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About the Thesis

The present work is dedicated to a very active branch of natural computing
(which tries to discover the way nature computes, especially at a biological level),
namely membrane computing, more precisely, to those models of membrane sys-
tems mainly inspired from the functioning of the neural cell.

Membrane computing area was initiated by Gh. Păun at the end of 1998 and it
deals with seeking of computing models inspired by the structure and function-
ing of the living cell. The models obtained – in literature they are called P systems
– process multisets of symbols (which are usually called objects) in a distributed
parallel manner, inside a membrane structure of a cellular type or of a tissue-like
type. There are various classes of P systems many of them being universal from
a computational point of view (i.e., equivalent in power with Turing machines).

The present dissertation contributes to membrane computing in three main
directions. First, we introduce a new way of defining the result of a computation
by means of following the traces of a specified object within a cell structure or
a neural structure. Then, we get closer to the biology of the brain, considering
various ways to control the computation by means of inhibiting/de-inhibiting pro-
cesses. Third, we introduce and investigate in a great – though preliminary, as
many issues remain to be clarified – detail a class of P systems inspired from the
way neurons cooperate by means of spikes, electrical pulses of identical shapes.

A frightening thought for a computer scientist is that there might be com-
pletely different ways of designing computing machinery, that we may miss by
focusing on incremental improvements of current designs. In fact, we know that
there exist much better design strategies, since the human brain has information
processing capabilities that are in many aspects superior to our current comput-
ers. Furthermore the brain does not require expensive programming, debugging
or replacement of failed parts, and it consumes just 10-20 Watts of energy.

Unfortunately, most information processing strategies of the brain are still a
mystery, and even the most basic questions concerning the organization of the
computational units of the brain and the way in which the brain implements
learning and memory have not yet been answered. They are waiting to be unrav-
eled by concerted efforts of scientists from many disciplines. Computer science
is one of the disciplines from which substantial contributions are expected.

The interest for the various models of P systems does not come only from
their direct biological motivation but also from the fact that different variants can
compute at the level of Turing machine, where several types of P systems can be
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used as a framework for devices which solve computationally hard problems in
a polynomial time.

Recently, membrane computing also proved to be a fruitful framework for ap-
plications in several areas, especially in biology and bio-medicine. The website
of the domain, at http://psystems.disco,unimib.it, provides a comprehensive in-
formation in this respect.

The present thesis addresses especially problems related to the computing
power and he computational efficiency of the models we introduce. For instance,
starting with Chapter 3 - where itineraries (traces) of objects in a membrane struc-
ture are considered -, and continuing in Chapter 4, several results concerning the
power of models involving the neural concept of inhibition/de-inhibition are
given altogether with other results concerning the simulation of Boolean gates
and circuits.

In Chapter 5, we address a new concept in P systems area based on spiking
neurons. Here, we formalize the process where a neuron fires at certain points
in time sending through its axon (and its dendrites) a stereotyped electric pulse
which is actually the action potential or the spike. The size and shape of a spike
is independent from the input to the neuron, but the time when a neuron fires
depends on its input. Hence, we use the time as the support of information.

The study of spiking neural P systems was very active in the last couple of
years. We present here only part of the results of research in which we were
involved. A simulator for the spiking neural P systems is described in Chapter 6.

Some biological information regarding the neural cell as well as some prereq-
uisites from theoretical computer science needed along this work can be found in
Chapter 2. A short history of the Theory of Computation and Molecular Comput-
ing is given in Chapter 1.

Conclusions and possible directions for future research are given at the end of
each section or chapter.

Large portions of Chapters 3, 4, and 5 have appeared in the following papers:

• Chapter 3:

– [41] M. Ionescu, C. Martı́n-Vide, Gh. Păun: P systems with
symport/antiport rules: The traces of objects, Grammars, 5, 2002, 65–
79.

– [39] M. Ionescu, C. Martı́n-Vide, A. Păun, Gh. Păun: Membrane sys-
tems with symport/antiport: (Unexpected) Universality results, Pro-
ceedings of The 8th International Meeting on DNA Based Computers (M.
Hagiya, A. Obuchi, eds.), Sapporo, Japan, 2002, 151–160, and LNCS
2568, Springer, Berlin, 2003, 281–290.

– [40] M. Ionescu, C. Martı́n-Vide, A. Păun, Gh. Păun: Unexpected uni-
versality results for three classes of P systems with symport/antiport,
Natural Computing, 2(4), 2003, 337–348.

UNIVERSITAT ROVIRA I VIRGILI 
MEMBRANE COMPUTING: TRACES, NEURAL INSPIRED MODELS, CONTROLS 
Armand-Mihai Ionescu 
ISBN:978-84-691-9877-3/DL:T-127-2009



9

– [52] G. Liu, M. Ionescu: Further remarks on trace languages in P sys-
tems with symport/antiport, Proceedings of Seventh Workshop on Mem-
brane Computing (WMC7), Leiden, The Nederlands, 2006, 417–428.

• Chapter 4:

– [13] M. Cavaliere, M. Ionescu, T.-O. Ishdorj: Inhibiting/de-inhibiting
rules in P systems, Proceedings of Fifth Workshop on Membrane Computing
(WMC5), and LNCS 3365, Springer, Berlin, 2005, 224–238.

– [14] M. Cavaliere, M. Ionescu, T.-O. Ishdorj: Inhibiting/de-inhibiting
P systems with active membranes, Cellular Computing (Complexity As-
pects), ESP PESC Exploratory Workshop, Fénix Editora, Sevilla, 2005,
117–130.

– [37] M. Ionescu, T.-O. Ishdorj: Boolean circuits and a DNA algorithm in
membrane computing, Pre-proceedings of the 6th Workshop on Membrane
Computing, Vienna, 2005, 410–438, and LNCS 3850, Springer, Berlin,
2006, 272–291.

• Chapter 5:

– [43] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems,
Fundamenta Informaticae, 71(2-3), 2006, 279–308.

– [16] H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On
string languages generated by spiking neural P systems, Fundamenta
Informaticae, 75(1-4), 2007, 141–162.

– [19] H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa: On trace lan-
guages generated by (small) spiking neural P systems, Brainstorming
Week on Membrane Computing 2006, and Eighth International Workshop
on Descriptional Complexity of Formal Systems (DCFS 2006), June 21-23,
2006, Las Cruces, New Mexico, USA, 94–105.

– [18] H. Chen, M. Ionescu, T.-O. Ishdorj, A. Păun, Gh. Păun, M.J. Pérez-
Jiménez: Spiking neural P systems with extended rules: Universality
and languages, submitted.

– [42] M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Comput-
ing with spiking neural P systems: Traces and small universal sys-
tems, Proceedings of The 12th International Meeting on DNA Computing
(DNA12) (C. Mao, T. Yokomori, B.-T. Zhang, eds.), Seul, June 2006, 32–
42.

– [44] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems
with an exhaustive use of rules, International Journal of Unconventional
Computing, 3, 2007, 135–153.

– [17] H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spik-
ing neural P systems, Proceedings of the Eighth International Conference
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on Electronics, Information, and Communication, Ulaanbaatar, Mongolia,
June 2006, 49–52.

– [46] M. Ionescu, D. Sburlan: Some applications of spiking neural P
systems, Proceedings of the Eighth Workshop of Membrane Computing,
WMC8, Thessaloniki, Greece, June 2007, 383–394.

There are also briefly mentioned some results, or ideas, or constructions from
the following papers:

– [45] M. Ionescu, D. Sburlan: On P systems with promoters/inhibitors, Tech-
nical Report 01/2004, University of Seville, Second Brainstorming Week on
Membrane Computing, Sevilla, 2004, 264–280, and Journal of Universal Com-
puter Science, 10(5), 2004, 581–599.

– [38] M. Ionescu, T.-O. Ishdorj: Replicative-distribution rules in P sys-
tems with active membranes, Proceedings of First International Colloquium
on Theoretical Aspects of Computing, Guiyang, China, 20-24 September 2004,
UNU/IIST Report No. 310, 263–278, and LNCS 4705, Springer, Berlin, 2005,
69–84.

– [12] M. Cavaliere, O. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S.
Woodworth: Asynchronous spiking neural P systems: Decidability and un-
decidability, Proceedings of The 13th International Meeting on DNA Computing
(DNA13), Memphis, Tennessee, USA, June 2007.

– [47] M. Ionescu, D. Sburlan: P systems with adjoining controlled commu-
nication rules, Proceedings of 16th International Symposium on Fundamentals of
Computation Theory, August 27-30, 2007, Budapest, Hungary.

– [25] R. Freund, M. Ionescu, M. Oswald: Extended spiking neural P sys-
tems with decaying spikes and/or total spiking, Proceedings of Automata for
Cellular and Molecular Computing, International Workshop, August 31, 2007,
Budapest, Hungary.

UNIVERSITAT ROVIRA I VIRGILI 
MEMBRANE COMPUTING: TRACES, NEURAL INSPIRED MODELS, CONTROLS 
Armand-Mihai Ionescu 
ISBN:978-84-691-9877-3/DL:T-127-2009



Contents

About the Thesis 7

1 Introduction 15

1.1 Theoretical Computer Science:
Roots and a Short History . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Natural Computing:
Molecular and Cellular Computing . . . . . . . . . . . . . . . . . . . 16

2 Prerequisites 19

2.1 The Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Singleton Cells, Cells in Multicellular Organisms, Membranes 19

2.1.2 The Neural Cell . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Formal Language Prerequisites . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Languages, Grammars, and Turing Machines . . . . . . . . . 22

2.2.2 Matrix Grammars . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Register Machines . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Lindenmayer Systems . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Boolean Functions and Circuits . . . . . . . . . . . . . . . . . . . . . 26

2.4 Membrane Computing Prerequisites . . . . . . . . . . . . . . . . . . 27

2.4.1 P Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 P Systems with Symport/Antiport . . . . . . . . . . . . . . . 28

2.4.3 P Systems with Active Membranes . . . . . . . . . . . . . . . 30

2.4.4 Neural-Like P Systems . . . . . . . . . . . . . . . . . . . . . . 32

3 Following the Trace of Objects 35

3.1 Trace Languages Considering Multisets of
Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 The Generative Power . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Characterizations of Recursively Enumerable Languages . . 40

3.1.3 Decreasing the Number of Membranes . . . . . . . . . . . . 44

3.2 Trace Languages Considering Sets of Objects . . . . . . . . . . . . . 47

3.3 Remarks and Further Research . . . . . . . . . . . . . . . . . . . . . 50

11

UNIVERSITAT ROVIRA I VIRGILI 
MEMBRANE COMPUTING: TRACES, NEURAL INSPIRED MODELS, CONTROLS 
Armand-Mihai Ionescu 
ISBN:978-84-691-9877-3/DL:T-127-2009



12 CONTENTS

4 Inhibiting/De-Inhibiting P Systems 51
4.1 The Biological Source of the Concept . . . . . . . . . . . . . . . . . . 51
4.2 Inhibiting/De-Inhibiting Rules in P Systems . . . . . . . . . . . . . 52

4.2.1 Using One Catalyst: Two Universality Results . . . . . . . . 54
4.2.2 Using Non-Cooperative Rules and One Switch . . . . . . . . 57

4.3 Inhibiting/De-Inhibiting P Systems with Active Membranes . . . . 58
4.3.1 Simulating Logical Gates . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Simulating Boolean Circuits . . . . . . . . . . . . . . . . . . . 63
4.3.3 Accepting and Generative Universality Results . . . . . . . . 66
4.3.4 An Efficiency Result for AID P Systems . . . . . . . . . . . . 68

4.4 Remarks and Further Research . . . . . . . . . . . . . . . . . . . . . 70

5 Spiking Neural P Systems 71
5.1 The Biological Source of the Concept . . . . . . . . . . . . . . . . . . 71
5.2 The Initial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 The Computational Power of SN P Systems . . . . . . . . . . 80
5.2.3 Remarks and Further Research . . . . . . . . . . . . . . . . . 95

5.3 On String Languages Generated by SN P Systems . . . . . . . . . . 97
5.3.1 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . 98
5.3.2 The Language Generative Power of SN P Systems . . . . . . 100
5.3.3 Remarks and Future Research . . . . . . . . . . . . . . . . . . 113

5.4 Trace Languages Associated to SN P Systems . . . . . . . . . . . . . 114
5.4.1 Two Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.2 The Power of SN P Systems as Trace Generators . . . . . . . 118
5.4.3 Remarks and Further Research . . . . . . . . . . . . . . . . . 123

5.5 Spiking Neural P Systems with Extended Rules . . . . . . . . . . . . 123
5.5.1 Extended SN P Systems as Number Generators . . . . . . . 124
5.5.2 Languages in the Restricted Case . . . . . . . . . . . . . . . . 126
5.5.3 Languages in the Non-Restricted Case . . . . . . . . . . . . . 131
5.5.4 Remarks and Further Research . . . . . . . . . . . . . . . . . 138

5.6 Two Small Universal SN P Systems . . . . . . . . . . . . . . . . . . . 139
5.7 Using the Rules in an Exhaustive Way . . . . . . . . . . . . . . . . . 141

5.7.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.7.2 Computational Completeness . . . . . . . . . . . . . . . . . . 144
5.7.3 Remarks and Further Research . . . . . . . . . . . . . . . . . 151

5.8 Spiking Neural P Systems with Self-Activation . . . . . . . . . . . . 152
5.8.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.8.2 A Formal Presentation . . . . . . . . . . . . . . . . . . . . . . 157
5.8.3 Remarks and Further Research . . . . . . . . . . . . . . . . . 159

5.9 Some Applications of SN P Systems . . . . . . . . . . . . . . . . . . 160
5.9.1 Simulating Logical Gates and Circuits . . . . . . . . . . . . . 160
5.9.2 A Sorting Algorithm . . . . . . . . . . . . . . . . . . . . . . . 164
5.9.3 Remarks and Further Research . . . . . . . . . . . . . . . . . 166

UNIVERSITAT ROVIRA I VIRGILI 
MEMBRANE COMPUTING: TRACES, NEURAL INSPIRED MODELS, CONTROLS 
Armand-Mihai Ionescu 
ISBN:978-84-691-9877-3/DL:T-127-2009



CONTENTS 13

6 An SN P Systems Simulator 167
6.1 Construction Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Simulation Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Bibliography 170

UNIVERSITAT ROVIRA I VIRGILI 
MEMBRANE COMPUTING: TRACES, NEURAL INSPIRED MODELS, CONTROLS 
Armand-Mihai Ionescu 
ISBN:978-84-691-9877-3/DL:T-127-2009



14 CONTENTS

UNIVERSITAT ROVIRA I VIRGILI 
MEMBRANE COMPUTING: TRACES, NEURAL INSPIRED MODELS, CONTROLS 
Armand-Mihai Ionescu 
ISBN:978-84-691-9877-3/DL:T-127-2009



Chapter 1

Introduction

1.1 Theoretical Computer Science:

Roots and a Short History

Trying to put together and to summarize more than 7 thousands years of com-
puting is always a difficult task both because of the variety of the bibliographical
sources and the multitude of important steps to achieve computing as it is nowa-
days. What we do in this section is just pointing some major steps humanity
made starting 5000 BC, (probably) in Asia, where a first mechanical device to
aid calculation - the abacus - was used, until the parallel computations we are
performing on our parallel machines.

We go beyond to one of the first algorithms - the Sieve of Erathostehenes -
used to determine the prime numbers, or the work on logarithms started by Jaina
mathematicians (between 200 BC - 400 BC), and continued by Muslim mathe-
maticians (13th century) and John Napier (16th century), and we mark the year
1641 as being the moment when a first mechanical machine (used for adding) was
made by the French mathematician and philosopher Blaise Pascal.

