UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

Universitat Rovira 1 Virgili
Facultat de Lletres
Departament de Filologies Romaniques

Finite Models of Splicing
and their Complexity

PhD Dissertation

Presented by
Remco LOOS

Supervised by
Victor MITRANA

Research Group on Mathematical Linguistics
Universitat Rovira i Virgili
and
Faculty of Mathematics and Computer Science
University of Bucharest

Tarragona, 2007

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

Acknowledgements

I would like to open this thesis with a few words of thanks to those who helped me
throughout the period in which this research was conducted, either by contributing in
some way to said research or by helping me to maintain my sanity in the process.

In a roughly chronological order, thanks to Carlos Martin-Vide for creating the cir-
cumstances which made this thesis possible and for his support throughout my PhD.
For my basis in formal language theory, I am indebted to the many excellent teachers
in the PhD School in Formal Languages and Applications, as well as to the venerable
Hopcroft and Ullman. Also thanks to Gabriela Martin for stimulating scientific and
extra-scientific discussions, and for showing that mathematicians are just like normal
people. I am very grateful to my supervisor, Victor Mitrana, for his constant willing-
ness to contribute to my research, be it in the form of collaboration, feedback or advice,
and for his general guidance in the world of science.

I gratefully acknowledge the financial support provided by PFI fellowship BES-
2004-6316 of the Spanish Ministry of Education and Science, which in addition funded
my research stays in Rochester, Frankfurt and Milan.

Big thanks are due to Mitsunori Ogihara, for hosting me during my very instruc-
tive stay at the University of Rochester, and for his important contributions and tire-
less dedication to our joint work. At the University of Frankfurt, I owe gratitude to
Detlef Wotschke for hosting me and for the many inspiring discussions, and to An-
dreas Malcher for his great help in pointing me to the relevant literature and the end-
less stream of useful ideas and suggestions. Also thanks to Paola Bonizzoni for her
hospitality and helpfulness during my stay at Milan Bicocca University.

Thanks to my friends and colleagues at the GRLMC (Mihai Ionescu, Szilard Fazekas,
and a long etcetera), for the useful discussions in the scientific realm, and most of all for
making these years in Tarragona thoroughly enjoyable. I also thank my other friends
for their moral support and friendship. Special words of thanks for Miranda Lubbers
for her constant interest for my work, encouragement and reassurance, and to Yvonne
de Boer, for leading the way of heroic courage in this world made up of second-hand
lenses and parents in car boots.

Finally, I must mention the inspiration provided by my wife Raquel. Probably every
scientist harbours doubts at whether his work will have any real relevance and impact
beyond the few people working in his field. In this sense, she has been priceless by
revealing the potential of this work as a potent cure against insomnia.

Tarragona, September 2007
Remco Loos

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

Table of Contents

Acknowledgements 3
1 Introduction 9
2 Prerequisites 13
2.1 Formal Language Prerequisites 13
2.1.1 BasicNotions 13

2.1.2 Grammars and the Chomsky Hierarchy 13

2.1.3 Automata and Machines 14

214 Complexity 15

2.2 ComputingwithDNA 17
2.2.1 DNA: Properties and Techniques 17

2.2.2 Adleman’s Experiment 18

2.2.3 Other Experiments and New Directions 19

23 Splicing 22
2.3.1 From Biochemistry to Formal Languages 22

2.3.2 The Power of Basic Splicing Systems 25

2.3.3 Variants of Splicing Systems 27

2.3.4 Time-varying HSystems 28

3 An Alternative Definition of the Language Generated by a Splicing

System 31
3.1 Introduction 31
3.2 A Non-reflexively Evolving Splicing Language 33
3.3 Computational Power 0oL 36
3.4 Non-reflexively Evolving H Systems with Delay 40
3.5 Non-Preserving Splicing 45
3.6 Delay in H Systems With Non-Preserving Splicing 46

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6 Table of Contents
Time-varying H Systems Revisited 51
4.1 Introduction 51
42 NewDefinitions 52
4.3 Computational Power o o oo 53
Multiple Splicing 59
5.1 Imtroduction 59
5.2 Multiple Splicing 60
5.3 Restricted Multiple Splicing 61
5.4 Unrestricted Multiple Splicing 65
Time Complexity for Splicing Systems 69
6.1 Introduction 69
6.2 Time Complexity for Splicing Systems 71
6.3 Splicing Systems versus One-way Nondeterministic Space 75

6.3.1 Straightforward Upper Bounds 75

6.3.2 Bounding the Complexity of Splicing Systems in terms of One-
way Nondeterministic Space 77

6.3.3 Characterizing One-way Nondeterministic Space by Splicing

Systems 82
6.4 Splicing Systems versus Pushdown Automata 87
6.5 Splicing Systems versus Nondeterministic Space 94
Space Complexity for Splicing Systems 101
7.1 Introduction 101
7.2 Space Complexity for Splicing Systems 102
7.3 Characterizing SplSpace[f(m)] 103
Accepting Splicing Systems as Problem Solvers 109
8.1 Introduction 109
8.2 Accepting Splicing Systems as Problem Solvers 109
8.3 A Linear-time Uniform Solutionto SAT 111
8.4 A Linear-time Uniform SolutiontoHPP 112
Descriptional Complexity of Splicing Systems 115
9.1 Introduction 115

9.2 Complexity Measures 116

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

Table of Contents

9.3 Describing Regular Languages by EH(FIN) and NFA 117
9.3.1 FromEH(FIN)toNFA 117
932 FromNFAtoEH(FIN) 119
9.3.3 Decidability Questions 120
9.4 Representing Regular Languages by AEH(FIN) and NFA 121
9.5 FimalRemarks L 124
10 Conclusions and Further Research 127
10.1 Conclusions o e 127
10.2 Directions for Future Research 129
10.2.1 Computational Complexity of Non-preserving Systems 129

10.2.2 Descriptional Complexity and the Characterization of Basic
Splicing Systems 130
10.2.3 Accepting Splicing Systems 130
List of Publications 133

Bibliography 135

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

1 Introduction

Over the last two decades, a tight collaboration has emerged between computer sci-
entists, biochemists and molecular biologists. Computational methods have been es-
sential in recent advances in molecular biology, such as the sequencing of the human
genome. On the other hand, working with biochemists and biologists has changed
computer scientists’ perceptions about the nature of computing. In fact, many biologi-
cal phenomena can be viewed as computational processes: storing genetic information
in DNA molecules, protein synthesis, transport of molecules between cells, even evo-
lution.

This realization has spurred research into an area known as DNA computing (also
biomolecular computing or more generally natural computing). This is a multidisci-
plinary area, which has two major lines of research. The first line is of experimental
research, using biomolecular operations to perform actual computations. The second
is a theoretical line aiming at finding formal models, algorithms and paradigms, both
to describe biological processes and to find new modes of computation, based on or
inspired by these processes.

The work in this thesis belongs to the second line, and studies a computational model
called splicing system. Splicing is the formal model of the cutting and recombination
of DNA molecules under the influence of restriction enzymes. This process works as
follows: Two DNA molecules are cut at specific subsequences and the first part of one
molecule is connected to the second part of the other molecule, and vice versa. This
process can be formalized as an operation on strings, described by a so-called splicing
rule of the form

ul#u2$v1#vz.

Here, u1u, and vyv, are the subsequences in question and the cuts are located between
uy and up and vy and v,.

These rules are the basis of a computational model (language generating device)
called splicing system or also H system after its inventor, Tom Head. A splicing system
generates a language by starting with some initial set of strings. Then it applies a set
of splicing rules and adds the newly created strings to the set. Iterating this process,
we obtain a new language.

This thesis presents original work in the field of splicing systems, which, as the title
already indicates, can be roughly divided into two parts: "Finite models of splicing’ on
the one hand and ’their complexity’ on the other.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

10

Introduction

Before presenting this work, we first introduce the basic notions and necessary def-
initions of formal language theory, DNA computing and splicing (Chapter 2).

In the first part, which covers Chapters 3 through 5, we propose and study new def-
initions of finite splicing systems. To situate the contribution of this part, it is helpful
to recall the situation of the splicing field at the beginning of the work of this the-
sis. Simplifying slightly, it was known that the biologically more realistic basic, finite
splicing systems have very little computational power (they generate only regular lan-
guages), whereas to achieve the same power as a Turing machine either an infinite set
of rules or some (typically biologically unrealistic) additional control feature is needed.
Many such control features have been proposed and studied. Here, we take a different
approach: Starting from the original cutting and recombination operation, we study
alternatives to the traditional splicing definition, rooted in the biochemical working of
the operation.

In Chapter 3, we introduce an alternative definition of splicing systems, where we
allow for the possibility of replacing strings instead of only adding (which is possible
in biochemistry). We show that in this case, basic finite systems are computationally
complete. We also introduce the notion of delay which allows to connect these new
systems with the traditional ones. We extend our approach to other existing defini-
tions which share the property of not maintaining all strings, generalizing them under
the notion of non-preserving splicing. Chapter 4 casts a closer look at one of these
definitions, namely time-varying H systems, a distributed variant of splicing systems.
Since it is known that this non-preserving language definition by itself is already pow-
erful enough for computational completeness (thus making the distributed architecture
superfluous), we introduce and study weaker definitions in this framework. Finally,
in Chapter 5, we consider the possibility (again suggested by biochemical reality) of
simultaneously applying more than one splicing rule to a string. We present several
formalizations of this process and study their computational power.

In the second part, we study the complexity of splicing systems, considering both
computational complexity (quantifying the resources needed to perform computations)
and descriptional complexity (dealing with the conciseness of description of formal
objects). Strangely enough, though these complexity issues are very natural questions
to ask about computational models, these questions had not been addressed before.
This means that to investigate the complexity of splicing systems, first a framework
for studying these issues had to be introduced, and appropriate complexity measures
had to be defined. Using these measures, splicing systems are compared in terms of
complexity with known models like finite automata or Turing machines.

In Chapter 6, we introduce a notion of time complexity for splicing systems in terms
of the number of ’rounds’ of rule applications that are needed to generate the word.
Extending this notion to numbers by regarding the maximal complexity of a word of
length n, we can define complexity classes. These classes are characterized in terms
of well-known Turing machine-based complexity classes. Chapter 7 extends this ap-
proach to space complexity, defining space complexity as the size of the minimal la-

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

Introduction

11

beled production tree of a word with respect to a given splicing system. Also here,
complexity classes are defined and characterized. In Chapter 8 we explore the possi-
bility of using splicing systems as problem solvers. For this we introduce the notion of
an accepting splicing system. We show that this variant can be used to efficiently solve
NP-complete problems. The descriptional complexity of splicing systems is addressed
in Chapter 9 we compare the conciseness of descriptions of regular languages by finite
automata and both generating and accepting finite splicing systems. Finally, in Chapter
10 we draw some general conclusions and present suggestions for further research.

Most of the work presented has been published. Sections 3.1 to 3.3 are based on an
article in Theoretical Computer Science [38]. Sections 3.5 and 3.6 describe work pub-
lished in the International Journal of Computer Mathematics [43]. Chapter 4 presents
results published in the Journal of Universal Computer Science [39] and Chapter 5
work presented at the International Meeting on DNA Computing in Memphis [44].

The work in Chapter 6, except section 6.5, is based on an article in Theoretical
Computer Science [46] (an earlier version was presented at Developments in Language
Theory 2007 [45]). Chapter 7, as well as section 6.5, present work submitted for
journal publication [47]. Chapter 8 describes results presented at Parallel Problem
Solving from Nature [42]. Finally, Chapter 9 is based on an article submitted for
journal publication [41], an earlier version of which was presented at Descriptional
Complexity of Formal Systems 2007 [40].

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

2 Prerequisites

2.1 Formal Language Prerequisites

2.1.1 Basic Notions

A string or equivalently a word is a finite sequence of symbols. The number of symbols
or length of a word w is denoted by |w|. The word of zero length is called the empty
word and denoted by A.

An alphabet is a finite and nonempty set of symbols. A word consisting only of
symbols from an alphabet X is called a word over . A (formal) language is a set of
words over some alphabet. The set of all strings over X is denoted by X* and the set of
all non-empty strings by £*. For a word w, the minimal alphabet W such that w € W*
is written as alph(w).

A relation R over a set S is a set of pairs (a,b) such that a,b € §. Instead of
(a,b) € R we will also write aRb. A relation R over § is reflexive if aRa for alla € S,
transitive if aRb and bRc imply aRc and symmetric if aRb implies bRa. For a set P of
such properties, the P-closure of a relation R is the smallest set R’ such that R € R’
and R’ possesses the properties in P.

2.1.2 Grammars and the Chomsky Hierarchy

A (Chomsky or generative) grammar is a quadruple G = (T, N, S, P), where T is the
alphabet of terminals, N is the alphabet of non-terminals disjoint from 7', and S € N is
the start symbol. The set P of productions or rules is a subset of (T U N)* x (T U N)*.
If (u,v) € P, we also write u — v.

For such a grammar G we define a derivation relation = as follows: for words
x,y € (T UN)* we write x = y iff x = xjux; and y = x1vxp, for x1, x, € (T U N)* and
u—vePr.

Let =* denote the reflexive and transitive closure of this relation. Then the language
generated by G is defined as L(G) :={w:weT"|S =" w}.

Chomsky grammars can be classified according to restrictions on the form of their
rule. Specifically, a grammar G = (T, N, S, P) is called

o regular iff all rules in P are of the form A — xBfor A € N, B € N U {1} and
xeT,

e [inear iff all rules in P are of the form A — xBy forA € N, B € N U {1}, and
x,y € TU{A,

13

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

14 Chapter 2. Prerequisites

o context-free iff all rules in P are of the form A — vfor A € N, and v € (T U N)*,

e context-sensitive iff all rules in P are of the form xAy — xvy for A € N, v €
(TUN)* and x,y € (T U N)*.

The classes of languages generated by these types of grammars are called regular
(REG), linear (LIN), context-free (CF), and context sensitive (CS) languages respec-
tively. Further FIN denotes the class of finite languages, while generative grammars
without restrictions generate the class of recursively enumerable (RE) languages.

The following theorem states the relations between these classes.

Theorem 2.1.1. FIN Cc REGc LIN c CF c CS Cc RE.

This hierarchy is known as the Chomsky hierarchy and is the most widely used
reference scale for the computational power of formal systems.

A normal form for a type of grammars is a restriction on the format of the produc-
tions which does not reduce its generative power. For instance, the requirement that all
rules of a context-free grammar are of the form A — aa, witha € T, € N* is known
as the Greibach normal form.

2.1.3 Automata and Machines

Whereas grammars generate a language, automata define a language by accepting ex-
actly those words which are part of the language. The simplest kind of automaton is
the deterministic finite automaton (or DFA).

A deterministic finite automaton is a 5-tuple M = (Q, Z, 6, qo, F), where Q is the set
of states, X the input alphabet, go € Q the initial state state and F' C Q is the set of
final states. The transition function ¢ is a mapping Q X £ — Q. We can extend the
transition function to words by defining 6* : QX X* — Q such that §*(g, 4) := ¢ and for
each a € X, 6"(q,wa) := (6" (q,w)),a). Then the language accepted by M is defined
as L(M) = {w | 6*(g,w) € F}.

A nondeterministic finite automaton (or NFA) M = (Q, %, 6, qo, F) is defined just like
a DFA, with the only difference that the transition function is a mapping Q x T > 2.
Extending 6 to 6* : Q x T* > 2 as before, the language accepted by M is defined as
LM) ={w|d(g,w)yNF # 0}.

Let L(DFA) and L(NFA) denote the class of languages accepted by DFAs and
NFAs respectively. Then the following holds.

Theorem 2.1.2. REG = L(DFA) = L(NFA).

Thus both classes of automata accept exactly the same languages, and we will sim-
ply refer to them as finite automata (FAs) if the distinction is not important.

When equipping a finite automaton with a push-down memory, we obtain a push-
down automaton (or PDA). This is a 7-tuple M = (Q,%,T, 8, qo, Yo, F), where Q, X, qo,
and F are as for finite automata. I' is the stack alphabet, and 7y is the bottom-of-stack

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

2.1. Formal Language Prerequisites

15

symbol. The transition function ¢ is defined as a mapping O X X X —» O xTI". A
configuration of M is a triple (¢, w,y), where g € Q, w € " and vy € I'*. We say
(q,aw,Za) + (p,w,Ba) if (p,B) € 6(q,a,Z). Let +* denote the transitive and reflexive
closure of this relation. Then the language accepted by M can be defined equivalently
in one of the following ways.

e Acceptance by final state: L(M) = {w | (go,w,Y0) V" (q,4,Z) for some g €
F,Z eT™}.

e Acceptance by empty stack: L(M) = {w | (g0, W, y0) F* (g, 4, A) for some g € Q}.
Let L(PDA) denote the class of languages accepted by PDAs.
Theorem 2.1.3. CFL = L(PDA).

A Turing machine is a tuple M = (Q,%, A, qo, F, 3, B), with Q the set of states,
and A respectively the input and tape alphabet, gg the initial state, F' the set of final
states, B the blank symbol and § : Q x A — 2@MXILR} the transition function. A
configuration or instantaneous description of a Turing machine is a string @ = a1qa>»,
with @,y € A*,q € Q. We write a + o’ if configuration @ @’ can be reached from
a + & by one move of M. Let +* be the transitive and reflexive closure of +. Then
the language accepted by M is defined as L(M) = {w € X* | gow +* @1qa, for some
qeF}.

Let £(T M) denote the class of languages accepted by Turing machines.

Theorem 2.1.4. RE = L(TM).

A Turing machine may not always halt when the input word is not in the language.
When we require the Turing machine to halt on all inputs, it accepts a smaller class of
languages, the recursive languages (REC).

Theorem 2.1.5. CS c REC C RE.

2.1.4 Complexity

So far, we have classified sets by their structural complexity, that is the complexity
of the device needed to generate or recognize them. There are other classifications
possible, of which we will consider two in this thesis.

Computational complexity measures the amount of resources needed to recognize or
generate a language on a (typically universal) computational device. The most studied
resources are space and time, though many other reasonable measures are possible.
They are usually defined in terms of the time and space-bounded off-line Turing ma-
chines. An off-line Turing machine is presented its input on an additional read-only
input tape, which allows to consider only the space needed for the actual computa-
tion, without counting the space needed to store the input. For instance, for a function

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

16

Chapter 2. Prerequisites

f() : N — N the class DSPACE[f(n)] is the class of languages which can be ac-
cepted by a deterministic off-line Turing machine M which for any word w € L(M)
uses at most f(lw|) tape cells. NSPACE[f(n)] is the corresponding class for non-
deterministic Turing machines. DTIME] f(n)] and NTIME] f(n)] are defined similarly,
but counting the number of moves of the Turing machine. Important classes we will
consider in this thesis are NP = | J;»; NTIME[n'], PSPACE = | J;»; DSPACE[r'] and
NL = J.>1 NSPACE|c(log n)]. A reduction of a language L’ to another language L is
a recursive mapping g such that for all strings x, x € L’ if and only if g(x) € L. A lan-
guage L is complete for a class C with respect to logarithmic-space reductions if L € C
and every language in C is reducible to L by a mapping computable in deterministic
logarithmic space. Finally, a function f(n) is space-constructible (time-constructible)
if there is some Turing machine M that is f(n)-space(respectively f(rn)-time) bounded
and for any given n, there exists an input of length n for which M actually uses space
(time) f(n).

Descriptional complexity is concerned with the size of the description of formal
objects, typically languages. For instance, a given regular language can be described by
a deterministic finite automaton or by a nondeterministic finite automaton. However,
the size of this description depends on the formalism used for describing them. One
main question is how the size of description varies when the object is described by
different descriptional systems. This variation can be described in terms of upper and
lower bounds in the increase of the size of the description when passing from one
formal system to another. In this context, we say a function f(n) : N — N is an
upper bound for the increase in size when changing from a descriptional system D, to
another system D if every description M € D, of size n has an equivalent description
M’ € D, of size at most f(n). A function g(n) : N — N is a lower bound for the
increase in size when passing from D, to D; if there is an infinite sequence (L;, i € N)
of pairwise distinct languages L; such that there is a description M € D, of size n and
every description M’ € D, has a size of at least g(n). For instance, it is known that
changing from NFAs to DFAs for describing the family of regular languages, both the
upper and lower bound are 2" ([19]).

It is possible that there exist no recursive function limiting the increase in the size
of the description between two formal systems. This is known as a non-recursive
trade-off. Hartmanis [29] provides an elegant proof technique for showing such non-
recursive trade-offs, relating the size of description with decidability questions.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

2.2. Computing with DNA

17

2.2 Computing with DNA

The area of DNA computing was initiated by Leonard Adleman with his groundbreak-
ing experiment in 1994 [1]. Since then, computer scientists and molecular biologists
have worked on the ingredients of a possible molecular computer, both in terms of bio-
chemical techniques and computational models. Adleman solved a small instance of
a NP-complete problem using purely biochemical means. Before we start discussing
DNA computations, we briefly introduce the basic properties of DNA molecules and
some available techniques for manipulating DNA molecules.

2.2.1 DNA: Properties and Techniques

DNA molecules are polymers that are built from simple monomers called nucleotides.
Each nucleotide consists of three basic components: sugar, phosphate, and base. There
are four possible bases, denoted by A, C, G, and T. Since nucleotides differ only in their
bases, we identify nucleotides with their bases. In this way, there are only four types
of nucleotides, also denoted by A, C, G, and T. Nucleotides can form single stranded
DNA molecules: two consecutive nucleotides bind through a strong (covalent) bond.
The basic feature of the four bases A, C, G, T is the pairwise affinity, A with T, and
C with G: we say that bases A and T are complementary, and so are C and G. This
complementarity (called the Watson-Crick complementarity) underlies the formation
of double stranded DNA molecules from the single stranded ones. Two single stranded
DNA molecules can bind elementwise through their bases forming weak (hydrogen)
bonds. These bonds can form only between complementary bases, hence between A
and T, and between C and G. Since each nucleotide can be identified by one of the
four letters from the alphabet N=A, C, G, T, a single stranded DNA molecule can be
denoted by a string over N. To denote double stranded DNA molecules we use double
strings. Double stranded DNA molecules can have a single stranded part at the end,
which is called a sticky end.

One can separate the two strands of a double stranded DNA molecule by heating the
solution containing the molecule. Since the hydrogen bonds between the two strands
are much weaker than the bonds between the consecutive nucleotides within a single
strand, such a separation will not break the single strands. By cooling down the solu-
tion, the separated strands will fuse together forming the original double strand. The
fusing process is called annealing or hybridization, and the separation process is called
melting or denaturation.

It is possible to amplify a specific DNA molecule using polymerase chain reaction
(PCR). It is based on the activity of the enzyme called DNA polymerase. This enzyme
turns a single stranded DNA molecule into a double stranded one by simply adding to
each nucleotide in the single strand its complementary nucleotide in the other strand.
The enzyme needs a short stretch of nucleotides at one end of the single stranded
molecule, called a primer. The amplification takes place by repeated cycles of dena-
turing, priming and extension. This amplification is so effective that it can be used to

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

18

Chapter 2. Prerequisites

detect molecules. After repeated PCR steps one can assume that a molecule picked
randomly is of the amplified type.

Gel electrophoresis can be used to separate DNA molecules by length. DNA mo-
lecules have a negative charge proportional to their length, so they travel at the same
speed in an electric field. However, if there is some kind of resistance, like in a gel,
smaller molecules will travel faster that bigger ones. Applying an electric field to a
DNA sample placed in a gel is a precise method to separate DNA molecules by length.
Afterwards, molecules of a specific length can be reused by simply cutting them out of
the gel and dissolving the sample.

Finally, it is possible to filter out molecules containing a certain sequence of bases,
by attaching the Watson-Crick complement of this sequence to a solid surface or to
glass beads which can be sieved out easily. Denaturing the sample and pouring to over
this *filter’ will remove these molecules from the sample.

This description of the processes is highly schematic and simplified. More precise
descriptions can be found in [65] or [2].

2.2.2 Adleman’s Experiment

The molecular algorithm used by Adleman is widely documented, for instance in [65].

Adleman’s experiment solves an instance of the Hamiltonian path problem (HPP),

which is the question if, given a graph and a final and initial vertex, there exists a path

from the initial vertex to the final vertex which visits all other vertices exactly once.
The molecular algorithm was the following (given a graph with n vertices):

1. Randomly generate paths in the graph

2. Remove paths which do not begin with the initial vertex or do not end with the
final vertex

3. Remove paths which are not of length n
4. For each vertex, remove all paths not containing this vertex.

The answer to HPP is "’yes” if and only if a path remains.

The algorithm was implemented as follows. Each vertex was encoded in a single
stranded sequence and, given such an encoding of vertices a and b, the edge a — b
is encoded by a single stranded sequence which consists of the Watson-Crick comple-
ment of the second half of the encoding of a, followed by the complement of the first
half of b. In this way, the coding of edge a — b can anneal to the coding of vertex
a, and then the coding of vertex b can anneal to the resulting sticky end. If we have
enough copies of all edges and vertices, we can assume that all paths (at least of length
n) are formed when these are brought together in a test tube. Now, step 2 to 4 can be
executed quite straightforwardly using the techniques of the previous section. Step 2

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

2.2. Computing with DNA

19

by PCR, step 3 by gel electrophoresis and step 4 by filtering. Our description of the
experiment is very concise, for more details the reader is referred to e.g. [65].

HPP is an NP-complete problem. Looking at the algorithm above, we see that the
number of biochemical operations is linear in the number of vertices. Since these
operations theoretically represent a constant time, we have a linear time algorithm for
an NP-complete problem. In fact, Lipton [37] showed that the same method can be
used for other NP-complete problems, like the satisfiability problem (SAT). Despite
its great promise of solving currently intractable problems, there are still many obsta-
cles to the actual molecular implementation of non-trivial computations. Of course,
biochemical operations are slow and labour-intensive. But even if this would be im-
proved in the future, there remain systematic problems when we want to upscale this
technique. First, if we have a larger graph, the codes for vertices and edges will have
to be longer: To still have a reliable computation, we would need unrealistic amounts
of DNA. Moreover, long single stranded DNA molecules are fragile and unreliable.
Finally, procedures like PCR are not completely flawless, so we would need some way
to cope with possible errors.

2.2.3 Other Experiments and New Directions

Adleman’s algorithm was based on the Watson-Crick complementarity. In many sub-
sequent experiments the basis of splicing, DNA recombination induced by restriction
enzymes, was used.

The first significant experimental result after the work of Adleman was obtained by
Ouyang et al. [55]. They solved an instance of the maximal clique problem, also a well
known NP-complete problem. A clique is defined as a set of vertices in which every
vertex is connected to all other vertices by an edge. The maximal clique problem is:
Given a graph, how many vertices are in the largest subgraph that is a clique? Their
solution works as follows.

For a graph of n nodes, subsets of vertices (hence possible cliques) can be repre-
sented by binary strings of length n, with 1 denoting the presence of a vertex and 0
denoting its absence. Each bit of the number is encoded by a sequence of bases, with
the code of 0 longer than the code for 1. Moreover every encoding of value 1 con-
tains a splicing site for a restriction enzyme (a different one for every position). The
idea is to start with all possible cliques, and then use restriction enzymes to digest (i.e.
cut) representations of subsets that cannot be cliques. More specifically, we have the
following algorithm.

1. Generate the encodings of all binary strings of length n (the data pool)

2. For every edge i — j not in the graph, separate the data pool into two parts. In
one part, cut all molecules containing the encoding of 1 at position i, in the other
part, cut all molecules containing the encoding of 1 at position j. Combine the
parts.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

20

Chapter 2. Prerequisites

3. Using PCR, amplify only the strings that have not been cut in step 2.

4. Apply gel electrophoresis to find the largest clique.

Because the encoding of 1 is shorter than the encoding of 0, the largest clique can be
identified by gel electrophoresis; the shortest remaining molecule corresponds to the
largest clique. Moreover, the size of the clique follows directly from the length of this
molecule.

In Benenson et al. [4] a molecular implementation of a finite automaton is reported.
The automaton performs the computation fully autonomously. The implementation is
based on the properties of the restriction enzyme Fokl. Figure 2.1 shows the recogni-
tion and cutting site of the enzyme (with N denoting any base).

NNNGGATGNNNNNNNNN NNNN\NNN
NNNCCTACNNNNNNNNN NNNN NNN

Figure 2.1: The restriction site of enzyme Fokl

The interesting thing about Fok/ is that it cuts DNA strands at some distance (9 base
pairs) from the recognition site. This property can be used to ’consume’ the input at
the same time as the state is changed. This works as follows: Consider an encoding of
input symbols. We start with an input molecule containing the encoding of the input
string of the automaton, preceded by a Fokl recognition site. This site is placed is
such a way that when Fokl is added, the first input symbol is cut off, leaving a sticky
end which allows to identify both the state and the symbol just cut off. This is possible
because the encoding of a symbol is 6 base pairs long, so with the sticky end of 4 base
pairs left by Fokl, there are in principle 3 possibilities to cut it. Each possible cut
leaves a different sticky end which we can identify with a state, as well as allowing us
to recognize the symbol. Now, the transitions take place by having transition molecules
in the mixture. Let us say that the state is go and the input symbol a. If the automaton
contains the transition (gg,a) — ¢q1, the corresponding transition molecule contains a
sticky end corresponding to the Watson-Crick complement of the sticky end encoding
the pair (qo,a), as well as a splicing site for Fokl placed in such a way that the next
cut leaves the encoding of the next symbol and state ¢;. Thus by repeated cycles of
cutting and ligation the automaton is simulated. When the input is fully read, an output
molecule allows to read the final state. For more technical details we refer to [4].

While this implementation is very elegant, it is also systematically limited. The
number of base pairs for encoding both symbols and states is limited, so there seems
to be no possibility to implement an automaton more complicated than the one used in
[4], which has two states and 2 input symbols.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

2.2. Computing with DNA

21

An implementation of a pushdown automaton has been proposed [10], based on the
same strategy but another restriction enzyme, Prsl. The enzyme has two cutting sites
at either side of the recognition site, as shown in Figure 2.2.

NNNNN|NNNNNNNGAACNNNNNTACNNNNNNN\NNNNN
NNNNN NNNNNNNCTTGNNNNNATGNNNNNNN NNNNN
Figure 2.2: The restriction site of enzyme Prsl

Using this enzyme, on one side the input symbols and states are handled as before,
on the other side the stack can be dealt with. An experimental realization using circular
DNA molecules is in course. Obviously, the same strong restrictions on the number of
symbols, state and stack symbols apply in this case.

Finally, it is interesting to note that both Fokl and Prsl are recently discovered
enzymes. This shows that advances in biochemistry can lead quite directly to new
possibilities in molecular computing.

Tom Head, with various collaborators, has introduced another way to conceive
molecular computations. In contrary to the algorithms presented above, his approach
does not involve chemical processes performing (part of) the computation indepen-
dently. Instead, a pool of (initially identical) molecules is considered as a fluid memory.
The molecules contain a set of locations which can be ”written” by some biochemical
technique. The amount of molecules in such a fluid memory is so vast that we can
make the following working assumptions, stated in [26].

1. The memory molecules are uniformly distributed through the memory.

2. The memory can be partitioned into separate portions that may be assumed iden-
tical.

3. Separate portions of fluid memory can be reunited into a single unit.

These three properties allow computations to be carried out. Independently of the
technology used for writing, each writing step is done in parallel, in unit time, on every
memory molecule in the body of the fluid into which the writing is being done. Each
writing operation writes at the same location on every memory molecule in the body of
fluid into which the writing is being done. After the completion of the writing phase of
a computation, there typically follows a phase in which the molecules of the memory
are read to yield the result of the computation. Examples of aqueous computation
successfully carried out in a lab are reported in [25], [26] and [28]. These all used
splicing techniques for writing. For instance, in [26] the satisfiability problem (SAT)
for disjunctive clauses is solved. Here a circular DNA molecule with six “memory

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

22

Chapter 2. Prerequisites

locations’ is used. A memory location consists of a splicing site for an enzyme. This
site can be deactivated, which can be interpreted as changing a bit of information from
1 to 0. Now, SAT can be solved by following an algorithm reminiscent of that of
Ouyang et al. [55] discussed above, using writing in memory rather than cutting.

While these and other experiments introduced new techniques, they still suffer from
the problems mentioned in Section 2.2.2, making upscaling these methods practically
impossible. In fact, most researchers acknowledge that it is unlikely that a *'molecular
computer’ can rival the digital computer in a foreseeable future. Recent experiments
have gone in different, but not less interesting, directions. Self-assembly based on
Watson-Crick complementarity has been used to form complex nanostructures with
DNA tiles [67]. Benenson and his collaborators [3, 11] are exploring the possibility to
construct simple DNA computers for medical use. These so-called molecular automata
test for the values of medical indicators, and release a medicine only if it is appropriate
given these indicators. An in-vitro version was reported in [3], and recently also a
version working in living cells was presented [66].

2.3 Splicing

In this section, we make the step from molecular operations to formal models. Spli-
cing as a formal operation on strings was introduced by Tom Head in 1987 [22], so
it actually predates Adleman’s work. However, only since this experiment the field
of splicing has attracted the attention of a larger research community and most of the
work in this area dates from the last decade. The splicing operation is the basis of
computing models which are called Splicing systems or H systems. In this section we
introduce the basic notions and definitions of splicing, present the main results about
basic H systems and review some variants of splicing systems which will be used in
the rest of this work. More details can be found in [65], a fairly exhaustive overview
of all theoretical models of DNA computing, or in [9], which is more recent, but not
as extensive.

