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ABBREVIATION LIST 
 
 

ABCA1: ATP-binding cassette transporter A1 

ACC: Acetyl-CoA carboxylase 

ACS: Acyl-CoA synthetase 

ACSL: Long-chain acyl-CoA synthetase 

ApoA-I: Apolipoprotein A-I  

ApoA-II: Apolipoprotein A-II 

ApoA-IV: Apolipoprotein A-IV 

Apo A-V: Apolipoprotein A-V 

ApoB-48: Apolipoprotein B-48 

ApoB-100: Apolipoprotein B-100 

Ap C: Apolipoprotein C 

Apo CII: Apolipoprotein CII 

Apo CIII: Apolipoprotein CIII 

ApoE: Apolipoprotein E 

BA: Bile acid 

CE: Cholesterol ester  

CETP: Cholesteryl ester transfer protein  

CM: Chylomicrons 

CPT1: Carnitine palmitoyl transferase 1 

CVD: Cardiovascular disease  

DAG: sn-1,2-diacylglycerol 

DGAT: Diacylglycerol acyltransferase 

EGF: Epidermal growth factor 

ER: Endoplasmatic reticulum 

FA: Fatty acid 

FFA: Free fatty acid 

FABP: Fatty acid binding protein 

FABPpm: Plasma membrane fatty acid-binding protein 

FAS: Fatty acid synthase 

FAT/CD36: Fatty acid transporter 

FATP4: Fatty acid transport protein 4 
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FXR: Farnesoid X receptor 

G-3-P: Glycerol-3-phosphate 

HDL: High Density Lipoprotein  

I-BABP: Ileal bile acid binding protein 

I-FABP: Intestinal fatty acid binding protein 

LCAT: Lecithin cholesterol acyl transferase 

LCFA: Long-chain fatty acid 

LDL: Low Density Lipoprotein 

L-FABP: Liver fatty acid binding protein 

LPL: Lipoprotein Lipase 

LXR: Liver X receptors 

LXRα: Liver X receptors alpha 

LXRβ: Liver X receptors beta 

MAG: sn-2-monoacylglycerol  

mAspAT: Mitochondrial aspartate aminotransferase 

MGAT: Monoacylglycerol acyltransferase 

MTP: Microsomal triglyceride transfer protein 

PA: Proanthocyanidin 

PGC-1: Peroxisomal proliferator-activated receptor gamma coactivator-1 

PPAR: Peroxisome Proliferator-Acvtivated Receptor 

PPARα: Peroxisome Proliferator-Acvtivated Receptor alpha 

PPARγ: Peroxisome Proliferator-Acvtivated Receptor gamma 

PPAR-δ: Peroxisome Proliferator-Acvtivated Receptor omega 

PL: Phospholipids 

PYY: Hormone peptide YY  

RLP-C: Serum remnant lipoprotein cholesterol 

ROR: Retinoic related orphan receptor 

RXR: Retinoid-X-receptor 

SCD: Stearoyl-CoA desaturase  

SREBP: Sterol regulatory element-binding protein 

TG: Triacylglycerides 

TRL: TG-rich lipoproteins 

VLCFA: Very long chain fatty acid 

VLDL: Very Low Density Lipoprotein 
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1. Lipid metabolism 

Lipids are an important energy source out of food in the Western world. These represent 

a 30-40% of the daily caloric intake, equivalent to the adults’ daily consumption of 60-

120 g [1]. Lipids are important macronutrients for growth and development of all 

organisms. In fact, they are essential for energy homeostasis, reproductive and organ 

physiology, and numerous aspects of cellular biology [2]. In addition, they are also 

linked to many pathological processes, such as obesity, diabetes, heart diseases and 

inflammation [2]. In ligh of the evidence implicating lipids in the onset or development 

of chronic diseases, understanding the molecular basis of their action is crucial in order 

to understand their role in human health. 

 

1.1  Lipid absorption  

The intestine is the organ responsible for the absorption of lipids. The absorption 

process is very complex and involves many enzymes and transport proteins [1]. Lipid 

absorption is traditionally divided into three processes: Absorption into the enterocyte, 

intracellular processing and export to the mesenteric lymph.  

 

1.1.1 Absorption into the enterocyte and the involved transport proteins  

Prior to the absorption of dietary lipids, mostly triacylglycerides (TG) are hydrolysed 

within the lumen of the small intestine to long-chain fatty acid (LCFA) and sn-2-

monoacylglycerol (MAG) by the pancreatic TG lipase [3]. 

Unlikely other cells that use LCFAs, such as adipocytes, myocites and hepatocytes, 

enterocytes own a particular microenvironment at the brush border membrane. In fact, 

enterocytes contain proton pumps in the apical membrane that generates a pH gradient 

[4]. When the local pH is lower than the LCFA pKa, the pumps donate their protons, 

causing the micelles dissociation. Thus, the enterocytes internalise the protonated 

LCFAs by simple diffusion [4]. In paralell with the simple diffusion, the protein-

mediated transport takes place, a process in which different proteins, that share a high 

affinity with LCFA, are involved. These proteins are plasma membrane fatty acid-

binding protein (FABPpm), fatty acid transport protein4 (FATP4) and fatty acid 

transporter (FAT/CD36) [4]. 
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Berk and his collaborators [5] isolated the first putative fatty acid transporter (FABPpm) 

from solubilized rat liver plasma and jejunal microvillous membranes. FABPpm, a 43 

kDa protein, is expressed in the intestine, the plasma membrane of liver, the adipose 

tissue, the cardiac muscle and the vascular endothelium, as well as in internal 

membranes [5].  

In the gut, immunofluorescence studies show that this protein is located both in the 

apical and the basolateral membrane. It has high specification to bind itself not only to 

LCFA but also to lisophospholipids, MAG and cholesterol. Besides, a study performed 

with antibodies anti FABPpm suggests its role as an LCFA transporter since it shows a 

partial inhibition of the oleic acid capture [4]. Currently, it seems less probable that 

FABPpm transports efficiently LCFA at an intestinal level since this protein appears at 

the intestinal crypt level, which is not involved in the nutrient absorption [4]. In 

addition, partial FABPpm protein sequencing revealed a striking similarity with 

mitochondrial aspartate aminotransferase (mAspAT) [5]. Further comparison 

demonstrated identical molecular mass, isoelectric point, electrophoretic and 

chromatographic behaviour, absorption spectra, enzymatic activity, affinity for fatty 

acid, subcellular distribution, and immunoligical cross-reactivity using respective 

antibodies [5]. Antibodies to mAspAT were able to inhibit the uptake of oleate into 

3T3-L1 adipocytes, a fact that further supports the conclusion that these proteins were, 

in fact, identical [5]. Proteins’ immunofluorescence showed that these are located both 

in the mitochondria and the plasmatic membrane [4]. All these features could explain 

that mAspAT/ FABPpm could work like an LCFA transporter. 

The fatty acid translocase (FAT/CD36) is an 88 kDa glycoprotein cloned from the rat 

adipose tissue. It has a structure that can accept numerous molecules, such as 3 LCFA, 

oxidized LDL, phospholipids (PL) and thrombospondin. This protein appears in tissues 

that are involved in lipid metabolism, like the adipose tissue, the skeletal and cardiac 

muscle, the mammary gland and the intestine. Its function is the intraenterocyte 

transport of the LCFA [4]. In order to examine the role of the protein in LCFA uptake 

and adipose conversion, Sfeir et al. [6] used antisense expression of FAT/CD36 in 3T3-

F442A preadipocyte cells. Expression of antisense mRNA correlated with a reduction in 

FAT/CD36 protein expression and reduced uptake of radiolabeled oleate. After a 

treatment with insulin and triidothyronine, antisense-expressing cell lines showed 

marked reduction in differentiation, as determined by little or no lipid accumulation and 
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reduced expression of marker genes [6]. In addition, the treatment of Ob1771 

preadipocytes with the LCFA palmitate, linolenate or oleate or the non-matabolizable 

fatty acid, 2-bromopalmitate, induced FAT/CD36 mRNA expression [7,8]. By contrast, 

the short chain fatty acid bromooctanoate had no effect [8]. 

More recent studies using FAT/CD36-null mice emphasised the role of the protein in 

fatty acid metabolism. FAT/CD36-null mice are phenotypically normal and experience 

normal fertility; However, these present several abnormalities in fatty acid metabolism 

and plasma profile [5]. Adipocytes from FAT/CD36-null mice showed a decrease in 

oleate uptake. Furthermore, the incorporation of radiolabeled fatty acid into TG 

decreased in the null adipocyte compared to the wildtype adipocyte; Nevertheless, the 

level of incorporation to diacylglycerol (DAG) increased. These changes in cellular 

lipid metabolism were associated with abnormal levels of blood lipids. The plasma of 

fasted null mice revealed higher significant levels of free fatty acids (FFA), TG and 

cholesterol than in wildtype mice. The increased cholesterol could be largely attributed 

to an increase of high density lipoprotein (HDL) particles, which were larger and 

experienced a bigger increase of PL content in null animals. The very low density 

lipoprotein (VLDL) particles were also altered since these showed an increase of 

associated TG [9]. 

In contrast to the FAT/CD36-null mice, Ibrahimi et al. [10] generated transgenic mice, 

which overexpress FAT/CD36 selectivelly in muscle tissue. These mice have virtually 

complementary abnormalities compared to the FAT/CD36-null mice, according to their 

plasma profiles. Trangenic mice presented a 30% less of plasma TG. The most 

pronounced difference appeared in the VLDL fraction, wich lost a 40% of its TG 

content. These also showed less plasma cholesteron and FFA [10]. 

At the intestinal level, FAT/CD36 is mostly present at the duojejunal villi, where lipid 

absorption is carried out. Unlikely observations in muscle and adipocyte cells, the 

invalidation of the FAT/CD36 gene did not prevent the FFA uptake by the enterocytes 

of FAT/CD36-null mice [4]. In addition, FAT/CD36-null mice who are treated with a 

lipid gavage suffer from disturbances in the FFA intraenterocyte metabolism resulting 

in a retention of the citoplasmatic TG. These alterations might slow down the TG 

secretion through the lymph and might decrease the chylomicrons (CM) size. These 

results suggest that, in the intestine, FAT/CD36 is involved in the lipid absorption and 

not in an efficiently membrane transport  [4].  
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The fatty acid transport protein 4 (FATP4) is a 63 kDa membrane protein implied in the 

capture of LCFA. It belongs to the brush border of the jejunum and ileum enterocytes. 

In vitro, the overexpression of this protein contributes to the capture of LCFA. On the 

contrary, the dowregulation of the gene FATP4 is followed by a proportional decrease 

of the LCFA capture [4]. In vivo, mice FAT (+/-) that have a 48% of the protein limited 

showed a 40% of reduction in the LCFA capture by their enterocytes [4]. Jointly, these 

results show that the FATP4 participates in the intestinal uptake of the LCFA. However, 

many arguments suggest that this is an indirect effect [4]. Firstly, predictive FATP 

structure indicates that the protein is mostly citosolic and does not have a short 

transmembrane sequence with an LCFA affinity [4]. These structural features seem 

hardly compatible with the function of the membrane transporter. On the other hand, 

there is a sequence homology between FATP4 and the acyl-CoA synthetases (ACS), 

which are proteins that catalyses the transformation of the FA to acyl-CoA [4]. Finally, 

the transfection of a FATP4 expression vector to the COS-1 cells is accompanied by the 

activation of ACS producing the acylation of the LCFA and the very long chain fatty 

acid (VLCFA) [4]. Thus, it is likely that changes in FATP4 gene expression could 

influence on the uptake and the acylation of LCFA [4].  

In conclusion, current data indicate that the FABPpm, FAT/CD36 and FATP4 are not 

efficiently LCFA transporters in the small intestine. However, FAT/CD36 and FATP4 

facilitate the lipid absorption mediating the maintenance of the pH gradient to stimulate 

the simple diffusion [4]. 

 

1.1.2 Intracellular transport of LCFA: the role of FABPs 

Once the products of the lipid digestion enter into the enterocyte, they must go through 

the cytoplasm to the endoplasmatic reticulum (ER), where the resynthesis of clomplex 

lipids occurs [3]. The fatty acid binding protein (FABP) superfamily is constituted by 

14-15 kDa soluble proteins which bind with a high affinity to either LCFAs, bile acids 

(BAs) or retinoids. In the small intestine, three different FABP isoforms that show a 

high affinity with LCFAs and/or BAs are expressed: the intestinal and liver-type (I-

FABP and L-FABP) and the ileal bile acid binding protein (I-BABP) [11]. The 

respective localisations along the small intestine and the binding properties of I-FABP, 

L-FABP and I-BABP are the origin of a cellular specification. The ileum, which plays a 
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critical role in the enterohepatic circulation of BA, is the only intestinal segment where 

the I-BABP gene is expressed. On the other hand, I-FABP mRNA levels increase from 

the duodenum to reach the highest levels in the proximal ileum [11], while the highest 

L-FABP expression occurs in the proximal jejunum. This correlation of expression with 

the site of maximal lipid absorption has long reinforced the hypothesis that L-FABP 

function carries out the intestinal lipid assimilation [12]. Immunocytochemical 

localisation in the intestine of rats demonstrated that L-FABP appeared in the intestinal 

apical side of fasted animals; However, after performing fat feeding, L-FABP was 

found to be distributed in the entire cytoplasm [12]. Experiments evaluating the rate of 

diffussion of fluorescent probe N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-stearate in the liver 

and HepG2 cells also provide strong support for explaining the role of L-FABP in 

intracellular transport of FAs [12]. 

Similarly, the comparison of the binding properties reveals strong differences between 

these 3 FABPs. In fact, I-FABP only binds LCFA with a ratio of one FA for one 

protein. By contrast, L-FABP can bind 2 LCFA as well as large number of bulky 

hydrophobic molecules, including BAs, various xenobiotics and carcinogens, but 

generally it binds with a ratio of 1 for 1 [11]. Although L-FABP and I-FABP present a 

similar affinity to saturated LCFA, I-FABP shows a lower affinity with unsaturated FA 

than L-FABP [11]. Besides differences in the location and their binding properties, they 

are also different at the gene expression level. L-FABP and I-BABP are specifically up-

regulated by their main ligands, in contrast with I-FABP. 

L-FABP gene expression is transcriptionally up-regulated by LCFA in both the liver 

and the small intestine. This regulation is mediated by a familiy of nuclear receptors 

known as Peroxisome Proliferator-Activated Receptors (PPARs). After being activated 

by LCFA, PPAR binds as an heterodimer with the retinoid-X-receptor (RXR) so as to 

activate specific responsive element (PPRE), generally located in the promoter of target 

genes [11]. However, different PPARs regulate the transcription of the L-FABP gene in 

the liver and the intestine since the PPAR-α/RXR heterodimer functions in the liver 

whereas PPAR-δ/RXR induces L-FABP in the intestine. On the other hand, different 

regulatory systems seem involved in the control of the I-FABP expression. The 

expression of the I-FABP is induced by the hormone peptide YY (PYY), which is 

secreted by ileal endocrine cells when the dietary lipid reaches the distal part of the 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY PROANTHOCYANIDINS: THEIR EFFECTIVENESS IN DYSLIPIDEMIC NUTRITIONAL MODELS AND THE ROLE OF LIVER 
AND INTESTINE IN THEIR HYPOTRIGLYCERIDEMIC ACTION 
Helena Quesada Vázquez 
ISBN:978-84-693-8860-0/DL:T.1947-2010 



small intestine [12]. Furthermore, the I-FABP promoter has not been reported to contain 

a peroxisome proliferator response element [12]. 

The roles of soluble FABPs seem more complex than those that are generally assigned 

to itself, i.e. ligand desorption from plasma membrane and facilitation of their 

intracellular diffusion. On the one hand, I-FABP is involved in the TG synthesis and 

secretion while L-FABP might be preferentially implicated in PL synthesis, membrane 

protection and gene regulation [11]. The study of a human polymorphism in the gene 

encoding for I-FABP has greatly contributed to a better understanding of its 

physiological importance in the TG-rich lipoprotein (TRL) synthesis. In addition, Pima 

indians has a substitution of an Ala by a Thr in the codon 54 of I-FABP. This 

substitution is associated with a high TG plasma level, an insulin resistance, and an 

increase in the body mass index [11]. As a consequence of this assumption, a dramatic 

rise in LCFA transport and TG secretion is found in Thr54-I-FABP-transfected Caco-2 

cells compared with cells transfected the wild isoform [13]. Taking these data altogether 

strongly suggest that I-FABP is involved in targeting dietary LCFA towards the 

endoplasmatic reticulum, where they participate in the synthesis of TRL. Nevertheless, 

LCFA are mainly bounded to L-FABP in the intestinal cells. Thus, it is likely to happen 

that L-FABP can act as a buffer protein protecting the cell against the harmful effect of 

an excess of FFA [11]. Furthermore, as it is previously explained, the lipid content of 

the diet modulates L-FABP gene expression; This regulation might be essential to the 

maintenance of a functional integrity of the intestinal mucosa. Such buffering action is 

also likely to be shared by I-BABP,which  might greatly contribute to maintain an 

efficient FA absorption and enterohepatic circulation of BAs [11]. 

In conclusion, I-FABP, whose the expression is strictly restricted to the small intestine, 

seems preferentially involved in the supply of dietary lipids to the organism. On the 

other hand, L-FABP would rather have a buffering action through the control of the 

intracellular un-esterified FA, which might not only protect the cell against the 

detergent effects of FFA, but also plays an indirect, but crucial role, in gene regulation 

[11].   
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1.1.3 Resynthesis of TG from dietary substances 

Once the FA and MAG are translocated to the ER by FABP, the acyl-CoAs are 

preferentially oriented to the esterification of TG, predominantly through the 

progressive acylation of MAG (Figure 1). TG can also be synthesised by a separate 

route that starts acylating glycerol-3-phosphate (G-3-P) to form phosphatidic acid 

(Figure 1); it continues dephosphorylating the phospholipid to sn-1,2-diacylglycerol 

(DAG), and it ends acylating the DAG to TG (Figure 1).  

 

Fig. 1. Overall of TG biosynthesis in the intestinal mucosa and Caco cells [19]. 

 

It is important to note that the DAG synthesised from MAG and G-3-P are 

metabollicaly inequivalent: The DAG synthesised from MAG is focused on TG 

synthesis only whereas the DAG derived from G-3-P may be used to synthesise either 

TG or PL [3].  

MAG pathway would predominate in the postprandial period, while the G-3-P pathway 

is the main one in the interprandial and fasted period (Figure 2) [4]. For example, oleate 

entering from the apical membrane is shunted preferentially into the MAG pathway to 

form TG whereas oleate entering from the basolateral membrane from the circulation is 
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shunted into G-3-P acylation pathway (Figure 2). The required enzyme activating the 

FA prior to its incorporation into MAG or G-3-P may account for the delivery of FA to 

separate TG synthetic pathway (Figure 2). This enzyme is one of the five members of 

the acyl-CoA synthetase long chain family (ACSL) (Figure 2) [3].  Only ACSL3 and 5 

are significantly expressed in the intestine (Figure 2) [14]. Within this suggested 

scenario, for example, oleate-CoA delivered by ACSL5 would be directed to the MAG 

pathway and by the ACSL3 to the G-3-P pathway (Figure 2) [3]. 

 
 

Figure 2. Liporotein synthesised pathway in the post-prandial and the fasting state 

[3].  

 

Several monoacylglycerol acyltransferase (MGAT) isoforms may participate in MAG 

acylation. Of the three isoforms MGAT (1-3), only MGAT2 and 3 are expressed in the 

intestine [3]. MGAT2 correlates better with lipid absorption than MGAT3 [15]. This 

conclusion is based on the findings that supports that MAGT2 is an ER-localised 

enzyme that is maximally expressed in the proximal intestine. Furthermore, MGAT2 
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protein expression and activity increase in response to lipid feeding. In contrast, 

MGAT3 is expressed at the very end of the distal intestine and it does not respond to 

lipid feeding [3]. MGAT preferentially acylates sn-2-MAG producing sn-1,2-DAG. 

The sn-1,2-DAG produced is acylated to TG by diacylglycerol acyltransferase (DGAT) 

[3]. DGAT is an integral membrane protein that catalyses the final enzymatic step in the 

production of TG in mammals [16]. DGAT is found in most of the tissues of the body 

and has a high expression in the adipose tissue, the liver, and the small intestine. Two 

DGATs that are encoded by two different gene families have been identified: DGAT1 

and DGAT2. Several studies indicate that both DGAT1 and DGAT2 play important 

roles in the TG synthesis [17]. Several lines of evidence clearly demonstrated that both 

DGAT1 and DGAT2 function as DGAT enzymes. Firstly, the overexpression of either 

DGAT1 or DGAT2 in mammalian cell lines increased in vitro DGAT activity, 

generating TG from a variety of FA and DAG substrates [18]. Secondly, the 

overexpression of each enzyme increased the de novo synthesis and the accumulation of 

TG in intact cells [18]. In addition, tissues out of deficient mice in each enzyme 

presented a decreased DGAT activity and TG levels [18]. On the other hand, several 

competition assays have studied the preference of each enzyme for FA substrates of 

specific length and desaturation; DGAT1 preferred a monounsaturated substrate, oleoyl-

CoA (18:1), instead of saturated palmitoyl-CoA (16:0). DGAT2 did not show such a 

preference even though the DGAT2 enzyme purified from M. ramanniana presented an 

enhanced DGAT activity towards medium-chain fatty acyl-CoAs (12:0) instead of long-

chain fatty acyl-CoAs (18:1) [18]. DGAT1 has acyltransferase activities beyond that of 

esterifing DAG in vitro whereas DGAT2 does not. For instance, DGAT1 is a potent 

acyl-CoA:retinol acyltransferase, which catalyses the synthesis of retinyl esters from 

retinol and fatty acyl-CoA substrates. Furthermore, DGAT1 accounts for the majority of 

acyl-CoA:retinol acyltransferase activity in differentiated Caco2 cells, a model of 

enterocytes [18]. 

In summary, two major pathways for TG biosynthesis are known: The glycerol 

phosphate pathway and the monoacylglycerol pathway. In the final reaction of both 

pathways DGAT forms TG. The newly synthesised TGs are thought to be released into 

the associated lipid bilayer, where they are channeled into cytosolic lipid dropets or, in 

cells that secrete TG, nascent lipoproteins [18]. 
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1.1.4 Intestinal lipoproteins in fed and fasted states 

Newly formed TGs are packed into lipoproteins in the enterocyte. These lipoproteins 

are stable for transport in the aqueous environment [20]. The small intestine is an 

important source of plasma lipoproteins, just after the liver. The intestine secretes 

several different lipoproteins; CM and VLDLs are the major ones [20]. VLDL assembly 

occurs constitutively. VLDLs are the predominant lipoproteins during the fasting state 

[21]. VLDL may serve to transport lipids derived from the bile and fatty acids derived 

from the plasma [21]. In the postprandial state, CM secretion is induced after a fat 

ingestion and is impaired in the absence of bile acids [21]. For instance, during the 

infusion of micelles containing linoleic acid and monoolein, increases in exogenous TG 

levels of whole lymph are entirely accounted for by increases in exogenous CM TGs 

[20]. Infusion of palmitic acid, however, resulted in increases of exogenous lymph TG 

levels in both CM and VLDLs [20], where the major contributor was CM. Rat intestine 

also secretes characteristic forms of HDL in the mesenteric lymph. Two types of HDL 

were found in intestinal lymph, a discoid nascent particle deficient in cholesterol ester 

and rich in apolipoprotein A-I (ApoA-I) and one spherical HDL derived from plasma 

[20].  

Nevertheless, we will limit our explanation to CM and VLDL in this introduction since 

they are the major lipoproteins in the intestine and the main transporters of TG. 

CMs are spherical TRL particles synthesised by intestinal epithelial cells and they also 

are the major lipoproteins secreted in the small intestine to transport lipids after a meal 

[20]. The major lipid components of CM are TG, cholesterol ester (CE), free cholesterol 

and PL and their structural protein is apolipoprotein (apo) B-48. The process of CM and 

VLDL formation takes place in the Golgi apparatus (Figure 3), and the movement of 

TG from the ER to the Golgi apparatus (Figure 3) appers to be the rate-limiting step in 

intestinal TG transports [22]. However, the assembly of intestinal CM and VLDL may 

occur by two independent pathways (Figure 3).  
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Figure 3. Comparison of models for CM and VLDL assembly [20]. 

On the one hand, the union of TG with apo B-48, essential for CM formation, is a 

complex physicochemical process in which microsomal triglyceride transfer protein 

(MTP) plays a pivotal role (Table 1) [1]. Some studies have been confirmed that MTP is 

required for the secretion of apo B (Table 1). Abetalipoproteinemia, the generalized fat 

malabsorption occurring in a rare autosomal recessive disease, is characterized by the 

inability of intestinal and hepatic cells to secrete apo B, and caused by mutations in the 

MTP gene that determine the absence of the protein [23][24]. In addition, MTP plays a 

comparable role in the assembly of TG with apo B-100 required for the formation and 

secretion of VLDL (Table 1) [25]. 
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Table 1. Microsomal Triacylglycerol transfer protein (MTP): Function, structure and 

expression  

Function 

   Facilities assembly and secretion of apo B-containing lipoproteins (CM and VLDL) by 

transfer of TG, cholesteryl ester and phospholipid to nascent apoprotein. 

Structure 

    Heterodimer. 

    59 kDa protein disulfide isomerase (EC 5.3.4.1) 

    97 kDa unique large subunit, with extensive homology to amphibian Xenopus laevis  

    lipovitellin, a lipid-binding protein synthesized in the liver and found in the egg. 

Expression of MTP large subunit 

    Gene of 55-60 kb, eighteen exons, seventeen introns, on human chromosome 4(q24). 

    Expressed mainly in the endoplasmic reticulum of intestine and liver. 