Charles Babbage is the name of the English mathematician, philosopher, and
mechanical engineer who designed and built Difference Engine - a mechanical
calculator -, and who originated the idea of a programmable computer. Later on,
in 1936, Alain Turing’s concept of Turing machine led to the construction of the
first computers.

In 1944, Mauchly, Eckert, and John von Neumann were working on a stored-
program electronic computer, the EDVAC (Electronic Dicrete Variable Automatic
Computer). Von Neumann’s report, “First Draft of a Report on the EDVAC”, was
very influential and contains many of the ideas still used in most modern digital
computers, including a mergesort routine.

In the history of computing, electronic devices are, as seen before, one of the
attempts of mankind of doing computation using the best technology available.
It is true that their appearance has revolutionized computing but this is no reason
to consider them as the ending point in the long evolution chain of computing.

15
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16 CHAPTER 1. INTRODUCTION

Electronic computers have their limitations due to the fact that for the moment
some physical barriers cannot be reached (for example, since 2002 the clock speed
of the processor has improved less than 20%/year, after a long period character-
ized by around 50%/year).

A promising direction in theoretical computer science for the next generation
of computing devices is natural computing, a new and fast growing field of inter-
disciplinary research driven by the idea that natural processes (or small “nature
toolboxes”) can be used for implementing computations.

1.2 Natural Computing:

Molecular and Cellular Computing

Natural Computing is a widespread notion referring to computing performed in
nature or by nature and computing inspired by nature. Our current understand-
ing of this research area includes fields like Quantum Computing, Evolutionary
Computing, Neural Networks, Molecular and Cellular Computing. Quantum Com-
puting uses quantum parallelism to perform computations, while Evolutionary
Computing deals with concepts as mutation, recombination, and natural selec-
tion from biology to design new ways to perform computations. Neural Net-
works construct computational paradigms inspired by the highly interconnected
neural structures in the brain and in the nervous system.

One of the first cellular computing models, which has as the base of inspira-
tion the brain (the way neurons are connected in the nervous system) was pro-
posed in 1943 by Warren S. McCulloch and Walter Pitts (MIT) in the paper: “A
logical calculus of the ideas immanent in nervous activity” [21].

In 1947 John von Neumann introduced the notion of Cellular Automata in his
attempt to develop an abstract model of self-reproduction in biology. The ques-
tion whether or not it is possible to construct robots that can construct identical
robots, hence with the same complexity, was the main issue cellular automata fo-
cused on those times. Interesting enough, the model proposed by von Neumann
gave a positive answer to this question.

In its book Automata Studies ([49]) Kleene addressed in 1956 the topic of the
“Representation of the events in nerve nets and finite automata”, while Feynman,
in his famous talk “There is plenty of room at the bottom” given in 1959 (during
the meeting of American Physical Society) proposed to manipulate directly atoms
to construct nano-machines (including nano-computing machines).

In 1968 the biologist Aristid Lindenmayer introduced a mathematical model
of development of multicellular organisms. What is extremely interesting here
is that the development happens in parallel everywhere in the organism, and dis-
tributed to all its parts ([51]). Few years later, in 1973, C. Bennett discussed how
to perform computations on a molecular scale (see [9]) proposing to use RNA
molecules as a physical medium for implementing computations.
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1.2. NATURAL COMPUTING:MOLECULAR AND CELLULAR COMPUTING17

It was in 1982 when Richard Feynman proposed the exploration of the idea of
a quantum computer. The Nobel prize-winning physicist based its theory on the
laws of quantum mechanics which assume unintuitive principles that may help
in overpassing the restrictions of the current computer.

Starting 1987, when T. Head presented the splicing systems, a theoretical com-
putational model having as core concept the recombination of DNA molecules,
and continuing in 1994 with Adleman’s revolutionary experiment (where an
instance of the Hamiltonian path problem is solved in laboratory using DNA
molecules and biomolecular operations), molecular computing attracted more
and more attention and supported hopes in giving the solutions to break the cur-
rent constraints of electronic computers.

A possible further support for those hopes can be given within the relatively
new born area of Membrane Computing (the models investigated in this area are
also known as P systems). The area was initiated in 1998, when Gheorghe Păun
proposed in the paper “Computing with membranes” ([68]) an abstract cellular
computing model based on biological single living cell compartmental structure
and the chemical evolution, communication, and interaction within its compart-
ments. The core structural feature is that of a membrane by which a system is
divided into compartments where chemical reactions take place. These reactions
transform the inner multisets of objects into new objects sometimes changing the
location of the latter ones into neighboring compartments or the environment.

We conclude this introductory chapter with the remark that in 2003 Thomson
Institute for Scientific Information, ISI, has nominated membrane computing as fast
emerging research front in computer science with the initial paper considered fast
breaking paper.
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Chapter 2

Prerequisites

The present chapter begins with a brief survey to the biological notions used in
our work and continues with basics of theory of computing and Membrane Com-
puting sufficient to understand the following chapters.

After presenting some details on various types of cells we give the elementary
information from Formal Language Theory and we continue presenting Chom-
sky and matrix grammars, register machines, Lindenmayer systems and some
notions of Computational Complexity.

The last section of the chapter is dedicated to the presentation of the - already
classical - models of P systems used later in introducing the new models and
concepts this thesis is presenting.

2.1 The Cell

In this section we give some biological details about the anatomy of the cells with
a focus on prokaryotic, eukaryotic, and neural cells emphasizing the features we
are using as source of inspiration in our work.

2.1.1 Singleton Cells, Cells in Multicellular Organisms, Mem-

branes

First discovered and named by Robert Hooke in 1663 the cell is also known as the
“building block of life”. The cells are amazing self-contained and self-maintained
units which store different types of sets of instructions for various types of activi-
ties as feeding, reproduction, metabolic actions, response to external and internal
stimuli and so on.

All the containment of a cell is protected by a cell surface membrane (Fig. 2.1)
that contains proteins and a lipid bilayer.

There are two types of cells: eukaryotic and prokaryotic. Prokaryotic cells are
smaller, usually singletons, with a not so compartmentalized structure, while eu-
karyotic (Figure 2.2) cells are usually found in multicellular organisms. Except
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20 CHAPTER 2. PREREQUISITES

Figure 2.1: A cell membrane.

the membrane the other features that they have in common is the DNA, the cyto-
plasm, and the ribosomes.

A significant difference between the two types of cells is that the eukaryotic
ones contain membrane-bound compartments in which specific metabolic activ-
ities take place. Most important among these is the presence of a cell nucleus,
a membrane-delineated compartment that houses the eukaryotic cell’s DNA. In
Figure 2.2 such a cell is given where subcellular components can be observed: (1)
nucleolus, (2) nucleus, (3) ribosome, (4) vesicle, (5) rough endoplasmic reticulum
(ER), (6) Golgi apparatus, (7) cytoskeleton, (8) smooth ER, (9) mitochondria, (10)
vacuole, (11) cytoplasm, (12) lysosome, (13) centrioles.

The shapes of cells are quite varied with some, such as neurons, being longer
than they are wide and others, such as parenchyma (a common type of plant
cell) and erythrocytes (red blood cells) having regular dimensions. Some cells are
encased in a rigid wall, which constrains their shape, while others have a flexible
cell membrane (and no rigid cell wall).

2.1.2 The Neural Cell

In [69] there are also considered, besides cell-like structures, systems of mem-
branes with the membranes arranged in a network as the neurons in the brain.
We briefly present here the structure and the functioning of a neuron, other more
particular biological features being presented at the beginning of each chapter to
better emphasize the biological source of each concept considered.

Over the past hundred years, biological research has accumulated an enor-
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2.1. THE CELL 21

Figure 2.2: An eukaryotic cell.

mous amount of detailed knowledge about the structure and function of the
brain. The elementary processing units in the central nervous system are neu-
rons which are connected to each other in an intricate pattern. In reality, cortical
neurons and their connections are packed into a dense network with more than
1014 cell bodies and several kilometers of “wires” per cubic millimeter.

A typical neuron can be divided into three functionally distinct parts, called
dendrites, soma, and axon; see Figure 2.3. Roughly speaking, the dendrites play the
role of the ‘input device’ that collects signals from other neurons and transmits
them to the soma. The soma is the ‘central processing unit’ that performs an
important processing step: If the total input exceeds a certain threshold, then an
output signal is generated. The output signal is taken over by the ‘output device’,
the axon, which delivers the signal to other neurons.

The junction between two neurons is called a synapse. Let us suppose that a
neuron sends a signal across a synapse. It is common to refer to the sending neu-
ron as the presynaptic cell and to the receiving neuron as the postsynaptic cell.
A single neuron in vertebrate cortex often connects to more than 104 postsynap-
tic neurons. Many of its axonal branches end in the direct neighborhood of the
neuron, but the axon can also stretch over several centimeters so as to reach to
neurons in other areas of the brain.

The transmission of impulses from one neuron to another one is done, roughly
speaking, in the following way. A neuron will “fire” only if it gets sufficient exci-
tation through its dendrites. These excitations should come more or less together,
in a short period of time, called the period of latent summation. The input impulses
can be of two types, excitatory and inhibitory, and in order to get the neuron ex-
cited it is necessary that the impulses exceeds a given threshold specific to the
neuron.

After firing a neuron, there is a small interval of time necessary to synthesize
the impulse to be transmitted to the neighboring neurons through the axon; also,
there is a small interval of time necessary for the impulse to reach the endbulbs of
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Figure 2.3: The major structures of the neuron.

the axon. After an impulse is transmitted through the axon, there is a time called
the refractory period during which the axon cannot transmit another impulse.

For more details about neural biology we refer to [81] and [86].

We also remind the reader that more neural biological information can be
found in Sections 4.1 and 5.1.

2.2 Formal Language Prerequisites

2.2.1 Languages, Grammars, and Turing Machines

The reader is ass

An alphabet is a finite set of symbols (letters) and a word (string) over an al-
phabet Σ is a finite sequence of letters from Σ. We denote the empty word by λ,
the length of a word w by |w|, and the number of occurrences of a symbol a in w
by |w|a. The (con)catenation of two words x and y is denoted by x · y or simply
xy.

A language over Σ is a (possibly infinite) set of words over Σ. The language
consisting of all words over Σ is denoted by Σ∗, and Σ+ denotes the language
Σ∗−{λ}. A set of languages containing at least one language not equal to ∅ or {λ}
is also called a family of languages. We denote by REG, LIN , CF , CS, RE the
families of languages generated by regular, linear, context-free, context-sensitive,
and of arbitrary grammars, respectively (RE stands for recursively enumerable
languages). By FIN we denote the family of finite languages. The following
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2.2. FORMAL LANGUAGE PREREQUISITES 23

strict inclusions hold:

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

This is the Chomsky hierarchy. For a family FL of languages, NFL de-
notes the family of length sets of languages in FL. Therefore, NRE is the fam-
ily of Turing computable sets of natural numbers. For Σ = {a1, · · · , an}, the
Parikh mapping associated with Σ is the mapping ΨΣ : Σ∗ → N defined by
ΨΣ(x) = (|x|a1 , · · · , |x|an) for each x ∈ Σ∗. The Parikh images of languages in
RE is denoted by PsRE (this is the family of all recursively enumerable sets of
vectors of natural numbers). The multisets over a given finite support (alphabet)
are represented by strings of symbols. The order of symbols does not matter, be-
cause the number of copies of an object in a multiset is given by the number of
occurrences of the corresponding symbol in the string. Clearly, using strings is
only one of many ways to specify multisets (for more details we refer the reader
to [11]).

We also mention here the notion of morphism and inverse morphism. For a
morphism h : V ∗ → U∗, the inverse morphism h−1 : U∗ → 2V ∗

is defined by
h−1(y) = {x ∈ V ∗ | h(x) = y}, y ∈ U∗.

The left derivative of a language L ⊆ V ∗ with respect to a string x ∈ V ∗ is
∂l

1(L) = {w ∈ V ∗ | xw ∈ L}. The right derivative is defined in the same manner:
∂r

1(L) = {w ∈ V ∗ | wx ∈ L}.

2.2.2 Matrix Grammars

We recall here the notion of matrix grammar because we will use in our work the
characterization of recursively enumerable languages by means of matrix gram-
mars with appearance checking.

Such a grammar is a construct G = (N, T, S,M, F ), where N, T are disjoint
alphabets, S ∈ N , M is a finite set of sequences of the form (A1 → x1, . . . , An →
xn), n ≥ 1, of context-free rules over N ∪ T (with Ai ∈ N, xi ∈ (N ∪ T )∗, in all
cases), and F is a set of occurrences of rules in M (N is the nonterminal alphabet,
T is the terminal alphabet, S is the axiom, while the elements of M are called
matrices).

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An →
xn) in M and the strings wi ∈ (N ∪ T )∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1,
and, for all 1 ≤ i ≤ n, either wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i , for some w′

i, w
′′
i ∈

(N ∪ T )∗, or wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears
in F . (The rules of a matrix are applied in order, possibly skipping the rules in
F if they cannot be applied – therefore we say that these rules are applied in the
appearance checking mode.) If the set F is empty, then the grammar is said to be
without appearance checking.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w},
where “=⇒∗” is the reflexive and transitive closure of a relation ”=⇒“. The family
of languages of this form is denoted by MATac. It is known that CF ⊂ MAT ⊂
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MATac = RE,NREG = NCF = NMAT ⊂ NCS (for instance, the one-letter
languages in MAT are known to be regular.).

A matrix grammar G = (N, T, S,M, F ) is said to be in the binary normal form if
N = N1 ∪N2 ∪{S, #}, with these three sets mutually disjoint, and the matrices in
M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,

2. (X → Y,A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,

3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2,

4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write it in
the form (S → XinitAinit), in order to fix the symbols X,A present in it), and F
consists exactly of all rules A → # appearing in matrices of type 3; # is a trap-
symbol, because once introduced, it is never removed. A matrix of type 4 is used
only once, in the last step of a derivation.

For each matrix grammar there is an equivalent matrix grammar in the binary
normal form. Details can be found in [22].

There exists even a more restricted normal form for matrix grammars with
appearance checking. We say that a matrix grammar G = (N, T, S,M, F ) is in the
Z-binary normal form if N = N1 ∪ N2 ∪ {S,Z, #} is the union of mutually disjoint
sets, and the matrices in M are of one of the following forms:

1. (S → XA) with X ∈ N1, A ∈ N2;

2. (X → Y,A → x) with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2;

3. (X → Y,A → #) with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2;

4. (Z → λ).

Moreover, there is only one matrix of type 1, F consists exactly of all rules A → #
appearing in matrices of type 3 (# is a trap-symbol, if it is introduced, then it
cannot be removed) and, if a sentential form generated by G contains the symbol
Z, then it is of the form Zw, for some w ∈ (T ∪{#})∗. The matrix of type 4 is used
only once, in the last step of a derivation.

For each L ∈ RE there is a matrix grammar with appearance checking in the
Z-binary normal form such that L = L(G). More details are available in [22].

2.2.3 Register Machines

We will also use in our work register machines, that is why we shortly recall
here this notion (the reader can find more details in [60]). A register machine
runs a program consisting of labeled instructions of several simple types. Several
variants of register machines were shown to be computationally universal.

An m-register machine is a construct M = (m, I, l0, lh), where:
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2.2. FORMAL LANGUAGE PREREQUISITES 25

• m is the number of registers,

• I is a set of labeled instructions of the form li : (OP(r), lj, lk), where OP(r) is an
operation on register r of M , and li, lj, lk are labels from the set lab(M) (that
is the set of labels associated to the instructions, in a one-to-one manner),

• l0 is the label of the initial instruction, and

• lh is the label of the halting instruction.