2.3.1 From Biochemistry to Formal Languages

In this section, we show how biochemical operations on DNA using restriction en-
zymes can be regarded as operations on strings, which can be used to define models of
computation. The example of the working of restriction enzymes is from [9].

The splicing operation is a formal model of recombination of DNA molecules in-
duced by restriction enzymes. Restriction enzymes cut DNA strands at specific se-
quences of base pairs.

Suppose we have the following DNA molecules

CGCGCTCGACGCGC ATATAGCGCTATAT

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

2.3. Splicing

GCGCGAGCTGCGCG TATATCGCGATATA

And the two restriction enzymes Tagl and SciNI, with the following patterns.

T@‘A G@‘C
AGCIT C GC|G
When we combine all these, the following four fragments will be produced.

CGCGCT CGACGCGC ATATAG CGCTATAT
GCGCGAGC TGCGCG TATATCGC GATATA

Since the sticky ends are the same, new molecules can be produced by recombining
the parts of the two molecules.

CGCGCTCGCTATAT ATATAGCGACGCGC
GCGCGAGCGATATA TATATCGCTGCGCG

Now, regarding this biochemical operation as an operation on strings we make a
series of abstractions. First, because of Watson-Crick complementarity, we can con-
sider single stranded sequences, since each single stranded sequence uniquely defines
a double stranded one. Moreover, instead of the alphabet of bases A, C, T and G, we
work with strings over an arbitrary alphabet. Finally, we disregard the sticky ends.
Indeed, looking at the example above we see that after recombination no trace is left
of the sticky ends. For the result of the splicing operation it is irrelevant which were
the sticky ends, it suffices to know that the operation is possible.

Thus we can regard the splicing operation as passing from two strings wluluzwll
and wzu3u4w’2 to two new strings w1u]u4w/2 and W2M3M2W,1. This can be represented
by a splicing rule of the type r = u#uySus#uy where uy,uy,u3,uy are strings over some
alphabet V and $ and # are special symbols not in V. We say that r is a splicing rule
over V. An application of r, denoted by F,, is defined as follows.

Definition 2.3.1. For a splicing rule r = ui#urSus#ug and x,y, w,z € V*, we define

(6, y) br (W, 2) iff x = xju1uzx2,
Y = y1uszugyo,
T = XUy,
W = y1uzuzxy,
for some x1,x2,y1,y2 € V*.

In [65] this type of splicing is called 2-splicing. In the literature also another defini-
tion is considered, referred to as 1-splicing in [65]. In fact, many results on H systems
are obtained using this definition.

Definition 2.3.2. 1-splicing: For a splicing rule r = uy#uySus#tuy and x,y,w,z € V*

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

24 Chapter 2. Prerequisites

(x,y) k! ziff x = xquiuzxs,
Y = Y1Usugy?,
Z = X1U1Uayo,
for some x1,x2,y1,y2 € V*.

As in [65], we prefer to use the first definition to define computational systems. In
this way, the models are closer to biochemical reality and also make more sense on a
formal level. So, in what follows we always consider 2-splicing, unless specifically
stated otherwise. If we write (x, y) + w, this should be read as (x,y) + (w, z) or (x,y) +
(z,w) for some z. In this respect, it is important to observe that, even if it is known
that 2-splicing is slightly weaker than 1-splicing [79], all main theorems as well as the
results presented here are true irrespective of which of the two definitions is used.

Now, to pass from an operation on strings to a computing device, first we extend
the splicing operation to languages. Let R be a set of splicing rules over V. Then if
we consider some language L C V*, we can apply the splicing rules of R to it in the
following way.

Definition 2.3.3. For a set R of splicing rules and a language L, both over V, we define
or(L) = {w,w € V*| (wi,w2) b (W, W) for some wi,wy € L and some rule r € R}

og(L) contains the result of applying the splicing rules once. But in a test tube
restriction enzymes will not stop working after one operation, they will act iteratively.
Similarly, we define iterated splicing as follows.

Definition 2.3.4. For a set R of splicing rules and a language L we define
o) =L,
or (L) = (L) Va('(L)),
orL) =)o),

0
So o (L) is the closure of L under splicing with respect to R.
We now define a splicing system or H system.

Definition 2.3.5. A splicing system is a triple I' = (V, A, R), where V is an alphabet,
A C V* the initial language and R C V*#V*$V*#V* is a set of splicing rules. The
language generated by vy is, by definition,

L(y) = og(A).

Note that both A and R are possibly infinite sets, of which we can consider the
position in the Chomsky hierarchy or some other hierarchy. So for two families of
languages FL; and FL;, we can consider H systems with A € FL; and R € FL,. By

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

2.3. Splicing

25

H(FL, FLy) we will denote the family of languages generated by such systems. So,
formally
H(FLl,FLz) = {G'E(A) | A€ FL, and R € FLz}.

Also, in analogy with Chomsky grammars, it is quite natural to consider splicing
systems which have a terminal alphabet. These are called extended H systems.

Definition 2.3.6. An extended splicing system is a construct y = (V,T,A,R), with
alphabet V, terminal alphabet T C V, R C V*#V*$V*#V* and A C V*. The language
generated by vy is, by definition,

L(y) = cp(A)NT".

Finally, it should also be mentioned that the way of representing splicing rules pre-
sented above, though the most usual, is not the only way used in the literature. In
addition to this definition, known as Paun-splicing, also the so-called Head and Pix-
ton notations are used, which are marginally different, also in power, at least in finite
non-extended systems (see [6]).

In the next section, we consider the computational power of splicing systems.

2.3.2 The Power of Basic Splicing Systems

In this section we present the two basic results about splicing systems. The first, the
so-called regularity preserving lemma, was first proved by Culik and Harju [12] as a
consequence of a more general result, and later by a direct argument by Dennis Pixton
[70]. It states that H systems with a regular initial language and finite rules generate
only regular languages. For later reference, we here briefly sketch Pixton’s proof, for
more details the reader is referred to [70] or [65].

Lemma 2.3.7. H(REG, FIN) C REG

Proof. Let H = (V,A,R) be a splicing system and M = (K, V, s, F,0) be the finite
automaton accepting initial language A € V*. Now we construct automaton M’ =
(K U K',V,s0, F,6") which accepts 0x(A). Assume R = {ri,rs,...,r,} and that r; =
wi#uioSu;stu;a, 1 <i < n.

Moreover, let u;u;j4 = a;1a;p...a;,; with a;j € V, 1 < j < ;. Note that this proof
uses 1-splicing, but extends directly to 2-splicing, since all 2-splicing can be repre-
sented by a symmetric 1-splicing scheme (i.e. one where for each rule u#u,$Sustuy,
the rule us#us$u #uy is also in the scheme). K’ will contain the new states ¢, 1,42 - - -
qis» qis=1 forall 1 < i < n. Transition function ¢” contains all transitions of ¢ to which
we add

8 (qij.aij) = {qijn} 1< j<t,1<i<n

Moreover, for each splicing rule r; = u; j#u;>$u; 3#u; 4 in R we do the following. If for
some state s € K U K’ there exists a state s € K U K’ and two strings x1, x, € V* such

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

26

Chapter 2. Prerequisites

that s € 6"(s9, x1), 51 € 8'(s, u;1u;2) and &’ (s1,x2) N F # 0, we put
8'(s,) = {gi1}-

In addition, if for some state s” € KU K’ there exists a state s; € KUK’ and two strings
y1,y2 € V* such that 51 € 6" (s0,y1), 8" € ¢'(s1, ui3u;4) and &' (s’,y2) N F # 0, we put

6/(qi,t,'+1a /l) = {S/}'

The idea behind this is that if both xju;uyx; and yyususy; are in A, we add the nec-
essary transitions to ensure that xju;usy; is in L(M’). In fact, since the new transitions
can give rise to new possible splicings, we have to iterate this step. But since the state
set is finite, we know the procedure will finish. At this point, we have our automaton
M’ . For the complete formal proof that L(M") = o (A) we refer to [70]. O

We should mention here that the family of languages generated by non-extended
splicing systems with finite rules is strictly included in the set of regular languages,
with languages like (aa)* or a*ba*ba* being examples of regular languages which are
not finite splicing languages.

The next important result, the basic universality lemma, shows that if we allow
for regular rules, extended H systems with finite initial language are computationally
complete. This was shown in [63]. The proof introduces a technique which has become
widely used in splicing proofs, the rotate-and-simulate procedure. Since we will use
variants of this technique in several places, we consider the proof in some detail.

Lemma 2.3.8. EH(FIN,REG) D RE

Proof. We construct a H system to simulate an unrestricted grammar G = (N, T, S, P).
The idea behind the rotate-and-simulate procedure is that it is easy to devise a splicing
rule to simulate a rule application of G at the extremities of a string. For instance
the rule u — v can be applied on some string wu by the splicing rule A#u$Z#v in the
presence of string Zv. However, rules of G can be applied at any place of the sentential
form. To simulate this, we will rotate the string such that all symbols can appear at the
extremities.

Formally, let U = N UT U{B}, where B is a new symbol not in N U T. We construct
the extended H system y = (V, T, A, R) with

V=NUTU{X,X,BY,Z}U{Y, |a € U},

R contains the following rules

Simulate: (1) Xw#uYS$Z#vY,foru - ve P,we U*
Rotate: 2) XwH#aYS$Z#Y, fora € Uywe U*

() X a#Z$X#wY,for a € U,w € U*

4) X'w#Y,$Z#Y, fora € U,w € U*

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

2.3. Splicing

27

(5) X#ZSX'#wY, forw e U*
Terminate: (6) A#ZY$XB#wY,forw € U*
(7) MHYSXZH#A.

and initial language
A=(XBSY,ZY,XZ}U{ZvY |u » ve P} U{ZY,, X aZ | a € U}.

The symbol B is a marker for the beginning of the sentential form. The derivations
starts from the string XBSY, so from the axiom of G, marked by B and end markers
X and Y. For every string of the form XwY, w € U*, we can either simulate a rule or
rotate the sentential form. The simulation of the rules is handled by the rules of (1),
in the way we described above. For the rotation part, consider a string XwaY, with
a € Uw e U*. If we apply a rule of (2), we get XwY,. Applying next a rule of type
(3) leads to X’awY,. The rules of (4) and (5) lead us to X’awY and finally Xaw?,
which has the same form as the string we started with. The necessary auxiliary strings
are in A and never lead to terminal strings. Thus we have rotated the symbol a from
the end to the beginning of the string. Now we can choose to either simulate a rule or
rotate again.

Finally the rules of (6) and (7) ensure that only terminal strings with B in the right
position will have the markers removed, yielding terminal strings in the language. The
complete proof can be found in [63] or [65]. |

So while a finite rule set restricts the power of H systems to the regular languages,
a regular set of rules gives all RE languages. However, in terms of practical DNA
computers or biochemical reality, infinite sets of rules are quite meaningless. Also for-
mally, an infinite device is quite unattractive. We would like to have a finite computing
device, but one which still has sufficient computational power. This search has led to a
considerable number of variants of splicing systems, some of which we discuss in the
next section.

2.3.3 Variants of Splicing Systems

The search for computationally complete H systems with a finite description led to sev-
eral new approaches to splicing systems, which can be divided into two main groups.
On the one hand, many models were introduced in which the derivations are controlled
by some additional feature, often inspired by models from the regulated rewriting area
(see [14]). On the other hand, many authors enhanced the power of splicing systems
by embedding the splicing operation in some structure of distributed computing. We
cannot describe all these models here, but to give a rough idea of the work in this
area, we will list and in some cases informally describe several variants of splicing
systems. For additional models, as well as formal definitions and proofs for the ones
we mention, we refer to [65] and its references.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

28

Chapter 2. Prerequisites

In the family of systems with additional control features, we can mention H systems
with permitting contexts, H systems with forbidding contexts and ordered H systems. In
addition to the computational motivation, the restriction can also be viewed as a formal
version of a biochemical process. Then permitting contexts correspond to catalysts,
forbidding contexts to inhibitors and ordered rules can be seen as modelling differences
in reactivity. Considering the proof of Lemma 2.3.8, it is not very hard to see that the
same restrictions imposed there by regular languages can also be expressed in terms
of contexts or orderings. Other systems are programmed H systems, and H systems
with targets or double splicing (rules are applied in predefined couples, cf. matrix
grammars). Also having splicing systems operate on multisets rather than sets gives
rise to complete systems.

Among the distributed variants we can name splicing grammar systems, which are
grammar systems where the context-free rewriting rules are replaced by splicing rules
and communicating distributed H systems, which have several components where the
strings are spliced according to the associated rules. Each component i is equipped
with a selector or filter which is a subset V; of the alphabet. After splicing, the result is
redistributed among all components in such a way that a component i receives a string
if it belongs to V. This process is repeated and the language is defined as the set of all
terminal string appearing in the designated output component.

2.3.4 Time-varying H Systems

In this section, we present in more detail a variant of H systems called time-varying H
systems, which we will refer to later in this thesis. They were first introduced in [62].
The biochemical inspiration behind these systems is that environment conditions can
change the working of enzymes. This can be modelled by different sets of splicing
rules, active at different times. If the environment changes periodically, then the set of
active enzymes (in our case, rules) will also change periodically.

Definition 2.3.9. A time-varying distributed H system(of degree n) is a construct:

D = (‘/7 T7 Aa Rl ’ RZ’ AAAS] Rn)7
where V is an alphabet, T C 'V is a terminal alphabet, A C V* is a finite set of axioms,
and components R; are finite sets of splicing rules over V, 1 <i < n.

At each momentk =n- j+1i, for j >0, 1 <i < n, only the component R; is used for
splicing the currently available strings. Specifically, we define
Ly =A,
Li+1 = op (L), for i = k(mod n),k > 0,1 <i<n,h; = (V,R;).

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

2.3. Splicing

29

The language generated by D is, by definition:

L(D) = (U L) NT*

k>1

Note that in this type of systems from step k to the next step, k + 1, one passes only
the result of splicing the strings in L; according to the rules in R;. The strings in Ly
that cannot enter a splicing rule are removed.

Already in [62] it was shown that time-varying H systems are computationally com-
plete. Subsequently, in a series of papers including [61],[58] and [50], the degree (i.e.
the number of components) needed to obtain computational completeness for time-
varying H systems has been lowered progressively. Finally, in [49, 51], it was shown
that time-varying distributed H systems of degree 1 can generate all RE languages. So
in fact, no time variation is needed to obtain this result. In other words, the way of
derivation in which only the result of the splicing operations is passed to the next step
is by itself powerful enough to obtain completeness.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

3 An Alternative Definition of the
Language Generated by a Splicing
System

3.1 Introduction

In this chapter, we propose a new definition of the language generated by a splicing
system, motivated by both biochemical and mathematical considerations. The main
feature of the new definition is that by applying a splicing rule, we not only create
new strings, but also allow for the removal of the strings entering the rule. This be-
haviour seems to correspond better to biochemical reality and is in fact used as a tool
in several experimental DNA computations. We show that using this new definition,
finite extended H systems can generate all recursively enumerable languages. Even a
weaker version of these H systems, defined using the new notion of delay, is shown to
be strictly more powerful than H systems defined in the traditional way.

As we saw, the splicing operation is a formal model of recombination of DNA mo-
lecules induced by restriction enzymes. In many cases these DNA recombination ope-
rations are reflexive, that is, the original molecules will be among the result of the
operation. However, this is not necessarily always the case. In some reactions, all
original molecules disappear and only newly created molecules remain. This is for in-
stance the case when two restriction enzymes with so-called compatible cohesive ends
are used. These are restriction enzymes which cut at different sites, but leave identical
sticky ends. When fragments created by such enzymes are recombined, the resulting
strands can not be cut by either enzyme. Reactions of this type are widely used, both
in molecular computing and in molecular biology. Head [24] reports the experimental
verification of the behaviour described above.

The traditional definition of the language generated by a splicing systems we saw in
Section 2.3.1 can be seen as a reflexive definition in the following sense. A splicing
system is said to be reflexive if for every splicing rule u#u$us#uy the set of rules also
contains uy#ur$ui#uy and uz#us$us#uy. This means applying the splicing rules will
also yield the original strings.

However, in the usual definition of the evolution of a splicing and the language it
generates, reflexivity is already assumed. By definition, after a step of rule application
we obtain a set of new strings and in addition maintain all original strings. All strings
present are preserved and are part of the generated language of the system. This is

31

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

32 Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

true regardless of whether the system is reflexive. We propose a new definition, where
reflexivity is induced by the set of splicing rules and we also allow for possible non-
reflexive behaviour like in biochemical recombinations. To avoid confusion with other
work dealing with reflexive splicing systems meant as traditionally defined H systems
with a reflexive set of splicing rules (for instance [7] and [27]) we will call our systems
non-reflexively evolving.

In a way, the splicing language as it is traditionally defined contains all strings that
occur at some time in the computation. However, as we have seen, in biochemical
splicing it is usual that molecules disappear in the course of the reaction. Furthermore,
if we look at a typical scenario of a molecular computation, they contain a detection
phase in which the presence of a given molecule is checked. In these computations,
enough time is left for the reaction to run to completion, after which the presence of
solutions is checked. In this way, none of the possible intermediate molecules is part
of the detected solutions. This suggests a different definition of the language gen-
erated by a splicing system: the language contains all strings that can be effectively
detected. In fact, the possibility of certain molecules to disappear in the course of the
computation is employed as a technique in some theoretical and experimental molecu-
lar algorithms, for instance [69] and [28], based on the irreflexivity and irreversibility
of some chemical operations.

For formal systems, this leads to a language definition in which all strings that dis-
appear in the course of the computation are not considered to be part of the language.
This new view also affects the derivations in the systems. In the usual definition of
splicing systems, all strings generated at some point can enter a splicing rule at all mo-
ments after that point. If we allow strings entering a rule to disappear in the course of
the computation, this also means that after this point those strings cannot enter splicing
rules. So, to formalize the considerations above, we do not only need a new definition
of the language, but also a new definition of the possible derivations in a splicing sys-
tem.

The existence of non-reflexive biochemical splicing operations was already ob-
served by Tom Head [24]. He introduced the notions of adult splicing language and
limit language. The adult splicing language contains all molecules that cannot be cut
by any restriction enzyme. The limit language contains all strings present ‘at equilib-
rium’. Goode and Pixton [20] proposed a more precise definition of this concept. Their
definition tries to model the dynamic behaviour of a biochemical splicing system. We
stay closer to the formal definitions of splicing, trying to find a definition which is a
generalization of the usual definition, in the sense that if the underlying set of splicing
rules is reflexive, the definitions will coincide. This also points to a more mathematical
motivation to consider a new definition; in the formal model, no a priori restrictions
are imposed on the set of splicing rules. However, the language definition imposes a
reflexive behaviour on the splicing systems. We feel that, in addition to the biochem-
ical considerations outlined above, that dropping this feature is also more consistent
with the in principle unrestricted nature of the formal splicing operation.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

3.2. A Non-reflexively Evolving Splicing Language

33

It should be noted here that there already exist definitions of splicing systems in
which strings disappear in the course of computation. For instance, the H systems
studied by Harju and Margenstern [21] discard all strings not used at a step. This
definition corresponds in fact to time-varying H systems of degree 1, known to be
computationally complete (see [51]), modulo a terminal alphabet. Also, Verlan and
Margenstern [78] consider splicing membrane systems with one membrane, where
different possibilities of the result of sending a string out of the membrane are stud-
ied. After formulating our definition, we will discuss the similarities and differences
between these systems and the ones defined here.

In the next section, we propose a new definition of a language generated by a splicing
system, which formalizes these considerations. We then show that with this definition,
finite extended H systems are computationally complete. Afterwards, we consider a
weakened version of non-reflexively evolving splicing systems, introducing the con-
cept of delay. H systems with delay are shown to be strictly more powerful than normal
H systems.

3.2 A Non-reflexively Evolving Splicing Language

The definition of the language L(I') generated by a splicing system I given in the
previous section is a reflexive definition. For any application of a splicing rule (x,y) F
(z, w), all four strings will be in the splicing language. So whether the splicing systems
is reflexive or not, all strings are preserved. Since we do not impose reflexivity on
the splicing system and we know non-reflexive splicing operations are possible, we
will look to define the splicing language in such a way that the language evolves in a
reflexive way if and only if the H system is reflexive.
First, we need a different definition of a splicing step, which we denote by 7.

Definition 3.2.1. For a set of splicing rules R over V, and a language L over V we
define

TR(L) ={w,w" € V¥ | (w1, w2) b (W, W) for some wi,wy € L and some
ruler € R} U {w € L | there is no x € L and no rule r € R such
that (w, x) v, (y,2) or (x,w) +, (, 2) for some y,z € V*}

The difference with og(L) is that Tg(L) not only contains all strings created by ap-
plying splicing rules, but also all strings that did not enter any splicing rule. In a
way, Tr(A) describes the contents of the test tube after splicing. This new definition is
necessary because in our definition, splicing not only may create new strings but can
also cause strings to disappear from the language, hence the need to keep track of all
strings.

Now we can define iterated non-reflexively evolving splicing as follows.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

34

Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

Definition 3.2.2. Given a splicing system I' = (V, A, R), we define

9(4) = A,
(A = Tr(Th(A)), i > 0.

As before, we omit the subscript when the splicing scheme is clear. To define the
language generated by such a splicing system, we need to consider three classes of
strings that are involved in derivations of the language. Any string w in 7(A) for some
i belongs to one of the following classes:

o Transient strings: there exists k such that for all n > k, w ¢ 7" (A).

o Eventually stable (or stable) strings: there exists k such that for all n > k, w €
T'(A).

o Recurrent strings: for every k there exists n > k, such that w € 7"(A).

In addition, we use the term inert to denote strings that can never enter any splicing
rule. It should be noted that inert is not synonymous with eventually stable. A string
can be eventually stable and not inert by disappearing and being recreated at every
step.

We observe that every eventually stable string is also a recurrent string. Transient
strings will not be part of the language, for the reasons outlined above. Then we have
the choice to consider only the eventually stable strings, or all recurrent strings. We
will see below that in the general case, it is undecidable if a given string is recurrent.
Thus, if we choose to include all recurrent strings in the generated language, member-
ship can be undecidable. On the other hand, if we want our language to be the formal
counterpart of the set of molecules that are present at the end of the computation and
assume with [20] that at least one copy of recurrent molecules is present at all times,
then they should be part of the language. We feel that this definition is best justified, so
we will define the non-reflexively evolving splicing language, denoted by 7°°(A), as:

(9]

T(A) = ﬂ{w | In > k such that w € T"(A)).
k=0

If we consider only the eventually stable strings, we will denote the language as 75;(A)
and define it as:

) = Jwlvn =k we @),
k=0
Observe that 75;(A) € 7(A). It is easily verified that for a reflexive splicing scheme,
both definitions yield exactly the same language as the usual definition.
The following example shows how this way of defining the splicing language adds
a dynamic aspect to the derivations of a splicing systems.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

3.2. A Non-reflexively Evolving Splicing Language

35

Example 3.2.3. Let us consider the following NRE H system.

I'=(a,b,c,d, e}, {ac,cd, ca’b, be, ce}, R) for some n > 1

with R defined as

bite$Sbite, cteScte, (1)
b#eScattz, che$Sb#z, 7 € {a, b}, (2)
attc$Sc#b, (3)
a#tcSc#d. (4)

By the rules of (2) we go from ca"b to ba"~'b to ca" 'b etc, and eventually to cb.
The reflexive rules of (1) ensure that the strings be and ce needed for the application of
(2) are always present. Rule (4) converts ac and cd into ad and cc, causing the strings
ac and cd to disappear. This means that by the time ¢b is produced, rule (3) cannot be
applied, since all ac are already lost. In the traditional definition of the splicing lan-
guage, rule (3) will still be applied. So the non-reflexively evolving language 7°(A) is
{be, ce,cb, ad, cc, cae}, whereas the normal splicing language o (A) would in addition
contain ab, created by rule (3), as well as all original and intermediate strings.

Finally, we will define non-reflexively evolving or in short NRE H systems. These are
defined just as the H systems of section 2.3.1, but using the non-reflexively evolving
definition of the splicing language. So for a NRE H system I = (V, A, R), the generated
language is L(I') = 7(A). Note that a given H system can be interpreted as a non-
reflexively evolving or a usual H system. In what follows, we only consider NRE
splicing systems, unless explicitly mentioned otherwise.

At this point, it may be instructive to compare our systems with other systems which
can eliminate strings in the derivation. First of all, time-varying H systems of degree
1 as defined in section 2.3.4, as well as the systems considered in [21] keep only the
newly created strings and eliminate all present strings at every step. So essentially in
these systems (definition from [21]):

T} (A) = TR(THA)).

Compared to NRE H systems, these systems have an extra elimination feature, elim-
inating all strings not entering a rule. This extra feature is in fact a powerful tool, that
is essential in the completeness proof of [51]. There is no obvious way to simulate this
behaviour using NRE H systems. Moreover, the language is defined differently, as the
union of all strings of all steps.

Then, there is some similarity between our definition and a type of splicing mem-
brane systems considered by Verlan and Margenstern ([78]), specifically of the type
2b. These splicing membrane systems have only one membrane where strings evolve
according to splicing rules enhanced with target indicators. When the target is here,
the result of applying the rule remains inside the membrane, if it is out it will be sent
out of the membrane. The language generated is the union of all strings sent out of the
membrane. The reader is referred to [78] for details. In the mentioned type 2b, if a

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

36 Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

string is sent out, it will disappear from the membrane unless some other rule generates
it. This is slightly reminiscent of what happens in our definition.

However, the systems are in fact very different. First of all, the way the words
are collected to yield the language is completely different. In the membrane system,
the disappearing strings make up the language, in our case they are excluded from it.
Moreover, the membrane systems allow the free and independent use of out-rules and
here-rules, whereas in NRE H systems strings only disappear when used to produce
other strings. These features of this type of membrane systems make it relatively easy
to simulate time-varying H systems of degree 1 (thus showing universality), but the
differences pointed out here make the techniques and results inapplicable to our sys-
tems. While the difference in language definition could be circumvented by using a
terminal alphabet in the same way as we will see in Theorem 3.3.4, the crucial differ-
ence is that in our systems we do not have at our disposal the possibility to eliminate
strings without further consequences.

In the following section we examine the computational power of NRE H systems.

3.3 Computational Power

We expect the NRE splicing systems to be more powerful than normal splicing sys-
tems, because of the strict separation between successive derivation steps. As an ex-
ample, consider the following NRE H system.

Example 3.3.1.

H = (V,A,R), where
V=Aa,b,X,Y,Y',Z2, 7'},
A ={aY,Zb,XaY',7' bX},

R = {(a#YS$SX#aY', attY'SX#Y, (1)
ZHDSZ' bHX, Z' #bSZHX, 2)
a#Y$ZH#b, 3)
a#A$a#A, Ya € {XaY', Z'bX}). ()

The rules of (1) rewrite a string of the form a"Y for some n > 1 into a"*'Y, using
axiom XaY’ and with as intermediate strings ¢"*' Y’ and XY. Similarly, the rules of (2)
add a b to strings of the form Zb". The reflexive rules of (4) ensure that the necessary
axioms are always present. Since in both cases one symbol is added in two steps, the
strings @"Y and Zb" grow in a synchronized way. These strings are not part of the
language, because they will always be rewritten. If, however, we apply rule (3) we
obtain a string of the form a"b" which is stable and will be in the language, along with
part of the axioms and some additional stable strings created in the process. Thus the
system generates a language of the form {a"b" | n > 1} U L, where each string of L

contains some symbol X, Y, Y’, Z,Z’. Such a language is not regular.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

3.3. Computational Power

37

Before addressing directly the computational power of NRE splicing systems, we
first investigate their relation to time-varying H systems.

Lemma 3.3.2. LetI' = (V,A,R) be a NRE H system, and T a terminal alphabet. We
define the time-varying H system D = (V, T, A, R) of degree 1. Then L(I') N T* = L(D)

1. Strings in T* cannot enter any rule r € R.

2. All strings generated in some step k either enter a splicing rule in step k + 1 or
can never enter a splicing rule.

Proof. First observe that Ly = 79(A) = A. Now by definition, L; contains all strings
resulting from an application of some splicing rule in R. Also by definition, 7!(A)
contains all these strings as well as all strings that do not enter a splicing rule. So,
L; € 7!(A) and by induction, L; C 7/(A). Moreover, by condition 1, 7-1(A) N T* C
7i(A)NT*. Together, this gives (U;c:o L)NT* C T'(A)NT* and with i going to infinity,
LD)yc L)NT™.

For the converse inclusion, consider some string w € L; — 7'(A). By conditions 1
and 2, any string in L; — 7/(A) will never contribute to any new string in 7'*!(A). Thus,
any string in 7#1(A) — T/(A) is also in L. If wis in T*, there is some j < i such that
we Ljandw € L(D). If w ¢ T*, it will not be in L(I') N T nor in L(D). m|

This result suggests that it may be interesting to define an extended NRE H sys-
tem. The definition is the same as for a normal extended H system, but with the
non-reflexively evolving definition of the language.

Definition 3.3.3. An extended non-reflexively evolving (NRE) H system is a construct
I'=(V.T,AR),

where V is the alphabet, T C V is a terminal alphabet, A C V* is a finite set of axioms,
and R is a finite set of splicing rules. The language generated by I is defined as

L) =1"A)NT"

Theorem 3.3.4. Extended non-reflexively evolving H systems generate all recursively
enumerable languages.

Proof. In [49] it is shown that time-varying H systems of degree 1 are computationally
complete. It suffices to show that the construction in [49] satisfies the two conditions
stated in Lemma 3.3.2. Instead of proving this, we prefer to give a direct construction
for NRE H systems. On the one hand for the sake of completeness, on the other hand
because we feel this is more instructive about the way these systems work, since they
differ in a significant way from time-varying H systems.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

38 Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

Given a recursively enumerable language M on an alphabet X, we can consider the
words of the language as natural numbers expressed in basis ||, obtaining a recursively
enumerable set of natural numbers N(M). For such a set there exists a total recursive
function f such that N(M) = {f(n) | n € N-{0}}. Moreover there exists a Turing
machine halting on each input that for each n converts an initial configuration ¢;01"
into a final configuration ¢01/®. From this Turing machine, it is straightforward
to construct a Turing machine 7 that converts g;01" into g0(f(n))s, where {f(n))s
denotes the expression of f(n) in basis |X| over alphabet . Now, to generate a language
rather than a single string, we will simulate a deterministic Turing machine 7’ which
computes 01”+1qf0(f(n))s from ¢;01". Then the splicing system will split this into a
generated word (f(n))s and a new starting configuration ¢;01"*!.

Let T’ be such a Turing machine, with input alphabet {0, 1}, tape alphabet A, state
set Q, initial state ¢g;, final state gz, blank symbol B and transition function ¢, where
(a, x,y,b, D) € 6 means that reading symbol x in state a, the head can move in direction
D, changing the state to b and rewriting x by y.

Now we define the extended NRE H system I' = (V, £, A, R), where

V=AUV,
V' ={X,Y, Y',tqf,t,l,t,z,tll,tlz,R, L PZ —,«}UDQ,
A = {Xq;01Y, Za0Y, LybY, LybzR,
LybzyR,RP — t4,,
thp =, Z « p,ty, < qt,, Y, < Y, Xq,0Z}
forallae Q-{qr},be 0,y,z€ A,peXandge T U{l}.

We assume without loss of generality that A and V”’ are disjoint.

R contains the following splicing rules. In what follows we will denote by a any
state in Q — {gr}, by b any state in Q. Moreover, s € AU{X},e€ AU{Y}and z € A.
Simulate moves

Right end of the tape

(1.1) : st#aY$Z#aBY reA

Right move

(2.1) : s#axze$L#tybzR if (a,x,y,b,R) €6

(2.1") : s#taxY$L#ybY if (a, x,y,b,R) € 6

(2.2) : sybz#R$ Laxzite if (a,x,y,b,R) €6

Left move

(3.1) : sttzaxpe$LitbzyR if (a,x,y,b, L)€, peA
(3.1") : s#tzaxY$L#bzyR if (a,x,y,b,L) €6

(3.2) : sbzy#R$Lzaxt#e if (a, x,y,b,L) € 6

Retrieve result and resume computation
Right signal

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

3.3. Computational Power

39

(4.1) : 1#qOpSRHP — 1, pEX

(4.2) : 1P — #1,,$Rq 0#1

(4.3) : y#t — p$t,. #p - t,, yeXU{PL,peX
4.4) :yp - #1,,8t,, > p#l yeXU{P},peX

Left signal

(5.1) : y#qg —> Y$Z# «— ¢g yeXU{P},ge X U({l}
(5.2) : g « #pSt;, — gty peXU{Y},qgeZuUf{l}
(5.3) : Mg — 1,9y, # —qp peZU{Y}geXU{l}

Result

(6.1) : P« #pSAH#Y’ pex
(62): 1#P — Y'$A# — Y
(6.3) : X0 «— #1$Xq;,04Z

Axioms reproduction
(7.1) : a#ASa#A a € A—-{Xq01Y}

The simulation

We will use w, w; and wy to denote strings from V*. In our simulation, if we have
the string XwY, this means the current configuration of the 7’ is w. Assume the current
word is Xwyszaxpw,Y. Then, if (a, x,y,b, L) € §, the word corresponding to the next
configuration is Xwjsbzypw,Y. We get this result by applying rules of types 3.1 (or
3.1") and 3.2. The rule of type 3.1 gives Xw;sbzyR and Lzaxpw,Y. These strings
enter rule 3.2 in the next step, yielding the representation of the new configuration and
LzaxR, which is an axiom and will enter a rule of type 7.1 in the next step.

For a right move, i.e., (a, x,y,b, R) € ¢, rules of types 2.1(2.1") and 2.2 will take us
from Xwiaxpw,Y to Xwiybpw, Y, through Xw;ybpR and Laxpw,Y. Moreover, at the
right end of the tape we may have to use a rule of type 1.1 first. Thus the simulation of
a move of M involves the following strings: Xw;bw,Y (1.1,2.1°,2.2,3.2), Xw;sbzyR
and Lzaxpw,Y (2.1), Xw;sbzyR (3.1,3.1"), Lzaxpw,Y (3.1), LaxzR (2.2) and LzaxR
(3.2), which will enter a splicing rule in the next step, and ZaY (1.1) and LaxY (2.1"),
which will never enter any rule, nor be part of the language. Observe that every string
representing a new configuration will enter a splicing rule. Since we compute a total
recursive function, there is either a new move available or we are in a final state, in
which case rule 4.1 applies.

The second set of rules transforms a word of the form XOl"“q r0{f(n))sY into the
result { f(n))s and the word corresponding to the new starting configuration X¢;01"*1Y.
First rule 4.1 is applied, yielding X01"*'P — tq, and Rqs0(f(n))zY. Both enter rule
4.2 to give X01™*'P — (f(n))x and the inert string Rg 10t,,. Using rules of types 4.3
and 4.4 the arrow moves through the word over Z. The strings resulting from applying
a rule of type 4.3 enter a rule of 4.4, which in turn yields a string that enters a rule of
4.3 and an inert string #,, — pt,,. When the end of (f(n))s is reached, a rule of type 5.1

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

40 Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

applies to X01"*!' Pwp — Y, where we represent {f(n))s as wp, w € T*, p € X, giving
Zp — Y, which cannot enter any rule, and X01"*! Pw « p. From this form, alternating
rules of types 5.2 and 5.3 moves the arrow back to the left, creating in addition inert
strings of the form #;, p « #;,. When reaching the word X01™1P ¢ f(n))s, rule 6.1
applies to give X01"*'P « ¥’ and (f(n))s, which is an inert terminal string and will
be part of the language. X01"*!'P « Y’ is converted to X01"*! « Y by rule 6.2, then
to X0 « 1"*1Y by the rules of 5.2 and 5.3 and finally to the string representing the
new initial configuration X¢,01"*'Y by 6.3. In the process, the inert strings P « Y’
(6.2), 11,1 < 1;, (5.3), and X0 « Z (6.3) are also created.

This covers all the cases and shows that I" correctly simulates 7”. |

Corollary 3.3.5. For a NRE H system I and a string w the following properties are
undecidable:

o wis eventually stable inT.
o wisrecurrentinl.

Proof. Note that in our construction we made sure that all strings over the terminal al-
phabet are inert, so that all strings in the language will be eventually stable. This means
both properties follow directly from the undecidability of membership in recursively
enumerable languages. |

3.4 Non-reflexively Evolving H Systems with Delay

One important feature of NRE H systems is the strict separation of derivation steps.
The computational power of extended NRE H systems stems from this strict sepa-
ration. This is, however, not very realistic from a biochemical point of view. Not
all molecules are converted simultaneously and homogeneously throughout the solu-
tion. At the same time, the usual reflexive definition is equally unrealistic, since it
disregards all dynamic aspects of chemical reactions and allows for recombinations
of strings present at different moments. A way to capture these considerations is the
notion of delay. The delay expresses the number of successive steps whose results can
interact. The NRE H systems discussed in the previous section have delay 0, normal
splicing systems have infinite delay. Formally, we define:

Definition 3.4.1. A Non-reflexively evolving H system of delay d is a construct
I'=(V,A,R),

where V is the alphabet, A C V* is a finite set of axioms, and R is a finite set of splicing

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

3.4. Non-reflexively Evolving H Systems with Delay

41

rules. We define

A =0,i> 1,
(A) = A,
*1A) = 17 (A U TTHA) U ... U (TD(A))), i > 0.

The language generated by I is
Lq(T) = 7(A),
where T(A) is defined as in Section 3.2.

As an example, let us consider the following NRE H system.

Example 3.4.2.

I' =(V,A,R), where

V=1a,b,c},

A = {aabb, bbaa, bbc, cbb},

R = {aa#bb$bb#aa, (D
aa#taa$bb#bb, 2)
aaa#a$bb#c, 3)
bb#cS$c#bb, 4)
c#c$bbitbb}. %)

Interpreted as an NRE H system of delay 0, rule (3) is never applied. Indeed, using
(1) and (2), we go back and forth between {aabb, bbaa} and {aaaa, bbbb}. With (4)
and (5), we move between {bbc, cbb} and {cc, bbbb}. Rule (3) is never applied because
aaaa and bbc are never present at the same time. As a system of delay 1, rule (3) will
be applied, and inert strings aaac and bba will be in the language.

It is a matter of biochemistry which delay should be considered for a given splicing
system. But in any case NRE H systems with delay > 1 raise a number of interesting
research questions, some of which we address here. Specifically, we will investigate
their computational power.

At first sight, one might think that systems with finite delay can simulate systems of
delay 0 using techniques used in [51] and [76]. These consist in making the axioms go
through a cycle to make sure that a given axiom is only present in a usable form at every
nth step (for a cycle of length n). However, there does not seem to be a straightforward
way to make this technique work here. As an example, suppose we have a system of
delay 1 and the axioms go through a cycle of some n > 4 steps. Let us consider the
evolution of one such axiom, referring to its n forms as axiom 1 to axiom n. At the
first step we have axiom 1. At the second step we have axiom 2 and by the delay also
axiom 1. At step 3, we have axiom 3 and axiom 2 formed from axiom 1. By the delay,
axiom 2 will still be there at step 4, along with axiom 3 and axiom 4. In general, if the

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

42 Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

creation of a string takes n rule applications, with delay d this can take at most (d + 1)n
steps. At all steps between n and (d + 1)n the string will be present (since we can take
the quick’ or ’slow’ path at every step). So, after (d+ 1)n steps, all forms of the axioms
are present, which means that from this point on, we cannot use the axioms to control
which rules we apply.

Theorem 3.4.3. For all d > 0, the family of languages generated by non-reflexively
evolving H systems of delay d contains non-context-free languages.

Proof. For d = 0, this follows directly from Theorem 3.3.4. For d > 1, we devise an
NRE H system that simultaneously extends substrings of a’s, b’s and ¢’s and finally
generates strings in atb*c* of the form a’b/c*. For all systems of some finite delay d,
the values of j and k are bounded by a term containing i, thus yielding a non-context-
free language.

Specifically, consider the NRE H system I' = (V, A, R) where

V=Aab,cXY,Z7Z}, R=R{UR, URj3,
A = {aaX, BbbY,Ccc,ZaX, BbZ,CcZ},
and

Ry = {aa#X$Z#aX, Bb#Z$B#bb, Cc#Z$CHcc),

Ry = {aa#X$C#cc, attac$S B#bb, b#tbbY $Bactc},

R3 = {a#A$a#A | a € {ZaX, BbZ,CcZ}}.
It is easy to note that strings of the form a’X, Bb’Y and Cck, i, j,k > 2 are expanded
simultaneously by rules from R;. The reflexive rules of R3; ensure that the auxiliary
strings ZaX, BbZ and CcZ are always present.

Claim.

() Ifa'X € T°(A), then 2 + | 2| < i< s +2.
(i) If Bb'Y € T5(A), then 2 + [57| < j < s + 2.

d+1

(iii) If Cck € T(A), then 2+ [727 | < k < s+ 2.

Here [x] denotes the integer part of the rational x, that is the largest integer
smaller than or equal to x.

Proof of the claim. We give a reasoning based on induction on s for the first item only.
Let a’X € %(A); if s = 0, then 2 + [ﬁ] < i < s+ 2 is immediately satisfied. Let
aX € *NA) = (T (A) U 1 (A) U - - - U 7579(A)). It follows that a'~' X € 7"(A) for
some s —d < m < s and (a""'X, ZaX) + (a'X, ZX). By the induction hypothesis,

s—d m
2+ <2+ <i—-1<m+2<s+2
d+1|"~ [a’+1]_l =m =4
holds. Since [%11] < [ﬁ] + 1, it follows that 2 + [%] < i < s + 3 which concludes

the proof of the claim.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

3.4. Non-reflexively Evolving H Systems with Delay

43

In order to get a string in a*b*c* we must first apply the rule aa#X$C#cc to the pair
(a'X, Cc*) for some i, k. Thus we get the string a’c*. Some remarks are necessary at
this point.

— i,k > 2 and by the above claim, |[i — k| < s — [ﬁ] holds for any s > 0.

— If the strings a'ck and a’c? coexist at some step, then they coexist together with
a'cd and a'ck.

— The earliest step in which a'c* is obtained is max(i, k) — 1.

— The latest step in which a/c* is effectively obtained is min(i, k)d — 2. Note that a’c*
will be still available for splicing d steps more.

One needs two more steps in which rules from R, are applied. In the first step we apply
the rule a#ac$B#bb to the pair (a'ck, Bb/Y) for some i, j,k satisfying the following
conditions:

()i,k>2and|i—k| < s - [ﬁ] for some s > 0.

(i) 2 + [%ﬂ‘)_l] < j < d(min(i, k) + 1). This relation is obtained by substituting
the earliest and latest step in which a’c* and Bb/Y can coexist into the above claim.

The above splicing step results in (a'~'b/Y, Bac¥). Finally, we apply the rule b#bbY$Bact#c

to the pair (a'~'b’Y, Bac?), where a’~'b/Y was obtained at the previous step. By this
last splicing step we get a’~!b/~1¢4~!. Note that it is not obligatory that ¢ = k.

Consequently, if "~ 'b/"1ck=1 € L(T') N a*b*c*, then the following conditions are
fulfilled:

@DHix=2.

a2+ [%] < j <d(i + 1). This follows from the previous considerations.

I 2 + [[IJ_TS]] < k <d(i +2) — 1. This last relation follows from two facts. On the

one hand, the word a'~'b/Y disappears after at most d(i + 2) steps, therefore the word
Cc* that contributes in getting a'~'5/~!¢*~! must be obtained in the (d(i + 2) — 3)th step
the latest. On the other hand, the same word CcF cannot be available earlier than the
(i — 3)th step.

The language L(I') N a*b*c* is not context-free as can be shown by applying the
pumping lemma to the string a?b%c? with a sufficiently large ¢g. Given the closure
of context-free languages under intersection with regular sets, L(I') is non-context-free
as well. O

A logical next question is whether NRE H systems with delay include the regular
languages. Here we show this for extended systems.

Theorem 3.4.4. The family of languages generated by extended non-reflexively evolv-
ing H systems with delay properly includes the regular languages for any delay d > 0.

Proof. LetG = (V,T, P,S) be aright linear grammar. Now we can define the extended
NRE H system I' = (V U {X}, T, A, R) that generates L(G), where

A={S}U{Xy|B—>yePBe V)
R ={M#BS$X#y |B—ye P,BeV}U

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

44 Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

(X#y$X#y |B— ye P,Be V).

All strings without an X represent a sentential form of G. It is easily seen that I'
generates all and nothing but the sentential forms of G. Thus, all terminal strings of
G are stable strings in I and L(I') = L(G). Since the only strings that intervene in the
rewriting of a string representing a sentential form are the axioms, which are present
at every step, and the string itself,, this is true for any delay d > 0. The strictness of the
inclusion follows from Theorem 3.4.3. O

An interesting question raised by NRE H systems with delay is whether there exists
some kind of hierarchy such that the set of languages generated by systems of some
delay d strictly includes those generated by systems of delay d + 1. As a partial result,
we have the following.

Theorem 3.4.5. For any delay d > 1, the family of languages generated by finite
extended non-reflexively evolving H systems with delay d includes those generated by
such systems of delay 2d.

Proof. Given an NRE H system of delay 2d I' = (V, T, A, R) we construct an NRE H
system of delay d I = (V',T,A’,R"), where

V =VU {L,‘,R,‘,Ll,.,R; | for all r; € R},

A" = AU{LR;, L'R] | for all r; € R},

R = RU{utvSL#R;, y#zSL#R | for all r; = u#vSy#z € R} (1
U {/I#R,'$L;#/l, /l#R;$L,-#/l | for all r; € R}.)

If in I" some rule r; can be applied to wiw; and wiwy, resulting in wyw,4 and wiwy,
by the delay these strings will be available for 2d steps. In I wiw4 and wiw, are also
generated, but in addition also wR;, L,-WZ,W3R; and L;W4 by the rules of (1). These
strings will be available for d steps in I” and will generate wiw4 and w3w, at the d
next steps, using rule (2). By the delay d of I, the strings generated at the last of these
steps, will survive for another d steps. So in total, the resulting strings wyws and w3wy
are available at all 2d steps after its creation, just as in I'. It is easily seen that the
additional rules have no other effect in the derivation and that they do not create any
new terminal strings, so L(I') = L(I"). |

In fact, we can easily extend this technique to simulate all systems of delay k- d with
a system of delay d, adding more intermediate steps (and ensuring that the final result
of the rule can be obtained from all intermediate strings). We do not go into details
here.

So, there exists some hierarchy in systems with delay. But it is interesting to observe
that slowing down the derivation in the smallest possible way, that is adding just one
step in the derivation process, we increase the delay by d. This points to the difficulty
of simulating systems of delay d + 1 and in fact we conjecture incomparability results
between systems with delay greater than d, but not equal to k - d.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

3.5. Non-Preserving Splicing

45

Finally let us look at NRE H systems of infinite delay. We have already observed that
traditional H systems have infinite delay. However, the two definitions do not coincide
completely, that is, for a given H system its normal splicing language and its non-
reflexive language when interpreted as a system of infinite delay are not necessarily
the same. Nevertheless, we can state the following.

Theorem 3.4.6. The family of languages generated by finite extended non-reflexively
evolving H systems with infinite delay is included in the family of regular languages.

Proof. First observe that there is little difference between the language of an NRE
H system of infinite delay and the traditional splicing language of the same system.
Because of the infinite delay, if a rule can be applied at some step s > 1, it can be
applied in all subsequent steps. So all strings created at some point are in the language,
just as in the traditional splicing language. Moreover, exactly the same strings are
available for rule application in both cases. The only difference concerns strings in
the initial language. If at some step a rule can be applied to a string in the initial
language, it may disappear at this step. Now, because of the delay, it will disappear
in all subsequent steps (unless it is created in some other way) and not be in the final
non-reflexive language. So, the language generated by the system equals the traditional
splicing language minus a subset of the initial language. Since both of these are regular
and regular languages are closed under difference, this language is also regular. |

In the following table we summarize our results on the computational power of
extended finite NRE H systems with delay.

Table 3.1: Extended NRE H systems with delay

Delay Computational Power

0 RE

finite, > 1 | D REG, contains non-CF
delay d 2 delay k- d,k > 1

infinite REG

One observation we can make concerns the surprising jump in power between sys-
tems with a finite but arbitrarily large delay, and those with infinite delay. The first can
generate non-context-free languages whereas the second do not get beyond regular
power.

3.5 Non-Preserving Splicing

In this section, we propose a more general notion of non-preserving splicing systems.
Comparing the systems in this chapter with the H systems studied by Harju and Mar-
genstern [21], which are basically time-varying H systems of degree 1, one sees they

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

46 Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

share an important feature: not all strings are maintained from one splicing step to
another. Here we generalize these systems as two types of non-preserving splicing,
and introduce a third type. This type evolves as the non-reflexively evolving systems
of the previous sections, but has the languages defined as is usual in time-varying sys-
tems and also basic systems: as the union of the strings in all steps. We investigate
these systems using the notion of delay and extend some of the results obtained for
non-reflexively evolving systems to the other types.

Harju and Margenstern [21] refer to the property of conserving all strings of all steps
as history preserving, because every new “generation” contains all the information of
the previous generations. They propose to drop the assumption that all strings are kept
and introduce a new definition of iterated splicing, called the non-preserving iterated
splicing operation. This operation, which we will call strongly non-preserving iterated
splicing is defined as follows. For a splicing system I' = (V, A, R) we write:

M) =4, o) = o0, (A), a4 = o, @)

i>0

The language generated by the splicing system H = (V, A, R) with strongly non-
preserving splicing is defined by Ly,,(H) = 07,,(A). The language generated by an
extended H system with strongly non-preserving splicing is defined analogously.

Similarly, the non-reflexively evolving splicing of the previous sections can be seen
as weakly non-preserving splicing. So we may write, for a splicing system I' =

(V.A,R):

Ownp(L) = o(L)U{w € L| thereis no x € L and no rule r € R such that
w, x) b (3,2) or (x,w) +, (y,2) for some y,z € V*}.

Iterated weakly non-preserving splicing is then defined as follows.

TopA) = A, ol (A) = (0, (A), 020 o, (A) = U Tlop(A).

i>0

We introduce here a new way to define the language generated by a H system based
on the iterated weakly non-preserving splicing, namely the language generated by a
splicing system I' = (V, A, R) with weakly non-preserving splicing which is Ly,,,(I') =
0 np(A), 80 as the union of all steps, as in the strongly non-preserving case.

Finally, the non-reflexively evolving language generated by I' = (V, A, R) is denoted
by L,(I).

3.6 Delay in H Systems With Non-Preserving Splicing

Also the completeness proof in [21] is an example of how the strict separation of
splicing steps can be a powerful tool. It will be interesting to see how weakening this

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

3.6. Delay in H Systems With Non-Preserving Splicing

47

separation by using the notion of delay affects the computational power of H systems
with strongly/weakly non-preserving splicing.

Let I = (V,A, R) be a usual splicing system and d be a nonnegative integer or co.
We define

do X (A)=0,k>1, do® (A) = A,

snp snp

ot () = a(dagnp(A) U da;;;,(A) U...Udobd(A)), ifd # oo

snp o(dot,,(A) Udot, (AU ...udd9, (A)), if d = oo
forall i > 0.

The language generated by I" with strongly non-preserving splicing and delay d is

dLp(T) = |_Jde, (A).

i>0
For the same I" and d as above we define

do ik (A) = 0,k > 1, do, (A) = A,

ot (4) = { Trunp(d0ry,(A) uda{;,,:p(A) U... udag;,;’p(A)), ifd # oo
wp Tunp(dort,, (A Udoil! (A) U ... Udol, (A)), if d = oo
for all i > 0.

The language generated by I with weakly non-preserving splicing and delay d is

ALy p(H) = U derl,, ,(A).

i>0

In a similar way one can define the language generated by a H system with non-
reflexively evolving splicing and delay d as well as the language generated by the
extended variants. We denote by L(dSNPH), L(AWNPH), L(dNRH) the families of
languages generated by H systems with strongly non-preserving, weakly non-preserving,
non-reflexively evolving splicing and delay d > 0, respectively and by L(dES NPH),
L(AEWNPH), L(dENRH) the families of languages generated by the respective ex-
tended variants. L(H) and L(EH) denote the families generated by (non-extended and
extended) basic splicing systems.

The following result establishes that all types of extended H systems with null delay
are equivalent.

Theorem 3.6.1. L(OESNPH) = LIOEWNPH) = L(0OENRH) = RE, where RE is the
family of all recursively enumerable languages.

Proof. The computational completeness of extended H systems with strongly non-
preserving splicing was proved in [21] while the computational completeness of ex-
tended H systems with non-reflexively evolving splicing was shown in Theorem 3.3.4.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

48 Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

The remaining statement can be proved by observing that the construction of 3.3.4
gives exactly the same terminal strings for weakly non-preserving systems. O

The following lemma is useful for showing a similar result for infinite delay.
Lemma 3.6.2. For any splicing system H = (V, A, R) the following equalities hold:
L(H) = OOLsnp(H) = OOLwnp(H) = ooL,,(H) UA.

Proof. Let w € L(H), hence w € o(A) for some i > 0. We prove by induction on i

that if w € o(A), then w € o-’;np(A) for some 0 < k < i. The assertion is immediately

true for i = 0. Let w € o*1(A), if w € ¢(A), then w € o-’;np(A), for some 0 < k < i,
by the induction hypothesis. If w is an offspring obtained by splicing from a pair of
strings x,y € o'(A), then w is an offspring obtained by splicing from a pair of strings
X € a'f,np(A) and y € o-énp(A) for some 0 < k, j < i. Consequently, w € a'fmp(A) for
some 0 <t < i+ 1. Therefore, L(H) C coLy,,(H).

Let w € ooLg,,(H), it follows that there exists i > 0 such that w € ooo-f;np(A). We

claim that coo,,, (A) C coo,,, (A) for any i > 0. The proof of this statement is based

on induction on i. For i = 0 the assertion is trivially true. We assume that the assertion

is true for any i < f and prove it for t + 1. Let w € ooag}jllj(A), it follows that either

(x,y) F (w,w') or (x,y) F (W, w) for some W', x € 000%,,(A), y € ooon‘np(A) with
0 < j,k < t. By the induction hypothesis, x € ooc{vnp(A) and y € ooo-'fmp(A) which
implies that w € ooai:;fp(A). As a direct consequence of our assertion we conclude that
we OOme(H), SO OOLS,”,(H) c OoLwnp(H)- _

We take now w € ooL,,,(H), thatis w € ooo-imp(A) for some i > 0. We now claim
that there exists 0 < ¢ < i such that w € o’(A). Clearly, the assertion is true for
i = 0. Assume inductively that the assertion is true for any 0 < i < s. Assume that

we ooafj,‘,i,(A); we distinguish two cases:

(i) Either (x,y) + (w,w') or (x,y) + (W', w) for some W', x € ooy, (A), y €
ooo-’fmp(A) with 0 < j,k < s. By the induction hypothesis there exist 0 < #; < j
and 0 < t, < k such that x € 0'(A) and y € 02(A). Consequently, w € o**1(A).
]fmp(A) for some 0 < k < s and there is no splicing rule » and string
X € ooo'fmp(A) U ooo-fvjli,(A) U --- U A such that r can be applied to (w, x) or (x,w).
By the induction hypothesis, there exists 0 < ¢ < k such that w € o'(A). As a direct
consequence of the second assertion we conclude that w € L(H). Thus ooL,,,,(H) C
L(H).

Finally observe that there is little difference between the language generated by a
H system with non-reflexively evolving splicing and infinite delay and the traditional
splicing language of the same system. Because of the infinite delay, if a rule can be
applied at some step s > 1 of the non-reflexively evolving splicing, it can be applied in
all subsequent steps. So all strings created at some point are in the language generated

with non-reflexively evolving splicing and infinite delay, just like in the traditional

(i) w € ooo

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

3.6. Delay in H Systems With Non-Preserving Splicing

49

splicing language. Moreover, exactly the same strings are available for rule application
in both cases. The only difference concerns in strings in ooo-(s)np(A), that is, in the initial
language. In a non-reflexively evolving system a string in A may disappear if a rule
can be applied to it and it will not be in the language. Since L(H) 2 A it is clear from

the above that L(H) = ocoL,.(H) U A. m|

From the above lemma, the strict inclusion of £(H) in the set of regular languages
and the characterization of L(EH) in [64] we get:

Theorem 3.6.3.

1. L(H) = L(coSNPH) = L(coWNPH) C REG, where REG is the family of
regular languages.

2. L(coNRH) C REG, where REG is the family of regular languages.

3. L(EH) = L(oESNPH) = L(coEWNPH) = L(0ENRH) = REG.

Therefore, as far as the extended splicing systems are concerned, at one extreme
(d = 0) there is the whole class of recursively enumerable languages while at the other
(d = o0) there is the whole class of regular languages. Hence, the large area between
the two extremes might be refined by the nonnegative values of delay. Although we
are not able to give a satisfactory characterization of the classes of languages lying in
this area, we present two results which give a glimpse of this area, which according to
these results seems quite interesting.

First we show that splicing systems with the types of splicing defined above and any
finite delay can generate non-context-free languages.

Theorem 3.6.4. Foralld > 1, each of the families L(dS NPH), L(AWNPH), L(ANRH)
contains non-context-free languages.

Proof. For L(dNRH), this was proved in Theorem 3.4.3. For the other classes, observe
that the strings containing a’s, b’s and ¢’s always enter some rule with an axiom or
with each other. This means that the construction gives exactly the same strings over
a*b*c* for strongly non-preserving systems. Finally, since all strings in a*b*c* cannot
be involved in further splicing, dLy,,(H) Na*b*c* = dL,.(H) Na*b*c*. O

Also the construction of Theorem 3.4.4 is valid for all three classes. This gives the
following result (the strictness of the inclusion follows from Theorem 3.6.4).

Theorem 3.6.5. For any d > 1, the following strict inclusions hold:
REG c (L(dESNPH) N L(AEWNPH) N L(dENRH)).
We have seen that using the notion of delay in H systems with strongly/weakly non-

preserving or non-reflexively evolving splicing, we get an interesting scale, where the
extremes correspond to known and well-studied classes of H systems as well as the

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

50 Chapter 3. An Alternative Definition of the Language Generated by a Splicing System

extremes of the Chomsky hierarchy. Extended H systems of delay O have shown to
be equivalent to the recursively enumerable languages and non-extended H system of
infinite delay have shown to be equivalent to classic finite H systems, with the extended
variant characterizing the regular languages.

Moreover this scale also connects the new types of systems with the traditional
ones, it gives a new insight in the computational properties of traditional finite splicing
systems. For both H systems with non-reflexively evolving and strongly/weakly non-
preserving splicing we have a remarkable jump in power between systems with a finite
but arbitrarily large delay, and those with infinite delay. The first can generate non-
context-free languages whereas the second do not get beyond the regular limit. This
indicates that it is just this infinite survival of strings that can be held responsible for
the computational weakness of these systems.

As mentioned before, imposing this infinite survival can be considered too restric-
tive for both biochemical and mathematical considerations. This means that studying
alternatives like the ones considered here can provide theoretical insights and can also
make splicing more attractive as a model for molecular computing, given the fact that
in this context we can find finite systems which are still computationally powerful.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

4 Time-varying H Systems Revisited

4.1 Introduction

In this chapter, we cast a new look on time-varying distributed H systems. In their orig-
inal definition, where only new strings are passed to the next component, this language
definition in itself is already enough to obtain computational completeness. Here, we
consider two types of time-varying H systems with weaker language definitions, based
on the usual definition of splicing systems: The next generation of strings consists of
the union of all existing strings and the newly created strings. We show that if all
strings, both old and new, are passed to the next component these systems are regular
in power. If however, the new strings pass to the next component and the existing ones
remain accessible to the current one, we prove that systems with 4 components are
already computationally complete.

In Section 2.3.4 we saw that in a series of papers, including [61], [58] and [50], the
degree (i.e. the number of different sets of splicing rules) of the time-varying H sys-
tems needed to obtain computational completeness has been decreased progressively.
Finally, in [49], it was shown that time-varying distributed H systems of degree 1 can
generate all recursively enumerable languages. Such systems are really no longer dis-
tributed nor time-varying, having only a single set of splicing rules.

This result can be explained by the way the language is defined in time-varying
H systems: From one splicing step to the next, only the newly created strings are
kept. The result in [49] shows that this way of defining the splicing language alone is
sufficient to obtain computational completeness. Recently ([21], see also Chapter 3),
this definition has also been studied in the context of basic finite splicing systems.

The fact that the computational power of the language definition alone makes the
distributed architecture superfluous, suggests that it may be interesting to consider
time-varying H systems with a weaker language definition. A candidate for such a
definition is easy to find, since in basic splicing systems as well as in practically all
splicing formalisms another definition is used. In this definition, the strings passed
to the next step consist of the union of the strings present at this step and the new
strings created by applying the splicing rules. This definition is considerably weaker
from a computational point of view. In the case of basic extended splicing systems
the definition which only conserves the new strings yields computationally complete
systems, whereas defining the new generation by the union of old en new strings gives
systems of only regular power.

51

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

52

Chapter 4. Time-varying H Systems Revisited

We introduce two new language definitions for time-varying H systems. In the first
one, all strings, both new and already present, are passed to the next component. In
the second one, the new strings are passed to the next component, whereas the exist-
ing strings remain accessible to the current set of rules. We know that both of these
definitions are weaker than the original one, since in both cases systems of degree one
are equivalent by definition to extended finite H systems, which generate exactly all
regular languages.

After reviewing the basic definitions, we formally define the two new variants. We
then prove that the first variant generates only regular languages for any degree (any
number of components). For the second variant, we show that systems of degree of at
least 4 are computationally complete.

4.2 New Definitions

Now we can formally define the systems presented informally in the introduction. In
the first type, which we call time-varying H systems with full transfer, all strings, both
new and already present, are passed to the next component.

Definition 4.2.1. A time-varying distributed H system (of degree n) with full transfer
is a construct:
D=WV,T,A,R\,R2,,R)),

where V is an alphabet, T C V is a terminal alphabet, A C V* is a finite set of axioms,
and components R; are finite sets of splicing rules over V, 1 <i < n.
We define

Ly =A,
Ly=L, U O'hi(Lk—l), fori = k(mod n),k > 1,1 <i<n,h; =(V,R)).

The language generated by D is, by definition:

L(D) = (U L)NT"

k>0

The definition of the second type is slightly more intricate. Here, the newly created
strings are passed to the next component, and the strings already present before apply-
ing the rules, remain accessible to the current component. Formally, we define

Definition 4.2.2. A time-varying distributed H system (of degree n) with partial transfer
is a construct:

D = (‘/3 T7A’R1’R2’ "-’Rl’l),

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

4.3. Computational Power

53

where V is an alphabet, T C V is a terminal alphabet, A C V* is a finite set of axioms,
and components R; are finite sets of splicing rules over V, 1 <i < n.
We define

Li=0,k>1,

Ly =A,

L, = O’hi(U Li—jn-1), fori=k(modn),k > 1,1 <i <n,h; =(V,R;).
j20

The language generated by D is, by definition:

L(D) = (U L)NT*

k>0

The idea of distribution of strings to different components is reminiscent of com-
municating distributed H systems (see [65]), also known as test tube systems. But in
these systems, components are full systems rather than sets of rules, and the contents
of each component are redistributed to all components according to filters. This means
our approach does not carry over naturally to these systems. Also the distinction be-
tween new and existing strings, which is an intrinsic part of time-varying H systems,
has no natural expression there. This is still true for alternative types of communicating
distributed H systems incorporating some aspects of time-varying systems ([16],[77].

In what follows, we use the abbreviations FT-TVH, and PT-TVH,,n > 1 to denote
the families of languages generated by time-varying H systems with full and partial
transfer respectively, and of degree at most n. FT-TVH, and PT-TV H, correspond to
the families of languages generated by such systems of any degree.

4.3 Computational Power

We start the investigation of the computational power of these systems with the fol-
lowing observation.

Theorem 4.3.1. FT-TVH, = PT-TVH;, = REG.

Proof: It is easily verified that with only one component, these systems reduce to
systems equal by definition to extended H systems with a finite set of rules and a finite
initial language. The theorem follows from the the characterization of these systems
in [64]. O

Theorem 4.3.2. FT-TVH, = REG.

Proof: To show the theorem we will prove that any time-varying H system with full
transfer I' = (V,T,A, Ry, ..., R,) generates the same language as the extended finite H

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

54

Chapter 4. Time-varying H Systems Revisited

system H = (V,T,A, R), where

n

R= U R;.

i1
As before, the theorem then follows from the characterization of extended finite H
systems in [64].

From the definition it is obvious that L(I') C L(H). For the other direction, we show

by induction that for all i > 0,

o c| L

k=0

where 1 = (V, R) and L is defined for I" as in Definition 4.2.1. Fori = 0, 0'2(A) =Ly=
A. Now, assuming the assertion is true for i, we show it is true for i + 1.

Suppose that x,y € O'Z(A) and that x,y +, w for some r € R. By the induction
hypothesis, x,y € (>0 Lk and, by the definition of H, r € R; for some 1 < j < n. This
means that there exists an s > i such that s = j(mod n). Then w will be in Ly, and
w € UkzO Ly. O

Theorem 4.3.3. PT-TVH4 = RE.

Proof: Consider a type-0 grammar G = (N, T, S, P). We denote by a1, ..., @,— the
symbolsin NUT. Let a, = F be a new symbol. Letu; — v; forn+1 < j < m denote
the rules in P and assume we have u; = v; = a; for 1 <i < n.

We construct the time-varying H system with partial transfer
I'=(V,T,A,Ri,R>,R3,Ry), with

V=NUTU(X,Y,Z,Z',Zy,Z|, F} U {X;,Y; | 0 < i < m)
UiZj11<j<m)

A={XSFY,XZ',ZY,Zy,Z\} U{X;Z',ZY;| 0 < j < m}
UIXv,Z | 1 < j<m),

Ry = Q U (#YSHY, Xo#SXo#} U (#Y;$#Y, | 1 < j < m},

Ry = Q U (X#SX#, #Yo$#Y o} U (X #SX# | 1 < j < m),

Ry = QU (#YoSZ#HY, #F Y $SZo#} U (#u;YSZ#Y; | 1 < j <m)
U#Y;$Z#Y;1 | 1 < j <m},

Ry = (Xo#$SX#Z' , Xo#$#Z(| 1 < j < m)}
U{XH#SHZ;, X #$X,;_(#Z' | 1 < j < m),

where
Q = (ZHSZH#, #Z'SHZ' , Zo#$Zp#, #Z(’,$#Zé} U {#Z}$#Z} |1 <j<m}

This system simulates G using the rotate-and-simulate technique first used in [63].
We simulate a rule application by a splicing at the right end of the string. To ensure that

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

4.3. Computational Power

55

all symbols in the string can be rewritten we circularly permutate the current sentential
form. Here, as in [58], simulation and rotation are done in the same way: A suffix of
the current string is removed and the corresponding string is added to the left. This
is done by the rules in R3 and R4. The rules in R; and R, ensure these operations are
applied correctly. We will prove the two inclusions L(G) € L(I') and L(G) 2 L(I).