Expression of MTP increased by: 

    Dietary saturated fatty acid 

    Dietary cholesterol  

Expression of MTP decreased by: 

   Insulin 

   Ethanol consumption 

 

On the other hand, VLDL-size particles are formed when the level of lipids is too low to 

drive the formation of CMs. VLDL differs from CM in its density, size, lipid content 

and composition, as well as in its protein content.  In a study of intestinal absorptive 

cells from fasted rats, VLDL-sized particles were found in the ER and the Golgi 

apparatus [20]. It provides further evidence for the production of VLDLs in absorptive 

cells of fasted rat and human intestine and it also supports the assumption that the small 

intestine is a source of endogenous plasma VLDLs. 

Luchoomun and Hussain [26] studied the assembly and secretion of CMs by 

differentiated Caco-2 cells. The apical media of the cells were supplemented with oleic 

acid together with either albumin or taurocholate. They demonstrated that CM secretion 

was similarly inhibited by the hydrophobic surfactant Pluronic L-81 in cell cultures as 

in animal studies [27][28], suggesting that differentiated Caco-2 cells are similar to 

enterocyte in vivo. They also found that apoB was secreted as VLDL- and LDL-size 

particles in the absence of oleic acid, supporting the evidence that VLDLs are the major 
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lipoproteins during fasting [20]. The addition of oleic acid (≥0.8 mM) with taurocholate 

to the cells resulted in the secretion of one-third of apoB as CM, suggesting the CMs are 

the major lipoproteins to transport lipids [20]. In order to identify the source of lipids 

used for lipoprotein assembly, [14C]glycerol, oleic acid and taurocholate were supplied 

to the cells labeled previosly with [3H]glycerol to induce CM assembly and to 

radiolalabel nascent lipids. All the lipoproteins contained higher amounts of preformed 

PL compared with nascent PL [26]. VLDL contained equal amounts of nascent and 

preformed TG, whereas CM contained higher amounts of nascent TG even when 

nascent TG constituted a small fraction of the total cellular pool [20]. These studies 

indicate that nascent TGs and preformed PL are preferentially used for CM assembly 

and provide a molecular explanation for the in vivo observations that suggest that the 

fatty acid composition of TGs, but not PL, of secreted CMs reflects the composition of 

dietary lipids [20]. 

 

1.1.5 Apolipoproteins in the intestinal lipoproteins 

Apolipoproteins play an important role in lipoprotein clearance and metabolism even 

though CM and VLDL contain a low quantity of them. CMs and VLDLs synthesised in 

the intestine contain several different apolipoproteins, such as apoB-48, apoB-100, 

apoA-I, apoA-IV, apoA-II, apoC and apoE. ApoA-IV comprises a 10-13% of CM 

apoproteins and a 24-30% of intestinal VLDLs [20]. 

ApoBs play a particularly critical role in the assembly of the TRL (Figure 3). mRNA 

editing is an important process for the generation of apoB. As a result of these process, 

the co-existence of two species of apoB, apoB-100 (550 KDa) and apoB-48 (260 KDa), 

occurs. Human enterocytes have the potential to secrete both apoB-48 and apoB-100 

[20]. It is generally believed that the main difference between CM and VLDL is that 

CM contains apoB-48 whereas VLDL contains apoB-100 [20]. However, a study on the 

differention of the Caco-2 cells into enterocyte-like cells showed that both apoB-100 

and apoB-48 can form large CM when these cells are treated with high concentrations 

of FA [26]. Davidson et al [29] studied the apoB synthesis in the rat enterocyte in vivo 

and found that the intestinal apoB synthesis was not affected by TG flux. However, 

biliary lipid flux plays an important role in the regulation of apoB metabolism; External 

bile diversion resulted in a fall of apoB synthesis of a 43 and a 70% in jejunal and ileal, 
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respectively. Their results suggest that intestinal aposynthesis depend on bile salt but 

not on the regulation of the TG flux. 

 

1.2 The liver in the metabolism of plasma lipoproteins 

The liver synthesises daily lipids that are released as VLDL into the blood flow by 

exocytosis. The mechanism for synthesis and secretion of VLDL from liver is well 

known (Adeli et al., 2001). ApoB100 (and apoB48 in a few species) is the key 

component whose rate of synthesis in the rough endoplasmatic reticulum (RER) 

controls the overall rate of VLDL production [30]. Lipid components that are 

synthesised in the smooth endoplasmatic reticulum (SER) are added to apoB by MTP 

[30] as it moves to the junction of the two compartments. Apoproteins are glycosylated 

after being carried to the Golgi apparatus by means of transport vesicles. Secretory 

vesicles bud off the Golgi membrane, migrate to the sinusoïdal membrane of the 

hepatocyte and release the VLDL into the blood [30]. 

Animal models have shown that the availability of FA is not the only or the main 

determinant of the rate of the VLDL production [30]. The inhibition of MTP blocks the 

assembly and secretion of VLDL and CM, but leads to steatosis, at least in mice [30]. 

Besides, there are important differences among species as for the ability to export TG as 

VLDL from the liver, despite similar rates of esterification of FA to TG. It has been 

suggested that among different species, the rate of export of TG from the liver is 

proportional to the capacity of De novo FA synthesis [30]. In addition, the sterol 

regulatory element-binding protein (SREBP) family has been established as a 

physiological regulator of lipid synthesis [31]. Mice that overexpress SREBP1a and 

SREBP1c display enhanced TG synthesis in the liver [32]. Once activated, SREBP1 

modulates several genes from the TG synthesis pathway, such as Fatty acid synthase 

(FAS), Acetyl-CoA carboxylase (ACC) and Stearoyl-CoA desaturase (SCD), among 

others [32]. Besides, the control of lipogenesis, SREBPs are implicated in the control of 

VLDL synthesis and secretion [32]. Thus, the levels of mature SREBP1 were directly 

correlated with of the secretion rate of the ApoB in McArdle rat hepatoma cells, while 

in transgenic mice that overexpress SREBP1 and lack LDLR, plasma TG levels pointed 

to a severe hypertriglyceridemia, ascribed to an increase of the secretion of VLDL [32]. 
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These findings suggest that SREBP1 could be a limitation in VLDL synthesis and 

secretion. 

On the other hand, the origin of the FAs that incorporate into TG can affect the rate of 

VLDL export. In the case of obese mice, De novo lipogenesis in the liver does not 

stimulate VLDL output [30]. As for rats, high carbohydrate diets enhance the hepatic 

output of TG-VLDL, but this increase of TG secretion is accomplished by enhanced 

formation of TG-VLDL from exogenous non-esterified free fatty acid (NEFA) rather 

from synthesised De novo FA in the liver [30]. In fact, plasma NEFAs are mainly 

transported to the liver, where these are used for the esterification in TG or β-oxidation 

[33]. Plasma NEFA, therefore, seems to play an important role in the enhancement of 

the hepatic esterification and the stimulation of the VLDL production [30].  

Additionally, the relationship between FA oxidation and esterification has been 

described as a key factor in regulating VLDL synthesis [34]. The importance of β-

oxidation is illustrated by the severe phenotype of humans and mice with impaired β-

oxidation. Deficiency of hepatic β-oxidation enzymes results in the plasma hypoketosis 

and the fatty liver [35]. As for the β-oxidation, the rate-limiting enzyme is the carnitine 

palmitoyl transferase 1 (CPT1), which couples long-chain FAs to carnitine in order to 

transport them into the mitochondria [35]. Transcriptional regulation of CPT1 involves 

several other transcriptional factors, including the peroxisomal proliferator-activated 

receptor gamma coactivator-1 (PGC-1). PGC-1α is able to stimulate CPT1 expression 

both in the liver and the heart [36]. PGC-1 acts via hepatocyte nuclear recepetor 4, 

PPARα and glucocorticoid receptor. PPARα also regulates CPT1 gene expression 

though these regulation does not reach significant levels. Besides, a peroxisome 

proliferator responsive element was identified in a conserved region of mammalian 

CPT1 [36]. Other data suggest CPT1 regulation is due to PPARα-independent 

pathways, at least in rodents. Therefore, the transcriptional regulation of CPT1 involves 

several independent process [36]. 

It is unknown where the limitation of VLDL synthesis or secretion resides, but it mainly 

depends on apoB synthesis, MTP activity, and lipid availability.  
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1.3 Plasma lipoprotein metabolism 

Table 2 summarises the classification and composition of lipoproteins, molecules that 

lead the transport of the lipids throughout the organism. 

 

 Chylomicrons VLDL LDL HDL 

Density (g/ml) < 0,95 0,95-1,006 1,006-1,063 1,062-1,21 

Diameter (nm) >70 30-90 18-22 5-12 

Lipids (%) 98 92 78 50 

Triglycerides (%) 86 55 6 4 

Phospholipides (%) 7 18 22 22 

Cholesterol free (%) 2 7 8 4 

Cholesterol ester (%) 3 12 42 20 

Proteins (%) A-I, A-II, A-IV B-100 B-100 A-I, A-II 

 B48 C-I, C-II  C-I, C-II 

 C-I, C-II C-III  C-III 

 C-III, E E  D, E 

 

Table 2. Classification and composition of lipoproteins 

 

The intestinal lipoproteins do not enter the blood flow directly; These are secreted to the 

lymph and reach the liver for their own distribution around the body, instead. Once the 

intestinal lipoproteins are in contact with other plasma lipoproteins, a rapid transfer of 

proteins occurs. Thus, apo A-I and apoA-II enter the circulation of CM but are rapidly 

transferred to nascent HDL which come from intestinal [37]. Although traces of apo E, 

apo CII and apo CIII, important for the dislipemia of triglyceride-rich lipoproteins in 

peripheral tissues, are also associated with CM. These apos are mostly added on the 

surface of the particles after their interaction with other plasma lipoproteins [1]. The TG 

of CM are hydrolyzed extracellularly by the action of lipoprotein lipase (LPL) in 

peripheral tissues, especially in the adipose tissue, leading to a pronounced decrease of 

TG content of these lipoproteins [38].  

LPL is a multifunctional enzyme produced by many tissues, including the adipose 

tissue, the cardiac and skeletal muscle, islets and macrophages. LPL is the rate-limiting 

enzyme for the hydrolysis of the TG core of circulating TRL, CM and VLDL [39]. 
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Besides its hydrolytic activity, LPL can interact with lipoproteins to anchor them to the 

vessel wall and facilitate lipoprotein particle uptake. LPL has also been shown to 

promote the exchange of lipids among lipoproteins, playing an important role in the 

kinetics of the majority of plasma lipoprotein particles [39]. Furthermore, LPL can act 

as ligands for lipoprotein receptors to facilitate lipoprotein uptake [39]. 

The interaction of LPL and the TG of lipoproteins highly depends on apolipoproteins, 

such as apoCs (apo CI, apo CII and apo CIII), apo E and apo A-V [32]. Different 

studies have been focused on determining the role of these apolipoproteins in the 

modulation of the plasma lipid levels, mainly TG. It has been shown that these proteins 

modulate the activity of LPL in different ways, and consequently affect the hydrolysis 

of TG from the lipoproteins [32]. Thus, apo CII and apo A-V have been described as 

activators of LPL. In turn, apo CIII and apo E are known inhibitors of the activity of this 

lipase [32]. In addition, not only the type of apolipoprotein is a critical factor in the rate 

of TG hydrolisis and release from lipoproteins, but also, the interactions between them 

play a key role in modulation of LPL activity [32]. Thus, in patients with 

hypertriglyceridemia, apo A-V levels were paradoxically high while this apolipoprotein 

had emerged as an activator of LPL activity. The explanation was found in the elevated 

levels of apo CIII, a known repressor of LPL activity. The correlation of plasma TG, 

apo A-V and apo CIII showed that those complex interactions between both 

apolipoproteins are even more important than the activity of these proteins on their own 

[32]. 

The metabolization of CM by LPL results in chylomicron remnants (CMr), which are 

smaller, own a higher density and are proportionally more enriched in cholesterol and 

apo E. This configuration allows them to be recognised by specific hepatic receptors for 

apo E (called LRP or receptor-related protein of LDL) and be internalised [40]. 

In plasma, VLDLs experience a series of changes similar to those suffered by CM. They 

exchange esterified cholesterol to free cholesterol with the HDLs and receive more apo 

C and E from them; Moreover, their TGs are hydrolysed by the LPL so as to provide 

essential fatty acids to the underlying tissues. Thus, VLDL become Intermediate 

Density Lipoproteins (IDLs), which are smaller, denser and are proportionally enriched 

in cholesterol esters and apo E [41]. The IDLs may follow different paths: Those with 

higher content of apo E, are recognised by receptors LRP and the LDL recceptor (LDL-
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R), both present in the liver, and these are internalised; Another proportion of IDL is 

transformed in Low Density Lipoprotein (LDL) [42]. 

The LDL has a plasmatic origin as a result of the action of the LPL on VLDL and the 

exchange of components with other plasma lipoproteins. The formed LDLs are smaller, 

contain a higher density than VLDL. Besides, LDLs contains only one molecule of apo 

B-100, and the most important lipid fraction is esterified cholesterol. Its function is to 

transport cholesterol to peripheral tissues and the liver. The liver is the most important 

organ in terms of LDL uptake, in a quantitatively way, followed by the intestine, the 

steroidogenic glands and macrophages. The LDL is taken up by the LDL-R, which 

recognises apo B-100, in a process of endocytosis. The LDL-R is a transmembrane 

glycoprotein wich internalised the LDL forming a vesicle. This vesicle will turn into an 

endosome, which merges with a lysosome. This hybrid is hydrolysed by lysosomal 

enzyme forming cholesterol esters and leaving them ready to be used by the cells [43]. 

Besides, the liver plays an important role in the elimination of peripheral cholesterol, 

controlling the synthesis and secretion of HDL. HDL lipoproteins are the smallest and 

densest; They have an intestinal and hepatic origin and are rich in PL and apo AI.  

Initially, apo AI is secreted from liver associated with PL forming the nascent HDL in 

plasma, which then removes cholesterol from the peripheral tissues [32]. The delivery 

of cholesterol from extrahepatic cells to HDL particles is mediated through the ATP-

binding cassette transporter 1 (ABCA1) [32]. Subsequently, cholesterol is esterified by 

Lecithin cholesterol acyl transferase (LCAT), a esterase synthesised by the liver and 

located in the surface of HDL [32]. Thus, cholesteryl esters remain in the nuclei of HDL 

while phospholipids and free cholesterol form the surface. Moreover, HDL exchange 

cholesterol and TG with VLDL particles by mediation of cholesteryl ester transfer 

protein (CETP). The lipid exchange between these lipoproteins is important in that it 

moves peripheral cholesterol excess into metabolic disposal or recycling process [32]. 

In parallel, PL and cholesterol from VLDL can be transferred to HDL by action of 

phospholipid transfer protein (PLTP) [32]. Large HDLs are then internalised by the 

liver through a process that involves TG hydrolisis by Hepatic Lipase (HL) and 

cholesteryl esters uptake by liver through SR-BI [32]. Finally, apo AI is internalised for 

recycling. Therefore, HDL are responsible for the reverse cholesterol transport. 
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1.4 Nuclear receptors in the control of lipid metabolism 

Several studies have implicated nuclear receptors in the control of lipid homeostasis, 

establishing a co-ordinated net of metabolic sensors, such as lipid metabolism, 

inflammation, drug metabolism, bile acid synthesis and glucose homeostasis among 

other processes [32]. The structure of these proteins contains, ideally, a ligand-binding 

domain that allows the binding of one or more ligands; A DNA binding domain to 

recognise conserved sequences in the promoter of different genes; And different 

interaction domains to allow the modulation of their activity by co-activators, co-

repressors, phsophorylation/dephosphorylation and other nuclear receptors [32]. This 

structure provides the ability of acting as metabolite sensors to nuclear receptors, being 

activated by endogenous and exogenous molecules and subsequently triggering or 

repressing gene expression in a co-ordinated way [32]. Some of these receptors, such as 

Farnesoid X receptor (FXR), Liver X receptors (LXR) or PPARs, heterodimerise with 

other nuclear receptors, usually Retinoic X receptor (RXR), in order to bind DNA [32]. 

In general, inactivated nuclear receptors form a complex with co-repressors that inhibit 

their transcriptional activity, often through the recruitment of histone deacetylases [45]. 

The activation of the receptor by ligand binding and/or phosphorilation induces a 

conformational change, resulting in the dissociation of the co-repressor and the 

recruitment of a co-activator complex that facilites target gene transcription [45]. 

Thus, polyunsaturated fatty acids, ecosanoids, and various synthetic ligands are the 

main ligands of PPAR, which activates the genes for fatty acid catabolism [45]. There 

are three members of the PPAR family: PPAR-α, PPAR-γ and PPAR-δ and these are 

conserved in a 60-80% within their DNA- and ligand-binding domains [46]. PPAR-α is 

most prominently expressed in the liver, kidney, heart, skeletal muscle and brown 

adipose tissue. The role of PPAR-α in lipoprotein metabolism has been elucidated 

through the use of several natural and synthetic ligands [46]. Eicosanoids, FAs and 

drugs within the fibrate class can activate PPAR-α, resulting in the upregulation of 

genes involved in the uptake and β-oxidation of FAs [46]. This increase of β-oxidation 

decreases the pool of fatty acyl-coenzyme A needed for the TG biosyntesis and results 

in a reduction of serum TG levels [46]. In the liver, FAs can be oxidised in both 

peroxisomes and mitochondria. The contribution of hepatic peroxisomal oxidation in 

humans is unclear but it is thought that the mitochondrial β-oxidation is the major 

pathway [47]. PPAR-α is ten times more abundant in rodent livers than in human ones, 
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and peroxisome proliferation appears to be a rodent-specific phenomenon [46]. In 

addition to the effects on FA oxidation, activation of PPAR-α decreases the expression 

of hepatic apo CIII and increases the expression of both LPL and ApoA-V [48]. The net 

effect of these changes consists on increasing the rate of TG hydrolysis and lowers the 

levels CM and VLDL in the plasma [46]. The TG content of LDL particles also lowers 

and results in a shift in LDL particle size towards less atherogenic and larger particles. 

HDL cholesterol levels can also be increased by PPAR-α activation through 

upregulation of apo-AI and apo-AII expression, the major lipoproteins of HDL. Finally, 

PPAR-α upregulation of ATP-binding cassette transporter A1 (ABCA1) can further 

raise HDL levels by promoting cholesterol efflux from macrophages, and macrophages 

TG levels can be lowered by means of the activation of macrophages LPL [49]. 

Another member of the family is PPAR-γ, which has three isoforms (PPAR-γ1, PPAR-

γ2 and PPAR-γ3). PPAR-γ2 is expressed predominantly in the adipose tissue whereas 

PPAR-γ3 is expressed in the adipocytes and macrophages. PPAR-γ1 is more widely 

expressed than the other two isoforms [46]. In contrast to PPAR-α, PPAR-γ 

preferentially binds itself to polyunsaturated FAs. Several synthetic agonists have been 

developed, including the TZDs, which represent the knownest studied class of PPAR-γ 

agonists. TZDs are clinically used to treat insulin resistance and diabetes [50]. The 

activation of PPAR-γ by TZDs induces the expression of a set of genes involved in the 

adipocyte differentiation and lipogenesis, and these mechanisms are thought to be 

responsible for the insulin-sensitizing actions of these drugs. PPAR-γ activation results 

in the increase of FAs uptake by means of the subcutaneous adipose tissue. This, in 

turn, lowers circulating FFAs, thereby improving insulin resistance in the liver and 

skeletal muscle [46]. 

Up to know, little is known about the function of the last member of this family: PPAR-

δ. Unlike the other members, PPAR-δ is ubiquitously expressed, overall in the brain, 

macrophages, lung, adipose tissue and skeletal muscle [46]. Prostanoids are the natural 

ligands for PPAR-δ. On the other hand, a potent selective synthetic agonist, GW501516, 

has been reported [51]. Recent data obtained from transgenic mouse models have 

implicated PPAR-δ as an important regulator of energy expenditure as well as glucose 

and lipid metabolism, highlighting the potential use of PPAR-δ modulators as 

therapeutic agents for type 2 diabetes, obesity and atherosclerosis [46]. The role of 

skeletal muscle as for mediating the effects of PPAR-δ activation is supported by 
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different studies, demonstrating that PPAR-δ activation induces the expression of 

several genes involved in lipid catabolism and energy expenditure in muscle cells [52]. 

Furthermore, the administration of GW501516 resulted in the increase of the FA 

oxidation and oxygen consumption in skeletal muscle, which correlated with a similar 

pattern of gene expression seen in muscle cells [53]. Moreover, muscle-specific 

overexpression of an activated PPAR-δ form resulted in a resistance to the diet-induced 

obesity, an increase of the metabolic rate and the TG utilisation. The resistance to body 

weight gain was caused by a decrease of both visceral and subcutaneous adipose depots 

[46]. Thus, the adipose tissue might also be a target for PPAR-δ. Mice overexpressing 

activated PPAR-δ in the adipose tissue reduced white adipose tissue depots and 

increased energy expenditure and lipid utilisation [54]. These changes correlated with 

the induction of genes involved in fatty acid oxidation and energy expenditure in brown 

and white adipose tissue. Moreover, these animals became resistant to diet-induced 

obesity and hyperlipidemia [54].  

To sum up, the development of the combination of PPAR-α, PPAR-γ and PPAR-δ 

agonists have the potential to improve insulin resistance and dyslipidemia without 

causing weigth gain. 

On the other hand, oxysterol is the natural ligand of LXR. This nuclear receptor controls 

a wide battery of genes related to cholesterol and bile acid metabolism, leading to a 

conversion of cholesterol to bile acid. There are two isoforms of LXR: LXRα and 

LXRβ. LXRα expression is highest in the liver and the intestine but it is also detected in 

macrophages, adipose tissue, kidney, lung and spleen, whereas LXRβ is ubiquitously 

expressed [46]. The role of LXR in the enterohepatic system and in macrophages is 

well-known and it is discussed below [46]. LXRs are involved in cholesterol 

homeostasis. Mice deficient in LXRα develop hepatomegaly and accumulate large 

quantities of cholesterol esters in their livers [55]. In rodents, LXRs control the 

catabolism of cholesterol by regulating the expression of the gene that encodes 

cytochrome P450 7 α-hydrolase, the rate-limiting enzyme in the conversion of 

cholesterol to bile acids [46]. LXR also enhaces reverse cholesterol transport by 

inducing the transcription of the gene that encodes ABCA1, involved in the efflux of 

cholesterol from lipid-laden macrophages to the liver. In addition, LXR upregulates 

ABCG1 in macrophages, which mediates cholesterol efflux to HDL particles, 

particularly HDL2 and HDL-3. LXR activation also leads to upregulation of ABCG5 
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and ABCG8 in the intestine [46]. These two transporters mediate the reduction of the 

intestinal sterol absorption while these increase the sterol secretion from the liver into 

the bile. Mutations in these genes are associated with sitosterolemia and early-onset 

atherosclerosis [56]. In addition, LXR also regulates the expression of genes encoding 

apolipoproteins and enzymes involved in the reverse cholesterol pathway, including apo 

A-V, apo E, phospholipid transfer protein and LPL.  

On the other hand, LXR also plays an important role in hepatic fat metabolism. The 

LXR effect on fat metabolism is mediated by a regulation of SREBP1c, which 

coordinately regulates the genes involved in FA and TG biosyntesis [57]. The 

administration of LXR agonists to mice increased SREBP1c expression and FA 

biosynthesis, and these effects were blocked in LXR-deficient mice [58]. Furthermore, 

the administration of an LXR agonist to diabetic mice (db/db) improved glycemic 

control but led to an increase of the lipogenesis, resulting in sever lipogenic pathology 

[59]. Conversely, LXR-deficient mice are protected from diet-induced obesity and have 

improved glycemic control, owing to decreasing hepatic FA synthesis and increasing 

energy expenditure [60]. It is now clear that the unwanted effects of LXR agonists on 

lipid response, including an increase of hepatic steatosis and the TG synthesis, are 

caused by the activation of SREBP1c, and that the beneficial effects result from the 

activation of the genes involved in the reverse cholesterol transport.  

Similarly to the LXRs, FXR is overall expressed in the liver and the intestine, and 

serves as a bile acid sensor. Its natural ligands are bile acids, including cholic acid and 

chenodeoxycholic acid. Bile acids are important for the digestion and absorption of 

lipids, fat-soluble vitamins and cholesterol from the intestinal tract. Elevated bile acid 

levels are toxic, and thus their synthesis and enterohepatic circulation is tightly 

controlled [46]. FXR upregulates the expression of cytochrome P450 7 α-hydrolase 1 

and 12α-hydrolase, an enzyme required for modulating bile acid hydrophobicity, by 

means of the recruitment of the small heterodimer partner (SHP). SHP is an orphan 

nuclear receptor (i.e. with unknown ligand), wich lacks a DNA binding domain that acts 

as co-repressor of conventional nuclear receptors [32]. It is expressed in the liver, small 

intestine, spleen, heart, pancreas, adrenal glands, ovary and testis [46]. SHP interacts 

with other nuclear receptors in order to inhibit their binding to the promoter of bile acid 

synthesis genes. As a result, the synthesis of bile acid decreases [32]. 
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In addition, FXR controls enterohepatic circulation of bile acids by regulating several 

transporters involved in efflux of bile acids from the liver, absorption by means of 

enterocytes and hepatic reuptake [46]. FXR has also been implicated in the regulation of 

lipid metabolism. Serum and hepatic TG, cholesterol levels and serum bile acids have 

increased in FXR-deficient mice [61,62]. Conversely, the administration of FXR 

agonists lowers TG levels by means of the inhibition of hepatic SREBP1c expression 

through a mechanism that might involve inhibition of LXR activation of SREBP1c [46]. 

Additional studies suggest that the increase of FA oxidation might also contribute to TG 

lowering. In fact, FXR can increase the expression of PPAR-α [63] and pyruvate 

deshydrogenase kinase 4 [64], and this fact promotes hepatic FA oxidation and the 

utilisation of fat. Recent data show FXR implication in the glucose metabolism [65]. 