The machine is capable of the following instructions:

(ADD(r), lj, lk) : Add one to the content of register r and proceed, in a non-
deterministic way, to instruction with label lj or to instruction with label lk; in the
deterministic variants usually considered in the literature we demand lj = lk.

(SUB(r), lj, lk) : If register r is not empty, then subtract one from its contents
and go to instruction with label lj , otherwise proceed to instruction with label lk.

HALT : This instruction stops the machine. This additional instruction can only
be assigned to the final label lh.

A register machine M computes a number n in the following way: we start
with all registers empty (i.e., storing the number zero), we apply the instruction
with label l0 and we proceed to apply instructions as indicated by the labels (and
made possible by the contents of registers); if we reach the halt instruction, then
the number n stored at that time in the first register is said to be computed by M .
The set of all numbers computed by M is denoted by N(M).

It is known (see, e.g., [60]) that register machines (even with a small number
of registers), compute all sets of numbers which are Turing computable, hence
they characterize NRE.

Without loss of generality, we may assume that in the halting configuration,
all registers different from the first one are empty, and that the output register is
never decremented during the computation, we only add to its contents.

A register machine can also work in the accepting mode: a number n is intro-
duced in the first register (all other registers are empty) and we start computing
with the instruction with label l0; if the computation eventually halts, then the
number n is accepted.

Register machines are universal also in the accepting mode; moreover, this
is true even for deterministic machines, having ADD rules of the form li :
(ADD(r), lj, lk) with lj = lk: after adding 1 to register r we pass precisely to one
instruction, without any choice (in such a case, the instruction is written in the
form li : (ADD(r), lj)).

Again, without loss of generality, we may assume that in the halting configu-
ration all registers are empty.

A deterministic m-register machine can also analyze an input (m1, ...,mα) ∈
N

α, introduced in registers 1 to α, which is accepted if and only if the register
machine finally stops by the halt instruction with all its registers being empty
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(this last requirement is not necessary). If the machine does not halt, then the
analysis was not successful.

2.2.4 Lindenmayer Systems

An ET0L system is a construct G = (Σ, T,H,w′), where the components fulfill
the following requirements: Σ is the alphabet; T ⊆ Σ is the terminal alphabet; H
is a finite set of of finite substitutions (tables) H = {h1, h2, · · · , ht} (t is the number
of tables); each hi ∈ H can be represented by a list of context-free rules A → x,
such that A ∈ Σ and x ∈ Σ∗ (this list for hi should satisfy that each symbol of Σ
appears as the left side of some rule in hi); w′ ∈ Σ∗ is the axiom.

G defines a derivation relation ⇒ by x ⇒ y iff y ∈ hi(x), for some 1 ≤ i ≤ t,
where hi is interpreted as a substitution mapping.

The language generated by G is L(G) = {w ∈ Σ∗ | w′ ⇒∗ w} ∩ T ∗, where ⇒∗

denotes the reflexive and transitive closure of ⇒.
In what follows, for simplicity, we also say that a language L is in ET0L (i.e.,

L ∈ ET0L) if it can be generated by some ET0L systems.
Of interest for our purpose is the following result:

CF ⊂ ET0L ⊂ CS ⊂ RE.

Moreover it is known that for each L ∈ ET0L, there exists an ET0L system G′,
with only 2 tables, such that L = L(G′) (see [79]).

We also need the following normal form for ET0L systems (for the proof we
refer to [3]).

Lemma 2.2.1 (Normal form)
For each L ∈ ET0L there is an extended tabled Lindenmayer system G = (Σ, T,H,w′)
with 2 tables (H = {h1, h2}) generating L, such that the terminals are only trivially
rewritten: for each a ∈ T if (a → α) ∈ h1 ∪ h2, then α = a.

2.3 Boolean Functions and Circuits

An n-ary Boolean function is a function f : {true, false}n 7→ {true, false}.
¬ (negation) is a unary Boolean function (the other unary functions are the con-
stant functions and identity function). We say that Boolean expression ϕ with
variables x1, . . . , xn expresses the n-ary Boolean function f if, for any n-tuple of
truth values t = (t1, · · · , tn), f(t) is true if T � ϕ, and f(t) is false if T 2 ϕ, where
T (x) = ti for i = 1, . . . , n.

There are three primary Boolean functions that are widely used: NOT, AND,
and OR. The NOT function - this is a just a negation; the output is the opposite
of the input - takes only one input, so it is called a unary function or operator.
The output is true when the input is false, and vice-versa. The output of an AND
function is true only if its first input and its second input and its third input (etc.)
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2.4. MEMBRANE COMPUTING PREREQUISITES 27

are all true. The output of an OR function is true if the first input is true or the
second input is true or the third input is true (again, etc.). Both AND and OR can
have any number of inputs, with a minimum of two.

Any n-ary Boolean function f can be expressed as a Boolean expression ϕf

involving variables x1, . . . , xn.

There is a potentially more economical way than expressions for represent-
ing Boolean functions, namely Boolean circuits. A Boolean circuit is a graph C =
(V,E), where the nodes in V = {1, . . . , n} are called the gates of C. Graph C has a
rather special structure. First, there are no cycles in the graph, so we can assume
that all edges are of the form (i, j), where i < j. All nodes in the graph have the
“in-degree” (number of incoming edges) equal to 0, 1, or 2. Also, each gate i ∈ V
has a sort s(i) associated with it, where s(i) ∈ {true, false,∨,∧,¬} ∪ {x1, x2, . . . }.
If s(i) ∈ {true, false}∪{x1, x2, . . . }, then the in-degree of i is 0, that is, i must have
no incoming edges. Gates with no incoming edges are called the inputs of C. If
s(i) = ¬, then i has in-degree one. If s(i) ∈ {∨,∧}, then the in-degree of i must be
two. Finally, node n (the largest numbered gate in the circuit, which necessarily
has no outgoing edges) is called the output gate of the circuit.

This concludes our definition of the syntax of circuits. The semantics of circuits
specifies a truth value for each appropriate truth assignment. We let X(C) be the
set of all Boolean variables that appear in the circuit C (that is, X(C) = {x ∈ X |
s(i) = x for some gate i of C}). We say that a truth assignment T is appropriate
for C if it is defined for all variables in X(C). Given such a T , the truth value of
gate i ∈ V , T (i), is defined, by induction on i, as follows: If s(i) = true, then
T (i) = true, and similarly if s(i) = false. If s(i) ∈ X , then T (i) = T (s(i)). If now
s(i) = ¬, there is a unique gate j < i such that (j, i) ∈ E. By induction, we know
T (j), and then T (i) is true if T (j) = false, and vice-versa. If s(i) = ∨, then there
are two edges (j, i) and (j′, i) entering i. T (i) is then true if only if at least one of
T (j), T (j′) is true. If s(i) = ∧, then T (i) is true if only if both T (j) and T (j′) are
true, where (j, i) and (j′, i) are the incoming edges. Finally, the value of the circuit,
T (C), is T (n), where n is the output gate.

2.4 Membrane Computing Prerequisites

2.4.1 P Systems

For the reader convenience, we recall the fact that P systems are distributed par-
allel computing models which abstract from the structure and the functioning of
the living cells. In short, we have a membrane structure, consisting of several mem-
branes embedded in a main membrane (called the skin) and delimiting regions
where multisets of certain objects are placed (Figure 2.4 illustrates these notions).
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A membrane structure is represented by a Venn diagram and is identified by
a string of correctly matching parentheses, with a unique external pair of paren-
theses; this external pair of parentheses corresponds to the external membrane,
called the skin. A membrane without any other membrane inside is said to be
elementary. We say that the number of membranes is the degree of the membrane
structure, while the height of the tree associated in the usual way with the struc-
ture is its depth. The membranes delimit regions (each region is bounded by a
membrane and the immediately lower membranes, if there are any). In these re-
gions we place objects, which are represented by symbols of an alphabet. Several
copies of the same object can be present in a region, so we work with multisets of
objects.

The objects evolve according to given evolution rules, which are applied non-
deterministically (the rules to be used and the objects to evolve are randomly
chosen) in a maximally parallel manner (in each step, all objects which can evolve
must do it). The objects can also be communicated from a region to another one.
In this way, we get transitions from a configuration of the system to the next one.
A sequence of transitions constitutes a computation; with each halting computation
we associate a result, the number of objects from a specified output membrane.

In literature there are known very many different variants of P systems. De-
tails can be found at [85]

2.4.2 P Systems with Symport/Antiport

We start from the biological observation [1], [6] that there are many cases where
two chemicals pass at the same time through a membrane, with the help of each
other, either in the same direction, or in opposite directions; in the former case
we say that we have a symport, in the latter case we have an antiport.

Mathematically, we can capture the idea of symport by considering rules of
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the form (ab, in) and (ab, out) associated with a membrane, and stating that the
objects a, b can enter, respectively, exit together the membrane. For antiport we
consider rules of the form (a, out; b, in), stating that a exits and at the same time
b enters the membrane. Generalizing such kinds of rules, we can consider rules
of the unrestricted forms (x, in), (x, out) (generalized symport) and (x, out; y, in)
(generalized antiport), where x, y are strings representing multisets of objects,
without any restriction on the length of these strings.

Based on rules of these types, in [65] there are considered membrane systems
(currently called P systems) with symport/antiport in the form of constructs

Π = (V, µ, w1, . . . , wm, E,R1, . . . , Rm, io),

where:

1. V is an alphabet (its elements are called objects);

2. µ is a membrane structure consisting of m membranes, with the membranes
(and hence the regions) injectively labeled with 1, 2, . . . ,m; m is called the
degree of Π;

3. wi, 1 ≤ i ≤ m, are strings over V which represent multisets of objects associ-
ated with the regions 1, 2, . . . ,m of µ, present in the system at the beginning
of a computation;

4. E ⊆ V is the set of objects which are supposed to continuously appear in
the environment in arbitrarily many copies;

5. R1, . . . , Rm are finite sets of symport and antiport rules over the alphabet V
associated with membranes 1, 2, . . . ,m of µ;

6. io is the label of an elementary membrane of µ (the output membrane).

For a symport rule (x, in) or (x, out), we say that |x| is the weight of the rule.
The weight of an antiport rule (x, out; y, in) is max(|x|, |y|).

The rules from a set Ri are used with respect to membrane i as explained
above. In the case of (x, in), the multiset of objects x enters the region defined
by the membrane, from the immediately upper region; this is the environment
when the rule is associated with the skin membrane. In the case of (x, out), the
objects specified by x are sent out of membrane i, into the region immediately
outside; this is the environment in the case of the skin membrane. The use of a
rule (x, out; y, in) means expelling from membrane i the objects specified by x at
the same time with bringing in membrane i the objects specified by y. The objects
from E are supposed to appear in arbitrarily many copies in the environment
(because we only move objects from a membrane to another membrane, hence
we do not create new objects in the system, we need a supply of objects in order
to compute with arbitrarily large multisets.) The rules are used in the nonde-
terministic maximally parallel manner specific to P systems with symbol-objects
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(the objects to evolve and the rules by which these objects evolve are nondeter-
ministically chosen, but the set of rules used at any step is maximal, no further
object can evolve at the same time). In this way, we obtain transitions between the
configurations of the system. A configuration is described by the m-tuple of the
multisets of objects present in the m regions of the system, as well as the multiset
of objects which were sent out of the system during the computation, others than
the objects appearing in the set E; it is important to keep track of such objects be-
cause they appear in a finite number of copies in the initial configuration and can
enter again the system. We do not need to take care of the objects from E which
leave the system because they appear in arbitrarily many copies in the environ-
ment (the environment is supposed inexhaustible, irrespective how many copies
of an object from E are introduced into the system, still arbitrarily many remain
in the environment). The initial configuration is (w1, . . . , wm, λ). A sequence of
transitions is called a computation, and with any halting computation we asso-
ciate an output, in the form of the number of objects present in membrane io in
the halting configuration. The set of these numbers computed by a system Π is
denoted by N(Π). The family of all sets N(Π), computed by systems Π of degree
at most m ≥ 1, using symport rules of weight at most p and antiport rules of
weight at most q, is denoted by NPm(symp, antiq); when any of the parameters
m, p, q is not bounded, we replace it with ∗.

Next the current best results in P systems with symport/antiport are given.
We start with a result independently given in [28], [29], and [31] - one membrane
is enough:

Theorem 2.4.1 NRE = NP1(sym1, anti2).

If only the symport operation is used, paying in the number of membranes,
the following result is given in [30]:

Theorem 2.4.2 NRE = NP2(sym3).

The symport/antiport rules can have associated promoters or inhibitors which
control their application. For instance (x, in)a ∈ Ri can be applied only if the
promoting object a is present in the region i, while (x, in)¬a ∈ Ri can be applied
only if the inhibiting object a is not present in the region i.

2.4.3 P Systems with Active Membranes

In this subsection, we describe P systems with active membranes following the
concept defined in [69], where more details can also be found.

Informally speaking, in P systems with active membranes one uses the fol-
lowing types of rules: (a0) multiset rewriting rules, (b0) rules for introducing
objects into membranes, (c0) rules for sending objects out of membranes, (d0)
rules for dissolving membranes, (e0) rules for dividing elementary membranes,
and (f0) rules for dividing non-elementary membranes, see [5]. In these rules,
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a single object is involved. Furthermore, (g0) membrane merging rules, (h0)
membrane separation rules, and (i0) membrane release rules were introduced in
[4], (k0) replicative-distribution rule (for sibling membranes), and (l0) replicative-
distribution rule (for nested membranes) were introduced in [38]. Their common
feature is that they involve multisets of objects. The rules of type (a0) are applied
in a parallel way (all objects which can evolve by such rules have to evolve), while
the rules of types (b0), (c0), (d0), (e0), (f0), (g0), (h0), (i0), (k0), and (l0) are used
sequentially, in the sense that one membrane can be used by at most one rule of
these types at a time. In total, the rules are used in the non-deterministic maxi-
mally parallel manner: all objects and all membranes which can evolve, should
evolve.

A P system with active membranes (without electrical charges) is a construct

Π = (O,H, µ, w1, . . . , wm, R),

where:

1. m ≥ 1 is the initial degree of the system;

2. O is the alphabet of objects;

3. H is a finite set of labels for membranes;

4. µ is a membrane structure, consisting of m membranes, labeled (not necessar-
ily in a one-to-one manner) with elements of H ;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed in the
m regions of µ;

6. R is a finite set of developmental rules, of the types (a0) − (l0) mentioned
above. We define here only a few of these types:

(b0) r : a[ ]h → [ b]h, for h ∈ H, a, b ∈ O
(communication rules; an object is introduced in the membrane during
this process);

(c0) r : [ a ]h → [ ]hb, for h ∈ H, a, b ∈ O
(communication rules; an object is sent out of the membrane during
this process);

(f0) [ a]
h
→ [ b]

h
[ c]

h
, for h ∈ H, a, b, c ∈ O

(division rules for non-elementary membranes; in reaction with an ob-
ject, the membrane is divided into two membranes with the same label;
the object specified in the rule is replaced in the two new membranes
by possibly new objects; the remaining objects and membranes con-
tained in this membrane are duplicated, and then are part of the con-
tents of both new copies of the membrane);
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(l0) [ a[ ]
h1

]
h2

→ [ [ u]
h1

]
h2

v, for h1, h2 ∈ H, a ∈ O, u, v ∈ O∗

(replicative-distribution rule (for nested membranes); an object is re-
placed by two multisets, one introduced into a directly inner mem-
brane and the other outside the directly surrounding membrane).

The subscript 0 indicates the fact that we do not use polarization for membranes;
as shown in [70], [78] the membranes can have one of the negative, positive, neu-
tral “electrical charges”, represented by −, +, and 0, respectively.)

The result is the multiplicity of objects expelled into the environment during
the computation; We can also distinguish these objects and consider as result the
vector of natural numbers describing the multiplicity of the objects sent to the
environment. The set of vectors computed in this way by all possible halting
computations of Π is denoted by Ps(Π). By PsOPm(r) we denote the family of
sets Ps(Π) computed as described above by P systems with at most m membranes
using rules of types listed in r. When the rules of a given type (α0) are able to
change the label(s) of the involved membranes, we denote that type of rules by
(α′

0). For example,

(l′0) [ a[ ]
h1

]
h2

→ [ [ u]
h3

]
h4

v, for h1, h2, h3, h4 ∈ H, a ∈ O, u, v ∈ O∗

(replicative-distribution rule (for nested membranes); an ob-
ject is replicated and distributed into a directly inner mem-
brane and outside the directly surrounding membrane while
the labels of membranes change).

P systems with certain combinations of these rules are universal and efficient.
Further details can be found in [4, 5, 38, 62].

To understand what solving a problem in a semi-uniform/uniform way
means, we briefly recall here some related notions. Consider a decisional prob-
lem X . A family ΠX = (ΠX(1), ΠX(2), · · · ) of P systems (with active membranes
in our case) is called semi-uniform (uniform) if its elements are constructible in
polynomial time starting from X(n) (from n, respectively), where X(n) denotes
the instance of size n of X . We say that X can be solved in polynomial (linear)
time by the family ΠX if the system ΠX(n) will always stop in a polynomial (lin-
ear, respectively) number of steps, sending out the object yes if and only if the
instance X(n) has a positive answer. For more details about complexity classes
for P systems see [69, 78].

2.4.4 Neural-Like P Systems

We also recall here the initial definition of a neural-like P system as considered in
[59], [69] so that we can use it (with some modifications) in the next sections. The
basic idea is to consider cells related by synapses and behaving according to their
states; the states can model the firing of neurons, depending on the inputs, on the
time of the previous firing, etc.
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Formally, a neural-like P system, of degree m ≥ 1, is a construct

Π = (O, σ1, . . . , σm, syn, io),

where:

1. O is a finite non-empty alphabet (of objects, usually called impulses);

2. σ1, . . . , σm are cells (also called neurons), of the form

σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ m,

where:

a) Qi is a finite set (of states);

b) si,0 ∈ Qi is the initial state;

c) wi,0 ∈ O∗ is the initial multiset of impulses of the cell;

d) Ri is a finite set of rules of the form sw → s′xygozout, where s, s′ ∈
Qi, w, x ∈ O∗, ygo ∈ (O × {go})∗, and zout ∈ (O × {out})∗, with the
restriction that zout = λ for all i ∈ {1, 2, . . . ,m} different from io;

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} (synapses among cells);

4. io ∈ {1, 2, . . . ,m} indicates the output cell.

The standard rules used in this model are of the form sw → s′w′, where s, s′

are states and w,w′ are multisets of impulses. The mark “go” assigned to some
elements of w′ means that these impulses have to leave immediately the cell and
pass to the cells to which we have direct links through synapses. The communica-
tion among the cells of the system can be done in a replicative manner (the same
object is sent to all adjacent cells), or in a non-replicative manner (the impulses
are sent to only one neighboring cell, or can be distributed non-deterministically
to the cells to which we have synapses). The objects marked with “out” (they can
appear only in the cell io) leave the system. The computation is successful only if
it halts, reaches a configuration where no rule can be applied.

The sequence of objects (note that they are symbols from an alphabet) sent
to the environment from the output cell is the string computed by a halting
computation, hence the set of all strings of this type is the language com-
puted/generated by the system.

We will modify below several ingredients of a neural-like P system as above,
bringing the model closer to the way the neurons communicate by means of
spikes.
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Chapter 3

Following the Trace of Objects

This chapter introduces a new way of interpreting the result in a P system with
symport/antiport (defined in Section 2.4.2). Instead of the (number of) objects
collected in a specified membrane, we consider as the result of a computation the
itineraries of a certain object through membranes, during a halting computation,
written as a coding of the string of labels of the visited membranes.

The family of languages generated in this way by several variants of P systems
with traces is investigated with respect to its place in the Chomsky hierarchy.

The study of traces started as a pure theoretical approach, but later on we
found out that there exist current technologies which allow the observation of
chemicals (from small ions like Ca2+ or H+ to large macromolecules such as spe-
cific proteins, RNAs, or DNA sequences) using the optical microscope. Green
fluorescent protein or the light - to name only two - are tools to tag such chemi-
cals in living cells and organisms and to observe their paths.

3.1 Trace Languages Considering Multisets of

Objects

Initially introduced in [41] the new class of P systems (where traces of objects
were considered) is defined below. Specifically, we consider P systems of the
form

Π = (V, t, T, h, µ, w1, . . . , wm, E,R1, . . . , Rm),

where

1. V is an alphabet;

2. t ∈ V (a distinguished object, “the traveler”);

3. T is an alphabet;

4. h : {1, 2, . . . ,m} −→ T ∪ {λ} is a weak coding;

35
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36 CHAPTER 3. FOLLOWING THE TRACE OF OBJECTS

5. µ is a membrane structure with m membranes labeled 1, 2, . . . ,m;

6. w1, . . . , wm are strings representing the multisets of objects present in the m
regions of µ;

7. E is the set of objects present in arbitrarily many copies in the environment;

8. R1, . . . , Rm are the sets of symport and antiport rules (with promoters or
inhibitors) associated with the m membranes.

The traveler is present in exactly one copy in the system, that is, |w1 . . . wm|t =
1 and t /∈ E.

Let σ = C1C2 . . . Ck, k ≥ 1, be a halting computation with respect to Π, with

C1 = (w1, . . . , wm, λ) the initial configuration, and Ci = (z
(i)
1 , . . . , z

(i)
m , z

(i)
e ) the con-

figuration at step i, 1 ≤ i ≤ k. If |z
(i)
j |t = 1 for some 1 ≤ j ≤ m, then we write

Ci(t) = j (therefore, Ci(t) is the label of the membrane where t is placed). If

|z
(i)
j |t = 0 for all j = 1, 2, . . . ,m, then we put Ci(t) = λ. Then, the trace of t in the

computation σ is
trace(t, σ) = C1(t)C2(t) . . . Ck(t).

The computation σ is said to generate the string h(trace(t, σ)), hence the language
generated by Π is L(Π) = {h(trace(t, σ)) | σ is a halting computation in Π}.

We denote by TPPm(psymp, pantiq) the family of languages generated by P
systems with at most m membranes, with symport rules of weight at most p and
antiport rules of weight at most q, using promoters; when the rules have associ-
ated forbidding contexts (inhibitors) we write fsym, fanti instead of psym, panti;
when the rules are used in the free mode (they have no promoter/inhibitor sym-
bols associated), we remove the initial “p” and “f” from psym, panti and fsym,
fanti. As usual, the subscript m is replaced by ∗ when no bound on the number
of used membranes is considered; similarly, if we use symport or antiport rules
of an arbitrary weight, then the subscripts p, q are replaced with ∗.

Before starting to investigate the power of our machineries, let us examine an
example. Consider the system

Π = ({d, t}, t, {a, b, c}, h, [ [ [ [ [ ]
5
]
4
]
3
]
2
]
1
, t,

∅, ∅, ∅, ∅, {d}, R1, R2, R3, R4, R5),

with h(1) = a, h(3) = b, h(5) = c, h(2) = h(4) = λ, and the following sets of rules:

R1 = R3 = R5 = {(t, out), (td, in)},

R2 = R4 = {(t, in), (d, in)}.

First, the traveler brings n ≥ 1 copies of d from the environment (each of them
enters immediately membrane 2), then the traveler goes to membrane 2. From
here, the traveler brings m ≤ n copies of d into membrane 3 (each of them enters
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3.1. TRACE LANGUAGES CONSIDERING MULTISETS OF OBJECTS 37

immediately membrane 4), then the traveler goes to membrane 4 (at that moment,
it is possible that some copies of d remain in membrane 2). From membrane 4, all
copies of d are carried into membrane 5; the computation stops with the traveler
in membrane 4. Thus, for any computation σ of this type, we have

trace(t, σ) = 1n+1(23)m(45)m4, for some n ≥ 1,m ≤ n.

The traveler can also end-up in membrane 2, after introducing all copies of d in
membrane 3, and returning to membrane 2. In the case of such a computation σ
we have

trace(t, σ) = 1n+1(23)n2, for some n ≥ 1.

Finally, we can also have the trivial computation where t just enters membrane 2,
without any copy of d present in the system, and this leads to trace(t, σ) = 12.

Consequently,

L(Π) = {an+1bmcm | n ≥ 1,m ≤ n} ∪ {an+1bn | n ≥ 1} ∪ {a}.

Clearly, this language is not a context-free one. Note that the system Π has only
symport rules, and that the rules are freely applied (we use no promoter or in-
hibitor).

3.1.1 The Generative Power

The example from above proves the relation TPP5(sym2, anti0)−CF 6= ∅. Clearly,
by removing membranes 2, 3 (as well as all their associated elements), we get a
system of degree 3 which generates a non-regular language, hence we also have
TPP3(sym2, anti0)−REG 6= ∅. The result for the context-free case can be slightly
improved.

Theorem 3.1.1 TPP4(sym2, anti0) − CF 6= ∅.

Proof Consider the system

Π = ({t, d}, t, {a, b, c}, h, [ [ [ [ ]4]3]2]1, t, ∅, ∅, ∅, {d}, R1, R2, R3, R4),

with the morphism h(1) = a, h(2) = b, h(3) = c, h(4) = λ, and with the rules

R1 = R2 = R3 = {(t, out), (td, in)},

R4 = {(t, in)}.

It is easy to see that

L(Π) ∩ a∗(ba)∗(bc)∗ = {an+1(ba)m(bc)r | n ≥ 1, n ≥ m ≥ r},

and this is not a context-free language (the traveler ends-up in membrane 4, after
carrying copies of d through membranes; some of these copies can be left behind,
hence the relations among n,m, r follow). 2
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One can see that the power of following the traces of objects in a P system
is very large (even for systems without promoters or inhibitors): all one-letter
recursively enumerable languages can be obtained in this way. This is an easy
consequence of the fact that P systems with symport/antiport rules can generate
all recursively enumerable sets of natural numbers. We denote by 1RE the family
of one-letter recursively enumerable languages, and, based on the results in [57]
and [65], we get:

Theorem 3.1.2 1RE = TPP5(sym2, anti0) = TPP2(sym2, anti2) = TPP4(psym2,
anti0) = TPP3(fsym2, anti0).

Note that these results do not improve the assertion from Theorem 3.1.1, but
imply that all families mentioned in Theorem 3.1.2 contain languages outside the
families CS and REC.

The passing from languages over the one-letter alphabet to languages over
an arbitrary alphabet does not seem trivial. Actually, the number of symbols
appearing in the strings of a language obviously induces an infinite hierarchy
with respect to the number of membranes used by a P system able to gen-
erate that language: each symbol should correspond to a membrane, hence
L ∈ TPP (psym∗, panti∗) ∪ TPP (fsym∗, fanti∗) implies card(alph(L)) ≤ m (for
x ∈ V ∗ we denote alph(x) = {a ∈ V | |x|a ≥ 1} and for a language L ⊆ V ∗ we
write alph(L) =

⋃

x∈L alph(x)). Otherwise stated, the hierarchies on the number
of membranes are infinite for all types of systems (and irrespective of the weights
of rules).

The question we now address is weather or not any of the families
TPP∗(symp, antiq) equals RE. In the next section we will prove such a result for
the case of symport and antiport with promoters or inhibitors, but mentioning
that the current best result is given in [31].

A partial result in this respect is the following one: the regular languages can
be generated even in the case when no antiport rule is used (and no promoter or
inhibitor).

Theorem 3.1.3 REG ⊂ TPP∗(sym2, anti0).

Proof We only have to prove the inclusion, its properness is known from The-
orems 3.1.1 and 3.1.2.

Consider a (nondeterministic) finite automaton A = (K,T, s0, F, P ) (the set of
states, the alphabet, the initial state, the set of final states, the set of transition
rules), with the rules from P given in the style used in [80], that is, in the form
r : sa → s′, for s, s′ ∈ K, a ∈ T . Assume that we have k rules in P , labeled with
r1, . . . , rk.

We construct the P system (of degree k + 4)

Π = (V, t, T, h, µ, w1, . . . , wk+4, E,R1, . . . , Rk+4),

UNIVERSITAT ROVIRA I VIRGILI 
MEMBRANE COMPUTING: TRACES, NEURAL INSPIRED MODELS, CONTROLS 
Armand-Mihai Ionescu 
ISBN:978-84-691-9877-3/DL:T-127-2009



3.1. TRACE LANGUAGES CONSIDERING MULTISETS OF OBJECTS 39

with the following components:

V = K ∪ {c, d, t},

h : {1, 2, . . . , k + 4} −→ T,

defined by h(4 + i) = a for ri : sa → s′,

1 ≤ i ≤ k, and h(1) = h(2) = h(3) = h(4) = λ,

µ = [ [ ]
2
[ ]

3
[ ]

4
[ ]

5
. . . [ ]

k+4
]
1
,

w1 = c,

w2 = t,

w3 = w4 = λ,

w4+i = d, for all i = 1, 2, . . . , k,

E = K,

R1 = {(c, out)} ∪ {(cs, in) | s ∈ K},

R2 = {(cs0, in), (ts0, out)},

R3 = {(ts, in) | s ∈ F},

R4 = {(s, in) | s ∈ K} ∪ {(t, in), (t, out), (d, in), (d, out)},

R4+i = {(cs′, in), (ts, in), (ts′, out) | ri : sa → s′}

∪ {(c, out), (td, out)}, for all i = 1, 2, . . . , k.

We start with the traveler symbol in membrane 2 and the “carrier” object c
in membrane 1. The carrier will bring states of A from the environment and
place them in membranes 5, 6, . . . , k + 4. Arbitrarily many states are brought in
these membranes, but only copies of state s′ are introduced in membrane 4+ i for
ri : sa → s′. If a state s remains in the skin membrane and the carrier c exits again
the system, then the state s is immediately moved into the “garbage collector”
membrane 4.

At any moment when the state s0 is brought into the system, it can be intro-
duced into membrane 2, by the rule (cs0, in) ∈ R2; in this way, c ends its work
(it remains forever in membrane 2), and the traveler can leave this membrane to-
gether with s0. Note that only s0 is present in the skin membrane – and from now
on, only one state will be available in the skin membrane.

Assume that in the skin membrane we have, together with t, a state s such
that ri : sa → s′ appears in P . If s enters membrane 4, then t will pass forever
back and forth through membrane 4 by using the rules (t, in), (t, out) ∈ R4, hence
the computation will never end. If we use a rule (ts, in) ∈ R4+i, then at the next
step, the rule (ts′, out) ∈ R4+i can be used. This simulates the use of the rule ri

in the automaton A: the traveler has passed through membrane 4 + i, which, by
the weak coding h, provides the symbol a parsed by rule ri, while the state s has
been replaced by s′. The work of A is simulated in this manner until reaching a
final state, s ∈ F . In that moment, the rule (ts, in) ∈ R3 can be used, and the
computation stops.
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If we do not have sufficient copies of states s′ in membranes 4 + i associated
with rules ri : sa → s′, then, instead of the rule (ts′, out) ∈ R4+i we have to use the
rule (td, out) ∈ R4+i and the computation will never stop: the symbol d will pass
forever across membrane 4, by using the rules (d, in), (d, out) ∈ R4. Similarly, if in
the skin membrane we have a state s such that there is no rule sa → s′ in P , then
the symbol t has to use forever the rules (t, in), (t, out) ∈ R4, and the computation
will never stop.

Thus, we can simulate in Π all correct parsings of A and, conversely, each
halting computation in Π corresponds to a correct parsing in A. That is, L(A) =
L(Π), which concludes the proof. 2

In the previous proof we have essentially used the fact that a finite automa-
ton recognizes a string by scanning it from left to right, symbol by symbol. The
proof can probably be extended to other language generating/recognizing de-
vices which characterize strings by a left to right parsing, possibly with a control
mechanism stronger than by means of a finite state memory, as in the case of fi-
nite automata. It remains a topic for a further research to see how far we can go
in this way.

3.1.2 Characterizations of Recursively Enumerable Languages

At the price of using antiport rules of an arbitrary weight (depending on the num-
ber of symbols appearing in the strings of our language), as well as promoters or
inhibitors, we can generate all recursively enumerable languages.

In the proofs of these results, we essentially use the characterization of recur-
sively enumerable languages by means of matrix grammars with appearance check-
ing.

Theorem 3.1.4 RE = TPP∗(fsym2, panti∗).

Proof We prove only the inclusion ⊆, as the opposite one can be obtained in a
standard manner (or we can invoke the Turing-Church thesis).

Consider a language L ∈ RE,L ⊆ T ∗, with T = {a1, . . . , ak}. Interpret the
strings in T ∗ as numbers in base k + 1, in the following sense: with the string
x = ai1ai2 . . . air , 1 ≤ ij ≤ k, 1 ≤ j ≤ r, we associate the numerical value

val(x) = i1 + i2(k + 1) + i3(k + 1)2 + · · · + ir(k + 1)r−1.

(Note that we do not use the digit 0 and that the “numbers” from T ∗ are read in
the reverse direction, the most significant digit is the righmost one.) Denote by
val(L) the one-letter language {an | n = val(x), x ∈ L}. Because L ∈ RE, we
also have val(L) ∈ RE. Take a matrix grammar with appearance checking, G =
(N, {a}, S,M, F ), in the Z-normal form, such that L(G) = val(L) (as mentioned
above, N = N1 ∪ N2 ∪ {S,Z, #}).
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3.1. TRACE LANGUAGES CONSIDERING MULTISETS OF OBJECTS 41

We construct the P system (of degree k + 4)

Π = (V, t, T, h, µ, w1, w2, . . . , wk+4, E,R1, . . . , Rk+4),

with

V = N1 ∪ {X ′ | X ∈ N1} ∪ N2 ∪ {A′ | A ∈ N2}

∪ {ei | 1 ≤ i ≤ k} ∪ {a, b, c, d, e, f, g, t, Z, Z ′},

h : {1, 2, . . . , k + 4} −→ T defined by h(4 + i) = ai, 1 ≤ i ≤ k,

and h(1) = h(2) = h(3) = h(4) = λ,

µ = [ [ [ [ ]4]3[ ]5[ ]6 . . . [ ]k+4]2]1,

w1 = XA, for (S → XA) the initial matrix of G,

w2 = gt,

w2+i = λ, 1 ≤ i ≤ k + 2,

E = V − {t},

R1 = {(XA, out; Y x, in) | (X → Y,A → x) ∈ M}

∪ {(X, out; f, in) | X ∈ N1}

∪ {(X, out; A′X ′, in),

(X ′, out; Y e, in),

(eA′, out),

(A′A, out; f, in) | (X → Y,A → #) ∈ M}

∪ {(f, out; f, in),

(Z, out; Zb, in),

(Z, out; cd, in)}

∪ {(Z, out; Zei, in) | 1 ≤ i ≤ k},

R2 = {(a, in)g,

(c, in),

(g, out; d, in),

(b, out; a, in),

(ak+1, out; b, in)c}

∪ {(cai, out; ei, in) | 1 ≤ i ≤ k},

R3 = {(da, in)},

R4 = {(da, in),

(da, out)},

R4+i = {(tei, in),

(t, out)}, i = 1, 2, . . . , k.

Note that there are only two conditionally used rules, the symport rule (a, in)g

and the antiport rule (ak+1, out; b, in)c, both in R2; thus, the former rule cannot be
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42 CHAPTER 3. FOLLOWING THE TRACE OF OBJECTS

used after removing g from membrane 2, and the latter rule cannot be used before
introducing the symbol c into membrane 2.

Roughly speaking, the system Π works as follows. Membranes 1 and 2 are
used in order to generate the language val(L). When the generation of a string
an = val(x) is finished, hence the symbol Z is produced, we start “translating”
the number n in such a way to recover the string x (“codified” by the labels of the
membranes 5, 6, . . . , k + 4 associated with its symbols). This is mainly done by
the rules from R2, which “read” the string x from left to right and make possible
the entrance of t into the right membrane.

Here are the details of this process. We start with XA in the skin membrane
(and gt in membrane 2), corresponding to the start matrix of G. Assume that in
any moment we have here a multiset (described by a string) of the form Xw, for
some X ∈ N1, w ∈ N∗

2 (at any moment, each copy of a is immediately sent to
membrane 2, by the rule (a, in)g ∈ R2, hence we ignore in this phase the occur-
rences of a).

A matrix (X → Y,A → x) ∈ M is simulated by the antiport rule
(XA, out; Y x, in) ∈ R1.

A matrix (X → Y,A → #) ∈ M , with the second rule used in the ap-
pearance checking manner, is simulated in a slightly more complex manner:
first, X gets out and brings into the system the symbols A′ and X ′ (by the rule
(X, out; A′X ′, in) ∈ R1); at the next step, if A is present in the skin membrane,
then the rule (A′A, out; f, in) ∈ R1 brings into the system the trap-object f , which
will pass forever through the skin membrane by the rule (f, out; f, in) ∈ R1, hence
the computation will never end. If A is not present, then A′ waits one step; at the
same time, the rule (X ′, out; Y e, in) ∈ R1 brings the symbol e into the system (and
completes the simulation of the rule X → Y ). At the next step, the symbols A′

and e leave the system. In this way, the matrix is correctly simulated.
If, at any time, we cannot simulate a matrix as above, although a symbol X ∈

N1 is present in the skin membrane, then the rule (X, out; f, in) ∈ R1 will bring
the trap-symbol f into the system and the computation will never finish.

In this way, any derivation in G can be correctly simulated, and, conversely, all
correct (that is, not introducing the trap symbol f ) computations in Π correspond
to correct derivations in G. When the derivation is terminal, that is, the symbol Z
is introduced, we pass to the second phase of the work of Π.

First, the symbol Z will bring into the system arbitrarily many copies of the
symbols b and ei, 1 ≤ i ≤ k. The work of Z ends by introducing the symbols c
and d into the system (by the rule (Z, out; cd, in) ∈ R1; note that Z is left in the
environment). The symbols c and d enter immediately membrane 2, d in exchange
with g, hence from now on the rule (a, in)g cannot be used any more.

In the presence of c, the rule (ak+1, out; b, in)c can be used. Because of the
maximal parallel manner of using the rules, the application of this rule means
dividing the number of occurrences of a present in membrane 2 by k + 1. The
result is obtained as the number of occurrencs of the symbol b. At the same time,
the remainder is obtained in the form of a symbol ei. Specifically, if we had n

UNIVERSITAT ROVIRA I VIRGILI 
MEMBRANE COMPUTING: TRACES, NEURAL INSPIRED MODELS, CONTROLS 
Armand-Mihai Ionescu 
ISBN:978-84-691-9877-3/DL:T-127-2009



3.1. TRACE LANGUAGES CONSIDERING MULTISETS OF OBJECTS 43

copies of a, such that n = m(k+1)+i, for some m ≥ 0 and 1 ≤ i ≤ k (the remainder
is never zero), then in membrane 2 we get m copies of b and one copy of ei. The
correctness of this operation is ensured by the fact that if any copy of a remains
unused after the application of the rules (ak+1, out; b, in)c (maximal parallelism)
and (cai, out; ei, in) (the choice of the maximal i), then the rule (da, in) ∈ R3 can be
used, and afterthat the pair da will pass forever through membrane 4, by the rules
(da, in), (da, out) ∈ R4, hence the computation will never end. The same result is
obtained if we do not have sufficient copies of b or ei in the skin membrane: any
remaining copy of a will be used by the rule (da, in) ∈ R3 and the computation
will never halt.

At the next step, in the presence of ei, the traveler enters the corresponding
membrane 4 + i. Because the remainder i corresponds to the symbol ai from the
string of L which is “parsed” at the present step, we get the same symbol via
the weak coding h. Simultaneously, by means of the rule (b, out; a, in) ∈ R2, we
change all symbols b from membrane 2 with symbols a from the skin membrane
(note that we have enough copies of a in the skin membrane, hence the exchange
of symbols b is complete, and that we can bring in exactly as many copies of a as
many copies of b we have, because the rule (a, in)g is no longer applicable), and
in this way the process can be iterated, the division of the current number (m in
the above notation) by k + 1 can be repeated. In the moment of division, t exits
membrane 4 + i, hence it is available for the next step.

We continue in this way until exhausting the number n we have started with,
in the sense that we reach a stage when we have at most k copies of a in membrane
2; this means that only a rule (cai, out; ei, in) ∈ R2 is used. The symbol c will
return to membrane 2, but no further rule can involve it, the symbol ei will enter
membrane 4 + i together with t, the traveler exits again, and the computation
stops. The trace of t, with all occurrences of label 2 ignored (removed by h) is
exactly the string x ∈ L whose value was initially codified by the number of a’s
produced by the derivation in G. In conclusion, L(Π) = L, and this concludes the
proof. 2

The previous proof can easily be modified in order to use forbidding con-
texts only. Specifically, we use the symbol g, placed initially in membrane 2, in
a forbidding mode: we replace the permitting context rule (ak+1, out; b, in)c ∈ R2

with the forbidding context rule (ak+1, out; b, in)¬g, and we also replace the rule
(a, in)g with (a, in)¬d. Thus, as long as g is present in membrane 2, the rule
(ak+1, out; b, in)¬g cannot be used. After finishing the simulation of a derivation
in G, the symbol Z introduces the symbols c and d into the system, and d will
entail the removing of g from membrane 2 (and will also prevent the entrance of
any further copy of a). From now on we work (in the forbidding mode) in the
same way as we have proceeded in the previous proof (in the permitting mode).
If Π′ is the system obtained by modifying as above the system Π from the proof of
Theorem 3.1.4, then we get L(Π) = L(Π′) = L. Consequently, we have obtained
the following result.
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44 CHAPTER 3. FOLLOWING THE TRACE OF OBJECTS

Theorem 3.1.5 RE = TPP∗(fsym2, fanti∗).

The weight of symport rules used in the previous proofs is minimal, but we
use antiport rules of an arbitrary weight (actually, depending on the number of
symbols which appear in the considered language); also, there are one symport
and one antiport rule which are used conditionally.

As we have pointed out before, the number of symbols appearing in the
strings of a language induces an infinite hierarchy with respect to the number
of membranes used by a P system able to generate that language. That is why,
for any family FL of languages, it is natural to consider the subfamily nFL, of all
languages in FL over the alphabets with n symbols.

The previous results has been essentially improved in [31] (by simulating reg-
ister machines):

Theorem 3.1.6 nRE = nTPPn+1(sym0, anti2) = nTPPn+1(sym3, anti0) =
nTPPn+2(sym2, anti0), for all n ≥ 1.

Thus, at the same time both the permitting/forbidding conditions have been
removed and the weight of the antiport rules has been bounded by small values.
Note that the last equality is obtained in terms of symport rules only, of a weight
as encountered in biology: two symbols at a time pass through a membrane.
At the first sight, this is a rather surprising result, but the explanation lies in
the natural connection with register machines and the fact that P systems with
symport/antiport rules have an in-built context-sensitivity.

3.1.3 Decreasing the Number of Membranes

By the definition, in order to obtain a language over an alphabet with m symbols,
we have to use a system with at least m membranes, hence the hierarchy on the
number of membranes is trivially infinite in the case of trace languages. This
direct dependence of the number of membranes on the number of symbols raises
the question whether it is possible to keep bounded the number of membranes
even when generating languages over arbitrary alphabets, or at least to use a
number of membranes smaller than the number of symbols.

We present here three possible ways to address this question.

The first proposal is to consider several travelers. For instance, let us suppose
that we have T = {t1, t2, . . . , tk} a set of k travelers and that the membrane struc-
ture of our P system contains m membranes. In this case, the alphabet of trace
symbols, contains k · m symbols ai,j , where 1 ≤ i ≤ k and 1 ≤ j ≤ m.

Let σ = C1C2 . . . Ck, k ≥ 1, be a halting computation and let Ci(T ) = {ai,j | ti
is in membrane j}. We consider trace(T, σ) = {w1w2 . . . wk | wi ∈ V ∗, ΨV (wi) =
ΨV (Ci(T ))}, i.e., we concatenate permutations of strings representing each Ci(T ).
Then, the trace language defined by a P system with several travelers is LT (Π) =
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3.1. TRACE LANGUAGES CONSIDERING MULTISETS OF OBJECTS 45

{h(trace(T, σ)) | σ is a halting computation in Π}. Thus, LT (Π) is a language over
an alphabet with k · m symbols, although we only use m membranes.

Let us consider an example. We take the P system

Π = (V, T, µ, w1, w2, w3, {d}, R1, R2, R3),

with:

1. V = {d, t1, t2} the set of all objects in the system; object d is present in arbi-
trarily many copies in the environment;

2. T = {t1, t2} is the set of travelers;

3. µ = [ [ ]
2
[ ]

3
]
1

is a membrane structure with 3 membranes;

4. w1 = t1t2, w2 = w3 = ∅ are the sets of objects in the initial configuration;

5. Ri is the set of symport rules associated with the membrane i, as follows:

• R1 = {(t1, out), (t1d, in), (t2, out), (t2d, in)},

• R2 = {(t1d, in), (t1, out), (t2, in)},

• R3 = {(t2d, in), (t2, out), (t1, in)}.

The computation begins with travelers t1 and t2 in membrane labeled 1, and
with the inner membranes (labeled 2, and 3) without any object. The initial con-
figuration of the system is: [ t1t2[ ]2[ ]3]1. According to the rules mentioned
above, we can distinguish many cases in the evolution of the system. We discuss
here only four:

• t1 enters membrane labeled 3 and in the same time t2 enters membrane la-
beled 2. In this case the computation halts, because membranes 3 and 2 act
as trap membranes for travelers t1 and t2, respectively. The result is:

trace1({t1, t2}, σ) = {a1,3a2,2, a2,2a1,3}.

• t2 enters membrane 2 and is trapped, while traveler t1 makes several (let
us say n) journeys to the environment, and then to membrane 2 (bringing
in objects d) until it enters membrane labeled 3, and the computation halts.
We remind that we work with multisets of objects. For that, it is obvious
that the number of trips traveler t1 is paying to the environment and back
to membrane 1 is as least as high as the number of trips it is paying to
membrane 2. Now, we obtain:

trace2({t1, t2}, σ) = a2,2a
n
1,1a

m
1,2a1,3, for some m ≥ n.
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46 CHAPTER 3. FOLLOWING THE TRACE OF OBJECTS

• t1 enters membrane 3 and is trapped while traveler t2 behaves as traveler t1
in the case above. The result of the computation is:

trace3({t1, t2}, σ) = a1,3a
s
2,3a

t
2,1a2,2, for some t ≤ s.

• Both t1 and t2 make different trips to membranes 2 and 3, respectively, pro-
vided that they have copies of d to do so. An easy-to-follow trace of the
travelers, when both of them are moving, is the case when they get out
membrane 1 and enter back (with a d), in an arbitrary number of steps, and
then they go directly to their trap membranes. Thus,

trace4({t1, t2}, σ) = ap
1,1a

p
2,1a1,3a2,2.

The other cases (when, for example both t1 and t2 go out and back mem-
brane 1 for an arbitrary number of steps and then, at a point traveler t1
enters and exits membrane 2 for an arbitrary number of steps, and then de-
cides to go again out of membrane 1, and so on) are already very difficult
to follow, and no precise relationship between the trips of the two travelers
can be given.

The second idea we propose in order to diminish the number of membranes
is to consider an inverse morphism (for a morphism h : V ∗ → U∗, the inverse
morphism h−1 : U∗ → 2V ∗

is defined by h−1(y) = {x ∈ V ∗ | h(x) = y}, y ∈
U∗). The idea is explained on the following example: take two alphabets, V =
{a1, a2, . . . , an} and U = {0, 1} and the morphism h defined by h(ai) = 0i1, 1 ≤
i ≤ m. It is obvious that this mapping is injective, hence card(h−1(y)) = 1 for
each y ∈ h(V ∗). Thus, for any language L ⊆ V ∗ we have L = h−1(h(L)). It it
obvious (from the way we defined h) that choosing L from a family nFL we have
h(L) ∈ 2FL.

Therefore, from the relation mentioned in the previous section we obtain the
following result:

Proposition 3.1.1 Every L ∈ nREG can be written in the form L = h−1(L′), for
L′ ∈ 2TPP3(sym0, anti2) = 2TPP3(sym3, anti0) = 2TPP4(sym2, anti0).

The third proposal for obtaining more symbols in the trace languages than
the number of membranes is to consider the possibility of changing the labels
of membranes, as used in the area of P systems with active membranes (details
on active membranes can be found, for example, in [4]). Changing the labels
is not considered in standard symport/antiport rules, but we can introduce this
feature in a simple way: symport rules of the form (x, in), (x, out) can be written
as x[ ]

i
→ [ x]

i
, and [ x]

i
→ [ ]

i
x, respectively, while an antiport rule (x, out; y, in)

can be written as y[ x]
i
→ [ y]

i
x. Generalizing, we can consider that whenever an

object enters or gets out of a membrane it can change its label. Thus, our rules
will become: x[ ]

i
→ [ x]

j
, [ x]

i
→ [ ]

j
x, and y[ x]

i
→ [ y]

j
x, respectively.
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3.2. TRACE LANGUAGES CONSIDERING SETS OF OBJECTS 47

In this way, we can have as many different labels as we want – with an im-
portant aspect to take care: not to have conflicts among the used rules, i.e., not to
apply at the same time two rules which intend to change the label of the mem-
brane in different ways. There are several possibilities for avoiding such conflicts:
using the rules sequentially (only one in each membrane), using in parallel only
a set of rules which change the label in the same way, allowing to only certain
rules to change the labels and to use rules from this set in a restrictive way (e.g.,
sequentially), etc.

3.2 Trace Languages Considering Sets of Objects

In this section, we consider P systems whose regions contain finite sets of ob-
jects, not multisets as in the classical variant of P systems (such systems were
investigated in [2] as number generating devices); moreover, we assume that the
environment is empty.

Such a system is a construction

Π = (V, t, µ, w1, . . . , wm, R1, . . . , Rm),

where:

1. V is the alphabet of chemicals (objects);

2. t ∈ V is the traveler. There is exactly one traveler t in the system, that is,
|w1 · · ·wm|t = 1;

3. µ is a membrane structure with m membranes (injectively labeled by posi-
tive integers 1, 2, . . . ,m);

4. wi are strings representing the sets of objects present in the regions of µ, 1 ≤
i ≤ m;

5. Ri is the set of symport and antiport rules associated with the membrane i;
they have the forms (x, in), (x, out) and (x, out; y, in), for x, y ∈ V ∗, 1 ≤ i ≤
m.

The trace of the traveler across membranes is encoded as a string over the
alphabet {a1, a2, . . . , am}, by recording, in order, every membrane visited by t.

We consider two different cases of marking the trace. In the first one, we
count only the event of the traveler entering a membrane, and in this case we de-
note by LTP set

m (symp, antiq, in) the family of languages generated by P systems
with traces and symport/antiport rules over finite sets of objects, using at most
m membranes, symport rules of weight at most p and antiport rules of weight
at most q. In the second case we take into account both the fact that the traveler
enters a membrane and that it exits it (so we collect twice the label of the mem-
brane t visits). We denote by LTP set

m (symp, antiq, in/out) the family of languages
generated in this case, with the usual meaning of the parameters m, p, q.
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48 CHAPTER 3. FOLLOWING THE TRACE OF OBJECTS

Note that we do not consider initially objects in the environment.
In what follows we investigate the place of these families with respect to

Chomsky hierarchy.

Theorem 3.2.1 LTP set
∗ (sym∗, anti∗, in) = REG.

Proof Given a P system Π = (V, t, µ, w1, . . . , wm, R1, . . . , Rm) we can construct
a regular grammar G = (C, T, C0, R), where C is the set of all configurations
which can be reached by Π starting from the initial configuration (this set is fi-
nite, because the system only handles a finite number of objects), C0 is the initial
configuration, and T = {a1, a2, . . . , am}. The rules of the grammar are constructed
as follows.

1. Ci → Cj if Ci → Cj is a transition and the traveler does not enter any
membrane;

2. Ci → akCj if Ci → Cj is a transition and the traveler enters membrane
k (1 ≤ k ≤ m);

3. Ci → λ if Ci is a halting configuration.

It is obvious that trace(Π) = L(G) which implies LTP set
∗ (sym∗, anti∗, in) ⊆

REG.

Conversely, given a regular grammar G = (N, T, S,R) (N is the set of non-
terminals, T = {a1, a2, . . . , am}, S ∈ N , and R is the set of productions of
the form A → aiB, and A → ai, with A,B ∈ N, ai ∈ T ), we can con-
struct a P system as follows. The initial configuration (in the bracketed form) is
[ cSt[ dNN ′]

0
[ f1]1[ f2]2 . . . [ fm]

m
]
s
, {s, 0, 1, 2, . . . ,m} is the set of labels for mem-

branes, s is the label of the skin membrane, fi (1 ≤ i ≤ m) is the symbol within
membrane i, dNN ′ is the (strings which describes the) set of objects in membrane
0 (N is the nonterminal alphabet of grammar G, N ′ is the set of primed versions
of elements of N , and d ∈ V ; dNN ′ is a short-hand writing for N ∪ N ′ ∪ {d}), cSt
is the set of objects in the skin membrane, where t is the traveler, S is the initial
symbol of grammar G, and c ∈ V .

In order to simulate a rule A → aiB ∈ R we will use the following rules:

step R0 Ri

1 (fi, out; cAt, in)
2 (d, out; fi, in) (At, out)
3 (fiB

′, out; A, in) (c, out; d, in)
4 (d, out; fi, in)
5 (B, out; dB′, in)

where R0 and Ri are the sets of rules associated with membranes labeled 0 and i,
respectively. For the other membranes no rules are specified.

The process of simulating a rule A → aiB is detailed below.
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3.2. TRACE LANGUAGES CONSIDERING SETS OF OBJECTS 49

In the first step, the antiport rule (fi, out; cAt, in) makes the traveler t (alto-
gether with objects c and A) enter membrane labeled i, thus introducing the sym-
bol ai in the trace. In the same time, symbol fi, initially present in membrane i, is
expelled within the skin membrane.

What is left to simulate is the process of transforming A to B and to bring the
system back to its starting configuration, in order to be ready for a new simulation
of a rule.

In the second step of computation, rules (d, out; fi, in), and (At, out) indicate
that our traveler goes out membrane i (altogether with object A), while fi enters
membrane labeled s, with the help of object d (its counterpart in the antiport rule).

In the next step, the position of A and B′ in the system is interchanged, in the
same time with expelling from membrane labeled 0 the symbol fi. The position of
objects c, and d is also modified by the antiport rule that applies for the membrane
labeled i. In this moment, our system has the following configuration:

[ ficB
′t[ N{N ′ − B′}]

0
[ f1]1[ f2]2 . . . [ d]

i
. . . [ fm]

m
]
s
.

We have now succeeded in rewriting A to B′ (which is a copy of B). The
following thing to accomplish is to make the system gain its initial configuration,
this time with B in the place of A so the derivation could continue.

In step 4, we use rule (d, out; fi, in) to move back fi in its initial place. In the
last step of the computation, rule (B, out; dB′, in) sends d and B′ in membrane
labeled 0 while B is expelled from membrane labeled 0 to the skin membrane,
and the system can now continue to simulate the derivation process.

We can continue the above process to simulate nonterminal rules of G.
A rule D → ai is simulated using the rule

(fi, out; cDt, in) ∈ Ri.

The work of this rule is obvious.
The derivation grammar G ends by using such a rule, hence also our system

will halt.
Clearly, trace(Π) = L(G), hence we also have the inclusion REG ⊆

LTP set
∗ (sym∗, anti∗, in). 2

If we consider the degree of the P system and the weight of the rules, we can
write the previous result in the form

mREG = LTP set
m+2(sym2, anti3, in).

We consider now the in-out case.

Theorem 3.2.2 LTP set
∗ (sym∗, anti∗, in/out) ( REG.

Proof We can use the same idea as in the previous theorem to prove the in-
clusion LTP set

∗ (sym∗, anti∗, in/out) ⊆ REG. The properness of the inclusion is
proved by the following counterexample.
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50 CHAPTER 3. FOLLOWING THE TRACE OF OBJECTS

Consider the language L = {a2a3, a2a2a3} and assume that there is a P system
Π such that trace(Π) = L. Besides the skin membrane, this system must contain
at least two membranes, with labels 2 and 3. These membranes can have one of
the three relationships indicated in the next figure.'

&

$

%

'

&

$

%

'

&

$

%

�

�

�

�

�

�

�

�

'

&

$

%
#
"
 
!

'

&

$

%
#
"
 
!

s

2 3

s

2

3

s

3

2

(a) (b) (c)

In case (a), in order to generate the string a2a2a3 we must have the traveler
outside membrane 2, and then a2a3 cannot be generated.

In case (b), in order to generate the string a2a2a3 we must have the traveler in
the region between membrane 2 and membrane 3, and then again a2a3 cannot be
generated.

Similarly, in case (c), in order to generate the string a2a2a3 we must have the
traveler in the region between membrane 3 and membrane 2, and then a2a3 can-
not be generated.

Thus, the equality trace(Π) = L is not possible, this language is not in
LTP set

∗ (sym∗, anti∗, in/out). 2

3.3 Remarks and Further Research

Computing by communication (in the framework of membrane systems) proves
to be surprisingly powerful – universality is reached by systems with a very small
number of membranes, and this happens for the “standard” P systems with sym-
port/antiport, when following the traces of certain objects through membranes,
and when considering the analysing mode of using a system, as well. The bio-
logically well motivated symport/antiport P systems deserve a special attention,
both from a mathematical and a computational point of view.

In the case were P systems with sets of objects were considered (instead of
multisets) we showed that the computational power of these systems with respect
to Chomsky hierarchy does not go beyond the family of regular languages.

We also proposed, as a possible further research direction, three ideas to brake
the infinite hierarchy provoked by the direct relationship between the number of
membranes and the cardinality of the alphabet of languages.
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Chapter 4

Inhibiting/De-Inhibiting P Systems

4.1 The Biological Source of the Concept

Before introducing the formal definition of the proposed mechanism let us briefly
recall the reader the biological background of neural-cells. The core concept of
this chapter is the process of inhibition/de-inhibition observed at the level of the
axon, more precisely in the Ranvier nodes.

The neuron is not one homogeneous integrative unit but is (potentially) di-
vided in many sub-integrative units, each one with the ability of mediating a
local synaptic output to another cell or local electro-tonic output to another part
of the same cell.

We have already mentioned in Section 2.1.2 that neurons are considered to
have 3 main parts: a soma, the main part of the cell where the genetic material
is present and life functions take place; a dendrite tree, the branches of the cell
where impulses come in; an axon, the branch of the neuron over which the im-
pulse (or signal) is propagated.

An axon can be provided with a structure composed by special sheaths. These
sheaths are involved in molecular and structural modifications of axons needed
to propagate impulse signals rapidly over long distance. There is a gap between
neighboring myelinated regions that is know as the node of Ranvier, which con-
tains a high density of voltage-gated Na+ channels for impulse generation. When
the transmitting impulses reach the node of Ranvier or junction nodes of dendrite
and terminal trees, or the end bulbs of the trees, it causes the change in polariza-
tion of the membrane. The change in potential can be excitatory (moving the
potential toward the threshold) or inhibitory (moving the potential away from
the threshold).

The impulse transmission through a neuron follows this path: from dendrite
to soma to axon to terminal tree to synapse. If different impulses reach at the
same time a certain node, then, it might happen, that the combined effects of the
excitation and inhibition may cancel each other out. Once the threshold of the
membrane potential is reached, an impulse is propagated along the neuron or to
the next neuron. More details about neural biology can be found in [81].
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52 CHAPTER 4. INHIBITING/DE-INHIBITING P SYSTEMS

It is possible to formalize the mechanism described above by using rewriting
rules equipped with ability to send excitation/inhibition signals.

An inhibited rule is formally written as r : ¬(u → v), and the meaning is that
the rule cannot be applied, more precisely u cannot evolve to v. An evolution rule
can de-inhibit an inhibited rule allowing it to be applied. To this aim, we also
consider rules of the form ri : (u → v){r1, · · · , rk}, which say that u evolves into
v and the rules r1, · · · , rk are inhibited or de-inhibited according to the previous
state of each rule. Here rules rj, 1 ≤ j ≤ k, are any kind of developmental rules.
The evolution rule can be a deletion rule, and then we denote it by ri : (u →
λ){r1, · · · , rk}.

In the following section, we introduce a class of P systems using
inhibiting/de-inhibiting rules and explore the computational power of the class
considering catalytic and non-cooperative inhibiting/de-inhibiting rules. In par-
ticular we prove that universality can be obtained (in generative and accepting
cases) by using one catalyst. If we use only non-cooperative rules, then the sys-
tems can generate, at least, the Parikh sets of the languages generated by ET0L
systems.

4.2 Inhibiting/De-Inhibiting Rules in P Systems

A P system with inhibiting/de-inhibiting rules (in short, an ID P system), of degree
m ≥ 1, is a construct

Π = (O,C,H, µ, w1, . . . , wm, R1, . . . , Rm, i0),

where:

1. m ≥ 1 is the degree of the system;

2. O is the alphabet of objects;

3. C ⊆ O is the set of catalysts;

4. To each rule in R = R1 ∪ R2 ∪ · · · ∪ Rm, a unique label is associated. The
set of all rule labels is H = {r1, · · · , rk}. We denote ¬H = {¬ri | ri ∈ H}.
For a set Q of rules we indicate with lab(Q) the set of labels of the rules that
compose Q.

5. µ is a membrane structure, consisting of m membranes, labeled 1, 2, . . . ,m;

6. w1, . . . , wm are strings over O, describing the multisets of objects placed in
the m regions of µ;

7. Ri is a finite set of developmental rules, associated with region i. The rules
in Ri are of the forms:
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4.2. INHIBITING/DE-INHIBITING RULES IN P SYSTEMS 53

rj : ¬(a → w)S, rj : (a → w)S,
rj : ¬(ca → cw)S, rj : (ca → cw)S

where rj ∈ H, a ∈ O − C,w ∈ ((O − C) × TAR)∗, c ∈ C, S ⊆ H , for
TAR = {here, out, in}; when S = ∅, we omit writing it, and we also omit
the parentheses around the rule;

8. i0 is the output region.

A configuration of an ID P system is described by using the m-tuple of mul-
tisets of objects present in the m regions of the system. To each region a finite
number of objects is associated together with a finite number of rules. The m-
tuple (w1, w2, · · · , wm) is the initial configuration of the system. Some of the rules
are initially inhibited (if the symbol ¬ is written immediately before the rule). A
transition between two configurations is governed by the application in a non-
deterministic and maximally parallel way of the rules that are not inhibited.

When a rule rj : (a → w)S is applied, the object a is rewritten with the objects
in w (as in standard P systems) and the rules from S are de-inhibited (if they were
inhibited) or inhibited (if they were de-inhibited). In the same way is defined the
application of catalytic rules.

For simplicity, each element in S is called a switch.
If simultaneously a rule r is subject of two or more switches, then the effect

is that if a single switch, hence a change from inhibited to de-inhibited or con-
versely.

The system continues the application of the rules in maximally parallel way
until there remain no applicable rules in any region of the system. Then the sys-
tem halts (the computation is successful) and we consider the number of objects
contained in the output region i0 as the result of the computation.

We use the notation

PsgenIDPm(α), α ∈ {ncoo} ∪ {catk | k ≥ 0},

to denote the family of sets of vectors of natural numbers generated by ID P sys-
tems with at most m membranes, evolution rules that can be non-cooperative
(ncoo), or catalytic (catk), using at most k catalysts (as usual, ∗ indicates that the
corresponding number is not bounded). When using systems in the accepting case,
the subscript gen is replaced by acc. (A P system can also be used in the accepting
mode: we introduce a number into the system in the form of a multiset and start
the computation. If the system halts then the number introduced is accepted.)

Example We now illustrate the functioning of an ID P system with an example
that shows how the simple mechanism of inhibiting/de-inhibiting rules can be
very powerful.

We consider the ID P system of degree 1,

Π = ({A, a}, ∅, {r1, r2, r3}, [ ]
1
, A,R, 1),
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54 CHAPTER 4. INHIBITING/DE-INHIBITING P SYSTEMS

where:

R = {r1 : A → AA, r2 : (A → AA){r1, r2, r3}, r3 : ¬(A → a)}.

When the computation starts in the initial configuration with the object A in the
skin region, the rules r1 or r2 can be applied but the rule r3 cannot be applied
since it is inhibited. We use the rule r1 m− 1 times and then we apply the rule r2.
In this way, we produce 2m copies of object A. Simultaneously the rules r1 and r2

are inhibited (so they cannot be used any more), and the rule r3 is de-inhibited.
We have used context-free and inhibiting/de-inhibiting rules to obtain a2m

, hence

{(2m) | m ≥ 1} ∈ PsgenIDP1(ncoo)

and this set is not in PsCF .

4.2.1 Using One Catalyst: Two Universality Results

In this paragraph we prove the universality of P systems using catalytic rules
(one catalyst) and one membrane.

We first consider the generative case.

Theorem 4.2.1 PsgenIDP1(cat1) = PsRE.

Proof Consider a matrix grammar G = (N, T, S,M, F ) with appearance checking,
in the binary normal form, hence with N = N1 ∪ N2 ∪ {S, #} as introduced in
Section 2.2.2. Assume that all matrices are labeled in an injective manner with
mi, 1 ≤ i ≤ n, and each terminal matrix (X → λ,A → x) is replaced by (X →
f,A → x), where f is a new symbol. We define the set of rules R# = {X → # |
X ∈ N1 ∪ N2}.

We construct the P system of degree 1,

Π = (O,C,H, µ, w1, R1, i0), where:

O = N1 ∪ T ∪ N2 ∪ {p, p′, p′′, p′, p′′, c, d, d′, d′′, d′′′, f, #},

C = {c},

H = {ri | 1 ≤ i ≤ 13} ∪ {r2,i, r3,i, r8,i, r9,i, r12,i | 1 ≤ i ≤ n}

∪ {r′4, r
′
5, r

′
6} ∪ LabΠ(R#),

µ = [ ]
1
,

w1 = cpXinitAinit,

i0 = 0,

and the set R1 is constructed in the following way.

• The simulation of a matrix of type 2, mi : (Xi → Yi, Ai → xi), with Xi ∈
N1, Yi ∈ N1, Ai ∈ N2, xi ∈ (N2 ∪ T )∗, |xi| ≤ 2, is done by using the following
rules added to the set R1:
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4.2. INHIBITING/DE-INHIBITING RULES IN P SYSTEMS 55

r1 : (p → p′p′′){r2,i, r3,i}

r2,i : ¬(Xi → Yi){r
′
5, r5, r2,i}

r3,i : ¬(cAi → cxid
′){r′6, r6, r3,i}

r2 : d′ → d

r3 : (d → p){r′5, r
′
6}

r4 : p′ → p′

r′4 : p′′ → p′′

r5 : ¬(p′ → λ){r5, r
′
5}

r′5 : p′ → #

r6 : ¬(p′′ → λ){r6, r
′
6}

r′6 : p′′ → #

The idea is the following one. The rule r1 chooses the matrix i to apply and
this is made by the simultaneous de-inhibition of rules r2,i and r3,i (all other rules
of other matrices remains inhibited). The execution of both r2,i and r3,i inhibits
the rules r′5 and r′6 that are used to trash the computation in the case the matrix
chosen is not correctly applied. If the matrix is applied in the correct way (both
rules are executed), then d is changed to p and the process can be iterated (the
original configuration of inhibited/de-inhibited rules is re-established).

• The simulation of a matrix of type 3, mi : (Xi → Yi, Ai → #), with Xi, Yi ∈
N1 and Ai ∈ N2, is done by using the following rules, added to the set of
rules R1:

r7 : (p → p′){r8,i, r9,i}

r8,i : ¬(Xi → Yid
′′){r′5, r5, r8,i, r9,i}

r8 : p′ → p′

r9,i : ¬(Ai → #)

r9 : d′′ → d′′′

r10 : d′′′ → p

The idea of the simulation of this kind of matrix is the following one. The rule r7

de-inhibits the rules corresponding to the matrix i to be simulated. If the rule r8,i

is not applied, then the rule r′5 is not inhibited and then the computation never
halts.

• The simulation of a terminal matrix mi : (Xi → f,Ai → xi), with Xi ∈ N1,
Ai ∈ N2, and xi ∈ T ∗, |xi| ≤ 2, is done using the following rules (added to
the set R1):

r11 : (p → λ)(LabΠ(R#) ∪ {r12,i})

r12,i : ¬(cAi → cxi){r12,i}
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56 CHAPTER 4. INHIBITING/DE-INHIBITING P SYSTEMS

R11 = {¬(X → #) | X ∈ N1 ∪ N2}.

These rules are used to simulate a terminal matrix and then to halt the compu-
tation. In fact, p is deleted and the rule r12,i is executed; the rules in R11 are
de-inhibited and they guarantee that, when the computation halts, only terminal
objects are present.

R1 also contains the following rules:

r12 : a → (a, out)

r13 : # → #.

The result of the computation is collected in the environment; from the above
explanation follows that the set of vectors generated by Π is exactly the Parikh
image of L(G). 2

We consider now the accepting case. We notice that, in the following proof,
the switches are used only by non-cooperative rules.

Theorem 4.2.2 PsaccIDP1(cat1) = PsRE.

Proof In order to prove the inclusion “⊇” we will simulate an m–register machine
M = (m, I, l0, lh) (see Section 2.2.3). At each time during the computation, the
current contents of register r is represented by the multiplicity of the object ar.

Formally, we define the P system of degree 1,

Π = (O,C,H, [ ]
1
, w1, R, i0), where:

O = {ar, Sr, S
′
r, S

′′
r , S ′′′

r | 1 ≤ r ≤ m} ∪ {c, e, e′, F, p, lh} ∪ lab(M),

C = {c},

H = {ri | 1 ≤ i ≤ 15},

w1 = cl0,

i0 = 0,

and R is defined as follows:

• for each instruction li : (ADD(r), lj, lj) ∈ I , we add to R the rule:

r1 : li → arlj

• for each instruction li : (SUB(r), lj, lk) ∈ I , we add to R the rules:

r2 : li → eSr

r3 : e → e′

r4 : (Sr → S
′

r){r5}

r5 : ¬(car → cF )

r6 : S
′

r → S
′′

r
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4.2. INHIBITING/DE-INHIBITING RULES IN P SYSTEMS 57

r7 : (F → λ){r5, r10}

r8 : S ′′
r → S ′′′

r

r9 : (S ′′′
r → λ){r11}

r10 : ¬(e′ → ljp){r10}

r11 : ¬(e′ → lk){r11, r5}

r12 : (p → λ){r11}

r13 : lh → λ

The system works as follows. We start by introducing in the system the objects
ak1

1 , . . . , akm
m (representing the input to be accepted). We also have inside the cat-

alyst c and and the label l0 of the first instruction of the register machine. The
vector (k1, · · · , km) represents the vector that has to be accepted by our P system.

The addition instructions are directly simulated by the corresponding rules r1.

If a subtraction instruction (li : SUB(r), lj, lk) ∈ I has to be simulated then the
rule li → eSr is executed. In the following step the object Sr is used to de-inhibit
rule r5, and to produce object S ′

r in rule r4, while the object e evolves into e′.
In the next step, if the number of objects ar in register r is greater than 0, then

the execution of the de-inhibited rule car → cF decreases the number of objects
ar by 1, and produces object F for the next step.

Meanwhile, the object S ′
r evolves into S ′′

r as shown in rule r6.
The object F used in rule r7 to inhibit the de-inhibited rule r5 guarantees that

r5 is applied only once. The rule r10 is also de-inhibited by the execution of the
rule r7.

The execution of the r10 generates the label lj of the next register machine
instruction (it is executed only once because it is inhibited by itself)

In the other case (i.e., if there is no object ar in region) the rule ar → F cannot
be executed, therefore the object F is not produced and rule r7 cannot be applied.

On the other hand, object S ′′
r evolves into S ′′′

r by the execution of rule r8 and at
the next step S ′′′

r de-inhibits rule r11, so e′ evolves to label lk (notice that the object
e′ still appears, because rule r10 has not been applied in the previous steps and
then rule r11 can generate label lk of the next register machine instruction); rule
r11 must also inhibit rule r5 that has been previously de-inhibited by rule r4.

In the next step the rule r12 is executed and then the rule r11 in again inhibited
(in the case that the rule has not been used because the rule r10 has been applied).
When the label of the next instruction has been generated then the entire process
can be iterated. The simulation stops (and then the input is accepted) when label
lh (which stands for halt instruction) is generated. 2

4.2.2 Using Non-Cooperative Rules and One Switch

We present now a result without proof. IDP systems, using non-cooperative rules,
are able to generate (at least) the family of Parikh images of languages in ET0L.
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58 CHAPTER 4. INHIBITING/DE-INHIBITING P SYSTEMS

The proof is made by simulating an ET0L system by using a very restricted IDP
system with at most one switch for each non-cooperative evolution rule. More
details are given in [13].

Theorem 4.2.3 PsgenIDP1(ncoo) ⊇ PsET0L.

4.3 Inhibiting/De-Inhibiting P Systems with Active

Membranes

As above, the basic idea of the inhibiting/de-inhibiting P systems with active
membranes is that, when a rule (acting on the membranes or on the objects) is in-
hibited, then it cannot be applied until another rule de-inhibits it. The application
of a rule can inhibit other rules (and in particular might inhibit itself).

A P system with active membranes and inhibiting/de-inhibiting mechanism, in
short, an AID P system, without electrical charges and without using catalysts,
is a construct

Π = (O,H, I, µ, w1, . . . , wm, R),

where:

1. m ≥ 1 is the initial degree of the system;

2. O is the alphabet of objects;

3. H is a finite set of labels for membranes;

4. I is a finite set of labels for rules;

5. µ is a membrane structure, consisting of m membranes, labeled with elements
of H ;

6. w1, . . . , wm are strings over O, describing the multisets of objects placed in the
m regions of µ;

7. R is a finite set of developmental rules of various usual forms. Here are some
examples:

(in) r : (a[ ]h → [ b]h)S, for r ∈ I, h ∈ H, a, b ∈ O,S ⊆ I
(communication rules; an object is introduced in the mem-
brane during this process);

(out) r : ([ a ]h → [ ]hb)S, for r ∈ I, h ∈ H, a, b ∈ O,S ⊆ I
(communication rules; an object is sent out of the membrane
during this process);
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4.3. INHIBITING/DE-INHIBITING P SYSTEMS WITH ACTIVE MEMBRANES59

(rdn) r : ([a[ ]h1]h2 → [[u]h1]h2v)S, for r ∈ I, h1, h2 ∈ H, a ∈ O, u, v ∈
O∗, S ⊆ I
(replicative-distribution rule; an object is replicated and dis-
tributed into a directly inner membrane and outside the di-
rectly surrounding membrane);

(d) r : ([ a ]h → b)S, for r ∈ I, h ∈ H, a, b ∈ O,S ⊆ I
(dissolving rules; in reaction with an object, a membrane can
be dissolved, while the object specified in the rule can be mod-
ified);

(e) r : ([ a ]h → [ b ]h[ c ]h)S, for r ∈ I, h ∈ H, a, b, c ∈ O,S ⊆ I
(division rules for elementary membranes; in reaction with
an object, the membrane is divided into two membranes with
the same label).

The set H of labels has been specified because it is also possible to allow the
change of membrane labels. For instance, a communication rule can be of the
more general form:

(in′) r : (a[ ]h1 → [ b]h2)S, for r ∈ I, h1, h2 ∈ H, a, b ∈ O,S ⊆ I ;

(out
′) r : ([ a ]h1 → [ ]h2b)S, for r ∈ I, h1, h2 ∈ H, a, b ∈ O,S ⊆ I .

The rules in R are written as rj : (¬r)S or as rj : (r)S, where rj ∈ I and r
is a rule of P systems with active membranes, and S is a subset of I . The AID P
systems work like general P systems with active membranes. The only difference
consists in the fact, that, at each step, only the non-inhibited rules can be used.
When a rule rj : (r)S is applied, the rules whose labels are specified in S are in-
hibited (if they were de-inhibited) or de-inhibited (if they were inhibited). Now,
starting from an initial configuration, the system evolves according to the rules
and objects present in the membranes, in a non-deterministic maximally parallel
manner. The system will make a successful computation if and only if it halts,
meaning there is no applicable rule to the objects present in the halting configu-
ration. The result of a successful computation is the number of objects present in
the environment in a halting configuration of Π. If the computation never halts,
then we will have no output.

We use the notation PsgenAIDPm(α) to denote the family of sets of vectors of
natural numbers generated by AID P systems with at most m membranes (∗ if the
number is not bounded) and developmental rules of types described by α.

A system Π as above can be also used in the accepting mode in the following
way. Given a vector v of natural numbers, let x be a string over the alphabet
O such that ΨO(x) = v; the occurrences of objects corresponding to the multiset
described by the string x are inserted in a specified region and the vector v is
accepted by the system Π if and only if the computation halts.
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60 CHAPTER 4. INHIBITING/DE-INHIBITING P SYSTEMS

We use the notation PsaccAIDPm(α) to denote the family of sets of vectors of
natural numbers accepted by AID P systems with at most m membranes (∗ if the
number is not bounded) and developmental rules of types α.

We first investigate the possibility of simulating Boolean circuits by means of
AID P systems and then we consider their computing power.

4.3.1 Simulating Logical Gates

In this section we present AID P systems which simulate logical gates. We will
consider that the input for a gate is given in the inner membrane, while the output
will be computed and sent out to the outer region.

Simulation of AND Gate

Lemma 4.3.1 Boolean AND gate can be simulated by AID P systems with rules of types
in

′ and out
′, using two membranes and two objects (only the input), in at most four steps.

Proof We construct the AID P system

ΠAND = (O,H, I, µ, w0, ws, R), with

O = {λ, 0, 1},

µ = [ [ ]0]s,

w0 = ws = λ,

H = {0, 1, s},

I = {ri | 0 ≤ i ≤ 9},

and the set R consisting of the following rules:

r1 : [ 0]0 → [ ]10

r2 : [ 0]1 → [ ]0λ{r2, r8}

r3 : [ 1]0 → [ ]11{r2, r4, r5, r6}

r4 : [ 1]1 → [ ]0λ{r2, r8}

r5 : ¬[ 0]1 → [ ]10{r5, r7}

r6 : ¬[ 1]1 → [ ]1λ{r4, r6, r9}

r7 : ¬1[ ]1 → [ λ]0{r4, r6, r7, r8}

r8 : ¬[ 0]s → [ ]s0{r2, r8}

r9 : ¬[ 1]s → [ ]s1{r2, r5, r9}

We start by placing the input values x1 and x2 in the membrane with label 0.
Depending on the value of the initial variables x1 and x2, the rules we apply for
each of the four cases are:

for x1x2 = 00 – r1, r2, r8,
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4.3. INHIBITING/DE-INHIBITING P SYSTEMS WITH ACTIVE MEMBRANES61

for x1x2 ∈ {01, 10} – r1, r4, r8, or r3, r5, r7, r8, and
for x1x2 = 11 – r3, r6, r9.
More precisely, if two 1s are in membrane 0, in the first step, rule r3 is applied,

a 1 is expelled and membrane’s label is changed to 1. In the same time according
to the inhibition/de-inhibition concept, rules r2 and r4 are inhibited, while rules
r5 and r6 are de-inhibited and ready to be used. In the second step we notice that
only rule r6 can be applied, thus, object 1, placed inside membrane labeled 1 is
transformed, in its way out, into λ. One may notice that rule r6, after is applied,
restores the original status of rule r4 and itself, and also de-inhibits rule r9. In the
third step, rule r9 performs and the right answer 1 is sent out the skin membrane,
while rules r2, r5, and r9 come back to their original status.

In other words, after these three steps, our system sends out the skin mem-
brane the right answer (given the input 11) and comes back to its initial configu-
ration, thus being ready for a new input.

In the case when the input is 01 or 10, we can start by using r1 or r3. Let us
examine the second case. Rule r3 sends 1 out of membrane 0 and changes its
label to 1. In the same time, rules r2 and r4 are inhibited, while rules r5 and r6

are de-inhibited. The only rule we can use in the second step is r5 which expels
0 out of membrane 1, inhibits itself and de-inhibits rule r7. In this moment we
have the following configuration of our system [ [ ]101]s. We now apply rule r7

which transforms object 1 to λ on its way in the inner membrane and changes its
label from 1 to 0. Rule r7 de-inhibits the inhibited rule r4, inhibits r6 and itself,
and de-inhibits rule r8. The fourth step is the one in which the right answer 0 is
sent out skin membrane, while the system gets back to its initial configuration.

Thus, our system gives the right answer, in four steps, when we have input
01. In the other two cases (when we have the input 01 and we start by using first
the rule r1, or the input is 00) our system performs the rules mentioned above;
the details are left to the reader. 2

Simulation of OR Gate

Lemma 4.3.2 Boolean OR gate can be simulated by AID P systems with rules of types
(b′0) and (c′0), using two membranes and two objects (only the input), in at most four
steps.

Proof We construct the AID P system

ΠOR = (O,H, I, µ, w0, ws, R), with

O = {λ, 0, 1},

µ = [ [ ]0]s,

w0 = ws = λ,

H = {0, 1, s},

I = {ri | 0 ≤ i ≤ 9},
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and the following set R of rules:

r1 : [ 1]0 → [ ]11

r2 : [ 1]1 → [ ]0λ{r2, r8}

r3 : [ 0]0 → [ ]10{r2, r4, r5, r6}

r4 : [ 0]1 → [ ]0λ{r2, r8}

r5 : ¬[ 1]1 → [ ]11{r5, r7}

r6 : ¬[ 0]1 → [ ]1λ{r4, r6, r9}

r7 : ¬0[ ]1 → [ λ]0{r4, r6, r7, r8}

r8 : ¬[ 1]s → [ ]s1{r2, r8}

r9 : ¬[ 0]s → [ ]s0{r2, r5, r9}

As in the case of AND gate, we place initial values x1 and x2 in the membrane
labeled 0 from the membrane structure. The succession of rules we apply for each
case is (as expected due to the duality of the system) the following:

for x1x2 = 00 – r3, r6, r9,

for x1x2 ∈ {01, 10} – r3, r5, r7, r8, or r1, r4, r8, and

for x1x2 = 11 – r1, r2, r8.

We only give here the details of the case when x1 and x2 are both 1. Our system
has the following initial configuration: [ [ 11]0]s. As mentioned above, the only
rule we can apply is r1, and our system evolves to the following configuration:
[ [ 1]11]s. The next rule we can apply is r2 through which the object in membrane 1
is transformed into λ and the membrane label changes to 0, the system evolving
to [ [ ]01]s. After applying rule r2, rule r8 is de-inhibited while rule r2 is inhibited.
We now can apply r8, which sends out the skin membrane the answer 1 and
restores the initial configuration of the system inhibiting rule r8 and de-inhibiting
rule r2.

We showed how our systems expels, in three steps, the right answer, given
the input 11.

The details of the behavior of the system in the other three cases are left to the
reader. 2

Simulation of NOT Gate

Lemma 4.3.3 Boolean unary NOT gate can be simulated by AID P systems with rules
of type (b0), in one step.
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Figure 4.1: A Boolean circuit and its associated membrane structure of simulation
by AID P systems.

Proof We construct the AID P system

ΠNOT = (O,H, S, µ, ws, R), with

O = {0, 1},

µ = [ ]s,

ws = x1x2,

H = {s},

S = {r0, r1},

R = {r0 : [ 0]s → [ ]s1, r1 : [ 1]s → [ ]s0}.

The correct computation of the NOT gate is obvious. 2

4.3.2 Simulating Boolean Circuits

We give now an example of how to construct a global AID P system which sim-
ulates a Boolean circuit, designed for evaluating a Boolean function, using sub-
AID P systems in it, namely including ΠAND, ΠOR, and ΠNOT constructed in the
previous section.

An Example

We take into consideration the example used in [15], namely we consider the
function f : {0, 1}4 → {0, 1} given by the formula f(x1, x2, x3, x4) = (x1 ∧ x2) ∨
¬(x3 ∧ x4). Our circuit and its assigned membrane structure is represented in
Figure 4.1. As shown above, the circuit has a tree as its underlying graph, with the
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64 CHAPTER 4. INHIBITING/DE-INHIBITING P SYSTEMS

leaves as input gates, and the root as output gate. We simulate this circuit with

the P system ΠC = (Π
(1)
AND, Π

(2)
AND, Π

(3)
NOT , Π

(4)
OR) constructed from the distributed

sub-AID P systems which work in parallel in the global P system, and we obtain
an unique result in the following way:

1. for every gate of the circuit with inputs from input gates, we have an ap-
propriate P system simulating it, with the innermost membrane containing
the input values;

2. for every gate which has at least one input coming as an output of a pre-
vious gate, we construct an appropriate P system to simulate it by embed-
ding in a membrane the “environments” of the P systems which compute
the gates at the previous level.

For the particular formula (x1 ∧ x2)∨¬(x3 ∧ x4) and the circuit depicted in Figure
4.1 we will have:

– Π
(1)
AND computes the first AND1 gate (x1 ∧ x2) with inputs x1 and x2.

– Π
(2)
AND computes the second AND2 gate (x3∧x4) with inputs x3 and x4; these

two P systems, Π
(1)
AND and Π

(2)
AND, act in parallel.

– Π
(3)
NOT computes NOT gate ¬(x3 ∧ x4) with input (x3 ∧ x4). While Π

(3)
NOT is

working, the output value of the first AND1 gate performs the rules that can

be applied (in Π
(4)
OR) and at a point waits for the second input (namely, the

output of Π
(3)
NOT ) to come.

– After the second input enters in the inner membrane of OR gate, P system

Π
(4)
OR will be able to complete its task. The result of the computation for OR

gate (which is the result of the global P system), is sent into the environment
of the whole system.

The idea we want to stress here is that, as noticed from the above explanations,
our system has a self-embedded synchronization. By that, we mean that if either
of the gates AND or OR receives only one (part of the) input from an upper level
of the tree, the gate will wait for the other part of the input to come in order to
expel the output. So, an extra synchronization system, as considered in [15], is
not needed in AID P systems.

Based on the previous explanations the following result holds:

Theorem 4.3.1 Every Boolean circuit α, whose underlying graph structure is a rooted
tree, can be simulated by a P system, Πα, in linear time. Πα is constructed from AID
P systems of type ΠAND, ΠOR, and ΠNOT , by reproducing in the architecture of the
membrane structure, the structure of the tree associated to the circuit.

Proof The statements follows from the previous considerations, with the obser-
vation that the simulation lasts at most four times the duration of evaluating the
Boolean circuit. 2
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CIRCUIT-SAT Efficiency

There is an interesting computational problem related to circuits, called
CIRCUIT-SAT. Given a circuit C, is there a truth assignment T appropriate to
C such that T (C) = true? It is easy to argue that CIRCUIT-SAT is computation-
ally equivalent to SAT, and hence NP-complete.

We can now appeal to a well-known construction (see, e.g., [63]) to reduce a
CIRCUIT-SAT instance to a CNF formula. Given a circuit C, we will construct a
CNF formula ϕC such that there is an assignment to the inputs of C producing a 1
output iff the formula ϕC is satisfiable. The formula ϕC will have n+|C| variables,
where |C| denotes the number of gates in C; if C acts on inputs x1, · · · , xn and
contains gates g1, · · · , g|C|, then ϕC will have variable set {x1, · · · , xn, g1, · · · , g|C|}.
For each gate g ∈ C, we define a set of clauses as follows:

1. if c = AND(a, b), then add (¬c ∨ a), (¬c ∨ b), (c ∨ ¬a ∨ ¬b),

2. if c = OR(a, b), then add (c ∨ ¬a), (c ∨ ¬b), (¬c ∨ a ∨ b),

3. if c = NOT(a), then add (c ∨ a), (¬c ∨ ¬a).

The formula ϕC is simply the conjunction of all the clauses over all the gates of C.
We assume below that C consists of gates from a standard complete basis such

as AND, OR, NOT. Our results can easily be generalized to allow other gates (e.g.,
with a larger fan-in); the final bounds are interesting as long as the number of
clauses per gate (and the maximum fan-in in the circuit) is upper bounded by a
constant. Recall that a circuit C is a directed acyclic graph (DAG). We define the
underlying undirected graph as follows:

Definition 4.3.1 Given a circuit C with inputs X = {x1, · · · , xn} and gates S =
{g1, · · · , gs}, let GC = (V,E) be the undirected and unweighted graph with V = X ∪ S
and E = {{x, y} | x is an input to gate y or vice versa}.

Theorem 4.3.2 For a circuit C with gates from {AND, OR, NOT}, the
CIRCUIT-SAT instance for C can be solved by an AID P system.

Proof Here is the sketch of the proof.
We know that propositional formula ϕC in CNF is simply the conjunction of

all the clauses over all the gates of C. In our previous example, for the Boolean
circuit considered in Section 4.3.2, ϕC is:

ϕC = (¬c1 ∨ x1) ∧ (¬c1 ∨ x2) ∧ (c1 ∨ ¬x1 ∨ ¬x2) ∧ (¬c2 ∨ x3) ∧

(¬c2 ∨ x4) ∧ (c2 ∨ ¬x3 ∨ ¬x4) ∧ (c2 ∨ c3) ∧ (¬c2 ∨ ¬c3) ∧

(¬c1 ∨ c4) ∧ (¬c3 ∨ c4) ∧ (¬c4 ∨ c1 ∨ c3).

In P systems literature, there are already known algorithms which solve SAT
(written as Boolean propositional formula in CNF) with P systems with active
membranes. We also present a result of this type, in Theorem 4.3.5 below. Then
our ϕC can be solved following the ideas from the proofs of these theorems. 2
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4.3.3 Accepting and Generative Universality Results

P systems with active membranes and with particular combinations of several
types of rules can reach universality without using polarizations, but only when
additional features are used, for instance, the change of the labels of membranes.

We show here that P systems with active membranes using the inhibiting/
de-inhibiting mechanism are universal even without polarizations or other addi-
tional features.

The first universality result follows from the one shown in Theorems 4.2.1
and 4.2.2. There has been shown that P systems with catalytic inhibiting/de-
inhibiting evolution rules are universal in the accepting and generative sense.
The same proofs works also for our model by using only one membrane and
catalytic developmental rules (with one catalyst).

Therefore

Theorem 4.3.3 PsgenAIDP1(cat1) = PsaccAIDP1(cat1) = PsRE.

The next universality result is for the generative case and its proof is based on
the simulation of matrix grammars with appearance checking.

Theorem 4.3.4 PsgenAIDP4(rdn) = PsRE.

Proof Let G = (N, T, S,M, F ) be a matrix grammar with appearance checking in
the binary normal form as introduced in Section 2.2.2. Assume that all matrices
of forms 2,3, and 4 are injectively labeled with elements of a set B (without loss
of generality, suppose 0 /∈ B), B = B1 ∪ B2, B1 for the matrices of the form 2 and
4, and B2 for the matrices of form 3. We construct the AID P system of degree 4

Π = (O,H, I, µ, w0, w1, w2, w3, R),

O = T ∪ N2 ∪ {αm | α ∈ N2 ∪ T,m ∈ B} ∪ {λ, #},

H = {0, 1, 2, 3},

I = {rim | 1 ≤ i ≤ 10,m ∈ B} ∪ {r11, r12 ∪ {ra | a ∈ T},

µ = [ [ [ ]
3
]
2
]
1
]
0
,

w1 = AX,w0 = w2 = w3 = λ.

and the set R contains the following rules.
The simulation of a matrix m : (X → Y,A → x), with X ∈ N1, Y ∈ N1 ∪ {λ},

and A ∈ N2, |x| ≤ 2, x = x′x′′, x′, x′′ ∈ N2 ∪ T ∪ {λ}, is done using the following
inhibiting/de-inhibiting rules added to the set R:

r1m : [ X[ ]
2
]
1
→ [ [ Ym]

2
]
1
λ{r2m},

r2m : ¬[ A[ ]
2
]
1
→ [ [ x′

m]
2
]
1
x′′

m{r2m, r3m, r5m},
|x′

m| ≤ 1, |x′′
m| ≤ 1,

r3m : ¬[ Ym[ ]
3
]
2
→ [ [ λ]

3
]
2
Y {r3m, r4m},
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r4m : ¬[ x′
m[ ]

3
]
2
→ [ [ λ]

3
]
2
x′{r4m},

r5m : ