 273 
values were estimated considering that diffusivity coefficients 274 

vary inversely with the square root of the MW and using as 275 
references the diffusion coefficient of water in air and the 276 
diffusion coefficient of oxygen in water (Schwarzenbach et al., 277 
2003). 278 

Air degradation was considered a result of reaction of 279 
chemicals with hydroxyl radicals at a rate given by: 280 

airn,OHOHair CCkr     (2) 281 

where rair (g/m3·s) is the degradation rate in air, kOH· (m
3/g·s) is 282 

the second-order reaction constant (SRC, 2008) and COH· 283 
(g/m3) is the concentration of hydroxyl radicals in air. 284 
Considering a global average concentration of hydroxyl 285 
radicals of COH· = 2.66x10-11 g/m3 (Prinn et al., 2001), pseudo 286 
first-order degradation rate constants has been calculated from: 287 

 OHOHair Ckk    (3) 288 

The degradation rate constant in water, kwater, was 289 
estimated from results of MITI-I biodegradability tests (NITE, 290 
2006). The MITI-I tests are expressed as the degradation 291 
percentage of chemical samples (deg%) over time periods (t) 292 
ranging from 2 to 4 weeks, with sample mass determined by 293 
direct methods (using total organic carbon, high performance 294 
liquid chromatography and gas chromatography) and indirect 295 
methods (measuring biological oxygen demand). In the current 296 
work, kwater values were estimated as follows: 297 


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
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

 

604800

1

100

deg%
1ln

t

1
k water    (4) 298 

where t (weeks) is the range period of a test and deg% the 299 
degradability percentages determined by the biological oxygen 300 
demand (BOD) methodology. Only compounds for which their 301 
degradation percentage between the BOD method and the total 302 
organic carbon method has been within 10% were included 303 
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into the working and validation chemical sets. Results from 304 
chromatographic techniques were not used because they have 305 
not been found as reliable as results using BOD (Sedykh and 306 
Klopman, 2007). For modeling consistency, when using 307 
Equation 4 all deg% values experimentally reported to be 308 
higher than 100 % or lower than 0 %, due to error 309 
measurements in the MITI-I tests, have been set to be equal to, 310 
respectively, 99 % (extremely fast degradability) or 1% 311 
(extremely low degradability). 312 

Noticing that Aronson and Howard (1999) indicated 313 
that degradation half lives in water are similar to those in soil 314 
and that degradation rates in soil tend to be 3 to 4 times faster 315 
that degradation rates in flooded soil, in this study ksoil values 316 
were estimated to be equal to kwater values while ksed values 317 
were assumed to be 3.5 times slower than ksoil (considering the 318 
flooded soil as a surrogate of the sediment compartment). 319 
 320 
2.3 Molecular information 321 
 Molecular information consisting of 39 molecular 322 
descriptors was compiled for each of the 455 study chemicals 323 
by means of the CACHE molecular simulations package 324 
(Fujitsu, 2004). The set of 39 molecular descriptors included 325 
molecular weight, 10 atom counts (all atoms, bromine, carbon, 326 
chlorine, fluorine, hydrogen, nitrogen, oxygen, phosphorus, 327 
and sulfur), 4 bond counts (all bonds, single bonds, double 328 
bonds and triple bonds), 16 group counts (aldehyde, amide, 329 
amine, sec-amine, carbonyl, carboxyl, cyano, ether, hydroxyl, 330 
methyl, methylene, nitro, nitroso, sulfide, sulfone, and thiol), 8 331 
ring counts (all rings, aromatic rings, small rings, 5 membered, 332 
aromatic 5 membered, 6 membered, aromatic 6 membered and 333 
7-12 membered). 334 

 335 
3. Methods 336 
3.1 Uncertainty assessment of the MEM 337 
 For simulating the effect of uncertainties in 338 
physicochemical properties, as estimated from QSPRs or 339 
QSBRs, on the resulting chemical distribution in the 340 
environment, a series of SB3 model simulations were carried 341 
out for all 455 chemicals applying 1000 random combinations 342 
(Monte Carlo simulations) of the following independent 343 
chemical properties: Tm, Pv, H, Kow, kair and kwater. Because Kaw, 344 
Ksw, ksed, ksoil are estimated properties, they vary as result of the 345 
variation of the independent properties. Finally, Dair and Dwater 346 
are not subject of variation because they have been estimated 347 
from MW. 348 
 The uncertainty sources, in terms of statistical 349 
distributions, assigned to the varying independent properties 350 
are listed in Table 1. For Tm, Pv, H, Kow standard deviations 351 
were taken from statistics of widely recommended QSPRs 352 
(Boethling et al., 2004), considering results for external 353 
validation chemicals where possible. For kair and kwater the 354 
statistical distributions were taken from QSBRs (Kühne et al., 355 
2007). It has been assumed that the mean value of every 356 
distribution coincides with the property value compiled as 357 
described in Section 2.2. Finally, it has been assumed that a 358 
variable follows a normal distribution if the standard deviation 359 
given by Boethling et al. (2004) is in unit variables. When the 360 
standard deviation is given in logarithmic units, a lognormal 361 
distribution has been considered. Although the standard 362 
deviation of Pv is given in terms of mmHg, a lognormal 363 
distribution has been used to avoid negative values in 364 
chemicals with very low Pv. 365 
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The outputs of the SB3 model from 1000 random 366 
combinations for each chemical in terms of dimensionless mass 367 
ratios, as schematized in Figure 2 for Endrin, were used to 368 
generate a database. This database provided an estimation of 369 
the output distribution that one can expect when using 370 
recommended QSPRs and QSBRs to estimate the 371 
environmental distribution of chemicals. This database was 372 
used as a reference for comparing the predictions of the QSFR 373 
approach depicted in Figure 1. 374 
 375 
3.2 QSFR model development 376 
 In this study, QSFRs have been developed to estimate 377 
the output of the SB3 for each compartment of the reference 378 
pollution scenario. It is expected that these QSFR models will 379 
perform better than or at least in a similarly to the SB3 model 380 
when fed with properties estimated from several QSPRs and 381 
QSBRs. The QSFR relates the chemical mass ratio wg in a 382 
specific environmental compartment, to the chemical's set of 383 
molecular descriptors L1 d,...,d . 384 
 385 
Fundamentals. Given N chemicals (characterized by K 386 
properties) emitted in a geographic region described by G 387 
compartments, a reference MEM can be considered to be a 388 
multivariate function of the form: 389 

),,( SEPC f    (5) 390 
where C is a matrix of mass ratio predictions of size NxG, P is 391 
a matrix of physicochemical properties of size NxK, E is a 392 
matrix of emission rates of size NxG and S is a matrix of site-393 
specific parameters. When E and S remain constant, the 394 
chemical distribution in the environment can be solely 395 

analyzed in terms of P, the collection of physicochemical 396 
properties of chemicals to assess. 397 
 When key physicochemical properties are unavailable 398 
for chemicals of concern (P is unknown), and alternative 399 
multimedia environmental models can be developed, as 400 
explained below, from L molecular descriptors in a matrix D 401 
(of size NxL) by means of QSFRs of the form: 402 

)(QSFR DC f403 

In order to develop the QSFR model as expressed by 404 
Eq. (6), a set of Ntr training chemicals (with Ntr < N) is 405 
required for which all properties and molecular structures are 406 
known. The model is then adjusted to emulate the output of the 407 
reference MEM (Eq. 5), by tuning its internal parameters with 408 
respect to a set of Nte test chemicals. Its performance on new 409 
chemicals is later evaluated with a set of Nval validation 410 
chemicals. 411 
 412 
Data pre-processing. All input and output variables with 413 
values that span more than two orders of magnitude were 414 
logarithmically (base 10) scaled and then normalized in the 415 
range [-1,1] as follows: 416 

    1
yy

yy
2yN

minmax

mini
i1,1 




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





    (7) 417 

where yi is a value to be normalized and N[-1,1](yi) is its 418 
normalized counterpart. ymin and ymax are, respectively, the 419 
minimum and maximum values in the working data set. Since 420 
the available molecular information span less than two orders 421 
of magnitude, all molecular descriptors have been directly 422 
normalized in the range [-1,1] with no prior logarithmic scaling. 423 
 424 
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Training, test and validation data sets. To build a QSFR 425 
model, the original set of 375 working chemicals was split into 426 
a training data set and a test data set. In every case, about 80 % 427 
of the working chemicals have been dedicated to training every 428 
QSFR model, while the resting 20 % of working chemicals 429 
have been reserved for testing its performance while tuning its 430 
parameters. The data selection scheme, based on the Self-431 
Organizing Map (SOM) algorithm (Kohonen et al., 1996), has 432 
been used to force the diversity of the training data set and to 433 
ensure a proper representation of the test data set in the former. 434 
The SOM is a procedure for mapping and clustering high-435 
dimensional data by fitting an optimal number of units (also 436 
called neurons, cells or nodes) to the data, while minimizing 437 
the Euclidean distance between units and data points (i.e. 438 
minimizing the mean quantization error), and keeping the 439 
vicinity of units in both the map and the data space (i.e. 440 
minimizing the mean topological error). The procedure for 441 
selecting the training and test data of a single QSFR has been 442 
as follows:  443 
 First, SOMs of different sizes were trained to fit the 375 444 
working chemicals in the input-target space of the desired 445 
QSFR model using the SOM toolbox 5 for Matlab (Vesanto et 446 
al., 2000). All SOMs have been set to have toroidal shapes and 447 
hexagonal lattices (and not other shapes and lattices) to 448 
minimize both the mean quantization error ( errorq ) and the 449 

mean topological error ( errort ), while inspecting that such errors 450 

are the lowest for each SOM size. The dimensions of the SOM 451 
comprise all molecular descriptors selected and the target 452 
variable of the QSFR. Note that errorq  and errort  are estimated, 453 

respectively, as (Uriarte and Martín, 2005): 454 





wk

i

N

1n
i

wk
error N

1
q xmx    (8) 455 

and 456 

 



wkN

1n
i

wk
error N

1
t xu    (9) 457 

where: Nwk is the number of work data vectors; 
ixm is the best 458 

matching unit (BMU) the corresponding data vector ix ;  and, 459 

u( ix ) is a function that yields 1 if the BMU and the next BMU 460 

of ix  are adjacent and, 0 otherwise. 461 
 Second, for each trained SOM, chemicals have been 462 
included into training data sets when showing the lowest or 463 
highest quantization error with respect to their corresponding 464 
BMUs. Also, chemicals having extreme values (the lowest or 465 
highest values in the whole working data set) in target variables 466 
have been included in the training data sets. All remaining 467 
working chemicals not following such characteristics have 468 
been moved to the corresponding test data set. 469 
 Finally, only one pair of training and test data sets is 470 
considered for the development of a single QSFR, when the 471 
number of training chemicals is about 80 % (±5 %) the number 472 
of working chemicals. The bigger the SOM, the higher the 473 
number of training chemicals and the lower the number of test 474 
chemicals proposed by the algorithm. By setting about 20% of 475 
work chemicals for a test data set, it is possible to tune the 476 
parameters of the supervised learning algorithm conforming 477 
the QSFR to generalize well for chemicals represented in the 478 
training data set, but not used in the model. 479 

The 80 validation chemicals have not been used in any 480 
stage of the development of QSFRs. However, it has been 481 
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assured that each of the physicochemical properties and 482 
molecular descriptors of these 80 chemicals are within the 483 
value ranges of the attributes that characterize the 375 working 484 
chemicals.  485 
 486 
Supervised learning algorithms. Support vector regressions 487 
(SVR) (Drucker et al., 1996) using RBF kernel functions have 488 
been used to build QSFRs, per compartment g, with basis on 489 
the fixed training data set. The QSFR models have the form: 490 

             L1,1-11,1-QSFRg101,1- dN,...,dNwlogN f  (10) 491 

where the function f QSFR represents a SVR that links 492 
normalized molecular descriptors to normalized logarithmic 493 
mass ratios. The ε-SVR implementation in the software 494 
package RapidMiner 4.4 (Mierswa et al., 2006) was used. 495 
 For every compartment and sets of input features 496 
considered, an iterative evaluation of 4000 models has been 497 
implemented for tuning the parameters of an optimal SVR 498 
model (Mierswa et al., 2006). For every combination of 499 
parameters, a SVR is developed with the training data set and 500 
evaluated on the test and validation data sets. An optimal SVR 501 
model is selected when having the lowest mean absolute error 502 
(MAE) on the test data set among the SVRs with the 10 highest 503 
squared correlation (R2) values on the test data set. This criteria 504 
aims to select a model with optimal generalization capabilities 505 
based on chemicals not included in the training set, but 506 
somehow represented in it. The MAE and R2 values measure 507 
the performance of the SVR models comparing the target and 508 
prediction values of the N chemicals of a data set (tr = training, 509 
te = test or val = validation) as follows: 510 
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where tn and pn are, respectively, the target (MEM output) and 514 
predicted (SVR output) values of normalized logarithmic mass 515 
ratios of a chemical n in a given compartment. The overbar 516 
indicates averages running over all the Nset chemicals of a 517 
given data set (set = tr, te or val). 518 
 Having selected a SVR model for an optimal set of 519 
parameters, its accuracy is estimated by means of both a 10-520 
fold cross validation (CV) and a leave one out (LOO) 521 
validation procedure running over all the 375 working 522 
chemicals. Note that the evaluation of the SVRs is based on 523 
normalized logarithms of mass ratios. 524 
 525 
Data post-processing and model performance. After 526 
evaluating QSFR models (Equation 10) with simple data sets 527 
(training, test and validation) and with 10-fold CV and LOO 528 
validation procedures, the final normalized predictions for all 529 
chemicals have been denormalized (Equation 7), yielding 530 
logarithmic mass ratios. 531 

For measuring the performance of a compartmental 532 
QSFR model with respect to a single data set, its predictions 533 
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have been compared with respect to the target values, i.e., the 534 
logarithmic mass ratios originally generated by SB3. 535 
 The differences between targets and predictions are 536 
estimated, in average, calculating a mean absolute error 537 
measure as follows: 538 

   



Nset

1n

predicted
n10

target
n10set wlogwlog

N

1
MAE ; set = tr, te or 539 

val.   (13) 540 
the lower the MAE of a data set, the lower the differences 541 
between the targets and predictions of all chemicals in the set. 542 
 The predictive performance of a model is assessed in 543 
terms of the predictive squared coefficient (q2), as suggested by 544 
Schüürmann et al. (2008) as follows: 545 
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or val.   (14) 547 
with the q2 coefficient varying in the range (–∞,1]. Models 548 
with q2 values closer to 1 have a high predictive performance, 549 
while models having q2 values equal or lower than zero have 550 
predictions worst than the simply average of all targets. 551 
 552 
4. Results and discussions 553 
 Results and discussions for QSFR models emulating the 554 
reference scenario are presented below, considering emissions 555 
in the water compartment. QSFR models developed and tested 556 
for predicting mass ratios in the air and water compartment of 557 
the scenario are presented in Section 4.1. Finally, in section 4.2, 558 

the clustering of chemicals is used to discuss about how QSFRs 559 
can be improved and in which conditions should be used, 560 
respectively, by training class-tailored models and being sure 561 
that new chemicals fall within the DOA of the models. Also, 562 
the performance of air-emission models is briefly presented.  563 
 564 
4.1 Chemical distribution assessment  565 
 566 
Feature selection. In this study, two types of molecular 567 
descriptors were tested as input for the QSFR models: 568 
molecular properties calculated from a semi-empirical 569 
molecular orbital method and simple counts of molecular 570 
constituents. 571 

A wide variety of molecular descriptors (topological, 572 
electronic, geometric, etc.), derived from semi-empirical 573 
approximations of the molecular orbital (MO) theory (Bredow 574 
and Jug, 2005), have been widely used as input in a wide 575 
variety of property estimation methods (Devillers, 2003; 576 
Raymond et al., 2001; Taskinen and Yliruusi, 2003). So, 577 
following the methodology of Section 3.2, preliminary QSFR 578 
models were developed using as input combinations of MW 579 
and 22 semi-empirical descriptors estimated with CACHE 580 
(Fujitsu, 2004) applying the Parameterized Model 3 (PM3) of 581 
the MO theory (James, 1989). The descriptors used were 582 
selected by means of the CFS filtering algorithm (Hall, 1999) 583 
from an initial set of variables comprising MW and 22 semi-584 
empirical descriptors: heat of formation (ΔHf, kcal/mol), molar 585 
refractivity (MR, m3/mol), polarizability (PO, Å3), total 586 
hybridization dipole moment (μhyb, debye), total point charge 587 
dipole moment (μpc, debye), total sum dipole moment (μ, 588 
debye), area (Area, Å2), volume (Vol, Å3), number of filled 589 
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levels (NFL), highest occupied molecular orbital energy 590 
(HOMO, eV), lowest occupied molecular orbital energy 591 
(LUMO, eV), ionization potential (IP, eV), electron affinity 592 
(EA, eV), connectivity indexes (0χ, 1χ, 2χ), valence connectivity 593 
indexes (0χv, 1χv, 2χv) and kappa alpha shape indexes (1κ, 2κ, 3κ). 594 

As a second type of input variables, counts of molecular 595 
constituents were tested on QSFR models. It is known that 596 
fragment contributions have proven to be of great help in the 597 
development of QSPRs (Boethling et al., 2004) and QSBRs 598 
(Raymond et al., 2001) for a wide range of chemicals. Such is 599 
the case of the models traditionally included in EPI suiteTM 600 
(SRC, 2008). So, it seems plausible predicting the 601 
environmental distribution of chemicals directly from 602 
molecular information via QSFRs (Equation 10) as 603 
schematized in Figure 1, grounded on counts of molecule 604 
constituents (atoms, bonds, functional groups and rings). 605 
Supported on such idea, the QSFR models of this work were 606 
developed (as explained in Section 3.2) to use as input MW 607 
and counts of molecular constituents. Table 2 lists the 608 
molecular descriptors considered and their minimum and 609 
maximum values in the working and validation data sets. 610 

With respect to the 80 validation chemicals, preliminary 611 
QSFR models of the air and water compartments yielded better 612 
performances using MW and counts of molecular constituents 613 
(in air: q2 = 0.64 and MAE = 1.34, in water: q2 = 0.68 and 614 
MAE = 0.39) instead of combinations of MW and molecular 615 
properties from semi-empirical MO estimations (in air: q2 = [-616 
0.09, 0.15] and MAE = [2.30, 2.57], in water: q2 = [0.27, 0.49] 617 
and MAE = [0.46, 0.47]). So, final QSFR models, presented 618 
below, were built using MW and counts of molecular 619 
constituents. 620 

 621 
Selection of training and test chemicals. A critical step in the 622 
development of optimal QSFRs has been the selection of their 623 
training and test chemicals, which affect the generalization 624 
capability of the resulting models to new chemicals. Their 625 
selection was possible by screening the work chemicals (acting 626 
as example vectors of multimedia environmental modeling for 627 
the scenario, for which all inputs and targets are known) with 628 
the SOM algorithm. Figure 3 shows two SOMs clustering the 629 
375 work chemicals of the reference scenario in terms of the 630 
mass ratios of single compartments and their molecular 631 
descriptors (MW and 38 non-zero counts of molecule 632 
constituents). The first SOM (Figure 3a) clusters chemicals for 633 
the air compartment, while the other (Figure 3b) does the 634 
clustering for the water compartment. Every SOM fits as close 635 
as possible the work chemicals in their corresponding 636 
multivariable space (comprised by 40 dimensions: one 637 
compartmental mass ratio and 39 descriptors) by clustering 638 
neighboring chemicals in their BMUs. 639 
 A work chemical is included in the training data set 640 
when it has the lowest or highest quantization error (qerror) with 641 
respect to its BMU. Also, a work chemical is included in the 642 
training data set, when it has the lowest or highest mass ratio 643 
among all other work chemicals. The work chemicals not 644 
following any of these two cases form the test data set of the 645 
corresponding QSFR. The selection of training chemicals with 646 
regard to a SOM is demonstrated in Figure 4, which takes as 647 
example three SOM units from Figure 3a clustering 3, 4 and 5 648 
work chemicals, respectively: units K15, O2 and U8. Within a 649 
single SOM unit, the more similarities between chemicals, in 650 
terms of structure and environmental distribution, the lower the 651 
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differences between their qerror values; e.g., between dieldrin 652 
and endrin in unit K15, or between ethanal, butanal and 653 
propanal in unit U8. So, selecting the training chemicals, in 654 
each SOM unit, as the ones with the lowest and highest qerror 655 
forces the diversity of the training set and assures the vicinity 656 
of the test chemical respect to the training ones. 657 

