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Recherche en Informatique de Saint-Étienne” (EURISE) of the University
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Chapter 1

Motivation and Structure

1.1. Context and motivation

Natural language learning constitutes one of the most typical human abilities,

and despite research efforts in this domain, human learning mechanisms are

poorly understood.

Several questions arise from the beginning, among others: how complex

are natural languages? The properties of natural language could give us an

answer to that question.

Natural languages, for example Spanish or English, have a great expressive

power. The number of sentences that we can construct with a natural lan-

guage is infinite, but the set of words that we use to construct those sentences

is finite. However, not all the combinations of words are allowed; word com-

binations must be correct (with respect to the syntax) and have sense (with

respect to the semantics).

The set of syntactically and semantically correct sentences is indeterminate,

a priori. We cannot define beforehand all the set of possible constructions

of a natural language. One of the main reasons for this is the ambiguity of

natural languages.
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4 CHAPTER 1

There are different types of ambiguities. One such types is semantic am-

biguity. Any given word may have several different meanings, e.g., banco in

Spanish means “asiento” (seat) or “entidad financiera” (bank). We have to

select the meaning which makes the most sense in context. Also, the same

syntactic structure can have different meanings, e.g, Todos los estudiantes de

la escuela hablan dos lenguas (all the students of the school can speak two

languages) could means that each student can speak two languages, or that

only two certain languages are spoken.

The ambiguity can also be syntactic. The same sentence can have multi-

ple possible parse trees (more than one associated syntactic structure). For

example, in the sentence Juan vio a un hombre con el telescopio (Juan saw a

man with a telescope), who is with the telescope, the man or Juan?. Choos-

ing the most appropriate meaning usually requires semantic and contextual

information.

This is only a small demonstration of the complexity of natural languages.

Despite the complexity of natural languages, how are children able to learn

language so fluently and effortlessly, without explicit instruction?

A child growing up in a linguistic community acquires the language spoken

by the community from samples of speech presented to her. There are several

remarkable facts in the process of children’s language acquisition:

• Children learn language easily. The ease with which children learn lan-

guage belies the underlying complexity of the task.

• Children are capable of learning any natural language given adequate

input. A child with an English environment will learn to speak Eng-

lish; the same child with a Japanese environment would learn to speak

Japanese.

• Children learn one or more of the languages that they are exposed to,

without actively deciding whether they want to learn the language.
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• Children acquire their native language on the basis of exposure to limited

data, without any specific training and in a short amount of time.

Therefore, children acquire their native language efficiently and success-

fully. Nevertheless, other cognitive tasks that are less complex than language

acquisition are harder for them.

About two years after conception, or a year after birth, children

will say their first words. The skill and the swiftness with which chil-

dren learn to speak have always fascinated adults, who sometimes

forget to marvel at the mystery of it all. Even so, what a prodigy the

child is. Producing words, combining them into original sentences,

understanding other people’s words: these are much more remark-

able feats than those that children accomplish much later and with

greater difficulty. The fact that the sum of two and two is four seems

a simple notion. Nonetheless, it becomes consciously accessible to

children only well after they have uttered hundreds of distinct sen-

tences. Before knowing how to coordinate their hands to catch a ball,

children will have understood almost all the sentences that adults ad-

dress to them, and they will have virtually mastered their language

before knowing how to tie their shoelaces.[de Boysson-Bardies, 1999,

p. 5].

Linguists, in spite of all research efforts, do not understand all the rules,

strategies, and other processes that underlie children’s language acquisition.

Several linguistic theories of language acquisition have been proposed in the

last century, but there is not a single accepted theory. In Chapter 2 we explain

the main ideas of the most representative theories.

Why is there this contradiction between the facility with which children

acquire language (known as Plato’s problem) and the difficulty to explain it

(known as Orwell’s problem)?
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The publication of Syntactic Structures by N. Chomsky in 1957 inaugurated

the use of a mathematical model in the study of natural language. This new

methodology radically changed the way linguists study natural languages.

Formal languages are behind the first model of Chomsky. Formal languages

are symbolic systems used primarily in mathematics and computer science.

The process of generation and development of formal languages is inverse to

natural languages. Whereas the origin and development of natural languages

is natural, namely, without the control of any theory (theories of natural lan-

guages were established a posteriori, after the language had already matured),

formal languages were developed through the establishment of a theory that

gives the basis for these languages.

Words in formal languages are precisely defined. The meaning of symbols is

determined exclusively by the syntax, without any reference to the semantics.

Only the operators and relations (such as equality, pertinence, etc.) have

special meanings.

A fundamental property of formal languages is the finiteness of their al-

phabet and of their generative rules.

Moreover, in opposition to natural languages, formal languages specifica-

tions are easier to translate to computer languages. In Chapter 2 we present

the basic notions of formal language theory.

Access to an abstract conception of a language can provide a better com-

prehension of its structure. In this manner, formal languages became an

important tool in the study of natural languages.

Language acquisition is now studied in a variety of fields, including linguis-

tics, psychology, and, computer science.

One of the main topics in cognitive science, epistemology, lin-

guistic and psycholinguistic theory as well as of machine learning
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and algorithmic learning theory is language acquisition. The hu-

man ability to acquire their mother tongue as well as other lan-

guages has attracted a huge amount of interest in all these scien-

tific disciplines. In particular, the main goal of the research un-

dertaken is to gain a better understanding of what learning really

is.[Lange and Zeugmann, 1996, p. 89].

Linguists distinguish between language acquisition and language learning,

but there is not such distinction in computer science, which focuses only

on language learning. For linguists, language acquisition refers to first lan-

guage(s) learning (by children); it is as a subconscious process in which lan-

guage acquirers are not consciously aware of the grammatical rules of the lan-

guage. Language learning refers to second language(s) learning (by adults);

conscious process, knowing the rules, being aware of them, and being able

to talk about them. Since second language learning is a process very similar

to other human learning processes, we consider that acquisition of first lan-

guages is of much more interest, because the underlying mechanisms are still

not well understood. For this reason, this dissertation focuses on the problem

of language acquisition.

The desire to better understand the process of natural language acquisition

motivated research in formal models of language learning. By studying formal

models of language acquisition, several key questions on natural language

learning can be answered. Moreover, these formal models could provide an

operational framework for the numerous practical applications of language

learning (e.g., language learning by machines).

The issues and practical difficulties associated with formal lan-

guage learning models can provide useful insights for the develop-

ment of language understanding systems. Several key questions

in natural language learning such as the role of prior knowledge,
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the types of input available to the learner, and the impact of se-

mantic information on learning the syntax of a language can pos-

sibly be answered by studying formal models of language acquisi-

tion.[Parekh and Honavar, 2000, p. 728].

The field of Machine Learning has a specialized subfield that deals with the

learning of formal languages. This field is known as Grammatical Inference

or grammar induction. It refers to the process of learning grammars and

languages from data.

The problem of grammatical inference is roughly to infer (dis-

cover) a grammar that generates a given set of sample sentences

in some manner that is supposed to be realized by some algorithmic

device, usually called inference algorithm. [Yokomori, 2004] p. 507

The initial theoretical foundations of Grammatical Inference were given

by M.E. Gold [Gold, 1967], who was primarily motivated by the problem of

first language acquisition. A remarkable amount of research has been done

since his seminal work to establish a theory of Grammatical Inference, to find

effective and efficient methods for inferring grammars, and to apply those

methods to practical problems (e.g., Natural Language Processing, Compu-

tational Biology).

As T. Yokomori stated:

Therefore, grammatical inference can be taken as one of the

typical formulations for a broader word “learning”, and provides

a good theoretical framework for investigating a learning process

[Yokomori, 2004, p. 507].

Grammatical Inference has been investigated within many research fields,

including machine learning, computational learning theory, pattern recogni-

tion, computational linguistics, neural networks, formal language theory, and
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many others. Excellent surveys on the field of Grammatical Inference can be

found in [Miclet, 1986], [Sakakibara, 1997], and [Yokomori, 2004].

Based on all these ideas, with this dissertation, we will try to bring together

the Theory of the Grammatical Inference and Studies of language acquisition,

in pursuit of our final goal: to go deeper in the understanding of the process

of language acquisition by using the theory of inference of formal grammars.

This work is highly interdisciplinary, drawing from computer science, lin-

guistics and cognitive science. Such interdisciplinary research might help close

the

undesirable gap between the communities of linguists and com-

puter scientists, more specifically the communities of computational

linguists and formal language theoreticians [Mart́ın-Vide, 1996, p.

462].

By its nature, the study of language learning is interdisciplinary. Efforts

of researchers from different areas could help to decipher the mystery of the

language.

Language learning is considered by many to be one of the central

problems of linguistics and, more generally, cognitive science. Yet,

the very same interdisciplinary nature that makes this field of study

so interesting, makes it somehow difficult for researchers to reach a

thorough understanding of the issues at play. This follows from the

fact that research in the field by necessity has to draw on techniques

and results that come from traditionally disparate fields such as lin-

guistics, psychology and computer science. [Bertolo, 2001, Preface].

As S. Bertolo states, applications of formal learning theory to the problem

of human language learning can be described as an exercise in which linguists,

psychologists and learnability researchers cooperatively construct a theory of
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human language learning. He compares the interaction among these three

parties with the interaction between a patron, an architect and a structural

engineer that want to design a museum together:

(...) the architect would start by designing very bold and in-

novative plans for the museum; the engineer would remind him or

her, calculator in hand, that some of those designs would be physi-

cally impossible to build and the patron would visit every so often to

make sure that the plans the engineer and the architect have agreed

upon would result in a museum that could be built within budget

and according to a specified construction schedule. In our case, lin-

guists would correspond to the architect: based on their study of

human languages or on more speculative reasons, they specify what

they take the possible range of variation among human languages

to be. Psychologists would correspond to the patron: they collect

experimental data to show that it is not just that humans learn the

language(s) of the linguistic community in which they are brought

up, but that they do so according to a typical time schedule and

relying on linguistic data of a certain, restricted, kind. Finally,

learnability researchers correspond to the engineer: some theories

of language variation they would be able to rule out directly, by

showing that no conceivable mechanism could single out a correct

hypothesis from such a large and dense range of choice; some other

theories they would pronounce tenable, but only under certain as-

sumptions on the resources available for learning, assumptions that

need to be empirically validated by work in developmental psycholin-

guistics.[Bertolo, 2001, p. 1].

Since our background is primarily in linguistics, we intend to enrich Gram-

matical Inference studies with our ideas from this field.
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1.2. Structure of the dissertation

This dissertation is organized into four parts and one Appendix.

• Part I includes this chapter and Chapter 2, in which we provide lin-

guistic and formal language prerequisites needed to understand some

concepts and formalizations presented throughout the dissertation.

• Part II and Part III are directly connected. This parts are explained

in the sequel.

• Part IV presents conclusions that follows from precedents parts and

some directions for future work.

• Appendix offers comparative tables for the results presented in Chapter

8 and also the automata that we used for tests.

A Grammatical Inference problem can be specified by providing the follow-

ing items:

• The class of languages or grammars: what class of languages or

grammars is to be learned.

• Learning Setting: what kind of data is used in the learning process,

and how these data are provided to the learner.

• The criteria for a successful inference: under what conditions we

say that a learner has been successful in the language learning task.

Part II presents the state-of-the-art of each item.

Regarding the first item, the main focus of research in Grammatical In-

ference deals with regular and context-free grammars. However, these are

mechanisms with a limited representational power to describe some of the

aspects of natural language constructions. Context-sensitive grammars are



12 CHAPTER 1

able to model many aspects of natural language constructions, yet the com-

putational complexity is too high. Therefore, the Chomsky Hierarchy has

some limitations when we deal with natural language.

Motivated by linguistic ideas, in the 1980s, researchers introduced a class of

formal grammars called Mildly Context-Sensitive (MCS), situated halfway

between context-free and context-sensitive grammars. This non-standard

class has been considered to be appropriate to describe natural languages

due to the class’ properties (it includes non-context-free constructions that

are found in the syntax of natural language, and is computationally feasible).

There are well known mechanisms to fabricate MCS families (e.g., tree ad-

joining grammars ([Joshi and Schabes, 1997]), head grammars [Roach, 1987],

combinatory categorial grammars [Steedman, 1985], etc).

All these studies are based on the idea that the class of natural languages

is located in the Chomsky Hierarchy. However, as some authors pointed out

(for instance, see [Manaster-Ramer, 1999]), this assumption is not necessar-

ily true, as natural languages could occupy an orthogonal position in the

Chomsky Hierarchy. In this case, a new hierarchy would be needed.

Many-dimensional External Contextual grammars are a non-standard

mechanism that generate a class of languages occupying an orthogonal posi-

tion with respect the Chomsky Hierarchy. They constitute a MCS language

family.

A more general overview of all these ideas will be presented in Chapter 3.

Taking these ideas into account, we consider that the study of natural

language syntax from a formal point of view should be focused on a class

of languages that occupy an orthogonal position in the Chomsky Hierarchy,

and that this class is MCS. Unfortunately, most research on Grammatical

Inference is not based on a class of languages with such features.
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Three important formal models have been developed in the last four decades

within Computational Learning Theory: Gold’s model of identification in

the limit [Gold, 1967], the query learning model of Angluin [Angluin, 1987,

Angluin, 1988], and the PAC learning model of Valiant [Valiant, 1984]. All

these models have been thoroughly investigated in the field of Grammatical

Inference. We review them in Chapter 4, and present the state-of-the-art

aspects of the last two items that define a grammatical inference problem

(learning setting and criteria for a successful inference).

Each of these models is based on different learning settings and different

criteria for a successful inference. The following question arises: what model

is the most adequate one to study children’s language acquisition? We discuss

in the same chapter some linguistic aspects of these models. In that way, we

will try to find an answer to that question.

In Chapter 5 we present current results within the field of Grammatical

Inference. Based on some linguistic assumptions such that the availability

of positive data (sentences that are grammatically correct) in the process of

language learning and the usefulness of using queries in order to get additional

information in the learning process, we will focus on results concerning the

learnability of languages from only positive data and from queries.

After the presentation and discussion of classes of languages or grammars

that could be subject of study, models that are used in Grammatical Inference

and some results in that field, we present our contributions to each one of these

items. This overview will justify and motivate the novel ideas we introduce

in this dissertation.

Part III presents this dissertation’s contributions.

We propose the study of a new class of languages, called Simple External

Contextual (see Chapter 6). This class might contribute to improve our un-

derstanding of some aspects of natural language acquisition. From a linguistic
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point of view, studying this class is more interesting than to focus on classes

such as regular or context-free ones.

Another contribution is the application of the idea of correcting a child

during the learning process to the studies of Grammatical Inference, for in-

stance, to the query learning model. Since the type of queries that are used

in this model are very simple for real learning environments, we introduce

a new type of query called correction query , which involves a new way of

answering. We believe that correction queries might be more adequate than

standard queries in a real learning process (see Chapter 7).

Finally, we present our results regarding learnability of Simple External

Contextual from only positive data and learnability of Deterministic Finite

Automata (DFA) from correction queries (see Chapter 8).

The structure of this work is summarized in Figure 1.1.
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Figure 1.1: Structure of this dissertation
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Chapter 2

Prerequisites

2.1. Linguistic Prerequisites

How is it possible for children to acquire their native language

on the basis of casual exposure to limited data in a short amount of

time?

In the space of a few years, children learn the language they are exposed

to, without any explicit instruction. They only hear, not grammars rules, but

sentences of English (Spanish, French, Japanese, etc.). Therefore, the prob-

lem that children have to face is to figure out (unconsciously) the grammar

on the basis of some finite set of sentences. The problem of getting from these

limited data to the grammar is known as the projection problem.

A multitude of subsidiary debates have sprung up around this

central issue covering questions about critical periods - the ages at

which this can take place, the exact nature of the evidence avail-

able to the child, and the various phases of linguistic use through

which the infant child passes. In the opinion of many researchers,

explaining this ability is one of the most important challenges facing

linguists and cognitive scientists today.[Clark, 2004, p. 26].

17
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Despite all research efforts in this domain, there is not a clear answer to

that question. In the last century, two opposite philosophic tendencies arise:

nativism, which holds that language is a biological capability with which the

human being is born; and empiricism, which defends that the social environ-

ment is the unique factor in the development of language.

From both tendencies the contributions of the main theories of the acqui-

sition of language come off. We will deal with three of them:

• Behaviorism

• Innatism

• Evolutionary Psychology

2.1.1. Behaviorism

The American psychologist B.F. Skinner was mainly responsible for the de-

velopment of the behaviorist theory.

The behaviorism was based on a model of operant conditioning. Operant

conditioning is a behavior modification technique based on reinforcement and

punishment.

• Reinforcement. It is a consequence that causes a behavior to occur with

greater frequency. Two kinds of reinforcement: positive reinforcement,

which occurs when a behavior (response) is followed by a pleasant stimu-

lus that rewards it (e.g., rat press a lever and receive a food reward); neg-

ative reinforcement, which occurs when a behavior (response) is followed

by an unpleasant stimulus being removed (e.g., a loud noise continuously

sounding until the rat press the lever, then the noise ceases).

• Punishment. It is a consequence that causes a behavior to occur with

less frequency. Two possible kind of punishment: positive punishment,

which adds an aversive stimulus, such as introducing a shock or loud
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noise; negative punishment, which removes a pleasant stimulus, such as

taking away a child’s toy.

Skinner did not advocate the use of punishment, considering that punish-

ment was an ineffective way of controlling behavior. However, reinforcement,

both positive and negative (the latter of which is often confused with pun-

ishment), proves to be more effective in bringing about lasting changes in

behaviour.

Skinner used the model of operant conditioning to train animals and he

concludes that similar results could be obtained by applying it to children by

means of the process of stimulus-answer.

(...) the basic processes and relations which give verbal be-

havior its special characteristics are now fairly well understood ...

the results [of this experimental work] have been surprisingly free

of species restrictions. Recent work has shown that the methods

can be extended to human behavior without serious modification.

[Skinner, 1957, p. 3].

In [Skinner, 1957], he presents his ideas about language. For Skinner,

speech, along with other forms of communication, was simply a behavior.

Skinner argue that children acquire language by means of a process of adap-

tation to extern stimulus of correction and repetition of the adult, in different

situations of communication. That is, there is a process of imitation of the

children where later they associate certain words to situations, objects or ac-

tions. In that way, children learn some habits and answers, internalizing what

adult provide them in order to satisfy one necessity to a particular stimulus

(for instance, hunger, pain, etc.).

Children learn the vocabulary and the grammar by means of operant condi-

tioning. The adult reward, for example, constructions grammatically correct,

but disapprove the incorrect ones.
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Therefore, the main ideas of the Skinner’s model about the process of lan-

guage acquisition are:

• The acquisition of human language is not so different to another behav-

iors learned by other species.

• Children imitate the language of adults.

• Adults correct the errors of children, and children learn by means of

these errors.

For Skinner, the proper object of study is behavior itself, analyzed without

reference to mental structure. The influence of the environment plays an

important role in the behaviorism approach, as well as the idea that children

use the language to satisfy specific necessities that they have.

2.1.2. Innatism

N. Chomsky is considered the father of most nativist theories of language

acquisition. As we have seen, before Chomsky, learning language had widely

been considered a purely cultural phenomenon based on imitation. Chom-

sky brought greater attention to the innate capacity of children for learning

language.

Chomsky’s argument to explain natural language acquisition is based on the

idea that a newborn’s brain is already programmed to learn language. In the

same way that children develop the ability to walk (which is a genetic ability)

whether or not anybody tries to teach them to do so, children develop the

ability to talk. For this reason, many linguists believe that language ability

is genetic.

Chomsky compares the task of a linguist with a child that is acquiring a

language.
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The construction of a grammar of a language by a linguist is

in some respects analogous to the acquisition of a language by the

child. The linguist has a corpus of data; the child is presented with

unanalyzed data of language use. The linguist tries to formulate the

rules of the language; the child constructs a mental representation of

the grammar of the language. The linguist applies certain principles

and assumptions to select a grammar among the many possible can-

didates compatible with his data; the child must also select among

the grammars compatible with the data. [Chomsky, 1975, pag. 11].

Chomsky considers that language is a faculty – a knowledge that is in the

mind even when it is not used.

The study of human language is particularly interesting in this

regard. In the first place, it is a true species property an one central

to human thought and understanding. Furthermore, in the case of

language we can proceed rather far toward characterizing the sys-

tem of knowledge attained -knowledge of English, of Japanese, etc.-

and determining the evidence that was available to the child who

gained this knowledge; we also have a wide range of evidence avail-

able about the variety of attainable systems. We are thus in a good

position to ascertain the nature of the biological endowment that

constitutes the human “language faculty”, the innate component of

the mind/brain that yields knowledge of language when presented

with linguistic experience, that converts experience to a system of

knowledge. [Chomsky, 1986, p. xxvi].

According to Chomsky, language is innate in the biological make up of the

brain. Children learn through their natural ability to organize the laws of

language, but cannot fully utilize this talent without the presence of other

humans.



22 CHAPTER 2

Language learning is not really something that the child does;

it is something that happens to the child body grows and matures

in a predetermined way when provided with appropriate nutrition

and environment stimulation. This is not to say that the nature

of the environment is irrelevant. The environment determines the

way the parameters of universal grammar are set, yielding different

languages. [Chomsky, 1988, p. 134].

Chomsky claims that children are born with a hard-wired language acqui-

sition device (LAD) in their brains. They are born with the major principles

of language in place, but with many parameters to set. According to nativist

theory, when the young child is exposed to a language, their LAD makes it

possible for them to set the parameters and deduce the grammatical princi-

ples, because the principles are innate.

(...) language acquisition is interpreted as the process of fixing

the parameters of the initial state in one of the permissible ways. A

specific choice of parameter settings determines a language in the

technical sense that concerns us here: an I-language [...] where I is

understood to suggest “internal”, “individual”, and “intensional”.

[Chomsky, 1995, p. 6].

This innate knowledge is often referred to as Universal Grammar. Chomsky

defines the Universal Grammar as:

(...) principles and elements common to attainable human

languages.(...) UG [Universal Grammar] may be regarded as a

characterization of the genetically determined language faculty.

[Chomsky, 1986, p. 3]

Namely, human are born with a set of rules already built into them. These

rules allow human beings the ability to learn any language.
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The Principles and Parameters approach [Chomsky, 1981] make strong

claims regarding universal grammar. The central idea is that the syntactic

knowledge of a person can be modelled with two formal mechanisms:

• A finite set of fundamental principles that are common to all languages.

For example, a sentence must always have a subject, even if it is not

pronounced.

• A finite set of parameters that determine syntactic variability between

languages. For instance, the head parameter states that in universal

grammar the set of parameters describes the placement of the head

in phrase structure. In that way, English is a head-initial language,

meaning that the head of the phrase precedes the complement (e.g., the

head of the prepositional phrase in the house would be the preposition

in). Whereas Japanese is a head-final language whereby the head of the

phrase follows the complement (e.g., in the prepositional phrase nihon

ni -Japan in-, the preposition ni follows the complement nihon).

Following the last example, the innate knowledge allows us to understand

that there are phrases in all languages, regardless of whether they are head-

initial or head-final. It is the parameters settings that allows us to decipher

the head position in phrases, even though we may have only heard any par-

ticular phrase one or twice.

An important idea of the innatism is the fact that children, through a

short period of time, have the ability to produce, perceive and comprehend

an infinite number of sentences. If humans were born with a clean slate or

tabula rasa, as it was once believed, they would not be able to produce or

comprehend an infinite number of sentences.

Therefore, we can state that the innatism differs totally of the behaviorism.

The behaviorist approach explain the process of natural language acquisition

based on superficial features; they consider that children learn the answers of
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the adults and in that way they acquired the language (this approach does not

take into account the generative capacity of human beings). On the contrary,

the innatism considers, first, the mental structure of the human beings and

their predisposition to acquire the language, and second, it emphasizes the

active role of the learners and their generative capacity to construct an infinite

number of sentences.

The shift in focus was from the study of E-language to the study

of I-language, from the study of language regarded as an externalized

object to the study of the system of knowledge of language attained

and internally represented in the mind/brain. [Chomsky, 1986, p.

24].

Chomsky’s ideas have had a strong influence on researchers investigating

the acquisition of language in children, though some researchers who work in

this area today do not support Chomsky’s theories.

A popular argument in favor of linguistic nativism is the Argument from

Poverty of the Stimulus (or APS). The name of the “APS” was coined by

Chomsky in [Chomsky, 1980]. The APS emerged out of several of Chomsky’s

writings on the issue of language acquisition.

The argument from the poverty of stimulus is that there are principles of

grammar that cannot be learned on the basis of positive input alone. There-

fore, children have insufficient evidence in the primary linguistic data to in-

duce the grammar of their native language.

Though Chomsky reiterated the argument in a variety of different manners,

a common structure to the argument is always present and it can be summed

up as follows:

1. The grammars of human languages produce hierarchical tree structures

and are capable of infinite recursion.
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2. For any given set of sentences generated by a hierarchical grammar ca-

pable of infinite recursion there are an indefinite number of grammars

which could have produced the same data. As such, positive evidence

(evidence of those sentences accepted by the grammar) cannot provide

enough data to learn the correct grammar, negative evidence (evidence

of those sentences not accepted by the grammar) is required.

3. Children are only ever presented with positive evidence, e.g. they only

hear others speaking using sentences that are “right” not those that are

“wrong”.

4. Children do learn the correct grammars for their native languages.

Therefore, human beings must have some form of innate linguistic capacity

which provides additional knowledge to language learners.

Researchers believe that there may be a critical period during which lan-

guage acquisition is effortless. The linguist E. Lennenberg states that the

crucial period of language acquisition ends around the age of 12 years. After

this period it is much harder to learn a new language, due to changes occur

in the structure of the brain during puberty.

An interesting example of this is the case of Genie. She was discover in her

house when he was thirteen-year old. She appeared to be entirely without

language. Her father had judged her retarded at birth and has chosen to

isolate her. After her discovery, sadly, she was unable to acquire language

completely.

If it is true that children are born with a lot of language knowledge built

in, that will help to explain how it is possible to acquire quickly and easily

a system of language so complex that no other animal or machine has ever

mastered it.
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2.1.3. Evolutionary Psychology

During the 1950s and 1960s, a different view of learning began developing.

Many theorists disagreed with several aspects of the behaviorist approach due

to its failure to incorporate mental events into its learning theories.

The behaviorist approach consider that the study of learning should be

objective and that learning theories should be developed from the findings

of empirical research. This means that they do not support that mental

processes are suitable for scientific or objective study.

The behaviorist perspective could not easily explain why people attempt

to organize and make sense of the information they learn. Therefore, mental

events or cognition became important.

Cognitive psychologists share with behaviorists the belief that the study

of learning should be objective and that learning theories should be founded

in the results of empirical research. However, cognitivists argue that by ob-

serving the individual’s responses to a variety of stimulus conditions they

can draw inferences about the nature of the internal cognitive processes that

produce those responses.

In cognitive theories, knowledge is viewed as symbolic mental constructs

in the learner’s mind, and the learning process is the means by which these

symbolic representations are committed to memory. Changes in behavior are

observed, but only as an indicator to what is going on in the learner’s head.

The cognitivist approach of the human mind is an input/output model of

information or symbol processing.

As opposed to behaviorism, knowledge acquisition is measured by what

learners know, not necessarily what they do.

The learner is viewed as an active participant in the knowledge acquisition

process. In addition, instructional material that utilizes demonstrations, il-
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lustrative examples and corrective feedback are helpful in providing mental

models that the learner can follow.

The use of feedback to guide and support the learner to create accurate

mental connections is a key component in the cognitive theory.

Jean Piaget was one of the most influential cognitive psychologist

[Piaget, 1953], [Piaget, 1962]. Piaget emphasizes on two main functions:

• Organization: it refers to the fact that all cognitive structures are in-

terrelated and that any new knowledge must be fitted into the existing

system.

• Adaptation: it refers to the tendency of the organism to fit with its

environment in ways that promote survival. It is composed of two terms;

assimilation (to understand something new by fitting it into what we

already know) and accommodation (if new information cannot be made

to fit into existing schemes, a new, more appropriate structure must be

developed).

Piaget did many experiments on children’s ways of thinking and concluded

that human beings go through several distinct stages of cognitive develop-

ment. These stages are known as:

• Sensorimotor stage (0-2 years): children experience through their senses.

• Preoperational stage (2-7 years): motor skills are acquired.

• Concrete operational stage (7-11 years): children think logically about

concrete events.

• Formal Operational stage (after age 11): abstract reasoning is developed

here.

Anywise, this psycholinguistic perspective complements the innatist ap-

proach. Indeed, besides the linguistic competence, it argues for a general
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cognitive competence which is needed to learn and develop the knowledge of

language.

Piaget emphasized the importance of the interaction between biological

and social (nature and nurture) aspects of language acquisition, a view that

is held today.

2.2. Formal Language Prerequisites

In this chapter we present some of the basic notions of Formal Lan-

guage Theory and we also describe the notation and terminology used

throughout this work. As necessary we will introduce specific con-

cepts and definitions in future chapters. Supplementary information

can be found in [Hopcroft et al., 2001], [Mart́ın-Vide et al., 2004], and

[Rozenberg and Salomaa, 1997].

Formal languages are defined with respect to a given alphabet. The alphabet

is a finite nonempty set of symbols, denoted Σ. A finite sequence of symbols

chosen from some alphabet is called a string (or sometimes word). The empty

string, denoted λ, is the string with zero occurrences of symbols. The length

of a string is the number of positions for symbols in the string, and is denoted

|w|. For example, |λ| = 0.

Given an alphabet Σ, the set of all strings over the alphabet Σ is denoted

by Σ∗. The set of nonempty strings from alphabet Σ is denoted Σ+. Thus,

Σ+ = Σ∗ − {λ}. Each subset of Σ∗ is called a language over the alphabet Σ.

For x, y ∈ Σ∗, x = a1a2...ai, y = b1b2...bj, i, j ≥ 0, the string a1a2...aib1b2...bj

is denoted by xy and is called the concatenation of x and y. If x = x1x2, for

some x1, x2 ∈ Σ∗, then x1 is called a prefix of x and x2 is called a suffix of x;

if x = x1x2x3 for some x1, x2, x3 ∈ Σ∗, then x2 is called a substring of x. A

context is a pair of words, i.e., (u, v), where u, v ∈ Σ∗.
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N denotes the set of natural numbers. Assume that Σ = {a1, a2, ..., ak}.
The Parikh mapping, denoted by Ψ, is:

Ψ : Σ∗ → Nk, Ψ(w) = (|w|a1 , |w|a2 , ..., |w|ak
)

If L is a language, then the Parikh set of L is defined by:

Ψ(L) = {Ψ(w) | w ∈ L}

A linear set is a set M ⊆ Nk such that M = {v0 +
∑m

i=1 vixi | xi ∈ N}, for

some v0, v1, ..., vm in Nk. A semilinear set is a finite union of linear sets, and

a semilinear language is a language L such that Ψ(L) is a semilinear set.

In general, a grammar is a finite mechanism by means of which we can

generate the elements of the language. The Chomsky grammars are particular

cases of rewriting systems, where the operation used in processing the strings

is the rewriting (the replacement of a “short” substring of the processed string

by another short substring).

A Chomsky grammar is a quadruple G = (N, T, S, P ), where N and T are

disjoint alphabets of nonterminals symbols and terminals symbols, respec-

tively. S ∈ N is the axiom of the grammar, and P is the set of production

rules. The rules (or productions) of P are written in the form u → v, where

u is a string in (N ∪ T )∗ with at least one nonterminal symbol, and v is a

string in (N ∪ T )∗ that can be the empty string.

The direct derivation relation with respect to a grammar G is denoted by

⇒G. For x, y ∈ (N ∪ T )∗ we write x ⇒G y iff x = x1ux2, y = x1vx2, for some

x1, x2 ∈ (N ∪ T )∗ and u → v a rule of G. If G is understood, then we write

⇒ instead of ⇒G. The reflexive and transitive closure of the relation ⇒ is

denoted by ⇒∗. The language generated by G, denoted L(G), is defined by

L(G) = {x ∈ T ∗|S ⇒∗ x}.
Two grammars G1, G2 are called equivalent if L(G1)− {λ} = L(G2)− {λ}

(the two languages coincide modulo the empty string).
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According to the form of their rules, the Chomsky grammars are classified

as follows. A grammar G = (N, T, S, P ) is called:

• length-increasing, if for all u → v ∈ P we have |u| ≤ |v|.
• context-sensitive, if each u → v ∈ P has u = u1Au2, v = u1xu2, for

u1, u2 ∈ (N ∪ T )∗, A ∈ N , and x ∈ (N ∪ T )+. (In length-increasing and

context-sensitive grammars the production S → λ is allowed, providing

that S does not appear in the right-hand members of rules in P .)

• context-free, if each production u → v ∈ P has u ∈ N).

• linear, if each rule u → v ∈ P has u ∈ N and v ∈ T ∗ ∪ T ∗NT ∗.

• right-linear, if each rule u → v ∈ P has u ∈ N and v ∈ T ∗ ∪ T ∗N .

• left-linear, if each rule u → v ∈ P has u ∈ N and v ∈ T ∗ ∪NT ∗.

• regular, if each rule u → v ∈ P has u ∈ N and v ∈ T ∪ TN ∪ {λ}.

The arbitrary, length-increasing, context-free, and regular grammars are

also said to be of type 0, type 1, type 2, and type 3, respectively.

The family of languages generated by length-increasing grammars is equal

to the family of languages generated by context-sensitive grammars; the fam-

ilies of languages generated by right- or by left-linear grammars coincide and

they are equal to the family of languages generated by regular grammars, as

well as with the family of regular languages.

We denote by RE, CS,CF, LIN, and REG the families of languages gen-

erated by arbitrary, context-sensitive, context-free, linear, and regular gram-

mars, respectively (RE stands for recursively enumerable). By FIN we de-

note the family of finite languages.

The following strict inclusions hold:

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE
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We call this the Chomsky hierarchy . It is schematically depicted in Figure

2.1.

CF 

REG 

RE

CS

LIN 

Figure 2.1: The Chomsky Hierarchy

Chomsky Hierarchy is the usual framework to define other families of lan-

guages that are not in this classification. Even many people try to locate

natural languages in the Chomsky Hierarchy (this topic will be discuss in the

next chapter). We will propose in this work some classes of languages that

do not fit in this classification.

Automata are computing devices which start from the strings over a given

alphabet and analyze them (we also say recognize), telling us whether or not

the input string belongs to a specified language.

The five basic families of languages in the Chomsky Hierarchy, REG, LIN ,

CF , CS, RE, are also characterized by recognizing automata. These au-

tomata are: the finite automaton, the one-turn pushdown automaton, the
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pushdown automaton, the linearly bounded automaton, and the Turing ma-

chine, respectively. We present here only two of these devices, those which,

in some sense, define the two poles of computability: finite automata and

Turing machines.

A (deterministic or nondeterministic) finite automaton consists of a finite

set of states, a finite alphabet of input symbols, and a set of transition rules.

If the next state is always uniquely determined by the current state and the

current input symbol, we say that the automaton is deterministic.

Formally, we define a deterministic finite automaton as follows:

A deterministic finite automaton (DFA) A is a quintuple (Q, Σ, δ, q0, F ),

where:

- Q is the finite set of states.

- Σ is the input alphabet.

- δ : Q× Σ −→ Q is the state transition function.

- q0 ∈ Q is the starting state.

- F ⊆ Q is the set of final states.

A relation ` is defined in the following way: for px, qy ∈ QΣ∗, px ` qy if

x = ay for some a ∈ Σ and δ(p, a) = q. The reflexive and transitive closure

of the ` is denoted `∗.
The language accepted by a DFA A = (Q, Σ, δ, q0, F ), denoted L(A), is

defined as follows:

L(A) = {w | q0w `∗ f , for some f ∈ F}

For convenience, we define the extension of δ, δ∗ : Q×Σ∗ → Q, inductively

as follows. We set δ∗(q, λ) = q and δ∗(q, xa) = δ(δ∗(q, x), a), for q ∈ Q, a ∈ Σ,

and x ∈ Σ∗. Then, we can also write

L(A) = {w | δ∗(q0, w) = f for some f ∈ F}
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The collection of all languages accepted by DFA is denoted LDFA. We call

it the family of DFA languages.

We say that a DFA A = (Q, Σ, δ, q0, F ) is complete if for all q in Q and a

in Σ, δ(q, a) is defined (that is δ is a total function). For any DFA A, there

exists a minimum state DFA A′ (also called the canonical DFA), such that

L(A) = L(A′).

A state q is called a live state if there exist strings x and y such that

δ(q0, x) = q and δ(q, y) ∈ F . The set of all the live states is called the

liveSet(A). A state that is not in the liveSet is called a dead state. The set

of all dead states is called the deadSet(A). Note that for a canonical DFA A,

deadSet(A) has at most one element.

The nondeterministic finite automata (NFA) model is a generalization of

the DFA model, for a given state and an input symbol, the number of possible

transitions can be greater than one.

Formally, a nondeterministic finite automaton A is a quintuple

(Q, Σ, δ, q0, F ) where Q, Σ, q0, and F are defined exactly the same way as

for a DFA, and δ : Q×Σ → 2Q is the transition function, where 2Q denotes

the power set of Q.

A DFA can be considered an NFA, where each value of the transition

function is either a singleton or the empty set.

The computation relation `: QΣ∗×QΣ∗ of a NFA A is defined as follows:

px ` qy if x = ay and q ∈ δ(p, a) for p, q ∈ Q, x, y ∈ Σ∗, a ∈ Σ. Then, the

language accepted by A is

L(A) = {w | q0w `∗ f , for some f ∈ F}

The family of languages accepted by NFA are denoted by LNFA.

Two automata are said to be equivalent if they accept the same language.
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It is known that both deterministic and nondeterministic finite automata

characterize the same family of languages, namely REG.

An important related notion is that of a sequential transducer which is

nothing else than a finite automaton with outputs associated with its moves;

we do not enter here into details and refer the reader to the general formal

language theory literature.

Turing machines were devised by Alan Turing in 1936 in a paper

[Turing, 1936] which lays the foundations of computer science.

A Turing machine is a construct A = (Q, Σ, T, B, q0, F, δ), where:

- Q, Σ are disjoint alphabets (the set of states and the tape alphabet).

-T ⊆ Σ is the input alphabet.

-B ∈ Σ− T is the blank symbol.

-q0 ∈ Q is the initial state.

-F ⊆ Q is the set of final states.

-δ is a partial mapping from Q×Σ to the power set of Q×Σ×{L,R} (the

move mapping; if (q, b, d) ∈ δ(p, a), for p, q ∈ Q, a, b ∈ Σ, and d ∈ {L,R},
then the machine reads the symbol a in state p and passes to state q, replaces

a with b and moves the read-write head to the left when d = L and to the

right when d = R). If |(δ(p, a))| ≤ 1 for all p ∈ Q, a ∈ Σ, then A is said to

be deterministic, where |(δ(p, a))| represents the number of elements of the

transition function from the state p with the character a.

An instantaneous description of a Turing machine as above is a string xpy,

where x ∈ Σ∗, y ∈ Σ∗(Σ − {B}) ∪ {λ}, and p ∈ Q. In this way we identify

the contents of the tape, the state, and the position of the read-write head:

it scans the first symbol of y. Observe that the blank symbol may appear in

x, y, but not in the last position of y; both x and y may be empty. We denote

by IDM the set of all instantaneous descriptions of M .

On the IDM one defines the direct transition relation `M as follows:
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xpay `M xbqy iff (q, b, R) ∈ δ(p, a),

xp `M xbq iff (q, b, R) ∈ δ(p,B),

xcpay `M xqcby iff (q, b, L) ∈ δ(p, a),

xcp `M xqcb iff (q, b, L) ∈ δ(p, B),

where x, y ∈ Σ∗, a, b, c ∈ Σ, p, q ∈ Q.

The language recognized by a Turing machine A is defined by

L(A) = {w ∈ T ∗ | q0w `M xpy for some p ∈ F , x, y ∈ Σ∗}.

(This is the set of all strings such that the machine reaches a final state

when starting to work in the initial state, scanning the first symbol of the

input string).

It is also customary to define the language accepted by a Turing machine

as consisting of the input strings w ∈ T ∗ such that the machine, starting

from the configuration q0w, reaches a configuration where no further move is

possible (we say that the machine halts); in this case, the set F of final states

is no longer necessary. The two models of defining the language L(M) are

equivalent, the identified families of languages are the same, namely RE, and

this is true both for deterministic and nondeterministic machines.

The difference between a finite automaton and a Turing machine is visible

only in their functioning: the Turing machine can move its head in both

directions and it can rewrite the scanned symbol, possibly erasing it (replacing

it with the blank symbol).

Turing machines play a key role in computer science. As an abstract model

which was later implemented in reality, it is a yardstick for various purposes.

In particular, this is the case in the theory of complexity where the complexity

of algorithms is measured with respect to an implementation of the algorithm

in a Turing machine program.
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Chapter 3

Relevant classes of languages or

grammars

3.1. Main focus on Grammatical Inference

The field of Grammatical Inference has focused its research on learning regular

grammars or deterministic finite automata (DFA).

Reasons justifying that most attention has been spent on this

class of grammars are that this problem may seem simple enough

but theoretical results make it already too hard for usual Machine

Learning settings (...); on the other the class of DFA seems to

be in some way maximal for certain forms of polynomial learning

[de la Higuera, 2005, p. 1335]

The problem of identifying DFA from examples has been studied quite ex-

tensively (see, e.g., [Angluin and Smith, 1983, Pitt, 1989]). A general review

of the main results can be found in [Sakakibara, 1997].

The problem of identifying CFG has been considered as well, and several

positive results have been obtained (see [Sakakibara, 1997]). Nonetheless,

39



40 CHAPTER 3

there is not too many studies about identifying classes of grammars more

powerful than CF by using grammatical inference techniques.

3.2. The Chomsky Hierarchy and its main limitations from a lin-

guistic viewpoint

Despite the fact that most state-of-the-art grammatical inference algorithms

apply to regular and context-free language (which belongs to the Chomsky

Hierarchy), in this section we are going to consider the limitations of the

Chomsky Hierarchy, especially when we want to study natural language syn-

tax.

3.2.1. Where are Natural Languages located in the Chomsky Hierarchy?

One of the main limitations of the Chomsky Hierarchy emerges when we try

to locate natural languages in this hierarchy.

The question of determining the location of natural languages in the Chom-

sky Hierarchy has been a subject of discussion since it was posed by Chom-

sky in his 1956 paper “Three Models for the Description of Language”

[Chomsky, 1956].

(...) Noam Chomsky posed an interesting open question: When

we consider the human languages purely as sets of strings of words

(henceforth string-sets), do they always fall within the class called

context-free languages (CFL’s)? [Pullum and Gazdar, 1982, p. 471].

In his 1957 “Syntactic Structures”, Chomsky declared that he did not know

the answer to this question.

English is not a regular language... I do not know whether or

not English is itself literally outside the range of such analysis.

[Chomsky, 1957, p. 21].
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And, in his 1959 “On certain formal properties of grammars” he stated

that:

The main problem of immediate relevance to the theory of lan-

guage is that of determining where in the hierarchy of devices the

grammars of natural languages lie. [Chomsky, 1959, p. 138].

This debate, which lasted for more than twenty years, was focused on the

context-freeness of natural languages: “Are natural language context-free?”.

In the 60’s and 70’s there was many attempts to prove that natural lan-

guages are not context-free. G.K. Pullum and G. Gazdar showed that all

these attempts had failed:

What it has shown is that every published argument purporting

to demonstrate the non-context-freeness of some natural languages

is invalid, either formally or empirically or both. Whether non-

context-free characteristics can be found in the stringset of some

natural languages remains an open question, just as it was a quarter

century ago. [Pullum and Gazdar, 1982, p. 497].

And they concluded that for all they knew up to the time of that paper’s

publication, natural languages (conceived as string sets) might be context-

free.

In the meantime, it seems reasonable to assume that the nat-

ural languages are a proper subset of the infinite-cardinality context-

free languages, until such time they are validly shown not to be.

[Pullum and Gazdar, 1982, p. 499].

However, it was soon realized that natural languages, English included, are

not context-free.
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3.2.2. Examples of non-context-free constructions in natural languages

In the late 80’s, some clear examples of natural language structures that

cannot be described using a context-free grammar were discovered. Some

examples of such constructions are list next:

• Dutch: Bresnan et al. studied cross-serial dependencies in Dutch, giving

in this way an argument against the context-freeness of natural language.

While Dutch may or may not be CF in the weak sense,

it is not strongly CF : there is no CFG that can assign the

correct structural descriptions to Dutch cross-serial dependency

constructions. [Bresnan et al., 1987, p. 314]

The following example shows a duplication-like structure {ww̄ | w ∈
{a, b}∗}, where w̄ is the word obtained from w by replacing each letter

with its barred copy.

...dat Jan Piet Marie de Kinderen zag helpen laten zwemmen

(That Jan saw Piet help Marie make the children swim)

This is only weakly non-context-free, i.e., only in the deep structure.

• Bambara: Bambara, an African language of the Mande family, was

studied by Culy in [Culy, 1987]. He provided another argument against

the context-freeness based on the morphology of words in that language.

In this paper I look at the possibility of considering the vo-

cabulary of a natural language as a sort of language itself. In

particular, I study the weak generative capacity of the vocabulary

of Bambara, and show that the vocabulary is not context-free.

This result has important ramifications for the theory of syntax

of natural language. [Culy, 1987, p. 349].
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A duplication structure is found in the vocabulary of Bambara, demon-

strating a strong non-context-freeness, i.e., on the surface and in the

deep structure:

malonyininafilèla o malonyininafilèla o

(one who searches for rice watchers + one who searches for

rice watchers = whoever searches for rice watchers)

This has the structure {wcw | w ∈ {a, b}∗}. But also the crossed

agreement structure {anbmcndm | m, n>0 } can be inferred.

• Swiss German: The paper by Shieber [Shieber, 1987], offers evidence

for the non-context-freeness of natural language. He collected data from

native Swiss German speakers, and he provided a formal proof of the

non-context-freeness of Swiss German.

Using a particular construction of Swiss German, the cross-

serial subordinate clause, we have presented an argument provid-

ing evidence that natural languages can indeed cross the context-

free barrier. The linguistic assumptions on which our proof rests

are small in number and quite weak; most of the proof is purely

formal. In fact, the argument would still hold even if Swiss

German were significantly different from the way it actually is,

i.e., allowing many more constituent orders, cases and construc-

tions, and even if the meanings of the sentences were completely

different. [Shieber, 1987, p. 330].

The following example is a strong non-context-free structure, again show-

ing crossed agreement:

Jan säit das mer (d’chind)m (em Hans)n es huus haend wele

(laa)m (hälfe)n aastriiche
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(Jan said that we wanted to let the children help Hans paint

the house)

This has the structure xwambnycmdnz, where a, b stand for accusative,

dative noun phrases, respectively, and c, d for the corresponding ac-

cusative, dative verb phrases, respectively.

In this way, all these works provide a negative answer to the question “Are

natural languages context-free?”. Besides, they suggest that more generative

capacity than context-free grammar is required to describe natural languages.

Some authors go further on and conclude that “the world is not context-

free”. They discuss seven circumstances where context-free grammars are not

enough (natural languages, programming languages, logic, formalizing the

mapping graphs in symbolic terms, development biology, modelling economic

processes, formal semiotic approaches to fairy-tales, music and visual arts).

The theory of context-free grammars is the most developed part

of formal language theory due to the wide applicability and to the

mathematical appeal of these grammars. However, “the world is not

context-free”: there is a lot of circumstances where naturally non-

context-free languages appear. [Dassow and Păun, 1989, p. 18].

Hence, the question of “How much power beyond context-free is neces-

sary to describe these non-context-free constructions that appear in natural

language?” became important.

Therefore, the Chomsky hierarchy does not provide a specific demarcation

of language families having some desired properties from a linguistic point

of view (for instance, to be able to describe these examples of constructions

that have led to the non-context-freeness of natural language). The family

of context-free languages has good computational properties, but it does not
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contain some important formal languages that appear in human languages.

On the other hand, the family of context-sensitive languages contains all

important constructions that occur in natural languages, but it is believed

that the membership problem for languages in this family cannot be solved

in deterministic polynomial time.

3.3. Mildly Context-Sensitive Languages: a grammatical environ-

ment for natural language constructions

3.3.1. Introduction

Mildly Context-Sensitive Grammars and Languages (MCSG, MCSL) arose

out the study of formal grammars adequate to model natural language struc-

tures.

As we have seen in the previous section, some clear examples of natural lan-

guages were discovered that required more formal power than CFG. There-

fore, there was considerable interest in the development and study of gram-

matical formalisms with more generative power than CFG.

It would be desirable to have a family of languages that contains the most

significant languages that appear in the study of natural languages and, also,

languages in such a family to have good computational properties, i.e., the

membership problem for languages in this family not be solvable in determin-

istic polynomial time complexity.

The idea of generating context-free and non-context-free structures, keeping

under control the generative power, has led to the notion of Mildly Context-

Sensitive devices.

Joshi introduced the notion of mild context-sensitivity [Joshi, 1985]. Based

on the formal properties of a grammatical formalism called tree adjoining

grammars (TAGs), he proposed that the class of grammars that is neces-
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sary for describing natural languages might be characterized as the class of

MCSG:

I would like to propose that the three properties

1. limited crossed-serial dependencies

2. constant growth, and

3. polynomial parsing

roughly characterize a class of grammars (and associated languages)

that are only slightly more powerful than context-free grammars

(context-free languages). I will call these “mildly context-sensitive

grammars (languages)”, MCSGs (MCSLs). This is only a rough

characterization because conditions 1 and 3 depend on the gram-

mars, while condition 2 depends on the languages; further, condi-

tion 1 needs to be specified much more precisely than I have done so

far. I now would like to claim that grammars that are both weakly

and strongly adequate for natural language structures will be found

in the class of MCSGs. [Joshi, 1985, p. 225].

3.3.2. Formal definition

Definition 3.3.1 By a Mildly Context-Sensitive family of languages we mean

a family L of languages that satisfies the following conditions:

(i) each language in L is semilinear

(ii) for each language in L the membership problem is solvable in determin-

istic polynomial time

(iii) L contains the following three non-context-free languages:

- multiple agreements: L1 = {anbncn | n ≥ 0}
- crossed agreements: L2 = {anbmcndm | n,m ≥ 0}
- duplication: L3 = {ww | w ∈ {a, b}∗}
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Figure 3.1 shows the location of the MCS family in the Chomsky hierarchy.

Figure 3.1: Location of MCSL in the Chomsky Hierarchy

3.3.3. Generative devices

Several formalisms have been introduced and used to fabricate MCS

families: tree adjoining grammars ([Joshi and Schabes, 1997]), head gram-

mars [Roach, 1987], combinatory categorial grammars [Steedman, 1985], lin-

ear indexed grammars [Gazdar and Pullum, 1985], simple matrix grammars

[Ibarra, 1970], etc. The first four ones were proved to be equivalent in terms

of computational power [Joshi et al., 1991].

However, some authors consider that all these investigations are based on an

implicit assumption which is not necessarily true ([Manaster-Ramer, 1999]).

As Manaster Ramer states, “the question as posed by Chomsky

seems to suggest that the class of natural languages will be found

somewhere in the Chomsky hierarchy. Yet this need not be the case,
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and probably is not. It is entirely possible, for example, that a real-

istic theory of natural languages would define a class of languages

which is incommensurate with the Chomsky types, e.g., a few regu-

lar languages, a few non-regular context-free languages, a few non-

context-free languages, and so on” [Păun, 1997, xi].

Hence, natural languages could occupy an orthogonal position in the Chom-

sky Hierarchy. Therefore, we need a new hierarchy, which should certainly

hold strong relationships with the Chomsky Hierarchy, but which should not

coincide with it. In a certain sense, the new hierarchy should be incomparable

with the Chomsky hierarchy and pass across it.

Since external contextual grammars have the property of transversality

(they generate a class of languages occupying an orthogonal position with

respect to the Chomsky Hierarchy), they appear to be appropriate candi-

dates to model natural language syntax.

3.4. Contextual Grammars

3.4.1. Introduction

In the 50’s there were great steps in the investigation of natural languages

using mathematical rules. In 1957, Chomsky published his pioneering book

[Chomsky, 1957], presenting a new generative approach to syntactic struc-

tures. And the research of some Russian mathematicians gave the start in

the development of analytical mathematical models of languages.

Attempts have been made to bridge the gap between these two trends, and

contextual grammars are part of this process.

Generative grammars are a rupture from the linguistic tradition

of the first half of 20th century, while analytical models are just the

development, the continuation of this tradition. It was natural to
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expect an effort to bridge this gap. This effort came from both parts

and, as we shall see, contextual grammars are a component of this

process [Marcus, 1997, p. 215].

Contextual grammars were introduced by S. Marcus in [Marcus, 1969]. The

circumstances and the motivation of introducing contextual grammars have

been explained in detail in [Marcus, 1997].

Contextual grammars (shortly CGs) have their origin in the at-

tempt to transform in generative devices some procedures developed

within the framework of analytical models. The idea to connect in

this way the analytical study with the generative approach to natural

languages was one of the main problems investigated in mathemat-

ical linguistics from 1957 to 1970. (...)

CGs try to exploit two ideas that were at the very beginning of the

tradition of descriptive distributional linguistics in USA., in both

the 1940s and the 1950: the idea of a string on a given finite non-

empty alphabet A and the idea of a context on A, conceived as an

ordered pair (u, v) of strings over A. [Marcus, 1997, p. 216].

Therefore, contextual grammars are based on the idea of modelling some

natural aspects from descriptive linguistics, for instance, the acceptance of a

word (construction) only in certain contexts.

In descriptive linguistics the association of certain strings with

certain contexts (pair of strings) with respect to a more or less ex-

plicit idea of well-formedness is a basic ingredient of most (if not

all) linguistic analysis. Contextual grammars try to capture this

strings-contexts interaction, under the form of a generative device

(complementing in this way its analytic status in structural linguis-

tics). [Păun, 1997, pp.xi-xii].
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Roughly speaking, a contextual grammar produces a language starting from

a finite set of words (axioms) and iteratively adding contexts (pair of words)

to the currently generated words. Despite the fact that these mechanisms

generate a proper subclass of simple matrix languages, they are still MCS.

These models are (technically) much simpler than any other models found in

the literature on MCS families of languages. Unlike the Chomsky grammars,

contextual grammars do not involve nonterminals and they do not have rules

of derivation except one general rule: to adjoin contexts.

There are many variants of contextual grammars, but all of them are based

on context adjoining. The differences are in the way of adjoining contexts,

the sites where contexts are adjoined, the use of selectors, etc. For a detailed

introduction to the topic, see the monograph [Păun, 1997].

As Gh. Păun points out in [Păun, 1997], it is paradoxical that although

contextual grammars were motivated by natural language investigations, they

were studied for about 25 years as a mathematical object, without exploit-

ing their linguistic relevance. He indicates two possible types of linguistic

relevance of a contextual grammar in order to explain this situation.

There is first the relevance that can follow from the linguistic

significance of various contextual relations and operations involved,

directly or indirectly, in the basic components of such a grammar.

The most important of them is perhaps the quasiorder relation of

contextual domination: a string x contextually dominates string y

with respect to a given language L if any context accepting x in L

also accepts y in L. This quasiorder relation makes it possible to

compare strings from the standpoint of their contextual ambiguity

(...). We can easily understand why this important source of lin-

guistic relevance of contextual grammars has so far been ignored:

the associated mathematical models, mainly developed in the fifties

and sixties, as well as the corresponding linguistic facts, have been
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largely ignored by the new generations of researchers in the field of

formal grammars, guided mainly by motivations coming from com-

puter science.

A second type of linguistic relevance of contextual grammars refers

to their capacity to capture various types of recursive behaviours

occurring in natural languages. These recursive aspects lead to for-

mal languages as {ww | w ∈ {a, b}∗}, {anbncn | n ≥ 1}, {anbmcndm |
n,m ≥ 1}, etc. (...) [Păun, 1997, p. xii].

The mathematical richness of the field of contextual grammars has been

demonstrated, but there is a need of more research on the relevance for nat-

ural language modelling, both of a mathematical type (for example, efficient

parsing algorithms) and of a linguistic type (trying to build contextual gram-

mars for certain fragments of given natural languages).

Indeed, contextual grammars, in the many variants considered in

the literature, were investigated mainly from a mathematical point of

view; see Paun (1982, 1985, 1994), Paun, Rozenberg and Salomaa

(1994), and their references. A complete source of information is

the monograph Paun (1997). A few applications of contextual gram-

mars were developed in connection with action theory (Paun 1979),

with the study of theatrical works (Paun 1976), and with computer

program evolution (Balanescu and Gheorghe 1987), but up to now

no attempt has been made to check the relevance of contextual gram-

mars in the very field where they were motivated: linguistics, the

study of natural languages. A sort of a posteriori explanation is

given: the variants of contextual grammars investigated so far are

not powerful enough, hence they are not interesting enough; what

they can do, a regular or a context-free grammar can do as well.

[Marcus et al., 1998, p. 246].
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3.4.2. Formal Definitions

In the derivation process of the contextual grammars, the contexts can be

added in two different ways: as introduced in [Marcus, 1969], at the end of

the current string - we call these grammars external ; or as introduced in

[Păun and Nguyen, 1980], inside the current string - we call these grammars

internal. Details about these basic variants of contextual grammars can be

found in [Păun, 1997].

Many variants have been investigated in the last decade: determinism, par-

allelism, normal forms, modularity, use of selectors, etc. (see, [Păun, 1997] for

details). All these variants have the main goal of finding a class of contextual

languages appropriate from natural language point of view.

In this dissertation we investigate the external type of contextual grammars

and, especially, the many dimensional case. We will point out the generative

capacity of these grammars and their relevance for natural language mod-

elling. As we will see later, this type of grammar has an important property

from a linguistic point of view: the three basic features of natural (and artifi-

cial) languages that lead to their non-context-freeness (multiple agreements,

crossed agreements and duplication) can be covered by such grammars. And

moreover, all of them can be generated by many-dimensional external con-

textual grammars in a simple way.

We now start by reviewing the notion of a contextual grammar. Later, the

extension of these grammars to the many-dimensional case is explained.

3.4.2.1. External contextual grammars (EC)

Definition 3.4.1 A External Contextual grammar is G = (Σ, B, C), where

Σ is the alphabet of G, B is a finite subset of Σ∗ called the base of G, and C

is a finite set of contexts, i.e. a finite set of pairs of words over Σ. C is called

the set of contexts of G.
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The direct derivation relation with respect to G is a binary relation between

words over Σ, denoted ⇒G, or ⇒ if G is understood from the context. By

definition, x ⇒G y, where x, y ∈ Σ∗, iff y = uxv for some (u, v) ∈ C. The

derivation relation with respect to G, denoted ⇒∗
G, or ⇒∗ if G is understood

from the context, is the reflexive and transitive closure of ⇒G.

Definition 3.4.2 Let G = (Σ, B, C) be a External Contextual grammar. The

language generated by G, denoted by L(G), is defined as:

L(G) = { y ∈ Σ∗ | there exists x ∈ B such that x ⇒∗
G y }.

One can verify that the language generated by G = (Σ, B, C) is the smallest

language L over Σ such that:

(i) B ⊆ L

(ii) if x ∈ L and (u, v) ∈ C, then uxv ∈ L

The family of all External Contextual languages is denoted by EC.

Remark 3.4.3 EC = MinLIN , which is a strict subfamily of LIN , incom-

parable with REG (see [Păun, 1997]).

3.4.2.2. Many-dimensional external contextual grammars (ECp)

Many-dimensional External Contextual grammars are an extension of Exter-

nal Contextual grammars, but they work with vectors of words and vectors

of contexts [Kudlek et al., 2002] .

Let p ≥ 1 be a fixed integer, and let Σ be an alphabet. A p-word

x over Σ is a p-dimensional vector whose components are words over Σ,

i.e., x = (x1, x2, ..., xp), where xi ∈ Σ∗, 1 ≤ i ≤ p. A p-context c over

Σ is a p-dimensional vector whose components are contexts over Σ, i.e.,

c = [c1, c2, ..., cp] where ci = (ui, vi), ui, vi ∈ Σ∗, 1 ≤ i ≤ p. We denote

vectors of words with round brackets, and vectors of contexts with square

brackets.
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Definition 3.4.4 Let p ≥ 1 be an integer. A p-dimensional External Con-

textual grammar is G = (Σ, B, C), where Σ is the alphabet of G, B is a finite

set of p-words over Σ called the base of G, and C is a finite set of p-contexts

over Σ. C is called the set of contexts of G.

The direct derivation relation with respect to G is a binary relation between

p-words over Σ, denoted by ⇒G, or ⇒ if G is understood from the context.

Let x = (x1, x2, ..., xp) and y = (y1, y2, ..., yp) be two p-words over Σ. By

definition, x ⇒G y iff y = (u1x1v1, u2x2v2, ..., upxpvp) for some p-context

c = [(u1, v1), (u2, v2), ..., (up, vp)] ∈ C. The derivation relation with respect

to G, denoted by ⇒∗
G, or ⇒∗ if no confusion is possible, is the reflexive and

transitive closure of ⇒G.

Definition 3.4.5 Let G = (Σ, B, C) be a p-dimensional External Contextual

grammar. The language generated by G, denoted L(G), is defined as:

L(G) = {y ∈ Σ∗| there exists (x1, x2, ..., xp) ∈ B such that

(x1, x2, ..., xp) ⇒∗
G (y1, y2, ..., yp) and y = y1y2...yp}.

The family of all p-dimensional External Contextual languages is denoted

by ECp.

Remark 3.4.6 Any family ECp for p ≥ 2 is a subfamily of linear simple

matrix languages (see [Kudlek et al., 2002]).



Chapter 4

Models in Grammatical

Inference

In this chapter we present the three important formal models that have been

widely investigated in the Grammatical Inference framework. We also discuss

some linguistic aspects of these models.

4.1. Identification in the limit

4.1.1. Learning in the Limit Model

In 1967 Gold introduced the model of identification in the limit [Gold, 1967],

with the ultimate goal of explaining the learning process of the natural lan-

guage.

The study of language identification described here derives its

motivation from artificial intelligence. The results and the methods

used also have implications in computational linguistics, in partic-

ular the construction of discovery procedures, and in psycholinguis-

tics, in particular the study of child learning (...).

I wish to construct a precise model for the intuitive notion “able to

55
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speak a language” in order to be able to investigate theoretically how

it can be achieved artificially. Since we cannot explicitly write down

the rules of English which we require one to know before we say

he can “speak English”, an artificial intelligence which is designed

to speak English will have to learn its rules from implicit informa-

tion. That is, its information will consist of examples of the use

of English and/or of an informant who can state whether a given

usage satisfies certain rules of English, but cannot state these rules

explicitly. [Gold, 1967, pp. 447–448].

Identification in the limit views learning as an infinite process. In this

model, an infinite sequence of examples of the unknown language is presented

to the learner (inference algorithm), and the eventual or limiting behavior of

the algorithm is used as the criterion of its success.

A class of possible languages is specified, together with a method

of presenting information to the learner about an unknown language,

which is to be chosen from the class. The question is now asked,

“Is the information sufficient to determine which of the possible

languages is the unknown language?” Many definitions of learnabil-

ity are possible, but only the following is considered here: Time is

quantized and has a finite starting time. At each time the learner

receives a unit of information and is to make a guess to the identity

of the unknown language on the basis of the information received

so far. This process continues forever. The class of languages will

be considered learnable with respect to the specified method of in-

formation presentation if there is an algorithm that the learner can

use to make his guesses, the algorithm having the following prop-

erty: Given any language of the class, there is some finite time

after which the guesses will all be the same and they will be correct

[Gold, 1967, p. 447].
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Therefore, identification in the limit can be defined as follows:

Definition 4.1.1 Method M identifies language L in the limit if, after a

finite number of examples, M makes a correct guess and does not alter its

guess thereafter. A class of languages is identifiable in the limit if there is a

method M such that given any language of the class and given any admissible

example sequence for this language, M identifies the language in the limit.

Note that under this criterion the learner can never be certain of having

correctly guessed the language, since new examples could appear at any time

step.

In the case of identifiability in the limit the learner does not nec-

essary know when his guess is correct. He must go on processing

information forever because there is always the possibility that in-

formation will appear which will force him to change his guess. (...)

My justification for studying identifiability in the limit is this: A

person does not know when he is speaking a language correctly;

there is always the possibility that he will find that his grammar

contains an error. But we can guarantee that a child will eventually

learn a natural language, even if it will not know when it is correct.

[Gold, 1967, p. 450].

In this model, only positive examples (sentences that are in the language

to be learned) are given to the learner. This is known as learning from text

or positive presentation. This assumption corresponds to the empirical fact

that in first language acquisition no systematic negative evidence (examples

of sentences that are not in the language) is available to the children.

Recently, psycholinguists have begun to study the acquisition of

grammar by children (e.g., McNeill, 1966). Those working in the

field generally agree that most children are rarely informed when
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they make grammatical errors, and those that are informed take

little heed. In other words, it is believed that it is possible to learn

the syntax of a natural language solely from positive instances, i.e.,

a “text”. [Gold, 1967, p. 453].

From the point of view of language acquisition, text might correspond to the

following situation. We imagine that a child is presented with grammatically

correct sentences of a language in an arbitrary order (repetitions are allowed).

Negative information (i.e., ungrammatical sentences) is not presented. Each

sentence of the language appears eventually, without any restriction on the

order of their arrival.

Gold also considered learning from positive and negative examples, which

is know as learning from informant or complete presentation. If complete

data is available (we know whether or not a sentence belongs to the target

language), learning turns out to be much easier. However, as Kanazawa

states, “complete data has little relevance to first language acquisition and

linguistic theory” [Kanazawa, 1998, p. 3]. Empirical evidence suggests that

natural language is not acquired in this way (see [Brown and Hanlon, 1970],

[Goodluck, 1991]).

Although it is desirable that learning can be achieved using only positive

data, Gold proves in [Gold, 1967] that soon as a class of languages contains all

finite languages and at least one infinite language (called a superfinite class),

it is not identifiable in the limit from positive data.

Theorem 4.1.2 A superfinite family of languages is not learnable in the limit

from positive data.

Hence, it implies that even the smallest class in the Chomsky Hierarchy,

i.e. the class of regular languages, is not identifiable in the limit from positive

data. The problem is that no positive example can refute a too general
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hypothesis. As Angluin point out in [Angluin, 1980], when only positive

examples are available, there is danger of overgeneralization.

Intuitively, an added difficulty in trying to do inference from

positive rather than positive and negative data is the problem of

“overgeneralization”. If in the course of making guesses the infer-

ring process makes a guess that is overly general, i.e, specifies a

language that is a proper subset of the true answer, then with posi-

tive and negative data there will eventually be a counterexample to

the guess, i.e., a string that is contained in the guessed language but

is not a member of the true language. No such specific conflict with

the examples will occur in the case of inference from positive data.

[Angluin, 1980, p. 118].

Pursuant to his result, none of the language classes defined by Chomsky to

model natural language is identifiable in the limit from only positive data.

How do children overcome Gold’s theoretical hurdle? Gold suggested sev-

eral hypothesis to overcome this difficulty:

If one accepts identification in the limit as a model of learn-

ability, then this conflict must lead to at least one of the following

conclusions:

1. The class of possible natural languages is much smaller than one

would expect from our present models of syntax. That is, even

if English is context-sensitive, it is not true that any context-

sensitive language can occur naturally. Equivalently, we may

say that the child starts out with more information than that

the language it will be presented is context-sensitive. In partic-

ular, the results on learnability from text imply the following:

The class of possible natural languages, if it contains languages
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of infinite cardinality, cannot contain all languages of finite car-

dinality.

2. The child receives negative instances by being corrected in a way

we do not recognize. If we can assume that the child receives

both positive and negative instances, then it is being presented

information by an “informant”. The class of primitive recur-

sive languages, which includes the class of context-sensitive lan-

guages, is identifiable in the limit from an informant. The child

may receive the equivalent of negative instances for the purpose

of grammar acquisition when it does not get the desired response

to an utterance. It is difficult to interpret the actual training

program of a child in terms of the naive model of a language

assumed here.

3. There is an a priori restriction on the class of texts which can

occur, such as a restriction on the order of text presentation.

The child may learn that a certain string is not acceptable by

the fact that it never occurs in a certain context. This would

constitute a negative instance.

[Gold, 1967, p. 453–454].

Works in this direction have showed that the first path (the class of po-

tential natural language is more restrictive than those defined by Chomsky)

can be successful (see, [Angluin, 1982, Sakakibara, 1992, Kanazawa, 1998]).

In linguistics, it is generally also assumed that the first conclusion holds (i.e.,

the class of humanly learnable languages is severely restricted).

Now it seems evident to many linguists (notably, Chomsky

[40,43]) that children are not genetically prepared to acquire any

arbitrary language on the basis of the kind of casual linguistic ex-

posure typically afforded the young. Instead, a relatively small class
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H of languages may be singled out as “humanly possible” on the

basis of their amenability to acquisition by children, and it falls to

the science of linguistics to propose a nontrivial description of H
[Jain et al., 1999, p.29].

Due to Gold’s result, learning from only positive data had been considered

too difficult to be of much theoretical interest.

Since all non-trivial classes in the Chomsky-hierarchy are su-

perfinite this result was interpreted as showing that identification

in the limit is just ’too hard’ and thus a trivial model of learning.

[Costa-Florêncio, 2003] p. 3

However, in the early eighties, there was renewed interest in the paradigm,

mainly because of work by D. Angluin. In [Angluin, 1979, Angluin, 1980,

Angluin, 1982], she provide examples of nontrivial classes of languages for

which correct inference from positive data is possible.

Therefore, Angluin’s work show that the initial pessimism about the Gold’s

model was premature.

In fact, it seems that searching for specific classes of languages

which are inferrable from positive data may help to generate new

approaches to concrete problems of inductive inference that avoid

the difficulties of the apparent computational intractability of some

previous approaches. [Angluin, 1980, p. 118].

Later, Shinohara was able to come up with an impressive result; languages

generated by context-sensitive grammars with a bounded number of rules can

be identified from positive data (see [Shinohara, 1994]).

One of the most basic strategy in learning in the limit models is learning

by enumeration. Both identification in the limit and identification by enu-
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meration have been very important in theoretical work developed later in the

field of inductive inference.

Identification by enumeration is an abstraction of our first

method for guessing polynomial sequences, namely, systematically

searching the space of possible rules until one is found that agrees

with all the data so far. Suppose that a particular domain of

rules is specified, and there is an enumeration of descriptions, say,

d1, d2, d3, ..., such that each rule in the domain has one or more de-

scriptions in this enumeration (...). Given any collection of exam-

ples of a rule, the method of identification by enumeration goes down

the list to find the first description, say di, that is compatible with the

given examples and then conjectures di. [Angluin and Smith, 1983,

p. 241].

The enumeration method is guaranteed to achieve correct identification in

the limit if the following two conditions are satisfied: a correct hypothesis

is always compatible with the examples given; any incorrect hypothesis is

incompatible with some sufficiently large collection of examples and with all

larger collections. Although this method is very powerful, it is inefficient in

time because of its exhaustive nature of enumeration.

The method of identification by enumeration is very general and

powerful but also rather impractical because the size of the space

that must be searched is typically exponential in the length of the

description of the correct guess. [Angluin and Smith, 1983, p. 241].

There are at least two directions to improve this time-efficiency. On the

one hand, to find an appropriate subfamily of languages for which an efficient

learning is possible. On the other hand, to enhance a learning protocol so

that more information is available to a learning algorithm. Some works in

these directions have been developed later.
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As we have seen, the identification in the limit model is not a trivial model

of learning. Moreover, we can find some similarity between learning in Gold’s

model and first language acquisition. In both cases there is a process of

improvement : in identification in the limit model, the new conjecture is better

that the previous guess; in the case of first language acquisition there is a

progressive improvement of the language acquired by the child.

In the case of second language learning the way to master the language

is quite different, there is not this process of making guesses of grammars;

adults learn second languages from grammar books, attending some courses,

establishing some analogies with the first languages that they already know,

etc. Moreover, usually adults learn second languages with some difficulty and

not with the same success that in first language acquisition.

However, there are some aspects of Gold’s model that are controversial

from a linguistic point of view. We point out some of them below.

In Gold’s model language is defined as a set of strings (e.g., sentences) on

some finite alphabet (e.g., words). This concept of language is quite different

of what is understood by language from a linguistic point of view:

The fact that different languages have different vocabulary items

is not what makes them different within this framework [Gold’s

sense]. Rather, the vocabulary is held constant within the language

class, and each language is defined in terms of which combinations

of vocabulary items they allow in sentences. A class of languages is

primarily defined in terms of the kinds of rules that are allowed in

the grammar. [Gordon, 1990, p. 217].

The characteristics of the learner given by Gold’s paradigm are also con-

troversial from a linguistic point of view.

A learner is a general computing device (e.g. a Turing machine)

that accepts input sentences from the environment and guesses
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which language they are from. If a new sentence is consistent

with the previous guess, the learner will stick with the same guess;

otherwise it will try a new language. Notice that the form of the

learning function here really says nothing about the kinds of rule-

inductive processes with which language acquisition theorists are

concerned. For all intents and purposes, the learner already knows

the functions (i.e., grammars) that generate the languages within

the class. All it has to do is figure out which one it is being pre-

sented with.[Gordon, 1990, p. 218].

Therefore, learning within Gold’s paradigm is not really what we normally

associate with this term. As we have seen, in the limit denotes the criterion

of success, which suppose that there is no limit on how long it can take the

learner to guess the correct language.

That is, a language has been correctly identified when the learner

no longer changes its guess through the presentation of all of the

(possible infinite) strings in the language. If the learner is lucky,

the first guess could be correct. Alternatively, it might take several

billions of years to come up with the correct guess.[Gordon, 1990,

p. 218].

Hence, considerations of efficiency form a somewhat separate line of analysis

from Gold’s work, which was concerned with limiting behavior rather than

speed of learning. However, from natural language acquisition point of view

efficiency is also important.

Although learning natural language is an infinite process, we are able to

learn the language in an efficient way. Therefore, learning from polynomial

time will play a fundamental role. Why polynomial time? On one hand,

exponential concerns the intractable, and normal children learn the language

they are exposed to. On the other hand, linear is too simple, and we know
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that mastering a natural language is a complex task. Hence, polynomial is

what remains in the “middle”, it is the standard.

Natural language learning is mainly based on positive examples. However,

positive data only is less than what a child actually gets in the learning

process and, on the other hand, informant is much more than what a learner

can expect. Therefore, learning from only positive data could be enough in a

first stage. Though, as we have pointed out before, when only positive data

is available there is danger of overgeneralization; learner could overgeneralize

and positive data would not be helpful to refute a too general hypothesis.

How could we avoid that problem? In Chapter 7 we propose an answer to

that question.

Learning from text or informant is also known as passive learning, as the

learner passively received strings of the language. We know that natural

language learning is more than that. Children also interact with their en-

vironment. They produce sentences that could be grammatically correct or

not, and they can also ask questions to the adults, etc. Therefore, there is

an interaction between child and adult, that is not gained by identification in

the limit from only positive data.

Moreover, in identification in the limit the current hypothesis has to be

consistent with all the examples seen so far. From a linguistic point of view

this assumption is unrealistic, due to children are unlikely to remember the

entire record of sentences ever addressed to them.

Therefore, the definition of identification in the limit postulates greatly

idealized conditions, as compared to the conditions under which children learn

language.

If we compare Gold’s model with Chomsky’s argument to explain natural

language acquisition, we can see that there are some differences which will be

interesting to point out here. In Gold’s model there is not any consideration
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about innate knowledge; the learner learns only from the data received. In

Chomsky’s theory the data is only an excuse: Chomsky considers that the

linguistic data available to the child is poor and it is only a stimulus to activate

the development of the grammar (Chomsky’s argument from the poverty of

the stimulus). Therefore, thanks to the data there is an activation of the

language acquisition device (LAD). This leads to the Universal Grammar

that is underlaid in the grammar of each natural language (see Chapter 2).

4.1.2. Conditions for Positive Data Learnability in the Limit

As we have seen, superfinite languages cannot be learned in the limit from

positive data. Therefore, what makes the target language learnable in the

limit from positive data only? Angluin was the first who considered this

problem and presented necessary and sufficient conditions for learnability in

the limit from positive data.

In the sequel, we present several conditions for the language family to be

learnable in the limit from positive data. We are going to concentrate on

[Yokomori, 2004]

For a language family C, consider the following conditions:

• Condition C1 (Finite tell-tale property): C has the finite tell-tale prop-

erty if, for any L in C, there exist a finite set T of L such that for any

L′ in C, T ⊆ L′ implies that L′ 6⊂ L.

• Condition C2 (Characteristic sample property): C has the character-

istic sample property if, for any L in C, there exist a finite set T of L

such that for any L′ in C, T ⊆ L′ implies that L ⊆ L′.

• Condition C3 (Finite elasticity property): C has the finite elasticity

property if C does not have the infinite elasticity, where C has the infinite

elasticity iff there exist infinite sequences w0, w1, w2, ... and L1, L2, L3, ...
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in C such that for any n ≥ 1, {w0, w1, w2, ..., wn−1} ⊆ Ln and wn /∈ Ln

(see Figure 4.1).

Figure 4.1: Infinite elasticity property

• Condition C4 (Finite thickness property): C has the finite thickness

property if, for any w, the family {L|L ∈ C and w ∈ L} is finite.

Finally, we consider a weak version of Condition C1:

Condition EC1 (Existential C1): C has the existential finite tell-tale prop-

erty if, for any L in C, there exists a finite set T of L such that for any L′ in

C, T ⊆ L′ implies that L′ * L.

Based on all these conditions, the following theorem is obtained:

Theorem 4.1.3 (i) Condition C4 implies Condition C3 (the finite thick-

ness property implies the finite elasticity property).

(ii) Condition C3 implies Condition C2 (the finite elasticity property implies

the characteristic sample property).

(iii) Condition C2 implies Condition C1 (the characteristic sample property

implies the finite tell-tale property).

(iv) Condition C1 implies Condition EC1.

The proof of this theorem can be found in [Yokomori, 2004].
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4.1.3. Efficient Learning in the Limit

When we want to learn something efficiently in any sense, but still in the limit

framework, a significant question arise: What sort of definition for efficient

learning in the limit can be possible? The answer to this question could be:

polynomial time learning in the limit. But, in what sense we should analyze

the time complexity of an “in the limit” algorithm?

One may define the notion of polynomial time identification in the limit

in various ways. It was not until late 80’s that the polynomial time identi-

fiability in the limit was reasonably defined by Pitt [Pitt, 1989]. By making

a slight modification of his definition, T. Yokomori proposed the following

definition for polynomial time identification in the limit from positive data

[Yokomori, 1991]:

Definition 4.1.4 A class R is polynomial-time identifiable in the limit if and

only if there is an algorithm A such that:

- A identifies R in the limit.

- A has polynomial update time (time used by A between receiving the ith

example wi and outputting the ith conjecture ri).

- A makes a polynomial amount of implicit prediction errors (A makes an

implicit prediction error at step i if the conjecture ri is not consistent

with the (i + 1)st example, i.e., if L(ri) fails to contain the (i + 1)st

example).

From the point of view of language acquisition, an important item of this

approach is to consider the implicit prediction errors that the learner makes.

When we want to study the efficiency of a learning process it has sense to take

into account this kind of error made by the learner; if the learner classifies

correctly the examples that receives but these examples are not enough to

find the correct grammar, this is not a fault of the learner.
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Based on [Goldman and Kearns, 1995], [Goldman and Mathias, 1996],

Colin de la Higuera proposes the model of identification in the limit model

from polynomial time and data [de la Higuera, 1997]. For a class of grammars

to be learnable in this setting it is required that each grammar in the class

admits some robust characteristic set of polynomial size. The set is char-

acteristic in the sense that from it the learning algorithm will return some

equivalent grammar, and robust in the sense that this remains true whenever

this characteristic set is included in any correctly labelled learning set.

Taking into account the fact that the length of the examples must depend

polynomially on the size of the concept to be learned, Colin de la Higuera

proposed the following definition, which is just a generalization of Gold’s

results [Gold, 1978] and a natural restriction of the definition of polynomial

update time [Pitt, 1989].

Definition 4.1.5 A representation class R is identifiable in the limit from

polynomial time and data iff there exist two polynomials p() and q() and an

algorithm A such that:

1. Given any sample (S+, S-), of size m, A returns a representation R in

R compatible with (S+, S-) in O(p(m)) time.

2. For each representation R of size n, there exists a characteristic sample

(CS+, CS-) of size less than q(n) for which, if S+ ⊇ CS+, S− ⊇ CS−,

A returns a representation R′ equivalent with R.

By this definition algorithm A is a polynomial learner.

The idea of characteristic sample in natural language is not intuitive at all.

It might be related to a set of same sentences schemes. However, it is not an

idea that corresponds to the current research concerns in linguistics.
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4.2. Query Learning

The results on learning in the limit model discussed in the previous section

suggest that, instead of passively receiving strings of the language, the learner

could be allowed to make queries to the teacher. In that way, additional

information is available in the learning process.

Imagine a human expert in some domain, for example, cancer

diagnosis, attempting to communicate the method he or she uses

in that domain to an expert system. Specific positive and negative

examples will form an important component of the communication,

in addition to advice about general rules, explanations of significant

and irrelevant features, justifications of lines of reasoning, clarifi-

cations of exceptions, and so on. Moreover, the examples given are

likely to be chosen so that they are “central” or “crucial” rather

than random or arbitrary, in an attempt to speed convergence of the

system to a correct hypothesis.

Studies of learning general rules from examples have generally as-

sumed a source of examples that is arbitrary or random [2]. The

scenario above suggests that it is reasonable to investigate learn-

ing methods that assume that the source of examples is “helpful”.

To emphasize this aspect, the source of examples will be called the

Teacher and the learning algorithm the Learner [Angluin, 1987, p.

87].

Learning from queries was introduced by Angluin [Angluin, 1987]. In query

learning, there is a teacher (oracle) that knows the language and has to answer

correctly specific kind of queries asked by the learner.

The possible queries available for the learner are: membership query, equiv-

alence query, subset query, superset query, disjointness query, exhaustiveness

query (see, [Angluin, 1988]).
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A teacher that can answer membership and equivalence queries is often

called Minimally Adequate Teacher (MAT ). These two typical types of

queries include the following:

(i) Membership query (MQ). The input is a string w ∈ Σ∗ and the output is

“yes” if w is in L (target language) and “no” otherwise. See Figure 4.2.

Figure 4.2: Membership Query

(ii) Equivalence query (EQ). The input is a grammar G’ and the output is

“yes” if G’ generates the same language as G (G’ is equivalent to G)

and “no” otherwise. If the answer is “no” a string w in the symmet-

ric difference of the language L(G) generated by G and the language

L(G’) generated by G’ is returned. This returned string w is called a

counterexample. See Figure 4.3.

.

In [Angluin, 1987], Angluin gave an algorithm for learning DFA from MQs

and EQs which, given any regular language, learns from MAT a minimum

DFA accepting the target language in polynomial time in the number of

states of the minimum DFA and the maximum length of any counterexample

provided by the teacher. She was the first who proved learnability of DFA
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Figure 4.3: Counterexample

via queries. In the next chapter we will explain the main important ideas of

her algorithm, which is referred as L∗.

Theorem 4.2.1 The family of regular languages is MAT -learnable in poly-

nomial time using the class of DFA.

MQs and EQs have established themselves as the standard combination

to be used for exact learning. Angluin proves that both of these queries are

necessary in order to infer DFA in polynomial time (either MQs o EQs alone

do not allow for polynomial inference).

Angluin’s model addresses an important tool available to a child, i.e.,

queries to a teacher (usually, a family adult member). Therefore, we con-

sider that query learning model might be useful when representing several

aspects of the process of children’s language acquisition.

However, the type of queries introduced with this model are quite un-

natural for real learning environments. For instance, when the learner asks

about a word in the language, the teacher’s answer is very simple, yes or
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no. We consider that this hypothesis is oversimplified for a normal learning

process. And, on the other hand, a query such as a equivalency query, will

never be produce in a real situation; a child will never ask to the adult if her

grammar is the correct one. Therefore, what about learning from another kind

of queries? Why do not model a more natural way of answering? (according

to the linguistic reality). In Chapter 7 we propose several answers to that

questions.

Although this model is known as active learning since the learner can ask

queries to the teacher, we can see that the learner does not really interact with

the teacher; he can ask MQs or EQs, but he does not really communicate with

the teacher producing some sentences, etc. In the communication between

children and adults we can see that the role of the children is more active,

and not limited to ask this kind of queries.

Moreover, we consider that this model does not adequately reflect the fact

that a learner, during the process of language acquisition, potentially gets

access to all correct statements. In Chapter 7 we propose a solution to that

problem.

Angluin’s model is known as exact learning. From a linguistic point of view,

every person has (small) imperfections in their linguistic competence, despite

the fact that normally they have a good command of their language. There-

fore, this is an argument showing that learning the exactly correct language

is a hard task.

The teacher in this model is assumed to know everything and always gives

the correct answers. Therefore, he is an ideal teacher that does not correspond

with a real situation.
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4.3. PAC learning

Exact learning has always been considered a hard problem. Valiant in-

troduced probably approximately correct learning (PAC learning, in short)

[Valiant, 1984], which is a distribution-independent probabilistic model of

learning from random examples. It is is widely used for learning several dif-

ferent concept classes approximately.

In this model, the inference algorithm takes a sample as input and produces

a grammar as output. A successful inference algorithm is one that with high

probability finds a grammar whose error is small.

An unknown distribution over the examples exists, and examples

are sampled under this distribution. Learning is done from this

sample, and the result is tested under the same distribution. It

is required to be able to learn under any distribution, but, since

one may be unlucky during the sampling processes, exactitude is

not required: a small (ε) error is permitted, and one should not do

worse than this error rate in more than very few (δ) cases. Number

and size of examples and run-time should be polynomial in 1/ε, 1/δ,

and the size of the target [de la Higuera, 2005, p. 7].

In this PAC learning model, more negative results have been proved than

positive results (for grammatical inference). Even for the case of DFA, most

results are negative. The requirement that the learning algorithm must learn

under any arbitrary (but fixed) probability distribution seems too strong.

Some positive results in this model can be found in [Ron et al., 1994].

We consider that, taking into account that exact identification is “too hard”

in natural language learning, approximately learning could be also a good

approach to deal children’s language acquisition. However, we guess that

the PAC model is perhaps too restrictive to study natural language learning.
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To consider that the examples have the same distribution throughout the

process, is too restrictive for practical situations.

It is conceivable that most practical learning scenarios do not

place such stringent restrictions on the learnability of concept

classes. On the contrary, practical learning scenarios feature helpful

learning environments (for example, a knowledgeable teacher might

guide the learner by answering queries or by carefully selecting train-

ing examples that would enable the learner to learn quickly and ef-

ficiently). [Parekh and Honavar, 2000, p. 208].

As some authors state:

Even minor adaptations of this model potentially trivialize the

learning task (see e.g. Parekh and Honavar (2000)), thus the para-

digm is not flexible enough to cover a wider range of learning situ-

ations. [Costa-Florêncio, 2003, p. 4].

Although we do not reject the model of PAC learning, this does not con-

stitute a subject of our research.
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Chapter 5

Algorithms in Grammatical

Inference

In the sequel we present an overview of the learnability results that have been

obtained in the framework of Grammatical Inference using only positive data

and queries.

We are going to concentrate on this kind of results because:

a) – Most grammatical inference systems are based on only positive data.

– The availability of positive data in children’s language acquisition is

trivially accepted.

b) – Learning from queries is another important learning paradigm that

has been exhaustively studied in the field of Grammatical Inference.

– Queries provide additional information to the learning process and

could be considered an important tool available to the child.

77
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5.1. Learning from only positive data

Learning from only positive data is an attractive paradigm of learning. As

C. de la Higuera pointed out,

(...) the problem of learning from positive data alone is

probably the most practical of grammatical inference settings

[de la Higuera, 2005, p. 12].

The importance of learning from positive data in natural learning is well

recognized. As we have seen, Gold pointed out in [Gold, 1967] that the acqui-

sition of a first language is based on sentences which are syntactically correct.

Nevertheless, Gold [Gold, 1967] proves that many classes of formal languages,

such as regular and context-free, cannot be learned solely from positive ex-

amples. Therefore, as natural languages are certainly more complex than

regular languages, the non learnability of regular raises a problem.

Despite this result, the most part of grammatical inference systems are

based on only positive data, mainly due to in the most part of applications

the available data is positive. In the 70’s and 80’s we can find many papers

dealing with this subject.

The main focus of research in the field of Grammatical Inference has

been set on learning REG grammars or DFA. The problem of identi-

fying DFA from examples have been studied quite extensively (see, e.g.,

[Angluin and Smith, 1983, Pitt, 1989]).

Since the class of regular languages are not learnable from positive data in

Gold’s model, we need to restrict this class somehow to subclasses to establish

identifiability results from positive data.

Angluin [Angluin, 1982] has introduced subclasses of regular languages,

called k-reversible languages (where k ≥ 0) and shown these classes are iden-

tifiable in the limit from positive data, requiring a polynomial time for up-
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dating conjectures. She also gave a characterization of identifiability from

positive data [Angluin, 1980].

Another interesting class of regular languages which can be identified in the

limit from positive data is the class of strictly deterministic regular languages

investigated by T. Yokomori [Yokomori, 1995].

Further, another subclass of regular languages called strictly k-testable lan-

guages is studied and shown to be identifiable in the limit from positive data,

together with its application to pattern recognition [Garćıa and Vidal, 1990]

and DNA sequence analysis [Yokomori and Kobayashi, 1998].

Denis et al. define subclasses of languages that can be identified through

non-deterministic finite automata by only positive data [Denis et al., 2002].

Fernau proposed a generalization of these results in [Fernau, 2000].

Other interesting results on identification from positive data are Angluin’s

pattern languages [Angluin, 1979] and Oncina et al.’s subsequential transduc-

ers [Oncina et al., 1993].

Taking into account that context-free grammars are more expressive than

regular grammars, the question of whether there are analogous results for

context-free grammars become interesting and important.

The class of context-free languages are not learnable from positive data

in Gold’s model and, therefore, if we want to study this class in the limit

from only positive data we need to restrict it to subclasses of context-free

grammars.

Yokomori [Yokomori, 1991] has considered a subclass of simple determin-

istic grammars, called very simple grammars, and studied the problem of

identifying the subclass in the limit from positive data. The class of very

simple languages forms a proper subclass of simple deterministic languages

and is incomparable to the class of regular languages. This class of languages

is also known as the class of left Szilard languages of context-free grammars.
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Yokomori has shown that the class of very simple grammars is polyno-

mial time identifiable in the limit from positive data (in the sense described

in section 4.1.3 – definition 4.1.4). Therefore, this result has provided the

first instance of language class containing non-regular languages that can be

identified in the limit from positive data in polynomial time.

Sakakibara has shown that there exist a class of CF grammars called re-

versible context-free grammars, which can be identified in the limit from pos-

itive presentations of structured strings [Sakakibara, 1992]. Makinen inves-

tigated a subclass of reversible context-free grammars called type invertible

grammars, that can be identified from positive presentation of structured

strings in time linear in the size of the inputs [Makinen, 1992].

Therefore, research on learning from only positive data has been focus on

regular or context-free languages. Surveys on the subject can be found in

[Sakakibara, 1997], [de la Higuera, 2005].

5.1.1. Learning context-sensitive languages

Since more generative capacity than context-free grammar is required to de-

scribe natural languages, a question arises: what about learning context-

sensitive languages using positive data? If we take a look on the literature

of the field, there is not too many references about learning context-sensitive

languages. Due to the complexity of this class, the results are scarce. How-

ever, there is an important result that we would like to present here.

Arikawa et al. [Arikawa et al., 1989] developed a framework for language

learning called elementary formal system (or EFS), which was originally in-

troduced by Smullyan [Smullyan, 1961]. This framework was refined, among

others, in [Shinohara, 1990]. In a word, EFS is a logic program over Σ+.

Arikawa showed that EFS can be used as a natural device to define formal

languages. We will present here some of the more impressive results without
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going into too much detail (we will based on ([Shinohara, 1994]).

An EFS is a finite set of definite clauses. For example,

Γ = {p(a, b, c) ←; p(ax, by, cz) ← p(x, y, z); q(x, y, z) ← p(x, y, z)}

is an EFS, where:

• a, b, c are constant symbols taken from an alphabet Σ.

• x, y, z are variables.

• p, q are predicate symbols.

Finite strings consisting of constant symbols and variables are also called

patterns. Two inference rules are used in EFS: one is an application of a

substitution for variables by nonempty words, and the other is modus ponens.

The language defined by Γ and q is:

L(Γ, q) = {w ∈ Σ+|q(w) is provable from Γ} = {anbncn|n ≥ 1}.

Let the length of an atom be the sum of lengths of patterns in it. A

definite clause A ← B1, ..., Bn is called length-bounded if the total length of

B1θ, ..., Bnθ does not exceed the length of Aθ for any substitution θ.

The EFS Γ in the above example is length-bounded. The class of languages

definable by length-bounded EFS coincides with the class of context-sensitive

languages.

Shinohara showed in [Shinohara, 1990] that the class of languages definable

by length-bounded EFS consisting of at most n clauses is inferible from

positive data for any n.

In [Shinohara, 1994] Shinohara tried to extend these results. First, he

showed a sufficient condition for inferability from positive data in a more

general setting.
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A concept defining framework is a triple (U,E,M) of a universe U of ob-

jects, a universe E of expressions, and a semantic mapping M from finite

sets of expressions to concepts. A finite set of expressions is called a formal

system.

M is monotonic if for any formal systems Γ′ and Γ, Γ′ ⊆ Γ implies M(Γ′) ⊆
M(Γ).

A formal system Γ ⊆ E is said to be reduced with respect to a finite set

X ⊆ U , if X ⊆ M(Γ) but X 6⊆ M(Γ′) for any Γ′ ⊆ Γ.

A concept defining framework (U,E,M) is said to have bounded finite thick-

ness, if M is monotonic, and for any finite set X ⊆ U and any n ≥ 0

{R ⊆ U |R = M(Γ), Γ ⊆ E, card(Γ) ≤ n, Γ is reduced with respect to X}

consists of finitely many concepts.

In any concept defining framework (U,E, M) that has bounded finite thick-

ness, the class of concepts defined by formal systems consisting of at most n

expressions is shown to be inferable from positive data for any n.

This general result is applied to several concept defining frameworks. As

corollaries:

Corollary 5.1.1 For any n ≥ 0, the class of languages definable by length-

bounded EFS consisting in at most n clauses is inferable from positive data.

Corollary 5.1.2 For any n ≥ 0, the class of languages defined by context-

sensitive grammar consisting of at most n productions is inferable from posi-

tive data.

Corollary 5.1.3 For any n ≥ 1, the class of minimal models of linear Prolog

programs consisting of at most n clauses is inferable from positive data.
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Since context-sensitive grammars are linguistically interesting, Corollary

5.1.2. will be relevant to our work. One of our results presented in Chapter

8 is based on Shinohara’s result.

5.2. Learning via queries

As Balcázar et al. stated:

One of the main positive results in the computational learning

framework is that deterministic finite automata (dfa) can be learned

from membership and equivalence queries. [Balcázar et al., 1997, p.

1].

The learnability of DFA has been successfully studied in the con-

text of query learning. As we have pointed out before, Angluin proved

learnability of DFA via queries. Later, [Rivest and E.Schapire, 1993],

[Hellerstein et al., 1995] or [Balcázar et al., 1997] developed more efficient

versions of the same algorithm trying to increase the parallelism level, to

reduce the number of EQs, etc.

A question arises from Angluin’s result: can we extend the polynomial time

MAT learnability beyond the class of DFA? Following Angluin’s seminal

work on learning DFA, research on MAT learnability has been extended

beyond the class of DFA.

Yokomori [Yokomori, 1994] has studied efficient identification of non-

deterministic finite automata from MQs and EQs. Also in [Yokomori, 1996],

Yokomori learns 2-tape automata from both queries and counterexamples.

Angluin [Angluin, 1990] has shown that the class of CF grammars can-

not identified in polynomial time using only EQs. Moreover, Angluin and

Kharitonov [Angluin and Kharitonov, 1991] have shown that the problem of

identifying the class of CF grammars from MQs and EQs is computationally



84 CHAPTER 5

as hard as the cryptographic problems (for which there is currently no known

polynomial-time algorithm). On the other hand, if structural information is

available, Sakakibara [Sakakibara, 1990] proves that the class of context-free

grammars is identifiable in the Angluin’s model.

In [Angluin, 1990], Angluin showed that the presence of the approximate

fingerprint property is a sufficient condition for languages to be learnable by

EQs. The condition is proved necessary by Gavaldà in [Gavaldà, 1993].

Ishizaka has investigated a subclass of CF grammars called simple deter-

ministic grammars, and showed that it can be identified in polynomial time

using MQs and EQs in terms of general CF grammars [Ishizaka, 1990].

Another technique often used to obtain positive results is to reduce an

inference problem to some other inference problem whose result is known.

Takada [Takada, 1988] and Sempere and Garćıa [Sempere and Garćıa, 1994]

showed that the learning problem of even linear languages can be solved

by reducing it to the learning of REG languages. Note that the class of

even linear languages properly contains the class of REG languages and is

a proper subclass of context-free languages. In [Fernau, 1999] is showed also

that simple even linear matrix languages can be inferred in polynomial time

using Angluin’s model.

5.2.1. The Learning Algorithm L∗

Since it is conjectured that richer classes than DFA cannot be inferred

through a polynomial use of MAT [Angluin, 1987], Angluin’s algorithm for

learning DFA from MAT , known as L∗, become an important reference and

one of the most important results in the framework of learning from queries.

In the sequel we briefly review the learning algorithm L∗. This algo-

rithm, its correctness proof, and complexity analysis are described in detail

in [Angluin, 1987].
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Let L be the unknown regular set and let Σ be the alphabet of L.

5.2.1.1. Observation table

The information is organized into an observation table consisting of three

parts: a nonempty finite prefix-closed set S of strings, a nonempty finite

suffix-closed set E of strings, and a finite function T mapping ((S ∪ SΣ) ·E)

to {0, 1}. The observation table will be denoted (S, E, T ).

The interpretation of T is that T (w) is 1 if and only if w is a member of

the unknown regular set. The observation table initially has S = E = {λ},
and it is augmented as the algorithm runs.

An observation table can be visualized as a two-dimensional array with

rows labeled by elements of S ∪ SΣ and columns labeled by elements of E

with the entry for row s and column e equal to T (s · e). If s is an element of

(S ∪ SΣ) then row(s) denotes the finite function from E to {0, 1} defined by

f(e) = T (s · e).
The algorithm L∗ uses the observation table to build a DFA. Rows la-

beled by the elements of S are the candidates for states of the automaton

being constructed, and columns labeled by the elements of E correspond to

distinguishing experiments for these states. Rows labeled by elements of SΣ

are used to construct the transition function.

Closed, consistent observation tables. An observation table is called closed

if for every t in (SΣ − S) there exists an s in S such that row(t) = row(s).

An observation table is called consistent if for any s1, s2 in S such that

row(s1) = row(s2), we have row(s1 · a) = row(s2 · a), ∀a ∈ Σ.

If (S, E, C) is a closed, consistent observation table, we define a correspond-

ing automaton A(S, E, C) = (Q, Σ, δ, q0, F ), where Q, q0, F and δ are defined

as follows:

Q = {row(s) | s ∈ S}
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q0 = row(λ)

F = {row(s) | s ∈ S and T (s) = 1}
δ(row(s), a) = row(s · a)

See [Angluin, 1987] for details.

5.2.1.2. The Learner L∗

The learner algorithm uses as its main data structure the observation table

that we described in the previous subsection. Initially S = E = {λ}. To

determine T , L∗ asks MQs for λ and each a in Σ. This initial observation

table may or may not be closed and consistent.

The main loop of L∗ tests the current observation table (S, E, T ) in order

to see if it is closed and consistent. If (S, E, T ) is not closed, then L∗ adds a

new string to S and updates the table asking MQs for missing elements. If

(S, E, T ) is not consistent, then L∗ adds a new string to E and updates the

table using MQs for missing elements.

When the learner’s automaton is closed and consistent the learner asks an

EQ. The teacher’s answers can be “yes” (in which case the algorithm termi-

nates with the output A(S, E, T )) or “no”(in which case a counterexample is

provided, all its prefixes are added to S and the table is updated using MQs).

For the proof of the correctness and termination of L∗, see [Angluin, 1987].

The running time of L∗ is bounded by a fixed polynomial of two parameters:

n (it is the number of states of the minimum DFA accepting L), and m (it is

the length of the longest counterexample presented by the teacher). For the

details of the proof, see [Angluin, 1987].

The algorithm L∗ is discribed in Figure 5.1.
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Procedure Learning with L∗

1) Initialize S and E to {λ};
2) Ask MQs for λ and each a ∈ Σ;

3) Construct the initial observation table (S,E, T );

4) Repeat

5) While (S, E, T ) is not closed or not consistent

6) If (S,E, T ) is not closed then

7) find s in (SΣ− S) such that row(s) /∈ rows(S);

8) add s to S; //actually remove first s from SΣ

9) extend SΣ accordingly and T to (S ∪ SΣ)E using MQs;

10) If (S,E, C) is not consistent then

11) find s1,s2 ∈ S, a ∈ Σ and e ∈ E such that

12) row(s1) = row(s2), and C(s1 · a · e) 6= T (s2 · a · e);
13) add a · e to E;

14) extend T to (S ∪ SΣ)E using MQs;

15) Once (S,E, T ) is closed and consistent, let A = A(S,E, T ).

16) Make the conjecture A.

17) If the Teacher replies with a counterexample t, then

18) add t and all its prefixes to S

19) and extend T to (S ∪ SΣ)E using MQs;

20) Until the teacher replies yes to the conjecture A

21) Halt and output M.

Figure 5.1: The Learner L∗
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5.2.1.3. Running Example

We explain how the algorithm L∗ runs using an example. Let the alpha-

bet Σ = {0, 1}, and a language L = (0 + 110)+. The minimal automaton

associated with the mentioned language is showed in Figure 5.2.

Figure 5.2: Minimal automaton associated to the language L1 = (0 + 110)+

Initially the learner starts with the following observation table described as

Table 5.1.

Table 5.1: S = {λ}, E = {λ}
T1 λ

λ 0

0 1

1 0

This table is not closed because row(0) does not belong to rows(S). L∗

chooses to add the string 0 to S, 00 and 01 to SΣ − S, and then queries 00

and 01 to construct the observation table T2 shown in Table 5.2.
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Table 5.2: S = {λ, 0}, E = {λ}
T2 λ

λ 0

0 1

1 0

00 1

01 0

This observation table is closed and consistent, so L∗ makes a conjecture

of the automaton A1, shown in Figure 5.3.

Figure 5.3: Associated automaton: A1

A1 is not a correct automaton for L, so the teacher selects a counterexample.

In this case we assume that the counterexample 10 is returned (it is not in L

but accepted by A1).

To process the counterexample 10, L∗ adds the strings 1 and 10 to S (the

string λ is already in S), and queries the strings 11, 100 and 101 to construct

the observation table T3 shown in Table 5.3.
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Table 5.3: S = {λ, 0, 1, 10}, E = {λ}
T3 λ

λ 0

0 1

1 0

10 0

00 1

01 0

11 0

100 0

101 0

This observation table is closed, but not consistent since row(λ) = row(1)

but row(0) 6= row(10). Thus L∗ adds the string 0 to E, and queries the

necessary strings to construct the observation table T4 shown in Table 5.4.

Table 5.4: S = {λ, 0, 1, 10}, E = {λ, 0}
T4 λ 0

λ 0 1

0 1 1

1 0 0

10 0 0

00 1 1

01 0 0

11 0 1

100 0 0

101 0 0
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This observation table is closed, but not consistent since row(1) = row(10)

but row(11) 6= row(101). Thus L∗ adds the string 10 to E, and queries the

necessary strings to construct the observation table T5 shown in Table 5.5.

Table 5.5: S = {λ, 0, 1, 10}, E = {λ, 0, 10}
T5 λ 0 10

λ 0 1 0

0 1 1 0

1 0 0 1

10 0 0 0

00 1 1 0

01 0 0 1

11 0 1 0

100 0 0 0

101 0 0 0

This observation table is closed and consistent, so L∗ conjectures the au-

tomaton A2 shown in Figure 5.4.
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Figure 5.4: Associated automaton: A2

A2 is not a correct acceptor for L, so the teacher answers the conjecture

with a counterexample. We suppose that the counterexample supplied is

11110, which is not in L but is accepted by A2.

L∗ adds the counterexample and all its prefixes to S and constructs the

observation table T6 shown in Table 5.6.

This table is found to be closed but not consistent, since row(λ) = row(11)

but row(1) 6= row(111).

Thus L∗ adds the string 110 to E and queries the necessary strings to

construct the observation table T7 shown in Table 5.7.

This table is closed and consistent. The automaton conjectured by L∗ now

corresponds to the correct acceptor for the language L, so the Teacher replies

to this conjecture with yes and L∗ terminates with this automaton as its

output.

The total number of queries during this run of L∗ is 3 EQs (the last one

was successful) and 44 MQs.
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Table 5.6:
S = {λ, 0, 1, 10, 11, 111, 1111, 11110},
E = {λ, 0, 10}

T6 λ 0 10

λ 0 1 0

0 1 1 0

1 0 0 1

10 0 0 0

11 0 1 0

111 0 0 0

1111 0 0 0

11110 0 0 0

00 1 1 0

01 0 0 1

100 0 0 0

101 0 0 0

110 1 1 0

1110 0 0 0

11111 0 0 0

111100 0 0 0

111101 0 0 0

Table 5.7:
S = {λ, 0, 1, 10, 11, 111, 1111, 11110},
E = {λ, 0, 10, 110}

T7 λ 0 10 110

λ 0 1 0 1

0 1 1 0 1

1 0 0 1 0

10 0 0 0 0

11 0 1 0 0

111 0 0 0 0

1111 0 0 0 0

11110 0 0 0 0

00 1 1 0 1

01 0 0 1 0

100 0 0 0 0

101 0 0 0 0

110 1 1 0 1

1110 0 0 0 0

11111 0 0 0 0

111100 0 0 0 0

111101 0 0 0 0
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Chapter 6

Simple many-dimensional

External Contextual grammars

(SECp)

6.1. Introduction

Gold proves in [Gold, 1978] that superfinite classes are not identifiable in the

limit from positive data.

According to the general definition, the ECp grammar family is superfinite,

since the base of G can be any finite set of p-words. We denote by p the

dimension and by q the number of contexts.

Theorem 6.1.1 The class ECp is superfinite.

Proof. Let p = q = 1. For any finite set S of strings over Σ, consider a ECp

with a base set S and an empty context set. Then, such a ECp generates

a finite language S. A ECp with a base λ and a context set {[(a, λ)]} can

generate an infinite language a∗. Therefore, the language class is superfinite.

¤
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Corollary 6.1.2 ECp is not identifiable in the limit from positive data.

Hence, we need to put some restrictions to make it possible to learn this

class in the limit from only positive data.

6.2. Formal Definition

Definition 6.2.1 A Simple p-dimensional External Contextual grammar is

G = (Σ, B, C), where Σ is the alphabet of G, B is a singleton of p-words over

Σ called the base of G, and C is a finite set of p-contexts over Σ. C is called

the set of contexts of G.

Therefore, a Simple many-dimensional External Contextual grammar is

a subfamily of ECp. The main difference is that the base of a Simple p-

dimensional External Contextual grammar is restricted to a single p-word.

The family of all Simple p-dimensional External Contextual languages is

denoted by SECp.

In what follows, we use the notation SECp for referring to families of both

languages and grammars, as far as no confusion arises from the context.

6.3. Properties of SECp grammars

This section is based on [Kudlek et al., 2002].

Remark 6.3.1 Note that:

• EC = EC1 = SEC1

• SECp ⊆ SECr, for all 1 ≤ p ≤ r.

Theorem 6.3.2 For every integer p ≥ 2, the family SECp is a MCS family

of languages.
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Proof. 1. SECp ⊆ ECp and ECp contains semilinear languages only (see

[Kudlek et al., 2002]).

2. By membership problem is understood the following: given a language

L ⊆ Σ∗ (defined by a certain type of grammar, automaton, etc.) and

a word w ∈ Σ∗, decide algorithmically whether w is in L or not. Since

the membership problem is polynomially decidable for ECp, it follows

that each family SECp, p ≥ 1, is parsable in polynomial time (see

[Kudlek et al., 2002], [Victor, 2005]).

3. The following languages are in SECp for every p ≥ 2:

- multiple agreements: L1 = {anbncn | n ≥ 0}
- crossed agreements: L2 = {anbmcndm | n, m ≥ 0}
- duplication: L3 = {ww | w ∈ {a, b}∗}
It is easy to construct SECp grammars for each of these languages:

(i) L1 = {anbncn | n ≥ 0}. It is generated by the SECp grammar

G1 = ({a, b, c}, B, C), where:

- B = {(λ, λ)}
- C = { c1 = [(a, b), (c, λ)]}

(ii) L2 = {anbmcndm | n,m ≥ 0}. It is generated by the SECp grammar

G2 = ({a, b, c, d}, B, C), where:

- B = {(λ, λ)}
- C = { c1 = [(a, λ), (c, λ)], c2 = [(λ, b), (λ, d)]}

(iii) L3 = {ww | w ∈ {a, b}∗}. It is generated by the SECp grammar

G3 = ({a, b}, B, C), where:



100 CHAPTER 6

- B = {(λ, λ)}
- C = { c1 = [(a, λ), (a, λ)], c2 = [(b, λ), (b, λ)]}

¤

Comment 6.3.3 One can easily prove that the language of k multiple agree-

ments L′1 = {an
1a

n
2 ...a

n
k |n ≥ 0}, where k ≥ 3, is in SECp if k = 2p, and in

SECp+1 if k = 2p + 1. In other words, SECp can count to 2p.

Proof. Let k ≥ 3, then we distinguish the following two cases.

Case I) k = 2p : L′1 ∈ SECp

Let G = (Σ, B, C), with B = {(λ1, λ2, ..., λp)} and C =

[(a1, a2), (a3, a4), ..., (a2p−1, a2p)]. Then it is clear that L(G) = L′1 and

L(G) ∈ SECp.

Case II) k = 2p + 1 : L′1 ∈ SECp+1

Let G = (Σ, B, C), with B = {(λ1, λ2, ..., λp+1)} and C =

[(a1, a2), (a3, a4), ..., (a2p−1, a2p), (a2p+1, λ)]. Then it is clear that L(G) = L′1
and L(G) ∈ SECp+1.

¤

Also, it can be proved that the language of marked duplications L′3 =

{wcw|w ∈ {a, b}∗} is in SEC2.

Proof. Let G = (Σ, B, C), with B = {(c, λ)} and C = {c1 =

[(a, λ), (a, λ)], c2 = [(b, λ), (b, λ)]}. Then it is clear that L(G) = L′3 and

L(G) ∈ SEC2. ¤

Necessary conditions for a language to be a SECp language:
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Lemma 6.3.4 Let L ⊆ Σ∗ be a language in SECp, p ≥ 1. There exist two

integers n ≥ 1 and k ≥ 1 such that:

(i) (pumping an arbitrary context) If w ∈ L such that |w| > n, then w

has a decomposition w = x1u1y1v1x2u2y2v2 . . . xpupypvpxp+1, with 0 <

|u1|+ |v1|+ |u2|+ |v2|+ . . . + |up|+ |vp| ≤ k, such that, for all i ≥ 0, the

following words are in L:

wi = x1u
i
1y1v

i
1x2u

i
2y2v

i
2 . . . xpu

i
pypv

i
pxp+1

(ii) (pumping an innermost context) If w ∈ L such that |w| > n, then w

has a decomposition w = x1u1y1v1x2u2y2v2 . . . xpupypvpxp+1, with 0 <

|u1|+ |v1|+ |u2|+ |v2|+ . . .+ |up|+ |vp| ≤ k, and |y1|+ |y2|+ . . .+ |yp| ≤ n,

such that, for all i ≥ 0, the following words are in L:

wi = x1u
i
1y1v

i
1x2u

i
2y2v

i
2 . . . xpu

i
pypv

i
pxp+1

(iii) (pumping an outermost context) If w ∈ L such that |w| > n, then w has

a decomposition w = u1y1v1u2y2v2 . . . upypvp, with 0 < |u1|+ |v1|+ |u2|+
|v2| + . . . + |up| + |vp| ≤ k, such that, for all i ≥ 0, the following words

are in L:

wi = ui
1y1v

i
1u

i
2y2v

i
2 . . . ui

pypv
i
p

(iv) (pumping all occurring contexts) If w ∈ L such that |w| > n, then w has

a decomposition w = u1y1v1u2y2v2 . . . upypvp, with 0 < |y1|+ |y2|+ . . . +

|yp| ≤ n, such that, for all i ≥ 0, the following words are in L:

wi = ui
1y1v

i
1u

i
2y2v

i
2 . . . ui

pypv
i
p

(v) (interchanging contexts) If w,w′ ∈ L such that |w| > n and |w′| >

n, then w and w′ has decompositions w = x1u1y1v1x2u2y2v2 . . .

xpupypvpxp+1, and w′ = x′1u
′
1y
′
1v
′
1x
′
2u
′
2y
′
2v
′
2 . . . x′pu

′
py
′
pv
′
px
′
p+1 with 0 <

|u1| + |v1| + |u2| + |v2| + . . . + |up| + |vp| ≤ k, and with 0 < |u′1| +
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|v′1| + |u′2| + |v′2| + . . . + |u′p| + |v′p| ≤ k such that also the following two

words z and z′ are in L:

z = x1u
′
1y1v

′
1x2u

′
2y2v

′
2 . . . xpu

′
pypv

′
pxp+1,

z′ = x′1u1y
′
1v1x

′
2u2y

′
2v2 . . . x′pupy

′
pvpx

′
p+1.

For the proof we refer to [Kudlek et al., 2002].

Theorem 6.3.5 If p, r ≥ 1 such that p < r, then SECp ⊂ SECr and the

inclusion is strict.

Proof. Clearly, SECp ⊆ SECr (see Remark 6.3.1). It remains to be shown

that the inclusion is strict. Consider the language:

L = {an
1b

n
1a

n
2b

n
2 ...a

n
r bn

r |n ≥ 0}
Let G = {Σ, B, C} be a SECr grammar where:

• Σ = {a1, a2, ..., ar, b1, b2, ..., br}
• B = {(λ1, λ2, ..., λr)}
• C = {[(a1, b1), (a2, b2), ..., (ar, br)]}

It is easy to see that L(G) = L and hence L ∈ SECr. On the other hand,

L is not in SECp, since L does not satisfy the condition from Corollary 6.3.4

(i). Therefore, SECp is strictly included in SECr.

¤

By combining Theorem 6.3.2 and Theorem 6.3.5, we obtain the following

theorem:

Theorem 6.3.6 The families (SECp)p≥2 define an infinite hierarchy of

MCSL.
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Figure 6.1: Inifinite hierarchy of the families SECp

We can see in Figure 6.1 that all families of languages depicted are MCS

(except CS). Note that every arrow denotes a strict inclusion.

Now, we investigate the interrelationships between the families SECp, p ≥
1, and the families of languages in the Chomsky hierarchy.

Theorem 6.3.7 1. SECp ⊂ CS, for every p ≥ 1.
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2. Each family SECp, p ≥ 2, is incomparable with the family CF . The

family SEC1 is strictly contained in CF .

3. Each family SECp, p ≥ 1, is incomparable with the family REG.

Proof. 1. Since no deletion is observed in the derivation process of a string

in a SECp grammar, the first statement follows.

2. From Theorem 6.3.2 it follows that every family SECp, p ≥ 2, contains

noncontext-free languages. Consider now the context-free language L =

{anbn|n ≥ 0}∗. Assume that L can be generated by a SECp grammar

G = (Σ, B, C). Consider the following word from L:

w = ai1bi1ai2bi2...airbir,

where p < r. One can easily see that w does not satisfy Corollary 6.3.4

(iv), and hence L is not in SECp, for any p ≥ 2.

The second part of this statement follows from Remark 3.4.3.

3. Note that each family SECp, p ≥ 1, contains nonregular languages.

Now, consider the regular language L = a∗ ∪ b∗. One can verify that L

does not satisfy Corollary 6.3.4 (v), i.e. the property of interchanging

the contexts, and thus L is not in SECp, for any p ≥ 1.

¤

Let SEC∗ be the family:

SEC∗ =
⋃
p≥1

SECp

Remark 6.3.8 One can easily see that SEC∗ is also a MCS family of lan-

guages. Additionally, SEC∗ is strictly contained in the family CS and is

incomparable with the families CF and REG.
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Theorem 6.3.9
⋃

SECp,r ⊂ CS

Proof. The family of CS languages contains non-SEC languages. Consider

for example L = {a2n |n ≥ 1}. We can easily see that L could not be generated

by a SEC grammar. One of the reasons is that SEC languages have the

property of bounded length increase (i.e., there is a constant t such that for

each x ∈ L, |x| > t, there is y ∈ L with 0 < |x| − |y| ≤ t). Clearly, this is not

fulfilled by the chosen language. ¤

Moreover, the SECp grammar has another property with regard to ECp

grammars. We can find some languages showing the proper inclusion:

SECp ⊂ ECp

For example, L = {a, b, c}. It is generated by an ECp grammar, but never

could be generated by a SECp grammar because of the restricted features of

SECp grammars. This demonstrates that SECp is not superfinite.

The two relevant closure properties for learning are the decidability of mem-

bership and equivalence. The membership problem for SEC, as we mention

before, is decidable in polynomial time. However, the decidability of equiva-

lence for SEC is still an open problem.

Figure 6.2 shows the location of the SECp family in the Chomsky hierarchy.
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Figure 6.2: The SECp family occupies an orthogonal position in the Chomsky

hierarchy.



Chapter 7

Correction queries

7.1. What kind of data is available in the process of children’s lan-

guage acquisition?

The availability of positive evidence (sentences in the language to be learned)

in children’s language acquisition is trivially accepted. As far as we know, no

researcher has suggested that children do not receive this kind of data. And

it is reasonably, since children are exposed to a large amount of grammatical

sentences uttered by adults.

Pinker give us the following definition of positive evidence.

The term “positive evidence” refers to the information available

to the child about which strings of words are grammatical sentences

of the target language.

By “grammatical”, incidentally, linguists and psycholinguists mean

only those sentences that sound natural in colloquial speech, not

necessarily those that would be deemed “proper English” in formal

written prose. Thus split infinitives, dangling participles, slang, and

so on, are “grammatical” in this sense (and indeed, are as logical,

systematic, expressive, and precise as “correct” written English, of-

107



108 CHAPTER 7

ten more so; see Pinker, 1994a). Similarly, elliptical utterances,

such as when the question Where are you going? is answered with

To the store), count as grammatical. Ellipsis is not just random

snipping from sentences, but is governed by rules that are part of

the grammar of one’s language or dialect. For example, the gram-

mar of casual British English allows you to answer the question Will

he go? by saying He might do, whereas the grammar of American

English doesn’t allow it. [Pinker, 1995, 145]

He considers, as other authors [Wexler and Culicover, 1980], that the only

kind of information available to children is grammatical sentences from the

language they are learning.

That is, when a parent uses a sentence, can the child assume

that it is part of the language to be learned, or do parents use

so many ungrammatical sentences random fragments, slips of the

tongue, hesitations, and false starts that the child would have to

take much of it with a grain of salt? Fortunately for the child, the

vast majority of the speech they hear during the language-learning

years is fluent, complete, and grammatically well-formed: 99.93%,

according to one estimate (Newport, Gleitman, & Gleitman, 1977).

Indeed, this is true of conversation among adults in general (Labov,

1969).

Thus language acquisition is ordinarily driven by a grammatical

sample of the target language. [Pinker, 1995, p. 146].

Positive data does not directly give information to children about which

strings are ungrammatical. If children hear a sentence, they can assume that

it belongs to the language. But if they do not hear a sentence, it does not

imply that the sentence is ungrammatical (perhaps they have not heard the

sentence).
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Therefore, it is important to know whether children get and need nega-

tive data. The absence of negative examples during the process of children’s

language acquisition has been used to argue in favor of innate knowledge

in children. If negative data is not available to the child, any child that

overgeneralizes will have no way of knowing that she is wrong ([Gold, 1967],

[Pinker, 1979], [Pinker, 1989]). Therefore, they must have some mental mech-

anism that avoids such situations.

The putative absence from children’s linguistic environments of

negative evidence, about which sentences are ungrammatical in the

ambient language, has been used to argue that some form of innate

grammatical knowledge is necessary for them to recover from over-

generalization errors. These arguments are facilitated in practice

by the assumption that adult speech is to be identified with positive

evidence, but that negative evidence, if it existed, would have to be

internal to children’s minds. [Marcotte, 2004, p. 1].

For example, G. F. Marcus states that a child would require internal mech-

anisms to unlearn grammatical errors and that negative evidence is not nec-

essary to the language acquisition task.

Several recent studies argue that parents provide noisy feedback,

that is, certain discourse patterns that differ in frequency depend-

ing on the grammaticality of children’s utterances. However, no one

has explicitly discussed how children could use noisy feedback, and

I show that noisy feedback is unlikely to be necessary for language

learning because (a) if noisy feedback exists it is too weak: a child

would have to repeat a given sentence verbatim at least 85 times

to decide with reasonable certainty that it is ungrammatical; (b) no

kind of noisy feedback is provided to all children at all ages for all

types of errors; and (c) noisy feedback may be an artifact of defining
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parental reply categories relative to the child’s utterance. For exam-

ple, because nearly all parental speech is grammatical, exact repe-

titions (verbatim repetitions of child utterances) necessarily follow

more of children’s grammatical utterances than their ungrammati-

cal utterances. There is no evidence that noisy feedback is required

for language learning, or even that noisy feedback exists. Thus in-

ternal mechanisms are necessary to account for the unlearning of

ungrammatical utterances. [Marcus, 1993, p. 53].

Demonstrating the availability of negative evidence for children would make

it unnecessary to postulate many of the innate constraints.

Therefore, whereas the existence of positive information is widely accepted,

the availability of negative evidence remains a matter of substantial contro-

versy.

However, first of all we should ask ourselves: what is exactly negative

evidence?

As J.P. Marcotte stated in [Marcotte, 2004], there was no consistency in the

terms defined in previous works. For example, G.F. Marcus [Marcus, 1993]

uses the terms negative evidence and indirect negative evidence to refer to

two different kinds of evidence. He gives the following definitions for nega-

tive evidence: information about which strings of words are not grammati-

cal sentences([Marcus, 1993, p. 53]), information about which sentences do

not belong to [a] language ([Marcus, 1993, p. 54]), and a parental behav-

ior that provides information about when sentences are not in the language

([Marcus, 1993, p. 58]). And G.F. Marcus defines indirect negative evidence

as information about which sentences have not appeared in the input [...] based

on mechanisms internal to the child, rather than input external to the child

([Marcus, 1993, p. 55]).

As one can see, the last definition of negative evidence (which requires
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parental behavior as its source) seems to contradict the definition of indirect

negative evidence. However, G.F. Marcus intends no contradiction and he

draws the distinction between them in the following way: for the purposes

of this paper, I collapse [indirect negative evidence] with positive evidence.

([Marcus, 1993, p. 55]).

Therefore, all this terminology is, at best, confusing. That is why it is

important to clearly define what we understand by negative evidence.

M. Saxton gave, for example, an alternative definition of negative evidence,

based on the following idea:

(...) the unique discourse structure created in the juxtaposition

of child error and adult correct form can reveal to the child the

contrast, or conflict between the two forms, and hence provide a

basis for rejecting the erroneous form. [Saxton, 1997, p. 139].

Negative evidence in this sense can be understood as corrective input. He

performed experiments with 36 children (0-5 years), in order to compare the

effects of this kind of negative evidence with those of positive input, on the

acquisition of six novel irregular past tense forms. The results obtained were

that children reproduced the correct irregular model more often, and persisted

with fewer errors, following negative evidence rather tan positive input.

In [Saxton et al., 1998], M. Saxton concluded that corrective input was

more efficient than positive input for learning over time, due to the fact that

corrective input more clearly identifies the location of the error for the learner.

Performing a time series analysis on observational data, Mor-

gan et al. (1995) conclude that corrective recasts are not related to

future improvements in grammaticality. It is argued here, though,

that the data sets analysed in this study are inherently ill-suited

to the demands of time series analyses. The present study adopts
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an experimental approach in order to compare the effects of neg-

ative evidence versus positive input on the acquisition of irregular

past tense verb forms. Twenty-six children (mean age 3;10) par-

ticipated in a within-subjects design over a period of five weeks. It

was found that improvements in the grammaticality of child speech

were considerably greater in cases where negative evidence had been

provided. Moreover, children’s intuitions concerning the status of ir-

regular and overregularized forms more closely approximated adult

intuitions when corrective input was available. [Saxton et al., 1998,

p. 701]

L. Pearl stated that, since negative evidence does not exist naturally (e.g.,

ADULT:“Don’t say He should have drinked”), researchers have proposed that

children use subtle cues of failed communication (e.g., CHILD:“He should

have drinked it”, ADULT: ”He should have what?”), or that they learn from

only positive input (e.g., ADULT:“He should have drunk it”, CHILD: “Yeah,

he should have”) or from only corrective input (CHILD: “He should have

drinked it”, ADULT: “Right, he should have drunk it”). L. Pearl et al.,

made an experiment that examined children’s ability to use these three input

types to learn real English past participles over time. The results obtained

demonstrate the viability of learning from both positive and corrective evi-

dence.

As in previous research, we found that identifying the location

of the error -which corrective evidence provides- was extremely ef-

fective for improvements over time for all children and resulted in

high overall percentage correct for some children. However, positive

evidence (hearing the correct form) also yielded some improvements

over time for all children, as well as high overall percentage correct

for some children. The subtler cue of failed communication proved

to be ineffective for learning. [Pearl, 2004]
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Therefore, beliefs about whether or not children receive negative evidence

depends crucially on how one defines that concept.

If we consider that negative evidence is completely incorrect utterances

from the adult, or adult replies to a child’s ungrammatical utterance like

“That’s wrong”, “No, this is not how you should speak”, “I’m about to say

something ungrammatical, so pay attention”, we can state that this source of

evidence is very rare.

It is clear that parents do not simply present labeled nonsentences

to children in a systematic manner; no parents (or other speakers)

say “Here is a sentence, and it is ungrammatical, and here is an-

other one, and this one is ungrammatical, and here is a third, which

is grammatical”. [Wexler and Culicover, 1980].

However, there is growing evidence that corrective input for grammatical

errors is widely available to children ([Farrar, 1992], [Morgan et al., 1995]).

(...) it is often remarked that children get feedback about what

they say. For example, parents commonly repeat what they children

say with corrections. [Denis, 2001, p. 38].

7.2. Relevance of corrections in learning processes

We will consider in this work that corrections are available to the child. By

correction we understand a repetition of children’s ungrammatical utterance

with correction. For instance, when children overgeneralize (conjugate irreg-

ular verbs as regular verbs) the adults correct them by repeating again the

same sentence, but instead of the ungrammatical form they say the correct

form.

The kind of correction that we are going to consider is exemplified in the

sequel:
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CHILD: They goed to the cinema.

ADULT: Right, they went to the cinema.

or in Spanish

CHILD: Ya hemos hacido la compra.

ADULT: Śı, ya hemos hecho la compra.

When the adult corrects to the child, it has not to be understood as a nega-

tive evidence. The correction give us both, positive and negative information:

• positive: adult returns a correction. This corrected string is information

about a string that is grammatically correct.

• negative: if a correction is received, this means that the string uttered

by the child was not grammatically correct.

Therefore, corrections should be considered as an especial case of evidence

in which positive and negative information will be available to the learner,

and not as only negative evidence in the strictest sense.

Some researchers (Pinker, Lebeaux, & Frost, 1987; Wexler &

Culicover, 1980) have argued that adult repetitions do not explic-

itly deny the permissibility of children’s speech and, therefore, can-

not be considered negative evidence. In this strict sense of “neg-

ative evidence”, it is true that children are rarely told, “No, you

said that wrong”. However, the information contained in adult

repetitious sequences is much greater than that in simple denials.

[Bohannon and Stanowicz, 1988, p. 688].

We are aware of the fact that the concept of correction could be larger

than the one considered here. For example, a child might overhear a cor-

rection made to another child. But at this point we feel that the kind of
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corrections we consider, we capture the essence of this phenomenon (without

overly complicating matters).

Although positive examples are an essential part of the language learning

process, several questions arise: could corrections play an important role in

the process of language learning? Could the child learn some aspects of the

language faster by means of corrections? Can corrections help to fix the

children’s grammar (in order not to repeat again the same errors)?

One can imagine all kinds of situations in which receiving a correction

might lead the child to revise a rule ([Nelson et al., 1995]). In fact, the pos-

sibility of this kind of evidence is even noted by Chomsky, who pointed out

that certain strings of words might be classed as nonsentences, as a result of

correction of the learner’s attempts on the part of the linguistic community

[Chomsky, 1965, p. 31].

Several researchers state there is some correlation between the availability

of this kind of data and children’s language development.

Researchers have long sought specific connections between as-

pects of children’s language environment and children’s language

development (Bates, Beeghley-Smith, Bretherton, & McNew, 1982;

Bohannon & Hirsh-Pasek, 1984; Hoff-Ginsburg & Shatz, 1982).

Although such relations are difficult to discern because of numer-

ous statistical problems (see Bohannon & Hirsh-Pasek, 1984; Bo-

hannon & Warren-Leubecker, in press), a common finding across

many studies is that adult repetition of children correlates with chil-

dren’s language growth (Bates et al., 19982). Children’s whose par-

ents repeat after them more often develop language more quickly

than those with less repetitious parents. Additionally, laboratory

experiments directly manipulating the amount of recasted repeti-

tion provided to children have shown enhanced learning of the re-

casted syntactic forms (Nelson et al., 1984). The mechanisms by
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which such repetitions may exert their influence in more natural

settings might be through differential provision following children’s

flawed speech. In this fashion, children are informed about their

language errors (i.e., given negative evidence) and simultaneously

provided with the correct form to contrast with their immediate er-

ror. [Bohannon and Stanowicz, 1988] p. 688

Some studies [Bohannon and Stanowicz, 1988], [Farrar, 1992] suggest that

children may indeed be sensitive to the differential adult behaviors

that follow language errors. And moreover, some of them try to

prove that natural language are formally learnable without innate knowl-

edge when some form of corrective feedback is available ([Moerk, 1983],

[Bohannon and Stanowicz, 1988]).

We will not concern ourselves with this issues here (whether or not innate

knowledge is required in natural language learning). Instead, we will focus

on the role of corrections in language acquisition.

We do not consider that corrections are the main source of information

received during the process of language acquisition; of course, positive data

play the main role in that process. However, we have found several linguis-

tic arguments that support the presence of corrections in children’s language

learning. Therefore, perhaps, we should take into account corrections in stud-

ies of language learning, and consider them as a helpful additional information

available to children during the learning process. And of course, we do not

consider the corrections as a purely negative data, but combination of both

positive and negative information.

When we consider how a child learns a language, this linguistic exercise is

guided by the adult. There are four possibilities for how the child’s language

could differ from the adult language. Let’s denote by H the child’s hypothesis

language and by T the target language (language to be acquired).
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1. H is disjoint from T . That situation would correspond to the child learn-

ing English, for example, who cannot say a single well-formed English

sentence. See Figure 7.1

Figure 7.1: H disjoint from T

2. H and T intersect. The child would be able to say some English sen-

tences, e.g., “he went”. And she also utter some sentences that are not

correct, e.g., “we breaked it”. See Figure 7.2

Figure 7.2: H and T intersect

3. H is a subset of T . Here the child would have mastered some of English

(which would be part of English), but not all of it. Namely, she would

be able to say some grammatical sentences, e.g., “we went”, and errors

such that “we goed” would not occur. But she might not be able to say

”we broke it”. See Figure 7.3

4. H is a superset of T . The child could say “we broke it”, “we went”, “we

breaked it” and “we goed”. See Figure 7.4

In cases 1, 2, 3, the child can realize that the hypothesis is not correct by

means of the positive evidence received from the adults. This is not possible

in case 4. With only positive evidence the child cannot refute a too general
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Figure 7.3: H is a subset of T

Figure 7.4: H is a superset of T

hypothesis. Therefore, what kind of information would be useful to avoid the

situation 4?

We consider that corrections (in the sense that we have described) could

play an important role here. The information embedded in a correction could

allow children to avoid overgeneralization.

As we have seen, a correction includes positive and negative information.

When children overgeneralize, thanks to the negative information from the

correction (i.e., if a correction is received then it means that child’s utterance

was not correct), the child could know that what she said was not correct and

she should try not to repeat again the same error.

Therefore, this information could improve learnability. If this kind of in-

formation is available to the child, even some aspects of the language could

be learned faster (for instance, morphological and phonological aspects).
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7.3. Correction queries and Grammatical Inference

Based on all these ideas, we will try to apply the idea of corrections in the

studies of Grammatical Inference. We consider that models of Grammatical

Inference might benefit from corrections. For instance, the query learning

model proposed by Angluin [Angluin, 1987].

As we have seen in Chapter 4, this model provides to the learner an im-

portant tool: he is allowed to make queries to the teacher (in a real learning

process, the figure of the teacher would correspond to the adult and the figure

of the learner would correspond to the child). However, the queries available

to the learner are quite unnatural for real learning environments as we have

discussed in Chapter 4. Our goal will be to model a more natural way of

answering.

Several aspects of the process of children’s language acquisition could be

represented in the query learning model. For instance, in that stage in which

children overgeneralize, we consider that adults correct them and children

apply the corrections to their previous knowledge of the language in order

not to repeat again the same errors. Our idea is to reflect this process in the

query learning model.

It is known since Angluin’s results [Angluin, 1987] that DFA can be in-

ferred in polynomial time using a Minimal Adequate Teacher (MAT ). An-

gluin also conjectured [Angluin, 1987] not to be the case for richer classes.

This is one of the reasons why we will try to learn DFA from corrections.

This will be only a first step of a future direction of research.

Our choice to apply the corrections first to DFA is also motivated by the

simplicity of these machines and their adequacy for various applications of

natural language processing, although regular languages have limited expres-

siveness (as we have pointed out in Chapter 3).
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Regular languages are particularly appealing for natural language

processing for two main reason. First, it turns out that most phono-

logical and morphological processes can be straight-forwardly de-

scribed using the operations that regular languages are closed under,

and in particular concatenation. With very few exceptions (such as

the interdigitation word-formation processes of Semitic languages or

the duplication phenomena of some Asian languages), the morphol-

ogy of most natural languages is limited to simple concatenation of

affixes, with some morpho-phonological alternations, usually on a

morpheme boundary. Such phenomena are easy to model with reg-

ular languages, and hence are easy to implement with finite-state

automata. The other advantage of using regular languages is the

inherent efficiency of processing with finite-state automata. Most of

the algorithms one would want to apply to finite state automata take

time proportional to the length of the word being processed, indepen-

dently of the size of the automaton. In computational terminology,

this is called linear time complexity, and is as good as things can

get. [Wintner, 2002, p. 20].

Our idea is to introduce an extension of MQs called correction queries

(CQs). In that way, we will try to make a model of the richest information

received by a child learning a language: corrections.

7.4. Learning from positive data and correction queries

We have seen evidence that positive data and corrections are available to

the child. Why not combine them in a single model? As we have seen,

there are models based on text presentation, or informant presentation or

queries, etc. We can even find some works ([Jain and Kinber, 2004]) in which

learning from positive data and learning from queries is combined into a
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computational model, but the kind of queries that they use are the same as

the queries introduced by Angluin [Angluin, 1987],[Angluin, 1988].

Since none of the models proposed in Grammatical Inference has considered

the combination of both positive data and corrections, we would like to open

here a new line of research. We propose the idea of an interactive model

between learner-teacher based on the availability of positive data and CQs.

We consider that such a model could reflect better the real interaction between

child-adult.

As Dale et al. stated, the acquisition is immersed in an interactive context:

Language acquisition does not take place in a social vac-

uum. Instead, children are acquiring their native language

while interacting with both people and things in the environment.

[Dale and Christiansen, 2004, p. 262].

Therefore, the novel learning model proposed is inspired by Gold’s model

and Angluin’s model: learnability in the limit from positive data and CQs.

The development of the algorithm which will implement this model corre-

sponds to a work to be carried out in the future. Here, we would like to

introduce the main ideas of the model proposed.

The learning protocol consists in the following elements:

• Hypothesis made by the learner (Hi). Learner will make a hypothesis

from the data received. If his hypothesis is not consistent with new data,

he will fix it in order to also correctly generate the new information.

• Strings obtained from the teacher (xi). These strings correspond to

positive data (the union of all these strings will be equal to the language

that we want to learn).

• Strings that learner submit to the teacher (yi). The learner has an active

role in the learning process, and he will submit to the teacher only strings

that belongs to his hypothesis.
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• Corrections (ci). If the string submitted by the learner does not belong

to the language, a correction will be returned.

The general idea of the algorithm would be:

• The learner gets information from the teacher (either xi or ci) and sub-

mits information to him (yi), but all this is done in an interactive way

(the presentation of the teacher and the learner does not occur inde-

pendently, but in the same time. Recall that our idea is to reflect the

interaction between learner-teacher in a real learning process).

• From all the information received, the learner constructs a hypothesis

consistent with all this data and after receiving new strings, this hy-

pothesis will be updated. If the new string cannot be generated by his

hypothesis, then the hypothesis should be fixed in order to be consistent

with the new information received.

In this model, the complexity of the algorithm would take into account

the number of CQs and implicit prediction errors made by the learner (we

say that the system makes an implicit prediction error if xi 6∈ Hi or if yi is

corrected).

An important feature of this algorithm would be that the learning is incre-

mental. In that way, it would also correspond with the incremental learning

that takes place in natural language acquisition.

We are aware that many more considerations should be taken into account

in the construction of such a model. Of course, some readjustments and a

great research effort would be necessary if this model is to be taken into

consideration in future work. In Chapter 9, we discuss in more detail some

possible lines of research using this combined model.



Chapter 8

Algorithmic aspects

8.1. Learning SEC from only positive data

As we have seen in Chapter 6, SEC grammars could have a chance in the

study of syntax of natural language. In the sequel we study their learnability

in the limit from positive data.

We have obtained two main results. First, we present a positive learnability

result based on Shinohara’s results (see chapter 5 for an explanation of Shi-

nohara’s results). Second, we present a stronger result based on the property

of finite elasticity, which constitutes a sufficient condition for positive data

learnability (see chapter 4 for more information about that property).

8.1.1. From Shinohara’s results

From a result by Shinohara [Shinohara, 1994], the class of languages gener-

ated by CS grammars with a fixed number of rules is learnable from only

positive data. Hence, if we can transform a given SEC grammar with dimen-

sion p and degree q into an equivalent LSMG (linear simple matrix grammar

[Dassow and Păun, 1989]) with dimension p’ and degree q’ and this into an

equivalent CS grammar with a fixed number of rules, we will achieve our

123



124 CHAPTER 8

goal.

Definition 8.1.1 A Linear Simple Matrix Grammar of degree n, n ≥ 1, is a

grammar G = (N1, ..., Np, Σ,M, S), where:

• Ni: nonterminal alphabet.

• Σ: terminal alphabet.

• S: start symbol.

• M: finite set of matrices of the form

1. (S → A1...Ap), for Ai ∈ Ni, 1 ≤ i ≤ p, or

2. (A1 → x1, A2 → x2, ..., Ap → xp), forAi ∈ Ni, xi ∈ Σ∗, 1 ≤ i ≤ p, or

3. (A1 → x1B1y1, A2 → x2B2y2, ..., Ap → xpBpyp), for

Ai, Bi ∈ Ni, xi, yi ∈ Σ∗, 1 ≤ i ≤ p.

We will give the following constructive demonstration to prove that SECp,q

⊂ LSMGp′,q′ ⊂ CS grammars with a fixed number of rules.

First, we need to define p, q, p’ and q’.

(i) SECp,q:

- p: dimension (in the same sense as SECp),

- q: degree (the number of contexts).

(ii) LSMGp′,q′ :

- p’: number of nonterminals in the right hand of the unique rule of the

LSMG started by S.

- q’: number of matrices.

Let G = (Σ, B, C) be a SECp,q grammar, where

- B = {(γ1, ..., γp)}
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- C = { c1 = [(α1
1, β1

1), ..., (α1
p, β1

p)], ..., cq = [(αq
1, βq

1), ..., (αq
p, βq

p)] }

We can transform this SEC grammar with dimension p and degree q into

an equivalent LSMG with dimension p’ and degree q’.

G’ = (N1, ..., Np, Σ, P, S), where

- P = { S −→ A1...Ap,

(A1 −→ γ1, ..., Ap −→ γp),

(A1 −→ α1
1A1β

1
1 , ..., Ap −→ α1

pApβ
1
p),

(...),

(A1 −→ αq
1A1β

q
1 , ..., Ap −→ αq

pApβ
q
p)}

for Ai ∈ Ni, γi, α
j
i , β

j
i ∈ Σ∗, 1 ≤ i ≤ p, 1 ≤ j ≤ q

The number of rules of an equivalent CSG will be proportional to p’ · q’.

Generally, there exists a CSG with the number of rules ≤ k · p′ · q′ (k is a

constant).

We now illustrate this method using a grammar as follows. As a simple

example, consider a SECp,q with p = 2 and q = 2.

Let G = ({a, b, c, d}, B, C) be a SECp,q grammar, where

- B = {(ab, cd)}
- C = { c1 = [(a, λ), (c, λ)], c2 = [(λ, b), (λ, d)] }
Note that L(G) = {ambncmdn|m,n > 0}.
We can transform this SECgrammar with dimension p and degree q into

an equivalent LSMG with dimension p’ and degree q’.

G′ = ({S, A,A′}, {a, b, c, d}, P, S), where

- P = { m0: S −→ AA’,

m1: (A −→ ab, A’ −→ cd),

m2: (A −→ aA, A’ −→ cA’),

m3: (A −→ Ab, A’ −→ A’d) }.
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Now, we can construct a CSG: G” = ( VN , T, P’, S), where

VN = {S, A, A′, B,R1, R2, R3}
P’ = {S −→ ABA′

AB −→ abR1 R1b −→ bR1 R1c −→ cR1 bB −→ Bb

AB −→ aAR2 R2b −→ bR2 R2c −→ cR2 cB −→ Bc

AB −→ AbR3 R3b −→ bR3 R3c −→ cR3

R1A
′ −→ Bcd R1A

′ −→ cd

R2A
′ −→ BcA′ R2A

′ −→ cA′

R3A
′ −→ BA′d R3A

′ −→ A′d}
Note that the set of rules presented here may contain some redundancy.

However, we gave a priority to the consistency of the manner of constructing

corresponding CSGs for general cases.

It is easy to prove that L(G) = L(G′) = L(G′′). We will do it in two steps:

1. L(G) ⇔ L(G′)

2. L(G′) ⇔ L(G′′).

Proof 1.

(i) L(G) ⇒ L(G′).

Let G = (Σ, B, C) be a SECp,q grammar such that L(G) = L. Define

the LSMGp′,q′ G′ = (N1, ..., Np, Σ,M, S) such that Ai ∈ Ni, 1 ≤ i ≤ p.

The set M contains the following matrices:

• (S → A1A2...Ap). The number of nonterminals in the right hand

of the unique rule of the LSMGp′,q′ started by S, is equal to the

dimension of the SECp,q. Therefore, p = p’.

• For the p-word (x1, x2, ..., xp), that constitutes the base of SECp,q, M

contains the following matrix of rules: (A1 → x1, A2 → x2, ..., Ap →
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xp). There is only one matrix of this kind due to the base of the

SECp,q is a singleton (only has one p-word).

• For each p-context c = [(u1, v1), (u2, v2), ..., (up, vp)] ∈ C, M contains

the matrix of rules: (A1 → u1A1v1, A2 → u2A2v2, ..., Ap → upApvp).

In this way, when we apply the contexts c1, c2, ..., cq, we obtain the

same result that when we apply the matrices m2, m3, ...,mq+1, re-

spectively.

It is easy to see that L(G’) = L. By construction, for every s ∈ L(G)

there exist a derivation of s in G’.

(ii) L(G) ⇐ L(G′).

Let G’ be the LSMGp′,q′ , with L(G′) = L. We define a SECp,q grammar

G = (Σ, B, C) such that:

• For the matrix (A1 → x1, A2 → x2, ..., Ap → xp) ∈ M , B contains

the p-word (x1, x2, ..., xp). Therefore, the elements of B coincide

with the elements on the right hand of the matrix (A1 → x1, A2 →
x2, ..., Ap → xp).

• For each matrix of rules (A1 → u1A1v1, A2 → u2A2v2, ..., Ap →
upApvp) ∈ M , the set C of p-contexts contains c =

[(u1, v1), (u2, v2), ..., (up, vp)]. Therefore, the number of matrices is

equal to the number of contexts + 1.

It is easy to verify that L(G) = L. By construction, for every s ∈ L(G′)

there exist a derivation of s in G.
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Proof 2.

(i) L(G′) ⇒ L(G′′).

Let G′ = (N1, ..., Np, Σ,M, S) be a LSMGp′,q′ such that L(G’) = L.

Define the CSG G′′ = (N, Σ, P, S), where: N is a finite set of nonterminal

symbols, Σ is a finite set of terminal symbols that is disjoint from N, P

is a finite set of production rules and S ∈ N is the start symbol. The

set P contains the following rules:

• S → A1BA2A3...Ap. The right hand of S coincide with the right

hand of the unique rule started by S of the LSMGp′,q′ . We add the

nonterminal B when p ≥ 2, to allow applications of different rules.

• For each matrix of M, P contains the following rules:

• For the first rule of each matrix, P contains:

A1B → x1R1

A1B → u1A1v1R2

(...)

A1B → u1A1v1Rq′

q′ is the number of matrices. So, there are correspondences be-

tween choosing the rule that contains R1, for example, and ap-

plying matrix m1.

• For the second rule of each matrix, P contains:

R1A2 → x2R1

R2A2 → u2A2v2R2

(...)

Rq′A2 → u2A2v2Rq′

We apply this kind of rules from the second to the p− 1 rule of

each matrix (note that each matrix has p rules).

• For the p rule of each matrix, P contains:

R1Ap → Bxp | xp
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R2Ap → BupApvp | upApvp

(...)

Rq′Ap → BupApvp | upApvp.

If we use the rule that contains the nonterminal B, we will go

back and we can apply more rules. Otherwise, we will finish the

derivation.

• We will need to add some intermediate rules to allow us to make

the necessary derivations. These rules don’t have any corre-

spondence with the LSMGp′,q′ . With these intermediate rules,

we swap Ri to the right until it is adjacent to an Ai, allowing us

to apply another rule. Similarly, we move B to the left until it

is adjacent to A1, and then start to apply this process again.

It is easy to see that L(G′′) = L. By construction, for every s ∈
L(G′) there exist a derivation of s in G′′.

(ii) L(G′) ⇐ L(G′′).

Let G” be the CSG, with L(G”) = L. We define a LSMGp′,q′ G′ =

(N1, ..., Np, Σ,M, S) such that:

• For the unique rule started by S of the CSG, M contains the same

rule without the nonterminal B.

• For all the rules that contain Ri in the CSG (except intermediate

rules), where 1 ≤ i ≤ q′, M contains a matrix with all this rules, but

B, Ri and repeated rules are deleted.

It is easy to verify that L(G’) = L. By construction, for every s ∈ L(G′′)

there exist a derivation of s in G’.

Hence, there are clear relationships between SECp,q, LSMGp′,q′ and CSG.
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(i) p′ = p (in our example, p is equal to 2; therefore, the number of nonter-

minals in the right hand of the unique rule of the LSMG started by S

is 2).

(ii) q′ = q + 1 (in our example, q is equal to 2; therefore, the number of

matrices of LSMG has to be 3).

(iii) The fixed number of rules of CSG is proportional to p’·q’. Generally, one

can have G′′ with O(p′ · q′) number of rules. Since p′ and q′ are given,

G′′ has a bounded number of rules.

From a result by Shinohara [Shinohara, 1994], we can obtain the following

theorem:

Theorem 8.1.2 Given p′ > 0 and q′ > 0, the class of languages generated by

linear simple matrix grammars with dimension p′ and degree q′ is learnable

from positive data.

Corollary 8.1.3 Given p > 0 and q > 0, the class of languages generated

by simple external contextual grammars with dimension p and degree q is

learnable from positive data.

8.1.2. Finite elasticity

Although what we have proved is enough to show that SEC can be learned

from only positive data, we have a stronger result. As we will prove next,

SEC with any dimension, but with at most q contexts and m bases, has finite

elasticity (sufficient condition for learning from positive data).

We will use the notation ⊂ to mean a proper subset relation in the sequel.

By Sec(p, q, m), we denote the class of languages which can be generated

by SECs with dimension less than or equal to p, with at most q contexts,
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and with at most m bases. By Sec(∗, q,m), we denote the class of languages

defined by

Sec(∗, q, m) =
∞⋃

p=1

Sec(p, q, m).

Let w be a string over Σ. A pair (b, C) of a base b and a set C of contexts

is said to minimally generate w if and only if w is generated by using a base b

and contexts in C and there exists no b′ and C ′ such that b = b′, C ′ ⊂ C and

w is generated by using b′ and C ′. For a string w, by MinC(w), we denote

the set of all pairs (b, C) (b:base, C:set of contexts) which minimally generate

w. It is clear that the following lemma holds:

Lemma 8.1.4 For any w ∈ Σ∗, MinC(w) is finite.

Theorem 8.1.5 The class Sec(∗, q,m) has finite elasticity, therefore, it is

identifiable in the limit from positive data.

Proof. Assume that the class Sec(∗, q, m) has infinite elasticity.

There exist an infinite sequence w0, w1, w2, ... of strings in Σ∗ and an infinite

sequence L1, L2, ... of languages in Sec(∗, q,m) such that, for any k ≥ 1,

{w0, w1, ..., wk−1} ⊆ Lk and wk 6∈ Lk hold.

For each i = 1, 2, ..., let Si be some SEC generating Li. Note that each

Si includes some element of MinC(w0) in its base and context set. Since

MinC(w0) is finite by the above lemma, there exists C0 ∈ MinC(w0) such

that infinitely many Si’s include C0. Let σ = Sn1 , Sn2 , ... be an infinite se-

quence of such SEC’s including C0. Note that σ is a subsequence of S1, S2, ....

(That is n1, n2, ... is a subsequence of 1,2,3,....)

The string wn1 is not an element of Ln1 , therefore, wn1 is not generated

by Sn1 . But, the infinite subsequence Sn2 , Sn3 , Sn4 , ... should generate wn1 ,

and therefore, should include some element of MinC(wn1) in its base and

context set. Since MinC(wn1) is finite, there exists C1 ∈ MinC(wn1) such
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that infinitely many Snj
’s include C1. Note that C0 does not generate wn1 ,

therefore, |C0| < |C0 ∪ C1| holds.

Repeating the same discussion, we can find an infinite sequence C0, C1, ...

satisfying the following conditions:

1. |C0| < |C0 ∪ C1| < |C0 ∪ C1 ∪ C2| < · · · holds,

2. for any q, there exists infinitely many SEC’s in S1, S2, ... which include

C0 ∪ · · · ∪ Cq as its base and context set.

These conditions contradict to the fact that the number of contexts and

bases are upper bounded by q and m, respectively. This completes the proof.

¤
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8.2. Learning DFA from corrections

This section is focused on learning DFA within the framework of query learn-

ing. We present a new algorithm for learning DFA, based on Angluin’s algo-

rithm to identify DFA from MQs and EQs. In order to improve the learning

efficiency of DFA we introduce a new type of query called correction query

(CQ). Therefore, our learning algorithm has access to a teacher able of an-

swering two type of queries: CQs and EQs.

We present theoretical aspects of our learning algorithm, running examples

and comparative results. We prove that it is possible to learn DFA from

corrections in polynomial time and that the number of queries are reduced.

8.2.1. Introduction

As we have seen in Chapter 4, one of the main results in computational learn-

ing theory is that DFA can be learned from MQs and EQs in polynomial time.

We consider that this kind of queries are very unnatural in a real learning

process and our goal will be to model a more natural way of answering.

Toward this aim, we introduce an innovative type of queries called CQ

and we design an algorithm using this kind of queries called Learning from

Corrections Algorithm (LCA).

Our algorithm is similar to Angluin’s algorithm, the main difference consist

of the kind of answers the learner receives. Due to the increased complexity of

teacher’s answers, we obtained a faster learning process; the increased speed

is based on the reduced number of queries (CQs and EQs) between the learner

and the teacher until the discovering of the language.
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8.2.2. Correction queries

CQ is a new type of query which constitutes an extension of the MQ. The

difference between them consists in the type of answer that we receive from

the teacher. Instead of a yes/no answer, a string called the correctingString

is returned to the learner.

For a string α ∈ Σ∗, we denote the left quotient of L by α by Lα =

{β|αβ ∈ L} = {β|δ(q0, αβ) ∈ F}, where A = (Q, Σ, q0, δ, F ) is a DFA

accepting L.

The correctingString of α with respect to L is the minimum word (in lex-

length order, denoted by ¹) of the set Lα. In the case that Lα = ∅ we set the

correctingString of α w.r.t. L to ϕ, where ϕ is a symbol which does not belong

to the alphabet Σ. With these considerations, for the sake of simplicity in

notations, we use C instead of correctingString . Hence, C is a function from

Σ∗ to Σ∗ ∪ ϕ. Note that C(α) = λ if and only if α ∈ L.

Remark 8.2.1 If α, β, γ are strings in Σ∗ such that C(α) = β · γ then C(α ·
β) = γ.

Proof. Lets take α, β, γ ∈ Σ∗ such that C(α) = β · γ. It follows immediately

that α · β · γ ∈ L and γ ∈ Lα·β. Assume that γ 6= C(α · β). Then ∃ γ′ ∈ Σ∗

such that γ′ ≺ γ and C(α · β) = γ′. We deduce that α · β · γ′ ∈ L which

implies β · γ′ ∈ Lα. But β · γ = C(α) ⇒ β · γ ¹ β · γ′ ⇒ γ ¹ γ′, which is a

contradiction. Hence, C(α · β) = γ ¤

Remark 8.2.2 For any α, β ∈ Σ∗, if Lα = ∅ then Lα·β = ∅.

Proof. Lets take α, β ∈ Σ∗ such that Lα = ∅. Suppose by contrary that

Lα·β 6= ∅ and let γ be an element of Lα·β. Then (α · β) · γ ∈ L, which implies

β · γ ∈ Lα and hence Lα 6= ∅, contradiction with our hypothesis. ¤
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Remark 8.2.3 For any α ∈ Σ∗, the following results hold:

1. If C(α) 6= ϕ then C(α · C(α)) = λ.

2. If C(α) = ϕ then ∀β ∈ Σ∗, C(αβ) = ϕ but the converse does not hold.

Proof. Let α be an arbitrary string in Σ∗.

1. If C(α) = β 6= ϕ then α · β ∈ L which implies that λ is in Lα·β. Because

λ is the smallest possible string we obtain immediately that C(α ·β) = λ.

2. If C(α) = ϕ then Lα = ∅ which implies, using Remark 8.2.1, that

Lα·β = ∅ for all β in Σ∗ and hence C(α · β) = ϕ. It is easy to see that

for L = (ab)∗, C(aba · a) = ϕ but C(aba) 6= ϕ.

¤

8.2.3. Learning from Corrections Algorithm (LCA)

In the sequel, we describe the learning algorithm LCA and we show that it

efficiently learns an initially unknown regular set from any adequate teacher.

Let L be the unknown regular set and let Σ be the alphabet of L.

Without loss of generality, we assume that the target DFA which is to be

learned is a canonical DFA.

8.2.3.1. Observation Tables

The information is organized into an observation table consisting of three

parts: a nonempty finite prefix-closed set S of strings, a nonempty finite

suffix-closed set E of strings, and the restriction of the mapping C to the set

((S ∪ SΣ) · E). The observation table will be denoted (S, E,C).

An observation table can be visualized as a two-dimensional array with

rows labeled by elements of S ∪ SΣ and columns labeled by elements of E

with the entry for row s and column e equal to C(s · e). If s is an element of
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(S ∪ SΣ) then row(s) denotes the finite function from E to Σ∗ ∪ {ϕ} defined

by row(s)(e) = C(s · e). By rows(S) we understand the set {row(s) | s ∈ S}.
The algorithm LCA uses the observation table to build a DFA. Rows

labeled by the elements of S are the candidates for states of the automaton

being constructed, and columns labeled by the elements of E correspond to

distinguishing experiments for these states. Rows labeled by elements of SΣ

are used to construct the transition function.

Closed, consistent observation tables. An observation table is called closed

if for every t in (SΣ − S) there exists an s in S such that row(t) = row(s).

An observation table is called consistent if for any s1, s2 in S such that

row(s1) = row(s2), we have row(s1 · a) = row(s2 · a), ∀a ∈ Σ.

If (S, E, C) is a closed, consistent observation table, we define a correspond-

ing automaton A(S, E, C) = (Q, Σ, δ, q0, F ), where Q, q0, F and δ are defined

as follows:

Q = {row(s) | s ∈ S}
q0 = row(λ)

F = {row(s) | s ∈ S and C(s) = λ}
δ(row(s), a) = row(s · a)

It can be easily shown that deadSet(A) = {row(s) | s ∈ S and C(s) = ϕ}
(from Remark 8.2.3 we know that C(s) = ϕ ⇒ C(s · a) = ϕ, ∀a ∈ Σ).

To see that this is a well defined automaton, note that since S is a nonempty

prefix-closed set, it must contain λ, so q0 is defined. Also, since E is a

nonempty suffix-closed set, it must contain λ. Thus, if s1 and s2 are elements

of S such that row(s1)=row(s2), then C(s1) = C(s1 · λ) = row(s1)(λ) and

C(s2) = C(s2 · λ) = row(s2)(λ) are defined and equal to each other, hence F

is well defined. To see that δ is well defined, suppose s1 and s2 are elements of

S such that row(s1) = row(s2). Then since the observation table A(S,E, C)

is consistent, for each a in A, row(s1 · a) = row(s2 · a), and since it is closed,

this common value is equal to row(s) for some s in S.
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Definition 8.2.4 Assume that (S, E, C) is a closed and consistent observa-

tion table. We say that the automaton A = (Q, Σ, δ, q0, F ) is consistent with

the function C if for every s in S ∪ SΣ and e in E, the following statements

hold:

1. C(s · e) = ϕ ⇔ δ(q0, s · e) ∈ deadSet(A),

2. C(s·e) = t ⇔ (δ(q0, s·e·t) ∈ F and ∀t′ ∈ Σ∗ (δ(q0, s·e·t′) ∈ F ⇒ t ¹ t′)).

The important fact about the automaton A(S, E, C) is the following.

Theorem 8.2.5 If (S, E, C) is a closed and consistent observation table, then

the automaton A(S, E,C) is consistent with the finite function C. Any other

automaton consistent with C but inequivalent to A(S, E, C) must have more

states.

The theorem follows from the following sequence of straightforward lemmas.

Lemma 8.2.6 Assume that (S,E,C) is a closed and consistent observation

table. For the automaton A(S,E, C) and for every s in S ∪ SΣ, δ(q0, s) =

row(s).

This lemma can be proved by induction on the length of s. For details see

[Angluin, 1987].

Lemma 8.2.7 If (S, E,C) is a closed and consistent observation table and if

A(S, E,C) = (Q, Σ, δ, q0, F ) then for each s in S ∪ SΣ and all e ∈ E, there

exists s′ in S such that δ(q0, s · e) = δ(q0, s
′) and C(s · e) = C(s′).

Proof. The proof is by induction on the length of e.

• e = λ. (S, E,C) is a closed table, s ∈ S ∪ SΣ ⇒ ∃s′ ∈ S such that

row(s′) = row(s) ⇒ (C(s′) = C(s) and δ(q0, s
′) = δ(q0, s)).
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• Suppose the result holds for all e in E of length at most k, and let e be

an element of E of length k + 1. Then, since E is suffix-closed, e = a · e′
for some a in Σ and e′ in E. We take s′ in S such that row(s)=row(s′)

⇒ C(s · e) = C(s′ · e).
δ(q0, s · e) = δ(δ(q0, s), a · e′)

= δ(row(s), a · e′), by the previous lemma,

= δ(row(s′), a · e′), since row(s) = row(s′),

= δ(δ(row(s′), a), e′),

= δ(row(s′ · a), e′), by the definition of δ,

= δ(δ(q0, s
′ · a), e′), by the previous lemma,

= δ(q0, s
′ · a · e′).

By the induction hypothesis on e′, there exist s′′ in S such that δ(q0, (s
′ ·

a) ·e′) = δ(q0, s
′′) (which implies δ(q0, s ·e) = δ(q0, s

′′)) and C(s′ ·a ·e′) =

C(s · e) = C(s′′).

¤

Lemma 8.2.8 Assume that (S, E,C) is a closed and consistent observation

table. Then the automaton A = A(S, E, C) is consistent with the function C.

Proof. Let s be in S ∪ SΣ and e in E. In order to prove the lemma, we will

use several times Lemma 8.2.7.

1. Let s′ in S be such that δ(q0, s · e) = δ(q0, s
′) and C(s · e) = C(s′).

Then, C(s · e) = ϕ ⇔ C(s′) = ϕ ⇔ δ(q0, s
′) ∈ deadSet(A) ⇔ δ(q0, s · e) ∈

deadSet(A).

2. Because s is in S ∪ SΣ and e in E, there exists s0 in S such that

δ(q0, s · e) = δ(q0, s0) and C(s · e) = C(s0). For any string t in Σ∗, t =

a1 · a2 · · · an we can inductively find the strings si ∈ S, i = 1, n such that

δ(q0, si−1 · ai) = δ(q0, si) and C(si−1 · ai) = C(si).

We show that δ(q0, s · e · t) = δ(q0, sn).

δ(q0, s · e · t) = δ(q0, s · e · a1 · a2 · · · an) = δ(δ(q0, s · e), a1 · a2 · · · an) =
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δ(δ(q0, s0), a1 · a2 · · · an) = δ(q0, s0 · a1 · a2 · · · an) = δ(δ(q0, s0 · a1), a2 · · · an) =

δ(δ(q0, s1), a2 · · · an)) = . . . = δ(δ(q0, sn−1), an) = δ(q0, sn−1 · an) = δ(q0, sn).

We show that C(s · e) = t implies δ(q0, s · e · t) ∈ F .

C(s · e) = t ⇒ C(s0) = a1 · a2 · · · an ⇒ C(s0 · a1) = a2 · · · an ⇒ C(s1) =

a2 · · · an ⇒ C(s1 · a2) = a3 · · · an ⇒ C(s2) = a3 · · · an ⇒ . . . ⇒ C(sn−1 · an)

= λ ⇒ C(sn) = λ ⇒ row(sn) ∈ F ⇒ δ(q0, sn) ∈ F ⇒ δ(q0, s · e · t) ∈ F .

Next we will show that if we take t = a1 ·a2 · · ·an to be the smallest string in

lex-length order such that δ(q0, s · e · t) ∈ F then C(s · e) = t (notice that the

set {t | δ(q0, s · e · t) ∈ F} is not empty). Because δ(q0, s · e · t) = δ(q0, sn) and

δ(q0, s · e · t) ∈ F it follows that C(sn) = λ and hence C(sn−1 · an) = λ which

implies an ∈ Lsn−1 . Assuming that C(sn−1) = x 6= an leads to a contradiction

(we found a smaller string t′ = a1 · · · an−1 · x such that δ(q0, s · e · t′) ∈ F ).

Hence C(sn−1) = an. Reasoning in the same manner we obtain that C(s0)

= a1 · a2 · · · an which implies C(s · e) = t. This concludes the proof of the

lemma. ¤

Lemma 8.2.9 Assume that (S,E, C) is a closed, consistent observation ta-

ble. Suppose the automaton A(S,E, C) has n states. If A′ = (Q′, Σ, δ′, q′0, F
′)

is any automaton consistent with C that has n or fewer states, then A′ is

isomorphic with A(S, E, C).

Proof. We define the relation φ ⊆ Q×Q′ as follows. For all s ∈ S, row(s) φ

q′ ⇔ q′ = δ′(q′0, s).

φ is an injection. One can prove this by assuming the contrary, namely

that there exist q′ in Q′ and s1, s2 ∈ S such that row(s1) φ q′, row(s2) φ q′ and

row(s1) 6= row(s2). It is clear that δ′(q′0, s1) = q′ = δ′(q′0, s2) and that ∃e ∈ E

such that row(s1)(e) 6= row(s2)(e), which is equivalent to C(s1 ·e) 6= C(s2 ·e).
The two cases that can be distinguished are: one of the values of C(s1 · e),
C(s2 · e) is ϕ or both of them are in Σ∗.
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Case I) C(s1 · e) = ϕ, C(s2 · e) = t 6= ϕ. Because A′ is consistent with C we

know from Lemma 8.2.8 that δ′(q′0, s1·e) ∈ deadSet(A′) and δ′(q′0, s2·e·t) ∈ F ′.

δ′(q′0, s1) = δ′(q′0, s2) ⇒ δ′(q′0, s1 ·e) = δ′(q′0, s2 ·e) ⇒ δ′(q′0, s2 ·e) ∈ deadSet(A′)

⇒ δ′(q′0, s2 · e · t) ∈ deadSet(A′), which contradicts δ′(q′0, s2 · e · t) ∈ F ′.

Case II) C(s1 · e) = t1, C(s2 · e) = t2, t1 6= t2 and t1, t2 6= ϕ. Because A′

is consistent with C we know from Lemma 8.2.8 that δ′(q′0, s1 · e · t1) ∈ F ′,

δ′(q′0, s2 · e · t2) ∈ F ′ and t1, t2 are the smallest strings with this property.

δ′(q′0, s1) = δ′(q′0, s2) ⇒ δ′(q′0, s1 · e · t1) = δ′(q′0, s2 · e · t1) ⇒ δ′(q′0, s2 · e · t1) ∈
F ⇒ t2 ¹ t1. In a similar way it can be shown that t1 ¹ t2, from which we

draw the conclusion that t1 = t2, which leads to a contradiction.

Because φ is an injection we deduce that |Q| ≤ |φ(Q)|. From the hypothesis

we know that |Q′| ≤ |Q| and hence |Q| = |φ(Q)| = |Q′|, which makes our

relation φ a function. It follows immediately that φ is bijective since it is

injective and has the domain and range finite and of the same cardinality.

φ is an automata isomorphism, that is φ(q0) = q′0, φ(F ) = F ′ and for

all s ∈ S, a ∈ Σ, φ(δ(row(s), a)) = δ′(φ(row(s)), a). The proof for the

first two is quite straight forward. For the last one, we take s′ ∈ S such

that row(s′) = row(s · a). We have that φ(δ(row(s), a)) = φ(row(s · a))

= φ(row(s′)) = δ′(q′0, s
′) and δ′(φ(row(s)), a) = δ′(δ′(q′0, s), a) = δ′(q′0, s · a).

Since δ′(q′0, s
′) and δ′(q′0, s · a) have identical row values, namely row(s′) and

row(s · a), they must be the same state of A′.

This concludes the proof of the lemma.

¤

Now, the proof of Theorem 8.2.5 follows, since Lemma 8.2.8 shows that

A(S, E,C) is consistent with C, and Lemma 8.2.9 shows that any other au-

tomaton consistent with C is either isomorphic to A(S, E, C) or contains at

least one more state. Thus, A(S, E, C) is the unique smallest automaton

consistent with C.
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8.2.3.2. The Learner LCA

Briefly we recall that the learning algorithm consists actually in a “learner”

algorithm communicating with a “teacher” algorithm. The teacher knows a

target language and the learner wants to discover it. In this description, the

teacher is represented as a passive entity, while the learner calls the teacher’s

methods and properties in order to discover the target language.

The learner algorithm uses as its main data structure the observation table

that we described in the previous subsection. Initially S = E = λ. To

determine C, LCA asks CQs for λ and each a in Σ. This initial observation

table may or may not be closed and consistent.

The main loop of LCA tests the current observation table (S, E,C) in order

to see if it is closed and consistent. If (S, E,C) is not closed, then LCA adds

a new string to S and updates the table asking CQs for missing elements. If

(S, E, C) is not consistent, then LCA adds a new string to E and updates

the table using CQs for missing elements.

When the learner’s automaton is closed and consistent the learner asks an

EQ. The teacher’s answers can be “yes” (in which case the algorithm termi-

nates with the output A(S, E, C)) or “no”(in which case a counterexample is

provided, all its prefixes are added to S and the table is updated using CQs).

Correctness of LCA. If the teacher answers always correctly then if LCA

ever terminates its output is clearly the target one. Recall that the teacher’s

last answer to an EQ is yes, the learner’s automaton is isomorphic with the

target automaton.

Termination of LCA. To see that LCA terminates, notice that the injec-

tivity of function φ defined on Lemma 8.2.9 implies that for any closed and

consistent observation table (S, E, C), if n denotes the number of different val-

ues of row(s) for s in S then any automaton consistent with C must have at

least n states. The proof follows the lines of Angluin’s paper [Angluin, 1987].
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Now suppose that n is the number of states in the minimum DFA AL

for the unknown regular language L. We show that the number of distinct

values of row(s) for s in S increases monotonically up to a limit of n as LCA

runs. (Note that at every iteration of the main loop, (S, E,C) is indeed an

observation table).

Suppose a string s is added to S because the table is not closed. Then

by definition, row(s) is different from row(s′) for all s′ in S before S is

augmented, so that the number of distinct values row(s) is increased by at

least one when s is added to S.

Suppose a string is added to E because the table is not consistent. Then

the number of distinct values row(s) for s in S must increase because two

previously equal values, row(s1) and row(s2), are no longer equal after E is

augmented. (Note that two values unequal before E is augmented remain

unequal after E is augmented).

Thus the total number of operations of either type over the whole run of

the algorithm LCA must be at most n − 1, since there is initially at least

one value of row(s) and there cannot be more than n. Hence LCA always

eventually finds a closed, consistent observation table (S, E, C) and makes a

conjecture A(S, E, C).

How many distinct conjectures can LCA make? If a conjecture A(S,E, C)

is found to be incorrect by the counterexample strCounterEx, then since

the correct minimum automaton accepting L, AL is consistent with C and

inequivalent to A(S, E,C) (since they disagree on strCounterEx), by Theo-

rem 8.2.5, AL must have at least one more state. That is, A(S,E, C) has

at most n − 1 states. Furthermore, LCA must make a next conjecture,

A(S ′, E ′, C ′) which is consistent with C (since C ′ extends C) and also clas-

sifies strCounterEx the same as AL (since strCounterEx is in S ′ and λ is

in E, and so is inequivalent to A(S, E,C)). Thus, A(S ′, E ′, C ′) must have at

least one more state than A(S, E,C).
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That shows that LCA can make a sequence of at most n− 1 incorrect con-

jectures, since the number of their states must be monotonically increasing, is

initially at least one, and may not exceed n− 1. Since LCA must, as long as

it is running, possibly make another conjecture, it must terminate by making

a correct conjecture.

Thus, LCA terminates after making at most n conjectures and executing

its main loop a total of at most n− 1 times.

Time analysis of LCA. The total running time of LCA can be bounded by

a polynomial in n and m (n is the number of states in the minimum automaton

accepting L; m is the maximum length of any counterexample string presented

by the teacher). For the details of the proof, see [Angluin, 1987].

The algorithm LCA is described in Figure 8.1.
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Procedure Learning from Corrections Algorithm

1) Initialize S and E with λ;

2) Ask CQs for λ and each a ∈ Σ;

3) Construct the initial observation table (S, E, C);

4) Repeat

5) Repeat

6) if Not tableClosed(S, E, C) then

7) find s in (SΣ− S) such that row(s) /∈ rows(S);

8) add s to S;

9) extend C to (S ∪ SΣ)E using CQs;

10) if Not tableConsistent(S, E, C) then

11) find s1,s2 ∈ S, a ∈ Σ and e ∈ E such that

12) row(s1) = row(s2), and C(s1 · a · e) 6= C(s2 · a · e);
13) add a · e to E;

14) extend C to (S ∪ SΣ)E using CQs;

15) until tableClosed and tableConsistent;

16) construct Learner′s conjecture A(S, E, C);

17) foundAutomaton:= teacher.askEquiv(A(S, E, C));

18) If Not foundAutomaton then

19) strCounterEx:=teacher.counterExample;

20) for each s ∈ Pref(strCounterEx)

21) if s /∈ S then

22) add s to S;

23) extend C to (S ∪ SΣ)E using CQs;

24) until foundAutomaton;

Figure 8.1: Procedure Learning from Corrections
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8.2.4. Running Example

In all our examples we considered that the initial state is always counted as

being the state q0. In order to simplify the automata description we used only

the state number as labels for states. We also introduced the linear transition

table that is a normal transition table with all the lines written on the same

row. From a linear transition table we can restore a normal transition table

if we know the cardinality of the alphabet. The final states are deduced from

the observation table as being the states having λ on the first column of E

(the one corresponding to the experiment λ).

We explain how our algorithm runs by tracing the evolution of the obser-

vation table for a language over the alphabet Σ = {0, 1}, L = (0 + 110)+.

We can see a minimal automaton associated with the mentioned language in

Figure 8.2. We observe that the linear transition table for this automaton is

(1, 2, 1, 2, 3, 4, 3, 3, 1, 3) and the set of final states is F = {1}.

Figure 8.2: Minimal automaton associated to the language L = (0 + 110)+
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Initially the learner starts with S = {λ}, E = {λ} and the observation

table described as Table 8.1.

Table 8.1: S = {λ}, E = {λ}
T1 λ

λ {0}
0 {λ}(λ,λ)

1 {10}

We can observe that the information for the string “0” and the experiment

“λ” is known from the corresponding query for row(λ): because the correction

for the string “λ” is the string “0”, after an input string “0” we are in a final

state, so we need the string “λ” to reach a final state.

The table is not closed because row(0) does not belong to rows(S). We

add the string “0” to S and the corresponding rows, row(0 · 0) and row(0 · 1)

to SΣ − S. The algorithm proceeds in a similar manner with row(1) and

after two “not closed” steps we get the Table 8.2.

Table 8.2: S = {λ, 0, 1}, E = {λ}
T2 λ

λ {0}
0 {λ}(λ,λ)

1 {10}
00 {λ}
01 {10}
10 ϕ

11 {0}(1,λ)
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Now we see that the current observation table is not closed since row(10)

does not belong to rows(S). Again the algorithm adds it to S and it also

adds the corresponding lines, row(100) and row(101), to SΣ − S . We can

see all these operations in Table 8.3.

As an optimization, the learner infers the teacher answers for row(100) and

row(101) as being transitions from a dead state.

In this moment, we can see that the observation table is closed and con-

sistent and it follows an EQ. We added the state information for each row

and the automaton that the learner discovered until this moment has: the

linear transition table (1, 2, 1, 2, 3, 0, 3, 3), the final states set F = {1} and

the representation given in Figure 8.3.

Table 8.3: S = {λ, 0, 1, 10}, E = {λ}
T3 λ State

λ {0} q0

0 {λ}(λ,λ) q1 ∈ F

1 {10} q2

10 ϕ q3

00 {λ} q1 ∈ F

01 {10} q2

11 {0}(1,λ) q0

100 ϕ(10,λ) q3

101 ϕ(10,λ) q3

Figure 8.3: Observation Table 8.3 and the associated automaton
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The teacher’s answer to the EQ is negative and the learner gets as a coun-

terexample the string 11110. Adding the counterexample and all its prefixes

to S we get the Table 8.4.

This table is not consistent, since row(λ) equals row(11) but C(λ · 1 · λ) 6=
C(11 · 1 · λ). In this moment we have to add 1 · λ to E (Table 8.5).

The automaton of the learner now corresponds to the teacher’s automa-

ton, so the answer to the EQ is positive. We notice that during the whole

algorithm’s execution, the learner asked only two EQs (the last one was suc-

cessful) and eight CQs. We can see that the number of queries has been

reduced considerably with respect to L∗ (see running example presented in

Chapter 5).
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Table 8.4:
S = {λ, 0, 1, 10, 11, 111, 1111, 11110},
E = {λ}

T4 λ

λ {0}
0 {λ}(λ,λ)

1 {10}
10 ϕ

11 {0}(1,λ)

111 ϕ

1111 ϕ(111,λ)

11110 ϕ(111,λ)

00 {λ}
01 {10}
100 ϕ(10,λ)

101 ϕ(10,λ)

110 {λ}(1,λ)

1110 ϕ(111,λ)

11111 ϕ(111,λ)

111100 ϕ(111,λ)

111101 ϕ(111,λ)

Table 8.5:
S = {λ, 0, 1, 10, 11, 111, 1111, 11110},
E = {λ, 1}

T5 λ 1 State

λ {0} {10}(1,λ) q0

0 {λ}(λ,λ) {10}(01,λ) q1 ∈ F

1 {10} {0}(1,λ) q2

10 ϕ ϕ(10,λ) q3

11 {0}(1,λ) ϕ(111,λ) q4

111 ϕ ϕ(111,λ) q3

1111 ϕ(111,λ) ϕ(111,λ) q3

11110 ϕ(111,λ) ϕ(111,λ) q3

00 {λ} {10} q1 ∈ F

01 {10} {0}(01,λ) q2

100 ϕ(10,λ) ϕ(10,λ) q3

101 ϕ(10,λ) ϕ(10,λ) q3

110 {λ}(1,λ) {10} q1 ∈ F

1110 ϕ(111,λ) ϕ(111,λ) q3

11111 ϕ(111,λ) ϕ(111,λ) q3

111100 ϕ(111,λ) ϕ(111,λ) q3

111101 ϕ(111,λ) ϕ(111,λ) q3
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8.2.5. Comparative Results

In this section we present some theoretical and practical results. We prove

that there exist classes of languages for which the number of queries needed

to learn is lower for our algorithm. Using running tests we also show that in

practice our algorithm uses less queries.

8.2.5.1. Theoretical Results

We believe that in most of the cases LCA performs not worst that L∗ and that

there are several subclasses of regular languages for which our algorithm needs

smaller number of queries. In the sequel we present one of such subclasses.

Without loss of generality, the teacher is supposed to return the shortest

counterexample.

For our technical proofs we introduce first several new definitions.

Definition 8.2.10 By MQL(m) we denote the number of different strings

submitted by the learner L∗ to the teacher in order to identify the target lan-

guage L, where m is the size of the minimal complete DFA accepting L.

Note that each string is counted only once: even if the algorithm reaches

a point where the learner should submit to the teacher a string which was

previously submitted we will not count this as another MQ.

Definition 8.2.11 By CQL(m) we denote the number of different strings

submitted by the learner LCA to the teacher in order to identify the target

language L, where m is the size of the minimal complete DFA accepting L.

In this case, not only we do not count twice the same string, but the learner

LCA can also obtain some implicit answers due to Remarks 8.2.1 and 8.2.3.

Therefore, the algorithm does not ask these questions and we do not count

them as new CQs.
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Theorem 8.2.12 There exists an infinite class of languages which require

a polynomial number of MQs but a linear number of CQs in order to be

identified.

Let us consider SΣ the class of languages over Σ which contain only one

string. The theorem follows from the following two lemmas.

Lemma 8.2.13 For any fixed alphabet Σ of length k > 1 and any language

L in SΣ the number of MQs needed by L∗ in order to identify L is polynomial

in the size m of the minimal automaton. Moreover, we have the following

formula:

MQL(m) = 2(k − 1)m2 − (4k − 7)m + 2k − 5 (8.2.1)

Proof. We give the proof only for the case |Σ| = 2 (similar reasoning for

larger alphabets). When k = 2 and n is the length of the unique word of the

language L (it is clear that n = m− 2), what we have to show is:

MQL(m) = 2n2 + 7n + 5 (8.2.2)

Suppose the string w to be learned is w = a1a2...an with ai in Σ = {a, b}
for all i ∈ {1, 2, ..., n}. We consider only the case n ≥ 2, because the proof

for n = 0 and n = 1 is simple.

The algorithm starts by constructing the observation table represented in

Table 8.6. The generated automaton A(S,E, T ) is represented in Figure 8.4.
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Table 8.6: S = {λ}, E = {λ}
T6 λ State

λ 0 q0

a 0 q0

b 0 q0

Figure 8.4: Observation Table 8.6 and the associated automaton

This automaton does not accept any string. The counterexample returned

(the only possible one in this case) is the string w, so the algorithm L∗ adds

w and all its prefixes to S and generates the observation Table 8.7.

Table 8.7: S = {λ, a1, a1a2, ..., a1a2...an}, E = {λ}
T7 λ

λ 0

a1 0

a1a2 0
...

a1a2...an 1

a1 0

a1a2 0
...

a1...an−1an 0

a1...ana 0

a1...anb 0
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By ai we understand the complement of the letter ai; the complement of

a is b and the complement of b is a (note that the alphabet has only two

letters). As a rule, we underline the strings which are not yet counted in the

process of counting the MQs.

S has n + 1 elements and SΣ− S, n + 2. Because all the elements of this

table are obviously different, it means that up to now the algorithm has asked

a total number of 2n + 3 MQs.

This table is not consistent because row(a1a2...an−2) = row(a1a2...an−1)

but row(a1a2...an−2 · an) 6= row(a1a2...an−1 · an) (due to the fact that

T (a1a2...an−2 · an · λ) = 0 and T (a1a2...an−1 · an · λ) = 1).

So we add an to E and update the table. The new table is still not con-

sistent, because row(a1a2...an−3) = row(a1a2...an−2) but row(a1a2...an−3 ·
an−1) 6= row(a1a2...an−2 · an−1) (the two rows do not coincide in the column

an). Therefore, we add the experiment an−1 · an to E. We continue this

procedure until we have E = {λ, an, an−1an, ..., a2a3...an} and the observation

table represented in Table 8.8. This table is closed and consistent and the

learner L∗ constructs the automaton represented in Figure 8.5.
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Table 8.8: S = {λ, a1, a1a2, ..., a1a2...an}, E = {λ, an, an−1an, ..., a2a3...an}
T8 λ an an−1an ............. a2a3...an State

λ 0 0 0 0 q0

a1 0 0 0 1 q1

a1a2 0 0 0 0 q2

...

a1a2...an−1 0 1 0 0 qn−1

a1a2...an 1 0 0 0 qn

a1 0 0 0 0 q0

a1a2 0 0 0 0 q0

...

a1...an−1an 0 0 0 0 q0

a1...ana 0 0 0 0 q0

a1...anb 0 0 0 0 q0

Figure 8.5: Observation Table 8.8 and the associated automaton
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How many more distinct MQs is L∗ asking in order to obtain this table?

(the first column does not count because we have already counted them).

• L∗ does not ask a MQ for λ · an, because an is either a1 or a1, and for

both the answer is known.

• L∗ does not ask a MQ for a1 · an because an is either a2 or a2, and for

both a1a2 and a1a2 the answer is known.

• The same for a1a2 · an, a1a2...an−1 · an, a1a2...an · an.

Then L∗ asks (n+2) MQs for the strings a1 · an, a1a2 · an,..., a1a2...anb · an,

because they are all distinct and different from any other strings the algorithm

has checked so far.

The other columns follow the pattern of the first one: the upper part

contains only known strings, and the lower part only unknown ones, which

means that there are a total of (n + 2)(n− 1) MQs. If we add them to what

we have counted so far we obtain n2 + 3n + 4 MQs.

The conjectured automaton is not the target one so the teacher’s answer

to the EQ is a counterexample. The shortest one is a1a1a2...an, and the

algorithm proceeds by adding this counterexample and all its prefixes to S

(Table 8.9).
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Table 8.9: S = {λ, a1, ..., w, a1, a1a1..., a1w}, E = {λ, an, ..., a2a3...an}
T9 λ an an−1an ............. a2a3...an

λ 0 0 0 0

a1 0 0 0 0
...

a1a2...an 1 0 0 0

a1 0 0 0 0

a1a1 0 0 0 0

a1a1a2 0 0 0 0
...

a1a1a2...an 0 0 0 0

a1a2 0 0 0 0

a1a2a3 0 0 0 0
...

a1...an−1an 0 0 0 0

a1...an−1ana 0 0 0 0

a1...an−1anb 0 0 0 0

a1a1 0 0 0 0

a1a1a2 0 0 0 0
...

a1a1...an−1an 0 0 0 0

a1a1...an−1ana 0 0 0 0

a1a1...an−1anb 0 0 0 0
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This table is not consistent because row(λ) = row(a1) but row(λ · a1) 6=
row(a1 · a1). (they differ in the column corresponding to the experiment

a2a3...an). L∗ adds the experiment a1a2...an to E and updates the table

(Table 8.10).

Figure 8.6: Associated automaton to Observation Table 8.10

The conjectured automaton is clearly the target one, so all we have to do

now is to count the MQs, more specifically only the underlined ones. We will

apply the same strategy, namely counting by columns.

In the column of the experiment λ all the underlined strings are new. The

upper part contains n and the lower part n + 2 underlined strings.

For the second column one can notice that:

• L∗ does not ask a MQ for a1a1 · an because an is either a2 or a2, and for

both a1a1a2 and a1a1a2 the answer is known.

• The same for a1a1a2 · an, a1a1a2...an−1 · an, a1a1a2...an · an.

Then L∗ asks (n+2) MQs for the strings a1a1 ·an, a1a1a2 ·an,..., a1a1a2...anb·
an, because they are all distinct and different from any other strings the

algorithm has seen so far.
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Table 8.10: S = {λ, a1, ..., w, a1, a1a1..., a1w}, E = {λ, an, ..., a1a2...an}
T10 λ an ............. a2a3...an a1a2...an State

λ 0 0 0 1 q0

a1 0 0 1 0 q1

...

a1a2...an 1 0 0 0 qn

a1 0 0 0 0 qn+1

a1a1 0 0 0 0 qn+1

a1a1a2 0 0 0 0 qn+1

...

a1a1a2...an 0 0 0 0 qn+1

a1a2 0 0 0 0 qn+1

a1a2a3 0 0 0 0 qn+1

...

a1...an−1an 0 0 0 0 qn+1

a1...an−1ana 0 0 0 0 qn+1

a1...an−1anb 0 0 0 0 qn+1

a1a1 0 0 0 0 qn+1

a1a1a2 0 0 0 0 qn+1

...

a1a1...an−1an 0 0 0 0 qn+1

a1a1...an−1ana 0 0 0 0 qn+1

a1a1...an−1anb 0 0 0 0 qn+1
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For the columns corresponding to the experiments an−1an, ..., a2a3...an the

situation is the same: the strings from the upper bound of the table are known

and the one from the lower part are new.

For the column corresponding to the experiment a1a2...an, we have:

• L∗ does not ask a MQ for a1λ · a1a2...an because the answer is known

from the intersection between row(a1a2...an) and the experiment λ.

• L∗ does not ask a MQ for a1 · a1a2...an because a1 is either a2 or a2 and

for both a1a2 · a2...an and a1a2 · a2...an the answer is known.

• The same holds for a1a2 · w, ..., a1a2...an · w.

• L∗ does not ask a MQ for a1 ·a1a2...an because the answer is known from

the intersection between row(a1a1) and the experiment a2...an.

• L∗ does not ask a MQ for a1a1 · a1a2...an because a1 is either a2 or a2

and for both a1a1a2 · a2...an and a1a1a2 · a2...an the answer is known.

• The same holds for a1a1a2 · w, ..., a1a1a2...an · w.

In the lower part of the table, all the strings from the column corresponding

to the experiment a1a2...an are new.

Counting the total number of underlined elements which are new we obtain:

n+n+2 from the first column, and n+2 from the second, third, ... , n−1-th

column, and n+1+n+2 for the last column which makes a total of n2+4n+1.

Adding what we have counted so far (n2 + 3n + 4) we obtain a total number

of 2n2 + 7n + 5 MQs.

¤

Lemma 8.2.14 For any fixed alphabet Σ of length k > 1 and any language

L in LΣ the number of CQs needed by LCA in order to identify L is linear

in the size m of the minimal automaton. Moreover, we have the following

formula:

CQL(m) = (k − 1)(m− 1) + 2 (8.2.3)
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Proof. The proof is also given only for the case |Σ| = 2. Similar arguments

can be used for larger alphabets. Suppose the string w to be learned is

w = a1a2...an, with n = m− 2. Then formula (8.2.3) is equivalent to

CQL(m) = n + 3 (8.2.4)

The algorithm starts by constructing the observation table 8.11.

Table 8.11: S = {λ}, E = {λ}
T11 λ

λ a1a2...an

a1 a2...an

a1 ϕ

This observation table is not closed. The algorithm proceeds by adding a1

and a1 to S, and then, a1a2, a1a2a3, in turn, ... and finally a1a2...an. The

obtained observation table (Table 8.12) is closed and consistent. The answer

to the EQ is yes, which means that A(S, E,C) is the target automaton.

All we have to do now is to count the CQs. Some of the answers are implicit,

like those for C(a1a2...ai), for all i ∈ {1, 2, ..., n} (from C(λ) = a1a2...an we

know that C(a1a2...ai) = ai+1...an). Some basic counting shows that L∗ is

asking a total of n + 3 questions in order to identify the target language.

¤
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Table 8.12: S = {λ, a1, a1a2, ..., a1...an, a1}, E = {λ}
T12 λ State

λ a1a2...an q0

a1 a2...an q1

...

a1...an−1 an qn−1

a1a2...an λ qn

a1 ϕ qn+1

a1a2 ϕ qn+1

a1a2a3 ϕ qn+1

...

a1...an−1an ϕ qn+1

a1a2 ϕ qn+1

a1a2 ϕ qn+1

Theorem 8.2.15 On one letter alphabets, there is an infinite class of lan-

guages for which we need a linear number of MQs but a constant number of

CQs.

Suppose Σ = {a}, L is a language from LΣ and m is the size of the minimal

automaton accepting L. The theorem is proved by the following two lemmas.

Lemma 8.2.16 Given the language L, L∗ asks a total number of 3m−3 MQs

in order to learn the language.

Proof. Let L = {an}, with n = m−2. The cases n = 0 and n = 1 are trivial,

so we concentrate only on the case n ≥ 2.

The algorithm starts by constructing the Table 8.13. As the observation
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table is closed and consistent, L∗ proceeds by constructing the automaton

A(S, E,C) represented in Figure 8.7.

Table 8.13: S = {λ}, E = {λ}
T13 λ State

λ 0 q0

a 0 q0

Figure 8.7: Observation Table 8.13 and the associated automaton

We can see that the language accepted by A(S,E, C) is the empty set, so

the teacher’s answer is a counterexample, namely the string an. The algorithm

adds this string and all its prefixes to S and obtains the observation Table

8.14.

Table 8.14: S = {λ, a, ..., an}, E = {λ}
T14 λ

λ 0

a 0
...

an−1 0

an 1

an+1 0

The table is not consistent because row(an−2) = row(an−1) but row(an−2·a)

6= row(an−1·a) (T (an−2·a·λ) = 0 and T (an−1·a·λ) = 1). L∗ proceeds by adding

a to E. The table continues to be not consistent and the algorithm adds, one

at a time, a2, a3, ..., an−1 to E. The observation Table 8.15 is represented

bellow.
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Table 8.15: S = {λ, a, ..., an}, E = {λ, a, ..., an−1}
T15 λ a a2 ............. an−1 State

λ 0 0 0 0 q0

a 0 0 0 1 q1

...

an−1 0 1 0 0 qn−1

an 1 0 0 0 qn

an+1 0 0 0 0 q0

This table is closed and consistent so L∗ asks an EQ. The counterexample

returned by the teacher is a2n+1. L∗ adds the string a2n+1 and all its prefixes

to S and then checks the table for consistency. One can notice that the ob-

servation table is not consistent because row(λ) = row(an+1) but row(λ · a)

6= row(an+1 · a) (T (λ · a · an−1) = 1 and T (an+1 · a · an−1) = 0). The algo-

rithm proceeds by adding an to E and updating the table. The observation

table (Table 8.16) is closed and consistent, and the conjectured automaton,

A(S, E,C), is represented in Figure 8.8. The answer to the EQ is yes so L∗

outputs the automaton A(S,E, C) and halts.
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Table 8.16: S = {λ, a, ..., a2n+1}, E = {λ, a, ..., an}
T16 λ a a2 ............. an−1 an State

λ 0 0 0 0 1 q0

a 0 0 0 1 0 q1

...

an 1 0 0 0 0 qn

an+1 0 0 0 0 0 qn+1

...

a2n+1 0 0 0 0 0 qn+1

a2n+2 0 0 0 0 0 qn+1

Figure 8.8: Observation Table 8.16 and the associated automaton
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In order to count the number of MQs that have been asked it is enough to

count how many strings are in the set {λ, a, a2, ..., a3n+2}. Hence, MQ(n) =

3n + 3, which concludes the proof.

¤

Lemma 8.2.17 Given the language L, LCA asks only 2 CQs in order to

learn the language.

Proof. The initial observation table is Table 8.17.

Table 8.17: S = {λ}, E = {λ}
T17 λ

λ an

a an−1

The table is not closed so LCA adds the string a to S. After n non closed

tables we obtain Table 8.18.

Table 8.18: S = {λ, a, ..., an+1}, E = {λ}
T18 λ State

λ an q0

a an−1 q1

...

an−1 a qn−1

an λ qn

an+1 ϕ qn+1

an+2 ϕ qn+1
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LCA builds the associated automaton and asks an EQ. The answer is of

course yes so the algorithm outputs the automaton A(S, E, C) and halts.

To identify this language LCA asked the teacher only two CQs, namely

C(λ) and C(an+1). From C(λ) = an LCA deduces that C(ai) = an−i, for all

i ∈ {1, 2, ...n} and from C(an+1) = ϕ, LCA deduces that C(an+2) is also ϕ.

¤

8.2.5.2. Practical Results

Due to the coding of the states and to the embedded information within the

teacher’s answers, our practical results reflect the improvement brought by

our algorithm.

In order to see the difference between L∗ and LCA algorithms, we first

tested them on an randomly generated set of 200 DFA, from which 25 are

on a one letter alphabet, 100 on two letters alphabet, 50 on three letters

alphabet and 25 on four letters alphabet (see Appendix “Test 1 DFA test

set). As we will see, generally the results are better with LCA.

In order to generate the DFA test set, we used the public package

from http://www.research.att.com/sw/tools/fsm/ having the documentation

available in [Mohri et al., 1998].

To generate random automata, we considered a maximum number of states

of 20 for our examples. Without loss of generality, the initial state is always

the state 0. Then we generate complete transition tables having the desti-

nation states generated randomly between 0 and the maximum number of

states. For the number of final states, we generated a random number be-

tween 0 and the maximum number of states -1. Then, we generated again

randomly the final states (without repeating twice the same state).

We generated each automaton in a text file, then we compiled the automa-

ton into an internal format (.fsm) and minimize the compiled automaton
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with one of the programs available in the FSM library. After minimizing, we

checked the newly found DFA for non-equivalence with the already generated

automata. In case of equivalence, we generated new automata. Finally, we

checked for completeness and then we loaded the automata in our programs.

Based on this test set, we constructed a comparative table in which one can

see the number of queries used by L∗ and LCA. We present here a sample of

the results in Table 8.19 (see Appendix “Test 1 Comparative results” for all

the results).
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Table 8.19: A sample from a test set for learning DFA with L∗ and LCA

algorithms

Language description L∗ LCA

Id Alphabet Linear transition table Final states EQs MQs EQs CQs

001.Tst {a} 3,4,1,1,5,2 2 2 11 1 2

002.Tst {a} 0 1 2 1 1

003.Tst {a} 0 0 1 2 1 2

004.Tst {a} 1,1 0 1 3 1 2

005.Tst {a} 2,4,3,1,3 0,2,3 2 8 2 5

006.Tst {a} 1,2,1 2 2 5 1 2

007.Tst {a} 1,0 0 1 3 1 2

008.Tst {a} 1,2,2 1 2 6 1 2

009.Tst {a} 1,3,2,4,2 2 2 9 1 2

010.Tst {a} 1,6,4,5,3,3,2 0,1,3,4,6 3 14 3 9

. . .

050.Tst {a, b} 6,1,8,5,4,5,8,3,1,3,3,7,7,0,5,5,8,2 2,3,4,6,7,8 3 59 3 51

051.Tst {a, b} 7,1,5,6,2,3,7,2,7,4,7,3,4,5,1,7 3,4 4 71 3 30

052.Tst {a, b} 6,6,6,1,5,4,3,6,1,0,3,1,6,2 2 4 71 2 14

053.Tst {a, b} 2,0,1,8,1,2,5,6,3,5,8,8,7,5,4,5,7,2 1,2 5 159 3 36

054.Tst {a, b} 5,2,4,2,1,1,1,1,3,4,6,3,0,0 2,4 3 49 2 16

055.Tst {a, b} 6,2,7,6,7,3,0,0,7,1,4,4,8,7,3,0,2,5 0,1,4,6,7 4 76 4 46

056.Tst {a, b} 7,5,2,1,0,1,7,2,0,3,6,4,7,6,1,6 4,7 5 90 3 32

057.Tst {a, b} 1,1,0,1 1 1 5 1 4

058.Tst {a, b} 8,4,5,3,0,2,6,6,3,5,2,7,0,1,8,0,2,7 0,5 6 161 4 66

059.Tst {a, b} 6,0,0,7,0,1,5,4,5,3,3,2,1,3,6,2 4,5 4 89 3 29

060.Tst {a, b} 5,2,4,1,0,4,6,7,2,3,7,5,1,2,2,7 3,5,7 4 71 2 16

. . .

130.Tst {a, b, c} 5,5,4,0,1,1,5,1,1,2,0,1,3,1,3,5,2,3 0,2,4,5 4 67 4 57

131.Tst {a, b, c} 0,1,5,2,0,5,5,5,5,1,5,2,0,3,5,5,4,0 0,2,5 3 85 2 42

132.Tst {a, b, c} 1,2,0,5,0,1,0,0,1,1,5,1,3,4,2,4,5,2 0,3 5 115 2 28

133.Tst {a, b, c} 0,3,4,3,1,2,3,0,5,4,0,1,5,0,2,2,0,4 3,4,5 3 67 2 46

134.Tst {a, b, c} 4,3,4,0,0,3,5,1,0,3,5,5,0,4,2,2,5,4 0,2,3 4 76 4 64

135.Tst {a, b, c} 5,0,3,4,0,2,4,3,4,4,2,1,5,1,5,0,1,0 4 4 76 3 55

136.Tst {a, b, c} 3,2,1,0,5,3,5,4,5,4,1,4,4,1,3,3,2,2 2,3 3 76 2 33

137.Tst {a, b, c} 3,4,1,2,5,5,1,2,4,3,2,5,3,4,2,4,3,5 0,2,4 4 104 3 60

138.Tst {a, b, c} 5,2,3,3,4,3,1,4,5,3,3,0,0,3,0,3,5,4 0,1,2 3 67 2 25

139.Tst {a, b, c} 5,5,0,3,0,5,4,2,5,0,3,4,5,4,5,2,1,3 3,5 3 76 3 60

140.Tst {a, b, c} 4,1,2,3,4,4,0,5,4,4,4,2,4,3,4,2,0,2 2,5 3 76 3 55

. . .

190.Tst {a, b, c, d} 0,4,3,3,4,2,4,3,1,1,4,3,2,0,4,4,2,3,0,4 0,1 3 63 2 41

191.Tst {a, b, c, d} 3,0,3,3,0,2,3,0,0,1,3,2,0,2,2,4,2,4,2,4 3 4 121 2 46

192.Tst {a, b, c, d} 0,4,0,2,1,2,0,2,1,0,4,4,0,3,1,3,3,0,3,1 1,2,3 3 63 3 65

193.Tst {a, b, c, d} 3,2,4,3,2,4,4,1,4,4,4,3,3,3,1,0,4,3,0,3 1,2 4 108 2 41

194.Tst {a, b, c, d} 4,2,4,1,2,1,4,4,4,0,3,3,4,3,1,4,1,0,3,4 3 4 108 3 58

195.Tst {a, b, c, d} 3,0,0,4,2,1,0,1,4,4,2,0,4,1,3,3,1,4,4,4 0,2,4 4 121 4 109

196.Tst {a, b, c, d} 2,2,3,4,3,2,4,1,0,0,4,3,0,3,3,3,4,3,1,4 4 4 121 2 39

197.Tst {a, b, c, d} 3,0,0,2,3,4,4,2,3,0,0,4,2,4,2,1,2,2,0,1 1,3,4 2 53 2 51

198.Tst {a, b, c, d} 2,2,0,1,0,1,1,0,2,1,2,0 0 2 30 1 11

199.Tst {a, b, c, d} 0,1,0,2,2,0,3,0,2,1,1,1,2,3,3,3 3 3 63 2 38

200.Tst {a, b, c, d} 2,1,3,0,0,1,1,2,1,2,2,2,1,2,0,2 2 3 63 1 14
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In order to visualize the difference between the number of queries used, we

generated a graphic for the results obtained with two letters alphabet in a

second test. This second test is based on a total of 209 automata: 11 automata

for each number of states starting from 2 up to 20 states (see Appendix “Test

2. DFA test set”).

We considered average values for automata with the same number of states

(see Table 8.20), and we represent the compared results between L∗ and LCA

for EQs (Figure 8.9) and for MQs and CQs respectively (Figure 8.10). See

Appendix “Test 2. Comparative results” for comparative table with all the

results.
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Table 8.20: Average values. Test 2

States L∗ EQs L∗ MQs LCA EQs LCA CQs

2 1.00 5.00 1.00 3.82

3 2.00 14.00 1.36 8.09

4 2.27 20.45 1.55 10.36

5 2.73 33.18 2.09 19.36

6 3.45 57.09 2.27 25.18

7 3.73 68.18 2.82 34.64

8 4.00 76.00 3.00 43.00

9 4.00 80.00 3.18 49.00

10 4.64 137.73 2.73 46.55

11 4.73 139.09 3.55 65.91

12 5.09 159.45 3.55 65.36

13 5.00 151.73 4.27 90.82

14 5.55 234.36 4.09 151.73

15 5.18 205.27 4.45 125.82

16 6.27 277.91 4.18 107.09

17 6.36 295.45 4.55 141.18

18 6.91 356.91 5.00 185.00

19 5.91 278.64 4.73 147.55

20 6.09 330.73 4.36 147.27
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Part IV

Concluding remarks
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Chapter 9

Conclusions and Further Work

9.1. Conclusions

The main contributions of this dissertation are:

• A new class of languages called Simple p-dimensional external contextual.

• A new learning paradigm based on corrections.

• Some algorithmic aspects based on the two previous contributions.

We summarize next the key aspects of this work.

9.1.1. A new class of languages or grammars

Chapter 3 and Chapter 6 are directly related. In Chapter 3, we have pre-

sented the state-of-the-art and discussion on classes of languages or grammars

considered in studies of Grammatical Inference. In Chapter 6, we have intro-

duced a new class of languages or grammars for Grammatical Inference.

The main points considered in Chapter 3 were:

• Limitations of the Chomsky Hierarchy from a linguistic point of view.

The Chomsky Hierarchy has some important limitations that should be

175
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taken into account when we want to study natural language syntax. One

of the main limitation emerges when we try to locate natural language

in this hierarchy.

• More generative capacity than CF grammars is required to describe nat-

ural languages. Chomsky developed formal grammars and the grammar

hierarchy as tools for formalizing the syntax of natural languages. How-

ever, several examples of natural language structures that cannot be

described using CF grammar were discovered, which suggests that more

generative capacity than CF grammars is required to describe natural

languages.

• Main focus on Grammatical Inference: REG and CF . Despite the fact

that REG and CF grammars are mechanisms with a limited represen-

tational power to describe some of the aspects of natural language con-

structions, research in the field of Grammatical Inference has focused on

learning REG or CF grammars (there are not many studies on identi-

fying classes of grammars more powerful than CF by using grammatical

inference techniques).

These considerations lead us to the following ideas:

• Mildly Context-Sensitive (MCS). We have proposed to focus grammat-

ical inference studies on classes of languages or grammars more relevant

from a linguistic point of view, for example, MCS. We consider that

this class provides a grammatical environment for natural language syn-

tactical constructions.

• Incomparability of natural languages to the Chomsky Hierarchy. In ac-

cordance with the idea supported by some other authors, we have also

suggested that the Chomsky hierarchy is not the appropriate place for

locating natural languages. We believe that natural languages are in

fact incomparable to the Chomsky types (we can find some examples
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of natural language constructions that are neither REG nor CF , and

also some REG or CF constructions that do not occur naturally in sen-

tences). Therefore, a new hierarchy is needed, which should hold strong

relationships with Chomsky’s, but should not coincide with it. This work

can be regarded as a step in that long-term research direction.

• ECp grammars. Since the families of languages generated by ECp gram-

mars have the property of transversality (i.e., they generate a class of

languages occupying an orthogonal position in the Chomsky Hierarchy),

they could have a chance in the study of natural language syntax. We

have also pointed out that this mechanism fabricates MCS families.

Therefore, due to its properties, we consider that ECp could play an

important role in grammatical inference studies too.

In Chapter 6, we have presented one of the main contributions of our dis-

sertation. In order to study the learnability of ECp from positive data, we

have needed to introduce a new class of languages. Since Gold proved that

superfinite languages are not identifiable in the limit from positive data and

ECp is superfinite, a restriction on the class has been necessary to make it

possible to learn this class in the limit from only positive data. For this rea-

son, we have restricted the class of languages to a new class called Simple

many-dimensional External Contextual grammars (SECp).

We have presented in this chapter the properties of SECp and, the most

remarkable facts of this family are the following:

• SECp is a MCS family of languages. As we have seen, MCS was

introduced with linguistic motivations and its relevance for studies of

natural language has been recognized.

• SECp occupies an orthogonal position in the Chomsky hierarchy. We

have investigated the interrelationship between this family and the fam-

ilies of languages in the Chomsky hierarchy. We have showed that SECp
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are incomparable with CF and REG, but included in CS. This fact is

very important since natural languages could also have this property.

This makes SECp an interesting class to study. Moreover, this class might

contribute to a better understanding of some aspects of natural language

acquisition.

9.1.2. A new learning paradigm

Chapter 4 and Chapter 7 are directly related. In Chapter 4, we have presented

the main formal models investigated in the field of Grammatical Inference and

have discussed some linguistic aspects of them. In Chapter 7, we have wished

to explore the possibility of considering that not only positive data is available

in a real learning process, and we have proposed the application of a linguistic

motivated idea to the studies of Grammatical Inference.

The main favorable and controversial aspects of each formal model (pre-

sented in Chapter 4) are summarized below.

1. Gold’s model

- Favorable aspects:

• Justification of Gold for studying identifiability in the limit. Natural

language learning is an infinite process. If a inference process is con-

sidered infinite, its success can be determined studying its behavior

in the limit (however, since children learn their language efficiently,

some consideration of computational complexity should be taken

into account).

• Process of improvement. The learner hypothesizes a grammar for

the language after each presented string, either discarding the pre-

viously grammar hypothesis (e.g., if the latest presented string is

incompatible with that grammar), or retaining it. Therefore, there
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is a process of improvement, similar to the process of children’s lan-

guage acquisition, in which there is a progressive improvement of

the language acquired by a child.

• Identification in the limit model is not a trivial model of learning.

Contrary to what has been suggested in linguistic literature, results

from Gold did not show that this model is not feasible for non-trivial

classes. We have presented some results (developed later by other

authors) that show that non-trivial learnable classes exist.

- Controversial aspects: in Gold’s model, the definition of identification

in the limit postulates greatly idealized conditions, as compared to the

real-word conditions under which children learn language. Moreover, it

makes some assumptions that could be somewhat problematic.

• The learner has to identify the target language exactly (even if ar-

bitrary misleading sequences of examples are provided to him).

• The learner receives only positive examples.

• The learner is not limited by any consideration of computational

complexity (he has infinite time available).

• The learner hypothesizes complete grammars instantaneously.

2. Angluin’s model

- Favorable aspects: Angluin’s model provides an important tool to the

learner; he is allowed to make queries to the teacher. In that way, the

main positive aspect of this model is that additional information is avail-

able in the learning process thanks to these queries.

- Controversial aspects:

• The learner has to identify the target language exactly.
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• The queries introduced in this model are very unnatural for real

learning environments.

Therefore, this model provides an important tool to the child, but the

kind of queries used in the learning process are inadequate for real learn-

ing processes. Moreover, the teacher’s answers are oversimplified for a

normal learning process.

3. Valiant’s model

- Favorable aspects: exact identification is not required in this model;

the learner is required to approximate the target grammar with high

confidence using an efficient algorithm.

- Controversial aspects: the requirement that examples are selected ran-

domly from some fixed distribution is too strong for practical situations.

Our conclusion is that none of these models perfectly accounts for natural

language acquisition. Each one has aspects that makes it useful to study first

language acquisition to a certain extent, but other aspects of the model make

it unsuitable for this task (e.g., some aspects of real learning process are not

taken into account).

In Chapter 7, we propose a new kind of data to take into account in Gram-

matical Inference studies. This idea is introduced from linguistic motivations.

First, we have explored the possibility of considering that not only positive

data is available in a real learning process. The main items presented here

have been:

• Linguistic discussions about the availability of negative data in child’s

linguistic environment. There is no doubt that children learn a language

at least in part by hearing sentences of the language to which they are
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exposed to. However, there is an aspect of the child’s linguistic en-

vironment which has been subject of controversy and which is still of

importance in discussions of learnability. This is the availability of neg-

ative evidence. While it is accepted that positive data is available to the

child, the availability of another kind of data has been widely argued.

Most of the debates has been focus on whether negative data exists and

whether it is necessary or even useful to the child.

• Definition of negative data. We have realized that authors reduce the

kind of data available to the child to only two types: positive or negative.

There is not intermediate possibility. Since it is clear that positive data is

linguistic constructions that are grammatically correct, all the remainder

is consider negative.

We have pointed out that first, it should be clarified what we understand

by negative evidence. The general definition of negative data is “exam-

ples of sentences that are not in the language”. What about another

kind of data that does not consist on an ungrammatical sentence, as for

example, a correction? Should corrections be consider a negative data?

• Availability of corrections. There is growing evidence that corrections

are available to children. Some linguistic studies in this direction has

been shown in Chapter 7.

We have considered in this dissertation that corrections are available to the

child. By correction we have understood a repetition of children’s ungram-

matical utterance with correction (e.g., “CHILD: They breaked the glass;

ADULT: Right! They broke the glass”).

Important aspects concerning corrections:

• Should we consider this kind of information given by the adult a negative

information? Corrections should be considered as positive and negative

information at the same time. Adults return a correction to the child,
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which is information about a string grammatically correct. Indirectly, if

a correction is received, this shows that the string uttered by the child

was ungrammatical.

• What role do corrections play in natural language acquisition? We do

not consider that corrections play a more important role than positive

data in natural language acquisition. We believe that the main informa-

tion received during the process of language acquisition is positive data.

Corrections will play a complementary role in that process. We should

consider them as a additional information available to the learner during

the learning process.

• Can we avoid overgeneralization by means of corrections? When only

positive data is available, the problem of overgeneralization can appear.

We consider that it could be solved using the information embedded in

a correction. Therefore, corrections could improve learnability. In that

way, corrections can play an important role in terms of efficiency (some

aspects of the language could be learned faster).

One of the major contributions in this dissertation has been to take into

account this type of corrections in learning processes and try to model them.

Based on all these ideas, we have applied the idea of corrections to the

studies of Grammatical Inference. Concretely, to the query learning model of

Angluin. We have introduced the idea of correction queries (CQ) and we have

applied them to learn DFA. In that way, we have tried to make a model of this

instructive information received by a child during the learning process (the

corrections). It has been developed in Chapter 8. Due to the results obtained,

we consider that models in Grammatical Inference framework might benefit

from corrections (see conclusions of Chapter 8).

We also consider that could be interesting to develop a model in Gram-

matical Inference that reflects better the real interaction between child-adult
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(interaction play an important role in real learning processes). The combina-

tion of positive data and CQs could have a chance in such model.

If positive data and corrections are available in the learning process, the

learning could be done in a more efficient way. For this reason, it could be

interesting to explore a model of learning based on the availability of these

kind of data.

It should be pointed out that learning from positive data and corrections

should not be considered as learning from informant; as we have seen, the

negative information used in an informant presentation cannot be considered

as the same information as the information received from a correction.

Such a model of Grammatical Inference tries to accomplish the following

items:

• Use information that is relevant for natural language acquisition.

• Take into account more aspects of real learning processes.

• Use more natural tools (for example, more natural –empirical motivated–

questions).

Ideas coming from linguistics can be useful in Grammatical Inference stud-

ies in order to obtain new perspectives of the problem and possible new so-

lutions in that way. And also, thanks to these ideas, models of Grammatical

Inference might also be more realistic.

9.1.3. Algorithms associated to the new concepts

Chapter 5 and Chapter 8 are directly related. Chapter 5 has been devoted

to the review of the most important results concerning learning from positive

data and learning from queries. In Chapter 8, we have presented our results

concerning learning SEC from only positive data and learning DFA from

CQs.
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The main two results presented in Chapter 5 are:

• Shinohara’s results regarding learning context-sensitive languages (Shi-

nohara’s results are relevant to linguistics, since more generative power

than CF is necessary to describe natural languages).

• Angluin’s results on learning DFA from MQs and EQs (this constitutes

one of the main positive results in computational learning theory, since

it was conjectured that richer classes than DFA cannot be inferred in

polynomial time using these kind of queries).

These two results are the most important and most relevant to our concerns.

They are essential to understand our contributions in Chapter 8.

The main conclusions of the results presented in Chapter 8 are:

1. Learning SEC from positive data

We have presented two main results concerning our study on the learn-

ability of SEC in the limit from positive data.

Our first result shows that the class of languages generated by simple

external contextual grammars with fixed dimension and degree is learn-

able from positive data, from Shinohara’s results [Shinohara, 1994]. The

learning algorithm straightforwardly derived from our main result is enu-

merative in nature and therefore not time-efficient, but we have obtained

positive learnability result.

Our second result is stronger, and shows also that SEC with any di-

mension, but with at most q contexts and m bases, has finite elasticity

(sufficient condition for positive data learnability).

Therefore, thanks to these results we can state that SECp can be learned

from only positive data. And also that it is important to make that

restriction in ECp in order to learn that class from only positive data.
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2. Learning DFA from corrections

We have proposed a new paradigm for the computational learning theory,

namely learning from corrections. Our algorithm based on Angluin’s

L∗ learning algorithm for regular languages uses an observation table

with correcting string instead of 0s and 1s. In our running examples,

generally, the number of EQs are less or equal than in Angluin’s ones

and the number of CQs is significantly smaller than the number of MQs.

One of the reasons of this reduction is that an answer to a CQ contains

embedded much more information. Another advantage of our approach

is that we can differentiate better between states.

The empirical results show that in most of the cases the number of

queries used by LCA is smaller. We believe that this is related to the

injectivity property, meaning that for every distinct two states the cor-

recting string should be different. Of course, not many automata ac-

complish this condition, but one can see that the rare cases in which

our algorithm performs worse, this injectivity property is far from being

satisfied.

Among the improvements previously discussed, we would like to mention

here the adequacy of CQs in a real learning process. They reflect in a

more accurate manner the process of children’s language acquisition.

We are aware that this kind of formalism is for an ideal teacher who

knows everything and always gives the correct answers and for practical

applications our working hypothesis should be adjusted.
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9.2. Future Work

We consider that formal results in Grammatical Inference can be relevant to

understand first language acquisition. Positive results point to possible ways

in which children might learn languages, whereas negative results allow to

show certain models of language acquisition to be unlikely or incomplete.

Therefore, Grammatical Inference could be a useful tool for any researcher

interested in human language. Results and techniques coming from Gram-

matical Inference and Studies of language acquisition can help to understand

the mechanisms that underlie natural language acquisition.

Several interesting research directions are open in this dissertation. We will

present in the sequel some of the main future research directions.

9.2.1. Learning SEC in polynomial time

Although we have proved that SEC is learnable from only positive data, we

could not prove that SEC is efficiently learnable. We present in the sequel

three possible research directions in order to learn SEC in polynomial time:

a) Proving the existence of a characteristic set for SEC languages

In relation with our current research on learning SEC from only positive

data, recently we have started to work on a polynomial time algorithm

for inferring SEC grammars from positive data.

Our algorithm works given a set of strings, S, that was generated by

an SECp,q grammar (where p and q are known), and a depth d (the

number of contexts applied in a derivation of a string is called the depth

of a string). The list of strings must be exhaustive up to depth d. The

smallest string in S is the concatenation of the elements in the base.

However, there are multiple possibilities for what the actual base is (de-

pending on the value of p). From the smallest string, a set of possible
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bases, B, is generated. For example, if p=2 and the smallest string in S

is aa, then the set of possible bases is {(λ, aa), (a, a), (aa, λ)}.

The rest of the algorithm is repeated for every bj ∈ B. The strings in

S are processed for bj. Each si is assumed to have been generated by a

single application of a context to the base. The possible contexts that

could have generated si after one application to bj are stored in a set

P . When all the strings in S have been processed, the correct grammar

must be found. The elements of P are grouped into grammars with q

contexts in all possible ways and stored in a set G. Any element of G

that cannot generate every string in S is discarded, leaving only those

grammars in G that generate S. Next, every element g ∈ G is used

to generate all possible strings up to depth d. If any of the generated

strings are not in the input set S then g is discarded.

For example, consider an input set S = {a, aaa, bab, ababa, baaab} for

a language generated by an SEC1,2 grammar. The input is exhaustive

up to depth 2. The shortest string in S is a, and therefore it is the

base. Since p = 1, a is the only possible base. Assuming that aaa was

generated by a single application of a context to a, the possible contexts

that can generate the input set are {[(λ, aa)], [(a, a)], [(aa, λ)]}. This is

done again for bab, resulting in {[(b, b)]}. All of the possible contexts are

then put in a set G. The only gi ∈ G that can generate the language

is {[(a, a)], [(b, b)]}; the rest are discarded. All possible strings up to

depth 2 have derivations in this grammar. Since it is equal to the input

set, this grammar is not discarded and is output by the algorithm. In

this case, there was only one possible base. If this grammar had been

SEC2,2, then the possible bases would have been {[(λ, a)], [(a, λ)]}. For

each of the possible bases, the set G would have been constructed and

every element of that set tested. Unlike the example chosen here, many

input sets can be generated by several grammars, some of which have
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distinct bases.

The algorithm implemented is showed in Figure 9.1.

INFER-GRAMMAR (d, p, q, inputSet)

smallest ← Find-smallest(inputSet)

bases ← Generate-possible-bases(p, smallest)

Initialize finalGrammars

Initialize result

for base ∈ bases

do Initialize possibleContexts

for i ∈ inputSet

do possibleContexts.push [Generate-possible-contexts(i, base)]

possibleGrammars ←
← [Generate-all-context-combinations(possibleContexts)]

for j ∈ possibleGrammars

do if Can-generate-all-strings (j, base)

then finalGrammars.push[(j, base)]

for k ∈ finalGrammars

do if Generates-exact-list (d, k, inputSet)

then result.push[k]

Return(result)

Figure 9.1: Pseudocode of the inference algorithm

Supplementary work is necessary to prove the correctness of the algo-

rithm. However, our conjecture is that a finite sample of the language, a

characteristic sample, is sufficient to infer a grammar for the language.
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Therefore, a future research direction could be to try to prove that there

exists a characteristic set for SEC languages.

b) Using CQs

We consider that another interesting research direction could be to learn

SEC in polynomial time by means of CQs. In the sequel we present an

example of the usefulness that can have the information received from

the CQ for efficient learning.

Lets suppose that we only provide to previous algorithm positive exam-

ples (the parameter d of the above algorithm disappears and we cannot

check if the candidate grammar generates-exact-list). In that case, the

learning algorithm may make an overgeneralization.

The following example shows that situation. We suppose that the correct

grammar is the following SEC with 2 dimensions and 2 contexts:

– B = {(λ, λ)}
– C = { c1 = [(a, λ), (c, λ)], c2 = [(λ, b), (λ, d)]}

As we can see, the language generated by this grammar is: L =

{anbmcndm | n,m ≥ 0}
Our first hypothesis could be the following:

– B = {(λ, λ)}
– C = { c1 = [(a, λ), (c, λ)], c2 = [(b, λ), (λ, d)]}

Note that with this grammar we can generate all the strings in L, but

also we can generate strings that are not in the language, for instance,

bacd. Therefore, this is an overgeneral hypothesis.

How can we avoid that problem? In order to solve that problem, another

future research direction could be to try to combine positive data and
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CQs to infer SEC grammars. With only positive data we will not be

able to refute a too general hypothesis. What about using also CQs in

the learning process? Could correction queries be useful to see that our

hypothesis is not correct?

In the above example, the correction of bacd would be ϕ (this means that

the string does not belong to L). Therefore, thanks to the correction, we

would be able to refute that hypothesis and construct a new hypothesis

consistent with all these data.

This example shows that, despite the fact that SEC is learnable from

positive data, the information received from the CQs can be useful for

efficient learning. Since we are interested on an efficient algorithm, per-

haps it could be interesting to explore more this idea in the future.

It should be pointed out also that, if we want to apply CQs to learn

SEC, perhaps it will be better to study another kind of corrections.

Namely, we have seen that the kind of CQs introduced in Chapter 8 are

useful for learning DFA, but perhaps, to study the learnability of SEC,

another kind of correction could be more appropriate.

For example, we have seen that, roughly speaking, SEC produces a

language starting from an axiom and iteratively adding contexts to the

currently generated words. This suggest that perhaps, an appropriate

way to correct words generated by SEC grammars could be inserting

the necessary symbols to the word (i.e., only insertion is allowed). The

kind of correction that should be used for SEC can be also subject of

future research.

It could be also interesting to prove that we can learn SEC only from

positive data and corrections, without knowing the dimension and the

number of contexts from the beginning. This perhaps will be more realis-

tic and it would reflect better the process of natural language acquisition.
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c) Solving two open problems

It could be also interesting to solve the following open problems:

– What is the status of the equivalence problem for SEC? This is

still an open problem. In future work, we would try to prove that

equivalence is decidable.

– Do there exist normal forms for SEC? If there do exist, it would

facilitate the study of this type of grammars.

These results would be relevant within the field of Grammatical Inference,

since we would obtain positive results of a class more expressive than context-

free, which is able to describe certain aspects of the syntax of natural lan-

guage. Perhaps, these results could be extended to other classes of languages.

9.2.2. Exploring the relevance of correction queries within Grammatical In-

ference

Learning from corrections is our major contribution in this dissertation. The

results obtain so far suggest that CQ may play an important role in learning

processes. Therefore, learning from CQ is a promising model to be further

investigated in the field of algorithmic learning theory.

Regarding the results present in Chapter 8, for the future it would be

interesting:

• to find subsets of regular languages for which LCA performs always

better than L∗.

• to identify which condition could be sufficient in order to use a smaller

number of queries.

• to try to extend this result to CF and MCSL (probably another type

of correction would be needed).
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Other future research directions are:

• To study CQs per se. This includes, among other things:

– Different kind of corrections.

– Adequacy of each one of them for our study.

– Complexity of this kind of queries.

– Comparison with other kind of queries that already exist.

• To demonstrate that CQs can be a very useful tool to learn successfully

different classes of languages or grammars.

– Classes for which learnability positive results have not been obtained

so far. To see if they can be learned using corrections.

– New classes of languages that do not necessarily belong to the Chom-

sky Hierarchy (i.e, classes of languages with an orthogonal position

in that hierarchy). Such classes of languages could be appropriate

candidates to model natural language syntax. These results would

help us to understand better the process of natural language acqui-

sition.

• To formalize the new proposed model (learning from positive data and

CQs) and assess its relevance in the Grammatical Inference framework.

We propose:

– To formally fix that model an do an exhaustive analysis of it.

– To develop the algorithm that will implement it.

– To study classes of languages or grammars using this model (classes

that belong or not to the Chomsky Hierarchy).

All this work could demonstrate the effectiveness of this new proposed

model of learning, which we consider that reflects in a more accurate

manner a real learning process.
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• To explore possible applications of our algorithms using real world data.

• To study practical applications of CQs (e.g., to see if they could be a

useful tool for Internet search engines, as for example, Google).

• To extend all our results to studies related directly to robotics, machine

translation, natural language processing, neural networks, bioinformat-

ics, computer-assisted language learning, etc.

∴

The results obtained in this dissertation encourage us to continue working

on all the promising ideas presented and on its applications. We believe that

all the future research directions pointed out in this chapter could be helpful

to go further in the understanding of language acquisition.
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Appendix

Test 1. Comparative results

Language description L∗ LCA

Id Alphabet Linear transition table Final states EQs MQs EQs CQs

001M.txt a 3,4,1,1,5,2 2 2 11 1 2

002M.txt a 0 1 2 1 1

003M.txt a 0 0 1 2 1 2

004M.txt a 1,1 0 1 3 1 2

005M.txt a 2,4,3,1,3 0,2,3 2 8 2 5

006M.txt a 1,2,1 2 2 5 1 2

007M.txt a 1,0 0 1 3 1 2

008M.txt a 1,2,2 1 2 6 1 2

009M.txt a 1,3,2,4,2 2 2 9 1 2

010M.txt a 1,6,4,5,3,3,2 0,1,3,4,6 3 14 3 9

011M.txt a 2,1,1 0,1 2 6 2 5

012M.txt a 1,2,3,0 1,2 2 6 2 3

013M.txt a 3,2,3,4,1 2 2 9 1 2

014M.txt a 1,2,3,0 2 3 9 1 2

015M.txt a 3,0,1,4,2 4 3 10 1 2

016M.txt a 1,1 1 1 3 1 2

017M.txt a 5,1,4,2,1,3 1,3,5 3 12 3 9

018M.txt a 4,3,1,0,2 0,2 2 9 2 4

019M.txt a 3,4,1,2,5,0 1,2,3,4,5 2 12 2 10

020M.txt a 2,3,1,4,4 3 3 12 1 2

021M.txt a 2,1,1 1 2 5 1 2

022M.txt a 3,2,0,1 0,1,3 2 7 2 6

023M.txt a 4,1,5,2,3,1 0,1,4 3 9 3 8

024M.txt a 3,0,1,2 1,2,3 2 8 2 6

025M.txt a 2,3,1,0 0,1,3 2 7 2 5

026M.txt a,b 3,5,3,2,6,6,0,4,4,2,4,6,7,1,7,3 0,3,4,5,6 3 54 3 49

027M.txt a,b 7,5,8,6,3,7,4,7,0,4,1,6,7,2,2,5,1,2 0,1,2,4,5,7,8 4 76 4 67

028M.txt a,b 2,3,5,1,0,5,1,3,4,1,3,4 0,4,5 2 27 3 18

029M.txt a,b 3,0,2,2,1,4,0,1,3,1 1,2 3 31 2 13

030M.txt a,b 0,7,3,2,5,8,3,6,2,2,4,1,4,0,7,2,3,7 0,1,5 6 111 2 20

031M.txt a,b 5,2,3,0,3,2,6,1,0,8,0,4,2,5,2,6,4,7 4,5 5 97 2 20
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– continued from previous page

Language description L∗ LCA

Id Alphabet Linear transition table Final states EQs MQs EQs CQs

032M.txt a,b 6,4,7,0,5,5,7,2,1,4,1,5,2,3,1,6 0,2,3,4,7 4 76 4 47

033M.txt a,b 4,3,2,4,3,3,7,4,6,1,5,6,1,3,5,0 0 5 159 1 10

034M.txt a,b 6,3,4,3,6,6,0,0,3,0,1,2,4,5 5 6 125 2 21

035M.txt a,b 3,3,5,1,7,6,2,2,6,5,4,0,1,2,3,1 2,3,4,5,6 5 104 5 95

036M.txt a,b 5,6,5,4,4,3,6,1,6,1,2,0,2,5 0,2,3,5 3 35 3 27

037M.txt a,b 2,2,2,4,1,4,0,2,3,2 1 3 34 1 7

038M.txt a,b 8,5,4,2,4,9,0,6,7,2,2,9,1,1,9,0,9,8,3,6 0,3,8 5 127 3 32

039M.txt a,b 2,5,1,1,5,1,1,6,4,0,2,3,4,6 1,2,4,5 3 39 3 36

040M.txt a,b 6,5,7,3,6,7,6,4,6,6,7,4,1,2,4,0 0,1,3,7 4 71 4 43

041M.txt a,b 4,7,5,3,5,5,1,3,0,6,2,1,6,2,7,7 2,6 6 118 2 12

042M.txt a,b 1,3,2,5,6,2,0,1,6,4,4,7,1,3,5,1 0,2,3 5 89 2 17

043M.txt a,b 5,1,8,5,6,8,3,1,5,2,4,0,3,2,0,7,1,7 0,5,8 4 83 2 28

044M.txt a,b 3,5,2,1,7,3,3,9,3,6,6,8,1,1,6,9,2,4,3,8 0,1,2,3,4,5,8 5 118 5 112

045M.txt a,b 1,3,6,4,5,1,2,1,6,2,5,4,3,1 3 4 69 2 27

046M.txt a,b 9,5,7,2,2,4,8,0,9,2,1,8,7,7,0,3,2,9,6,2 0 6 229 2 22

047M.txt a,b 2,7,3,3,4,6,7,1,5,0,7,1,7,5,6,1 5,6,7 4 83 2 34

048M.txt a,b 4,1,3,4,4,0,0,0,4,2 1,2,3,4 3 39 3 35

049M.txt a,b 8,5,3,3,0,4,5,2,1,6,0,5,0,7,8,7,1,5 0,1,2,5,7,8 5 97 5 88

050M.txt a,b 6,1,8,5,4,5,8,3,1,3,3,7,7,0,5,5,8,2 2,3,4,6,7,8 3 59 3 51

051M.txt a,b 7,1,5,6,2,3,7,2,7,4,7,3,4,5,1,7 3,4 4 71 3 30

052M.txt a,b 6,6,6,1,5,4,3,6,1,0,3,1,6,2 2 4 71 2 14

053M.txt a,b 2,0,1,8,1,2,5,6,3,5,8,8,7,5,4,5,7,2 1,2 5 159 3 36

054M.txt a,b 5,2,4,2,1,1,1,1,3,4,6,3,0,0 2,4 3 49 2 16

055M.txt a,b 6,2,7,6,7,3,0,0,7,1,4,4,8,7,3,0,2,5 0,1,4,6,7 4 76 4 46

056M.txt a,b 7,5,2,1,0,1,7,2,0,3,6,4,7,6,1,6 4,7 5 90 3 32

057M.txt a,b 1,1,0,1 1 1 5 1 4

058M.txt a,b 8,4,5,3,0,2,6,6,3,5,2,7,0,1,8,0,2,7 0,5 6 161 4 66

059M.txt a,b 6,0,0,7,0,1,5,4,5,3,3,2,1,3,6,2 4,5 4 89 3 29

060M.txt a,b 5,2,4,1,0,4,6,7,2,3,7,5,1,2,2,7 3,5,7 4 71 2 16

061M.txt a,b 8,7,6,5,5,4,3,1,2,4,3,6,4,8,6,3,8,6 1,6,8 5 90 3 29

062M.txt a,b 2,2,4,5,6,2,2,5,2,2,3,7,2,1,1,4 1,4,7 5 90 4 44

063M.txt a,b 5,3,2,6,6,0,1,6,3,2,2,4,0,3 0,1,2,4,6 4 65 4 50

064M.txt a,b 1,2,2,3,2,6,3,0,5,4,2,2,4,0 1,2,5 3 53 2 18

065M.txt a,b 4,4,3,7,8,0,7,9,2,9,6,0,6,5,5,7,1,8,7,6 1,4,6 4 97 3 47

066M.txt a,b 3,5,1,3,2,1,5,3,2,4,0,4 1,3,4 3 49 2 19

067M.txt a,b 0,1,0,1 0 1 5 1 4

068M.txt a,b 6,1,6,5,4,7,5,7,3,1,2,0,5,0,2,3 1,5,7 3 62 3 28

069M.txt a,b 0,7,0,3,5,4,2,4,1,6,0,3,6,5,3,6 0,3,5 3 49 3 36

070M.txt a,b 5,7,2,3,6,8,3,1,5,8,1,4,6,0,3,7,5,3 0,3,7,8 5 111 4 61

071M.txt a,b 1,2,2,3,0,0,2,0 0,2 3 27 3 23

072M.txt a,b 1,2,4,1,3,0,3,0,4,4 1,3 3 31 2 15

073M.txt a,b 0,2,5,5,2,3,7,5,3,5,1,6,4,2,7,1 4,5 3 59 2 16

074M.txt a,b 2,0,6,5,2,7,7,8,5,1,1,3,9,9,4,4,8,9,3,1 2,3,5 4 90 3 57

075M.txt a,b 0,4,0,3,4,4,1,4,1,2 3 3 44 1 7

076M.txt a,b 6,0,7,7,1,4,1,5,7,6,6,4,5,3,2,6 0,2,3,4,5 3 54 3 44

077M.txt a,b 2,6,2,4,7,5,1,5,4,3,1,7,1,7,3,3 4,5 4 71 3 29
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078M.txt a,b 7,5,0,5,6,7,1,2,8,0,4,3,3,7,7,1,9,4,4,9 0,2,3,4,5,6,7,9 6 169 6 157

079M.txt a,b 4,6,6,6,2,3,6,7,1,6,8,1,7,8,2,4,5,6 8 6 152 2 17

080M.txt a,b 4,2,6,0,6,1,0,1,4,5,0,4,3,6 1,2,3,4,5 4 71 4 60

081M.txt a,b 5,4,5,1,1,2,2,3,4,0,2,3 0,1,2,4,5 4 54 4 52

082M.txt a,b 7,6,3,5,2,4,2,3,2,3,5,6,6,0,4,1 0,2,3,5,6,7 6 111 6 108

083M.txt a,b 0,2,1,3,1,0,0,1 0 2 19 1 6

084M.txt a,b 1,0,0,4,2,2,4,2,2,5,1,3 0,1,2 3 35 3 32

085M.txt a,b 5,9,7,1,1,4,0,4,0,8,3,2,5,7,3,6,0,3,2,1 0,2,5,6,7,8 4 87 4 58

086M.txt a,b 3,0,6,7,2,5,1,0,3,5,3,2,4,7,4,1 0,1,3,6 4 65 2 31

087M.txt a,b 5,7,2,5,6,5,2,1,7,0,4,2,5,3,1,5 0,1,2,3,4,5,7 5 135 5 128

088M.txt a,b 3,4,0,2,1,2,2,0,5,3,6,6,4,0 0,1,2,5 4 71 3 38

089M.txt a,b 2,4,2,8,7,5,6,4,6,8,5,8,3,9,1,2,5,3,3,2 1,2,3,4,7,8,9 5 118 5 96

090M.txt a,b 1,2,6,3,1,1,2,4,5,7,0,0,3,7,5,6 2 6 143 2 22

091M.txt a,b 5,9,3,1,3,8,1,5,0,8,3,2,2,4,0,2,6,2,7,6 1 4 125 2 37

092M.txt a,b 2,1,1,5,1,6,3,6,0,0,4,1,1,3 2,6 4 65 2 13

093M.txt a,b 1,4,0,1,2,3,1,3,2,5,4,5 0,2,3,4 4 65 4 48

094M.txt a,b 3,4,7,3,6,5,3,6,2,1,1,8,6,2,3,1,6,7 0,2,3,4,6,7 3 49 4 61

095M.txt a,b 3,4,1,2,2,0,1,3,2,3 0,2,4 2 23 2 18

096M.txt a,b 8,0,7,2,0,3,5,9,2,2,9,7,4,8,9,6,7,9,1,1 7 5 127 2 26

097M.txt a,b 4,3,4,6,4,1,3,5,6,3,3,1,1,2 0,3 4 71 3 32

098M.txt a,b 0,4,5,4,1,3,2,3,1,6,3,2,2,2 1,4,6 3 49 2 14

099M.txt a,b 2,8,8,1,2,2,6,5,3,5,4,4,5,8,7,9,7,6,0,1 2,8,9 4 90 3 30

100M.txt a,b 5,1,4,5,0,2,3,6,3,1,6,2,2,4 0,2,5 5 71 3 33

101M.txt a,b 4,4,6,3,2,0,3,1,0,5,3,0,7,4,2,2 2 2 71 1 10

102M.txt a,b 4,1,2,4,4,3,6,5,1,7,0,3,5,4,3,4 0,1,2,3,4,5,7 3 76 3 75

103M.txt a,b 1,1,5,4,4,4,2,2,2,3,5,5 0,1,3 3 34 2 12

104M.txt a,b 2,8,6,5,8,3,3,5,7,4,4,0,7,1,2,6,1,1 3 4 95 2 27

105M.txt a,b 7,9,1,8,8,0,5,1,0,1,6,7,9,5,1,6,9,2,4,3 1 6 149 3 37

106M.txt a,b 1,5,8,0,1,7,1,2,2,8,0,6,3,0,4,2,0,5 1,3,8 5 95 4 49

107M.txt a,b 3,2,2,1,2,5,3,4,3,1,5,5 2 4 65 1 7

108M.txt a,b 2,6,5,3,4,1,0,0,0,3,3,3,6,6 1,3,5 3 39 3 23

109M.txt a,b 2,3,6,5,4,2,2,1,1,1,3,1,2,0 0,1,2,3,4,5 3 59 3 55

110M.txt a,b 8,3,2,6,7,0,2,6,1,7,1,5,8,1,5,0,4,7 1,2,5,8 3 65 3 60

111M.txt a,b 0,5,2,2,4,3,5,4,2,0,5,1 1,2,4 3 35 2 15

112M.txt a,b 2,0,0,0,1,1 1 2 11 1 5

113M.txt a,b 2,3,4,2,5,1,9,8,7,5,1,7,3,0,7,0,4,8,6,4 4 4 95 2 24

114M.txt a,b 6,1,3,0,3,5,2,3,5,7,5,1,8,4,1,5,6,8 2,5,6,7 5 90 3 42

115M.txt a,b 5,7,1,4,0,6,5,5,5,6,3,7,4,5,2,1 0,1,3 4 71 3 31

116M.txt a,b 2,4,0,5,1,0,5,4,1,6,3,1,0,5 0,1,4,5 4 77 4 55

117M.txt a,b 3,5,5,3,4,6,0,2,3,6,7,3,8,3,9,3,0,1,7,4 0,1,3,7 4 83 3 44

118M.txt a,b 0,3,3,5,0,3,5,0,3,1,4,2 2,4 3 44 2 15

119M.txt a,b 3,4,5,4,3,5,1,2,3,4,5,5 1,4 3 39 2 10

120M.txt a,b 7,6,2,5,6,3,5,7,2,6,1,6,2,0,2,4 2,4,5 5 77 4 46

121M.txt a,b 1,1,3,2,1,3,3,3 0,2 3 31 2 6

122M.txt a,b 4,2,7,4,4,1,3,2,2,6,8,3,7,2,1,5,2,4 1,3 6 135 2 33

123M.txt a,b 4,1,2,0,3,5,0,0,5,6,7,5,2,1,3,3 1,2,3,4,7 4 71 4 51
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124M.txt a,b 5,2,2,0,4,5,1,1,2,3,2,1 0,1,3,4,5 4 54 4 47

125M.txt a,b 0,2,1,8,5,4,1,3,6,1,2,1,3,1,2,8,7,2 6 5 151 2 20

126M.txt a,b,c 1,1,4,3,5,0,2,0,3,5,0,3,3,1,5,2,0,3 5 5 104 1 14

127M.txt a,b,c 5,0,2,5,5,1,1,5,3,4,2,4,0,3,5,5,0,0 0,1,4 3 45 2 28

128M.txt a,b,c 4,3,4,2,2,1,0,1,0,2,1,4,4,3,3 1,2,4 3 45 3 38

129M.txt a,b,c 0,0,3,0,3,1,1,3,1,2,3,2 1,2,3 2 38 2 36

130M.txt a,b,c 5,5,4,0,1,1,5,1,1,2,0,1,3,1,3,5,2,3 0,2,4,5 4 67 4 57

131M.txt a,b,c 0,1,5,2,0,5,5,5,5,1,5,2,0,3,5,5,4,0 0,2,5 3 85 2 42

132M.txt a,b,c 1,2,0,5,0,1,0,0,1,1,5,1,3,4,2,4,5,2 0,3 5 115 2 28

133M.txt a,b,c 0,3,4,3,1,2,3,0,5,4,0,1,5,0,2,2,0,4 3,4,5 3 67 2 46

134M.txt a,b,c 4,3,4,0,0,3,5,1,0,3,5,5,0,4,2,2,5,4 0,2,3 4 76 4 64

135M.txt a,b,c 5,0,3,4,0,2,4,3,4,4,2,1,5,1,5,0,1,0 4 4 76 3 55

136M.txt a,b,c 3,2,1,0,5,3,5,4,5,4,1,4,4,1,3,3,2,2 2,3 3 76 2 33

137M.txt a,b,c 3,4,1,2,5,5,1,2,4,3,2,5,3,4,2,4,3,5 0,2,4 4 104 3 60

138M.txt a,b,c 5,2,3,3,4,3,1,4,5,3,3,0,0,3,0,3,5,4 0,1,2 3 67 2 25

139M.txt a,b,c 5,5,0,3,0,5,4,2,5,0,3,4,5,4,5,2,1,3 3,5 3 76 3 60

140M.txt a,b,c 4,1,2,3,4,4,0,5,4,4,4,2,4,3,4,2,0,2 2,5 3 76 3 55

141M.txt a,b,c 4,3,3,2,4,2,4,3,2,0,5,1,3,0,4,3,5,2 4 5 137 2 36

142M.txt a,b,c 3,0,2,4,2,1,0,0,0,0,0,5,5,1,0,4,4,1 2 4 104 1 14

143M.txt a,b,c 2,2,1,3,4,1,0,3,5,4,1,0,1,1,5,3,0,5 1,2,3,4 3 76 3 69

144M.txt a,b,c 1,3,0,3,2,2,0,2,2,3,0,0 0,1,3 3 45 3 44

145M.txt a,b,c 0,3,3,1,2,3,4,1,2,1,4,4,4,3,3 1,2,4 4 67 3 48

146M.txt a,b,c 0,4,4,2,4,4,2,3,2,1,3,4,2,2,4 2,4 3 45 2 23

147M.txt a,b,c 2,0,4,0,1,1,3,4,1,1,1,1,3,0,4 0,3 3 59 3 56

148M.txt a,b,c 3,4,1,4,1,1,2,1,3,0,0,5,0,3,4,5,2,4 0,3,5 3 59 2 34

149M.txt a,b,c 4,2,3,2,0,4,3,1,4,4,2,3,1,4,0 3 4 85 1 12

150M.txt a,b,c 3,1,1,1,0,0,3,4,4,1,5,1,4,2,4,4,0,5 3 4 137 3 70

151M.txt a,b,c 2,1,0,0,1,0,4,1,1,1,5,2,4,5,3,3,1,2 1,5 4 115 3 61

152M.txt a,b,c 0,2,4,1,2,0,2,3,5,0,5,5,2,2,1,0,0,5 1 4 115 2 32

153M.txt a,b,c 1,2,3,1,2,2,5,4,0,3,3,4,1,1,1,4,2,4 1,2,3,5 3 67 3 61

154M.txt a,b,c 0,5,3,1,3,1,3,0,3,1,4,0,3,5,2,5,5,1 1,2,3 4 104 2 49

155M.txt a,b,c 1,3,1,0,2,3,2,0,0,4,3,0,1,1,3 0,2,3 3 52 2 25

156M.txt a,b,c 2,1,3,4,0,4,1,0,3,3,4,0,2,3,4 0,4 3 45 2 25

157M.txt a,b,c 2,2,3,0,0,4,5,0,5,3,1,5,0,5,1,3,2,2 1,3 3 76 2 29

158M.txt a,b,c 2,5,3,3,4,0,4,4,3,5,4,1,4,4,1,2,0,4 3 3 67 2 33

159M.txt a,b,c 3,1,3,2,4,4,1,1,1,2,1,0,3,4,2 0 3 76 1 12

160M.txt a,b,c 2,1,4,3,3,1,0,0,1,2,3,1,5,4,0,2,0,3 0,2,3,5 3 67 3 65

161M.txt a,b,c 3,3,3,1,4,4,3,3,2,2,2,1,5,4,5,2,3,0 5 3 115 2 33

162M.txt a,b,c 0,1,2,1,0,0,0,2,2 1 2 22 1 8

163M.txt a,b,c 4,1,4,2,3,1,3,1,1,1,5,3,3,0,5,3,5,3 3,4,5 3 67 4 69

164M.txt a,b,c 4,3,5,2,4,4,5,2,3,3,4,1,2,3,1,1,1,4 1,2,3 3 52 3 50

165M.txt a,b,c 5,0,0,0,1,2,5,2,4,5,5,5,2,1,3,0,2,5 3,5 3 76 3 43

166M.txt a,b,c 2,4,2,4,2,2,4,2,0,5,1,2,2,3,5,1,4,3 0,2 4 85 2 28

167M.txt a,b,c 4,5,1,3,0,5,3,0,1,4,1,3,4,3,1,4,2,5 1 4 115 1 14

168M.txt a,b,c 0,4,5,4,3,5,3,4,4,4,1,4,2,2,3,5,0,0 1,2 4 76 2 31

169M.txt a,b,c 1,4,1,5,4,4,0,3,3,2,3,2,1,1,0,5,3,0 2 3 115 2 42
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170M.txt a,b,c 4,1,3,2,2,0,1,5,1,3,1,3,4,5,4,0,4,4 0,1,2,3 3 76 3 62

171M.txt a,b,c 1,4,2,1,1,3,5,3,0,0,5,2,0,0,4,2,3,2 2 3 67 2 32

172M.txt a,b,c 0,1,0,3,1,2,4,1,3,3,0,1,3,0,4 2 4 85 1 12

173M.txt a,b,c 1,5,0,2,4,3,3,5,5,1,1,5,1,4,0,0,3,3 2,3,4,5 4 76 3 42

174M.txt a,b,c 2,0,4,2,0,0,0,1,3,2,1,1,1,2,4 0,3,4 3 52 3 42

175M.txt a,b,c 3,3,3,0,0,0,3,0,5,2,1,1,4,2,2,3,5,4 0,2,4,5 4 94 4 82

176M.txt a,b,c,d 2,3,3,2,2,3,0,0,2,2,2,1,0,3,3,1 1 3 63 2 37

177M.txt a,b,c,d 4,2,4,0,1,4,1,4,0,0,3,2,0,0,0,3,0,1,4,2 0,1,3 2 53 2 46

178M.txt a,b,c,d 1,0,4,3,4,4,2,3,3,1,0,2,2,1,2,1,3,3,2,2 1,3,4 3 82 3 71

179M.txt a,b,c,d 3,1,2,2,0,3,3,0,3,2,0,0,1,3,2,3 2 3 63 1 14

180M.txt a,b,c,d 0,4,4,3,3,0,1,4,1,3,3,0,3,1,0,4,0,4,2,4 1,3 3 82 2 40

181M.txt a,b,c,d 1,1,0,3,1,4,3,4,3,4,1,2,4,3,4,0,3,4,0,2 2 3 95 1 17

182M.txt a,b,c,d 4,4,3,4,2,4,3,1,0,1,1,3,2,1,2,1,4,4,2,3 0 4 134 2 45

183M.txt a,b,c,d 2,0,1,1,1,3,0,0,1,0,0,0,1,0,0,1 0,1 3 73 3 68

184M.txt a,b,c,d 1,2,3,1,0,1,0,2,1,3,2,3,3,1,2,0 0,3 2 37 2 26

185M.txt a,b,c,d 1,2,2,2,2,2,3,2,2,4,0,4,4,0,3,4,0,0,3,2 1,3 3 63 2 36

186M.txt a,b,c,d 3,1,1,0,0,2,4,4,3,2,1,1,3,2,3,2,4,3,1,4 1,2,4 4 121 4 116

187M.txt a,b,c,d 4,2,1,0,0,4,0,2,3,0,4,0,1,1,2,0,3,4,2,1 3,4 3 73 3 53

188M.txt a,b,c,d 2,1,3,3,4,1,3,2,1,4,3,1,3,1,4,4,4,2,4,2 2,3 2 53 2 41

189M.txt a,b,c,d 1,3,0,1,1,4,0,4,1,0,2,3,4,1,0,1,1,4,3,2 2 3 95 1 17

190M.txt a,b,c,d 0,4,3,3,4,2,4,3,1,1,4,3,2,0,4,4,2,3,0,4 0,1 3 63 2 41

191M.txt a,b,c,d 3,0,3,3,0,2,3,0,0,1,3,2,0,2,2,4,2,4,2,4 3 4 121 2 46

192M.txt a,b,c,d 0,4,0,2,1,2,0,2,1,0,4,4,0,3,1,3,3,0,3,1 1,2,3 3 63 3 65

193M.txt a,b,c,d 3,2,4,3,2,4,4,1,4,4,4,3,3,3,1,0,4,3,0,3 1,2 4 108 2 41

194M.txt a,b,c,d 4,2,4,1,2,1,4,4,4,0,3,3,4,3,1,4,1,0,3,4 3 4 108 3 58

195M.txt a,b,c,d 3,0,0,4,2,1,0,1,4,4,2,0,4,1,3,3,1,4,4,4 0,2,4 4 121 4 109

196M.txt a,b,c,d 2,2,3,4,3,2,4,1,0,0,4,3,0,3,3,3,4,3,1,4 4 4 121 2 39

197M.txt a,b,c,d 3,0,0,2,3,4,4,2,3,0,0,4,2,4,2,1,2,2,0,1 1,3,4 2 53 2 51

198M.txt a,b,c,d 2,2,0,1,0,1,1,0,2,1,2,0 0 2 30 1 11

199M.txt a,b,c,d 0,1,0,2,2,0,3,0,2,1,1,1,2,3,3,3 3 3 63 2 38

200M.txt a,b,c,d 2,1,3,0,0,1,1,2,1,2,2,2,1,2,0,2 2 3 63 1 14
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Test 2. Comparative results

Language description L∗ LCA

Id Alphabet Linear transition table Final states EQs MQs EQs CQs

002.0.txt a, b 1, 0, 1, 0 1 1 5 1 4

002.1.txt a, b 1, 0, 0, 1 0 1 5 1 4

002.2.txt a, b 1, 0, 1, 1 1 1 5 1 4

002.3.txt a, b 1, 0, 1, 1 0 1 5 1 3

002.4.txt a, b 1, 0, 0, 0 0 1 5 1 4

002.5.txt a, b 0, 1, 1, 0 1 1 5 1 4

002.6.txt a, b 0, 1, 0, 0 1 1 5 1 4

002.7.txt a, b 1, 1, 1, 1 0 1 5 1 3

002.8.txt a, b 1, 1, 0, 0 1 1 5 1 4

002.9.txt a, b 0, 1, 1, 0 0 1 5 1 4

002.10.txt a, b 1, 0, 0, 0 1 1 5 1 4

003.0.txt a, b 0, 1, 2, 2, 0, 2 0, 2 2 14 2 13

003.1.txt a, b 2, 2, 0, 0, 1, 2 0 2 14 1 5

003.2.txt a, b 0, 1, 2, 1, 0, 2 1 2 14 1 5

003.3.txt a, b 2, 2, 1, 0, 1, 1 1 2 11 1 5

003.4.txt a, b 1, 2, 0, 2, 0, 0 0, 2 2 14 2 12

003.5.txt a, b 0, 1, 0, 2, 1, 0 1 2 17 1 5

003.6.txt a, b 1, 0, 2, 1, 2, 1 2 2 11 1 5

003.7.txt a, b 1, 0, 2, 0, 1, 1 1 2 17 2 14

003.8.txt a, b 0, 1, 2, 2, 0, 0 2 2 11 1 5

003.9.txt a, b 2, 1, 0, 0, 0, 2 2 2 14 1 5

003.10.txt a, b 0, 2, 1, 0, 0, 1 1, 2 2 17 2 15

004.0.txt a, b 3, 0, 0, 2, 3, 2, 0, 1 1, 2 3 27 2 12

004.1.txt a, b 3, 1, 2, 1, 1, 3, 3, 3 2 3 27 1 5

004.2.txt a, b 0, 3, 1, 0, 1, 3, 3, 2 0, 2, 3 2 19 2 18

004.3.txt a, b 0, 1, 0, 2, 3, 0, 2, 3 0, 1 2 14 2 11

004.4.txt a, b 1, 0, 2, 0, 3, 3, 1, 0 0, 1 2 14 2 11

004.5.txt a, b 1, 1, 3, 1, 1, 2, 2, 0 2 2 19 1 6

004.6.txt a, b 0, 3, 0, 2, 2, 2, 1, 3 2 2 19 1 6

004.7.txt a, b 1, 3, 0, 2, 2, 3, 3, 0 1, 3 2 17 2 15

004.8.txt a, b 0, 1, 2, 0, 3, 0, 3, 3 2 3 27 1 5

004.9.txt a, b 3, 1, 0, 3, 1, 2, 2, 2 1, 2, 3 2 23 2 19

004.10.txt a, b 2, 1, 3, 1, 1, 3, 1, 1 3 2 19 1 6

005.0.txt a, b 4, 0, 2, 1, 0, 2, 4, 3, 3, 1 0, 1 3 39 2 14

005.1.txt a, b 2, 0, 1, 4, 0, 3, 1, 0, 4, 2 0, 2, 3 2 23 2 21

005.10.txt a, b 3, 2, 3, 4, 4, 3, 1, 0, 1, 0 0, 2, 3 3 31 2 13

005.3.txt a, b 4, 1, 3, 4, 0, 2, 3, 2, 3, 1 1, 2, 3 2 23 2 22

005.4.txt a, b 2, 3, 4, 0, 1, 0, 3, 2, 2, 3 0, 2 2 23 2 14

005.5.txt a, b 4, 3, 2, 3, 0, 0, 2, 3, 1, 2 1, 2 3 27 2 16

005.6.txt a, b 2, 1, 3, 2, 3, 4, 2, 1, 4, 4 2, 3 4 49 2 13

005.7.txt a, b 1, 3, 4, 0, 2, 3, 2, 3, 0, 1 0, 1, 3, 4 4 54 4 52

005.8.txt a, b 1, 0, 4, 0, 1, 3, 2, 1, 4, 2 0, 2, 3 2 34 2 31

005.9.txt a, b 1, 4, 2, 4, 3, 3, 3, 1, 4, 4 0, 2 3 39 2 10

005.2.txt a, b 3, 3, 2, 4, 0, 1, 2, 1, 1, 2 1 2 23 1 7
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Language description L∗ LCA

Id Alphabet Linear transition table Final states EQs MQs EQs CQs

006.0.txt a, b
3, 4, 4, 2, 3, 4, 1, 5, 3, 1,

1, 5
0, 1, 5 3 44 3 25

006.1.txt a, b
1, 4, 0, 2, 5, 0, 2, 2, 0, 3,

1, 3
0, 4, 5 3 31 3 22

006.2.txt a, b
0, 3, 5, 1, 4, 1, 1, 0, 0, 0,

2, 5
2 3 71 1 8

006.3.txt a, b
3, 3, 0, 5, 2, 3, 5, 4, 3, 1,

2, 2
0, 1, 3, 5 4 44 3 28

006.4.txt a, b
4, 3, 1, 0, 2, 1, 5, 4, 1, 2,

1, 0
5 4 77 1 8

006.5.txt a, b
4, 3, 3, 0, 5, 1, 3, 4, 5, 3,

2, 0
0, 2, 3, 4, 5 3 71 3 69

006.6.txt a, b
1, 1, 5, 3, 0, 5, 2, 4, 0, 2,

0, 0
1, 3 4 71 3 36

006.7.txt a, b
5, 5, 3, 4, 0, 2, 1, 2, 0, 3,

4, 4
5 4 83 2 24

006.8.txt a, b
0, 1, 5, 3, 1, 2, 0, 0, 5, 5,

4, 2
2 4 71 2 16

006.9.txt a, b
3, 5, 3, 1, 4, 4, 0, 3, 1, 1,

5, 2
1, 3 3 31 2 20

006.10.txt a, b
2, 1, 1, 3, 4, 3, 2, 5, 4, 0,

4, 3
4, 5 3 34 2 21

007.0.txt a, b
4, 0, 1, 6, 2, 2, 1, 0, 5, 2,

5, 6, 1, 3
1, 2, 3 4 71 2 20

007.1.txt a, b
3, 1, 5, 5, 3, 0, 4, 6, 6, 4,

2, 6, 5, 4
0, 1, 4, 5 3 49 3 32

007.2.txt a, b
6, 5, 0, 6, 6, 6, 6, 1, 2, 2,

0, 4, 3, 5
0, 3, 4, 5, 6 3 39 3 37

007.3.txt a, b
1, 0, 6, 4, 2, 0, 3, 6, 5, 2,

3, 0, 5, 5
0, 6 5 89 3 38

007.4.txt a, b
4, 3, 5, 3, 3, 3, 3, 5, 3, 6,

3, 1, 1, 2
3 4 90 3 40

007.5.txt a, b
3, 6, 5, 4, 6, 5, 2, 1, 6, 3,

5, 5, 5, 4
0, 1, 2, 3, 4, 5 4 83 4 77

007.6.txt a, b
1, 0, 2, 5, 5, 4, 6, 6, 3, 5,

4, 2, 5, 3
0, 1, 3 4 65 3 23

007.7.txt a, b
2, 6, 5, 5, 3, 3, 0, 3, 0, 3,

2, 4, 1, 6
0, 4 3 53 2 14

007.8.txt a, b
6, 4, 5, 2, 6, 2, 4, 2, 1, 1,

4, 3, 0, 5
1, 3, 4, 5 4 83 4 56

007.9.txt a, b
4, 1, 5, 3, 6, 5, 2, 5, 0, 5,

5, 5, 1, 2
1, 3, 5 3 59 3 35

007.10.txt a, b
5, 6, 1, 0, 6, 1, 3, 4, 3, 2,

4, 6, 6, 3
4 4 69 1 9

008.0.txt a, b
2, 1, 1, 6, 5, 4, 3, 1, 3, 3,

7, 4, 5, 1, 5, 3
1, 3, 4, 5, 7 4 90 3 80

008.1.txt a, b
2, 0, 7, 0, 6, 4, 2, 7, 1, 6,

0, 2, 5, 2, 3, 4
1, 3, 5, 6, 7 5 83 4 45

008.2.txt a, b
6, 5, 4, 3, 5, 7, 3, 0, 6, 7,

6, 2, 1, 7, 4, 0
1, 2, 3, 4 3 44 3 35

008.3.txt a, b
1, 7, 3, 6, 4, 2, 0, 3, 5, 7,

7, 2, 7, 1, 0, 4
0, 2, 3, 4 4 59 3 28

008.4.txt a, b
7, 4, 3, 4, 1, 1, 7, 6, 7, 7,

2, 1, 0, 5, 0, 3
0, 1, 6 4 65 3 30

008.5.txt a, b
1, 5, 5, 5, 4, 3, 7, 7, 7, 1,

1, 7, 2, 3, 4, 6
2, 3, 4, 5, 6, 7 5 111 4 98

008.6.txt a, b
1, 6, 0, 4, 5, 6, 1, 2, 0, 7,

0, 6, 6, 2, 5, 3
1, 5, 6, 7 4 77 3 45
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Language description L∗ LCA

Id Alphabet Linear transition table Final states EQs MQs EQs CQs

008.7.txt a, b
3, 4, 5, 6, 1, 3, 2, 7, 1, 4,

3, 4, 7, 2, 5, 3
0, 1, 4, 6 4 77 2 16

008.8.txt a, b
5, 3, 1, 7, 6, 4, 3, 3, 1, 5,

4, 2, 4, 5, 4, 5
0, 3, 6 3 69 2 21

008.9.txt a, b
0, 1, 5, 5, 0, 7, 2, 6, 2, 4,

4, 3, 0, 4, 0, 3
2, 3 4 90 2 18

008.10.txt a, b
4, 4, 5, 5, 7, 4, 2, 5, 1, 6,

1, 0, 1, 3, 4, 6
0, 1, 2, 4 4 71 4 57

009.0.txt a, b
1, 3, 2, 7, 0, 4, 8, 7, 2, 2,

7, 3, 8, 1, 5, 6, 0, 5
1, 2, 3, 4, 5, 6, 7 5 125 5 116

009.1.txt a, b
1, 5, 1, 4, 7, 6, 1, 1, 8, 1,

1, 4, 8, 3, 4, 3, 2, 8
5, 6, 7, 8 4 83 2 26

009.2.txt a, b
6, 8, 6, 4, 4, 7, 5, 1, 4, 3,

8, 4, 8, 7, 5, 6, 0, 2
5, 8 3 76 3 46

009.3.txt a, b
1, 4, 5, 4, 3, 3, 6, 7, 4, 4,

6, 7, 8, 5, 2, 4, 8, 4
0, 1, 3, 4, 6, 7 4 59 4 58

009.4.txt a, b
6, 0, 2, 5, 3, 5, 4, 1, 7, 3,

1, 0, 8, 7, 8, 4, 3, 0
0, 1, 4, 5, 6 4 83 3 40

009.5.txt a, b
8, 2, 7, 8, 3, 5, 0, 4, 0, 1,

0, 8, 5, 5, 2, 6, 7, 3
0, 1, 2, 3, 5 4 77 3 46

009.6.txt a, b
5, 6, 7, 7, 1, 0, 1, 8, 3, 0,

4, 6, 8, 2, 0, 0, 6, 6
2, 7 4 95 2 20

009.7.txt a, b
4, 1, 6, 8, 7, 2, 5, 6, 8, 0,

8, 4, 3, 4, 6, 2, 7, 3
1, 2, 3, 4, 5, 7 5 97 5 83

009.8.txt a, b
3, 3, 1, 3, 7, 4, 7, 1, 4, 8,

4, 0, 5, 3, 3, 6, 2, 8
3, 4, 5, 6 4 59 2 37

009.9.txt a, b
0, 6, 8, 5, 7, 6, 4, 2, 3, 3,

1, 8, 3, 0, 1, 5, 4, 4
1, 3, 6, 8 3 49 3 36

009.10.txt a, b
0, 1, 3, 3, 4, 0, 6, 0, 7, 4,

0, 4, 2, 8, 5, 5, 3, 6
1, 3, 4, 8 4 77 3 31

010.0.txt a, b
6, 8, 6, 0, 9, 9, 0, 7, 2, 1,

8, 3, 8, 4, 9, 5, 9, 4, 3, 7
0, 1, 2, 3, 4, 6, 7, 8, 9 2 76 2 75

010.1.txt a, b
0, 7, 5, 9, 8, 4, 6, 1, 6, 6,

8, 7, 8, 9, 8, 3, 5, 0, 2, 6
0, 2, 8 3 65 3 60

010.2.txt a, b
1, 7, 7, 4, 4, 9, 7, 3, 3, 2,

6, 4, 8, 0, 5, 5, 9, 5, 3, 7
1 6 269 1 12

010.3.txt a, b
0, 2, 8, 2, 5, 7, 3, 8, 2, 0,

9, 4, 0, 3, 7, 1, 6, 1, 1, 3
1, 3, 5 4 90 3 34

010.4.txt a, b
0, 1, 0, 5, 3, 7, 8, 9, 9, 3,

2, 0, 4, 2, 3, 9, 8, 0, 1, 6
1, 3, 9 4 95 4 55

010.5.txt a, b
5, 9, 6, 7, 3, 0, 8, 4, 4, 0,

1, 0, 6, 4, 2, 7, 9, 9, 3, 8
0, 3, 4, 6, 7, 8 6 143 3 59

010.6.txt a, b
8, 7, 5, 3, 4, 4, 9, 8, 2, 1,

7, 2, 4, 9, 3, 2, 6, 3, 2, 8
3 5 189 2 32

010.7.txt a, b
2, 7, 3, 8, 6, 9, 7, 2, 0, 5,

5, 7, 2, 6, 6, 1, 9, 7, 4, 5
4, 9 6 161 3 35

010.8.txt a, b
7, 3, 9, 7, 1, 6, 8, 1, 4, 5,

1, 2, 4, 3, 0, 9, 0, 5, 4, 9
0, 2, 3, 6, 9 5 101 5 76

010.9.txt a, b
9, 3, 6, 1, 5, 4, 1, 0, 7, 9,

8, 7, 0, 4, 6, 2, 2, 3, 7, 0
0, 4, 7 4 97 2 36

010.10.txt a, b
5, 0, 1, 2, 9, 7, 3, 1, 0, 5,

0, 3, 9, 8, 2, 8, 6, 6, 3, 4
1 6 229 2 38

011.0.txt a, b

3, 2, 1, 10, 9, 5, 10, 1, 3,

10, 2, 3, 1, 0, 8, 2, 3, 4, 4,

3, 7, 6

8 5 229 2 30

011.1.txt a, b

7, 1, 1, 4, 5, 6, 6, 1, 7, 10,

9, 8, 1, 5, 3, 7, 5, 0, 2, 9,

5, 3

2, 3, 5, 6, 7, 8, 9, 10 5 161 6 124
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Id Alphabet Linear transition table Final states EQs MQs EQs CQs

011.2.txt a, b

8, 9, 0, 5, 5, 7, 10, 6, 4, 2,

7, 6, 5, 6, 4, 1, 8, 10, 10,

10, 0, 3

1, 3, 6, 8 5 135 2 25

011.3.txt a, b

2, 1, 0, 5, 7, 0, 4, 0, 4, 8,

0, 6, 9, 10, 7, 4, 3, 9, 0, 7,

6, 8

4, 7 6 170 3 42

011.4.txt a, b

8, 4, 6, 2, 10, 3, 4, 1, 5, 0,

5, 9, 1, 7, 4, 5, 3, 4, 0, 5,

2, 4

0, 2, 5, 8, 9, 10 5 104 4 62

011.5.txt a, b

7, 4, 3, 2, 7, 8, 3, 4, 2, 9,

7, 2, 8, 8, 3, 0, 5, 10, 6, 1,

8, 5

0, 1, 2, 6, 8, 9, 10 4 111 3 61

011.6.txt a, b

3, 2, 5, 8, 10, 1, 6, 2, 5, 9,

0, 7, 4, 10, 1, 3, 7, 7, 2, 9,

9, 3

1, 2, 10 4 83 3 32

011.7.txt a, b

9, 4, 5, 7, 7, 5, 0, 3, 3, 10,

3, 8, 2, 8, 6, 4, 9, 1, 6, 1,

0, 6

0, 4, 7, 8, 10 5 143 4 66

011.8.txt a, b

7, 5, 1, 8, 6, 3, 5, 3, 7, 4,

2, 6, 1, 7, 9, 9, 1, 7, 10, 1,

8, 4

7, 8, 9, 10 5 118 3 39

011.9.txt a, b

2, 4, 2, 9, 10, 2, 2, 2, 0, 7,

0, 1, 3, 6, 8, 1, 5, 6, 5, 8,

3, 0

0, 1, 2, 4, 5, 6, 7, 8, 9, 10 5 199 5 176

011.10.txt a, b

6, 0, 7, 3, 7, 0, 9, 0, 10, 1,

10, 0, 4, 2, 3, 8, 0, 2, 4, 10,

5, 6

1, 2, 3, 7, 8, 9, 10 3 77 4 68

012.0.txt a, b

10, 5, 3, 11, 7, 5, 0, 0, 5, 3,

2, 1, 7, 4, 7, 11, 5, 11, 6, 8,

5, 9, 6, 10

0, 1, 2, 4, 6, 8, 9, 11 5 167 5 94

012.1.txt a, b

10, 4, 2, 2, 0, 10, 3, 7, 2, 3,

7, 11, 2, 11, 8, 8, 1, 11, 2,

5, 9, 8, 6, 11

9 5 186 3 60

012.2.txt a, b

2, 8, 1, 9, 11, 7, 7, 7, 0, 1,

6, 0, 10, 2, 7, 10, 4, 3, 10,

8, 9, 8, 11, 5

1, 2, 3, 9 6 215 3 55

012.3.txt a, b

4, 7, 9, 5, 0, 1, 9, 2, 6, 10,

8, 5, 7, 9, 4, 11, 3, 8, 0, 5,

4, 10, 2, 3

2, 9 5 161 3 49

012.4.txt a, b

7, 5, 5, 6, 6, 10, 8, 11, 7, 8,

2, 4, 0, 10, 9, 10, 10, 0, 1,

8, 0, 3, 3, 4

1, 9 6 197 4 63

012.5.txt a, b

4, 8, 2, 6, 4, 11, 0, 4, 11,

9, 1, 7, 5, 11, 3, 10, 3, 7, 4,

10, 8, 4, 4, 1

1, 2, 3, 4, 5, 8, 10, 11 5 188 5 178

012.6.txt a, b

2, 0, 3, 11, 8, 2, 2, 6, 0, 11,

7, 6, 6, 10, 7, 9, 5, 2, 4, 11,

1, 5, 2, 3

1, 3, 6, 7, 9, 10 5 119 3 51

012.7.txt a, b

10, 10, 2, 3, 5, 3, 3, 8, 11,

10, 6, 4, 2, 4, 1, 3, 3, 9, 7,

9, 4, 3, 10, 8

0, 6, 7, 9, 10 5 170 3 43

012.8.txt a, b

9, 5, 7, 11, 6, 7, 2, 1, 8, 1,

6, 8, 5, 5, 10, 11, 11, 2, 4,

0, 10, 8, 3, 11

5, 9, 10 4 118 4 43

012.9.txt a, b

0, 7, 8, 10, 5, 6, 6, 11, 2,

5, 9, 1, 0, 11, 4, 5, 3, 1, 11,

11, 1, 6, 8, 8

0, 3, 4, 5, 7, 9 4 90 3 44
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012.10.txt a, b

3, 0, 11, 10, 5, 10, 10, 10,

6, 11, 7, 3, 1, 1, 2, 8, 6, 1,

2, 2, 9, 3, 3, 4

1, 6, 9 6 143 3 39

013.0.txt a, b

1, 5, 6, 10, 4, 12, 0, 3, 7, 5,

6, 8, 10, 9, 2, 1, 4, 6, 3, 4,

4, 3, 12, 5, 11, 7

0, 1, 2, 7, 8, 12 6 175 6 147

013.1.txt a, b

5, 1, 4, 12, 2, 10, 8, 0, 7, 9,

5, 11, 11, 0, 1, 6, 5, 5, 2, 3,

10, 11, 5, 6, 1, 7

0, 5, 9, 11 5 132 4 67

013.2.txt a, b

8, 7, 12, 0, 4, 0, 10, 4, 1, 1,

3, 6, 0, 11, 9, 4, 2, 1, 10, 5,

5, 3, 6, 0, 8, 3

1, 2, 4, 5, 6, 7, 8, 10, 11,

12
5 101 5 96

013.3.txt a, b

11, 2, 12, 2, 9, 4, 6, 9, 0, 7,

8, 3, 0, 5, 4, 0, 11, 5, 1, 11,

2, 4, 6, 10, 9, 7

0, 1, 3, 5, 7, 9 4 101 4 74

013.4.txt a, b

8, 1, 10, 8, 0, 12, 10, 0, 7,

9, 5, 5, 6, 8, 3, 2, 7, 0, 7,

12, 5, 11, 4, 6, 5, 4

0, 5, 6, 8, 9, 12 5 159 5 115

013.5.txt a, b

10, 9, 5, 10, 10, 12, 6, 7,

11, 5, 8, 2, 12, 0, 6, 4, 1, 2,

5, 7, 0, 3, 1, 10, 2, 6

3, 7, 8, 10, 12 5 118 3 64

013.6.txt a, b

2, 7, 8, 11, 2, 9, 10, 9, 6, 9,

12, 11, 6, 3, 5, 6, 12, 8, 3,

1, 11, 4, 12, 7, 5, 12

0, 1, 2, 4, 7, 9, 10, 11, 12 5 151 5 123

013.7.txt a, b

11, 12, 8, 10, 12, 9, 7, 1, 7,

1, 3, 11, 1, 5, 0, 11, 2, 6, 9,

1, 11, 4, 0, 0, 1, 1

0, 1, 2, 3, 6, 7, 8, 10, 11 5 167 4 97

013.8.txt a, b

8, 4, 6, 12, 4, 1, 12, 9, 2,

10, 8, 11, 8, 0, 0, 9, 6, 3, 1,

2, 11, 11, 1, 5, 7, 1

0, 1 5 189 3 47

013.9.txt a, b

3, 0, 3, 8, 2, 3, 1, 11, 1, 2,

6, 10, 3, 10, 12, 5, 1, 9, 3,

6, 2, 4, 5, 7, 5, 10

11 6 263 3 47

013.10.txt a, b

0, 5, 11, 4, 7, 7, 2, 7, 2, 8,

10, 3, 12, 3, 5, 8, 1, 3, 5, 9,

9, 6, 9, 10, 7, 7

3, 4, 5, 6, 9, 10, 11, 12 4 113 5 122

014.0.txt a, b

11, 0, 12, 8, 0, 10, 8, 2, 10,

0, 11, 4, 7, 7, 5, 1, 3, 0, 6,

6, 4, 12, 4, 6, 13, 5, 9, 9

0, 1, 2, 4, 5, 6, 7, 8, 10, 11,

12, 13
4 208 4 204

014.1.txt a, b

3, 12, 1, 1, 12, 5, 3, 7, 10,

11, 0, 8, 2, 1, 4, 10, 9, 8,

11, 6, 13, 9, 7, 11, 0, 0, 3,

13

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12
8 615 8 607

014.2.txt a, b

8, 3, 4, 13, 0, 9, 6, 1, 1, 2,

3, 1, 11, 5, 10, 4, 7, 0, 11,

7, 4, 0, 3, 9, 12, 11, 12, 8

3, 5, 8 5 143 2 38

014.3.txt a, b

5, 0, 3, 6, 0, 1, 8, 3, 8, 11,

4, 13, 7, 2, 9, 10, 6, 11, 5,

12, 9, 1, 12, 1, 6, 11, 3, 1

0, 4, 9, 12 6 209 5 106

014.4.txt a, b

9, 3, 10, 8, 6, 4, 11, 0, 3, 6,

1, 13, 5, 12, 8, 4, 13, 1, 2,

13, 12, 11, 6, 0, 4, 8, 6, 7

2, 6, 7, 8 5 143 2 49

014.5.txt a, b

8, 5, 6, 7, 2, 11, 10, 6, 2, 8,

11, 11, 2, 4, 3, 3, 13, 9, 5,

12, 9, 1, 6, 1, 9, 4, 10, 3

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12
6 337 6 334

014.6.txt a, b

6, 10, 6, 6, 0, 8, 11, 8, 2, 3,

6, 13, 11, 11, 4, 2, 5, 7, 1,

1, 9, 12, 6, 2, 4, 3, 7, 0

1, 5, 10, 11, 13 5 199 3 55
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014.7.txt a, b

4, 11, 7, 7, 5, 9, 8, 5, 6, 4,

0, 13, 10, 0, 9, 1, 2, 6, 8,

12, 3, 0, 10, 4, 9, 3, 13, 7

0, 4, 7, 11 5 170 4 71

014.8.txt a, b

5, 1, 7, 5, 4, 2, 5, 0, 1, 2,

3, 11, 1, 12, 11, 10, 9, 1, 1,

8, 3, 9, 13, 6, 2, 10, 8, 9

0, 2, 3, 5, 6, 7, 8, 12 5 188 4 82

014.9.txt a, b

2, 10, 4, 8, 10, 13, 10, 2, 9,

11, 0, 13, 11, 4, 12, 1, 12,

10, 3, 5, 4, 4, 2, 13, 2, 6, 3,

7

3, 4, 11, 12, 13 6 167 4 81

014.10.txt a, b

2, 0, 2, 6, 9, 10, 10, 10, 12,

11, 13, 0, 1, 5, 11, 6, 0, 7,

6, 1, 5, 4, 3, 8, 12, 5, 0, 0

6, 13 6 199 3 42

015.0.txt a, b

3, 1, 14, 10, 8, 8, 4, 7, 12,

3, 0, 3, 1, 6, 9, 5, 6, 14, 7,

3, 3, 11, 13, 6, 2, 2, 14, 8,

11, 9

0, 3, 4, 5, 7, 8, 14 3 95 3 81

015.1.txt a, b

6, 6, 5, 11, 6, 14, 12, 4, 7,

9, 12, 8, 3, 6, 13, 1, 4, 4, 0,

11, 7, 12, 6, 10, 14, 7, 2, 6,

2, 8

0, 3, 4, 5, 6, 7, 8, 9, 11, 12 6 219 6 182

015.2.txt a, b

9, 1, 8, 5, 6, 14, 11, 14, 6,

7, 7, 12, 8, 10, 7, 8, 0, 3, 3,

2, 5, 13, 3, 4, 8, 8, 9, 1, 10,

6

0, 1, 2, 3, 4, 6, 8, 9, 10, 12,

14
8 319 8 293

015.3.txt a, b

2, 11, 0, 14, 3, 10, 6, 12, 9,

3, 8, 2, 9, 12, 8, 0, 11, 11,

4, 4, 6, 7, 13, 1, 3, 11, 5, 8,

12, 13

1, 2, 4, 5, 7, 11, 13, 14 4 101 4 77

015.4.txt a, b

9, 4, 3, 14, 13, 9, 12, 8, 3,

8, 1, 2, 11, 7, 11, 10, 1, 6,

4, 14, 9, 13, 12, 12, 3, 4, 6,

6, 6, 5

9 6 389 2 34

015.5.txt a, b

11, 10, 12, 1, 1, 10, 4, 2, 7,

9, 11, 1, 10, 14, 11, 8, 13,

10, 14, 14, 6, 2, 5, 11, 8,

13, 10, 7, 5, 3

1, 3, 8 6 224 3 48

015.6.txt a, b

7, 5, 4, 8, 10, 10, 2, 0, 13,

12, 7, 1, 7, 13, 8, 14, 4, 12,

11, 14, 6, 14, 7, 9, 9, 13, 1,

7, 3, 2

1, 2, 3, 4, 5, 6, 7, 8, 11, 12,

13, 14
5 259 5 248

015.7.txt a, b

5, 14, 0, 14, 12, 4, 0, 2, 8,

9, 10, 5, 7, 11, 8, 13, 6, 9,

9, 3, 3, 0, 1, 0, 3, 9, 7, 9,

7, 0

2, 3, 4, 5, 6, 7, 8, 9, 12 4 167 4 153

015.8.txt a, b

1, 3, 14, 2, 13, 6, 7, 4, 9, 5,

0, 2, 14, 1, 9, 9, 4, 4, 5, 14,

4, 11, 1, 14, 1, 7, 12, 8, 2,

10

0, 7, 9, 12 4 135 5 88

015.9.txt a, b

10, 2, 6, 0, 10, 5, 5, 10, 6,

13, 9, 4, 14, 11, 12, 5, 0,

14, 12, 3, 13, 1, 1, 3, 5, 8,

1, 7, 6, 2

0, 1, 2, 3, 5, 7, 8, 11, 12 5 167 4 80

015.10.txt a, b

7, 11, 2, 9, 10, 14, 13, 2,

11, 1, 2, 5, 12, 6, 11, 3, 5,

6, 1, 0, 13, 1, 14, 8, 4, 3, 9,

4, 12, 13

0, 2, 7, 8, 11, 13, 14 6 183 5 100
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016.0.txt a, b

7, 3, 2, 11, 10, 9, 1, 1, 10,

10, 3, 0, 2, 15, 6, 7, 14, 13,

13, 4, 13, 0, 4, 11, 8, 11, 0,

12, 0, 13, 1, 5

5, 7, 9, 10, 15 7 383 6 204

016.1.txt a, b

11, 1, 14, 2, 8, 13, 9, 4, 4,

3, 5, 1, 12, 9, 6, 14, 15, 3,

5, 15, 7, 4, 4, 12, 0, 6, 11,

10, 14, 12, 9, 1

0, 1, 11 7 285 4 62

016.2.txt a, b

10, 11, 13, 8, 7, 1, 9, 6, 10,

8, 2, 1, 8, 14, 1, 5, 9, 3, 10,

13, 14, 1, 9, 4, 7, 2, 8, 11,

15, 2, 3, 12

2, 4, 6, 7, 8, 11, 12, 14 5 167 3 74

016.3.txt a, b

14, 14, 9, 8, 8, 6, 7, 11, 13,

15, 5, 13, 3, 7, 6, 12, 10, 2,

8, 15, 3, 10, 4, 5, 8, 1, 15,

1, 7, 10, 15, 13

1, 3, 7, 8, 9, 10, 12, 14, 15 5 209 5 186

016.4.txt a, b

1, 15, 4, 7, 3, 15, 6, 10, 14,

15, 7, 10, 5, 9, 13, 9, 3, 3,

8, 14, 5, 11, 4, 5, 2, 14, 15,

1, 8, 15, 12, 9

1, 6, 15 6 259 4 61

016.5.txt a, b

8, 12, 7, 4, 14, 13, 14, 0,

14, 2, 9, 7, 7, 13, 1, 9, 10,

0, 0, 15, 3, 12, 10, 13, 2, 6,

2, 0, 5, 3, 11, 10

1, 3, 7, 8, 12, 14 5 242 3 85

016.6.txt a, b

14, 15, 2, 7, 10, 7, 4, 2, 4,

0, 13, 4, 3, 5, 1, 12, 11, 13,

14, 2, 7, 3, 13, 13, 5, 2, 1,

8, 6, 7, 9, 8

12, 14 9 509 2 32

016.7.txt a, b

10, 11, 3, 14, 5, 10, 2, 8, 3,

3, 10, 4, 13, 1, 6, 9, 2, 11,

0, 3, 11, 0, 7, 11, 15, 6, 3,

12, 11, 5, 8, 6

3, 13 9 415 4 53

016.8.txt a, b

1, 14, 14, 7, 15, 5, 8, 9, 0,

9, 3, 5, 13, 13, 10, 8, 9, 2,

2, 10, 6, 10, 0, 4, 3, 11, 0,

14, 12, 13, 13, 7

0, 1, 2, 3, 4, 5, 8, 10, 15 6 167 4 99

016.9.txt a, b

2, 3, 14, 12, 7, 7, 11, 5, 7,

2, 13, 13, 1, 4, 0, 8, 13, 2,

0, 6, 8, 13, 13, 1, 9, 8, 4,

15, 0, 1, 8, 10

0, 1, 3, 5, 6, 8, 11, 13, 14,

15
6 206 7 175

016.10.txt a, b

13, 9, 7, 12, 15, 15, 9, 7,

15, 5, 10, 2, 8, 2, 10, 14,

11, 10, 1, 3, 13, 12, 12, 6,

15, 7, 11, 9, 3, 10, 4, 9

0, 2, 3, 4, 5, 6, 7, 8, 9, 11,

14
4 215 4 147

017.0.txt a, b

8, 13, 14, 5, 5, 13, 9, 2, 15,

11, 5, 13, 10, 2, 15, 4, 3, 7,

12, 3, 10, 0, 6, 16, 3, 1, 15,

12, 12, 16, 15, 8, 12, 8

1, 2, 3, 4, 7, 8, 9, 10, 11,

12, 13, 15, 16
6 247 5 182

017.1.txt a, b

8, 5, 16, 13, 16, 11, 11, 11,

6, 0, 15, 1, 8, 10, 6, 10, 9,

12, 9, 3, 4, 0, 12, 1, 16, 3,

8, 2, 5, 0, 2, 14, 7, 6

7 7 506 3 58

017.2.txt a, b

14, 12, 6, 11, 9, 16, 11, 5,

15, 4, 10, 11, 15, 1, 7, 12,

16, 4, 12, 16, 6, 8, 1, 7, 3,

4, 4, 13, 1, 6, 9, 13, 15, 2

0, 1, 2, 4, 5, 6, 7, 8, 9, 13,

14, 15, 16
8 383 8 313
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017.3.txt a, b

3, 16, 12, 7, 5, 14, 1, 10,

11, 12, 8, 8, 16, 5, 8, 6, 4,

15, 16, 10, 2, 0, 9, 12, 3,

13, 6, 1, 14, 6, 1, 2, 2, 7

2, 7, 15 8 351 3 46

017.4.txt a, b

10, 16, 15, 12, 2, 8, 4, 15,

12, 9, 9, 14, 7, 3, 8, 5, 11,

14, 13, 1, 6, 2, 10, 15, 10,

16, 15, 8, 0, 11, 14, 13, 16,

16

0, 4, 5, 10 7 285 4 61

017.5.txt a, b

16, 12, 15, 6, 8, 13, 9, 4,

11, 15, 11, 9, 6, 13, 10, 14,

5, 10, 13, 7, 1, 10, 14, 14,

7, 7, 6, 11, 2, 7, 3, 6, 2, 8

0, 2, 4, 5, 6, 7, 10, 11, 12,

13, 14, 15, 16
7 351 7 329

017.6.txt a, b

10, 3, 14, 6, 15, 14, 5, 5,

14, 12, 13, 11, 15, 3, 12,

13, 5, 2, 6, 7, 0, 4, 8, 0, 7,

12, 9, 1, 13, 16, 2, 12, 9, 5

1, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 15
5 239 5 224

017.7.txt a, b

1, 1, 14, 16, 11, 12, 14, 8,

0, 1, 2, 16, 4, 11, 15, 9, 5,

7, 2, 8, 0, 8, 2, 11, 14, 1, 8,

3, 10, 9, 14, 6, 8, 13

4, 5, 7, 15 5 274 3 54

017.8.txt a, b

14, 10, 5, 3, 7, 6, 9, 7, 9, 6,

0, 14, 9, 14, 0, 16, 2, 12, 0,

5, 16, 15, 1, 6, 8, 11, 4, 5,

3, 11, 12, 7, 16, 13

1, 5, 6, 7, 10, 11, 12, 13, 16 6 206 4 105

017.9.txt a, b

2, 1, 9, 8, 6, 11, 16, 15, 14,

4, 7, 14, 10, 16, 4, 2, 9, 13,

5, 6, 13, 2, 10, 2, 6, 8, 11,

4, 4, 13, 12, 3, 3, 3

0, 1, 4, 5, 8, 9, 10, 11, 13,

15, 16
5 175 4 103

017.10.txt a, b

6, 15, 15, 4, 7, 11, 6, 5, 10,

2, 7, 1, 5, 8, 5, 0, 3, 16, 11,

0, 12, 13, 9, 5, 4, 0, 8, 8,

16, 1, 14, 14, 4, 0

0, 4, 6, 7, 12, 13, 15 6 233 4 78

018.0.txt a, b

4, 16, 14, 3, 8, 10, 12, 11,

6, 0, 11, 15, 1, 3, 16, 4, 16,

2, 10, 9, 5, 8, 17, 7, 11, 12,

9, 6, 14, 1, 16, 6, 3, 13, 16,

9

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 12, 13, 14, 16, 17
10 629 10 608

018.1.txt a, b

0, 1, 10, 0, 2, 4, 15, 9, 17,

1, 8, 3, 0, 14, 6, 2, 12, 11,

7, 5, 16, 9, 16, 13, 12, 7, 2,

5, 16, 14, 6, 15, 7, 11, 16,

11

0, 1, 2, 3, 5, 6, 7, 8, 9, 10,

12, 13, 14, 15
7 359 7 305

018.2.txt a, b

10, 8, 1, 2, 11, 10, 5, 12,

14, 17, 15, 8, 2, 17, 8, 11,

13, 6, 14, 1, 6, 4, 0, 4, 2, 2,

0, 14, 16, 3, 17, 1, 13, 11,

7, 9

10, 16 7 402 3 64

018.3.txt a, b

14, 5, 14, 16, 2, 8, 13, 10,

4, 1, 0, 17, 8, 8, 15, 8, 3,

14, 10, 11, 10, 3, 14, 6, 16,

17, 4, 12, 7, 4, 0, 2, 9, 3, 1,

4

0, 2, 3, 4, 5, 6, 7, 8, 9, 14,

15, 16, 17
7 362 7 351

018.4.txt a, b

11, 5, 17, 12, 7, 7, 9, 7, 1,

14, 16, 11, 8, 13, 10, 14,

16, 2, 7, 13, 13, 0, 12, 2, 9,

6, 11, 4, 8, 6, 13, 9, 16, 14,

15, 3

3, 5, 6, 7, 10, 11, 12, 14, 17 6 231 6 120
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018.5.txt a, b

4, 4, 17, 3, 3, 14, 15, 6, 11,

17, 4, 15, 9, 13, 14, 12, 8,

16, 10, 8, 11, 0, 7, 5, 6, 1,

2, 3, 8, 3, 0, 16, 4, 5, 6, 12

0, 2, 4, 6, 7 7 278 4 101

018.6.txt a, b

2, 16, 14, 0, 15, 11, 6, 2,

12, 14, 16, 9, 10, 9, 8, 0,

10, 1, 11, 17, 5, 2, 4, 3, 16,

7, 10, 6, 10, 13, 16, 9, 6, 1,

2, 7

2, 4, 5, 7, 12, 13, 17 6 269 3 51

018.7.txt a, b

11, 10, 1, 8, 11, 13, 13, 13,

8, 3, 4, 6, 14, 8, 15, 6, 1, 2,

15, 7, 1, 9, 12, 11, 3, 5, 13,

17, 5, 3, 2, 3, 11, 9, 11, 16

1, 10, 14 8 601 2 39

018.8.txt a, b

0, 9, 4, 13, 14, 5, 17, 3, 13,

8, 15, 10, 5, 12, 14, 2, 6,

16, 2, 3, 8, 12, 7, 14, 11,

11, 10, 11, 13, 4, 8, 14, 7,

7, 10, 1

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

11, 12, 14, 15, 17
5 239 5 214

018.9.txt a, b

14, 14, 13, 1, 9, 1, 17, 12,

7, 9, 15, 6, 8, 10, 6, 11, 2,

2, 10, 16, 12, 12, 13, 12,

15, 2, 15, 1, 15, 7, 3, 9, 4,

5, 3, 15

0, 4, 8, 12, 13, 14, 15, 17 7 323 4 107

018.10.txt a, b

2, 3, 11, 9, 10, 17, 8, 9, 8,

17, 5, 14, 12, 15, 16, 2, 15,

4, 3, 1, 12, 6, 12, 12, 15,

17, 1, 10, 9, 7, 5, 13, 14,

12, 15, 12

0, 3, 4, 8, 9, 11, 17 6 233 4 75

019.0.txt a, b

11, 15, 11, 3, 14, 16, 17, 3,

15, 18, 12, 2, 9, 12, 14, 3,

1, 15, 7, 16, 13, 4, 10, 8,

18, 13, 12, 16, 6, 5, 1, 8, 8,

11, 17, 14, 18, 2

3, 15 6 405 2 51

019.1.txt a, b

5, 4, 11, 10, 11, 12, 9, 10,

2, 16, 6, 14, 11, 16, 12, 15,

5, 3, 5, 8, 13, 1, 14, 12, 17,

7, 18, 10, 10, 12, 9, 10, 17,

16, 16, 9, 6, 17

3, 5, 7, 10, 14 5 241 4 79

019.2.txt a, b

10, 12, 13, 6, 14, 2, 8, 10,

5, 5, 11, 7, 18, 1, 7, 17, 10,

9, 15, 15, 11, 16, 14, 11, 6,

14, 4, 18, 6, 15, 17, 8, 16,

2, 1, 0, 3, 18

0, 3, 4, 6, 7, 9, 10, 11, 13,

14, 15, 17, 18
7 287 6 231

019.3.txt a, b

3, 6, 17, 15, 7, 14, 2, 3, 1,

11, 10, 8, 10, 14, 1, 13, 1,

16, 4, 12, 7, 12, 14, 15, 5,

5, 16, 9, 18, 10, 1, 10, 0, 1,

0, 5, 10, 2

0, 3, 4, 5, 7, 8, 11, 12, 13,

15, 16, 17
6 263 6 212

019.4.txt a, b

14, 7, 6, 3, 10, 12, 7, 9, 5,

10, 7, 3, 8, 18, 18, 12, 4,

11, 2, 0, 14, 17, 0, 14, 9,

1, 16, 7, 13, 11, 4, 9, 10, 2,

15, 3, 18, 15

0, 2, 5, 6, 8, 9, 10, 11, 15,

18
4 207 4 103

019.5.txt a, b

17, 9, 16, 2, 17, 7, 17, 13,

5, 15, 1, 5, 14, 0, 0, 10, 18,

5, 10, 0, 6, 1, 17, 12, 7, 11,

13, 5, 8, 2, 15, 3, 12, 4, 5,

7, 4, 16

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 15, 17
6 319 6 268
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019.6.txt a, b

11, 18, 1, 4, 5, 16, 5, 15,

10, 6, 14, 0, 10, 2, 2, 13,

3, 9, 12, 4, 10, 7, 10, 13, 4,

16, 15, 6, 14, 0, 17, 15, 8,

11, 7, 1, 18, 9

1, 5 6 371 2 36

019.7.txt a, b

1, 9, 6, 5, 11, 17, 16, 3, 4,

9, 9, 14, 14, 15, 18, 4, 12,

4, 8, 18, 4, 7, 0, 8, 6, 10,

2, 9, 6, 18, 4, 13, 9, 18, 14,

12, 0, 3

1, 2, 3, 6, 7, 8, 11, 12, 16 7 260 5 128

019.8.txt a, b

1, 13, 8, 6, 18, 13, 0, 4, 11,

7, 11, 8, 10, 9, 14, 17, 5, 3,

9, 5, 17, 2, 8, 12, 4, 14, 8,

15, 10, 13, 3, 11, 6, 0, 16,

4, 18, 8

0, 1, 2, 4, 5, 6, 10, 11, 12,

13, 14, 15, 18
5 183 6 157

019.9.txt a, b

2, 18, 4, 18, 8, 14, 17, 6,

15, 4, 14, 8, 10, 4, 9, 16, 5,

7, 14, 13, 3, 1, 5, 11, 6, 0,

5, 10, 5, 12, 9, 0, 9, 0, 3,

11, 13, 0

1, 3, 4, 5, 7, 8, 9, 10, 12,

13, 14, 15, 18
6 296 6 243

019.10.txt a, b

14, 9, 13, 8, 2, 15, 11, 6,

12, 10, 5, 15, 5, 0, 3, 2, 17,

16, 18, 0, 1, 5, 4, 2, 4, 11,

15, 3, 3, 13, 3, 6, 7, 7, 1, 1,

17, 11

0, 1, 2, 4, 6, 8, 9, 10, 14,

15, 17, 18
7 233 5 115

020.0.txt a, b

2, 4, 18, 16, 8, 19, 14, 17,

7, 18, 15, 13, 6, 1, 12, 12,

5, 0, 3, 16, 18, 3, 7, 7, 18,

11, 10, 6, 9, 19, 15, 16, 12,

15, 13, 0, 5, 2, 8, 3

2, 5, 6, 7, 8, 11, 12, 14, 15,

16
5 242 6 251

020.1.txt a, b

4, 9, 12, 10, 16, 9, 13, 6, 4,

17, 0, 17, 13, 5, 2, 7, 17, 6,

5, 8, 15, 1, 10, 17, 19, 8, 7,

17, 4, 11, 18, 4, 14, 12, 17,

9, 13, 14, 11, 3

4 7 467 3 69

020.2.txt a, b

17, 5, 19, 12, 11, 13, 18, 2,

5, 18, 10, 1, 13, 2, 3, 0, 7,

15, 6, 5, 19, 16, 7, 9, 14,

19, 16, 2, 4, 10, 7, 0, 6, 8,

14, 5, 18, 0, 16, 9

0, 1, 3, 4, 6, 7, 8, 10, 13,

14, 15, 18, 19
5 224 6 230

020.3.txt a, b

15, 18, 7, 11, 9, 5, 19, 1,

13, 19, 3, 1, 2, 14, 12, 10,

15, 5, 4, 2, 11, 16, 11, 1,

18, 9, 5, 7, 10, 14, 2, 0, 16,

10, 11, 8, 6, 12, 17, 16

1, 2, 7, 9, 13, 15, 17 5 279 2 56

020.4.txt a, b

10, 7, 9, 14, 8, 0, 16, 0, 8,

4, 8, 7, 18, 15, 15, 5, 19,

1, 12, 10, 5, 6, 9, 1, 17, 15,

12, 16, 2, 9, 4, 14, 11, 13,

1, 16, 7, 3, 14, 8

0, 1, 3, 5, 7, 10, 11, 12, 13,

16, 18, 19
6 269 5 157

020.5.txt a, b

19, 16, 6, 13, 14, 9, 1, 10,

19, 15, 2, 1, 3, 1, 6, 0, 11,

7, 19, 12, 5, 8, 5, 15, 16,

17, 5, 1, 10, 11, 14, 7, 7,

13, 4, 13, 11, 19, 18, 3

11 9 854 2 46
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020.6.txt a, b

13, 3, 7, 10, 0, 19, 8, 11,

17, 9, 16, 7, 9, 12, 17, 17,

14, 16, 11, 1, 13, 14, 10, 4,

15, 18, 5, 10, 2, 8, 0, 16,

15, 12, 12, 17, 15, 2, 6, 2

0, 1, 3, 4, 7, 8, 12, 14, 15,

16, 17, 19
6 215 5 184

020.7.txt a, b

2, 8, 6, 16, 15, 7, 10, 12,

15, 18, 19, 2, 8, 3, 9, 1, 5,

10, 0, 11, 17, 14, 0, 18, 4,

19, 15, 7, 8, 8, 5, 7, 6, 4, 5,

18, 17, 7, 13, 11

0, 3, 4, 5, 6, 9, 10, 11, 12,
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