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“Intentar escalar l’Everest és un acte intrínsicament irracional, un triomf del desig sobre la sensatesa. Cap 

persona que ho considerés seriosament es trobaria, casi per definició, sota l’influx d’un argument 

raonable.”  

Jon Krakauer. Into thin air. 1997    

 

Jo no he escalat mai l’Everest, però puc sentir aquestes paraules. No en va porto quatre anys treballant 

sabent l’hora a la que començo, però ignorant quan acabaré. He hagut d’ignorar les vacances fins al punt 

d’oblidar-les. He deixat de banda família i amics massa vegades.  En ocasions, més de les que qualsevol 

recomanaria, he treballat set dies a la setmana. I sovint he perdut els nervis davant un miserable gràfic 

preguntant-me què dimonis he fet malament. Tot això per menys de mil euros al mes. Ser estudiant de 

doctorat no és un acte racional, sinó un triomf del desig sobre la sensatesa. I es que si faig la vista enrere, 

recordo els companys que s’han convertit en família. Recordo com vaig viure Milà, que no a Milà. Aquell 

concert a la catedral de Budapest. El verd de les Highlands Escoceses. Recordo els focs artificials del 4 de 

juliol esclatant sota els meus peus mentre volava cap a Houston. I sobretot, recordo aquell dia que el 

miserable gràfic va decidir que havia arribat el moment de donar-me una alegria. Potser no és un 

argument raonable, però poder fer el que realment vols fer, sempre serà un triomf. 

 

No voldria esplaiar-me massa, però entén que aquest apartat de la tesis és l’únic en el que puc opinar i 

oblidar-me de resultats, discussions i abstracts. Però sobretot és l’únic moment en el que puc agrair-te 

sincerament el temps que m’has dedicat.  

 

Mai deixaré d’agrair haver tingut a la Dra Cinta Bladé  com a directora de tesis. Sé que sóc afortunat per 

haver pogut decidir el rumb d’aquesta tesis. Agraeixo igualment la direcció del Dr Juan Fernández-

Larrea, un torrent d’idees que van arribar al moment just. Sóc oblidadís, però sempre recordaré els bons 

moments que hem gaudit tot intentant treure endavant aquest treball. Tots dos heu fet que els moments 

crítics  restin al meu record com experiències inoblidables. Si portés barret, me’l trauria. Ha estat un 

autèntic luxe.  

 

Vull fer especial menció de la Dra Marie-Louise Ricketts i del Dr. David D Moore, del Baylor College of 

Medicine. Many thanks for your implication in this project, your help and initiative have been vital for 

boosting this thesis.  

 

Res del que aquí podràs llegir seria possible de no haver treballat  al grup de Nutrigenòmica de la URV. 

Per tant, vull agrair també l’aportació a aquesta tesis i el recolzament dels Dr/es Gerard Pujadas, Anna 

Ardèvol, Pepa Salvadó, Lluís Arola i Mayte Blay. Així com als companys de laboratori, la nostra segona 

llar, Ximena, Isa Quesada, Isa Baiges, Sabina, Mario, Pajuelo, Niurka, Esther, i en especial a la Gemma i 

a la Montse, que sou qui més temps m’heu patit, i a la Helena, per la paciència que tens amb mi, sou 

tos/es uns/es cracks.  

L’agraïment és extensible als companys de Bioinformàtica, Pere, Pep, Safae, Gerard i, com no, Albert, 

que a lo tonto a lo tonto, a saber els anys que portem fent animalades. I a la Lídia, jo sempre he sabut que 
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vols ser bioquímica. També agraeixo als companys d’Enologia per l’ajut brindat en els moments que l’he 

necessitat, especialment a l’Àngel, gràcies pels riures.  

 

Com no pot ser d’una altra manera, tothom te uns inicis. I els meus van ser immillorables, en aquell 

laboratori rònic de la facultat vella, on érem quatre gats, Cesc, Nino, Montse i Vanessa. Gràcies pels bons 

moments que hem passat junts, i sobretot pels que passarem.   
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ABBREVIATION LIST 

 

 
 

ABC: ATP-binding cassette transporter  

ACAT:  Acetyl-CoA acetyltransferase 

ACC:  Acetyl-CoA carboxylase  

Apo: Apolipoprotein  

BSEP:  bile salt export pump 

CA:  Cholic acid  

CAD: coronary artery disease 

CDCA:  Chenodeoxycholic acid  

CE:  Cholesterol ester 

CETP:  Cholesteryl ester transfer protein  

CVD:  cardiovascular diseases  

CYP: Cytochrome P450 

DGAT:  Diacylglycerol acyltransferase  

EGCG:  Epigallocatechin gallate 

EGF:  epidermal growth factor  

EGFR:  epidermal growth factor Receptor 

ERK:  Extracellular signal-regulated kinase 

ET-1:  Endothelin-1  

FAS:  Fatty acid synthase  

FFA:  Free fatty acids 

FXR:  Farnesoid X receptor  

GST:  Gluthathione S-transferase  

HDL:  High Density Lipoprotein 

HL:  Hepatic Lipase  

HNF4: Hepatocyte nuclear factor 4 

ICAM: Intracellular adhesion molecule 
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IDL:  Intermediate Density Lipoprotein 

IL:  Interleukin 

JNK:  c-Jun kinase 

LCAT:  Lecithin cholesterol acyl transferase  

LDL:  Low Density Lipoprotein 

LDL-C:  LDL-Cholesterol 

LDLR: LDL receptor (LDLR) 

LFA-1:  lymphocyte function-associated antigen-1 

Lp(a): Lipoprotein (a) 

LPL: Lipoprotein Lipase 

LRH-1:  Liver receptor homolog 1 

LRP:  LDL receptor related protein  

LXR:  Liver X receptor 

MAC-1:  integrin alpha-M or Complement receptor type 3 

MAPK:  Mitogen-activated protein kinase 

MCP-1:  Monocyte chemotactic protein 

MDR: Multidrug resistance 

MTP:  microsomal triglyceride transfer protein  

N-CoR:  Nuclear receptor co-repressor  

NF-kB:  Nuclear factor kappa beta 

NTCP:  Sodium/taurocholate cotransporting polypeptide  

PDGF: platelet-derived growth factor receptor  

PI3K:  Phosphoinositide 3-kinase  

PK: Protein kinase 

PLC:  Phospholipase C 

PLTP:  Phospholipid transfer protein  

PPAR:  Peroxisome proliferator activated receptor 

PXR:  Pregnane X receptor  

RasGAP:  Ras GTPase activating protein 

RCT:  Reverse cholesterol transport  
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RER:  rough endoplasmic reticulum  

RGJ:  Red grape juice  

ROR:  Retinoic related orphan receptor 

RXR:  Retinoic X receptor  

SCD:  Stearoyl-CoA desaturase  

SHP:  small heterodimer partner 

SMART:  Silencing mediator of retinoic acid and thyroid hormone receptor  

SR-BI:  Scavenger receptor class B type I 

SREBP:  sterol regulatory element binding protein 

TG: triglycerides 

TNF:  Tumour necrosis factor  

TRL:  triglyceride-rich lipoproteins  

VCAM:  Vascular cell adhesion molecule 

VLA:  Very late activation protein 

VLDL:  Very Low Density Lipoproteins  

VLDLR:  VLDL receptor  
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1. Lipoproteins 

In mammals, the need for transporting hydrophobic lipids through the tissues is solved 

by means of lipoproteins. Lipoproteins are composed by a core of hydrophobic lipids, 

i.e. cholesterol esters and triglycerides, surrounded by amphipathic lipids to guarantee 

the solubility of these particles in plasma, a hydrophilic media (1-3). Thus, cholesterol 

and phospholipids compose an external monolayer, exposing their hydrophilic terminus 

to the aqueous media (3). In lipoproteins, lipids are assembled with a proteic fraction, 

known as apolipoproteins. Lipoproteins are highly dynamic systems, which can 

exchange lipids and apolipoproteins between them and are exposed to modification or 

endocytosis by tissues. Apolipoproteins play essential roles in lipoprotein structure and 

function. First, they guarantee the interactions between different lipoprotein particles. 

Second, they are responsible for lipoprotein metabolization by tissues. Finally, 

apolipoproteins stabilize the structure of the lipoprotein particle (2-6). 

 

1.1 Function and metabolism of plasma lipoproteins  

The lipoproteins responsible for exogenous and endogenous lipid distribution among 

tissues are known as triglyceride-rich lipoproteins (TRLs), which comprise two main 

classes, chylomicrons and Very Low Density Lipoproteins (VLDL) (7-9). Both TRLs 

classes differ in their origin and composition. Chylomicrons are assembled in 

enterocytes, contain a large amount of triglycerides (TG) and the characteristic 

apolipoprotein ApoB-48 (10). VLDL are secreted by the liver, and ideally contain the 

complete isoform of apolipoprotein B, ApoB100 (11). Both ApoB isoforms are obtained 

from the same primary transcript, which can be subjected to post-transcriptional edition. 

This editing process leads to the achievement of the ApoB-48 isoform instead of the full 

length protein, ApoB-100 (8). In humans, the liver synthesizes ApoB-100 whereas the 

intestine secretes mainly apoB-48, despite the fact that the assembling and secretion of 

ApoB100-containing lipoproteins by human enterocytes have been described as well 

(12). In addition, while human liver secretes apoB-100, murine hepatocytes can secrete 

both isoforms assembled into VLDL particles (13). The physiological function of 

chylomicrons and VLDL are slightly different. Whereas the secretion of chylomicrons 

by the intestine responds to the necessity of distributing the newly absorbed dietary 

lipids, the secretion of VLDL by the liver depends on the metabolic state of the 

organism, an is the major endogenous source of TG for extrahepatic cells (14, 15). Once 
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in plasma, TG of TRLs are hydrolyzed by lipoprotein lipase (LPL) releasing fatty acids 

which are then available for the peripheral tissues. By this process, TRLs lose TG and, 

therefore, gain density (16, 17).  The interaction of TRLs with LPL is highly dependent 

on apolipoproteins, such as apoCs (apoCI, apoCII and apoCIII), ApoE and ApoAV (18-

22). Different studies have been addressed to determine the role of these apolipoproteins 

in the modulation of plasma lipid levels, mainly TG (6, 19, 23, 24). It has been shown 

that these proteins modulate the activity of LPL in different manners, and consequently 

affect the hydrolysis of TG from TRLs. Thus, ApoCII and ApoAV have been described 

as activators of LPL (18, 25, 26). In turn, ApoCIII and ApoE are known inhibitors of 

the activity of this lipase (26-28). Therefore, apolipoproteins are critical factors in the 

rate of TG hydrolysis and release from TRLs. In addition, not only the type of 

apolipoprotein, but the interactions between them play a key role in the modulation of 

LPL activity (5). Thus, in patients with hypertriglyceridemia, apoAV levels were 

paradoxically elevated while this apolipoprotein had emerged as an activator of LPL 

activity. The explanation was found in the elevated levels of apoCIII, a known repressor 

of LPL. The correlation between plasma triglycerides, apoAV and apoCIII showed that 

complex interactions between both apolipoproteins are even more important than the 

activity of these proteins alone (20).  

 

The TRLs metabolization by LPL and the interaction with other lipoproteins result in 

TRLs remnants. Thus, the continuous metabolization of chylomicrons results in 

chylomicron remnants, while the hydrolisis of TG from VLDL results in Intermediate 

Density Lipoproteins (IDLs) (12, 29-31). Next, IDLs are submitted to further 

metabolization and also lose their apolipoprotein content, with the exception of ApoB 

(8). The resulting lipoproteins, known as Low Density Lipoproteins (LDLs), have a 

cholesterol-enriched nucleus and a low TG content (32). Different studies have shown a 

wide heterogeneity among lipoproteins, and proposes a more accurate sub-speciation 

based in their density and their lipid content (32), as shown in Table 1. Thereby, VLDLs 

have been divided into larger (VLDL1) and smaller ones (VLDL2), being the later 

similar to IDLs  (8). IDLs can be subdivided into IDL1 and IDL2, while LDLs have 

been subclassified in LDL-I, LDL-II, LDL-III and LDL-IV (32).  
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 Density Diameter (Å) %PR %CE %UC %TG %PL 

VLDL1 <1.006 330-700 11 8 6 58 17 

VLDL2 <1.006-1.010 300-330 18 24 9 29 22 

IDL1 1.008-1.022 285-300 17 35 10 16 21 

IDL2 1.013-1.019 272-285 17 37 11 13 21 

LDL-I 1.019-1.023 272-285 18 43 9 7 22 

LDL-II 1.023-1.034 247-265 19-21 45 10 3-4 22-23 

LDL-III 1.034-1.044 242-247 22-24 44-46 8-9 3 21 

LDL-IV 1.044-1.06 220-242 26-29 40-42 7 5-6 18-19 

PR, protein; TG, triglycerides; CE, cholesterol esters; PL, phospholipids; UC, unsterified cholesterol 

 

Table1. Classification of lipoproteins. From Berneis, KK and Krauss, RM. 2002. J.Lipid Res.  

 

The clearance of plasma LDL by liver and extrahepatic tissues is mediated by LDL 

receptor (LDLR), VLDL receptor (VLDLR) and LDL receptor related protein (LRP) 

(33). Once more, the presence of specific apolipoproteins is required. Thus, while these 

receptors recognize apoE and ApoB in order to bind and internalize the lipoproteins (34, 

35), apoCs inhibit the binding  of LDL to the receptors (27, 28, 36, 37). The 

internalization process requires two main steps. Firstly, lipoproteins are bound to matrix 

proteoglycans, a process facilitated by LPL and Hepatic Lipase (HL). The second step is 

the receptor mediated internalization of LDL (34).  

 

The liver plays a key role in the elimination of peripheral cholesterol by means of the 

synthesis and secretion of High Density Lipoproteins (HDL) (38, 39). Initially, ApoAI 

is secreted from liver associated with phospholipids forming the nascent HDL in plasma 

(pre β-HDL) (39) which then removes cholesterol from the peripheral tissues. The 

delivery of cholesterol from extrahepatic cells to HDL particles is mediated through the 

ATP-binding cassette transporter 1 (ABCA1) (40). Subsequently, cholesterol is 

esterified by Lecithin cholesterol acyl transferase (LCAT), a esterase synthesized by the 

liver and located in the surface of HDL (39). Thus, cholesteryl esters remain in the 

nuclei of HDL while the surface is formed by phospholipids and free cholesterol. From 

this stage, namely HDL3, HDL can accept cholesterol from cells by passive diffusion or 

by mediation of SR-BI, another cholesterol transporter, becoming larger HDL particles 

(HDL2) (41). HDL2 exchange cholesterol and TG with VLDL particles by mediation of 
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cholesteryl ester transfer protein (CETP). The lipid exchange between these lipoproteins 

is important in that it moves peripheral cholesterol excess into metabolic disposal or 

recycling processes (39). In parallel, phospholipids and cholesterol from VLDL can be 

transferred to HDL by action of phospholipid transfer protein (PLTP) (32, 42). Large 

HDL are then internalized by the liver through a process which involves TG hydrolysis 

by Hepatic Lipase (HL) and cholesteryl esters uptake by liver through SR-BI (38). 

Finally, ApoAI is internalized for recycling. Therefore, HDL are responsible for the 

reverse cholesterol transport (RCT). 

 

In summary, lipoprotein metabolism is a finely tuned network of interactions that leads 

the transport of lipids through the whole organism (summarized in Figure 1). Together 

with the intestine, liver orchestrates the synthesis and secretion of lipoproteins, playing 

a major role in the reverse cholesterol transport and clearance of lipids. Thus, liver is a 

key organ in the maintenance of lipid homeostasis.  
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Figure 1. Lipoprotein metabolism.  
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1.2 Dyslipemia and diseases 

Plasma lipids and lipoproteins are in the focus of a vast number of studies addressed to 

clarify the origin of cardiovascular diseases (CVD) (12, 32, 43-45). Although 

lipoproteins are vital in distributing hydrophobic lipids through the organism, the 

dysregulation of these plasmatic particles is the consequence or the origin of many 

altered states (9, 38, 41, 42, 44, 45). Thus, the modulation of lipoprotein homeostasis 

has been revealed as a key target for the enhancement of the quality of life in developed 

countries, where dyslipemia in general, and concretely hyperlipidemia, are achieving 

the status of epidemics (15, 46).  

 

The large half-life of LDL and the presence of ApoB, with a high susceptibility to be 

oxidized, points to these lipoproteins as important factors for atherogenesis.  Once 

oxidized, apoB can be recognized by scavenger receptors of macrophages, being 

internalized (47). Large amounts of internalized lipoproteins cause the evolution of 

macrophages to foam cells and its deposition in the arterial wall, starting an immune 

response which results in atherosclerotic lesions (48). Angiographic studies revealed 

that lowering LDL cholesterol (LDL-C) has a great impact in severe lesions, close to a 

50%. Thus, traditionally, antiatherogenic therapies have been focused on reducing LDL-

C.  

 

Nevertheless, TRL remnants have been gaining relevance as atherogenic agents due to 

their high content in TG, which enhances the susceptibility of macrophages for 

becoming foam cells (15, 49). TRL have been identified as a key factor in the 

progression of mild to moderate lesions in 50% of cases (49-51). Quantitative coronary 

angiography studies have demonstrated that progression of mild to moderate lesions is a 

significant predictor of clinical coronary events, and that lowering TGs reduces 

progression of CAD to the same degree as the lowering of LDL-C (49-51). 

Additionally, TRL remnants have been strongly associated with CAD, since particles 

isolated from human atherosclerotic plaques have been shown to be structurally and 

compositionally similar to remnants of TRL (49). Postprandial lipoproteins are such an 

important factor in atherosclerosis development that, nowadays, hypertriglyceridemia 

itself is considered as an independent risk factor for cardiovascular disease (52). Thus, 
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not only LDL, but apoB-containing lipoproteins are considered responsible of 

atherogenesis, being the quantization of ApoB a better CVD risk index than LDL-C (4).  

 

A 40% to 50% of patients with coronary artery disease (CAD) have an atherogenic 

lipoprotein profile characterized by elevated IDL, TG, dense LDL, and dense VLDL, 

and by low levels of HDL2 (49). Furthermore, 20% of patients with premature CAD 

have elevated Lipoprotein (a). Lp(a) is a lipoprotein that resembles LDL in composition 

with an abnormal protein, termed [a], attached. Lp(a) is abnormal among the 

lipoproteins in that it gains density with an increase in particle diameter (53). Abnormal 

lipoprotein concentrations can result from changes in the production, conversion or 

catabolism of lipoprotein particles. Patients with familial hypercholesterolemia, are 

characterized by a decreased clearance of LDL, concomitant with LDLR defects (54). 

Nevertheless, further studies have revealed an abnormal increased production of VLDL 

in addition to receptor dysfunction (55, 56). A relevant example of lipoprotein 

metabolism dysregulation are the metabolic syndrome and type 2 diabetes, which 

implicate increased secretion rates of VLDL and reduced rates of TG, VLDL and LDL 

conversion (30, 31). In subjects presenting this type 2 diabetes, angiographically 

evaluated CAD, positively correlated with plasma TRL levels, independently of HDL 

and LDL (57). Visceral fat, hepatic fat, insulin resistance and plasma adiponectin seem 

to be the primary responsible of abnormal apoB and TG kinetics under this situation 

(31, 58).  Increased amounts of peritoneal fat lead to alterations of portal free fatty acids 

flux (59), altered pattern of adipocytokines, and perturbed ratio of proinflamatory to 

anti-inflamatory processes (60). Despite the fact that each factor may increase VLDL 

secretion by itself, it is unclear which one has the greatest impact on driving hepatic 

TRL overproduction.  
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1.3 The liver in the metabolism of plasma lipoproteins 

As has been shown, liver presides over the control of lipoprotein homeostasis. 

Therefore, modulation of the mechanisms that control lipoprotein synthesis, secretion 

and uptake in the liver have gained great interest for the treatment of dyslipemias.  

 

1.3.1. VLDL synthesis and secretion 

The exact mechanisms of VLDL assembly remain unclear despite the fact that 

evidences point to a multi-step process (61). The present working model for VLDL 

synthesis proposes that TG become associated to ApoB in different steps through the 

assembly pathway. ApoB is synthesised in the rough endoplasmic reticulum (RER) 

membrane. While the newly synthesised ApoB translocates into the RER lumen, it is 

lipidated by action of the microsomal triglyceride transfer protein (MTP), forming the 

pre-VLDL complex (11, 61). Thus, ApoB can be folded on a core of neutral lipids. 

Further lipidation of pre-VLDL particles results in larger and more buoyant particles, 

namely VLDL2. Alternatively, if no lipids are available, pre-VLDL are sorted to 

degradation (61).  A second stage in the VLDL synthesis is the maturation of the small 

precursor, which fuses to a larger TG droplet, obtaining the VLDL1 or mature VLDL. It 

is not clear whether this maturation occurs at the RER or in the Golgi apparatus prior to 

being secreted (8, 11).  

 

The mechanisms controlling the synthesis of VLDL in the liver have been widely 

studied in different animal and cell models (8, 13, 61, 62). Synthesis and secretion of 

VLDL is controlled at several levels and coordinated by MTP (10, 63). MTP shuttles 

lipids to the newly synthesized apoB, promoting the assembly of the nascent VLDL (10, 

61). Therefore, three main points of control are involved, (i) the availability of lipids, 

(ii) the rate of ApoB synthesis and degradation, and (iii) the MTP activity. 

 

The assembly of VLDL is highly dependent of lipid availability. The activities of 

different lipogenic key enzymes and regulatory proteins have been related with the 

synthesis and secretion of VLDL (1, 11, 64-66). That is the case of sterol regulatory 

element binding proteins (SREBPs) 1 and 2, master regulators of the TG and cholesterol 

biogenesis programs, respectively. Mice overexpressing SREBP1a and SREBP1c 

display enhanced TG synthesis in the liver (64, 65, 67-70).  Once activated, SREBP1 
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modulates several genes from the TG synthesis program, such as Fatty acid synthase 

(FAS), Acetyl-CoA carboxylase (ACC) and stearoyl-CoA desaturase (SCD) among 

others (67, 71). Along with the control of lipogenesis, SREBPs are implicated in the 

control of VLDL synthesis and secretion (1, 65). Thus, in McArdle rat hepatoma cells, 

the levels of mature SREBP1were directly correlated with the secretion rate of ApoB 

(65), while in transgenic mice overexpressing SREBP1 and lacking LDLR, plasma TG 

levels pointed to a severe hypertriglyceridemia, ascribed to an increased secretion of 

VLDL (67).  Additionally, SREBPs have been shown to bind the promoter of the MTP 

gene, inhibiting its expression in vitro (72). Therefore, SREBPs are major controllers of 

lipid synthesis and lipoprotein synthesis and secretion in the liver. Apart from the vast 

number of lipogenic factors, several authors have demonstrated that the fatty acids used 

for synthesising VLDL are recruited from cytosolic TG pools (73-75). The lipolysis of 

cytosolic TG is carried out by arylacetamide deacetylase  (AADA) and triacylglycerol 

hydrolase (TGH) (61). The released fatty acids reach the RER where they are re-

esterificated to TG by diacylglycerol acyltransferase 2 (DGAT2) (61). These new TG 

are then assembled into pre-VLDL particles by MTP (61). Consequently, the enzymes 

involved in the intracellular trafficking of these fatty acids also modulate the formation 

of VLDL (76-78). Therefore, along with lipogenesis, intracellular lipolysis correlates 

with VLDL synthesis (61).   

 

ApoB is another key factor in the synthesis of VLDL, since it presides over the 

assembling and stabilizes these lipoproteins (8, 62). The lack of functional or the 

presence of truncated ApoB is the cause for hypobetalipoproteinemia, a dysregulation 

that results in extremely low levels of plasma apoB-containing lipoproteins (79). 

Nevertheless, while low levels of ApoB critically affect the synthesis of VLDL, excess 

of ApoB is rapidly overcome by hepatocytes. Thus, it is generally believed that ApoB 

secretion is regulated post-transcriptionally by co-translational and post-translational 

degradation in at least three different pathways (3, 11, 61, 80): (i) By retraction from the 

RER lumen while it is synthesised, being translocated into the cytoplasm, ubiquitinated 

and subsequently degraded via proteosoma. (ii) Post-translationally, by a mechanism 

that have been observed in cultured cells exposed to polyunsaturated fatty acids (80). 

(iii) By immediate reuptake of the newly secreted VLDL, by means of the LDLR (37, 

67). It has been shown that LDLR can bind VLDL with degradation purposes even 

before those lipoproteins have been secreted (37).  Therefore, while ApoB is essential 
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for VLDL synthesis, an excess is easily compensated by the cell through these three 

mechanisms. 

 

The third critical factor modulating VLDL synthesis is the MTP activity. The lack of a 

functional MTP is the cause for Abetalipoproteinemia, a complete loss of circulating 

apoB-containing lipoproteins (81). The vital role of this enzyme has been widely 

demonstrated in different in vivo and in vitro models (81-84). Beyond its lipid 

transferring activity, it is thought that MTP stabilizes ApoB folding until the complete 

maturation of VLDL, otherwise ApoB would be degraded (3).  It has been shown that 

the FAO cell line, which stably expresses MTP, is able to secrete ApoB while in L35 

cells, derived from FAO, the secretion of VLDL is abolished because L35 cells cannot 

express MTP (84). Nevertheless, TG secretion is still functional in L35 cells, despite 

being a 25 % lower than in the case of the FAO cell line (84). Although the mechanism 

underlying this last observation remains unknown, it is thought that TG can be secreted 

into nascent ApoE and ApoA-IV-containing lipoproteins (84). Therefore, while MTP 

activity and ApoB levels are tightly linked factors in the synthesis of VLDL, lipid 

availability is an independent rate-limiting factor. In other words, while the lack of MTP 

or ApoB results in the absence of apoB-containing lipoproteins, liver is still able to 

secrete TG.  

 

 

1.3.2 Cholesterol clearance.  

Liver is responsible for cholesterol elimination of the whole organism. First by 

controlling RCT via HDL (38), and second by secreting the recruited cholesterol to bile 

canaliculi, both  directely and after its conversion to bile acids (14, 85). The pathway 

leading to bile acids is subjected to a complex control. Thus, bile acid synthesis is 

coordinated to other metabolisms, such as cholesterol biosynthesis, and subjected to the 

control of signalling pathways, such as insulin or c-jun terminal kinase (86, 87). The 

biosynthesis of bile acids is mediated by sequential action of different enzymes from the 

P450 cytochrome family (CYPs).  The classical pathway consist on a cascade of 15 

reactions (86), where CYP7A1 is considered the rate-limiting enzyme in the synthesis 

of two primary bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA) (86). A 

second key enzyme in this pathway is CYP8B1, which controls the ratio between CA 

and CDCA production (86, 88). It has been shown that bile acid synthesis is under the 
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control of redundant pathways, allowing negative and positive feedback regulation (89-

91). The action of different nuclear receptors, along with the activation of signalling 

pathways by bile acids, are vital in these mechanisms and guarantee the control of both 

intracellular and plasma bile acids content (87, 89, 92, 93). Thus, liver is responsible for 

bile acid synthesis, but also for plasma bile acids uptake via Sodium/taurocholate 

cotransporting polypeptide (NTCP) (94) and its secretion into bile canaliculus mediated 

by ATP-binding cassette transporters such as ABCG5, ABCG8, ABCB11 (known as 

bile salt export pump; BSEP), ABCB4 (MDR3) or ABCC2 (MRP2) (95, 96). Together 

with bile acids, liver is able to secrete sterols to the bile acid canaliculus by mediation of 

the sterol transporters ABCG5 and ABCG8 (97). Therefore, liver presides over the 

clearance of cholesterol: The reverse transport of cholesterol is started with the secretion 

of ApoAI lipoproteins by the liver and is completed by the synthesis of bile acids and its 

secretion into the bile.  