1. L(G) € L(T). Consider a string of the form XwY in component 1. This string
encodes the current sentential form of G. Initially w = SF. This string is passed
unchanged by the rule #Y$#Y to R, where it is again passed unchanged to R3 using
the rule X#$X#. Note that all other axioms are passed to components 2, 3 and 4 by the
rules in Q. In R3, if w = w'u; for some 1 < i < m we can perform

(XW’M,’Y, ZY)+ (XW, Yi, Zu;Y).
The string Xw'Y; is passed to R4 where we can apply
(X,'V,'Z;, XW’Y,') F (X[V,'W’Yi, XZ:)

From R this string is passed unchanged to R, and R3 (by rules #Y;$#Y; and X #$X #
respectively). In R3 the subscript of Y is decreased by 1 using a rule #Y;$Z#Y;_;. The
resulting string X;v;w’Y;_; is passed to R4 where by applying a rule X #$X; #Z’ the
subscript of X is decreased by 1. Iterating this process, we get to a string of the form
Xoviw'Yy. This string passes through R; and R, unchanged. In R3 Y is replaced by
Y and in R4 we substitute Xy by X. Thus we have passed from Xw'u;Y to Xv;w'Y. If
1 <i < nwe have rotated one symbol, since u; = v; = @; € NUTU{F}. Ifn+1 <i<m
we have simulated the application of the rule u; — v;. Iterating this procedure, we can
simulate any rule of G at any position. So, if in G S =" x;x, we can produce the
string Xxp Fx1Y in I, and by circular permutation also Xox;x; FYy. In Rz we can apply
the rule #FY,$Zy# to obtain Xox;x;: This string gets to R4 where we remove the X
with the rule Xo#$#26. If the resulting string x;x, is in T*, then x;x, € L(I). So,
L(G) € L(I).

2. L(G) 2 L(I). To see that I" does not produce any strings not in L(G), note that to
continue the simulation of G, the strings should be passed to the next component. The
rules of I" are such that strings that remain in the current component do not interfere.
If these strings encode valid simulations of G they remain unchanged and can resume
the simulation at a later moment. All invalid simulations will be ’trapped’ in one
component and will not lead to strings in 7.

Specifically, suppose we have performed in R3

(XW’M,'Y, ZY)+ (XW’ Yi, Zu;Y)

and in R4
(XjVjZ;», XW’YI') F (XJ'V]'W,YI', XZ;)

for some 1 < i, j < m. As mentioned before, the axioms except XS FY are available in

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

56

Chapter 4. Time-varying H Systems Revisited

all components thanks to the rules in Q.

A string X;v;w’Y; with i > 1 can pass to R, by the rule #Y;$#Y;. Then it passes to R3
using X #$X # provided that j > 1. In R3 we decrement the subscript of ¥ and in R4
the subscript of X. These are the only operations possible in these components. This
process is repeated until some subscript reaches zero.

Suppose that after R4 we have a string of the form XqwY} for k > 1. This string is
passed to R, by the rules Xo#$Xo# and #Y;$#Y ;. Now, there is no rule in R, that can be
applied to the string. So, it will remain in this component and never yield a terminal
string. If after R4 we have a string of the form X;wY, for k£ > 1, no rule in R can be
applied to it. Thus, this string will not derive a word in 7*. With subscript equal to
zero, only strings of the form XywY(can pass through R; and R;. Then in R3 and Ry,
Xp and Y are replaced by X and Y and a new simulation or rotation step can start.

So, the only strings that can continue the simulation are those where i = j at the mo-
ment that we start to decrement the subscript. This means we have correctly simulated
arule in P or correctly rotated a symbol.

All strings that are produced as a by-product do not lead to terminal strings. All
these strings contain the symbol Z or Z’, so they are passed to all components by the
rules in Q. But they do not interfere with the simulation process. As an example,
consider a string Zu;Y produced in R3. When it returns to R3, we can replace ;Y by Y;
and then, also in R3, decrease the subscript. When reaching Yy, it can be removed or
rewritten by Y. The strings ZY and ZY; are axioms, and other strings of the form Zw
or ZwY cannot enter in any splicing rule with strings of the form Xw’Y.

Finally, the symbol Yy can only be removed when it follows the symbol F, which
guarantees that only the correct permutation yields a terminal string. Thus, the only
terminal strings that are generated by I" correspond to strings in L(G). This concludes
the proof that L(G) 2 L(I). m]

This last result gives rise to an interesting open question. If time-varying H sys-
tems with partial transfer of degree 4 generate all RE languages and those of degree
1 generate only regular languages, what is the power of systems of degree 2 and 3?
We conjecture that systems of degree 2 can be shown to be universal, by using the
technique of forcing the correct derivation to go through all components, as we did in
Theorem 4.3.3. As an example, we give a very simple time-varying H system with
partial transfer of degree 2 that generates a non-regular language.

I'=(V,T,A, R, R>), with

V={a,bXY, 2},

T ={a,b},

A = {XabY,ZbY, XaZ},

Ry = {X#aSXa#Z, X#aS#ZDY, #bY $XaZ#} U {(ZbYHSZbYH#),
Ry = {D#YSZ#bY}.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

4.3. Computational Power

57

The reader can verify that L(T') = {a"d" | n > 1}.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

5 Multiple Splicing

5.1 Introduction

In this chapter we introduce a new type of splicing, multiple splicing, which differs
from the usual definition in that several (not necessarily distinct) rules can be applied
simultaneously to the same string. We consider restricted and unrestricted versions of
multiple splicing. We define (k, p)-splicing, where k rules, different or not, out of p
different rules, are applied to a string at the same time. We show that restricted and
extended multiple splicing systems with (k, p)-splicing are computationally complete
fork = p=2and k > p > 3, strictly more powerful than finite automata for k = 2
and p > 3 or p = * and contain non-regular languages for k = 2 and p = 1. For the
unrestricted case, a weaker and more realistic definition, we prove that no increase in
the computational power is observed.

In the theory of splicing systems it is a standard assumption that more than one rule
cannot act simultaneously on a string. If multiple rules are applicable to a string then
those rules are given different copies of the string so as to avoid simultaneous applica-
tion of multiple rules, and for such “independent” splicing to be possible, it is assumed
that there is infinite supply of each string existing at each point of computation. That
is, if two rules, say r; and ry, can be applied to a string w we consider that r; is ap-
plied to one copy of w and r; to another copy, and after that splicing step, the language
contains the resulting strings of both applications.

Here, we study the splicing systems in which the assumption that more than one
rule can act on the same string at the same time is removed. Although it may look
weird at the first glance, this “multiple-site” extension is natural, because two restric-
tion enzyme can act on the same DNA strand so long as their restriction sites do not
overlap (and, of course, the sites are far enough from each other so that there will be
no interference), and the ensuing recombinations can occur at all of the restriction sites
at the same time. The “multiple-site” we introduce here captures this idea. To be more
specific, in the systems we introduce here, we allow more than one (not necessarily
distinct) rules to apply to a given string. It should be noted that the rules are applied
independently, depending only on the string itself, not on which other rules are applied
to other parts of the string. This distinguishes our definition from other approaches,
which consider simultaneous applications of splicing-like operations, like [52] further
considered in [32].

We consider two possibilities for defining multiple splicing. In the first case, which
we call restricted multiple splicing, we allow for exactly k rules, not necessarily dis-

59

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

60

Chapter 5. Multiple Splicing

tinct, chosen from a collection of rules of cardinality of p, to apply to a string simulta-
neously. We call this (k, p)-splicing. We study the computational power of this system
for different values of k and p. Specifically, we show that extended (nonterminals are
allowed) (k, p)-splicing systems (i) are computationally complete (that is, identical to
the recursively enumerable) if either k = p = 2 and or k > p > 3, (ii) are strictly more
powerful than finite automata if k£ = 2 and either p > 3 or there is no restriction on p
(we will use p = * to denote this unrestricted case), (iii) contain non-regular languages
ifk=2and p=1.

In the case which we call unrestricted multiple splicing, there is no restriction on
the number of cuts or on the number of rules involved in the splicing operation. This
definition is closer to the actual behavior of DNA molecules under the influence of
restriction enzymes; strings are cut at arbitrarily many sites, and the fragments are
recombined in all possible ways. We show that this weaker definition is equivalent to
the traditional definition as to their computational power.

5.2 Multiple Splicing

We now fix some terminology and notation for the discussion of multiple splicing. Let
R be a set of splicing rules over some alphabet V. For a word w € V*, aset X C R,
which we assume to be ordered, and an integer k > 1, we define

P2
i’

P2 ./ D3 Dk_ 1
B XaW3X3G T L X Wk |

_ P pi_ s
Weur, (X) = Awixi< 7, > X waxa< i

i

3 R . / R /

W = WIX|X|W2X2X) oo Xk Xy Wi 1, P = bt = xj#xj$yj#yj
1 R KWk+1s Pj r ifrij :yj#y;,$xj#x;,

ri, € X, forall 1 < j <k}

Furthermore, wg,,(X) = U Weur, (X). The set X is omitted when X = R. We extend this
k>1
definition by considering a set E of strings in place of w and define E . (X) = U Weur, (X).

weE

We define analogously E,;,, Ecy(X), and Eyy.

For a set of strings E, a set of splicing rules X, and an integer k as above we define

Erect)mbk(x) = {z1z2.. - Zk+1 | 11411_711 s 5(2](‘> Zk+1 € Ecutk(X)

P2j P2j+1 .
i > Zj+l<ij+jl € Ecutk(X)7 1< J= k- 1’

roif pajg =1,

<j<
[, if prj1 =1, b<j=<H

p2j-1 €L r}, paj = {

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

5.3. Restricted Multiple Splicing

We define analogously Eecomb(X), Erecombys Erecomp- FOr instance,
E X) = { | k> 1, <", P € E..(X)
recomb 2122 - - - Tk+1 = L A% P Tkl cut

P2j P2j+1 .
ij (S Zj+l<l»j+]1 € ECMI(X), 1< J <k-1

r,if prjy =1,

<i<
L ifpzj—1=r,1 J<H

p2j-1 €L, 1}, P2j:{ <j<
Given a set of splicing rules R, a language L, and two positive integers k and p, the

(k, p)-splicing language ¢,(L, k, p) is defined as follows.

(L, k,p) = L,

08 (Lkp) = Lk p) U | (GR(Loke Preconn (X, i 2 0,
XCR,|IXll=p

(LK, p) = () $h(L. k.).

i>0

We omit the subscript R when the set of rules is clear from the context. Also, we write
¢R(L, k,*) when p = ||R||, ¢5(L, *, p) when k is not fixed, and ¢ (L, *, x) when p = ||R]|
and k is not fixed. The (k, p)-splicing language generated by a splicing system H =
(V,A,R) is defined as (k, p)L(H) = ¢*(A, k, p). An extended H system H = (V,T,A,R)
generates the (k, p)-splicing language (k, p)L(H) = ¢*(A, k, p)NT*. The (k, *)-, (*, p)-,
and (*, *)-splicing languages are defined analogously.

To close this section, we present an example to clarify our definition. Consider the
splicing system I' = (V, A, R), with

V={X.Y,a,b},
A = {XabY, YbaX},
R = {X#a$SY#b, b#Y$a#X).

Now, (2,2)L(I') = (2, *)L(I') = A U {XbaY, YabX}. However, (2, 1)L(I') = A, since we
are forced to cut every string in two parts and we need both rules of R for doing this.

5.3 Restricted Multiple Splicing

In this section we investigate the effect of restricting the number of splicing sites in
every string to a given constant. Clearly, for any splicing system H, extended or not,
(1,*)L(H) = (1, 1)L(H) = L(H) holds. We denote by L((k, p)H) the family of (k, p)-
splicing languages generated by splicing systems. We write L((k, p)EH) for the (k, p)-
splicing languages generated by the extended variants of splicing systems. The main
result from [12, 70] can be stated as follows:

Theorem 5.3.1. Both L((1,1)EH) and L((1,+)EH) equal the class of regular lan-

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

62

Chapter 5. Multiple Splicing

guages.

We now consider the (2, 2)-splicing operation and prove the main result of this sec-
tion, namely that extended splicing systems based on the (2, 2)-splicing operation are
computationally complete.

Theorem 5.3.2. L((2,2)EH) equals the family of recursively enumerable languages.

Proof. 1t suffices to prove that every recursively enumerable language is the (2,2)-
splicing language generated by an extended splicing system. We will use the rotate-
and-simulate technique introduced in [63]. The idea is that we simulate a type-0 gram-
mar by simulating rule applications at one end of the string. To ensure that we simulate
all possible rule applications, we circularly rotate the string so that the simulation can
affect each part of the sentential form.

In our proof, we construct the splicing system in such a way that for any set of two
rules, either no (2, 2)-splicing is possible, or only (2, 2)-splicing between exactly two
strings takes place. This last process is illustrated in Figure 5.1. This allows us to
control our derivations.

Figure 5.1: The 2, 2-splicing operation involving two strings

Specifically, let G = (N, T, S, P) be a type-0 grammar. We construct an extended
splicing system based on the (2, 2)-splicing operation I = (V, T, A, R) such that L(G) =
(2,2)L(I"), where

V=NUTU{XY,ZBWQlU{Z,lae NUT)}U{W, |u—veP},
A={XBSY, 00U {XaZZ,Y |ae NUT U{B}}U
{(XvWW,Y |u — v € P}.

We assume without loss of generality that none of the following belong to N U T':
X Y,Z,B,Q,W,Z, foranya € NUT, and W, for any u — v € P. In the splicing
system, the sentential form will be represented by a string XwBvY,w,v € (N U T)".
The symbol B marks the beginning of the sentential form, hence we start out with
XBSY. The rotation and the rule simulation is done in a similar way to that from
[58], namely the rightmost symbol is shifted to the beginning of the string (in case of
rotation) or the part in the right-hand side of the string which can be rewritten by a rule
in P is removed and the right-hand side of that rule is added to the beginning of the
string (in case of rule simulation).

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

5.3. Restricted Multiple Splicing

63

The set R contains the following rules:

Rotate:
X#A$Xa#Z ae NUT U{B}
MHaYSZ #Y ae NUT U{B}

Suppose we have a string XwaY for some a € N U T U {B} and we want to shift a
to the beginning of the string. In order to cut XwaY at two sites we have to take a
set of two rules {X#A$Xb#Z, WaY$Z,#Y} for some b € N U T U {B}. However, no
recombination is possible if one chooses a set of two rules {X#A$Xb#Z, \#aY$Z,#Y}
for two different symbols a,b € N U T U {B}. We now consider the set of two rules
{(X#AS X a#Z, MHaYS$Z,#Y} for some a € N U T U {B} that can be applied to the strings
XwaY and XaZZ,Y yielding XawY and XZZ,aY by a (2, 2)-splicing.

Simulate:
XH#ASXVvHW u—>veP
AHuYSW #Y u—veP~P

Simulation goes in much the same way as rotation. For a string XwuY and a produc-
tion u — v € P, we have a (2, 2)-splicing with the string XvWW,Y, giving XWW,uY
and the new string XvwY encoding a circular permutation of the sentential form of
G. As above, any choice of a set of two splicing rules {X#A$Xv#W, A#xY$W #Y} for
some rule x — y, y # v, leads to no possible recombination.

Retrieve result:
XB#A$#QO
AHY$O#A

Finally, the two rules above can be applied only when the string is of the form
XBwY, that is in its unrotated form. Now these two rules can be applied to this string
and QQ, yielding XBQQY and w. If w is a terminal string, it will be in L(I').

From the explanations above it should be clear that the (2, 2)-splicing language gen-
erated by I contains all strings in L(G). To see that it generates only those strings, we
first notice that only the following sets of two rules lead to successful (2, 2)-splicing:
{(X#ASXa#Z, A#aYSZH#Y}, a € NUT U (B}, (X#ASXVHW, WHuYSW, #Y}, u — v € P,
{XB#HASAHQ, AHYSO#A}.

We now consider the residual strings of the form XZZ,aY,a € NUT U{B}. They can
enter in a (2, 2)-splicing with XaZZ,Y only, yielding exactly the same two strings. The
same goes for XWW,uY and XvWW, Y. Finally, XBQQY can enter in a (2, 2)-splicing
with some XBwY, also giving exactly the same strings. This shows that these strings
do not interfere with the simulation of derivations in G and only strings in L(G) are
generated. m| |

Looking more closely at the construction, we see that it extends to splicing systems
based on the (k, p)-splicing operation for any k > p > 3. Namely,

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

64

Chapter 5. Multiple Splicing

Theorem 5.3.3. L((k, p)EH) equals the class of recursively enumerable languages
forallk > p > 3.

Proof. The general idea is the same: we construct the splicing system in such a way
that for any set of p rules, either no (k, p)-splicing is possible, or only (k, p)-splicing
between exactly two strings takes place. Starting from the construction of Theorem
5.3.2, it suffices to take the set of axioms as

A = [XBSYXiX>.. .X,,_lxﬁjg“, 00} U {XaZZ, YX:X> .. .Xp_lxﬁjfz’“ |
aeNUTU{B}UXWWW,YXiXa... X, Xo 5" [u>veP),

where X1, X, ..., X, » are new symbols, and add the following set of splicing rules:
{(X#ASX#A| 1 <i<p-2}. O O

We do not know an exact characterization of the class of (2, m)-splicing languages,
m > 3, generated by extended splicing systems but we can state that this class properly
includes the class of regular languages.

Theorem 5.3.4. For all m > 3, L((2,m)EH) properly includes the class of regular
languages.

Proof. We first show that every regular language can be generated by an extended
splicing system based on the (2, m)-splicing for some m > 3. Let M = (Q, V, 6, g0, {qr})
be a nondeterministic finite automaton with just one final state such that no transition
enters go and no transition goes out from the final state ;. We construct the extended
splicing system H = (U, V, A, R), where

U = VUQUIX, ZZ)

A = {qaq’'XX |q € 6(q,a),q € Q,ac VIU{ZZ}

R = {a#qSq#b|a.beV,qe Q\ (g} U {XEXSX#X | g € O} U
{qo#aSAH#HZ, attq$Z#A | a € V).

If ||R|| < m, then one adds some “dummy” splicing rules to R that cannot be used
in any splicing in order to complete the number of rules in R up to m. All paths in
M of length one are axioms in the form gaq’XX. Inductively, we may assume that
all paths in M of length r are generated by H with (2, m)-splicing and prove that all
paths of length ¢ + 1 can be generated by H. Thus, from gwg’XX and ¢’aq” XX we get
q'waq” XX. Note that this splicing step can be accomplished with two rules and the
other rules do not influence the result. Therefore, all paths in M can be generated by
H with (2, m)-splicing. Now the strings accepted by M are squeezed out by the rules
in the set {go#aSA#Z, a#qr$Z#A | a € V}. Conversely, we stress that only strings of the
form g,xq XX can lead to strings in (2, m)L(H). Furthermore, for every string of the
form gxq’ XX generated by H with (2, m)-splicing, ¢’ € 6(q, x) holds.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

5.4. Unrestricted Multiple Splicing

65

To show the strictness of the inclusion, consider the splicing system H = (V,A, R)
with

V = {a, b’Z9X9 Y’ W}’
A ={ZabZ,ZaabbZ,ZaXXY, WWZbZ},
R = {Z#aaSZa#X, DbHZSZHDZ, X#YSWHW}.

It is rather plain that this non-extended system generates {Za"b"Z | n > 1}U{ZaX XY, WWZbZ}

by (2, m)-splicing. This is clearly a non-regular language. Obviously, the non-regular
language {a"b" | n > 1} can be generated by an extended splicing system based on the
(2, m)-splicing, m > 3, as well as (2, *)-splicing. O |

From the previous proof we can immediately infer that:

Corollary 5.3.5. 1. The class L((2,+*)EH) properly includes the class of regular
languages.
2. Forall m = 3, both L((2,+)H) and L((2, m)H) contains non-regular languages.

A natural question arises: What is the computational power of splicing system based
on the (2, 1)-splicing? We do not know whether all regular languages can still be
generated but we can state:

Theorem 5.3.6. Both classes L((2,1)H) and L((2,1)EH) contain non-regular lan-
guages.

Proof. We consider the splicing system
H = {a,b,Z},{ZabaZ,ZaZaZ)},{Z#aSa#Z}).

One can easily check that (2, 1)L(H) = {Za"ba"Z | n > 1} U{ZaZaZ,ZZZZ} which is
not regular. m| m|

A more precise characterization of the computational power of the (2, m)-splicing,
m # 2, as well as (k, p)-splicing with k, p not considered above remains to be settled.

5.4 Unrestricted Multiple Splicing

We now turn to the (x, m)-splicing for different values of m. A natural question to ask
is what computational power unrestricted multiple splicing systems have. Here we
provide a partial answer.

Theorem 5.4.1. Let H be an arbitrary splicing system. Then (x,*)L(H) = L(H) and
forallm > 1, (x,m)L(H) = L(H).

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

66

Chapter 5. Multiple Splicing

Proof. Let H = (V, A, R) be a splicing system; it suffices to prove the equality (x, 1)L(H)
L(H). The inclusion L(H) C (x, 1)L(H) is immediate. On the other hand, if £ C L(H)
and X C R of cardinality one, then E,.comp(X) € L(H). This is a consequence of
the fact that every (x, 1)-splicing can be simulated by a sequence of (1, 1)-splicing.
Therefore, one can prove by induction on i that ¢'(A,*,1) € L(H). Consequently,
(%, 1)L(H) € L(H) and we are done. O O

Corollary 5.4.2. L((*,+*)EH) as well as L((x,m)EH) for any m >

> 1 is equal to the
class of regular languages.

A rather interesting phenomenon we can observe in (x, *)-splicing is that in a single
step we can form strings of arbitrary length. The way in which this can happen is
reminiscent of the biochemical process of self-assembly. Suppose a string has two
sticky ends, then it can be extended at either end. If the attached parts in turn have
other sticky ends, this process can potentially continue indefinitely. This suggests
another way of defining multiple splicing, namely as generating a language in a single
step, rather than by iterating. We will call this non-iterated multiple splicing. Formally,
given an extended splicing system H = (V, T, A, R) the non-iterated multiple splicing
defined by H is A ecomp N T*.

Theorem 5.4.3. Extended non-iterated multiple splicing systems generate exactly all
regular languages.

Proof. The construction from the proof of Theorem 5.3.4 can be easily adapted to
show that extended finite non-iterated multiple splicing systems can generate all regu-
lar languages. We leave this simple task to the reader.

For the reverse direction, given a system I' = (V, A, R) with the rules of R labelled
by ri,r2,...,r,, for some n > 1, consider all strings w € A. The following procedure
produces a finite automaton with one final state g only recognizing the (x, *)-splicing
language generated by I':

Procedure Construct finite_automaton
begin
for every string w € A do
for every string x< € wey, 1 <i<n, pef{l,r}do
construct a path labelled x from the initial state to the state (p, i);
endfor;
for every string /> x<5.’/ € Weur, 1 <1, j<n, p,p €{l,r)do
construct a path labelled x from the state (p, i) to the state (p’, j);
endfor;
for every string !> x € wey, 1 <i<n, pe{l,r}do
construct a path labelled x from the state (p, 7) to the final state g;
endfor;
endfor;

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

5.4. Unrestricted Multiple Splicing

67

for every pair of states ((s, i), (d, 1)), | <i < n, add a A-transition from (s, i) to (d, i)
and from (d, i) to (s, i).

endfor;

end.

It should be clear from the construction that this automaton accepts exactly those
strings which are created by non-iterated multiple splicing. To obtain the language
generated by the system, we take the union of these strings with the finite initial lan-
guage. The result will also be regular. | |

Finally, we consider that other variants of multiple splicing like (< k, p)-, (= k, p)-,
(max, p)-splicing, k, p > 1, where every string is cut in at most k, at least k and a
maximal number of segments, respectively, deserve to be investigated.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6 Time Complexity for Splicing
Systems

6.1 Introduction

This chapter proposes a notion of time complexity in splicing systems. The time com-
plexity of a splicing system at length 7 is defined to be the smallest integer ¢ such that
all the words of the system having length n are produced within ¢ rounds. For a func-
tion ¢ from the set of natural numbers to itself, the class of languages with splicing
system time complexity #(n) is denoted by SplTime[f(n)]. We present fundamental
properties of SplTime and explores its relation to classes based on standard compu-
tational models, both in terms of upper bounds and in terms of lower bounds. As
to upper bounds, it is shown that for any function #(n) SplTime[#(n)] is included in
1-NSPACE[#(n)]; i.e., the class of languages accepted by a #(n)-space-bounded non-
deterministic Turing machine with one-way input head. Expanding on this result, it is
shown that 1-NSPACE([#(n)] is characterized in terms of splicing systems: it is the class
of languages accepted by a #(n)-space uniform family of extended splicing systems
having production time O(t(n)) with the additional property that each finite automaton
appearing in the family of splicing systems has at most a constant number of states.

As to lower bounds, it is shown that for all functions #(n) > logn, all languages
accepted by a pushdown automaton with maximal stack height #(|x]) for a word x
are in SplTime[#(n)]. From this result, it follows that the regular languages are in
SplTime[O(log n)] and that the context-free languages are in SplTime[O(n)]. It is also
shown that all languages accepted by #(n) space-bounded nondeterministic Turing ma-
chines are in SplTime[O(#(n)*)]. Combined with the 1-NSPACE upper bound, this
shows that the class of languages generated by polynomially time bounded extended
regular splicing systems is exactly PSPACE.

The universality of extended H systems with a regular set of rules states that the
model is equivalent to other standard abstract computation models, such as Turing ma-
chines and random access machines. Since these standard models are used to define
computational complexity by introducing the concept of resources, one may wonder
whether there exists a natural concept of computational resources in the extended spli-
cing system and what complexity classes are defined in terms of the resource concept.

Surprisingly, although these questions sound quite natural, and indeed for other
models of DNA computing similar questions have been addressed before [53, 54, 71],

69

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

70

Chapter 6. Time Complexity for Splicing Systems

this is the first time that the questions are addressed with respect to splicing systems.
We introduce here a notion of computational complexity in the splicing model.

We can naturally view that a splicing system produces its language in rounds of
rule applications, and a formal definition of a splicing system uses this view. Our
proposal is to consider the minimum number of rounds that it takes for the system
to produce the word as the complexity of the word with respect to the system. The
complexity of the language produced by the system at length 7 is then defined to be
the maximum of the time complexity of the word with respect to the system for all
members of the language having length n. This time complexity concept is reminiscent
of the derivational complexity of grammars [8, 18], where the complexity of a word
with respect to a grammar is defined to be the smallest number of derivational steps for
producing the word with respect to the grammar. Although the derivational complexity
uses the number of operational steps as a measure, it is fundamentally different from
our notion of time complexity because splicing is applied to two words and the two
input words for splicing can be produced asynchronously in preceding steps.

Formally speaking, the time complexity of a splicing system is given as follows. Let
I be a splicing system over an alphabet X such that regular languages define its pattern
quadruples for splicing rules (we say that I' has a regular set of rules). For a word
w € X*, let SplTimer(w) denote the smallest number of rounds in which I" produces
w. For w not produced by I, let this quantity be 0. For a function ¢ from the set of
natural numbers to itself, we say that I' has time complexity #(n) if for all w € ¥,
SplTimer(w) < #(jw]). We define SplTime[#(n)] to be the set of all languages produced
by some extended splicing system with a finite initial language and with a regular set
of rules with time complexity #(n), and then, for a class of functions ¥, we define
SplTime[F] = U, SplTime[#(n)].

In this chapter we explore properties of the proposed notion of time complexity.
Because the first universality result was obtained for extended splicing systems with a
finite initial language and a regular set of rules, they can be considered to be the “stan-
dard” universal splicing system. Indeed, many well-studied variants having universal
power, like those mentioned in Section 2.3.3 can be straightforwardly simulated with
these systems, with at most a constant slowdown'. We will thus take the extended
splicing systems with a finite initial language and a regular set of rules as the reference
model for universal splicing systems, and define our complexity notions in terms of
these systems.

Before introducing our complexity definitions, we state a few conventions. We con-
sider the set R of splicing rules is regular. The definition of such a regular set R can be
given as follows.

Definition 6.1.1. A set of rules R is regular if there exist some m > 1 and m quadruples
of regular languages (A;, B;,C;, D;), 1 <i < m, such that R = Uy<j<n{ai#tb;Sci#d; | a; €
Ai,bi € B;,c; € C,‘,dl‘ € D,‘}.

'Such straightforward constant-slow-down simulation results do not appear to hold for the alternative
systems introduced in Chapter 3.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.2. Time Complexity for Splicing Systems

71

Since each regular language appearing in R can be represented by a finite automaton,
R can be actually viewed as a finite collection of finite automaton quadruples. In our
proofs, we will take this view. Also, any such quadruple r = (A, B, C, D) appearing in
R can be extended as follows. From A we construct a finite automaton A’ accepting
2*I(A). We perform the same modification to C to obtain C’. For B and D, we modify
them so that they accept L(B)X* and L(D)X*, respectively, obtaining B’ and D’. These
changes simplify the action of splicing rules by allowing to divide an input word to a
splicing operation into two parts, not four parts. Specifically, we can assume that the
modified quadruple (A’, B’, C’, D’) operates on two words u = uju and v = v{v, such
that u; € L(A), up € L(B), u3 € L(C), and us € L(D) and produces u;v, and viup. We
assume that each quadruple in R has undergone such changes. Clearly, the language
produced with the modified rules is identical to L.

Note that if (A, B, C, D) is a quadruple in R, then adding (C, D, A, B) to R does not
change the language L, because the new quadruple simply swaps the order of two
words appearing on each side in the specification of a splicing operation. We thus
assume that the rule set R has the property that if (A, B, C, D) appears in R then so does
(C,D, A, B). Then, given a quadruple r = (A, B, C, D) in R and given an application of
r, (u,v) kr (x,y), we designate x as the “primary result” and y as the “secondary result”
of r, and write

r(u,v) - x

to mean that x is the primary result of an legitimate application of r to pair (u, v).

6.2 Time Complexity for Splicing Systems
LetT" = (V,Z, I, R) be an extended splicing system. For each w € V*, define

min{i | w € 0';'%(1)} if we op(l)

SplTlmer(W) = { 0 otherWiSe-

Let N denote the set of all natural numbers.

Definition 6.2.1. Let T (n) be a monotonically nondecreasing function from N to itself.
Then we define SplTime[T (n)] to be the set of all languages L for which there exists
an extended splicing system with regular rules ' = (V, X, 1, R) such that for all w € L,
it holds that SplTimer(w) < T(Iw]).

Definition 6.2.2. For a class C of functions from N to itself, define
SplTime[C] = UrmecSplTime[T (n)].

A simple observation here is that for any extended splicing system I' = (V,Z, [, R),
at any step i, the length of the longest word in 0'{_(1) is at most twice that in 0'{_‘1(1).
This implies that the length is at most 2/ times the longest word in 1. Thus, we have:

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

72

Chapter 6. Time Complexity for Splicing Systems

Proposition 6.2.3. SplTime[o(log n)] contains no infinite languages.
The following proposition is trivial.

Proposition 6.2.4. For all monotonically nondecreasing functions T1(n) and T,(n)
such that for alln > 0, T1(n) < T(n), we have

SplTime[T(n)] € SplTime[T,(n)].

Due to Proposition 6.2.3 a time complexity function 7'(n) is meaningful for extended
splicing systems if 7T'(n) € Q(log n). Thus, the smallest splicing time complexity class
is SplTime[O(log n)]. Here we show some fundamental results about this class.

First, it is not hard to see that the regular language a* belongs to
SplTime[O(log n)] via the following unextended system I' = (V, I, R):

V ={a}, I ={a}, and R = { a#1$A#a }.

3 a*} in the second

This splicing system generates {4, a, aa} in the first step, {1, a,aa,a’, a
and in general 0?(1) ={a*|0<x<2}).

Actually, it is not very difficult to show that every regular language belongs to this
class.

Theorem 6.2.5. REG ¢ SplTime[O(log n)].

Proof. Let L be an arbitrary regular language. If L is finite, an unextended system
whose initial language is L and whose rule set is empty produces L in no rounds, and
so L € SplTime[O(log n)].

Suppose that L is an infinite regular language. We will construct an extended finite
splicing system I' = (V,X,1,R) witnessing that L € SplTime[O(logn)]. Let M =
(0,Z%,9, qo, F) be a non-deterministic finite automaton accepting L, where Q is the set
of states, X the input alphabet, g¢ the initial state, F' the set of final states, and ¢ the
transition function. We assume without loss of generality that M has no A-transitions.
We construct I" as follows:

e V=XUQU {Z}, where Z is a new symbol not in X U Q.
o I ={Z}Ul{qiaq;| qi.q; € Q,a € Z,6(qi»a) = q;}.

e R consists of the following rules:
— a#tq$qitb forall g € Q,a,b € X,
— qo#ASAHZ,
— Aq$Z#A forall g5 € F.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.2. Time Complexity for Splicing Systems

73

The initial language I contains all the words of the form g;aq; such that M makes a
transition from ¢; to g; on a. Thus, I is the set of all valid paths of length 1. The
rules of the form a#g$4¢#b connect two paths sharing the same state in the middle. The
last two rules eliminate the initial state appearing at the beginning and the final state
appearing at the end. The strings of the form gg cannot give any string over X, except
A when go = gy for some g € F, in which case we want to have 4 in our language.
Production of a word w in L can be in a divide-and-conquer fashion: split w into
halves, separately produce them with the corresponding states at each end, and connect
them. Thus, the time that it takes to produce a word having length n is [log(n + 1)] + 2
(the additive term of 2 is for eliminating the initial and accept states after producing a
word of the form gowgq such that gy € F). Thus, L € SplTime[O(log n)]. This proves
the theorem. O

Note that the set of rules in the above construction is finite. The class of languages
generated by extended splicing systems with a finite set of rules is known to be equal
to the set of all regular languages ([64], see also [65]).

Corollary 6.2.6. Let F be an arbitrary class of monotonically nondecreasing functions
from N to itself such that ¥ 2 O(log n). If the set of rules is restricted to be finite, then
REG = SplTime[O(log n)] = SplTime[F].

Theorem 6.2.7. Let T(n) be an arbitrary monotonically nondecreasing function such
that T(n) € Q(ogn). Then the class SplTime[O(T (n))] is closed under concatenation,
star-operation, and union.

Proof. Let L; and L, be languages in SplTime[O(T (n))]. For each i € {1,2}, sup-
pose that L; € SplTime[T (n)] is witnessed by a regular extended splicing system
H; = (Vi, %, I;,R)); i.e., there is a constant ¢; such that for all w € L; it holds that
SplTimeg. (w) < ¢;T(lwl). Without loss of generality, assume that there is no common
nonterminal in H; and H», that is, (V| — X)) N (V, — Z;) = 0. To prove the theorem it
suffices to show that L, U L,, L1L,, and (L;)* each belong to SplTime[O(T (n))].

To show that L; U L, € SplTime[O(T (n))], for each i € {1, 2}, do the following:

e Construct Vl.’ by adding to V; three new nonterminals «;, 8;, and ;. Here the new
nonterminals for H; are different from those for H;.

e For each finite automaton quadruple Q = (é1, @2, #3,$4) in R;, create a new
quadruple (¢/, ¢, ¢5, ¢}) such that

— ¢/ is a finite automaton accepting {a;uw | u € V} and w € L(¢1)},

{ }
— ¢, is a finite automaton accepting {wug; | u € V; and w € L(¢2)},
— ¢} is a finite automaton accepting {a;uw | u € V; and w € L(¢3)}, and
{ }

— ¢}, is a finite automaton accepting {wup; | u € V; and w € L(¢4)}.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

74 Chapter 6. Time Complexity for Splicing Systems

Let R be the set of rules obtained as the collection of all the quadruples thus
produced.

e SetI7 to {y;} UfamwpBi | w € I;}.

For each i € {1, 2}, the rules R} act as R;, except that every word produced by the rules
is the one produced by H; with the corresponding sequence of splicing operations with
an «; at the beginning and a g; at the end. Thus, for each i € {1,2}, for each w € V7,
and for each integer r, H; produces w at round r if and only if (V/,%;, I/, R}) produces
a;wp; at round r. For each i € {1,2}, construct R’ by adding two rules to R’:

aiZ*#,B,-SByi#/l and Cli#/l$/l#’)/i .

The former has the role of eliminating 8; from a word of the form a;uB; such that
u € X*, while the latter has the role of dropping from any word beginning with an
a; the first symbol @;. Then, for each i € {1,2}, (V/,Z,I/,R}) produces L; with the
property that every word produced by H; is produced by the new system with exactly
two additional rounds. Now define

I'=(VjUV}, LI UI,R] URY).
Then L(I') = Ly U L, and for allw € Ly U Ly,

SplTimer(w) < min{SplTimeHl(w),SplTimeHz(w)}+2

IA

min{cy, c2}T(w|) + 2.

Thus, Ly U L, € SplTime[O(T (n))].
To show that L L, € SplTime[O(T (n))], construct I"” from I in the above by replac-
ing the rules a;X*#8;$y#1 and a#1$A#y; by three rules:

a1 ZHB1Sao# (Vo) B, i Z*#B,$y 1 #4, and a #A$A#y.

The first has the role of splicing any two words of the form «@;u8; and avB, such
that u,v € X* to produce ajuvf,, the second has the role of eliminating 8, from a
word of the form ajufB, such that u € X*, and the last has the role of dropping a;
at the beginning of any word. (N.B. The nonterminal y, will never be used.) Then,
L") = L1 L,. For each word w of the form w;w, such that w; € L; and w, € L,,

SplTimep (w)
= max{SplTimeH{ w1), SplTimeHé(wz))} +3

< max{cT(wil), 2T (w2} + 3.
Since T'(n) is monotonically nondecreasing, the last term is at most

max{ci, ca}T(lw]) + 3.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.3. Splicing Systems versus One-way Nondeterministic Space

75

Thus, LiL, € SplTime[O(T (n))].
To show that (L;)* € SplTime[O(T (n))], construct from (V{, Xy, I{,R}) a new ex-
tended splicing system I’ by adding one rule:

a VH#B S #V7 6.

This has the effect of splicing any two words of the form au8; and @v8; such that
u,v € X* to produce ajuvB;. It is not hard to see that L(I"") = (L;)*. Let w be an
arbitrary word in (L;)* that can be decomposed into wy - - - wy such that wy, ..., wy are
in L;. Then,

SplTimer (w) < max{SplTimey, (w;) | 1 <i <k} + [logk] + 2.

Foreach i, 1 <i <k, SplTimey (w;) < c1T(Iwil) and [w;| < [w|. Also, we have k < |w|.
Thus,
SplTimer, (w) < c1T(Iw]) + [logn] + 2.

Since T'(n) € Q(logn), the right-hand side of the inequality is O(T (n)). Thus, we have
(L1)* € SplTime[O(T (n))]. O

We note here that it is unknown whether SplTime[O(T (n))] is closed under intersec-
tion or under complementation.

6.3 Splicing Systems versus One-way Nondeterministic
Space

In this section we consider an upper bound of splicing time complexity classes. The
difficulty here is that, although the extended splicing system is universal, there does
not appear to exist any immediate connection between the running time of a Turing
machine and the number of production rounds required by the splicing system that
produces the language recognized by the Turing machine.

6.3.1 Straightforward Upper Bounds

A straightforward method for checking the membership of a word w in a language L
in SplTime[7 (n)] would be to simulate the splicing system for at most 7'(Jw|) rounds
while keeping the collection of the words that have been produced and then check
whether w appears in the final collection. Though correct, the space needed for this
algorithm can increase rapidly. Let H be an extended splicing system. Let a be the
number of finite automaton quadruples of H, let k be the length of the longest word in
the initial word set, and let d be the cardinality of the initial word set. Suppose that
this straightforward algorithm is applied to H. For each i > 0, let s; be the cardinality
of the collection immediately after the ith round and let ¢; be the length of the longest

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

76

Chapter 6. Time Complexity for Splicing Systems

word in the collection s;. We have so = d and ¢; = k. Since any pair of words can be
spliced with respect to any one of the automaton quadruples at any position on either
component of the pair, we have for all i > 1,

si < siop +2(si-)a(liog + 1)

and ¢; < 2¢;_;. Thus, we have ¢; < k2" and s; < ab® for some b. This gives rise to a
doubly-exponential (!) space upper bound:

Proposition 6.3.1. For all monotonically nondecreasing functions T (n),

2T(n)

SplTime[T (n)] € U~oDSPACE[c”].

This upper bound is, not surprisingly, very naive. By guessing the “components”
of the splicing operations that are conducted to produce a word w, we can reduce the
upper bound to a nondeterministic exponential time.

Theorem 6.3.2. For all monotonically nondecreasing functions T (n),
SpITime[T'(1n)] € UesoNTIME[c! ™.

Proof. Let L € SplTime[T(n)] be witnessed by an extended splicing system I' =
(V,X,1,R). Let d be the length of the longest word in /. For all natural numbers
i > 0, and for all w € V* such that SplTimer(w) < i, w| < d2!. Also, for all positive
integers 7 and for all w € V*, SplTimep(w) < i if and only if either

e w e SplTimer(w) <i—1or

o there existx,y,z € V* and arule r € R such that SplTime(«) < i—1, SplTime(v)
i—1, and (u,v) +, (z,w) (recall that we use (u,v) +, (z,w) and (u,v) +, (W,2)
interchangeably).

Consider the following nondeterministic algorithm Q that takes as input an integer
i > 0 and a word w € V* and tests whether w is produced by I" within i rounds.

Step 1 If i = 0, return 1 if w € I and O otherwise.

Step 2 Nondeterministically select u,v € V* having length at most d2~!, z € V*
having length at most 42, and a finite automaton quadruple r € R.

Step 3 Test whether (u,v) +, (z, w) by exhaustively examining all possible positions
for aligning the finite automata on u« and v. If (1, v) +, (z, w) doesn’t hold, return
0.

Step 4 Make two recursive calls, Q@i — 1,u) and Q(i — 1, v). Both return with 1 as the
value, return 1; otherwise, return 0.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.3. Splicing Systems versus One-way Nondeterministic Space

77

It is not difficult to see that this nondeterministic algorithm works correctly. The total
number of recursive calls to Q on input (i, w) is at most 2 + 2% + --- + 2! < 2/*1; the
running time for the algorithm excluding the time spent on recursive calls is bounded
by polynomial in d2' on input (i, w). Thus, the total running time is O(c’) for some
constant ¢ > 0. Now, to test whether w € L, we have only to execute Q(T'(|wl]), w).
This implies, that L € NTIME[c?™]. This proves the theorem.]

From the above theorem, we immediately have the following corollary.

Corollary 6.3.3. SplTime[O(logn)] C NP.

6.3.2 Bounding the Complexity of Splicing Systems in terms of
One-way Nondeterministic Space

The idea of nondeterministic verification shown in the above can be further explored
to tighten the upper bound. For a function 7(n) from N to N, 1-NSPACE[T (n)] is
the set of all languages accepted by a T'(n) space-bounded nondeterministic Turing
machine with one-way input tape [30]. We stipulate that, in the one-way nondetermin-
istic space-bounded Turing machine model, since the input head moves from left to
right only, the usable amount of space must be communicated to the machine prior to
computation. For a T (n) space-bounded machine in this model, this communication is
accomplished by assuming that on input of length n on each work tape a blank word
of length T'(n) is written flanked by end markers with the initial position of the head
being at the symbol immediately to the right of the left end marker and that the head
never goes beyond the end markers.

In addition, as is standard in the space-bounded computation under the Turing model,
we assume that each space-bound 7'(n) is fully-space constructible in the following
sense: There exists a deterministic Turing machine M such that on each input x, M
on x uses exactly the first 7'(|x|) of the work-tape cells. Note that so long as T'(n) is
monotonically nondecreasing and in €2(log n), the machine M can be modified so that
its input head is one-way does not move backwards: Maintain in binary the number
m of input symbols that have been scanned so far; while the end of input is yet to be
reached, move the input head by one cell, increment the counter, and then simulate
the action of M to scan exactly T'(m) cells. Unfortunately, when T'(n) is in o(n), the
fully space-constructibility with one-way input head does not seem strong enough to
eliminate the requirement that the allowable space of size T'(n) be marked at the be-
ginning of computation in the one-way space-bounded computation for the following
reason: Suppose that the programs of a one-way nondeterministic 7 (n)-space-bounded
machine R and of a one-way deterministic machine M that fully space-constructs 7'(n)
are concurrently executed on an input of length n. For each m, 0 < m < n, let sp(m) be
the number of work-tape cells that have been scanned by R when the first m symbols
of the input have been scanned, and let s,;(/) be the number for M. Since the space of
size T'(n) is being constructed, a natural method for ensuring that R will use no more

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

78

Chapter 6. Time Complexity for Splicing Systems

than T'(n) space would be to require that sg(m) < sp(m) for all m, but this seems a
too stringent assumption to make for functions 7'(n) in o(n). When T'(n) is in Q(n),
the one-way input-head restriction is superfluous because there is enough space in the
work-tape to hold a full copy of the input.

Among the many 1-NSPACE classes of particular interest to us is 1-NL, which is
Ue>01-NSPACE|c(log n)]. Hartmanis and Mahaney [30] show that the reachability
problem of topologically sorted directed graph is complete for 1-NL under the loga-
rithmic space-bounded many-one reductions.

We show an improved upper-bound of 1-NL for SplTime.

Theorem 6.3.4. SplTime[O(logn)] € 1-NL.

This theorem is straightforwardly derived from the following more general state-
ment.

Theorem 6.3.5. For all monotonically increasing and fully space-constructible func-
tions f(n) > logn, it holds that SplTime[f(n)] C 1-NSPACE[f(n)].

Proof. Let f(n) > logn. Let L be a language in SplTime[f(n)]. LetI' = (V,Z, I, R) be
an extended splicing system that witnesses L € SplTime[f(n)].

As before, we regard the set R as a finite collection of finite automaton quadruples,
and we assume that all automata appearing in the rules are extended such that they
cover the entire words, as discussed in Section 6.1.

Let n be an arbitrary natural number. The process in which I" produces a word in at
most f(n) rounds can be described as a node-labeled, full binary (each non-leaf having
two children) tree of height at most f(n) with the following labeling rules:

e Each leaf is labeled with a word in 1.

e Each non-leaf is labeled with a word w € V*, a rule r, and two natural numbers
iand j.

Each non-leaf represents a splicing operation as follows: Let g be a non-leaf with

labels w,r,i, j. Let r = (A, B,C, D). Let u be the word label of the left child and let

v be the word label of the right child. Then u is of the form u;u, and v is of the form
v1v2 such that

o w=uvy, lul =i, |vil = j,
e u; € L(A), up € L(B), vi € L(C), and v, € L(D).

Note that given a valid production tree the word label of each non-leaf can be computed
from the labels of its proper descendants. The output of the production tree is the word
label of the root.

Using the above notion of production trees, the membership test of any word x €
2" in L can be done by testing whether there is a production tree of height at most
f(n) whose output is x. Our goal is to design an O(f(n)) space-bounded one-way
nondeterministic algorithm for this task. This is achieved as follows:

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.3. Splicing Systems versus One-way Nondeterministic Space

79

o We will design a (fixed) scheme for encoding, as a word over a finite alphabet
A, the tree structure, the leaf labels (not necessarily members of), and the rule
and the splicing positions at each non-leaf.

e We will design an f(n) space-bounded one-way deterministic algorithm for test-
ing, given a word y € A*, whether y is in a valid format and if so, in the purported
production tree specified by y, whether the word assigned to each leaf is in the
initial language I, and whether the splicing rule specified at each non-leaf can
be successfully applied to the word labels of the children.

e We will design an f(n) space-bounded one-way deterministic algorithm for test-
ing, given an input x and a word y € A* that passes the aforementioned test,
whether x is the output of the tree encoded by y.

By combining these three, we will construct an f(n) space-bounded one-way nonde-
terministic algorithm for L.

We need some notation. For a node u in a production tree, E(«) denotes the encoding
of the subtree rooted at u and W(u) denotes the word produced at u. The attributes E(u)
and W(u) are given so that the letters of W(u) appear in E(u) in order; that is,

(*) if W(u) = a; - - - ay, for some ay,...,a, € V, then there exist positions ki, ..., k.
1 <k <--+ < ky <|E(u), such that for all A, 1 < h < m, gy, is the symbol of
E(u) at position k.

Also, for a non-root u, Wr(u) and Wg(u) respectively denote the first and the second
segments of W(u) when W(u) is spliced at its parent node.

We introduce a number of new nonterminals. First, we treat each r € R as a non-
terminal, introduce a special nonterminal ry, and then set Ry = R U {rp}. Next, we
introduce five nonterminals [©, |V |@ |3 and |, that act as delimiters. Finally, we
introduce three symbols L, R, and L for encoding each node by the downward path
from the root to the node. Here L and R respectively represent the left branch and the
right branch, and L is a delimiter attached at the very end to indicate the termination of
the path. For example, the grandchild of the root that is the left child of the right child
of the root is represented by the path RLL. For a node u, n(u#) denote the downward
path from the root to u encoded this way. The alphabet A is now defined to be:

VUR U@, [Py U{L,R, L}.
The encoding of a production tree over A is constructed recursively as follows.
e Let u be a leaf with w as the word label. Then
E(u) = |V m(@yrow| V()| x| D ()

and W(u) = w.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

80

Chapter 6. Time Complexity for Splicing Systems

e Let u be a non-leaf with r as the rule label. Let y and z be respectively its left

and right children. Then

E() = | Vru)re)|Pnu)ey| P n(u),

where ¢/ is constructed from E(y) by inserting |D7(u) and e} is constructed from
E(z) by inserting |*)7r(x). These insertions are subject to the following rules:

— For every descendant v of y, | Vz(u) appears either (after |9 7(v) and before
|Dr(v)) or (after | x(v) and before |3 x(v)).

— Similarly, for each descendant v of z, |Px(u) appears either (after | Vr(v)
and before |(Vz(v)) or (after |?7(v) and before |3 7(v)).

The words W(u), Wir(y), Wr(y), Wr(2), and Wg(z) are determined as follows:
Let W(y) be of the form &Vm(1)0. Then W, (y) = & and Wr(y) = | Vr(u)d.
Let W(z) be of the form a|Pn(u)B. Then Wg(z) = a and Wr(z) = | P n(u)B.
The position labels i and j of u are respectively |W(y)| and |Wr(z2)|.

W) = Wr(y)Wr(2).

Note that the property (*) in the above holds for u.

We identify a set of syntactic properties that the encoding of a production tree must
satisfy. A production tree is a full binary tree, and so, a part of an infinite full binary
tree. We will thus speak of a generic node u below.

1.

Each occurrence of [, ..., | must be followed by a path encoding; i.e., a word
in {L,R}* L.

Each occurrence of |97 (u) for any node u must be followed by an occurrence of
a member of Ry.

For any node u, the occurrence of m(x) must be preceded by one of |0 @,

. For any node u, if (1) appears at all, then it has to appear exactly five times, as

I(O)n(u), e, |(4)7r(u) in this order.

. For any non-root u, if m(u) appears at all, then for each ancestor v of u, m(v)

appears in the following way:

| O7(v) appears to the left of | (u).

|“7(v) appears to the right of |“x(u).

|(D7(v) appears either to the left of | Vr(x) or to the right of |Px(u).

1P (v) appears either to the left of |D7(u) or to the right of [D7(u).

If u is in the left subtree of v, then |®xr(v) appears to the right of | ¥ 7 (w).

If u is in the right subtree of v, then [D7(v) appears to the left of | Dr(u).

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.3. Splicing Systems versus One-way Nondeterministic Space

81

6. If | D7r(u) is followed by an ry, then for no descendant v of u,
D), ..., »nr(v) appear.

7. If | Q7(u) is followed by an r € R, then for each child v of u,
Oz, ..., | YD) appear.

Suppose that w € A* satisfies all of the above conditions. Suppose w is scanned from
left to right. We think of encountering [D7(u) as entering the node u and encountering
|“7(u) as exiting u. With this view, w is thought of as specifying the depth-first traver-
sal of the tree represented by w. Also, if we assign to each node u appearing in w the
interval J(u) of integers ranging between the beginning position in w of | V() and
the ending position in w of |¥n(u), then these intervals become a presentation of an
interval tree, that is, given any two intervals J(«) and J(v), one of the following holds:
Jw) CJW), J(w) 2 J(v), and J(u) N J(v) = 0.

It is not difficult to see that whether a word w € A* is written according to the
syntactic rules in the above and in which the farthest node from the root has distance
at most f(n) can be tested deterministically in space O(f(n)) by scanning w from left
to right, assuming that f(n) is already given.

Let w be a word in A* that satisfies all the syntactic conditions in the above. Satis-
fying those conditions does not necessarily guarantee that w is a valid encoding of a
production tree, because the splicing rules specified at non-leaves may not be applica-
ble and because the words specified at leaves may not be in the initial language /. For
these reasons, we introduce the following semantic conditions that the valid encoding
of a production tree must satisfy.

1. Suppose that |On(u)rg appears in w. If |P7(v) is removed from w for all i,
0 < i < 4, and for each node v # u, then between |©x(x) and |“Y7(«) remains a
word of the form

D r(yrohl™ () @ () P r () Pr(u)

such that 2 € 1. If this condition is satisfied for u, then W(u), the word repre-
sented by u, is equal to A. If this is not satisfied for u, then w is not valid and
thus W(u) is undefined.

2. Suppose that | ©7(u)r with € R appears in w and for all descendants v of u, W(v)
is defined. Let r = (A, B, C, D) such that A, B, C, and D are finite automata. Let
y and z be the left child and the right child of u, respectively. Let Wy (y) be the
prefix of W(y) that appears before |D7(u) and let Wg(y) the remainder of W(y).
Let Wy(z) be the prefix of W(z) that appears before |®7(u) and let Wg(z) the
remainder of W(z). Then, it must be the case that Wy (y) € L(A), Wg(y) € L(B),
Wi(z) € L(C), and Wg(z) € L(D). If these membership conditions are met, then
W(u) = Wr(y)Wr(z). Otherwise, w is semantically incorrect and thus W(u) is
undefined.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

82

Chapter 6. Time Complexity for Splicing Systems

It is not hard to see that if the above semantic conditions are met for all nodes u such
that (u) appears in w, then w encodes a production tree.

Note that for any node u such that m(u) appears in w and if W(u) is defined with
respect to w, then W(u) is equal to the word constructed from w by eliminating from
wr

(i) every symbol either before | Vxr(x) or after |n(u),
(ii) every symbol appearing between |Dx(v) and |3z(v) for each node v, and then
(iii) every symbol not belonging to V.

This means that, for each node u such that W(u) is defined with respect to w, the letters
of W(u) can be computed from left to right while scanning w from left to right, in the
following manner:

e Output only symbols in V.

e If for some node u, |Vz(v) has been encountered, then suspend the output pro-
cess until [®7(v) has been encountered.

Since membership in a regular language can be tested by simply scanning the input
from left to right and only nodes appearing in a downward path are considered simul-
taneously, the semantic test in the above can be done deterministically in space O(f(n))
by scanning w from left to right. Finally, the W-value of the root of the tree encoded
by w can be computed scanning w from left to right. To check whether the production
tree produces x can be tested by comparing the letters of W of x letter by letter.

Thus, by concurrently running the three tests while nondeterministically producing
a word over A, the membership of x in L can be tested in space O(f(n)). Note that
the length of w can be bounded by (the maximum number of leaves) X (the length of
the longest word in /) + (the maximum number of nodes) X(5(2 + f(n)) + 1). This
quantity is bounded by ¢/ for some constant ¢ > 0. Then, by simple counting, the
nondeterministic test can be forced made to halt regardless of the nondeterministic
choices that are made during the computation.

This proves the theorem. m|

6.3.3 Characterizing One-way Nondeterministic Space by Splicing
Systems

Theorem 6.3.4 immediately raises the question of whether the inclusion
SplTime[O(logn)] € 1-NL is an equality. We show that this is unlikely—even al-
lowing the use of larger splicing systems for longer words does not enable logarith-
mic time-bounded splicing systems to produce anything beyond 1-NL. A family of
boolean circuits ¥ = {F,},>0 is said to be logarithmic-space uniform [72] if the func-
tion 1" — F, is computable by a logarithmic space-bounded Turing machine. We
introduce a concept of uniform families of splicing systems.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.3. Splicing Systems versus One-way Nondeterministic Space

83

LetI = (V,X, 1, R) be a splicing system. We consider a binary encoding of I" similar
to those given for Turing machines (see, e.g., [31]) as follows:

The size of V is specified as 1/lIV1,
The size of X is specified as 1I*I.

The symbols in V are numbered from 1 to ||[||V] and for each i, 1 < i < ||[||V],
the i-th member of V is encoded as 1°.

Each word in [is encoded by concatenating the encodings of the characters in /
with a 0 in between, and the set / is encoded by concatenating the encodings of
the words in / with a 00 in between.

A finite automaton A = (V, Q, 6, qo, qr) is encoded in the following manner:
— The size of Q is specified as 1119,

— The states in Q are numbered from 1 to ||[||Q] and foreach i, 1 < i < ||[||V],
the i-th member of Q is specified as 1'.

— Let mg be the number assigned to gg. Then g is specified as 1.
— Let m; be the number assigned to g¢. Then gy is specified as 1.

— The transition function ¢ is encoded as an enumeration of all permissible
transitions in 6. We introduce some conventions to save space: (i) 11lIIV1+1
represents “any symbol.” (ii) Foreach i, 1 <i < [|[||V], Vi1 represents
“any symbol but the i-th one.” (iii) Any transition not specified in the
enumeration takes the automaton to reject.

— A transition from the i-th state to the j-th state upon the k-th symbol/conventional-
symbol is encoded as 1/01701¥. The transitions are concatenated with a 00
in between.

— The encoding of A is the concatenation of the encodings of the components
of A with a 000.

Each quadruple of automata is encoded by concatenating the encodings of the
four automata with a 0000 in between.

The encoding of I is the concatenation of the encodings of the components of I'
with a 00000.

Definition 6.3.6. Let f(n) € Q(logn) be a function from N to itself. We say that a
family of extended splicing systems, G = {[';}n>0, is f(n)-space uniform if the function
that maps for each n > 0 from 1" to the encoding of I',, is computable in deterministic
f(n) space.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

84

Chapter 6. Time Complexity for Splicing Systems

Definition 6.3.7. We say that a family of extended splicing systems, G = {[';},>0 ac-
cepts a language L if the splicing systems in G have the same terminal alphabet X such
that L C X* and for all n > 0, it holds that L™", the length-n portion of L, is equal to
that of L(I';,).

Now we characterize 1-NSPACE using uniform families of splicing systems.

Theorem 6.3.8. Letr f(n) € Q(logn) be a monotonically nondecreasing fully space-
constructible function. A language L is in 1-NSPACE[f(n)] if and only if there is an
f(n)-space uniform family G = {Uy},>0 of splicing systems that accepts L with the
following properties:

1. There exists a constant c such that for all n > 0, each automaton appearing in
the rule set of Iy, has at most c states.

2. There exists a constant d such that for all n > 0 and for all w € L™", there is a
production tree of Iy, to produce w of height not more than df(n).

Proof. To prove the “if ’-part, let f(n) > logn and suppose that L is accepted by an
f(n)-space uniform family G = {I',},>0 of splicing systems satisfying the two condi-
tions in the statement of the theorem with the constants ¢ and d. For each n > 0, let
Iy, = (Vu, 2, 1,,R,;). Let D be a machine that produces the encoding of I',, from 1"
in space f(n). We will construct a one-way nondeterministic algorithm that uses f(n)
space for deciding membership in L. We can assume that, given x as input, f(|x|) cells
of each work tape of our machine are marked prior to the computation.

Let n be fixed and let x be a word in £" whose membership in L we are testing. For
now, assume further that an encoding of I';, is given on a separate tape with two-way
read head that our machine can look up any time it deems necessary without violating
the restriction on the work space size.

Our machine uses the nondeterministic one-way algorithm presented in the proof
of Theorem 6.3.5, where the depth of each path is bounded by df(n). The machine
must use a work-tape alphabet of fixed size, so the elements in R,, and V,, have to be
represented using words over the fixed work-tape alphabet. Note that an f(n) space-
bounded machine is C/™ time-bounded for some constant C. This means that O(f(n))
binary bits are sufficient for indexing a position on the encoding of I';;, for indexing an
automaton appearing in R,, and for specifying a symbol in V,,. Thus, our machine runs
the algorithm using binary indices to represent the elements of V,, and R,. Since the
nondeterministically guessed encoding of a production tree is read one-way, O(f(n))
work space is sufficient in producing a symbol in the encoding.

On scanning a symbol in the encoding, our machine may have to simulate at most
df(n) finite automata concurrently. According to our assumption, each finite automa-
ton has at most c states, so the states of the finite automata that are being simulated
can be memorized using O(f(n)) symbols. To identify the transition to be made, our
machine has only to scan the encoding of ', to find a match.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.3. Splicing Systems versus One-way Nondeterministic Space

85

To check whether a word appearing at a leaf node is in [,, our machine guesses,
when it is about to start scanning a word at a leaf (which must follow an occurrence of
the fixed empty automaton symbol rp), which word in I, is about to be seen and then
checks whether this guessed word is equal to the word appearing in the production
tree. If unsuccessful, it rejects.

Call this modified algorithm A. The algorithm A correctly works in one-way non-
deterministic O(f(n)) space so long as the encoding of I',, is readily available. Since
it is not, the encoding of I', has to be computed. However, the machine has only
f(n) space on each work-tape, so the encoding of I', has to be dynamically computed.
Unfortunately, f(n) may not be invertible and the input is one-way, so it is not a pri-
ori method for learning the value of n. Let @ > 2 be the smallest integer such that
a/™ — 1 > n. The quantity @ is well defined since f(n) € Q(logn). Our machine
guesses n using an alphabet of size @. Given a space of f(n) tape cells on one tape, it
attempts to produce, using the a-adic expression naturally constructed over the size-a
alphabet, our machine can cycle through the numbers in the interval [0, o/™ — 1]. By
the choice of @, the maximum number in the range is greater than or equal to n. For
each number m thus produced, our machine simulates D, the machine for producing
the encoding of I',,,, on demand; that is, when (A needs to see the letter of the encoding
of I';, at a particular position, say k, our machine simulates D from the beginning until
the kth output letter is produced. Such an on-demand simulation is possible if m < n. If
a simulation needs to require more than the given space on any work tape, our machine
rejects.

With this mechanism our machine executes the algorithm in the above, while count-
ing the number of characters in the input. At the end of simulation, it checks whether
the count is equal to m, and if the count is different, then it rejects regardless of the
outcome of the simulation. It accepts only if the simulation accepts and the length was
correctly guessed. This completes the proof of the “if”’-part.

To prove the “only if’-part, let L be accepted by a one-way nondeterministic f(r)
space-bounded machine M. Let X be the input alphabet of M. We assume that a
special symbol 4 not in X is appended at the end of the input of M so that M knows
the end of the input. We also assume that M accepts only after seeing a 4. Let O be
the set of states of M. Let g4 be a unique accept state of M. For each symbol a € Z,
introduce a new symbol a. Let £ be the collection of all newly introduced symbols and
letA=3U{4}UZ.

Let n be fixed. We construct I',, as follows: Let S, be the set of all configurations
of M on an input of length M without the specification of the input head position
and without the symbol scanned by the input head. Since M is f(n) space-bounded,
each element in S, can be encoded using O(f(n)) characters. Let ag be the initial
configuration in S, and let ® be the set of all accepting configurations in S ,,.

Suppose M may nondeterministically transition from a configuration « to another
upon scanning an input symbol a. If the input head moves to the right when M makes
the transition, we describe this as (@, a) — S; if the input head does not move when M

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

86

Chapter 6. Time Complexity for Splicing Systems

makes the transition, we describe this as (@, a) — .
Let @ and % be new symbols. We define

V,=AUS, U{@,%)

and X remains to be the terminals for I',.
The initial language I,, consists of the following:

e the words @ and %; and
e aap for all possible transitions.
The splicing rules are given as follows:
e Foreacha €S, S, X #a$a#(Z U {1)*S,.

For each a € S, and for h € £ U {4}, S h#aSah#s ,.

For each @ € S, and for h € X, S, #ha$a#hsS ,.

Qo # 4 OS@#A.

QoL $AH&.

Note that each finite automaton appearing in these rules has at most four states, so its
deterministic version has at most 16 states. The constant ¢ thus can be 16.

Note that I, produces a word in £* only from words of the form apZ* 4 ® by
eliminating the ¢ at the beginning and the 4 ® at the end. These two eliminations are
carried out by using the last two rules in the above. The other rules are for splicing
two words having an element from S, at the end, no element S, in between, and at
least another element in between. The rules of the first allow to combine transitions
(a,a) — B and (B,a) — 7, into an expression equivalent to (@,a) — y. The rules
of the second type allow to combine transitions (@,a) — B and (8,a) — v, into an
expression equivalent to (@,a) — 7. The rules of the third type allow to combine
transitions (a, u) — B and (8,v) — ¥ such that u, v € £*, into an expression equivalent
to (a, uv) — y. The by-product of these rules is a word containing S¢S . Such a word
will never be spliced again. These observations allow us to conclude that if a word in
2" is produced by these splicing rules then it is in L™".

Now we show that every x € L™ has a production tree of height at most d f(n) for
some constant d. Let I1 be any accepting computation of M on an input word x of
length n. We can assume that this path I1 does not contain repeated “full configura-
tion.” Here a “full configuration” is a “configuration” plus the head position. By this
assumption, the length of IT is at most #/™ for some fixed constant 4. We write out
IT as a sequence in which a simplified configuration in S, and a symbol scanned by
the head alternate so that a symbol a is represented by a if a € X and the input head
does not move at that simplified configuration. Construct from this sequence a new

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.4. Splicing Systems versus Pushdown Automata

87

one in which an occurrence of an element in S, excluding those at the end is repeated
twice. By dividing this sequence into triples from the start produces the sequence,
g, of elements in 7, whose splicing with respect to the rules in R, produces x. Since
|x| = n, E can be divided into n blocks corresponding to the letters of x so that within
which block the A part forms the sequence either of the form & - - - aa for some a € X
or of the form 4 --- 4. In both cases, if the block has K triples then assembling all
of them requires [log(K + 1)] splicing rounds. Once splicing within a block has been
completed, assembling the characters in x requires [log(n + 1)] rounds. Thus, the total
number of rounds for producing x is bounded by

Mog(h/™ + 1)1 + [log(n + 1)] + 2.

Since f(n) > log n, this bound is @(f(n)). Thus, there exists a desired constant d. This
completes the “only if”’-part of the proof.
This completes the proof of the theorem. O

The following corollary immediately follows from the above theorem.

Corollary 6.3.9. A language L is in 1-NL if and only if there is a logarithmic-space
uniform family G = {I',},>0 of splicing systems that accepts L with the following prop-
erties:

1. There exists a constant ¢ such that for all n > 0, each automaton appearing in
the rule set of I', has at most c states and has at most c transitions appearing in
the encoding.

2. There exists a constant d such that for all n > 0 and for each w € L™", there is a
production tree of 'y, to produce w of height not more than dlog n.

6.4 Splicing Systems versus Pushdown Automata

Theorem 6.3.4 sheds light on the question we asked earlier: is CFL included in
SplTime[O(logn)]? Since the closure of 1-NL under the logarithmic-space Turing
reducibility (see [35]) is NL, the closure of SplTime[O(logn)] under that reducibil-
ity is included in NL. On the other hand, LOGCFL, the closure of CFL under the
logarithmic-space many-one reducibility, is equal to SAC!, the languages accepted
by a logarithmic space uniform, polynomial-size, logarithmic-depth semi-unbounded-
fan-in circuits [75]. The class SAC' is known to include NL but it is unknown whether
the two classes are equal to each other. If CFL C SplTime[O(log n)], then we have
that SAC! = NL. Because of this, it appears difficult to settle the question of whether
CFL C SplTime[O(log n)]. We show that CFL C SplTime[O(n)]. This inclusion fol-
lows from the following general result.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

88

Chapter 6. Time Complexity for Splicing Systems

Theorem 6.4.1. Let f(n) > logn be an arbitrary function. Let L be a language
accepted by a pushdown automaton M with the property that for each member x of
L there exists an accepting computation of M on x such that the height of the stack of
M never exceeds f(|x|). Then L belongs to SplTimel f(n)].

Proof. Let f, L, and M be as in the hypothesis of the theorem. Let X be the alphabet
over which L is defined. We will first construct an extended splicing system I' =
(V,%,1,R) such that L = L(I'). We will then show that this I" has the desired property.

Let Q be the state set. Let gg and g4 be the initial state and the accept state of
M, respectively. Let ® be the stack alphabet. We assume that a special symbol 4 is
appended to the input of M, that M must accept upon encountering a 4, and that M
accepts with the empty stack. Without loss of generality, we decompose each move of
M into the following two phases:

Phase 1 This phase is nondeterministic and may involve the head move. Depending
on the input symbol its scanning M nondeterministically chooses the next state.
It may move the input head to the right by one position.

Phase 2 This phase is deterministic and involves a stack operation. There are two
disjoint subsets, QO and Q,, of Q. Depending on its state M executes one of the
following:

(a) If the current state p is in Qj, then M pushes a symbol determined by p
and enters some state in Q — (Q1 U Q»).

(b) If the current state p is in 5, then M pops a symbol from the stack and
then does the following: if the stack doesn’t return a symbol (because the
stack is already empty), M halts without accepting; if the stack returns a
symbol, say a, M enters a state in Q —(Q1 U Q»), which is determined from
p and a.

(c) If the current state p is not in Q1 U Q», no stack operation is performed.

We will design a splicing system I' = (V, X, 1, R) that simulates the computation
of M. The design of I' is partly similar to the design we used in the proof of Theo-
rem 6.3.8. We first design the set of symbols B. The symbol 4 is considered to be a
nonterminal. We introduce a new nonterminal & for each a € . Let 3 = {a|aeZ).
Each state in Q is considered to be a nonterminal. Furthermore, we introduce two
nonterminals, [p, p’q,q’,aly and [p, p’q.q’,als, for each 5-tuple (p, p’,q,q’,a) such
that

* 04,4 €Q,a€0,
e at state p, M may push an a into the stack and enter p’, and

e at state g, M may pop from the stack and if the symbol is an a then may enter ¢’.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.4. Splicing Systems versus Pushdown Automata

89

Let Vs denote the set of these nonterminals denoted by [p, p’q, ¢’,al; and [p, p’q,q’, al>.

Finally, we introduce nonterminals @ and %. These nonterminals and the elements of
%, which are the terminals, comprise V; that is,

V=3USUQUVsU{,@,%).

The initial language I consists of the following:

the words @ and %;

for each combination of a symbol a € X and two states p,q € Q such that M in
state p on symbol a may enter state g and move the head to the next position,
the word pag;

for each combination of a symbol a € X € {4} and two states p,q € Q such that
M in state p on symbol a may enter state g without the head move, the word

pag;
for each state g € Q, the words @g and ¢ @;

for each 5-tuple (p, p’, ¢, ¢’, @) such that E contains (p, p’, q,q’,a); and
(p,P'.q.4',a)2, the words pq” and (p, p’.q,q",a)1(p, ", 4.4, a)x.

The splicing rules R are given as follows:

1.

Forall p € Q,
O #p$Sp#(Z* U (4D 0.

For each p € Q, and for each a € fl,

O #ap$pta(T* U T S U {4)))0.

. Foreach p € Q, and for each a € fl,

O attp$patE* U TH(E U {4)))0.

For each 5-tuple (p, p’, q,q’,a) such that (p, p’,q,q’,a); and (p, p’,q,q’,a), are
in =,

PEE UGS, g 4 ¥, P g, q s)2,
PHEE UEL)Np. P, q.9",a)$(p, P’ q. 4 . an#(p,p’.q.q a),

(p’ p’9 q, 6]’, a)IZ(Z* U Z*i)#(p7 p,’ q, q,’ a)2$p#q’7
(. 0'.q.q', a)#E(X" U ZX)q Sp#q’.

. QoS H 4 grS@#A.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

90 Chapter 6. Time Complexity for Splicing Systems

6. qoHZ SMH&.

This completes the design of T

It is not very difficult to see that for all w € * UX* UZ*(2U{4}) and for all p, g € Q,
the word pwgq is produced by the splicing system if and only if M can arrive from p to
q by scanning the word w with the following property on the stack: starting from any
stack height A, the stack height never goes below & while scanning w, and at the end
the height returns to 4. In fact the first three sets of rules allow joining two such words
pwq and gw’r to produce pww’r. If w happens to end with a symbol & in 3 then w’
must start with either an a or a a and the & at the end of w’ will be eliminated. Also,
in the case when ¢ is the first symbol of w’ and |w’| > 1 then the second symbol of
w’ must be in X. These joining operations produce words of the form pp and pap as
the by-product. The former type will never be spliced again unless p = gg = gr and
A € L. When the latter type is spliced, the ap-part will be replaced by something else
to produce either a word of the form pag where M indeed may enter from p to g upon
a without moving the head or a word of the form pag where M indeed may enter from
p to g upon a with a head move. The fourth set of rules is to insert a push operation
at the beginning and a pop operation with respect to the same symbol at the end. The
property about the maintenance of height is preserved. The remaining rules are for
removing g at the beginning and 4 g at the end. Thus, L = L(I).

Now we show that there exists a constant 6 such that for each word x € L,
SplTimer(x) < df(|x[). Let an integer n > O be fixed and let x be a member of L™".
Select an arbitrary accepting computation path IT of M on input x such that during the
execution of IT the stack height of M never exceeds f(n). Let hpax be the maximum
stack height that M achieves during the execution of II. Then we have hpax < f(n). We
think of IT as a sequence of pairs of the form (y, @) such that vy is a configuration of M
(consisting of a head position, a state, and stack contents) and « is an action M takes at
v. Here, by following our two-phase decomposition, « is either a move in Phase 1 or a
move in Phase 2. Let Il =[xy, ..., m,]. Without loss of generality, we can assume that
IT is minimal, in the sense that no element appears more than once. Since f(n) > logn,
from this assumption it follows that there exists a constant C > 0 depending only on
M such that m < C/™,

For an element 7 = (y,) in I, we define the height of m to be the height of the
stack of vy, and denote it by height(r). Note that this is the height before M takes the
action « and the height of the stack immediately after @ must coincide with the height
of the entry immediately following 7 in the sequence I1. We use height’(rr) to denote
the height of the stack immediately after @. We say that a subsequence p = [n;,. .., 7]
of I1 is a tour if p satisfies one of the following two conditions:

e mj,...,n;are all Phase 1 operations.

e height’(rr;) = height(n) + 1 = height(rr;) = height’(7;) + 1, forall k,i + 1 <k <
J — 1, height(rry) > height(r;) and height’(7r;) > height(r;).

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.4. Splicing Systems versus Pushdown Automata

91

Note that in the latter case, 7; is a push operation, 7; is a pop operation, the stack height
after r; is the same as the stack height before 7;, and the stack height is maintained
larger than or equal to that before m; during the execution of the operations in between.

We call a tour [7;,...,7;] a single-round tour if it is either a tour of the first type
or either a tour of the second type with the additional property that the stack height is
maintained larger than that before 7; during the execution of the operations between r;
and ;. If a tour is not a single-round tour, then it is called a multiple-round tour.

For a tour p = [n;, ..., 7;], we define its relative height, denoted by r(p), to be
max{height(r;) — height(m;) | i < k < j},

that is, how much higher the stack gets after entering p. Note that each of the first type
has relative height of 0.

A multiple-round tour can be expressed as the concatenation of at least two single-
round tours. When decomposing a multiple-round tour into single-round tours, since
each single Phase 1 operation is a tour, the decomposition may not be unique. To
make the decomposition unique, we join each neighboring pair of single-round tours
of relative height 0 and thereby use maximally long stretches of Phase 1 operations.

Note that each tour p = [m;,...,n;] corresponds to a word produced by I' of the
form pwq such that p,g € Q and w € Z*(Z U £ U {4})), where p is the state of 7;, g is
the state that M enters by the action in 7;, and the word w consists of the partial input
scanned by M during the partial computation p, but the last symbol of w is allowed
to be either 4 or some & € 2 in the case when the last action in Phase 1 that occurs
in p does not involve head movement. We denote this word pwg by W(p) and define
t(p) = SplTime(W(p)), the minimum time for I" to produce W(p). Also, for a tour p,
the size of p, denoted by s(p), is the number of Phase 1 operations in p.

We claim the following.

Claim. For all single-round tours p,

1(p) < 2[log s(p)] + 6r(p).

We prove the claim by double induction on r(p) and s(p).

The base case for r(p) is when r(p) = 0. In this case p consists only of Phase 1
operations, and thus, s(p) = |p|. This means that the action part of each element of p
corresponds to a word in the initial language. The time that it takes for these initial
words to assemble into W(p) is [log s(p)], and thus, we have, #(p) < [log s(0)]. Hence,
the claim holds for the base case.

For the induction step, let 7(p) = rp > 1 and assume that the claim holds for the
values of r(p) that are smaller than ry. The shortest tour of relative-height ry has rg
pairs of push and pop and, since these push and pop operations are in Phase 2, contains
a Phase 1 operations between each neighboring pair of stack operations. Let p be one

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

92

Chapter 6. Time Complexity for Splicing Systems

of the shortest tours. Then we have
lol = 4ry — 1 and s(p) = 2rp — 1.

It takes four rounds for M to process a stack-operation pair and two rounds for ap-
pending the words corresponding two non-stack operations flanking the pair. The total
number of rounds required to produce W(p) is thus 2ry — 2 + 4rg < 6rp, and hence, the
claim holds for this smallest single-round tour.

Next, for the induction step on s(p), let s9 = s(p) be the size of p such that sg >
2rop — 1. Suppose that the claim holds for all values of s(p) smaller than sg. Let
p = [m,...,n;] be a single-round tour of relative height ry and of size so. Let p’ =
[7mis1,...,mj—1]. Since a stack operation that is not at the end is necessarily followed
by a non-stack operation and since 7; is a stack operation, ;4| is not a stack operation.
This means that p’ is not a single-round tour. Suppose that p’ is the concatenation of m
single-round tours, &1,...,&,, where m > 2. Since p is a single-round tour, each one
of &1,...,&, has relative height at most 7o — 1. Foreach i, 1 < i < m, let {; = s(&)).
Clearly, ¢; + - -+ + £, = s0.

Suppose m = 2. Both £ and &, have relative height at most ro — 1. By our induction
hypothesis, we have

1&)) < 2log €1 + 6(ro — 1) and #(&) < 2log £, + 6(rg — 1).

We have 1(p) = max{t(£1), #(&2)} + 5. The reason is that the words W(&1) and W(&;) are
spliced together in the round immediately after the round in which both two words are
present for the first time and appending the push-pop pair represented by the two ends
of p requires four rounds. We thus have

t(p) = 2max{log{1,log tr} + 6(rg — 1) + 5.

This is less than 2 log sg + 6r¢, and thus, the claim holds.
Next suppose that m > 3. Let ¢ be the smallest i such that £1 + - - - + £, > s9/2. Such
c clearly exists. Partition ¢y, ..., ¢, into three groups:

(flv . 7€C—I)a (€C)a (€C+19 L ,fm)

Here the first group is empty if £; > so/2 and the second group is empty if £,, > so/2.
Because of the definition of ¢, we have

OH+---+€l_1 < s0/2, and
Cep1+--+4, < s0/2.
Consider the production of W(p) in which the word corresponding to each of these

groups is produced first, three words are then connected, and then finally the push-pop
pair at the end of p is processed. The time required for producing the word for the first

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.4. Splicing Systems versus Pushdown Automata

93

group is

“the time required for producing the word for a hypothetical single-round tour of
relative height < rg that is constructed from [¢y, ..., {.—1] by inserting a push
operation at the beginning and a pop operation at the end”—4.

Here 4 that is substracted is the time required for processing the new stack operation
pair. So, by our induction hypothesis, the time in question is at most

2[og(so/2)] + 6rg — 4 = 2[log so] + 6(rg — 1).
The same holds for the third group. As to ¢., by our induction hypothesis,
t(€;) < 2[log so1+ 6(rg — 1).

The additional number of rounds for joining the three words and processing the push-
pop pair of p is 2 + 4 = 6. Thus, we have

t(p) < 2[log 5o + 6(ro — 1) + 6 = 2[log so1 + 619

as desired.

The claim has been proven. When II is not a single-round tour, think of a hypothet-
ical single-round tour I1, which is constructed from II by inserting one push operation
at the beginning and one pop operation at the end. This increases the relative height by
1 but preserves the size. Then, we have

(1) < 21og s(IT) + 6(f(n) + 1).

Removing the two state symbols at the end of W(IT) requires two additional rounds, so
we have
SplTimer(x) < 21og s(II) + 6 f(n) + 8.

By our supposition s(IT) < |I1] < CT™ . So, there exists a constant D such that
SplTimer(x) < Df(n).

This proves the theorem. |

Since a finite automaton can be viewed as a PDA without stack operations, the result
of Theorem 6.2.5 that REG C SplTime[O(log n)] follows from this theorem.

Also, the standard PDA algorithm for a context-free language uses the Greibach
normal form and the stack height is bounded by a linear function of the input size.
More precisely, one push operation is executed when a production rule of the form
A — BC is performed and when alignment of C with the input is postponed until
the alignment of B with the input has been completed (see, for example, [31]). Since
each nonterminal produces a nonempty word, this property means that the number

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

94

Chapter 6. Time Complexity for Splicing Systems

of symbols in the stack does not exceed the length of the input. This observation
immediately yields the following corollary.

Corollary 6.4.2. CFL ¢ SplTime[O(n)],

Can we strengthen the above upper bound of SplTime[O(n)] presented in Corol-
lary 6.4.2 to SpITime[O(log n)]? This is a hard question to answer. As mentioned ear-
lier, the logarithmic-space reducibility closure of CFL is equal to SAC!, the languages
accepted by polynomial size-bounded, logarithmic depth-bounded, logarithmic-space
uniform families of semi-unbounded-fan-in (OR gates have no limits on the number
of input signals feeding into them while the number is two for AND gates) circuits.
This class clearly solves the reachability problem, so SAC! € NL, but it is not known
whether the converse holds. Theorem 6.3.4 shows that SplTime[O(logn)]C 1-NL.
Since NL is closed under logarithmic-space reductions, we have that the closure of
SplTime[O(log n)] under logarithmic-space reductions is included in NL. Thus, the
hypothesis CFL C SplTime[O(log n)] implies SAC! = NL.

Proposition 6.4.3. CFL ¢ SplTime[O(log)] unless SAC! = NL.

6.5 Splicing Systems versus Nondeterministic Space

Theorem 6.4.1 shows a lower bound of splicing time complexity classes with respect to
stack-height-bounded pushdown automata. Here we prove a lower bound with respect
to space-bounded nondeterministic Turing machines.

Theorem 6.5.1. For all f(n) = Q(n),
NSPACE] f(n)] C SpITime[O(f(n)*)].

Proof. Let L € NSPACE[f(n)] and f(n) = Q(n). Without loss of generality, we as-
sume that there exists an f(n) space-bounded one-tape nondeterministic Turing ma-
chine M that accepts L. Let Q, X, 6, qo, and gy be respectively the state set, the input
alphabet, the work alphabet, the transition function, the initial state, and the final state
of M. Without loss of generality, we may assume that the tape of M tape is one-way
infinite and that the head of M does not make a stationary move.

We define some notation. Let I = Q XTI be the set of all state-symbol combinations
of M. We will treat each member of [” as a symbol. Let C = I"I'I'". Then C
represents the set of all configurations of M. A word w = a; ---aix(q,b)c; ---¢c;in C
such that ay,...,ax,cy,...,¢; € I and (g,b) € I encodes the configuration in which
the following conditions hold:

e The word on the tape of M isa; ---aybcy ...c;B---.

e The head of M is on the (k + 1)-st cell.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.5. Splicing Systems versus Nondeterministic Space

95

e The state of M is gq.

Note that for all words w € C and for all # > 1, w and wB' encode the same configu-
ration.

For each pair (u,v), u,v € C, such that |u| = |v| and M can reach from the configu-
ration represented by u to the configuration represented by v in a single step, we write
u +y v. For each pair of configurations (u,v), u,v € C, |u| = |v|, and for each ¢ > 1,
we write u I—fé v if there exists a series of configurations uy, ..., us such that 0 < s < ¢,
u=1up,Vv=uyand foreachi, 1 <i <s, u;_1 by u;; thatis, v is reachable from u in at
most ¢ steps. Also, for u,v € C, write u +, v to mean (¢ > 1)[u kﬁw v]. For a word w,
let w" denote the reverse of w. For each r > 1, let

W: = {%u@v % | (u,ve C)Alul=v|Au I—f,;’ v,n < t},

where @, %;, and %pg are new symbols. Let W, = Uy W;.

We construct a splicing system H that produces W,. Intuitively, for each k > 0,
H builds Wy in k stages as follows: On stage k = 0, H produces all words in Wi,
i.e., all words w of the form % u@v"%pg such that either u +y; v or u = v. On stage
k > 1, H combines any pair (w,w’), w,w’ € Wy-1, such that w = % u@v"%p and
w = %rv@z" %g, and produces % u@w” %pg. The union of the words thus produced
and Wayi-1 becomes W,c. Clearly, repeating this process indefinitely produces W,. In
addition, from a word % u@v"%g € W, such that u is an initial configuration and v is
an accepting configuration, H produces the input specified in u. This design ensures
that exactly those words accepted by M are produced as words over the terminals. A
large part of the idea in our construction comes from the one presented in [63].

Let

T,
T,

{(p,q.a,b,c) | p,q € Q,a,b,c €I',6(p,a) = (q,b,—)} and
{(p.g.a,b,c) | p,ge Q,a,b,c €T, 6(p,a) =(q,b,<)}.

That is, T (respectively, T») is the set of all legal transitions of M in which the head
moves right (respectively, left). We construct our extended regular splicing system
I' =(V,Z,1,R) as follows. We define

rur’

LT, &L, &R, 9L, VR, Z}

&1, &g | a €T}

& &1r |1 E T

&0, &R | 1 E T}

& |1<i<4)

*o s %R VoL, Ver | @ € UL} and

14

{
{
{
{
{
{

CcC C C C C C

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

96

Chapter 6. Time Complexity for Splicing Systems

I = (&L @&g, & |, &R, %1 1,1 Tor, %1 1,] %282, %383 |, | &4,
L, | Or,aZ}

{%ar L, | #orlael UT}

{&qral,&qarlacl}

{&1rL(psa)e |,] (q,0)b& g |1 €T}

{&ar0c(p,a) 1,1 b(g,)& r | 1 € T2}

R = RiUR,URs.

CcC C C C

First, the words in Wy are built from &;@&g by using the rules in R;. For each
a € I', Ry contains the following eight rules, whose collectively insert an a immediately
after &, and an ¢ immediately before &g. This process uses markers &, and &, r
that are specific to a. The use of these special symbols enable synchronization of the
insertion at both ends. Of the eight, the first four are for u@v that are yet to contain
symbols from I'” on each side (and so are non-members of C), and the second four are
for words u@v such that both © and v contain exactly one symbol from I"” (and so are
members of C).

& #C@C&r $ &gypa# |,
&, aC@CH#&r $ | #a&up.
&, #aC@Ca&,r $ &L# |,
& aC@Ca#&,g $ | #&x,
& #IM@I"&g $ &yra#&ar,
& al" @I #8&x $ &op#a&an,
& p#al*@Ta&, g $ &L # |,
&ral"@Ta# &g $ | #&g.

Also, R contains rules for inserting symbols from I"". For each t = (p,q,a,b,c) € Ty,
R, contains:

& #IM@I"&r $ &i.(p,a)c# |,

& (p, @)l @M # &g $ | #(q,0)b& R,
&1 #(p,a)cl™ @I (q,0)b&1 g $ &L # |,
& (p,a)cI"@T*(q,c)b# & 1,p $ | #&gs

and for each t = (p,q,a,b,c) € Ts:

& #IM@T"&g $ &aprc(p,a)# |,
& c(p, @I #&g $ | #b(q,)&k

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.5. Splicing Systems versus Nondeterministic Space

& #e(p,)" @I b(q,)& $ &1L # |,
&re(p,)" @I™*b(q,c) # &g $ | #&r.

The former group of four has the role of inserting (p, a)c immediately after &; and
(g,)b, which is the reverse of b(q, c), immediately before &g. The latter gourd of four
has the role of inserting c(p, a) immediately after &; and b(g, c¢), which is the reverse
of (g, c)b, immediately before &g. Furthermore, R, has the following rules, which are
for replacing & with %; and &g with %k:

& #C@C&r $ % # |,
% C@QC#&r $ | #%k.

For each n, and for each w = %, u@v" %k € W) such that |u| = |v| = n, the time that
it takes to produce w is 4(n — 1) + 2 = 4n — 2. All necessary auxiliary strings, all
containing |, are provided in the initial language.

The rules in R, have the role of producing % u@z" %g € W, from any % u@v"%g €
W, and any % v@z %k € W.,. First, the rules

D #C@C%r $ &1 # |,
% C@QCHWRr $ | #ar4,,
% #C@C%Rr $ S383# |,
28 C@QRCHDp $ | #&g,
*CQCa#HE $ a3#83C@Cay.
produce
* V@7 % 83u@V &y

from any %;y@z %g € W, and any % u@v %g € W..

Second, R; contains for each a € I" and a € I' U I the following rules:

2a#CQ@Cs83:C@Ca%y $ &, # |,

2, C@QCx*C@CHa%y $ | #d,p,
8, HC@Car83C@Cayp $ 1 # |,
2 C@CHM*C@QCHE, g $ | #&g,

2 aH[@C2r8:CQ" %y $ &o 1 # |,

2, " @Cay8;CQ@T #any, $ | #&ur,
2o HTT@C28:C@T 8 g $ &1 # |,
2T @Ca8;CQ@T " #aur $ | #ay.

These rules produce
* @7 % R3u@8y

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

98

Chapter 6. Time Complexity for Splicing Systems

from &1 y@z7 %, %3u @V &, if and only if y = v.
Finally, R, has the following rules:

*@HCH8C@uy $ Op# |,
VLCHhr83C@# &y $ | #Og,
Vb d3C@Cag S %p# |,
% C@Cag $ | #%g,
and foreachaelanda e TTUTY,
VLa# COy03C@T* 0y $ Oy # |,
VurCO0C@T* #904 $ | #Vuk,
VuL #CO,3C@T* 0§ ©L# |,
VLCO03C@RT* #9,r $ | #aVg,
VLa#T 003C@T 0y $ Va1 # |,
Vatl"003C@T* #04 $ | #Vur,
CaL #T003C@T* 0 $ L # |,
O 003C@T #0,8 $ | #a0p.

These rules move the 7" at the beginning to immediately after the @ and then add %,
at the beginning and %y at the end, giving the desired result

%Lu@zr%R e W.,.

If [u| = |v| = |z| = n, the production of w = % u@z" %g from from % u@v" %k and
JDorv@z7" %k requires S +4n + 2 + 4n + 2 = 8n + 9 steps.

The rules of Rz have the role of extracting the input word from a word % u@v"%g €
W, such that u is an initial configuration and v is an accepting configuration. The set
R3 contains for all (a, b) € X x X, the following rules:

Por(q0,)X # B @I (q7,D)["%r $ | # 71,
%r(qo,a)#X° 1T $ a#Z,
a*# 17 $ Z#e

The first kind is for producing the word of the form %y (go, @)X* T. The second and the
third kinds are for replacing (qo, a) by a and eliminating the T, using auxiliary string
aZ.

It is not hard to see that, to produce w = % u@v"%g € W, such that |u| = |v| = n the
number of rounds H demands is

(4n = 2) + [log(H)1(8n + 9) < (4 + 8(log(®) + 1))n + 9log(?) + 7 < dn(log(r) + 1)

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

6.5. Splicing Systems versus Nondeterministic Space

99

for some fixed constant d. Since M is s(n) space-bounded, M is 2¢°™ time-bounded
for some fixed constant e. So, if x € L and |x| = n, the maximum number of rounds for
producing x is bounded by 2des(n)*> = O(s(n)?).

This proves the theorem. O

Let SplTime[poly] = U.soSplTime[n¢]. By combining Theorem 6.5.1 and Theo-
rem 6.3.5 via Savitch’s Theorem [73], we have the following corollary.

Corollary 6.5.2. SplTime[poly] = PSPACE.

Let SplTime[polylog] = U.»oSplTime[(log n)°]. Then we have the following corol-
lary.

Corollary 6.5.3. SplTime[polylog] = POLYLOGSPACE.

In all, the notion of time complexity introduced in this chapter has proven a useful
concept, which allowed comparisons with well known Turing machines classes and
characterizations in terms of them. We believe that our concept can be a useful tool in
understanding the intrinsic computational abilities of splicing systems.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

7 Space Complexity for Splicing
Systems

7.1 Introduction

In Chapter 6 we introduced time complexity for splicing systems. This chapter further
explores complexity for splicing systems by defining a notion of space complexity,
which is based on the description size of the production tree of a word. We can then
characterize the class SplSpace[f(n)] in terms of time-bounded nondeterministic Tu-
ring machines, Specifically, we show that there exists a finite k such that for every fully
space-constructible function f(n) the languages produced by extended splicing sys-
tems with a regular set of rules having space complexity f(n) are accepted by O(f(n))
time bounded nondeterministic Turing machines. Also, it is shown that all languages
accepted by f(n) time-bounded nondeterministic Turing machines can be generated by
extended regular splicing systems in space O(f(n)). By combining these two results it
is shown that the class of languages generated extended splicing systems with a regular
set of rules in polynomial space is exactly NP and that in exponential space is exactly
NEXPTIME.

Where in the previous chapter we defined and studied time complexity for splicing
systems, here we propose and study a notion of space complexity of splicing systems,
which is based on the production tree of a word. Like in other formal systems of
languages, a production tree describes the word production in a splicing system using
a tree with labeled nodes. In a production tree of a word in a splicing system, each
non-leaf is labeled with a word and a rule such that the word is produced by applying
the rule to the word labels of its children. Given the set of all such production trees
for a word (i.e., all production trees having the word as the word label at the root),
with respect to a given splicing system, the space complexity of the word is defined
to be the size of the smallest tree in the tree set, where the size refers to the sum of
the number of nodes plus the sum of the length of the node labels. In fact, thinking in
terms of production trees, the time complexity of the word with respect to the system
can be identified with the height of the shortest tree among the tree set.

As in Chapter 6, we define our notion in terms of splicing systems with a finite
initial language and a regular set of rules. As before, we think of the set R of splicing
rules as a set of quadruples of regular languages (A;, B;, Ci, D;), 1 < i < m, such that
R = UlSiSm{ai#bi$ci#di | a; € Ai,bi € Bj,c; € Ci,dl' S Di}.

101

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

102

Chapter 7. Space Complexity for Splicing Systems

7.2 Space Complexity for Splicing Systems

LetT' = (V,%,1,R) be an extended splicing system with rules defined by quadruples
of regular languages. Let L = L(I'). Recall that a binary tree is full if every node has
either zero or two children. We define a production tree with respect to I' of a word
w € L as follows.

Definition 7.2.1. For each w € L, a production tree T of w with respect to T is a
node-labeled full binary tree with the following properties:

1. Each leaf is labeled by some word in I.

2. Each non-leaf is labeled by some word x € V* and an automaton-quadruple
r € R such that (u,v) v, x, where u and v are respectively the word label of the
left child and that of the right child.

3. The word label of the root of T is w.

The production tree represents a possible derivation that I' can follow to produce w.
Note that a word may have multiple production trees.

Definition 7.2.2. For each production tree T, define the following:

o The output of a production tree T, denoted by output(T), is the word label of the
root.

o The height of T, denoted by height(T), is the length of the path from the root
node to its furthest leaf.

o The size of T, denoted by size(T), is the number of nodes in T plus the sum of
the length of the word labels appearing in T.

For an extended splicing system I' = (V,X,1,R) and w € V*, let 7r(w) denote the
set of all production trees of w with respect to . Now we define the measure of time
complexity of splicing systems.

Definition 7.2.3. Let I' = (V,Z, 1, R) be a regular extended splicing system. For each
w € V*, define SplSpacer-(w) to be

min size(Tt) | T € 1} if w e L(I),
0 otherwise.

Note that the definition of space in the above is reminiscent of the the notion of size
complexity of circuits.
Let N denote the set of all natural numbers.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

7.3. Characterizing SplSpace| f(n)]

103

Definition 7.2.4. Let f(n) : N — N be a monotonically nondecreasing function. Then
SplSpace[f(n)] is the set of all L(I') such that

(Yw € Z")[SplSpacer(w) < f(Iw))]

Definition 7.2.5. For a class C of monotone nondecreasing functions from N to itself,
define
SplSpace[C] = U ¢u)ecSplSpace[f(n)].

In the following, we will consider only monotone nondecreasing functions as com-
plexity functions and simply say functions to mean monotone nondecreasing functions.

From these definitions we can make some initial observations. First, all finite lan-
guages have space complexity of n. Second, SplSpace[0(2%/™)] includes the class
SplTime[f(n)].

Here we also observe that the time complexity studied in the previous chapter can
also be defined equivalently in terms of the height of the production tree. Specifically,
if ' = (V,%, I, R) is a regular extended splicing system:

Definition 7.2.6. For eachw € V*,

min{height(T) | T € 71} if w € L(D),

SplTimer(w) = { 0 otherwise.

Definition 7.2.7. Let f(n) : N — N be a monotonically nondecreasing function. Then
SplTime[f(n)] is the set of all languages L(I') such that

(Yw € Z)[SplTimer(w) < f(Iw])].

Definition 7.2.8. For a class C of monotone nondecreasing functions from N to itself,
define
SplTime[C] = Uf()ecSplTime[f(n)]

7.3 Characterizing SplSpacel f(n)]

In this section, we characterize SplSpace[f(n)] in terms of nondeterministic time-
bounded Turing machine computation.

First we show that all languages in SplSpace[f(n)] are accepted by a nondetermin-
istic Turing machine in time O(f(n)).

Lemma 7.3.1. For all fully time-constructible functions f(n) = Q(n),

SplSpace[f(n)] € NTIME[O(f(n))].

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

104

Chapter 7. Space Complexity for Splicing Systems

Proof. Let L be a language SplSpace[f(n)] produced by an FIRR extended splicing

system I' = (V,Z,I,R). Let R = {r,...,ry}, where foreachi, 1 < i < m, r;is a
quadruple of regular expressions. By convention, let ry be a hypothetical fixed rule that
splices no pair of words. Let R = {ro,...,rn). We introduce new symbols rg, ..., 7.

Let N be a Turing machine that, on input x, behaves as follows: The machine N first
guesses a full binary tree T having m nodes such that (i) each node is labeled by a word
in RV* and (ii) the sum of the length of the word labels is at most f(]x|). The machine
N then attempts to verify the following conditions for all nodes u of T'.

e If u is a leaf node, then its label is of the form row such that w € I. If this test
passes, record w as the word label of u.

o If u is a non-leaf node and y is the label of u, then y is of the form r;w satisfying
the following properties:

- I‘,‘Eié.
- we vV~

— Let s be the word label of the left child of u and let ¢ be the word label of
the right child of u. Then applying r; to (s,) allows to cut s into s; and s,
and cut into #; and t, so that w = s115.

e If u is the root, then its label is of the form r;x for some r; € R.

The machine accepts if and only if all the tests pass.

The machine N correctly accepts L. To wit, first suppose x is a member of L.
Then, since L € SplSpace[f(n)], there exists a production tree T of size at most f(|x]).
The machine N nondeterministically guesses such a tree and for that particular set of
guesses N accepts. Conversely, if N on input x guesses a tree that passes all the tests
for x, then x has a production tree of total size at most f(|x]), and so x € L. This means
that for all x, x € L if and only if N accepts x.

To evaluate the running time of N, note that the part for guessing a tree description
requires O(f(n)) and that for each node of the tree the word label of the node is scanned
at most twice, for verifying the word label of the node itself and possibly for verifying
the word label of the parent. This means that N can be made to run in time O(f(n))
and thus L € NTIME[f(n)].

This proves the lemma. m|

Also in the other directions we can show a general bound, namely that languages in
NTIME] f(n)] can be generated by a splicing system using at most SplSpace[O(f(n)*)].

Lemma 7.3.2. For all fully time-constructible functions f(n) = Q(n),

SplSpace[O(f(n)*)] 2 NTIME[(f(n)].

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

7.3. Characterizing SplSpace| f(n)]

105

Proof. Let L € NTIME[f(n)] via an f(n) time-bounded nondeterministic Turing ma-
chine My. Then L is accepted by an O(f (n)?) time-bounded one-tape nondeterministic
Turing machine M;. Let a be a constant such that M) is « f(n)2 time bounded. Let
gn) = af(n)® + 1.

Let My = (X, Q, Y, 80, Gini» Gacc), Where Z is the input alphabet, Q is the state set, T
is the work-tape alphabet, g is the transition function, g;,; is the initial state, and gc.
is the accept state. Without loss of generality, we can assume that

o the head of M; always moves,
e the only tape of M is one-way infinite and starts from cell 1, and

e M has a unique accepting configuration in which
— the tape is blank everywhere,
— the state is g4, and

— the head position is at cell 1.

Consider a one-tape nondeterministic Turing machine M> that simulates M; backwards
from this unique accepting configuration in the following way: Suppose that the sym-
bol of the current head position is @ and the current state is p. Let S be the set of all
(¢,b,d) € QO x X x {L, R} such that 6y(g, b) contains (p, a, d).

o If S =0, then M, halts without accepting.

o If S # (0, M, nondeterministically selects (g, b, d) from S'.
- If d = L, M, writes a b, moves the head to the right neighbor, and enters g.

- If d = R, M, writes a b, moves the head to the left neighbor, and enters g;
if the head falls off the left end of the tape M, halts without accepting.

This behavior of M, can be easily implemented as a nondeterministic transition func-
tion with the same state set O and the same work-tape alphabet Y. Clearly, for all x,
M, produces the initial configuration of M on input x if and only if x € L. Also, for
all x, if M, produces the initial configuration of M; on input x, then it can do so in at
most g(|x|) steps.

Let 6 be the transition function of M, and let L be the blank symbol of M;, and
thus, of M. We will construct an FIRR extended splicing system I' = (V, X, I, R) that
produces L. Intuitively speaking, I" simulates the moves of M; starting from the string
F Gacc% A, which encodes the initial configuration of M,. We will design I' so that
from each word belonging to the set of initial configuration of M1, i.e., F g2t L% A,
the part corresponding to X*, which is a word in L, is extracted.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

106 Chapter 7. Space Complexity for Splicing Systems

Specifically, we design I" as follows. First,

V = TuQ
U {@1,@3,@3,@4|7:(p,d,D) € d(g,a)}
U {drq4ld €T}
U {rrpl (p.d’,L) € 6(g,a),d € X}
U {rra»Ra| (p. @, R) € 6(q, a)}
U {FBg» @By 1, @By, @1, @i, @iy 3}
U {a|aekX}
and
I = {Fqacc% 4, tBg LD @p41,+ @p 4o, @jpin}
U {a@;y;1,a@pi3 | a € X}
U {rre P@r1, @ ARy @3, @ 4a" A
|7:(p,d',R) € 6(q, a)}
U {rrpd @1, @544,k pd@ 3, @ 4 4
|7:(p,d’,L) € dg,a),d €T}
Finally,

R = Ri{UR,UR3URqy.

The four parts of R are each associated with a specific part of the simulation.

Simulating a transition with the right head move

Let 7 be the transition (p,a’, R) € 6(¢g,a). To simulate this transition R; contains the
following rules.

Fqa# T %" 4 $ bro p# @,
Fra QT %I # 4 $ @0 # gy,
bR H#OT'%I* 4 $ + #@,3,
FOU* %I # ey $ @q#d .

On a word w of the form + gau%v -4 such that u, v € I'*, these rules first replace the + ga
at the left end with g+ p and then 4 at the right end with 4z .. Then the rules replace
the two end markers with and @’ 4, respectively, to complete the transformation of w
into + pu%va’ .

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

7.3. Characterizing SplSpace| f(n)]

107

Simulating a transition with the left head move

Let 7 be a transition (p,a’, L) in 6(q,a) and let d be an arbitrary symbol in I'. To
simulate T R, contains the following rules:

Fqa#T*%l*d 4 $ vrp,d #@y,
Frop dT°%I" #d 4 $ @o#t H4r4,
Frp #dT°%I" 4 $ F pd# @3,
FQAa'T" %" # 4 $ @ 4# 4.

On a word w of the form + gau%vd A such that u,v € I'*, these rules first replace
the + ga at the left end with +7 , @’ and then + at the right end with 47 4. Then the
rules replace the two end markers with + pd’ and 4, respectively, to complete the
transformation of w into + pda’u%v .

Insertion of a blank symbol

Let g € Q. Then Rj3 consists of

Fq%#T" 4 $ rpyql%#@p,,
Fpg #qL%I™ 4§ F #@pgo.

If M, needs to use more work tape space, these rules can extend the representation
of the tape with a blank symbol. From a configuration + g%u 4 the rules produce
FqL%u 4 viatp gy g1 %u H.

Extraction of an input to M,

For each a € X, R4 contains the following rules:

F qinia#Z*J_*% 4 $ a# @ini,le
aX #1" %4 $ @uote,
a#x” $ a#t @ini,3-

When arriving at a configuration + gj,auv% 4, such thata € X, u € ", andv € L".
these rules can extract the word au. This passes through the words auv% 4 and au.
The third rule may be applied also to auv% 4, but the word produced, auv% -, will
never be spliced again.

In all derivations described above, the auxiliary strings that are used belong to 1. It
is not hard to see that the by-products of splicing cannot be spliced again. Thus, for all
x € ¥, I" produces x if and only if x € L.

To analyze the complexity of I, let x be a word in L having length n. Note that 4
rounds are required for simulating one step of M;, 2 rounds are required for inserting

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

108

Chapter 7. Space Complexity for Splicing Systems

a 1, and 3 rounds are required for extracting x. Since M, can produce the initial
configuration with x as the input word in at most g(n) steps, there is a production tree
T of T in which one-step simulation of M, takes places at most g(n) times, insertion of
1 occurs at most g(n) times, and extraction of x occurs once. Thus, the height of T is
at most 6g(n) + 3. In this tree every non-leaf has a child that is a leaf. This means that
the total number of nodes is at most 12g(n) + 6. Also, the word label of any node has
length at most g(n) + 4. Therefore, the size of the tree is bounded by

(8(n) +5)(12g(n) + 6) = O(g(n)*) = O(f()*).
Thus, L € SplSpace[O(f(n)*)]. o
Combining the last two lemmas, we obtain the following theorem.

Theorem 7.3.3. There exists a k > 1 such that for all fully time-constructible functions

f(n) = Qn),
SplSpace[()] € NTIME[O(f(n)")] and SplSpace[O(f(nY)] 2 NTIME[(f(n)].

Define SplSpace[poly] = U.-oSplSpace[n¢] and SplSpace[exp] = Uc~oSplSpace[2¢"].
Then we have the following:

Corollary 7.3.4. The following equalities hold:
1. SplSpace[poly] = NP.
2. SplSpace[exp] = NEXPTIME.

Thus also our notion of space complexity for splicing systems and further explored
time complexity, which allowed to obtain upper and lower bounds in terms of Turing
classes. Moreover, these bounds are close together, which lead to an exact characteri-
zation of important complexity classes like NP and PSPACE in terms of splicing time
and space classes.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

8 Accepting Splicing Systems as
Problem Solvers

8.1 Introduction

In this chapter, we present a different look on splicing systems, namely as problem
solvers. After defining the concept of an accepting splicing system we discuss how
these systems can be used as problem solvers. Then we construct an accepting splicing
system able to uniformly solve the satisfiability problem (SAT) in time O(m + n) for
a formula of length m over n variables. We also propose a uniform solution based on
accepting splicing systems to the Hamiltonian path problem (HPP) that runs in time
O(n), where n is the number of vertices of the instance of HPP.

We define the concept of a problem solving H system starting from another concept
introduced here, namely accepting splicing systems. It is rather strange that though
the theory of splicing systems is mature and well developed, an accepting model based
on the splicing operation has not considered so far, in spite of the fact that in practice
we deal more with accepting processes than with generating ones. Here we do not
consider the computational power and complexity of these accepting devices, but we
propose efficient solutions - working in linear time - to two well-known NP-complete
problems. Both solutions are based on accepting splicing systems with a finite initial
language and a regular set of rules.

8.2 Accepting Splicing Systems as Problem Solvers

We now introduce the definitions and terminology for accepting splicing systems. An
accepting splicing system is a tuple I' = (V,A,R,YES,(,)) where YES,(,) € V and
Hr = (V,A,R) is asplicing system. LetI" = (V,A, R, YES, (,)) be an accepting splicing
system. We say that I" accepts a word w € V* if and only if the following condition
holds:
YES € o*(A U {{w)}) for some integer k.
Thus the language accepted by I is defined as
L) = {w € V* | T accepts w}.

An extended accepting splicing system I = (V, T, A, R, YES , (,)) is defined similarly

109

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

110

Chapter 8. Accepting Splicing Systems as Problem Solvers

as in the generating case. The language accepted by I is defined as L") = {w € T™ |
I" accepts w}.

The time complexity introduced in Chapter 6 for (generating) splicing systems can
be easily extended to accepting splicing systems. The time complexity SplTimer(w)
of a word w with respect to an accepting splicing system I' = (V,A, R, YES, (,)) is the
minimal i such that YES € o(A U {(wH)).

LetI' = (V,A,R,YES,{,)) be an accepting splicing system; we say that " halts on a
word w € V* if one of the following conditions holds:

) YES € U’,‘-(,(A U {{w)}) for some integer &,
(i) TR(AU W) = ok (A U ((w))) and YES ¢ ok(A U {(w)}) for some integer k.

In both cases we say that I halts on w in & steps. We say that I" decides the language L
iff " halts on every word w € L such that condition (i) is satisfied.

LetT' = (V,A,R,YES,)) be a splicing system that halts on every word in V*; for a
word w € V* and n € N we say that

SplTimer(w) = min{k |I halts on w in & steps}
SplTimer(n) = max{SplTimer(w) | [w| = n}.

We say that I" decides L in time 7'(n) if I' decides L and SplTime(n) < T'(n) for all
n>1.

We now propose a way of using accepting splicing systems as problem solvers. A
possible correspondence between decision problems and languages can be done via
an encoding function which transforms an instance of a given decision problem into a
word, see, e.g., [17]. We say that a decision problem P is solved in time O(f(n)) by
accepting splicing systems if there exists a family H of accepting H systems such that
the following conditions are satisfied:

1. The encoding function of any instance p of P having size n can be computed by
a deterministic Turing machine in time O(f(n)).

2. For each instance p of size n of the problem one can effectively construct, in
time O(f(n)), an accepting splicing system I'(p) € H which decides, again in time
O(f(n)), the word encoding the given instance. This means that the word is decided if
and only if the solution to the given instance of the problem is “YES”. This effective
construction is called an O(f(n)) time solution to the considered problem.

If an accepting splicing system I'(n) decides the language of words encoding all
instances of the same size n, then the construction of H is called a uniform solution.
Intuitively, a solution is uniform if for problem size n, we can construct a unique H
system solving all instances of size n taking the (reasonable) encoding of instance as
“input”.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

8.3. A Linear-time Uniform Solution to SAT

111

8.3 A Linear-time Uniform Solution to SAT

In this section we illustrate the use of accepting splicing systems as problem solvers by
showing that accepting H systems with regular sets of rules and finite initial languages
can uniformly solve SAT in linear time.

A Boolean expression is an expression composed of variables, parentheses and the
operators -, A and V. The variables can take values O (false) and 1 (true). An expression
is satisfiable if there is some assignment of variables such that the expression is true.
The satisfiability problem, commonly denoted as SAT, is to determine, given a Boolean
expression, whether it is satisfiable. SAT is a well known NP-complete problem (see
e.g. [31] for more details). A Boolean expression is said to be in conjunctive normal
form (CNF) if it is of the form E| A E» A ...Ej, where each E;, called a clause, is of
the form a;1 V ap V ... V @y, where each «;; is a literal, that is either x or X, for some
variable x. Here, we assume that all boolean formulas are in CNF.

Theorem 8.3.1. SAT can be uniformly solved in linear time by splicing systems with
regular sets of rules.

Proof. For all formulas over n variables, we construct an accepting splicing system
I'=(V,A,R,YES, {0,)), where

V = {xl’xz""’xl’l}U{)_Cl’)_cz’"'a)_cn}U{<<O’<<17>>9XaWﬂ7v’/\vl’(s)a—r}U
{lx;=b]|1<i<nbe{0,1}}
A = (X#[x;=bI)|1<i<nbe{0,1}}U{{L L, T L WYES}),

and the set of splicing rules is defined as follows:

(D WNSX#[x1 = al) |a€{0,1}} U
[x; = al#Y$X#[x; .1 = b)Y |1 <i<n—-1,a,b€{0,1}},
2 CoHz8Lo# Ll z € {x1,x2,..., X} U X1, B2, ..., K} U

Cox#HaSlo# Ll a e VI [x;=0]V*,1<i<n
CoxHaSott Llae Vi x; =11V, 1<i<n
GYHZSG# LI Y, Ze{x |1 <i<nU{x|1<i<nU{V}JU
(YD o# LI Y e{x; |1 <i<nfU{x|1<i<n}}U
{KoVH#(SKo# L},

() {Lo#HSTH# L},

4) {A#olx1 = DISWHYES | b € {0, 1}}.

] }

Cox#aSi# Lla e Vi x; =01V*, 1 <i<n}
1 }

}

{

{

{

{CoxittaS{i# Lla e Vi [x; =11V, 1 <i<n}uU
{ U
{ U
{ U
{

Clearly, given n the splicing system I" can be constructed in O(n) time. Now, given an

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

112

Chapter 8. Accepting Splicing Systems as Problem Solvers

instance of SAT over n variables, that is a formula ¢ = C; A Cy A --- A Cy,, for some
m > 1, we show that I" accepts ¢, that is generates YES on input @), if and only if ¢
is satisfiable.

We discuss how the splicing system I" works on {p¢)), where ¢ is a word over the
alphabet {x, x2,...,x,} U {X1,X2,...,X,} U {V, A, (,)}. First we assume that ¢ is sat-
isfiable, that is there exists an assignment of variable that satisfies each clause. Let
x; = b;j, bj € {0,1}, 1 < i < n, be such an assignment. By using the splicing rules
in the set (1) the word w is transformed into {od[x; = billx2 = b2]...[x, = b,y]).
This process takes n splicing steps. Then, the rules of (2) remove the current leftmost
symbol of the formula ¢ at every step. Since each clause is a disjunction, for each
1 < k < m, there exists 1 < iy < n such that x;, = b;, satisfies the clause Ci. Moreover,
we assume that x;, is the leftmost variable appearing in Cj that satisfies C. When x;,
is the current leftmost symbol of the formula, a rule of type {oxi#a$(;# L applies,
removing {ox;, and replacing it by (;, which we interpret as a marker that the current
clause is satisfied. The process resumes with g for every clause. Therefore, after |¢|
splicing steps, I' generates the word {g[x; = b1][x2 = b2]...[x, = b,]). In the next
splicing step, by using the rule A#{o[x; = b1]SWH#YES in the set (4), one gets YES.

On the other hand, it is easy to note that if I accepts a word ¢ (if this happens, then
it happens in O(n + |¢|) time), then the rule in the singleton (3) can never be used in the
computation of I on input {o¢). It follows that every clause is satisfiable, therefore ¢
is satisfiable. From these explanations it follows that I" accepts ¢ in linear time if and
only if ¢ is satisfiable.

Now, to conclude the proof, let us argue that I' halts on every word (o¢) where
¢ is not satisfiable. Then for every possible assignment, there is a clause that is not
satisfied by the assignment. Let Cy, be the first clause of ¢ which is not satisfied
by the assignment 1 < i < 2". When reaching the closing bracket of Cj,, rule (3)

applies, introducing the symbol T, after which no rule can be applied. In the worst
case, Cy; = Cpy 80 that oh(A U {€op)}) = ok (A U {(op))) for k < n + |¢. o

8.4 A Linear-time Uniform Solution to HPP

The Hamiltonian path problem (HPP) is to decide whether or not a given directed
graph has a Hamiltonian path. A Hamiltonian path in a directed graph is a path which
contains all vertices exactly once. It is known that HPP is an N P-complete problem.

Theorem 8.4.1. HPP can be uniformly solved in linear time by splicing systems with
regular sets of rules.

Proof. Let us consider a directed graph G = (X, E), with X = {x, x2, ..., x,,} for which
we are looking for a Hamiltonian path starting with x;. We construct the accepting

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

8.4. A Linear-time Uniform Solution to HPP

113

splicing system I' = (V,A, R, YES, (,)) with

Vo= {xnxo, L x UL 2D, [UHG), Y G YES, <, >,
A {Yxi[1ILYESQQUYxilj112 <i,j<n},

and the set R defined as follows:

(D) O# > SY#x[11} U {ax [j1# > $Y#x[j+ 1] | 1 <t # k < n,
1<j<n—-1,aeV(x,x)V \ Vx, V'Y,
() {YES#($[n] > #4}.

The instance G = (X, E) of HPP is encoded into the word

1 1 1 2 2 2
wo= G)0 X)) e) (e,), 1) (e, D)

(s 20) s 207) - s),

over V*, where (x;, xl(.lj)), (xj, xgzj)), o (xg, x;{_)) are all edges going out from the node
xj, for some 1 < j < n. This means we have a word < w > as the input of I'.

Clearly, given n the splicing system I' can be constructed in O(n) time. The rules
of (1) extend < w >, constructing a path starting in x; and appending an edge at each
step, provided w contains an edge from the current node x; to some node x;, j # i. Itis
easy to note that if there exists a Hamiltonian path in G, say xi, xy,, Xs;, . . ., X5,, then
the word

< wxp[1]xg, [2]xg,[3]. .. x5,[n] >

is generated by I' in n splicing steps, hence YES is obtained in the next splicing
step. On the other hand, the only possibility to get YES is to apply the splicing
rule (2) to a pair of words formed by the axiom YES { and a word of the form <
wxi[1]xs,[2]x5,[3]. .. x4,[n] >. By the form of the splicing rules in the set (1), the word
< wx1[1]xs,[2]x5,[3]. .. x5,[n] > is obtained only if x1, x,, Xs;, . . ., X5, 1S @ Hamilto-
nian path in G.

If G has no Hamiltonian path, then I" halts on w after at most 7 splicing steps without
generating YES, which concludes the proof. O

Thus, we showed how the complexity notion of Chapter 6 opened the way to con-
sidering H systems as efficient problem solvers. This passed through the definition of
an accepting variant of splicing systems, which we feel is a natural extension to the
concept of a splicing system, worthy of further study. In fact, we will address some
aspects of accepting splicing systems in the next chapter.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

9 Descriptional Complexity of Splicing
Systems

In this chapter, the descriptional complexity of extended finite splicing systems is stud-
ied. These systems are known to generate exactly the class of regular languages. Upper
and lower bounds in both directions are shown relating the size of these splicing sys-
tems to the size of their equivalent minimal nondeterministic finite automata (NFA).
In addition, an accepting model of extended finite splicing systems is studied. Using
this variant one can obtain systems which are more than polynomially smaller than the
equivalent NFA or generating extended finite splicing system.

9.1 Introduction

Although some descriptional complexity issues of splicing systems have been previ-
ously studied, the existing work has been mainly focused on limiting a specific re-
source or “structural” parameter. This typically involved increasing other resources or
parameters. For instance, in [63], Pdun showed that extended splicing systems with
regular rules are still universal with only one initial word, or with initial words of
length at most 1, but that these measures cannot be simultaneously minimized. Also
the radius (the biggest u; for a rule u;#ur$us#uys) of splicing rules has been studied
in the context of H systems with additional control mechanisms, e.g. [57]. Finally,
in distributed H systems, the question of reducing the number of components is well
studied, see for instance [15, 50], sometimes together with radius considerations [58].

While measuring specific resources or parameters provides important insights into
the role or the weight which these parameters play or carry, it does not necessarily say
that much about the overall description necessary to specify a particular system, nor
does it always allow to realistically compare the descriptional complexity of splicing
systems with other specification methods, at least not when the various description
methods use different and incompatible resources or parameters. We therefore take a
different approach here by studying the total size of the system. This will allow us
to compare H systems to other formalisms in terms of descriptional complexity and
shed some light on the behavior of splicing systems when faced with specific tasks
or problems. As a first step in this direction, we will study extended finite splicing
systems, i.e., systems having a finite number of rules and starting with a finite number
of initial words. It is known that such systems generate exactly the class of regular
languages. This means that all regular languages can be obtained by recombining

115

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

116

Chapter 9. Descriptional Complexity of Splicing Systems

finite sets while applying a finite number of different rules only.

Thus, it is interesting from a descriptional complexity perspective to compare the de-
scriptive power of such systems with the standard model for regular languages, namely
deterministic and nondeterministic finite automata (henceforth abbreviated by DFA
and NFA, respectively). Many succinctness results between several models describing
regular languages are known in the literature and are summarized in [19]. There are,
e.g., exponential trade-offs between NFA and DFA, doubly exponential trade-offs be-
tween alternating finite automata and DFA, and polynomial trade-offs between NFA
with very small finite amounts of nondeterminism and DFA.

Here, we will complement the above list by investigating the relative succinctness
of representations between extended finite splicing systems and NFA. We prove upper
and lower bounds in both directions to show that the size needed is similar for both
systems. However, we show that using an accepting model of extended finite splicing
systems, one can obtain systems which are more than polynomially smaller than the
equivalent NFA or generating extended finite splicing system.

9.2 Complexity Measures

Defining fair and meaningful complexity measures is not always straightforward. The
descriptional complexity of finite automata has been well studied (see [19] and its
references). So far, the primary complexity measure considered is the number of states.
Although this measure does not always provide a complete picture, it is normally a
good indicator of total size, since the number of transitions of an n-state NFA over X
is bounded by n?|Z|. Moreover, it gives fair comparisons when comparing with other
formalisms having states or a comparable resource (e.g. non-terminals in context-free
grammars). However, since for splicing systems there does not seem to be such a
resource and since we are interested in the total size of the systems, here we will also
consider the number of transitions of the NFA. Let M = (Q, X, J, qo, F)) be an NFA.
Then we denote

QM) = |0I,
T (M) = |o.

Since the states are implicit in the description of the transitions, we define the total size
of M as Size(M) = T (M).

For splicing systems, there are several measures we could consider. For instance,
one could consider the number of rules of the system. But because of its structure
consisting of an initial language and a set of rules, even a system with an empty set of
rules can be arbitrarily complex in terms of the size of the equivalent NFA (as complex
as the finite initial language). Even if we also consider the size of A, the length of the
words in A can make the equivalent NFA arbitrarily complex. Also, as we will see, the
length of the rules is relevant. This is why we will measure the size of a splicing system

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

9.3. Describing Regular Languages by EH(FIN) and NFA

117

by considering both the number and the length of the rules and the initial language.
Given an (A)EH(FIN) I' = (V, T, A, R) we define the following measures:

RI) = "I,

reR
AT) = wl
weA

Q) = min{Q(M) | M is an NFA and L(M) = A}.

So, for the initial language we have two measures, the total size of A and the size
of the minimal automaton accepting A. The total size of I" is defined as Size(I') =
AI) + RI).

9.3 Describing Regular Languages by EH(FIN) and NFA

9.3.1 From EH(FIN) to NFA

In this section, we prove upper and lower bounds for the increase in descriptional
complexity when changing from an EH(FIN) to an equivalent NFA. We will first show
an upper bound.

Lemma 9.3.1. For each EH(FIN)T = (V,T, A, R), there exists an equivalent NFA M
such that QM) < Qa() + R().

Proof. We use a slightly improved variant of Pixton’s proof of regularity [70]. The
idea behind the construction is that we create an NFA equivalent to a splicing system
I' = (V,A,R) by starting from the NFA accepting the initial language A. Then, we
add the states and transitions describing the strings uju4 and usuy for each rule r =
ur#ur $us#uy in R. This involves adding |uqugl| + |uzus| + 2 states, for each r € R. Then,
by connecting the two parts with A-transitions, an NFA can be constructed accepting
L('). Specifically, for each path corresponding to u;u; that is reachable from ¢y and
from where one can reach a final state, we introduce two A-transitions. One from the
beginning of the path to the beginning of the path for u;u4, and one from the end of
the path for usu; to the end of the path. Similarly for u3us. We refer to [70] for more
details. To obtain the NFA for an EH(FIN) I' = (V, T, A, R), we only need to remove all
transitions (g;, a, q;) such that @ € V — T. Following this construction, for an extended
splicing system I' = (V, T, A, R) the resulting NFA has at most Q4 (I') + > ,cr(Ir] +2) =
Qa() + R(I) + 2|R| many states.

In fact, we can improve this construction by realizing that the first state of each
path describing each uu4 and usu; is only reached by A-transitions and that all out-
going transitions of the last state of the path are also A-transitions. This means that
removing A-transitions in the usual way (see e.g.[31]) and removing all superfluous
states, we can eliminate those states. In this way, the resulting NFA M has Q4(I') +

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

118

Chapter 9. Descriptional Complexity of Splicing Systems

> er(max{O, lujug| — 1} + max{0, |usus| — 1}) states where r = ui#urSus#tuy. Thus
QM) < Qa) + R(T). O

Of course, for an empty set of rules, the upper bound is tight. For non-empty rules,
at first sight it looks as if this construction is not very efficient and might introduce
unnecessary states. However, we are able to show a lower bound which is close to this
upper bound.

Lemma 9.3.2. There is an infinite sequence of languages L,,n > 1, such that each
L, is generated by an EH(FIN) I',, and each NFA accepting L, has at least Qa(I',) +
R(T,,) — 8 states.

Proof. We define L,, = L(I';;), where I';, = (V, A, R,,), with
e V=Aa,b,cd}
e A ={cabc,dd},
o R, = {b#cScHa, (ab)"#cSA#d}.

Applying the first rule repeatedly to cabc yields c(ab)*c. The second rule can only
be applied to strings c(ab)’c such that j > n. This gives c(ab)/d and c(ab)/dd for all
j = n. From this, also c(ab)’dc is obtained by the second rule. In addition, the strings
c,dc,dd are produced. Thus, L, = {c(ab)'c | i > 0} U {c(ab)/d, c(ab)/dd, c(ab)’dc |
j =2 nyUl{c,dc,dd}. The smallest NFA M, accepting this language has 2n + 4 states, as
can be shown using the extended fooling set method of [5]. As fooling set we can take
{(A,cc), (d,d), (dd, A)} U {(c(ab)’, (ab)"'dc) | 0 < i < n} U {(c(ab)~'a,b(ab)""'dc) |
1 <i < n}. As an example, a minimal NFA for L3 is shown in Figure 9.1. For all I,
Qu(T,) = 6 and R(I',) = 2n + 6. This means Q(M,,) = Qa(I',) + R(I,) — 8. O

So far, we have only considered the measure Q4. In fact, from the previous results
the values using the measure A are straightforward.

Corollary 9.3.3. For the conversion of an EH(FIN) T to an equivalent NFA M the
following bounds hold:

1. Upper bound: QM) < AT) + RI) + 1.
2. Lower bound: QM) > AT) + RT) — 8.
Proof. For (I), this follows from Lemma 9.3.1 and the fact that the minimal NFA ac-

cepting A has at most 2 + > 4 lal — 1 < A[) + 1 states. For (1), this follows from
Lemma 9.3.2 and the fact that the minimal NFA accepting A has 6 states foreachn. O

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

9.3. Describing Regular Languages by EH(FIN) and NFA

119

Figure 9.1: A minimal NFA accepting L3.

9.3.2 From NFA to EH(FIN)

We now turn to the other direction, converting an NFA to an equivalent EH(FIN).
Again, we show an upper and a lower bound.

Lemma 9.3.4. For each NFA M, there exists an equivalent EH(FIN) I" with AI) =
5:T(M)+2and RT) < 8-Q(M) + 4.

Proof. Let L be a regular language and M = (Q, %, 6, qo, F') be a minimal NFA accept-
ing L, where Q is the set of states, X the input alphabet, g the initial state, F the set of
final states and ¢ the set of transitions. We construct the extended finite splicing system
I'=(V,Z,A,R), where

e V=XUQU{Z}, where Z is a new symbol not in X U Q,
o A={Z7Z}U{Zqiaq;Z | qi,q; € Q.a € ZU{4},(gi,a,q;) € 6},

e and R consists of the following rules:
- MWqZS$Zg#A forall g € Q,
— Zqo#ASMH#ZZ,
- MqZ$ZZ#Aforall gf € F.

The initial language A contains all the words of the form Zg;aq;Z such that M can pass
from g; to g; on reading a. Thus, A is the set of all valid paths of length 1. The rules
of the form A#gZ$Zg#A connect two paths sharing the same state in the middle. Thus
we build all words in Zg;wgq;Z such that 6(g;, w) = g;. The last two rules eliminate the
initial state appearing at the beginning and the final state appearing at the end, obtaining

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

120

Chapter 9. Descriptional Complexity of Splicing Systems

words in L. This is the only way to obtain words in Z*. It is easily verified that
AD) =5-TM)+2and RT) = 4-(QM) +|F|+1) <4-QAM)+1) = 8-Q(M)+4. O

Lemma 9.3.5. There is an infinite sequence of languages L,,n > 1, such that each

L, is generated by an NFA M,,, and for each EH(FIN) T',, generating L, it holds that
AT,) + RTy) = T (My).

Proof. We define L, to be L, = {a"}. A minimal NFA accepting L, has n + 1 states
and n transitions. Obviously, there exists an EH(FIN) I" with an empty set of rules and
AT) = n generating L,,. We now show that no smaller EH(FIN) can exist. Assume
that such a smaller EH(FIN) I, exists. This means that A(T,)+R(I,) < n—1. Now, by
Corollary 9.3.3 we can construct an equivalent NFA with AT) + R() + 1 < n states.
Since we chose L, to need n + 1 states, this is a contradiction. O

Finally, we can summarize the results obtained in terms of the size of the respective
systems.

Theorem 9.3.6. The following upper and lower bounds hold, for some constant c:

1. When converting an NFA M to an equivalent EH(FIN) I':
a) Size(I') < ¢ - Size(M)
b) Size(I') > Size(M)

2. When converting an EH(FIN) I to an equivalent NFA M:
a) Size(M) < c - Size(I')?
b) Size(M) > Size(T') - 9.

Proof. Statement (I) follows directly from Lemmas 9.3.4 and 9.3.5. For (II), Lemmas
9.3.1 and 9.3.2 refer only to the number of states of M. But since QM) -1 < T (M) <
O(Q(M)?), we obtain the given bounds. O

We leave here as an open question whether the second upper bound can be lowered
to O(n) or, on the contrary, the lower bound can be improved.

9.3.3 Decidability Questions

It is known that some decidability questions for NFA such as, e.g., membership or
emptiness are solvable in polynomial time whereas the problems of equivalence or
inclusion are known to be hard, namely PSPACE-complete [74]. It is an easy ob-
servation that EH(FIN) systems can be converted to equivalent NFA and vice versa
in polynomial time. Thus, every decidability question, which is solvable for NFA in
polynomial time, is solvable in polynomial time for EH(FIN) systems as well. On
the other hand, problems being hard for NFA are hard for EH(FIN) systems as well.
Altogether, we obtain

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

9.4. Representing Regular Languages by AEH(FIN) and NFA

121

Theorem 9.3.7. The following problems are solvable in polynomial time for a given
EH(FIN) system:

1. membership
2. emptiness
3. finiteness

The following problems are not solvable in polynomial time for EH(FIN) systems un-
less P = PSPACE:

1. equivalence
2. inclusion

3. universality

9.4 Representing Regular Languages by AEH(FIN) and
NFA

As mentioned in Section 9.2, accepting splicing systems are a recently introduced
variant of splicing systems. In fact, in the context of biomolecular computing the
accepting version seems to be more natural than the generating one. So far, little is
known about the power of accepting splicing systems. It is fairly easy to show that all
regular languages can be recognized by accepting splicing systems. An upper bound is
harder to show, but based on the close similarity between the accepting and generating
variants, we conjecture the following.

Conjecture 9.4.1. L(AEH(FIN)) = REG, i.e., the class of languages accepted by
accepting extended splicing systems is exactly the class of regular languages.

It is clear that any upper bound on the size when passing from an AEH(FIN) to an
NFA provides a proof of the conjecture.

Turning to the descriptional complexity of AEH(FIN), we first show an upper and a
lower bound for the other direction.

Lemma 9.4.2. For each NFA M, there exists an equivalent AEH(FIN) I" with R(I') <
4. TM)+4-QM)+3 and AT) <2 - QM) + 2.

Proof. Given an NFA M = (Q, %, 8, qo, F), we construct the AEH(FIN) I' = (V, A, R,
YES,{,)) with

e V=XUQU{ZYES,{,)}, where Z is a new symbol notin X U Q,

e A={ZYES}U{qZ | q € 0},

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

122

Chapter 9. Descriptional Complexity of Splicing Systems

e and R consists of the following rules:
- qia#A$q#Z for all ¢;,q; € Q,a € X,(gi,a,q;) € 6,
- (#A8qo#Z,
— Atqp)$ZH#YES forall gf € F.

On a given input (w), the second rule gives gow). From this word, I' simulates the
moves of M on w using the first type of rules. If M accepts w, we get to a word gy),
for some gy € F. Then, the last rule can be applied to give YES. R(I') = 4 - T (M) +
4. F|+3<4-TM)+4-QM)+3and AT) =2 - QM) + 2. |

Lemma 9.4.3. There is an infinite sequence of languages L,,n > 1, such that each L,
is accepted by an NFA M, and for each AEH(FIN) T',, generating L,, A,) + RT,) >
T (M,) — c where ¢ > 0 is some constant.

Proof. For the proof we use a standard incompressibility argument. General infor-
mation on Kolmogorov complexity and incompressibility arguments may be found in
[36]. A similar argument in the context of descriptional complexity has been given in
[48].

Let L, be a singleton of length n and I';, an AEH(FIN) accepting L,. Then C(L,|n)
denotes the minimal size of a program describing L, and knowing the length n. Clearly,
the size of this minimal description is lower than or equal to the size of a certain encod-
ing cod(I',) of I, and the size |P| of a program P which describes how an AEH(FIN)
is encoded and how an AEH(FIN) describes L,. Obviously, |P| does not depend on
Ly, T, and n. An encoding cod(I',) of I';, consists of encodings cod(T), cod(A), and
cod(R).

It is known due to Theorem 2.3. of [36] that there exists an incompressible string
wy, of length n such that C(wy|n) > n. Let L, = {w,} and ¢ = |T| + | P|. Now, assume by
way of contradiction that there exists an AEH(FIN) I';, accepting L,, such that A(I';) +
R(T,;) < n—c. Then,

C(Lyln) < |cod(Ty)| + | P
< leod(A)| + [cod(R)| + [cod(T)| + |P|
< AT +RT,) +c
< n—c+c=n.

This is a contradiction to C(L,|n) > n. Thus, A(I,) + R(I,) = n — ¢ which shows the
lemma since L, is accepted by an NFA M,, having n transitions. O

As mentioned before, we do not yet know an upper bound when passing from an
AEH(FIN) to an NFA (or an EH(FIN)). At first sight, it can be expected that AEH(FIN)
can be more concise than EH(FIN) in certain cases, since an EH(FIN) as a generating
device must explicitly generate the whole word, whereas the AEH(FIN) as an accept-
ing device, roughly speaking, just needs to test the “relevant parts” of the word. This

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

9.4. Representing Regular Languages by AEH(FIN) and NFA

123

is illustrated by the the following very simple AEH(FIN) which accepts the language
abcla, b, c}*.

Example 9.4.4. LetT = (V,{a,b,c},A,R,YES,{,)) be an AEH(FIN) with
o V=A{a,b,c,YES, ()},
o A=(cYES),
e R = {c#YES $A#{abc}.

In this case, an equivalent EH(FIN) needs extra information to generate the {a, b, c}*-
part, whereas the AEH(FIN) only has to check whether the input starts with abc. Thus,
an EH(FIN) needs additional elements whose size is in the order of the size of the
alphabet. However, even for languages over a one-letter alphabet, we can show a
significant increase in size when passing from an AEH(FIN) to an EH(FIN).

Specifically, we prove that the increase in size when passing from an AEH(FIN) to
an NFA (or an EH(FIN)) cannot be bounded by any polynomial function.

We first show an auxiliary result stating that the intersection of two regular languages
can be accepted by an AEH(FIN) of size O(m + n), where m and n are the sizes of the
AEH(FIN) for each of the languages.

Lemma 9.4.5. For two regular languages L and L,, there exist two AEH(FIN) 'y and
I'y accepting Ly and L, such that there is an AEH(FIN) I" with LI') = Ly N Ly and
AT) = ATy + AT) + 3 and RT) = RT'1) + RT) + 6.

Proof. LetT'| and I'; be two AEH(FIN) constructed from the NFA for L; and L; as in
Lemma 9.4.2, where I'y = (V1,A1, R, YES |,(,)) and I'; = (V2, A2, Ry, YES ,,

(,)). We assume without loss of generality that the state sets of the original automata
are disjoint. We construct I' = (V,A, R, YES, (,)) with

o V=V UV, U{YES, Z}, where Z is a new symbol not in V| U V,,
e A=A UA,U{ZYESZ},
® R=RiURy U{YESH#HZSYES \#A, Z#YES SA#YES ,}.

Since I'; and I'; are constructed as in Lemma 9.4.2, all rules involve a state symbol
of the original automata. This means that no interference between the derivations of
I'1 and I'; can take place. With this in mind, it is easy to see that I" generates YES on
input (w) if and only if both I'; and I"; accept w and that I" has the required size. O

It is more or less a folklore result (see for instance [80]) that for two minimal NFA
M,, and M,, accepting the languages (a¢")* and (a™)*, where n and m are coprimes, any
NFA accepting the intersection of these languages has at least Q(M,,) - Q(M,,) states.
We use this fact to show the following result.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

124

Chapter 9. Descriptional Complexity of Splicing Systems

Theorem 9.4.6. There is no polynomial function f such that for any AEH(FIN) T there
exists an equivalent NFA M such that f(Size(I')) > Size(M).

Proof. For each k € N, let L* denote the language (a*)*. Moreover, let p; denote the
ith prime number. We now define an infinite sequence of languages L,,n > 1, where

L,= ﬁ P
i=1

Any NFA accepting L¥ needs at least k states. By the intersection result stated above,
for any NFA M,, accepting L,

Q(Mn) > ﬁ Di-
i=1

Using Lemmas 9.4.2 and 9.4.5, we can construct an AEH(FIN) I',, accepting L,,. Start-
ing from the NFA for L”/, i > 1, each having p; states and p; transitions, we con-
struct the equivalent AEH(FIN) using Lemma 9.4.2. Each AEH(FIN) has at most size
10p; + 5. We then iteratively apply the construction of Lemma 9.4.5 to obtain the
AEH(FIN) I',, for L, such that
n n
Size(I’,) <) (10p; + 14) = 10
i=1 i=1

pi + 14n.

Now, assume there exists a polynomial function f such that f(Size(I')) > Q. Then,
since Size(M) < wa, there is a polynomial f’ such that f’(Size(T')) > Size(M). Let
m be the degree of the largest polynomial in f’. Then f’(x) < ¢ - x™ for some c. Since
Z?:] Di < I’l3,

f/(Size(T',)) < ¢ - (Size(Ty))" < ¢- (107> + 14n)™ < ¢ - n®™.

This means that Q(M,) is polynomial in n. But since Q(M,,) > [~ p; > 2", thisis a
contradiction. So there exists no such f. |

Given the bounds proved in Section 3, this result also extends to EH(FIN).

Corollary 9.4.7. There is no polynomial function f such that for any AEH(FIN) T there
exists an equivalent EH(FIN) I such that f(Size(T')) > Size(I”).

9.5 Final Remarks

We have investigated the descriptional complexity of EH(FIN) and AEH(FIN). It turned
out that EH(FIN) and NFA are not only equally powerful concerning their generative
capacity, but are also nearly equally powerful concerning their descriptional complex-
ity. Similar results have been obtained for simulating NFA by AEH(FIN). It is not

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

9.5. Final Remarks 125

known whether every AEH(FIN) can be simulated by some NFA, but there is a lower
bound for that trade-off which is not bounded by a polynomial.

Thus, one important open question we would like to pose is whether one can find an
upper bound for the increase in size when passing from an AEH(FIN) to an NFA. This
would also prove our conjecture about the power of these systems.

As mentioned in the introduction, this work should be seen only as a first step in
studying descriptional complexity aspects of splicing systems. So we focused here
on regular languages, while there are many types of splicing systems with more than
regular power. Especially describing context-free languages using splicing systems
could be of interest. Our results for AEH(FIN) suggest the possibility of significant
savings also for other language classes.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

10 Conclusions and Further Research

10.1 Conclusions

This thesis studied several new aspects of splicing systems, a well-known formalism
of molecular computation. There are several good reasons to consider that the spli-
cing system is an attractive model to study. On one hand, the biochemical operation
that is the basis of splicing is well understood and widely used in biochemical engi-
neering. Moreover, there is a close match between the biochemical operation and its
formal model. All this causes splicing to be a prime candidate for actual experimental
implementation of theoretical algorithms. In fact, we have seen in Section 2.2 that
many important advances in experimental molecular computing have been based on
the splicing operation. On the other hand, the formalization is simple and elegant in
its definition. Even disregarding its biochemical origin, the operation is very natural
and fits in seamlessly with other operations on strings studied in theoretical computer
science. Also computation using this operation is interesting since, being based solely
on recombination of given elements, it is fundamentally different from other modes of
computation, which are in most cases based on rewriting.

The work in this thesis reflects the versatility of the splicing formalism. The first
part of the the thesis, comprising Chapters 3 through 5, highlights its character as for-
malization of a biochemical process, whereas the second part, consisting of Chapters
6 through 9, focuses on splicing as a formal language operation.

The main contribution of the first part is that it challenges the common assumption
that a finite, more realistic definition of splicing systems is necessary computationally
weak, and that universality can only be obtained at the price of additional unrealistic
control features.

Indeed, in Chapter 3 we introduced an alternative definition of the evolution and
language of a splicing system, which we can claim to have a degree of biological real-
ism comparable to that of Head’s original definition. We showed that in this definition,
extended finite splicing systems can be as powerful as Turing machines. The essence
of the new definition is that we allow for the possibility of replacing existing strings by
new ones (which is possible in biochemistry) instead of only adding new strings. The
language is defined as those strings which are created and do not disappear definitively.

Also, if we weaken these systems by imposing gradual replacement via the new no-
tion of delay (the replaced strings ’survive’ for some time after replacement), we can
shed a new light on the limited computational power of basic finite splicing systems:

127

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

128

Chapter 10. Conclusions and Further Research

For arbitrary large, but finite delay splicing systems can generate non-context-free lan-
guages. Only infinite survival leads to systems that generate only regular languages.

This approach can be generalized, with similar results, to encompass the language
definition used in time-varying H systems, which shares the property that not all strings
are preserved from one splicing step to the next. Thus we can see both models as two
types of non-preserving splicing, and add a third type combining properties of both.
A useful result arising from this generalization is that in systems based on our new
definition of the evolution of splicing systems we can equivalently use another more
traditional definition of the language, namely as the union of all words obtained at any
step.

In Chapter 4, we reexamined distributed time-varying H systems in light of the fact
that their language definition alone is powerful enough for computational complete-
ness, making the distributed architecture unnecessary. We proposed two alternative,
weaker language definitions based on the usual definition of splicing systems: No
strings disappear and only new strings are added. We showed that if all strings pass
through the components, these systems are regular. However, if the newly created
strings are passed to the next component, and the existing strings remain accessible to
the current one, then we obtain computational completeness for systems with at least
4 components.

Chapter 5, we showed that allowing more than one rule to be simultaneously ap-
plied to the same string, reflecting what actually happens in biochemistry, gives rise to
several possible formalizations, most of which, in its finite version, have more than the
regular power of normal finite splicing systems. In fact, k, p-multiple splicing, mean-
ing that k rules out of at most p can be applied to a string at the same time, is universal
fork=p=2andforallk > p > 3.

The second part of the thesis explores other territory. The splicing model has been
well studied with respect to its computational power. But surprisingly enough, com-
plexity considerations have hardly been addressed, even though these are a vital aspect
of a computational model, especially when it comes to using or applying the model for
practical purposes. In this thesis we initiated the study of these issues, and provided
many new insights into the nature of splicing systems.

In Chapters 6 and 7, we introduced a notion of time and space complexity for spli-
cing systems. Time complexity was defined as the minimal number of rounds of rule
applications necessary to generate the word. Space complexity was defined as the size
of the production tree of a word. These definitions were used to define and charac-
terize complexity classes for splicing systems. Among other results, we presented a
number of exact characterizations of known Turing machine classes in terms of spli-
cing classes:

o SplTime[poly] = PSPACE.

e SplSpace[poly] = NP.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

10.2. Directions for Future Research

129

o SplSpace[exp] = NEXPTIME.

The constructions showed that splicing systems provide a very natural medium for
divide-and-conquer strategies.

Also, as we showed in Chapter 8, these notions opened the way to regarding splicing
systems as problem solvers. Using a new accepting variant of splicing systems, we
showed that known NP-complete problems SAT and HPP can be solved in linear time
using splicing systems.

Finally, Chapter 9 addressed the descriptional complexity of splicing systems. We
defined fair measures, taking into account the total size of both the rule set and the ini-
tial language. We showed that representations of regular languages by finite extended
splicing systems are approximately of the same size as the corresponding NFAs. How-
ever, using the accepting variant of accepting finite extended splicing systems savings
can be obtained which are not bounded by any polynomial function.

10.2 Directions for Future Research

Since most of the chapters open new areas of research on splicing systems, a range of
directions of future research deriving from this thesis can be identified. Several of these
issues have been mentioned in the respective chapters. Moreover, the new features
can be studied in any combination, providing another source of research directions.
Especially, it makes sense to study the complexity issues introduced in the second part
for the new systems introduced in the first part. Here we will not discuss in detail all
these possibilities, but rather highlight a few directions of further research that we feel
are particularly interesting or promising.

10.2.1 Computational Complexity of Non-preserving Systems

As finite, universal systems, non-preserving H systems are an attractive model and an
obvious candidate for the study of their complexity. As a first observation, we can say
that for each system with the traditional language definition, we can easily construct
an equivalent (also in complexity) non-preserving system, just by adding rules to keep
supplying all words in the initial language. On the other hand, we may be able to extend
the construction of Theorem 6.3.5 to these systems to prove a similar upper bound. At
the same time, it is not very hard to construct a non-preserving system generating
a*', which is a non-context-free language, in logarithmic time. This suggests that the
class SplTime[O(log n)] is likely to be an interesting class for these systems. In this
respect, we note that for traditional systems with regular rules we have so far not found
evidence of any non-regular languages in this class.

Also the space complexity of these systems is worthy of further study. Indeed,
for traditional systems the definition of space in terms of the size of the production
tree makes sense, since all intervening and intermediate words are retained. For non-
preserving systems, however, we can consider the space to be 'reused’ when a string

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

130

Chapter 10. Conclusions and Further Research

is replaced by another. In fact, especially the non-reflexively evolving definition rep-
resents a very pure way of recombination, where a given set of elements is only reor-
ganized, not enlarged. In this case, the space may be more adequately expressed by all
initial words used in the derivation, this is, the sum of the lengths of the leaf labels in
the production tree.

10.2.2 Descriptional Complexity and the Characterization of Basic
Splicing Systems

While the work in Chapter 9 yielded several very interesting results, it did in some
way only scratch the surface of the descriptional complexity issues which can be con-
sidered. One obvious direction of research is extending this work to more powerful
models of splicing. Here a very interesting question would be if we can define descrip-
tional parameters which limit the computational power of complete systems to yield
some smaller class. On the other hand, even in the realm of the regular languages, we
actually know very little. Given a regular language, we have no way to construct a
splicing systems to generate it, other than via the corresponding FA. Also we have no
idea whether the resulting splicing system is minimal, or have any technique to show
such properties. Looking at descriptional complexity issues in this way, it seems that
these are closely related to the main long-standing open issue in splicing theory: a
characterization of the family of languages generated by non-extended finite splicing
systems (see [7]). Looking at these issues from both perspectives might be a good way
to approach them. For instance, one might ask what languages can be generated by
splicing systems with only one rule? An answer to this or similar questions is likely to
give an important insight in how splicing systems work. It is probable that advances in
either of the two questions will have an immediate importance for the other.

10.2.3 Accepting Splicing Systems

While accepting splicing systems are a natural and straightforward variant of generat-
ing splicing systems, it does not seem that the two types are trivially related as in many
other formalisms, for instance Chomsky grammars. The specific nature of splicing
systems, using two strings to generate new ones, makes that proof techniques for the
generating case do not necessary carry over to the accepting case. A good example
is the seemingly simple question whether accepting finite extended systems generate
only regular languages or more. From the complexity bounds we know that if there
exists any construction converting such a system into a generating one or an FA, it
will involve a blow-up in size of the system. In general, we believe there are many in-
teresting and challenging questions related to these systems. Of course the languages
accepted by the non-extended case can be studied, a class which may well be different
from the corresponding generating class, as well as reflexive accepting systems (for
which we do have a characterization in the generating case). Also, here we defined
these systems providing the input word in brackets. This makes sense, since in the

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

10.2. Directions for Future Research 131

unbracketed case the system accepts a word w, it will accept all words having w as a
subword (it is interesting to realize that a splicing system has no way of identifying
the ends of a word). Nevertheless, the study of the unbracketed case may also be of
interest from a formal language point of view.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY
Remco Loos
ISBN:978-84-691-9750-9/DL:T-1250-2008

List of Publications

Journal Articles

1. R. Loos, An alternative definition of splicing (2006), Theoretical Computer
Science, 358: 75-876.

2. R. Loos, Time-varying H systems revisited (2006), Journal of Universal Com-
puter Science, 12:10, 1439-1463.

3. R. Loos and V. Mitrana (2007), Non-preserving splicing with delay, Interna-
tional Journal of Computer Mathematics, 84(4): 427-436.

4. R. Loos and M. Ogihara (2007), Complexity theory for splicing systems, Theo-
retical Computer Science, 386: 132—-150.

5. T. Ishdorj, R. Loos and I. Petre (2007), Computational efficiency of intermolec-
ular gene assembly, Fundamenta Informaticae, in press.

6. R. Loos and M. Ogihara (2007), Time and space complexity for splicing sys-
tems, submitted for journal publication.

7. R. Loos, A. Malcher and D. Wotschke (2007), Descriptional complexity of spli-
cing systems, submitted for journal publication.

8. R. Loos, F. Manea and V. Mitrana (2007), On small, reduced and fast universal
accepting networks of splicing processors, submitted for journal publication.

Articles in LNCS Volumes

1. R. Loos, C. Martin-Vide and V. Mitrana (2006), Solving SAT and HPP with Ac-
cepting Splicing Systems, PPSN IX, Lecture Notes in Computer Science 4193,
Springer-Verlag, 771-777.

2. R. Loos (2007), On accepting networks of splicing processors of size 3, CiE
2007, Lecture Notes in Computer Science 4497, 497-506.

3. R. Loos and M. Ogihara (2007), Complexity theory for splicing systems, DLT
2007, Lecture Notes in Computer Science 4588, Springer-Verlag, 300-311.

4. R. Loos, V. Mitrana and M. Ogihara (2007), Multiple splicing, DNA 13, Lecture
Notes in Computer Science 4848, Springer-Verlag, in press.

133

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

134

List of Publications

Articles in Refereed Conference Proceedings

1. R.Loos and V. Mitrana (2005), Non-preserving splicing with delay, Pre-proceedings
of the 11th International Meeting on DNA computing, London, Canada, 354—
363.

2. B. Nagy and R. Loos (2007), Parallelism in DNA and membrane computing,
Proceedings of Computability in Europe: Computation and Logic in the Real
World, Siena, Italy, 283-287.

3. R. Loos, A. Malcher and D. Wotschke (2007), Descriptional complexity of spli-
cing systems, Proceedings of the 9th International Workshop on Descriptional
Complexity of Formal Systems, High Tatras, Slovakia, 93—104.

4. T. Ishdorj, R. Loos and I. Petre (2007), Computational Efficiency of Intermolec-
ular Gene Assembly, Workshop on Language Theory in Biocomputing, Kingston,
Canada, to appear.

Volumes Edited

1. R. Loos, S. Fazekas and C. Martin-Vide eds. (2007), Proceedings of the Interna-
tional Conference on Language and Automata Theory and Applications, Reports
of the Research Group on Mathematical Linguistics 35/07, Universitat Rovira i
Virgili, Tarragona, Spain.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

Bibliography

[1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

L.M. Adleman, Molecular Computation of Solutions To Combinatorial Prob-
lems, Science, 266: 1021-1024, 1994.

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Molecular
Biology of the Cell, 3rd ed., Garland Publishing, New York, 1994.

Y. Benenson, B. Gil, U. Ben-Dor, R. Adar and E. Shapiro, An autonomous molec-
ular computer for logical control of gene expression, Nature, 429: 423-429,
2004.

Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh and E. Shapiro, Pro-
grammable and autonomous computing machine made of biomolecules, Nature,
414: 430-434, 2001.

J-C. Birget, Intersection and union of regular languages and state complexity,
Information Processing Letters, 43: 185-190, 1992.

P. Bonizzoni, C. Ferretti, G. Mauri and R. Zizza, Separating some splicing mod-
els, Information Processing Letters, 76(6): 255-259, 2001.

P. Bonizzoni and G. Mauri, Regular splicing languages and subclasses, Theoreti-
cal Computer Science, 340: 349-363, 2005.

R. V. Book, Time-bounded grammars and their languages, Journal of Computer
and System Sciences, 5(4): 397-429, 1971.

C.S. Calude and Gh. Paun, Computing with Cells and Atoms : An Introduction to
Quantum, DNA and Membrane Computing, Taylor & Francis, London, 2001.

M. Cavaliere, N. Jonoska and N.C. Seeman, Biomolecular implementation of
Computing Devices with Unbounded Memory, DNA 10, Lecture Notes in Com-
puter Science 3384, Springer-Verlag, 35-49, 2005.

A. Condon, Automata make antisense, Nature 429: 351-352, 2004.

K. Culik, II and T. Harju, Splicing semigroups of dominoes and DNA, Discrete
Applied Mathematics, 31: 261-277, 1991.

A. Ehrenfeucht and G. Rozenberg, Forbidding-Enforcing Systems, Theoretical
Computer Science, 292: 611-638, 2003.

135

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

136

Bibliography

[14] J. Dassow and Gh. Paun, Regulated Rewriting in Formal Language Theory,
Spinger-Verlag, 1989.

[15] R. Freund and F. Freund, Test tube systems: when two tubes are enough. Devel-
opments in Language Theory 1999, World Scientific, 338-350, 2000.

[16] P. Frisco and C. Zandron, On variants of communicating distributed H systems,
Fundamenta Informaticae 21: 1001-1012, 2001.

[17] M.R. Garey and D.S. Johnson, Computers and Intractability - A Guide to the
Theory of NP-Completeness, Freeman, New York, 1979.

[18] A. V. Gladkii, On the complexity of derivations in phase-structure grammars,
Algebra i Logika Seminar, 3(5-6): 29-44, 1964 (in Russian).

[19] J. Goldstine, M. Kappes, C.M.R. Kintala, H. Leung, A. Malcher and
D. Wotschke, Descriptional complexity of machines with limited resources, Jour-
nal of Universal Computer Science, 8(2): 193-234, 2002.

[20] E. Goode and D. Pixton, Splicing to the limit, in: [34], 189-201.

[21] T. Harju and M. Margenstern, Splicing systems for universal Turing machines,
DNAI0, Lecture Notes in Computer Science 3384, Springer-Verlag, 151-160,
2005.

[22] T. Head, Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bulletin of Mathematical Biology, 49: 737—
759, 1987.

[23] T. Head, Hamiltonian paths and double stranded DNA, in [59], 80-92.

[24] T. Head, Splicing systems, aqueous computing and beyond, Unconventional
Models of Computation, UMC’2K, Proceedings of the Second International
Conference, Brussels, Belgium, 13-16 December 2000. Springer-Verlag, 68—84,
2001.

[25] T. Head, X. Chen, M.J. Nichols, M. Yamamura and S. Gal, Aqueous solutions of
algorithmic problems: emphasizing knights on a 3X3, DNA7, Lecture Notes in
Computer Science 2340, Springer-Verlag, Berlin, 191-202, 2002.

[26] T. Head, X. Chen, M. Yamamura and S. Gal, Aqueous computing: a survey with
an invitation to participate, Journal of Computer Science and Technology, 17:
672-681, 2002.

[27] T. Head, D. Pixton and E. Goode, Splicing Systems: Regularity and below,
DNAS, Lecture Notes in Computer Science 2568, Springer-Verlag, 262-268,
2003.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

Bibliography

137

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

T. Head, G. Rozenberg, R. Bladergroen, C.K.D. Breek, PH.M. Lommerse and H.
Spaink, Computing with DNA by operating on plasmids, Bio Systems 57: 87-93,
2000.

J. Hartmanis, On the Succinctness of Different Representations of Languages,
SIAM Journal of Computing 9(1): 114-120, 1980.

J. Hartmanis and S. R. Mahaney, Languages simultaneously complete for one-
way and two-way log-tape automata, SIAM Journal of Computing, 10(2): 383—
390, 1981.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages
and Computation, Addison-Wesley, Reading, MA, 1979.

L. Ilie and V. Mitrana, Crossing-over on languages: a formal representation of
chromosome recombination, in Grammars and Automata for String Processing,
Taylor and Francis, London, 391-401, 2003.

M. Ito, Gh. Paun and S. Yu eds., Words, Semigroups, and Transductions, World
Scientific Publishing, Singapore, 2001.

N. Jonoska, Gh. Paun and G. Rozenberg eds., Aspects of Molecular Computing,
Lecture Notes in Computer Science 2950, Springer-Verlag, 2004.

R. E. Ladner and N. A. Lynch, Relativization of questions about logspace com-
putability, Mathematical Systems Theory, 10(1): 19-32, 1976.

M. Li and P. Vitény, An Introduction to Kolmogorov Complexity and Its Applica-
tions, Springer-Verlag, New York, 1993.

R. Lipton, Using DNA to solve NP-complete problems, Science, 268: 542-545,
2005.

R. Loos, An alternative definition of splicing, Theoretical Computer Science,
358: 75-87, 2006.

R. Loos, Time-varying H systems revisited, Journal of Universal Computer
Science 12:10, 1439-1463, 2006.

R. Loos, A. Malcher and D. Wotschke, Descriptional complexity of splicing sys-
tems, Proceedings of the 9th International Workshop on Descriptional Complex-
ity of Formal Systems, High Tatras, Slovakia, 93—-104, 2007.

R. Loos, A. Malcher and D. Wotschke, Descriptional complexity of splicing sys-
tems, submitted for journal publication, 2007.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

138

Bibliography

[42] R. Loos, C. Martin-Vide and V. Mitrana, Solving SAT and HPP with Accepting
Splicing Systems, PPSN IX, Lecture Notes in Computer Science 4193, Springer-
Verlag, 771-777, 2006.

[43] R. Loos and V. Mitrana, Non-preserving splicing with delay, International Jour-
nal of Computer Mathematics, 84(4): 427-436, 2007.

[44] R. Loos, V. Mitrana and M. Ogihara, Multiple splicing, DNA 13, Lecture Notes
in Computer Science, 4848, Springer-Verlag, in press, 2007.

[45] R. Loos and M. Ogihara, Complexity theory for splicing systems, Proceedings
DLT 2007, Lecture Notes in Computer Science 4588, Springer-Verlag, 300-311,
2007.

[46] R. Loos and M. Ogihara, Complexity theory for splicing systems, Theoretical
Computer Science 386: 132—-150, 2007.

[47] R. Loos and M. Ogihara, Time and space complexity for splicing systems, sub-
mitted for journal publication, 2007.

[48] A. Malcher, On two-way communication in cellular automata with a fixed num-
ber of cells, Theoretical Computer Science 330(2): 325-338, 2005.

[49] M. Margenstern and Y. Rogozhin, Time-varying distributed H systems of degree
1 generate all recursively enumerable languages, in [33], 329-340.

[50] M. Margenstern, Y. Rogozhin and S. Verlan, Time-varying distributed H systems
of degree 2 can carry out parallel computations, DNAS, Lecture Notes in Com-
puter Science 2568, Springer-Verlag, 326-336, 2003.

[51] M. Margenstern, Y. Rogozhin and S. Verlan, Time-varying distributed H systems
with parallel computations: the problem is solved, DNA9, Lecture Notes in Com-
puter Science 2943, Springer-Verlag, 48-53, 2004.

[52] V. Mitrana, Crossover systems: a generalization of splicing systems, Journal of
Automata, Languages, Combinatorics, 2: 151-160, 1997.

[53] M. Ogihara, Relating the minimum model for DNA computation and Boolean
circuits, Proceedings of the 1999 Genetic and Evolutionary Computation Con-
ference, 1817-1821, Morgan Kaufmann Publishers, San Francisco, CA, 1999.

[54] M. Ogihara and A. Ray, The minimum DNA computation model and its com-
putational power, Unconventional Models of Computation, 309-322, Springer,
Singapore, 1998.

[55] Q. Ouyang, P. D. Kaplan, S. Liu and A. Libchaber, DNA solution of the maximal
clique problem, Science, 278: 446-449, 1997.

UNIVERSITAT ROVIRA I VIRGILI

FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

Bibliography

139

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading,
MA, 1994.

A. Paun, Extended H systems with permitting contexts of small radius, Funda-
menta Informaticae, 31: 185-193, 1997.

A. Paun, On time-varying H systems, Bulletin of the EATCS, 67: 157-164, 1999.

Gh. Paun, ed., Computing with Bio-Molecules. Theory and Experiments,
Springer-Verlag, Singapore, 1998.

Gh. Paun, DNA Computing; Distributed splicing systems, Structures in Logic
and Computer Science, Lecture Notes in Computer Science, 1261, Springer-
Verlag, 309-327, 1997.

Gh. Paun, DNA computing based on splicing: universality results, Proc. of Sec-
ond Intern. Collog. Universal Machines and Computations, Metz, Vol I, 67-91,
1998.

Gh. Pdun, DNA computing: Distributed splicing systems, Structures in Logic and
Computer Science, Lecture Notes in Computer Science, 1261, Springer-Verlag,
351-370, 1997.

Gh. Paun, Regular extended H systems are computationally universal, Journal of
Automata, Languages, Combinatorics, 1(1): 27-36, 1996.

Gh. Paun, G. Rozenberg, and A. Salomaa, Computing by splicing, Theoretical
Computer Science, 168(2): 32-336, 1996.

Gh. Paun, G. Rozenberg, and A. Salomaa, DNA Computing - New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

K. Rinaudo, L. Bleris, R. Maddamsetti, S. Subramanian, R. Weiss and Y. Benen-
son, A universal RNAi-based logic evaluator that operates in mammalian cells,
Nature Biotechnology, to appear (available on-line), 2007.

P. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature 440:
297-302, 2006.

G. Rozenberg and A. Salomaa, Handbook of Formal Languages, Springer-
Verlag, Berlin, 1997.

G. Rozenberg and H. Spaink, DNA computing by blocking, Theoretical Computer
Science, 292: 653-665 2003.

D. Pixton, Regularity of splicing languages, Discrete Applied Mathematics,
69:101-124, 1996.

UNIVERSITAT ROVIRA I VIRGILI
FINITE MODELS OF SPLICING AND THEIR COMPLEXITY

Remco Loos

ISBN:978-84-691-9750-9/DL:T-1250-2008

140

Bibliography

[71] J. H. Reif, Parallel molecular computation, Proceedings of the 7th ACM Sympo-
sium on Parallel Algorithms and Architecture, 213-223, ACM Press, New York,
NY, 1995.

[72] W. Ruzzo, On uniform circuit complexity, Journal of Computer and System Sci-
ences, 22:365-383, 1981.

[73] W. J. Savitch, Relationships between nondeterministic and deterministic tape
complexities, Journal of Computer and System Sciences, 4: 77-192, 1970.

[74] L. Stockmeyer and A.R. Meyer, Word problems requiring exponential time: pre-
liminary report, Fifth Annual ACM Symposium on Theory of Computing, 1-9,
1973.

[75] H. Venkateswaran, Properties that characterize LOGCFL, Journal of Computer
and System Sciences, 43:380-404, 1991.

[76] S. Verlan, A frontier result on enhanced time-varying distributed H systems with
parallel computations, Theoretical Computer Science 344(2-3): 226-242, 2005.

[77] S. Verlan, Communicating distributed H systems with alternating filters, in [34],
367-384.

[78] S. Verlan and M. Margenstern, About splicing P systems with one membrane,
Fundamenta Informaticae 65, 279-290 (2005)

[79] S. Verlan and R. Zizza, 1-splicing vs. 2-splicing: Separating results, Proceedings
of WORDS’03, 4th International Conference on Combinatorics on Words, Turku,
Finland, TUCS General Publication 27, 320-331, 2003.

[80] D. Wotschke, Descriptional Complexity, Lecture Notes, Universitidt Frankfurt,
1984.