The domain of applicability (DOA) of a QSFR is 658 
defined here as the set of qerror ranges covered within each non-659 
empty BMU by the BMU itself till the farthest training 660 
chemical clustered in the BMU (the one with the largest qerror). 661 
 Filled SOM units that cluster two or more work 662 
chemicals contribute with a maximum of two training 663 
chemicals; while, SOM units clustering one chemical only 664 
make one contribution. Note that, as explained in Section 3.2, 665 
the size of any optimal SOMs was set to guarantee a number of 666 
training chemicals approximately equal to 80 % of the 375 667 
work chemicals available (per compartment); so, the number of 668 
training chemicals proposed by the SOMs of Figure 3 for 669 
developing QSFRs for the air and water compartments of the 670 
reference scenario, resulted to be in total 300 (80.0 %) and 299 671 
(79.7 %), respectively. 672 
 673 
Prediction of environmental distributions. QSFRs modeling 674 
the air and water compartment of the reference scenario were 675 
developed by building SVRs that relate molecular descriptors 676 
and mass ratios for the training chemicals (Equation 10). 677 
 For assessing the generalization capacity of QSFRs in 678 
more realistic conditions, mass ratio predictions must be 679 
evaluated for chemicals not used at all in the development of 680 
the models. To this end, the 80 validation chemicals were used 681 
(Section 2). 682 

 Figure 5 compares target values (reference mass ratios) 683 
generated by the MEM of the scenario to predictions resulting 684 
from two approaches. First, scatter plots from the use of 685 
optimized QSFRs (from MW and 38 non-zero count of 686 
molecular constituents); and, second, the ranges of the output 687 
obtained from the Monte Carlo simulation described in Section 688 
4.1. While Figure 5a is referred to a specific QSFR for air 689 
(QSFRair), Figure 5b is referred to a QSFR for water 690 
(QSFRwater). 691 
 At first sight, it can be noticed in Figure 5 that mass 692 
ratios resulting from the QSFRs tend to cover prediction ranges 693 
somewhat similar to those from the reference MEM running 694 
under Monte Carlo realizations (MC-MEM), presented in 695 
Section 4.1. The most deviated predictions from QSFRs tend to 696 
be close to the limits delimited by the variation ranges of the 697 
MEM, especially for the air compartment in which mass ratios 698 
tend to be very small and sensitive to input uncertainties in 699 
both estimation approaches. 700 

Depending on the “real” mean reference property 701 
values of a chemical, the random property values generated by 702 
statistical distributions of standard property estimation methods 703 
(Table 1) produced variations in the outputs of MC-MEM of up 704 
to 12 logarithmic units. In the same manner it can be inferred 705 
that, when estimating input variables from available QSPRs 706 
and QSBRs, the output of standard MEMs should undergo a 707 
similar variability. 708 

Table 3 shows for MC-MEM, average q2 and MAE 709 
measurements computed considering 1000 realizations for all 710 
the 455 chemicals, giving for the air compartment, q2

mean = 711 
0.88 and MAEmean = 0.80; while, for the water compartment, 712 
q2

mean = 0.86 and MAEmean = 0.17. Table 3 also shows the 713 
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predictive performances of QSFRair and QSFRwater per data set, 714 
in terms of MAE and q2 as defined in equations 13 and 14. The 715 
predictive capacity of the QSFR models of Figure 5 tends to be 716 
high for sets of chemicals located within the boundaries of the 717 
DOA of a QSFR, which is the case of the training and test data 718 
sets (with chemicals previously selected with the SOMs of 719 
Figure 3). Lower predictive abilities in these QSFR models can 720 
be expected for a set of new chemicals (validation set), when 721 
some chemicals fall out of the DOA. The QSFR for water 722 
(Figure 5b) generalizes much better that the QSFR for air 723 
(Figure 5a), evidenced by the minimal dispersion in the mass 724 
ratios from the former model. This is markedly supported by 725 
the overall performances of these models, including all the 455 726 
chemicals of the scenario (comprising the training, test and 727 
validation sets simultaneously): for air, q2 = 0.82 and MAE = 728 
0.91; while, for water, q2 = 0.81 and MAE = 0.32. 729 
 QSFR models using simple counts of molecular 730 
constituents, as the ones we propose here, cannot distinguish 731 
between isomers that have in common the exact number of 732 
bonds, functional groups and ring structures (with these 733 
characteristics, there are 81 working and 10 validation isomeric 734 
chemicals out of the 375 working and 80 validation chemicals, 735 
respectively). That characteristic is not a serious drawback 736 
because transport and degradation properties for these isomers 737 
are not extremely different, at least in our working and 738 
validation data sets. On the other hand, molecular constituent 739 
counts have a great advantage, they can be easily retrieved or 740 
calculated known the molecular formula or structural code of 741 
new chemicals (e.g., SMILES, InChl, OpenSMILES, etc.); this 742 
makes them suitable for simple and rapid screenings. Since the 743 
constituents (atoms, bonds, groups and rings) of a chemical are 744 

counted without errors and SVRs yield the same model if given 745 
the same training data and parameters (unlike ANNs, which 746 
adjust internal parameters in search of a local minimum error), 747 
QSFRs using these two features can be reproduced easily. This 748 
represents a clear advantage over models using as input semi-749 
empirical descriptors, as these usually vary depending on the 750 
specific MO method (Bredow and Jug, 2005) used to estimate 751 
them. 752 
 753 
4.2 Assessment of the Chemical Domain 754 
 755 
QSFRs models for classes of chemicals. For improving the 756 
prediction performance of the QSFRs described in section 4.2, 757 
it was considered the development of QSFRs specialized in 758 
very specific classes of chemicals. This implies, first, the 759 
definition of chemical classes (families) and, second, the 760 
development and use of specialized QSFR models (one per 761 
chemical class). In a practical distribution assessment of new 762 
chemicals, it would be necessary to identify to which chemical 763 
class they belong to for later using the appropriate QSFR 764 
model. 765 
 Different criteria could be proposed for creating 766 
chemical families with respect to molecular structure, but the 767 
performance of any class-tailored QSFR is hampered by the 768 
availability of sufficient training data. In a preliminary 769 
screening of the 375 work chemicals of the reference scenario, 770 
it was observed that 39 chemicals are composed of solely 771 
carbon and hydrogen atoms, while the remaining 336 772 
chemicals have at least one heteroatom (bromine, chlorine, 773 
fluorine, nitrogen, oxygen, and phosphorus or sulfur atoms). 774 
These two groups constitute a starting point for creating two 775 
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chemical classes, but there is a somewhat unbalanced 776 
distribution of chemicals if solely 39 chemicals in the first class 777 
are available for creating the training and test data sets of 778 
QSFRs. An adjustment can be made to create two chemical 779 
families with somewhat similar structure but enough training 780 
samples, adding oxygen to the preliminary class of chemicals 781 
formed solely by carbon and hydrogen. This way, 146 work 782 
chemicals were identified to be constituted by carbon and 783 
hydrogen with no heteroatoms or only oxygen (Class X); while 784 
229 chemicals have a least one heteroatom different than 785 
oxygen (Class Y). With this final clustering, a fair class 786 
proportion was achieved without sacrificing much with respect 787 
to the general properties of the clustered chemicals. Note that 788 
chemicals in class X can be described with solely MW, 4 atom 789 
counts (all atoms, carbon, hydrogen and oxygen), 3 bond 790 
counts (all bonds, single bonds and double bonds), 7 functional 791 
group counts (aldehyde, carbonyl, carboxyl, ether, hydroxyl, 792 
methyl and methylene) and 8 ring counts (all rings, aromatic 793 
rings, small rings, 5 membered, aromatic 5 membered, 6 794 
membered, aromatic 6 membered and 7-12 membered). While 795 
the chemicals in class Y are described with MW and the 38 796 
constituent counts listed in Table 2 (like in the QSFR models 797 
of Section 4.2). 798 
 For optimal results, specific training and test data sets 799 
should be used every time a new SVR is trained. But, for 800 
comparison purposes, the same training and test chemicals 801 
previously selected for the models QSFRair and QSFRwater 802 
(using the SOMs of Figure 3) were maintained when 803 
developing class-tailored QSFRs for classes X and Y. Then, 804 
four class-tailored model were developed: QSFRair,X, QSFRair,Y, 805 
QSFRwater,X and QSFRwater,Y. 806 

Logarithmic mass ratios were predicted for each 807 
chemical, according to its chemical class (X or Y), using the 808 
appropriate model per compartment. Below, the results for both 809 
classes (X and Y) are presented together for each compartment 810 
using the acronyms QSFRair,X/Y (i.e. using the models QSFRair,X 811 
or QSFRair,Y) and QSFRwater,X/Y (i.e. using the models 812 
QSFRwater,X or QSFRwater,Y). 813 

Figure 6 shows predictions of logarithmic mass ratios 814 
for the air compartment (Figure 6a) and the water compartment 815 
(Figure 6b), using the models QSFRair,X/Y and QSFRwater,X/Y, 816 
respectively. A general improvement has been achieved with 817 
respect to the predictions of simple QSFRs (QSFRair and 818 
QSFRwater in Figure 5), as the application of class-tailored 819 
QSFRs (QSFRair,X/Y and QSFRwater,X/Y in Figure 6) yielded 820 
higher q2 and lower MAE values, as shown in Table 3 for air 821 
(from q2 = 0.82 and MAE = 0.91 in QSFRair to q2 = 0.88 and 822 
MAE = 0.68 in QSFRair,X/Y) and water (from q2 = 0.81 and 823 
MAE = 0.32 in QSFRwater to q2 = 0.87 and MAE = 0.17 in 824 
QSFRwater,X/Y). 825 

Considering all data sets simultaneously, on average, 826 
the results of QSFRair,X/Y and QSFRwater,X/Y are very close to 827 
those from MC-MEM (Table 3). The discrimination and 828 
posterior assessment of chemicals with respect to their 829 
chemicals composition (using classes X and Y) improved the 830 
generalization capability of SVRs linking chemical distribution 831 
and molecular structure, when compared to the processing of 832 
all available chemicals with a simple SVR (Equation 10) as 833 
Table 3 shows. Also, Figure 6 displays the majority of scatter 834 
points closer to the diagonals of each subplot than those in 835 
Figure 5. 836 
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With respect to the 80 validation chemicals, q2 and 837 
MAE measurements improved slightly in air and got somewhat 838 
deteriorated in water when making predictions with class-839 
tailored models (QSFRair,X/Y and QSFRwater,X/Y). Please note 840 
that this is the result of reducing the number of training 841 
chemicals per SVR when implementing chemicals classes 842 
(about half the training chemicals selected for QSFRair and 843 
QSFRwater), incrementing the chances of having some test and 844 
validation chemicals out the DOA of the class-tailored models. 845 
This implies that such outlying chemicals have singularities 846 
that are better covered by the totality of training chemicals 847 
available at the time of the assessments. Remember that as 848 
stated above, the training and test data sets selected from 849 
SOMs (Figure 3) for general QSFR models (Figure 5) were 850 
kept unchanged for training specialized QSFRs (Figure 6). This 851 
allows a direct comparison of the performance indexes on each 852 
data set in Table 3. An additional improvement on these 853 
indexes should be expected if the selection of the training and 854 
test sets for the class-tailored QSFR models were performed 855 
after clustering the chemicals in individual SOMs (one per 856 
class and compartment), but this would make impossible the 857 
comparison of the two approaches under the same conditions. 858 
 859 
Domain of Aplicability. QSFR models follow the same 860 
limitations of QSAR models (Johnson, 2008). For instance, 861 
predictions beyond the DOA of the models should be avoided. 862 
The DOA of any model is primarily defined by its training 863 
chemicals (Weaver and Gleeson, 2008); so, identifying the 864 
DOA of an existing QSFR model it is possible to assess, 865 
approximately, how appropriate it is for a new chemical 866 
(Kühne et al., 2009)). 867 

 Reasonable estimations of the DOA of a model can be 868 
performed by measuring distances or probability density 869 
distributions of training data vectors to new data vectors 870 
(Schroeter et al., 2007), coming either from validation purposes 871 
or assessing new chemicals of concern. Since the SOM 872 
algorithm is based on the distances between data vectors in a 873 
multivariate space (Kohonen et al., 1996), we can use it to 874 
define the DOA of the QSFR models. Three different SOM-875 
based approaches have been used to define the DOA:  876 
 877 
(i) Using the SOMs used in the selection of training and test 878 
data sets. Because the qerror of the work chemicals within each 879 
SOM unit have been used for selecting the training chemicals, 880 
the training chemical with the highest qerror defines the DOA 881 
border. The original SOM (Figure 3) had 40 dimensions (MW, 882 
38 constituent counts and a mass ratio). When presenting new 883 
chemicals to the SOM, the mass ratio is unknown so only 39 884 
out of 40 variables are used for classification purposes, the 885 
error of assessing new chemicals with one dimension missing 886 
is not significant given the relation 39:1 of available-887 
unavailable dimensions. 888 
 889 
(ii) Applying a principal component analysis (Pearson, 1901) 890 
on the 39 input variables, it was found that five principal 891 
components accounted for about 59 % of cumulative variance. 892 
We trained a SOM with these five principal components and, 893 
again, defined a DOA with the highest qerror of the training 894 
chemicals in each SOM unit. 895 
 896 
(iii) Intersecting the first two approaches. 897 
 898 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



Annex A.1 Paper on QSFRs to be submitted to Science of the Total Environment (STOTEN) in 2010 (continued) 

 149

Table 4 shows q2 and MAE performance measurements 899 
for models QSFRair,X/Y and QSFRwater,X/Y, for test and 900 
validation chemicals emitted in water belonging or not to the 901 
DOAs defined above. 902 
 In the first two approaches (1 and 2), test or validation 903 
chemicals with quantization errors higher to those of the upper 904 
bounding training chemicals are considered to be out the DOA 905 
of the models. Since the numbers of chemicals within the 906 
DOAs from the first (1) and second (2) approaches differ 907 
because of the different variables considered and the errors of 908 
each SOM, their intersection (3) is preferred because more 909 
restrictive conditions are achieved. So, as shown in Table 4, 910 
using the third approach (3), it has been estimated that the mass 911 
ratios of about 48 and 50 “new” (test and validation) chemicals 912 
can be optimally predicted by, respectively, QSFRair,X,Y (with 913 
q2 = 0.92 and MAE = 0.54) and QSFRwater,X,Y (with q2 = 0.94 914 
and MAE = 0.15). By assessing that new chemicals are within 915 
the DOA of a QSFR model, the probability of having 916 
acceptable predictions is notoriously increased. 917 
 All results discussed so far resulted from emissions in 918 
the water compartment. To check that the present QSFR 919 
approach can be applied to other emission compartments, 920 
specific models were developed for emissions in the air 921 
compartment. Table 4 also shows q2 and MAE performances 922 
for air-emission models using the same training, test and 923 
validation data sets already used in the water-emission models. 924 
Only indexes for chemicals within the different DOAs 925 
considered are shown, demonstrating that similar results are 926 
obtained irrespective of the emission compartment. The 927 
distribution of new chemicals can be reasonably predicted, as 928 
long as they lie within the DOA of a QSFR model. 929 

 930 
5. Conclusions 931 
 Assessing the environmental concentrations of 932 
chemical pollutants from molecular information can be 933 
performed by two different approaches (Figure 1): The first 934 
approach implies estimating missing physicochemical 935 
properties from available QSPR and QSBR models for 936 
assessing chemicals of concern with standard MEMs. The 937 
second approach, proposed here, implies developing QSFR 938 
models that link concentrations to molecular information for 939 
assessing chemicals of concern known their molecular 940 
structure. When the uncertainty of key properties estimated by 941 
QSPRs and QSBRs can affect the outputs of standard MEMs, 942 
QSFR models can be an alternative for the latter if enough 943 
representative training chemicals are available for developing 944 
these models. Since QSFRs rely on the same methodology 945 
employed in the development of QSARs, the concentrations of 946 
chemicals of concern can be predicted with appreciable 947 
accuracy if they are within the DOA of available QSFR models. 948 
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Table 1. Statistical distributions assigned to independent properties affecting the 1287 
reference pollution scenario. 1288 

Typical uncertainty distribution of parameters predicted by 
QSPRs and QSBRs 

input 

Assumed 
distribution 

for 
simulations Data set 

Statistic 
parameters*,+ 

Units Source 

Tm Normal validation SD = 58.00 K 
(Boethling et 

al., 2004) 

Pv Log-normal validation SD = 0.717 mmHg 
(Boethling et 

al., 2004) 

H Log-normal training SD = 0.440 log10(atm·m3/mol) 
(Boethling et 

al., 2004) 

Kow Log-normal validation SD = 0.427 log10(-) 
(Boethling et 

al., 2004) 

kair Discrete training 

P(0) = 0.48, 
P(±1) = 0.37, 
P(±2) = 0.13, 
P(±>2) = 0.02 

- 
(Kühne et al., 

2007) 

kwater Discrete training 

P(0) = 0.52, 
P(±1) = 0.35, 
P(±2) = 0.08, 
P(±>2) = 0.05 

- 
(Kühne et al., 

2007) 

* For QSPRs, the parameters have been reported in standard deviations, SD, in logarithmic values when 1289 
noted.  1290 
+ For QSBRs, the reported parameters are probabilities, P(C), that indicate if a chemical has been 1291 
classified as member of a degradation class C (0 = correct class, ±1 = neighbor category predicted, ±2 = 1292 
two categories differing and ±>2 = more than two categories differing) in the 9-class scale proposed by 1293 
Mackay et al. (1992). 1294 

1295 
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Table 2. Molecular descriptors used in the QSFRs of this study. 1295 
Count Symbol Working data set Validation data set 
  min max min max 
Molecular weight (g/mol) MW 44.05 959.17 85.11 402.49 
Count of all atoms ACall 5 89 10 81 
Count of bromine atoms ACbromine 0 10 0 3 
Count of carbon atoms ACcarbon 1 32 3 26 
Count of chlorine atoms ACchlorine 0 8 0 3 
Count of fluorine atoms ACfluorine 0 27 0 3 
Count of hydrogen atoms AChydrogen 0 60 3 54 
Count of nitrogen atoms ACnitrogen 0 6 0 3 
Count of oxygen atoms ACoxygen 0 8 0 8 
Count of phosphorus atoms ACphosphorus 0 1 0 1 
Count of suplhur atoms ACsulphur 0 4 0 2 
Count of all bonds BCall 4 88 10 80 
Count of single bonds BCsingle 4 88 9 80 
Count of double bonds BCdouble 0 18 0 8 
Count of triple bonds BCtriple 0 2 0 2 
Count of aldehyde groups GCaldehyde 0 1 0 1 
Count of amide groups GCamide 0 2 0 2 
Count of amine groups GCamine 0 2 0 2 
Count of sec-amine groups GCsec-amine 0 2 0 2 
Count of carbonyl groups GCcarbonyl 0 2 0 2 
Count of carboxyl groups GCcarboxyl 0 2 0 2 
Count of cyano groups GCcyano 0 2 0 2 
Count of ether groups GCether 0 4 0 3 
Count of hydroxyl groups GChydroxyl 0 4 0 2 
Count of methyl groups GCmethyl 0 9 0 7 
Count of methylene groups GCmethylene 0 3 0 0 
Count of nitro groups GCnitro 0 3 0 1 
Count of nitroso groups GCnitroso 0 1 0 0 
Count of sulfide groups GCsulfide 0 4 0 2 
Count of sulfone groups GCsulfone 0 1 0 1 
Count of thiol groups GCthiol 0 1 0 1 
Count of all rings RCall 0 12 0 2 
Count of aromatic rings RCaromatic 0 4 0 2 
Count of small rings RCsmall 0 7 0 0 
Count of 5-membered rings RC5-m 0 4 0 1 
Count of aromatic 5-membered rings RCa-5-m 0 2 0 0 
Count of 6-membered rings RC6-m 0 4 0 2 
Count of aromatic 6-membered rings RCa-6-m 0 4 0 2 
Count of (7-12)-membered rings RC7-12-m 0 2 0 1 

1296 
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Table 3. Performance measurements of different concentration estimation approaches 1296 
for air and water when the chemical is emitted in water. 1297 

Performances per data set* 
Compartment 

 Estimation 
approach 

Performance 
measure Training 

set 
Test 
set 

Validation 
set 

All 
sets 

q2 0.88 0.87 0.86 0.88 
Air MC-MEM 

MAE 0.80 0.79 0.82 0.80 
q2 0.85 0.86 0.64 0.82 

Air QSFRair MAE 0.81 0.81 1.34 0.91 
q2 0.92 0.91 0.68 0.88 

Air QSFRair,X/Y 
MAE 0.54 0.59 1.30 0.68 

q2 0.89 0.79 0.78 0.86 
Water MC-MEM 

MAE 0.16 0.15 0.22 0.17 
q2 0.86 0.60 0.68 0.81 

Water QSFRwater MAE 0.30 0.34 0.39 0.32 
q2 0.94 0.78 0.62 0.87 

Water QSFRwater,X/Y 
MAE 0.11 0.19 0.36 0.17 

* The number of chemicals per data set varies per compartment. For the air compartment there are 300 1298 
training, 75 test and 80 validation chemicals; and, for the water compartment there are 299 training, 76 1299 
test and 80 validation chemicals. 1300 
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Table 4. Performance measurements of specialized QSFRs for the air and water 1301 
compartments (removing 13 outlying validation chemicals) 1302 

Emissions in water Emissions in air
Chemicals 

within DOA 
Chemicals out 

DOA 
Chemicals 

within DOA Model DOA Parameters 

te val 
te, 
val 

te val 
te, 
val 

te val 
te, 
val 

Chemicals 62 29 91 13 51 64 62 29 91 
q2 0.93 0.69 0.89 0.70 0.67 0.68 0.95 0.54 0.89(i) 

MAE 0.55 0.99 0.69 0.79 1.47 1.33 0.21 0.46 0.29
Chemicals 36 15 51 39 65 104 36 15 51 

q2 0.95 0.64 0.89 0.86 0.68 0.75 0.97 0.65 0.92(ii) 
MAE 0.45 1.03 0.62 0.73 1.36 1.12 0.16 0.41 0.23

Chemicals 36 12 48 39 68 107 36 12 48 
q2 0.95 0.78 0.92 0.86 0.66 0.73 0.97 0.76 0.94

QSFRair,X/Y 

(iii) 
MAE 0.45 0.79 0.54 0.73 1.39 1.15 0.16 0.34 0.20

Chemicals 56 21 77 20 59 79 56 21 77 
q2 0.84 0.88 0.87 0.57 0.28 0.38 0.90 0.88 0.90(i) 

MAE 0.15 0.30 0.19 0.29 0.39 0.36 0.29 0.30 0.29
Chemicals 44 16 60 32 64 96 44 16 60 

q2 0.86 0.81 0.84 0.69 0.21 0.43 0.92 0.73 0.84(ii) 
MAE 0.13 0.38 0.20 0.26 0.36 0.33 0.27 0.58 0.35

Chemicals 40 10 50 36 70 106 40 10 50 
q2 0.91 0.95 0.94 0.66 0.25 0.40 0.93 0.93 0.93

QSFRwater,X/Y 

(iii) 
MAE 0.12 0.25 0.15 0.26 0.38 0.34 0.25 0.32 0.27

 1303 
1304 
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 1304 

Figure 1. Two approaches for assessing environmental chemical partitioning  from 1305 

molecular information. 1306 
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Figure 2. Random realizations of the Monte Carlo approach on SB3 for endrin. 1308 
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Figure 3. Clustering of the 375 work chemicals of the reference scenario in two SOMs. 1311 
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Figure 4. Distances of work chemicals to units of the SOM for the air compartment, 1313 

expressed in quantization errors (qerror). 1314 

1315 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



Annex A.1 Paper on QSFRs to be submitted to Science of the Total 
Environment (STOTEN) in 2010 (continued) 

 164

a) log10(wair)

Target values
-30 -25 -20 -15 -10 -5 0

P
re

di
ct

io
n 

va
lu

es

-30

-25

-20

-15

-10

-5

0

tr.   300
te.    75
val.   80

Range of the statistical
sampling on the
reference
MEM

Number of Chemicals

b) log10(wwater)

Target values

-30 -25 -20 -15 -10 -5 0

P
re

di
ct

io
n 

va
lu

es

-30

-25

-20

-15

-10

-5

0

tr.   299
te.    76
val.   80

Range of the statistical
sampling on the
reference
MEM

Number of chemicals

 1315 

Figure 5. Predicted logarithmic mass ratios in: a) air, by means of QSFRair (with overall 1316 

performances of q2 = 0.82 and MAE = 0.91); and, b) water, by means of QSFRwater 1317 

(with overall performances of q2 = 0.81 and MAE = 0.32). 1318 

1319 
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Figure 6. Predicted logarithmic mass ratios in: a) air, by means of QSFRair,X/Y (with 1320 

overall performances of q2 = 0.88 and MAE = 0.68); and, b) water, by means of 1321 

QSFRwater,X/Y (with overall performances of q2 = 0.87 and MAE = 0.17). 1322 
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Annex B 

Program scripts used in this study 
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Annex B.1 Matlab script for training SOMs of different size with input and 
target variables of QPFRs or QSFRs. 
function [ REPORT ] = Train_SOMs_for_MEM_screening(sD, selX, selY,... 
    rem, maxC, perc); 
% ----------------------Train_SOMs_for_MEM_screening----------------------- 
% MATLAB script that trains SOMs of different size for the same work data, 
% referred to the inputs and outputs of a Multimedia Environmental Model 
% (MEM). 
% 
% 
% Requirements 
%        
%       To have installed the "SOM Toolbox for Matlab Version 2" 
%       http://www.cis.hut.fi/projects/somtoolbox/ 
% 
%       To be, along with the script "SOM_analysis", in a folder with 
%       sufficient hard disk space. 
% 
% Syntax 
%  
%       [ REPORT ] = SOMs_for_MEM_screening(sD, selX, selY... 
%       rem, maxC, perc); 
% 
% 
%       where: 
% 
%    sD is a data struct containing N chemicals (rows) characterized by 
%       both X attributes and Y labels (columns). Given X+Y columns , the 
%       attributes must be located in the first columns (1 to X), 
%       while the label(s) must be located in the last columns (X+1 to 
%       X+Y). The format of sD is that same as that used in the SOM 
%       toolbox. 
%            
%  selX is a row vector listing all selected attributes (first columns) 
% 
%  selY is a row vector listing all selected targets (last columns) 
% 
%   rem is a row vector listing all the chemicals (rows) to be ignored 
% 
%  maxC is a scalar indicating then number of partitions to evaluate on 
%       every SOM 
% 
%  perc is a row vector indicating the SOM sizes to be considered in terms 
%       of percentages. In this script, the number of SOM units is 
%       approximated to a percentage of the work chemicals available (e.g. 
%       entering 100 percent would force a SOM to have approximately as 
%       many units as chemicals available).  
% 
% 
% Description 
% 
%       "Train_SOMs_for_MEM_screening" performs the following actions: 
%        
%       a) takes for a set of work chemicals, both chemical attributes 
%       (e.g. properties, molecular descriptors) and multimedia 
%       environmental fate estimations (e.g. concentrations, mass 
%       fractions,fugacities, etc.). 
% 
%       b) applies a linear normalization to the data in the range [-1,1] 
% 
%       c) applies a loop in which SOMs of different size are trained and 
%       save in .zip files 
%        
%       Every SOM generates a selection of training and test chemicals for 
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Annex B.1 Matlab script for training SOMs of different size with input and 
target variables of QPFRs or QSFRs (continued). 
%       supervised learning algorithms to be used as QPFRs or QSFRs. A 
%       training chemical is selected for training QSPRs or QSFRs when 
%       having extreme values (lowest or highest) in its associated 
%       quantization error (compared to chemicals in the same SOM unit) 
%       or in its fate prediction (compared to all chemicals in the work 
%       data set). The chemical space can be visualized by means of the component 
%       planes of every SOM. 
%        
%       The bigger the SOM, the higher the number of training chemicals 
%       selected. Several SOM sizes can be tested to inspect the number of 
%       training chemicals selected, along with the quantization or 
%       topological erors of each SOM (which indicate approximately the 
%       goodness of the work data fitting). 
% 
% Warning 
% 
%       This is an script used for numerical experiments, it comes with no 
%       warranty. The user is advised to check the code before using it and 
%       be sure that there is enough hard disk space for saving the .zip 
%       files in the work directory. 
% 
% Example: 
% 
%       %Given a set of 375 work chemicals and 93 validation chemicals, 
%       %from the example case studied obtained the 
%       %former can be classified as training and test chemicals for QSFRs 
%       %for the air compartment of a given pollution scenario as follows: 
% 
%       % Loading the example data 
%       load example_QSFR_data.mat 
% 
%       % Selecting MW and non-zero counts of molecular consituents 
%       selX = [14 37:42 44:46 48:58 60:68 70:78] 
% 
%       % Selecting mass fractions in air as target variable 
%       selY = [82] 
% 
%       % Discarding validation chemicals from the SOM analysis 
%       rem = [376:468] 
% 
%       % Clustering of each SOM into 2 clusters maximum 
%       maxC = 2 
% 
%       % Percentages of SOM units, related to the amount of work chemicals: 
%       % 25%, 50%, 75%, 100%. 
%       perc = [25 50 75 100] 
% 
%       % Running the script for training SOMs of varied size 
%       [ REPORT ] = Train_SOMs_for_MEM_screening(sD, selX, selY,... 
%                    rem, maxC, perc); 
% 
if nargin < 6 
  error('Wrong number of arguments.'); 
end 
if nargin > 6 
  error('Wrong number of arguments.'); 
end 
 
% Settings 
 
    input_features = [selX selY] 
    unused_samples = rem 
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Annex B.1 Matlab script for training SOMs of different size with input and 
target variables of QPFRs or QSFRs (continued). 
    max_clusters = maxC 
    percentages = perc 
 
% Removal of unused attributes 
    [dummy var] = size(sD.data); 
    used_features = input_features;  
    unused_features = setdiff([1:var],used_features); 
    sD = som_modify_dataset(sD,'removecomp',unused_features);    
     
% Removal of unused samples 
    sD = som_modify_dataset(sD,'removesamp',unused_samples); 
     
% Data normalization 
    sDn = sD; 
    sDn.data = sDn.data*0; 
    p = sD.data'; 
    [pn,minp,maxp] = premnmx(p); 
    sDn.data = pn'; 
    sD = sDn; 
    clear sDn; 
     
% Training different SOMs 
 
    % Setting different SOM sizes to evaluate 
    [samples dummy] = size(sD.data); 
    percentages = percentages*(1/100); 
    units = round(percentages*samples); 
    clear side percentages; 
 
    % Creating matrices for storing SOM outputs 
    [dummy no] = size(units); 
    qerrors = zeros(no,1); 
    terrors = zeros(no,1); 
    tr_percentage = zeros(no,1); 
    te_percentage = zeros(no,1); 
    tr_No = zeros(no,1); 
    te_No = zeros(no,1); 
 
for j=1:no; 
    unit=units(1,j) 
    sM = som_make(sD,'randinit','batch', 'munits',unit,'lattice','hexa',... 
        'shape','toroid','neigh','gaussian'); 
    [qe,te] = som_quality(sM,sD); 
    qerrors(j,1)=qe; 
    terrors(j,1)=te; 
    save map_and_data.mat sD sM input_features; 
     
    %%%%%%%%% A) VISUALIZATION %%%%%%%%%% 
     
    % Figure 01: SOM 
    figure; 
    som_show(sM); 
    print('-dtiff',['Figure01_SOM.tiff']) 
    close all; 
 
    % Figure 02: U-Matrix 
    figure; 
    som_show(sM,'umat','all'); 
    print('-dtiff',['Figure02_Umat.tiff']) 
    close all; 
 
    % Figure 03: SOM components 
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Annex B.1 Matlab script for training SOMs of different size with input and 
target variables of QPFRs or QSFRs (continued). 
    figure; 
    som_show(sM,'comp','all','norm','d','bar','horiz'); 
    print('-dtiff',['Figure03_components.tiff']) 
    close all; 
     
    % Figure 04: SOM geometry 
    figure; 
    som_show(sM,'empty','Labels','norm','d'); 
    som_show_add('label',sM.labels,'textsize',8,'textcolor','r'); 
    print('-dtiff',['Figure04_empty.tiff']) 
    close all; 
 
    % Figure 05: Color code in the SOM 
    f1=figure; 
    [Pd,V,me,l] = pcaproj(sD,2); Pm = pcaproj(sM,V,me); % PC-projection 
    Code = som_colorcode(Pm); % color coding 
    hits = som_hits(sM,sD);  % hits 
    U = som_umat(sM); % U-matrix 
    Dm = U(1:2:size(U,1),1:2:size(U,2)); % distance matrix 
    Dm = 1-Dm(:)/max(Dm(:)); Dm(find(hits==0)) = 0; % clustering info 
 
    som_cplane(sM,Code,Dm); 
    hold on 
    som_grid(sM,'Label',cellstr(int2str(hits)),... 
  'Line','none','Marker','none','Labelcolor','k'); 
    hold off  
    title('Color code') 
    print('-dtiff',['Figure05_colorcode.tiff']) 
    close all; 
 
    % Figure 06: PCA projection 
    figure; 
    som_grid(sM,'Coord',Pm,'MarkerColor',Code,'Linecolor','k'); 
    hold on, plot(Pd(:,1),Pd(:,2),'k+'), hold off, axis tight, axis equal 
    title('PC projection') 
    print('-dtiff',['Figure06_PC_projection.tiff']) 
    close all; 
 
    % Figure 07: Labels in the SOM 
    figure; 
    som_cplane(sM,'none') 
    hold on 
    som_grid(sM,'Label',sM.labels,'Labelsize',8,... 
  'Line','none','Marker','none','Labelcolor','r'); 
    hold off; 
    title('Labels'); 
    print('-dtiff',['Figure07_labels.tiff']) 
    close all; 
     
    save color_code.mat Code sM sD Dm input_features selX selY; 
     
    %%%%%%%%% B) CLUSTERING %%%%%%%%%%     
 
    % Figure 08: Davies-Boulding index vs number of clusters 
    figure; 
    [c,p,err,ind] = kmeans_clusters(sM, max_clusters); 
    plot(1:length(ind),ind,'x-') 
    [dummy,i] = min(ind) 
    cl = p{i}; 
    hold on; 
    xlabel('number of clusters'); 
    ylabel('Davies-Boulding index'); 
    print('-dtiff',['Figure08_DB_indexes.tiff']) 
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Annex B.1 Matlab script for training SOMs of different size with input and 
target variables of QPFRs or QSFRs (continued). 
    close all; 
 
    % Figure 09: Colorcode in the SOM 
    figure; 
    som_cplane(sM,Code,Dm); 
    title('color code'); 
    print('-dtiff',['Figure09_Colorcode.tiff']) 
    close all; 
 
    % Figure 10: Partitions in the SOM 
    figure; 
    som_cplane(sM,cl); 
    title('partitions'); 
    print('-dtiff',['Figure10_Partitions.tiff']) 
    close all; 
 
    %%%%%%%%% C) REPORT %%%%%%%%%%      
     
    [ Data_clusters, Data_for_QSFRs ] = SOM_analysis( sM, sD, cl, selX, selY); 
     
    tr_percentage(j,1) = Data_for_QSFRs.est_training_percentage; 
    te_percentage(j,1) = Data_for_QSFRs.est_testing_percentage; 
    tr_No(j,1) = Data_for_QSFRs.no_training_chemicals 
    te_No(j,1) = Data_for_QSFRs.no_testing_chemicals 
     
    if j<100, ceros='0', end; 
    if j<10, ceros='00', end; 
    %zip(['map_',num2str(ceros),num2str(j)],'map_and_data.mat'); 
    %delete map_and_data.mat; 
     
    zip(['map_',num2str(ceros),num2str(j)],... 
         {... 
            '01_BMUs.csv',... 
            '02_Qerrs.csv',...                            
            '03_Training.csv',... 
            '04_minQerrs.csv',... 
            '05_maxQerrs.csv',... 
            '06_above_meanQerr.csv',... 
            '07_Extreme.csv',... 
            '08_Clusters.csv',... 
            'Figure01_SOM.tiff',... 
            'Figure02_Umat.tiff',... 
            'Figure03_components.tiff',... 
            'Figure04_empty.tiff',... 
            'Figure05_colorcode.tiff',... 
            'Figure06_PC_projection.tiff',... 
            'Figure07_labels.tiff',... 
            'Figure08_DB_indexes.tiff',... 
            'Figure09_Colorcode.tiff',... 
            'Figure10_Partitions.tiff',... 
            'example_QSFR_data.mat',... 
            'map_and_data.mat',... 
            'color_code.mat'... 
         });  
 
    % Deleting all files produced 
    delete(... 
            '01_BMUs.csv', 
            '02_Qerrs.csv', 
            '03_Training.csv', 
            '04_minQerrs.csv', 
            '05_maxQerrs.csv', 
            '06_above_meanQerr.csv', 
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Annex B.1 Matlab script for training SOMs of different size with input and 
target variables of QPFRs or QSFRs (continued). 
            '07_Extreme.csv',... 
            '08_Clusters.csv',... 
            'Figure01_SOM.tiff',... 
            'Figure02_Umat.tiff',... 
            'Figure03_components.tiff',... 
            'Figure04_empty.tiff',... 
            'Figure05_colorcode.tiff',... 
            'Figure06_PC_projection.tiff',... 
            'Figure07_labels.tiff',... 
            'Figure08_DB_indexes.tiff',... 
            'Figure09_Colorcode.tiff',... 
            'Figure10_Partitions.tiff',... 
            'map_and_data.mat',... 
            'color_code.mat'...                         
            );   
end; 
close all; 
 
% Plotting quantization errors for all SOMs tested 
figure; 
plot([1:no]',qerrors); 
title('Qerrors vs # of Map'); 
xlabel('# of Map'); 
ylabel('Qerror'); 
print('-djpeg',['Qerrors_graph.jpeg']) 
close all; 
 
% Plotting topological errors for all SOMs tested 
figure; 
plot([1:no]',terrors); 
title('Terrors vs # of Map'); 
xlabel('# of Map'); 
ylabel('Terror'); 
print('-djpeg',['Terrors_graph.jpeg']) 
close all; 
 
% Plotting the percentage of training chemicals derived from the work data 
% for all chemicals 
figure; 
plot([1:no]',tr_percentage); 
title('TR percentage vs # of Map'); 
xlabel('# of Map'); 
ylabel('Terror'); 
print('-djpeg',['TR_percentage_graph.jpeg']) 
close all; 
 
% Saving a MATLAB file with the characteristics of every SOM 
REPORT.percentages = perc'; 
REPORT.SOMs = [1:no]'; 
REPORT.qerrors = qerrors; 
REPORT.terrors = terrors; 
REPORT.training_chemicals = tr_No; 
REPORT.tr_percentage = tr_percentage; 
REPORT.test_chemicals = te_No; 
REPORT.te_percentage = te_percentage; 
save REPORT.mat REPORT; 
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Annex B.2 Matlab script for evaluating iteratively different SOM 
clusterings. 
% -------------------------Iterate_SOM_clustering-------------------------- 
% MATLAB script that performs the clustering of a selected SOM in an 
% iterative manner, using the Davies-Bouldin algorithm. 
% 
% 
% Requirements 
%        
%       To have installed the "SOM Toolbox for Matlab Version 2.0beta" 
%       http://www.cis.hut.fi/projects/somtoolbox/ 
% 
%       To be in a folder, along with a MATLAB data file called 
%       "color_code.mat" (that can be obtained from the .zip file of a SOM 
%       trained with the script "Train_SOMs_for_MEM_screening"), 
%       with sufficient hard disk space. 
% 
% 
% Description 
% 
%       "Iterate_SOM_clustering" performs a repeated clustering of a SOM 
%       with basis on the Davies-Bouldin (DB) algorithm and compares the 
%       number of clusters and the associated DB indexes associated to each 
%       resulting SOM clustering. The SOM clustering with the lowest DB 
%       index is the optimal one. 
%        
% 
% Warning 
% 
%       This is an script used for numerical experiments, it comes with no 
%       warranty. The user is advised to check the code before using it and 
%       be sure that there is enough hard disk space for saving the .zip 
%       files in the work directory. 
% 
% Example: 
% 
%       %First make use of the function  "Train_SOMs_for_MEM_screening" for 
%       %generating various SOMs, select one of them and take the 
%       %"color_code.mat" file associated to it and place it in a 
%       %folder along with this script. 
% 
%       % Especify the maximum number of clusters, for example: 2 
%       maxC = 2 
% 
%       % Especify the maximum number of iterations, for example: 10 
%       maxC = 10 
% 
%       % Running the script for iterating the clustering of the SOM 
%       run('Iterate_SOM_clustering') 
 
load color_code.mat; 
max_clusters = maxC; 
iterations = iter; 
 
report_clusters = zeros(iterations,1); 
report_DB_indexes = zeros(iterations,1); 
 
for QQ=1:iterations; 
     
% Figure: Davies-Boulding index vs number of clusters 
figure; 
[c,p,err,ind] = kmeans_clusters(sM, max_clusters); % find at most 7 clusters 
plot(1:length(ind),ind,'x-') 
[dummy,i] = min(ind) 
cl = p{i}; 
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Annex B.2 Matlab script for evaluating iteratively different SOM clusterings 
(continued). 
hold on; 
xlabel('number of clusters'); 
ylabel('Davies-Boulding index'); 
print('-dtiff',['Figure01_DB_indexes.tiff']) 
close all; 
 
figure; 
som_cplane(sM,Code,Dm); 
title('color code'); 
print('-dtiff',['Figure02_Colorcode.tiff']) 
close all; 
 
figure; 
som_cplane(sM,cl); 
title('partitions'); 
print('-dtiff',['Figure03_Partitions.tiff']) 
close all; 
 
    report_clusters(QQ,1) = i; 
    report_DB_indexes(QQ,1) = min(ind); 
     
save davis_boulding.mat; 
 
% Zipping results 
    if j<100, ceros='0', end; 
    if j<10, ceros='00', end; 
     
    zip(['iteration',num2str(ceros),num2str(QQ)],... 
         {... 
            'davis_boulding.mat',... 
            'Figure01_DB_indexes.tiff',...                            
            'Figure02_Colorcode.tiff',...                             
            'Figure03_Partitions.tiff'... 
         });  
 
         % Deleting all files produced 
    delete(... 
            'davis_boulding.mat',... 
            'Figure01_DB_indexes.tiff',...                            
            'Figure02_Colorcode.tiff',...                             
            'Figure03_Partitions.tiff'...                          
            );   
 
end; 
 
close all; 
 
figure; 
plot([1:iterations]',report_clusters); 
title('Number of clusters vs Iterations'); 
xlabel('Iterations'); 
ylabel('Number of clusters'); 
print('-dtiff',['Clusters_graph.tiff']) 
close all; 
 
figure; 
plot([1:iterations]',report_DB_indexes); 
title('Davis-Boulding indexes vs iterations (rect. lattice)'); 
xlabel('Iterations'); 
ylabel('Davis-Boulding indexes'); 
print('-dtiff',['Davis-Boulding_graph.tiff']) 
close all; 
 
save comparison.mat; 
return; 
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Annex B.3 Matlab script for evaluating new chemicals in a trained SOM. 
% -------------------------Evaluate_new_chemicals-------------------------- 
% 
% MATLAB script that performs the evaluation of both old and new data in 
% a SOM already trained by the function "Train_SOMs_for_MEM_screening" 
% 
% 
% Requirements 
%        
%       To have installed the "SOM Toolbox for Matlab Version 2.0beta" 
%       http://www.cis.hut.fi/projects/somtoolbox/ 
% 
%       To be in a folder, along with a MATLAB data file called 
%       "davis_boulding.mat" (that can be obtained from the .zip file of 
%       any of the clustering iterations performed with the script 
%       "Iterate_SOM_clustering") and another containing the original  
%       data on evaluation. 
% 
% 
% Description 
% 
%       "Evaluate_new_chemicals" enters the attributes and labels in a 
%       trained SOM for any set of chemicals, indicating their corresponding 
%       clustering. 
% 
% 
% Warning 
% 
%       This is an script used for numerical experiments, it comes with no 
%       warranty. The user is advised to check the code before using it and 
%       be sure that there is enough hard disk space. 
% 
% 
% Example: 
% 
%       % First make use of the function "Train_SOMs_for_MEM_screening" for 
%       % generating various SOMs, select one of them and generate a SOM  
%       % clustering with the script "Iterate_SOM_clustering". Select the 
%       % clustering iteration for which the Davies-Bouldin index is a minimum 
%       % and take the file "davis_boulding.mat", it contains variables 
%       % required here. 
% 
% 
%       % Load the clustering data 
%       load davis_boulding.mat; 
% 
%       % Load all data (this file contains both work and validation 
%       % chemicals) 
%       load example_QSFR_data.mat 
% 
%       % Running the script for knowing the clustering of new chemicals 
%       run('Evaluate_new_chemicals') 
 
 
% Loading the clustering 
load davis_boulding.mat; 
 
% Loading all data 
load example_QSFR_data.mat 
 
% Variables of the SOM 
    input_features = [selX selY] 
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Annex B.3 Matlab script for evaluating new chemicals in a trained SOM 
(continued). 
    % Removal of unused features 
    [samples var] = size(sD.data); 
    used_features = input_features; % union(input_features,target_features;) 
    unused_features = setdiff([1:var],used_features) 
    sD = som_modify_dataset(sD,'removecomp',unused_features) 
 
[ Data_clusters, Data_for_QSFRs ] = SOM_analysis( sM, sD, cl, selX, selY); 
save classification_val.mat Data_clusters Data_for_QSFRs; 
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Annex B.4 RapidMiner script for simple validation of SVRs with different 
parameter combinations. 
<operator name="Root" class="Process" expanded="yes"> 
    <description text="#ylt#p#ygt# Often the different operators have many parameters and it is not clear which 
parameter values are best for the learning task at hand. The parameter optimization operator helps to find an optimal 
parameter set for the used operators. #ylt#/p#ygt#  #ylt#p#ygt# The inner crossvalidation estimates the performance 
for each parameter set. In this experiment two parameters of the SVM are tuned. The result can be plotted in 3D 
(using gnuplot) or in color mode. #ylt#/p#ygt#  #ylt#p#ygt# Try the following: #ylt#ul#ygt# #ylt#li#ygt#Start the 
experiment. The result is the best parameter set and the performance which was achieved with this parameter 
set.#ylt#/li#ygt# #ylt#li#ygt#Edit the parameter list of the ParameterOptimization operator to find another parameter 
set.#ylt#/li#ygt# #ylt#/ul#ygt# #ylt#/p#ygt# "/> 
    <operator name="Work chemicals" class="ExcelExampleSource"> 
        <parameter key="excel_file" value="C:\SimpleVal\test_data.xls"/> 
        <parameter key="first_row_as_names" value="true"/> 
        <parameter key="create_label" value="true"/> 
        <parameter key="label_column" value="41"/> 
        <parameter key="create_id" value="true"/> 
    </operator> 
    <operator name="ParameterOptimization" class="GridParameterOptimization" expanded="yes"> 
        <list key="parameters"> 
          <parameter key="LibSVMLearner.C" value="0,1,5,10,25,50,75,100,150,300"/> 
          <parameter key="LibSVMLearner.epsilon"
 value="0.000001,0.00001,0.0001,0.001,0.01,0.1,0.25,0.50,0.75,0.90"/> 
          <parameter key="LibSVMLearner.p"
 value="0.000001,0.00001,0.0001,0.001,0.01,0.1,0.25,0.50,0.75,0.90"/> 
          <parameter key="LibSVMLearner.gamma" value="0,1,5,10"/> 
        </list> 
        <operator name="SimpleValidation" class="SimpleValidation" expanded="yes"> 
            <parameter key="keep_example_set" value="true"/> 
            <parameter key="create_complete_model" value="true"/> 
            <parameter key="split_ratio" value="0.5"/> 
            <parameter key="sampling_type" value="linear sampling"/> 
            <operator name="LibSVMLearner" class="LibSVMLearner"> 
                <parameter key="keep_example_set" value="true"/> 
                <parameter key="svm_type" value="epsilon-SVR"/> 
                <parameter key="degree" value="1"/> 
                <parameter key="gamma" value="0"/> 
                <parameter key="coef0" value="0"/> 
                <parameter key="C" value="300"/> 
                <parameter key="nu" value="0.0"/> 
                <parameter key="epsilon" value="0.000001"/> 
                <parameter key="p" value="0.000001"/> 
                <list key="class_weights"> 
                </list> 
            </operator> 
            <operator name="ApplierChain" class="OperatorChain" expanded="yes"> 
                <operator name="IOMultiplier" class="IOMultiplier"> 
                    <parameter key="number_of_copies" value="2"/> 
                    <parameter key="io_object" value="Model"/> 
                </operator> 
                <operator name="SupportVectorCounter" class="SupportVectorCounter"> 
                </operator> 
                <operator name="Test" class="ModelApplier"> 
                    <list key="application_parameters"> 
                    </list> 
                </operator> 
                <operator name="Evaluation" class="RegressionPerformance"> 
                    <parameter key="main_criterion" value="absolute_error"/> 
                    <parameter key="root_mean_squared_error" value="true"/> 
                    <parameter key="absolute_error" value="true"/> 
                    <parameter key="relative_error" value="true"/> 
                    <parameter key="relative_error_lenient" value="true"/> 
                    <parameter key="relative_error_strict" value="true"/> 
Gray-shaded code: code to be modified by the user. 
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Annex B.4 RapidMiner script for simple validation of SVRs with different 
parameter combinations (continued). 
 
                    <parameter key="normalized_absolute_error" value="true"/> 
                    <parameter key="root_relative_squared_error" value="true"/> 
                    <parameter key="squared_error" value="true"/> 
                    <parameter key="correlation" value="true"/> 
                    <parameter key="squared_correlation" value="true"/> 
                    <parameter key="prediction_average" value="true"/> 
                    <parameter key="spearman_rho" value="true"/> 
                    <parameter key="kendall_tau" value="true"/> 
                </operator> 
            </operator> 
        </operator> 
        <operator name="Log" class="ProcessLog"> 
            <parameter key="filename" value="C:\SimpleVal\Comparison_table.log"/> 
            <list key="log"> 
              <parameter key="VALIDATION_applycount" value="operator.SimpleValidation.value.applycount"/> 
              <parameter key="gamma" value="operator.LibSVMLearner.parameter.gamma"/> 
              <parameter key="C" value="operator.LibSVMLearner.parameter.C"/> 
              <parameter key="epsilon" value="operator.LibSVMLearner.parameter.epsilon"/> 
              <parameter key="p" value="operator.LibSVMLearner.parameter.p"/> 
              <parameter key="EVAL_absolute_error" value="operator.Evaluation.value.absolute_error"/> 
              <parameter key="EVAL_correlation" value="operator.Evaluation.value.correlation"/> 
              <parameter key="EVAL_squared_correlation" value="operator.Evaluation.value.squared_correlation"/> 
              <parameter key="EVAL_prediction_average" value="operator.Evaluation.value.prediction_average"/> 
              <parameter key="EVAL_Suppor_Vectors"
 value="operator.SupportVectorCounter.value.support_vectors"/> 
              <parameter key="VALIDATION_performance" value="operator.SimpleValidation.value.performance"/> 
              <parameter key="VALIDATION_performance1" value="operator.SimpleValidation.value.performance1"/> 
              <parameter key="VALIDATION_performance2" value="operator.SimpleValidation.value.performance2"/> 
              <parameter key="VALIDATION_performance3" value="operator.SimpleValidation.value.performance3"/> 
              <parameter key="VALIDATION_deviation" value="operator.SimpleValidation.value.deviation"/> 
              <parameter key="VALIDATION_variance" value="operator.SimpleValidation.value.variance"/> 
            </list> 
            <parameter key="persistent" value="true"/> 
        </operator> 
    </operator> 
</operator> 
Gray-shaded code: code to be modified by the user. 
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Annex B.5 RapidMiner script for training a SVR with optimized parameters 
and later perfroming fate predictions for all chemicals simultaneously. 
<operator name="Root" class="Process" expanded="yes"> 
    <operator name="1 Loading training data" class="ExcelExampleSource"> 
        <parameter key="excel_file" value="C:\SVRs\training_data.xls"/> 
        <parameter key="sheet_number" value="4"/> 
        <parameter key="first_row_as_names" value="true"/> 
        <parameter key="create_label" value="true"/> 
        <parameter key="label_column" value="25"/> 
        <parameter key="create_id" value="true"/> 
        <parameter key="decimal_point_character" value=""/> 
    </operator> 
    <operator name="2 Training a SVR" class="LibSVMLearner"> 
        <parameter key="svm_type" value="epsilon-SVR"/> 
        <parameter key="degree" value="1"/> 
        <parameter key="gamma" value="1.0"/> 
        <parameter key="C" value="10.0"/> 
        <parameter key="nu" value="0.0"/> 
        <parameter key="epsilon" value="0.25"/> 
        <parameter key="p" value="1.0E-5"/> 
        <list key="class_weights"> 
        </list> 
    </operator> 
    <operator name="3 Saving the trained SVR model" class="ModelWriter"> 
        <parameter key="model_file" value="C:\SVRs\SVR.mod"/> 
        <parameter key="output_type" value="XML"/> 
    </operator> 
    <operator name="4 Cleaning the memory" class="MemoryCleanUp"> 
    </operator> 
    <operator name="5 Loading all data (training, test and validation data)" class="ExcelExampleSource"> 
        <parameter key="excel_file" value="C:\SVRs\training_test_and_validation_data.xls"/> 
        <parameter key="sheet_number" value="5"/> 
        <parameter key="first_row_as_names" value="true"/> 
        <parameter key="create_label" value="true"/> 
        <parameter key="label_column" value="25"/> 
        <parameter key="create_id" value="true"/> 
        <parameter key="decimal_point_character" value=""/> 
    </operator> 
    <operator name="6 Loading the SVR model" class="ModelLoader"> 
        <parameter key="model_file" value="C:\SVR\SVR.mod"/> 
    </operator> 
    <operator name="7 Predicting fate for all chemicals" class="ModelApplier" breakpoints="after"> 
        <list key="application_parameters"> 
        </list> 
    </operator> 
    <operator name="8 Saving predictions to Excel file" class="ExcelExampleSetWriter"> 
        <parameter key="excel_file" value="C:\SVR\fate_predictions.xls"/> 
    </operator> 
    <operator name="9 Measuring the overall performance" class="RegressionPerformance"> 
        <parameter key="main_criterion" value="absolute_error"/> 
        <parameter key="root_mean_squared_error" value="true"/> 
        <parameter key="absolute_error" value="true"/> 
        <parameter key="relative_error" value="true"/> 
        <parameter key="relative_error_lenient" value="true"/> 
        <parameter key="relative_error_strict" value="true"/> 
        <parameter key="normalized_absolute_error" value="true"/> 
        <parameter key="root_relative_squared_error" value="true"/> 
        <parameter key="squared_error" value="true"/> 
        <parameter key="correlation" value="true"/> 
        <parameter key="squared_correlation" value="true"/> 
        <parameter key="prediction_average" value="true"/> 
        <parameter key="spearman_rho" value="true"/> 
        <parameter key="kendall_tau" value="true"/> 
    </operator> 
Gray-shaded code: code to be modified by the user. 
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Annex B.5 RapidMiner script for training a SVR with optimized parameters 
and later perfroming fate predictions for all chemicals simultaneously 
(continued). 
    <operator name="10 Saving overall performance results" class="PerformanceWriter"> 
        <parameter key="performance_file" value="C:\SVR\performance.per"/> 
    </operator> 
</operator> 
Gray-shaded code: code to be modified by the user. 
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Annex B.6 RapidMiner script for performing a 10-fold cross validation on a 
SVR with optimized parameters. 
<operator name="Root" class="Process" expanded="yes"> 
    <description text="#ylt#p#ygt# In many cases not the learned model is of interest but the accuracy of the model. 
One possible solution to estimate the predictiveness of the learned model is to apply it to labeled test data and 
calculate the number of prediction errors (or other performance criteria). Since labeled data is rare, other approaches 
to estimate the performance of a learning scheme are often used. This process demonstrates #yquot#cross 
validation#yquot# in RapidMiner.#ylt#/p#ygt#  #ylt#table#ygt# #ylt#tr#ygt# 
#ylt#td#ygt##ylt#icon#ygt#groups/24/validation#ylt#/icon#ygt##ylt#/td#ygt# #ylt#td#ygt##ylt#p#ygt#Cross 
validation divides the labelled data in training and test sets. Models are learned on training data and applied on test 
data. The prediction errors are calculated and averaged for all subsets. This building block can be used as inner 
operator for several wrappers like feature generation / selection operators. #ylt#/p#ygt##ylt#/td#ygt# #ylt#/tr#ygt# 
#ylt#/table#ygt#    #ylt#p#ygt# This is the first example of a more complex process. The operators build a tree 
structure. For now it is enough to accept that the cross validation operator demands an example set as input and 
delivers a vector of performance values as output. Additionally it manages the division into training and test 
examples. The training examples are used as input for the training learner which delivers a model. This model and the 
test examples form the input of the applier chain which delivers the performance for this test set. The results for all 
possible test sets are collected by the cross validation operator. Finally the average is built and delivered as result. 
#ylt#/p#ygt#     #ylt#p#ygt#One of the hardest things for the RapidMiner beginner is often to get an idea of the 
#ylt#b#ygt#data flow#ylt#/b#ygt#. The solution is surprisingly simple: the data flow resembles a depth-first-search 
through the tree structure. For example, after processing the training set with the first child of the cross validation the 
learned model, is delivered to the second child (the applier chain). This basic data flow idea is always the same for all 
processes and thinking in this flow will become very convenient for the experienced user.#ylt#/p#ygt# 
#ylt#p#ygt#Try the following:#ylt#/p#ygt# #ylt#ul#ygt##ylt#li#ygt#Start the process. The result is a performance 
estimation of the learning scheme on the input data.#ylt#/li#ygt#  #ylt#li#ygt#Select the Evaluation operator and 
select other performance criteria. The main criterion is used for performance comparisons, for example in a 
wrapper.#ylt#/li#ygt#  #ylt#li#ygt#Replace the cross validation #yquot#XVal#yquot# by other evaluation schemes 
and run the process with them. Alternatively you can check how other learners perform on this data and replace the 
Training operator.#ylt#/li#ygt##ylt#/ul#ygt#"/> 
    <operator name="ExcelExampleSource" class="ExcelExampleSource"> 
        <parameter key="excel_file" value="C:\10fold-CV\work_data.xls"/> 
        <parameter key="sheet_number" value="2"/> 
        <parameter key="first_row_as_names" value="true"/> 
        <parameter key="create_label" value="true"/> 
        <parameter key="label_column" value="41"/> 
        <parameter key="create_id" value="true"/> 
    </operator> 
    <operator name="XVal" class="XValidation" expanded="yes"> 
        <parameter key="sampling_type" value="shuffled sampling"/> 
        <operator name="Training" class="LibSVMLearner"> 
            <parameter key="svm_type" value="epsilon-SVR"/> 
            <parameter key="degree" value="1"/> 
            <parameter key="C" value="300.0"/> 
            <parameter key="epsilon" value="0.1"/> 
            <parameter key="p" value="1.0E-5"/> 
            <list key="class_weights"> 
            </list> 
        </operator> 
        <operator name="ApplierChain" class="OperatorChain" expanded="yes"> 
            <operator name="Test" class="ModelApplier"> 
                <list key="application_parameters"> 
                </list> 
            </operator> 
            <operator name="Evaluation" class="RegressionPerformance"> 
                <parameter key="keep_example_set" value="true"/> 
                <parameter key="main_criterion" value="absolute_error"/> 
                <parameter key="root_mean_squared_error" value="true"/> 
                <parameter key="absolute_error" value="true"/> 
                <parameter key="relative_error" value="true"/> 
                <parameter key="relative_error_lenient" value="true"/> 
                <parameter key="relative_error_strict"value="true"/> 
                <parameter key="normalized_absolute_error" value="true"/> 
                <parameter key="root_relative_squared_error" value="true"/> 
                <parameter key="squared_error" value="true"/> 
Gray-shaded code: code to be modified by the user. 
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Annex B.6 RapidMiner script for performing a 10-fold cross validation on a 
SVR with optimized parameters. 
                <parameter key="correlation" value="true"/> 
                <parameter key="squared_correlation"value="true"/> 
                <parameter key="prediction_average" value="true"/> 
                <parameter key="spearman_rho" value="true"/> 
                <parameter key="kendall_tau" value="true"/> 
            </operator> 
            <operator name="PerformanceWriter" class="PerformanceWriter"> 
                <parameter key="performance_file" value="C:\10fold-CV\10fold-CV_performance.per"/> 
            </operator> 
        </operator> 
    </operator> 
</operator> 
Gray-shaded code: code to be modified by the user. 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 184

Annex B.7 RapidMiner script for performing a LOO validation on a SVR with 
optimized parameters. 
<operator name="Root" class="Process" expanded="yes"> 
    <description text="#ylt#p#ygt# In many cases not the learned model is of interest but the accuracy of the model. 
One possible solution to estimate the predictiveness of the learned model is to apply it to labeled test data and 
calculate the number of prediction errors (or other performance criteria). Since labeled data is rare, other approaches 
to estimate the performance of a learning scheme are often used. This process demonstrates #yquot#cross 
validation#yquot# in RapidMiner.#ylt#/p#ygt#  #ylt#table#ygt# #ylt#tr#ygt# 
#ylt#td#ygt##ylt#icon#ygt#groups/24/validation#ylt#/icon#ygt##ylt#/td#ygt# #ylt#td#ygt##ylt#p#ygt#Cross 
validation divides the labelled data in training and test sets. Models are learned on training data and applied on test 
data. The prediction errors are calculated and averaged for all subsets. This building block can be used as inner 
operator for several wrappers like feature generation / selection operators. #ylt#/p#ygt##ylt#/td#ygt# #ylt#/tr#ygt# 
#ylt#/table#ygt#    #ylt#p#ygt# This is the first example of a more complex process. The operators build a tree 
structure. For now it is enough to accept that the cross validation operator demands an example set as input and 
delivers a vector of performance values as output. Additionally it manages the division into training and test 
examples. The training examples are used as input for the training learner which delivers a model. This model and the 
test examples form the input of the applier chain which delivers the performance for this test set. The results for all 
possible test sets are collected by the cross validation operator. Finally the average is built and delivered as result. 
#ylt#/p#ygt#     #ylt#p#ygt#One of the hardest things for the RapidMiner beginner is often to get an idea of the 
#ylt#b#ygt#data flow#ylt#/b#ygt#. The solution is surprisingly simple: the data flow resembles a depth-first-search 
through the tree structure. For example, after processing the training set with the first child of the cross validation the 
learned model, is delivered to the second child (the applier chain). This basic data flow idea is always the same for all 
processes and thinking in this flow will become very convenient for the experienced user.#ylt#/p#ygt# 
#ylt#p#ygt#Try the following:#ylt#/p#ygt# #ylt#ul#ygt##ylt#li#ygt#Start the process. The result is a performance 
estimation of the learning scheme on the input data.#ylt#/li#ygt#  #ylt#li#ygt#Select the Evaluation operator and 
select other performance criteria. The main criterion is used for performance comparisons, for example in a 
wrapper.#ylt#/li#ygt#  #ylt#li#ygt#Replace the cross validation #yquot#XVal#yquot# by other evaluation schemes 
and run the process with them. Alternatively you can check how other learners perform on this data and replace the 
Training operator.#ylt#/li#ygt##ylt#/ul#ygt#"/> 
    <operator name="ExcelExampleSource" class="ExcelExampleSource"> 
        <parameter key="excel_file" value="C:\LOO\work_data.xls"/> 
        <parameter key="sheet_number" value="2"/> 
        <parameter key="first_row_as_names" value="true"/> 
        <parameter key="create_label" value="true"/> 
        <parameter key="label_column" value="41"/> 
        <parameter key="create_id" value="true"/> 
    </operator> 
    <operator name="XVal" class="XValidation" expanded="yes"> 
        <parameter key="leave_one_out" value="true"/> 
        <parameter key="sampling_type" value="shuffled sampling"/> 
        <operator name="Training" class="LibSVMLearner"> 
            <parameter key="svm_type" value="epsilon-SVR"/> 
            <parameter key="degree" value="1"/> 
            <parameter key="C" value="300.0"/> 
            <parameter key="epsilon" value="0.1"/> 
            <parameter key="p" value="1.0E-5"/> 
            <list key="class_weights"> 
            </list> 
        </operator> 
        <operator name="ApplierChain" class="OperatorChain" expanded="yes"> 
            <operator name="Test" class="ModelApplier"> 
                <list key="application_parameters"> 
                </list> 
            </operator> 
            <operator name="Evaluation" class="RegressionPerformance"> 
                <parameter key="main_criterion" value="absolute_error"/> 
                <parameter key="root_mean_squared_error" value="true"/> 
                <parameter key="absolute_error" value="true"/> 
                <parameter key="relative_error" value="true"/> 
                <parameter key="relative_error_lenient" value="true"/> 
                <parameter key="relative_error_strict"value="true"/> 
                <parameter key="squared_error" value="true"/> 
                <parameter key="correlation" value="true"/> 
Gray-shaded code: code to be modified by the user. 
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Annex B.7 RapidMiner script for performing a LOO validation on a SVR with 
optimized parameters (continued). 
                <parameter key="squared_correlation"value="true"/> 
                <parameter key="prediction_average" value="true"/> 
                <parameter key="spearman_rho" value="true"/> 
                <parameter key="kendall_tau" value="true"/> 
            </operator> 
            <operator name="PerformanceWriter" class="PerformanceWriter"> 
                <parameter key="performance_file" value="C:\LOO\ LOO_performance.per"/> 
            </operator> 
        </operator> 
    </operator> 
</operator> 
Gray-shaded code: code to be modified by the user. 
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Annex C 

Work and validation chemicals used 
in this work 
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Annex C.1. List of 375 work chemicals used in this study. 
ID CAS SMILES code 

MW 
(g/mol) 

3D molecular representation and name 

w001 75-07-0 O=CC 44.05 

O
CH3

 
ethanal 

 

w002 115-10-6 O(C)C 46.07 O
CH3 CH3

 
dimethyl ether 

 

w003 74-87-3 ClC 50.49 
Cl CH3 

chloromethane 
 

w004 123-38-6 O=CCC 58.08 
O CH3 

propanal 
 

w005 75-56-9 O1C(C)C1 58.08 

O

CH3  
1,2-epoxypropane 

 

w006 107-18-6 OC\C=C 58.08 
OHCH2  

2-propen-1-ol 
 

w007 141-43-5 OCCN 61.08 
OH NH2 

ethanolamine 
 

w008 107-21-1 OCCO 62.07 OH
OH

 
1,2-ethanediol 

 

w009 110-00-9 o1cccc1 68.08 

O

 
oxacyclopentadiene (furan) 

 

w010 78-79-5 C=C(\C=C)C 68.12 
CH2

CH2

CH3  
methylbutadiene 

 

w011 57-57-8 O=C1OCC1 72.06 

O

O  
beta-propiolactone 

 

w012 79-10-7 O=C(O)\C=C 72.06 
O

OH CH2

 
propenoic acid 

 

w013 123-72-8 O=CCCC 72.11 
OCH3  

butanal 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w014 78-84-2 O=CC(C)C 72.11 

O
CH3

CH3  
isobutyraldehyde 

 

w015 68-12-2 O=CN(C)C 73.10 

O

N

CH3

CH3
 

n,n'-dimethylformamide 
 

w016 109-73-9 NCCCC 73.14 
NH2CH3  

butylamine 
 

w017 109-89-7 N(CC)CC 73.14 
NH CH3CH3  

diethylamine 
 

w018 78-81-9 NCC(C)C 73.14 

NH2

CH3

CH3  
isobutylamine 

 

w019 78-83-1 OCC(C)C 74.12 

OH

CH3

CH3

 
2-methyl-1-propanol 

 

w020 75-65-0 OC(C)(C)C 74.12 

OH

CH3

CH3

CH3  
2-methyl-2-propanol 

 

w021 78-92-2 OC(C)CC 74.12 
OH

CH3

CH3

 
2-butanol 

 

w022 109-86-4 OCCOC 76.10 

O
OHCH3  

2-methoxyethanol 
 

w023 107-05-1 ClC\C=C 76.53 
CH2

Cl
 

3-chloro-1-propene 
 

w024 71-43-2 c1ccccc1 78.12 

 
benzene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w025 461-58-5 N#C\N=C(/N)N 84.08 

NH2
N

NNH2  
2-cyanoguanidine 

 

w026 674-82-8 O=C1O\C(=C)C1 84.08 
O

O
CH2

 
diketene 

 

w027 61-82-5 n1cnnc1N 84.08 

N
NH

N

NH2

 
amitrole 

 

w028 110-02-1 s1cccc1 84.14 

S

 
thiophene 

 

w029 110-82-7 C1CCCCC1 84.16 
 

cyclohexane 
 

w030 592-41-6 C=C\CCCC 84.16 

CH2
CH3  

1-hexene 
 

w031 75-09-2 ClCCl 84.93 ClCl  
dichloromethane 

 

w032 108-05-4 O=C(O\C=C)C 86.09 

O

O

CH2

CH3 
ethenyl ethanoate 

 

w033 75-45-6 ClC(F)F 86.47 

F

F

Cl  
chlorodifluoromethane 

 

w034 96-29-7 N(/O)=C(/C)CC 87.12 

N OH

CH3 CH3  
2-butanone oxime 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w035 123-91-1 O1CCOCC1 88.11 

O

O

 
1,4-dioxane 

 

w036 1634-04-4 O(C(C)(C)C)C 88.15 
O

CH3

CH3

CH3
CH3  

methyl t-butyl ether 
 

w037 79-46-9 [O-][N+](=O)C(C)C 89.10 

N
+O

-
O

CH3
CH3

 
2-nitropropane 

 

w038 110-80-5 OCCOCC 90.12 
O

OH
CH3  

2-ethoxyethanol 
 

w039 56-81-5 OCC(O)CO 92.10 

OH

OH
OH 

1,2,3-propanetriol 
 

w040 108-88-3 c1ccccc1C 92.14 
CH3

 
methylbenzene 

 

w041 109-69-3 ClCCCC 92.57 
Cl CH3 

1-chlorobutane 
 

w042 108-95-2 Oc1ccccc1 94.11 
OH

 
hydroxybenzene 

 

w043 462-08-8 n1cccc(N)c1 94.12 

N

NH2

 
3-aminopyridine 

 

w044 504-24-5 n1ccc(N)cc1 94.12 
N NH2

 
4-aminopyridine 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w045 504-29-0 n1ccccc1N 94.12 
N

NH2

 
2-aminopyridine 

 

w046 79-11-8 ClCC(=O)O 94.50 O

OH Cl

 
chloroethanoic acid 

 

w047 74-83-9 BrC 94.94 
BrCH3  

bromomethane 
 

w048 626-64-2 N1=CC=C(C=C1)O 95.10 
N OH

 
4-hydroxypyridine 

 

w049 72762-00-6 Oc1ccccn1 95.10 
OH

N

 
2-hydroxypyridine 

 

w050 109-00-2 Oc1cccnc1 95.10 
N

OH

 
3-hydroxypyridine 

 

w051 98-01-1 O=Cc1occc1 96.09 

O
O

 
furfural 

 

w052 156-59-2 Cl[C@H]=CCl 96.94 Cl
Cl

 
(z)-1,2-dichloroethene 

 

w053 156-60-5 Cl[C@H]=CCl 96.94 

Cl
Cl  

(e)-1,2-dichloroethene 
 

w054 75-35-4 Cl/C(Cl)=C 96.94 

CH2

Cl Cl 
1,1-dichloroethene 

 

w055 108-31-6 O=C1OC(=O)C=C1 98.06 

O
O

O

 
maleic anhydride 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w056 98-00-0 OCc1occc1 98.10 
OH

O

 
2-hydroxymethylfuran 

 

w057 108-94-1 O=C1CCCCC1 98.15 
O

 
cyclohexanone 

 

w058 616-44-4 s1ccc(c1)C 98.17 

CH3

S

 
3-methylthiophene 

 

w059 108-87-2 CC1CCCCC1 98.19 

CH3

 
methylcyclohexane 

 

w060 140-88-5 O=C(OCC)\C=C 100.12 

O

O CH3

CH2

 
ethyl acrylate 

 

w061 80-62-6 O=C(OC)\C(=C)C 100.12 O

O CH3CH2

CH3  
methyl methacrylate 

 

w062 108-10-1 O=C(C)CC(C)C 100.16 
O CH3

CH3CH3

 
4-methyl-2-pentanone 

 

w063 108-93-0 OC1CCCCC1 100.16 

OH

 
cyclohexanol 

 

w064 121-44-8 N(CC)(CC)CC 101.19 
N

CH3

CH3
CH3

 
triethylamine 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w065 100-42-5 C=C\c1ccccc1 104.15 

CH2

 
ethenylbenzene 

 

w066 126-30-7 OCC(C)(C)CO 104.15 

OH

OHCH3
CH3  

1,3-propanediol, 2,2-dimethyl- 
 

w067 2517-43-3 OCCC(OC)C 104.15 

OOH

CH3

CH3

 
3-methoxy-1-butanol 

 

w068 111-42-2 OCCNCCO 105.14 OH
NH

OH
 

diethanolamine 
 

w069 111-46-6 OCCOCCO 106.12 

O
OH OH 

3-oxapentane-1,5-diol 
 

w070 100-52-7 O=Cc1ccccc1 106.13 O  
benzaldehyde 

 

w071 100-61-8 N(c1ccccc1)C 107.16 
NH

CH3

 
n-methylaniline 

 

w072 108-44-1 Nc1cc(ccc1)C 107.16 

NH2 CH3 
m-toluidine 

 

w073 95-53-4 Nc1ccccc1C 107.16 

NH2 CH3 
o-toluidine 

 

w074 100-51-6 OCc1ccccc1 108.14 
OH 

(hydroxymethyl)benzene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w075 100-40-3 C=C\C1CC=CCC1 108.18 CH2 
4-vinylcyclohexene 

 

w076 541-41-3 ClC(=O)OCC 108.53 
O

OCH3 Cl

 
ethyl chlorocarbonate 

 

w077 96-34-4 ClCC(=O)OC 108.53 
O

O
CH3Cl

 
methyl chloroacetate 

 

w078 74-96-4 BrCC 108.97 Br CH3 
bromoethane 

 

w079 108-46-3 Oc1cccc(O)c1 110.11 

OHOH  
1,3-dihydroxybenzene 

 

w080 120-80-9 Oc1ccccc1O 110.11 

OHOH  
1,2-dihydroxybenzene 

 

w081 123-31-9 Oc1ccc(O)cc1 110.11 
OHOH

 
1,4-dihydroxybenzene 

 

w082 764-13-6 
C(=C\C=C(/C)C)(\C)

C 
110.20 CH3

CH3

CH3

CH3  
2,5-dimethyl-2,4-hexadiene 

 

w083 107-39-1 C=C(/C)CC(C)(C)C 112.22 

CH2

CH3

CH3 CH3

CH3  
2,4,4-trimethyl-1-pentene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w084 108-90-7 Clc1ccccc1 112.56 
Cl

 
chlorobenzene 

 

w085 78-87-5 ClCC(Cl)C 112.99 Cl

Cl

CH3  
1,2-dichloropropane 

 

w086 109-09-1 Clc1ncccc1 113.55 
N

Cl

 
2-chloropyridine 

 

w087 123-42-2 O=C(C)CC(O)(C)C 116.16 

O OH CH3

CH3
CH3

 
4-hydroxy-4-methyl-2-pentanone 

 

w088 140-29-4 N#CCc1ccccc1 117.15 
N  

phenylacetonitrile 
 

w089 98-83-9 C=C(\c1ccccc1)C 118.18 CH2

CH3

 
alpha-methylstyrene 

 

w090 542-18-7 ClC1CCCCC1 118.61 
Cl

 
chlorocyclohexane 

 

w091 67-66-3 ClC(Cl)Cl 119.38 

Cl

Cl

Cl

 
trichloromethane 

 

w092 96-09-3 O2C(c1ccccc1)C2 120.15 

O

 
styrene oxide 

 

w093 98-86-2 O=C(c1ccccc1)C 120.15 O
CH3

 
1-phenylethanone 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w094 108-67-8 c1c(cc(cc1C)C)C 120.20 

CH3 CH3

CH3

 
1,3,5-trimethylbenzene 

 

w095 526-73-8 c1(cccc(c1C)C)C 120.20 CH3

CH3

CH3

 
1,2,3-trimethylbenzene 

 

w096 95-63-6 c1c(ccc(c1C)C)C 120.20 

CH3

CH3

CH3

 
1,2,4-trimethylbenzene 

 

w097 89-93-0 NCc1ccccc1C 121.18 

NH2CH3  
benzenemethanamine, 2-methyl- 

 

w098 103-69-5 N(c1ccccc1)CC 121.18 
NH

CH3

 
n-ethylaniline 

 

w099 121-69-7 N(c1ccccc1)(C)C 121.18 
N

CH3

CH3

 
n,n-dimethylaniline 

 

w100 64-04-0 NCCc1ccccc1 121.18 

NH2

 
2-phenylethylamine 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w101 65-85-0 O=C(O)c1ccccc1 122.12 

O

OH
 

benzoic acid 
 

w102 103-73-1 O(c1ccccc1)CC 122.17 
O CH3

 
ethoxybenzene 

 

w103 60-12-8 OCCc1ccccc1 122.17 
OH 

2-phenylethanol 
 

w104 95-80-7 Nc1cc(N)c(cc1)C 122.17 

NH2

NH2

CH3

 
2,4-toluenediamine 

 

w105 105-67-9 Oc1ccc(cc1C)C 122.17 

OH

CH3

CH3

 
2,4-dimethylphenol 

 

w106 75-26-3 BrC(C)C 122.99 

Br

CH3CH3  
2-bromopropane 

 

w107 98-95-3 
[O-

][N+](=O)c1ccccc1 
123.11 

N
+
O

-

O  
nitrobenzene 

 

w108 124-11-8 C=C\CCCCCCC 126.24 

CH2 CH3 
1-nonene 

 

w109 100-44-7 ClCc1ccccc1 126.59 

Cl

 
a-chlorotoluene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w110 106-43-4 Clc1ccc(cc1)C 126.59 
ClCH3

 
p-chlorotoluene 

 

w111 95-49-8 Clc1ccccc1C 126.59 

Cl CH3 
1-chloro-2-methylbenzene 

 

w112 95-51-2 Clc1ccccc1N 127.57 

NH2 Cl 
2-chloroaniline 

 

w113 623-26-7 N#Cc1ccc(C#N)cc1 128.13 
NN

 
1,4-benzenedicarbonitrile 

 

w114 626-17-5 N#Cc1cccc(C#N)c1 128.13 

NN  
1,3-dicyanobenzene 

 

w115 91-15-6 N#Cc1ccccc1C#N 128.13 

NN  
1,2-dicyanobenzene 

 

w116 141-32-2 O=C(OCCCC)\C=C 128.17 
O

OCH3 CH2

 
butyl acrylate 

 

w117 91-20-3 c12ccccc1cccc2 128.18 

 
naphthalene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w118 106-48-9 Clc1ccc(O)cc1 128.56 
OHCl

 
4-chlorophenol 

 

w119 108-43-0 Clc1cc(O)ccc1 128.56 
OHCl  

3-chlorophenol 
 

w120 95-57-8 Clc1ccccc1O 128.56 

OHCl  
2-hydroxychlorobenzene 

 

w121 79-43-6 ClC(Cl)C(=O)O 128.94 

O

OH

Cl

Cl  
dichloroethanoic acid 

 

w122 91-22-5 n1cccc2ccccc12 129.16 

N  
benzo[b]pyridine 

 

w123 111-92-2 N(CCCC)CCCC 129.25 
NH CH3CH3  

dibutylamine 
 

w124 74-97-5 BrCCl 129.38 BrCl  
chlorobromomethane 

 

w125 142-96-1 O(CCCC)CCCC 130.23 
O CH3CH3  

dibutyl ether 
 

w126 79-01-6 Cl[C@H]=C(Cl)Cl 131.39 

ClCl

Cl  
trichloroethene 

 

w127 119-64-2 c1ccc2c(c1)CCCC2 132.21 

 
1,2,3,4-tetrahydronaphthalene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w128 77-73-6 
C2=CC3C1C=CC(C1)

C3C2 
132.21 

 
dicyclopentadiene 

 

w129 71-55-6 ClC(Cl)(Cl)C 133.41 
ClCl Cl

CH3

 
1,1,1-trichloroethane 

 

w130 79-00-5 ClCC(Cl)Cl 133.41 

Cl

Cl Cl 
1,1,2-trichloroethane 

 

w131 104-54-1 OC/C=C/c1ccccc1 134.18 OH  
cinnamyl alcohol 

 

w132 141-93-5 c1ccc(cc1CC)CC 134.22 

CH3CH3

 
m-diethylbenzene 

 

w133 535-77-3 c1ccc(cc1C(C)C)C 134.22 
CH3

CH3

CH3

 
m-cymene 

 

w134 99-87-6 c1cc(ccc1C(C)C)C 134.22 CH3

CH3

CH3  
1-isopropyl-4-methylbenzene 

 

w135 103-84-4 O=C(Nc1ccccc1)C 135.17 

O

NH

CH3

 
acetanilide 

 

w136 95-16-9 n1c2ccccc2sc1 135.20 

N

S

 
benzothiazole 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w137 103-83-3 N(C)(Cc1ccccc1)C 135.21 N
CH3
CH3

 
n,n-dimethylbenzylamine 

 

w138 115-77-5 OCC(CO)(CO)CO 136.15 
OH

OH

OH

OH  
pentaerythritol 

 

w139 118-90-1 O=C(O)c1ccccc1C 136.15 O

OH
CH3

 
o-toluic acid 

 

w140 123-35-3 
C=C\C(=C)CC\C=C(/

C)C 
136.24 

CH2

CH2CH3

CH3  
3-methylene-7-methyl-1,6-octadiene  (myrcene) 

 

w141 138-86-3 
C(=C)(\C)C1CC=C(C)

CC1 
136.24 

CH2

CH3
CH3

 
limonene 

 

w142 79-92-5 
C2(=C)\C1CCC(C1)C

2(C)C 
136.24 

CH3

CH3

CH2

 
camphene 

 

w143 88-72-2 
O=[N+]([O-
])c1ccccc1C 

137.14 

N
+
O

-

O

CH3  
2-nitrotoluene 

 

w144 99-99-0 
O=[N+]([O-

])c1ccc(cc1)C 
137.14 

N
+
O

-

O

CH3

 
4-nitrotoluene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w145 120-71-8 O(c1ccc(cc1N)C)C 137.18 

O

NH2

CH3
CH3

 
2-methoxy-5-methylbenzenamine 

 

w146 156-43-4 O(c1ccc(cc1)N)CC 137.18 
O

NH2

CH3

 
2-propen-1-amine, n,n-di-2-propenyl- 

w147 102-70-5 
C(=C)\CN(C\C=C)C\

C=C 
137.23 N

CH2

CH2

CH2

 
2-propen-1-amine, n,n-di-2-propenyl- 

 

w148 69-72-7 O=C(O)c1ccccc1O 138.12 
O

OH

OH

 
salicylic acid 

w149 100-01-6 
O=[N+]([O-

])c1ccc(N)cc1 
138.13 

N
+
O

-

O

NH2

 
4-nitroaniline 

 

w150 88-74-4 
O=[N+]([O-
])c1ccccc1N 

138.13 

N
+

O
-

O

NH2  
2-nitroaniline 

 

w151 91-16-7 O(c1ccccc1OC)C 138.17 
O

O

CH3

CH3

 
1,2-dimethoxybenzene 

 

w152 78-59-1 
O=C1C=C(CC(C)(C)

C1)C 
138.21 

O

CH3

CH3

CH3

 
3,5,5-trimethyl-2-cyclohexen-1-one 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w153 91-17-8 C1CCC2CCCCC2C1 138.25 
 

decahydronaphthalene 
 

w154 100-02-7 
O=[N+]([O-

])c1ccc(O)cc1 
139.11 

N
+
O

-

O

OH

 
4-nitrophenol 

 

w155 88-75-5 
O=[N+]([O-
])c1ccccc1O 

139.11 N
+
O

-

O

OH

 
2-nitrophenol 

 

w156 2243-27-8 N#CCCCCCCCC 139.24 N CH3 
nonanonitrile 

 

w157 512-56-1 O=P(OC)(OC)OC 140.08 O
P

O
CH3

O
CH3

O
CH3  

trimethyl phosphate 
 

w158 99-82-1 CC1CCC(C(C)C)CC1 140.27 

CH3

CH3

CH3

 
p-menthane 

 

w159 95-69-2 Clc1cc(c(N)cc1)C 141.60 NH2Cl

CH3

 
2-methyl-4-chloroaniline 

 

w160 615-74-7 Clc1ccc(cc1O)C 142.59 

OH

CH3Cl

 
2-chloro-5-methylphenol 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w161 1570-64-5 Clc1cc(c(O)cc1)C 142.59 OHCl

CH3

 
2-methyl-4-chlorophenol 

 

w162 59-50-7 Clc1ccc(O)cc1C 142.59 OH

CH3

Cl

 
3-methyl-4-chlorophenol 

 

w163 111-44-4 ClCCOCCCl 143.01 

O

ClCl
 

1,5-dichloro-3-oxapentane 
 

w164 134-32-7 c1cccc2cccc(N)c12 143.19 

NH2

 
1-naphthylamine 

 

w165 10315-98-7 O1CCN(CC(C)C)CC1 143.23 

O N

CH3

CH3

 
n-isobutylmorpholine 

 

w166 624-48-6 
O=C(OC)\C=C\C(=O)

OC 
144.13 

O

O
CH3

O

O
CH3

  
methyl maleate 

 

w167 135-19-3 Oc2ccc1c(cccc1)c2 144.17 
OH 

2-naphthol 
 

w168 98-08-8 FC(F)(F)c1ccccc1 146.11 

F
F

F  
(trifluoromethyl)benzene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w169 541-73-1 Clc1cccc(Cl)c1 147.00 

Cl Cl

 
1,3-dichlorobenzene 

 

w170 95-50-1 Clc1ccccc1Cl 147.00 

Cl

Cl

 
1,2-dichlorobenzene 

 

w171 75-87-6 ClC(Cl)(Cl)C=O 147.39 

O
Cl

Cl

Cl
H

 
trichloroethanal 

 

w172 96-18-4 ClCC(Cl)CCl 147.43 Cl

Cl

Cl
 

1,2,3-trichloropropane 
 

w173 98-51-1 c1cc(ccc1C(C)(C)C)C 148.25 

CH3

CH3
CH3

CH3  
p-(t-butyl)toluene 

 

w174 111-85-3 ClCCCCCCCC 148.68 Cl CH3
 

1-chlorooctane 
 

w175 588-46-5 O=C(NCc1ccccc1)C 149.19 
CH3

O
NH

 
n-benzylacetamide 

 

w176 102-71-6 OCCN(CCO)CCO 149.19 

OH

N
OH

OH

 
triethanolamine 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w177 579-10-2 O=C(N(c1ccccc1)C)C 149.19 

O

N

CH3

CH3

 
n-methylacetanilide 

 

w178 91-66-7 N(c1ccccc1)(CC)CC 149.24 
N

CH3

CH3

 
n,n-diethylaniline 

 

w179 140-11-4 O=C(OCc1ccccc1)C 150.18 

OO

CH3

 
benzyl acetate 

 

w180 536-60-7 OCc1ccc(cc1)C(C)C 150.22 

OH
CH3

CH3

 
benzenemethanol, 4-(1-methylethyl)- 

 

w181 99-71-8 Oc1ccc(cc1)C(C)CC 150.22 

OH

CH3

CH3

 
p-(sec-butyl)phenol 

 

w182 98-54-4 Oc1ccc(cc1)C(C)(C)C 150.22 

OH

CH3 CH3

CH3

 
4-tert-butylphenol 

 

w183 612-22-6 
O=[N+]([O-

])c1ccccc1CC 
151.17 CH3

N
+

O
-

O

 
2-ethylnitrobenzene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w184 614-80-2 O=C(Nc1ccccc1O)C 151.17 
O

NH

OH

CH3

 
o-hydroxyacetanilide 

 

w185 2814-20-2 n1c(cc(O)nc1C(C)C)C 152.20 N

OH

N
CH3

CH3 CH3

 
6-methyl-2-(propan-2-yl)pyrimidin-4-ol 

 

w186 555-03-3 
[O-

][N+](=O)c1cccc(OC)
c1 

153.14 

N
+ O

-O

O
CH3

 
m-nitroanisole 

 

w187 119-33-5 
O=[N+]([O-

])c1cc(ccc1O)C 
153.14 

N
+

O
-

O

OH

CH3

 
4-methyl-2-nitrophenol 

 

w188 56-23-5 ClC(Cl)(Cl)Cl 153.82 
Cl

Cl

Cl

Cl  
tetrachloromethane 

 

w189 85-42-7 
O=C1OC(=O)C2CCC

CC12 
154.17 

O

O

O

 
1,3-isobenzofurandione, hexahydro- 

 

w190 83-32-9 
c2cc1cccc3c1c(c2)CC

3 
154.21 

 
acenaphthene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w191 92-52-4 c1cc(ccc1)c2ccccc2 154.21 

 
biphenyl 

 

w192 106-24-1 
OC/C=C(/CC/C=C(/C

)C)C 
154.25 

OH

CH3

CH3

CH3

 
geraniol 

 

w193 98-55-5 
OC(C)(C)C1CC=C(C)

CC1 
154.25 

OH

CH3

CH3

CH3

 
alpha-terpineol 

 

w194 103-44-6 
O(\C=C)CC(CCCC)C

C 
156.27 

O CH3

CH3

CH2

 
vinyl 2-ethylhexyl ether 

 

w195 2216-51-5 
OC1CC(CCC1C(C)C)

C 
156.27 

OH

CH3

CH3

CH3
 

menthol (l) 
 

w196 118-91-2 Clc1ccccc1C(=O)O 156.57 

O

OH

Cl

 
2-chlorobenzoic acid 

 

w197 108-86-1 Brc1ccccc1 157.01 
Br

 
bromobenzene 

 

w198 88-73-3 
O=[N+]([O-
])c1ccccc1Cl 

157.56 

N
+
O

-

O

Cl  
2-chloro-1-nitrobenzene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w199 869-29-4 
O=C(OC(OC(=O)C)/

C=C)C 
158.16 

CH2

O

O CH3

O

O

CH3  
allylidenediacetate 

 

w200 98-11-3 O=S(=O)(O)c1ccccc1 158.18 

OS

O

OH
 

benzenesulfonic acid 
 

w201 2216-69-5 O(c2cccc1ccccc12)C 158.20 
O CH3

 
naphthalene, 1-methoxy- 

 

w202 591-60-6 
O=C(OCCCC)CC(=O

)C 
158.20 

O

OCH3

O
CH3

 
butanoic acid, 3-oxo-, butyl ester 

 

w203 2243-62-1 c1ccc(c2cccc(N)c12)N 158.20 

NH2

NH2

 
1,5-diaminonaphthalene 

 

w204 479-27-6 Nc1cccc2cccc(N)c12 158.20 

NH2 NH2

 
1,8-naphthalenediamine 

 

w205 554-00-7 Clc1cc(Cl)c(N)cc1 162.02 NH2Cl

Cl

 
2,4-dichloroaniline 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w206 95-76-1 Clc1ccc(N)cc1Cl 162.02 NH2

Cl

Cl

 
3,4-dichloroaniline 

 

w207 95-82-9 Clc1ccc(Cl)c(N)c1 162.02 

NH2

Cl Cl

 
2,5-dichloroaniline 

 

w208 112-34-5 O(CCCC)CCOCCO 162.23 
O

O
OHCH3  

diethylene glycol mono-n-butyl ether 
 

w209 4904-61-4 
C1=CCCC=CCCC=C

CC1 
162.28 

 
1,5,9-cyclododecatriene 

 

w210 120-83-2 Clc1cc(Cl)c(O)cc1 163.00 OHCl

Cl

 
2.4-dichlorophenol 

 

w211 576-24-9 Clc1c(O)cccc1Cl 163.00 

OH

Cl

Cl

 
2,3-dichlorophenol 

 

w212 583-78-8 Clc1ccc(Cl)c(O)c1 163.00 

OH

Cl Cl

 
2,5-dichlorophenol 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w213 591-35-5 Clc1cc(O)cc(Cl)c1 163.00 
OH

Cl

Cl  
3,5-dichlorophenol 

 

w214 87-65-0 Clc1cccc(Cl)c1O 163.00 
OH

Cl

Cl  
2,6-dichlorophenol 

 

w215 95-77-2 Clc1ccc(O)cc1Cl 163.00 OH Cl

Cl

 
3,4-dichlorophenol 

 

w216 94-52-0 
[O-

][N+](=O)c1cc2ncnc2
cc1 

163.14 O

N
+

NH

N

O
-

 
1h-benzimidazole, 5-nitro- 

 

w217 121-91-5 
O=C(O)c1cccc(C(=O)

O)c1 
166.13 

O

OH

O
OH

 
isophthalic acid 

 

w218 86-73-7 
c1cccc3c1c2c(cccc2)C

3 
166.22 

 
2,3-benzindene 

 

w219 121-92-6 
O=[N+]([O-

])c1cc(ccc1)C(=O)O 
167.12 

O

OH
N

+

O
-

O

 
m-nitrobenzoic acid 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w220 499-83-2 
O=C(O)c1nc(C(=O)O)

ccc1 
167.12 

O

OHN
O

OH

 
pyridine-2,6-dicarboxylic acid 

 

w221 552-16-9 
O=[N+]([O-

])c1ccccc1C(=O)O 
167.12 

O

OH

N
+

O
-

O

 
2-nitrobenzoic acid 

 

w222 86-74-8 c1cccc2nc3ccccc3c12 167.22 

N
H

 
carbazole 

 

w223 79-34-5 ClC(Cl)C(Cl)Cl 167.85 Cl Cl
Cl

Cl

 
1,1,2,2-tetrachloroethane 

 

w224 920-66-1 
FC(F)(F)C(O)C(F)(F)

F 
168.04 

F
F

F

OH

F

F
F

 
1,1,1,3,3,3-hexafluoro-2-propanol 

 

w225 520-45-6 
O=C(C)C1C(=O)C=C

(C)OC1=O 
168.15 

O

O

O

CH3

O

CH3

 
dehydroacetic acid 

 

w226 96-96-8 
COc1ccc(N)c(c1)[N+]

([O-])=O 
168.15 

N
+

O
-

O

NH2OCH3

 
benzenamine, 4-methoxy-2-nitro- 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w227 101-81-5 c1c(cccc1)Cc2ccccc2 168.24 

 
benzene, 1,1'-methylenebis- 

 

w228 294-62-2 C1CCCCCCCCCCC1 168.33 

 
cyclododecane 

 

w229 122-39-4 c1ccccc1Nc2ccccc2 169.23 

NH

 
diphenylamine 

 

w230 90-41-5 c2c(c1ccccc1N)cccc2 169.23 

NH2

 
2-aminobiphenyl 

 

w231 101-84-8 O(c1ccccc1)c2ccccc2 170.21 

O

 
diphenyl ether 

 

w232 92-69-3 Oc2ccc(c1ccccc1)cc2 170.21 
OH

 
p-phenylphenol 

 

w233 108-60-1 CC(CCl)OC(C)CCl 171.07 

OCl

CH3

Cl

CH3

 
bis(2-chloroisopropyl)ether 

 

w234 88-19-7 
O=S(=O)(N)c1ccccc1

C 
171.22 

O

S

O

NH2

CH3

 
o-methylbenzenesulfonamide 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w235 86-55-5 
O=C(O)c2cccc1ccccc

12 
172.19 

OOH

 
1-napthoic acid 

 

w236 93-09-4 
O=C(O)c2ccc1c(cccc1

)c2 
172.19 

O
OH

 
2-naphthoic acid 

 

w237 106-41-2 Brc1ccc(O)cc1 173.01 
OHBr

 
4-bromophenol 

 

w238 591-20-8 Brc1cc(O)ccc1 173.01 OH

Br

 
m-bromophenol 

 

w239 95-56-7 Brc1ccccc1O 173.01 OH

Br

 
o-bromophenol 

 

w240 93-10-7 
O=C(O)c1nc2ccccc2c

c1 
173.17 

O

OH

N

 
2-quinolinecarboxylic acid 

 

w241 626-86-8 
O=C(OCC)CCCCC(=

O)O 
174.20 

O

OCH3

O
OH

 
hexanedioic acid, monoethyl ester 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w242 120-12-7 c3ccc2cc1ccccc1cc2c3 178.24 

 
anthracene 

 

w243 85-01-8 c3cc2ccc1ccccc1c2cc3 178.24 

 
phenanthrene 

 

w244 1502-22-3 
O=C2CCCCC2C1=C

CCCC1 
178.28 

O
 

cyclohexanone, 2-(1-cyclohexen-1-yl)- 
 

w245 495-69-2 
O=C(NCC(=O)O)c1cc

ccc1 
179.18 

O

NH
O

OH

 
hippuric acid 

 

w246 62-44-2 
O=C(Nc1ccc(OCC)cc

1)C 
179.22 CH3

O

NHO
CH3

 
p-phenacetin 

 

w247 101-83-7 
N(C1CCCCC1)C2CC

CCC2 
181.32 

NH

 
dicyclohexylamine 

 

w248 108-70-3 Clc1cc(Cl)cc(Cl)c1 181.45 
Cl

Cl

Cl  
1,3,5-trichlorobenzene 

 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 217

 
Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w249 120-82-1 Clc1cc(Cl)c(Cl)cc1 181.45 

Cl

ClCl

 
1,2,4-trichlorobenzene 

 

w250 87-61-6 Clc1cccc(Cl)c1Cl 181.45 

Cl

Cl

Cl

 
1,2,3-trichlorobenzene 

 

w251 610-39-9 
O=[N+]([O-

])c1cc(ccc1[N+]([O-
])=O)C 

182.14 

N
+

O
-O

N
+ O

-

O

CH3

 
1,2-dino2 4-methyl benzene 

 

w252 78-40-0 
O=P(OCC)(OCC)OC

C 
182.16 

O
P O

CH3

O

CH3

O

CH3

 
triethyl phosphate 

 

w253 119-61-9 
O=C(c1ccccc1)c2cccc

c2 
182.22 

O

 
benzophenone 

 

w254 51-28-5 
O=[N+]([O-

])c1cc(ccc1O)[N+]([O
-])=O 

184.11 

N
+

O
-

O

OH

N
+

O
-

O

 
2,4-dinitrophenol 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w255 101-53-1 
Oc1ccc(cc1)Cc2ccccc

2 
184.24 

OH  
4-hydroxydiphenylmethane 

 

w256 103-11-7 
O=C(OCC(CCCC)CC

)\C=C 
184.28 

O

O
CH3

CH3

CH2

 
2-ethylhexyl acrylate 

 

w257 76-13-1 ClC(F)(F)C(Cl)(Cl)F 187.38 

F

F
F

Cl

Cl

Cl

 
1,1,2-trichlorotrifluoroethane 

 

w258 106-93-4 BrCCBr 187.86 

Br
Br  
1,2-dibromoethane 

 

w259 92-70-6 
O=C(O)c2cc1c(cccc1)

cc2O 
188.18 

O
OH

OH

 
2-naphthalenecarboxylic acid, 3-hydroxy- 

 

w260 134-62-3 
O=C(N(CC)CC)c1ccc

c(c1)C 
191.28 

O

N

CH3

CH3
CH3

 
deet [n,n,-diet-3-me benzamide] 

 

w261 99-54-7 
Clc1ccc([N+]([O-

])=O)cc1Cl 
192.00 

N
+

O
-

O

Cl

Cl

 
3,4-dichloronitrobenzene 

 

w262 552-30-7 
O=C(O)c1ccc2C(=O)

OC(=O)c2c1 
192.13 

O

O

O
O
OH

 
trimellitic anhydride 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w263 120-61-6 
O=C(OC)c1ccc(C(=O)

OC)cc1 
194.19 O

OCH3

O

O CH3

 
dimethylterephthalate 

 

w264 131-11-3 
O=C(OC)c1ccccc1C(=

O)OC 
194.19 

O
O CH3

OO

CH3

 
dimethyl phthalate 

 

w265 634-93-5 Clc1cc(Cl)cc(Cl)c1N 196.46 
NH2Cl

Cl

Cl  
2,4,6-trichloroaniline 

 

w266 947-04-6 
O=C1NCCCCCCCCC

CC1 
197.32 

O
N
H

 
azacyclotridecan-2-one 

 

w267 95-95-4 Clc1cc(O)c(Cl)cc1Cl 197.45 

OHCl

Cl Cl

 
2,4,5-trichlorophenol 

 

w268 86-30-6 
O=NN(c1ccccc1)c2cc

ccc2 
198.23 

O
N

N

 
diphenylnitrosamine 

 

w269 101-77-9 
c1(ccc(N)cc1)Cc2ccc(

N)cc2 
198.27 

NH2

NH2

 
di-(p-aminophenyl)methane 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w270 92-84-2 
S2c1ccccc1Nc3c2cccc

3 
199.27 

N
H

S

 
phenothiazine 

 

w271 112-70-9 
OCCCCCCCCCCCC

C 
200.37 

OH
CH3

1-tridecanol 
 

w272 122-34-9 
Clc1nc(nc(n1)NCC)N

CC 
201.66 

N

N

N

NHCH3
NH CH3

Cl

 
simazine 

 

w273 76-12-0 ClC(Cl)(F)C(Cl)(Cl)F 203.83 

F

F

Cl

ClCl

Cl

 
1,1,2,2-tetrachlorodifluoroethane 

 

w274 5510-99-6 
Oc1c(cccc1C(CC)C)C

(C)CC 
206.33 

CH3

CH3

CH3

CH3
OH

 
2,6-di-sec-butylphenol 

 

w275 96-76-4 
Oc1ccc(cc1C(C)(C)C)

C(C)(C)C 
206.33 

OH

CH3

CH3

CH3 CH3

CH3

CH3

 
2,4-di-t-butylphenol 

 

w276 609-89-2 
Clc1cc(Cl)cc([N+]([O

-])=O)c1O 
208.00 

OH

Cl

Cl
N

+

O
-

O

 
2,4-dichloro-6-nitrophenol 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w277 84-65-1 
O=C2c1c(cccc1)C(=O

)c3c2cccc3 
208.22 

O

O

 
anthraquinone 

 

w278 603-11-2 
O=[N+]([O-

])c1cccc(c1C(=O)O)C
(=O)O 

211.13 

O
OH

N
+

O
-

O

O
OH

 
3-nitrophthalic acid 

 

w279 102-06-7 
[N@H]=C(Nc1ccccc1

)Nc2ccccc2 
211.27 NH

NHNH

 
n,n'-diphenylguanidine 

 

w280 119-53-9 
O=C(c1ccccc1)C(O)c

2ccccc2 
212.25 

O

OH  
benzoin 

 

w281 119-93-7 
c2(c1ccc(N)c(c1)C)cc

c(N)c(c2)C 
212.30 

CH3

NH2

CH3

NH2

 
bianisidine 

 

w282 629-62-9 
C(CCCCCC)CCCCC

CCC 
212.42 

CH3 CH3

pentadecane 
 

w283 2050-76-2 
Clc2c1ccccc1c(O)c(Cl

)c2 
213.06 

OH

Cl

Cl

 
2,4-dichloro-1-naphthol 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w284 112-18-5 
N(CCCCCCCCCCCC

)(C)C 
213.41 

NCH3

CH3

CH3
n,n-dimethyldodecylamine 

 

w285 634-66-2 Clc1ccc(Cl)c(Cl)c1Cl 215.89 Cl

Cl Cl

Cl

 
1,2,3,4-tetrachlorobenzene 

 

w286 95-94-3 
Clc1c(Cl)cc(Cl)c(Cl)c

1 
215.89 

Cl

Cl

Cl

Cl

 
1,2,4,5-tetrachlorobenzene 

 

w287 15104-61-7 ClC(Cl)C(Cl)C(Cl)Cl 216.32 

Cl

Cl
Cl

Cl

Cl
 

1,1,2,3,3-pentachloropropane 
 

w288 135-88-6 
c3c(Nc1ccccc1)cc2ccc

cc2c3 
219.29 

NH

 
n-phenyl-2-naphthylamine 

 

w289 90-30-2 
c3c(Nc1ccccc1)c2cccc

c2cc3 
219.29 

NH

 
1-naphthalenamine, n-phenyl- 

 

w290 25154-52-3 
Oc1ccc(cc1)CCCCCC

CCC 
220.36 

OH

CH3

nonylphenol (isomer mixture) 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w291 84-66-2 
O=C(OCC)c1ccccc1C

(=O)OCC 
222.24 

O
O

CH3O
O

CH3

 
diethyl phthalate 

 

w292 117-79-3 
O=C2c1c(cccc1)C(=O

)c3c2ccc(N)c3 
223.23 

O

O

NH2

 
2-aminoanthraquinone 

 

w293 82-45-1 
O=C3c1ccccc1C(=O)c

2c3cccc2N 
223.23 

O

NH2O

 
 

w294 129-43-1 
O=C2c1ccccc1C(=O)c

3c2cccc3O 
224.22 

O

OH O

 
1-hydroxyanthraquinone 

 

w295 629-73-2 
C=C\CCCCCCCCCC

CCCC 
224.43 

CH2
CH3

1-hexadecene 
 

w296 131-57-7 
O=C(c1ccc(cc1O)OC)

c2ccccc2 
228.25 

O

OH
O
CH3  

oxybenzone 
 

w297 76-93-7 
OC(C(=O)O)(c1ccccc

1)c2ccccc2 
228.25 

O
OH

OH

 
benzilic acid 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w298 80-05-7 
Oc1ccc(cc1)C(c2ccc(

O)cc2)(C)C 
228.29 

OH OH

CH3
CH3

 
diphenylolpropane 

 

w299 60-51-5 
O=C(NC)CSP(=S)(O

C)OC 
229.26 

O
NH

CH3 S

P

O
CH3

O

CH3
S

 
dimethoate 

 

w300 82-05-3 
O=C3c4ccccc4c2cccc

1cccc3c12 
230.27 

O

 
benzanthrone 

 

w301 58-90-2 
Clc1c(O)c(Cl)c(Cl)c(

Cl)c1 
231.89 

OH

Cl Cl

Cl

Cl

 
2,3,4,6-tetrachlorophenol 

 

w302 330-54-1 
Clc1ccc(NC(=O)N(C)

C)cc1Cl 
233.10 

O

N

CH3

CH3NH

Cl

Cl

 
diuron 

 

w303 106-37-6 Brc1ccc(Br)cc1 235.91 
BrBr

 
1,4-dibromobenzene 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w304 84-51-5 
O=C2c1c(cccc1)C(=O

)c3c2ccc(c3)CC 
236.27 

O

O

CH3

 
2-ethylanthraquinone 

 

w305 67-72-1 
ClC(Cl)(Cl)C(Cl)(Cl)

Cl 
236.74 

Cl

Cl

Cl

Cl Cl

Cl

 
hexachloroethane 

 

w306 137-26-8 
CN(C)C(=S)SSC(=S)

N(C)C 
240.43 

N
S

S S

N

CH3

CH3

S

CH3

CH3

 
thiram 

 

w307 532-03-6 
O=C(OCC(O)COc1cc

ccc1OC)N 
241.25 

O

O
OH

O

O
CH3

NH2

 
1,2-propanediol, 3-(2-methoxyphenoxy)-, 1-carbam 

 

w308 482-05-3 
O=C(O)c2c(c1ccccc1

C(=O)O)cccc2 
242.23 

OH

O

OH
O  

1,1'-biphenyl -2,2'-dicarboxylic acid 
 

w309 131-09-9 
Clc3ccc2C(=O)c1c(cc

cc1)C(=O)c2c3 
242.66 

O

O

Cl

 
9,10-anthracenedione, 2-chloro- 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w310 82-44-0 
O=C2c1ccccc1C(=O)c

3c2cccc3Cl 
242.66 

O

Cl
O

 
1-chloroanthraquinone 

 

w311 131-17-9 
O=C(OC\C=C)c1cccc

c1C(=O)OC\C=C 
246.27 

O
O

CH2

O
O

CH2  
diallylphthalate 

 

w312 330-55-2 
Clc1ccc(NC(=O)N(O

C)C)cc1Cl 
249.10 

O

N
O

CH3

CH3

NH Cl

Cl 
linuron 

 

w313 608-93-5 
Clc1cc(Cl)c(Cl)c(Cl)c

1Cl 
250.34 

Cl

Cl Cl

Cl

Cl

 
pentachlorobenzene 

 

w314 75-25-2 BrC(Br)Br 252.73 

Br
Br

Br  
tribromomethane 

 

w315 91-94-1 
Clc2cc(c1ccc(N)c(Cl)

c1)ccc2N 
253.13 

Cl

NH2

Cl

NH2

 
3,3'-dichlorobenzidine 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w316 2498-66-0 
O=C3c1c(ccc2c1cccc2

)C(=O)c4c3cccc4 
258.28 

O

O

 
benz a anthracene-7,12-dione 

 

w317 74-31-7 
c3c(Nc1ccc(cc1)Nc2c

cccc2)cccc3 
260.36 

NH

NH

 
n,n'-diphenyl-p-benzenediamine 

 

w318 104-42-7 
Nc1ccc(cc1)CCCCCC

CCCCCC 
261.45 NH2

CH3

p-dodecylaniline 
 

w319 3296-90-0 BrCC(CO)(CBr)CO 261.94 

OH

Br

BrOH

 
1,3-propanediol, 2,2-bis(brme)- 

 

w320 482-89-3 
O=C\4c1ccccc1NC/4=
C3\C(=O)c2ccccc2N3 

262.27 

O

N
H

N
H

O

 
2-(1,3-dihydro-3-oxo-2h-indol-2-ylidene)-1,2-di* 

 

w321 732-26-3 
Oc1c(cc(cc1C(C)(C)C
)C(C)(C)C)C(C)(C)C 

262.44 

OH

CH3

CH3
CH3

CH3

CH3

CH3

CH3 CH3

CH3

 
2,4,6-tri(tert-butyl)phenol 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w322 92-77-3 
O=C(c2cc1c(cccc1)cc

2O)Nc3ccccc3 
263.30 

O

NH

OH

 
naphthol as 

 

w323 1897-45-6 
Clc1c(C#N)c(Cl)c(C#

N)c(Cl)c1Cl 
265.91 

NN

Cl

Cl

Cl

Cl

 
chlorothanonil 

 

w324 126-73-8 
O=P(OCCCC)(OCCC

C)OCCCC 
266.32 

O
P

O

CH3

O

CH3

O

CH3

 
tributylphosphate 

 

w325 87-86-5 
Clc1c(O)c(Cl)c(Cl)c(

Cl)c1Cl 
266.34 

OH

Cl

Cl

Cl

Cl Cl

 
hydroxypentachlorobenzene 

 

w326 101-14-4 
Clc1cc(ccc1N)Cc2ccc

(N)c(Cl)c2 
267.16 NH2

NH2

Cl

Cl  
4,4'-methylenebis(2-chloroaniline) 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w327 97-23-4 
Clc1cc(c(O)cc1)Cc2cc

(Cl)ccc2O 
269.13 

OH

Cl

OH

Cl
 

phenol,2,2'-methylenebis 4-chloro- 
 

w328 122-14-5 
S=P(Oc1cc(c(cc1)[N+
]([O-])=O)C)(OC)OC 

277.24 

CH3

O P

S

O
CH3

O N
+
O

-

O

CH3

 
fenitrothion 

 

w329 76-83-5 
ClC(c1ccccc1)(c2cccc

c2)c3ccccc3 
278.78 

Cl  
benzene, 1,1',1''-(chloromethylidyne)tris- 

 

w330 112-95-8 
C(CCCCCCCCCCCC

CCCCC)CC 
282.56 

CH3 CH3

eicosane 
 

w331 118-74-1 
Clc1c(Cl)c(Cl)c(Cl)c(

Cl)c1Cl 
284.78 

Cl

Cl

Cl Cl

Cl

Cl

 
hexachlorobenzene 

 

w332 115-96-8 
ClCCOP(=O)(OCCCl)

OCCCl 
285.49 

O

P O

Cl

O

Cl

O
Cl

 
tri-2-chloroethyl phosphate 

 

w333 2885-00-9 
SCCCCCCCCCCCCC

CCCCC 
286.57 

SH
CH3

1-octadecanethiol 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w334 608-73-1 
ClC1C(Cl)C(Cl)C(Cl)

C(Cl)C1Cl 
290.83 

Cl

Cl
Cl

Cl

ClCl  
1,2,3,4,5,6-hexachlorocyclohexane 

 

w335 81-15-2 

O=[N+]([O-
])c1c(c(c(c(c1C(C)(C)

C)[N+]([O-
])=O)C)[N+]([O-

])=O)C 

297.27 

N
+

O
-

O
N

+
O

-

O

N
+

O
-

O
CH3

CH3

CH3

CH3

CH3

 
benzene, 1-(1,1-dimethylethyl)-3,5-dimethyl-2,4, 

 

w336 14816-18-3 
N#C/C(=N\OP(=S)(O

CC)OCC)c1ccccc1 
298.30 CH3O

P

SO

CH3

O
N

N  
phoxim 

 

w337 4101-68-2 BrCCCCCCCCCCBr 300.08 

Br

Br  
1,2-dibromodecane 

 

w338 333-41-5 
S=P(OCC)(OCC)Oc1

nc(nc(c1)C)C(C)C 
304.35 O

P O
CH3

O

NN

CH3

CH3

CH3

S

CH3  
diazinon 

 

w339 92-86-4 
Brc2ccc(c1ccc(Br)cc1

)cc2 
312.01 

BrBr

 
4,4'-dibromobiphenyl 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w340 85-68-7 
O=C(OCc1ccccc1)c2c
cccc2C(=O)OCCCC 

312.37 

O OO

O
CH3

butyl benzyl phthalate 
 

w341 298-07-7 
O=P(OCC(CCCC)CC)

(O)OCC(CC)CCCC 
322.43 

O
P

O

CH3

CH3

O

CH3

CH3

OH

bis(2-ethylhexyl)phosphate 
 

w342 115-86-6 
O=P(Oc1ccccc1)(Oc2

ccccc2)Oc3ccccc3 
326.29 

O
P

O

O O

 
triphenylphosphate 

 

w343 1843-05-6 
O=C(c1ccc(OCCCCC
CCC)cc1O)c2ccccc2 

326.47 O

OH

O

CH3

methanone,  2-hydroxy-4-(octyloxy)phenyl phenyl- 
 

w344 13674-84-5 
ClCC(OP(=O)(OC(CC

l)C)OC(C)CCl)C 
327.57 

O

P
O

Cl

CH3
O

ClCH3

O

Cl

CH3

 
2-propanol, 1-chloro-, phosphate (3:1) 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w345 84-61-7 
O=C(OC1CCCCC1)c
3ccccc3C(=O)OC2CC

CCC2 
330.43 

O
O

O

O

 
dicyclohexyl phthalate 

 

w346 120-78-5 
n1c4ccccc4sc1SSc2nc

3ccccc3s2 
332.49 

S

S S

N

S

N

 
2,2'-dithiobisbenzothiazole 

 

w347 112-84-5 
O=C(N)CCCCCCCC
CCC/C=C/CCCCCCC

C 
337.59 O

NH2

CH3

13-decosenamide (cis) 
 

w348 3290-92-4 
O=C(OCC(COC(=O)\
C(=C)C)(CC)COC(=O

)\C(=C)C)\C(=C)C 
338.00 

O

O

CH3O

O

CH2

CH3

O

O
CH2

CH3

CH2

CH3

 
trimethylolpropane trimethacrylate 

 

w349 119-47-1 
Oc1c(cc(cc1C(C)(C)C
)C)Cc2cc(cc(c2O)C(C

)(C)C)C 
340.51 

OH

CH3

OH

CH3

CH3
CH3

CH3

CH3

CH3

CH3

 
bis (2-hydroxy-3tert-butyl-5-methylphenyl) metha 

w350 79-27-6 BrC(Br)C(Br)Br 345.65 

Br

Br
Br

Br

 
1,1,2,2-tetrabromoethane 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w351 2921-88-2 
Clc1c(OP(=S)(OCC)O

CC)nc(Cl)c(Cl)c1 
350.59 

CH3

O
P

S

O

CH3

O
N

Cl

Cl

Cl

 
chlorpyrifos 

 

w352 50-29-3 
Clc1ccc(cc1)C(c2ccc(

Cl)cc2)C(Cl)(Cl)Cl 
354.50 

Cl
Cl

Cl
Cl Cl

 
1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane 

 

w353 96-69-5 
S(c1c(cc(O)c(c1)C(C)
(C)C)C)c2cc(c(O)cc2

C)C(C)(C)C 
358.55 

OH

S

OH

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3

 
4,4'-thiobis(6-tert-butyl-3-cresol) 

 

w354 309-00-2 
ClC3=C(Cl)C4(Cl)C2
C(C1C=CC2C1)C3(Cl

)C4(Cl)Cl 
364.92 

Cl

Cl

Cl

Cl

Cl

Cl  
aldrin 

 

w355 5124-25-4 
O=S(=O)(Nc1ccccc1)
c3cc(c(Nc2ccccc2)cc3

)[N+]([O-])=O 
369.40 

O
S

O

NH

NH

N
+

O
-

O

 
c.i. disperse yellow 42 

 

w356 115-32-2 
Clc1ccc(cc1)C(O)(c2c
cc(Cl)cc2)C(Cl)(Cl)Cl 

370.49 

OH ClCl

Cl
Cl

Cl
 

dicofol 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w357 76-44-8 
ClC2=C(Cl)C3(Cl)C1
C=CC(Cl)C1C2(Cl)C

3(Cl)Cl 
373.32 

Cl

Cl

Cl
Cl

Cl

Cl

Cl

 
heptachlor 

 

w358 127-90-2 
ClC(Cl)(Cl)C(Cl)COC

C(Cl)C(Cl)(Cl)Cl 
377.74 

Cl

Cl Cl

Cl
O

Cl

Cl

Cl

Cl  
1,1'-oxybis[2,3,3,3-tetrachloropropane] 

 

w359 91-96-3 
O=C(Nc1ccc(cc1C)c2
ccc(NC(=O)CC(C)=O

)c(C)c2)CC(C)=O 
380.45 

CH3

NHO

CH3O
CH3

NH
O

O

CH3  
c.i. azoic coupling component 5 

 

w360 60-57-1 
ClC1=C(Cl)C2(Cl)C(
Cl)(Cl)C1(Cl)C4C2C5

C3OC3C4C5 
380.91 

Cl
Cl

Cl

O

Cl

Cl
Cl  

dieldrin 
 

w361 72-20-8 
ClC1=C(Cl)C2(Cl)C(
Cl)(Cl)C1(Cl)C4C2C5

C3OC3C4C5 
380.91 

Cl

Cl

Cl

OCl
Cl

Cl  
endrin 

 

w362 3229-00-3 BrCC(CBr)(CBr)CBr 387.74 

Br

Br

Br

Br

 
propane, 1,3-dibromo-2,2-bis(bromomethyl)- 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w363 115-28-6 
ClC2(Cl)C1(Cl)C(Cl)
=C(Cl)C2(Cl)C(C(=O)

O)C1C(=O)O 
388.85 

O

OH

Cl

Cl

Cl

Cl

Cl
Cl

OOH

 
chlorendic acid 

 

w364 117-81-7 
O=C(OCC(CC)CCCC
)c1ccccc1C(=O)OCC(

CC)CCCC 
390.57 

O

O

CH3

CH3

O
O

CH3

CH3

bis(2-ethylhexyl)phthalate 
 

w365 78-51-3 
O=P(OCCOCCCC)(O
CCOCCCC)OCCOCC

CC 
398.54 

O

P

O
O

CH3

O

O

CH3

O

O

CH3

tri-2-butoxyethyl phosphate 
 

w366 70-30-4 
Clc1c(c(O)c(Cl)cc1Cl)
Cc2c(O)c(Cl)cc(Cl)c2

Cl 
406.91 

OH

Cl
Cl

Cl

Cl

Cl

OH

Cl

 
hexachlorophene 

 

w367 630-03-5 
C(CCCCCCCCCCCC
CCCCCCCCCC)CCC

CCC 
408.80 

CH3

CH3

nonacosane 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w368 141-17-3 
O=C(OCCOCCOCCC
C)CCCCC(=O)OCCO

CCOCCCC 
434.58 

O
O

O

O

CH3

O
O

O

O

CH3

bis(2-(2-butoxyethoxy)ethyl) adipate 
 

w369 78-42-2 
CCCCC(COP(=O)(O
CC(CC)CCCC)OCC(

CC)CCCC)CC 
434.65 

O
P O

CH3

CH3
O

CH3

CH3

O

CH3
CH3

 
tris(2-ethylhexyl) phosphate 

 

w370 79-94-7 
Brc1cc(cc(Br)c1O)C(c
2cc(Br)c(O)c(Br)c2)(

C)C 
543.88 OHOH

Br

Br

CH3CH3

Br

Br

 
2,2-bis(4-hydroxy-3,5-dibromophenyl)propane 

 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 237

 
Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w371 6358-85-6 

Clc2cc(ccc2/N=N/C(C
(=O)C)C(=O)Nc1cccc
c1)c4ccc(\N=N/C(C(=
O)C)C(=O)Nc3ccccc3

)c(Cl)c4 

629.51 

NH

O

N
N

Cl

Cl

N
NO

NH
O

CH3

O

CH3

 
c.i. pigment yellow 12 

 

w372 311-89-7 

FC(F)(N(C(F)(F)C(F)(
F)C(F)(F)C(F)(F)F)C(
F)(F)C(F)(F)C(F)(F)C
(F)(F)F)C(F)(F)C(F)(F

)C(F)(F)F 

671.10 

F
F

N
F

F

F

F

F

F

F

F
F

FF F F

FF
F F

F

F F

F
F

F
F

F

 
heptacosafluorotributylamine 

 

w373 126-72-7 
BrCC(Br)COP(=O)(O
CC(Br)CBr)OCC(Br)

CBr 
697.62 

O

P O
Br

Br

O

Br

Br

O

Br

Br  
tris(2,3-dibromopropyl) phosphate 
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Annex C.1. List of 375 work chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3D molecular representation and name 

w374 13654-09-6 
Brc1c(c(Br)c(Br)c(Br)
c1Br)c2c(Br)c(Br)c(Br

)c(Br)c2Br 
943.17 

BrBr

Br

Br Br

Br Br

Br

BrBr

 
decabromobiphenyl 

 

w375 1163-19-5 
Brc2c(Oc1c(Br)c(Br)c
(Br)c(Br)c1Br)c(Br)c(

Br)c(Br)c2Br 
959.17 

O

Br

Br

Br

Br

Br

Br

Br

Br

Br

Br

 
decabromodiphenyl ether 
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Annex C.2. List of 93 validation chemicals used in this study. 
ID CAS SMILES code 

MW 
(g/mol) 

3d molecular representation and name 

v001 107-15-3 NCCN 60.10 
NH2NH2  

ethylenediamine 
 

v002 75-86-5 N#CC(O)(C)C 85.11 

N

OH
CH3

CH3

 
acetone cyanohydrin 

 

v003 110-89-4 N1CCCCC1 85.15 
NH

 
piperidine 

 

v004 96-48-0 O=C1OCCC1 86.09 
O

O

 
gamma-butyrolactone 

 

v005 110-85-0 N1CCNCC1 86.14 
NH NH

 
piperazine 

 

v006 110-91-8 O1CCNCC1 87.12 O NH

 
 

v007 110-58-7 NCCCCC 87.17 

NH2

CH3  
pentylamine 

 

v008 96-49-1 O=C1OCCO1 88.06 
O

O

O

 
1,3-dioxolan-2-one 

 

v009 108-01-0 OCCN(C)C 89.14 
OH

N

CH3

CH3  
2-dimethylaminoethanol 

 

v010 107-98-2 OC(C)COC 90.12 
O

OH

CH3 CH3 
1-methoxy-2-propanol 

 

v011 110-63-4 OCCCCO 90.12 
OH

OH
 

1,4-butanediol 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v012 141-79-7 O=C(\C=C(/C)C)C 98.15 

O CH3

CH3
CH3

 
mesityl oxide 

 

v013 123-54-6 O=C(C)CC(=O)C 100.12 O O
CH3

CH3

 
2,4-pentanedione 

 

v014 111-40-0 NCCNCCN 103.17 

NH
NH2NH2  

diethylenetriamine 
 

v015 111-41-1 OCCNCCN 104.15 
OH

NH
NH2 

2-(2-aminoethylamino)ethanol 
 

v016 100-46-9 NCc1ccccc1 107.16 
NH2 

benzylamine 
 

v017 111-69-3 N#CCCCCC#N 108.14 
NN

 
adiponitrile 

 

v018 108-45-2 Nc1cccc(N)c1 108.14 

NH2 NH2

 
1,3-benzenediamine 

 

v019 591-27-5 Oc1cccc(N)c1 109.13 

OHNH2

 
phenol, 3-amino- 

 

v020 96-24-2 ClCC(O)CO 110.55 

OH

OH

Cl

 
3-chloro-1,2-propanediol 

 

v021 110-44-1 O=C(O)\C=C\C=C\C 112.13 

O

OHCH3  
sorbic acid 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v022 105-60-2 O=C1NCCCCC1 113.16 
O

N
H

 
caprolactam 

 

v023 124-09-4 NCCCCCCN 116.21 

NH2 NH2 
hexamethylene diamine 

 

v024 110-49-6 O=C(OCCOC)C 118.13 

O

O
O

CH3 CH3 
2-methoxyethyl acetate 

 

v025 107-41-5 OC(C)CC(O)(C)C 118.18 

OH OH
CH3

CH3CH3  
2-methyl-2,4-pentanediol 

 

v026 111-76-2 OCCOCCCC 118.18 
OCH3

OH

 
2-butoxyethanol 

 

v027 126-33-0 O=S1(=O)CCCC1 120.17 
OS

O

 
tetrahydrothiophene-1,1-dioxide 

 

v028 95-64-7 Nc1cc(c(cc1)C)C 121.18 

NH2
CH3

CH3  
3,4-xylidine 

 

v029 95-78-3 Nc1cc(ccc1C)C 121.18 

NH2
CH3

CH3  
2,5-dimethylaniline 

 

v030 111-48-8 OCCSCCO 122.19 OH
S

OH  
2,2'-thiobisethanol 

 

v031 104-94-9 O(c1ccc(N)cc1)C 123.16 

O

NH2

CH3

 
4-methoxyaniline 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v032 96-23-1 ClCC(O)CCl 128.99 
OH Cl
Cl  

1,3-dichloro-2-propanol 
 

v033 123-63-7 O1C(OC(OC1C)C)C 132.16 
O

O

O

CH3

CH3

CH3 
paraldehyde 

 

v034 110-98-5 OC(C)COCC(O)C 134.18 

O

OH

CH3

OH

CH3

 
1,1'-oxydi-2-propanol 

 

v035 105-05-5 c1cc(ccc1CC)CC 134.22 

CH3

CH3 
p-diethylbenzene 

 

v036 99-85-4 
C1=C(C)CC=C(C(C)

C)C1 
136.24 CH3 CH3

CH3

 
gamma-terpinene 

 

v037 99-08-1 
Cc1cc(ccc1)[N+](=O)[

O-] 
137.14 

N
+

O
-

O

CH3

 
3-nitrotoluene 

 

v038 99-09-2 
O=[N+]([O-

])c1cccc(N)c1 
138.13 

N
+
O

-

O

NH2  
3-nitroaniline 

 

v039 124-04-9 
O=C(O)CCCCC(=O)

O 
146.14 

O
OH

O

OH

 
hexanedioic acid 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v040 4435-53-4 O=C(OCCC(OC)C)C 146.19 
O

OO
CH3

CH3

CH3

 
3-methoxybutyl acetate 

 

v041 1631-58-9 S1SCC(N(C)C)C1 149.28 
CH3

N

CH3

S

S

 
nereistoxin 

 

v042 120-57-0 O=Cc1ccc2OCOc2c1 150.14 

O

O

O

 
piperonal 

 

v043 112-27-6 OCCOCCOCCO 150.18 O
O

OH OH
 

3,6-dioxaoctane-1,8-diol 
 

v044 119-68-6 O=C(O)c1ccccc1NC 151.17 

O

OH NH CH3

 
benzoic acid, 2-(methylamino)- 

 

v045 100-17-4 
[O-

][N+](=O)c1ccc(OC)c
c1 

153.14 N
+ O

-

O

OCH3

 
p-nitroanisole 

 

v046 98-10-2 O=S(=O)(N)c1ccccc1 157.19 
O

S
O

NH2

 
benzenesulfonamide 

 

v047 100-00-5 
O=[N+]([O-

])c1ccc(Cl)cc1 
157.56 

N
+

O
-

O

Cl

 
p-chloronitrobenzene 

 

v048 98-87-3 ClC(Cl)c1ccccc1 161.03 

Cl

Cl

 
(dichloromethyl)benzene 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v049 1129-41-5 
O=C(Oc1cc(ccc1)C)N

C 
165.19 O

O
CH3

NH
CH3

 
n-methyl-m-tolylcarbamate 

 

v050 62-23-7 
O=[N+]([O-

])c1ccc(C(=O)O)cc1 
167.12 O

OH
N

+
O

-

O  
p-nitrobenzoic acid 

 

v051 66-72-8 
O=Cc1c(cnc(c1O)C)C

O 
167.17 

CH3

NOH

O

OH

 
pyridoxal 

 

v052 927-49-1 
O=C(CCCCC)CCCC

C 
170.30 

O

CH3CH3  
6-undecanone 

 

v053 708-06-5 
O=Cc1c2c(ccc1O)ccc

c2 
172.19 

O

OH

 
1-naphthalenecarboxaldehyde, 2-hydroxy- 

 

v054 89-63-4 
Clc1cc([N+]([O-

])=O)c(N)cc1 
172.57 

N
+

O
-

ONH2

Cl

 
4-chloro-2-nitroaniline 

 

v055 57-15-8 ClC(Cl)(Cl)C(O)(C)C 177.46 

OH

Cl
Cl

Cl

CH3

CH3  
b,b,b-trichloro-t-butanol 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v056 680-31-9 
O=P(N(C)C)(N(C)C)

N(C)C 
179.20 O

P

N
CH3

CH3

N
CH3

CH3
N

CH3

CH3

 
hexamethylphosphoramide 

 

v057 2655-14-3 
O=C(Oc1cc(cc(c1)C)

C)NC 
179.22 

CH3

NH

O

O

CH3

CH3  
n-me-3,5-dimethylphenyl carbamate 

 

v058 98-15-7 FC(F)(F)c1cc(Cl)ccc1 180.56 

F

F
F

Cl

 
benzene, 1-chloro-3-(trifluoromethyl)- 

 

v059 91-01-0 
OC(c1ccccc1)c2ccccc

2 
184.24 

OH

 
benzhydrol 

 

v060 86-87-3 
O=C(O)Cc2cccc1cccc

c12 
186.21 

O

OH

 
naphthaleneacetic acid 

 

v061 298-06-6 S=P(OCC)(OCC)S 186.23 
O

P
O CH3

SHS

CH3  
o,o-diethyl dithiophosphate 

 

v062 88-44-8 
O=S(=O)(O)c1cc(ccc1

N)C 
187.22 

O S
O

OH

NH2 CH3

 
2-amino-5-methylbenzenesulfonic acid 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v063 50-84-0 
Clc1cc(Cl)ccc1C(=O)

O 
191.01 

O

OH
Cl

Cl

 
2,4-dichlorobenzoic acid 

 

v064 122-20-3 
OC(CN(CC(O)C)CC(

O)C)C 
191.27 

OH
CH3

NOH

CH3

OH

CH3  
2-propanol, 1,1',1''-nitrilotris- 

 

v065 2631-40-5 
O=C(Oc1ccccc1C(C)

C)NC 
193.25 O

O CH3

CH3

NHCH3

 
isoprocarb 

 

v066 1459-93-4 
O=C(OC)c1cccc(C(=

O)OC)c1 
194.19 O

O
CH3

O

O
CH3

 
dimethyl isophthalate 

 

v067 103-50-4 
O(Cc1ccccc1)Cc2cccc

c2 
198.27 

O

 
dibenzyl ether 

 

v068 2173-57-1 
O(c2ccc1c(cccc1)c2)C

C(C)C 
200.28 

OCH3

CH3  
naphthalene, 2-(2-methylpropoxy)- 

 

v069 122-40-7 
O=C/C(=C\c1ccccc1)

CCCCC 
202.30 

OCH3

 
heptanal, 2-(phenylmethylene)- 

 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 247

 
Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v070 538-75-0 
N(=C=N/C1CCCCC1)

\C2CCCCC2 
206.33 

N N

 
cyclohexanamine, n,n'-methanetetraylbis- 

 

v071 3766-81-2 
O=C(Oc1ccccc1C(C)

CC)NC 
207.27 

O

O

CH3CH3
NH

CH3

 
n-methyl o-sec-butyl phenyl carbamate 

 

v072 31906-04-4 
O=CC1CC=C(CCCC(

O)(C)C)CC1 
210.32 

O

OHCH3

CH3

 
lyral 

 

v073 81-16-3 
O=S(=O)(O)c2c(ccc1c

cccc12)N 
223.25 

O S O

OH

NH2

 
2-amino-1-naphthalenesulfonic acid 

 

v074 50-31-7 
Clc1c(C(=O)O)c(Cl)c

cc1Cl 
225.46 

OH

O

Cl Cl

Cl

 
2,3,6-trichlorobenzoic acid 

 

v075 24851-98-7 
O=C(OC)CC1CCC(=

O)C1CCCCC 
226.32 

O

O
CH3

O

CH3

 
cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v076 4130-42-1 
Oc1c(cc(cc1C(C)(C)C

)CC)C(C)(C)C 
234.39 

OH

CH3

CH3

CH3

CH3
CH3

CH3

CH3
 

phenol, 2,6-bis(1,1-dimethylethyl)-4-ethyl- 
 

v077 821-38-5 
O=C(O)CCCCCCCC

CCCCC(=O)O 
258.36 O

OH

O

OH

1,12-dodecanedicarboxylic acid 
 

v078 526-78-3 
BrC(C(=O)O)C(Br)C(

=O)O 
275.88 O

OH

Br

Br

O

OH

 
2,3-dibromosuccinic acid 

 

v079 66-81-9 
O=C2NC(=O)CC(CC(
O)C1C(=O)C(C)CC(C

)C1)C2 
281.35 

CH3

CH3
O

OH
O

NH

O  
cycloheximide 

 

v080 124-28-7 
N(CCCCCCCCCCCC

CCCCCC)(C)C 
297.57 

N CH3
CH3

CH3

dymanthine 
 

v081 6731-36-8 
O(OC1(OOC(C)(C)C)
CC(CC(C1)C)(C)C)C(

C)(C)C 
302.46 O

O

CH3CH3

CH3

O

O

CH3

CH3

CH3

CH3

CH3
CH3

 
di-tert-butylperoxy-3,3,5-trimethylcyclohexane p 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v082 1836-77-7 
Clc2cc(Cl)cc(Cl)c2Oc

1ccc([N+]([O-
])=O)cc1 

318.55 

ClCl

O

N
+

O
-

O

Cl  
chlornitrofen 

 

v083 2104-64-5 
S=P(OCC)(Oc1ccc([N

+]([O-
])=O)cc1)c2ccccc2 

323.31 

CH3

O

P

S

O

N
+

O
-

O

 
epn 

 

v084 510-15-6 
Clc1ccc(cc1)C(O)(c2c
cc(Cl)cc2)C(=O)OCC 

325.19 

O
O

CH3

OH
Cl

Cl

 
chlorobenzilate 

 

v085 118-79-6 Brc1cc(Br)cc(Br)c1O 330.80 OH

Br Br

Br  
2,4,6-tribromophenol 

 

v086 141-02-6 
O=C(OCC(CCCC)CC
)\C=C\C(=O)OCC(CC

)CCCC 
340.51 

O

O

CH3 CH3

O

O

CH3
CH3

2-ethylhexyl fumarate 
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Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v087 19666-30-9 
O=C2OC(=NN2c1c(C
l)cc(Cl)c(OC(C)C)c1)

C(C)(C)C 
345.23 

CH3

CH3 O

Cl

Cl N

N

O

O

CH3

CH3

CH3

 
oxadiazon 

 

v088 95-08-9 
O=C(OCCOCCOCCO
C(=O)C(CC)CC)C(C

C)CC 
346.47 O

OO
O

O

O

CH3

CH3 CH3

CH3

triethylene glycol bis(2-ethylbutyrate) 
 

v089 961-11-5 
Clc1cc(C(OP(=O)(OC
)OC)=[C@H]Cl)c(Cl)

cc1Cl 
365.97 

CH3
O

P

O

OCH3

O

Cl

ClCl

Cl

 
stirofos 

 

v090 103-23-1 
O=C(OCC(CCCC)CC
)CCCCC(=O)OCC(C

C)CCCC 
370.58 

O

O

CH3

CH3

O
O

CH3

CH3

di-2-ethylhexyl adipate 
 

v091 506-52-5 
OCCCCCCCCCCCC
CCCCCCCCCCCCC

C 
382.72 

OH

CH3

1-hexacosanol 
 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 251

 
Annex C.2. List of 93 validation chemicals used in this study (continued). 

ID CAS SMILES code 
MW 

(g/mol) 
3d molecular representation and name 

v092 77-90-7 
O=C(OCCCC)C(OC(
=O)C)(CC(=O)OCCC

C)CC(=O)OCCCC 
402.49 

O

O

O O

CH3

O

O

CH3

O

O

CH3

CH3

 
acetyl tributyl citrate 

 

v093 13674-87-8 
ClCC(OP(=O)(OC(CC
l)CCl)OC(CCl)CCl)C

Cl 
430.88 O

P
O

Cl Cl

O

Cl

Cl

O Cl

Cl

 
tris(1,3-dichloroisopropyl) phosphate 

 

 
 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 



 252

 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTITATIVE STRUCTURE FATE RELATIONSHIPS FOR MULTIMEDIA ENVIRONMENTAL ANALYSIS 
Izacar Jesús Martínez Brito 
ISBN:978-84-693-4597-9 /DL:T.1010-2010 


	00a Title & Abstract
	00b Contents
	01 Introduction
	02 Methods
	03 Data
	04 Results
	05 Conclusions
	Annex A.1 Paper @ STOTEN
	Annex B Program codes
	Annex C Work and val chemicals
	Còpia de PlantillaPortadaTDX.pdf
	ISBN: 978-84-693-4597-9 
	Dipòsit Legal: T.1010-2010




