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Σα βγείς στον πηγαιµό για την Ιθάκη,  

να εύχεσαι νάναι µακρύς ο δρόµος, 

γεµάτος περιπέτειες, γεµάτος γνώσεις. 

.... 

Η Ιθάκη σ' έδωσε το ωραίο ταξίδι. 

Χωρίς αυτήν δεν θά βγαινες στον δρόµο. 

Αλλο δεν έχει να σε δώσει πια. 

Κι αν πτωχική την βρεις, η Ιθάκη δεν σε γέλασε. 

Ετσι σοφός που έγινες, µε τόση πείρα, 

ήδη θα το κατάλαβες η Ιθάκες τι σηµαίνουν. 

    When you set out on your journey to Ithaca, 

    pray that the road is long, 

    full of adventure, full of knowledge. 

    ... 

    Ithaca has given you the beautiful voyage. 

    Without her you would have never set out on the road. 

    She has nothing more to give you. 

    And if you find her poor, Ithaca has not deceived you. 

    Wise as you have become, with so much experience, 

    you must already have understood what Ithacas mean. 

                                            K. Καβάφης, 1911.                                                      C. Cavafis, 1911. 
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I�TRODUCTIO�  

 

Wine has a long recorded history that goes back more than 7.5 thousand years. The earliest 

suspected wine residues come from the early to mid-fifth millennium b.c. – Hajji Firuz Tepe, in 

the northern Zagros Mountains of Iran (Duque et al. 2005). In ancient times, wine was 

considered to be a magical, spontaneous gift of nature and has been highly regarded by high 

society, witnessing essential in any important event. 

Nowadays, wine is an integral component of the culture of many countries and is expanding in 

new ones. Consumers in the traditional producer countries as also in the ‘new world’, demand 

for high quality wines. Especially, for the red wines consumers are looking to find wines with 

deep red color, full body, soft tannins and fruit scents. To obtain these characteristics one of the 

essential parameters is that grapes have achieved a high grape phenolic maturity.  

This introduction focuses on the importance of grape phenolic compounds in wine quality, the 

importance of predicting phenolic maturity and the probable consequences that a high phenolic 

maturity can produce in wine characteristics.  

 

1. Phenolic composition of grapes and wines 

 

Phenolic compounds represent a large group of molecules which are present in grape and wine 

with an essential role in enology. The phenolic compounds of the grapes contribute to wine 

organoleptic characteristics such as color, taste, astringency and bitterness and their capacity for 

aging (Ribéreau-Gayon et al. 2006). The antioxidant properties of phenolic compounds have 

also been associated the moderate consume of red wine with health-promoting effects (Pitsavos 

et al. 2005). This phenomena was initially known as ‘‘French paradox’’ (Renaud and de 

Lorgeril 1992). More recently, a special interest has been devoted to phenolic compounds for 

their anticarcenogenic ability (Block 1992) and the neuroprotective effect (Ma et al. 2010). 

From a chemical standpoint, the phenolic compounds dispose a benzenic ring directly attached 

by one or more hydroxyl groups. Their reactivity is due to the acid character of the phenolic 

function and to the nucleophilic character of the benzene ring (Monagas et al. 2005). 
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Phenolic compounds can be classified in various ways. The most common classification is based 

on the distinction in flavonoid compounds with a C3-C6-C3 skeleton and non-flavonoid 

compounds. Each group is further divided into several families (Figure 1), with share structural 

features that confer specific properties such as color, aroma and taste (Cheynier et al. 2006).   

 

 

 

 

 

 

 

 

Figure-1. Classification of phenolic compounds (adapted from Zamora 2003). 

 

Grapes have flavonoid compounds mainly in the skin, seeds and stem and non-flavonoid mainly 

in pulp but also in the other parts of the grapes (Zamora 2003). 

 

1.1.  �on- flavonoid  

 

The non-flavonoid compounds present in grapes and wine are phenolic acids and stilbenes.  

 

1.1.1. Phenolic acids 

 

Phenolic acid compounds are divided into hydroxybenzoic and hydroxicinnamic acids. 

Hydroxybenzoic acids are derived from benzoic acid and possess a C6-C1 skeleton. Grapes 

      Benzoic acids 

   Phenolic acids 

Non flavonoids                  Cinamic acids 

   Stilbenes 

 

   Flavonols 

 

   Flavononols and flavones 

 

Flavonoids    Catechins 

   Flavanols    Procyanidins 

     Condensed tannins 

        Prodelphinidins 

   Anthocyanins 
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contain gallic acid in the pulp (Lu and Foo 1999), and ester-linked form with flavan-3-ols in 

seeds (Su and Singleton 1969). However, other hydroxibenzoic acids (Figure 2) and their 

derivatives can be found in wine (Monagas et al. 2005). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Phenolic acid and derivates (adapted from Monegas et al. 2005). 

 

On the other hand, hydroxicinnamic acids are composed of a benzene ring with substitutions at 

carbons C6-C3.  There are located in the vacuoles of the skin and pulp cells in the form of 

tartaric esters (Ribéreau-Gayon 1965). The principal hydroxicinnamic acids present at grapes 

are the caftaric, cutaric and fertaric acids in trans form, although small quantities of the cis 

isomers can also be detected (Singleton et al. 1978). These tartaric esters are present in wine as 

well as their hydrolyzed form that gives rise to free hydroxicinnamic acids (Sommers et al. 

1987). Finally, a number of hydroxicinnamic acids derivates have been observed in wine 

(Rentzsch et al. 2009). Figure 2 present the most important compounds of this group in grapes 

and wine.  

1.1.2. Stilbenes 
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Stilbenes are formed by an ethene double bond substituted with a benzene ring on both carbon 

atoms of the double bond. The most abundant is the trans-resveratrol. Its chemical structure and 

its glucoside derivatives are shown in Figure 3. 

Stilbenes can also occur in oligomeric and polymeric form and have been identified in grapevine 

and wine (Rentzsch et al. 2009).  

It appears that the plant synthesize these compounds as a defense respond to fungal infection 

and ultraviolet light irradiation, in leaves, roots and berry skin (Langcake and Pryce 1976, 

Jeandet et al. 1991), although there have been detected in other parts of berry especially in seeds 

of muscadine grapes (Vitis rotundifolia) (Ector et al. 1996).  

 

 

 

 

 

 

Figure 3. Stilbenes (adapted from Monegas et al. 2005). 

 

Stilbenes have no significance in the organoleptic characteristics of wine, however, due to their 

potential antioxidative, anticarcinogenic and neuroprotective effects are considered to play a 

relevant role in human health (Pérez-López et al. 2009). 

 

1.2. Flavonoids 

  

Flavonoids are characterized by a basic skeleton of 15 carbon atoms (C6-C3-C6) of 2-phenyl-

benzopyrene type and are divided in four major subclasses on the base of the oxidation state of 

the pyran ring: the flavonols, the flavanonols and flavones, the flavanols and the anthocyanins 
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(Cheynier et al. 2000). Among them, flavanols and anthocyanins are the most abundant in grape 

and wine and are particularly important to the quality of red wine. 

 

1.2.1.   Flavonols 

 

Flavonols are yellow pigments that act as protectors against the ultraviolet light irradiation (Flint 

et al. 1985). They are mainly found at grape skin (Cheynier and Rigaud 1986), although they 

have also been detected in the pulp (Pereira et al., 2006).  In grapes they are present mainly in 

the glycosilated form of the four main aglycones (Figure 4). In wine the aglycone form is also 

observed, but it is probably originated by the hydrolysis of the glycosilated forms during the 

winemaking process (Cheynier et al. 2000). 

 

 

 

 

 

 

 

Figure 4. Flavonol (adapted from Monegas et al. 2005). 

 

1.2.2.   Flavanonols and flavones 

 

Flavanonols astilbin and engeletin are the most common compounds of this group (Figure 5). 

They have been identified in the skin and wine of white grapes (Trousdale and Singleton, 1983), 

in grape pomace (Lu and Foo, 1999), in grape stems (Souquet et al., 2000) and also in red wine 

(Vitrac et al., 2001). 
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Flavones present a similar structure with flavonols (Figure 5). The compounds that are detected 

in wine are apigenin, baicalein and luteolin (Wang and Huang, 2004). 

 

 

 

 

 

 

Figure 5. Structure of flavononols and flavones. 

 

1.2.3. Flavanols 

 

Flavanols or flavan-3-ols are found in high concentrations in grapes seed, skin and stem 

(Escribano-Bailón et al. 1995, Prieur et al. 1994, Souquet et al. 1996, Souquet et al, 2000, Su 

and Singleton 1969). They play an important role in wine organoleptic characteristics and they 

are found on monomeric, oligomeric and polymeric form. 

Flavan-3-ols monomers are often referred as "catechins" and are distinguished by the degree of 

hydroxylation of the B ring (Figure 6). In their structure they have two asymmetric carbons (C2 

and C3), which makes possible the existence of four optical isomers for each catechin, the (+)/(-

) catechin and (+)/(-) epicatechin. Moreover, the present of a third OH group at the aromatic B 

ring leads to the corresponding (+)/(-) gallocatechin and (+)/(-) epigallocatechin. In nature, these 

monomers are found as such, although the methylated, glycosylated or acylated derivatives of 

them can also be found, mainly the esterified derivatives by gallic acid at C3 position. 

In grapes the major flavan-3-ols monomers are (+)-catechin, its isomer (-)-epicatechin and in a 

relative high concentration (–)-epicatechin-3-gallate (Cheynier et al. 2000). Also, to a lesser 

concentration, (+)-gallocatechin (Piretti et al., 1976), (-)-epigallocatechin (Escribano-Bailón et 

al. 1995), (+)-catechin-3-gallate and (+)-gallocatechin-3-gallate (Lee and Jaworski et al. 1990) 
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are detected.  Nevertheless, flavan-3-ols monomers represent only a small proportion inasmuch 

as the major part of flavan-3-ols is in oligomeric and polymeric form (Zamora 2003).  

Flavan-3-ols oligomers and polymers are also known as proanthocyanidins or condensed 

tannins. The term tannin refers to the capacity to 'tan' animal hide, which is done by reacting 

with the proteins of the animal’s skin. When condensed tannins heated under mineral acid 

solution they are hydrolyzed to red anthocyanidin pigments, as result of the acid-catalyze 

cleavage of the interflavanic bond, hence the term proanthocyanidins.  Proanthocyanidins that 

are hydrolyzed to cyanidins are known as procyanidins and are composed from (+)-catechin and 

(-)-epicatechin. Nevertheless, in the event that the polymers consist of (+)-gallocatechin and/or 

(-)-epigallocatechin units, the acid hydrolysis results in delphinidins and therefore is defined as 

prodelphinidins (Porter et al. 1986). 

In function of the interflavanic bond nature, proanthocyanidins are distinguished to B-type and 

A-type (Figure 6). B-type are those in which links are established between carbon 4 of a flavan- 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Flavan-3-ol monomers and dimers of type-A and type-B (adapted from Terrier et al. 2009). 

(+)-catechin: R=H, R1=OH, R2=H 

(-)-epicatechin: R=H, R1=H, R2=OH 

(-)-epicatechin 3-gallate: R=H, R1=H, R2=O-G 

(+)-gallocatechin: R=OH, R1=OH, R2=H 

(-)-epigallocatechin: R=OH, R1=H, R2=OH 

(+)-gallocatechin 3-gallate: R=OH, R1=H, R2=O-G 

(-)-epigallocatechin 3-gallate: R=OH, R1=O-G, R2=H 
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3-ol unit (considered ‘‘upper subunit’’ or ‘‘extension’’) and carbons 8 or 6 of another monomer 

(called ‘‘lower subunit’’).  From the B-type proanthocyanins identified in grapes, B1, Ec-

(4β→8)-Cat, has been reported to be the main oligomer in skins, whereas all C4→C8 

proanthocyanidin dimers are usually found in seeds, with the B2, Cat-(4β→8)-Ec, as the most 

abundant one (González-Manzano et al. 2004). 

Proanthocyanidins of type-A, that are compounds with an C4→C8 or C6 bond and an additional 

ether type C2→C7 or C5 bond, have been mention to be present in grapes and wine (Vivas de 

Gaulejaac et al. 2001). 

  

1.2.4.  Anthocyanins  

 

Anthocyanins (from the Greek anthos-ανθός flower and kyanos-κυανός purple) are mainly 

located in the grape skin tissue of red grapes and are responsible for red wine color (Zamora 

2003). Also there are some few teinturier varieties that also contain anthocyanins in the pulp 

(Castillo-Muñoz et al. 2009). 

 

Anthocyanidin R1 R2
Cyanidin

Delphinidin

Peonidin

Petunidin

Malvidin

OH

OH

OCH3

OCH3

OCH3

H

OH

H

OH

OCH3

 

Figure 7. Anthocyanins (adapted from Monagas et al. 2005). 

 

The anthocyanins are water-soluble pigments, consisting of an aglycon (or anthocyanidin), 

derived from the ion flavylium or phenyl-2-benzopyrilium variously substituted, that is attached 

to one or more sugar molecules, which in turn can be esterified with different organic acids. The 
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anthocyanins of grapes and wine from Vitis vinifera are the 3-O-monoglucosides and the 3-O-

acylated monoglucosides of the anthocyanidins, delphinidin, cyanidin, petunidin, peonidin and 

malvidin. They differ from each other by the number and position of the hydroxyl and methoxyl 

groups located in the B-ring of the molecule as shown in Figure 7 (Monagas. and Bartolomé 

2009). Moreover, pelargonidin-based anthocyanins have also been detected at red grapes and 

wines (Castillo-Muñoz et al. 2009). 

 

 

Figure 8. Anthocyanin equilibrium depends on the pH (adapted from 
Ribéreau-Gayon et al. 2006). 

 

Acylation occurs at the C-6 position of the glucose molecule by esterification with acetic, p-

coumaric or caffeic acids (Mazza and Miniati 1993) and lately reported with lactic acid 

(Alcalde-Eon et al. 2006). In grapes and wine predominates the 3-O-acetylmonoglucosides and 

3-O-coumaroylmonoglucosides of the five main anthocyanidins. The malvidin- and peonidin-3-

O-caffeoylmonoglucosides are found in low concentrations (Ribéreau-Gayon 1968, Baldi et al. 

1995). Also the presence of the 3-O-caffeoylmonoglucosides of cyanidin, delphinidin and 

petunidin has been reported in few cases (Vidal et al. 2004b). Additionally, it has been recently 
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confirmed the existence of 3,5-diglucosides in grapes and wine (Vidal et al. 2004b, Castillo-

Muñoz et al. 2009), 3,7-diglucosides in wine (Alcalde-Eon et al. 2006) and also anthocyanin 

oligomers up to trimers in grape skin extract.  

Anthocyanins in aqueous solution exist in the form of four basic structures, the flavylium cation, 

the quinoidal anhydrous base, the hemiketal o carbinol pseudo-base and the chalcone base. 

There are in equilibrium, depending on the pH (Figure 8). The relative amounts of each of the 

structural forms that coexist in equilibrium are a function of pH of the medium and its 

substituents. At very acidic pH (pH <2) anthocyanins are mainly in the form of flavylium cation. 

The flavylium cation is highly colored and appears red. As pH increases, the flavylium cation 

quickly disappears to give rise by deprotonation at several quinoidal base forms which have 

bluish color. Another reaction that occurs is the flavylium cation hydration leading to the 

formation of colorless carbinol pseudobases. Both reactions occurred simultaneously in 

accordance with the equilibrium constants. On the other hand, in weakly acidic medium, when 

the temperature of the solutions is high, pseudobase carbinol can be converted to a cis or trans 

chalcone by opening the pyrilium ring. The chalcones can be neutrals and colorless or can be 

ionized and take a slight yellow color. Reversion to flavylium form by decreasing the pH occurs 

much more slowly in the case of the trans than in the case of the cis form, indicating that trans 

form could be irreversible.  

At the pH of the wine we can consider that there is a balance among the different forms. The red 

flavylium form is present only in a small proportion while the major proportion of anthocyanins 

is found in colorless or weakly colored forms.  

 

2. Anthocyanins and proantocyanidin evolution during berry ripening 

 

Grape berries development consist of two successive sigmoid growth cycles, which are 

separated by a short lag-phase (Coombe 1992). The first period-berry formation-begins after 

anthesis, with the fruit set, the cell division-enlargement and with the seeds approaching their 

full size. At this phase proanthocyanidins and their respective monomers are accumulated in 

seed (epidermis, inner cells of the soft seed coat, and inner cell layer of the inner integument) 

(Cadot et al. 2006) and the vacuoles of the grape skin cells (Amrani Joutei and Glories 1995). 
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The lag-phase characterized by little change in berry size, the seed embryo development and the 

hardening of the seed coat. The third period-berry ripening- begins at veraison with the onset of 

sugar accumulation, the berry softening and an increase in berry size. Parallel, anthocyanins 

accumulation in the vacuoles of the skin begins in veraison and rich their maximum 

concentration around harvest period (Kennedy et al. 2002, Canals et al. 2005). A decrease in the 

total amount of antocyanins just before harvest and/or during over-ripening has been observed in 

some works (Mateus et al. 2002, Ryan et al. 2003, Fournand et al. 2006). On the other hand, 

proanthocyanidins and flavan-3-ol monomers were maximal in skin and seed before veraison 

(Downey et al. 2003). After veraison their behavior is not very clear. Some authors describe a 

decrease in skin proanthocyanidins, flavan-3-ol monomers and in the mean degree of 

polymerization but others an increase (de Freitas et al. 2000, Kennedy et al. 2001, Habertson et 

al. 2002, Kennedy at al. 2002).  The flavan-3-ol concentration of seeds diminishes after veraison 

and until the harvest, which could be explained by oxidation (Kennedy et al. 2000, Downey et 

al. 2003).  

In addition, except the quantitative changes that occur during grape development also qualitative 

modification has been observed. It is noted a change in the proportional flavan-3-ol 

composition. More specific it seems that the proportion of (-)-epicatechin-3-gallate diminish, the 

(-)-epicatechin increase and the (+)-catechin has small variation during berry ripening (Kennedy 

et al. 2000, Kennedy et al. 2002, Pastor del Rio and Kennedy 2006). The average degree of 

polymerization increases with maturity (Downey et al. 2003) although there are studies that 

present a decline (Kennedy et al. 2000, Kennedy et al. 2002). Finally, the total amount of berry 

proanthocyanidins throughout ripening seems to be decreased (de Freitas et al. 2000, Harbertson 

et al. 2002) even though an increase has also been reported (Delgado 2004, Canals et al. 2005). 

 

2.1. Factors influencing phenolic synthesis and accumulation during berry ripening 

 

Phenolic biosynthesis and accumulation through berry ripening is affected by different factors as 

genotype, environment and cultural practices. 

It is obvious that Vitis vinifera cultivars determine the biosynthesis and accumulation of 

phenolic compounds of grapes and therefore wine. They determine the quantitative as also the 
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qualitative phenolic composition. It is characteristic that anthocyanin profile can be used as 

chemical markers with the aim of classifying red-grape varieties and wines. Besides the variety, 

intravarietal heterogeneity is a factor that induces a very different behavior among the different 

clones. It should be noted that most researches in the development of clones have been directed 

towards obtaining high yielding clones, resulting in a decrease of color and phenolic 

compounds. Therefore, the choice of clone is almost as important as variety.  

In additional, rootstock genotypes is related with water and gas exchange status (Candolfi-

Vasconcelos et al. 1994), canopy growth (Koundouras et al. 2008), and yield (Ezzahouani et al. 

2005). For that reason, rootstock is possibly affecting phenolic composition (Doazan 1996, 

Koundardas et al. 2009). Moreover, the rootstock can also influence the harvest date. Therefore 

the choice of rootstock should also take into account their overall influence on the quality of the 

raw material. 

Environmental factors (topographical, agro-pedological, climatic), usually described by the 

French term “terroir”, have been acknowledged to influence grape and wine quality. Sunlight 

exposure and temperature are two factors with certain impact on phenolic composition of grapes 

(Spayd et al. 2002).  Low diurnal and night temperatures have been reported to favor 

anthocyanin accumulation whereas high temperatures reduce their concentration. On the 

contrary, anthocyanin accumulation seems to be increased linearly with increasing sunlight 

exposure. Apart from the concentration, ultraviolet light exposure and temperature are related 

with alterations in anthocyanin composition (Downey et al. 2006).  

Water conditions have been recognized as one of the most important factors that determine wine 

quality. Vine water status has been mentioned to influence accumulation of phenolic compounds 

in grapes with a clear positive effect of water deficit on berry phenolic composition (Esteban et 

al. 2001).  For that reason, rainfall distribution and efficiency are of great importance as also the 

soil water storage capacity. Moreover, in relation with the soil characteristics, soil depth, 

structure, texture and mainly fertility affect phenolic composition (Downey et al. 2006).   

Furthermore, macroclimatic characteristics like topography, latitude and altitude may affect the 

grape composition. It was observed an increase in anthocyanin concentration with increasing 

altitude from 100-150 meters to above 250 meters. Altitude also affected flavan-3-ol 

composition (Mateus et al. 2001, 2002).   
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Agricultural practices modulate the expression of phenolic composition of grapes throughout the 

grape ripening process. Cultural aspects such as training system (Zoecklein et al. 2008), row 

vine spacing, pruning, bunch thinning, bud and leaf removal as well as the water and fertilize 

management (Esteban et al. 2001, González-Neves et al. 2002, Delgado et al. 2004, Poni et al. 

2009) noted to have an influence on phenolic biosynthesis and accumulation. Agronomic 

practices like conventional, organic or biodynamic systems are also shown to have a relation 

with berry phenolic composition (Reeve et al. 2005, Vian et al. 2006). 

Finally, other factors that may have an impact in phenolic composition of grapes are the vine 

age (Reynolds et al. 2007) and pathogenesis (Amati et al. 1996).  

 

2.2. Influence of phenolic composition of grapes on wine composition and its sensoriality; 

the phenolic maturity concept 

 

For the production of high quality wines is crucial, without any doubt, the degree of ripeness of 

the grapes. It should be noted that the maturation process affects not only the concentration of 

sugars and acids in berries, but also exerts, as it was already mentioned, a large effect on the 

phenolic composition of the grapes. 

Anthocyanins and flavan-3-ols composition of the grapes at the harvest time have a great 

influence on wine color and color stability during wine aging. Consequently, more ripen grapes, 

would permit the elaboration of wines with deep red color. The ripen grapes, besides having a 

higher concentration of anthocyanins, present also a greater extractability of phenolic 

compounds from grape skin. Differences of polysaccharides, based on galactose and arabinose, 

together with the cellulose content and the degree of methylation of the pectins could be 

responsible for different anthocyanin extractability, keeping in mind that differences on the 

thickness or density of the skin cell-wall could also influence the extractability (Ortega-Regules 

et al. 2006). 

Additionally, flavan-3-ols composition of grapes, especially originated from seeds, affects the 

astringency and the tannic intensity of the grapes and wines. The tendency is to diminish as the 

maturity degree increases (Llaudy et al. 2008). This fact is related not only with the total 

quantity of flavan-3-ols since sometimes samples containing higher contents in flavano-3-ols 

can exhibit less astringency and tannic intensity than others with lower ones (Ferrer-Gallego et 

UNIVERSITAT ROVIRA I VIRGILI 
GRAPE PHENOLIC MATURITY; DETERMINATION METHODS AND CONSEQUENCES ON WINE PHENOLIC COMPOSITION 
Nikolaos Kontoudakis 
ISBN:978-84-693-7682-9/DL:T-1754-2010 



nn

Introduction 

18 

 

al. 2010). It has been suggested that the qualitative profile of grapes can affect these sensorial 

parameters. In fact, the degree of galloylation correlates well with astringency (Vidal et al. 

2003). For that reason a decrease of galloylation during grape maturity may diminish 

astringency of grapes and wines. Moreover, the greatest the degree of polymerization the 

greatest the astringency (Vidal et al. 2003), so the degree of polymerization of the grape 

proanthocyanidins at the harvest time will have an effect on wine astringency.   

It is clear, therefore, that phenolic composition of grapes at the harvest time will determine the 

wine quality. For this reason and also because consumers demand wines with deep red color, 

full body, soft tannins and fruit scents, all vineyard work has been oriented during last years in 

the search of greater maturity.  

 

 

Figure 9. Evolution of grape phenolic compounds 
throughout grape maturity (adapted from Ribéreau-Gayon 
et al. 2006). 

 

Commonly, the maturity of the grapes, and therefore the date of harvest, is determined only by 

analyzing the concentration of sugars, titratable acidity and pH of the grape juice (Ribéreau-

Gayon et al. 2006). However, these parameters only give information about the ripeness of the 

pulp of the grapes and overlook the maturity of the skins and seeds.  

Figure 9 shows that there is no necessarily a direct relation between the pulp maturation and the 

phenolic concentration of the red grapes. This makes essential the introduction of the phenolic 

maturity concept; which measures the potential of proanthocyanidins and anthocyanins present 

in grapes, as also their capacity to be extracted from grapes during winemaking. 
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2.3. Methods for measuring phenolic maturity 

 

The determination of phenolic maturity is very useful for deciding the optimum harvest date. 

Furthermore, the knowledge of phenolic ripeness of the grapes can be very useful for the 

classification of grapes at the winery in accordance with their level of quality and even to 

influence, by the adequate winemaking method, on the level of phenolic compounds extraction 

(Zamora 2003).  

In recent years, several methods have been proposed to determine the phenolic maturity. Among 

the different techniques that have been development, the most applied methods are based on 

obtaining extracts from grapes with maceration in different solvents. Probably the most used 

method is that described by Glories (Glories and Agustin 1993., Saint-Cricq de Gaulejac et al. 

1998). Nowadays, other methods are also used like the ITV method (Dupuch, 1993, Lamadon 

1995, Cayla et al. 2002) developed by the Institut Français de la Vigne et du Vin and the method 

proclaimed by Iland (2004). However, all these methods are slow, laborious and require the 

participation of well-trained technicians.  

Recently, the group of Celotti has proposed an extraction using microwaves that permits 

accelerate the extraction time (Celotti et al. 2007a). Besides, another method, Cromoenos, has 

begun to be popular, especially in Spain, as allows very rapid and easy determination 

(Cromoenos 2010). In addition, it should be noted that the techniques FTIR (Fourier Transform 

Infrared) are already being applied in the analysis of the extracts, which should allow more 

complex analytical results achieved at present (Dubernet et al. 2000).   

The principle of these methods consists on rapidly extraction of the anthocyanins and 

proanthocyanidins from the skins and partial extraction of seeds proanthocyanidins, with 

roughly crushing of grapes and maceration in the proposed solvent and subsequent analysis of 

the parameters that are considered more appropriate. In that way it can be assessed the phenolic 

maturity of the grapes and the phenolic content of the future wine.  

Moreover, the last years have been presented techniques that consist on the determination of the 

physical characteristics of the grapes, directly at the vineyard. Such methods are the skin texture 

parameters, like the grape skin hardness and thickness (Segade et al. 2008), the direct 

measurement of the color absorption of the grape skins, based on the screening of fruit 
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chlorophyll fluorescence, that allows both flavan-3-ol and anthocyanin contents of intact berry 

skin to be measured (Celotti et al. 2007b, Cerovic et al. 2008) and the most advanced method, 

the analysis of multispectral airborne high resolution images (Lamb et al. 2004). These 

techniques reduce drastically the analysis time, but need more experimentation to demonstrate 

their reliability and repeatability. 

Finally, the methods based on tasting grape berries and seeds have been introduced in recent 

years (Le Moigne et al. 2008). These methods are really very useful for determining grape 

maturity. However, tasting methods require experience, a laborious sampling and their 

parameterization is very difficult. For all those reasons, tasting methods are applied mainly to 

small and highly controlled vineyards.  

 

3. Anthocyanins and proantocyanidin evolution during winemaking and aging 

 

Immediately after the harvest the winemaking process begins. During this process the diffusion 

and extraction of the grape phenolic compounds take place and a perpetual evolution of the 

phenolic composition of the must at beginning and of the wine later occurs with the participation 

of biochemical and chemical phenomena.  

 

3.1. Extraction kinetics of anthocyanins and flavan-3-ols during red winemaking 

 

The winemaking of red wines is a complex process in which two phenomena take place 

simultaneously: alcoholic fermentation and maceration. It is the superposition of both 

phenomena which affects the kinetics of solubilization of most of the molecules of wine 

organoleptic impact (Zamora 2003). Figure 10 shows the kinetics of phenolic compounds 

extraction during fermentation / maceration (Ribéreau-Gayon et al. 2006). 

According to this figure, the maceration is composed of three stages. The first one is the 

prefermentative maceration, which is the period before the beginning of the alcoholic 

fermentation. Therefore, takes place in an aqueous medium at generally moderate temperatures. 
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The length of this stage depends on the latency phase of yeast and it is dependent on SO2 dose 

and temperature. The second maceration stage is during the alcoholic fermentation. In this phase 

the medium change gradually from an aqueous to a hydroalcoholic medium with a 

simultaneously rise of the temperature. The duration of this phase will depend on multiple 

factors, including the initial concentration of sugars, the yeast strain, the nutrients present in the 

medium, the level of aeration and temperature. Finally, the third phase corresponds to the 

postfermentative maceration and it takes place after the achievement of alcoholic fermentation. 

This postfermentative maceration is usually only applied for obtaining wines with high aging 

potential and its length depends on the winemaker decision. 

 

 

Figure 10. Kinetics of phenolic compounds extraction during 
fermentation/maceration (adapted from Ribéreau-Gayon et al. 
2006). 

 

The phenolic compounds extraction is related with the level of the grape maturity (see 1.2.2). 

Moreover it is affected by the temperature. Higher temperatures reduce the time required to 

reach maximum concentration and also increase the maximal amount (Sacchi et al. 2005). Since 

ethanol concentration increases during winemaking process, the phenolic extractability is also 

facilitated (Canals et al. 2005).  

As the Figure 10 shows, anthocyanins are extracted relatively quickly, during the first few days 

of maceration. Once anthocyanins reach their maximum levels, no more extraction is usually 

observed and a downward trend occurs, mainly due to oxidation, precipitation, modifications in 

their structure and adsorption in yeast cell walls (Zamora 2003). 
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Flavan-3-ols are extracted more slowly. At the beginning of the maceration when the 

temperature is still moderate and alcohol concentration is still low, the extraction is very slow. 

However, as the alcoholic fermentation progresses, alcohol and temperature increases which 

favor flavan-3-ols extraction (Canals et al. 2005, Sacchi et al. 2005).    

It is also necessary to distinguish between the flavan-3-ols released by skins and seeds because 

their extraction kinetic is different. The flavan-3-ols of the skins starts to be dissolved at the 

same time that anthocyanins, although their release is slower and longer. In contrast, the flavan-

3-ols of the seeds do not begin to dissolve until the middle of fermentation.  

Flavan-3-ols extraction increases throughout fermentation and maceration. At the beginning of 

the maceration flavan-3-ols composition is characterized by an important presence of skins 

flavan-3-ols. The extension of maceration process leads to a progressively increase of     seeds 

flavan-3-ols, which become predominant with a main influence on the qualitative composition 

of wine flavan-3-ols (González-Manzano et al. 2004, Llaudy et al. 2008). For that reason, 

depending on the wine style, it is necessary to adapt the extraction of flavan-3-ols. It is also 

possible to select the proportion of skin and seed flavan-3-ols using one or more winemaking 

techniques that affect differently phenolic extraction (Zamora 2003, Sacchi et al. 2005). 

 

3.2. Evolution of phenolic compounds during wine aging 

 

The changes in phenolic composition which take place during winemaking and aging involve 

two processes. The first process involves enzymatic reactions and occurs mostly at the early 

stages of winemaking while the second one involves chemical reactivity of the phenolic 

compounds and begins during winemaking process and continues during aging. 

Enzymatic reactions 

Enzymatic oxidation and degradation involves mainly the polyphenoloxidases (PPO). These 

reactions are more important for white wines while in red wines are not so important. Generally, 

catechins are poor substrates for grape PPO and also proanthocyanidins and anthocyanins 

cannot be oxidized directly by grape PPO due to steric hindrance (Cheynier et al. 2000). 

However, they can react with the enzymatically generated caffeoyltartaric acid quinine through 
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coupled oxidation and nucleophilic condensation reactions (Cheynier and Ricardo da Silva 

1991, Sanri-Manchado et al. 1995, 1997).  

Also the β-glucosidase activity is responsible for the breakdown of the glucosidic bond of the 

anthocyanidin-3-glucosides. The released anthocyanidins are more unstable and are rapidly 

degraded leading to losses in wine color (Monagas and Bartolomé 2009). 

Chemical reactions 

Several chemical reactions taking place during the winemaking and aging, with an important 

influence on the color, the stability of the color, the body and the astringency of the wine.  

As it has already mentioned (see 1.2.4.) in a slight acidic medium, as is the wine, anthocyanins 

are present in four structural forms that are in equilibrium depending on the pH, with the 

predomination of the less colored and colorless forms. Moreover, anthocyanins react with the 

bisulfite ions (HSO3-) at the C-4 position of the flavylium cation resulting in the formation of a 

colorless adduct which is stable at the wine pH (Berke et al. 1998). The proportion of the 

anthocyanins that are trapped as colorless bisulfate adducts is according to pH and the amount of 

sulfite added in must or wine (Ribéreau et al. 2006).  

More complex reaction with the participation of anthocyanins and other phenolic compounds 

has led to propose the existence of copigmentation phenomenon. Copigmentation is a solution 

phenomenon in which the planar polarisable nuclei of the colored forms of the anthocyanins and 

other non-colored organic components form molecular associations or complexes (Boulton 

2001). They form vertical stacking complexes held by low energy bonds (Van der Waals, 

hydrophobic interactions) that are stabilized by the disposal of the sugar molecules on the 

outside, which among them there are established hydrogen bonds. Water molecules cannot enter 

in the interior of these complexes and thus copigmentation prevents hydration of anthocyanins 

and fading, making the equilibrium to shift to colored forms of anthocyanins. This normally 

results in increased absorbance intensity (hyperchromism) and a positive shift in the visible 

wavelength (bathochromism), with the color becoming purple (Asen et al. 1972). 

Several compounds are studied to be as potential anthocyanin copigments. Copigments may be 

phenolic compounds, alkaloids, amino acids, organic acids, nucleotides, polysaccharides 

(Robinson and Robinson 1931, Asen et al. 1972, Mazza and Brouillard 1990). In additional, 

intramolecular copigmentation has also been mentioned as a possible mechanism occurring with 
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the association of the anthocyanins positively charged pyrylium nucleus and their aromatic 

residues of their own molecule, as well as the self-association of them and the interaction with 

metal cations (metal complexation) (Asen et al. 1972, Brouillard 1981). 

Among red wine compounds, flavonoids, hydroxycinnamic acids appears to be the most 

promising compounds to act as anthocyanins copigments. Flavan-3-ols present small strength of 

copigmentation in comparison with the other compounds, due to their non-planar structure 

(Gómez-Míguez et al. 2006). However, as there are present in great amounts in red wines their 

copigmentation with anthocyanins can contribute significantly in wine color of red young wines 

(González-Manzano et al. 2009). However, important differences can be present in their ability 

to interact with anthocyanins through the different structure and stereochemistry of flavan-3-ol 

(Berké and De Freitas, 2005). 

Generally, the factors that influence the copigmentation are pH, ethanol, temperature, molecular 

structure of the copigments and concentration ratio between anthocyanins and copigments 

(Boulton 2001). 

The copigmentation is of great interest as it seems to contribute significantly to the color of 

young red wines. It is also possible that copigmentation would be the first step in the formation 

of new pigments that determine the color of aged red wines (Brouillard and Dangles 1994). 

The formation of pigments with direct condensation between anthocyanins and flavan-3-ols has 

been suggested (Jurd and Somers 1970, Somers 1971). There have been proposed two different 

mechanisms for this type of reactions, the anthocyanin-flavan-3-ol (A-F)  and the flavan-3-ol- 

anthocyanin (F-A) direct condensation reaction (Figure 11). 

The anthocyanin-flavan-3-ol direct condensation reaction starts with the nucleophilic attack of 

the C-8 or C-6 position of the flavan-3-ol to the electrophilic C-4 position of the anthocyanin in 

the form of flavylium cation, giving rise to either a flavene which can later undergo an oxidative 

reorganization to give rise to the formation of yellowish pigments with a possible xanthylium 

structure (Jurd and Somers 1970, Somers 1971, Santos-Buelga et al. 1995), although this 

proposal has been questioned (Santos-Buelga et al. 1999), or to a colorless bicyclic condensation 

product (Bishop and Nagel 1984, Remy-Tanneau et al. 2003).  

In the case of the F-A direct condensation reaction, the proposal mechanism suggest that 

carbocations generated from  the acid-catalyzed interflavanic bond cleavage of the 
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proanthocyanidins act as electrophilic agents and react with the nucleophilic C-6 or C-8 position 

of the anthocyanin in its hydrated hemiketal form, giving rise to a colorless pigment (Halsam 

1980, Cheynier et al. 2000). These carbocations may also react with flavan-3-ols (flavan-3-ol-

flavan-3-ol condensation reaction) generating new proanthocyanidin molecules that can increase 

their degree of polymerization or can decrease it if an excess of monomeric flavan-3-ols is 

present in the medium (Halsam 1980). 

Direct condensation reactions between anthocyanins and flavanol monomers are strongly related 

to pH, due to electrophilic and nucleophilic characters of the anthocyanins and flavan-3-ols. F-A 

 

 

 

Figure 11. Main chemical reactions of anthocyanins during winemaking and aging 
(adapted from Monagas and Bartolomé 2009). 
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adducts are formed at low pH values and A-F adducts above pH 3.8 (Salas et al. 2003). 

Temperature seems to favor formation of the latter as well as flavan-3-ol size (Malien-Aubert et 

al. 2002). These pigments appear to have an increased resistance to sulfite bleaching and to the 

pH effect (Salas et al. 2003). The products of both mechanisms have been detected in wine 

fractions (Remy et al.  2000, Vivar-Quintana et al. 2002). 

Other possible mechanisms (Figure 11 and 12) that have been suggested are the condensation 

reactions mediated by aldehydes (anthocyanin-anthocyanin, flavan-3-ol-flavan-3-ol and 

anthocyanin-flavan-3-ol). The main aldehyde that undergoes this type of condensation reactions 

is acetaldehyde, which is present in wine is originated from the yeast metabolism (Romano et al. 

1994) during alcoholic fermentation and from the oxidation of ethanol in the presence of 

polyphenols (Wildenradt and Singleton 1974). Other aldehydes like propionaldehyde, 

isovaleraldehyde, isobutyraldehyde and benzaldehyde are present in wine in fewer 

concentrations, with the exception of the Port wines (Pissarra et al. 2005). Moreover, other 

substances such as glyoxylic acid, which result from oxidation of tartaric acid (Fulcrand et al. 

1997), furfural, 5-hydroxymethylfurfural and vainillin that can be extracted in wine from barrels 

(Es-Safi et al. 2000, Sousa et al. 2007) are also aldehydes which may participate in this type of 

reactions.  

Timberlake and Bridle (1976) proposed that the aldehyde, in the form of carbocation, reacts 

with the flavan-3-ol at position C-6 or C-8 of the phloroglucinol ring, and after dehydratation, 

the flavan-3-ol aldehyde adduct can react with anthocyanins or flavan-3-ols giving rise to new 

structures that are linked by an ethyl bridge (Figure 11 and 12). 

Flavan-3-ol-anthocyanin acetaldehyde-mediated pigments have a purplish color and greater 

color intensity than anthocyanins.  Their color is more stable against pH changes and there are 

only partially bisulfate bleached. Nevertheless, these pigments are more sensitive to degradation 

in aqueous solution than anthocyanin. Moreover, the cleavage of the ethyl bridges may cause the 

formation of new precursor compounds which can react with other polyphenols and be 

responsible of reorganizations and new condensation reactions (Escribano-Bailón et al. 2001). 

The formation of pigments between proanthocyanidin oligomers and anthocyanins has been 

observed (Francia-Aricha et al. 1997, Vivar-Quintana et al. 1999). In the presence of enough 

acetaldehyde concentration, condensed pigments are progressing rapidly towards larger 
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structures by incorporating new ethyl-flavanol units, reaching a critical mass in which pigments 

precipitate, leading to loss of color (Rivas-Gonzalo et al. 1995).  

Flavan-3-ols also undergo condensation reactions with each other mediated by acetaldehyde, 

which give rise in colorless pigments. The polymers that can be formed through these reactions 

are unstable and undergo other reactions. These ethyl linkages are very labile and can cleave 

into vinylflavanol oligomers which can then react with anthocyanins to produce flavanyl-

pyranoanthocyanins (Fulcrand et al. 2006). Other aldehydes such as glyoxilic acid or furfural, as 

it was quoted above, undergo condensation reactions and form xanthylium salts (Figure 12). 

The formation of pigments resulting from the acetaldehyde-mediated condensation between 

anthocyanins has been proved in synthetic medium and these pigments were later found in red 

wine (Atanasova et al. 2002b).  

It is necessary to keep in mind that in general the availability of acetaldehyde in wine is limited 

by the presence of sulfite. Nevertheless, acetaldehyde presents an important role in the evolution 

of wine color depending on the wine physicochemical characteristics and the conditions that is 

stored.  

The factors that mainly affect the acetaldehyde production are the oxygen, the pH and the 

temperature. The reaction rate is higher in the present of oxygen and at acidic pH, since the 

formation of acetaldehyde and its protonated form are favored under these conditions (Rivas-

Gonzalo et al. 1995, Atanasova et al. 2002a). On the other hand, the formation of ethyl-bridged 

pigments is slower in low temperatures and the formed compounds are more stable in relation to 

their degradation and precipitation (Rivas-Gonzalo et al. 1995).  

Over the last decades, several studies showed that a number of cycloaddition reactions occurs 

between anthocyanins and other small molecules in red wine, such as acetaldehyde (vitisin B) 

(Bakker and Timberlake 1997, Vivar-Quintana et al. 1999), acetoacetic acid (He et al. 2006), 

pyruvic acid (vitisin A) (Fulcrand et al. 1998, Mateus et al. 2001), vinylphenol (Fulcrand et al. 

1996, Schwarz et al. 2003b), vinylguaiacol (Hayasaka and Asenstorfer 2002), vinylcatechol 

(pinotin A) (Schwarz et al. 2003a), and vinylcatechin (Cruz et al. 2008) giving rise to new 

families of anthocyanin-derived pigments called pyranoanthocyanins (Figure 11).  

This type of pigments present more stability at color changes of pH and at SO2 bleaching in 

comparison with natural anthocyanins from grapes (Sarni-Manchado et al. 1996, Bakker and 
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Timberlake 1997, France-Aricha et al. 1997). This fact together with theirs red-orange hues 

similar to that acquired during red wine aging, has suggested that they may play a crucial role in 

color changes that occur in wine red during aging. 

Recently, a new class of anthocyanin-derivate pigments, named portisins (Figure 11), was 

detected and isolated directly from Port red wines (Mateus et al. 2003). This type of pigments 

appears to display a bluish color under acidic conditions. Its formation mechanism appears to 

occur between a pyranoanthocyanin moiety and a flavan-3-ol molecule through a vinyl bridge.  

 

 

Figure 12. Reaction of flavanols with glyoxilic acid and condensation reactions mediated 
by acetaldehyde during winemaking  and aging (adapted from Monagas and Bartolomé 
2009). 

 

Moreover, other compounds newly displaying a structure similar to that of the other reported 

portisins were detected. These new pigments were shown to possibly arise from the reaction 

between carboxypyranoanthocyanins and hydroxycinnamic acids (caffeic, coumaric, sinapic, 

and ferulic acids) (Oliveira et al. 2007). 

Finally, during the wine-maturing processes in oak barrels or with the addition of oak chips, 

hydrolysable tannins are dossolved in the wine. It is suggested that condensation reactions 
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among anthocyanins and the C-glycosidic ellagitannins can take place with a possible 

bathochromic effect in wine color, however more research is necessary (Chassaing et al. 2010).  

 

3.3.  Sensory implications of phenolic compounds 

 

The phenolic composition of grapes and wine has a significant importance on wine quality. 

Specifically, the most abundant compounds, anthocyanins and flavan-3-ols, and their reactivity 

during winemaking and aging define the wine color, astringency, bitterness and the evolution of 

all these sensory attributes. 

Anthocyanins are structurally dependent on the conditions and the composition of the wine 

medium. The pH of the wine and the presence of sulfites provoke discoloration of the 

anthocyanins. However, red young wines appear to have intense red color as product of different 

mechanism. Copigmentation is one of the main mechanisms that provoke the color stabilization 

(Boulton 2001). Also it is possible that copigmentation is the first stage in the formation of new 

more stable pigments thus affecting wine color stability (Brouillard and Dangles 1994). As it 

has shown above, depending on the type of anthocyanins and copigments and also of their 

concentrations, there would be variations in wine color and intensity. It is believed that the 

contributions of copigmentation in young wines color is quite high and gradually diminish 

during aging (Hermosín Gutiérrez et al. 2005).  

The anthocyanin-flavan-3-ol direct condensation through the two different mechanisms, produce 

colorless compounds or give rise to the formation of yellowish xanthylium pigments (see 

1.3.2.). The contribution of these pigments pigments, that present violet hues, seem to contribute 

more indirectly than directly in wine color. These compounds are found in very small amounts 

in wine, most probable as result of their instability that provokes their cleavage. Their 

contribution in wine color it seems to be negligible as there are present in low concentrations.  

In addition, ethyl-linked moieties after the cleavage can react again and give ethyl-bridge 

derivatives or flavan-pyranoanthocyanins (see 1.3.2.). Besides, in the presence of enough 

acetaldehyde concentration, ethyl-linked pigments polymerized giving rise progressively to 

large polymers that after a critical size will precipitate (Rivas-Gonzalo et al. 1995), which 

indirectly leads to the gradual change of the color.       
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The formation of the more stable pyranoanthocyanins seems to promote the change of the initial 

purple-red color in hues more oranges. Although they appear in very small concentrations, as 

they present stability under pH value and sulfite bleaching, it is possible that their contribution 

in color is significant. On the other hand, portisins appears a blue color and they are found in 

small amounts mainly in Port wines. However, it is believed that these pigments contribute in 

wine color change (Mateus et al. 2003). 

Other pigments that have been mentioned (see 1.3.2), like caftaric acid-anthocyanin adducts, 

anthocyanin-ellagitannins or anthocyanin monomers are found in very low concentrations in 

wine and more studies need to define their importance on wine color.  

All these progressive structural changes appear to result in gradually shift of the initial purple-

red color to reddish-brown hues. Furthermore, phenolic compounds are responsible for essential 

organoleptic features of red wine, like astringency and bitterness. 

Bitterness is one of the basic tastes and is mainly induced by flavan-3-ols. It has been 

demonstrated that bitterness decreases from monomer to trimer flavan-3-ols (Peleg et al. 1999).  

Bitterness intensity is higher when ethanol level increases. Additionally, since bitterness is a 

taste sensation resulting from an interaction between bitter compounds and specific tongue 

receptors, the bitterness increase could be directly related to the increase of the bitter compound 

concentration (Fontoin et al. 2008). Finally, it seems that ethyl-bridged flavan-3-ols formed 

during wine aging could increase bitterness (Vidal et al. 2004a).  

As opposed to bitterness, astringency is a tactile sensation most commonly described as drying, 

roughing and puckering of the epithelium of the oral cavity. American Society for the Testing of 

Materials define astringency as the complex sensation due to shrinking, drawing or puckering of 

the epithelium  as a result of exposure to substances such as alums or tannins. (ASTM, 1989). 

Although the basic mechanism of astringency is not yet well understood, it suggested that oral 

astringency results primarily from the precipitation of salivary proteins, which impairs the 

natural lubrication of oral surfaces (Green et al. 1993). Wine proanthocyanidins can interact and 

precipitate salivary proteins.  

Astringency sensation depends on flavan-3-ols concentration and chemical structure, although 

concentration appears to be less important than chemical structure (see 1.2.2.). From monomer 

to trimer astringency increases (Peleg et al. 1999). Also at larger proanthocyanidin polymers the 

perception of the astringency increases with the molecular weight as well as with the degree of 
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galloylation (Vidal et al. 2003). However, there are different opinions about the influence of 

high molecular weight proanthocyanidins in astringency. Some authors have reported that 

proanthocyanidins with mean molecular size bigger than 7 are insoluble and unable to contribute 

in astringency (Lee 1990). However, more recent studies have shown that high polymerized 

proanthocyanidins are soluble in wine-like water-alcoholic solution and are very astringent 

(Vidal et al. 2003).   

The astringency in general is considered to decrease during wine aging. Some of the 

condensation reactions that take place between anthocyanins and flavan-3-ols may contribute to 

the declination of wine astringency (Vidal et al. 2004a).  One other theory is that 

proanthocyanidins undergo cleavage reactions by acid catalysis, thereby becoming smaller and 

reducing astringency (Cheynier et al. 2006).  

The flavan-3-ols astringency is related not only with their chemical structure and concentration. 

Ethanol content and pH of wine also affects astringency of proanthocyanidins. It is observed that 

the increase of ethanol content and pH diminish astringency (Fontoin et al. 2008). 

 

4. Impact of climate change on grape maturity; implications on wine composition and 

quality 

4.1.  The Climate Change 

 

Climate change is certainly one of the most studied scientific issues of the last years. Although 

there is a big debate about the impact of human activity on the climate change and especially on 

the impact of the anthropogenic greenhouse gas emissions (Crowley 2000, Barnett et al. 2005), 

insurance is that the climate is changing. An increasing number of observations give a more 

complete picture of global warming (IPCC 2007, Barnett et al. 2005, Mears and Wentz 2005) 

during the past century and the early of the last one. The Intergovernmental Panel on Climate 

Change 2007 (IPCC Forth Assessment Report) mentioned that the tendency of global warming 

at the 20th century was 0.6 ± 0.2°C and the decade of 90s was the warmest of the century (IPCC 

2007). Eleven of the twelve years between 1995 and 2006 were in the rank among the 12 

warmest years of global surface temperature since 1850. NASA mention that January 2000 to 

December 2009 was the warmest decade on record and the 2009 was the second warmest year  
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since recordkeeping began (NASA 2010).  

The IPCC (2007) emphasized that the majority of the warming over the last 50 years has likely 

been attributed by the increase of the emissions of carbon dioxide (CO2) and other greenhouse 

gases, like methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons 

(PFCs) and sulphurhexafluoride (SF6), produced mainly by burning fossil fuels and contributed 

by land-use change and deforestation. Levels of carbon dioxide in January 2010 appears to be 

389 parts per million (ppm), much higher than any other time in the past (NOAA 2010). 

Greenhouse gases trap incoming heat near the surface of the Earth and are the key factors 

causing the rise in temperatures. There are also other key factors such as volcanic eruptions, 

sun's irradiance, oscillations of sea surface temperature in the tropics, and changes in aerosol 

levels.  Overall, the evidence suggests that these effects are not enough to account for the global 

warming observed since 1880. Especially, volcanic eruptions in 2009 have not had a significant 

impact and solar irradiance decreased although the global surface temperature was continued 

increasing (NASA 2010). 

If the emission of greenhouse gases continues with the same intensity, the estimation of mean 

global surface air temperature, while recognizing deep uncertainties, will probably be between 

2-6°C until the end of the century (IPCC 2007). 

The most obvious effects of the climate change will be on one hand the sea level rise. A higher 

temperature means more speed in the thawing of large masses of continental ice, Arctic and 

Antarctic (Church 2001, Mitrovica et al. 2001, Huybrechts and Joughin 2005). On the other 

hand, will bring increased risks associated with extreme weather events. There will be more heat 

waves and floods, the incidence of hurricanes, typhoons and cyclones will increase in certain 

areas of the planet, while in others the drought and desertification are inevitable (IPCC 2007).   

This probable rise of mean global temperatures will have an important impact on natural and 

human system, like asymmetry ecological responses (Walther et al. 2002), extinction risk for 

both flora and fauna spans (Thomas et al. 2004), risk for water resources (Arnell et al. 1999), 

decrease of global food production (Parrya et al. 2004) and risk for human health (McMichael et 

al. 2006). 

 

4.2. Impact of climate change on grape maturity; implications on wine quality 
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Certainly, the consequences of climate change on agriculture in general (Rosenzweigb et al. 

2004, IPCC 2007) and viticulture in particular (Jones et al. 2005) are of great importance. In this 

sense, the research of Jones et al. (2005) is very illustrative about the influence that will have for 

the wine quality. Jones et al. (2005) have studied the change of temperature at the growing 

season in 27 of the most prominent wine growing regions worldwide during the period 1950-

1999. They found that average growing season temperatures warmed 1.26 ºC and dormant 

season temperatures 1.38 ºC. Although this warming was not uniform, greatest in western U.S 

and Europe, (Iberian Peninsula, Southern France, and parts of Washington and  California 

reached an increase more than 2.5 ºC),  less in Chile, Australia and South Africa, has promoted 

the quality of wines in all areas, with the sole exception of the Rhine Valley. This phenomenon 

happened because the average temperature was close to the optimum growing season 

temperature for the cultivars adapted well to the climate of each region, thus encouraging the 

correct maturation of the grapes.  

Using climate models warming, recent research on the projected climate changes in wine 

regions worldwide predict continued warming for the period 2000-49. The model output used in 

this analysis, Hadley Centre climate model-HadCM3, (Pope et al. 2000) comes from the SRES 

A2 scenario (Special Report on Emissions Scenarios) and represents mid-range predictions 

compared to the other climate models (Houghton et al. 2001). This model projected an increase 

of 2.04 ºC on average for growing season temperatures and parallel predict a warming during 

dormant period. The temperature increase predicted to be greater in the Northern Hemisphere-

NH- (2.11 ◦C) than in the Southern Hemisphere-SH- (1.71 ◦C). This warming will divert most 

of the actual vineyards of their optimal temperatures such as the vineyards of  California 

(Nemani et al. 2001, Jones 2005, Jones et al. 2005, White et al. 2006), Australia (Webb 2006), 

South Africa (Carter 2006) and  Europe with more negative influences in Iberian Peninsula 

(Kenny and Harrison 1993, Schultz 2002, Jones 2005). 

Grapevine regions can be categorized (Figure 13) taking in account temperature-based 

parameters (e.g. degree days, mean temperature of the warmest month, average growing-season 

temperatures, etc.) for the production of high quality wines in regions with cool, intermediate, 

warm, and hot climates (Jones 2007). A possible warming of 2 ºC that is predicted for the period 

2000-2049 can provoke, for example, the transformation of one region with cool climate to one 

with intermediate and push a region outside the ability to ripen correctly existing varieties with 

obvious consequence in wine quality. This occurs because each cultivar has an optimum average 
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growing temperature that favor the grape maturity needed for obtaining high quality wines. A 

change in temperature can therefore affect negatively grape maturity.    

 

Grapevine Climate/ Maturity Groupings

Miller Thurgau

Pinot Gris 

Gewurztraminer

Ries ling 

Pinot Noir

Chardonnay

Sauvignon Blanc

Semillon

Cabernet Franc

Tempranillo

Dolcetto

Merlot

Malbec

Viognier

Syraz

Tablegrapes

Cabernet Sauvignon 

Sangiovese

Grenache 

Carignane

Zinfandel

Nebbiolo

Rais ins

13-15 ºC 15-17 ºC 17-19 ºC 19-24 ºC

Average growing season temperature (NH April-October, SH October-April) 

Cool Intermediate HotWarm

 

Figure 13. The climate-maturity groupings based on relationships between 
phonologicalrequirements and climate for high to premium quality wine production in 
the world’s benchmark regions for each variety (adapted from Jones 2007). 

Moreover it is observed that global warming is shifting areas of vine cultivation. It has been 

estimated that the northern limits of its cultivation in Europe is moving at a rate between 10 and 

30 km per decade and that the speed of travel is expected to double between 2020 and 2050 

(Kenny and Harrison 1993). This means that some regions that are adequate for cultivars 

UNIVERSITAT ROVIRA I VIRGILI 
GRAPE PHENOLIC MATURITY; DETERMINATION METHODS AND CONSEQUENCES ON WINE PHENOLIC COMPOSITION 
Nikolaos Kontoudakis 
ISBN:978-84-693-7682-9/DL:T-1754-2010 



nn

Introduction 

35 

 

adapted well to the climate of the region conditions, could not be suitable at the future, without 

the adoption of appropriate adaptive measures, and other regions that until now appeared as 

unsuitable wine grape production regions under warmer temperature scenarios may become 

more suitable for the production of high quality wines. 

In the light of these previsions there is no doubt that climate change will affect the quality of 

grape and wines well adapted in the viticulture regions that are now growing. The increase of 

temperature and the evolution of rainfall distribution and efficiency (IPCC 2007) as also point 

potential evaporation change (Webb 2006) will probable affect the vine and grape physiology 

and biochemistry. Although rise in CO2 concentration in the atmosphere may increase 

grapevine photosynthesis and grape production without causing negative impacts on the quality 

of grapes and red wine (Gonçalves et al. 2009), water availability and increase of temperatures 

will probable affect negatively. Schultz (2000) illustrates the probable effects of the possible 

increase in surface level ultraviolet UV-B radiation due to depletion of stratospheric ozone on 

grape physiology and production (Table 1). 

 

UV-B effects Possible relevance for grape production  

• activation  of genes of the phytopropanoid 
pathway 

• inactivation (damage) of photosystem II and of 
photosynthetic enzymes 

• reduced chlorophyll and carotenoid 
concentration  
 
 

• effects on nitrogen metabolism (via carbon 
supply or direct effects on key enzymes) 
 
 

• thicker leaves, wax composition 

• photo-oxidation of indole acetic acid (IAA, 
auxin), UV-B absorption by tryptophan  
 

• increase in ascorbic acid and glutathione 
content through the formation of free radicals 

• flowering and phenology 

• alterations in soil microflora and fauna  

� accumulation of flavonoids and anthocyanins  
(color formation and wine composition) 

� decreased photosynthesis  
 

� decreased photosynthesis  
� altered aroma compounds ? 
� xanthophylls, leaf and berry energy balance? 

 
� decreased amino acid concentration (yeast 

metabolism, fermentation kinetics, higher alcohol 
formation, secondary aromatic compounds) 
 

� more disease resistance 
�  possible formation of o-aminoacetophenone     

(off-flavor in white wine) 
 

� photoprotection, sulfur metabolism, induction of 
enzyme activities? 

� may be affected in some varieties  
� nutrient availability  

 

Table 1. Effects of the possible increase in surface level ultraviolet UV-B radiation due to depletion of 
stratospheric ozone on grape physiology and production (adapted from Schultz 2000). 
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The most enlightened effects from climate change would be: inhibition of photosynthesis, partial 

or total inhibition of berry development and biosynthesis, inhibition of ripening, loss of fruit 

volume with consequences on yield and the increase of sugar content at the harvest time.  

It is clear that if at the maturity period the temperature is higher than the optimum, the pulp of 

the grapes mature more rapidly, reaching high concentrations of sugar, low acid concentrations 

and thereby the period between veraison and industrial maturity decline, making it more 

difficult to reach the proper aromatic and phenolic grapes maturity (Zamora 2005), resulting in 

unbalanced wines with high pH and alcoholic content.  

High pH values in wines implies some problems such as less color, less antiseptic effectiveness 

of sulfur dioxide and higher risk of microbiological spoilage (Beech et al. 1979). On the other 

hand, high alcohol concentration is very likely to provoke stuck and sluggish alcoholic 

fermentation and to inhibit malolactic fermentation. Moreover, an excess of alcohol is 

unpleasant. Moreover, wines with high alcohol content are imposed with higher tax rates in 

some countries. 

It is a verifiable fact that most of the wines have gradually increased their alcohol content in 

recent years and winemakers are really concerned about the problem. The tendency of higher 

alcohol levels is studied in many viticulture areas with more characteristic the case of Alsace 

region which potential alcoholic levels of Riesling at harvest moment have increased 2.5% (v/v) 

between 1972-2003 (Duchêne and Schneider 2005). 

 

4.3. Winemaking techniques for reducing impact of climate change on wine quality 

 

Several techniques have been proposed to mitigate climate impacts. Firstly, it is necessary to 

study varieties, clones of vines and rootstocks (Main et al. 2002) that may be able to retard pulp 

sugar accumulation and acid consumption at a certain regional conditions. Additionally, the 

translation of the vineyards to other production regions can be a positive move (Schultz 2000).  

These solutions maybe are the most suitable but require considerable time and inversions to 

study and replace the existing vineyards.  Moreover, other possible available options for 

managing excessive alcohols in the vineyard can be the correct election of training system, row 
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vine spacing, pruning, bunch thinning, bud and leaf removal as also the adequate water 

management (Reynolds et al. 1996, Bruce et al. 2008, Mandelli et al. 2008, Poli et al. 2009).  

The harvest of grapes at early stage of ripening can be adapted but with negative effects in wine 

quality since the phenolic and aromatic maturity would not achieve the levels for the production 

of high quality wines. Other solution is the addition of water and mineral acids to the grape juice 

before the beginning of the fermentation but except the fact that it is strictly forbidden in the 

most of the winemaking countries, there is the possible of alternating the wine quality. Finally, 

the blending of wines with high alcoholic concentration with other with low concentration is an 

alternative solution when the wine with low alcoholic concentration do not present the 

disadvantages described above. 

The use of Glucose oxidase (EC 1.1.3.4) has been also proposed to obtain less alcoholic wines 

(Pickering et al. 1998). This enzyme break down glucose into gluconic acid, but is deactivated 

in the presence of alcohol in concentrations greater than about 1% by volume. They therefore 

need to be added to must before it has begun fermenting. 

However, the high gluconic acid concentration in wine is undesirable. Moreover, this enzyme 

use oxygen as substrate and consequently it is necessary to aerate excessively the grape juice to 

operate adequately which may involve an oxidation of other wine components (Pickering et al. 

1999). 

It is proposed the selection of Saccharomyce cerevisiae strains with a lower yield transformation 

of sugar into ethanol. However, the possibility of selecting a strain that produce less ethanol is 

limited by the fact that oenological strains present similar yields. Alcoholic fermentation carried 

out with non-Saccharomyces yeasts (Ciani and Ferraro 1996) can be a possible alternative 

solution but there is the possibility of produce unbalanced wines. The combination of non-

Saccharomyces with Saccharomyce cerevisiae yeasts can be a promising answer.  

The investigations about yeast and alcohol products are focused mainly on the genetically 

modified organisms. Several metabolic engineering strategies have been proposed (Dequin and 

Barre 1994, De Barros Lopes et al. 2000, Remize et al. 2000, Malherbe et al. 2003, Heux et al. 

2006). These strategies are based on metabolic redirection of sugars in the must by reducing 

ethanol production and increasing the cell biomass or fermentation end products such as 

glycerol or lactic acid. But genetically modified products, and especially genetically modified 

wine, are not accepted from the most of the consumers. So, more studies are necessary about the 
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possible environmental and human health risks of these yeasts and it is also necessary to study 

how they affect the wine characteristics. 

Several other technological innovations during winemaking process have been proposed to 

remove alcohol and decrease pH. Vacuum distillation methods using either evaporators or 

distillation column are widely applied in wine industry for alcohol reduction, being the spinning 

cone column probably the more utilized (Pickering 2000).  In addition, membrane processes 

have been applied during the last years to reduce sugar content in must or alcohol in wine. 

Among diverse methods (dialysis (Regan 1990), membrane contactors (Diban et al. 2008), 

pervaporation (Takács et al. 2007) and reverse osmosis (Bui et al. 1986), the reverse osmosis is 

the most popular. Other techniques that maybe can be applied for reducing alcoholic content of 

wines are the use of supercritical fluid extraction (Ruiz-Rodrigueza et al. 2010) and the 

adsorption (on resins or on silica gels) (Pickering 2000).  

The pH decrease can be achieved by adding organic acids however when the pH is too high the 

result is questionable. The reduction treatments are based basically at cationic exchange 

columns and electrodyalisis techniques (Walker et al. 2004). These physical methods are 

effective but involve the use of large and expensive equipment and many winemakers have 

concerns about their effects on wine quality.  
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HYPOTHESIS A�D OBJECTIVES  

 

During the last years, consumers demand wines with deep red color, full body, soft tannins and 

fruit scents. Those characteristics can be only achieved with grapes that have reached a high 

phenolic maturity. Very well-ripe grapes have a high concentration of anthocyanins that 

proportionate wines with deep red color. Additionally, full ripen grapes present low astringency 

and bitterness probably due to the diminution of the proportion of seed proanthocyanidins which 

are very galloylated. On the contrary, unripe grapes can lead to wines with poor color as also 

high levels of bitterness and astringency. 

At this point, it is essential to introduce the phenolic maturity notion. This concept makes 

reference to the potential of proanthocyanidins and anthocyanins presents in grapes, as also to 

their structure and capacity to be extracted from grapes during winemaking. Consequently, 

oenologists are very interested in phenolic maturity measurement in order to know which will be 

the color intensity and the final polyphenol composition of their wines. The aim is to facilitate 

the decision of the harvest day and/or even to separate grapes in function of their real quality. In 

recent years, several methods have been proposed to measure phenolic maturity. Among the 

different techniques that have been developed, the most applied of them are based on obtaining 

extracts from grapes with maceration in different solvents. Although these methods are 

commonly employed by some wineries there is a lack of scientific information about their 

exactitude, precision and especially their real predictive capacity. Indeed, only few studies 

correlate the phenolic composition of the grapes with the color and phenolic composition of the 

corresponding wines. 

On the other hand, all these methods only provide the average value of a representative sample 

from the whole grape vineyard and do not consider any possible heterogeneity in their degree of 

maturity. Winemakers know that the presence of a non-negligible proportion of unripe berries at 

the harvest time can considerably alter wine characteristics and that the only solution is the 

manual elimination of unripe berries with a grape sorting table for minimizing its negative 

impact.  

In view of the above, the main objectives of the first part of this thesis were: 

• To compare three of the most used methods for measuring the phenolic maturity of 

grapes at the harvest time - Glories, ITV and Cromoenos - in order to determine their 
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predictive effectiveness on the color and phenolic composition of the corresponding 

wines.  

•  To study the heterogeneity of the grapes, according to their density, during the grape 

ripening and determine its real influence on wine characteristics. 

Once we achieved those objectives, we focused on the probably implications that well-ripe 

grapes could have at wine quality. Grapes with very high phenolic maturity frequently have high 

sugar and low acid concentration; thereby the obtained wines have the inconvenience of 

presenting very high pH and alcohol content. During recent years this tendency seems to be 

increasing especially as result of the climate change.  

To mitigate the excess of pH and alcoholic concentration of wines we proposed the following 

objective: 

• To study the use of unripe grapes harvested during cluster thinning as a new winemaking 

procedure for partially reducing the wine pH and alcoholic content. 

During last years, micro-oxygenation has begun to be a common application technique in 

several wineries. Most authors have suggested that the reactions induced by oxygen produce 

wine color stabilization and astringency decrease. In fact, all winemakers know that micro-

oxygenation is very useful for stabilizing color, for improving structure and body, and for 

decreasing the astringency, bitterness and herbaceous characters of wine. Therefore, its 

employment in wines obtained with insufficiently-ripe grapes is highly recommended. 

As it is already mentioned, well-ripe grapes probably lead to wines with high pH and 

insufficiently-ripe grapes generally produce wines with low pH. The pH conditions the 

equilibrium among the different anthocyanin forms and has an unquestionable impact on wine 

color. On the other hand, anthocyanins can act, depending on pH, as electrophiles in the 

flavylium form or as nucleophiles in the hemiketal form. Therefore, it is quite logical that pH 

can influence the reactivity of anthocyanins. Moreover, the first step on the reactions induced by 

oxygen implies the formation of ethanal from ethanol. Subsequently, ethanal must capture a 

proton and become into a carbocation which will react with flavanols to start the process of 

formation of ethyl bridges. Therefore it is also logical that pH exert a non-negligible influence 

on these mechanisms. 
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In this context, it is logical to consider that the proton concentration, and consequently the pH, 

affects the process of this reaction. For that reason it would be interesting to study how wines 

with different pH evolve with the application of micro-oxygenation. 

Bearing in mind this observation we proposed the following objective: 

• To study the influence of wine pH on the effectiveness of micro-oxygenation.      

This research is part of a more general project developed by the Oenological Technology 

Research Group of the Department of Biochemistry and Biotechnology of the Rovira i Virgili 

University in Tarragona, Spain (project: AGL2007-66338 and CDTI (Project CENIT Demeter). 

An international stage has been done completed at the Chemistry Department of the Porto 

University down the supervision of the professor Dr. Victor de Freitas. 
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Abstract 

 

With the aim of determining the real predictive ability of three methods for measuring phenolic 

maturity (Glories, ITV and Cromoenos), representative grapes of Merlot, Cabernet sauvignon, 

Grenache and Tempranillo were harvested at three different ripening levels. The grapes were 

vinified by triplicate and were also used for phenolic maturity estimation. After that, colour 

intensity, CIELAB coordinates, anthocyanins by spectrometry and HPLC and total phenolics 

were analysed in wines and also in the different extracts from the three extraction methods. 

Statistical analysis of data was carried out to determine the real performance of prediction of the 

different methods. Glories method predicted reasonably the color intensity, CIELAB 

coordinates and the concentration of anthocyanins and total phenolics in wine although it needs 

a lot of time and it requires working carefully. On the other hand, Cromoenos method predicted 

similarly or even better the color and phenolic composition of wine. This method also presents 

the advantage of being much faster and easier to apply. In contrast, although the ITV method 

provided reasonable results for anthocyanins and total phenolic compounds its colour prediction 

was not adequate. 

 

Keywords: Phenolic maturity, Glories, Institut Français de la Vigne et du Vin, method, 

Cromoenos, Predictive ability 
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1. Introduction 

 

One of the most important parameters for obtaining high quality red wines is probably the 

ripeness of the grapes at the harvest time. Commonly, the grape maturity, and therefore the 

decision of harvesting, is to be taken only after analyzing sugar concentration, titratable acidity 

and the pH of the grape juice [1]. However, these parameters only provide information about the 

pulp ripeness and overlook the real degree of skins and seeds maturities [2]. 

The maturity of skins and seeds is considered as a key factor for red winemaking because they 

are the major source of phenolic compounds which are dissolved into the wine during 

maceration process [1,3]. Anthocyanins, the molecules responsible of red wine color, 

accumulate gradually in the skins during ripening [4-6]. However, anthocyanins are not always 

easily extracted from skins, and low extraction levels can lead to poorly colored wines, even 

though if the anthocyanins concentration in the original grapes is sufficient [7]. Therefore, the 

extractability of anthocyanins is also one of the main factors affecting their future concentration 

in wine [2,7]. Moreover, the extractability of anthocyanins increases throughout grape ripening 

[1]. In fact, it has been verified that the maceration of skins from well-ripened grapes in a model 

wine solution originated a greater anthocyanin concentration and higher color intensity [8]. 

Grape skins and seeds also contain many other phenolic compounds that are incorporated into 

the wine during the maceration process. Among these, proanthocyanidins, also known as 

condensed tannins, have a major role in wine quality [1]. Unlike proanthocyanidins from seeds, 

proanthocyanidins from skins contain prodelphinidins and have a higher degree of 

polymerization and a lower proportion of galloylated subunits [8]. Proanthocyanidins contribute 

to long-term color stability by combining with anthocyanins [1]. Besides, proanthocyanidins are 

also associated with such texture sensations as body and astringency [8,9]. 

Nowadays, deeply colored and full-bodied wines are highly valued by the market. However, 

these kind of wines require fully ripen grapes or on the contrary there is a risk of obtaining very 

bitter and astringent wines if the maceration technique applied provokes an overextraction of 

tannins. Consequently, winemakers are very interested in phenolic maturity measurement in 

order to know which will be the color intensity and the final polyphenol composition of the 

wine. The aim is to facilitate the decision of the day of harvest or even to separate grapes in 

function of their real quality. Several methods for measuring phenolic maturity have been 
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proposed using different techniques, such as the skin texture measurement [10], the direct 

measurement of the color absorption of the grape skins [11] and even the analysis of 

multispectral airborne high resolution images [12]. Nevertheless, these methods still remain 

experimental and are not usually employed by wineries. Nowadays, the most applied methods 

are based on obtaining extracts from grapes by means of maceration in different solvents [7, 13-

17]. Among them, Glories method [7, 18] and ITV method [16,19] are probably the most 

employed. However, all these methods are slow, laborious and require the participation of well-

trained technicians. Recently, another method, Cromoenos, has been proposed [20]. This 

method uses two commercial reagents and specific equipment for extracting phenolic 

compounds, enabling results easily in just 10 minutes. 

Although these methods are commonly employed by some wineries there is not a clear criterion 

for selecting which one of these methods is the most appropriate. This is probably due to the 

lack of scientific information about their exactitude, precision and especially their real predictive 

capacity. In fact, to our knowledge there are only few studies which have tried to correlate the 

phenolic composition of the grapes with the color and phenolic composition of the 

corresponding wines [21-23]. The aim of this study was the comparison of three methods of 

measuring phenolic maturity, Glories [7], ITV [13] and Cromoenos [20] in order to determine 

their predictive performance on the color and phenolic composition of the corresponding wines. 

 

2. Materials and methods 

 

2.1. Materials 

2.1.1. Chemicals 

Methanol, acetonitrile and formic acid were HPLC grade were purchased from Panreac 

(Barcelona, Spain). Malvidin-3-O-glucoside chloride was purchased from Extrasynthès (Genay, 

France). The rest of the chemicals were of high purity and were purchased from Panreac 

(Barcelona, Spain). 

 

2.1.2. Grape samples 
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This study was carried out with grapes of the cultivars Vitis vinifera cv. Merlot, Cabernet 

sauvignon, Grenache and Tempranillo. Grapes were harvested from the experimental vineyard 

belonging to the Enology Faculty in Tarragona (Rovira i Virgili University) at Constantí 

(Tarragona) in 2007 at three levels of ripeness. 

For each cultivar, the grapes were only collected from the two central rows of each plot. For 

obtaining random samples and for avoiding picking grapes from the same vine, every third vine 

was marked.  

The first harvest was collected three weeks after veraison and only from the marked vines. The 

second harvest was carried out five weeks after veraison collecting only grapes from the vines 

right next to the marked ones. Finally, the third harvest was done 7 weeks after veraison picking 

only grapes from the remaining vines. 

All bunches were manually destemed and the grapes were randomly grouped and used 

immediately for standard and phenolic maturity measurements and also for winemaking. 

 

2.2. Methods 

All the maturity analysis and vinifications were carried out by triplicate.  

 

2.2.1. Standard maturity analysis. 

One hundred grape berries were weighted and used for determining the sugar content, the 

titratable acidity and the pH according with the analytical methods recommended by the OIV 

[25]. Sugar concentration was measured using a refractometer (Fabre réfractométres, Sarl 

Germain, France). The titratable acidity was measured by titrimetry using NaOH 0.1 N and 

Bromothymol blue as indicator. The pH was measured using a pHmeter (micropH 2002, Crison, 

Barcelona, Spain). Table 1 shows the sugar content, the probable alcoholic degree, the titratable 

acidity, pH and the weight of 100 berries of the four cultivars at the three different maturity 

levels in which they were harvested. 
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Table 1. Evolution of standard parameters of grapes throughout ripening.

All data expressed the arithmetic average of three replicates ± standard deviation. S: sugar concentra tion, PDA:
probable alcoholic degree , TA: titratable acidity, W: weight of 100 berries. Different letter indicates the
existence of sta tistically significant differences.

Cultivars Parameters
Weeks after veraison

3 5 7

Merlot

S (g/L) 201.1 ± 0.1a 233.9 ± 0.1b 242.4 ± 0.1c

PAD (% v/v) 12.0 ± 0.1a 13.9 ± 0.1b 14.4 ± 0.1c

TA (g/l) 6.65 ± 0.16a 5.42 ± 0.03b 4.67 ± 0.23c

pH 3.23 ± 0.01a 3.39 ± 0.01b 3.45 ± 0.01c

W (g) 147.7 ± 2.4a 150.1 ± 1.7a 169.4 ± 6.1b

Cabernet Sauvignon

S (g/L) 185.1 ± 0.1a 207.6 ± 1.9b 222.2 ± 0.1c

PAD (% v/v) 11.0 ± 0.1a 12.3 ± 0.2b 13.2 ± 0.1c

TA (g/l) 8.95 ± 0.23a 6.90 ± 0.40b 5.65 ± 0.09c

pH 3.07 ± 0.01a 3.14 ± 0.02b 3.28 ± 0.01c

W (g) 135.1 ± 0.7a 137.6 ± 3.5a 153.6 ± 5.0b

Grenache

S (g/L) 221.0 ± 1.9a 233.9 ± 0.1b 233.4 ± 0.9b

PAD (% v/v) 12.0 ± 0.3a 13.9 ± 0.1b 13.9 ± 0.2b

TA (g/l) 5.58 ± 0.17a 4.03 ± 0.03b 3.90 ± 0.01c

pH 3.07 ± 0.01a 3.30 ± 0.01b 3.30 ± 0.03b

W (g) 200.9 ± 5.06a 203.9 ± 5.8a 222.2 ± 5.7b

Tempranillo

S (g/L) 194.1 ± 1.0a 203.6 ± 0.1b 233.9 ± 1.7c

PAD (% v/v) 11.5 ± 0.2a 12.1 ± 0.1b 13.9 ± 0.3c

TA (g/l) 5.85 ± 0.15a 4.46 ± 0.05b 4.20 ± 0.01c

pH 3.15 ± 0.01a 3.23 ± 0.03b 3.28 ± 0.01c

W (g) 209.2 ± 5.9a 216.9 ± 15.2ab 223.9 ± 8.46b

 

 

2.2.2. Phenolic maturity analysis. 

Six hundred grape berries from the four grape varieties and from the different ripening stages 

were milled by triplicate for 1 minute using a blender (Krups GMBH, F575, Solingen, 

Germany). This extract was used for the measurement of phenolic maturity using the Glories 

method, the ITV method and the Cromoenos method.  

 

2.2.2.1. Glories method  

It has been applied a modification of the methodology previously described by Professor Glories 

[7,18]. The modification consisted in the use of two buffers to guarantee the conservation of the 

pH throughout the maceration period. Samples of 50 g of the extract were macerated for 4 hours 

in two different buffers. First buffer was oxalic acid 0.3 M (pH 1.00) and the second buffer was 

phosphoric acid 0.3 M (pH 3.2). The pH of both buffers was adjusted using NaOH solution (0.2 

N). The samples were manually shacked every half hour. After 4 h, the macerated samples were 
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centrifuged (12,000 rpm, 10 min) in a Biofuge primo centrifuge (Heraus, Osterode, Germany) 

and used for colour measurement and for anthocyanins and total phenolic compounds content. 

 

2.2.2.2. ITV method 

It has been applied the methodology previously described by Dupuch [13]. Samples of 50 g of 

the extract were macerated for 1 h after the addition of 15 mL of ethanol (96 %) and 85 mL of 

HCl (0.1 %). The samples were manually shacked every 15 minutes. After 1 h, the macerated 

samples were centrifuged (12,000 rpm, 10 min) in a Biofuge primo centrifuge (Heraus, 

Osterode, Germany) and used for colour measurement and for anthocyanins and total phenolic 

compounds content. 

 

2.2.2.3. Cromoenos method  

This method use specific equipment and reagents provided by the manufacturer (Bioenos, 

Cariñena, Spain) [20]. Samples of 40 mL of the extract were introduced in the thermoextractor 

after the addition of 1 mL of reagent A, 4 mL of reagent B and 40 mL of deionised water. Once 

upon the temperature arrives till 80 ºC (environ 2 min) 1 mL of the sample was centrifuged 

(13,400 rpm; 2 min) in a Hermle Z233 MK2 centrifuge (Wehingen, Germany). 

60 µL of the the supernatant were diluted till 4 mL with HCl 2 % (v/v). This solution was used 

for the measurement of the absorbance at 520 and 280 nm. The predicted colour intensity of the 

corresponding wines were obtained by means of the software supplied by the manufacturer after 

introducing the absorbances at 520 and 280 nm as well as the cultivar name, the probable 

alcoholic degree, titratable acidity and pH. Simultaneously, this solution was also used for the 

determination of anthocyanins and total phenolic compounds content. 

 

2.2.2.4. Modified Cromoenos method 

A modification of the Cromoenos was also applied to the measurement of the color. 500 µL of 

the supernatant were diluted with 1 mL of a synthetic solution containing 4 g of tartaric acid L-1 

and 13 % (v/v) ethanol adjusted at a pH of 3.80. This solution was selected after some previous 
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assays (data not shown) because the mixture with the Cromoenos extract presented a pH similar 

than that of most of the wines of the region (pH 3.50). This mixture was directly used for colour 

measurements. 

 

2.2.3. Winemaking procedure. 

For each variety and ripening stage, the grapes were harvested and manually destemed. After 

that, the berries were randomly distributed in three groups of eight kilos each one, crushed with 

a semi-automatic crusher machine (Gual, Villafranca del Penedès, Spain), sulphited (100 mg of 

K2S2O5 L
-1) and introduced in 10 L tanks. All tanks were immediately inoculated with 200 mg 

L-1 of selected yeast (DV10, Martin Vialatte, Epernay, France) and maintained at a room 

temperature of  25 ± 1 ºC. All these microvinifications were controlled diary by measuring the 

temperature and the density of the must. Each day a punch down was carried out to favour 

phenolic compounds dissolution. After 14 days of maceration, the wines were racked, sulphited 

(100 mg of K2S2O5 L
-1) and refrigerated for three weeks at 4 ºC. Hence, malolactic fermentation 

was inhibited to avoid possible variations in the rhythm of this transformation that could affect 

differently each wine. After that, wines were decanted and bottled. All the samples were stocked 

at 15 ± 1 ºC until the moment of the analysis. 

  

2.2.4. Wine and phenolic extract analysis 

With the aim of making directly comparable extracts and wines, the results of grape extracts 

were corrected considering the applied dilution factors and a theoretical yield of 80 % between 

the volume of wine and the weight of the grapes. 

 

2.2.4.1. Colour parameters.  

The color intensity (CI) was estimated using the method described by Glories [26]. The 

CIELAB parameters, lightness (L*), chroma (C*), hue (H*), redness (a*) and yellowness (b*) 

were determined according to Ayala et al. [27].  
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2.2.4.2. Phenolic compounds. 

The total anthocyanins concentration was determined spectrophotometrically using the method 

described by Niketic-Aleksic and Hrazdrina [28]. HPLC analyses of anthocyanins were carried 

out with an Agilent (1100 series) liquid chromathograph and Waters Spherisorb column (ODS2) 

in accordance with the method described by González-SanJosé [14]. The anthocyanin standard 

curves were made using malvidin-3-glucoside (Extrasynthase, Lyon, France). The total phenolic 

index (TPI) was determined by measuring absorbance at 280 nm [2] and expressed as 

absorbance units [1]. 

 

2.2.5. Statistics. 

All of the data are expressed as the arithmetic average ± standard deviation from three 

replicates. Linear regressions as well as Fisher’s correlation analysis were carried out using 

Statview (software for Macintosh). Statistical comparisons between values were established 

with a one-factor ANOVA and Schffee test using SPSS software. 

 

3. Results and discussion 

 

Table 1 shows the sugar content, probable alcoholic degree, titratable acidity, pH and the weight 

of 100 berries of the four cultivars at the three selected harvest maturity levels. The four 

cultivars presented the expected evolution in all parameter. The first harvest presented an 

insufficient maturity inasmuch as the probable alcoholic degree and pH were relatively low and 

the titratable acidity relatively high in relation to the potentiality of each one of these cultivars. 

In contrast, the grapes of the third harvest were very ripe because their probable alcoholic 

degree and pH were relatively high and their titratable acidity comparatively low. The grapes of 

the second harvest of the four cultivars presented intermediate values. 

Figure 1 shows the linear regression analysis between the color intensity of the different wines 

and their corresponding predicted values obtained by applying the different phenolic maturity 

methods. These results indicate that Glories and Cromoenos methods originated reasonably 

linear regression coefficients (r2 = 0.8489 and 0.8869 respectively), whereas the ITV method did 
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not (r2 = 0.3879). On the other hand, the modification of Cromoenos method enhanced the 

quality of the measure to the point that the linear regression coefficient (r2 = 0.9517) increased 

notably in respect to the original method. 
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Fig. 1. Linear regression analysis between the obtained and the predicted color intensity. 

 

Figure 2 present the linear regression analysis between the CIELAB coordinates of the different 

wines and their corresponding predicted values obtained with Glories, ITV and modified 

Cromoenos method. In that case, the measurement of CIELAB coordinates for Cromoenos 

method was not possible because of the high absorbance of the solutions. In contrast, the 

dilution used in the modified Cromoenos method allowed its determination. Glories, ITV and 

specially modified Cromoenos originated satisfactory linear regression coefficients for Chroma 

(r2 = 0.8474, 0.7514 and 0.9114 respectively) and Luminosity (r2 = 0.7900, 0.8284 and 0.8803 

respectively). However, none of these methods was able to provide acceptable linear regression 

coefficients for the Hue (r2 = 0.3951, 0.1427 and 0.5895 respectively). Even, in the case of 

Glories method the slope was negative indicating an inverse tendency between the extract and 

the wine. 
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Fig. 2. Linear regression analysis between the obtained and the predicted CIELAB coordinates. 

 

Table 2 summarizes the predictive capabilities for color intensity and CIELAB coordinates of 

the different phenolic maturity methods. All this data indicates that the modified Cromoenos 

method originated in all the parameters the higher linear regression and Fisher’s correlation 

coefficients, existing in all the cases, even in H* and b*, a statistical significant correlation (p < 

0.05). On the other hand, Glories method also led to reasonably good linear regression and 

Fisher’s correlation coefficients for CI, C*, L* and a* but not for H* or b*. Finally, ITV method 

only correlated adequately C*, L* and a* whereas no significant correlations were found in CI, 

H* and b*. The ensemble of these results indicates that Glories and specially modified 

Cromoenos method can be used for wine color prediction with an adequate degree of precision, 

whereas ITV method is not suitable for this purpose. 

As it was quoted in the introduction, only few studies have tried to verify the real predictive 

performance of some methods for measuring grapes phenolic maturity. Specifically, Jensen et 

al. (2008) [21], working with microvinifications of only 250 g, have obtained a linear regression 

coefficient (r2) of 0.9178 when compare the color intensity prediction with the one in wines. 

This value is slightly higher than our results corresponding to Glories and Cromoenos methods 

but somewhat lower than those of modified Cromoenos method.  
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Table 2. Comparison between the predictive capabilities for color intensity and CIELAB coordinates of the different
methods.

Predicted parameter Method Slope (m)
Y Intercept 

(b)
r2

Fisher's 
correlation 
coefficient

Significance

Color intensity

Glories (pH 3.2) 1.11 -0.96 0.8489 0.9214 ***

ITV 0.21 -3.83 0.3879 0.5624 ns

Cromoenos 1.20 -0.51 0.8869 0.9418 ***

Modified Cromoenos 1.50 -2.28 0.9517 0.9756 ***

C*

Glories (pH 3.2) 1.51 18,25 0.8474 0.9205 ***

ITV 0.92 -1.03 0.7514 0.8668 ***

Modified Cromoenos 1.05 0.74 0.9114 0.9547 ***

L*

Glories (pH 3.2) 2.39 -151.21 0.7900 0.8888 ***

ITV 1.41 -28.65 0.8284 0.9102 ***

Modified Cromoenos 1.34 -30.61 0.8803 0.9382 ***

H*

Glories (pH 3.2) -0.78 636.88 0.3951 0.5756 ns

ITV 0.25 271.05 0.1427 0.3778 ns

Modified Cromoenos 0.92 24.57 0.5895 0.7678 *

a*

Glories (pH 3.2) 1.54 18.45 0.8283 0.9101 ***

ITV 1.11 -14.15 0.8145 0.9025 ***

Modified Cromoenos 1.14 -6.38 0.9015 0.9495 ***

b *

Glories (pH 3.2) -1.36 -0.17 0.1625 0.4031 ns

ITV 0.14 2.44 0.0604 0.2458 ns

Modified Cromoenos 0.96 -14.82 0.6456 0.8035 **

All data represent the statistical comparison of 36 wines and their corresponding phenolic maturity extracts. ns: non
significant.

p < 0.05.
p < 0.01.
p < 0.005.

*

**

***  

 

Other studies have tried to correlate grape phenolics with the final wine composition [23,24] but 

none of them have directly compared the grape extract color with the wine color. Finally, 

González-Neves et al. (2002) [29] have directly compared the color and the concentration of 

anthocyanin and other phenolic compounds of wines with the parameters obtained by the 

Glories method. In this experiment, authors obtained good statistical correlations when they 

compare the total polyphenols in wine with the anthocyanin extracted at pH 3.2 and between the 

color intensity and the anthocyanin extracted at pH 1.0. Other parameters presented significant 

correlation coefficient but not at the same level. 

Figure 3 shows the linear regression analysis between the anthocyanins concentration, measured 

by spectrophotometry, of the different wines and their corresponding predicted values obtained 

by applying the different phenolic maturity methods. Glories method originated reasonably good 

linear regression coefficients at both pH. Specifically, r2 was 0.7897 at pH 1.0 and 0.8809 at pH 

3.2. According to Glories method, the anthocyanin concentration obtained at pH 1.0 represent 
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all the anthocyanins present in the skins whereas anthocyanin concentration obtained at pH 3.2 

represent all the anthocyanin extractable in a standard winemaking. These results are in 

agreement with this postulate since the slope at pH 3.2 is close to 1 (0.96) suggesting that 

extraction at this pH was very similar to that obtained in the wine. Moreover, the slope at pH 1.0 

is close to 0.5 (0.52), suggesting that during winemaking were extracted about 50% of all 

anthocyanins present. 
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Fig. 3. Linear regression analysis between the obtained and the predicted anthocyanin concentration. 

The other two methods, ITV and Cromoenos, also provided reasonably linear regression 

coefficients for anthocyanin concentration (r2 = 0.8259 and r2 = 0.8170 respectively). However, 

the obtained slopes are in both cases quite lower than 1.0 (0.64 and 0.44) indicating that both 

methods overextracted anthocyanins in relation to what happens during winemaking. 

Other authors have tried to correlate the spectrophotometric anthocyanin concentration of the 

extracts and the final wine anthocyanin concentration. González-Neves et al. (2004) [23] and 

Romero-Cascales et al. (2005) [24], using the Glories method have obtained linear regression 

coefficients of 0.7225 and 0.8742 respectively, whereas Jensen et al. (2008) [21], using other 

methodology [15] obtained better results (0.9025). Our results are comparable and confirm that 

the three methods predict reasonably the future wine anthocyanin concentration. 
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Figure 4 shows the linear regression analysis between the total phenolic index (TPI) of the 

different wines and their corresponding predicted values obtained by applying the different 

phenolic maturity methods. For this parameter, the three methods provided reasonably good 

linear regression coefficients (between 0.8028 and 0.8839) and comparables to those previously 

described in the bibliography [21,23,24]. However, the slopes were in all the cases lower than 

1.0 suggesting that all three methods produce an overextraction of phenolic compounds. 

Specifically, Glories method presented a slope of 0.75 which indicates an overextraction of 

around 33 %, which can be considered not very high. However, ITV and Cromoenos presented 

slopes considerably lower, 0.36 and 0.19, thus implying very high overextraction (around three 

and five folds more than in wine). This overextraction is probably because the conditions of 

extraction of all methods are very drastic and involve the complete crushing of seeds. 
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Fig. 4. Linear regression analysis between the obtained and the predicted TPI. 

 

Table 3 summarizes the predictive capabilities for anthocyanins, measured by 

spectrophotometry, and TPI of the different phenolic maturity methods. This table also include 

the statistical comparison between the anthocyanin analysis by HPLC of the wines and the 

extracts obtained by the different methods. The three methods provide reasonably linear 

regression and Fisher’s correlation coefficients in anthocyanins (by spectrophotometry) and TPI, 

existing in all the cases a statistical significant correlation (p < 0.001). When the statistical 
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analysis was applied to the total anthocyanins measured by HPLC the linear regression and 

Fisher’s correlation coefficients of all the methods decreased considerably although the 

existence of a statistical significance in the correlation was maintained in all the cases. It is 

necessary to remark that the slopes were in the three methods quite lower than 1.0 confirming 

that an overextraction of anthocyanins has taken place especially in the ITV and Cromoenos 

methods. These results are in agreement to the few data previously described [21,23,24] and can 

be considered as quite satisfactory. 

 

Table 3. Comparison between the predictive capabilities for phenolic compounds of the different methods.

Predicted parameter Method Slope (m) Y Intercept (b) r2 Fisher's correla tion
coefficient

Significance

Total anthocyanins by spectrophotometry

Glories (pH 3.2) 0.96 - 46 0.8809 0.9386 ***

ITV 0.74 45 0.8259 0.9088 ***

Cromoenos 0.44 55 0.8170 0.9039 ***

Total anthocyanins by HPLC

Glories (pH 3.2) 0.48 101 0.4884 0.6988 *

ITV 0.21 137 0.4515 0.6719 *

Cromoenos 0.19 117 0.5680 0.7536 **

Total anthocyanins monoglucosides

Glories (pH 3.2) 0.31 122 0.4172 0.6459 *

ITV 0.16 128 0.4808 0.6934 *

Cromoenos 0.17 100 0.6152 0.7843 **

Total acyla ted anthocyanins

Glories (pH 3.2) 0.97 1.0 0.9017 0.9499 ***

ITV 0.49 -19.1 0.8864 0.9441 ***

Cromoenos 0.33 11.4 0.8908 0.9438 ***

Total acetilated anthocyanins

Glories (pH 3.2) 0.88 3.4 0.9531 0.9763 ***

ITV 0.47 0.7 0.9698 0.9848 ***

Cromoenos 0.36 5.1 0.9180 0.9581 ***

Total coumarylated anthocyanins

Glories (pH 3.2) 0.47 18.4 0.2989 0.5468 ns

ITV 0.11 22.1 0.2814 0.5302 ns

Cromoenos 0.12 17.5 0.4143 0.6431 *

TPI

Glories (pH 3.2) 0.75 11.3 0.8839 0.9402 ***

ITV 0.36 16.6 0.8028 0.8961 ***

Cromoenos 0.19 14.9 0.8180 0.9044 ***

All data represent the sta tistica l comparison of 36 wines and their corresponding phenolic maturity extracts. ns: non significant.
p < 0.05.
p < 0.01.
p < 0.005.

*

**

***  

 

When this statistical analysis was applied to the monoglucosides, the acetylated and the 

coumarylated anthocyanins, the results varied in function of the anthocyanins group. 

Specifically, the monoglucosides presented a very similar behaviour than total anthocyanins as it 

was expected due to the great proportion of this anthocyanins type. However, acetylated and 

coumarylated anthocyanins behaves in a different manner. The three methods provide very good 

linear regression and Fisher’s correlation coefficients in acetylated anthocyanins. However, in 

the case of coumarylated anthocyanins the results were quite worst, being only significant in the 

case of Cromoenos method (Table 3). 
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3. Conclusions 

 

It can be concluded that the three studied methods for measuring phenolic maturity can be used 

for predicting some of the characteristics of the future wines. Specifically, the three methods 

provide very good linear regression and correlation coefficients for anthocyanins by 

spectrophotometry and TPI. However, only Glories and Cromoenos offer good results for color 

parameters.  Moreover, in the case of Cromoenos, a simple modification allows to considerably 

enhance its performances. Nevertheless, all three methods provide somewhat worse results when 

were applied to compare the anthocyanins measured by HPLC. 

Another consideration to bear in mind are the cost and the easiness of the manipulation process 

of the three methods. Glories and ITV method do not use any specific equipment or specific 

reactive. However, both methods are slow, laborious and require the participation of well-

trained technicians which represents a not negligible cost for the winery. On the other hand, 

Cromoenos needs specific equipment and reactives, which represent a cost of around 7.5 € 

sample-1. Nevertheless, this method enables results easily in just 10 minutes thereby reducing 

the cost of labor necessary. Consequently, Cromoenos method presents the best balance between 

its predictive ability and its simplicity of use, making it a very good analytical procedure for 

wineries. 
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Abstract 

 

Nowadays, consumers demand red wines with deep color, soft tannins and fruit scents, but these 

wines can only be obtained from grapes with complete phenolic maturity. Diverse methods have 

been proposed for measuring phenolic maturity. However, all these methods only provide the 

average value and do not consider any possible heterogeneity. Throughout ripening, grapes were 

separated according to their density, which revealed the existence of a large heterogeneity. 

Grapes at harvest were also separated by density in three groups. The higher the density of the 

grapes the higher ethanol content, pH, color intensity, total phenolic index and anthocyanin and 

proanthocyanidin concentrations, and the lower the titratable acidity and bitterness of the wines. 

When the grapes were denser the wines were also better balanced in flavor and mouthfeel 

sensation. These results suggest that grape heterogeneity may influence the final wine 

composition and quality and therefore it should be consider at harvest.  

 

Keywords: Phenolic maturity, Heterogeneity, Red wine color, Phenolic compounds, 

Anthocyanin  
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1. Introduction 

 

One of the major factors affecting red wine quality is the real degree of phenolic maturity in the 

grapes at harvest time (Ribereau-Gayon, Glories, Maujean & Dubourdieu, 2006). Most of 

wine’s sensory attributes such as color, body, and tactile and taste sensations like as, astringency 

and bitterness, are directly associated with the composition of anthocyanins and 

proanthocyanidins (Arnold & Noble, 1978; Gawel, 1998; Noble, 1990; Vidal et al., 2003) and 

this composition is strongly affected by ripeness (Canals et al., 2005; Llaudy, Canals, Canals, & 

Zamora, 2008). 

Anthocyanins are only present in grape skins whereas proanthocyanidins are present in skins 

and seeds (Ribereau-Gayon et al., 2006). Seed proanthocyanidins are made up of (+)-catechin, 

(–)-epicatechin and (–)-epicatechin-3-gallate (Kennedy, Matthewa, & Waterhouse, 2002; Prieur, 

Rigaud, Cheynier, & Moutounet, 1994), whereas skin proanthocyanidins have a much lower 

proportion of (–)-epicatechin-3-gallate and also contain (–)-epigallocatechin (Gonzalez-

Manzano, Rivas-Gonzalo, & Santos-Buelga, 2004; Souquet, Cheynier, Brossaud, & Moutounet, 

1996). 

Molecular sizes and the monomeric composition of proanthocyanidins in particular have a large 

influence on the sensation of astringency. More specifically, the greater degree of 

polymerization and the greater percentage of galloylation, will cause a greater sensation of 

astringency (Herderich & Smith, 2005; Vidal et al., 2003; Vivas & Glories, 1996). 

It is generally considered that ripeness strongly influences the phenolic composition of red 

wines (O´-Marques, Reguinga, Laureano, & Ricardo-da-Silva, 2005; Ryan & Revilla, 2003). It 

has been reported, for example, that insufficiently ripened grapes have a lower extractability of 

anthocyanins and proanthocyanidins from skins and a higher extractability of proanthocyanidins 

from seeds (Canals et al., 2005; Peyrot des Gachons & Kennedy, 2003). For this reason, it is 

generally thought that insufficiently ripened grapes may produce more astringent and bitter 

wines because their seeds can release a higher amount of proanthocyanidins, which are highly 

galloylated (Romeyer, Macheix, & Sapis, 1986). 

Consequently, for the last two decades winemakers have been very interested in the concept of 

“Phenolic Maturity”. The reason for this is very simple. Consumers demand wines with deep red 
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color, full body, soft tannins and fruit scents, and this kind of wine can only be obtained from 

grapes that have reached complete phenolic maturity. If this is not the case, wines may present 

bitter and astringent sensations and a poor color. 

This interest has led to several investigations to try and find effective methodologies for 

determining the real level of phenolic ripeness in grapes and thus provide a better criterion for 

deciding the optimum time of harvest. In fact, various methods for measuring phenolic maturity 

have been proposed (Celotti, Della Vedova, Ferrarini, & Martinand, 2007; Dupuch, 1993; 

Glories, & Agustin, 1993).  

Some of these methods can predict reasonably well the phenolic maturity and especially the 

color intensity of a wine (Kontoudakis et al., 2010). However, all these methods only provide 

the average value of a representative sample from the whole grape vineyard and do not consider 

any possible heterogeneity in their degree of maturity.  

In a vineyard, grapes do not ripen homogeneously. Each cluster and even each berry matures at 

different rates through the influence of multiple factors. The location of vines in the vineyard 

(exposure, altitude, soil composition, temperature, humidity, vine density, etc.), the position of 

the cluster on the vine and even the position of the berries in the cluster can produce some 

differences in the ripening rate (Haselgrove et al., 2000; Smart, Robinson, Due, & Brien, 1985). 

Furthermore, an uneven grape ripeness can affect the quality of the final product. The presence 

of a non-negligible percentage proportion of unripe berries can considerably increase the 

appearance of bitter and astringent characters in wine. 

Several studies are focused on the influence of grapes harvested at different stages of maturity 

on wine phenolic composition and quality (Canals et al., 2005; Gambuti, Strollo, Lecce, & 

Moio, 2007; Llaudy et al., 2008; Pérez-Magariño, & González-San José, 2006). However, to our 

knowledge, none of them study the extent and the impact of grape heterogeneity. Since this 

aspect has not been investigated in detail to date, the aim of this study was to determine the real 

influence of the heterogeneity in the degree of grape ripeness on wine composition and quality. 

 

2. Materials and methods 

 

2.1. Chemicals 
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Methanol, acetonitrile, formic acid and acetic acid were HPLC-grade and were purchased from 

Panreac (Barcelona, Spain). Malvidin-3-O-glucoside chloride, (+)-catechin, (-)-epicatechin, (-)-

epigallocatechin and (-)-epicatechin-3-O-gallate were purchased from Extrasynthès (Genay, 

France). TSK Toyopearl gel HW-40(S) was purchased from Tosoh (Japan). Ovoalbumin, 

phloroglucinol and L-ascorbic were purchased from Sigma (Madrid, Spain). The rest of the 

chemicals were of high purity and were purchased from Panreac (Barcelona, Spain). 

 

2.2. Grapes 

This study was carried out with grapes of the cultivar Vitis vinifera cv. Cabernet sauvignon from 

the experimental vineyard at Constantí (AOC Tarragona) which belongs to the Enology Faculty 

in Tarragona of the Rovira i Virgili University. The grapes were collected in 2007 and 2008 and 

were only taken from the two central rows of the plot. 

 

2.3. Maturity controls 

Six hundred grapes were randomly collected at one, three, five and seven weeks after veraison. 

One hundred berries were used for measuring the sugar content, titratable acidity, pH and 

weight. Solutions of NaCl of 100 to190 g/l were prepared and to analyze ripening heterogeneity 

according to the methodology previously described (Fournand et al., 2006). These solutions had 

densities comprised between 1020 and 1120 mg/ml. One hundred berries were introduced to the 

less dense solution (1020 mg/ml). The floating berries were considered that have the same 

density than the solution. There were separated from sank berries and were counted. After that, 

sank berries were removed and introduced to the following denser solution (1031.1 mg/ml). The 

same process was repeated with all NaCl solutions. All these measurements were done in 

triplicate. 

2.4. Winemaking procedure 

Seven weeks after veraison, 70 kg of grapes were harvested and manually destemmed. Grapes 

were separated into three groups by flotation in two solutions of sucrose of different 

concentrations. Sucrose solutions of 232 g/l and 244 g/l were used for the 2007 vintage and of 

244 g/L and 256 g/l for the 2008 vintage. These solutions presented the following densities at 
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20ºC: 1090 mg/l and 1095 mg/l for the 2007 vintage and 1095 mg/l and 1100 mg/l for the 2008 

vintage. These solutions were chosen each year to adapt it to the maturity conditions of the 

vintage. 

 

Table 1. Evolution of standard parameters of grapes throughout ripening.

Parameters Vintage
Weeks after veraison

1 3 5 7

S (g/L)
2007 154.3 ± 3.9a 185.1 ± 0.1b 207.6 ± 1.9c 222.2 ± 1.3d

2008 176.7 ± 1.7a 190.8 ± 2.3b 197.8 ± 5.6b 206.5 ± 1.0c

PAD (% v/v)
2007 9.17 ± 0.23a 11.0 ± 0.3b 12.3 ± 0.2c 13.2 ± 1.9d

2008 10.50 ± 0.10a 10.9 ± 0.1b 11.6 ± 0.2c 12.3 ± 0.1d

TA (g/l)
2007 13.34 ± 0.10a 8.95 ± 0.23b 6.90 ± 0.40c 5.65 ± 0.09d

2008 14.10 ± 0.09a 9.45 ± 0.05b 7.03 ± 0.49c 6.55 ± 0.35c

pH
2007 2.82 ± 0.01a 3.07 ± 0.02b 3.14 ± 0.02c 3.28 ± 0.01d

2008 2.90 ± 0.02a 3.05 ± 0.02b 3.16 ± 0.02c 3.21 ± 0.01c

W (g)
2007 109.1 ± 1.a 120.4 ± 0.7b 137.6 ± 3.5b 153.6 ± 5.1c

2008 115.1 ± 3.8a 117.6 ± 3.5ab 124.2 ± 5.8b 127.1 ± 0.5c

All data are expressed as the arithmetic average of three replicates ± standard deviation (n=3). S: sugar concentration,
PAD: prabable alcoholic degree, TA: tit ra table acidity, W: weight of 100 berries. Statistical analysis: one-factor
ANOVA and Scheffe’ s test (both p=0.05). Different letters indicates the existence of statistically significant
differences between values of the same vintage.  

 

After that, the berries of each lot were randomly distributed into three groups of four kilograms, 

crushed with a semi-automatic crusher machine (Gual, Villafranca del Penedès, Spain),   

sulphited (100 mg of K2S2O5/l) and introduced in six liter tanks. All tanks were immediately 

inoculated with 200 mg/l of selected yeast (DV10, Martin Vialatte, Epernay, France) and 

maintained at a room temperature of 25 ± 1 ºC. All these microvinifications were controlled 

daily by measuring the temperature and the density of the must. Each day a punch down was 

carried out to encourage the extraction of phenolic compounds. After 14 days of maceration, the 

wines were racked, sulphited (100 mg of K2S2O5/l) and refrigerated for three weeks at 4 ºC. 

After that, wines were decanted and bottled. All the samples were stored at 15 ± 1 ºC until the 

moment of the analysis.  

 

UNIVERSITAT ROVIRA I VIRGILI 
GRAPE PHENOLIC MATURITY; DETERMINATION METHODS AND CONSEQUENCES ON WINE PHENOLIC COMPOSITION 
Nikolaos Kontoudakis 
ISBN:978-84-693-7682-9/DL:T-1754-2010 



nn

Results (ii) 

88 

 

2.5. Standard grape and wine analysis 

The analytical methods recommended by the OIV (O.I.V., 2005) were used to determine sugar 

content, probable alcoholic degree, titratable acidity and the pH of the grapes and the ethanol 

content, titratable acidity and pH of the wines. 

 

2.6. Color parameters 

The color intensity (CI) was estimated using the method described by Glories (1984). The 

CIELAB coordinates, lightness (L*), chroma (C*), hue (h*), red-greenness (a*) and yellow-

blueness (b*) were determined according to Ayala, Echávarri and Negueruela (1997) and the 

data were processed with the MSCV® software (Ayala et al., 2001). The total colour difference 

(∆Eab*) between two samples was obtained using the expression: ∆Eab* = [(∆L*)2 + (∆a*)2 + 

(∆b*)2]1/2 (Pérez-Magariño & González-Sanjose, 2003). All absorbance measurements were 

taken with a Helios Alpha (Thermo Fisher Scientific Inc.,Waltman, MA) UV–vis 

spectrophotometer using quartz cells of 1 mm path length. 

 

2.7. Anthocyanin Analysis 

The total anthocyanin content was determined by spectrophotometry using the method described 

by Niketic-Alksic and Hrazdina (1972). Free and combined anthocyanins were calculated using 

the PVPP index (Glories, 1984). Reversed-phase HPLC analyses of anthocyanins and the 

anthocyanin-derived pigments Vitisin A and Vitisin B were carried out with an Agilent 1200 

series liquid chromathograph (HPLC-DAD) and an Agilent Zorbax Eclipse XDB-C18, 4.6 x 

250mm 5µm column (Agilent Technologies, Santa Clara, USA) in accordance with the method 

described by González-San José, Diez, Santa María, & Garrido. (1988). Anthocyanins and 

anthocyanin-derived compounds were quantified at 520 nm as malvidin-3-glucoside, using 

malvidin-3-glucoside chloride as an external standard. 

 

2.8. Analysis of Flavanols 
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2.8.1. HPLC and HPLC-ESI-MS analysis of Catechins and Oligomeric Proanthocyanidins 

20 ml of wine was extracted thrice with 20 ml of ethyl acetate to analyze the catechins and 

oligomeric proanthocyanidins. The wine extract was evaporated under vacuum (Buchi 

rotavoporate, Flawil, Switzerland) and then redissolved with methanol. This wine extract was 

fractionated through a TSK Toyopearl HW-40(s) gel column (250mm x 16mm) using purified 

methanol as described previously (De Freitas, & Glories, 1999). Flow rate was regulated at 0.8 

ml/min using a peristaltic pump (Gilson, Middleton, USA). This gave us three fractions of 120 

ml each one. The first fraction contained procyanidin monomers, (+)-catechin and (-)-

epicatechin, the second fraction contained procyanidin dimers and trimers and the third fraction 

contained procyanidin trimers and tetramers (De Freitas, Glories, Bourgeios, & Vitry, 1998). All 

fractions were evaporated and redissolved on 1 ml synthetic solution (12% ethanol, 4 g/l tartaric 

acid and pH 3.2). 

Quantitative analysis was carried out by reverse-phase HPLC (Merck-Hitachi L6200, 

Darmstadt, Germany) using two Beckman Ultrasphere C18 ODS columns (250 × 4.6 mm, 5µm) 

(Beckman Coulter, Fullerton, USA) connected in series and protected with a guard column 

packed with the same packing. The chromatograms were monitored at 280nm using a UV 

detector and in accordance with the method of De Freitas and Glories (1999). The procyanidin 

monomers and dimers were identified by comparing its retention time with that of the pure 

compound and by ESI-MS analysis. Trimers and tetramers were identified by ESI-MS analysis. 

Mass spectrometry analyses were performed using a Finnigan Surveyor series liquid 

chromatography equipped with a Thermo Finnigan (Hypersil Gold) reversed-phase column (150 

mm × 4.6 mm, 5 µm, C18) thermostated at 25 °C. The samples were analyzed using the same 

solvents, gradients, injection volume, and flow rate for HPLC analysis. Double-online detection 

was done by a photodiode spectrophotometer and mass spectrometry. The mass detector was a 

Finnigan LCQ DECA XP MAX quadrupole ion trap (Finnigan Corp., San Jose, CA) equipped 

with an atmospheric pressure ionization (API) source and using an electrospray ionization (ESI) 

interface. The vaporizer and the capillary voltages were 5 kV and 4 V, respectively. The 

capillary temperature was set at 325 °C. Nitrogen was used as both sheath and auxiliary gas at 

flow rates of 90 and 25, respectively (in arbitrary units). Spectra were recorded in positive ion 

mode between m/z 250 and 1500. 
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2.8.2. Analysis of Proanthocyanidins following acid catalysis with phloroglucinol 

Acid-catalysis cleavage in the presence of excess phloroglucinol (Kennedy & Jones, 2001) was 

used to analyze monomeric proanthocyanidin composition and its mean degree of 

polymerization (mDP). 10ml of wine was evaporated under a low pressure vacuum (Univapo 

100 ECH, Uni Equip, Martinsried, Germany). After that it was resuspended in 6 ml distilled 

water and then applied to Set Pak Plus tC18 Environmental cartridges (Waters, Milford, USA) 

that had been previously activated with 10 ml methanol and 15 ml water. The sample was 

washed with 15 ml distilled water and then the proanthocyanidins were eluted with 12 ml 

methanol, immediately evaporated under vacuum and later eluted in 2ml methanol.  Finally, 100 

µl of this sample were reacted with 100 µl phloroglucinol solution (0.2N HCl in methanol, 

containing 100g/l phloroglucinol and 20 g/l ascorbic acid) at 50 ºC for 20 min. The reaction was 

stopped by adding 1000 µL of 40 mM aqueous sodium acetate (Kennedy & Jones, 2001). 

Reversed-phase HPLC analysis (Agilent serie 1200 HPLC-DAD) was carried out according to 

the method of Kennedy and Jones (2001). The monomers (+)-catechin, (-)-epicatechin, (-)-

epicaechin-3-O-gallate were identified by comparing its retention time with that of the pure 

compounds. The phoroglucinol adducts of (+)-catechin, (-)-epicatechin, (-)-epigallocatechin and 

(-)-epicatechin-3-O-gallate were identified by HPLC-TOF analysis. Analyses were performed 

with Agilent 1200 series HPLC using an Agilent 6210 time of flight (TOF) mass spectrometer 

equipped with an electrospray ionization (ESI) system. Elution was carried out under the same 

HPLC analysis conditions as described by Kennedy and Jones (2001). The capillary voltage was 

3.5 kV. Nitrogen was used as both dry gas at a flow rate of 12 l/min at 350 ºC and nebulizer gas 

at 60 psi. Spectra were recorded in positive ion mode between m/z 50 and 2400. This assay was 

also carried out without addition of phloroglucinol in order to measure the quantity of 

proanthocyanidin monomers naturally present in the wines. 

The number of terminal subunits were considered as the difference between total monomers 

without phoroglucinol and thus obtained in the analysis performed without phloroglucinol 

addition. The addition of all phloroglucinol adducts was consider as the extension subunits of 

the proanthocyanidins.  The mean degree of polymerization (mDP) was calculated by adding 

terminal and extension subunits (in moles) and dividing by terminal subunits. The total 

proanthocyanidin concentration was considered as the addition of all terminal and extension 

subunits. Because acid catalysis with phloroglucinol is not completely efficient, the real yield of 
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the reaction was measured using a pure B2 proanthocyanidin dimer [(-)-epicatechin-(4→8)-(-)-

epicatechin]. This yield was used to calculate the total proanthocyanidin concentration. 

 

2.9. Other Phenolic Compounds 

The total phenolic index (TPI) was determined by measuring the absorbance at 280 nm 

(Ribereau-Gayon et al., 2006). Proanthocyanidin concentration was also estimated by 

precipitation with methyl cellulose (Sarneckis et al., 2006). 

 

2.10. Astringency Index 

Astringency index was estimated using ovoalbumin as a precipitation agent and tannic acid 

solutions as standards in accordance with in accordance with Llaudy et al.’s method (2004). 

 

2.11. Sensory Analysis 

All the wines were tasted by a group of 10 expert enologists from the Rovira i Virgili University 

6 weeks after bottling. Dark glasses were used to prevent the influence of color intensity. Three 

sensory triangle tests were conducted to compare the three wines in pairs. In all the cases, the 

first objective was to recognize the different wines and after then indicate which was their 

favorite and for what reason. 

 

2.12. Statistics 

All the physical and chemical data are expressed as the arithmetic average ± of the standard 

deviation from three replicates. One-factor ANOVA and Scheffe`s test were carried out with 

SPSS software. The level of significance of sensory triangle tests was determined following 

Jackson’s method (2002). 

 

3. Results and discussion 
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Table 1 shows the evolution of standard parameters of grapes throughout ripening. In both 

vintages the sugar content, the probable alcoholic degree, the pH and the weight of 100 berries 

increased and the titratable acidity decreased during ripening as expected. According to these 

parameters, vintage 2007 reached a greater level of technological maturity than vintage 2008 

although both vintages can be considered normal. However, these parameters were measured 

using an ensemble of 100 berries randomly collected; therefore, only the average value of each 

parameter is reflected and the berries’ heterogeneity is not considered. 

 

Figure 1. Distribution of grapes densities throughout ripening.
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To determine the real dispersion of these parameters, several assays were performed using 

solutions of NaCl of increasing concentration. Separating the grapes that floated from those that 

sank and counting them made it possible to determine the density distribution of berries 

throughout the maturation process (Figure 1). A quick glance at the figure shows a Gaussian 

bell-shaped distribution in both vintages and at all sampling points. These data confirm that a 

non-negligible heterogeneity is present from the beginning of the maturation process until the 

moment of harvest. Consequently, this heterogeneity implies that a considerable percentage of 

unripe grapes are harvested and introduced into the vinification tanks. Since unripe grapes 

provide a lower sugar content, higher acidity, fewer anthocyanins and in particular more seed 
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tannins (Llaudy et al., 2008), their presence can increase bitterness and astringency and 

therefore adversely affect the final quality of wine. 

 

Table 2. Wine Parameters.

All data are expressed as the arithmetic average of three replicates ± standard deviation (n=3). TA: titratable
acidity. Statistical analysis: one-factor ANOVA and Scheffe’ s test (both p=0.05). Different letters indicates the
existence of statistically significant differences between values of the same vintage.

Parameters Vintage Low density Medium density High density

Ethanol (% v/v)
2007 12.2±0.1a 13.2±0.1b 14.2±0.1c

2008 11.0±0.1 a 12.7±0.2 b 13.7±0.2 c

TA (g of tartaric acid/L)
2007 5.90±0.35a 5.85±0.30a 5.35±0.09b

2008 6.17±0.15a 6.00±0.10ab 5.93±0.06b

pH
2007 3.56±0.02a 3.61±0.03b 3.66±0.03c

2008 3.18±0.01a 3.30±0.02b 3.35±0.01a

 

 

Table 2 shows the standard parameters of the wines. As was expected, the higher the density of 

grapes the higher ethanol content and pH of wines. In contrast, the titratable acidity showed the 

opposite tendency in both vintages. These data confirm that the existing heterogeneity in grape 

densities also affects the wine composition, at least where the standard parameters are 

concerned. 

Table 3 shows the color parameters of the wines of both vintages. In general, the wines from the 

2007 vintage that have a higher level of technological maturity indicators also presented higher 

values of Color Intensity (CI) and Chroma (C *), and lower Luminosity (L*) values (more dark 

color) than those of 2008.  

An overall view of these data indicates that the density of the grapes significantly influences the 

wine color. Specifically, the higher the density of grapes the higher the CI, C* and red-

greenness (a*). On the other hand, L* had the opposite tendency for both years. The other 

CIELAB coordinates, hue (h*) and yellow-blueness (b*) did not show uniform behavior. On 

one hand, h* tended to increase with the density of the grapes in the 2007 wines whereas it 

tended to decrease in the 2008 wines. On the other hand, b * also tended to increase with the 

density of the grapes in the 2007 wines whereas it was erratic in the 2008 wines. 
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Table 3. Color Parameters.

Parameters Vintage Low density Medium density High density

CI
2007 17.13±0.40a 19.62±1.01b 21.80±0.73c

2008 9.17±0.49a 12.05±1.13b 14.80±1.29c

C*
2007 67.71±0.22a 68.88±0.21b 69.60±0.25c

2008 48.13±2.70a 54.43±2.13b 59.02±1.39c

L*
2007 40.90±0.95a 38.53±1.14b 36.30±0.56c

2008 57.35±1.63a 48.83±3.05b 42.83±2.29c

h*
2007 11.87±0.71a 15.22±1.96b 19.27±1.23c

2008 14.51±1.31a 9.38±1.32b 8.61±1.60b

a*
2007 65.26±0.38a 66.44±0.46b 66.59±0.13b

2008 46.57±2.33a 53.69±2.30b 58.34±1.21c

b*
2007 13.93±0.78a 18.08±2.32b 22.94±1.56c

2008 11.09±0.05a 8.84±0.89b 9.84±0.58c

All data are expressed as the arithmetic average of three replicates ± standard deviation (n=3). CI: color
intensity, C*: chroma, L*: luminosity, h*= hue, a*= red-grenness and b*= yellow-blueness. Statistical
analysis: one-factor ANOVA and Scheffe’ s test (both p=0.05). Different letters indicates the existence of
statistically significant differences between values of the same vintage.  

 

Table 4 presents the total color differences (∆Eab*) among wines of the same vintage. The 

human eye can generally distinguish two colors when ∆Eab* ≥ 1 (Pérez-Magariño & González-

Sanjose, 2003). However, it is also generally accepted that tasters can only distinguish the color 

of two wines through the glass when ∆Eab* ≥ 5 units (Pérez-Magariño & González-Sanjose, 

2003). In fact, the differences that can be distinguished by the human eye also depend on the 

color intensity, because the discriminating capacity becomes less accurate when color 

perception reaches the saturation level. In our experimental conditions, the three wines obtained 

for both vintages all had ∆Eab* differences greater than 5 units. Therefore, the existing color 

differences among the wines obtained from grapes of different densities are great enough to be 

detected by the human eye even when the wines come from grapes of relatively close densities. 

These data confirm that the existing heterogeneity in the maturity of the grapes has a real impact 

on wine color because the presence of less dense grapes may affect the visual quality of wine. 
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Table 4. Total color differences (∆eab*) amongwines.

All data are expressed as the average of three replicates ±
standard deviation (n=3). Values in dark grey correspond to
2007 vintage. Values en clear grey correspond to 2008
vintage.

Low Medium High

Low - 4.9±1.7 10.1±1.1

Medium 10.1±1.2 - 5.5±0.9

High 17.5±0.5 7.76±1.2 -

 

 

Table 5 shows the anthocyanin concentration, measured by spectrophotometry, of the wines of 

both vintages. Parallel to what was observed in the color, the total anthocyanin concentration of 

wines from the 2007 vintage was also higher than that of 2008, reconfirming the greater 

maturity of this vintage. In both years, the density of the grapes also played a key role in the 

anthocyanin concentration of the wines. The higher the grape density, the higher the 

anthocyanin concentration in the wine. This behavior was similar for free anthocyanins and also 

for anthocyanins combined to flavanols. The higher anthocyanin concentration found in denser 

grapes can mainly due to the higher concentration of anthocyanins in the skins and also maybe 

to the higher ethanol concentration of these grapes which exerts a significant effect on 

anthocyanin extraction during winemaking (Canals et al., 2005). 

 

Table 5. Spectrophotometric Analysis of Antocyanins. 

All data are expressed as the arithmetic average of three replicates ± standard deviation (n=3). Sta tistical analysis: one-
factor ANOVA and Scheffe’ s test (both p=0.05). Different letters indicates the existence of sta tistica lly sign ificant
differences between values of the same vintage.

Parameters Vintage Low density Medium density High density

Free anthocyanins (mg/L)
2007 559±26a 801±10b 806±23b

2008 283±15a 474±58b 666±54c

Combined anthocyanins (mg/L) 
2007 165±9a 221±21b 302±34c

2008 133±11a 177±3b 212±17c

Total anthocyanin (mg/L)
2007 725±35a 1021±11b 1108±49c

2008 415±25a 651±61b 878±38c
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Anthocyanins were also analyzed by HPLC (Table 6) and the overall results were similar to 

those obtained by spectrophotometry, although the values were significantly lower. This is 

because spectrophotometric analysis overestimates the total anthocyanin concentration because 

it also detects other pigments (Rivas-Gonzalo, Gutierrez, Hebrero, & Santos-Buelga, 1992), 

whereas HPLC only detects free anthocyanins (Rivas-Gonzalo, 2003). Furthermore, conversion 

of spectrophotometric data to anthocyanin concentration is necessarily imprecise, because many 

different pigments showing different extinction coefficients contribute to the absorbance. 

 

Table 6. HPLC Analysis of Anthocyanins and Anthocyanin-Derived Pigments.

All data are expressed as the arithmetic average of three replicates ± standard deviation (n=3). Sta tistical analysis: one-
factor ANOVA and Scheffe’ s test (both p=0.05). Different letters indicates the existence of sta tistica lly sign ificant
differences between values of the same vintage.

Parameters Vintage Low density Medium density High density

Anthocyanidin-3-monoglycosides (mg/L)
2007 194.3±3.7a 229.4±15.1b 242.1±13.9b

2008 72.4±4.1a 173.2±34.9b 228.2±18.6c

Acetyla ted anthocyanins (mg/L)
2007 61.7±1.3a 68.0±3.9b 70.2±4.1b

2008 27.5±0.9a 68.1±14.9b 91.5±6.1c

p-Coumaroylanthocyanins (mg/L)
2007 12.0±3.8a 16.9±0.4b 20.7±0.7b

2008 4.2±0.1a 12.5±3.6b 19.0±1.7c

Total free anthocyanins (mg/L)
2007 275.4±1.8a 313.4±19.5b 351.0±18.7b

2008 104.2±4.2a 253.8±53.4b 338.7±26.1c

Vitisin A (mg/L)
2007 0.10±0.01a 0.15±0.01b 0.21±0.04c

2008 10.20±0.65a 11.53±0.56ab 13.97±1.56b

Vitisin B (mg/L)
2007 3.17±1.50a 5.14±0.73ab 5.49±0.68b

2008 2.04±0.41a 3.28±0.37b 4.36±0.84b

 

The total anthocyanin concentration measured by HPLC was also higher in wines from 2007 

than in those from 2008 when wines of same grape density were compared, confirming again 

the greater maturity of this vintage. As with spectrophotometry, HPLC also showed that the 

density of the grapes had a large influence on wine anthocyanin concentration. The higher the 

density of the grapes, the higher the anthocyanin concentration of the wines. A similar tendency 

was observed in anthocyanidin-3-monoglucosides and in acetylated and coumarylated 

anthocyanins as well as in derived pigments such as vitisin A and vitisin B. Together these 

results indicate that the density of the grapes greatly affects the concentration of the principal 

molecules responsible for wine color. In particular, the presence of a high proportion of less 

dense grapes in the whole harvest can lower the anthocyanin concentration below expected 
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levels, which corroborate again that the grape heterogeneity may be more important than is 

commonly thought. 

Table 7 shows the results for total phenolic compounds, proanthocyanidins, measured by means 

of a precipitation with methyl-cellulose, and astringency. The total phenolic indexes (TPI) and 

proanthocyanidin concentration of 2007 wines were once more greater than those of 2008 when 

similar densities were compared. Again it was confirmed that the maturity of the 2007 vintage 

was higher. In this case the trends were also very clear and indicated that the density of the 

grapes had a strong influence on the final quality of wine. Both the IPT and proanthocyanidin 

concentration of the wine increased significantly with the density of the grapes. As with the 

anthocyanins, there are two causes for this. First, denser grapes have a higher proanthocyanin 

accumulation and second, more these compounds are extracted due to the higher ethanol 

concentration in the wines obtained from these grapes (Canals et al., 2005). The astringency of 

the wines was also measured and presented behavior that was parallel to that of the 

proanthocyanidins. 

 

Table 7. Total Phenolic Compounds, Proanthocyanidins and Related Parameters. 

All data are expressed as the arithmetic average of three replicates ± standard deviation (n=3). Sta tistical analysis: one-
factor ANOVA and Scheffe’ s test (both p=0.05). Different letters indicates the existence of sta tistica lly sign ificant
differences between values of the same vintage.

Parameters Vintage Low density Medium density High density

TPI
2007 39.9±2.0a 49.1±1.6b 51.8±1.3b

2008 35.4±1.8a 40.8±2.7b 49.9±3.4c

Proanthocyanidins (mg epicatechin/L)
2007 992.3±129.9a 1112.7±240.5a 1570.5±350.1a

2008 886.5±65.8a 836.4±50.1a 1321.8±+215.5b

Astringency Index (g tannic acid/L)
2007 0.159±0.009a 0.202±0.005b 0.231±0.004c

2008 0.086±0.003a 0.096±0.013a 0.142±0.030b

 

 

Table 8 shows the results of the analysis of wine proanthocyanidins obtained by acid-catalysis in 

the presence of excess phloroglucinol (2008 vintage only). The results of the proanthocyanidin 

concentration measured by this method do not exactly match those  

obtained by precipitation with methyl-cellulose. However, the tendencies observed by both 

methods are very similar, the proanthocyanidin concentration of the wines being higher when 

the density of the grapes was greater. Moreover, when the density of the berries increased, the 
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proportion of (+)-catechin significantly decreased and the proportion of (-)-epigallocatechin 

significantly increased. Meanwhile, the proportions of the other two monomers, (-)-epicatechin 

and (-)-epicatechin-3-O-gallate remained constant. Since epigallocatechin is only present in skin 

proanthocyanidins (Souquet et al., 1996) these data indicate that the contribution of skins to the 

wine proanthocyainidin concentration increases when the grapes are denser and therefore riper. 

It seems therefore that denser grapes provide more proanthocyanidins which would produce 

more tannic wines with a greater capacity for aging. In contrast, less dense grapes would 

produce slight wines without capacity for aging. Hence, the grape heterogeneity can affect these 

attributes. 

 

Table 8. Analysis of Total Proanthocyanidins and Related Parameters Following Acid-Catalysis in the Present of
Excess Phloroglucinol for the wines of 2008. 

All data are expressed as the arithmetic average of three replicates ± standard deviation (n=3). mDP, mean Degree of
Polymerization. Statistical analysis: one-factor ANOVA and Scheffe’ s test (both p=0.05). Different letters indicates
the existence of sta tistica lly significant differences between values of the same vintage.

Parameters Low density Medium density High density

Total proanthocyanidins (mg/l) 639.1±92.5a 715.4±168.6ab 1006.2±191.9b

mDP 3.70±0.22a 4.71±0.48b 4.91±0.25b

(+)-Catechin (%) 16.8±0.4a 13.3±1.7b 12.1±0.4b

(-)-Epicatechin (%) 62.0±0.2a 61.8±1.6a 60.6±0.9a

(-)-Epigallocatechin (%) 18.2±0.8a 21.7±1.0b 24.1±0.9c

(-)-Epicatechin Galla te(%) 2.9±0.1a 3.2±0.2a 3.2±0.2a

Total proanthocyanidins (µmol/L) 585±115a 572±59a 683±101a

Molecular weight average (Da) 1100±66a 1403±145b 1466±76b

 

 

The mean degree of polymerization (mDP) of proanthocyanidins of the wines obtained with the 

grapes of medium and high density present similar values. However, the mDP of the wine 

obtained with berries of low density was significantly lower. This data confirms that the degree 

of polymerization of proanthocyanidins is higher when the grapes are riper. Also it would 

suggest that the lower density grapes mainly provide seed proanthocyanidins since the mDP of 

skin proanthocyanidins are higher than the mDP of seed proanthocyanidins (Prieur et al.,1994;  

Souquet et al., 1996). These results agree with those of Kennedy et al. (2002) who have found 

that the degree of proanthocyanidin polymerization increases with maturity. 
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Acid-catalysis in the presence of excess phloroglucinol also allows the molar concentration and 

consequently the molecular weight average of proanthocyanidins to be obtained. As was 

expected, the molecular weight average followed a similar trend to the mDP. However, the 

proanthocyanidin molar concentration surprisingly did not vary significantly among the wines 

made from grapes of different densities. This fact indicates that all the grapes, regardless of their 

density, release a similar number of proanthocyanidin molecules during winemaking. Therefore, 

the increase observed in the proanthocyanidin concentration, expressed in mg/l, is only to the 

result of an increase in the degree of proanthocyanidin polymerization and not to an increase in 

the number of molecules. These data also justify why the wines from denser grapes presented 

higher astringency. According to Vidal et al. (2003) astringency augments when the degree of 

proanthocyanidin polymerization increases. Given that wines made with high density grapes 

presented higher proanthocyanin concentration and that their proanthocyanins also presented a 

higher mDP, it is logical that their astringency was greater too. 

 

Table 9. HPLC Analysis of Flavanols (Catechins and Proanthocyanidins Oligomers) for the wines of 2008. 

All data are expressed as the arithmetic average of three replicates ± standard deviation (n=3). Statistical analysis:
one-factor ANOVA and Scheffe’ s test (both p=0.05). Different letters indicates the existence of statistically
significant differences between values of the same vintage.

Parameters Low density Medium density High density

(+)-Catechin (mg/L) 377.8±24.5a 522.4±54.4b 671.2±2.5c

(-)-Epicatechin (mg/L) 415.0±42.7a 444.9±23.4a 533.0±91.1a

Catechins (mg/L) 792.8±66.6a 967.3±77.8b 1152.8±24.1c

B1 (mg/L) 11.4±2.9a 32.2±3.2b 58.9±3.4c

B3 (mg/L) 67.7±11.1a 103.6±16.0b 104.9±25.7c

B4 (mg/L) 13.8±0.9a 12.1±1.9a 13.0±2.0a

B5 (mg/L) 3.4±0.1a 3.3±0.5a 3.0±0.4a

B6 (mg/L) 48.6±1.6a 49.0±1.9a 50.3±2.0a

Dimers (mg/L) 132.1±9.7a 196.1±16.6b 230.5±27.4b

Trimers (mg/L) 39.2±1.3a 41.7±16.0ab 67.1±10.2b

Tetramers (mg/L) 8.6±0.7a 11.5±1.1b 15.0±0.1c

Oligomers (mg/L) 179.9±10.1a 252.7±3.3b 312.7±35.3c

Catechins + Oligomers (mg/L) 1005.2±20.1a 1220.0±74.5b 1468.3±73.5c
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Table 9 presents the HPLC analysis of flavanols (catechins and oligomers). Also in this case, the 

density of the berries significantly affected the concentration of proanthocyanidin monomers 

and oligomers. The total monomer concentration increased when the density of the grapes was 

higher. This augmentation mainly occurs due to the increase of (+)-catechin concentration while 

(-)-epicatechin concentration remained at similar levels. On the other hand, the wine 

concentration of proanthocyanidin dimers also increased when the grapes were denser. 

However, this increased was only due to dimers B1 and in particular B3 whereas other dimers 

such as B4, B5 and B6 present similar values in all wines. The trimers and tetramers followed a 

similar profile to the dimers. The denser the grapes, the higher their concentration. This increase 

in oligomers agrees with the previously mentioned results concerning the mDP. 

The sensory triangular tests were carried out by comparing in pairs the three wines obtained 

from the different density grapes. Only 5 of 10 tasters were able to differentiate between the 

high density wines and the medium density wines. This result was not statistically significant (p 

> 0.05).  In contrast, all the tasters distinguished the low density wine when it was compared 

with the medium or high density wine, being the results statistically significant (p < 0.05). All 

these sensory analyses were done in dark glasses to prevent the tasters from being influenced by 

the color. Therefore, these differences must be attributed to flavors and/or mouth sensation and 

not wine color. In all cases, the tasters preferred wines from denser grapes. The reason given 

was that these wines had a higher fruit and floral scents. Also there were better balanced as there 

were sweeter, less acidic and less bitter than the low density wines.   

 

4. Conclusions 

 

It can be concluded that the heterogeneity of the grapes at the moment of the harvest is more 

important that it is usually thought. The ensemble of all the grapes always has a proportion of 

very well ripened grapes, another proportion of sufficiently ripened grapes and finally a 

proportion of less ripened grapes. This fact must be taken into account because the presence of 

less ripened grapes can affect seriously the final composition and consequently the quality of the 

wine. These less ripened grapes diminish the final ethanol content, pH, anthocyanin 

concentration, color intensity, total phenolic index and proanthocyanidin concentration and 

increase titratable acidity. Moreover, these lower density grapes contribute less polymerized 
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proanthocyanidins, lower proportions of (-)-epigallocatechin and higher proportions of (+)-

catechin. These data suggest that lower density grapes release more seed proanthocyanidins than 

skin proanthocyanidins. Finally, the sensory comparison of wines leaves no doubt because as 

the wine obtained from lower density grapes was always recognized in all the triangle trials and 

was considered as less balanced and bitterer. Further research is needed to determine how this 

heterogeneity can be measured easily and quickly. Only in this way will winemakers have the 

tools which enable them to take the heterogeneity of the grapes into account in their maturity 

controls and even to consider the possibility of applying a sorting table for eliminating the 

unripe grapes. 
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Abstract 

 

Background and Aims: Deep red full-bodied wines can only be obtained from grapes with 

complete phenolic maturity which frequently produce wines with high pH and alcohol content. 

The present study focuses on a new procedure for simultaneously reducing pH and ethanol 

content. 

Methods and Results: Grapes from cluster thinning were used to produce a very acidic low-

alcohol wine. The wine was treated with high doses of charcoal and bentonite. This odorless and 

colorless wine was used to reduce pH and ethanol content when the grapes reached complete 

phenolic maturity. The anthocyanin and proanthocyanidin concentrations, the mean degree of 

polymerization and the monomeric composition of proanthocyanidin of reduced-alcohol wines 

were similar than those of their corresponding controls. Since the pH was lower, the color of the 

reduced-alcohol wines was more intense. No significant differences were found between 

reduced-alcohol wines and their controls by triangle sensory tests using dark glasses for two of 

the three studied cultivars. 

Conclusion: The proposed procedure may be useful for reducing simultaneously the alcohol 

content and the pH of wines.  

Significance of the Study: The proposed procedure allows decreasing simultaneously alcohol 

and pH. Moreover, it is very easy to apply and does not require specific equipment. 

  

Keywords: Reduced-Alcohol Wine, pH Reduction, Color, Phenolic Compounds 
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Introduction 

 

Nowadays, strongly colored full-bodied red wines are highly appreciated by the market. 

However, producing this kind of wine requires an intense extraction of phenolic compounds 

from the cap during winemaking and this can cause bitterness, excess of astringency and 

herbaceous smells if the grapes are not ripe enough. In fact, grape maturity strongly influences 

the phenolic composition of red wines (O´-Marques et al. 2005, Ryan and Revilla 2003). 

Insufficiently ripened grapes have a lower extractability of anthocyanins and proanthocyanidins 

from skins and a higher extractability of proanthocyanidins from seeds (Canals et al. 2005, 

Peyrot des Gachons and Kennedy 2003). Consequently, it is generally thought that insufficiently 

ripened grapes can release a higher amount of seed proanthocyanidins, which are highly 

galloylated (Romeyer et al. 1986). This is probably the reason why poorly matured grapes often 

produce astringent bitter wines. 

For this reason, winemakers are very interested in measuring phenolic maturity so that they can 

harvest grapes that are ripe as possible. Nevertheless, grapes with very high phenolic maturity 

frequently present high sugar and low acid concentrations. Consequently, the resulting wines 

have the drawback of very high pH and alcohol content. High pH values in wines cause such 

problems as less color and less antiseptic effectiveness of sulfur dioxide (Beech et al. 1979). On 

the other hand, excess ethanol may cause stuck and sluggish fermentation (Bisson 1999), and 

can also alter the sensory balance of the wine (Williams 1972, Fischer and Noble 1994). 

Moreover, high-alcohol wines have higher tax rates in some countries and are sometimes not 

well accepted by consumers. 

It is a verifiable fact that most wines have gradually increased their alcohol content and pH in 

recent years and winemakers are concerned about the problem. Some authors even consider that 

climate change may increase this tendency (Tate 2001, Duchêne and Schneider 2005, Jones et 

al. 2005). The increase in temperature and the changes in rainfall distribution will probable 

affect vine and grape physiology, and impact on wine composition and quality. If the 

temperature during ripening is higher than the optimal, the grape pulp matures faster, and the pH 

and sugar concentration are too high. Thereby the period between veraison and industrial 

maturity decline, which makes it more difficult to reach the proper aromatic and phenolic 

maturity, and leads to unbalanced wines (Zamora 2003, 2005).  Moreover, it is observed that 
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global warming is shifting areas of vine cultivation. It has been estimated that the northern limits 

of its cultivation in Europe is moving at a rate between 10 and 30 km per decade and that the 

speed of travel is expected to double between 2020 and 2050 (Kenny and Harrison 1993).  This 

means that some regions that are nowadays adequate for grape growing could not be suitable at 

the future, without the adoption of appropriate adaptive measures. In contrast, other regions that 

until now appeared as unsuitable for wine grape production because of its warmer temperature 

may become more suitable in the future for wine production. 

Several techniques have been proposed to mitigate climate impacts. One is to harvest grapes at 

an early stage of ripening. However, this is not a good solution because grapes have not reached 

an adequate phenolic and aromatic maturity, which would certainly produce bitter and 

herbaceous wines. Another is to add water and mineral acids to the grape juice before the 

fermentation begins. This reduces the sugar concentration and pH but has a general negative 

effect on wine quality because it dilutes all the other compounds, and although this practice is 

authorized in some countries, it is strictly forbidden in others. It is also possible to reduce this 

problem by blending high-alcohol wines with low-alcohol wines. However, a sufficient volume 

of low-alcohol wine, which does not present the disadvantages described above, is required. 

Other possibilities are to introduce new cultivars, modify culture techniques and even move 

vineyards to other production areas to delay pulp sugar accumulation and acid consumption 

(Schultz 2000). It should be taken into account that all the work on clonal selection in recent 

years has aimed to obtain grapevines that can quickly produce high sugar content. Now we need 

to retrace our steps and search for the old vines that are best adapted to the new climate 

conditions. This solution is probably the best one but it requires long and laborious studies and a 

considerable economic investment to replant most of the vineyards. 

Glucose oxidase (EC 1.1.3.4) has also been proposed as one way of obtaining less alcoholic 

wines (Pickering et al. 1998). However, it has two drawbacks. It oxidize glucose by generating a 

very high concentration of gluconic acid in wine. Moreover, it uses oxygen as a substrate so the 

grape juice needs to be excessively aerated which may oxidize other wine components 

(Pickering et al. 1999). 

The use of yeast with a lower ethanol yield production has also been proposed. However, it 

seems that natural Saccharomyce cerevisiae strains present similar yields, which leads to an 

impasse unless genetically modified organisms (Dequin and Barre 1994, Malherbe et al. 2003) 

or non-Saccharomyces yeasts are used (Ciani and Ferraro 1996). 
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However, nowadays the most commonly used methods for modifying alcohol content and pH 

are probably physical ones. In fact, several physical techniques have been applied to partially 

reduce the sugar concentration in grape juice or the alcohol in wine. Some of the proposed 

methods are supercritical fluid extraction, vacuum distillation and membrane techniques (Bui et 

al. 1986, Sykes et al. 1992, Pickering 2000, Takács et al. 2007, Diban et al. 2008, Ruiz-

Rodrigueza et al. 2010). Of these, the most frequently used in the wine industry are the spinning 

cone column and reverse osmosis system (Pickering 2000). To decrease wine pH, on the other 

hand, physical methods such as cationic exchange columns and electrodyalisis are the most used 

(Bonorden et al.1986, Walker et al. 2004). These physical methods are effective but involve 

bulky and expensive equipment and many winemakers have concerns about their effects on 

wine quality. 

The present study focuses on a new winemaking process for simultaneously reducing the pH 

and alcohol content of wine. It involves using the grape berries collected during cluster thinning. 

Grape growers often remove some of the grape clusters at the beginning of the veraison in order 

to improve the development ones remaining. These clusters, which are usually left on the 

ground of the vineyard, can be harvested and used to obtain a highly acidic wine with a very low 

degree of alcohol. Once alcoholic fermentation has ended, this wine can be treated with a very 

high dose of charcoal and bentonite in order to completely eliminate phenolic compounds and 

herbaceous smells. This odorless and colorless wine can be used later, when the rest of the 

grapes have reached the complete phenolic maturity to reduce pH and ethanol content. 

 

Materials and Methods 

 

Chemicals and reagents 

Methanol, acetonitrile, formic acid and acetic acid were HPLC-grade and purchased from 

Panreac (Barcelona, Spain). Malvidin-3-O-glucoside chloride, (+)-catechin, (-)-epicatechin, (-)-

epigallocatechin and (-)-epicatechin 3-O-gallate were purchased from Extrasynthès (Genay, 

France). Ovoalbumin, phloroglucinol and L-ascorbic were purchased from Sigma (Madrid, 

Spain). Charcoal and bentonite were purchased by Martin Vialatte (Epernay, France). The rest 

of the chemicals were of high purity and were purchased from Panreac (Barcelona, Spain).  
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Winemaking procedure 

The yield of the vineyards of the cultivar Vitis vinifera cv. Grenache can sometimes be reduced 

by applying cluster thinning in order to improve the phenolic maturity. During the vintage 2008 

just at the beginning of the veraison, the clusters of this cultivar were thinned in the 

experimental vineyard belonging to the Enology Faculty in Tarragona (Rovira i Virgili 

University) at Constantí (AOC Tarragona). Five hundred kg of the grapes were not rejected but 

taken to the experimental winery instead. 

The grapes were crushed (Delta E2, Bucher Vaslin, Chalonnes sur Loire-France) and lightly 

pressed in a pneumatic press (M-15c, Marzola, Logroño, Spain) until 250 L of grape juice was 

obtained. The must was immediately sulphited with 100 mg of K2S2O5/L and placed in a 100 L 

stainless steel tank. The grape juice was allowed to settle for 20 hours, racked to another tank 

and inoculated with selected yeast (EC 1118, Lallemand, Montreal, Canada). Alcoholic 

fermentation was carried out at 18 ± 1 ºC. When it has finished, the tank was sulphited with 100 

mg of K2S2O5/L and treated with 5 g/L of charcoal and 1 g/L of bentonite to obtain the absolute 

discoloration and deodorization. This low-ethanol wine presented the following analytical 

parameters:  5 % (v/v) of ethanol content, 17.8 g of tartaric acid/l of titratable acidity and pH 

2.64. Then, it was conserved at 4 ºC.  

Subsequently, grapes of the cultivar Vitis vinifera cv. Cabernet Sauvignon and Merlot from the 

vineyards of Juvé & Camps in Mediona (AOC Penedes) and Bobal from the vineyards of 

Dominio de la Vega in San Antonio (AOC Requena) were harvested at two different ripening 

stages. The first harvest (H1) was carried out when the probable degree of alcohol was between 

13.0 and 14.0 %. The second harvest (H2) was carried out when the grapes reached optimum 

phenolic maturity. 

For each cultivar, 60 Kg (H1) or 120 Kg (H2) of grapes were collected and manually 

destemmed. After that, berries were randomly distributed into three lots (H1) or six lots (H2) of 

eight kilograms each. Then the grapes were crushed with a semi-automatic crusher machine 

(Gual, Villafranca del Penedès, Spain), sulphited (100 mg of K2S2O5/L) and placed in ten-liter 

tanks. Three tanks from the first harvest (H1) and also three tanks from the second harvest 

(CH2) were used without any of the low-ethanol wine being added. The other three tanks from 

the second harvest (RAH2) were used for the reduction alcohol experiment. Specifically, a part 

of the total volume of the grape juice was extracted and replaced with the same volume of low-
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alcohol wine. This volume (V) was calculated for each sample with the aim of reproducing the 

probable alcoholic degree of the corresponding wine from the first harvest. The following 

equation was used to calculate the exact volume (V) to be replaced in each sample: 

 

V (liters) = 6.4 (G2-G1)/(G2-5) 

 

where 6.4 is the yield of grape juice (in liters) from 8 kg of grapes, G2 is the probable degree of 

alcohol of the grape juice, G1 is the degree of alcohol of the wine from the first harvest, and 5% 

is the degree of alcohol of the low-alcohol wine. Specifically, the volume of grape juice replaced 

by the low-alcohol wine was 0.85 L for Cabernet Sauvignon, 1.50 L for Merlot and 2.00 L for 

Bobal. 

All tanks were inoculated with 200 mg/L of selected yeast (EC1118, Lallemand, Montreal, 

Canada) and maintained at a room temperature of 25 ± 1 ºC until the end of the 

maceration/fermentation process. All these microvinifications were controlled daily by 

measuring the temperature and the density of the must. Every day, a manual punch down was 

carried out to improve the extraction of phenolic compounds. After 14 days of maceration, the 

wines were decanted, bottled and inoculated with 100 mg/L of the lactic bacteria, Oenococcus 

oeni (Vitilactic F, Martin Vialatte, Epernay, France). Once malolactic fermentation had finished, 

all the wines were racked, sulphited (100 mg of K2S2O5/L) and refrigerated for three weeks at 4 

ºC. Finally, all samples were stored at 15 ± 1 ºC until analysis.  

 

Standard grape and wine analysis 

The analytical methods recommended by the OIV (O.I.V. 2005) were used to determine sugar 

content, probable alcohol content, titratable acidity, the pH of the grapes and their ethanol 

content, the titratable acidity and the pH of the wines. 

 

Color parameters 
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The color intensity (CI) was estimated using the method described by Glories (1984b). The 

CIELab coordinates, lightness (L*), chroma (C*), hue (h*), red-greenness (a*) and yellow-

blueness (b*) were determined according to Ayala et al. (1997) and the data were processed 

with the MSCV software (Ayala et al. 2001). The total colour difference (∆Eab*) between two 

samples was obtained using the expression: ∆Eab* = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2 (Pérez-

Magariño and González-Sanjose 2003). All absorbance measurements were taken with a Helios 

Alpha (Thermo Fisher Scientific Inc.,Waltman, MA) UV–vis spectrophotometer using quartz 

cells with a path length of 1 mm. 

 

Anthocyanin analysis 

Reversed-phase HPLC analyses of anthocyanins and the anthocyanin-derived pigments Vitisin 

A and Vitisin B were carried out with an Agilent 1200 series liquid chromatograph (HPLC-

DAD) and an Agilent Zorbax Eclipse XDB-C18, 4.6 x 250mm 5µm column (Agilent 

Technologies, Santa Clara, USA) in accordance with the method described by González-San 

José et al. (1988). Anthocyanin standard curves were made using malvidin-3-glucoside.  

 

Analysis of proanthocyanidins following acid catalysis with phloroglucinol 

Acid-catalysis cleavage in the presence of excess phloroglucinol was used to analyze 

monomeric proanthocyanidin composition and its mean degree of polymerization (mDP). The 

samples were prepared and analyzed by reversed-phase HPLC according to the method 

described by Kennedy and Jones (2001). The monomers (+)-catechin, (-)-epicatechin, (-)-

epicatechin-3-O-gallate were identified by comparing their retention times with those of the 

pure compounds. The phoroglucinol adducts of (+)-catechin, (-)-epicatechin, (-)-

epigallocatechin and (-)-epicatechin-3-O-gallate were identified by HPLC-TOF analysis. 

Analyses were performed with Agilent 1200 series HPLC using an Agilent 6210 time of flight 

(TOF) mass spectrometer equipped with an electrospray ionization (ESI) system. Elution was 

carried out under the same HPLC analysis conditions as described by Kennedy and Jones 

(2001). The capillary voltage was 3.5 kV. Nitrogen was used as both dry gas at a flow rate of 12 

l/min at 350 ºC and nebulizer gas at 60 psi. Spectra were recorded in positive ion mode between 
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m/z 50 and 2400. This assay was also carried out without addition of phloroglucinol so that the 

quantity of proanthocyanidin monomers naturally present in the wines could be measured. 

The number of terminal subunits were considered as the difference between total monomers 

without phoroglucinol and thus obtained in the analysis performed without phloroglucinol 

addition. The number of extension subunits was considered as the addition of all the 

phloroglucinol adduct.  The mean degree of polymerization (mDP) was calculated by adding the 

number of terminal and extension subunits (in moles) and dividing by the number of terminal 

subunits. The total proanthocyanidin concentration was considered as the addition of all terminal 

and extension subunits. Because acid catalysis with phloroglucinol is not completely efficient, 

the real yield of the reaction was measured using a pure B2 proanthocyanidin dimer [(-)-

epicatechin-(4→8)-(-)-epicatechin]. This yield was used to calculate the total proanthocyanidin 

concentration. 

 

Other phenolic compounds 

The total phenolic index (TPI) was determined by measuring the absorbance at 280 nm 

(Ribereau-Gayon et al. 2006). The proanthocyanidin concentration was also estimated by 

precipitation with methyl cellulose (Sarneckis et al. 2006). 

 

Astringency index 

The astringency index was estimated using ovoalbumin as a precipitation agent and tannic acid 

solutions as standards in accordance with Llaudy et al.’s method (2004). 

 

Sensory analysis 

All the wines were tasted by a group of 10 expert enologists from the Rovira i Virgili University 

6 weeks after bottling. Two previous training sessions of tasting were carried out to standardize 

criteria among the panelists. Dark glasses were used to prevent them from being influenced by 

color intensity (Norton and Johnson 1987, Stillman 1993). Three sensory triangle tests were 

conducted for each cultivar to compare the three wines in pairs. In all the cases, the main 
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objective was to recognize the different wine and after then indicate which of them was 

preferred for its olfactory and/or tasting sensations. 

 

Statistics 

All the physical and chemical data are expressed as the arithmetic average ± the standard 

deviation from three replicates. One-factor ANOVA and Scheffe’s test s test were carried out 

with SPSS software. The level of significance of sensory triangle tests was determined 

following Jackson’s method (2002). 

 

Results and discussion 

 

The fermentation times were, in general, closely related with the sugar concentration of the 

different grape juices. The higher sugar concentration the slower alcoholic fermentation. More 

specifically, H1 and RAH2 fermentations were finished in a range of 7-8 days, while Merlot and 

Cabernet Sauvignon CH2 fermentations were completed in a range of 8-10 days. In the case of 

CH2 Bobal, the fermentation took longer to be ended (12-14 days) probably because of their 

higher sugar content. 

Standard wine parameters are shown in Table 1. Naturally, wines from the first harvest (H1) had 

higher titratable acidity, lower ethanol content and lower pH (Table 1) than the corresponding 

control wines from the second harvest (CH2), which indicated that the three grape varieties had 

really ripened during the period between the first and the second harvest. Moreover, the wines 

from the second harvest reached very high degrees of alcohol, more than 15 % in the three 

cultivars, and also high pH values (more than 3.75 for Merlot and Bobal). 

As expected, all the wines to which part of their juice had been replaced by the low-alcohol 

wine (RAH2) had a lower ethanol content and pH than their corresponding controls (CH2). In 

fact, the ethanol content, the pH and the titratable acidity of the RAH2 wines were closer to 

those of the corresponding H1 wines than to those of their corresponding CH2 wines for the 

three cultivars. Specifically, RAH2 wines had 0.9 % (Cabernet Sauvignon), 1.7 % (Merlot) and 

3.0 % (Bobal) less alcohol content than their corresponding CH2 wines. These results are quite 
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conclusive and show that replacement of some of the grape juice by the low-alcohol wine can be 

useful for obtaining reduced-alcohol wines with a lower pH. 

 

Table 1. Standard wine parameters.

Cultivar Parameters
H1 H2

CH2 RAH2

Cabernet Sauvignon

Ethanol (% v/v) 14.0± 0.1a 15.4 ± 0.1b 14.5 ± 0.1c

TA (g/L) 6.50 ± 0.13a 5.90 ± 0.04b 6.72 ± 0.19a

pH 3.48 ± 0.02a 3.55 ± 0.02b 3.46 ± 0.03a

Merlot

Ethanol (% v/v) 13.4 ± 0.1a 15.9 ± 0.1b 14.2 ± 0.1c

TA (g/L) 7.00 ± 0.17a 6.35 ± 0.24b 7.15 ± 0.09c

pH 3.45 ± 0.01a 3.76 ± 0.03b 3.55 ± 0.07c

Bobal

Ethanol (% v/v) 13.2 ± 0.1a 16.9 ± 0.1b 13.9 ± 0.1c

TA (g/L) 7.45 ± 0.09a 6.70 ± 0.05b 8.94 ± 0.06c

pH 3.46 ± 0.01a 3.80 ± 0.01b 3.34 ± 0.08c

TA: t itratable acidity, H1: first harvest, H2: second harvest, CH2: control wines of H2, RAH2: reduced
alcohol wines from H2. All data are expressed as the average of the three replicates ± standard deviation (n =
3). Statistical analysis: one-factor ANOVA and Scheffe´s test (both p < 0.05). Different letters indicate the
existence of statistically significant differences.  

 

The results corresponding to anthocyanin concentration (Table 2) indicates that the wines from 

the second harvest (H2) presented higher total anthocyanin concentrations than their 

corresponding H1 wines and no statistically significant differences were found between the CH2 

and the RAH2 wines in the three cultivars. These results confirm that the riper grapes produced 

wines with a higher anthocyanin concentration in the three studied cultivars (Bautista-Ortin et 

al. 2006, Fournand et al. 2006). The increase of total anthocyanins throughout ripening was 

mainly due to anthocyanidin-3-monoglucosides although the same trend was observed in acetyl 

and p-coumaryl anthocyanidins. 

Contrary to what was expected, the anthocyanin concentrations of RAH2 wines of the three 

cultivars were similar to those of their controls (CH2). Theoretically, the extraction of some of 

the grape juice and the replacement by the low-alcohol wine should remove some of the 

anthocyanins, specifically those extracted during the crushing process and also the anthocyanins 

solved during the short time of skin contact. It has also been reported that higher ethanol content 

favors anthocyanin extraction throughout skin contact (Canals et al. 2005). 
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One possible explanation for these paradoxical results may be due to the lower pH values of 

RAH2 wines. A lower pH may favor anthocyanin extraction during winemaking compensating 

the positive effect of ethanol. A lower pH may also protect anthocyanins against oxidation by 

means of two mechanisms: it shifts the equilibrium of anthocyanins from carbinol towards to the 

formation of flavylium cation (Glories, 1984a) and it inhibits the polyphenol oxidase activity of 

the grape juice (Rapeanu et al. 2006). 

 

Cultivar Parameters
H1 H2

CH2 RAH2

Cabernet 
Sauvignon

Anthocyanidin-3-monoglucosides 131.9 ± 11.9a 184.7 ± 12.5b 191.5 ± 21.0b

Acetylated anthocyanidins 46.7 ± 6.4a 66.5 ± 4.5b 69.1 ± 8.1b

p-Coumaroylanthocyanidins 6.5 ± 1.7a 11.0 ± 0.6b 11.0 ± 1.1b

Total anthocyanins 185.1 ± 32.5a 262.2 ± 17.8b 271.7 ± 30.5b

Merlot

Anthocyanidin-3-monoglucosides 135.7 ± 13.9a 187.0 ± 20.2b 201.9 ± 4.2b

Acetylated anthocyanidins 42.3 ± 4.5a 47.9 ± 3.2ab 49.2 ± 1.2b

p-Coumaroylanthocyanidins 13.4 ± 2.0a 17.5 ± 1.1b 19.3 ± 0.4c

Total anthocyanins 191.4 ± 20.2a 252.4 ± 24.7b 270.5 ± 4.8b

Bobal 

Anthocyanidin-3-monoglucosides 241.7 ± 21.1a 293.1 ± 15.2b 320.6 ± 45.6b

Acetylated anthocyanidins 18.5 ± 1.0a 18.9 ± 0.7a 19.7 ± 2.1a

p-Coumaroylanthocyanidins 18.4 ± 2.2a 22.5 ± 1.5b 24.1 ± 3.0b

Total anthocyanins 278.6 ± 24.4a 334.5 ± 17.5b 364.4 ± 51.0b

Table 2. Concentration of anthocyanins (mg /L) determined by HPLC.

H1: first harvest, H2: second harvest, CH2: control wines of H2, RAH2: reduced alcohol wines from H2. All data are expressed as
the average of the three replicates ± standard deviation (n = 3). Statistical analysis: one-factor ANOVA and Scheffe´s test (both p <
0.05). Different letters indicate the existence of statistically significant differences.  

 

Color intensity and CIELab coordinates are shown in Table 3. In the three cultivars the color 

intensity, and C* of the CH2 wines were higher and the L* lower than the equivalent values of 

the corresponding H1 wines. Other authors have found similar results (Canals et al 2005, 

Gambuti et al. 2007), which confirms that the riper grapes generally produce more intensely 

colored wines. 

On the other hand, the Merlot and Bobal RAH2 wines showed higher color intensity, and C* 

and lower L* than their corresponding controls (H2) although the anthocyanin concentrations of 

Cabernet Sauvignon and Bobal were similar. The same trend was observed with Cabernet 

Sauvignon wines although the results were not statistically significant. Therefore, the more 

intense color of all RAH2 wines was probably because the lower pH of RAH2 wines increased 
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the proportion of the anthocyanins’ flavylium cation (Glories 1984a). Indeed, the changes in 

color parameters were greater in Merlot and even more so in Bobal because the alcohol decrease 

was greater, which led to a considerable decrease in the pH. Another possible cause is that a 

lower concentration of ethanol in the RAH2 wines favors copigmentation (Canals et al. 2005). 

 

Cultivar Parameters
H1 H2

CH2 RAH2

Cabernet Sauvignon

CI 9.3 ± 0.8a 12.6 ± 0.5b 13.9 ± 2.3b

C* 44.54 ± 1.13a 58.54 ± 0.66b 60.63 ± 2.47b

L* 42.19 ± 2.62a 48.50 ± 3.12b 47.37 ± 5.72b

h* 1.97 ± 0.67a 2.78 ± 0.98a 2.73 ± 1.36a

a* 36.21±1.45a 58.44 ± 0.63b 60.26 ± 2.13b

b* 0.69 ±0.47a 3.39 ± 0.52b 2.79 ± 1.42b

Merlot

CI 8.7 ± 0.9a 12.6 ± 1.5b 17.0 ± 1.9c

C* 55.57 ± 2.64a 59.06 ± 1.65b 66.57 ± 1.42c

L* 60.27 ± 2.80a 50.70 ± 5.00b 42.17 ± 2.57c

h* 2.83 ± 0.75a 7.47 ± 1.66b 15.04 ± 2.73c

a* 55.50 ± 2.60a 58.44 ± 1.41a 63.89 ± 0.64b

b* 2.76 ± 0.84a 7.48 ± 2.08b 17.30 ± 3.41c

Bobal

CI 10.6 ± 1.4a 15.8 ± 0.8b 22.9 ± 1.7c

C* 57.08 ± 1.56a 59.28 ± 0.20b 67.38 ± 1.23c

L* 52.33 ± 4.06a 36.63 ± 1.42b 34.05 ± 1.06c

h* 1.67 ± 0.08a 9.92 ± 0.86b 17.88 ± 1.39c

a* 56.19 ± 0.57a 58.39 ± 0.05b 63.62 ± 0.66c

b* 1.60 ± 0.14a 10.22 ± 0.91b 24.76 ± 3.05c

Table 3. Color Intensity and ClELab coordinates.

H1: first harvest, H2: second harvest, CH2: control wines of H2, RAH2: reduced alcohol wines from H2. All data
are expressed as the average of the three replicates ± standard deviation (n = 3). Statistical analysis: one-factor
ANOVA and Scheffe´s test (both p < 0.05). Different letters indicate the existence of statistically signif icant
differences.  

 

However, for winemakers it is much more important to know whether the human eye can really 

distinguish between the colors of two wines, than whether there are statistically significant 

differences between these parameters. Consequently, the total color differences (∆Eab*) were 

calculated (Table 4) in order to determine if the human eye is really capable of distinguishing 

between the different wines. The human eye can generally distinguish two colors when ∆Eab* ≥ 

1 (Pérez-Magariño and González-Sanjose 2003). However, it is also generally accepted that 
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tasters can only distinguish the color of two wines through the glass when ∆Eab* ≥ 5 units 

(Pérez-Magariño and González-Sanjose 2003). In fact, the differences that can be distinguished 

by the human eye also depend on the color intensity, because discriminating capacity is less 

accurate when color perception reaches saturation level. In our experimental conditions, the 

differences in ∆Eab* between H1 wines and all their corresponding H2 wines (CH2 and RAH2) 

were greater than 5 units. Therefore, it can be conclude that all the H2 wines could be clearly 

distinguished from their corresponding H1 wines with the naked eye. The differences in ∆Eab* 

between RAH2 and CH2 wines of Merlot and Bobal were also greater than 5 units, indicating 

that the differences in color were sufficiently large to be distinguished by the human eye. In the 

case of Cabernet Sauvignon, the difference in ∆Eab* between RAH2 and CH2 wines was only 

3.9, probably because the alcohol reduction and consequently the decrease in its pH were lower 

than in the other cultivars. 

 

Cultivar H1 vs CH2 H1 vs RAH2 H2 vs RAH2

Cabernet
Sauvignon

22.6 ± 0.8 24.7 ± 1.9 3.9 ± 1.4

Merlot 11.8 ± 3.0 25.3 ± 2.1 16.3 ± 1.4

Bobal 14.9 ± 1.9 25.6 ± 3.8 13.6 ± 3.9

Table 4. Total color differences (∆Eab*) amongwines.

H1: first harvest, H2: second harvest, CH2: control wines of H2, RAH2: reduced alcohol
wines from H2. All data are expressed as the average of the three replicates ± standard
deviation (n = 3).  

 

The total phenolic compounds, proanthocyanidin concentration, measured by precipitation with 

methyl-cellulose, and the astringency index are shown in Table 5. The total phenolic indexes 

(TPI), proanthocyanidin concentrations and the astringency indexes of all the H2 wines were 

significantly higher than their corresponding H1 wines. This data confirms that the riper grapes 

produced the more tannic wines. Other authors have found similar results (Llaudy et al., 2008, 

Kennedy et al. 2002). On the other hand, the proanthocyanidin concentrations of the RAH2 

wines from the three cultivars were similar to those of their corresponding CH2 wines, 

indicating that replacing part of their grape juice by low-alcohol wine had not affected their 

tannicity. However some small differences were detected in the TPI and astringency index. 
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Specifically, the TPI of the CH2 Merlot was significant lower and the astringency index of the 

Bobal CH2 was significant higher than in their respective reduced-alcohol wines (RAH2). These 

differences may be due to changes in the wine matrix other than the proanthocyanidin 

concentration.  

 

Cultivar Parameters
H1 H2

CH2 RAH2

Cabernet 
Sauvignon

TPI 40.3 ± 1.5a 44.6 ± 1.8b 45.3 ± 5.2ab

Proanthocyanidins 740 ± 100a 1010 ± 310a 1140 ± 250a

Astringency Index 146 ± 21a 171 ± 10b 183 ± 13b

Merlot

TPI 24.2 ± 2.6a 37.8 ± 5.2b 49.3 ± 1.3c

Proanthocyanidins 330 ± 60a 1010 ± 120b 1140 ± 60b

Astringency Index 56 ± 6a 118 ± 42b 145 ± 39b

Bobal

TPI 35.4 ± 3.6a 68.1 ± 2.6b 63.0 ± 3.0b

Proanthocyanidins 740 ± 200a 1650 ± 220b 1950 ± 400b

Astringency Index 96 ± 27a 342 ± 19b 204 ± 1c

H1: first harvest, H2: second harvest, CH2: control wines of H2, RAH2: reduced alcohol wines from H2. All data are
expressed as the average of the three replicates ± standard deviation (n = 3). Statistical analysis: one-factor ANOVA
and Scheffe´s test (both p < 0.05). Different letters indicate the existence of statistically significant differences.

Table 5. Total phenolic compounds, proanthocyanidins (mg epicatechin/L) and  astrigency index (mg tannic acid/L).

 

 

Proanthocyanidins were also measured by acid-catalysis in the presence of excess 

phloroglucinol (Table 6) and the results were generally very similar to those obtained by 

methyl-cellulose precipitation. This data confirms that H2 wines had a higher proanthocyanidin 

concentration than H1 wines and that the proposed method for alcohol reduction did not affect 

the proanthocyanidin concentration (see above). This method also allows the mean degree of 

polymerization (mDP) and the percentage of the different monomers of proanthocyanidins to be 

measured. These results indicate that the mDP was significantly higher in all the H2 wines than 

in the H1 wines. The higher mDP observed in the wines from riper grapes may be due to the fact 

that the polymerization of proanthocyanidins increased with grape maturity and/or that the 

higher ethanol content favored the extraction of larger molecules. If we compare only H1 with 

CH2, both causes are possible. However, the mDP of Cabernet Sauvignon and Merlot RAH2 

was similar to that of their respective controls although their ethanol content is closer to that of 

H1 than CH2 wines. This should indicate that polymerization during grape ripening is the main 

reason for the higher proanthocyanidin mDP observed in the H2 wines. Nevertheless, it has been 
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reported than ethanol plays a non-negligible role in the proanthocyanidin extraction (Canals et 

al. 2005) and the results obtained seem to confirm this. In this regard, the proanthocyanidin 

concentration, measured by phoroglucinolysis, of all RAH2 wines tended to be lower than that 

of their respective controls although it was only significant in the case of Merlot. Moreover, the 

mDP of RAH2 Bobal wine was slightly but significantly lower than its respective CH2. RAH2 

Bobal wine was precisely the sample in which alcohol was most drastically reduced (3%) and it 

is quite logical that this difference hinders the extraction of larger molecules. In the other 

cultivars, the difference in ethanol content was not so important and therefore the differences in 

mDP were not significant. 

 

Cultivar Parameters
H1 H2

CH2 RAH2

Cabernet Sauvignon

Proanthocyanidins (mg/L) 703.6 ± 31.3a 1104 ± 183.4b 940.1 ± 197.8b

mDP 4.35 ± 0.09a 6.54 ± 0.20b 6.34 ± 0.14b

(+)-Catechin (%) 18.6 ± 0.4a 12.4 ± 0.5b 13.1 ± 0.4b

(-)-Epicatechin (%) 56.2 ± 1.5a 54.6 ± 1.2a 55.0 ± 0.7a

(-)-Epicatechin-3-O-gallate (%) 4.5 ± 0.1a 4.8 ± 0.4a 4.3 ± 0.2a

(-)-Epigallocatechin (%) 20.5 ± 0.9a 28.2 ± 0.1b 28.4 ± 0.7b

Merlot

Proanthocyanidins (mg/L) 427.0 ± 115.5a 1070.1 ± 17.2b 969.9 ± 41.4c

mDP 2.72 ± 0.13a 4.80 ± 1.84b 4.43 ± 0.36b

(+)-Catechin (%) 26.2 ± 2.2a 21.8 ± 1.4b 19.0 ± 2.1b

(-)-Epicatechin (%) 57.8 ± 0.7a 57.6 ± 0.1a 57.6 ± 1.9a

(-)-Epicatechin-3-O-gallate (%) 4.4 ± 0.4a 4.9 ± 0.2b 5.7 ± 0.3c

(-)-Epigallocatechin (%) 11.6 ± 1.3a 16.5 ± 0.6b 17.7 ± 0.7b

Bobal

Proanthocyanidins (mg/L) 761.4 ± 54.0a 1648.3 ± 38.0b 1573.5 ± 78.6b

mDP 6.60 ± 0.14a 9.54 ± 0.30b 8.77 ± 0.34c

(+)-Catechin (%) 18.9 ± 0.3a 11.3 ± 0.6b 13.2 ± 1.1c

(-)-Epicatechin (%) 54.5 ± 0.8a 60.4 ± 0.3b 57.5 ± 1.0c

(-)-Epicatechin-3-O-gallate (%) 3.2 ± 0.1a 3.6 ± 0.3a 3.6 ± 0.3a

(-)-Epigallocatechin (%) 23.3 ± 1.0a 24.7 ± 0.5b 25.6 ± 0.2b

H1: first harvest, H2: second harvest, CH2: control wines of H2, RAH2: reduced alcohol wines from H2. All data are
expressed as the average of the three replicates ± standard deviation (n = 3). Statistical analysis: one-factor ANOVA and
Scheffe´s test (both p < 0.05). Different letters indicate the existence of statistically significant differences.

Table 6. HPLC Analysis of Total Proanthocyanidins and Related Parameters Following Acid –Catalysis in the Present
of Excess Phloroglucinol.

 

 

On the other hand, grape ripening also affected the proportion of the different proanthocyanidin 

monomers. Specifically, the proportion of (+)-catechin significantly decreased and the 

proportion of (-)-epigallocatechin significantly increased in the three cultivars throughout 
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maturation. In contrast, the proportions of (-)-epicatechin and (-)-epicatechin-3-O-gallate 

remained almost unchanged. Only slight but significant fluctuations were detected. In particular, 

the proportion of (-)-epicatechin-3-O-gallate in Merlot and the proportion of (-)-epicatechin in 

Bobal tended to increase with maturation. 

Since epigallocatechin is only present in skin proanthocyanidins (Souquet et al. 1996) the 

changes in the proportion of this monomer in the three cultivars seems to indicate that the 

contribution of skins to the wine proanthocyainidin concentration increases when the grapes are 

riper. 

Only slight differences were found in the proanthocyanidin monomer proportion between the 

reduced-alcohol wines (RAH2) and their respective controls (CH2). In fact their compositions 

were very much closer to CH2 wines than to H1 wines, which indicate that grape ripening has a 

greater influence on wine proanthocyanin composition than other factors such as ethanol content 

or pH. 

 

Table 7. Sensory analysis (triangular test)

H1: first harvest, H2: second harvest, CH2: control wines of H2, RAH2: Reduced Alcohol

wines from H2. n.s: non significant.

Cultivars
Triangular            

test
Positive 

identifications
p

Preferences

Flavor Taste

Cabernet 
Sauvignon

H1 vs CH2 7/10 0.05 2/5 1/6

H1 vs RAH2 5/10 ns 1/4 2/3

CH2 vs RAH2 4/10 ns 2/2 3/1

Merlot

H1 vs CH2 7/10 0.05 1/6 2/5

H1 vs RAH2 7/10 0.05 3/4 3/4

CH2 vs RAH2 3/10 ns 2/1 1/2

Bobal

H1 vs CH2 8/10 0.005 2/6 7/1

H1 vs RAH2 9/10 0.001 4/5 8/1

CH2 vs RAH2 9/10 0.001 4/5 9/0

 

 

The sensory triangular tests were carried out by comparing the three wines of each cultivar by 

pairs (Table 7). As it was quoted above, the color differences among wines were in some cases 

so evident that all sensory analyses were done in dark glasses. It is well known that color has a 

non-negligible effect on the sensory appreciation of flavor and texture (Norton and Johnson, 
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1987; Stillman, 1993). Therefore, using dark glasses, the highlighted differences could be 

attributed to flavors and/or mouth sensation, without color interfering. Tasters were able to 

significantly distinguish the wines of the first harvest from the controls of the second one. As 

was expected due that H1 grapes were in all the cases less ripe than CH2 grapes. Consequently, 

the differences in ethanol content, acidity, and polyphenols composition between these wines 

were noticeable. In the case of Cabernet Sauvignon and Merlot, tasters preferred CH2 wines 

than H1, by both nose and mouth sensations. The results from Bobal evaluation were less clear. 

In fact, tasters appreciated the riper flavor of CH2 wines but they preferred H1 in mouth, 

probably by the excessive alcohol content in CH2 samples which made them too aggressive in 

the palate. 

Tasters were also able to distinguish between H1 and RAH2 wines in the case of Merlot and 

Bobal but they were unable to differentiate between Cabernet Sauvignon H1 and RAH2 wines. 

That is also logical because the differences in maturity of Cabernet Sauvignon grapes from the 

first and the second harvest were lower than in the case of the other two cultivars. In fact, 

analytically RAH2 and H1 wines of Cabernet are more similar than the other equivalent pairs 

(Tables 1 to 6). On the other hand, Cabernet Sauvignon RAH2 was the sample in which the 

addition of low-alcohol wine was the lowest. The preferences of the tasters have not sense in the 

case of Cabernet sauvignon inasmuch as they did not differentiate the wines. However, they 

preferred by slight majority the CH2 than H1 wines, by their aroma complexity, of both Merlot 

and Bobal cultivar; as well in the case of CH2 Merlot wines tasting sensations were appreciated. 

In apparently contradiction, tasters’ preference by H1 than RAH2 Bobal wine could be justified 

by the excessive acidity provided by the addition of the low alcohol wine into RAH2 wine.   

Finally, tasters were able to distinguish between CH2 and RAH2 wines only for Bobal cultivar; 

unexpectedly, the panel was not able to differentiate these wines for the other two cultivars. It is 

clear that RAH2 and CH2 of Bobal were very different because it was the experiment in which 

the addition of low-alcohol wine was higher. In fact, RAH2 wine was actually very acidic and 

almost all panelists can distinguish it. However, in the case of Cabernet Sauvignon and Merlot, 

although the differences in the ethanol content were quite high, the other analytical parameters 

were not so different and in most of the cases minor than the differences between H1 and CH2. 

Since tasters were unable to distinguish between CH2 and RH2 wines of Cabernet and Merlot, 

the preferences are meaningless. In the case of Bobal, tasters preferred by slight majority the 

aroma of RAH2 wine, but in contrast all of them preferred the CH2 by palate sensations. This 

clear preference was very likely due to the excessive acidity of the RAH2 wine. That is a main 
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consideration to take into account in future experiences because it should be prevented that the 

reduction of alcohol content do not produces an excessive acidification of wine. 

It can be concluded then that the proposed procedure may be useful for partially reduction of 

alcohol content and simultaneously decreasing pH of wines. The color of the reduced-alcohol 

wines obtained was better than their corresponding controls and their phenolic composition was 

similar. Moreover, the procedure proposed in this paper does not require specific equipments 

and is very easy to apply in standard wineries. Further experimentation is needed to better adapt 

the process to obtain more balanced wines without the problems of excess alcohol and high pH. 
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Abstract 

 

The presence of oxygen in red wine leads to the transformation of ethanol into ethanal which 

after capturing a proton will react with flavanols to start the process of formation of ethyl 

bridges. Wine pH also conditions the equilibrium among the different anthocyanin structures 

and may consequently affect anthocyanins reactivity. Consequently, the aim of this paper was to 

study how the pH can affect the changes induced by micro-oxygenation in two wines with 

different phenolic composition. The differences observed in micro-oxygenation wines in 

comparison to their controls were, in general, greater when the pH was more acidic. 

Specifically, the differences found in color intensity, anthocyanin concentration, PVPP Index, 

ethyl-linked pigments, type B vitisins, polymeric pigments and ethylidene-bridged flavanols 

between micro-oxygenated wines and their corresponding controls were higher at lower pH. On 

the contrary, the effects of micro-oxygenation when the pH was less acidic were much smaller 

and sometimes practically nonexistent. 

 

Keywords: Wine, pH, phenolic compounds, color, micro-oxygenation 
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Introduction 

 

Phenolic compounds are one of the main determinants of the quality of red wines. 

Anthocyanins, which are the main responsible of the color of red wine, are extracted from grape 

skins during the maceration and fermentation processes. Other phenolic compounds, present in 

skins and seeds, are also extracted. Among these compounds, proanthocyanidins, also known as 

condensed tannins, are the main determinant of texture sensations such as body, bitterness and 

astringency (1-3). The molecular size and monomeric composition of proanthocyanidins seem to 

be related to the sensation of astringency: the greater the degree of polymerization and the 

greater the percentage of galloylation, the greater is the sensation of astringency (3,4). 

During winemaking and aging, phenolic compounds undergo progressive structural changes 

with an undoubted influence in wine organoleptic characteristics. In particular, anthocyanins, 

which are unstable, present a high chemical reactivity giving rise to new more stable pigments. 

Different mechanisms have been proposed to explain the formation of new pigments. Some of 

them imply the direct condensation of anthocyanins and flavanols without the participation of 

oxygen (5-7). But probably, the reactions in which oxygen is involved have utmost importance. 

During winemaking and aging, the presence of small quantities of oxygen leads to the formation 

of ethanal from ethanol. The ethanal can in turn react with flavanols to induce the formation of a 

very reactive carbocation that quickly reacts either with another flavanol molecule or with an 

anthocyanin, producing ethyl-bridged flavanol-flavanol or flavanol-anthocyanin oligomers (8). 

However, it has recently been shown that the compounds formed by ethyl bridges are unstable 

and that its cleavage can originate new compounds (9).  

On the other hand, cycloaddition reactions between anthocyanins and other small molecules can 

produce a new family of anthocyanin-derived pigments called pyranoanthocyanins. Specifically, 

the reaction with pyruvic acid or ethanal generates vitisin A or B respectively (10-13). In 

addition, the reaction with vinylphenol can generate vinylphenol adducts (14,15), and finally the 

previously formed ethylidene-bridged compounds can dissociate and generate vinylphenol 

adducts (16,17). 

All those reactions result in gradually shift of the initial purple-red color to reddish-brown hues. 

Additionally, astringency diminishes but the mechanism because it happens it is not so clear. 

Theoretically, the formation of ethyl bridges should increase the degree of polymerization of the 

UNIVERSITAT ROVIRA I VIRGILI 
GRAPE PHENOLIC MATURITY; DETERMINATION METHODS AND CONSEQUENCES ON WINE PHENOLIC COMPOSITION 
Nikolaos Kontoudakis 
ISBN:978-84-693-7682-9/DL:T-1754-2010 



nn

Results (iv) 

135 

 

flavanoles which should increase the astringency (3). However, what happens is exactly the 

opposite. One possible explanation may be the condensation reactions that take place between 

anthocyanins and flavanols which can diminish the astringency (4). Even some authors have 

suggested that the cleavage reactions of proanthocyanidins by acid catalysis may be the cause of 

the observed reduction of the astringency (18).    

The reactivity of phenolic compounds is affected by several factors such as temperature, pH, 

and free SO2 concentration (19,20) but probably the oxygen exposure is the main determinant 

(21-23). In fact, wines are traditionally aged in oak barrels because the porosity of the wood, the 

interstices between staves, and the bunghole allow the entry of small amounts of oxygen which 

can induce all the above quoted reactions (24).  

Nevertheless, oak aging is an expensive and laborious process that cannot be used for all wines. 

Micro-oxygenation (MOX) has therefore been proposed for reproducing, and even accelerating, 

the transformations of color and phenolic compounds that take place during oak aging (25,26). 

MOX technique consists on providing a controlled flow of oxygen into the wine in the form of 

microbubbles through the injection of gaseous oxygen using a microdiffuser (27). 

Since its appearance, MOX has become a common application technique in wineries worldwide. 

It is believed that MOX stabilize the color and decrease the astringency, bitterness and 

herbaceous characters of wine (28). The influence of MOX on the wine quality depends on 

several parameters with the most important of them to be the moment and the duration of the 

application, the dose of the oxygen and the composition of the initial wine. 

Several publications in the literature have studied the influence of MOX on wine color, 

composition, and sensory attributes (21, 26, 28-30). To our knowledge, however, none of these 

have studied the influence of wine pH on the effectiveness of MOX. The pH condition the 

equilibrium among four different anthocyanin structures. The flavylium cation (red) is the main 

form at very acid pH but its concentration decrease progressively when pH augments, which 

originate the appearance of the quinoidal base (blue) and the hemiketal form (colorless) and the 

chalcone (slightly yellow) (31). Depending on pH, anthocyanins can act as electrophiles in the 

flavylium form or as nucleophiles in the hemiketal form (32). Therefore, it is quite logical that 

pH can influence the reactivity of anthocyanins with oxygen. Moreover, the first step on the 

reactions induced by oxygen implies the formation of ethanal from ethanol. Subsequently, 

ethanal must capture a proton and become into a carbocation which will react with flavanols to 
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start the process of formation of ethyl bridges. Therefore it is also logical that the proton 

concentration exert a non-negligible influence on this mechanism. In this paper, therefore, we 

study how the pH can affect the changes induced by MOX in two wines with different phenolic 

composition.  

 

Materials and methods 

 

Chemicals.  Methanol, acetonitrile, formic acid and acetic acid were HPLC-grade and were 

purchased from Panreac (Barcelona, Spain). Malvidin-3-O-glucoside chloride, (+)-catechin, (-)-

epicatechin and (-)-epicatechin-3-O-gallate were purchased from Extrasynthès (Genay, France). 

Phloroglucinol, L-ascorbic, 4-methylcatechol and 4-dimethylaminocinnamaldehyde (DMACH) 

were purchased from Sigma (Madrid, Spain). The rest of the chemicals were of high purity and 

were purchased from Panreac (Barcelona, Spain).  

 

Wines. This study was carried out with two Cabernet Sauvignon wines from the 2008 vintage of 

the AOC Penedes. These wines were selected because of its different phenolic composition. The 

wine A had a very low phenolic content, whereas the wine B had a very high phenolic content. 

Specifically the standard parameters of the wine A at the start of the experiment were: ethanol 

content, 12.5%; titratable acidity, 5.2 g of tartaric acid/L; volatile acidity, 0.42 g of acetic 

acid/L; pH, 3.5 free SO2, 20 mg/L. The standard parameters of the wine B at the start of the 

experiment were: ethanol content, 12.8%; titratable acidity, 5.9 g of tartaric acid/L; volatile 

acidity, 0.49 g of acetic acid/L; pH, 3.5 free SO2, 20 mg/L. 

All racking of the wines were made with previous drainage with argon to ensure that only 

received the dose of oxygen corresponding to the micro-oxygenation. 4,500 L of both wines 

were divided in three stainless steel tanks of 1,500 L. The first tanks of each wine was added 

with NaOH 2M to increase the pH up to 3.9. The second tank of each wine was added with 

H2SO4 2M to diminish pH down to 3.1 and it was also added a complementary volume of 

distilled water to equal the total volume added to the first tanks. Finally, a similar total volume 

of distilled water was added to the third tank to minimize the dilution effect without altering the 

pH. After that, wines were pumped without aeration with the aim to homogenize them and were 
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left to stand for 24 h.  Twenty four glass bottles (750 mL), previously drained with argon, were 

filled with each wine and sealed with 49 mm natural cork. The bottled wines were considered as 

controls. Simultaneously, each one of the 6 different wines (wine A and B at three different pH) 

was racked to three MOX tanks previously drained with argon for carrying out the experiment in 

triplicate. 

 

Micro-Oxygenation Equipment. The multiple diffuser microoxygenator (VISIO 2/6-Oenodev, 

France) was connected to each one of  MOX stainless steel tanks of 165 L. These tanks were 2.5 

m in height, had a diameter of 0.30 m, and were equipped with a ceramic diffuser placed at 10 

cm above the bottom of the tank. These dimensions were necessary so that the oxygen bubbles 

produced during micro-oxygenation would have a sufficient height of displacement to guarantee 

their complete dissolution. 

 

Experimental Conditions. All wines, controls and micro-oxygenated, were kept at a 

temperature of 16 ± 2 °C. MOX were carried out for 3 months with an oxygen flow of 15 mg/L 

per month. After that, 24 glass bottles (750 mL), previously drained with argon, were filled with 

each tank and sealed with 49 mm natural cork. Analyses were done immediately after bottling 

and also 8 months later.  

 

Color parameters. The color intensity (CI) was estimated using the method described by 

Glories (33). The CIELAB coordinates, lightness (L*), chroma (C*), hue (H*), were determined 

according to Ayala et al. (34) and the data were processed with the MSCV® software (35). All 

absorbance measurements were taken with a Helios Alpha (Thermo Fisher Scientific Inc., 

Waltman, MA) UV–vis spectrophotometer using quartz cells of 1 mm path length. 

Anthocyanin Analysis. The total anthocyanin content was determined by spectrophotometry 

using the method described by Niketic-Alksic and Hrazdina (36). The PVPP index was 

calculated according to Glories (33). 
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HPLC Analyses of Anthocyanins and Derived Pigments. Reversed-phase HPLC analyses of 

anthocyanins and the anthocyanin-derived pigments were carried out with an Agilent 1200 

series liquid chromathograph (HPLC-DAD) and an Agilent Zorbax Eclipse XDB-C18, 4.6 x 

250mm 5µm column (Agilent Technologies, Santa Clara, USA) according to the method 

described by Cano-López et al. (29). As solvents were used 4.5% aqueous formic acid (solvent 

A) and acetonitrile (solvent B) at a flow rate of 0.8 mL/min. Elution was performed with a 

gradient starting with 10% B to reach 15% B at 30 min, 15.2% B at 45 min, 18% B at 60 min, 

25% B at 100 min and 25 to 100% B in 20 min. Chromatograms were recorded at 520 nm and 

anthocyanin standard curves were made using malvidin-3-O-glucoside chloride. 

Compounds were identified by comparing their UV spectra recorded with the diode array 

detector and those reported in the literature (37). In addition, to confirm each peak identity 

analyses were performed with Agilent 1200 series HPLC using an Agilent 6210 time of flight 

(TOF) mass spectrometer equipped with an electrospray ionization (ESI) system. Elution was 

carried out under the same HPLC analysis conditions as described by Cano-López (29). The 

capillary voltage was 3.5 kV. Nitrogen was used as both dry gas at a flow rate of 12 L/min at 

350 ºC and nebulizer gas at 60 psi. Spectra were recorded in positive ion mode between m/z 50 

and 2400. 

 

Analysis of Proanthocyanidins following acid catalysis with phloroglucinol.  Acid-catalysis 

cleavage in the presence of excess phloroglucinol (38) was used to analyze monomeric 

proanthocyanidin composition and its mean degree of polymerization (mDP). 10 mL of wine 

was evaporated under a low pressure vacuum (Univapo 100 ECH, Uni Equip, Martinsried, 

Germany). After that it was resuspended in 6 ml distilled water and then applied to Set Pak Plus 

tC18 Enviromental cartridges (Waters, Milford, USA) that had been previously activated with 

10 mL methanol and 15 mL water. The sample was washed with 15 mL distilled water and then 

the proanthocyanidins were eluted with 12 mL methanol, immediately evaporated under vacuum 

and later redissolved in 2 mL methanol.  Finally, 100 µL of this sample were reacted with 100 

µL phloroglucinol solution (0.2N HCl in methanol, containing 100g/L phloroglucinol and 20 

g/L ascorbic acid) at 50 ºC for 20 min. The reaction was stopped by adding 1000 µL of 40 mM 

aqueous sodium acetate (38). Reversed-phase HPLC analysis (Agilent serie 1200 HPLC-DAD) 

was carried out according to the method of Kennedy and Jones (38). As solvents were used 1% 

aqueous acetic acid (solvent A) and methanol (solvent B) at a flow rate of 1 mL/min. The 
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elution conditions were 1.0 mL/min. Elution was performed with a gradient starting with 5% B 

for 10 min, a linear gradient from 5 to 20% B in 20 min, a linear gradient from 20 to 40% B in 

25 min. The column was then washed with 90% B for 10 min and reequilibrated with 5% B for 

5 min before the next injection. The monomers (+)-catechin, (-)-epicatechin, (-)-epicaechin-3-O-

gallate were identified by comparing its retention time with that of the pure compounds. The 

phoroglucinol adducts of (+)-catechin, (-)-epicatechin, (-)-epigallocatechin and (-)-epicatechin-

3-O-gallate were identified by HPLC-TOF analysis. Analyses were performed with Agilent 

1200 series HPLC using an Agilent 6210 time of flight (TOF) mass spectrometer equipped with 

an electrospray ionization (ESI) system. Elution was carried out under the same HPLC analysis 

conditions as described by Kennedy and Jones (38). The capillary voltage was 3.5 kV. Nitrogen 

was used as both dry gas at a flow rate of 12 L/min at 350 ºC and nebulizer gas at 60 psi. 

Spectra were recorded in positive ion mode between m/z 50 and 2400. This assay was also 

carried out without addition of phloroglucinol in order to measure the quantity of 

proanthocyanidin monomers naturally present in the wines. 

The number of terminal subunits were considered as the difference between total monomers 

without phoroglucinol and thus obtained in the analysis performed without phloroglucinol 

addition. The number of extension subunits was considered as the addition of all the 

phloroglucinol adduct.  The mean degree of polymerization (mDP) was calculated by adding 

terminal and extension subunits (in moles) and dividing by terminal subunits. The total 

proanthocyanidin concentration was considered as the addition of all terminal and extension 

subunits. Because acid catalysis with phloroglucinol is not completely efficient, the real yield of 

the reaction was measured using a pure B2 proanthocyanidin dimer [(-)-epicatechin-(4→8)-(-)-

epicatechin]. This yield was used to calculate the total proanthocyanidin concentration. 

Wine EDP Phloroglucinolysis Method. The determination of the ethylidene-bridged flavanols 

in wine samples was done with the use of 2,2´-ethylidenediphloroglucinol (EDP) 

phloroglucinolysis according to the method described by Drinkine et al. (39). 5 mL of wine was 

diluted in 10 mL of water. By 10 mL, the sample was applied on the column after conditioning. 

After that 10 mL of the sample were applied to Set Pak Plus tC18 (5g) Enviromental cartridges 

(Waters, Milford, USA) that had been previously activated with 50 mL methanol and 50 mL 

water. The sample was washed with 50 mL distilled water and then the sample was eluted with 

50 mL methanol, immediately evaporated under vacuum and later redissolved in 1.5 mL 

methanol.  Finally, 100 µL of this sample were reacted with 100 µL phloroglucinol solution 
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(0.2N HCl in methanol, containing 100g/L phloroglucinol and 20 g/L ascorbic acid) at 50 ºC for 

20 min. The reaction was stopped by adding 200 µL of 400 mM aqueous sodium acetate (39). 

Aqueous 4-methylcatechol (20 µL of 500 mg/L) was then added as internal standard.  

Analyses were performed with Agilent 1200 series HPLC using an Agilent 6210 time of flight 

(TOF) mass spectrometer equipped with electrospray ionization (ESI) system and an Agilent 

Zorbax Eclipse XDB-C18, 4.6 x 150mm 5µm column. As solvent were used 5% aqueous acetic 

acid (solvent A), and acetonitrile as solvent B. The sample loop was 20 µL and the elution 

gradient was as follows: 10% B for 2 min, from 10 to 50% B in 8 min, from 50 to 100% B in 1 

min, 100% B for 4 min, from 100 to 10% B in 1 min, 10% B for 4 min with a 0.3 mL/min flow. 

The capillary voltage was 3.5 kV. Nitrogen was used as both dry gas at a flow rate of 12 L/min 

at 350 ºC and nebulizer gas at 60 psi. Spectra were recorded in positive ion mode between m/z 

50 and1100. For comparing the wine samples we used the area of the identified EDP. 

 

Other Phenolic Compounds. The total phenolic index (TPI) was determined by measuring the 

absorbance at 280 nm (19). Dimethylaminocinnamaldehyde index (DMACH index) was 

measured according to Nagel and Glories (40). 

 

Statistics. All the data are expressed as the arithmetic average ± of the standard deviation from 

three replicates. Two and one-factor ANOVA and Scheffe`s test were carried out with SPSS 

software. 

Results and discussion 

 

Tables 1 (Wine A) and 2 (Wine B) show the wines color characteristics. In regard to the original 

wines (pH 3.5), it is clear that they have very different color characteristics. Wine A have lower 

Color Intensity (CI), Chroma (C*) and Hue (H*) and higher Luninosity (L*) than wine B. This 

data confirms that wine A is a light wine while wine B is a highly concentrated wine, at least in 

terms of color. 

As expected, CI, C* and L* of both wines were drastically influenced by the pH. Specifically, 

CI and C* were higher and L* lower as the pH is lower in both wines. H* was also higher when 
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the pH was more acid in wine B, but this effect was not so clear in the case of wine A. These 

changes generated by the pH in the chromatic characteristics observed in both wines can be 

easily explained. The lower the pH the higher the proportion of flavylium cation, and 

consequently, the higher the contribution of anthocyanins to red color (31). In addition, the 

higher the pH the higher the proportion of quinonoidal base. Since this form of anthocyanins is 

blue, at lower pH, H* should also be lower. 

CI tended to decrease over time in both wines at any pH. However, all the MOX wines had 

higher CI than their corresponding controls with the only exception of the wine A at pH 3.9. 

These differences were observed immediately after bottling and also 8 months later. Moreover, a 

clear trend was observed after 8 months of bottle storage inasmuch as the differences in CI 

appear to be higher when pH is lower. Specifically, in wine A the differences in absorbance 

units were 1.3 at pH 3.1, 0.4 at pH 3.5 and 0.2 at pH 3.9, and in wine B were 2.4 at pH 3.1, 1.5 

at pH 3.5 and 1.1 at pH 3.9. 

In regard to Cielab coordinates, C* tend to decrease in all the wines over time but no clear tend 

is observed. On the other hand, L* tend to increase in all the control wines over time and have 

not a clear behavior in both micro-oxygenated wines at any pH during the three first months. 

However, 8 months later, nearly all the microoxygenated wines have an L* value lower than 

their corresponding controls, and this differences are higher when the pH is lower. Specifically, 

in wine A the differences in L* units were 4.3 at pH 3.1, 1.0 at pH 3.5 and 0.1 at pH 3.9, and in 

wine B were 3.3 at pH 3.1, 2.2 at pH 3.5 and 0.8 at pH 3.9. Finally, changes in H* are even 

more complicated. In the slight wine (wine A) H* tend to increase in the MOX wines at any pH. 

However, in the high phenolic content wine (wine B) the changes on H* of the MOX wines vary 

in function of the pH. Thus, H* decreases at pH 3.1, it is stable at pH 3.5 and it increases at pH 

3.9. It seems, therefore, pH and polyphenols concentration exert an effect on the color changes 

induced by MOX. 

Tables 3 (Wine A) and 4 (Wine B) show the results from the spectrophotometric analysis of 

anthocyanins and the PVPP Index.  This data confirms that wine A had an anthocyanin 

concentration much lower than wine B and therefore they were completely different at this level. 

As expected, total anthocyanin decreased over time in all the conditions. However, some 

different pattern can be observed between controls and MOX wines. In general, the decrease in 

anthocyanin concentration after three months tends to be higher in the MOX wines than in their 
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corresponding controls. Eight months later, these differences remained in wine A, but wine B 

behaved differently in function of pH. In this high phenolic content wine, the anthocyanin 

concentration of MOX wine was higher at pH 3.1, equal at pH 3.5 and lower at pH 3.9 than their 

corresponding controls. 

The PVPP Index tended to increase over time in all wines and did it faster when MOX was 

applied, which would confirm that oxygen favors the combination of anthocyanins with 

flavanols (21). On the other hand, after three months of MOX, the difference of PVPP index of 

MOX wines in respect to their controls was higher when the pH was lower. Specifically, in wine 

A the differences in PVVP Index were 9.9 at pH 3.1, 2.2 at pH 3.5 and 2.2 at pH 3.9, and in 

wine B were 14.0 at pH 3.1, 7.4 at pH 3.5 and 3.4 at pH 3.9. Although these differences are 

minimized eight months later, this data suggests that when the pH is lower, MOX is more 

effective, at least in terms of its effect on the combination of anthocyanins and flavanols. 

Anthocyanins and anthocyanin-derived pigments were also analyzed by HPLC. In both wines, A 

(Table 5) and B (Table 6), the five anthocyanin monoglucosides (malvidin, petunidin, 

delphinidin, peonidin, and cyanidin) and their respective acetyl and coumaryl derivatives were 

detected. Overall, total monomeric anthocyanin concentration decreased over time and did it 

faster when MOX was applied and when pH was lower. Broadly, this trend, which was observed 

in the five monoglucosides and also in their respective acyl-derivatives, does not coincide 

exactly with that observed for the anthocyanins measured by spectrophotometry. This is because 

spectrophotometric analysis overestimates the total anthocyanin concentration since it includes 

the contribution from other pigments, whereas only free anthocyanins are detected by the HPLC 

method (41). 

Malvidin 3-glucoside-(epi)catechin was the only detected direct adduct of anthocyanins and 

flavanols and its concentration tends to increase over time in all wines. However, nor pH nor 

microoxygenation seem to exert any influence on its evolution.  

Malvidin-3-glucoside-ethyl-catechin, malvidin-3-acetylglucoside-ethyl-catechin and malvidin-

3-p-coumaroyl-glucoside-ethyl-catechin were detected in wine samples and all of them are 

grouped in Tables 5 and 6 as ethyl-bridged linked pigments. After three months, none of the 

control wines differ significantly with respect to their original wines. Similar results were 

obtained with MOX wines at pH 3.9 and 3.5. However, both MOX wines had significantly 

higher levels ethyl-bridged linked pigments when the pH was more acidic (3.1). Eight months 
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later, all the MOX wines had small but significant higher concentrations of these pigments than 

their corresponding controls. These results confirm that MOX favor the combination of 

anthocyanins with flavanols by means of ethyl bridges although the differences found are minor 

than expected. 

Several pyranoanthocyanin compounds were found in our wines. Specifically, type-A vitisins 

which include: vitisin A and A-type vitisins of peonidin-3-glucoside and malvidin 3-

acetylglucoside; type-B-vitisins which include vitisin B and B-type vitisin of malvidin 3-

acetylglucoside; vinyl-adducts which include malvidin-3-glucoside-4-vinyl-catechin adduct and 

malvidin-3-glucoside-4-vinylphenol adduct.  

After three months, all the MOX wines had small but significant higher concentration of type-A 

vitisins than their respective controls without observing any effect of pH. These differences 

remained 8 months later only in the high phenolic content wine (B) but not in the slight wine 

(A).  

A different trend was found in type B vitisins because three months later all the wines, control, 

and MOX, had a significant increase in the concentration of these pigments. It is interesting to 

note that both MOX wines at pH 3.1 had significant higher concentration of type B vitisins than 

their corresponding controls and that these differences were not found at the other pH. 

Therefore, the very acidic pH seems to favor the cycloaddition of ethanal with anthocyanins. 

After three months, the vinyl adducts concentration of all MOX wines was significant higher 

than their corresponding controls but 8 months later this differences are not so clear. In fact 

some control wines after 8 months had higher concentrations of these pigments than their 

corresponding MOX wines. On the other hand, the pH did not appear to exert any effect on 

these compounds. 

Some authors have suggested that a broad peak at the end of the HPLC chromatogram of 

anthocyanins and derived-pigments correspond to the polymeric pigments (29,30). This 

polymeric peak tended to increase its surface over time in all wines which suggest that the 

formation of polymeric structures of pigments took place both in the control and MOX wines. 

This polymeric peak tend to increased faster when MOX was applied on the wine B at any pH 

but only at pH 3.1 in the wine A.  
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At three months, this polymeric peak was significant higher when MOX was applied on the 

wine B at any pH but only at pH 3.1 in the wine A. Eight months later the differences between 

MOX and control wines were more clearly influenced by the pH.  Specifically, at pH 3.1 the 

surface of the polymeric peak was around 50 % higher in both MOX wines than in their controls 

whereas at pH 3.5 were around 15 % and practically inexistent at pH 3.9. These data suggest, 

therefore, that the formation of polymeric pigments in the presence of oxygen is more favorable 

when the pH of the wine is very acidic. 

Tables 7 and 8 show the total phenolic compounds and related parameters. These data confirm 

again that both wines are very different in their phenolic composition inasmuch as the wine A 

have a TPI and a proanthocyanidin concentration of about half of the wine B. 

As expected, no differences were found in the TPI, DMACH Index, proanthocyanidin 

concentration and mDP of both initial wines in function of the pH. Nevertheless, the TPI and the 

proanthocyanidin concentration tended to decrease over time in all wines probably caused by the 

precipitation of great polymers. In general, these decreases were similar in control and MOX 

wines at any pH. The DMACH index also decreased in all wines over time but in that case some 

general trends were observed. Specifically, DMACH Index decreased faster in MOX wines than 

in their controls. Moreover, this decrease seemed to be more drastic when the pH was lower 

especially in the less concentrated wine (A). Since DMACH reacts only with the extremes of 

proanthocyanidin polymers, its diminution must be due to a decrease in the number of molecules 

(Citas). Therefore, the observed decrease of DMACH Index may be caused either by 

precipitation of some of the proanthocyanidin molecules or by increasing their degree of 

polymerization. However, the mDP measured by phloroglucionolisis do not follow a similar 

pattern than DMACH Index, remaining always in very similar values in all wines. These results 

indicate that MOX have not induced changes in the degree of polymerization and suggest that 

the decrease in DMACH is more concerned with precipitation of some of the 

proanthocyaninidins molecules. These results can be considered as surprising because it was 

expected that the MOX induced the polymerization of proanthocyaninidins but other author 

have also reported similar results (21).  

Table 9 show the evaluation of ethyl-bridged flavanols by means of EDP phloroglucionolysis. In 

that case, only wines at 8 months were analyzed because at the beginning of the experiment the 

method was not ready. In none of the wines, the application of MOX generated significant 

differences in the presence of ethylidene-bridged flavanols at pH 3.9. However, when the pH 
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were lower significant differences appeared. Specifically, at pH 3.5 higher presence of 

ethylidene-bridged flavanols was found in microxigenated wine A but not in wine B and at pH 

3.1 the differences became very high in both wines. These data indicates that the formation of 

ethyl-bridged flavanols is highly favored at pH very acidic. Moreover, since no differences were 

found at pH 3.9 between control and MOX wines, this data also suggest that MOX can be less 

effective when the pH of wines is too high. 

It can be concluded that pH exert a major effect on the evolution of color and phenolic 

compounds of wine during aging, especially when oxygen is added by MOX. When pH is more 

acidic, the effects of MOX are clearer. The differences observed in MOX wines in comparison 

to their controls indicate that they had more intense color and higher PVPP Index, higher 

concentrations of ethyl-linked pigments, type B vitisins, polymeric pigments and ethylidene-

bridged flavanols when the pH is more acidic. On the contrary, the effects of MOX when the pH 

is less acidic are much smaller and sometimes practically nonexistent. 
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Table 1. Color Parameters - wine A - 

Parameter pH Treatment Initial Wine 
After 3 months of 
microoxygenation 

8 months after 
bottling  

CI 

3.1 
Control 

10.9 ± 0.2A 
10.0 ± 0.1B,α 9.0 ± 0.1C,α 

MO 11.1 ± 0.4A,β 10.3 ± 0.3B,β 

3.5 
Control 

9.1 ± 0.1A 
8.7 ± 0.1B,α 8.3 ± 0.1C,α 

MO 9.1 ± 0.1A,β 8.7 ± 0.1B,β 

3.9 
Control 

7.9 ± 0.1A 
8.3 ± 0.2B,α 7.8 ± 0.1A,α 

MO 8.3 ± 0.2B,α 8.0 ± 0.2AB,α 

L* 

3.1 
Control 

50.8 ± 0.5A 
53.3 ± 0.2B,α 56.1 ± 0.2C,α 

MO 49.9 ± 1.3A,β 51.8 ± 1.0A,β 

3.5 
Control 

55.1 ± 0.2A 
56.7 ± 0.2B,α 58.6 ± 0.1C,α 

MO 56.1 ± 0.4B,α 57.6 ± 0.4C,β 

3.9 
Control 

58.3 ± 0.1A 
58.4 ± 0.7A,α 60.6 ± 0.1 B,α 

MO 58.9 ± 0.7A,α 60.5 ± 0.2B,α 

C* 

3.1 
Control 

57.8 ± 0.3A 
54.1 ± 0.1B,α 50.1 ± 0.1C,α 

MO 53.9 ± 0.2B,α 51.4 ± 0.4C,β 

3.5 
Control 

49.3 ± 0.1A 
46.8 ± 0.1B,α 44.2 ± 0.2C,α 

MO 46.2 ± 0.2B,β 44.0 ± 0.2C,α 

3.9 
Control 

40.4 ± 0.2A 
40.1 ± 0.4A,α 40.1 ± 0.1A,α 

MO 40.1 ± 0.3AB,α 39.5 ± 0.3B,β 

H* 

3.1 
Control 

5.7 ± 0.2A 
5.6 ± 0.2A,α 5.8 ± 0.1A,α 

MO 10.0 ± 0.6B,β 9.6 ± 0.3B,β 

3.5 
Control 

3.8 ± 0.1A 
4.2 ± 0.2B,α 6.3 ± 0.2C,α 

MO 8.3 ± 0.6B,β 8.9 ± 0.4B,β 

3.9 
Control 

3.9 ± 0.1A 
6.0 ± 0.3B,α 8.3 ± 0.1C,α 

MO 9.3 ± 0.5B,β 10.4 ± 0.2C,β 

 All data are expressed as the average values of three replicates ± standard deviation (n=3). Statistical 
analysis: two-factor ANOVA and Scheffe’s test (both, p=0.05). Different letters indicate statistical 
differences. Latin letters (A, B, C) are used to compare the wines of the same pH throughout the time. Greek 
letters (α, β) are used to compare control and micro-oxygenation samples of the same pH at the same time. 
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Table 2. Color Parameters - wine B - 

Parameter pH Treatment Initial Wine 
After 3 months of 
microoxygenation 

8 months after 
bottling  

CI 

3.1 
Control 

28.1 ± 0.2A 
25.8 ± 0.1B,α 20.2 ± 0.1C,α 

MO 26.9 ± 0.3B,β 22.6 ± 0.1C,β 

3.5 
Control 

23.4 ± 0.3A 
21.5 ± 0.1B,α 18.2 ± 0.1C,α 

MO 23.6 ± 0.3B,β 19.7 ± 0.3C,β 

3.9 
Control 

20.8 ± 0.2A 
19.3 ± 0.1B,α 16.6 ± 0.2C,α 

MO 20.7 ± 0.2B,β 17.7 ± 0.1C,β 

L* 

3.1 
Control 

29.6 ± 0.1A 
30.0 ± 0.1B,α 33.6 ± 0.1C,α 

MO 26.9 ± 0.3B,β 30.0 ± 0.3C,β 

3.5 
Control 

29.1 ± 0.3A 
29.8 ± 0.2B,α 33.8 ± 0.1C,α 

MO 26.8 ± 0.2B,β 31.6 ± 0.3C,β 

3.9 
Control 

28.7 ± 0.1A 
30.1 ± 0.1B,α 34.8 ± 0.1C,α 

MO 28.3 ± 0.2B,β 34.0 ± 0.2C,β 

C* 

3.1 
Control 

68.1 ± 0.3A 
66.1 ± 0.1B,α 64.1 ± 0.1C,α 

MO 63.3 ± 0.7B,β 62.3 ± 0.5B,β 

3.5 
Control 

60.8 ± 0.1A 
58.6 ± 0.1B,α 56.9 ± 0.1C,α 

MO 57.1 ± 0.2B,β 57.0 ± 0.2B,α 

3.9 
Control 

55.2 ± 0.3A 
52.5 ± 0.1B,α 48.8 ± 0.1C,α 

MO 52.3 ± 0.3B,α 53.1 ± 0.1C,β 

H* 

3.1 
Control 

26.9 ± 0.4A 
24.5 ± 0.1B,α 20.8 ± 0.1C,α 

MO 25.4 ± 1.0B,β 22.6 ± 0.7C,β 

3.5 
Control 

17.2 ± 0.4A 
15.9 ± 0.1B,α 15.6 ± 0.1C,α 

MO 18.3 ± 1.0A,β 17.9 ± 0.8A,β 

3.9 
Control 

9.8 ± 0.4A 
10.1 ± 0.1A,α 11.6 ± 0.1B,α 

MO 14.9 ± 0.1B,β 16.1 ± 0.0B,β 

All data are expressed as the average values of three replicates ± standard deviation (n=3). Statistical 
analysis: two-factor ANOVA and Scheffe’s test (both, p=0.05). Different letters indicate statistical 
differences. Latin letters (A, B, C) are used to compare the wines of the same pH throughout the time. Greek 
letters (α, β) are used to compare control and micro-oxygenation samples of the same pH at the same time. 
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Table 3. Spectrophotometric Analysis of Anthocyanins and PVPP Index - wine A - 

parameter pH Treatment Initial Wine 
After 3 months of 
microoxygenation 

8 months after 
bottling  

Total 
Anthocyanins 

(mg/L)  

3.1 
Control 

417.1 ± 3.3A 
362.3 ± 13.1B,α 264.8 ± 1.0C,α 

MO 316.2 ± 4.1B,β 246.2 ± 0.5C,β 

3.5 
Control 

415.9 ± 14.0A 
377.4 ± 6.0B,α 282.3 ± 2.7C,α 

MO 343.9 ± 2.5B,β 265.2 ± 0.5C,β 

3.9 
Control 

424.7 ± 7.1A 
394.9 ± 4.5B,α 314.4 ± 2.2C,α 

MO 376.5 ± 1.0B,β 289.0 ± 2.2C,β 

 PVPP Index 

3.1 
Control 

34.7 ± 1.3A 
48.6 ± 2.3B,α 52.5 ± 1.1C,α 

MO 58.5 ± 6.8B,β 60.9 ± 0.8B,β 

3.5 
Control 

34.5 ± 2.6A 
44.0 ± 3.4B,α 45.3 ± 2.5B,α 

MO 46.2 ± 0.5B,α 53.1 ± 1.2C,β 

3.9 
Control 

35.9 ± 4.3A 
40.0 ± 1.1A,α 43.8 ± 1.1B,α 

MO 42.2 ± 2.9A,α 53.1 ± 5.8B,β 

All data are expressed as the average values of three replicates ± standard deviation (n=3). Statistical analysis: 
two-factor ANOVA and Scheffe’s test (both, p=0.05). Different letters indicate statistical differences. Latin 
letters (A, B, C) are used to compare the wines of the same pH throughout the time. Greek letters (α, β) are 
used to compare control and micro-oxygenation samples of the same pH at the same time. 

 

Table 4. Spectrophotometric Analysis of Anthocyanins and PVPP Index - wine B - 

parameter pH Treatment Initial Wine 
After 3 months of 
microoxygenation 

8 months after 
bottling  

Total Anthocyanins 
(mg/L)  

3.1 
Control 

1009.8 ± 10.1A 
798.6 ± 4.1B,α 481.3 ± 3.7C,α 

MO 748.1 ± 6.1B,β 511.0 ± 6.6C,β 

3.5 
Control 

981.8 ± 13.7A 
796.3 ± 1.5B,α 521.5 ± 2.5C,α 

MO 741.7 ± 10.4B,β 517.4 ± 3.9C,α 

3.9 
Control 

994.3 ± 11.3A 
806.8 ± 8.6B,α 544.3 ± 6.2C,α 

MO 782.8 ± 18.7B,α 517.4 ± 3.9C,β 

 PVPP Index 

3.1 
Control 

32.7 ± 2.1A 
44.6 ± 0.3B,α 67.7 ± 0.1C,α 

MO 58.6 ± 1.6B,β 71.9 ± 2.7C,β 

3.5 
Control 

32.0 ± 2.1A 
51.5 ± 0.9B,α 62.4 ± 0.3C,α 

MO 58.9 ± 2.3B,β 66.4 ± 1.8C,β 

3.9 
Control 

33.6 ± 1.1A 
49.8 ± 1.3B,α 57.3 ± 1.5C,α 

MO 53.2 ± 3.3B,α 64.0 ± 1.4C,β 

All data are expressed as the average values of three replicates ± standard deviation (n=3). Statistical analysis: 
two-factor ANOVA and Scheffe’s test (both, p=0.05). Different letters indicate statistical differences. Latin letters 
(A, B, C) are used to compare the wines of the same pH throughout the time. Greek letters (α, β) are used to 
compare control and micro-oxygenation samples of the same pH at the same time. 
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Table 5. HPLC Analysis of Anthocyanins and Anthocyanin-Derived Pigments - wine A - 

Parameter pH Treatment Initial Wine 
After 3 months of 
microoxygenation 

8 months after 
bottling  

Monomeric 
anthocyanins        

(mg/L) 

3.1 
Control 

158.5 ± 0.4A 
106.3 ± 1.7B,α 58.9 ± 1.1C,α 

MO 65.6 ± 4.6B,β 32.7 ± 0.6C,β 

3.5 
Control 

155.5 ± 0.3A 
118.3 ± 1.2B,α 69.0 ± 2.0C,α 

MO 96.6 ± 3.4B,β 54.3 ± 1.3C,β 

3.9 
Control 

152.9 ± 0.5A 
121.8 ± 1.0B,β 85.9 ± 1.2C,α 

MO 108.7 ± 0.5B,β 74.4 ± 0.3C,β 

Direct adducts 
(mg/L) 

3.1 
Control 

1.36 ± 0.04A 
1.62 ± 0.21Β,α 1.69 ± 0.13B,α 

MO 1.68 ± 0.07Β,α 1.45 ± 0.03C,β 

3.5 
Control 

1.30 ± 0.01Α 
1.54 ± 0.04B,α 1.48 ± 0.12B,α 

MO 1.60 ± 0.03B,α 1.38 ± 0.03C,α 

3.9 
Control 

1.23 ± 0.01Α 
1.37 ± 0.01B,α 1.35 ± 0.07B,α 

MO 1.36 ± 0.03B,α 1.38 ± 0.02B,α 

Ethyl-linked 
pigments   (mg/L) 

3.1 
Control 

0.45 ± 0.07A 
0.43 ± 0.02A,α 0.38 ± 0.01A,α 

MO 0.76 ± 0.06B,β 0.76 ± 0.08B,β 

3.5 
Control 

0.45 ± 0.07A 
0.44 ± 0.03A,α 0.36 ± 0.04B,α 

MO 0.42 ± 0.05A,α 0.56 ± 0.10A,β 

3.9 
Control 

0.45 ± 0.05A 
0.50 ± 0.05A,α 0.51 ± 0.01A,α 

MO 0.47 ± 0.04A,α 0.74 ± 0.07B,β 

A type Vitisins 
(mg/L) 

3.1 
Control 

2.49 ± 0.04A 
2.03 ± 0.06B,α 2.12 ± 0.03B,α 

MO 2.60 ± 0.06B,β 2.16 ± 0.02C,α 

3.5 
Control 

2.47 ± 0.02A 
2.06 ± 0.05B,α 2.05 ± 0.05B,α 

MO 2.62 ± 0.05B,β 2.12 ± 0.09C,α 

3.9 
Control 

2.43 ± 0.04A 
1.91 ± 0.05B,α 1.95 ± 0.04B,α 

MO 2.95 ± 0.04B,β 2.03 ± 0.12C,α 

B type Vitisins 
(mg/L) 

3.1 
Control 

0.30 ± 0.02A 
0.84 ± 0.03B,α 0.37 ± 0.04A,α 

MO 1.97 ± 0.25B,β 1.31 ± 0.20C,β 

3.5 
Control 

0.34 ± 0.01A 
0.90 ± 0.02B,α 0.27 ± 0.04C,α 

MO 0.65 ± 0.04B,β 0.46 ± 0.05C,β 

3.9 
Control 

0.34 ± 0.06A 
0.91 ± 0.09B,α 0.21 ± 0.01C,α 

MO 0.92 ± 0.02B,α 0.42 ± 0.04C,β 

 Vinyl adducts 
(mg/L) 

3.1 
Control 

1.19 ± 0.01A 
1.28 ± 0.03B,α 1.18 ± 0.19AB,α 

MO 1.69 ± 0.24B,β 1.58 ± 0.22B,α 

3.5 
Control 

1.19 ± 0.04A 
1.41 ± 0.05B,α 1.42 ± 0.05B,α 

MO 1.71 ± 0.08B,β 1.73 ± 0.07B,β 

3.9 
Control 

1.18 ± 0.01A 
1.65 ± 0.03B,α 1.92 ± 0.09C,α 

MO 1.96 ± 0.06B,β 2.07 ± 0.15B,α 

Polymeric Peak  
(mg/L) 

3.1 
Control 

5.18 ± 0.29A 
5.46 ± 0.31A,α 6.21 ± 0.06B,α 

MO 9.20 ± 0.85B,β 9.50 ± 1.00B,β 

3.5 
Control 

5.05 ± 0.53A 
6.22 ± 0.22B,α 6.23 ± 0.19B,α 

MO 6.36 ± 0.26B,α 6.83 ± 0.24B,α 

3.9 
Control 

5.15 ± 0.19A 
5.94 ± 0.15B,α 6.16 ± 0.58B,α 

MO 6.23 ± 0.24B,α 6.56 ± 0.06B,α 
All data are expressed as the average values of three replicates ± standard deviation (n=3). Statistical analysis: 
two-factor ANOVA and Scheffe’s test (both, p=0.05). Different letters indicate statistical differences. Latin 
letters (A, B, C) are used to compare the wines of the same pH throughout the time. Greek letters (α, β) are 
used to compare control and micro-oxygenation samples of the same pH at the same time.  
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Table 6. HPLC Analysis of Anthocyanins and Anthocyanin-Derived Pigments - wine B - 

Parameter pH Treatment Initial Wine 
After 3 months of 
microoxygenation 

8 months after 
bottling  

Monomeric 
anthocyanins        

(mg/L) 

3.1 
Control 

270.4 ± 10.4A 
205.1 ± 27.8B,α 61.41 ± 0.19C,α 

MO 143.0 ± 6.2B,β 42.46 ± 2.16C,β 

3.5 
Control 

270.3 ± 4.8A 
195.6 ± 4.9B,α 79.32 ± 1.9C,α 

MO 156.3 ± 6.3B,β 61.85 ± 3.7C,β 

3.9 
Control 

245.5 ± 6.1A 
204.4 ± 2.4B,α 96.8 ± 0.1C,α 

MO 195.1 ± 2.2B,β 72.9 ± 0.1C,β 

Direct adducts 
(mg/L) 

3.1 
Control 

1.52 ± 0.05A 
2.45 ± 0.12B,α 2.10 ± 0.10C,α 

MO 2.02 ± 0.06B,β 2.75 ± 0.04C,β 

3.5 
Control 

1.66 ± 0.03A 
2.03 ± 0.05B,α 2.41 ± 0.09C,α 

MO 1.96 ± 0.05B,α 2.87 ± 0.01C,β 

3.9 
Control 

1.60 ± 0.07A 
1.79 ± 0.05B,α 2.39 ± 0.02C,α 

MO 1.88 ± 0.06B,α 2.34 ± 0.08C,α 

Ethyl-linked 
pigments   (mg/L) 

3.1 
Control 

1.19 ± 0.10A 
1.24 ± 0.05A,α 1.62 ± 0.18B,α 

MO 2.23 ± 0.06B,β 1.91 ± 0.06C,β 

3.5 
Control 

1.23 ± 0.10A 
1.23 ± 0.06A,α 1.45 ± 0.05B,α 

MO 1.37 ± 0.15A,α 1.68 ± 0.12B,β 

3.9 
Control 

1.22 ± 0.05A 
1.11 ± 0.05A,α 1.42 ± 0.02 B,α 

MO 1.04 ± 0.14B,α 1.54 ± 0.04B,β 

A type Vitisins 
(mg/L) 

3.1 
Control 

7.68 ± 0.01A 
7.48 ± 0.05B,α 7.40 ± 0.01C,α 

MO 8.09 ± 0.04B,β 7.85 ± 0.05C,β 

3.5 
Control 

7.60 ± 0.10A 
7.42 ± 0.02B,α 7.30 ± 0.01C,α 

MO 9.91 ± 0.03B,β 9.38 ± 0.05C,β 

3.9 
Control 

7.61 ± 0.05A 
6.66 ± 0.06B,α 6.53 ± 0.01C,α 

MO 7.42 ± 0.01B,β 6.93 ± 0.01C,β 

B type Vitisins 
(mg/L) 

3.1 
Control 

0.40 ± 0.05A 
0.85 ± 0.02B,α 0.48 ± 0.01A,α 

MO 1.31 ± 0.05B,β 0.83 ± 0.02B,β 

3.5 
Control 

0.39 ± 0.03A 
0.68 ± 0.02B,α 0.28 ± 0.01C,α 

MO 0.63 ± 0.06B,α 0.33 ± 0.01C,β 

3.9 
Control 

0.43 ± 0.05A 
0.67 ± 0.01B,α 0.27 ± 0.01C,α 

MO 0.65 ± 0.02B,α 0.25 ± 0.01C,α 

 Vinyl adducts 
(mg/L) 

3.1 
Control 

1.01 ± 0.07A 
1.21 ± 0.03B,α 2.12 ± 0.08C,α 

MO 1.57 ± 0.01B,β 2.97 ± 0.08C,β 

3.5 
Control 

1.11 ± 0.05A 
1.29 ± 0.07B,α 2.05 ± 0.04C,α 

MO 1.51 ± 0.03B,β 1.62 ± 0.14B,β 

3.9 
Control 

1.15 ± 0.06A 
1.18 ± 0.05A,α 1.88 ± 0.09C,α 

MO 1.32 ± 0.07B,β 1.47 ± 0.09B,β 

Polymeric Peak     
(mg/L) 

3.1 
Control 

5.99 ± 0.21A 
7.38 ± 0.34B,α 7.57 ± 0.09B,α 

MO 8.39 ± 0.35B,β 11.23 ± 0.43C,β 

3.5 
Control 

5.89 ± 0.08A 
6.30 ± 0.16B,α 8.83 ± 0.01C,α 

MO 7.47 ± 0.32B,β 10.07 ± 0.03C,β 

3.9 
Control 

5.43 ± 0.13A 
6.63 ± 0.08B,α 8.58 ± 0.08C,α 

MO 8.02 ± 0.08B,β 9.22 ± 0.16C,β 
All data are expressed as the average values of three replicates ± standard deviation (n=3). Statistical analysis: 
two-factor ANOVA and Scheffe’s test (both, p=0.05). Different letters indicate statistical differences. Latin 
letters (A, B, C) are used to compare the wines of the same pH throughout the time. Greek letters (α, β) are 
used to compare control and micro-oxygenation samples of the same pH at the same time. 
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Table 7. Total Phenolic Compounds, Proanthocyanidins, and Related Parameters - wine A - 

parameter pH Treatment Initial Wine 
After 3 months of 
microoxygenation 

8 months after 
bottling  

TPI 

3.1 
Control 

49.3 ± 0.2A 
49.0 ± 0.1A,α 45.7 ± 0.6B,α 

MO 48.5 ± 0.9A,α 45.2 ± 0.3B,α 

3.5 
Control 

49.1 ± 0.2A 
48.8 ± 0.2A,α 45.4 ± 0.1B,α 

MO 48.4 ± 0.8A,α 45.1 ± 0.3B,α 

3.9 
Control 

49.5 ± 0.1A 
46.7 ± 0.8B,α 43.5 ± 0.2C,α 

MO 46.1 ± 0.3B,α 43.4 ± 1.1C,α 

Proanthocyanidins          
(mg/L) 

3.1 
Control 

1473 ± 21A 
1423 ± 42A,α 1286 ± 27B,α 

MO 1377 ± 21B,α 1215 ± 81C,α 

3.5 
Control 

1475 ± 25A 
1429 ± 46A,α 1352 ± 21B,α 

MO 1420 ± 41A,α 1258 ± 27B,β 

3.9 
Control 

1476 ± 37A 
1423 ± 16A,α 1397 ± 36A,α 

MO 1483 ± 70A,α 1312 ± 26B,β 

DMACH Index 

3.1 
Control 

 38.50 ± 0.35A  
35.75 ± 0.43B,α 31.83 ± 0.52C,α 

MO 29.92 ± 1.38B,β 27.83 ± 1.38B,β 

3.5 
Control 

39.50 ± 0.10A 
35.50 ± 0.66B,α 32.33 ± 0.58C,α 

MO 32.83 ± 1.81B,β 29.08 ± 0.29C,β 

3.9 
Control 

38.13 ± 0.88A 
36.42 ± 1.13A,α 33.08 ± 0.72B,α 

MO 35.58 ± 1.61B,α 32.50 ± 0.43C,α 

mDP 

3.1 
Control 

4.65 ± 0.04A 
4.58 ± 0.07A,α 4.52 ± 0.20A,α 

MO 4.45 ± 0.08A,β 4.58 ± 0.09A,α 

3.5 
Control 

4.72 ± 0.13A 
4.58 ± 0.07A,α 4.85 ± 0.32A,α 

MO 4.67 ± 0.03A,α 4.71 ± 0.12A,α 

3.9 
Control 

4.61 ± 0.01A 
4.80 ± 0.06B,α 5.08 ± 0.03C,α 

MO 4.80 ± 0.13B,α 5.28 ± 0.08C,β 
 All data are expressed as the average values of three replicates ± standard deviation (n=3). Statistical analysis: 
two-factor ANOVA and Scheffe’s test (both, p=0.05). Different letters indicate statistical differences. Latin 
letters (A, B, C) are used to compare the wines of the same pH throughout the time. Greek letters (α, β) are 
used to compare control and micro-oxygenation samples of the same pH at the same time. 
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Table 8. Total Phenolic Compounds, Proanthocyanidins, and Related Parameters - wine B - 

parameter pH Treatment Initial Wine 
After 3 months of 
microoxygenation 

8 months after 
bottling  

TPI 

3.1 
Control 

95.7 ± 1.8A 
92.7 ± 0.2B,α 92.8 ± 0.7B,α 

MO  91.8 ± 0.7B,α 92.9 ± 0.8B,α 

3.5 
Control 

95.6 ± 2.5A 
91.9 ± 0.9B,α 92.7 ± 0.5B,α 

MO 91.1 ± 1.1B,α 92.5 ± 0.6B,α 

3.9 
Control 

95.6 ± 0.5A 
 91.3 ± 1.2B,α 92.2 ± 0.5B,α 

MO 90.5 ± 1.2B,α 91.1 ± 0.6B,α 

Proanthocyanidins         
(mg/L)  

3.1 
Control 

2753 ± 30A 
2435 ± 49B,α 2243 ± 170C,α 

MO 2560 ± 26B,β 2017 ± 152C,β 

3.5 
Control 

2781 ± 59A 
2489 ± 43B,α 2371 ± 6C,α 

MO 2579 ± 61B,α 2327 ± 5C,β 

3.9 
Control 

2742 ± 17A 
2512 ± 71B,α 2373 ± 44C,α 

MO 2634 ± 31B,β 2223 ± 234C,α 

DMACH Index 

3.1 
Control 

65.67 ± 1.42A 
65.00 ± 1.50A,α 56.25 ± 0.71B,α 

MO 57.50 ± 0.25B,β 51.83 ± 1.18C,β 

3.5 
Control 

67.25 ± 2.18A 
65.17 ± 1.15A,α 58.00 ± 1.12B,α 

MO 60.25 ± 1.75B,β 54.92 ± 1.27C,β 

3.9 
Control 

65.92 ± 1.13A  
64.42 ± 1.04A,α 58.88 ± 1.24B,α 

MO 60.75 ± 1.64B,β 55.75 ± 1.30C,β 

mDP 

3.1 
Control 

4.47 ± 0.04A 
4.63 ± 0.05B,α 4.91 ± 0.01C,α 

MO 4.61 ± 0.21B,α 4.74 ± 0.10B,β 

3.5 
Control 

4.58 ± 0.10A 
4.85 ± 0.17B,α 4.91 ± 0.04B,α 

MO 4.79 ± 0.09B,α 4.75 ± 0.20B,α 

3.9 
Control 

4.52 ± 0.07A 
4.65 ± 0.10A,α 5.24 ± 0.02B,α 

MO 4.64 ± 0.05A,α 4.90 ± 0.01B,β 
 All data are expressed as the average values of three replicates ± standard deviation (n=3). Statistical analysis: two-
factor ANOVA and Scheffe’s test (both, p=0.05). Different letters indicate statistical differences. Latin letters (A, 
B, C) are used to compare the wines of the same pH throughout the time. Greek letters (α, β) are used to compare 
control and micro-oxygenation samples of the same pH at the same time. 
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Table 9. Evaluation of Ethylidene-Bridged Flavan-3-ols 

Parameter pH Treatment 
8 months after 

bottling (Wine A) 
8 months after bottling 

(Wine B) 

Ethyl bridges 
(Area x104) 

3.1 
Control 31.7 ± 2.2α 100.3 ± 3.7α 

MO  100.2 ± 29.7β  170.45 ± 18.5β 

3.5 
Control 34.1 ± 2.4α 55.8 ± 2.7α 

MO 52.5 ± 4.9β 61.0 ± 7.1α 

3.9 
Control 25.1  ± 0.7α 55.6  ± 7.9α 

MO 24.9 ± 2.6α 46.2 ± 2.0α 

All data are expressed as the average values of three replicates ± standard deviation (n=3). 
Statistical analysis: one-factor ANOVA and Scheffe’s test (both, p=0.05). Different letters 
indicate statistical differences.Greek letters (α, β) are used to compare control and micro-
oxygenation samples of the same pH at the same time. 
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DISCUSSIO� A�D PERSPECTIVES 

 

The aim of this thesis was to study the phenolic maturity of the grapes, their influence on wine 

phenolic composition and their sensory implications, as well as the application of some 

techniques to compensate the lack or excess of grape maturity. 

Grape phenolic maturity has a key role on wine quality. The actual market demands wines with 

deep red color, full body, soft tannins and fruit scents which can only be achieved if the grapes 

have reached a complete phenolic maturity. As it was already mentioned, very well ripened 

grapes proportionate wines with a high concentration of anthocyanins and consequently a deep 

red color (Kennedy et al. 2002, Canals et al. 2005).  Additionally, full ripen grapes present low 

astringency and bitterness as result of the diminution of the seed proanthocyanidins proportion 

which are very galloylated (Kennedy et al. 2000, Kennedy et al. 2002). On the contrary, unripe 

grapes can lead to wines with poor color as also high levels of bitterness and astringency 

(Canals et al. 2005). 

The importance of grapes phenolic maturity, on wine characteristics, increases the interest of 

winemakers to have adequate tools that permit its measurement.  This gave a special importance 

on the first part of this thesis as there are only a few studies that correlate the predictive 

effectiveness of the methods for measuring phenolic maturity and the color and phenolic 

composition of the corresponding wines (Gonzáles-Neves et al 2004, Romero-Cascales et al. 

2005, Jensen et al. 2008). Moreover, these studies have used only one the existent prediction 

methods. In our study we compare three of the most used methods (Glories, ITV, Cromoenos), 

at least in Spain.  

Several micro-vinifications were carried out to achieve this object at three different levels of 

grape maturity with grapes of the Vitis vinifera cultivars Tempranillo, Grenache, Merlot and 

Cabernet Sauvignon. The first two cultivars are among the most cultivated in Spain whereas the 

other two are probable the most cultivated worldwide. There are several types of winemakings 

and for that reason we decided to elaborate according to standard conditions. Temperature was 

maintained at 25 ºC, the cap was punched down once by day to favor phenolic compounds 

dissolution, and the wines were racked after of 14 days of maceration.  

The results of this experiment indicated that there is a quite good linear regression between the 

color intensity of the different wines and their corresponding predicted values for the Glories 
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and Cromoenos methods. The linear regression coefficients were r2 = 0.8489 and r2 = 0.8869 

respectively. In contrast, the regression coefficient for the ITV method was very low (r2 = 

0.3879). Moreover, a small modification of Cromoenos method improved the quality of the 

measure. Specifically, the linear regression coefficient (r2 = 0.9517) increased notably in respect 

to the original method. These results shows that using Glories, Cromoenos or the modification 

of this method it is possible to predict reasonably well the wine color of the obtained wines, but 

not with ITV.  

Additionally, Glories, ITV and specially modified Cromoenos originated satisfactory linear 

regression coefficients for Chroma (r2 = 0.8474, 0.7514 and 0.9114 respectively) and 

Luminosity (r2 = 0.7900, 0.8284 and 0.8803 respectively). It was not the same for the Hue, as 

the linear regression coefficients were very low in all the cases (r2 = 0.3951, 0.1427 and 0.5895 

respectively). Even, the obtained slope of Glories method was negative indicating an inverse 

tendency between the extract and the wine. This lead us to conclude that the Chroma and the 

Luminosity can be predicted quite well using anyone of the three methods, but the Hue 

prediction is not possible. 

The linear regression coefficients obtained for anthocyanins concentration using the three 

methods provide quite good results (r2 = 0.7897 at pH 1.0 and 0.8809 at pH 3.2. for Glories and 

r2 = 0.8259 and r2 =0.8170 for ITV and Cromoenos respectively). Moreover, Glories at pH 3.2 

had a slope close to one but the other two methods had slopes quite lower than one, indicating 

that the two last methods provoked an overextraction of anthocyanins.  

Finally, the linear regression analysis between the total phenolic index of the different wines and 

their corresponding predicted values obtained by applying the different phenolic maturity 

methods was quite good (between 0.8028 and 0.8839). However, the slopes indicate that all 

three methods produce an overextraction of phenolic compounds.  

In our opinion, this study was necessary due to the lack of information about the prediction 

effectiveness of the different methods for phenolic maturity (Gonzáles-Neves et al 2004, 

Romero-Cascales et al. 2005, Jensen et al. 2008). 

In our study, we conclude that the three studied methods provide good linear regression and 

correlation coefficients for anthocyanins by spectrophotometry and TPI. However, only Glories 

and Cromoenos offer good results for color parameters, especially the Cromoenos modified 

method. Glories is probable the most used method and it seems that can be a useful method. On 
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the other hand, Cromoenos has good prediction effectiveness for color intensity and it is also 

quite rapid, that give it an advantage. At the harvest, wineries need a technique that can give 

results as quickly as possible, and Cromoenos can do it. However, new methods appears, like 

the direct measurement techniques FTIR (Fourier Transform Infrared) that permit achieve more 

complex analytical results (Dubernet et al., 2000).  The direct measurement of grape maturity in 

the vineyard using multispectral airborne high resolution image analysis seems to be an 

interesting possibility (Lamb et al. 2004). Nevertheless, all these methods need to be studied 

more deeply to demonstrate their effectiveness. On the other hand, these techniques are quite 

expensive and a small winery cannot afford. Therefore, the methods using extracts such as 

Glories and Cromoenos could still have future. However, further studies are necessary to 

develop more efficient and quicker methods. Only this way, wineries could improve their 

controls for deciding the optimal harvest date and even for classifying grapes in function of their 

quality (or prize). 

In the case of our experiment, we realized nine micro-vinifications for each cultivar. This 

number is quite small to study separately each variety. A greater number of micro-vinifications 

would permit the individual study of each one, and this is a proposal for future studies. 

Moreover, we decided to realize micro-vinifications because it was the only possibility for 

working with enough replicates to have statistically validity. As a next step it would be 

interesting to make vinifications in tanks of industrial scale which would permit to draw 

conclusions on real winemaking conditions. 

The second part of this thesis is focused on the influence of heterogeneity of grape phenolic 

maturity on the final quality of wine. It is well known that grapes do not ripe homogeneously in 

the vineyard. Several parameters can affect the maturation process of clusters and berries. The 

main factors that can be underlined are the location of vines in the vineyard (exposure, altitude, 

soil composition, temperature, humidity, vine density, etc.), the position of the cluster on the 

vine and even the position of the berries in the cluster can cause differences in the ripening rate 

(Haselgrove et al. 2000, Smart et al. 1985).   

Our results demonstrate that grapes do not mature at the same rate. During two consecutive 

years the berries of Cabernet Sauvignon had a huge density distribution throughout the 

maturation process. This heterogeneity continues until the harvest date. For that reason, we 

decided to separate the berries according to their density at three groups with the use of two 

solutions of sucrose of different concentrations. The berries were vinificated separately.  
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As expected, the grapes of different densities originated wine with different characteristics. The 

higher the density of grapes the higher alcohol content and pH of wines and on the contrary, the 

titratable acidity showed the opposite tendency in both vintages. Moreover, wine color intensity 

and Cielab parameters, Chroma (C*) and red-greenness (a*), were higher in wines obtained 

from grapes with high density. These have an influence in total color differences (∆Eab*) 

among wines of the same vintage, which indicates that wines from grapes of different density 

can be distinguished by the human eye.  

Grape density also affected the anthocyanin and proantocyanidin composition. Data shows that 

the total concentration of these compounds was greater in wines obtained from grapes with 

higher density. More specifically, about the proanthocyanidin composition, when the density of 

the berries increased the proportion of (+)-catechin significantly decreased and the proportion of 

(-)-epigallocatechin significantly increased. Meanwhile, the proportions of the other two 

monomers, (-)-epicatechin and (-)-epicatechin-3-O-gallate remained constant. Since 

epigallocatechin is only present in skin proanthocyanidins (Souquet et al., 1996) these data 

indicate that the contribution of skins to the wine proanthocyainidin concentration increases 

when the grapes are denser and therefore riper. The same tendency had the mean degree of 

polymerization (mDP) of proanthocyanidins. More ripen grapes had higher mDP. According to 

Vidal et al. (2003) astringency augments when the degree of proanthocyanidin polymerization 

increases. The wines made with high density grapes presented higher proanthocyanin 

concentration and their proanthocyanins also presented a higher mDP. Subsequently, their 

astringency was also greater. In the same way, anthocyans concentration tends to be higher in 

wines obtained from grapes with higher density. These results suggest that wines from denser 

grapes would have a more intense color and also would have a better capacity for aging.   

Finally, the sensorial analyses present differences between the wines of the low density and the 

wines of medium or high density, but not between the wines of medium and high density. The 

tasters preferred the wines of medium and high density as there appeared to be more balanced, 

with more floral and fruit scents and with less bitterness.  

This experiment confirms our hypothesis, that grape heterogeneity can affect wine quality. The 

problem is how to separate the grapes depends on the density. In small amount of grapes it is 

easy, but in greater amounts, maybe it has same practical inconvenience. The separation of the 

grapes according to their density by the use of aqueous solutions with different density maybe 

can be automated, but this is work of other studies related with engineering. A technique that is 
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utilized widely, in small wineries that want to improve the quality of their wines, is the manual 

elimination of unripe and defective berries with a grape sorting table.  

As was already shown, grapes with high phenolic maturity permit the production of high 

concentrated wines, with full body, high color appearance and smooth tannins. But nowadays, 

especially after the changes that cause global warming (IPCC 2007), in several winemaking 

zones, to achieve a high phenolic ripeness, grapes needs to reach high sugar and low acid 

concentrations. The final wines would have high alcoholic concentration and high pH (Jones 

2005), characteristics that are not desirable (Zamora 2005). 

The problem described above leads to the appearance of several solutions for diminishing the 

negative effects. Our proposal is described on the third part of this thesis and consists in using 

unripe grapes harvested in a cluster thinning to reduce the alcohol content of wines from very 

ripe grapes. This study was carried out with grapes of the cultivar Cabernet Sauvignon and 

Merlot from the vineyards of the AOC Penedes and Bobal from the AOC Requena. The Bobal 

from Requena was chosen as it uses to have very high sugar content when it achieves the 

optimum phenolic maturity. On the other hand, Cabernet Sauvignon and Merlot, were chosen as 

there are cultivated worldwide. 

The wine obtained from unripe grapes was discolored and deodorized with charcoal and later 

used for substituting a proportion of the grape juice of very ripe grapes. The wines obtained with 

the application of the proposal method had a lower alcoholic content and also a lower pH. This 

data confirms that the proposed method can be useful for reducing  simultaneously alcohol and 

pH.  

Furthermore, the obtained reduced-alcohol wines had similar phenolic composition than wines 

obtained from the same grapes without applying this procedure. These wines had similar 

anthocyanin and proanthocyanidin concentration, and also similar mean degree of 

polymerization and momoneric composition. However, as its pH is lower, their color intensity is 

significant higher. 

In additional, we can confirm that the wines produced from riper grapes, with or without the 

application of the proposal technique, had higher phenolic content and higher color intensity 

than wines from less ripe grapes. The results are in agreement with those described in the second 

part of this Thesis. Specifically, riper grapes provide wines with higher anthocyanin and 

proanthocyanidin concentration. Moreover, the tendency was that the proportion of (+)-catechin 
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significantly decreased and the proportion of (-)-epigallocatechin significantly increased 

throughout maturation. In contrast, the proportions of (-)-epicatechin and (-)-epicatechin-3-O-

gallate remained almost unchanged. Finally, the mDP increased during the maturity. 

Although it is clear that anthocyanins concentration increases during maturity (Kennedy et al. 

2002, Canals et al. 2005) and may suffer a decline just before harvest and/or during over-

ripening (Mateus et al. 2002, Fournand et al. 2006), it is not clear what happen with 

proanthocyanidins. Some authors have described that the berry proanthocyanidins concentration 

decrease throughout ripening (De Freitas et al. 2000, Harbertson et al. 2002) whereas others 

have reported an increase (Delgado 2004, Canals et al. 2005). In the same way there are 

discrepancies about what happens with the mDP. Some authors affirm that decreases (Kennedy 

et al. 2000, Kennedy et al. 2002) while others say exactly the opposite (Downey et al. 2003). 

Our results (second and third parts) indicate that both, proanthocyanidin concentration and 

mDP, tend to increase throughout ripening. 

It can be concluded that the applied method for obtaining wines with decreased pH and 

alcoholic content do not alter the wine characteristics, at least at phenolic level. Besides, this 

procedure is a cheap method that does not need expensive equipments. Nevertheless, it is 

necessary to explore more about this technique. For that reason, our group is now realizing a 

new study using the odorless and colorless low-alcohol wine but after applying a total 

dealcoholization. In the present experiment this wine had 5 % (v/v) of alcohol. A dealcolization 

will permit to use lower proportion of low-alcohol wine for obtaining the same alcohol 

reduction which would minimize the effect on acidity and pH. In the case of Bobal, as it was 

already mentioned, the needed decrease of the alcoholic degree has provoked an excessive 

acidification. Using this modification it is possible to minimize the negative effect that the low 

alcoholic wine can produce. Additionally, it is necessary to develop experiments of this 

technique at industrial scale to verify the viability of this procedure. In this study, micro-

vinifications did not permit a better study of the sensorial impact of this technique. Finally, a 

comparative study with other methods for reducing alcohol content will be interesting. 

The last part is related with the pH influence on the effectiveness of micro-oxygenation on wine 

phenolic composition and color. Brouillard (1982) demonstrated that pH has a great influence 

on the anthocyanin reactivity. Moreover, when the oxygen is consumed by the red wine during 

winemaking and aging, ethanol is transformed in ethanal according to the mechanism described 

by Singleton (1987). Subsequently, ethanal must capture a proton becoming into a carbocation 
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which will react with flavanols to begin the process of formation of ethyl bridges. Therefore it is 

also logical that the pH has an influence on these mechanisms. Moreover, it must be taken into 

account that well-ripe grapes usually lead to high pH wines whereas unripe grapes use to 

produce low pH wines. All these arguments, together with that maturity influences the pH of 

wine, prompted us to undertake this study. 

 

The obtained data are quite interesting. It is demonstrated that pH affect certainly the evolution 

of wine color and phenolic compounds when micro-oxygenation was applied. As it was 

expected, the micro-oxygenated wines had more color in comparison with their controls at any 

pH and the effect was greater when the pH was more acidic. In the same way, the anthocyanins 

reactivity and the formation of new anthocyanin derived-pigments were higher at lower pH. 

Specifically, the increase on the concentration of ethyl-linked pigments, type B vitisins, 

polymeric pigments and ethylidene-bridged linked flavanols originated by micro-oxygenation 

were higher at low pH. On the contrary, when the pH was less acidic the effectiveness of micro-

oxygenation was much smaller and sometimes practically nonexistent. 

Surprisingly, the mDP vary very few between controls and micro-oxygenated wines and also 

throughout the time.  It was expected that the mDP reach greater values in the micro-oxygenated 

wines than in their corresponding controls but it was not. Similar results were reported by 

Atanasova et al. (2002), although in this work a greater increase during the time was observed.  

As final observation of this work, it can be extracted that the oenologist should take in account 

the pH of the wine before applying a micro-oxygenation treatment. It would be interesting to 

develop further studies about how the pH influences the transformation induced by micro-

oxygenation using different wines as also applying different oxygen doses. 
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GE�ERAL CO�CLUSIO�S 

 

� The three studied methods for measuring phenolic maturity, Glories, ITV and 

Cromoenos, can be useful for predicting some of the characteristics of the future wines. 

Specifically, the three methods provide very good linear regression and correlation coefficients 

for anthocyanins by spectrophotometry and TPI. However, only Glories and Cromoenos offer 

good results for color parameters. 

 

� Cromoenos method enables results easily in just 10 min thereby reducing the cost of 

labor necessary. Consequently, Cromoenos method presents the best balance between its 

predictive ability and its simplicity of use, making it a very good analytical procedure for 

wineries. Moreover, a simple modification of Cromoenos method is proposed. This modification 

allows to considerably enhancing its performances. 

 

� The heterogeneity of the grapes at the moment of the harvest was greater than expected. 

The ensemble of all the grapes has always a proportion of very well-ripe grapes, another 

proportion of sufficiently-ripe grapes and finally a proportion of less-ripe grapes. This fact must 

be taken into account because the presence of less-ripe grapes can affect the final composition 

and consequently the quality of the wine. 

 

� The presence of a proportion of less-ripe grapes diminish the final ethanol content, pH, 

anthocyanin concentration, color intensity, total phenolic index and proanthocyanidin 

concentration and increase titratable acidity. Moreover, these lower density grapes contribute 

with less polymerized proanthocyanidins, lower proportions of (-)-epigallocatechin and higher 

proportions of (+)-catechin. These data suggest that lower density grapes release more seed 

proanthocyanidins than skin proanthocyanidins. Finally, the sensory comparison of wines leaves 

no doubt because the wine obtained from lower density grapes was always recognized in all the 

triangle trials and it was considered as the worst balanced and the bitterest. 

 

� The color, the concentration of anthocyanin and proanthocyanidin as well as their mean 

degree of polymerization increased throughout ripening in the wines of the three studied 

cultivars. Moreover, the monomeric composition of the wine proanthocyanidins changed with 
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maturity. Specifically, (+)-catechin decreased and (-)-epigallocatechin increased significantly. 

Since, (-)-epigallocatechin is only present in the skin prodelphinidins, this results suggest that 

the proportion of skin tannins of wine are greater in the riper grapes. 

 

� The use of unripe grapes is proposed as a method for obtaining wines with lower pH and 

ethanol content. The method consists in the substitution of a proportion of the grape juice of 

well-ripe grapes by a colorless and odorless low-alcohol wine obtained from cluster thinning. 

This procedure is cheap, very easy to apply in wineries and does not require specific equipment. 

 

� Applying the proposed method for decreasing ethanol and pH it is possible to obtain 

wines with a similar phenolic composition than the wines obtained with the same grapes without 

applying it. These wines had similar anthocyanin and proanthocyanidin concentration, and also 

similar mean degree of polymerization and momoneric composition than their controls. 

However, as its pH is lower, their color intensities are significant higher. 

 

� The differences observed in micro-oxygenation wines in comparison to their controls 

were, in general, greater when the pH was more acidic. Specifically, the differences found in 

color intensity, anthocyanin concentration, PVPP Index, ethyl-linked pigments, type B vitisins 

and polymeric pigments between micro-oxygenated wines and their corresponding controls 

were higher at lower pH. On the contrary, the effects of micro-oxygenation when the pH was 

less acidic were much smaller and sometimes practically nonexistent. 

 

� The micro-oxygenated wines in comparison to their controls do not show great 

differences in the proanthocyanidin concentrations or in their mean degree of polymerization. 

The pH does not appear to exert effects on these parameters. However, the analysis by EDP-

phologlucinolysis shows that there are greater amounts of ethyl-bridged flavanols in the micro-

oxygenated wines at pH very acidic. 

 

� Micro-oxygenation is much more effective when the pH is very acidic and therefore pH 

must be taken into account as an important factor for considering in wineries when this 

technique is applied. 

UNIVERSITAT ROVIRA I VIRGILI 
GRAPE PHENOLIC MATURITY; DETERMINATION METHODS AND CONSEQUENCES ON WINE PHENOLIC COMPOSITION 
Nikolaos Kontoudakis 
ISBN:978-84-693-7682-9/DL:T-1754-2010 



nn

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
GRAPE PHENOLIC MATURITY; DETERMINATION METHODS AND CONSEQUENCES ON WINE PHENOLIC COMPOSITION 
Nikolaos Kontoudakis 
ISBN:978-84-693-7682-9/DL:T-1754-2010 