 

1.3.3 Nuclear receptors in the control of lipid metabolism in liver. 

Several studies have implicated nuclear receptors in the control of lipid homeostasis, 

establishing a coordinated net of metabolic sensors which integrates lipid metabolism, 

inflammation, drug metabolism, bile acid synthesis and glucose homeostasis among 

other processes (87, 97-101). The structure of these proteins contains, ideally, a Ligand 

binding domain that allow the binding of one or more ligands, a DNA binding domain 

to recognise conserved sequences in the promoter of different genes, and different 

interaction domains to allow the modulation of their activity by coactivators, 

corepressors, phosphorylation/dephosphorylation and other nuclear receptors (102, 

103). This structure provides to nuclear receptors the ability of acting as metabolite 

sensors, being activated by endogenous or exogenous molecules and subsequently 

triggering or repressing gene expression in a coordinate manner (103).  Some of these 

receptors, such as Farnesoid X receptor (FXR), Liver X receptors (LXRs) or 

peroxisome proliferator activated receptors (PPARs), heterodimerize with other nuclear 

receptors, usually Retinoic X receptor (RXR), in order to bind DNA. Other nuclear 

receptors, such as Retinoic related orphan receptors (RORs), can act as homodimers 

(104). It is generally believed that nuclear receptors are bound to their target sequences 

in an inactive form, associated with co-repressors such as nuclear receptor co-repressor 

(N-CoR) and silencing mediator of retinoic acid and thyroid hormone receptor 

(SMART). Ligand binding to either RXR or its partner, leads to the release of 
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corepressors and recruitment of coactivators (e.g., SRC-1, p300, ACS-2, TRRAP, or 

PGC-1α). By means of these coactivators, other mediators are recruited, such as histone 

deacetylases or methylases, which subsequently enhance the transcription of the gene 

(87, 97, 104, 105). Thus, despite the fact that the actions of nuclear receptors are 

coordinated through complex mechanisms, the ability of these proteins to modulate a 

wide battery of genes has placed them in the focus of different studies addressed to 

identify the cause of different altered metabolic states, such as diabetes or dyslipemia 

(101, 102, 104, 106).  

 

As mentioned above, nuclear receptors play a key role in RCT. Thus, LXRs, an 

oxysterol-binding nuclear receptors subfamily, control a wide battery of genes related to 

cholesterol and bile acid metabolism, leading to the conversion of cholesterol to bile 

acids in response to high intracellular oxysterol levels (94, 106). On the other hand, 

FXR is a nuclear receptor which binds to, and is activated by, different bile acids, 

promoting the repression of bile acids synthesis and triggering their secretion when they 

are in excess (94, 106). The activated FXR enhances the transcription of small 

heterodimer partner (SHP). SHP is an orphan (i.e., with no known ligand) nuclear 

receptor lacking a DNA binding domain that acts as a corepressor of conventional 

nuclear receptors (107). Subsequently, SHP interacts with other nuclear receptors, such 

as HNF4 and LRH-1, inhibiting their binding to the promoter of bile acid synthesis 

genes. As a result, the synthesis of bile acids is decreased (86, 88, 89, 107, 108).  

 

In addition to its implication in bile acids metabolism, FXR plays a key role in the 

control of cholesterol and TG metabolism, since different studies have shown that mice 

lacking this nuclear receptor present elevated cholesterol and TG levels in plasma and 

liver (109-111). This hyperlipidemia has been associated to the modulation exerted by 

FXR on a battery of genes related with TRL clearance, such as apoCIII (112), apoCII 

(113) and VLDLR (114). Furthermore, FXR can also control different genes involved in 

lipid synthesis, as demonstrated by treatment of mice with bile acids (115). The 

hypotriglyceridemic actions of bile acids can be attributed, at least in part, to the 

activation of FXR and subsequent induction of transcription of its target gene SHP 

(116). Thereafter, SHP represses the expression of different genes by inhibiting the 

action of other nuclear receptors and transcription factors (87, 92, 116, 117). SREBP1 is 

one of these genes repressed by SHP (115). It has been shown that the activity of 
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SREBP1 can be downregulated by transient activation of SHP (115). Nevertheless, 

continuous overexpression of SHP in transgenic SHP-tagged mice leads to increased 

expression of SREBP1 (117). This last observation was ascribed to a diminished bile 

acid pool, and subsequent activation of LXR in the liver of those mice. Therefore, 

prolonged overexpression of SHP triggers SREBP1 expression by indirect mechanisms 

derived from the altered physiological state of the mouse (117). In contrast, in a normal 

situation, transient induction of SHP negatively regulates SREBP1 (115, 117). Thus, the 

regulation of gene expression by FXR and SHP could be extended to the lipid synthesis 

program, which is a key factor in the synthesis and secretion of TRLs. 

 

Together with FXR, other nuclear receptors play major roles in the control of lipid and 

lipoprotein metabolism, such as LXR, PPARs, Pregnane X receptor (PXR) and RORs. 

LXR is strictly coordinated with FXR. Both are known to play antagonistic roles in the 

control of bile acid and lipid metabolism (97). Thus, while LXR promotes the activation 

of the fatty acid and TG synthesis program, FXR is known as an effective repressor of 

lipogenesis (97, 98, 106). Moreover, their antagonistic roles are also involved in the 

control of VLDL secretion, which is activated by LXR and repressed by FXR (Figure 2) 

(97). Once more, SHP plays a key role in the modulation between FXR and LXR (117, 

118). The activation of FXR leads to the induction of SHP expression. Among other 

targets, SHP can repress FXR and LXR transcriptional activity, establishing a negative 

feedback mechanism that allows SHP to control its own expression along with that of 

many other genes (92, 108, 117). Thus, SHP, which was initially described as an 

important controller of bile acid synthesis, is gaining relevance in different metabolisms 

such as inflammation or lipid homeostasis (92, 115, 119).  

 

In summary, nuclear receptors are key regulators of lipid and lipoprotein metabolism in 

the liver, playing central roles in the hepatocyte efflux of bile acids, fatty acids and 

cholesterol. The role as major controllers of lipid homeostasis places nuclear receptors 

as important pharmacological targets for the modulation of dislypemias. 
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2. Flavonoids and procyanidins. 

Several studies have reported a wide range of beneficial effects of dietary procyanidins, 

and flavonoids in general, in human and animal models, protecting against CVD and 

oxidative damage or ameliorating insulin resistance states (62, 120-124). Therefore, the 

interest arisen by the protective properties of these polyphenolic compounds has placed 

them in the focus of nutrition research, in order to understand the processes and 

molecular mechanisms responsible for their effects (62, 125, 126). 

 

 

2.1 Chemistry, human intake and metabolism  

Procyanidins are a group of flavonoids found in vegetables and derived foods such as 

tea, cocoa, red wine or fruit juices (127-130). Flavonoids are widely distributed among 

vegetables, and are represented by a large number of chemical structures. Nevertheless, 

all these structures are based in a benzenic ring condensed with a heterocyclic pyran that 

carries a phenyl benzene ring (Figure 3) (120).  From this basic structure, a plethora of 

different compounds arise depending on the additionally bound functional groups.  The 

main subgroups into the flavonoids family are anthocyanidins, flavonols, flavones, 

flavanones, isoflavonoids and flavanols (64, 120). Procyanidins are included in the 

group of flavanols, also named flavan-3-ols or catechins, and are condensed structures 

formed by polymerization of (+) catechin, (-) epicatechin and (-) epicatechin gallate 

(Figure 3). The different oligomers ranging between 2 and 10 units are considered 

procyanidins, while further polymerized structures are named tanins (64, 120).  

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF HEPATIC LIPOPROTEIN METABOLISM BY DIETARY PROCYANIDINS 
Josep Maria del Bas Prior 
ISBN: 978-84-691-0360-9/ DL: T.2173-2007



I.   Introduction 

 - 15 - 

 

Figure 3. Chemical structure of flavonoids.  

 

The average intake of flavonoids by humans remains unclear. Different works report 

flavonoid intake values ranging from 3 mg to 2 g per day (120, 131). Nevertheless, 

these studies were mainly focused in a limited number of flavonoids and foods. On the 

other hand, the bioavailability of these phenolic compounds has not been yet precisely 

elucidated (120). The appraisal of the precise active forms of these compounds is 

subjected to technical limitations on their analysis. Thus, the mechanisms of absorption, 

modifications in their structure or possible depolymerisation remain unclear (64, 131). 

Nevertheless, it has been shown that the bioactive form of flavonoids differ from those 
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found in vegetables. Thus, aglycones (i.e., non-glycosilated forms) can be metabolized 

during intestinal transit by colonic microflora (132, 133). In enterocytes and 

hepatocytes, flavonoids are metabolized by the oxidative metabolism, P450 related 

metabolism, and/or glucuronidated, sulphated, methylated and/or conjugated with thiols 

such as gluthatione (132-134). Despite the fact that those modifications were observed 

in monomers, such as quercetin, hesperetin, naringenin and epicatechin, oligomeric 

procyanidins may be metabolized in a similar manner (132). Evidence suggest that 

oligomeric procyanidins can be modified after absorption, being glucuronidated, 

methylated or sulfated, and that procyanidins are not necessarily depolymerised (135, 

136). Tsang et al (2005) demonstrated that dimeric and trimeric forms of procyanidins 

can be found in rat urine after oral administration of grape seed extract, while catechin 

metabolites can be found in kidney and liver (135). Moreover, Garcia-Ramirez et al 

(2006) reported the presence of tetramethylated dimeric procyanidins in the liver of rats 

fed a single dose of synthetic procyanidins (136). Despite procyanidins or procyanidins 

monomers are able to reach different tissues, it has been demonstrated that flavan-3-ols 

can not pass through the blood-cerebrospinal fluid barrier (137). Another key aspect in 

the study of polyphenolic compounds is the rate of absorption. It has been shown that 

the maximum concentration of plasma quercetin in humans is achieved 3 hours after 

intake of red grape juice (RGJ) (138). In agreement, in rats fed with synthetic 

oligomeric procyanidins, tetramethylated dimeric forms were detected in plasma as 

soon as 1 hour after administration (136). This evidence and the wide diversity of 

effects exerted by these compounds in in vivo models (125, 126, 131) point out that 

procyanidins are rapidly absorbed and readily reach the liver  and other tissues.  

 

2.2.Interactions of flavonoids with intracellular  signalling pathways 

The antioxidant properties of flavonoids were initially postulated as the main 

explanation for their beneficial effects. Their structure, rich in double carbon bonds, 

facilitates the stabilization of reactive oxygen species (64). Thus, green tea polyphenols 

were shown to have significant antioxidant activity both in in vivo and in vitro systems, 

acting by scavenging reactive oxygen and nitrogen species and chelating redox-active 

transition metal ions, while modestly ameliorated ex-vivo oxidation of lipoproteins 

(139). On the other hand, red wine polyphenols exert a protective effect in vitro and in 

vivo against LDL free radical–mediated oxidation (140, 141). Therefore, flavonoids 
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may be important in preventing CVD by reducing the susceptibility of LDL to oxidation 

in vivo.  

 

Nevertheless, accumulating evidence suggest that beneficial effects of flavonoids may 

be mediated by interactions with cellular components of protein kinase and lipid kinase 

signalling cascades such as phosphoinositide 3-kinase (PI3K), protein kinase C (PKC) 

and MAP kinases (142-145). Thus, genistenin, an isoflavone, modulates the expression 

of antioxidant enzymes by enhancing the phosphorilation of extracellular regulated 

kinase (ERK1/2) (146). Procyanidins derived from grape seed inhibited the 

phosphorilation of JNK, p38 and ERK1/2, leading to a protection against UV induced 

oxidative damage in keratinocytes (147). Red wine flavonoids inhibits ligand binding to 

platelet-derived growth factor beta receptor (βPDGFR) and subsequent ligand-induced 

recruitment of signalling molecules such as RasGAP, PI3K or PLCγ, resulting in the 

prevention of downstream events in vascular smooth muscle cells (148). In HepG2 

cells, naringenin, another flavonona, decreased apoB secretion via activation of PI3K 

(14). The interaction of flavonoids with these signalling pathways leads to the 

transcriptional modulation of different genes. Thus, in HepG2 cells, grape seed 

procyanidins trigger the expression of gluthathione S-transferase (GST) (121). 

Naringenin repress LDLR expression in HepG2 cells and wild type hepatocytes (14), 

and decrease MTP and ACAT mRNA levels in HepG2 (149).  

 

Additionally, different in vitro experiments have demonstrated that tea flavonoids are 

able to inhibit fatty acid synthase (FAS), subsequently inhibiting TG biosynthesis by 

interfering the epidermal growth factor (EGF) signalling pathway (Figure 4) (150, 151). 

Therefore, the modulation of signalling pathways and gene expression exerted by 

flavonoids provides a wide base for the physiological effects ascribed to these 

compounds.  

 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF HEPATIC LIPOPROTEIN METABOLISM BY DIETARY PROCYANIDINS 
Josep Maria del Bas Prior 
ISBN: 978-84-691-0360-9/ DL: T.2173-2007



I.   Introduction 

 - 18 - 

PP
PI3K

PDK

Akt

SP1
FAS gene

FAS

EGCG

EGF

EGCG

Nucleus  

Figure 4. Proposed mechanism for FAS downregulation by Epigallocathechin 

gallate via EGF signalling pathway. Adapted from Jen-Kun Lin and Shoei-Yn Lin-

Shiau. 2006. Mol Nutr Food Res 
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2.3. Effects of flavonoids and procyanidins on lipid metabolism and cardiovascular 

diseases 

The beneficial effects ascribed to flavonoid consumption are supported by several 

studies performed in different models (72, 126, 131, 152). During the past decade, 

Artaud-Wild et al. (1993) described that, in 40 different countries, mortality by 

cardiovascular heart disease correlated with cholesterol and saturated fat intake. 

Intriguingly, the low mortality by CVD of the French population contrasted with their 

high consumption of cholesterol and saturated fats (Figure 5A) (153). Nowadays, this is 

known as the French paradox, and can be extended to other European southern 

countries.  

 

Figure 5. The French Paradox 

A. From Artaud-Wild et al. 1993. Circulation. 

B. From Renaud M et al. 1992. The Lancet.  

 

The explanation for this paradox can be found in the nutrition habits associated to the 

Mediterranean diet (154). Among other factors, red wine consumption has been 

postulated as an explanation for the paradox, since France fits in the correlation when 

wine intake is plotted against coronary mortality (Figure 5B) (155). The observation 

that non-alcoholic components in red wine were responsible, at least in part, for the 

beneficial actions against CVD, led to the identification of flavonoids as potent agents 

for preventing and ameliorating different pathologies (120, 123, 131). From that starting 

point, evidence demonstrating the beneficial effects of flavonoids consumption are 

supported by many in vitro and in vivo studies (123, 152, 156-158). Nowadays, 

flavonoids are in the focus of nutrition research, and many studies have been addressed 

A 
B 
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to identify the molecular mechanisms underlying the beneficial effects of these 

polyphenolic compounds (64, 72, 123, 126, 131).  

 

Several studies have been addressed to determine the potential applications of 

flavonoids in the prevention and treatment of different pathologies which implicate 

oxidative metabolism, insulin resistance or dyslipemia, such as atherosclerosis or 

metabolic syndrome (124, 159). Thus, it has been shown that procyanidins elicit 

protective effects against oxidative damage in neurons and fibroblasts (132). Once 

more, the mediation of signalling cascades is involved, such as caspase-3 and pro-

apoptotic MAPK (160). In addition, different studies have revealed that flavonoids are 

able to affect growth-related signal transduction pathways involved in the progression 

of cancer (161-165). Their actions could be divided into two main categories (i) the 

ability to induce apoptosis of cancer but not normal cells (161, 163, 166), and (ii) the 

inhibition of signalling pathways involved in the progression of carcinogenesis (167). 

On the other hand, the ability of flavonoids to ameliorate insulin resistance has been 

described by different authors (124, 159). Thus, grape seed procyanidins have shown an 

antihyperglycemic effect in diabetic rats and insulin sensitive cell lines such as 3T3-L1 

adipocytes and L6E9 myotubes (124), while naringenin showed insulin like effects 

regarding ApoB secretion in HepG2 cells (168).  

 

 

The effects of flavonoids against CVD have been widely described, and can be extended 

to hepatic cholesterol metabolism and inflammation, being protective at several levels 

(126). First, the suggested actions of polyphenols reducing cholesterol absorption have 

been related with their ability to interact with ATP steroid binding cassettes found in 

enterocyte cholesterol transporters (169). In rats, the absorption of cholesterol was 

inhibited by tea procyanidins (170). In addition, when Caco-2, a human intestinal cell 

line, were treated with dealcoholized wine, the secretion of apoB48 was importantly 

decreased (171). This effect was ascribed to a lack of lipids for assembling into the 

nascent chylomicrons as a result of a diminished lipid absorption (126). Studies in 

dyslipemic post-menopausal women showed that, after intake of dealcoholized red 

wine, apoB48 levels were markedly reduced, pointing out a decrease in circulating 

postprandial chylomicrons caused by a decrease of fat absorption (172). Therefore, a 

lowered lipid absorption at the intestine level has been suggested as a primary 
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mechanism for reducing plasma lipid content by flavonoids (126). Nevertheless, the 

main part of studies addressed to identify the actions of polyphenols in the lipoprotein 

assembling and secretion processes have been focused on hepatic production of VLDLs. 

Thus, naringenin and hesperitin decreased apoB secretion in hepatocytes (14, 149). 

These results were associated with decreased cholesteryl ester (CE) mass, inhibition of 

ACAT2 expression and lowered MTP activity and mRNA levels. The actions of 

flavonoids decreasing CE pool have been attributed to their binding with plasma 

membrane transport P-glycoprotein, decreasing CE incorporation into newly 

synthesized lipoproteins (126). Additionally, tea flavonoids are able to inhibit fatty acid 

synthase (FAS), consequently inhibiting TG biosynthesis, by interfering the epidermal 

growth factor (EGF) signalling pathway in HepG2 and MCF-7 cells (150, 151). The 

suppression of FAS was accompanied by reduced levels of cholesterol and fatty acid 

biosynthesis (150). Thus, the hypolipidemic activity ascribed to flavonoids can result 

from the inhibition of lipid biosynthesis and reduced assembling of lipoproteins. 

It has been described that alcohol-stripped red wine, in addition to lowering ApoB100 

secretion in HepG2 cells, increases the binding activity of LDLR (173). Thus, dietary 

flavonoids actions can be extended to an enhanced clearance of plasma lipoproteins by 

the liver. In agreement with this idea, red grape juice (RGJ) polyphenols increased the 

activity and expression of LDLR in HepG2 and HL-60 cells in the presence and absence 

of LDL (174). Similar effects have been ascribed to Epigallocatechin Gallate (EGCG), 

which induced LDLR expression and its binding activity in HepG2 cells, lowering as 

well the concentration of intracellular cholesterol (175). In summary, flavonoids are 

able to lower plasma lipid content by interfering with lipoprotein metabolism at several 

levels, including intestinal absorption of lipids, TRL synthesis by intenstine and liver 

and hepatic LDL clearance.  

 

The actions of flavonoids lowering lipoprotein synthesis and secretion in liver and 

intestine, and enhancing the hepatic clearance of plasma cholesterol are translated into 

ameliorated levels of pro-atherogenic lipoproteins. It has been shown that, in healthy 

humans and hemodyalisis patients, RGJ exerted antioxidant, hypolipidemic and 

antiinflamatory effects. RGJ consumption increased the antioxidant capacity of plasma 

without affecting concentrations of uric acid or ascorbic acid and reduced the 

concentration of oxidized LDL. Additionally, RGJ supplementation caused a significant 
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increase in HDL-cholesterol and apoA-I plasma content and a decrease in LDL-

cholesterol and apoB-100 concentrations (138).  
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Figure 6. Effects of dietary flavonoids at different levels in the lipoprotein 

metabolism. Adapted with modifications from Zern and Fernandez. 2005. The Journal 

of Nutrition 

 

Grape polyphenols have also been shown to exert hypolipidemic effects in pre- and 

post-menopausal women (176). Those women showed a significant decrease of plasma 

TG and apoB after the consumption of lyophilized grape powder during 4 weeks. 

Concomitantly, a reduction in ApoE levels was observed. ApoE can act by displacing 

ApoCII from VLDL, inhibiting LPL activity and, thus, TG hydrolysis and VLDL 

catabolism (26). Therefore, not only the synthesis and secretion of lipoproteins is 

involved in the beneficial effects of flavonoids, but also metabolization of TRL may 

account, leading to a reduction in circulating TG by decreasing ApoE, which result in 

enhanced LPL activity. Accordingly, hawthorn flavonoids treated mice did not show 

increased levels of plasmatic LPL, but the expression of this protein increased in 

muscle, while decreased in adipose tissue  (177). In another work, Rutin, a citrus 

flavonoid, ameliorated different plasmatic parameters, such as VLDL-cholesterol, LDL-
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cholesterol and HDL-cholesterol in streptozotocin-induced diabetic rats, while 

significantly triggered the activation of plasma LPL activity (178). Therefore, 

flavonoids can act at many levels in order to lower plasma lipid content (Figure 6). 

 

Along with their actions in lipoprotein metabolism, flavonoids can act against CVD by 

other mechanisms. It has been shown that red wine oligomeric procyanidins are directly 

able to modulate vasoconstriction by reducing the synthesis of endothelin-1 (ET-1). ET-

1 inhibition was concomitant with the content of oligomeric procyanidins when 

comparing different wines (179). Additionally, flavonoids have been shown to lower 

inflammation, which is another key factor in the development of atherosclerosis. Thus, 

grape procyanidins are able to decrease plasma levels of the pro-inflammatory cytokines 

tumour necrosis factor (TNF)-α and Interleukin (IL-6) in both pre- and post-menopausal 

women (176). The comparison of red wine and gin consumption revealed that, in 

healthy men, red wine intake significantly triggered the downregulation of adhesion 

molecules such as VLA-4, LFA-1, Mac1 and MCP-1 on monocytes and T-limphocytes 

(180). In addition, the soluble adhesion molecules ICAM-1 and VCAM-1 were 

significantly reduced in the same subjects.  Also, in another work, a downregulation of 

monocytes surface adhesion molecules promoted by red wine was observed (181). It has 

been suggested that the suppression of NF-kB signalling could be underlying these 

effects (126). NF-kB is a transcription factor responsible for enhanced expression of 

cytokines, adhesion molecules and pro-coagulant proteins (182). Thus, the incidence in 

its signalling pathway could provide an explanation for the anti-inflammatory effects of 

flavonoids. In this sense, when healthy subjects were given a fat rich meal with or 

without red wine, the consumption of red wine significantly decreased the activity of 

NF-kB in monocytes (183), indicating that flavonoids are able to ameliorate 

inflammation.  

 

In summary, flavonoids are powerful agents ameliorating plasma lipoprotein profile. 

Along with these actions, flavonoids are able to inhibit different mechanisms leading to 

inflammation. The beneficial effects of flavonoid consumption have been widely 

demonstrated in different models, in many altered states, but also in healthy conditions. 

Thus, dietary flavonoids can be considered as powerful bioactive agents for 

ameliorating the quality of live.  
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In the past decade, nutrition has gained great interest in industrialized countries as a 

natural way to improve the quality of life and ameliorate different pathological states. 

The health benefits of a wide variety of nutrients have prompted a shift in nutrition 

research from epidemiology and physiology to molecular biology and genetics, with a 

clear objective: to understand the basis of nutrients actions. The new technologies, 

allowing the analysis of complex systems and nutrient-protein, nutrient-gene 

interactions, have leaded to the apparition of the new, –omics disciplines: 

Nutrigenomics, Proteomics and Metabolomics.  These emerging disciplines are opening 

a wide window of possibilities and are rapidly increasing the knowledge regarding the 

molecular mechanisms that underlie the bioactivity of nutrients, with the final goal of 

translating the data into an accurate prediction of the effects of dietary components.  

 

The study of red wine is not avoiding this shift of focus. From the initial studies, which 

related moderate consumption of red wine with the French Paradox - i.e., the low 

mortality rate in the French population despite having an elevated intake of saturated 

fats- until nowadays, different research groups have been investigating the beneficial 

actions of red wine. As a result, procyanidins, a group of flavonoids, have emerged as 

the main responsible components exerting the protective qualities of this beverage. 

Along with its antioxidant properties, procyanidins have shown other beneficial effects 

related with the ability of this polyphenolic compounds to interact with different 

signalling pathways, thus modulating gene expression. Nowadays, Nutrigenomics is 

providing the tools for studying the molecular mechanisms underneath the effects of 

procyanidins and for understanding the molecular basis of the French Paradox. 

 

Procyanidins have been shown to exert beneficial actions on a broad array of metabolic 

disorders that are risk factors for cardiovascular diseases, such as atherosclerosis, 

inflammatory processes, obesity and diabetes. In these altered states, lipoprotein 

metabolism plays an important role. Different works have described the beneficial 

effects of different flavonoids and procyanidins in lipoprotein metabolism, decreasing 

triglyceride rich lipoproteins and boosting the reverse transport of cholesterol. 

Nevertheless, the molecular mechanisms underlying these effects are only partially 

known. How these compounds can alter the composition, metabolism and clearance of 

plasma lipoproteins by interacting with intracellular signalling pathways is still an 

unsolved subject. Previous studies from our group have demonstrated the beneficial 
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effects of red wine and a grape seed procyanidin extracts on lipid metabolism in the 

liver, a key organ in the control of lipid homeostasis. Liver leads two major processes in 

the lipoprotein metabolism, namely VLDL production and reverse cholesterol transport. 

Therefore, the activity of grape seed procyanidins in this organ becomes a key target of 

study in order to improve our knowledge of how these polyphenolic compounds can 

modulate lipoprotein metabolism.  

 

The research work carried out in this Ph. D. Thesis is part of a more general research 

project developed by the Nutrigenomics Research Group of the Universitat Rovira i 

Virgili, which deals with the potential beneficial effects of dietary procyanidins in 

preventing and ameliorating the metabolic disorders associated with the so called 

Metabolic Syndrome. The purpose of this Thesis has been to characterize and 

understand how dietary procyanidins modulate lipid and lipoprotein metabolism in 

hepatic cells. With this aim, three objectives were sequentially proposed:  

 

1. To evaluate the effects of oral intake of procyanidins on postprandial 

plasma lipoprotein profile.  

The effect of procyanidins in the plasma lipoprotein profile has been evaluated in 

healthy rats in the postprandial phase. A single high and non-toxic dose of a grape 

seed procyanidin extract was administered orally. This experimental design was 

intended to assess the short-term effects of procyanidins, in order to evaluate the 

primary changes leading to the long-term beneficial effects ascribed to these 

compounds. This study revealed that procyanidins are potent hypotriglyceridemic 

agents (manuscript 1). This effect has been also observed in wild type mice 

(manuscripts 3 and 4).  

2. To assess the role of liver in the response triggered by procyanidins on 

plasma lipid profile. 

To assess the implication of liver in the hypotriglyceridemic response triggered by 

procyanidis two experimental approaches were undertaken. The effect of 

procyanidins on VLDL secretion was evaluated in vitro using human hepatoma 

HepG2 cells, showing that procyanidins repress VLDL secretion (manuscript 3). In 

vivo, the changes induced by procyanidins in liver global gene expression profile 

were analyzed by microarray hybridization in order to identify procyanidin target 

genes and putative mediators of the hypotriglyceridemic response (manuscripts 1 
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and 2). These analyses revealed several key regulatory factors of inflammation and 

lipid metabolism as targets of procyanidins. Among them, the nuclear receptor 

Small Heterodimer Partner (SHP) stands out as a putative mediator of the 

hypolipidemic action of procyanidins in the liver. 

 

3. To establish the molecular mechanisms by which procyanidins modulate 

lipid and lipoprotein metabolism in the liver. 

To achieve this objective, two models have been used, namely HepG2 cells and 

mice. The activity of SHP was blocked in HepG2 by means of the silencing RNA 

technology. To achieve a similar in vivo model, SHP-/- mice were used. The actions 

of procyanidins were assayed in both models lacking or underexpressing SHP. 

Results have revealed that SHP is a key mediator of the hypotriglyceridemic actions 

of procyanidins in the liver (manuscript 3).  

Farnesoid X receptor (FXR) is a nuclear receptor controlling SHP expression. This 

prompted the study of FXR as a putative mediator of the hypotriglyceridemic action 

of procyanidins upstream SHP. In vivo studies using FXR-/- mice and in vitro 

luciferase based assays confirmed FXR as a key component of the signalling 

pathway used by procyanidins to elicit the triglyceride lowering effect (manuscript 

4). 

 

 

 

The research work carried out in this Ph. D. Thesis has been supported by a grant 

from the Spanish government and performed mainly in the Nutrigenomics Research 

Group laboratory, of the Universitat Rovira i Virgili,. Two international stages have 

been done. Firstly, in the Giovanni Galli laboratory of the Department of 

Pharmacological Sciences from the Università degli studi in Milan, Italy, supported 

by a grant from the Marie Curie research training network of the European 

comission. The second international stage took place in the David D. Moore 

laboratory, in the Department of Molecular and Cell Biology from the Baylor 

College of Medicine in Houston, Texas, and was supported by a grant from the 

Spanish government.  
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ABSTRACT 

 

Moderate consumption of red wine reduces risk of death from cardiovascular disease. 

The polyphenols in red wine are ultimately responsible for this effect, exerting 

antiatherogenic actions through their antioxidant capacities and by modulating 

intracellular signaling pathways and transcriptional activities. Lipoprotein metabolism is 

crucial in atherogenesis, and liver is the principal organ controlling lipoprotein 

homeostasis. This study was intended to identify the primary effects of procyanidins, 

the most abundant polyphenols in red wine, on both plasma lipoprotein profile and the 

expression of genes controlling lipoprotein homeostasis in the liver. We show that 

procyanidins lowered plasma triglyceride, free fatty acids, apolipoprotein B (apoB), 

LDL-cholesterol and nonHDL:nonLDL-cholesterol levels and slightly increased HDL-

cholesterol. Liver mRNA levels of small heterodimer partner (SHP), cholesterol 7alpha-

hydroxylase (CYP7A1) and cholesterol biosynthetic enzymes increased, whereas those 

of apoAII, apoCI and apoCIII decreased. Lipoprotein lipase (LPL) mRNA levels 

increased in muscle and decreased in adipose tissue. In conclusion, procyanidins 

improve the atherosclerotic risk index in the postprandial state, inducing, in the liver, 

the overexpression of CYP7A1 (suggesting an increase of cholesterol elimination via 

bile acids), and SHP, a nuclear receptor emerging as a key regulator of lipid 

homeostasis at the transcriptional level. These results could explain, at least in part, the 

beneficial long-term effects associated with moderate red wine consumption. 
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INTRODUCTION 

 

Many epidemiologic studies have demonstrated that moderate consumption of alcoholic 

beverages is associated with reduced mortality and risk of cardiovascular disease (CVD) 

(1-3). The greatest degree of cardioprotection is related to ingestion of red wine rather 

than white wine, beer or spirits(4, 5). The consumption of red wine is a primary cause 

for the "French paradox," i.e., a low mortality rate from CVD despite a high 

consumption of saturated fat and cholesterol (6, 7). Wine contains phenolic compounds, 

which have been reported to have a number of antioxidant properties(8), and thus may 

contribute to a reduced risk of CVD in wine drinkers. Chronic moderate consumption of 

red wine protects rats from oxidative stress 
in vivo (9).  Also, there is evidence that 

oxidized LDL play a crucial role in atherogenesis (10, 11), and  red wine polyphenols 

(RWPs) protect in vitro and in vivo from LDL free radical–mediated oxidation (12, 13). 

Thus, RWPs may be important in preventing CVD by reducing the susceptibility of 

LDL to oxidation in vivo(14-16).  

 

Increasing evidence shows that RWPs, and particularly flavonoids, contribute to 

cardioprotection through mechanisms that are independent of their antioxidant 

capacities. These mechanisms comprises alterations  in cell membrane receptors, 

intracellular signaling pathway proteins and modulation of gene expression(16-19). 

Thus, RWPs induce the synthesis and release of nitric oxide by the vascular 

endothelium, which in turns, promotes vasorelaxation, reduces platelet aggregation, and 

limits the flux of atherogenic lipoproteins into the artery wall (17, 19). In addition, 

RWPs inhibit proliferation and migration of vascular smooth muscle cells, by 

interfering on platelet-derived growth factor (PDGF) receptor signaling through the 

phosphatidylinositol 3’-kinase (PI3K) and mitogen-activated protein kinase (MAPK) 

pathways. A plethora of transcriptional changes underlay and follow these actions of 

RWPs on the components of the vascular system(17, 19) (20-22). Much less is known 

about the mechanisms that underlay antiatherogenic actions of RWPs on other tissues.  

Liver presides over the homeostasis of circulating lipids and lipoproteins adjusting its 

metabolic fluxes to the supply of nutrients and the requirements of all other tissues(23). 

RWPs have been reported to reduce plasma lipids and atherogenic lipoproteins (mainly 
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LDL, and chylomicron remnants) in different animal models. Thus, moderate and 

chronic consumption of red wine, but not of alcohol, reduce LDL cholesterol (LDL-C) 

in normocholesterolemic rats (24). In hyperlipidemic hamsters, prolonged ingestion of 

dealcoholized red wine, or of RWPs, produces a significant reduction in plasma LDL 

concentrations, apolipoprotein B (apoB), triglycerides (TG) and cholesterol preventing 

early aortic atherosclerosis (25, 26). In cultured human liver cells HepG2, dealcoholized 

red wine decreases production of apoB100 (a marker of VLDL and LDL in humans), 

while increases mRNA expression of the 3-hydroxy-3-methylgluteryl coenzyme A 

(HMG-CoA reductase) (a key cholesterol biosynthetic enzyme) and the LDL receptor 

gene. In this regard, RWPs resemble statins, potent lipid-lowering antiatherogenic drugs 

that inhibit HMG-CoA reductase activity (27). It has recently been found that acute 

consumption of red wine (alcoholic and nonalcoholic) in dyslipidemic postmenopausal 

women produces a decrease in postprandial levels of apoB48 (marker of CM and CMR 

in humans) whereas total cholesterol (TC), LDL-cholesterol (LDL-C) and HDL-

cholesterol (HDL-C) as well as TG plasma levels are unaffected (28). Catechin has 

already been shown to reduce cholesterol absorption in the intestine (29). All together, 

these results suggest that RWPs, when consumed during meal, can reduce the amount of 

circulating proatherogenic lipoproteins, by decreasing their production in intestine and 

liver, while increasing their clearance by the liver.  

 

Again, modifications of enzymatic and transcriptional activities lie beneath the effects 

of RWPs on liver metabolism. More studies are needed to elucidate the effects that 

RWPs exert on metabolic fluxes of cholesterol, bile acids, fatty acids (FA), TG and 

lipoproteins in the liver, which are, in most cases, ultimately controlled in a coordinated 

manner at the transcriptional level. The mechanisms underlying of this coordination are 

not fully understood due their complexity and the implication of a large number of 

different transcription factors. Some of them are well known but partially understood, 

like hepatocyte nuclear factor-4 (HNF-4), peroxysome proliferators activated receptors 

(PPARs), retinoid X receptors (RXRs), retinoic acid receptors (RARs), farnesoid X 

receptor (FXR), sterol regulatory element binding proteins (SREBPs) (30) or small 

heterodimer partner (SHP), an orphan nuclear receptor which was initially described as 

a corepressor involved in feedback regulation of bile acid synthesis(30, 31), and at 

present is emerging as a key factor in the control of lipid homeostasis(32-35).  
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In the present study, we have investigated the short term effects of procyanidins, the 

most abundant polyphenols present in red wine, in vivo and in healthy (normolipidemic) 

animals, in order to gain insight on the primary mechanisms that underlie the long-term 

antiatherogenic and cardioprotector effects ascribed to RWPs. To do that, we orally 

administered a single, high and non-toxic(36) dose of grape seed procyanidin extract 

(GSPE) to chow-fed male rats, and analyzed plasma lipid and lipoprotein profile after 5 

hours. Changes in the gene expression pattern in the liver of GSPE treated animals were 

analyzed using microarray hybridizations, in order to identify procyanidin target genes 

involved in lipoprotein metabolism. 
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 METHODS  

Chemical 

Grape seed procyanidin extracts (GSPE) were kindly provided by Les Dérives 

Résiniques et Terpéniques (Dax, France). According to the manufacturer, this 

procyanidin extract contained essentially monomeric (16.55%), dimeric (18.77%), 

trimeric (16%), tetrameric (9.3%), oligomeric procyanidins (5-13 units) (35,7%) and 

phenolic acids (4.22%).  

 

Animals 

Male Wistar rats, 2 month old and weighing 250 g, were purchased from Charles River 

(Barcelona, Spain). The Animal Ethics Committee of University Rovira I Virgili 

approved all procedures. The animals were housed in animal quarters at 22°C with a 12-

h light/dark cycle (light from 8 h a.m. to 20 h p.m.) and were fed ad libitum. At 11 a.m. 

on experimental day, the rats (6 animals per group) were fed an oral gavage of grape 

seed procyanidins extract in aqueous solution (250 mg/Kg body weight) (GSPE group) 

or were fed an oral gavage with vehicle (tap water) (Control group). The used 

procyanidin dose is one-fifth of the NOAEL (no-observed-adverse-effect level) 

described for GSPE and male rats(36), and we have previously shown that this dose is 

effective in reducing glycemia in streptozotocin-induced diabetic rats (37). 5 hours after 

treatment, the rats were sacrificed by beheading and blood was collected using heparin 

as anticoagulant. Plasma was obtained by centrifugation and stored at -80ºC until 

analysis. Liver, muscle and adipose tissue were excised and froze immediately in liquid 

nitrogen and stored at -80ºC until RNA and lipid extraction.  

 

Lipid analysis in plasma and liver. 

Plasma TC was measured with an enzymatic colorimetric kit (QCA, Barcelona, Spain). 

HDL-C was measured, by the same kit, after the treatment of plasma with 

phosphotungstic acid to precipitate the non-HDL lipoproteins(38). For LDL-C 

quantification, cholesterol was measured after plasma treatment with polyvinyl sulfate 

and polyethylene glycol monomethyl ether to precipitate LDL lipoproteins. LDL-C was 

calculated as TC minus cholesterol in plasma after LDL precipitation(39). Triglycerides 

were assayed using an enzymatic colorimetric kit (QCA, Barcelona, Spain). Lipids of 

liver were extracted by the Folch method (40). An aliquot of the lipid extract was used 
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to measure total lipids by gravimetry (in duplicate). The rest of the extract was 

evaporated to dryness and re-dissolved in 2% triton X-100 to determine TG, TC, free 

cholesterol and esterified cholesterol.  TG and TC were assayed as described above for 

plasma determinations. Free cholesterol was measured by the same method used for TC 

analysis except that cholesterol esterase was not included. Esterified cholesterol was 

calculated as TC minus free cholesterol. 

 

Plasma fed state indicators analysis 

Plasma β-hydroxybutyrate was analyzed using enzymatic kits (Ben srl. Italy). FFA and 

glucose were measured using enzymatic colorimetric kits (Wako chemicals GmbH  and 

QCA, Spain respectively). 

 

ApoB SDS-PAGE and Immunoblotting 

Plasma samples and purified apoB-100 (Calbiochem, Merck KGaA, Darmstadt, 

Germany) were separated by SDS PAGE in a 4% polyacrylamide gel (0.5M Tris-HCl, 

10% glycerol, 2% SDS, β-mercaptoethanol and 0.01 % Bromophenol blue for the 

sample buffer) in a Bio-Rad Mini-Protean electrophoresis cell. Separated proteins were 

electrotransferred onto a nitrocellulose transfer membrane (Schleider & Schuell, Keene, 

NH, USA). Membranes were blocked overnight and incubated with a goat anti-rat apo 

B antibody (Santa Cruz Biotechnology, Santa Cruz, California, USA) as a primary 

antibody. The antybody used for this purpose was raised against the amino terminus of 

apoB so both isoforms, apoB-100 and apoB-48, could be detected and quantified 

simultaneously in a single plasma sample.. As a secondary antibody a Horse raddish 

peroxidase conjugated anti-Goat IgG antibody (Santa Cruz Biotechnology) was used. 

Band detection was performed with Amersham Biosciences (Freiburg, Germany) ECL 

western detection reagents and Hyperfilm ECL. Bands were quantitated using Quantity 

One software from BioRad after background subtraction. Purified apoB 100 was used as 

an internal standard for normalizing apoB bands.  

 

Statistical analysis 

Results are reported as means ± sem of 6 animals. Comparison among groups mean was 

done by independent-samples t test  (p≤0.05) by SPSS software . 
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RNA methods 

Total RNA was purified from each frozen liver, muscle and adipose tissue by using the 

NucleoSpinR RNA II kit (Macherey-Nagel, Düren, Germany) following the instructions 

of the manufacturers. Equal aliquots of total RNA from three rat livers, muscle and 

adipose tissue in each group, were pooled and used for oligonucleotide array 

hybridization and quantitative PCR analysis.  Integrity of pooled RNAs was assessed by 

using the Agilent (Madrid, Spain) 2100 Bioanalyzer and the RNA 6000 LabChipR. For 

microarray hybridization, Cy3- or Cy5-labeled cRNA was obtained from each RNA 

pool by using the Agilent Low RNA Input Fluorescent Linear Amplification Kit as 

described in the Agilent manual (Part Number 5185-5818). Fluorescent probes 

containing 500 ng of each labeled cRNA were pooled and hybridized against Agilent 

Rat Oligo Microarrays (Part Number G4130A) following the Agilent 60-mer oligo 

microarray processing protocol (Part Number G4140-90030). Images of hybridized 

microarrays were acquired with the Agilent G2565BA scanner, and data from the 

microarray images were obtained and analyzed with the Agilent Feature Extraction 

software. For each pair of RNA samples being compared, duplicate hybridizations with 

a dye-swap labeling was performed. 

 

Changes in mRNA expression of selected genes were verified by quantitative PCR. 

cDNA corresponding to each RNA pool was generated using TaqManR Reverse 

Transcription Reagents (Applied Biosystem, Madrid, Spain) and quantitative PCR 

amplification and detection were performed by using specific TaqManR Assay-On-

Demand probes (Applied Biosystems, Rn00589173_m1 for SHP, Rn00564065_m1 for 

CYP7A1, Rn00565598_m1for HMG-CoA Reductase, Rn00561482_m1 for LPL), the 

TaqManR PCR Core Reagent Kit  and the GeneAmpR 5700 Sequence Detection 

System, as recommended by the manufacturers. Quadruplicated quantifications, 

performed in singleplex assays, were performed for each gene in each cDNA pool. 

Actine B was used as the reference gene in quantitative PCR (Applied Biosystems 

TaqManR Assay-On-Demand probe Rn00667869_m1). 
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RESULTS 

 

Plasma and liver parameters. 

 

TG levels in GSPE group were reduced to 50% versus the control group 5 hours after 

treatment (table1). In addition, TC levels and its distribution among lipoproteins was 

analyzed (table 1). Whereas we found no statistical differences in plasma TC between 

control and GSPE-treated group, the cholesterol distribution among different 

lipoproteins was altered significantly. While LDL-C and nonHDL:nonLDL-C levels 

were significantly lowered in GSPE group,  HDL-C levels were slightly increased.  

When these values were referred to the TC  (fig. 1), the cholesterol percentage in HDL 

fraction was increased while the cholesterol in LDL and nonHDL:nonLDL fractions 

decreased in the GSPE-treated rats. Also, HDL-C/LDL-C and TC/HDL-C ratios were 

calculated to evaluate the atherosclerosis risk(41). While HDL-C/LDL-C was increased, 

TC/HDL-C decreased in the GSPE-treated group (table 1). 

 

To find a link between the nonLDL:nonHDL-C, LDL-C and TG decreasing, the content 

of both apoB isoforms in plasma was analyzed by immunoblotting (fig 2). Total plasma 

apoB decreased to a 60 %. The observed decrease resulted from a 50% decrease of 

apoB-48 isoform and a 10% increase of the apoB-100 isoform.  

 

β-hydroxybutirate and glucose were measured as fed state indicators. Whereas no 

differences were observed between control and GSPE groups respecting glucose and β-

hydroxybutirate levels, FFA levels were reduced significantly in the GSPE group (table 

1), thus indicating that rats were under a normal fed situation.  

 

To study the effect of GSPE over liver lipids; triglyceride, total cholesterol, free 

cholesterol and esterified cholesterol were quantified (Table 2). No changes were 

observed in rats after the 5 hours GSPE treatment versus the control group  
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Liver gene expression.  

 

Relative changes in expression level of genes related to lipid metabolism in liver were 

quantified by microarray and RT(q)PCR analysis. Table 3 shows a list of selected genes 

related to lipid metabolism present in the Agilent rat Oligo (Part Number G4130A) and 

the changes observed in its expression by the GSPE treatment.   

 

No changes were found in the expression of fatty acid synthesis enzymes and fatty acid 

oxidation. Despite the expression of cholesterol synthesis pathway key enzymes was 

increased in the GSPE-treated rats, cholesterol estherification enzymes mRNA levels 

were not affected. Bile acid pathway controlling enzymes Cyp7A1, Cyp8b1, Cyp27A 

gene expression was affected in a different manner. While CYP7A1 was increased 2.4 

fold, CYP8B1 expression slightly decreased 0.8 fold and CYP27A remained  

unaffected.  

 

Of all the analyzed apolipoproteins, apoC-I, apoC-III and apoA-II decreased their 

expression over a threshold of 20% of change. apoA-II showed the most important 

decrease concerning apolipoprotein gene expression, with a fold change of 0.67.  

Lipoprotein related proteins and receptors did not show considerable changes, excepting 

a 1.2 fold change in the case of apobec-1 complementation factor. Concerning lipid 

related nuclear transcription factors expression, only SHP (Nr0b2) was changed, 

showing a drastic increase (close to 3 fold change).  

 

Given that the plasma triglyceride levels markedly depend upon the activity of 

extrahepatic lipases, we quantified lipoprotein lipase expression in adipose tissue and 

muscle. As shown in table 4, muscle LPL mRNA was increased 1.57 fold while adipose 

tissue LPL mRNA was decreased 0.57 fold. 
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DISCUSSION 

Many studies have been addressed to asses long term effects of chronic intake of 

flavonoids on lipid homeostasis in dyslipidemic human and hypercholesterolemia 

animal models, and have shown their beneficial hypolipidemic effects(24, 42-44).  This 

study was intended to identify the primary, short term effects of grape seed 

procyanidins on lipid metabolism, in a postprandial situation, in order to gain insight 

into the mechanisms that underlie their long term effects. With this purpose, we have 

given a single, high non-toxic (36) oral dose of procyanidins to chow-fed, healthy rats, 

and have analyzed their plasma lipid profile and hepatic gene expression 5 hours after 

the treatment. Our results show that oral intake of procyanidins significantly affect the 

postprandial lipidemic profile by drastically lowering plasma triglyceride, FFAs and 

apoB48 levels. In addition, GSPE treatment slightly increased HDL-C, and significantly 

lowered LDL-C and nonHDL:nonLDL-C, without affecting plasma TC levels. 

Therefore, the ratio TC/HDL-C was decreased and HDL-C/LDL-C  was increased, thus 

determining an improvement in the atherosclerotic risk index(41). These changes in 

plasma lipid profile were paralleled by changes in liver expression of genes involved in 

the control of lipid homeostasis: the mRNA levels of SHP, CYP7A1 and cholesterol 

biosynthetic enzymes increased, whereas those of apoAII, apoCI and apoCIII decreased. 

 

The observed 50% reduction in plasma triglyceride and plasma apoB content, together 

with the lowered nonHDL:nonLDL-C level, indicates that the number of  apoB-

containing triglyceride-rich lipoproteins has decreased in GSPE treated rats. We have 

shown that total apoB decreased mainly due to a reduction of the apoB48 isoform. In 

rats, apoB48 is secreted by both liver and intestine (45). In livers of adult rats, apoB48 

is the predominant synthesized and secreted isoform (45).   Therefore, the amount of 

circulating apoB48 in plasma is determined by the balance between synthesis of VLDL 

by the liver and of CM by the intestine (46), on one side, and the utilization of VLDL 

and CM by peripheral tissues (mainly muscle and adipose tissue) on the other side(23). 

 

Concerning the production of VLDL, we have found that the level of the precursor 

mRNA for both apoB100 and apoB48 was not changed in the liver.  On the other hand, 

neither the total lipid content nor the mRNA expression of triglyceride and fatty acid 
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biosynthetic enzymes, were modified en the liver of GSPE treated rats.  Nevertheless, 

our results do not rule out  the possibility that the livers of GSPE treated rats were 

producing less VLDL since the secretion by the liver of apoB is not controlled at the 

transcriptional level but mainly by posttranscriptional mechanisms that include mRNA 

stability, apoB translation, translocation and proteasomal degradation (45-47). In 

addition,  it has been shown (48) that apoB secretion is inhibited by epicatechin, present 

in the GSPE used here, and this inhibition is independent of lipid biosynthesis in 

human, liver derived HepG2 cells. Although we have not data concerning the 

production of apoB48 by the intestine, this factor is also expected to contribute to the 

observed reduction of apoB48 levels in the plasma of GSPE treated rats, since wine 

polyphenols are known to attenuate postprandial CM and their remnants, thus lowering 

plasma apoB48, in dyslipidemic women (28).  

 

On the other hand, liver mRNA levels of apoAII, apoCI and apoCIII have decreased 

notably, implying relevant changes in lipoprotein composition and subsequent 

metabolism since, in contrast to apoB, the secretion of these apolipoproteins by the liver 

is directly controlled at the transcriptional level (49, 50). As explained below, these 

transcriptional changes could functionally explain, at least in part, the observed plasma 

triglyceride and FFA reduction as well as the increase in HDL-C concentration.  

Little is known about the mechanism of apoAII function, but the correlation between 

apoAII and TG, FFA, VLDL and HDL is firmly established. Recent studies have shown 

that apoAII levels are controlled mainly by its rate of synthesis in the liver rather than 

by its catabolism (49, 50), and a decrease in apoA-II transcription has been associated 

with low plasma apoA-II levels (51). It has also been shown that the overproduction of 

human apoAII in transgenic mice results in a large decrease of HDL levels, associated 

with very high postprandial levels of VLDL (52, 53). Conversely, ApoA-II knockout 

mice display low plasma levels of FFA (52, 54).  Also the role of ApoCI - which resides 

on CM, VLDL and HDL - in lipid metabolism remains unclear. Nevertheless, it is 

known that mice overexpressing ApoCI have elevated levels of plasma FFA (55), and 

strongly elevated levels of TC and TG due to the inhibitory action of ApoCI on VLDL 

uptake via hepatic receptors, in particular the LDL receptor-related protein (55, 56) 
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Apo C-III is a key player in plasma triglyceride metabolism. In humans, apoCIII is 

synthesized in the liver and, to a much lesser extent, in the intestine. The expression of 

apoCIII is strongly regulated at the transcriptional level (57).  It is well established that 

the plasma concentration and synthesis rate of apoCIII are positively correlated with 

plasma triglycerides, both in normal and hypertriglyceridemic subjects (58-60). In fact, 

apoCIII deficiency in humans results in increased catabolism of VLDL particles (61), 

whereas increased apoCIII synthesis is associated with hypertriglyceridemia (62). 

Overexpression of human apoCIII in mice results in severe hypertriglyceridemia (63), 

whereas disruption of the endogenous apoCIII gene protects the mice from postprandial 

hypertriglyceridemia (64). ApoCIII acts by delaying the catabolism of triglyceride-rich 

particles by several mechanisms (62, 65, 66), including inhibition of lipoprotein binding 

to the cell surface glycosaminoglycan matrix (61, 66) and lipolysis by lipoprotein lipase 

(LPL) (61).  

 

Concomitantly with the decrement in apoCIII expression in liver, we found that the 

mRNA expression of muscle LPL was increased whereas that of adipose LPL was 

decreased in the GSPE treated rats. LPL plays a pivotal role in the metabolism of lipids 

and of lipoproteins. Major functions of LPL include the hydrolysis of TG-rich 

lipoproteins and the release of FFA, which are taken up and used for production of 

energy in peripheral tissues such as muscle, or are re-esterified into TG and stored in 

adipose tissue (23). These transcriptional changes found in the GSPE treated rats, 

strongly suggest the plasma TG utilization in these animals is directed preferentially to 

energy production by the muscle instead of to energy storage by the adipose tissue. 

Thus, these short term effects of GSPE on LPL expression could lead, on the long term, 

to a reduced rate of weight gain, as has been described for animals consuming 

flavonoids in the diet (27, 44).  

 

The reduction of plasma LDL-C and nonHDL:nonLDL-C found in GSPE-treated 

animals, together with the increment in HDL-cholesterol, and the slight decrease in TC, 

points out to an increment in reverse cholesterol transport for its elimination as bile salts 

by the liver (67). In agreement with this view, we found a concomitant three fold 

increase in liver mRNA level of  CYP7A1, the rate-limiting enzyme in bile acid 

synthesis, whose production is tightly controlled at the transcriptional level (68-70). 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF HEPATIC LIPOPROTEIN METABOLISM BY DIETARY PROCYANIDINS 
Josep Maria del Bas Prior 
ISBN: 978-84-691-0360-9/ DL: T.2173-2007



III. Results and discussion.  
MANUSCRIPT 1 

 
 

 - 53 - 

Simultaneously, the GSPE treated rats showed increased expression of cholesterol 

biosynthetic enzymes in liver and this effect was not accompanied by an increase in 

cellular cholesterol levels.  This could indicate that cholesterol synthesized de novo by 

the liver is being channeled to maintain the increased flux of bile acids pathway. 

Alternatively, it is possible that this increased expression does not result in a net 

cholesterol synthesis. It has been described that red wine polyphenols simultaneously 

decrease cholesterol content and increase the mRNA of HMG-CoA reductase in HepG2 

cells and has been suggested that they may act as competitive HMG-CoA reductase 

inhibitors, in a similar way to statins (27).  

 

Whereas total bile acid synthesis is expected to be elevated in the liver of GSPE treated 

animals due to the high activation of CYP7A1 expression, the slight reduction found in 

CYP8B1  expression,  required for the synthesis of cholic acid, is expected to determine 

an increase in the chenodeoxycholate to cholate ratio in the bile acid pool (69). In 

addition, in murine, chenodeoxycholic acid is converted to muricholic acids that are 

more soluble and less cytotoxic (71). The hydrophilic-hydrophobic balance of bile acids 

modifies cholesterol absorption in the intestine, being cholic acid more efficient in 

facilitating absorption of cholesterol and muricholic the most powerful inhibitor (72). 

Therefore, intestinal cholesterol absorption could be reduced in GSPE treated animals. 

In addition, it has been described that the overexpression of CYP7A1 in transgenic mice 

reduces serum cholesterol and prevents atherosclerosis (73, 74). 

 

Our microarray analysis has revealed SHP as a major target gene of procyanidin 

treatment in the liver. SHP is a promiscuous nuclear orphan receptor able to interact 

with, and modulate the transcriptional activity of, many other nuclear receptors, 

including, among others, peroxisome proliferator-activated receptors (PPAR) γ and 

α (33, 75), hepatocyte nuclear factor-4 (HNF-4) (76), α-fetoprotein/LRH-1 (77), 

retinoid X receptor (RXR) (76), and liver X receptor (LXR) (78), all of them involved 

in the control of lipid homeostasis. Therefore, SHP has the potential to influence a wide 

array of cellular processes, and has emerged as a key regulator of lipid metabolism.  In 

humans, mutations in the SHP gene are associated with mild hyperinsulinemia and the 

development of insulin resistance and mild obesity (34, 79). Here, we found that GSPE 

treated rats displayed a lipid profile opposed to that associated to those pathologies, 
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suggesting that the increased liver expression of SHP and the beneficial changes in the 

lipid profile triggered by procyanidins treatment could be functionally correlated. 

 

Our results showed that the three-fold increase in liver SHP mRNA levels occurs 

concomitantly with a 50% reduction in plasma triglyceride levels in GSPE treated rats. 

Several studies have previously described a similar inverse correlation between SHP 

gene expression and plasma TG levels (32), although the mechanisms underlying this 

reciprocal relationship are not clear at present. Dietary chenodeoxycholic acid (CDCA) 

reduces plasma TG in hypertriglyceridemic humans (80, 81) and so does cholic acid 

(CA) in hyperlipidemic animals, where this effect is accompanied by the activation of 

SHP transcription (32).  CA and CDCA acts as ligands of FXR, which then binds to the 

promoter of the SHP gene activating its transcription. SHP, in turn, binds to LRH1, an 

orphan nuclear receptor that regulates CYP7A1 expression positively, thereby inhibiting 

its activity (31). This is a well characterized mechanism of negative feedback regulation 

of bile acid synthesis by its end product (31, 70).  The ability of CDCA to lower plasma 

TAG levels has been attributed, at least in part, to a direct stimulation of ApoCII gene 

transcription by CDCA-activated FXR (82). Since we have found that in GSPE treated 

rats the expression of both SHP and CYP7A1 is upregulated simultaneously, whilst 

ApoCII expression remains unchanged, our results could seem paradoxical at first 

glance. However, other authors have already described situations in which SHP 

expression is induced, whilst CYP7A1 expression is not repressed. This is the case for 

the induction of SHP expression by guggulsterone, another FXR ligand, that inhibits 

FXR activation by CDCA, induces SHP expression and fails to downregulate CYP7A1 

transcription (83-85). Dietary guggulsterone, as GSPE, triggers a reduction of plasma 

TG, and increases HDL-C while decreasing LDL-C (84, 85). A similar situation is 

described for estrogens. These hormones induce the expression of the SHP in mouse, rat 

and HepG2 cells promoting the binding of estrogen receptor ERα to the ERE present in 

the SHP gene promoter, which overlaps with the FXR binding (86);  the elevated SHP 

expression induced  by ERα agonists  does not result in an inhibition of CYP7A1 

transcription (86). Again, estrogens are known to reduce LDL-C and increase HDL-C 

and some of them, such as 17β-estradiol, also lower total serum cholesterol and TG(87). 

Thus, it seems that the repression of CYP7A1 by SHP is only functional when bile acids 
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act as FXR agonist. It has been recently shown that FXR controls gene expression in a 

ligand- and promoter-selective fashion (88). 

 

Since activated transcription of SHP is under the control of FXR/RXR and ERα, it 

might be possible that procyanidins act as ligands of FXR , RXR or ERα. Ligands that 

target these nuclear receptors are emerging as potentially powerful therapeutic agents 

for treatment of diabetes, hypercholesterolemia, atherosclerosis and cancer (89-92). 

 

In conclusion, a single, high and non-toxic dose of grape seed procyanidins, 

administered orally, drastically improved plasma lipidic profile in healthy, chow-fed 

rats in a postprandial situation. The expression of the key enzyme controlling bile acid 

synthesis, CYP7A1, was increased, suggesting an increased cholesterol elimination via 

bile acids. The upregulation of SHP expression in the liver could be fundamental in 

mediating the procyanidins actions by controlling the activity of other transcription 

factors involved in the maintenance of lipid homeostasis. If the observed improvement 

in lipemia induced by oral administration of procyanidins in rats were functional in 

humans, in which postprandial lipemia increases the risk of atherogenesis and coronary 

artery disease, the consumption of red wine associated with meals could be fundamental 

to explain the long-term beneficial effects described by the “French Paradox”. 
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Table 1. Plasma lipids and fasted state markers analysis in control rats and Grape seed 

procyanidin extract (GSPE) - treated rats. 

 

Rats were treated with an oral gavage of GSPE (250 mg/Kg body weight) and sacrificed 

after 5 h. Plasma lipids were analyzed as described in materials and methods. Results 

are shown as mean ± sem (n=6). *Significant difference (P<0.05) versus the control 

value using independent samples t-test.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 Control GSPE 

tryclyceride 
(mg/dL)  

183 ± 18  92 ± 9 * 

Total Cholesterol 
(mg/dL) 

61 ± 5 54 ± 2 

LDL cholesterol 
(mg/dL) 

14 ± 2 8 ± 1 * 

HDL cholesterol 
(mg/dL) 

29 ± 1 32 ± 2 

nonHDL:nonLDL 
cholesterol 

(mg/dL)  
19.4 ± 2.8 12.8 ± 1.0 * 

ratio HDL 
cholesterol/LDL 

cholesterol  
1.9 ± 0.3 3.8 ± 0.2 * 

Ratio total 
cholesterol/HDL 

cholesterol 
2.1± 0.1 1.6 ± 0.04 * 

Glucose (mg/dL) 130±4 132±3 

Free fatty acid 
(mg/dL) 

14±1 8±1 * 

ββββ-Hydroxybutirate 
(mg/dL) 

2.2±0.4 2.6±0.6 
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Table 2. Liver lipid analysis in control rats and Grape seed procyanidin extract (GSPE) 

treated rats. Rats were treated with an oral gavage of GSPE (250 mg/Kg body weight) 

and sacrificed after 5 h. Liver lipids were analyzed as described in materials and 

methods after chloroform/methanol extraction. Results are shown as mean ± sem (n=6). 

No statistical differences were found between control rats and GSPE treated rats at the 

P<0.05 level. 

 

 Control GSPE 

triglyceride 

(mg/g tissue) 
8.8 ± 0.5 9.4 ± 0.6 

Total 

Cholesterol 

(mg/g tissue) 

6.2 ± 0.4 6.3 ± 0.4 

Free 

Cholesterol 

(mg/g tissue) 

2.5 ± 0.4 2.5 ± 0.2 

Esterified 

Cholesterol 

(mg/g tissue) 

3.8 ± 0.3 3.7 ± 0.4 
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Table 3.  Changes in mRNA levels of lipid related genes in liver of rats treated with 

grape seed procyanidin extract (GSPE) versus control rats. 

 

Rats were treated with an oral gavage of GSPE (250 mg/Kg body weight) and sacrificed 

after 5 h. Equal amounts of liver RNA from three animals were pooled and used to 

hybridize against Agilent Rat Oligo Microarrays (Part Number G4130A). Fold-change 

represents the mean of duplicate hybridizations with dye-swap labeling. Real time 

quantitative PCR (RT-q-PCR) of SHP and HMG-CoA reductase genes were performed 

to confirm microarray data (shown in bold characters). CYP7A1 mRNA fold-change 

was determined by RT-q-PCR (shown in italic characters) since its probe was absent 

from the microarray.  

 

 

Genbank ID 

  

Mean 

fold-

change 

Standard 

error 

mean 

 Cholesterol synthesis pathway key regulators   

 

BM392175 
3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase) 

1.30 

1.50 

0,13 

NM_017268 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1) 1.46 0,20 

NM_017136 Squalene epoxidase (Sqle) 1.44 0,07 

NM_080886 Sterol-C4-methyl oxidase-like (Sc4mol) 1.54 0,04 

 Fatty acid synthesis   

NM_017332 Fatty acid synthase (Fasn) 1.08 0,00 

NM_053922 Acetyl-Coenzyme A carboxylase beta (Acacb) 1.00 0,01 

NM_022193 Acetyl-coenzyme A carboxylase (Acac) 1.00 0,04 

 Fatty acid beta-oxidation key regulator   

NM_012930 Carnitine palmitoyltransferase 2 (Cpt2) 1.00 0,02 

NM_031559 Carnitine palmitoyltransferase 1 (Cpt1a) 1.00 0,08 

 Cholesterol esther synthesis   

BF542749 Acyl-coenzyme A:cholesterol acyltransferase (ACACT) 1.00 0,01 

NM_031118 Acyl-coenzyme A:cholesterol acyltransferase (Soat1) 1.00 0,00 

 Apolipoproteins   
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NM_012738  Apolipoprotein A-I  1.11 0,06 

 Apolipoprotein C-I 0.80 0,18 

NM_013112 Apolipoprotein A-II  0.67 0,04 

NM_012501 Apolipoprotein C-III  0.81 0,08 

BM385272 Apolipoprotein C-II  1.00 0,11 

NM_080576 Apolipoprotein A-V  1.00 0,01 

NM_138828 Apolipoprotein E.  1.11 0,23 

NM_019373 Apolipoprotein M  1.00 0,06 

NM_012737 Apolipoprotein A-IV  1.10 0,15 

NM_012777 Apolipoprotein D (Apod) (CETP) 1.15 0,08 

CB547563 Apolipoprotein B precursor; apoB-100; apoB-48  1.10 0,16 

 Lipoprotein related proteins   

NM_017024 Lecithin-cholesterol acyltransferase (Lcat) 1.00 0,22 

CB547807 Microsomal triglyceride transfer protein (mtp) 1.16 0,15 

BF553164 Apolipoprotein B mRNA editing enzyme complex-1 (apobec-1)  1.00 0,10 

BF285350 Apolipoprotein B mRNA editing enzyme complex-2 (apobec-2)  0.90 0,09 

NM_012907 Apolipoprotein B editing protein (Apobec1) 1.00 0,03 

NM_133400 Apobec-1 complementation factor. APOBEC-1 stimulating protein (Acf) 1.17 0,22 

BE329208 SREBP cleavage activating protein (SCAP) 1.01 0,22 

 Lipoprotein receptors   

NM_133306 Oxidised low density lipoprotein (lectin-like) receptor 1  1.00 0,05 

CB606186 Low density lipoprotein receptor related protein 1.00 0,08 

CB606214    

CB546853 Low density lipoprotein receptor-related protein 8. apolipoprotein E receptor  1.00 0,06 

NM_053541 Low density lipoprotein receptor-related protein 3  1.00 0,11 

NM_013155 Very low density lipoprotein receptor  1.00 0,01 

BF548789 Low density lipoprotein receptor-related protein 6 1.10 0,17 

NM_031541 CD36 antigen (collagen type I receptor, thrombospondin receptor)-like 1 (scavanger 

receptor class B type 1) (Cd36l1) 

1.00 0,15 

 
Bile Acid related genes  

 

NM_012942 Cyp7A1 2.4  

NM_031241 Cyp8B1 0.8 0,03 

NM_053763 Cyp27A 1.0 0,06 

TABLE 3 (Continued from previous page) 
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 Selected lipid related Nuclear transcription factors   

NM_012493 Alpha-fetoprotein (AFP) 0.97 0,10 

NM_012669 Hepatocyte nuclear factor 1 (HNF1) 1.00 0,01 

AF329936.1 Hepatocyte nuclear factor 3 alpha (HNF3a) 0.95 0,07 

NM_012742 Hepatocyte nuclear factor 4 alpha  (HNF4alpha)  1.07 0,08 

NM_057133 Nuclear receptor subfamily 0, group B, member 2 (Nr0b2). Small Heterodimer Partner 

(SHP) 

2.45 

3.0 

0,70 

NM_052980 Nuclear receptor subfamily 1, group 1, member 2 (Nr1i2) (PXR) 1.00 0,06 

NM_052980 Nuclear receptor subfamily 1, group H, member 2 (Nr1h2). Liver X Receptor beta 

(LXRbeta) 
1.08 

0,04 

NM_031627 Nuclear receptor subfamily 1, group H, member 3 (Nr1h3) Liver X receptor alpha 

(LXRalpha) 
0.94 

0,04 

NM_021745 Nuclear receptor subfamily 1, group H, member 4 (Nr1h4). Farnesoid X Receptor (FXR) 0.98 0,19 

NM_080778 Nuclear receptor subfamily 2, group F, member 2 (Nr2F2) (ARP-1) 0.84 0,01 

NM_021742 Nuclear receptor subfamily 5, group A, member 2 (Nr5a2) (LRH-1) 0.98 0,01 

NM_013196 Peroxisome proliferator activated receptor alpha (PPARalpha) 1.00 0,33 

NM_012805 Retinoid X receptor alpha (RXRalpha) 1.00 0,11 

AF016387.1 Retinoid X receptor gamma (RXRgamma)  1.00 0,10 

AW916150 Sterol regulatory element binding protein-2 (SREBP-2) 0.97 0,01 

TABLE 3 (continued from previous page)  
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FIGURE LEGENDS 

 

Figure 1. Total cholesterol distribution among different lipoprotein fractions. 

Experimental procedure was the same as indicated in table 1. Results are shown as 

percentage of total cholesterol in HDL, LDL and nonHDL:nonLDL lipoproteins. 

Results are shown as mean ± sem (n=6). * Significant difference (P<0.05) versus the 

control value using independent samples t-test. 

 

Figure2. Plasma total apolipoprotein B, apolipoprotein B-100 and apolipoprotein 

B-48 in control rats and grape seed procyanidin extract (GSPE)-treated rats. 

(a) Representative ApoB-48 and ApoB-100 inmunoblotting of a control (lanes 1 and 2), 

GSPE (lanes 4 and 5) plasma samples and apoB-100 standard (lane 3). Rats were 

treated with an oral gavage of GSPE (250 mg/Kg body weight) and sacrificed after 5 h. 

Plasma samples (120 µg of protein) and apoB-100 standard (0.2 µg) were subjected to 

SDS-PAGE and transferred onto PVDF membrane for inmunoblotting with goat 

antiapoB antibody. The antibody used with this purpose was raised against the amino 

terminus of apoB so both isoforms, apoB-100 and apoB-48, could be detected and 

quantified simultaneously in a single plasma sample. (b) Amounts of plasma total-

ApoB, ApoB-48 and ApoB-100 in control group and GSPE treated group. ApoB-100 

standard was used to quantify the relative ammount of apoB-100 and apoB-48 using 

Quantity One software from Bio-Rad. Data are expressed as mean ± sem (n=6). * 

Significant difference at the P< 0.05 level versus the control value. 
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ABSTRACT 
 
 
Numerous studies in humans and animals have demonstrated that procyanidin-rich diets 

reduce the risk of cardiovascular diseases, diabetes, atherosclerosis, obesity, 

hypertension, cancer and neurodegenerative diseases. These beneficial effects have been 

attributed to the well-known antioxidant activity of procyanidins and to their ability to 

act as signalling agents, eventually modulating gene expression at the transcriptional 

level. In this work, we have performed microarray analysis to characterize the global 

gene expression profile associated to oral intake of procyanidins in the liver of healthy 

rats at the postprandial phase, in order to gain insight into the primary mechanisms that 

underlie the long-term antiatherogenic and cardioprotector effects ascribed to 

procyanidins.  Procyanidin target genes in the liver included transcriptional regulators, 

and components of signal transduction pathways as well as genes involved in glucose 

and lipid metabolism, detoxification, apoptosis and the inflammatory response. 

Remarkably, procyanidin treatment upregulates the expression of nuclear receptor SHP 

and downregulates Foxa2, both of which are key regulators of glucose and lipid 

metabolism in the liver. Also, the expression of transcription factor Egr1, a mediator of 

the hepatic inflammatory response, and several genes which encode acute-phase 

proteins – haptoglobin, fibrinogen B and alpha-1-antitrypsin – are repressed by 

procyanidins. In addition, expression of Dusp6, a component of the MAPK/ERK1/2 

signal cascade, is repressed by procyanidins, and Nfkbia, a repressor of NF-kB activity, 

is overexpressed. The postprandial state is a proinflammatory and proatherogenic phase 

due to transiently increased plasma levels of glucose, triglycerides and proinflammatory 

cytokines and we have previously shown that this same procyanidin treatment triggers a 

drastic reduction of postprandial plasma triglycerides [1]. Taken together, the changes 

in liver gene expression profile triggered by procyanidins suggest that these polyphenols 

attenuate the hepatic inflammatory response associated to the postprandial state by 

attenuating IL-6 and NF-kB signalling pathways, and exert an hipotrygliceridemic 

effect by inducing SHP expression and downregulating Foxa2. Therefore, consumption 

of procyanidin-rich foods should help to ameliorate inflammatory and atherogenic 

processes associated to the postprandial state and in the long term, prevent chronic 

metabolic disorders associated to inflammation and atherogenesis. 
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INTRODUCTION 

 

Procyanidins (PC) are polyphenols of flavonoid type that comprise the oligomeric forms 

of monomeric catechins, (+)-catechin, (-)-epichatechin, and their glycosylated and 

gallated derivatives. They are fairly abundant in numerous aliments and drinks of plant 

origin such as grapes, cocoa, different berries, apples, nuts, red wine, chocolate and tea, 

and are considered bioactive micronutrients that form an integral part of human diet [2-

5]. Also, PC-rich extracts from different sources, such as grape seeds, pomegranate and 

pine bark, are commercialized as food additives and nutritional supplements [6, 7]. The 

interest of PC in nutrition arises from the demonstrated and potential benefits of regular 

consumption of flavonoids for human health [3, 8, 9]. Thus, numerous studies in 

humans and animal have demonstrated that PC-rich diets reduce the risk of 

cardiovascular diseases, diabetes, atherosclerosis, obesity, hypertension, [5, 6, 10-14], 

cancer [15, 16] and neurodegenerative diseases [17, 18].   

The beneficial effects of PC have been largely attributed to their well-known 

antioxidant (and associated anti-inflammatory) activity [6, 16, 18-20]. Yet, the 

bioactivity of PC is not limited to their direct antioxidant actions. Flavonoids have been 

shown to interact with specific plasma membrane receptors, cytoplasmic signal 

transduction factors and nuclear receptors, serving themselves as signaling agents and 

eventually modulating gene expression at the transcriptional level [12, 14, 21, 22]. 

The postprandial state is a proinflammatory and proatherogenic phase, due to the 

transient increased levels of glucose, triglycerides (TG) and proinflammatory cytokines. 

Postprandial glycemia and trygliceridemia are better predictors of mortality from CVD 

than fasting parameters alone [23-25]. We have previously shown [1] that oral 

administration of a grape seed procyanidin extract (GSPE) to healthy rats lowers plasma 

TG levels to 50%  in the postprandial state. Hence, in the present study, we have chosen 

the postprandial conditions to characterize liver gene expression profile associated to 

GSPE consumption. Monitorization of global transcriptional changes is a simple way to 

asses the bioefficacy of micronutrients and to identify early target genes of the tested 

substances [26, 27], and should pave the way to the characterization of the primary 

mechanisms that underlie the long-term antiatherogenic and cardioprotector effects 

ascribed to PC.  Here we show that the changes in liver gene expression profile 

triggered by PC could explain, at least in part, their previously described 

hypotriglyceridemic effects, via induction of  SHP expression and downregulation of  
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Foxa2. In addition,  the transcriptional changes elicited by procyanidins in the liver 

suggest that these polyphenols attenuate the hepatic inflammatory response associated 

to the postprandial state by attenuating IL-6 and NF-kB signalling pathways.  

  
MATERIALS AND METHODS 
 
Chemicals. Grape seed procyanidin extracts (GSPE) were kindly provided by Les 

Dérives Résiniques et Terpéniques (Dax, France). According to the manufacturer, this 

procyanidin extract contained essentially monomeric (21.3%), dimeric (17.4%), trimeric 

(16.3%), tetrameric (13,3%) and oligomeric (5-13 units) (31,7%) procyanidins.  

 

Animals. Male Wistar rats, 2 months old and weighing 250 g, were purchased from 

Charles River (Barcelona, Spain). The Animal Ethics Committee of University Rovira i 

Virgili approved all procedures. The animals were housed in animal quarters at 22°C 

with a 12 h light/dark cycle (light from 8 h a.m. to 8 p.m.) and were fed ad libitum with 

chow (Panlab A) and water. At 11 a.m. on experimental day, rats (6 animals per group) 

were fed either an oral gavage of GSPE in aqueous solution (250 mg/kg body wt.; 

GSPE group) or, either, an oral gavage of vehicle (tap water; Control group). The 

procyanidin dose used in this work is one-fifth of the no-observed-adverse-effect level 

(NOAEL) described for GSPE and male rats [28], and we have previously shown that 

this dose is effective in reducing glycemia in streptozotocin-induced diabetic rats [29] 

and triglycerides in normolipidemic rats [1]. Five hours after treatment, the rats were 

sacrificed and liver was excised, immediately frozen in liquid nitrogen, and stored at -

80°C until RNA extraction. 

 

RNA methods. Total RNA was purified from each frozen liver by using the 

NucleoSpinR RNA II kit (Macherey-Nagel, Düren, Germany) and following the 

instructions of the manufacturers. Equal aliquots of total RNA from six rat livers in each 

group were pooled and used for oligonucleotide array hybridization and quantitative 

PCR analysis. Integrity of pooled RNA was assessed by using the Agilent 2100 

Bioanalyzer and the RNA 6000 LabChipR. For microarray hybridization, Cy3- or Cy5-

labeled cRNA was obtained from each RNA pool by using the Agilent Low RNA Input 

Fluorescent Linear Amplification Kit as described in the Agilent manual. Fluorescent 

probes containing 500 ng of each labeled cRNA were pooled and hybridized against 

Agilent Rat Oligo Microarray following the Agilent 60-mer oligo microarray processing 
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protocol. Images of hybridized microarrays were acquired with the Agilent G2565BA 

scanner, and data from the microarray images were obtained and analyzed with the 

Agilent Feature Extraction software. For each pair of RNA samples being compared, 

duplicate hybridizations with a dye-swap labelling were performed. 

Changes in mRNA expression of selected genes were verified by quantitative PCR. 

Complementary DNA corresponding to each RNA pool was generated using TaqMan 

Reverse Transcription Reagents (Applied Biosystem), and quantitative PCR 

amplification and detection were performed by using specific TaqMan Assay-On-

Demand probes (Applied Biosystems, Rn00589173_m1 for SHP, Rn00565598_m1 for 

3-hydroxy-3-methylglutaryl-CoA reductase, Rn00565467_m1 for Glucokinase 

regulatory protein, Rn00565347_m1 for Glucose-6-phosphatase), the TaqMan PCR 

Core Reagent Kit, and the GeneAmpR 5700 Sequence Detection System, as 

recommended by the manufacturer. Quadruplicated quantifications, performed in 

singleplex assays, were performed for each gene in each cDNA pool. Actine B was used 

as the reference gene in quantitative PCR (Applied Biosystems TaqMan Assay-On-

Demand probe Rn00667869_m1). 
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RESULTS 

Global gene expression changes induced by oral administration of GSPE in the liver of 

healthy rats in the postprandial phase were monitored by differential cRNA 

hybridization of oligonucleotide microarrays containing probes specific for about 20000 

genes and ESTs. Table 1 displays those genes of known function which were over- or 

under-expressed by more than 30% in GSPE treated animals compared to controls. The 

genes have been grouped according to their molecular functions or the biological 

processes in which they participate: nuclear receptors, transcription factors, components 

of signalling pathways, metabolic pathways, detoxification processes, apoptosis and 

inflammatory response. The molecular function and biological process ascribed to each 

gene in this section were obtained from the Protein and Gene Databases of the National 

Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/). 

 

Procyanidin intake modulated the expression of nine genes encoding for factors that 

directly control the transcription of other genes. Thus, GSPE triggered a 3-fold 

overexpression of one nuclear receptor, namely Small Heterodimer Partner, which is a 

key controller of lipid homeostasis in the liver. The mRNA levels of five transcription 

factors were also altered in the liver of GSPE-treated animals: zinc finger protein 354A 

(involved in development in kidney) and forkhead box E1 (a negative controller of 

thyroid-specific gene expression) were overexpressed, whereas forkhead box A2 (whose 

target genes are involved in glucose and lipid metabolisms), early growth response 1 

(which triggers the expression of numerous inflammatory mediators) and 

hematopoietically expressed homeobox (essential for liver development) were 

downregulated.  Likewise, three genes encoding components of different signal 

transduction pathways were modified by GSPE: nuclear factor of kappa light chain 

gene enhancer in B-cells inhibitor alpha (an inhibitor of NF-kB activity) was 

upregulated, whereas regulator of G-protein signalling 3 (that inhibits G-protein 

coupled receptor signalling) and dual specificity phosphatase 6 (a protein tyrosine 

phosphatase which regulates the activity of mitogen-activated protein kinases) were 

repressed.  
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In addition, liver expression of numerous genes related to glucose, lipid, amino acid and 

energetic metabolism was differentially affected by GSPE treatment. mRNA levels of 

ATPase inhibitory factor 1 (inhibitor of F1F0-ATP synthase) were reduced, whereas 

those of ion transport regulator 7 (regulator of Na-K-ATPase activity) were increased. 

Related to glucose metabolism, the expression of glucose-6-phosphatase (a 

gluconeogenic enzyme) was increased, whereas glucokinase regulatory protein (an 

inhibitor of glucokinase activity), and solute carrier family 2, member 5 (a transporter 

of fructose and glucose also known as GLUT5) were repressed. Related to amino acid 

metabolism, GSPE induced the over-expression of tyrosine aminotransferase (involved 

in tyrosine catabolism and in gluconeogenesis), short-branched chain acyl-CoA 

dehydrogenase (implied in the catabolism of branched chain amino acids), ornithine 

aminotransferase (involved in arginine and ornitine catabolism) and 5-aminolevulinate 

synthase (that catalyzes the first step of heme biosynthesis and is involved in the 

catabolism of serine and glycine). On the other hand, cysteine sulfinic acid 

decarboxylase (involved in the conversion of cysteine to taurine), glycine 

methyltransferase and betaine-homocysteine methyltransferase were under-expressed in 

the liver of rats treated with GSPE. These last two enzymes are involved in the 

metabolism of sulfur-containing amino acids, serine and glycine, and in the generation 

of S-adenosyl-methionine, the universal donor of methyl groups in for methylation 

reactions of DNA and proteins. mRNA levels of UDP-N-acetylglucosamine-2-

epimerase/N-acetylmannosamine kinase, the key enzyme of sialic acid biosynthesis, 

were also more abundant in the liver of GSPE-treated than in control animals. 

Related to lipid metabolism, three genes encoding enzymes of the cholesterol 

biosynthesis pathway became overexpressed in liver upon GSPE administration: sterol-

C4-methyl oxidase, 3-hydroxy-3-methylglutaryl-CoA synthetase and squalene 

epoxidase. On the contrary, phytanoyl-CoA hydroxylase and acyl-CoA oxidase 2, 

branched chain, involved in the peroxysomal oxidation of fatty acids, became 

underexpressed, and so it was apolipoprotein A-II, a component of High Density 

Lipoproteins.  

 

Administration of GSPE also modulated the expression of several genes related to 

detoxification processes. Glutathione-S-transferase, alpha type (involved in cellular 

detoxification by catalyzing the conjugation of glutathione with a wide range of 

endogenous and xenobiotic alkylating agents) and selenium binding protein 2 (probably 
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involved in mediating anti-carcinogenic effects of selenium) were upregulated by GSPE 

treatment. Five genes coding for cytochrome P450 (CYP) enzymes, and corresponding 

to families CYP3 (involved in xenobiotic and steroid metabolism) and CYP4 (implicated 

in fatty acid hydroxylation) were downregulated by GSPE: CYP3A2 (catalyzes the 

conversion of testosterone to 6-beta-hydroxytestosterone), CYP3A3 (catalyzes the 

alpha-hydroxylation of fatty acids, hydroxylation of melatonin and mediates the 

detoxification of diverse xenobiotics), CYP3A9 (catalyzes the hydroxylation of 

progesterone), CYP4A3 (oxidizes a variety of structurally unrelated compounds, 

including steroids, fatty acids, and xenobiotics) and CYP4A10 (catalyzes the omega-

hydroxylation of fatty acids). Also, the genes of two sulfotransferase enzymes, which 

catalyze the sulfate conjugation of many hormones, neurotransmitters, drugs, and 

xenobiotic compounds, were under-expressed in the livers of the GSPE group: 

sulfotransferase family 1A, phenol-preferring, member 1 and dopa/tyrosine 

sulfotransferase (catalyzes the transfer of sulfate groups onto various tyrosine and 3,4-

dihydroxyphenylalanine isomers). 

 
Finally, GSPE administration also modulated the expression of several genes related to 

the immune system and the inflammatory response in the liver. Of those, only RT1 class 

Ib, locus Aw2 (a class Ib gene of the rat major histocompatibility complex, involved in 

the presentation of foreign antigens to the immune system) was upregulated by GSPE 

treatment. Four genes coding for acute-phase proteins were downregulated in the liver 

by GSPE: retinol-binding protein, haptoglobin, fibrinogen B and alpha-1-antitrypsin. 

Genes for metallothionein 1 and 2 (metal chelating proteins involved in zinc and copper 

homeostasis and in detoxification of heavy metals and reactive oxygen species) where 

also strongly downregulated in the liver of GSPE treated animals. Also, GSPE repressed 

the expression of secretory leukocyte protease iInhibitor (suppresses the inflammation 

and joint damage caused by bacterial cell wall-induced arthritis), High Mobility Group 

Box 1 (which is both a chromatin-binding factor, and a secreted protein that mediates 

inflammation), cadherin 17 (a calcium dependent cell adhesion protein), B-cell 

translocation gene 1 (which encodes for an anti-proliferative protein) and ubiquitin D 

(whose human homolog is a diubiquitin protein that may function in antigen processing 

and presentation).  
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DISCUSSION 

Numerous studies have demonstrated the beneficial long-term effects of regular intake 

of flavonoid-rich foods on oxidative stress, inflammation, lipid and glucose metabolic 

disorders, which are the common backstage of diabetes, atherosclerosis and 

cardiovascular diseases, with great incidence in Western societies [12, 30-32]. 

We have previously demonstrated that a single, high non-toxic [28] oral dose of 

procyanidins significantly reduces trigly and apoB levels in plasma of healthy rats [1] 

and glycaemia in streptozotozin-induced diabetic rats [29], 5 hours after gavage. This 

study was intended to identify the primary target genes of procyanidins on liver, in 

order to gain insight into the molecular mechanisms that underlie their metabolic 

effects. In addition, genes whose expression level is affected by procyanidin intake have 

the potential to be used as a biomarker for assessing physiological functions of 

phytochemicals [27, 33]. Here, we show that oral intake of procyanidins significantly 

affects liver expression of nuclear receptors, transcription factors, components of 

signalling pathways and genes involved in metabolism, detoxification, apoptosis and 

inflammatory response. Importantly, oral intake of procyanidins significantly affects 

liver expression of transcription regulatory factors that control lipid and glucose 

metabolisms – namely SHP and Foxa2 –, and inflammatory processes - Egr1. 

Procyanidin treatment also modifies the expression of components of the MAPK and 

the NF-kB signal transduction pathways. Changes in the expression of these genes, 

which directly control the expression of other genes, could be key events mediating the 

metabolic modifications that, in turn, result in the physiological long-term effects 

ascribed to procyanidins. 

 

Expression of SHP - an orphan nuclear receptor, which acts as a transcriptional co 

repressor controlling steroidogenesis, lipogenesis, cholesterol and bile acid metabolism, 

glucose homeostasis and xenobiotic metabolism in the liver [34, 35]- is strongly up 

regulated by procyanidins. It is known that bile acids lower triglyceride levels and apoB 

secretion in hepatic cells via the upregulation of expression of SHP [36, 37], and we 

have previously described the putative implication of SHP in the hypotrygliceridemic 

effect of GSPE in a postprandial situation [1]. 
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This work also reveals Foxa2 as another important procyanidin target gene, which is 

repressed by GSPE treatment. In the liver, some Foxa2 target genes are involved in 

glucose and lipid homeostasis, particularly in response to fasting [38-40]. Foxa2 is a key 

regulator of insulin sensitivity [41] being phosphorylated in an  Akt phosphorylation 

site in response to insulin signaling. This phosphorylation results in inhibition of its 

transcriptional activity by nuclear exclusion [38, 42]. In the starved state, Foxa2 is 

translocated to the nucleus where activates the transcription of multiple genes, driving 

increased hepatic glucose production, fatty acid oxidation, and ketogenesis [38, 42]. 

Foxa2 under-expression in liver of GSPE treated animals could be involved in the 

hypotriglyceridemic effect of procyanidins [1], since activation of Foxa2 in the liver 

leads to increased VLDL secretion through induced expression of microsomal 

triglyceride transfer protein (MTP) [43].  The effects of decreased Foxa2 expression 

upon VLDL secretion in the liver of GSPE treated rats could be magnified by the 

associated increase of SHP expression triggered by procyanidins, because SHP inhibits 

the transcriptional activity of Foxa2 [44]. Regarding glucose metabolism, rats treated 

with GSPE showed a simultaneous increase of glucose-6-phosphatase expression and a 

decrease of glucokinase regulatory protein (an inhibitor of glucokinase activity). These 

changes in gene expression, together with the normoglucemia observed in GSPE treated 

rats [1], suggest the existence of a futile cycle between glucose-6-phosphate and 

glucose. Also, GSPE treatment increased the expression of some genes related to 

cholesterol biosynthesis. Despite this over-expression, rats treated with GSPE did not 

show elevated plasma cholesterol levels in even display an improved atherosclerotic 

index, probably due to the concomitant increase in the synthesis of bile acids, as 

suggested by the increased expression of Cyp7A1, the rate limiting enzyme in bile acid 

biosynthesis [1].  Besides genes implied in lipid in glucose metabolism, Foxa2 is a 

positive transcriptional regulator of many other genes, including the transcription factor 

Hhex [45], 5-aminolevulinate synthase [46], and fibrinogen B beta chain [47], and all of 

them are repressed by GSPE concomitantly with down-regulation of Foxa2.  

 

The early growth response 1 (Egr1) transcription factor has been associated with a 

broad range of biological functions such as cell proliferation [48], apoptosis [49], and 

differentiation [50] in a cell-type-dependent manner. Egr1 is rapidly induced by many 

stimuli, including insulin, growth factors, cytokines, and a variety of cellular stresses 

[51, 52]  and may function as a master switch to trigger the expression of numerous 
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mediators of the inflammatory response [52]. Oral administration of GSPE, repressed 

the expression of Egr1. Repression of Egr1 expression by (-)-epigallocatechin gallate 

[53] and resveratrol [54] have been already described. Down regulation of Egr1 by 

GSPE occurs concomitantly with the repression of several genes encoding acute phase 

proteins: retinol-binding protein, haptoglobin, fibrinogen B and alpha-1-antitrypsin. 

Acute phase protein genes have been divided into two classes according to their 

response to different cytokines [55]: class 1 genes, which include haptoglobin, are 

induced by IL-1 and TNFalpha, either alone or in combination with IL-6; class 2 genes, 

which include fibrinogen, respond to IL-6 alone. Thus, it seems that GSPE blocked IL-6 

signalling pathways. Reinforcing this suggestion, we found that expression of secretory 

leukocyte protease inhibitor (Slpi) is repressed by GSPE treatment. Expression of this 

gene is inducible by IL-6, but not by TNF and IL-1beta [56]. The ATPase inhibitor, 

whose expression was repressed by GSPE, is over-expressed in inflammated tissues, 

where it is involved as regulator of inflammatory processes [57] . Also, metallothionein 

1 and 2 expression, wich are upregulated by pro-inflammatory stimuli [58] are strongly 

repressed by GSPE.  Remarkably, Foxa2 is also upregulated by IL-6 [59]. Also, a Foxa2 

binding site in the promoter of fibrinogen B beta chain is essential for a full response of 

this promoter to IL-6 [47]. Taken together, the changes in the expression pattern of 

inflammation-related genes triggered by GSPE strongly suggest an anti-inflammatory 

effect of procyanidins that is partly mediated by blocking IL-6 signalling pathways.  

 

IL-6 exert its action via the signal transducers gp130 leading to the activation of the 

JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK 

(mitogen-activated protein kinase) cascades: ERK1/2, p38 and JNK [60]. Both 

pathways lead to the activation of transcription factors: STAT members -activated 

directly by JAK kinases- and C/EBP members - activated through the MAPK pathways 

[60]. Foxa2 promoter contains a binding site for C/EBP proteins that mediates the 

induction of Foxa2 expression by cytokines Il-1 and IL-6 [59]. Also, activation of 

MAPK transduction pathways is essential for induced expression Egr1 by various 

stimuli [51] Thus, without discarding the involvement of the JAK/STAT pathway, our 

results suggest that procyanidins block the MAPK pathways.  

 

The Egr-1 expression is regulated, among others factors [61], by Elk-1, which is 

activated via ERK and JNK subfamilies of MAPKs [62]. The flavonoid (-)-
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epigallocatechin gallate suppresses Egr1 gene expression by blocking the ERK 

signaling pathway [53]. In this work, we have found that repression of Egr-1 expression 

by GSPE is simultaneous with down-regulation of DUSP6, a MAPK phosphatase 

(MKPs) specific for ERKs [63]. It is also known that transcription of several MKPs, 

including DUSP6, is induced by the same MAPK signaling pathway they regulate, thus 

forming a negative feedback loop that attenuate the MAPK signal [64]. All together, the 

available data suggest that procyanidins interfere the ERK1/2 signalling pathway and 

this results in a modulation of transcription of several ERK1/2 target genes in the liver. 

 

Previous results in our group showed insulin-like effects of GSPE in insulin-sensitive 

cell lines, involving PI3K and p38 MAPK [29]. It has been described an attenuation of 

the IL-6 mediated stimulation of acute-phase-protein synthesis by insulin activation of 

the PI3K/Atk signalling [65, 66]. Hence, the observed anti-inflammatory effect of 

GSPE might result from the insulin-mimetic actions of procyanidins and/or from a 

direct inhibition of IL-6 signalling pathways. 

Remarkably, GSPE induced the expression of Nfkbia, which encodes IkappaB-alpha, an 

inhibitor of the NfkappaB cascade [67, 68]. Among other functions, NF-kB controls the 

expression of genes encoding pro-inflammatory inducible enzymes and cytokines 

(including IL-6) as well as acute phase proteins, all of which play critical roles in 

controlling most inflammatory processes [67, 68]. Nfkbia traps NF-kB in the cytoplasm 

and exposure of cells to oxidative and pro-inflammatory stimuli causes activation of a 

series of upstream kinases such as MAPKs, IKK, PKC, and PI3K which then 

phosphorilate Nfkbia targeting it to ubiquiting-mediated degradation.  Free activated 

Nf-kB translocates to the nucleus, where it binds to kB sequences located in the 

promoters of target genes [67, 68]. Several polyphenols, such as resveratrol, 

epigallocatechin gallate, procyanidins and quercetin, have been shown to exert anti-

inflammatory effect by inhibiting NF-kB activation at different levels [69, 70]. Many 

acute phase genes have both C/EBP as well as NF-kB binding sites in their promoters, 

suggesting that C/EBP proteins and NF-kB cooperatively regulate the acute phase 

response [71]. 

 

Inflammation and metabolic regulation are highly integrated and improper integration 

can lead to a cluster of chronic metabolic disorders, including obesity, type 2 diabetes 

and cardiovascular diseases [72, 73]. NF-kB and IL-6 signalling pathways have 
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emerged as important therapeutic target for drugs to treat many inflammation-related 

diseases [70, 74]. Our results reveal procyanidins as potential modulators of 

inflammation, attenuating IL-6 and NF-kB pathways, and of lipid and glucose 

metabolisms, increasing SHP expression and downregulating Foxa2. These effects are 

especially relevant considering that they have been found in the postprandial state, 

which is a proinflammatory and proatherogenic phase, due to the transient increased 

levels of glucose, TG and proinflammatory cytokines [23-25]. Humans are in the 

postprandial condition most of the time in Western societies and thus, consumption of 

procyanidin-rich foods should help to prevent and ameliorate chronic metabolic 

disorders associated to inflammatory and atherogenic processes. 
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Table 1. Genes whose expression in liver is modulated by oral intake of grape sed 

procyanidin extract in the postprandial phase.  
  
 
 

GenBank ID Full Name Symbol Mean 
fold-

change 
 Nuclear Receptors   

NM_057133 nuclear receptor subfamily 0. group B, member 2  
(Small Heterodimer Partner) 

Nr0b2 
(SHP) 

2.45  
(3.08) 

    
 Transcription Factors    

NM_052798 zinc finger protein 354A  Zfp354a 1,48 
NM_138909 forkhead box E1 (thyroid transcription factor 2)  Foxe1 1,38 
NM_012743 forkhead box A2 (hepatocyte nuclear factor 3, beta) Foxa2 -1,35 
NM_012551 early growth response 1 Egr1 -1,79 
NM_024385 hematopoietically expressed homeobox Hhex -2,98 

    
 Signalling Pathways Components   

X63594.1 nuclear factor of kappa light chain gene enhancer in B-
cells inhibitor, alpha  

Nfkbia 1,31 

NM_019340 regulator of G-protein signalling 3  Rgs3 -1,85 
NM_053883 dual specificity phosphatase 6  Dusp6 -2,18 

    
 Metabolism   
 Energy   

NM_022008 ion transport regulator 7  Fxyd7 1,31 
NM_012915 ATPase inhibitory factor 1  Atpif1 -1,67 

    
 Glucose   

NM_013098 glucose-6-phosphatase  G6pc 1,91 
 (2.78) 

NM_013120 glucokinase regulatory protein  Gckr -1,41  
(-1.52) 

NM_031741 solute carrier family 2, member 5  Slc2a5 -1,43 
    
 Lipids   

NM_080886 sterol-C4-methyl oxidase  Sc4mol 1.52 
NM_017268 3-hydroxy-3-methylglutaryl-CoA synthetase  Hmgcs1 1,47 

(1.50) 

NM_017136 squalene epoxidase  Sqle 1,35 

AI029057 phytanoil-CoA-hydroxylase  Phyh -1,32 
NM_145770 acyl-CoA oxidase 2, branched chain  Acox2 -1,34 
NM_013112 apolipoprotein A-II  Apoa2 -1,5 

    
 Amino Acids   

NM_012668 tyrosine aminotransferase  Tat 1,63 
U64451 short branched chain acyl-Coa dehydrogenase Acadsb 1,5 
NM_022521 ornithine aminotransferase  Oat 1,39 
NM_024484 aminolevulinic acid synthase 1  Alas-1 1,3 
NM_021750 cysteine-sulfinate decarboxylase  Csad -1,45 
NM_017084 glycine methyltransferase  Gnmt -1,43 
NM_030850 betaine-homocysteine methyltransferase  Bhmt -1,85 
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 Amino sugars   
NM_053765 UDP-N-acetylglucosamine-2-epimerase/N-

acetylmannosamine kinase 
Gne 1,38 

    
 Detoxification   

NM_031509 glutathione-S-transferase, alpha type  Gsta1 1,32 
NM_080892 selenium binding protein 2  Selenbp2 1,3 
NM_031834 sulfotransferase family 1A, phenol-preferring, member 

1  
Sult1a1 -1,31 

NM_022513 dopa/tyrosine sulfotransferase  Sult1b1 -1,33 
NM_013105 cytochrome P450, subfamily IIIA, polypeptide 3  Cyp3a3 -1,34 
M33936.1 cyp4a locus, encodingcytochrome P450  IVA3 -1,45 
NM_031605 cytochrome P450, 4a10  Cyp4a10 -1,49 
NM_153312 testosterone 6-beta-hydroxilase  CYP3A2 -1,66 
NM_147206 cytochrome P450 3A9  CYP3A9 -1,95 

    
 Apoptosis and inflamatory response   

NM_012645 RT1 class lb  RT1-Aw2 1,9 
NM_053372 secretory leuKocyte protease inhibitor  Slpi -1,36 
NM_012963 high mobility group box 1  Hmgb1 -1,48 
NM_017258 B-cell translocation gene 1  Btg1 -1,31 
NM-053977 cadherin 17  Cdh17 -1,94 
NM_053299 ubiquitin D  Ubd -1,87 
BF556648 metallothionenin2 and metallothionein-1 Mt1, Mt2 -3,23 

 Acute phase proteins   
AA858962 retinol-binding protein  RBP -1,43 
NM_012582 haptoglobin  Hp -1,47 
BF418815 fibrinogen B beta chain Fgb -1,51 
NM_022519 serine (or cysteine) proteinase inhibitor, clade A 

(alpha-1-antitrypsin)  
Serpina1 -1,52 

 
Genes which were over- or under-expressed more than 30% of control values upon 

GSPE treatment, are grouped by molecular functions and biological processes, which 

were obtained for each individual gene from the Protein and Gene Databases from the 

National Center for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/). Values in parenthesis and bold characters refer to the 

mean fold change in mRNA levels determined by quantitative PCR. 
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ABSTRACT 

 

The regular long-term consumption of dietary flavonoids has been associated with 

reduced mortality and risk of cardiovascular disease (CVD), partially by reducing 

triglyceride-rich lipoprotein secretion from the liver.  We have previously reported that 

an induction in the expression of liver small heterodimer partner (SHP) paralleled a 

significant decrease in plasma triglycerides in rats treated with a grape seed procyanidin 

extract (GSPE) (del Bas et al. 2005. FASEB j.). Due to the link between SHP and lipid 

metabolism, our objective in this study was to elucidate whether SHP is the mediator of 

the lipid lowering activity of GSPE. We used two different systems to block SHP 

activity: human hepatoma cells transfected with a SHP-siRNA and a SHP knockout 

mouse model. The hypotriglyceridemic effect of GSPE is abolished in both SHP 

deficient models thus revealing this nuclear receptor as a key mediator of the 

hypotriglyceridemic response triggered by procyanidins. Moreover, SHP is a direct and 

early target of procyanidins in HepG2 cells.  Microarray based comparison of liver gene 

expression profiles between GSPE treated wild-type and SHP -/- mice identified several 

SHP target genes, including SREBP1, as putative down-stream effector of the TG-

lowering response triggered by procyanidins in liver. In conclusion, dietary 

procyanidins lower TG levels signalling through SHP in vitro in human liver cells and 

in vivo in mouse liver. Due to the relevance of triglyceridemia in the development of 

atherosclerosis, SHP is emerging as an important target of anti-atherogenic 

phytochemicals. 
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INTRODUCTION 

 

The regular long-term consumption of dietary flavonoids has been associated with 

reduced mortality and risk of cardiovascular disease (CVD) [1]. Many studies have 

addressed the properties of dietary flavonoids, which ameliorate different altered states 

such as atherosclerosis. Initially, the beneficial effect of these polyphenolic compounds 

was ascribed to their antioxidant activity. Thus, green tea polyphenols were shown to 

have significant antioxidant activity both in in vivo and in vitro systems, and were 

shown to act by scavenging reactive oxygen and nitrogen species and chelating redox-

active transition metal ions, while modestly ameliorating ex-vivo oxidation of  

lipoproteins [2]. On the other hand, red wine polyphenols exert a protective effect in 

vitro and in 
vivo by inhibiting free radical–mediated LDL oxidation [3, 4]. Therefore, 

flavonoids may be important in preventing CVD by reducing the susceptibility of LDL 

to oxidation 
in vivo. Nevertheless, increasing evidence shows that flavonoids contribute 

to cardioprotection through mechanisms that are independent of their antioxidant 

capabilities. These mechanisms comprise interactions with cell membrane receptors, 

intracellular signalling pathway proteins and modulation of gene expression [5-8]. In 

this way, for instance, polyphenols induce the synthesis and release of nitric oxide by 

the vascular endothelium, which in turn, promotes vasorelaxation, reduces platelet 

aggregation, and limits the flux of atherogenic lipoproteins into the artery wall [6, 8]. In 

addition, flavonoids inhibit proliferation and migration of vascular smooth muscle cells, 

by interfering with platelet-derived growth factor (PDGF) receptor signalling through 

the phosphatidylinositol 3’-kinase (PI3K) and mitogen-activated protein kinase 

(MAPK) pathways. A plethora of transcriptional changes are therefore responsible for 

the actions of various flavonoids on the components of the vascular system [6, 8] [9-

11].  

 

Several studies have addressed the role of post-prandial lipemia in the development of 

CVD, revealing the importance of triglyceride -rich lipoprotein as an important factor in 

the development of these pathologies [12, 13]. Furthermore, hypertriglyceridemia has 

been revealed as an independent risk factor for coronary heart disease [14]. Different 

studies have shown beneficial effects of flavonoids regarding atherosclerosis 

prevention, reducing apolipoprotein B (apoB), triglyceride (TG) and cholesterol levels, 

thereby preventing early aortic atherosclerosis in hyperlipidemic hamsters [15, 16]. In 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF HEPATIC LIPOPROTEIN METABOLISM BY DIETARY PROCYANIDINS 
Josep Maria del Bas Prior 
ISBN: 978-84-691-0360-9/ DL: T.2173-2007



III. Results and Discussion 

MANUSCRIPT 3 

 - 97 -   

cultured human liver cells (HepG2) de-alcoholized red wine was shown to decrease the 

production of apoB100 (a marker of VLDL and LDL in humans) [17], and red grape 

juice polyphenols were shown to induce liver LDL receptor expression and activity 

[18]. Additionally, we have previously shown that, in rats fed an acute non-toxic dose of 

grape seed procyanidin extract (GSPE), the postprandial plasma lipid profile was 

ameliorated, thereby lowering different atherosclerotic risk indices [19]. The main 

changes ascribed to those beneficial effects were related to TG-rich, apoB containing 

lipoproteins, supported by a decrease in plasma TG and apoB levels in rats treated with 

GSPE. Thus, the beneficial effects of procyanidins, and flavonoids in general, on 

plasma TG have been widely demonstrated. Nevertheless, little is currently known 

regarding precise the molecular mechanisms underlying these effects. 

 

The liver is a major organ involved in the control of lipid homeostasis, and together 

with the intestine, it modulates and orchestrates the synthesis of lipoproteins in response 

to the physiological state of the organism [20]. Nevertheless, the mechanisms 

modulating the different pathways controlling the synthesis and secretion of 

lipoproteins are complex, and further research is needed to completely understand 

precisely how the different hormones, cytokines or nutrient-activated signals affect its 

homeostasis by acting, ultimately, at the transcriptional level in a coordinated manner. 

Among a wide variety of mediators are nuclear receptors which have emerged as key 

modulators of lipid and lipoprotein metabolism [21, 22], including hepatocyte nuclear 

factor-4 (HNF-4), peroxisome proliferator activated receptors (PPARs), retinoid X 

receptor (RXR), retinoic acid receptor (RAR), farnesoid X receptor (FXR) and small 

heterodimer partner (SHP). SHP is an atypical orphan nuclear receptor initially 

described as a co-repressor involved in the feedback regulation of bile acid synthesis 

[23, 24], and is now emerging as a key factor in the control of lipid homeostasis [25-

28]. Different studies have implicated a role for SHP in mediating the hypolipidemic 

effects ascribed to bile acids [25, 29]. Cholic acid reduces plasma TG in mice by 

activating FXR, the bile acid receptor. The activation of FXR is followed by the 

induction of SHP which, in turn, represses different genes involved in TG synthesis, 

including SREBP1 [25, 30]. SREBP1 is a key regulator of lipogenesis, as revealed by 

the enhanced TG synthesis in the liver of mice over-expressing SREBP1a and 

SREBP1c [26, 31].   Moreover, in HepG2 cells, CDCA lowers VLDL synthesis and 

production [29]. The proposed mechanism is based, in part, by the activation of FXR 
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and subsequent induction of SHP which, in turn, interferes with the binding of HNF4 to 

the promoters of apolipoprotein B (APOB) and microsomal triglyceride transfer protein 

(MTP) [29], which is essential in the assembly of VLDL by shuttling lipids to the 

nascent apoB containing lipoprotein [32].  SHP can therefore modulate the maintenance 

of the lipid pool and the expression of MTP, key factors in the control of VLDL 

synthesis and secretion [32, 33].  

 

We have previously reported that an induction in the expression of SHP paralleled a 

significant decrease in plasma TG in rats treated with GSPE [19]. Due to the link 

between SHP and lipid metabolism, we hypothesized that this nuclear receptor could be 

the mediator of the lipid lowering activity of GSPE. In order to test this hypothesiswe 

have used two different systems to block SHP activity: human hepatoma cells 

transfected with a SHP-siRNA and  a SHP knockout mouse model. First we 

demonstrate that GSPE exerts a TG lowering effect in the HepG2 cell line as well as in 

the wild-type mouse. Next we show that the hypotriglyceridemic effect of GSPE is 

abolished in both SHP deficient models thus revealing this nuclear receptor as a key 

mediator of the hypotriglyceridemic response triggered by procyanidins in the liver. 

Finally, the microarray based comparison of liver gene expression profiles between 

GSPE treated wild-type and SHP-/- mice identified several SHP target genes, including 

SREBP1, as putative down-stream effector of the TG lowering response triggered by 

procyanidins in hepatic cells in vivo. 
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MATERIALS AND METHODS 

 

Chemicals 

Grape seed procyanidin extract (GSPE) was kindly provided by Les Dérives Résiniques 

et Terpéniques (Dax, France). According to the manufacturer, this procyanidin extract 

contained essentially monomeric (16.55%), dimeric (18.77%), trimeric (16%), 

tetrameric (9.3%), oligomeric (5-13 units) (35,7%) procyanidins and phenolic acids 

(4.22).  CDCA was from SIGMA, and was diluted in DMSO (Sigma). 

 

Cells and Cytotoxicity Assays 

HepG2 cells (ATCC , Manassas, VA, USA) were grown until 70% confluent in DMEM 

(Cambrex) supplemented with 1% penicillin/streptomycin (Cambrex), 2 mM L-

Glutamine (Cambrex), 1% non essential amino acids (Sigma) and 10% FBS (Cambrex). 

For experiments, 12 hours before treatment media was replaced with serum depleted 

media (DMEM supplemented with 2 mM L-Glutamine, 1% non essential amino acids 

and 0.25% Oleic acid: Albumin) (sigma). After 12 hours, GSPE or CDCA was added to 

reach the appropriate working concentration. Media and cells were harvested after 

treatments.  

 

To study the cytotoxicity of GSPE, cells were treated for 24 hours with different 

concentrations of GSPE diluted in aqueous solution. To assess the cytotoxicity of 

GSPE, two methods were used; LDH leakage and Alamar Blue quantitaion. For LDH 

activity assays, media and cells were collected and assayed as previously described [34]. 

The Alamar Blue (Biosource, USA) assay was used to assess GSPE cytotoxicity 

concerning cellular RedOx activity, following the manufacturers instructions. Media 

containing GSPE at the assayed concentrations was used to discard interactions between 

procyanidins and Alamar Blue Reagents. 

 

 

In vivo feeding studies 

Mice were housed under standard conditions. Experimental procedures were approved 

by the local Committee for Care and Use of Laboratory Animals at Baylor College of 

Medicine. SHP-deficient mice were generated by gene targeting as previously described 

[35], and were backcrossed with C57BL6 mice to the 10th generation. The correct 
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genotype was verified using previously reported primer sequences and reaction 

conditions [36]. Age-matched groups of 8-10 week-old male mice were used in all 

experiments (n=5 per experimental group). Mice were fed a standard rodent chow and 

water ad libitum. Experiments were performed for 14hrs and mice were fed either 

vehicle (water), or procyanidins (250 mg/L) via oral gavage. A first dose was 

administered at 9:00 pm and a second dose at 9:00 am. At the end of the experiment, 

mice were fasted for the final 2 hours, and blood was collected from the orbital plexus 

after mice were anaesthetized with isoflurane. Tissues were snap frozen and stored at -

80oC until use. 

 

Lipid analysis. 

For the de novo synthesis of TG, HepG2 cells were seeded in 12-well plates. Media was 

replaced 12 hours before treatment. GSPE (50 mg/L) and 14C-acetate were added to the 

media of the cells and 12 hours after treatment media and cells were collected and lipids 

extracted using chloroform/methanol. Thin layer chromatography was performed as 

previously described [37] with an additional separation using a Hexane/MTBE/NH3 

solvent to obtain the TG fraction. 14C-labeled TG were scraped and determined by 

scintillation counting. Values were corrected per mg protein, determined by a 

colorimetric assay (BIO-RAD).  

For non-radioactive measurements, cell media and plasma TG or cholesterol were 

assayed using enzymatic kits (QCA, Spain).  

 

Apolipoprotein B and SHP immunoblotting 

To measure the amount of apolipoprotein B protein produced in vitro, media was 

collected after treatment. In siRNA experiments, media was collected and concentrated 

using Ultrafree-4 centrifugal filter units (Millipore, USA). For apolipoprotein B 

immunoblotting, equal volumes of media were loaded into each lane, separated by 

electrophoresis and transferred to a nitrocellulose membrane (Millipore, USA). ApoB 

detection was performed using an anti-apoB antibody (S-14, Santa Cruz Biotechnology) 

as the primary antibody, an HRP-conjugated anti-IgG was used as the secondary 

antibody (sc-2020, Santa Cruz Biotechnology), and an immobilon chemiluminiscent 

HRP substrate kit  (Millipore, USA) was used as the chemiluminiscent  reagent. 

Membranes were exposed to hyperfilm ECL (Amersham, UK). Bands were quantified 

using Quantity One software (Bio-Rad) and values were corrected by cell number. For 
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SHP analysis, cells were lyzed using RIPA buffer (50 mM Tris-HCl, pH 7.4, 1% NP-40, 

0.25% Na-deoxycholate, 150mM NaCl, 1mM EDTA) containing a protease inhibitor 

cocktail (SIGMA). Protein was quantified using a protein assay reagent (Bio-Rad, 

Germany). Equal amounts of cellular protein were separated by electrophoresis and 

electrotransferred to a nitrocellulose membrane. An anti-SHP antibody (SHP Q14, 

Santa Cruz Biotechnology) was used against SHP, and GAPDH (V-18, Santa Cruz 

Biotechnology) was quantified as the loading control. An HRP-conjugated anti-IgG 

antibody (sc-2020, Santa Cruz Biotechnology) was used as the secondary antibody.  

Bands were quantified using Quantity One software. 

 

siRNA experiments 

HepG2 cells were transfected using an Ambion silencer siRNA transfection kit. siRNA 

sequences targeting SHP were obtained from Ambion. Scramble RNA (Ambion) was 

used for transfecting control cells. Briefly, siRNAs were incubated with siPort NeoFx 

reagent to obtain transfection complexes. 105 cells were incubated with 0.03 nmol of 

siRNA and seeded in 12 well plates. Eight hours after transfection, the media was 

replaced with serum free media and cells were grown for additional 24 hours. To assess 

interference efficiency, total RNA was extracted using a Nucleospin 2 kit (Macherey 

Naegel, Germay), and SHP and RPLP0 expression were determined by RTqPCR using 

Applied biosystems Taqman predefined assays (Hs00222677_m1 for SHP and Hs 

99999902 for RPLP0) as described below. 

 

Gene expression analysis. 

After treatment, HepG2 cell total RNA was obtained using a NucleoSpin RNA2 kit 

(Macherie-Naegel, Germany). Reverse transcription reactions were performed using the 

Taqman Reverse transcription reagent kit (Applied Biosystems). For gene expression 

quantification, specific primer and Taqman probes (Applied Biosystems) for different 

genes were used: SHP (Hs00222677_m1), APOB (Hs00181142_m1), SRBEP1 

(Hs01081785_m1), MTP (Hs00165177_m1), FAS (Hs00188012) and RPLP0 as the 

endogenous control (Hs99999902_m1). Real Time quantitative PCR reactions were 

performed using the ABI Prism 7300 SDS Real Time PCR system (Applied 

Biosystems). For in vivo experiments, total RNA was obtained using Trizol reagent 

(invitrogen) following the manufacturer’s protocol. Additional purification and DNAse 

treatment was performed using a NucleoSpin RNA2 kit (Macherie-Naegel, Germany). 
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For microarray hybridization, RNAs from individual mice (5 per group) were pooled for 

the 4 different groups, (1) wild-type vehicle, (2) wild-type GSPE treated, (3) SHP-/- 

vehicle and (4) SHP-/- GSPE treated. The integrity of the pooled RNA was assessed 

using the Agilent 2100 Bioanalyzer (Madrid, Spain). For microarray hybridization, 

Cy3- or Cy5-labelled cDNA was obtained from each RNA pool by using the Agilent 

Low RNA Input Fluorescent Linear Amplification Kit as described in the Agilent 

manual (Part Number 5185-5818). Labeled cDNAs were hybridized against Agilent 

Mouse Oligo Microarrays (Part Number G4122A) following the Agilent 60-mer oligo 

microarray processing protocol. Images of hybridized microarrays were acquired with 

the Agilent G2565BA scanner, and data from the microarray images were obtained and 

analyzed with the Agilent Feature Extraction software. For each pair of RNA samples 

being compared, duplicate hybridizations with a dye-swap labelling was performed. For 

microarray validation, CYP7A1, MTP, APOA5, MT1, MT2 and SHP gene expression 

were analyzed by RTqPCR, using GAPDH as the endogenous control. RNA was 

retrotranscribed using a Taqman Reverse transcription reagent kit (Applied Biosystems) 

and gene expression was evaluated using the ABI Prism 7300 SDS Real Time PCR 

system (Applied Biosystems) using SYBR green reagent (Applied Biosystems). Primer 

sequences can be provided upon request.  

 

Microarray data processing and statistical analysis 

Data was filtered to avoid aberrant values derived from fluorescent labelling or extreme 

gene expression values. A whole array of data was constructed matching each gene 

symbol with its fold-change value from the microarray analysis. Genes were clustered 

into different biological processes using Panther software [38]. The gene expression 

profile deviation of each biological process group from the whole array expression 

pattern was calculated using the Mann-Whitney U Test (Wilcoxon Rank-Sum test) as 

previously described [38], resulting in a p-value. P-values under 0.05 were considered 

significant. From the resulting data using Mann-Whitney U Test, a second approach 

was used, consisting of fixing a fold-change threshold value of 0.7 for down-regulation 

and 1.5 for up-regulation to identify genotype-dependent changes caused by GSPE. For 

statistical analysis in the lipid, gene expression and apoB studies, T-test and ANOVA 

analyses were performed using SPSS software.  
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RESULTS 

GSPE decreases apoB and TG synthesis and secretion in HepG2 cells. 

GSPE presented no cytotoxic effects on HepG2 cells, as measured by LDH leakage and 

Alamar Blue quantification, in concentrations up to 150 mg/L. Concentrations of 300 

mg/L decreased cell viability by 20%. Consequently, in this work GSPE was used in the 

range of 20 to 100 mg/L. 

In order to assess whether HepG2 cells are a valid system to study the bioactivity of 

GSPE on TG secretion, we performed dose- and time-response experiments. ApoB 

levels in the culture media decreased, 24 hours after addition of GSPE, in a dose-

dependent manner, as assessed by immunoblotting analysis (figure 1A). The ApoB 

concentration in the media, normalized by cell number, was 20% and 40% lower in cells 

treated with 50 and 100 mg/L GSPE, respectively, than in vehicle-treated cells. 

Treatment of cells with 50 mg/L GSPE, completely blocks the accumulation of ApoB in 

the media during the first 12 h of GSPE treatment, while during the following 12 hours, 

this secretion is partially restored (figure 1B). In this same set of experiments, 

accumulation of TG in the media was drastically reduced upon treatment with 50 mg/L 

GSPE for 24h (figure 1C). Therefore, GSPE triggers a hypotriglyceridemic effect in 

HepG2 cells and is therefore a valid model to the study of mechanisms underlying the 

effect of GSPE in vitro. 

In order to assess the action of GSPE on the de novo synthesis and secretion of TG, 

HepG2 cells were treated for 12 hours with 14C-acetate and either vehicle or GSPE 

(figure 1D). Compared to controls, cells treated with procyanidins showed a slight 

reduction in 14C-TG synthesis, and a significant decrease in 14C-TG secretion, this did 

not result in intracellular 14C-TG accumulation. Altogether, these results strongly 

suggest that GSPE lowers TG-rich lipoprotein secretion, in part by inhibiting 

lipogenesis. 

 

SHP is a target of GSPE in HepG2 cells. 

We recently demonstrated that SHP mRNA levels were rapidly upregulated in the liver 

of rats fed a single dose of GSPE [19]. To assess whether that fast up-regulation could 

be reproduced in the HepG2 cell system, we treated HepG2 cells with different doses of 

GSPE and analyzed changes in SHP gene expression by RTqPCR after 2h treatment 

(figure 2A). Results show a dose-dependent effect of GSPE on SHP mRNA levels. Up-

regulation of SHP mRNA levels by GSPE is very rapid, reaching a 2-fold increase after 
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2 hours treatment. In addition to the increase in SHP gene expression there is also a 

concomitant increase in SHP protein as assessed by immunoblotting (figure 2B) of 

GSPE treated HepG2 cells during 3 hours with a dose of 100 mg/L. Longer periods of 

GSPE treatment, assayed with a dose of 50 mg/L, resulted in a strong reduction in SHP 

mRNA, reaching 15% of the control value after 10 hours of treatment (Figure 2C). To 

assess whether SHP repression found at 6 and 10 hours of GSPE treatment could be 

explained by the well known negative feed-back mechanism that allows SHP to control 

its own expression [30, 39], HepG2 cells were co-incubated with GSPE and CDCA, a 

bile acid which induces SHP [40, 41] (Figure 3). After 10 hours, CDCA had triggered a 

2.5 fold increase of SHP mRNA levels, while the addition of GSPE to CDCA-exposed 

cells resulted in an inhibition of SHP gene expression, paralleling the results showed in 

figure 2C 10 hours after GSPE treatment. These results suggest that the repression of 

SHP, after 10 hours treatment with procyanidins, is mediated by additional factors other 

than SHP itself. 

The rapid and drastic induction in SHP mRNA and protein triggered by GSPE in 

HepG2 cells reveals that SHP is a direct and early target of procyanidins in hepatic 

cells, reinforcing the hypothesis that SHP might mediate the hypotriglyceridemic 

response induced by GSPE, without the involvement of extrahepatic tissues.  

 

GSPE modulates the expression of genes related to lipid and lipoprotein metabolism. 

The increase in liver SHP expression induced by bile acids has been related to a 

decreased secretion of TG in both HepG2 cells [29] and mice [25]. We therefore 

hypothesized that the up-regulation of SHP by GSPE could be related to the observed 

decrease in apoB and TG release triggered by these compounds. Therefore, we analyzed 

the effect of GSPE on the expression of known SHP target genes involved in VLDL 

synthesis and secretion, during the first 10 hours of GSPE treatment (figure 4). APOB 

mRNA levels are unaffected by GSPE in spite of the fact that the levels of secreted 

apoB protein are reduced. Likewise, SREBP1 mRNA levels are unaffected by GSPE 

treatment. Despite the decreased production of TG when HepG2 cells are treated with 

GSPE (as shown in figure 1C), FAS mRNA levels are induced by GSPE. In contrast, 

MTP mRNA levels are significantly reduced after 6 hours of treatment and reach33% of 

control values after 10 hours of GSPE treatment. Altogether, these results suggest that 

GSPE could be decreasing VLDL accumulation in the media by lowering MTP 

expression. 
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Silencing SHP abolishes the effect of GSPE on TG secretion  in HepG2 cells.  

We next used a siRNA targeting SHP to study the relevance of SHP as a mediator in the 

effects of GSPE on apoB and TG secretion. Transfection of HepG2 cells with SHP 

siRNA results in a 60% reduction in SHP mRNA levels 32 hours after transfection 

(figure 5A). Concomitantly, apoB and TG release into the media is increased by 

silencing SHP, strongly suggesting that SHP represses apoB and TG secretion under 

basal conditions (figure 5B). In SHP-silenced cells, the TG-lowering effect of GSPE is 

abolished. In contrast, the effect of GSPE lowering ApoB secretion in SHP- knocked 

down HepG2 cells remains unaffected. These results suggest that two different 

mechanisms mediate the repression triggered by GSPE on ApoB and TG secretion in 

HepG2 cells: GSPE action on TG secretion involves a SHP-dependent mechanism, 

whereas repression of apoB release follows a SHP-independent pathway. Since MTP is 

tightly involved in ApoB secretion [42, 43], we wondered whether the MTP repression 

exerted by GSPE (shown in figure 4) could be mediated by the putative SHP-

independent pathway.  To gain further insight into this possibility, HepG2 cells were 

coincubated with GSPE and CDCA, which represses MTP via a pathway involving SHP 

[25]. Results (Figure 6) show that while MTP is still unaffected by CDCA, the addition 

of GSPE triggers the repression of MTP. Hence, GSPE represses MTP through different 

mechanisms other than the pathway followed by CDCA, which implicates SHP up-

regulation. 

  

SHP is a key mediator of the hypotriglyceridemic effect of GSPE in mice 

In order to gain further insight into the relevance of SHP as a mediator of GSPE 

hypotriglyceridemic actions in an in vivo system, we compared the effects of GSPE 

administration in SHP-/- versus wild type mice. In wild type mice, oral GSPE gavage 

triggers a 40% reduction in plasma TG levels, while it does not affect plasma total 

cholesterol levels (figure 7). This response of GSPE administration on the plasma lipid 

profile is identical to what we previously found in rats [19].  The hypotriglyceridemic 

effect of GSPE was abolished by the SHP-/- genotype. These results clearly show that 

SHP is a key mediator of the hypotriglyceridemic effects exerted by procyanidins in 

vivo. 
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GSPE induces changes in genes related to lipid, fatty acid and steroid metabolism in 

wild type but not SHP
-/-

 mice. 

To gain further insight into the SHP-dependent actions of GSPE, we next analyzed the 

differential response in gene expression changes induced by procyanidins in the livers 

of wild type and SHP-/- mice using oligonucleotide microarray hybridization. The 

changes induced by GSPE treatment in the expression level of all genes, clustered by 

biological process, were analyzed using Panther software. In wild type mice, changes in 

genes clustered in the biological process “Lipid, fatty acid and steroid metabolism”, 

including 747 genes, show a significant deviation (p-value 0.018) from the overall 

changes in gene expression patterns (figure 8). In contrast, in SHP-/- mice, this gene 

cluster does not significantly deviate (p-value 0.175) from the global change pattern. 

The significant deviation of genes in the “Lipid, fatty acid and steroid metabolism” 

group in the GSPE treated wild-type mice was attributed to an abnormal predominance 

of genes in the fold-change range from 0.5 to 0.8, indicating a down-regulation of 

numerous genes included in this metabolic group. Altogether, these results indicate that 

lipid metabolism is more strongly repressed by GSPE in wild type than in SHP-/- mice, 

thus pointing to SHP as a key mediator of the repression of lipid metabolism induced by 

procyanidins. 

Next, in order to identify SHP-dependent genes involved in the hypotriglyceridemic 

effect of GSPE in wild type mouse, we selected those genes clustered into the “Lipid, 

fatty acid and steroid metabolism” group that were changed in wild-type mice but 

remained unaltered in SHP-/- mice, setting a fold-change threshold of 1.5 for up-

regulated and 0.7 for down-regulated genes (Table 1). In total, 24 lipogenic genes were 

identified which show SHP-dependent repression by GSPE, including key regulators of 

lipid synthesis pathways such as Sterol regulatory element binding protein 1 (SREBP1), 

3-hydroxy-3-methylglutaryl-Coenzyme A synthase, acyl-CoA synthetase, stearoyl-

Coenzyme A desaturase and (PPARγ)-interacting Protein. Other genes involved in 

lipoprotein metabolism that were not classified by Panther software in this cluster, also 

changed in a SHP-dependent manner, such us ApoA5, C/EBP beta, and phospholipid 

transfer protein (Table 1). Remarkably, numerous genes (marked with an asterisk in 

Table 1) which show a SHP-dependent response to GSPE, have been described as 

targets of SREBP1, a master regulator of lipid and lipoprotein metabolism [44-47]. 

Therefore, SREBP1 emerges as a putative SHP-dependent downstream effector of the 

hypotrycliceridemic response triggered by procyanidins in hepatic cells. 
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DISCUSSION 

 

Many studies have addressed the long term effects resulting from a chronic intake of 

flavonoids on lipid homeostasis in dyslipidemic human subjects and 

hypercholesterolemic animal models, where they have been shown to exert beneficial 

hypolipidemic effects [19, 48-51]. Previously [19], we studied the short term effect of 

an acute oral dose of GSPE in healthy rats, in order to gain insight into the initial 

mechanisms underlying the long-term beneficial effects on lipid related metabolic 

disorders associated with a chronic intake of procyanidins and other flavonoids.  We 

found that GSPE triggered a 3-fold increase in liver SHP mRNA expression with a 

concomitant 50% reduction in plasma apoB and TG levels, in the postprandial state in 

healthy rats. SHP is an orphan nuclear receptor, which directly modulates the activities 

of nuclear receptors and transcription factors by acting as an inducible and tissue-

specific corepressor thus modulating multiple pathways [30]. In the liver, SHP regulates 

cholesterol and bile acid metabolism, steroidogenesis and lipogenesis [30]. Therefore, 

SHP emerged as a putative mediator of the observed hypolipidemic response triggered 

by GSPE. To assess whether SHP is a key mediator of procyanidin activity, we tested 

the effect of GSPE administration on the human hepatoma HepG2 cell line transfected 

with SHP siRNA and on a SHP knockout mouse model.  

 

HepG2 cells are a valid system to study lipid synthesis and secretion [52-54]. In 

addition, various studies have revealed that procyanidins and other flavonoids decrease 

VLDL secretion in HepG2 cells [17, 48, 55, 56]. In the present study we have shown 

that GSPE strongly blocks TG and apoB secretion in HepG2 cells.  Since the rate of de 

novo TG synthesis is slightly decreased by GSPE, blocking TG secretion does not 

involve intracellular accumulation of TG during the first 12 hours of treatment. These 

results strongly suggest that GSPE decreases VLDL secretion, thus reinforcing previous 

reports. The results presented herein also show an early induction in SHP expression in 

response to GSPE treatment in a dose-dependent fashion, therefore establishing this 

nuclear receptor as a direct target of procyanidins.  These results indicate that GSPE 

triggers a TG-lowering effect via the induction of SHP expression which acts directly 

on hepatocytes.  This is consistent with the effects we previously described in rats [19] 

and, altogether, strongly suggest that, in vivo, procyanidins act directly on liver cells, 

without the need to invoke the intervention of extrahepatic tissues.  
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In HepG2 cells, an induction in SHP expression was observed during the first hours of 

GSPE treatment, while its expression decreased steadily from 6 hours onward. This 

expression pattern could, in principle, be attributed to the negative feedback mechanism 

that allows SHP to repress its own expression, interfering with transcription factors that 

bind to the SHP promoter, such us FXR, LXR or PXR [57-59]. Nevertheless, when we 

co-incubated HepG2 cells with GSPE and CDCA, a bile acid which induces SHP, the 

repression of SHP was still active after 10 hours of treatment, while those cells exposed 

only to CDCA still showed increased levels of SHP mRNA. Upon observing the 

repression in SHP expression by GSPE treatment in the presence of CDCA we 

wondered whether GSPE could be acting as an inverse agonist/antagonist of FXR. 

However, in a transient transfection assay GSPE did not inhibit the transactivation of 

FXR by CDCA (del Bas, Ricketts Moore & , unpublished observation). Therefore, we 

postulate that procyanidins induce SHP expression during the first hours of treatment 

and, afterwards, repress SHP expression through mediators, other than SHP itself, that 

are able to over-ride the earlier induction triggered by procyanidins and by CDCA.  

 

The expression pattern of MTP, ApoB, FAS and SREBP1 genes, which are related to 

SHP and VLDL secretion [25, 29, 30, 59], could explain the TG lowering actions of 

GSPE in HepG2 cells. In these studies we have found that the GSPE-dependent TG and 

apoB lowering effects were achieved during the first 12 hours of treatment. Thus, 

mRNA levels were monitored during this period of time. SREBP1 and FAS, key factors 

in the control of lipogenesis, have been described as targets of flavonoids and 

polyphenolic compounds [60-62]. No effects were observed for SREBP1, whereas FAS 

was induced by GSPE. These results indicate that the actions of GSPE in lowering 

lipogenesis in HepG2 cells are mediated by other genes, or by mechanisms acting at the 

post-transcriptional level [48, 63]. Together with the inhibition of TG synthesis, the 

repression of MTP expression exerted by GSPE in HepG2 cells could be the 

explanation for the decreased release of TG and apoB. MTP is the key enzyme 

regulating the synthesis of TG-rich lipoproteins, shuttling TG to apoB nascent 

lipoproteins [33, 64]. Together with the availability of lipids, both are the main limiting 

factors in the synthesis and secretion of VLDL [32, 33, 65]. In this process, APOB 

mRNA levels play a minor role, since it can be regulated at post-transcriptional stages 

and, thus, the ApoB protein that has not been assembled into the nascent lipoprotein can 

be degraded via proteosomes [33]. This regulatory mechanism allows a plausible 
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explanation for the unchanged expression of APOB gene expression while the levels of 

the ApoB protein were decreased in the media of the cells treated with GSPE. In 

summary, our results are consistent with other reports, showing that flavonoids can 

repress MTP, thereby decreasing apoB secretion [17, 48]. Nonetheless, control of MTP 

expression is subjected to numerous factors other than SHP [32, 66]. 

 

To further investigate the role of SHP in mediating the TG and ApoB lowering effects 

of GSPE in HepG2 cells, a siRNA system targeting SHP was established. A 60% 

silencing in SHP mRNA levels was concomitant with increased TG and ApoB in the 

media, highlighting the role of SHP in the control of apoB-containing lipoprotein 

synthesis and secretion in hepatic cells. Our results agree with a previous report [19] 

showing that bile acids control the secretion of VLDL, and that this can be mediated, in 

part, by SHP; SHP interferes in the binding of HNF4 to the MTP promoter in HepG2 

cells, therefore linking SHP with MTP expression. Surprisingly, when the SHP 

knocked-down cells were treated with GSPE, the reduction in apoB secretion was 

similar to that seen in control cells, suggesting that the apoB lowering effect of GSPE is 

exerted by mediators other than SHP. In contrast, the activity of GSPE lowering TG 

secretion was abolished by interfering with SHP, indicating that it is the mediator of the 

TG lowering activity of procyanidins. Therefore, two separate mechanisms could be 

proposed to be responsible for the apoB and TG lowering effects of GSPE. The first one 

is a SHP-independent pathway which would act by inhibiting the release of apoB, and 

thus, decrease the number of VLDL in the media of GSPE-treated cells, since a single 

molecule of apoB is assembled in each apoB-containing lipoprotein [32, 33, 65]. This 

idea is reinforced by the results obtained when wild type HepG2 cells were co-

incubated with CDCA and GSPE. CDCA has been described as an inhibitor of MTP 

expression by acting, in part, through a SHP-dependent mechanism [29]. Nevertheless, 

while those cells treated with CDCA presented no alterations in MTP mRNA levels, 

those treated with both CDCA and GSPE showed a down-regulation in the expression 

of this gene. In addition, as has been discussed above, the same treatment reported that 

GSPE represses SHP despite the presence of CDCA. These results suggest that GSPE 

could be repressing MTP expression and subsequently inhibiting apoB secretion 

without the need for an up-regulation in SHP. Along with this SHP-independent 

pathway, a SHP-dependent mechanism could lead to the inhibitory effect of GSPE on 

the secretion of TG. Whether this SHP-dependent mechanism would also be responsible 
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for the decrease in the de novo synthesis of TG is clarified by the in vivo experiments in 

mice, which show that numerous lipogenic genes are down-regulated in a SHP-

dependent manner by GSPE. Accordingly with these two proposed mechanisms of 

action of GSPE on VLDL secretion, it has previously been reported that MTP, which 

we propose implicated in the SHP-independent GSPE effects, is essential for hepatic 

secretion of apoB but not TG [67]. Previous results from our group [68] showed insulin-

like effects of GSPE in insulin-sensitive cell lines, suggesting that procyanidins are able 

to signal through PI3K and p38 MAPK. Naringenin, another flavonoid, has been shown 

to decrease MTP expression and apoB secretion from HepG2 cells by signalling 

through a MAPK pathway [17] and PI3K [48] in rat hepatoma cells. Therefore, the 

SHP-independent down-regulation of MTP expression and apoB secretion might by 

explained, at least partially, by the insulin-like properties of GSPE. Taken together, our 

results suggest a convergence of two pathways, a SHP-dependent and a SHP-

independent pathway, to achieve the VLDL lowering effect of GSPE in hepatic cells. 

 

In order to verify the role of SHP as a mediator of the hypotriglyceridemic activity of 

GSPE, we compared the effect on plasma TG levels elicited by procyanidins in wild 

type and SHP-/- mice, fed with GSPE via oral gavage. Wild type mice treated with 

GSPE displayed a clear hypotriglyceridemic response, whereas, in contrast, in mice 

lacking functional SHP this response was blocked. SHP mRNA levels were similar in 

GSPE and vehicle treated wild type mice at the time of analysis (Data not shown). The 

experiments in HepG2 cells revealed a highly dynamic modulation of SHP by GSPE. If 

SHP expression pattern in the liver of mice treated with GSPE were similar to that 

observed in HepG2 cells, an upregulation in SHP expression prior to the moment of 

sample collection may be considered.  

 

We have identified the gene cluster “lipid, fatty acid and steroid metabolism” as a SHP-

dependent target of GSPE in liver, by genome-wide microarray screening. This analysis 

shows a down-regulation of genes involved in lipogenesis in wild type but not in SHP 

null mice. TG rich lipoprotein synthesis in the liver is highly dependent on lipid 

availability [32, 33, 65, 69]. Thus, SHP mediation in the modulation of plasma TG by 

GSPE could be related, at least in part, to a down regulation of lipogenic genes in the 

liver. From the initial 747 genes matching lipid, fatty acid and steroid metabolism, 28 

lipogenic genes were identified as differentially affected by GSPE in a genotype-
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dependent manner. Among them, SREBP1 stands out; it is a master regulator of the 

lipid synthesis program and lipoprotein metabolism  [31, 70, 71], together with a 

number of  SREBP1 target genes including stearoyl-Coenzyme A desaturase 2, sterol-

C5-desaturase, 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1, acyl-CoA 

synthetase short-chain family member 2, 7-dehydrocholesterol reductase, farnesyl 

diphosphate synthetase, CCAAT/enhancer binding protein beta, phospholipid transfer 

protein and  apolipoprotein A5.  ApoA5 has recently emerged as a potent regulator of 

plasma TG by activating lipoprotein lipase, thus accelerating VLDL catabolism [72]. 

Increased expression of this apolipoprotein could be indicative of enhanced clearance of 

plasma TG, providing additional mechanisms for the SHP-dependent 

hypotriglyceridemic activity of GSPE. Remarkably, other SREBP1 target genes 

involved in glucose metabolism, such as glucokinase and aldehyde dehydrogenase 1A2, 

are downregulated by GSPE only in wild type mice (data not shown). Likewise, it is 

well known that bile acids, other powerful hypotriglyceridemic agents, act through a 

pathway involving FXR, SHP, and SREBP1 to lower TG levels [25].  

 

In conclusion, grape seed procyanidins exert TG lowering effects in the human 

hepatoma HepG2 cell line and in mice. In both in vitro and in vivo systems, the 

hypotriglyceridemic properties of procyanidins depend on the presence of SHP. Due to 

the relevance of postprandial TG in the development of atherosclerosis [13, 73], the 

elucidation of how nutrients can modulate plasma lipid levels has emerged as an 

important target of nutrition research [74]. In this regard, this work provides new hints 

for understanding the mechanisms associated with the beneficial effects ascribed to the 

regular consumption of procyanidins and, more broadly, flavonoids.  
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Table 1. SHP-dependent changes induced by GSPE in lipid and lipoprotein related 

genes in mouse.  

 

Differential changes induced by GSPE in WT and SHP 
-/-

 

Genes reported by Panther Software 

Genbank ID SREBP1 
target 

Name; gene symbol WT SHP
-/-

 

NM_008903  phosphatidic acid phosphatase 2a;Ppap2a 0.7 0.9 

NM_023556  mevalonate kinase;Mvk 0.7 1.2 

NM_177664  DNA segment, Chr 3, Brigham &amp; D3Bwg0562e 0.5 1.0 

NM_172769 * sterol-C5-desaturase;Sc5d 0.7 1.0 

NM_145942 * 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 
1;Hmgcs1 

0.6 1.2 

NM_018784  ST3 beta-galactoside alpha-2,3-sialyltransferase 
6;St3gal6 

0.7 0.8 

NM_028089  cytochrome P450, family 2, subfamily c, polypeptide 
55;Cyp2c55 

0.6 1.2 

NM_146197  acyl-CoA synthetase medium-chain family member 
2;Acsm2 

0.6 1.0 

NM_019811 * acyl-CoA synthetase short-chain family member 
2;Acss2 

0.6 0.8 

NM_013634  peroxisome proliferator activated receptor binding 
protein;Pparbp 

0.6 0.8 

NM_009128 * stearoyl-Coenzyme A desaturase 2;Scd2 0.7 0.9 

NM_008845  phosphatidylinositol-4-phosphate 5-kinase, type II, 
alpha;Pip5k2a 

0.7 1.0 

NM_207683  phosphatidylinositol 3-kinase, C2 domain containing, 
gamma polypeptide;Pik3c2g 

0.7 1.0 

NM_010941  NAD(P) dependent steroid dehydrogenase-
like;Nsdhl 

0.7 1.0 

NM_007856 * 7-dehydrocholesterol reductase;Dhcr7 0.7 0.9 

NM_018830  N-acylsphingosine amidohydrolase 2;Asah2 0.5 1.0 

NM_011480 * sterol regulatory element binding factor 1;Srebp1 0.7 1.0 

NM_134469 * farnesyl diphosphate synthetase;Fdps 0.8 1.6 

NM_175443  ethanolamine kinase 2;Etnk2 0.7 0.9 
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NM_013490  choline kinase alpha;Chka 0.7 0.9 

NM_019677  phospholipase C, beta 1; Plcb1 0.7 1.1 

NM_028057  cytochrome b5 reductase 1;Cyb5r1 0.7 1.3 

NM_026784  phosphomevalonate kinase;Pmvk 0.7 0.9 

NM_007703  elongation of very long chain fatty acids (FEN1/Elo2, 
SUR4/Elo3, yeast)-like 3;Elovl3 

0.7 1.0 

NM_011372  ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-
1,3)-N-acetylgalactosaminide alpha-2,6-
sialyltransferase 3;St6galnac3 

0.7 1.0 

Other SREBP1 target genes (not included in Panther classification) 

NM_080434 * Apolipoprotein A5; ApoA5 
1.4    
1.7 

1.0   
1.0 

NM_009883 * CCAAT/enhancer binding protein (C/EBP), beta; 
Cebpb 

0.7 0.8 

NM_011125 * phospholipid transfer protein; Pltp 0.7 1.0 

 
Wild type and SHP-/- mice were fed either vehicle or GSPE (250 mg/Kg) via oral 

gavage ( n=5 in each group, age 8-10 week). After 14 hours treatment, liver total RNA 

from the 4 groups was obtained and pooled. Microarray data was obtained by 

comparing gene expression of WT control versus WT GSPE-treated mice and SHP-/- 

control versus SHP-/- GSPE-treated mice. The whole microarray fold-changes were 

processed using Panther software in order to identify SHP-dependent changes induced 

by GSPE in genes clustered in the “Lipid, fatty acid and steroid metabolism” metabolic 

pathway. Fold-change thresholds were fixed as 0.7 and 1.5 for down-regulation and up-

regulation respectively. Real time quantitative PCR was performed with selected genes 

to confirm the microarray data (shown in bold characters). Known SREBP1 target genes 

are denoted by *. WT column: fold-change in expression induced by GSPE in wild-type 

mice versus vehicle. SHP-/- column: fold-change in expression induced by GSPE in 

SHP-/- mice versus vehicle. 
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Figure 1. Effect of GSPE on apoB release and triglyceride synthesis and secretion 

in HepG2 cells.  

(A) Changes in media ApoB levels in response to 20, 50 and 100 mg/L GSPE doses. 

HepG2 cells were treated with either vehicle (control) or GSPE at the indicated 

concentrations. After 24 hours, media ApoB immunoblotting was performed as 

described in materials and methods. ApoB band intensities were corrected by cell 

number. The immunoblot of one from three independent experiments is shown. (B) 

Time-response dependent changes in media ApoB accumulation induced by GSPE. 

HepG2 cells were treated with 50 mg/L GSPE or vehicle (control) and media was 

collected after 6, 12 and 24 h. ApoB levels were analyzed as in Fig. 1A. (C) Changes in 

TG accumulation in media of cells treated with GSPE. HepG2 cells were treated with 

50 mg/L of GSPE or vehicle (control) for 24 h. TG were assayed as indicated in 

materials and methods (D) Changes induced by GSPE in the de novo synthesis and 

secretion of TG. HepG2 cells were incubated with 14C-labelled acetate and 50 mg/L of 

GSPE or vehicle (control). 12 hours after treatment, radioactivity incorporated into 

media and cellular TG was measured. Values were normalized to mg of cell protein. All 

values are the mean +/- SEM of three independent experiments. * denotes significant 

difference (p<0.05).  

 

Figure 2. Effects of GSPE on SHP expression in HepG2 cells.  

(A) Fold-change of SHP gene expression in response to 20, 50 and 100 mg/L GSPE 

relative to vehicle treated cells. HepG2 cells were treated with the indicated 

concentrations of GSPE for 2 hours. Gene expression levels of SHP were determined by 

RT-qPCR and normalized to RPLP0 expression (endogenous control). (B) 

Representative immunoblot of SHP changes protein levels in response to GSPE 

treatment. HepG2 cells were treated with vehicle or 100 mg/L GSPE. After 3 hours, cell 

lysates were obtained and SHP levels were analyzed by immunoblotting, using GAPDH 

as the loading control. (C) Time course of SHP gene expression in response to treatment 

with 50 mg/L of GSPE. HepG2 total RNA was obtained at the indicated times and 

analyzed as in fig 2A. All values are the mean +/- SEM of three independent 

experiments * denotes significant difference (p<0.05). 
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Figure 3. Effect of CDCA and GSPE co-incubation on SHP expression in HepG2 

cells.  

HepG2 cells were incubated with 100 µM CDCA and various concentrations of GSPE. 

After 10 hours of treatment, total RNA was obtained and expression levels of SHP were 

determined as in figure 2. Values are the mean +/- SEM of three independent 

experiments. * denotes significant difference versus CDCA treatment (p<0.05). 

 

 

Figure 4. Effect of GSPE on the expression of different lipid and lipoprotein-

related genes in HepG2 cells.  

HepG2 cells were incubated with 50 mg/L GSPE for the indicated times. After 

treatment, cells were harvested and total RNA obtained. Gene expression quantification 

was performed by RTqPCR and normalized to RPLP0 gene expression (endogenous 

control). All values are the mean +/- SEM of three independent experiments * denotes 

significant difference (p<0.05). MTP: Microsomal triglyceride transfer protein; APOB: 

Apolipoprotein B; SREBP1: sterol response element binding protein 1; FAS: Fatty Acid 

Synthase. 

 

Figure 5. Effect of GSPE on apoB and triglyceride secretion in HepG2 cells 

transfected with SHP siRNA.  

HepG2 cells were transfected with a siRNA coding for SHP (indicated by +) or non-

coding scramble siRNA (indicated by -). 32 hours after transfection, media was replaced 

with serum depleted medium. After 12 hours, cells were treated with 50 mg/L GSPE 

(indicated by +) or vehicle (indicated by -). (A) SHP gene expression after 2h of GSPE 

treatment. (B) Media ApoB and TG after 24h of GSPE treatment. After treatment, 

media was harvested for ApoB and TG analysis, as described in figure 1. A 

representative ApoB immunoblot is shown. All values are the mean +/- SE of three 

independent experiments. a, b or c denotes significant differences between groups, as 

determined by ANOVA. 
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Figure 6. Effect of CDCA and GSPE co-incubation on MTP expression in HepG2 

cells.  

HepG2 cells were incubated with 100 µM CDCA and various concentrations of GSPE. 

After 10 hours of treatment, total RNA was obtained and expression levels of MTP 

were determined as in figure 2. Values are the mean +/- SE of three independent 

experiments. * denotes significant difference versus CDCA treatment (p<0.05). 

 

Figure 7. Effect of GSPE on plasma triglyceride and cholesterol levels in wild-type 

and SHP
-/-

 mice.  

Wild type (WT) and SHP-/- mice were fed with vehicle (control) or GSPE (250 mg/Kg) 

via oral gavage (n=5 in each group, age 8-10 week). Plasma was obtained 14 hours after 

treatment and TG and cholesterol were determined as described in materials and 

methods. * denotes significant differences versus control (p< 0.05).  

  

Figure 8. Effect of GSPE on expression of genes clustered into the “Lipid, fatty 

acid and steroid metabolism” in wild-type versus SHP
-/-

 mice.  

Wild type (WT) or SHP-/- mice were fed either vehicle (control) or GSPE (250 mg/Kg) 

via oral gavage ( n=5 in each group, age 8-10 week). After 14 hours treatment, liver 

total RNA from individual mice in the different groups was obtained and pooled. 

Microarray data was obtained by comparing gene expression of WT control versus WT 

GSPE-treated mice and SHP-/- control versus SHP-/- GSPE-treated mice. The whole 

microarray fold-changes were processed using Panther software. The plot of the cluster 

“lipid, fatty acid and steroid metabolism” against the whole microarray fold-changes 

plot is shown for the two genotypes. Number: number of genes matched to Lipid, fatty 

acid and steroid metabolism by Panther software; OverUnder: tendency of the cluster 

deviation from the whole array expression pattern, namely upregulation tendency (+) 

and downregulation tendency (-); A p<0.05, calculated using the Mann-Whitney U Test, 

is considered significant.  
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ABSTRACT 

 

The regular long-term consumption of dietary flavonoids has been associated with 

reduced mortality and risk of cardiovascular disease (CVD), partially by reducing 

triglyceride-rich lipoprotein secretion from the liver.  We have previously reported that 

SHP is a key mediator of the hypotriglyceridemic actions of procyanidins (del Bas et al. 

2005, manuscript 3). Due to the functional link between SHP, FXR and lipid 

metabolism, our objective in this study was to elucidate whether FXR could mediate the 

lipid lowering activity of GSPE. In wild type mice GSPE drastically reduced plasma 

triglyceride (TG) levels, while its effect was abolished in the FXR-/- mice, revealing 

that FXR is a key mediator of GSPE hypotriglyceridemic actions. Moreover, liver gene 

expression profile analyses revealed SREBP1 and other lipogenic genes as targets of 

GSPE actions in the liver, indicating that liver plays an important role in the 

hypotriglyceridemic action of procyanidins.  In order to confirm the ability of GSPE to 

enhance FXR transcriptional activity, this nuclear receptor was expressed in two 

different cell lines as a full length or a chymeric protein, along with luciferase reporter 

plasmids.  Results show that GSPE synergistically enhances FXR activity in the 

presence of its natural ligands bile acids, but not in the presence of the synthetic ligand 

GW4064. In conclusion, dietary procyanidins enhance bile acid-bound FXR activity 

and are able to lower TG levels by signalling through FXR in mouse. The identification 

of dietary procyanidins as FXR activators reveals these phytochemicals as promising 

agents for the prevention and amelioration of hypertriglyceridemic states, including type 

2 diabetes and the metabolic syndrome. 
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INTRODUCTION 

Different studies have been addressed to determine the role of postprandial lipemia in 

the development of cardiovascular diseases (CVD), revealing triglyceride-rich 

lipoproteins as important factors in the development of these pathologies(1, 2). 

Furthermore, hypertriglyceridemia itself has been revealed as an independent risk factor 

for coronary heart disease (3). Different works have shown the beneficial effects of 

flavonoids regarding atherosclerosis prevention, reducing apolipoprotein B (apoB), 

triglycerides (TG) and cholesterol, preventing early aortic atherosclerosis in 

hyperlipidemic hamsters (4). In cultured human liver cells HepG2, dealcoholized red 

wine decreases the production of apoB100 (a marker of VLDL and LDL in humans) (5) 

and red grape juice polyphenols induces liver LDL receptor expression and activity (6). 

Additionally, in a previous work (7), we showed that an acute and non-toxic dose of a 

grape seed procyanidin extract (GSPE) ameliorates the plasma lipid profile in the 

postprandial phase by drastically reducing TG and apoB levels,  and thus TG-rich apoB-

containing lipoproteins. Furthermore, LDL-Cholesterol was significantly reduced by 

this GSPE treatment, whereas HDL-Cholesterol was increased, resulting in the 

amelioration of different atherosclerotic risk indexes. Thus, the beneficial effects of 

procyanidins and other flavonoids in plasma lipid profile, have been widely 

demonstrated. Nevertheless, little is known regarding the molecular mechanisms 

underlying these effects. 

 

Dietary polyphenols have been shown to interact with different signalling pathways in 

hepatic cells. For instance, the citrus flavonoid naringenin inhibits microsomal 

triglyceride transfer protein (MTP) expression and apoB secretion from HepG2 cells by 

acting through MAPK and PI3K pathways (8, 9). In addition, polyphenols are able to 

modulate both the expression and the transcriptional activity of numerous nuclear 

receptors, such as Pregnane X Receptor (PXR) (10), Liver X Receptor alpha (LXRα) 

(11) and Estrogen Receptors (ER) (12-14). These nuclear receptors play major roles in 

the control of lipid homeostasis, establishing a coordinated net of metabolic sensors 
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which integrates lipid metabolism, inflammation, drug metabolism, bile acid synthesis 

and glucose homeostasis (15-20). The molecular structure of nuclear receptors provides 

them with the ability to act as metabolite sensors, being activated by endogenous or 

exogenous molecules, and subsequently modulating gene expression in a coordinate 

manner (21, 22). The ability of these nuclear receptors to modulate a wide battery of 

genes reveals them like targets for the treatment of different altered states such as 

diabetes or dyslipemia (20, 21, 23, 24). 

 

We have previously shown that Small Heterodimer Partner (SHP, Nr0b2), an orphan 

nuclear receptor lacking the DNA binding domain, was upregulated in the liver of rats 

treated with GSPE, concomitantly with the reduction of plasma TG and apoB levels (7) 

and that SHP is a key mediator of the TG-lowering effect of procyanidins in HepG2 

cells and mice (manuscript 3). SHP interacts with different nuclear receptors and 

transcription factors in order to modulate gene expression of steroidogenesis, 

lipogenesis, cholesterol and bile acid metabolism, glucose homeostasis and xenobiotic 

metabolism in liver (25). SHP gene expression is modulated by different transcriptional 

regulators (25). Among those, FXR has been widely studied as a classical activator of 

SHP gene transcription (26-28). FXR is as nuclear receptor able to enhance SHP 

expression when activated by bile acids. Once activated by FXR, SHP inhibits the 

expression of CYP7A1, the key enzyme in the biosynthesis of bile acids. This 

mechanism has been proposed as a negative feedback leading to the control of bile acid 

levels (18, 29). In addition, the use of transgenic mice lacking functional FXR, as well 

as other models where FXR activity is modified, has revealed that this nuclear receptor 

is a major controller of lipid and glucose metabolism (26, 30-32). Those mice lacking 

FXR presented impaired insulin sensitivity, and elevated levels of plasma and liver TG 

and cholesterol (31, 33-35). This abnormal control of plasma lipid content have been 

associated to the modulation exerted by FXR on a battery of genes related with TG-rich 

lipoproteins clearance, such as apolipoproteins CIII (36) and CII (37) and very low 

density lipoproteins receptor (VLDLr) (38). Furthermore, FXR also modulates the 

expression of different genes related to lipid synthesis (27). Thus, FXR activation has 

been proposed as a therapeutic target for ameliorating different lipid-altered states (23, 

26, 31). 

Since SHP is a key mediator of the hypolipidemic actions of GSPE in mouse and 

HepG2 cells (manuscript 3) and FXR controls lipid metabolism and SHP transcription, 
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this work was intended to assess the role of FXR mediating the hypotriglyceridemic 

response triggered by GSPE. With this aim, we have studied the TG lowering effect of 

GSPE in wild-type and FXR-/- mice, and demonstrated that GSPE hypotriglyceridemic 

action is abolished in mice lacking FXR.  Moreover, liver whole genome expression 

analysis has revealed that several genes of the lipid synthesis program are 

downregulated by GSPE in a FXR-dependent fashion, explaining, at least in part, the 

FXR-dependent hypotriglyceridemic effect of GSPE. Using in vitro models, FXR-

driven luciferase expresion studies have shown that FXR is synergistically activated by 

GSPE in the presence of bile acids, thus demonstrating that procyanidins signal through 

FXR 
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MATERIALS AND METHODS 

 
Chemicals 

Grape seed procyanidin extracts (GSPE) were kindly provided by Les Dérives 

Résiniques et Terpéniques (Dax, France). According to the manufacturer, this 

procyanidin extract contained essentially monomeric (16.55%), dimeric (18.77%), 

trimeric (16%), tetrameric (9.3%), oligomeric (5-13 units) (35,7%) procyanidins and 

phenolic acids (4.22).  Ligands used in the luciferase based study were from Sigma. 

 

Cell culture  

Human ephitelial cells (HeLa) and African green monkey fibroblasts (CV-1) were 

obtained from the American Type Culture Collection (Manassas, VA). HeLa and CV-1 

cells were maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented 

with 10% FBS. 

 

In vitro interaction assays 

The Gal4 DNA binding domain - receptor ligand-binding domain chimeras used in this 

study have been published previously (39). The full length nuclear receptor plasmids 

and corresponding luciferase reporter plasmids used were mouse FXR together with 

(PLTP)2 TKluc  reporter plasmid (40). For Gal4 assays 1.3 x 105 (HeLa) or 1 x 105 (CV-

1) cells were plated in 24-well dishes with DMEM supplemented with 10% charcoal 

stripped serum. Cells were transfected using the calcium phosphate precipitation 

method. The next morning, cells were washed with phosphate buffered saline and 

ligands were added. All ligands were dissolved in DMSO while GSPE was dissolved in 

ethanol.  Typically, transfections included 100 ng of the receptor plasmid, 200ng of the 

luciferase reporter plasmid, 10ng CDM-RXRα, 200ng of the β-galactosidase (β -gal) 

internal control plasmid with 490ng pGEM4 as carrier DNA to make a total of 1µg of 

plasmid DNA per well. Cells were assayed for luciferase (Promega) activities 24 hours 

after addition of ligands, and reporter expression was normalized to β-gal activity 

(Applied Biosystems, Chicago, IL) according to the manufacturers’ instructions using a 

MLX luminometer (DYNEX technologies, Chantilly, VA, USA). Similar results were 

obtained from at least three independent experiments, each performed in triplicate.  
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In vivo feeding studies 

Mice were housed under standard conditions. Experimental procedures were approved 

by the local Committee for Care and Use of Laboratory Animals at Baylor College of 

Medicine. FXR-deficient mice were previously described (39), and were backcrossed 

with C57BL6 mice to the 10th generation. The correct genotype was verified using 

previously reported primer sequences and reaction conditions (39). Age-matched groups 

of 8-10 week-old male mice were used in all experiments (n=5 per experimental group). 

Mice were fed a standard rodent chow and water ad libitum. Experiments were 

performed for 14hrs and mice were fed either vehicle (water), or procyanidins (250 

mg/L) by oral gavage. A first dose was administered at 9:00 pm and a second dose at 

9:00 am. At the end of the experiment, mice were fasted for final 2 hours, and blood 

was collected from the orbital plexus after mice were anaesthetized with isoflurane. 

Tissues were snap frozen and stored at -80oC until use. Plasma TG and cholesterol were 

assayed using enzymatic kits (QCA, Spain).  

 

Microarray hybridization and RTqPCR. 

Total RNA was obtained using Trizol reagent (invitrogen) following the manufacturer 

protocol. Additional purification and DNAse treatment was performed using 

NucleoSpin RNA2 kit (Macherie-Naegel, Germany). For microarray hybridization, 

RNAs from individual samples (5 per group) were pooled for the 4 different groups, 

wild-type vehicle, wild-type GSPE treated, FXR-/- vehicle and FXR-/- GSPE treated 

mice. The integrity of pooled RNAs was assessed by using the Agilent (Madrid, Spain) 

2100 Bioanalyzer. For microarray hybridization, Cy3- or Cy5-labeled cDNA was 

obtained from each RNA pool by using the Agilent Low RNA Input Fluorescent Linear 

Amplification Kit as described in the Agilent manual (Part Number 5185-5818). 

Labeled cDNAs were hybridized against Agilent Mouse Oligo Microarrays (Part 

Number G4122A) following the Agilent 60-mer oligo microarray processing protocol. 

Images of hybridized microarrays were acquired with the Agilent G2565BA scanner, 

and data from the microarray images were obtained and analyzed with the Agilent 

Feature Extraction software. For each pair of RNA samples being compared, duplicate 

hybridizations with a dye-swap labeling was performed. For microarray validation, 

CYP7A1, MTP, APOAV, MT and SHP genes were analyzed by RTqPCR, using 
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GAPDH as endogenous control. RNA was retrotranscribed using Taqman Reverse 

transcription reagents kit (Applied Biosystems) and gene expression was evaluated in 

the Abi Prism 7300 SDS Real Time PCR system (Applied Biosystems) using SYBR 

green reagent (Applied Biosystems). Sequences can be provided upon request.  

 

Microarray data processing and statistical analysis 

A whole array of data was constructed matching each gene symbol or Genbank ID with 

its fold-change value from the microarray analysis. Genes were clustered into different 

biological processes using Panther software(41). The gene expression profile deviation 

of each biological process group from the whole array expression pattern was calculated 

using the Mann-Whitney U Test (Wilcoxon Rank-Sum test) as described (42), resulting 

a p-value. P-values under 0.05 were considered significant. From the resulting values 

using Mann-Whitney U Test, a second approach was used, consisting in fixing a fold-

change threshold value of 0.7 and 1.5 for downregulation and upregulation respectively 

to identify genotype-dependent changes induced by GSPE. For luciferase-based studies, 

T-test analyses were performed using SPSS software.  
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RESULTS 

 

FXR  is a key mediator of the hypotriglyceridemic effect of GSPE in mice 

In order to gain insight into the relevance of FXR as a mediator of GSPE 

hypotriglyceridemic actions in an in vivo model, we compared the effects of GSPE 

administration in FXR-/- versus wild type mice. As described previously (32, 43), FXR-/- 

mice present elevated basal levels of plasma triglycerides and cholesterol when 

compared to wild type mice (figure 1). Oral GSPE gavage triggers a 40% reduction in 

plasma TG levels in wild type mice; whereas it does not modify plasma total cholesterol 

levels. This response to GSPE administration in plasma lipid profile is identical to that 

which we have previously found in rats (7).  When GSPE is administered to FXR-/- 

mice, the hypotriglyceridemic effect is abolished. These results clearly show that FXR 

is a key mediator of the hypotriglyceridemic effects exerted by procyanidins in vivo.  

 

GSPE induces changes in genes related to lipid, fatty acid and steroid metabolism in 

wild type but not FXR
-/-

 mice. 

To gain further insight into the FXR-dependent actions of GSPE, we next analyzed the 

differential response in gene expression changes induced by procyanidins in liver of 

wild type and FXR-/- mice using oligonucleotide microarray hybridization. The changes 

induced by GSPE treatment in the expression level of all genes, clustered by biological 

process, were analyzed using Panther software. In wild type mice, changes in genes 

clustered in the biological process “Lipid, fatty acid and steroid metabolism”, including 

747 genes, show a significant deviation (p-value 0.018) from the overall changes in 

gene expression patterns (figure 2). In contrast, in FXR-/- mice, this gene cluster does 

not significantly deviate (p-value 0.5) from the global change pattern. The significant 

deviation of genes in the “Lipid, fatty acid and steroid metabolism” group in the GSPE 

treated wild-type mice is due to an abnormal predominance of genes in the fold-change 

range from 0.5 to 0.8, indicating a down-regulation of numerous genes included in this 

metabolic group. Altogether, these results indicate that lipid metabolism is more 

strongly repressed by GSPE in wild type than in FXR-/- mice, thus pointing to FXR as a 

key mediator of the repression of lipid metabolism induced by procyanidins. 

 

Next, in order to identify FXR-dependent genes involved in the hypotriglyceridemic 

effect of GSPE in wild type mouse, we selected those genes clustered into the “Lipid, 
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fatty acid and steroid metabolism” that were changed in wild-type mice but remained 

unaltered in FXR-/- mice, by setting a fold-change threshold of 1.5 for up-regulated and 

0.7 for down-regulated genes (Table 1). In total, 34 lipogenic genes were identified 

showing FXR-dependent repression by GSPE, including key regulators of lipid 

synthesis pathways such as Sterol regulatory element binding protein 1 (SREBP1), 3-

hydroxy-3-methylglutaryl-Coenzyme A synthase, acyl-CoA synthetase, stearoyl-

Coenzyme A desaturase and (PPARγ)-interacting Protein. Other genes involved in 

lipoprotein metabolism, but not classified by Panther software in this cluster, were also 

changed in a FXR-dependent manner and were therefore included in table 1, such as 

ApoA5 and C/EBP beta. Remarkably, numerous genes (marked with an asterisk in table 

1) which show an FXR-dependent response to GSPE, have been described as targets of 

SREBP1, a master regulator of lipid and lipoprotein metabolism (44-47). Therefore, 

SREBP1 emerges as a putative FXR-dependent effector of the hypotrycliceridemic 

response triggered by procyanidins. 

 

GSPE synergistically enhances the activity of CDCA-bound FXR in CV-1 and HeLa 

cells. 

The lack of hypotriglyceridemic effects of GSPE in FXR null mice, prompted us to test 

whether procyanidins can modulate FXR/RXR transcriptional activity, using CV-1 cells 

co-transfected with different constructs. Gal4 was used as a control, in order to discard 

interactions of GSPE with the DNA-binding domain of this protein (Figure 3A). GSPE 

displayed no significant effects on RXR activity as assayed using a RXR:LBD-

Gal4:DBD chimera (figure 3B). In order to assess the interactions of GSPE with FXR, 

RXR expression plasmid was cotransfected with either a FXR:LBD-Gal4:DBD chimera 

(Figure 3C), or with full length FXR (Figure 3D). In both cases, GSPE alone was 

unable to activate FXR/RXR transcriptional activity.  In contrast, GSPE co-incubation 

with CDCA, a natural ligand of FXR, showed enhanced transcriptional activity of 

FXR/RXR. This synergy was GSPE dose-dependent, reaching a 2-fold increase when 

cells are incubated with 100 mg/L of GSPE and CDCA compared with the CDCA 

treatment alone. These results point out that GSPE can enhance FXR activity only when 

the nuclear receptor is activated by CDCA. In contrast, GSPE did not increase the 

transcriptional activity of FXR induced by GW4064, a synthetic agonist of FXR (Figure 

3D). In order to discard cell-specific actions of GSPE, the full length FXR construct 
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along with RXR, were cotransfected in HeLa cells, achieving equivalent effects than 

those found in CV-1 (Figure 4). 
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DISCUSSION 

 

Different studies have been addressed to determine the role of post-prandial lipemia in 

the development of CVDs, revealing triglyceride-rich lipoproteins as important factors 

in the development of these pathologies(1, 2). Furthermore, hypertriglyceridemia itself 

has been revealed as an independent risk factor for coronary heart disease (3). In 

previous works, we have shown that GSPE display a potent hypotrigliceridemic effect 

in rats in the postprandial phase (7), and that the nuclear receptor SHP is a key mediator 

of these effects (manuscript 3). Expression of SHP is modulated by a wide array of 

transcriptional regulators, including the nuclear receptor FXR (25). The link between 

FXR and SHP has emerged as an important pathway in the modulation of bile acids, 

lipids and lipoproteins metabolisms (16, 27, 44). FXR plays a key role in the control of 

bile acids, glucose and plasma lipids homeostasis as has been demonstrated by the 

suppression of FXR activity in transgenic mouse models (16, 26, 32, 33). Consequently, 

FXR has been revealed as a key target in the treatment of different physiological altered 

states such as metabolic syndrome (48) or hyperlipidemia (33). Likewise, FXR 

activators are promising therapeutic agents for treatment of dyslipemias and diabetes 

mellitus (49, 50). Therefore, we wondered whether FXR could be implicated in the 

mediation of GSPE effects in addition to SHP. To gain insight into this hypothesis, the 

effects of procyanidins has been tested in wild-type and FXR-/- mice. Along with these 

in vivo models, in vitro FXR-driven reporter gene assay have been used in order to 

study the effects of GSPE in the modulation of FXR activity.  

 

In basal conditions, FXR null mice display higher levels of plasma cholesterol and TG 

than wild type mice. These results are in agreement with previous works intended to 

study the lack of FXR in plasma parameters, thus highlighting the relevance of this 

nuclear receptor in the control of plasma lipid levels (23, 32, 50, 51). When wild type 

mice were treated with GSPE, plasma TG levels where drastically lowered, an 

equivalent effect to that we have previously described in rats (7). In contrast, the lack of 

FXR resulted in abolishment of the hypotriglyceridemic effects of GSPE. Therefore, the 

TG lowering actions of GSPE in mouse are mediated by FXR. In agreement with these 

results, different works have demonstrated that activation of FXR leads to the 
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amelioration of dyslipemic states, by decreasing de novo lipogenesis and VLDL 

secretion from the liver, along with increased lipoprotein catabolism (50-52). 

 

In addition, microarray analysis reported clear FXR-dependent effects of GSPE on the 

expression of lipid related genes in the liver. GSPE treatment downregulated the genes 

classified into the lipid, fatty acids and steroid metabolism cluster in wild-type mice but 

not in FXR-/- mice. These results point to a reduction of lipid synthesis exerted by 

GSPE in a FXR-dependent manner. Since liver lipid pool is a limiting factor in the 

synthesis and secretion of VLDLs by the liver (53-55),  a decrease in liver lipogenesis 

would reduce the number of VLDLs or the triglyceride content of these lipoproteins. 

Thus, the results found at liver gene expression level could explain, at least in part, the 

FXR-dependent effects of GSPE in the plasma triglycerides of these mice.  

 

Within the lipid, fatty acids and steroid metabolism cluster, a group of 34 genes was 

identified as changed by GSPE in a FXR-dependent manner. Among them, stands out 

SREBP1, a master regulator of the lipid synthesis program and lipoprotein metabolism 

(56-58), together with a number of  SREBP1 target genes including stearoyl-Coenzyme 

A desaturase 2, stearoyl-Coenzyme A desaturase 1, sterol-C5-desaturase, 3-hydroxy-3-

methylglutaryl-Coenzyme A synthase 1, 3-hydroxy-3-methylglutaryl-Coenzyme A 

reductase, acyl-CoA synthetase short-chain family member 2, 7-dehydrocholesterol 

reductase, farnesyl diphosphate synthetase, CCAAT/enhancer binding protein beta, 

CCAAT/enhancer binding protein delta, phospholipid transfer protein and  

apolipoprotein A5. Altogether, these results suggest that FXR is essential for mediating 

the repression of SREBP1 and subsequent modulation of lipogenic genes, emerging as a 

plausible explanation for the hypotriglyceridemic effects of GSPE observed at plasma 

level. The FXR-dependent repression of SREBP1 expression has been described as the 

mechanism responsible for the TG lowering properties of bile acids in mouse (27). 

Also, in hyperlipidemic hamsters, activation of FXR by CDCA led to diminished de 

novo lipogenesis, ascribed to the repression of SREBP1 and stearoyl-Coenzyme A 

desaturase 1, and consequently, decreased liver lipid pool was translated into lowered 

plasma lipid levels (50). In addition, xanthohumol, a prenylflavonoid, has been shown 

to bind FXR and, once more, decrease liver fatty acid synthesis by repressing SREBP1 

and its target genes (52).  Therefore, our results are consistent with the different works 

reporting a correlation between FXR activation, SREBP1 repression and lipid synthesis 
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reduction, suggesting that FXR activation by GSPE is responsible, at least in part, for 

the decreased plasma lipid levels.  

 

The activation of FXR by GSPE has been studied in vitro. GSPE exerted a synergistic 

effect on the CDCA activated FXR. In the liver, the enterohepatic circulation and the 

intracellular production guarantee the presence of bile acids. Therefore, the synergistic 

actions of GSPE with CDCA are expected to occur in vivo. This synergistic effect of 

GSPE could be due to the recruitment of FXR coactivators induced by procyanidins. In 

this sense, FXR is thought to be prebound to DNA in a complex with corepressors. 

Once activated, it releases corepressors to bind coactivators such as TRRAP or PGC-1α 

(59, 60). Additionally, it has been shown that FXR modulation of gene transcription can 

be ligand-specific (61) and that FXR, broadly nuclear receptors, are able to bind 

coactivators in a ligand-specific fashion as well (62). With this background, it could be 

hypothesized that GSPE could be triggering the activation of FXR coactivators able to 

interact with FXR/RXR only in the presence of CDCA. This hypothesis is supported by 

the coincubation of cells with GSPE and GW4064, a synthetic specific FXR ligand. In 

the presence of this agonist, procyanidins could not synergistically enhance FXR 

activity. Altogether, these results suggest that the synergistic enhancement of bile acid-

activated FXR activity by GSPE is conditioned to the presence of bile acids, a situation 

that mimics the in vivo physiological situation.  

 

In conclusion, our in vitro experiments have shown that GSPE can synergistically 

enhance the activity of CDCA-activated FXR, while the studies performed in wild-type 

and FXR-/- mice demonstrate a key role of FXR in the hypotriglyceridemic actions of 

GSPE. Therefore, FXR activation could be underneath, at least in part, the beneficial 

actions of dietary procyanidins. The activation of FXR have been widely suggested for 

the treatment of hyperlipidemia and insulin resistance (26, 32, 33, 48, 51), thus placing 

dietary procyanidins as potential agents for preventing and ameliorating diabetes 

mellitus, metabolic syndrome, and cardiosvascular diseases that are associated to 

dyslipemic  states. With this regard, this work provides new hints for understanding the 

molecular mechanisms underlying the cardioprotective effects of dietary procyanidins. 
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TABLE 1. . FXR-dependent changes induced by GSPE in lipid and lipoprotein 

related genes in mouse.  

 
 
Genebank 

ID 

SREBP 

target 
Gene name; symbol WT FXR-/- 

NM_008903  phosphatidic acid phosphatase 2a;Ppap2a 0.6 0.8 

NM_023556  mevalonate kinase;Mvk 0.7 0.9 

NM_172769 * sterol-C5-desaturase ; Sc5d 0.7 0.9 

NM_145942 * 
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 

1;Hmgcs1 
0.7 0.9 

NM_011374  
ST8 alpha-N-acetyl-neuraminide alpha-2,8-

sialyltransferase 1;St8sia1 
0.7 0.9 

NM_146197  
acyl-CoA synthetase medium-chain family member 

2;Acsm2 
0.6 0.8 

NM_008846  
phosphatidylinositol-4-phosphate 5-kinase, type 1 

alpha;Pip5k1a 
0.7 0.9 

NM_019811 * acyl-CoA synthetase short-chain family member 2;Acss2 0.6 0.9 

NM_207683  
phosphatidylinositol 3-kinase, C2 domain containing, 

gamma polypeptide;Pik3c2g 
0.7 1.0 

NM_010941  NAD(P) dependent steroid dehydrogenase-like;Nsdhl 0.7 0.9 

NM_009127 * stearoyl-Coenzyme A desaturase 1;Scd1 0.6 1.1 

NM_009605  adiponectin, C1Q and collagen domain containing;Adipoq 0.6 1.1 

NM_007856 * 7-dehydrocholesterol reductase;Dhcr7 0.7 0.9 

NM_028089  
cytochrome P450, family 2, subfamily c, polypeptide 

55;Cyp2c55 
0.6 1.0 

NM_018784  
ST3 beta-galactoside alpha-2,3-sialyltransferase 

6;St3gal6 
0.7 1.3 

NM_018830  N-acylsphingosine amidohydrolase 2;Asah2 0.5 1.2 

NM_011480 * sterol regulatory element binding factor 1;Srebf1 0.7 1.0 

NM_134469 * farnesyl diphosphate synthetase;Fdps 0.7 0.9 

NM_013634  
peroxisome proliferator activated receptor binding 

protein;Pparbp 
0.7 1.0 

NM_009128  stearoyl-Coenzyme A desaturase 2;Scd2 0.7 1.0 

NM_019677  phospholipase C, beta 1;Plcb1 0.7 1.0 

NM_008845  
phosphatidylinositol-4-phosphate 5-kinase, type II, 

alpha;Pip5k2a 
0.7 0.9 
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NM_138656  mevalonate (diphospho) decarboxylase;Mvd 0.7 0.9 

NM_008255 * 3-hydroxy-3-methylglutaryl-Coenzyme A reductase;Hmgcr 0.7 0.8 

NM_153389  ATPase, Class V, type 10D;Atp10d 0.7 1.0 

NM_175443  ethanolamine kinase 2;Etnk2 0.7 0.9 

NM_013490  choline kinase alpha;Chka 0.7 0.8 

NM_028057  cytochrome b5 reductase 1;Cyb5r1 0.7 1.5 

NM_008963  prostaglandin D2 synthase (brain);Ptgds 0.7 0.9 

NM_026784  phosphomevalonate kinase;Pmvk 0.7 0.9 

NM_011372  

ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-

N-acetylgalactosaminide alpha-2,6-sialyltransferase 

3;St6galnac3 

0.7 0.9 

NM_012054  acyloxyacyl hydrolase;Aoah 0.6 1.0 

Other SREBP1 target genes (not included in Panther classification) 

NM_080434 * Apolipoprotein A5; ApoA5 
1.4    

 1.7 

1.0   

 1.0 

NM_009883 * CCAAT/enhancer binding protein (C/EBP), beta; Cebpb 0.7 0.8 

 
 
Wild type and SHP-/- mice were fed either vehicle or GSPE (250 mg/Kg) via oral 

gavage ( n=5 in each group, age 8-10 week). After 14 hours treatment, liver total RNA 

from the 4 groups was obtained and pooled. Microarray data was obtained by 

comparing gene expression of WT control versus WT GSPE-treated mice and SHP-/- 

control versus SHP-/- GSPE-treated mice. The whole microarray fold-changes were 

processed using Panther software in order to identify SHP-dependent changes induced 

by GSPE in genes clustered in the “Lipid, fatty acid and steroid metabolism” metabolic 

pathway. Fold-change thresholds were fixed as 0.7 and 1.5 for down-regulation and up-

regulation respectively. Real time quantitative PCR was performed with selected genes 

to confirm the microarray data (shown in bold characters). Known SREBP1 target genes 

are denoted by *. WT column: fold-change in expression induced by GSPE in wild-type 

mice versus vehicle. SHP-/- column: fold-change in expression induced by GSPE in 

SHP-/- mice versus vehicle. 
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FIGURE LEGENDS 

Figure 1. Effect of GSPE on plasma triglyceride and cholesterol levels in wild-type 

and FXR
-/-

 mice.  

Wild type (WT) and FXR-/- mice were fed with vehicle (control) or GSPE (250 mg/Kg) 

via oral gavage (n=5 in each group, age 8-10 week). Plasma was obtained 14 hours after 

treatment and TG and cholesterol were determined as described in materials and 

methods. * denotes significant differences versus control (p< 0.05).  

  

Figure 2. Effect of GSPE on expression of genes clustered into the “Lipid, fatty 

acid and steroid metabolism” in wild-type versus FXR
-/-

 mice.  

Wild type (WT) or FXR-/- mice were fed either vehicle (control) or GSPE (250 mg/Kg) 

via oral gavage ( n=5 in each group, age 8-10 week). After 14 hours treatment, liver 

total RNA from individual mice in the different groups was obtained and pooled. 

Microarray data was obtained by comparing gene expression of WT control versus WT 

GSPE-treated mice and FXR-/- control versus FXR-/- GSPE-treated mice. The whole 

microarray fold-changes were processed using Panther software. The plot of the cluster 

“lipid, fatty acid and steroid metabolism” against the whole microarray fold-changes 

plot is shown for the two genotypes. Number: number of genes matched to Lipid, fatty 

acid and steroid metabolism by Panther software; OverUnder: tendency of the cluster 

deviation from the whole array expression pattern, namely upregulation tendency (+) 

and downregulation tendency (-); A p<0.05, calculated using the Mann-Whitney U Test, 

is considered significant.  

 

Figure 3. Effects of GSPE in the interaction assays for FXR and RXR in CV-1 cells. 

(A)CV-1 cells were transfected with Gal4 expression plasmid along with Gal4 

luciferase reporter plasmid. Transfected cells were treated with the indicated 

concentrations of GSPE. (B) RXR interactions with GSPE were assayed using the 

Gal4:DBD-RXR:LBD expression vector, along with the Gal4 luciferase reporter 

plasmid. Transfected cells were treated with 9-cis-retinoic acid 1mM (+) and GSPE at 

the indicated concentrations or vehicle (-). (C) To study FXR/RXR interactions with 

GSPE, the Gal4:DBD-FXR:LBD expression vector and the  Gal4 luciferase reporter 

plasmid were used. Ligands for FXR were CDCA 100µM. GSPE was added in the 

indicated concentrations. (D) A full length FXR expression plasmid along with the 

reporter construct (PLTP)2 TKluc were co-transfected to study GSPE interactions with 
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the FXR/RXR heterodimer. Ligands for FXR were CDCA 100µM or GW4064 1µM. 

GSPE was added in the indicated concentrations. All controls (-) were treated with the 

respective vehicles in a concentration lower than 0.1%. All transfections included the 

expression vector for RXR to allow the formation of heterodimers, and CMX-β-Gal as 

internal control. Values are represented as fold-change respect control values and the 

standard error mean from three independent experiments is represented. * denotes 

significant differences at the p<0.05 level versus the CDCA treatment. 

 

 

 

Figure 4. Effects of GSPE in the interaction assays for FXR in HeLa cells HeLa 

cells were transfected with Full length FXR along with RXR expression vectors and the 

luciferase reporter construct (PLTP)2 TKluc. All transfections included CMX-β-Gal as 

internal control. Transfected cells were treated with CDCA 100 µM or GW4064 1 µM 

and/or GSPE in the indicated concentrations or vehicle (-) at concentration lower than 

0.1%. Values are represented as fold-change respect control values. All controls were 

treated with the respective vehicles DMSO, EtOH or both in a concentration lower than 

0.1%. Standard error mean from three independent experiments is represented. * 

denotes significant differences at the p<0.05 level versus the CDCA treatment. 
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Different studies have been addressed to assess the mechanisms underlying the 

hypolipidemic actions of dietary procyanidins (1-7). These compounds are able to 

decrease plasma cholesterol and TG levels acting at different levels, inhibiting lipid 

absorption by the intestine (8-10) and the synthesis of VLDL in the liver (1, 11, 12), as 

well as enhancing the catabolism and clearance of plasma lipoproteins (3, 13). Together 

with the intestine, liver presides over the metabolism and homeostasis of plasma lipids, 

placing this organ as a target for the study of procyanidins actions. Thus, many studies 

have been addressed to reveal the activity of these polyphenolic compounds in the liver. 

As a result, evidences have emerged pointing out that flavonoids may modulate 

expression and activity of different genes involved in lipid synthesis and lipoprotein 

secretion. (1, 14-16). Nevertheless, little is known about intracellular mediators of 

flavonoids actions. The aim of this Ph.D. Thesis were i) to gain insight into the initial 

effects underlying the long-term antiatherogenic and cardioprotective effects ascribed to 

procyanidins and ii) to identify liver intracellular signaling pathways involved in the 

hypotriglyceridemic actions of procyanidins. With these purposes, three experimental 

models have been used: rat, mice and the human hepatocyte cell line HepG2. In these 

models, the bioactivity of a Grape Seed Procyanidin Extract (GSPE), and the molecular 

mechanisms involved, have been studied using acute and non-toxic (17) doses.   

 

First, healthy rats fed with a standard chow diet were submitted to an acute oral GSPE 

treatment. Procyanidins drastically reduced triglyceride-rich-lipoprotein (TRL) levels in 

plasma 5 hours after treatment, as pointed out by the lowered amounts of plasma TG 

and ApoB. In addition, GSPE affected the distribution of cholesterol in the different 

lipoprotein fractions. Thus, levels of nonHDL:nonLDL-cholesterol and LDL-cholesterol 

decreased, while HDL-cholesterol increased. In agreement with these results, other 

authors have also demonstrated hypolipidemic actions of grape polyphenols (6, 7, 18). 

Concomitantly, changes in liver gene expression could explain, at least in part, the 

lipoprotein profile associated to GSPE administration, by reducing VLDL secretion and 

cholesterol conversion into bile acids in the liver. Importantly, expression of Small 

Heterodimer Partner (SHP) was enhanced by GSPE. This nuclear receptor has recently 

emerged as an important regulator of several genes involved in lipid and lipoprotein 

metabolism in the liver. Thus, bile acids repress VLDL secretion by hepatocytes via a 

pathway involving SHP in mice and HepG2 cells (19, 20), and humans with naturally 
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occurring mutations in SHP develop mild-obesity (21). Nevertheless, whereas transient 

inductions of SHP result in lowered TG secretion, transgenic mice overexpressing SHP 

show increased levels of hepatic TG. This observation was ascribed to the inbalance in 

bile acid metabolism caused by an abnormal continous overexpression of SHP (22). 

Therefore, the role of SHP in TG metabolism is well established, but only partially 

understood. Altogether, our results suggested that liver could be orchestrating, at least in 

part, the hypotriglyceridemic actions of GSPE, and that SHP could be mediating these 

effects.  

 

In addition, changes at the liver gene expression level revealed that many markers of the 

inflammatory process were ameliorated by GSPE treatment. Thus, acute phase proteins 

and components of the IL-6 and NF-kB signalling pathways emerged as targets of 

procyanidins, along with the transcription factor Foxa2, which has been related with 

inflammation, glucose and lipid homeostasis control (23-26). Therefore, beyond the 

lipid lowering actions, procyanidins are able to modulate inflammation, acting at two 

complementary levels against the factors leading to atherosclerosis. 

Hypotriglyceridemia and the anti-inflammatory liver gene expression profile triggered 

by procyanidins in vivo are especially relevant considering that they have been found in 

the postprandial phase, a proinflammatory and proatherogenic situation due to the 

transient increment in the levels of glucose, TG and proinflammatory cytokines (27-29). 

Humans in Western societies are in the postprandial condition most of the time and, 

thus, consumption of procyanidin-rich foods should help to prevent and ameliorate 

chronic metabolic disorders associated to inflammatory and atherogenic processes. 

 

In order to assess the implication of liver in the plasma TG lowering effect of 

procyanidins, the human hepatoma cell line HepG2 was used, since these cells are a 

valid system for the study of lipid synthesis and secretion (30-32). GSPE lowered 

VLDL secretion in HepG2 as a consequence of both, a reduction in the de novo 

synthesis of TG and  the expression of Microsomal Triglyceride-transfer Protein (MTP), 

which are key factors in the TRL synthesis process (33, 34). In agreement with these 

findings, various studies have revealed that procyanidins and other flavonoids decrease 

VLDL secretion in this cell line (1, 35-37). Moreover, the treatments of HepG2 cells 

with GSPE have placed SHP as a direct target of procyanidins, being rapidly induced in 

cultured hepatocytes. Altogether, these results are consistent with the effects observed 
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in rats, and reinforce the idea that GSPE can act directly in hepatocytes without the need 

to invoke the intervention of other tissues. 

 

In order to elucidate whether SHP is the mediator of the lipid lowering activity of 

GSPE, two different systems to block SHP activity were used: human hepatoma cells 

transfected with SHP-specific siRNA, and transgenic SHP knockout mouse. The 

hypotriglyceridemic effect of GSPE is cancelled in both SHP deficient models thus 

revealing this nuclear receptor as a key mediator of the hypotriglyceridemic response 

triggered by procyanidins. Gene silencing of SHP in HepG2 cells has allowed us to 

identify two different pathways for GSPE actions upon VLDL secretion: a SHP-

dependent mechanism leading to a decreased TG secretion, and a SHP-independent 

pathway responsible for MTP downregulation and, subsequently, diminished ApoB 

secretion. It has been shown that flavonoids can signal through MAPK and insulin 

related pathways to inhibit MTP expression and ApoB secretion (1, 11), thus providing 

a plausible explanation for SHP-independent GSPE actions. Both mechanisms would 

converge in the synthesis process of TRL, decreasing the amount of VLDL secreted by 

the hepatocyte. Therefore, SHP has emerged as a key mediator of the TG lowering 

actions of GSPE in HepG2 cells.  

 

When wild type mice were treated with an acute dose of GSPE, plasma TG levels were 

drastically reduced, extending the observation made in rats. In contrast, in SHP-/- mice 

the hypotriglyceridemic actions of procyanidins were abolished, reinforcing the key role 

of SHP in mediating this effect of GSPE. Microarray based comparison of liver gene 

expression profiles in wild-type and SHP -/- mice has revealed that GSPE downregulates 

many genes involved in lipid and lipoprotein synthesis in a SHP-dependent fashion. 

Lipid availability is a rate limiting factor in the synthesis and secretion of TRL from the 

liver (38, 39). Thus, these results can explain, at least in part, the SHP-dependent 

hypotriglyceridemic actions of procyanidins, which would be related, among other 

factors, with reduced synthesis of VLDL in the liver.  

 

Many works have described that expression of SHP is subjected to the control of 

different nuclear receptors such as LRH-1, ERα and FXR (40-42). Previous studies 

using transgenic mice lacking functional FXR, have revealed that this nuclear receptor 

is a major controller of lipid and glucose metabolism (43-46). Those mice lacking FXR 
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presented impaired insulin sensitivity, and elevated levels of plasma and liver TG and 

cholesterol (43, 47-49). Therefore, we hypothesized that FXR could be mediating 

hypotriglyceridemic GSPE actions upstream SHP. In vitro luciferase based studies have 

revealed that GSPE enhance FXR activity in the presence of bile acids, a situation that 

mimics the in vivo physiological condition of hepatocytes. Thus, FXR-/- mice were used 

to assess the role of FXR in mediating GSPE hypotriglyceridemic actions. In this 

model, GSPE was not able to lower plasma TG. Moreover, several genes of the lipid 

synthesis program were downregulated by GSPE in the liver of wild type mice, but not 

in FXR-/- mice. Therefore, FXR has been revealed as an essential mediator of the 

hypotriglyceridemic response triggered by GSPE in vivo.  

 

The comparison between changes induced by GSPE at the liver gene expression level in 

SHP-/- mice with those induced in FXR-/- mice, reveals that all genes that were 

changed in a SHP-dependent fashion are included into the FXR-dependent changes. 

This evidence reinforces the role of FXR as mediator upstream SHP of GSPE-

hypotriglyceridemic actions, highlighting that GSPE can act via a sequential pathway 

involving FXR and SHP. Moreover, it points out that GSPE-activated FXR could 

modulate the expression, in addition to SHP, of other FXR target genes, which could 

also mediate GSPE actions. 

 

In summary, GSPE exert lipid-lowering effects in three different systems: rat, mice and 

HepG2 cells. The mechanism of action of procyanidins involves FXR and SHP, a 

pathway leading to lowered lipogenesis and secretion of VLDL in the liver, as shown in 

figure 7. The FXR/SHP pathway has been shown to have crucial roles in controlling 

bile acid (50), lipoprotein (43, 47, 48, 51) and glucose metabolisms (52-55). In this 

sense, this work provides new hints for the understanding of the mechanisms leading to 

the actions promoted by procyanidins, which emerge as powerful agents in the 

prevention and treatment of lipid altered metabolic states.  
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Figure 7. Proposed pathways used by procyanidins to reduce VLDL secretion by 

hepatocytes. 
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1. Procyanidins improve plasma lipid profile in the postprandial phase in rats. 

A single oral dose of procyanidins decreases plasma triglycerides and ApoB 

levels to 50% of control values. In addition LDL-Cholesterol is significantly 

reduced, thus improving the atherosclerotic risk index. 

 

2. Procyanidins display a triglyceride-lowering effect both in vivo and in vitro. 

In rat and mouse, procyanidin treatment triggers a hypotriglyceridemic response. 

In HepG2 cultures, procyanidins down-regulate the secretion of triglycerides 

and ApoB, thus showing that these flavonoids act directly on hepatic cells. This 

fact strongly suggests that, in vivo, a direct action of procyanidins on the liver 

contributes to their hypotriglyceridemic response. 

 

3. Nuclear receptor Small Heterodimer Partner (SHP) is a target of 

procyanidins in hepatic cells. Procyanidins modulate the expression of SHP, 

rapidly increasing its expression in rat liver as well as in HepG2 cultured cells.  

 

4. SHP mediates the triglyceride-lowering activity of procyanidins in vitro and 

in vivo.  When SHP expression is silenced in HepG2 or abolished in SHP-null 

mice, procyanidins lose their hypotriglyceridemic activity. In contrast, in SHP-

silenced HepG2 cells, procyanidins are still able to reduce apoB secretion. 

Hence, procyanidins reduce triglyceride via a SHP-dependent mechanism, 

whereas they reduce apoB in a SHP-independent manner. 

 

5. Nuclear receptor Farnesoid X Receptor (FXR) is an essential mediator of 

the hypotriglyceridemic action of procyanidins upstream SHP. Oral gavage 

of procyanidins to FXR-null mice have not a hypotriglyceridemic effect.  

Moreover, luciferase based in vitro assays showed that procyanidins increase the 

transcriptional activity of FXR. Thus, FXR is an essential component of the 

signalling pathway used by procyanidins to elicit the triglyceride lowering 

effect. 
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6. Key genes of the inflammation process are targets of procyanidins in liver, 

in the postprandial phase. Oral administration of procyanidins to rats rapidly 

downregulates the expression, in liver, of transcription factor Egr1, a mediator 

of the hepatic inflammatory response, and several acute-phase proteins, namely 

haptoglobin, fibrinogen B and alpha-1 antitrypsin. In addition, expression of 

DUSP6, a component of the ERK1/2 subfamily of MAPK, is repressed by this 

treatment. Nfkbia, a repressor of NF-kB activity, is overexpressed upon 

procyanidin treatment. This expression pattern strongly suggests that 

procyanidins attenuate the pro-inflammatory state associated to the postprandial 

phase. 
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