The administration of bile acids to mice can prevent the induction of gluconeogenetic 

genes after fasting [66]. However, the treatment of non-fasted mice with an FXR 

agonist increased phosphoenolpyruvate carboxykinase expression and stimulated 

hepatic glucose output [67]. These seemingly discordant results probably result from 

different effects of bile acids under fasting and refeeding conditions. In fact, studies 

carried out with FXR-deficient animals demonstrate that FXR regulates the changes in 

the gene expression, which are responsible for the shift from hepatic glucose output to 

glucose utilisation that occurs after feeding [68]. Furthermore, a potent hypoglycemic 

and hypoinsulinemic effect was observed in obese, insulin-resistant mice since these 

overexpressed and activated FXR. Besides, the administration of an FXR agonist 

produced a similar effect, which was abrogated in FXR-deficient mice [46]. 

Thus, nuclear receptors represent novel targets on the development of therapeutic agents 

for treating numerous diseases, including type 2 diabetes, obesity, dyslipidemia, 

atherosclerosis and the metabolic syndrome.  
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The table 3. Summary the PPAR, LXR and FXR effects on insulin sensitivity, lipid 

levels and cholesterol efflux a. 

 

PPAR-α PPAR-γ PPAR-δ LXR FXR 

Obesity and Lipids ↑ HDL 

↓ TG 

↓ FAs 

↓Insulin 

Resistance 

↑ Fat 

↑↑ HDL, ↓ LDL 

↓ TG 

↓Insulin 

Resistance 

↓ Fat 

↑↑ HDL, ↓ LDL 

↓ TG 

↓Insulin 

Resistance 

↑ Fat 

↑↑ HDL, ↓ LDL 

↓ TG 

↓Insulin 

Resistance 

 

Cholesterol efflux ↑Reverse 

cholesterol 

transport 

↑Reverse 

cholesterol 

transport 

 ↑Reverse 

cholesterol 

transport 

↑Reverse 

cholesterol 

transport 

 

Table 3.  Nuclear receptors and their effects on different diseases [46].  a Directional 

arrows indicate an increase/decrease of the respective parameters. 

 

1.5 Hypertriglyceridemia and diseases 

As far as the Western diet is concerned, lipids represent more than a 40% of the daily 

caloric intake, while the nutritional advice is a 10% lower. This high fat supply 

associated with a qualitative imbalance (either an excess of plasma TRL, an excess of 

saturated fatty acids and cholesterol or the absence of LPL) greatly contributes not only 

to the increase of obesity prevalence among population, but also to the appearance of a 

plethora of diseases, such as atherosclerosis, non insulin-dependent diabetes, breast and 

colon carcers [11].  

Hypercolesterolemia, especially when a high concentration of serum cholesterol in LDL 

occurs, is strongly related to the development of cardiovascular diseases (CVD). Recent 

epidemiologic studies have revealed that hypertriglyceridemia is also associated with 

atherosclerosis [69]. Atherosclerotic diseases with high TG levels can be found in 

patients with familiar hyperlipidemia combined with diabetes mellitus and metabolic 

syndrome, in which TRL, especially CMr and VLDL remnants, accumulate in the blood 

flow[69]. The remnant lipoproteins are, as well as the oxidized LDL, easily taken into 

the macrophage in the arterial wall, promoting foam cell formation of macrophages and 

forming the atherosclerotic lesion [70].  
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On the one hand, there are many reports about the evaluation of fasting and postprandial 

lipid levels in postprandial hyperlipidemic patients [69]. Tanaka et al.[70] demonstrated 

that serum remnant lipoprotein cholesterol (RLP-C) levels increased significantly in the 

postprandial state of patients with CVD or with insulin resistance. Additionally, high 

concentrations of RLP-C in the fasting state were also associated with the presence of 

CVD in dyslipidemia [71]. Kugiyama et al. [72] reported that higher levels of remnant 

lipoproteins in fasting serum predicted future coronary events in patients with CVD. On 

the other hand, an increase of postprandial TG levels may not only occur because of 

intestine-originated TRL (apoB-48-containing TRL), but also may be caused by liver-

originated TRL (apoB-100-containing TRL) [69]. Cohn et al. [73] reported that the 

postprandial increase of TRL triglyceride level was predominantly (approximately 80%) 

due to an increase of apoB-48-containing TRL in normolipidemic male subjects with fat 

load-containing retinyl esters. Nevertheless, Karpe et al. [74] reported that VLDL were 

continuously secreted by the liver during the fasting state, and that the delipidation 

process was halted in the potprandial state, causing prolonged residence of VLDL 

remenants, which resulted from the competition by CM for the removal of TG by LPL 

[69].  

LPL is an important marker for adipocyte differentiation, and LPL expression increases 

together with cellular TG accumulation in parallel as differentiated preadipocytes [39]. 

Although the adipose tissue can synthesise FFA De novo, FFAs for lipid storage are 

preferentially provided by LPL-mediated hydrolysis of plasma TRL. Different studies 

have been focused on determining the role of LPL in lipid metabolism and energy 

balance [39]. It has been shown that mice with a generalised deletion of LPL (LPL-/-) 

have three-fold higher plasma TG and seven-fold higher VLDL cholesterol levels at 

birth [39]. On the other hand, transgenic mice with a generalised overexpression of 

human LPL have a 5-fold higher LPL activity in the adipose tissue and 1.7-fold higher 

post-heparin plasma LPL activity with a 75% reduction in plasma TG [39]. 

Overexpression of LPL protects against diet-induced hypertriglyceridemia and 

hypercholesterolemia in these mice. It is interesting to note that overexpression of a 

catalytically inactive LPL also seems to improve the high-fat-diet-induced systemic 

insulin resistance and hypertriglyceridemia of these mice [39]. In addition, studies 

carried out in LPL+/- mice indicated that inactive LPL can act in vivo to mediate VLDL 

removal from plasma and uptake into the tissues in which it is expressed.  LPL is, thus, 
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considered a gatekeeper enzyme to play an important role in the initiation and/or 

development of obesity and hypertriglyceridemia [39]. 

Another link between obesity and metabolic complications is the excessive adipose 

tissue lipolysis. Under normal conditions, FFA released from adipose tissue is well 

regulated, allowing an appropriate availability of FFA to meet the energy requirements 

of the tissues [75]. An increase of adiposity can result in a relative excess of FFA 

release depending on the needs of the tissue. The resultant higher FFA concentrations 

can induce muscle and hepatic insulin resistance, endothelial and pancreatic β-cells 

dysfunction and increase VLDL-TG production [75]. Thus, although the adipose tissue 

is an excellent site for the storage of energy and can provide FFAs whenever lipid fuel 

is needed, an appropriate regulation of its function is necessary for them optimal health 

of the animals. 
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2. Proanthocyanidins 

Several epidemiological studies strongly suggest that proanthocyanidins, the most 

abundant polyphenols in human diet, protect against cardiovascular diseases (CVD). 

Despite the antioxidant and anti-inflammatory properties of these compounds, one of 

the mechanisms by which proanthocyanidins exert their cardiovascular protection is 

improving lipid homeostasis [76]. Therefore, the interest arisen by the protective 

properties of these polyphenolic compounds has placed them in the focus of the 

nutrition research [32]. 

 

2.1 Chemistry, human intake and metabolism 

Proanthocyanidins (PA) are a class of phenolic compounds found in vegetables and 

derived foods such as beans, nuts, cocoa, tea and red wine [76]. These are the most 

structurally complex subclass of flavonoids and are represented by a large number of 

chemical structures. Nevertheless, all these structures are based on a benzenic ring 

condensed with a heterocyclic pyran that carries a phenyl benzene ring (Figure 4) [32]. 

PAs are the oligomeric and polymeric forms of flavan-3-ol or flavanols (Figure 4). 

These are condensed structures formed by polymerization of (+) catechin, (-) 

epicatechin and (-) epicatechin gallate [32]. The different oligomers ranging between 2 

and 10 units are considered proanthocyanidins, while further polymerized structures are 

named tanins [76]. 

 

 

 
 
 

 

 

 

 

 

 

Figure 4. Chemistry structure of flavonoids 
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The average intake of flavonoids by humans remains unclear. Different works report 

flavonoid intake values ranging from 3 mg to 2 g per day [77][78]. However, the 

phenolic content of fruit, vegetables and other plant foods varies considerably, not only 

between different types but also between cultivars of the same type and can even 

depend on growing conditions and the time of harvest [76]. In addition, food processing 

can significantly influence the total content of PA and the profile of monomers and 

oligomers [76]. 

PAs are believed to exert their biological effects in different ways: As unabsorbable, 

complex structures with binding properties that can have local effects in the 

gastrointestinal tract; As absorbable PAs (probably low molecular-weight) and as 

absorbable metabolites from the colonic fermentation of PAs that have systemic effects 

on various organs [79]. Although long PAs are absorbed less efficiently than short ones 

in the small intestine, these may have important local functions in the gut [80], such as 

neutralizing oxidants and carcinogenic compounds [81], exhibiting immunomodulatory, 

and anti-inflammatory properties [82][83], and showing antibacterial activity towards 

pathogens [84]. During the small intestine digestion, higher PAs can form complexes 

with starch and proteins, resulting in the formation of less digestible complexes [79], 

and PAs can inhibit gastrointestinal lipase activity [76]. 

As far as experimental animals are concerned, various combinations of methylated, 

glucoronidated and sulfated derivates of flavan-3-ols, as well as native monomers, 

dimers and trimers, have been detected in body fluids and tissues after the ingestion of 

PA [85,86]. Recently, an improved liquid chromatography-tandem mass spectrometry 

method [87] has been used to analyse the rat plasma obtained 2 h after the ingestion of 1 

g of grape seed procyanidin extract per kilogram of body weight. Conjugated forms 

were identified and quantified, founding different concentrations of catechin and 

epicatechin glucuronide, epicatechin methyl glucuronide and epicatechin methyl-sulfate 

[76]. Moreover, monomers, dimers and trimers in their native form also were detected 

and quantified in plasma samples. Thus, flavan-3-ols predominantly exist in their 

modified form in plasma even though the intact molecules have been found at a 

micromolar level [76]. A study have demonstrated that dimeric and trimeric forms of 

PA can be found within rat urine after administrating grape seed extract orally, while 

catechin metabolites can be found in the kidney and the liver [32]. Two studies have 

reported the detection of dimer B1 and B2 in plasma of humans, in which the volunteers 
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consumed approximately 2 g of PAs [76]. In another study, PA B2 has been detected in 

human plasma and urine after consuming cocoa [76]. These evidences point out that 

PAs are rapidly absorbed and quickly reach the liver and other tissues. 

 

2.2 Effects of proanthocyanidins on lipid absorption and chylomicron production 

by the intestine 

Lipid and lipoprotein levels within blood are the consequence of many biochemical and 

physiological processes, each of which is finely regulated. One of the responsible 

mechanisms for the hypolipidemic effect of PAs could be the delay on fat and 

cholesterol absorption, and a reduction of chylomicron secretion. There is clear 

evidence to suggest that atherosclerosis is a consequence of disordered chylomicron 

metabolism, and that this is probably the most common etiology [76]. As humans 

remain in the postpandrial state for much of the day, the reduction of CM production 

induced by PAs seems to be crucial for their protection against CVD [76].  

Food rich in PA, such as red wine, could down-regulate CM secretion in humans. 

ApoB, lipid availability and MTP are known to be central to the efficient assembly and 

secretion of CM [76]. Postprandial apo B-48 was reduced by an acute alcoholic and 

non-alcoholic red wine consumption in dyslipidemic postmenopausal woman 6h after 

eating [76]. However, a subsequent study on 17 dyslipidemic postmenopausal women 

performed by the same authors [88] shows no effects of acute alcoholized or 

dealcoholized red wine consumption on apo B-48 measured as the area under the curve 

for 6h after eating, even though there was a significant reduction in apo B48 levels after 

an hour. 

In human intestinal Caco-2 cells, the secretion of apo B-48 is significant reduced by 

alcoholic red wine [76] and apple polyphenol extract [89], whereas a wine polyphenolic 

extract has not so much effectiveness [89]. This difference in the effect of foodstuffs 

and extracts upon CM secretion could depend on PAs, as each food/extract has a 

characteristic composition and concentration. On the other hand, impaired lipid 

availability in enterocytes could be the first cause of the reduction of CM secretion by 

PAs. Before fat can be absorbed, TGs from food must be hydrolyzed, and the pancreatic 

lipase plays a key role in the efficient digestion of TGs [76]. Grape seed extracts [90] 

and apple PAs [91] inhibit the activity of pancreatic lipase, suggesting limited dietary 
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TG absorption. Little information is available about changes induced by PA on MTP 

activity in enterocytes even though the effects seem to be less important than those 

induced on TG availability. 

 

2.3 Effects of proanthocyanidins on lipogenesis and VLDL production in the liver 

Although PAs exert some of their hypolipidemic effect by inhibiting the absorption of 

dietary lipids and disminishing CM secretion by enterocytes, the repression of VLDL 

secretion by the liver also plays an important role on reducing plasma lipid. Insulin 

resistance, type 2 diabetes and metabolic syndrome are characterised by dyslipidemia 

due to an overproduction of VLDL particles [76]. Thus, the reduction of VLDL 

secretion by the liver caused by PA could involve a minor risk of suffering from CVD. 

Pure PA or an extract of it, basically from grape and wine, inhibits TGs and Apo B (a 

marker of VLDL) production and secretion into the media, using human transformed 

HepG2 [76]. Working with cell models makes it easier to identify which PAs are 

responsible for this phenomenon. Montagut et al. [76] concluded that trimer C1 and 

other oligomeric forms of PA may be largely responsible for inhibiting TG and Apo B 

secretion by hepatic cells. 

Del Bas et al. [94] studied the effect of an acute oral grape seed proanthocyanidins 

extract (GSPE) treatment on healthy rats noticing a fall on the levels of plasma TG and 

Apo B. Moreover, GSPE enhanced the expression of SHP in the liver. This nuclear 

receptor has recently emerged as an important regulator of several genes involved in 

lipid and lipoprotein metabolism in the liver [32]. Therefore, they concluded that the 

liver orchestrated, at least partly, the hypotriglyceridemic action of GSPE, and SHP 

could be mediating these effects [94]. In order to elucidate whether SHP is the mediator 

of the lipid lowering activity of GSPE, the same authors used two different systems to 

block SHP: Human hepatoma (HepG2) cells transfected with SHP-specific siRNA, and 

transgenic SHP knockout mice [93]. They noticed that the hypotriglyceridemic effect of 

GSPE is cancelled in both SHP deficient models thus revealing this nuclear receptor as 

a key mediator of the hypotriglyceridemic response triggered by proanthocyanidins 

[93]. Gene silencing of SHP in HepG2 cells has allowed identifying two different 

pathways for GSPE actions upon VLDL secretion: a SHP-dependent mechanism 
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leading to a decrease of TG secretion and a SHP-independent pathway responsible for 

MTP downregulation and, subsequently, a reduction of ApoB secretion [93].  

A microarray based on the comparison of the liver gene expression profile in wild-type 

and SHP-/- mice has revealed that GSPE downregulates many genes involved on lipid 

and lipoprotein synthesis in a SHP-dependent manner [93]. They concluded that SHP is 

a key mediator for the TG lowering action of GSPE. 

Many works have described that the expression of SHP is subjected to the control of 

different nuclear receptors such as FXR [32]. Previous studies using transgenic mice 

lacking functional FXR have revealed that this nuclear receptor is a major controller of 

lipid and glucose metabolism [32]. Those mice presented impaired insulin sensitivity, 

and elevated levels of plasma and liver TG and cholesterol [32]. Therefore, Del Bas et 

al. [32] studied whether FXR could mediate the hypotriglyceridemic GSPE actions 

upstream SHP. In vitro studies based on luciferase have revealed that GSPE enhances 

FXR activity in the presence of bile acids, a situation that imitates the in vivo 

physiological condition of hepatocytes. Thus, FXR-/- mice were used to assess the role 

of FXR in the mediation of GSPE hypotriglyceridemic actions. In this model, GSPE 

was not able to lower plasma TG. Moreover, several genes of the lipid synthesis 

program were downregulated by GSPE in the liver of wild type mice, but not in FXR-/- 

mice. Therefore, FXR has been revealed as an essential mediator of the 

hypotriglyceridemic response triggered by GSPE in vivo [32].  

The comparison between changes induced by GSPE at the liver gene expression level in 

SHP-/- mice with those in FXR-/- mice, reveals that all genes that were changed in a 

SHP-dependent manner are included into the FXR-dependent changes [32]. This 

evidence reinforces the role of FXR as a mediator upstream SHP of GSPE 

hypotriglyceridemic actions, highlighting that GSPE can act via a sequential pathway 

involving FXR and SHP. Moreover, it points out that GSPE-activated FXR, as SHP, 

could modulate the expression of other FXR target genes, which could also mediate 

GSPE actions [32]. 
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To sum up, GSPE exerts lipid-lowering effects in three different systems: rats, mice and 

HepG2 cells. The mechanism of action of proanthocyanidins involves FXR and SHP, a 

pathway leading to lowered lipogenesis and the secretion of VLDL in the liver. 

Therefore, the proanthocyanidins are powerful agents that ameliorate plasma lipoprotein 

profile and can be considered as powerful bioactive agents for improving the quality of 

life. 
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The research work carried out in this Ph. D. Thesis is part of a more general research 

project developed by Nutrigenomics Research Group of the Universitat Rovira i Virgili, 

which deals with the potentially beneficial effects of dietary proanthocyanidins. 

Proanthocyanidins have been shown to exert advantageous actions on several metabolic 

disorders that are risk factors of cardiovascular diseases, such as atherosclerosis, 

inflammatory processes, obesity and diabetes. Lipoprotein metabolism play an 

important role in these altered lipid states. Several works have described the beneficial 

effects of different flavonoids and proanthocyanidins in lipoprotein metabolism 

improving the lipid homeostasis. Nevertheless, the molecular mechanisms underlying 

this effect are only partially known. Previous studies from our group have demonstrated 

the beneficial effects of red wine and grape seed proanthocyanidins extract on lipid 

metabolism in the liver and have established the molecular mechanisms by which grape 

seed proanthocyanidins extract modulates lipid and lipoprotein metabolism in the liver. 

However, the actual role of the intestine and the liver, the two main organs producing 

lipoproteins, in the hypolipidemic action of proanthocyanidins is still an unsolved 

subject.  

In addition, previous studies of the Nutrigenomics Research Group dealt with the 

hypolipidemic action of dietary proanthocyanidins in normolipidemic models. 

Inadequate nutrition is an important environmental factor that contributes to the 

development of diseases around the world. Excessive intake of some nutrients, 

especially saturated fat and simple sugars, and some micronutrient deficiencies can 

cause serious health problems. In the past century, nutrition research objectives have 

focused on the identification of nutrients and their deficiencies, which cause negative 

effects on intermediary metabolism, growth maintenance and development of cells and 

tissues. 

Dyslipidemia is usually related to several diseases, such as atherosclerosis, obesity and 

diabetes. Therefore, it is essential to assess the effectiveness of these compounds in 

dyslipidemic nutritional models in order to establish the potentially beneficial effects of 

dietary proanthocyanidins in preventing and ameliorating dyslipidemia associated with 

the Metabolic Syndrome. 
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The purpose of this Thesis, then, has been to characterise and understand how effective 

dietary proanthocyanidins are in dyslipidemic nutritional models and the role of the 

liver and the intestine in their hypotriglyceridemic action. For this aim, two objectives 

were sequentially proposed: 

 

1. To assess the contribution of the liver and the intestine in the 

hypolipidemic response triggered by proanthocyanidins. 

 

In order to assess the implication of the liver and the intestine within the 

hypotriglyceridemic response triggered by proanthocyanidins, two experimental 

approaches were undertaken: On the one hand, the actual contribution of CM 

and VLDL in the hypotriglyceridemic action of proanthocyanidins in the 

postprandial state has been determined and the mechanisms by which 

proanthocyanidins treatment reduce TG-rich lipoproteins in vivo has been 

characterised. Lard oil (2.5 mL/Kg) with or without GSPE (250mg/Kg) was 

orally administrated to male Wistar rats (manuscript 1). This study revealed that 

CM and VLDL contributed to the hypotriglyceridemic action of 

proanthocyanidins, but their influence depended on time (manuscript 1). 

Besides, the hypotriglyceridemic effect of proanthocyanidins was not due to a 

bigger lipid clearance by the extrahepatic tissues, but a reduction of VLDL 

secretion by the liver (manuscript 1).  

On the other hand, the effect of proanthocyanidins on TG-CM secretion and the 

changes induced by proanthocyanidins in the intestine gene expression were 

evaluated in vitro by using human colonic adenocarcinoma Caco2 cells during 

the fasted or post-prandial state. This study revealed that the effectiveness of 

proanthocyanidins repressing the TG secretion depended on the physiological 

state (manuscript 2) and provided the first in vitro evidence of the fact that 

ACSL3 and ACSL5 are target genes of proanthocyanidins (manuscript 2). 

Altogether, it is suggested that proanthocyanidins may act through different 

pathways to achieve their hypotriglyceridemic effects. 
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2.  To evaluate the short-term effect of an oral intake of proanthocyanidins 

in dyslipidemic nutritional models. 

 

In order to evaluate the ability of dietary proanthocyanidins to prevent or correct 

dyslipidemia, two experimental models have been used. On the one hand, mice 

were fed on a diet that contained proanthocyanidins for four weeks (manuscript 

3) so as to evaluate whether the effect of proanthocyanidins counteract body 

weigth gain and energy intake induced by a high carbohydrate high fat diet. On 

the other hand, rats were fed on a cafeteria diet for 3 moths supplemented with 

proanthocyanidins thereafter (manuscript 4) in order to study the ability of 

dietary proanthocyanidins on the correction of dyslipidemia and obesity induced 

by a high-fat diet. Proanthocyanidins did not counteract the gain of body weight 

and the energy intake during a short-term of metabolic syndrome. 

Proanthocyanidins had a bimodal effect on energy intake, since these increased it 

at early-term and decreased it thereafter (manuscript 3), suggesting that 

proanthocyanidins-rich food must be consumed habitually and at long-term in 

order to be effective and improve the excess of body weight associated to 

metabolic syndrome. Besides, the proanthocyanidins treatment performed on 

dyslipidemic rats for 10 days did not counteract the gain of body weight though 

it repressed several genes that control lipogenesis and VLDL assembling in the 

liver (manuscript 4). Proanthocyanidins decreased plasmatic TG both in 

syndrome metabolic mice and dyslipidemic rats (manuscript 3 and 4), 

demonstrating that proanthocyanidins are potent hypotrigliceridemic agents 

(manuscript 1, 2, 3 and 4) even when acting within altered lipid metabolic 

models. 
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ABSTRACT 

Scope: Proanthocyanidins, the most abundant flavonoids in human diets, reduce 

postprandial triglyceridemia. Plasma triglyceride (TG) levels are the result of the 

balance between the TG-rich lipoprotein secretion by the intestine and the liver and 

their uptake by the extrahepatic tissues through the lipoprotein lipase (LPL). The aim of 

this study was to determine the actual contribution of Chylomicron (CM) and VLDL in 

the hypotriglyceridemic action of GSPE in the postprandial state and to characterize the 

mechanisms by which the GSPE treatment reduces TG-rich lipoproteins in vivo. 

Methods and results: Rats fasted for fourteen hours were orally loaded with lard oil 

containing grape seed proanthocyanidin extract (GSPE) or not. CM and VLDL 

contributed to the hypotriglyceridemic action of GSPE but its influence depended on 

time. CM was the main contributor 3 hours after providing the treatment, whereas 

VLDL was important at 1 and 7 hours mark. TG clearance by extrahepatic tissues was 

not affected by GSPE whereas VLDL-TG secretion was significantly repressed. Lipid 

unavailability for TG synthesis is the probable cause of the reduction of VLDL-TG 

secretion by the liver. 

Conclusion: Besides the intestine, the VLDL and the liver are important targets of 

dietary proanthocyanidins in vivo. 
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INTRODUCTION 

Dyslipidemia is one of the major determinants of the development of cardiovascular 

diseases [1, 2]. Postprandial lipaemia has emerged as a key contributor to the risk and 

progression of cardiovascular disease. Elevated levels of nonfasting triglycerides are 

strongly associated with the increase of the risk of myocardial infarction, ischemic 

stroke, and early death [3].  

Proanthocyanidins (PAs), the most abundant polyphenols in human diets, have been 

shown to improve postprandial hypertriglyceridemia in animal models [4] and the 

ingestion of PA-rich food, such as red wine, to decrease plasma lipids in humans  [5]. 

The hypolipidemic action of grape seed PA extract (GSPE) is attributable to a reduction 

of plasma levels of TG-rich lipoproteins and to an improvement of serum cholesterol 

profile, both in normolipidemic [6] and dyslipidemic rats [7]. Besides, the simultaneous 

ingestion of apple PAs with fat inhibits the increase of plasma TGs induced by a fat 

ingestion just in mice and humans [8]. 

Plasma triglyceride (TG) levels are the result of the balance between the TG-rich 

lipoprotein secretion by the intestine and the liver and their uptake by the extrahepatic 

tissues through the lipoprotein lipase (LPL). TG-rich lipoproteins in plasma originate 

either in the liver (very-low density lipoprotein, VLDL) or the intestine (chylomicron, 

CM). The hypotriglyceridemic effect of PAs has been attributed to an inhibition of 

dietary lipid absorption associated with a reduction of CM secretion by enterocytes [8, 

9] as well as with a decrease of VLDL secretion by the liver [7, 10-12] in a range of 

different studies. Nevertheless, the real contribution of CM and VLDL secretion and 

LPL activity to the hypotriglyceridemic action of GSPE has never been studied. Thus, 

the aim of this study was to determine the actual contribution of CM and VLDL in the 

hypotriglyceridemic action of GSPE in the postprandial state and to characterise the 

principal mechanisms by which the GSPE treatment reduces TG-rich lipoproteins. 
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MATERIALS AND METHODS 

Proanthocyanidin extract 

The proanthocyanidin extract (GSPE) contained monomeric (21.3%), dimeric (17.4%), 

trimeric (16.3%), tetrameric (13.3%) and oligomeric (5-13 units) (31.7%) 

proanthocyanidins, essentially. 

 

Animals 

Male Wistar rats that weighed 350 g were purchased from Charles River (Barcelona, 

Spain). The research was conducted in conformity with the Public Health Service Policy 

on Humane Care and Use of Laboratory Animals policy and the studies were approved 

by the Animal Ethics Committee of our University. The animals were housed in animal 

quarters at 22ºC with a 12-h light/dark cycle (light from 8 a.m. to 8 p.m.) and were fed 

on standard chow and water ad libitum.  

 

Plasma lipid tolerance test and measurement of plasma lipid levels 

For the lipid tolerance test, rats were deprived of food for 14 h before the experiment. A 

lard oil (2.5 mL/Kg of body weight) with or without GSPE (250mg/Kg of body weight) 

was administered orally. For blood chemical analyses, aliquots from the tail vein were 

collected into capillary tubes with EDTA after 1, 3, 5 and 7 hours of treatment. TG and 

cholesterol were determined by using an enzymatic colorimetric kit (QCA, Barcelona, 

Spain). NEFA were determined by using the Wako assay kit (Wako chemicals GmbH). 

3-hydroxy-butyrate was analysed by using an enzymatic kit (Ben srl., Italy). 

 

Lipoprotein fractionation 

Lipoprotein fractions were prepared from plasma samples by means of density gradient 

ultracentrifugation [13, 14]. A total volume of 2 ml was put in the bottom of a 6.5 ml 

polyallomer ultracentrifuge tube (Beckman, U.S.A). Then, 3 ml of 1.006 g/ml density 

solution was added and it was centrifuged in a 45.6 Kontor rotor. CM was 

subfractionated by a 30-minute centrifugation at 16,000 r.p.m and VLDL by 16-hour 

centrifugation at 37,000 r.p.m. After each centrifugation step, the 2ml of the top of the 
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gradient that contained the respective lipoprotein subclass was aspired, and the 2ml of 

density solution was used to refill the tube before the next run. 

The TG content was determined by using an enzymatic colorimetric kit (QCA, 

Barcelona, Spain) in both lipoprotein fractions. 

 

VLDL-TG secretion assay 

Rats were fasted for 3 hours and then fed on an oral gavage of GSPE (250mg/Kg of 

body weight) in aqueous solution (treated group) or an oral gavage with the vehicle (tap 

water). These rats formed the control group. The duration of the treatment was 2 hours 

long. Rats were injected 500 mg/kg Triton WR 1339 (Sigma-Aldrich, Louis, MO) into 

the tail vein to inhibit plasma VLDL-TG hydrolysis and clearance [15]. Aliquots of 

saphenous blood were collected at 0, 10, 20, 30, 40, 50, 60 min after Triton WR 1339 

injection. Plasma TG levels were determined and plotted as a function of time. 

 

Lipoprotein lipase assay 

Rats were deprived of food for 14 h before the experiment. A lard oil (2.5 mL/Kg) with 

or without GSPE (250mg/Kg of body weight) was administered orally. One hour after 

the administration, rats were injected 300 IU heparin/kg body weight intravenously, and 

saphenous vein blood was sampled 10 minutes after heparin infusion. Heparinized 

plasma was prepared for the determination of LPL activity using the LPL activity kit 

(Roar Biochemical, Inc.), as described by the manufacturer. 

 

CPT-1 assay 

Rats were treated in the same way as in the plasma lipid tolerance test section; Later on, 

rats were anesthetised using ketamine/xylazine and sacrificed by exsanguination. The 

liver was excised, immediately frozen in liquid nitrogen and stored at -80ºC until the 

activity assay was performed. 

Mitochondria were isolated from the livers which were homogenated at 4ºC in 1:3 (w:v) 

of a buffer containing 250mM sucrose, 1mM EDTA and 10 mM Tris-HCl, pH 7.4, by 

using a Teflon/glass homogenizer, and then centrifuged at 700g for 10 min at 4ºC. The 
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supernatants were centrifuged at 12,000g for 10 min at 4ºC. The resulting pellet 

containing the purified mitochondria was resuspended in 500µL of a buffer with 70 mM 

sucrose, 220 mM mannitol, 2 mM HEPES and 1 mM EDTA,[16] and used to carry out 

the CPT-1 assay. The Bradford reagent (Sigma-Aldrich, Louis, MO) was used to 

determine the mitochondrial protein content. 

CPT-1 activity was assessed as described by Bieber et al.[17]. Assays were performed 

in triplicate; 13 µL of the mitochondrial protein solution was transferred into the assay 

buffer (116 mM Tris-HCl, 0,09% Triton X-100, 1,1 mM EDTA, 0,035 mM Palmitoyl-

CoA, 0,12 mM DTNB, pH 8.0) and incubated 3 min at 20ºC, and its absorbance was 

measured at 412 nm. The results were expressed in nmol CoA formed/mg protein/min. 

 

Gene expression analysis 

Rats were treated in the same way as in the plasma lipid tolerance test section; Later on, 

rats were anesthetised using ketamine/xylazine and sacrificed by exsanguination. The 

first 30 cm of the intestinal mucosa, the liver, the leg muscle and the visceral white 

adipose tissue were excised and immediately frozen until RNA extraction. Total RNA 

was isolated using an RNeasy Mini kit (Quiagen, UK), following the manufacturer’s 

instructions. cDNA was synthesised from 2µg of total RNA using High Capacity cDNA 

Reverse Transcription Kit (Applied Biossystems).  

Changes in mRNA expression of LPL in the muscle and the white adipose tissue were 

measured by quantitative PCR. Quantitative PCR amplification and detection were 

performed by using a specific TaqManR Assay-On-Demand probe (Applied Biosystems 

Rn00561482_m1), the TaqMan PCR Core Reagent Kit and the GeneAmpR 5700 

Sequence Detection System, as recommended by the manufacturers. Quadruplicated 

quantifications, performed in singleplex assays, were performed in each cDNA. PPIA 

was used as the reference gene in quantitative PCR (Applied Biosystems TaqManR 

Assay-On-Demand probe Rn00690933_m1). 

Each cDNA sample of the liver and the intestine (100μl) was added to an equal volume 

of 2X TaqMan Universal PCR Master Mix (Applied Biosystems). After gentle mixing 

and centrifugation, the mixture was then transferred into a loading port on a low-density 

array card (TLDA) (Applied Biosystems). Each low-density array card has eight 

separated loading ports that feed into 48-gene sets. Each 2 µL well contains specific 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY PROANTHOCYANIDINS: THEIR EFFECTIVENESS IN DYSLIPIDEMIC NUTRITIONAL MODELS AND THE ROLE OF LIVER 
AND INTESTINE IN THEIR HYPOTRIGLYCERIDEMIC ACTION 
Helena Quesada Vázquez 
ISBN:978-84-693-8860-0/DL:T.1947-2010 



user-defined probes, capable of detecting a single gene. Each set of 48 genes also 

contains three housekeeping genes, RPLP2, Ppia and 18s. In this study, however, Ppia 

was used. 

The array was centrifuged twice for a minute each at 1,200 rpm to distribute the samples 

from the loading port into each well. The card was then sealed and PCR amplification 

was performed using an Applied Biosystems Prism 7900HT sequence detection system. 

Thermal cycling conditions were as follows: 2 minutes at 50ºC, 10 minutes at 94.5ºC, 

30 seconds at 97ºC and a minute at 59.7ºC for 40 cycles [18]. 

 

Statistical analysis 

Results are reported as the mean ± s.e.m of five animals. Group means were compared 

with an independent-samples Student’s t-test except for those of the gene expression 

that were compared with one way ANOVA (P≤0.05), using SPSS software. 

 

RESULTS 

GSPE treatment blocked the increase of plasma total TG by mainly reducing 

VLDL-TG or Chylomicron-TG depending on time  

In control animals the plasma TG reached its maximum level 3h after the oral 

administration of 2.5 mL/Kg of lard oil and then it decreased (Figure 1a). The 

administration of GSPE (250mg/Kg body weight) markedly blocked the increase of 

plasma TG, with a statistically significant reduction of 22% in the area under the curve 

(AUC) of plasma TG (Figure 1b). Thus, GSPE treatment improved the tolerance to oral 

TG. The hypotriglyceridemic effect of GSPE was very fast (it could be noted after 1.5 

hours) and it was observable until 7 hours after the administration.  

In order to understand the contribution of CM and VLDL to the hypotriglyceridemic 

effect of GSPE better, we measured the TG content of the CM and VLDL fractions 

(Figure 1c). GSPE treatment slightly reduced CM-TG in all the studied times, showing 

its highest effect after 3 hours of treatment, when CM-TG reached a maximum level. 

GSPE treatment reduced VLDL-TG very quickly (an hour after the administration) and 

the reduction became significant at 7 hours mark. Altogether, these results indicate that 

both CM and VLDL contributed to the hypotriglyceridemic action of GSPE but its 
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influence depended on time. CM was the major contributor after 3 hours of treatment, 

whereas VLDL was after 1 and 7 hours. 5 hours after treatment, CM and VLDL showed 

a similar influence. 

On the other hand, plasma cholesterol levels almost showed the same pattern as plasma 

TG in animals only treated with lard oil (Figure 2b). Nevertheless, GSPE had no effect 

on plasma cholesterol. 

GSPE administration significantly reduced the NEFA levels (Figure 2b) 5 hours after its 

administration. 3-hydroxy-butyrate was significantly reduced 7 hours after the 

administration of GSPE (Figure 2c). 

 

GSPE treatment did not affect TG clearance  

Plasma TG levels could be reduced by repressing TG-rich lipoprotein secretion and/or 

by increasing their uptake by the extrahepatic tissues. Thus, we quantified TG 

clearance. As GSPE affected plasma TG very quickly, we measured plasma post-

heparin LPL activity after an hour of gavaging lard oil or lard oil + GSPE. As shown in 

Figure 3b, GSPE had no effect on plasma LPL activity. Moreover, no differential 

expression of LPL was observed as a result of carring out the GSPE treatment in white 

adipose and muscle 1 and 5 hours after administration (Figures 3c and 3d). Thus, these 

results strongly suggest that the blockage of the increase of plasma TG induced by 

GSPE was not attributable to the increase of TG clearance. 

 

GSPE administration decreased VLDL-TG secretion 

In order to assess the VLDL-TG secretion, we injected Triton WR1339 to rats and thus 

inhibited the VLDL-TG hydrolysis and clearance. VLDL-TG secretion was measured 2 

hours after GSPE administration in rats that had fasted for 5 hours to avoid CM 

secretion (Figure 3a). GSPE treatment significantly repressed (30%) the secretion of 

VLDL-TG. As VLDL are mainly secreted by the liver, these results strongly suggest 

that the decrease of plasma VLDL-TG induced by GSPE was the consequence of its 

action in the liver, which in turn represses VLDL-TG secretion.  
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GSPE treatment modulated the expression of some lipid related genes in the liver 

but not in the intestine 

In order to determine the molecular mechanisms underlying TG-rich lipoprotein 

secretion , we used a low-density array card (TLDA) to analyse the differential 

expression of key genes that control TG and cholesterol metabolism in the intestine and 

liver at 0 (before treatment, basal state), 1 and 5 hours after lard oil or lard oil plus 

GSPE administration. We chose genes that encoded key proteins in the lipid pathways. 

For cholesterol metabolism: The intestinal uptake transporter Niemann-Pick C1-like 

protein 1(Npc1l1), the ATP-binding cassettes implicated in the intestinal and biliary 

excretion of sterols (Abcg5 and Abcg8), the ATP-binding cassette sub-family A 

member 1 (Abca1), the enzyme controlling cholesterol synthesis 3-hydroxy-3-

methylglutaryl-Coenzyme A reductase (Hmgcr) and the enzyme Acetyl-Coenzyme A 

acetyltransferase 2 (Acat2) that catalyses the conversion of free cholesterol to 

cholesteryl esters; For fatty acid metabolism: The fatty acid transporter CD36 (Cd36) 

and fatty acid binding protein 1 (Fabp1), the enzyme controlling β-oxidation carnitine 

palmitoyltransferase 1a (Cpt1a), the enzyme fatty acid synthase (Fasn), the enzyme 

controlling the synthesis of unsaturated fatty acids stearoyl-Coenzyme A desaturase 1 

(Scd1) and the enzyme acyl-CoA synthetase long-chain family member 1 (Acsl1) that 

catalyses the ligation of long chain fatty acids with coenzyme A to produce long chain 

acyl-CoAs; For triglyceride synthesis: The Mg2+-dependent PA phosphatase Lpin1 and 

the diacylglycerol O-acyltransferase homolog 1 and 2 (Dgat1 and Dgat2) that catalyse 

the final step of triglyceride synthesis; For lipoprotein assembling and composition: The 

microsomal triglyceride transfer protein (Mttp), the apolipoprotein A-V (Apoa5) and 

apolipoprotein C-III (Apoc3). We also selected the nuclear receptors FXR and SHP and 

the transcription factor SREBP-1c because they govern the expression of key lipid 

metabolism genes in the intestine and the liver, which are also involved in the molecular 

mechanism used by GSPE in the liver [10, 11]. 

In the intestine (Table 1), the ingestion of lard induced a generalized repression of genes 

related to lipid metabolism, except from Acat2 which was overexpressed. GSPE did not 

induce different effects from those induced by lard oil alone on the genes studied at both 

times, except from Cpt1a, which was repressed after 5 hours of its administration. 

Table 2 shows the mRNA levels of genes related to lipid metabolism in the liver, except 

from those of Cpt1a, which have been included in Table 3. 1 hour after the 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY PROANTHOCYANIDINS: THEIR EFFECTIVENESS IN DYSLIPIDEMIC NUTRITIONAL MODELS AND THE ROLE OF LIVER 
AND INTESTINE IN THEIR HYPOTRIGLYCERIDEMIC ACTION 
Helena Quesada Vázquez 
ISBN:978-84-693-8860-0/DL:T.1947-2010 



administration of the lard oil, the livers showed a significant overexpression of Lpin1 in 

conjunction with a significant repression of Acsl1 and Dgat1, in compararison with the 

basal group. The livers of rats treated with GSPE presented the same expression pattern 

for Lpin1 and Dgat1 at one hour mark. On the other hand, GSPE treatment induced 

different effects from those induced by the lard oil treatment on the expression Acsl1, 

Apoc3 and Hmgcr. Acsl1, then, was not repressed, Apoc3 was repressed and Hmgcr 

was overexpressed when compared to the basal state.  

Five hours after the administration of the lard oil, however, the livers showed a 

significant repression of Dgat1, Acsl1, Mttp and Shp in conjunction with a significant 

overexpression of Cd36, in comparison with the basal group. The livers of rats treated 

with GSPE presented the same expression pattern for Dgat1, Acsl1, Mttp and Shp at 

five hours mark. Nevertheless, GSPE treatment induced different effects from those 

induced by lard oil treatment on the expression of Cd36, which was not overexpressed 

in comparison with the basal state. 

 

GSPE treatment channelled fatty acid into ß-oxidation in the liver at the initial 

time (1 hour) 

The relationship between FA oxidation and esterification in the liver has been described 

as a key factor in the regulation of VLDL synthesis [19]. As enzymes related to FA 

esterification (Dgat1 and 2) were not differentially expressed by GSPE, we made an in-

depth study of the effects of lard oil with or without GSPE on FA oxidation. So as to do 

so, both mRNA and the activity of Cpt1a, which is the rate-limiting enzyme in ß-

oxidation, were determined at different times after the administration (Table 3). Lard oil 

administration significantly repressed the expression of Cpt1a and decreased its activity 

by a 60% an hour after its ingestion. In contrast, when lard oil was administered with 

GSPE, there was no repression of Cpt1a and its activity remained high. Five hours after 

the administration, the situation was just the opposite that shown after an hour. The liver 

of rats only treated with lard oil recovered Cpt1a expression and activity whereas the 

liver of rats treated with lard oil plus GSPE repressed this enzyme expression and 

activity. These results suggest that GSPE treatment channelled fatty acid into ß-

oxidation shortly after the treatment had initiated. 
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DISCUSSION 

Several authors have reported the hypotriglyceridemic effects of PAs in humans and 

animals (reviewed in [4]). Plasma TG levels are the result of the balance between the 

TG-rich lipoprotein secretion by the intestine and the liver and their uptake by the 

extrahepatic tissues through the LPL. Therefore, GSPE may reduce plasma TG levels 

by acting on the intestine, the liver and/or the peripheral tissues. However, the exact role 

of each organ remains unknown. For this reason, this study intended to quantify the 

contribution of CM and VLDL production and LPL activity to the hypotriglyceridemic 

action of PAs in vivo. With this purpose, we analysed the effects of GSPE on plasma 

lipids and lipoprotein kinetics during a fed state by using a lipid tolerance test [20]. As 

far as we are concerned, this is the first study carried out to measure the contribution of 

CM and VLDL to hypotriglyceridemia induced by PAs or other flavonoids. 

Our results show that the oral intake of GSPE significantly blocked the increase of 

plasma TG induced by lard oil ingestion in the control animals. According to our 

results, this blockade of plasma TG has also been described with PAs from apples [8], 

using mice loaded with corn oil, in which the blockade is so fast as in our experiment (1 

hour). In our study, the reduction of plasma TG was similar to the reductions observed 

in male normolipidemic rats [6] and mice [10, 11] after performing an acute GSPE 

treatment, and in dyslipidemic rats [7] after carring out a chronic GSPE treatment. Thus, 

the improvement of plasma TG is a generalized effect of PAs, as it is observed in 

different situations and experimental approaches. As a consequence, PA-rich foods may 

reduce the hypertriglyceridemia associated with the postprandial state and, therefore, 

improve the tolerance to dietary lipids. 

Both CM and VLDL contributed to the hypotriglyceridemic action of GSPE but its 

influence depended on time. CM was the main contributor 3 hours after providing the 

treatment, whereas VLDL was important at 1 and 7 hours mark. As GSPE did not 

increase TG clearance by extra-hepatic tissues, the reduction of CM-TG and VLDL-TG 

by GSPE could be ascribed to a repressed lipoprotein secretion.  It is generally assumed 

that CM predominantly transport ingested exogenously TG derived from dietary 

sources, whereas VLDL transport synthesised endogenously lipids [21]. PAs, then, 

repress the secretion of both synthesised endogenous TG and TG absorbed from the 

diet.  
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Several authors have considered CM and lipid absorption as the cause of the 

hypolipidemic actions of PAs, but just on the basis of indirect evidence or in vitro 

experiments [8] [9]. The expression of the selected genes related to FA and TG 

metabolism as well as those of the CM assembly were not modified in the intestinal 

mucosa 1 or 5 hours after GSPE administration. Therefore, other genes and/or 

molecular mechanisms could be implied in this repression, so future studies are 

warranted. 

We did not determine the secretion of CM-TG. However, TG secretion associated to 

VLDL was repressed a 30% by GSPE treatment. Thus, the repression of VLDL 

secretion seems to be an important contributor to the hypotriglyceridemic effect of PAs. 

The liver is the main organ that secretes VLDL [22, 23]. Consequently, regarding the 

hypotriglyceridemia induced by PAs in the postprandial state, the liver is a significant 

target for GSPE. 

The regulation of hepatic VLDL secretion mainly depends on apoB synthesis, MTTP 

activity and lipid availability [19]. Our results suggest that lipid unavailability is the 

cause of the reduction of VLDL-TG secretion by the liver. Shortly after GSPE 

administration (1 hour), CPT-1a activity and expression remained high, suggesting an 

elevated FA oxidation. The same pattern for CPT-1a was observed for Acsl1 mRNA. 

Specific ACSL isoforms provided acyl-CoAs for particular metabolic pathways [24] 

and Acsl1 has been reported to have a role in mitochondrial beta-oxidation in knock-out 

models of ACSL1. The relationship between FA oxidation and esterification has been 

described as a key factor in the regulation of VLDL synthesis [19]. Therefore, the 

increase of the oxidation of FA induced by GSPE treatment is a potential mechanism by 

which PAs reduce VLDL-TG secretion shortly after GSPE administration (1 hour). 

On the other hand, five hours after GSPE administration, the levels of plasma NEFA 

decreased considerably. As plasma NEFA is one source of TG synthesis in the liver and 

plays an important role in stimulating hepatic VLDL production [19, 25], the reduction 

of plasma NEFA levels could be the mechanism hidden behind the repression of VLDL-

TG secretion induced by GSPE several hours after administration. Moreover, 

concomitant to the decreased NEFA levels in plasma, GSPE treatment changed the 

expression pattern of Cd36 induced only by lard. Hepatic Cd36 protein expression is a 

regulatory mechanism that controls fatty acid uptake by the liver and its elevation 

directly affect hepatic fatty acid uptake, triglyceride storage, and VLDL-triglyceride 
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secretion [26]. Therefore, a reduction of NEFA levels in plasma together with low Cd36 

expression may decrease FA availability for TG synthesis in the liver 5 hours after 

GSPE administration, thus reducing VLDL-TG secretion. 

The described molecular mechanism by which GSPE represses hepatic TG secretion 

involves transcriptional activation of FXR [11], overexpression of the nuclear receptor 

SHP [10] and repression of SREBP1 [7, 10, 11]. We have found no significant 

difference in the expression of SHP or SREBP1 after performing the treatment with lard 

only or lard plus GSPE. Nevertheless, mRNA levels of SREBP1 were always lower 

with GSPE treatment and SHP mRNA levels were higher after 5 hours of GSPE 

administration. Diet and hormones, mainly insulin, regulate the transcription of SREBP-

1 [27]. In the present experiment, the animals received only a TG overload whereas in 

the experiments that describe the molecular mechanism of GSPE, the animals received a 

mixed diet. Thus, the differences in the diets, which in our case reduced the expression 

of SREBP1 in control animals (without GSPE), minimized the differences between 

animals treated with GSPE and those that were not. 

In conclusion, our results show that the oral intake of GSPE significantly blocked the 

increase of plasma TG induced by the lard oil ingestion. Both CM and VLDL 

contributed to the hypotriglyceridemic action of GSPE but its influence depended on 

time. GSPE ingestion repressed VLDL-TG secretion, but it did not increase TG 

clearance. GSPE may block VLDL-TG secretion because of the unavailability of FA for 

TG synthesis, as a consequence an increase of FA oxidation shortly after administration 

and a reduction of plasma NEFA levels much later. Overproduction of TG-rich 

lipoproteins is characteristic of dyslipidemia in the metabolic syndrome and type 2 

diabetes [28, 29]. Therefore, the blockage of TG-rich lipoprotein secretion induced by 

PAs may explain the reduced risk of death due to a coronary heart disease and a 

cardiovascular disease associated with dietary intake of flavonoids and certain foods 

rich on flavonoids [30]. 
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Table 1. mRNA levels of genes related to lipid metabolism in the intestinal mucosa of rats 

fed on lard oil with or without proanthocyanidins (GSPE) after 1 and 5 hours. 

 

 Basal (0 h) Lard 1 h Lard + GSPE 1 h Lard 5 h Lard + GSPE 5 h 

 

Npc1l1 

 

1.20 ± 0.40 

 

0.40 ± 0.17 

 

0.45 ± 0.20 

 

0.21 ± 0.20 ↓ 

 

0.13 ± 0.04 ↓ 

 

Abcg5 

 

1.20 ± 0.35 

 

0.27 ± 0.09 ↓ 

 

0.29 ± 0.12 ↓ 

 

0.11 ± 0.02 ↓ 

 

0.10 ± 0.05 ↓ 

 

Abcg8 

 

1.20 ± 0,39  

 

0.20 ± 0,05 ↓ 

 

0.22 ± 0.08 ↓ 

 

0.10 ± 0.03 ↓ 

 

0.08 ± 0.04 ↓ 

 

Abca1 

 

1.21 ± 0.34  

 

0.39 ± 0.10 ↓ 

 

0.47 ± 0.02 ↓ 

 

0.21 ± 0.01 ↓ 

 

0.34 ± 0.12 ↓ 

 

Acat2 

 

1.00 ± 0,04 

 

1.23 ± 0,08 ↑ 

 

1.20 ± 0,04 ↑ 

 

1.51 ± 0,15 ↑ 

 

1.62 ± 0,30 ↑ 

 

Hmgcr 

 

1.10 ± 0,25 

 

1.14 ± 0,52 

 

1.39 ± 0.22 

 

0.65 ± 0.21 

 

0.71 ± 0.17 

 

Cd36 

 

1.12 ± 0.30  

 

0.21 ± 0.09 ↓ 

 

0.25 ± 0.10 ↓ 

 

0.10 ± 0.02 ↓ 

 

0.07 ± 0.03 ↓ 

 

Fabp1 

 

1.20 ± 0.35 

 

0.51 ± 0.16 

 

0.50 ± 0.17 

 

0.35 ± 0.10 ↓ 

 

0.22 ± 0.05 ↓ 

 

Cpt1a 

 

1.03 ± 0.13 

 

0.71 ± 0.21 

 

0.60 ± 0.14 

 

0.57 ± 0.22 

 

0.38 ± 0.14 ↓* 

 

Fasn 

 

1.11 ± 0.28 

 

0.34 ± 0.11 

 

0.45 ± 0.26 

 

0.16 ± 0.05 ↓ 

 

0.32 ± 0.12 ↓ 

 

Acsl1 

 

1.13 ± 0.31 

 

0.30 ± 0.08 ↓ 

 

0.40 ± 0.12 ↓ 

 

0.26 ± 0.03 ↓ 

 

0.24 ± 0.01 ↓ 

 

Dgat1 

 

1.12 ± 0.29  

 

0.35 ± 0.13 

 

0.40 ± 0.15 

 

0.18 ± 0.06 ↓ 

 

0.13 ± 0.04 ↓ 

 

Dgat2 

 

1.27 ± 0.46 

 

0.30 ± 0.09 

 

0.30 ± 0.11 

 

0.44 ± 0.20 

 

0.28 ± 0.15 

 

Lpin1 

 

1.22 ± 0.40 

 

0.50 ± 0.07 

 

0.54 ± 0.23 

 

0.30 ± 0.07 

 

0.50 ± 0.21 

 

Mttp 

 

1.10 ± 0.26 

 

0.55 ± 0.17 

 

0.62 ± 0.25 

 

0.55 ± 0.17 

 

0.33 ± 0.11 

 

Apoa5 

 

1.05 ± 0.20 

 

0.79 ± 0.50 

 

1.31 ± 0.89 

 

0.24 ± 0.07 ↓ 

 

0.20 ± 0.13 ↓ 
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Apoc3 

 

1.10 ± 0.25 

 

0.31 ± 0.12 

 

0.38 ± 0.17 

 

0.16 ± 0.06 ↓ 

 

0.11 ± 0.04 ↓ 

 

Nr1h4 (Fxr) 

 

1.02 ± 0.10 

 

1.40 ± 0.25 

 

1.43 ±0.33 

 

0.63 ±0.16 ↓ 

 

0.46 ±0.04 ↓ 

 

Rxra 

 

1.13 ± 0.30  

 

0.39 ± 0.15 

 

0.53 ± 0.18 

 

0.22 ± 0.05 ↓ 

 

0.20 ± 0.03 ↓ 

 

Nr0b2 (Shp) 

 

1.10 ± 0.22  

 

0.42 ± 0.12 ↓ 

 

0.40 ± 0.14 ↓ 

 

0.28 ± 0.13 ↓ 

 

0.12 ± 0.05 ↓ 

 

Srebf1 

 

1.26 ± 0.43 

 

0.36 ± 0.12 

 

0.30 ± 0.11 

 

0.54 ± 0.23 

 

0.25 ± 0.15 

 

Rats fasted for 14 h were administered lard oil (2.5 mL/Kg) with or without GSPE 

(250mg/Kg) orally and were killed 1 or 5 hours after the administration. The basal state 

(0 h) corresponds to mRNA values before the oral administration. The values are 

expressed as fold change using PPIA expression as the endogenous control. Each value 

is the mean ± s.e.m of three animals. ↓ or ↑ indicates significant differences (p< 0.05) 

versus basal values and * indicates significant differences (p< 0.05) between the lard 

group and the lard + GSPE group at the same time by ANOVA . 
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Table 2. mRNA levels of genes related to lipid metabolism in the liver of rats fed on lard 

oil with or without proanthocyanidins (GSPE) after 1 and 5 hours. 

 

 Basal (0 h) Lard 1 hour Lard + GSPE 1 h Lard 5 h Lard + GSPE 5 h 

 

Abcg5 

 

1.02 ± 0.11 

 

1.08 ± 0.05 

 

0.88 ± 0.10 

 

0.94 ± 0.18 

 

1.09 ± 0.02 

 

Abcg8 

 

1.08 ± 0.25 

 

1.04 ± 0.05 

 

0.74 ± 0.10 

 

0.95 ± 0.18 

 

1.01 ± 0.08 

 

Abca1 

 

1.02 ± 0.12 

 

0.94 ± 0.22 

 

0.84 ± 0.08 

 

0.71 ± 0.08 

 

0.86 ± 0.17 

 

Acat2 

 

1.00 ± 0.04 

 

0.95 ± 0.10 

 

1.02 ± 0.08 

 

0.87 ± 0.09 

 

0.70 ± 0.07 

 

Hmgcr 

 

1.03 ± 0.15 

 

1.73 ± 0.32 

 

2.96 ± 0.21 ↑ 

 

0.83 ± 0.06 

 

1.00 ± 0.19 

 

Cd36 

 

1.01 ± 0.09 

 

1.27 ± 0.15 

 

1.28 ± 0.18 

 

1.34 ± 0.06 ↑ 

 

1.05 ± 0.10  

 

Fabp1 

 

1.00 ± 0.05 

 

1.12 ± 0.10 

 

1.18 ± 0.04 

 

0.83 ± 0.07 

 

0.88 ± 0.08 

 

Cpt1a 

 

1.03 ± 0.14 

 

0.66 ± 0.0 ↓ 

 

0.75 ± 0.04 

 

0.74 ± 0.02 

 

0.67 ± 0.05 ↓ 

 

Fasn 

 

1.09 ± 0.26 

 

2.65 ± 1.43 

 

0.47 ± 0.21 

 

0.42 ± 0.05 

 

0.26 ± 0.01 ↓ 

 

Scd1 

 

1.09 ± 0.28 

 

1.95 ± 0.44 

 

1.68 ± 0.61 

 

1.12 ± 0.04 

 

1.43 ± 0.28 

 

Acsl1 

 

1.01 ± 0.08 

 

0.64 ± 0.05 ↓ 

 

0.86 ± 0.03 

 

0.74 ± 0.07 ↓ 

 

0.69 ± 0.05 ↓ 

 

Dgat1 

 

1.01 ± 0.06 

 

0.62 ± 0.12 ↓ 

 

0.71 ± 0.08 ↓ 

 

0.51 ± 0.05 ↓ 

 

0.55 ± 0.06 ↓ 

 

Dgat2 

 

1.01 ± 0.06 

 

0.88 ± 0.05 

 

1.00 ± 0.07 

 

1.00 ± 0.11 

 

1.15 ± 0.04 

 

Lpin1 

 

1.04 ± 0.18 

 

3.02 ± 0.44 ↑ 

 

2.74 ± 0.26 ↑ 

 

0.82 ± 0.12 

 

0.65 ± 0.02 

 

Mttp 

 

1.00 ± 0.05 

 

0.95 ± 0.10 

 

0.98 ± 0.13 

 

0.60 ± 0.04 ↓ 

 

0.64 ± 0.04 ↓ 

 

Apoa5 

 

1.00 ± 0.03 

 

0.89 ± 0.08 

 

1.03 ± 0.01 

 

1.06 ± 0.13 

 

0.93 ± 0.06 
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Apoc3 

 

1.01 ± 0.07 

 

0.80 ± 0.08 

 

0.75 ± 0.06 ↓ 

 

0.87 ± 0.09 

 

0.81 ± 0.04 

 

Nr1h4 (Fxr) 

 

1.05 ± 0.17 

 

0.71 ± 0.08 

 

0.89 ± 0.03 

 

1.00 ± 0.11 

 

1.00 ± 0.15 

 

Rxra 

 

1.00 ± 0.01 

 

0.93 ± 0.01 

 

0.96 ± 0.01 

 

0.96 ± 0.03 

 

1.10 ± 0.16 

 

Nr0b2 (Shp) 

 

1.07 ± 0.20 

 

1.85 ± 0.53 

 

1.79 ± 0.56 

 

0.27 ± 0.09 ↓ 

 

0.41 ± 0.07 ↓ 

 

Srebf1 

 

1.02 ± 0.13 

 

0.85 ± 0.28 

 

0.75 ± 0.17 

 

0.97 ± 0.17 

 

0.67 ± 0.19 

 

Rats fasted for 14 h were administered lard oil (2.5 mL/Kg) with or without GSPE 

(250mg/Kg) orally and were killed 1 or 5 hours after the administration. The basal state 

(0 h) corresponds to mRNA values before the oral administration. The values are 

expressed as fold change using PPIA expression as the endogenous control. Each value 

is the mean ± s.e.m of three animals. ↓ or ↑ indicates significant differences (p< 0.05) 

versus basal values and * indicates significant differences (p< 0.05) between the lard 

group and the lard + GSPE group at the same time by ANOVA . 
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Table 3: Carnitine palmitoyl transferase 1 expression and activity in the liver of rats fed 

on lard oil with or without proanthocyanidins (GSPE) 

 

 Basal (0 h) Lard 1 hour Lard + GSPE 1 h Lard 5 h Lard + GSPE 5 h 

 

CPT1 activity 

(nmol CoA/mg 
protein.min) 

 

4.00 ± 0.80 

 

1.6 ± 0.5 

 

3.2 ± 0.1* 

 

3.6 ± 0.9 

 

1.4 ± 0.3* 

 

CPT1 mRNA 

(fold change) 

 

1.03 ± 0.14 

 

0.66 ± 0.05 ↓ 

 

0.75 ± 0.04 

 

0.74 ± 0.02 

 

0.67 ± 0.05 ↓ 

 

Rats fasted for 14 h were administered lard oil (2.5 mL/Kg) with or without GSPE 

(250mg/Kg) orally and were killed 1 or 5 hours after the administration. The basal state 

(0 h) corresponds to mRNA values before the oral administration.. Each value is the 

mean ± s.e.m of 5 animals for Cpt1 activity and of 3 animals for mRNA Cpt1. ↓ or ↑ 

indicates significant differences (p< 0.05) versus basal values and * indicates significant 

differences (p< 0.05) between the lard group and the lard + GSPE group at the same 

time by t-Student test. 
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FIGURE LEGENDS 

 

Figure 1: Triglyceride levels in plasma and triglyceride content in Chylomicron 

and VLDL of rats fed on lard oil with or without proanthocyanidins (GSPE) 

 

Rats fasted for 14 h were administered lard oil (2.5 mL/Kg) with or without GSPE 

(250mg/Kg) orally. Plasma triglycerides (a) were quantified in blood samples of the tail 

vein before (0 hours) and after 1.5, 3, 4, 5, 6, 7 and 8 hours of the administration. The 

figure on the right (b) represents the values of the area under the curve. Triglyceride 

content in Chylomicron and VLDL (c) were quantified in plasma from rats killed 1, 3, 5 

and 7 hours after the administration. Each value is the mean ± s.e.m of 10 animals for 

plasma triglycerides and of 5 animals for Chylomicron and VLDL triglycerides. * 

indicates significant differences (p < 0.05) between the lard group and the lard + GSPE 

group at the same time by t-Student. 

 

Figure 2: Plasma levels of non-esterified fatty acids, cholesterol and 3-hydroxy-

butyrate of rats fed on lard oil with or without proanthocyanidins (GSPE) 

 

Rats fasted for 14 h were administered lard oil (2.5 mL/Kg) with or without GSPE 

(250mg/Kg) orally. Plasma cholesterol (a), non-esterified fatty acids (b) and 3-hydroxy-

butyrate (c) were quantified from the plasma of rats killed 1, 3, 5 and 7 hours after the 

administration. Each value is the mean ± s.e.m of 5 animals. * indicates significant 

differences (p < 0.05) between the lard group and the lard + GSPE group at the same 

time by t-Student. 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY PROANTHOCYANIDINS: THEIR EFFECTIVENESS IN DYSLIPIDEMIC NUTRITIONAL MODELS AND THE ROLE OF LIVER 
AND INTESTINE IN THEIR HYPOTRIGLYCERIDEMIC ACTION 
Helena Quesada Vázquez 
ISBN:978-84-693-8860-0/DL:T.1947-2010 



 76

Figure 3: VLDL-triglyceride secretion, post-heparin plasma lipoprotein lipase 

activity and mRNA levels of lipoprotein lipase in white adipose tissue and muscle 

of rats fed on lard oil with or without proanthocyanidins (GSPE) 

 

VLDL-triglyceride secretion (a) was evaluated in rats fasted for 5 hours. Rats were 

administered GSPE (250mg/Kg) or water orally and injected 500 mg/kg of Triton WR 

1339 through the tail vein to inhibit plasma triglyceride clearance. Aliquots of 

saphenous blood were collected at 0, 10, 20, 30, 40, 50, 60 min after Triton WR 1339 

injection. Post-heparin plasma lipoprotein lipase activity (b) was quantified an hour 

after the administration of lard oil (2.5 mL/Kg) with or without GSPE (250mg/Kg) to 

rats fasted for 14 h and injected 300 IU heparin/kg body weight intravenously. mRNA 

levels of lipoprotein lipase in white adipose tissue (c) and muscle (d) were determined 1 

and 5 hours after the administration of lard oil (2.5 mL/Kg) with or without GSPE 

(250mg/Kg) to rats fasted for 14 h. The basal state (0 h) corresponds to mRNA values 

before the oral administration. The gene expression values are expressed as fold 

changes using PPIA expression as the endogenous control. Each value is the mean ± 

s.e.m of 3 animals for mRNA LPL and 5 animals for the other parameters. * indicates 

significant differences (p< 0.05) between the lard group and the lard + GSPE group at 

the same time by t-Student. 
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ABSTRACT 

Background: Proanthocyanidins, a group of flavonoids fairly abundant in drinks and 

foods of vegetal origin, improve the hypertriglyceridemia associated to dietary obesity 

in rats. The small intestine is an important source of plasma triglyceride (TG)-rich 

lipoproteins (TRL).  Intestinal cells can use two different pathways to carry out the TG 

synthesis, the monoacylglycerol (MAG) pathway in the post-prandial state and the 

glycerol-3-phosphate (G-3-P) pathway in the fasting state. The objective of this work is 

to determine the ability of proanthocyanidins to modulate TRL secretion by the 

enterocytes in post-prandial and fasting states 

Methods: We evaluated in vitro the changes in the TG secretion and in the gene 

expression profile induced by a grape seed proanthocyanidins extract (GSPE), by using 

the Caco2 cell line cultured in transwells. We have emulated the post-prandial state by 

supplementing the apical medium with oleic acid, monoglyceride and taurocholate and 

the fasted state by supplementing the basolateral medium with oleic acid.  

Results: GSPE did not modify the TG secretion in the post-prandial state although it 

repressed, significantly, the long chain acyl-CoA synthetase (ACSL) 5 and the 

carnitine-palmitoyl-transferase-1a gene expression. On the contrary, GSPE tended to 

decrease the TG secretion in the fasting state repressing, significantly, ACSL3, ACSL5, 

I-FABP and PPARalpha gene expression. Fatty acids (FA) delivered by ACSL5 would 

be directed towards the MAG pathway and the one channeled by the ACSL3 towards 

the G-3-P pathway. Thus, these results indicated that proanthocyanidns repress the 

supply of FA towards the MAG pathway in the post-prandial state whereas they repress 

the supply of FAs towards both the MAG and the G-3-P pathways in the fasted state.      

Conclusion: The different sensitivity to GSPE between the two feeding states suggests 

that the feeding state is a key factor regarding the effectiveness of proanthocyanidins to 

reduce the triglyceridemia. 

 

Keywords: flavonoids, triglyceride, intestine, ACSL, PPARalpha 
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INTRODUCTION 

The disturbances of the triglycerides (TG) metabolism are considered to be a substantial 

risk factor to suffer from obesity, atherosclerosis, insulin-dependent diabetes, breast and 

colon cancers (1). Elevated levels of TG-rich lipoproteins (TRL), especially 

chylomicrons (CM) remnants and very low density lipoproteins (VLDL) remnants, 

accumulate in the blood flow, and are strongly associated with an increased of the risk 

of myocardial infarction, ischemic stroke and early death (2). 

The small intestine is as important source of plasma TRL, the second one just after the 

liver (3). The intestine secretes several different lipoproteins, CM and VLDLs are the 

major ones (4). VLDLs are the predominant lipoproteins during the fasting state and 

their assembly occurs constitutively (5). VLDLs may serve to transport lipids derived 

from the bile and fatty acids of the plasma (5). In the postprandial state, CM secretion is 

induced after a fat ingestion and is impaired by the absence of bile acids (5).  

Most dietary TG are absorbed by the enterocytes as fatty acids (FA) and 

monoacylglycerides (MAG). FA and MAG require to reassembly to produce TG on the 

endoplasmatic reticulum by, predominantly, the progressive acylation of MAG via the 

monoacylglycerol pathway (3, 6). Additionally, TG can also be synthesised by a 

separated route by means of the acylation of the glycerol-3-phosphate (G-3-P) (6). The 

MAG pathway would predominate in the postprandial period while the G-3-P pathway 

is the main one in the interprandial and fasted period (7). Oleate entering from the apical 

membrane is preferentially shunted to the MAG pathway to form TG whereas oleate 

entering from the basolateral membrane comes from the circulation is shunted to G-3-P 

acylation pathway. The required enzyme activating the FA prior to its incorporation into 

MAG or G-3-P is one of the five members of the acyl-CoA synthetase long chain family 

(ACSL) (6). Of these ACSLs, only ACSL3 and 5 are significantly expressed in the 

intestine (6). In this proposed scenario, oleate-CoA delivered by ACSL5 would be 

directed towards the MAG pathway and the one channeled by the ACSL3 towards the 

G-3-P pathway (6). 

Proanthocyanidins (PA), the most abundant polyphenols in grapes, apples, red grape 

juice, red wine and chocolate (8, 9) have been shown to reduce postprandrial 

hipertriglyceridemia in animal models (10) and improve plasma lipids in humans (11). 

The hypolipidemic action of proanthocyanidins is attributable to a reduction of plasma 
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levels TRL both in normolipidemic (12) and dyslipidemic rats (13). Plasma TG levels 

are the result of the balance between the TRL secretion by the intestine and the liver and 

their uptake by the extrahepatic tissues through the lipoprotein lipase (LPL). Several 

studies demonstrated the implication of the liver in the hypotriglyceridemic response 

triggered by PA (14) and established the molecular mechanisms by which PA 

modulated lipid and lipoprotein metabolism in the liver (15). However, the molecular 

mechanism by which PA modulates lipid and lipoprotein metabolism in the intestine is 

largely unknown. Thus, the aim of this study was to gain further insights into the role 

that the intestine plays in the hypotriglyceride action of PA. Intestinal cells can use two 

different pathways to carry out the TG synthesis, the MAG pathway in the post-prandial 

state and the G-3-P in the fasting state. Thus, we evaluated the effects of grape seed 

proanthocyanidins extract (GSPE) on the TG secretion and the gene expression by using 

the Caco2 cell line cultured in specific mediums simulating the two different feeding 

states. 

 

MATERIALS AND METHODS 

Proanthocyanidin extract 

GSPE was kindly provided by Les Dérives Résiniques et Terpéniques (Dax, France). 

This proanthocyanidin extract contained essentially monomeric (21.3%), dimeric 

(17.4%), trimeric (16.3%), tetrameric (13.3%) and oligomeric (5-13 units) (31.7%) 

proanthocyanidins. 

 

Materials 

Taurocholate acid sodium salt (TC), fatty acid free bovine serum albumin (BSA), 

monoolein were obtained from Sigma. Oleic acid (OA) was purchased from Merck. 

 

Cell Cultures 

Caco2 cells (ATCC , Manassas, VA, USA) were grown in Dulbecco’s modified Eagle’s 

medium (DMEM; BioWhittaker) supplemented with 100U/ml penicillin, 100 μg/ml 

streptomycin (BioWhittaker), 2 mM L-Glutamine (BioWhittaker) and 20% fetal bovine 
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serum (BioWhittaker) in a 95% air, 5% CO2 atmosphere at 37º C. The growth medium 

was replenished every 2 or 3 days. For gene expression analysis, cells at passages 58-61 

were seed in 12-well plates at 2.5 ×105 cells per well. For experiments on the secretion 

of TG from Caco2 cells, the cells at passages 60-63 were seed in 12 well Millicell 

Hanging Cell Culture Inserts (Millipore) at 1 × 105 per insert. The experiments were 

performed at 18-21 days post-seeding.  

 

Preparation of feeding and fasted state 

In order to perform a post-prandial state, the volume of the culture medium was 0.4 ml 

of DMEM (BioWhittaker) supplemented with 100U/ml penicillin, 100 μg/ml 

streptomycin (BioWhittaker), 2 mM L-Glutamine (BioWhittaker), 0.8 mM OA, 0.5 mM 

TC and 0.4 Monoolein on the apical side, and 1 ml of DMEM (BioWhittaker) 

supplemented with 100U/ml penicillin, 100 μg/ml streptomycin (BioWhittaker), 2 mM 

L-Glutamine (BioWhittaker) and 0.4 mM BSA on the basolateral side. 

In order to perform a fasting state, the volume the culture medium was 0.4 ml of 

DMEM (BioWhittaker) supplemented with 100U/ml penicillin, 100 μg/ml streptomycin 

(BioWhittaker), 2 mM L-Glutamine (BioWhittaker) supplemented with 0.4 mM BSA 

on the apical side, and 1 ml of DMEM without PhenolRed (BioWhittaker) 

supplemented with 100U/ml penicillin, 100 μg/ml streptomycin (BioWhittaker), 2 mM 

L-Glutamine (BioWhittaker), 0.8 mM OA and 0.4 mM BSA on the basolateral side. 

Transepithelial electrical resistance (TEER) was measured just after removing the 

growth medium by using the Millicell-ERS system (Millipore). The TEER value of 

Caco2 cultured in each transwells chamber was around 308 ± 3.5 Ω×cm2 in the post-

pandrial state and 319 ± 5.9 Ω×cm2 in the fasted state indicating the formation of tight 

monolayers (16). 

 

Triglyceride secretion 

Cells were cultured for 24 hours with the medium described above and treated with 

different concentrations of GSPE diluted in ethanol. In all the experiments GSPE was 

added into the apical side. Medium and cells were harvested after the treatments. The 

medium was ultracentrifugated with Amicon Ultra-4 centrifugal filter (Millipore) to 
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concentrate it and the amount of TG secreted by the Caco2 cells was measured by using 

an enzymatic colorimetric kit (QCA, Spain). Values were corrected per mg cell protein 

determined by colorimetric assay (Bradford, Sigma). 

 

Gene expression analyses 

Caco2 cells were cultured for an hour with the post-prandial or fasting medium; all of 

them were treated with different concentrations of GSPE diluted in ethanol. Total RNA 

was isolated by using an RNeasy Mini kit (Quiagen, UK) following the manufacturer’s 

instructions. cDNA was synthesized from 2 µg of total RNA using High Capacity 

cDNA Reverse Transcription kit (Applied Biosystems). A total 20 ng of cDNA was 

subjected to quantitative RT-PCR amplification using Taqman Master Mix (Applied 

Biosystems). Specific Taqman probes (Applied Biosystems) were used for different 

genes: Microsomal triglyceride transfer protein (MTP: Hs00165177_m1), Long-chain 

acyl-CoA synthetase 3 (ACSL3: Hs00244853_m1), Long-chain acyl-CoA synthetase 5 

(ACSL5: Hs00212106_m1), Diacylglycerol acyltransferase 1 (DGAT1: 

Hs00201385_m1), Apolipoprotein A4 (ApoA4: Hs00166636_m1), Carnitine palmitoyl 

transferase 1 (CPT-1a: Hs00157079_m1), Peroxisome Proliferator-Acvtivated Receptor 

alpha (PPARα: Hs00223686_m1), Intestinal-fatty acid binding protein  (I-FABP: 

Hs00164552_m1). Cyclophilin (Ppia: Hs99999904_m1) was used as an endogenous 

control. Real-time quantitative PCR reactions were performed using the ABI Prism 

7300 SDS Real-Time PCR system (Applied Biosystems). 

 

Statistical analysis 

The results are reported as the mean ± S.E.M of three independent experiments for the 

TG secretion and two independent experiments for the gene expression analyses. Group 

means were compared with an independent-samples Student’s t-test (p≤0.05) using 

SPSS software. 
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RESULTS 

GSPE treatment repressed the TG secretion in a fasted state but not in a post-

prandial state in Caco2 intestinal cells 

Caco2 cells 21 days post-confluence were cultured for 24 hours with a post-prandial or 

a fasted medium in 12 well Millicell Hanging Cell Culture Inserts (Millipore) and 

treated with 25-100 mg/L GSPE always added into the apical side. As shown in Figure 

1, only 100mg/L of GSPE tended to decrease the TG secretion in the fasted state while 

in a post-prandial condition there were no changes. Thus, GSPE repressed TG secretion 

differently depending on the feeding state and it was more effective in the fasted state. 

  

GSPE treatment repressed ACSL5 and ACSL3 in a fasted state but only ACSL5 in 

a post-prandial state 

In order to assess whether GSPE could modulate the expression of genes related to lipid 

and lipoprotein metabolism depending on the feeding state, we measured the expression 

of key proteins in Caco2 intestinal cells (Tables 1 and 2). We have chosen proteins 

involved in the intracellular transport of the long chain fatty acids (I-FABP), TG 

synthesis (ACSL3, ACSL5, DGAT1), the fatty acid oxidation (CPT-1a) and CM and 

VLDL assembly (MTTP, ApoA4). Furthermore, the nuclear receptor PPARalpha was 

also selected because proteins like CPT-1a, ACSLs and FABPs are its targets (17, 18). 

Caco2 cells cultured in post-prandial medium treated with 25 and 100 mg/L of GSPE 

showed a significant repression of ACSL5 and a significant overexpression of CPT-1a 

when compared with the control group (Table 1.). This expression profile suggests an 

increase of the channeling of fatty acid towards oxidation.  

In contrast, Caco2 cells cultured in fasting medium treated with 100 mg/L of GSPE 

(Table 2) showed a significant repression of ACSL5, ACSL3, I-FABP and PPARalpha 

when compared to the control group. Thus, Caco2 cells cultured in a medium that 

simulates the fasted condition were more sensitive to GSPE in accordance with their 

sensitivity to TG secretion (Figure 1). Altogether, these results suggest that, depending 

on the feeding state, proanthocyanidins may act through different pathways to get the 

beneficial effects that have been described. 
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DISCUSSION 

In the Western diet, lipids represent more than a 40% of the daily caloric intake while 

the nutritional advice is a 10% lower (19). This high fat supply associated with a 

qualitative imbalance (excess of plasma TRL, saturated fatty acids and cholesterol and 

the absence of LPL) greatly contributes not only to the increase of obesity prevalence 

among the population, but also to the appearance of a plethora of diseases such as 

atherosclerosis, non insulin-dependent diabetes, breast and colon cancers (20). 

Therefore, dietary components that could reduce TRL production by the intestine would 

be decisive to ameliorate the appearance of obesity and these other pathologies. PA, a 

group of flavonoids that can be found in common foodstuffs (8, 9), actively reduces 

plasma TG and ApoB in normolipidemic rats (12), dyslipidemic rats (13), hamsters fed 

on a hypercholesterolemic diet (21) and humans (22). In previous studies we showed 

the implication of the liver in the hypotriglyceridemic response triggered by PA (14) 

and established the molecular mechanisms by which PA modulated lipid and lipoprotein 

metabolism in the liver (15). This study, then, intended to determine the role that plays 

the intestine in the hypotriglyceridemic action of GSPE. Some studies have indicated 

that intestines can supply a 20% or more of the total plasma TG in the absence of 

dietary fat (23) and a 40% in fasted rats (24). Thus, we study the effectiveness of GSPE 

in both post-prandial and fasted states. 

We have chosen Caco2 cells because these represent the sole enterocyte model capable 

of differentiate spontaneously under standard cell culture conditions and allow the study 

of lipoprotein processing (3). Caco2 cells secrete apoB-containing particles that have 

similar flotation properties to those of plasma LDL (5). However, supplementation of 

Caco2 cells with OA has generally been shown to result in the secretion of more VLDL-

sized particles and fewer LDL size particles (5). Since growing Caco2 cells in cell 

culture transwells, we have emulated the post-prandial state by supplementing the apical 

medium with OA, MAG and TC, and the fasted state by supplementing the basolateral 

medium with OA. The results of this study showed that Caco2 cells were more sensitive 

to a GSPE treatment in the fasted state. GSPE levels up to 100 mg/L did not modify TG 

secretion in post-prandial state but repressed TG secretion in fasted conditions. In the 

post-prandial state GSPE treatment repressed ACSL5 and overexpressed CPT-1a 

significantly. Nevertheless, in the fasted state GSPE treatment repressed ACSL5, 

ACSL3, I-FABP and PPARalpha significantly.  
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ACSL are essential for de novo lipid synthesis, fatty acid catabolism and remodeling of 

membranes (25). The ACSL isoforms differ from their substrate preferences, enzyme 

kinetics, intracellular locations and the direction of their acyl-CoA products towards 

independent downstream pathways (26, 27). Only ACSL3 and ACSL5 are significantly 

expressed in the intestine (6, 26). ACSL5 is the only isoform found in both 

mitochondria membranes and endoplasmatic reticulum (28) although it was detected 

also in the plasma membrane (25). The overexpression of ACSL5 in rat hepatoma cell 

lines increases fatty acid (exogenous, not endogenous ones) incorporation into TG and 

without changes in β-oxidation or phospholipid synthesis (26, 29). Moreover, hepatic 

ACSL5 expression increases after applying an insulin treatment or a sterol regulatory 

element-binding protein (SREBP-1c) overexpression (26). Nevertheless, ACSL3 was 

detected in lipase-activated lipid droplets but not in un-induced droplets (25). Hepatic 

ACSL3 expression is upregulated in hyperlipidemic hamsters (30). Additionally, Yao 

H. et al (31) showed that ACSL3 played a crucial role in secretion of VLDL in human 

hepatoma Huh7 cells. Knockdown of ACSL3 in human hepatocytes decreases [1-14C] 

oleic acid incorporation to phospholipids for VLDL synthesis (29). Despite there is not 

experimental evidence of the ACSL5 and ACSL3 roles in intestine, it has been 

postulated that FA delivered by ACSL5 would be directed towards the MAG pathway 

and by ACSL3 towards the G-3-P pathway (6). Thus, at the light of the results, it can be 

suggested that GSPE represses only the supply of FA towards the MAG pathway in the 

post-prandial state (ACSL5) whereas represses FA delivered towards both pathways in 

fasted state (ACSL5 and ACSL3). Therefore, GSPE could be more effective reducing 

TG secretion in the fasted than in the post-prandial state. 

In the intestinal cells two fatty acid binding proteins (FABPs) are largely and equally 

expressed: Liver-FABP (L-FABP), which is also expressed in the liver and intestinal-

FABP (I-FABP), which is specially expressed in fully differentiated proximal 

absorptive enterocytes (20). It has been suggested that there is a potential function of I-

FABP directing long chain FA to specific subcellular sites of utilisation, such as β-

oxidation and esterification into phospholipids and TG (32). Thus, the repression of I-

FABP by GSPE in the fasted state could work together with ACSL5 and ACSL3 

reducing TG synthesis and secretion. 

PPARalpha, which is abundantly expressed in enterocytes, is an important nuclear 

receptor that mediates the effects of dietary lipids on gene expression (33). Natural 
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agonists of PPARalpha normally found in diet are oleic acid, eicosapentaenoic acid and 

docosahexaenoic acid (34). Cytoplasmatic FABP transfers and channels the FA and its 

CoA metabolites into nuclei, binds PPARalpha and activates the transcription of genes 

involved in fatty acid and glucose metabolism (35). PPARalpha controls the expression 

of several genes involved in fatty acid metabolism such as those involved in the 

transport across the cell membrane, the intracellular binding (I-FABP), the formation of 

acyl-CoA (ACSL) and the mitochondrial and peroxisomal β-oxidation (CPT-1a) (18). 

Therefore, the repression of ACSL and I-FABP by GSPE in the fasted state may be 

secondary for the reduction of PPARalpha expression. 

In conclusion, Caco2 cells were more sensitive to GSPE treatment in the fasted state 

than in the post-prandial one. The repression of ACSL5, ACSL3, I-FABP and 

PPARalpha expressions in the fasted state may account for the lower levels of TG in the 

medium. Furthermore, the different modulation of gene expression by GSPE between 

the two feeding states suggests that the feeding state is an important condition in order 

that GSPE can carry out its hypotriglyceridemic action in the intestine. 

These results provide the first in vitro evidence of the fact that ACSL3 and ACSL5 are 

target genes of PA, supporting the idea that they are powerful agents for preventing and 

treating lipid altered metabolic states.  
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Table 1. mRNA of lipid-related genes in Caco2 cells grown in a medium simulating 

the post-prandial state and treated with 25 and 100 mg/L of  grape seed 

proanthocyanidin extract (GSPE). 

 
 Control GSPE 25 mg/L GSPE 100 mg/L 

ACSL5 1.01 ± 0.07 0.68 ± 0.01 * 0.72 ± 0.06 * 

ACSL3 1.00 ± 0.04 0.92 ± 0.01 0.94 ± 0.01 

DGAT1 1.02 ± 0.09 1.11 ± 0.05 0.87 ± 0.07 

ApoA4 1.01 ± 0.08 1.29 ± 0.16 1.05 ± 0.23 

MTTP 1.05 ± 0.14 1.23 ± 0.16 1.06 ± 0.13 

CPT-1a 1.03 ± 0.12 1.73 ± 0.17 * 1.41 ± 0.04 * 

I-FABP 1.03 ± 0.10 0.86 ± 0.08 0.81 ± 0.09 

PPARalpha 1.02 ± 0.06 1.06 ± 0.05 0.94 ± 0.08 

 

The culture medium on the apical side was supplemented with 0.8 mM oleic acid, 0.5 

mM Taurocholate and 0.4mM Monoolein. GSPE was added to the apical side. mRNA 

levels were measured after an hour of culture. Each value is the mean ± s.e.m of two 

independent experiments. * indicates significant differences (p ≤ 0.05) between control 

cells and GSPE treated cells by Student’s t-test. 
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Table 2. mRNA of lipid-related genes in Caco2 cells grown in a medium simulating 

the fasted state and treated with 100 mg/L of  grape seed proanthocyanidin extract 

(GSPE). 

 

 Control group GSPE 100 mg/L 

ACSL5 1.01 ± 0.06 0.75 ± 0.06 * 

ACSL3 1.01 ± 0.03 0.82 ± 0.04 * 

DGAT1 1.00 ± 0.03 0.94 ± 0.04 

ApoA4 0.97 ± 0.05 0.78 ± 0.14 

MTTP 1.05 ± 0.14 0.97 ± 0.03 

I-FABP 1.01 ± 0.06 0.65 ± 0.04** 

PPARalpha 1.00 ± 0.04 0.88 ± 0.02 * 

CPT1a 1.01 ± 0.04 0.95 ± 0.04 

 

 

 

The culture medium on the basolateral side was supplemented with 0.8 mM oleic acid 

and 0.4 mM BSA. GSPE was added to the apical side. mRNA levels were measured 

after an hour of culture. Each value is the mean ± s.e.m of two independent 

experiments. * indicates significant differences (p ≤ 0.05) between control cells and 

GSPE treated cells by Student’s t-test 
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FIGURE LEGENDS 
 
Figure 1: Triglyceride secretion by Caco2 cells grown in a medium simulating 

post-prandial or fasted states and treated with a grape seed proanthocyanidin 

extract (GSPE). 

 
In the post-prandial state, the culture medium on the apical side was supplemented with 

0.8 mM oleic acid, 0.5 mM Taurocholate and 0.4 Monoolein. In the fasting state, the 

culture medium on the basolateral side was supplemented with 0.8 mM oleic acid and 

0.4 mM BSA. GSPE (25, 50 or 100 mg/L) was always added to the apical side. 

Triglycerides were measured after 24 hours of culture. Each value is the mean ± s.e.m 

of three independent experiments. # indicates significant differences (p = 0.08) between 

control cells and GSPE treated cells by Student’s t-test. 
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Figure 1 
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3. High and Chronic doses of proanthocyanidins do not revert 

weight gain in mice fed with high-fat high-carbohydrate diet 

at short-term. 
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ABSTRACT 

Flavonoids are benefitial compounds against risk factors for metabolic syndrome. 

Proanthocyanidins, the most abundant flavonoids in human diet, counteract atherogenic 

dyslipidemia associated with obesity and metabolic syndrome. Diet composition is 

know to influence energy intake and body-weight changes in rats and humans. A high 

carbohydrate high fat diet induce a metabolic syndrome model in rats leading them to 

hyperlipidemia and hypercholeterolemia, and increases the risk of cardiovascular 

diseases (CVD) raising triglyceride (TG) and lowering high density lipoprotein-

cholesterol (HDL-C) levels. The objective of this paper was to evaluate the effect of 

proanthocyanidins on body weigth and energy intake at the early period of a cronic 

study. To this end, we have used male C57BL6 mice fed on a high carbohydrate high 

fat (HCHF) diet supplemented with low (0.03%), medium (0.15%) or high (0.3%) of 

grape seed proanthocyanidins extract (GSPE) for 4 weeks. After 4 weeks administiring 

the treatment, medium- and high-GSPE treatment tended to reduce plasmatic TG and 

cholesterol, and high-GSPE treatment significantly reduced free fatty acid levels in 

plasma. By contrast, GSPE treatment did not counteract the weight gain induced by 

HCHF, even induced a low increase in body fat deposition. Moreover, GSPE delayed 

palmitate oxidation at two weeks. Medium- and high-GSPE treatment tended to 

increase energy retention in mice at second week (39% and 18%, respectively), whereas 

the three doses of GSPE decreased energy retention at week fourth (36%, 14% and 34% 

for low-, medium- and high-GSPE, respectively). GSPE modified energy retention by 

changing energy intake but not energy lost in feces. These results indicate that 

proanthocyanidins have a bimodal effect on energy intake, increasing it at early-term 

and decreasing it thereafter. Thus, proanthocyanidins initially exacerbated the effect of 

high-fat diet by further increasing energy intake and decreasing palmitate oxidation. 

Therefore, it can be suggested that proanthocyanidins-rich foods must be consumed 

habitually and at long-term in order to be effective improving the excess of body weight 

associated to metabolic syndrome. 
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INTRODUCTION 

Diet composition is know to influence energy intake and body-weight changes in rats 

and humans (1). Therefore, multiple and complex mechanisms have evolved to regulate 

energy intake and expenditure to maintain body weight (2). For weight maintenance, 

not only does energy intake have to mach energy expenditure, but also macronutrient 

intake must balance macronutrient oxidation (2). It is suggested that macronutrients 

imbalance may be responsible of not only to the increase of obesity prevalence in the 

population, but also to the appearance of a plethora of diseases such as atherosclerosis, 

non insulin-dependent diabetes, breast and colon cancers (3). Thus, a high carbohydrate 

high fat diet induce a metabolic syndrome model in rats, (4) in fact, it is well known that 

a diet high in saturated fat and refined-carbohydrate (sucrose) leads to hyperlipidemia 

and hypercholeterolemia, and increases the risk of cardiovascular diseases (CVD) (5) 

raising triglyceride (TG) and lowering high density lipoprotein-cholesterol (HDL-C) 

levels (6). Hyperlipidemia is the result of increased plasma concentration of very low 

density lipoprotein (VLDL)(7). This increse is consequence of overproduction of VLDL 

by the liver and the possible delay catabolism of these lipoproteins (7). Thus,  excess 

carbohydrate and fat uptake by the liver has a deleterious effect on liver metabolism, 

causing increased liver fat, increased VLDL-TG, and apolipoprotein B-100 (apoB-100) 

secretion as well as increased secretion of inflammatory markers C reactive protein, 

fibrinogen and serum amyloid A by the liver into the plasma (6). 

Proanthocyanidins (PA) are the most abundant polyphenols in grapes, apples, red grape 

juice, red wine and chocolate (7, 8). The health benefits of PA have been most studied 

in cocoa and grape seed, each of which has a characteristic and specific oligomeric 

composition that conditions its biological activity. Different mechanisms have been 

proposed for weight loss and weight maintenance induced by flavonoids. It has been 

proposed that flavonoids may increase energy expenditure, fat oxidation and counteract 

the decrease in metabolic rate that is present during weight loss (9). Some studies have 

focused on the influence of PA reducing body weight. The administration of grape seed 

extract (36 mg /kg body weight), enriched with oligomeric PA, reduces body weight 

gain and abdominal fat accumulation induced by high-fat diet in hamsters after 12 

weeks of treatment (10). Our group has demonstrated that a moderate red-wine 

consumption (equivalent to 3.4 mg PA/day per animal for 8 weeks) partially prevents 

body weight gain in rats fed with a hiperlipidic diet (11). However, in another study we 
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have demonstrated that grape seed proanthocyanidins extract (25 mg/Kg animal) 

administered for 10 days to rats fed with high-fat diet, corrected dyslipidemia and 

repressed genes controlling lipogenesis and VLDL assembling in liver but did not 

reduce body weight (7). Thus, it seems that the effect of PA on body weight is not 

immediate. Altogether suggest that the benefitial effects of PA depend on the doses, the 

way of administration as well as the duration of the treatment. 

The purpose of this study was to examine the effect of three different doses (low, 

medium and high) of grape seed PA extract (GSPE) on body weight gain and 

development of obesity at short-term. To this end, we have used mice fed on a high 

carbohydrate high fat diet (HCHF) as a model of metabolic syndrome and we have 

assessed the effect of GSPE on body weight, food intake, substrate oxidation, plasma 

profile and adiposity.   

 

MATERIALS AND METHODS 

Proanthocyanidin extract 

GSPE was kindly provided by Les Dérives Résiniques et Terpéniques (Dax, France). 

This proanthocyanidin extract contained essentially monomeric (21.3%), dimeric 

(17.4%), trimeric (16.3%), tetrameric (13.3%) and oligomeric (5-13 units) (31.7%) 

proanthocyanidins. 

 

Animals, diets and experimental setup 

Male 9-10 week old C57BL6 mice weighing 26 g were purchased from Charles River 

(Suzfeld, Germany). The experimental protocol was approved by the Ethical Committee 

on the Use of Animals as Experimental Subjects of the Ministry of Agriculture, 

Nutrition and Forestry (State Brandenburg, Germany). The animals were housed 

individually in a climate-controlled room with a 12-h light-dark cycle (light of 8 h am to 

20 pm) and were fed with standard chow and water ad libitum for 1 week. After that 

week, the animals were randomly assigned to experimental diet (n= 8 per group) with or 

witout GSPE (Table 2), which were consumed ad libitum for 4 weeks. The experimental 

diet (High Carbohydrate High Fat Diet, HCHFD) (Table 1) have adequate protein 

content (about 20% calories) and high dietary fat content (about 40% calories). Mice 
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were fed on an HCHF diet containing three concentrations of GSPE: 0.3 g/Kg (0.03% 

wt/wt)(low-GSPE group), 1.5 g/Kg (0.15% wt/wt)(medium-GSPE group) or 3 g/Kg 

(0.3% wt/wt) (high-GSPE group). Mice fed on an HCHF diet without GSPE were used 

as control group. Water was provided ad libitum.  

Food intake, body weight and body composition were monitored weekly. After 1 week 

of feeding, a substrate oxidation test of orally applied 13C-labelled palmitate was 

determined as described below. The energy intake, the energy retained and the energy 

lost in the feces were measured by an adiabatic bomb calorimeter (IKA-Calorimeter 

C5000, IKA-Werke GmbH & Co.KG, Germany) at the second and fourth week after 

feeding. Finally, mice were sedated by isofluorane inhalation and killed by cervical 

dislocation in the postabsorptive state. Blood samples were collected from heart and 

plasma was obtained by centrifugation. 

 

Substrate Oxidation Test 

Substrate oxidation of orally applied 13C-labelled palmitate was determined during the 

experiment. 13C- labeled potassium palmitate (1-13C, 99%, MW 294.5 g/mol, 

Cambridge Isotope Lab., Inc. Andover, MA, USA) was emulsified by vortexing at 60°C 

in 5% lecithine (Emultop, Cargill Texturizing Solutions Deutschland GmbH & Co. KG, 

Hamburg, Germany), dissolved in sterilized water and 60 µmol/kg were applied by oral 

gavage in a volume of 50 µl/20 g body weight. Breath samples were taken at 15, 30, 45, 

60, 75, 90, 105, 120, 150, 180, 210, 240, 270 and 300 min[3]. 13C was measured by gas 

chromatography–combustion isotope ratio mass spectrometry (GC-C-IRMS). 

 

Plasma parameters assay 

Plasma free fatty acids (FFAs) were determined using NEFA C kit (Wako Chemicals 

GmbH, Neuss, Germany). Triglicerides, cholesterol, hidroxybutirate, insulin and leptin 

were determined using colorimetric and enzymatic standard methods (Cobas Mira, 

Hoffmann La Roche AG, Grenzach-Whylen, Germany).  
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Statistical analysis 

Data are reported as means ± SEM. Differences between mean values were determined 

by independent-samples Student’s t-test (p≤0.05) using SPSS software. 

 

RESULTS 

GSPE treatment did not counteract the weight gain induced by the HCHF even 

induced a low increase in body fat deposition 

Mice ingested a HCHF diet containing low (0.3 g GSPE/kg chow), medium (1.5 g 

GSPE/kg chow) or high (3 g GSPE/kg chow) GSPE levels. Mean values of GSPE 

intake by mice during the four weeks were 38 ± 1.62 mg of GSPE /kg body weight for 

the low-GSPE group, 230 ± 15.37 mg of GSPE /kg body weight for the medium-GSPE 

group and 420 ± 17.61 mg of GSPE / kg of body weight for the high-GSPE group. 

These intakes of GSPE are below of the no-observed-adverse effect level (NOAEL) 

defined for this extract in sub-chronic studies with rats (1400 to 1700 mg /kg body 

weight for males (12, 13). 

Control mice fed four weeks with HCHF diet increased 19% their body weight (Table 

2). The addition of GSPE to the diet did not influence body weight gain induced by the 

HCHF diet (19%, 21% and 23% increase in body weight for low-, medium- and high-

GSPE groups respectively). 

HCHF diet consumption induced body fat deposition (Table 2) in control mice in which 

body fat rose from 5% of body weight in basal state to 17% after four weeks of HCHF 

diet. Mice treated with medium- and high-GSPE treatment increased slight fat 

deposition and fat reached to 20% of body weight. 

The addition of GSPE to the diet did not significantly increase liver, visceral white 

adipose tissue (WAT), epididymal WAT, subcutaneous WAT and BAT weights. 

However, mice treated with medium- and high-GSPE treatment shown 10% increase of 

visceral WAT and epididymal WAT compared with the control mice fed four weeks 

with HCHF. These results are in accordance with the tendency to increase body fat 

deposition in mice treated with medium- and high-GSPE. 
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GSPE treatment altered the energy retained by mice and delayed palmitate 

oxidation. 

The mean of chow intake by mice through the four weeks (Table 4) was not affected by 

GSPE added to foodstuff comparing to control mice. However, GSPE treatment 

modified energy intake (Table 4) when was calculated at two and four weeks. Medium- 

and high-GSPE treatment tended to increase energy intake in mice at two weeks  (36% 

and 15% of control, respectively), whereas the three doses of GSPE decreased energy 

intake at four weeks (30%, 10% and 20% for low-, medium- and high-GSPE, 

respectively). Thus energy intake at week fourth was significantly decreased by GSPE 

treatment respect to the second week. These results indicate that GSPE had a bimodal 

effect on energy intake, increasing it until two weeks and decreasing thereafter. 

After two weeks of HCHF diet, the energy retained (Table 5) by mice treated with low-

GSPE was equal to those of control mice, whereas was increased by 51% and 14% in 

mice treated with medium- and high-GSPE respectively. The bigger energy retention in 

medium- and high-GSPE mice was largely due to increased energy intake and not to 

energy lost in feces.  

On the other hand, lost of energy in feces was not affected by GSPE treatment, neither 

at two and four weeks. 

At two weeks of HCHF diet, the energy retained (Table 4) by mice treated with low-

GSPE was equal to those of control mice, whereas was increased by 51% and 14% in 

mice treated with medium- and high-GSPE respectively. The bigger energy retention in 

medium- and high-GSPE mice was largely due to increased energy intake and not to 

energy lost in feces.  

At four weeks of HCHF diet, the energy retained by mice treated with medium-GSPE 

was equal to those of control mice, whereas was reduced by 35% and 25% in mice 

treated with low- and high-GSPE. Like at two weeks, the mainly component that caused 

the reduction in energy retention was a decreased energy intake. Thus, GSPE modified 

energy retention by changing energy intake but not energy lost in feces. 

There were not significant differences in palmitate oxidation by GSPE treatment (Figure 

1), but the maximum of palmitate oxidation was delayed by GSPE treatment (a delay of 

15 minutes in medium- and high-GSPE treated mice and 30 minutes in low-GSPE 

treated mice). 
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GSPE treatment tended to improve plasma lipid profile 

GSPE treatment tended to decrease plasma TG levels (Table 5) in mice treated with 

medium- and high-GSPE treatment compared with the control group. Furthermore, the 

mice treated with the medium-GSPE treatment tended to decrease plasma cholesterol 

levels (Table 5) compared with the control group. Additionally, the mice treated with 

the high-GSPE treatment decreased significantly plasma FFA concentration (Table 5) 

compared with the control group. Neither β-hidroxibutirate, insulin and leptin plasma 

levels (Table 5) were affected by GSPE treatment. Thus, medium and high doses of 

GSPE tended to ameliorate the dyslipidemia induced by the HCHF diet. 

 

DISCUSSION 

There is a strong positive association between obesity and type II diabetes, 

cardiovascular disease and hypertension (14). These associations describe the metabolic 

syndrome, a clustering of risk factors including abdominal obesity, insulin resistance, 

and dyslipidemia (14). PA, a group of flavonoids that can be found in common 

foodstuffs (15, 16), improve risk factors associated to metabolic syndrome. PAs actively 

reduce plasma TG and ApoB in normolipidemic rats (17), hamsters fed a 

hypercholesterolemic diet (18) and humans (19). In previous studies we have 

demonstrated that PA correct dyslipidemia associated with a high-fat diet in rats and 

repress genes controlling lipogenesis and VLDL assembling in liver (7). Additionally, 

we showed the implication of the liver in the hypotriglyceridemic response triggered by 

PA (20) and established the molecular mechanisms by which PA modulated lipid and 

lipoprotein metabolism in the liver (8). However, the effect of Pas improving obesity is 

not clear. This study, then, intended to evaluate the effect of proanthocyanidins on body 

weigth and energy intake at short-term.  

Short-term GSPE treatment did not counteract the weight gain induced by the HCHF 

even induced a low increase in body fat deposition resulted in a slight increase of 

visceral WAT and epididymal WAT in mice treated with medium- and high-GSPE 

treatment. This slight increase of body fat deposition induced by GSPE may be 

consequence of the biggest energy retention in medium- and high-GSPE group mice at 

two weeks. Moreover, at this time, GSPE treatment delays palmitate oxidation. Thus, 

this excess of energy may be transformed in fat and deposited in the body. 
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Interestingly, GSPE had a bimodal effect on energy retention. GSPE increased initially 

the energy retention and further decreased it. The mainly component responsible of 

these changes was the energy intake and not the energy lost in the feces. GSPE 

increased energy intake until two weeks and reduced it at four weeks. In contrast to our 

results, a grape seed extract do not modify food and energy intake in high-fat fed 

hamsters in which PA reduce body weight gain and abdominal fat accumulation after 12 

weeks (9). Therefore, it can be suggested that PA modify food and energy intake 

depending on the length of the treatment. Other flavonoids, like isoflavones, reduce 

obesity by decreasing food intake, and increasing cholecystokinin and peptide YY 

levels, which can induce satiety (21, 22). So, further studies of the effects of PA at 

different length on fluctuations of oroxigenic and anoroxigenic peptides are warranted. 

Furthermore, PA regulate adipocyte biology, modifying lipid synthesis, lipid 

degradation,glucosa uptake and differentiation (23). Perhaps, also the effect of GSPE on 

adipocyte functionality in vivo is not constant and depends on the length of treatment.  

By contrast to the effects of GSPE on body weight and fat deposition, GSPE treatment 

tended to decrease plasma TG in medium and high doses. Besides, the medium-GSPE 

treatment tended to decrease plasma cholesterol and the high-GSPE treatment decreased 

significantly plasma FFA. Thus, it can be suggested that PA modify lipid metabolism 

and ameliorates plasma lipoid profiles at short-term treatment. 

  

In conclusion, proanthocyanidins are powerful agents for preventing and treating lipid 

altered metabolic states although they do not counteract the gain of body weight and the 

energy intake for a short-term metabolic syndrome. Proanthocyanidins have a bimodal 

effect on energy intake, increasing it at early-term and decreasing it thereafter. Thus, 

proanthocyanidins initially exacerbate the effect of high-fat diet by further increasing 

energy intake and decreasing palmitate oxidation. According to our results, it has been 

described that quercetin worsens hepatic insulin resistance induced by high-fat diet in 

mice at early-term (14). Therefore, it can be suggested that proanthocyanidins-rich 

foods must be consumed habitually and at long-term in order to be effective improving 

the excess of body weight associated to metabolic syndrome. 
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Table 1. Composition of the high-carbohydrate high-fat diet  

Caseina (g/100g) 
 

18 

Wheat starchb (g/100g) 
 

43 

Saccharosec (g/100g) 
 

5 

Coconut oild (g/100g) 
 

18 

Safflower oile (g/100g) 
 

1 

Linseed oilf (g/100g) 
 

1 

Celluloseg (g/100g) 
 

7 

Mineral mixtureh (g/100g) 
 

5 

Vitamin mixturei (g/100g) 
 

2 

 

 

a Dauermilchwerk Peiting GmbH, Landshut, Germany, contained 86% crude proteína 

(% N x 6.38); b Heller u. Strauß, Berlin, Germany; c Nordzucker GmbH, Uelzen, 

Germany; d, e, f  Kunella-Feinkost GmbH, Cottbus, Germany; g Rettenmeier, Ellwangen, 

Germany; h Mineral mixture per 100g diet: Ca, 930 mg; P, 730 mg; Mg, 80 mg; Na, 440 

mg; K, 710 mg; S, 170 mg; Cl, 360 mg; Fe, 20 mg; Mn, 10 mg; Zn, 3 mg; Cu, 800 mg; 

J, 40 mg; F, 400 mg; Se, 20 mg; Co, 10 mg (Altromin GmbH, Lage, Germany); i 

Vitamin mixture containing 17.5 g/100g DL-methionine; vitamina content in 100g diet: 

A, 0.45 mg; D3,
 1.3 mg; K3, 1 mg; B1, 2 mg; B2, 2 mg; B6, 1.5 mg; B12, 3 mg; niacin, 5 

mg; pantothenate, 5 mg; folic acid, 1 mg; biotin, 20 mg; choline chloride, 100 mg; p-

aminobenzoic acid, 10 mg; inositol, 10 mg; E, 16.4 mg (Altromin GmbH, Lage, 

Germany) 
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Table 2. Body weight and body fat of mice fed with a high-carbohydrate high-fat 

diet supplemented with several concentrations of grape seed proanthocyanidin 

extract (GSPE) for 4 weeks.  

 

 

 Control low-GSPE medium-
GSPE 

high-GSPE 

 
Initial body weight (g) 

 
27.0 ± 0.3 

 
26.4 ± 0.7 

 
27.2 ± 0.4 

 
26.3 ±0.5 

 
Final body weight (g) 

 
32.1 ± 1.2 

 
31.3 ± 0.3 

 
32.9 ± 1.2 

 
32.5 ± 0.7 

 
Body weight gain (g) 

 
5.7 ± 0.8 

 
4.7 ± 0.8 

 
6.2 ± 0.8 

 
6.2 ± 0.8 

 
Initial body fat (g) 

 
1.5 ± 0.1 

 
1.5 ± 0.1 

 
1.3 ± 0.2 

 
1.8 ± 0.2 

 
Final body fat (g) 

 
5.6 ± 0.9 

 
5.4 ± 0.8 

 
6.5 ± 1.0 

 
6.6 ± 0.8 

 
Body fat gain (g) 

 
4.2 ± 0.9 

 
3.8 ± 0.7 

 
5.1 ± 0.9 

 
4.8 ± 0.7 

 
Body fat (% body weight) 

 
16.9 ± 2.1 

 
17.2 ± 2.2 

 
19.2 ± 2.5 

 
20.0 ± 2.3 

 
Mean food intake (g/wk) 

 
4.6 ± 0.4 

 
4.0 ± 0.4 

 
4.8 ± 0.3 

 
4.5 ± 0.4 

 

Mice were fed on an HCHF diet containing three concentrations of GSPE: 0.3 g/Kg 

(0.03% wt/wt)(low-GSPE group), 1.5 g/Kg (0.15% wt/wt)(medium-GSPE group) or 3 

g/Kg (0.3% wt/wt) (high-GSPE group). Mice fed on an HCHF diet without GSPE were 

used as control group. Food intake, body weight and body composition were monitored 

weekly. Finally, mice were sedated by isofluorane inhalation and killed by cervical 

dislocation in the postabsorptive state. Each value is the mean ± s.e.m of eight animals. 
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Table 3. Tissues weight of mice fed with a high-carbohydrate high-fat diet 

supplemented with several concentrations of grape seed proanthocyanidin extract 

(GSPE) for 4 weeks.  

 

 

 Control low-GSPE medium-
GSPE 

high-GSPE 

 
Liver (g) 

 
1.24 ± 0.04 

 
1.31 ± 0.06 

 
1.25 ± 0.05 

 
1.31 ± 0.05 

 
Visceral WAT (g) 

 
0.55 ± 0.10 

 
0.52 ± 0.07 

 
0.65 ± 0.07 

 
0.51 ± 0.06 

 
Epididymal WAT (g) 

 
0.79 ± 0.14 

 
0.76 ± 0.09 

 
0.89 ± 0.14 

 
0.94 ± 0.11 

 
Subcutaneous WAT (g) 

 
0.46 ± 0.05 

 
0.44 ± 0.07 

 
0.44 ± 0.07 

 
0.46 ± 0.05 

 
BAT (g) 

 
0.17 ± 0.02 

 
0.18 ± 0.02 

 
0.15 ± 0.02 

 
0.16 ± 0.01 

 

Mice were fed on an HCHF diet containing three concentrations of GSPE: 0.3 g/Kg 

(0.03% wt/wt)(low-GSPE group), 1.5 g/Kg (0.15% wt/wt)(medium-GSPE group) or 3 

g/Kg (0.3% wt/wt) (high-GSPE group). Mice fed on an HCHF diet without GSPE were 

used as control group. Mice were sedated by isofluorane inhalation and killed by 

cervical dislocation in the postabsorptive state. Each value is the mean ± s.e.m of eight 

animals. 
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Table 4. Plasma levels of triglyceride, cholesterol, free fatty acids, 

hydroxybutyrate, leptin and insulin of mice fed with a high-carbohydrate high-fat 

diet supplemented with several concentrations of grape seed proanthocyanidin 

extract (GSPE) for 4 weeks.  

 

 

 Control low-GSPE medium-
GSPE 

high-GSPE 

 
Triglycerides (mg/ml) 

 
6.9 ± 0.9 

 
7.0 ± 0.7 

 
5.1 ± 0.3# 

 
5.2 ± 0.4# 

 
Cholesterol (mg/dL) 

 
110.6 ± 5.9 

 
101.1 ± 5.9 

 
96.3 ± 4.8# 

 
107.6 ± 5.1 

 
FFA (mmol/L) 

 
1.28 ± 0.03 

 
1.31 ± 0.07 

 
1.27 ± 0.05 

 
1.14 ± 0.04*

 
Hidroxybutirate (mg/dL) 

 
0.61 ± 0.08 

 
0,58 ± 0.07 

 
0.67 ± 0.07 

 
0.79 ± 0.08 

 
Leptin (pg/ml) 

 
7548 ± 2290

 
6280 ± 1554 

 
3714 ± 624 

 
6340 ± 1978

 
Insulin (pg/ml) 

 
966 ± 258 

 
804 ± 137 

 
916 ± 387 

 
1172 ± 356 

 

Mice were fed on an HCHF diet containing three concentrations of GSPE: 0.3 g/Kg 

(0.03% wt/wt)(low-GSPE group), 1.5 g/Kg (0.15% wt/wt)(medium-GSPE group) or 3 

g/Kg (0.3% wt/wt) (high-GSPE group). Mice fed on an HCHF diet without GSPE were 

used as control group. Mice were sedated by isofluorane inhalation and killed by 

cervical dislocation in the postabsorptive state. Blood samples were collected from heart 

and plasma was obtained by centrifugation. Each value is the mean ± s.e.m of eight 

animals. Leptin and insulin is the mean ± s.e.m of four animals. # indicates significant 

differences (p ≤ 0.1) versus control values and * indicates significant differences (p ≤ 

0.05) versus control values by T-student. 
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Table 5. Food intake. Percentage of the increase in the energy in the faeces, the 

energy intake and energy retained. 

 

 Week Control low-GSPE medium-
GSPE 

high-GSPE 

 
Mean food intake (g/wk) 

  
4.6 ± 0.4 

 
4.0 ± 0.4 

 
4.8 ± 0.3 

 
4.5 ± 0.4 

 
2 w 

 
75.2 ±  4.2 

(100) 

 
75.4 ± 5.4 

(100) 

 
102.0 ± 3.3 

(136) 

 
86.7 ± 6.4 

(115) 

 
Energy intake (KJ/mouse) 
(% of control value) 

 
4 w 

 
99.9 ± 14.4 

(100) 

 
69.1 ± 4.5 

(69) 

 
89.4 ± 4.5 

(89) 

 
79.8 ± 3.2 

(80) 
 
Energy intake at week 4 respect to 
week 2 (%) 

  
16.44 ± 11.2 

 
-10.62 ± 5.6# 

 
-14.02 ± 5.7* 

 
-11.04 ± 7.2# 

 
2 w 

 
8.6 ± 0.4 

(100) 

 
9.5 ± 0.4 

(110) 

 
9.3 ± 0.5 

(108) 

 
8.3 ± 0.4 

(97) 

 
Energy in feces (KJ/mouse) 
(% of control value) 

 
4 w 

 
11.4 ± 0.8 

(100) 

 
12.3 ± 0.7 

(108) 

 
12.2 ± 0.5 

(107) 

 
12.1 ± 0.3 

(106) 
 
Energy in feces at week 4 respect 
to week 2 (%) 

  
26.5 ± 4.5 

 
23.4 ± 4.2 

 
23.8 ± 4.2 

 
33.3 ± 2.7 

 
2 w 

 
66.6 ± 4.4 

(100) 

 
66.1 ± 5.3 

(99) 

 
92.8 ± 3.3 

(139) 

 
78.3 ± 6.1 

(118) 

 
Energy retained (KJ/mouse) 
(% of control value) 

 
4 w 

 
88.5 ± 14.1 

(100) 

 
57.0 ± 4.0 

(64) 

 
77.5 ± 4.5 

(86) 

 
67.6 ± 2.9 

(76) 
 
Energy retained at week 4 respect 
to week 2 (%) 

  
14.55 ± 5.5 

 
-18.08 ± 6.8# 

 
-20.40 ± 7.7* 

 
-18.47 ± 7.0# 

 

Mice were fed on an HCHF diet containing three concentrations of GSPE: 0.3 g/Kg 

(0.03% wt/wt)(low-GSPE group), 1.5 g/Kg (0.15% wt/wt)(medium-GSPE group) or 3 

g/Kg (0.3% wt/wt) (high-GSPE group). Mice fed on an HCHF diet without GSPE were 

used as control group. The energy intake, the energy retained and the energy lost in the 

feces were measured by an adiabatic bomb calorimeter (IKA-Calorimeter C5000, IKA-

Werke GmbH & Co.KG, Germany) at the second and fourth week after feeding. Each 

value is the mean ± s.e.m of eight animals. # indicates significant differences (p ≤ 0.1) 

versus control values and * indicates significant differences (p ≤ 0.05) versus control 

values by T-student. 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY PROANTHOCYANIDINS: THEIR EFFECTIVENESS IN DYSLIPIDEMIC NUTRITIONAL MODELS AND THE ROLE OF LIVER 
AND INTESTINE IN THEIR HYPOTRIGLYCERIDEMIC ACTION 
Helena Quesada Vázquez 
ISBN:978-84-693-8860-0/DL:T.1947-2010 



FIGURE LEGENDS 

Mice were fed with a HCHF diet containing three levels of GSPE, 0.3 g/Kg (0.03% 

wt/wt)(low-GSPE group), 1.5 g/Kg (0.15% wt/wt)(medium-GSPE group) or 3 g/Kg 

(0.3% wt/wt) (high-GSPE group). Mice fed with HCHF diet without GSPE were used 

as control group. Substrate oxidation of orally applied 13C-labelled palmitate (a) was 

determined during the experiment. Breath samples were taken at 15, 30, 45, 60, 75, 90, 

105, 120, 150, 180, 210, 240, 270 and 300 min. The figure below (b) represents the 

values of the area under the curve. # indicates significant differences (p ≤ 0.1) versus 

control values by T-student. 

 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY PROANTHOCYANIDINS: THEIR EFFECTIVENESS IN DYSLIPIDEMIC NUTRITIONAL MODELS AND THE ROLE OF LIVER 
AND INTESTINE IN THEIR HYPOTRIGLYCERIDEMIC ACTION 
Helena Quesada Vázquez 
ISBN:978-84-693-8860-0/DL:T.1947-2010 



Figure 1 
 
a) 
 
 

Oxidation test

0

2

4

6

8

10

12

0 15 30 45 60 75 90 105 120 150 180 240 300

D
O

B
 (%

 13
C

) Control

Low-GSPE

Medium-GSPE

High-GSPE

 
 
 
 
 
b) 
 

Area under curve

0

200
400

600
800

1000

1200
1400

1600

Control Low-GSPE Medium-GSPE High-GSPE

Ar
ea

#

 

 122

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY PROANTHOCYANIDINS: THEIR EFFECTIVENESS IN DYSLIPIDEMIC NUTRITIONAL MODELS AND THE ROLE OF LIVER 
AND INTESTINE IN THEIR HYPOTRIGLYCERIDEMIC ACTION 
Helena Quesada Vázquez 
ISBN:978-84-693-8860-0/DL:T.1947-2010 



       

 

 

 

 

 

4. Grape seed proanthocyanidins correct dyslipidemia 

associated with a high-fat diet in rats and repress 

genes controlling lipogenesis and VLDL assembling 

in liver 

 

International Journal of Obesity (2009) 1-6 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY PROANTHOCYANIDINS: THEIR EFFECTIVENESS IN DYSLIPIDEMIC NUTRITIONAL MODELS AND THE ROLE OF LIVER 
AND INTESTINE IN THEIR HYPOTRIGLYCERIDEMIC ACTION 
Helena Quesada Vázquez 
ISBN:978-84-693-8860-0/DL:T.1947-2010 



 
 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY PROANTHOCYANIDINS: THEIR EFFECTIVENESS IN DYSLIPIDEMIC NUTRITIONAL MODELS AND THE ROLE OF LIVER 
AND INTESTINE IN THEIR HYPOTRIGLYCERIDEMIC ACTION 
Helena Quesada Vázquez 
ISBN:978-84-693-8860-0/DL:T.1947-2010 



ORIGINAL ARTICLE

Grape seed proanthocyanidins correct dyslipidemia
associated with a high-fat diet in rats and repress
genes controlling lipogenesis and VLDL assembling
in liver

H Quesada1, JM del Bas1, D Pajuelo, S Dı́az, J Fernandez-Larrea, M Pinent, L Arola, MJ Salvadó
and C Bladé

Departament de Bioquı́mica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain

Objective: To determine whether proanthocyanidins can protect against dyslipidemia induced by a high-fat diet (HFD) and to
address the mechanisms that underlie this hypolipidemic effect.
Design and measurements: Female Wistar rats were fed on a HFD for 13 weeks. They were divided into two groups, one of
which was treated with a grape seed proanthocyanidin extract (25 mg kg�1 of body weight) for 10 days. Plasma and liver lipids
were measured by colorimetric and gravimetric analysis. Liver, muscle and adipose tissue were used to study the expression of
genes involved in the synthesis and oxidation of fatty acids and lipoprotein homeostasis by real-time RT-PCR.
Results: The administration of proanthocyanidins normalized plasma triglyceride and LDL-cholesterol (both parameters
significantly increased with the HFD) but tended to decrease hypercholesterolemia and fatty liver. Gene expression analyses
revealed that proanthocyanidins repressed both the expression of hepatic key regulators of lipogenesis and very low density
lipoprotein (VLDL) assembling such as SREBP1, MTP and DGAT2, all of which were overexpressed by the HFD.
Conclusion: These findings indicate that natural proanthocyanidins improve dyslipidemia associated with HFDs, mainly by
repressing lipogenesis and VLDL assembly in the liver, and support the idea that they are powerful agents for preventing and
treating lipid altered metabolic states.
International Journal of Obesity advance online publication, 7 July 2009; doi:10.1038/ijo.2009.136

Keywords: high-fat diet; liver; proanthocyanidins; triglycerides; SREBP1; MTP

Introduction

Hypertriglyceridemia is a strong predictor of atherogenic

cardiovascular disease (CVD).1 In both the metabolic

syndrome and type 2 diabetes, hypertriglyceridemia is the

result of increased plasma concentration of very low density

lipoprotein (VLDL).2 This increase is the consequence of

overproduction of VLDL by the liver, and the possible

delayed catabolism of these lipoproteins, caused by insulin

resistance.3 In turn, elevated VLDL and hypertriglyceridemia

reduce the high-density lipoprotein (HDL) level and generate

small, dense low-density lipoprotein (LDL) due to lipid

exchange.4 High serum triglyceride (TG) levels, low serum

HDL-cholesterol (HDL-C) levels and a preponderance of

small, dense LDL particles are the ‘atherogenic lipid triada’

characteristic of the dyslipidemia that commonly occurs in

the metabolic syndrome.5 It has also been suggested that the

fact that cardiovascular risk indexes are lower in obese

patients who lose weight may be closely connected to a

reduction in VLDL secretion by the liver.6

Flavan-3-ols and their oligomeric condensation products,

proanthocyanidins (PA), are the most common group of

flavonoids in the American diet.7 PA can be found in such

common foodstuffs as cereals, legumes, fruits, vegetables and

beverages (red wine and tea, in particular).8 The health

benefits of PA have been most studied in tea, cocoa and

grape seed, each of which has a characteristic and specific

oligomeric composition that conditions its biological

activity. Grape seed proanthocyanidin extracts (GSPE) reduce

foam cells,9 prevent aortic atherosclerosis10 from developingReceived 29 January 2009; revised 7 May 2009; accepted 30 May 2009
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in a hamster atherosclerosis model, decrease oxidized LDL in

hypercholesterolemic humans9 and improve endothelial

function by modifying NO production.11 Consequently,

they protect against atherosclerosis and CVD. Besides their

antioxidant activity and their effects on the vascular

endothelium, the antiatherogenic properties of PA are also

related to an improved serum lipid profile. Plasma TG and

apolipoprotein B (apoB) levels are reduced by GSPE in

normolipidemic rats,12 and by lyophilized grape powder in

postmenopausal women.13 The lipoprotein profile is also

improved in both healthy subjects and hemodialysis patients

by concentrated red grape juice.14

Although PA can exert part of their hypolipidemic effect by

inhibiting the absorption of dietary lipids and diminishing

chylomicron secretion by enterocytes, the liver has

an important role in reducing plasma TG through GSPE.

We have determined that GSPE limit VLDL secretion by

repressing lipogenic genes and the microsomal transfer protein

(MTP; the key controller of VLDL assembling)12 and by

overexpressing the carnitine palmitoiltransferase-1 (CPT1; the

key controller of free fatty acid (FFA) oxidation)15 in mouse

liver. GSPE exert some of these effects by a pathway that

involves overexpressing the nuclear receptor small heterodimer

partner (SHP) and repressing the transcription factor sterol

regulatory element-binding protein 1 (SREBP1).15

As overproduction of VLDL and hypertriglyceridemia are

at the basis of atherogenic dyslipidemia, and GSPE can

inhibit VLDL secretion in a healthy situation, the objectives

of this study were to determine whether proanthocyanidins

could prevent rats from developing atherogenic dyslipidemia

and to establish the mechanism underlying this hypolipi-

demic effect. To this end, we have used rats fed on a high-fat

diet (HFD) as a model of atherogenic dyslipidemia and we

have determined the role of liver and extrahepatic tissue in

normalizing the lipid profile.

Methods

Proanthocyanidin extract

GSPE was kindly provided by Les Dérives Résiniques et

Terpéniques (Dax, France). This proanthocyanidin extract

contained essentially monomeric (21.3%), dimeric (17.4%),

trimeric (16.3%), tetrameric (13.3%) and oligomeric (5–13

units; 31.7%) proanthocyanidins.

Animals

Female Wistar rats weighing 150 g were purchased

from Charles River (Barcelona, Spain). The Animal Ethics

Committee of our University approved all procedures. The

animals were housed in animal quarters at 22 1C with a 12-h

light/dark cycle (light from 0800 hours to 2000 hours) and

were fed ad libitum with standard chow diet (Panlab,

Barcelona, Spain). After 5 days, 12 rats were fed ad libitum

with standard chow plus a cafeteria diet as an HFD model

which had 13.6% fats, 21% carbohydrates and 9% protein.16

The cafeteria diet consisted of the following foods: cookies

with foie-gras and cheese triangles, sweets, bacon, biscuits,

chocolate, croissants, carrots and sugary milk. Six rats were

kept on the standard chow diet (control group).

After 13 weeks, rats feeding on the HFD were trained to lick

condensed milk (1 ml) and were divided into two groups.

One group was supplemented every day, at 0900 hours, with

25 mg of GSPE per kg body weight dissolved in condensed

milk (HFD-GSPE group). The other group received the same

volume of condensed milk (HFD group).

On day 10 of the GSPE treatment, all the rats were killed at

1400 hours by beheading and the blood was collected using

heparin as the anticoagulant. Plasma was obtained by

centrifugation and stored at �80 1C until analysis. Liver, leg

muscle and mesenteric adipose tissue were excised and

frozen immediately in liquid nitrogen and stored at �80 1C

until RNA and lipid extraction.

Plasma and liver lipid analysis

Plasma total cholesterol (TC) was measured with an enzy-

matic colorimetric kit (QCA, Barcelona, Spain). HDL-C was

measured, using the same kit, after treating the plasma with

phosphotungstic acid to precipitate the non-HDL lipo-

proteins.17 The LDL-cholesterol (LDL-C) was measured after

plasma treatment with polyvinyl sulfate and polyethylene

glycol monomethyl ether to precipitate LDL lipoproteins.

LDL-C was calculated as TC minus cholesterol in plasma

after LDL precipitation.18 TGs were assayed using an

enzymatic colorimetric kit (QCA). FFA were measured using

an enzymatic colorimetric kit (Wako chemicals GmbH,

Madrid, Spain).

Liver lipids (0.5 g) were extracted using the Folch

method.19 An aliquot of extract was used to measure the

total lipids by gravimetry. The rest of the extract was

evaporated to dryness and redissolved in 2% triton X-100

to determine the TG and TC using the same kits that

were used for plasma quantification.

Gene expression analyses

Total RNA from the liver was obtained using a NucleoSpin

RNA2 kit (Macherie-Naegel, Germany) and total RNA from

muscle and adipose tissue was obtained using Trizol reagent

(Invitrogen, Barcelona, Spain) following the manufacturer’s

protocol. Additional purification and DNAse treatment was

performed using a NucleoSpin RNA2 kit (Macherie-Naegel,

Germany). cDNA was synthesized from 2 mg of total RNA

using the Taqman Reverse transcription reagent kit (Applied

Biosystems). A total of 20 ng of cDNA was subjected to

quantitative RT-PCR amplification using Taqman Master Mix

(Applied Biosystems). Specific Taqman probes (Applied

Biosystems) were used for different genes. Ppia was used

as an endogenous control. Real-time quantitative PCR
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reactions were performed using the ABI Prism 7300 SDS Real-

Time PCR system (Applied Biosystems).

Statistical analysis

Results are reported as mean±s.e.m. of six animals. Group

means were compared with an independent-samples

Student’s t-test (Pp0.05) using SPSS software.

Results

GSPE treatment prevents dyslipidemia induced by high-fat diet

The body weight of rats fed with an HFD was significantly

higher (approximately 40%) than those in the control group

(Table 1). After 13 weeks of HFD administration, initial body

mass of the rats increased by 126%, whereas that of rats fed

with the standard chow diet only increased by 73%. The

body weight of HFD-fed rats reduced slightly when treated

with GSPE for 10 days (Table 1).

HFD also significantly increased liver mass, hepatic lipids,

TG and TC levels (Table 1). GSPE treatment slightly lowered

TG and TC content in liver, although the total lipids

remained as elevated as in nontreated HFD rats.

HFD-fed rats were normoglucemic (results not shown) but

presented hypertriglyceridemia and hypercholesterolemia

and increased HDL-C and LDL-C (Table 2). Moreover, the

HDL-C/LDL-C ratio, calculated to evaluate the atherosclero-

sis risk, was reduced in HFD-fed rats, which indicated a

greater risk of atherosclerosis.

Treatment with GSPE reversed the dyslipidemia induced

by the HFD. The plasma levels of TG and LDL-C decreased to

the same values observed in the control group of normo-

lipidemic rats (Table 2). Consequently, the atherogenic risk

index HDL-C/ LDL-C improved in GSPE-treated animals.

Additionally, FFA levels, which were not affected by the HFD,

were significantly reduced by GSPE treatment (Table 2).

Plasma TC and HDL-C, however, were only slightly reduced

(Table 2).

GSPE treatment counteracts hepatic overexpression of SREBP1,
MTP and DGAT2 induced by a high-fat diet

The liver governs the homeostasis of circulating lipids and

lipoproteins. Thus, we used reverse transcription–PCR to

analyze the differential expression of key genes controlling

TG and cholesterol metabolism in the liver (Table 3) and gain

further insight into how GSPE improves the plasma lipid

profile. We have chosen genes that encode key proteins in

cholesterol pathways (LDL-receptor, CYP7A1 and HMG-CoA

reductase), in fatty acid oxidation (CPT1-a), in TG synthesis

(DGAT2) and in VLDL assembling (apoB and MTP). We have

also selected two nuclear receptors, namely FXR and SHP,

and the transcription factor SREBP1 because they govern the

expression of key lipid metabolism genes in the liver and are

involved in the molecular mechanism used by GSPE in

the liver.

The liver of HFD rats showed a significant repression

of SHP and CPT1-a in concert with a significant over-

expression of DGAT2 when compared to the control group.

SREBP1 and MTP also showed a slight overexpression. This

expression profile in the liver of HFD rats suggests active TG

synthesis and VLDL assembling as well as impaired fatty

acid oxidation, which is consistent with the fatty liver,

Table 1 Body weight and liver lipids of rats fed with a standard diet or high-

fat diet, either with or without proanthocyanidin treatment

Control group HFD group HFD-GSPE group

Body weight (g) 282±9.0 392±27* 380±21*

Liver weight (g) 8.99±0.23 11.73±0.88* 10.85±0.64

Liver lipids (mg g�1 liver) 48.7±5.5 60.9±5.87 60.3±0.6

Liver cholesterol (mg g�1 liver) 2.24±0.15 3.66±0.51* 2.7±0.16

Liver triglyceride (mg g�1 liver) 4.53±0.48 7.25±1.01* 6.55±0.55

Abbreviations: GSPE, grape seed proanthocyanidin extracts; HFD, high-fat

diet. Each value is the mean±s.e.m. of six rats. Rats were fed with a standard

chow diet (control group) or high-fat diet (standard chow plus cafeteria diet)

for 13 weeks. After 13 weeks, rats fed with a high-fat diet were orally treated

with 25 mg of grape seed procyanidin extract per kg body weight (HFD-GSPE

group) or vehicle (HFD group) for 10 days. * Indicates a significant difference

(Pp0.05) versus control group; ~ indicates that the t-test found a significant

difference between the HFD and HFD-GSPE groups.

Table 2 Plasma lipid levels of rats fed with a standard diet or high-fat diet,

either with or without proanthocyanidin treatment

Control

group

HFD

group

HFD-GSPE

group

Triglycerides (mg per 100 ml) 107.3±10.6 204.0±2.3* 129.4±12.3~

Total cholesterol (mg per 100 ml) 57.9±2.8 95.9±5.7* 83.5±4.5*

HDL cholesterol (mg per 100 ml) 35.6±7.9 60.6±4.1* 51.0±4.9

LDL cholesterol (mg per 100 ml) 3.5±0.1 15.2±2.0* 6.6±1.0~

HDL-C/LDL-C ratio 8.7±2.2 4.0±0.6 7.0±0.2

Total C/HDL-C ratio 1.4±0.03 1.6±0.15 1.7±0.11

Free fatty acids (mg per 100 ml) 20.5±2.1 22.9±2.0 14.3±1.1*,~

Abbreviations: GSPE, grape seed proanthocyanidin extracts; HFD, high-fat

diet. Experimental details and symbols as in Table 1.

Table 3 mRNA levels of lipid-related genes in the liver of rats fed with a

standard diet or a high-fat diet, either with or without proanthocyanidin

treatment

Control group HFD group HFD-GSPE group

FXR 1.05±0.16 0.89±0.13 1.38±0.24

SHP 1.13±0.20 0.29±0.10* 0.46±0.13*

SREBP1 0.98±0.07 1.54±0.42 0.58±0.11~

ApoB 1.43±0.32 1.62±0.53 1.48±0.36

MTP 1.08±0.17 1.49±0.06 0.99±0.05~

CPT1-a 1.03±0.02 0.50±0.09* 0.50±0.09*

DGAT2 1.05±0.05 1.80±0.11* 1.19±0.10~

CYP7A1 1.19±0.29 2.63±0.63 1.55±0.40

HMG-CoA reductase 1.13±0.21 0.72±0.04 1.08±0.17

LDL receptor 0.91±0.16 1.05±0.38 0.75±0.17

Abbreviations: GSPE, grape seed proanthocyanidin extracts; HFD, high-fat

diet. The values are expressed as fold change, using PPIA expression as the

endogenous control. Experimental details and symbols as in Table 1.
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hypercholesterolemia and hypertriglyceridemia present in

these animals.

In contrast, the liver of HFD-fed rats treated with GSPE for

10 days showed a significant repression of SREBP1, MTP and

DGAT2 versus the HFD group. GSPE treatment also increased

SHP, although the expression was lower than that of the

control group. GSPE treatment did not affect the expression

of CPT1-a, which remained repressed as in the HFD group.

The changes induced by GSPE treatment in HFD-fed

rats strongly suggest that proanthocyanidins repress TG

synthesis and VLDL assembling, processes that are exacer-

bated by an HFD diet. We observed, however, that neither

GSPE nor HFD affected the expression of the genes involved

in cholesterol metabolism, which suggests that the effects of

both the HFD diet and GSPE on plasma cholesterol are not

linked to changes in hepatic gene expression.

Given that plasma TG levels heavily depend on extra-

hepatic uptake, we quantified lipoprotein lipase (LPL) and

CPT1 expression in adipose tissue and muscle (results not

shown). Neither an HFD diet nor GSPE treatment induced

any significant change in the mRNA levels of the enzymes

controlling the uptake of TG and fatty acid oxidation.

Discussion

Metabolic syndrome and obesity are associated with an

increased risk of CVD, in part, due to their association

with atherogenic dyslipidemia.20 Overproduction of VLDL

and hypertriglyceridemia are the basis of atherogenic

dyslipidemia,4 so managing VLDL secretion and hypertri-

glyceridemia could be a good strategy for reducing the risk

of CVD associated with these pathologies. PA, a group of

flavonoids that can be found in common foodstuffs,8

actively reduce plasma TG and apoB in normolipidemic

rats,12 in hamsters fed a hypercholesterolemic diet10 and in

humans.11 In a previous study we showed that an acute dose

of GSPE decreases VLDL secretion by repressing MTP and

lipogenic genes in normolipidemic rats.12 This study, then,

intended to determine, first, the ability of PA to correct

atherogenic dyslipidemia associated with obesity and,

second, to gain insight into the mechanisms that underlie

the improvement of plasma TG levels, the effects of PA on

the lipid metabolism in liver and in extrahepatic tissues.

With this purpose, we chose a cafeteria diet as an HFD

model to induce obesity in rats. The cafeteria diet is a feeding

regime in which animals are offered a choice of several

palatable food items of varied composition, appearance and

texture in addition to their normal chow diet.21 This diet

induces obesity due to hyperphagia,21 and mimics human

behavior when the control system for food intake is

overwhelmed by psychological or social influences. Rats

fed with this diet for 15 weeks showed obesity, hypertri-

glyceridemia, hypercholesterolemia, elevated plasma LDL-C

and fatty liver. Ten days of oral intake of GSPE normalized

plasma TG and LDL-C. Therefore, the reduction in TG levels

and LDL-C, in association with the increased HDL-C/LDL-C

ratio, determined an improvement in the atherosclerotic

risk after GSPE intake. However, GSPE did not correct

obesity, and only slightly reduced hypercholesterolemia and

fatty liver.

In a cafeteria diet approach, it is very difficult to exactly

quantify the ingestion of each food, so we cannot be sure

that GSPE treatment changed the food pattern. However,

although GSPE treatment can induce changes in food

preferences, which can indirectly lead to a plasma lipid

reduction, a direct effect of GSPE could not be discounted

because in previous studies we found a considerable reduc-

tion in plasma TGs and LDL-C in other experimental models

that consumed no food after GSPE treatment. In this study

with female hyperlipidemic rats, the effects of chronic GSPE

treatment on plasma lipids are similar to those observed in a

previous study on the effects of acute GSPE treatment with

male normolipidemic rats.12 In this study, GSPE treatment

reduced plasma TG, TC and LDL-C levels by about 40, 13 and

40% with respect to animals fed the HFD, respectively. In the

previous study, GSPE treatment reduced plasma TG, TC and

LDL-C levels by about 50, 12 and 43% with respect to the

untreated animals, respectively. GSPE, then, is also a power-

ful agent for reducing plasma TG and LDL-C in dyslipidemia

associated to HFD. GSPE treatment was also effective in both

male and female rats, so it seems that sex does not affect

GSPE efficiency on plasma lipids.

The liver gene expression of rats fed an HFD indicated

active lipogenesis and impaired fatty acid oxidation together

with increased assembling of VLDL, which points to the liver

as an important contributor to HFD-induced atherogenic

dyslipidemia. Oral GSPE treatment repressed SREBP1, DGAT2

and MTP. These three proteins are key regulators of VLDL

synthesis and secretion. SREBP1 activates the expression

of several genes involved in FFA and TG synthesis, as well

as other components of the regulatory machinery of lipid

metabolism. Although it can be regulated at different levels,

its transcriptional repression has been linked to lower FFA

and TG synthesis and release from the liver, leading to

hypolipidemic states.22 Therefore, the repressive effects of

GSPE on SREBP1 may account for the lower plasma levels of

TG. Together with SREBP1, DGAT2 is a key enzyme in the

FFA reesterification process that delivers TG to the nascent

VLDL.23 As the availability of lipids is a key factor that drives

the synthesis and secretion of VLDL,23 the repression of

DGAT-2 and SREBP1 suggests that lipoprotein release may be

blocked at the primary level, that is, fewer lipids are available

for lipoprotein assembly. The repression of MTP also suggests

a decreased assembly of VLDL, because MTP is responsible

for the association of apoB with lipids and the intracellular

trafficking of the newly synthesized VLDL. Altogether, the

repression of MTP, SREBP1 and DGAT2 by GSPE suggests a

VLDL synthesis blockage at two different levels: first, lipid

availability is decreased and then lipoprotein assembly.

Moreover, GSPE did not modify the expression of the LDL-

receptor, indicating that the decrease in LDL-C by GSPE was
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not due to an increased uptake of LDL by the liver.

Altogether, these results strongly suggest that GSPE

improved dyslipidemia in HFD rats by reducing VLDL

secretion, which, in turn, led to lower levels of TG and lower

LDL production.

In contrast, GSPE did not increase CPT1-a expression,

suggesting that PA did not normalize FFA oxidation in liver.

Nevertheless, increased FFA oxidation by GSPE cannot be

ruled out because CPT1-a activity is tightly regulated by its

physiological inhibitor malonyl-CoA, which physiologically

regulates b-oxidation depending on the availability of fatty

acids and glucose.24 SREBP1 activates the expression of

acetyl-CoA synthetase, the synthesizing enzyme of malonyl-

CoA,25 so repression of SREBP1 by GSPE could result in a

lower concentration of malonyl-CoA in hepatocytes and,

therefore, a lower repression of CPT-1a. For this reason, the

effect of GSPE on FFA oxidation still requires further study.

SHP is a nuclear receptor that acts as an inducible repressor

of other nuclear receptors and transcription factors. With

this mechanism, it controls lipogenesis and cholesterol

metabolism in liver.26 Thus, the low levels of SHP expression

in HFD-fed rats could be behind the exacerbated expression

of SREBP1, which, in turn, induces overexpression of

lipogenic genes, fatty liver and hypertriglyceridemia.25 In a

previous study we showed that GSPE uses an SHP-dependent

molecular mechanism to reduce TG secretion in HepG2,15 so

the slight increase in SHP expression induced by GSPE could

be sufficient to reduce TG secretion, but not enough to

counteract fatty liver.

To assess whether lipoprotein uptake and metabolization

can account for the hypolipidemic effects of GSPE, LPL

expression was analyzed in both muscle and adipose tissue.

HFD and GSPE were found to have no effect, suggesting that

uptake of TG by these tissues does not affect TG levels in

plasma as much as the production of TG by the liver.

Although GSPE affects the target genes of lipid metabolism

in the liver of HFD rats in almost the same way as it does in

normolipidemic rats,12 there are some differences, mainly in

MTP and CYP7A1 expression. MTP expression is not

modified by GSPE in normolipidemic rats but it is strongly

repressed in HFD rats. On the other hand, CYP7A1 expres-

sion is increased by GSPE in normolipidemic rats but it is

not affected in HFD rats. These differences can be explained

in a variety of ways. In normolipidemic rats GSPE was

administered acutely whereas in the present experiment

it was administered chronically. The effects of acute

administration may be a little different from the effects of

chronic administration, where the organism is better

adapted to receiving GSPE. Moreover, the metabolic stress

induced by the HFD, which exacerbates VLDL assembly,

hyperlipidemia and fatty liver, may modify the response

to GSPE.

In conclusion, oral intake of GSPE improves dyslipidemia

induced by HFD in rats, mainly by repressing lipogenesis

and VLDL assembly in the liver, which are overexpressed

as a result of the HFD. Therefore, increasing the intake of

PA-rich foods can be a strategy for counteracting athero-

genic dyslipidemia associated with obesity and metabolic

syndrome.
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Several authors have reported the PAs hypotriglyceridemic effects on humans and 

animals (review in [1]).  Plasma TG levels are the result of the balance between the 

TRL secretion by the intestine and the liver and their uptake by the extrahepatic tissues 

through the LPL. Therefore, PA may reduce plasma TG levels by acting on the 

intestine, the liver and/or the peripheral tissues. However, the precise participation of 

each organ remains unknown. Besides, the liver presides over the metabolism and 

homeostasis of plasma lipids, becoming, as a consequence, a target for the study of PAs 

actions [2]. Thus, many studies have been addressed to reveal the mechanism by which 

polyphenolic compounds could modulate lipid and lipoprotein metabolism in the liver 

[3-5]. Nevertheless, little is known about the real contribution of CM and VLDL 

secretion and LPL activity to the hypotriglyceridemic action of PA. 

On the other hand, diet composition is known to influence energy intake and body-

weight changes on rats and humans [6]. For weight maintenance, not only energy intake 

does have to match energy expenditure, but also macronutrient intake must balance 

macronutrient oxidation [7]. It is suggested that macronutrients imbalance may not only 

be responsible for the increase of obesity prevalence in the population, but also for the 

appearance of a plethora of diseases such as atherosclerosis, non insulin-dependent 

diabetes, breast and colon cancers [8]. Therefore, a high saturated-fat and refined-

carbohydrated diet leads to contract hyperlipidemia and hypercholesterolemia, and 

increases the risk of suffering from cardiovascular diseases (CVD) [9] by raising TG 

and lowering high density lipoprotein-cholesterol (HDL-C) levels [10]. Thus, it would 

be interesting to study the proanthocyanidins hypolipidemic effect on altered metabolic 

states. For this reason, the aim of this Ph.D. Thesis were i) to assess the contribution of 

the liver and the intestine in the hypolipidemic response triggered by proanthocyanidins 

and ii) to evaluate the short-term effect of an oral intake proanthocyanidins in 

dyslipidemic nutritional models. For these purposes, three experimental models have 

been used: Rats, mice and human colonic adenocarcinoma Caco2 cells. In these models, 

the bioactivity of Grape Seed Proanthocyanidins Extract (GSPE) together with the 

involved molecular mechanisms have been studied by using acute chronic and no-toxic 

doses. 
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Liver and intestine’s contribution to the hypolipidemic response triggered by 

proanthocyanidins 

In order to find out the role of the liver and the intestine in the hypotriglyceridemia 

induced by GSPE, we carried out a fat tolerance test on rats. A single oral 

administration of lard plus GSPE significantly blocked the increase of plasma total TG 

induced only by the lard at all the studied times mark. In our study, the reduction of 

plasma TG was similar to the reductions observed in male normolipidemic rats [11] and 

mice [4,5] after providing an acute GSPE treatment. As a consequence, PA-rich 

foodstuffs may reduce the hypertriglyceridemia associated with the postprandial state 

and, therefore, improve the tolerance to dietary lipids. Both CM-TG and VLDL-TG 

contributed to the hypotriglyceridemic action of GSPE but their influence depended on 

time. CM was the major contributor after 3 hours of administrating the treatment, 

whereas VLDL became important at 1 and 7 hours mark. Plasma CM-TG and VLDL-

TG levels are the result of the balance between their secretion by the intestine and the 

liver and their uptake by extrahepatic tissues through the LPL. Therefore, PA may 

reduce plasma TG levels by acting on the intestine, the liver and/or the peripheral 

tissues. Post-heparin LPL activity in plasma and LPL gene expression in muscles and 

the adipose tissue were not affected by GSPE, indicating that PAs did not increase TG 

clearance by extra-hepatic tissues. Therefore, the reduction of CM-TG and VLDL-TG 

by GSPE could be ascribed to a repressed lipoprotein secretion by the intestine and the 

liver. It is generally assumed that CM predominantly transports exogenously ingested 

TG derived from dietary sources, whereas VLDL transports endogenously synthesised 

lipids [12]. PAs, then, repress the secretion of both endogenous synthesised TG and TG 

absorbed from the diet. Next, we studied the effects of GSPE on the secretion of TG by 

the liver and the intestine. In previous studies, we have described that GSPE represses 

TG in an HepG2 in vitro model. As for our study, we have analised the effect of GSPE 

in vivo and we have observed that the TG secretion associated with VLDL was 

repressed a 30% by the GSPE treatment. Thus, the repression of VLDL secretion is an 

important contributor to the hypotriglyceridemic effect of PAs. The liver is the main 

organ secreting VLDL [13,14]. Consequently, the liver is a significant target for GSPE 

as for the hypotriglyceridemia induced by PAs in vivo in the postprandial state. 

PAs effect in the intestine has been studied to a lesser extent than in the liver. Therefore, 

in order to assess the implication of intestine in the hypotriglyceridemic effect of PAs, 
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we have used the human colonic adenocarcinoma Caco2 cells since these form a 

simpler model than an in vivo one [15]. The intestine secretes TG in both the fasting and 

the fed states [15]. Since growing Caco2 cells in cell culture transwells, we have 

emulated the post-prandial state by supplementing the apical medium with OA, MAG 

and TC, and the fasted state by supplementing the basolateral medium with OA. The 

results of this study showed that the supplementation of GSPE on the apical side 

repressed TG secretion in Caco2 cells more efficiently in the fasted state than in the 

postprandial state, where doses of GSPE up to 100 mg/dL did not repress TG secretion. 

These results diverged from those obtained in vivo, where the reduction of CM-TG 

significantly contributed to the hypotriglyceridemia induced by GSPE at 3 hours mark. 

Nevertheless, other authors have described a repression of TG secretion in Caco2 cells 

when high concentrations of apple PAs are used (equal or higher to 200 mg/dL) [16].  

Thus, the enterocytes need to be treated with high PAs concentrations to attain the 

hypotriglyceridemic effect showed in vivo.  

At the light of the results, PAs repressed TG secretion in the liver and the intestine by 

different molecular mechanisms: In vivo, GSPE treatment induced different effects to 

those induced only by the lard oil on the expression of ACSL1 and CPT1a at an hour 

mark and Cd36 at five hours mark. On the contrary, neither these genes nor other genes 

related to FA, TG and CM assembly were modified in the intestinal mucosa 1 or 5 hours 

after the GSPE administration. 

Our results suggest that lipid unavailability is the cause of reduced VLDL-TG secretion 

by the liver in vivo. 

As we did not identify any different change in the gene expression induced by GSPE in 

the intestinal mucosa in vivo, we studied the expression of genes related to TG 

metabolism in Caco2 cells in depth. It has been described that enterocytes synthesise 

TG by two different pathways: The monoacylglycerol (MAG) pathway and the 

glycerol-3-phosphate (G-3-P) pathway [15,17]. The MAG pathway would predominate 

during the postprandial period, while the G-3-P is the main pathway during the 

interprandial and the fasted periods [17]. Oleate entering from the apical membrane is 

preferentially shunted towards the MAG pathway to form TG whereas oleate entering 

from the basolateral membrane comes from the circulation is shunted towards G-3-P 

acylation pathway. The required enzyme to activate FA prior to its incorporation into 

MAG or G-3-P is one of the five members of the acyl-CoA synthetase long chain family 
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(ACSL) [17]. Of these ACSLs, only ACSL3 and 5 are significantly expressed in the 

intestine [17]. In this proposed scenario, oleate-CoA delivered by ACSL5 would be 

directed towards the MAG pathway and by the ACSL3 towards the G-3-P pathway 

[17]. Our results have showed that GSPE treatment repressed ACSL5 and 

overexpressed CPT-1a in the post-prandial state, significantly (Figure 5). Nevertheless, 

GSPE treatment repressed ACSL5, ACSL3, I-FABP and PPARalpha in the fasted state, 

significantly (Figure 6).  

Thus, at the light of the results, it can be suggested that GSPE repress only the supply of 

FA towards the MAG pathway (Figure 5) within the post-prandial state (ACSL5) 

whereas it represses FA delivered towards both pathways within the fasted state 

(ACSL5 and ACSL3) (Figure 6). Therefore, GSPE could be more effective reducing 

TG secretion during the fasted than the post-prandial state. 

                                             

                                                                                                                                                                              

Figure 5. Proposed pathway used by proanthocynidins to repress the suply of FA 

into the enterocytes. 
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Figure 6. Proposed pathway used by proanthocynidins to repress the suply of FA 

into the enterocytes. 
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a high-fat diet. In the first case, we used a high-carbohydrated and high-fat diet because 

it has been shown that it is good to induce a metabolic syndrome model on rats [18]. As 

for the second case, we chose a cafeteria diet as a high fat diet (HFD) model to induce 

obesity on rats. 

Short-term treatment with GSPE did not correct the excess of body weight induced by  

the cafeteria diet in rats. In the same way, short-term treatment with GSPE did not 

counteract the wheight gain induced by the high-carbohydrated and high-fat diet in 

mice, even though induced a low increase in body fat deposition. GSPE tended to 

increase energy retention in mice at the second week mark, whereas it decreased energy 

retention at the fourth week mark. GSPE modified energy retention by changing energy 

intake but not energy lost in feces. These results indicate that PAs have a bimodal effect 

on energy intake, increasing it at early-term and decreasing it thereafter. Thus, PAs 

initially exacerbated the effect of high-fat diet by further increasing energy intake and 

decreasing palmitate oxidation. Therefore, it can be suggested that PA-rich foodstuffs 

must be consumed habitually and at long-term in order to be effective on improving the 

excess of body weight associated to metabolic syndrome. 

By contrast to the effects of GSPE on body weight and fat deposition, the oral intake of 

GSPE improved plasma TG levels at short-term in both models. Thus, it can be 

suggested that PAs modify lipid metabolism and ameliorate plasma lipid profiles earlier 

than body weight.  

In order to gain insights on the molecular mechanisms related to the 

hypotriglyceridemic action of GSPE in the metabolic syndrome, we have studied the 

different expressions of key genes that control TG and cholesterol metabolism in the 

liver of dyslipidemic rats. The oral GSPE treatment repressed SREBP-1, DGAT-2 and 

MTP. These three proteins are key regulators of VLDL synthesis and secretion. 

SREBP-1 activates the expression of several genes involved in FA and TG synthesis, as 

well as other components of the regulatory machinery of lipid metabolism. Although it 

can be regulated at different levels, its transcriptional repression has been linked to 

lower FA and TG synthesis and release from the liver, leading to hypolipidemic states 

[19]. Together with SREBP-1, DGAT-2 is a key enzyme in the FFA reesterification 

process that delivers TG to the nascent VLDL [20], the repression of DGAT-2 and 

SREBP-1, which means that there are fewer lipids available for lipoprotein assembly. 

The repression of MTP also suggests a decrease of the VLDL assembly because MTP is 
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responsible for the association of apoB with lipids and the intracellular trafficking of the 

newly synthesized VLDL. Altogether, the repression of MTP, SREBP1 and DGAT2 by 

GSPE suggests a VLDL synthesis blockage at two different levels: On the one hand, the 

decrease of lipid availability and, on the other hand, the reduction of the lipoprotein 

assembly. In contrast, GSPE did not increase CPT1-a expression, suggesting that PA did 

not normalise FFA oxidation in the liver. 

 

In conclusion, GSPE exerts lipid-lowering effects in three different models in different 

feeding states: Rats, mice and Caco2 cells. Therefore, proanthocyanidins are powerful 

agents to prevent and treat altered lipid metabolic states. 
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1) In a fat tolerance test, both CM and VLDL contribute to the 

hypotriglyceridemic action of proanthocyanidins but their influence depends on 

time. 

CM was the major contributor after 3 hours of the administration of lard oil plus 

proanthocyanidins, whereas VLDL was important after 1 and 7 hours after that 

administration. As GSPE did not increase TG clearance by extra-hepatic tissues, the 

reduction of CM-TG and VLDL-TG by GSPE could be ascribed to a repressed 

lipoprotein secretion. Proanthocyanidins, then, repress the secretion of both endogenous 

synthesised TG and TG absorbed from the diet. 

 

2) Proanthocyanidins repress significantly VLDL-TG secretion in vivo. 

As the liver is the main organ secreting VLDL, it can be suggested that the liver is a 

significant target for proanthocynidins in the postprandial state. Lipid unavailability for 

TG synthesis is the main cause of reduced VLDL-TG secretion by the liver, shortly 

after GSPE administration by increasing oxidation of FA in liver and thereafter as a 

result of reduced free fatty acids in plasma. 

 

3) Proanthocyanidins repress TG secretion by enterocyte depending on the feeding 

state in vitro. 

The intestine secretes TG in both fasting and fed state. In Caco2 culture cells, emulating 

the post-prandial state and the fasted state, GSPE are more effective to repress the TG 

secretion in a fasted state. This fact strongly suggests that, in vitro, the feeding state is 

important in order that proanthocyanidins could perform their beneficial effects in the 

intestine.   

 

4) Long Chain Acyl-CoA Synthetase is a target of proanthocyanidins in intestinal 

cells. 

Despite there is not experimental evidence of the ACSL5 and ACSL3 roles in intestine, 

it has been postulated that FA delivered by ACSL5 would be directed towards the MAG 

pathway and by ACSL3 towards the G-3-P pathway. In Caco2 culture cells, GSPE 
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repress ACSL5 in the post-prandial state and ACSL5 and ACSL3 in the fasted state. 

Thus, it can be suggest that proanthocyanidins represses only the supply of FA towards 

the MAG pathway in the post-prandial state (ACSL5) whereas represses FA delivered 

towards both pathways in fasted state (ACSL5 and ACSL3). 

 

5) Short-term treatment with GSPE neither corrected the excess of body weight 

induced by a cafeteria diet in rats nor counteracted the weight gain induced by a 

high-carbohydrate high-fat diet in mice.  

Therefore, it can be suggested that proanthocyanidins must be consumed habitually and 

at long-term in order to be effective improving the excess of body weight associated to 

metabolic syndrome 

 

6) Proanthocyanidins have a bimodal effect on energy retention in mice fed with 

high-carbohydrate high-fat diet. 

GSPE tended to increase energy retention in mice at the second week, whereas 

decreased energy retention at week fourth. GSPE modified energy retention by 

changing energy intake. Thus, proanthocyanidins initially exacerbate the effect of high-

fat diet by further increasing energy intake and decreasing palmitate oxidation.. 

 

7) Short-term treatment with GSPE correct dyslipidemia associated with a high-

fat diet in rats. 

Ten days of oral intake of GSPE normalise the plasma TG and LDL-cholesterol in 

dyslipidemic rats. Furthermore, GSPE repress the expression of genes related to the 

VLDL synthesis and secretion. Thus, increasing the intake of proanthocyanidins can be 

a strategy for counteracting atherogenic dyslipidemia associated with obesity and 

metabolic syndrome. 
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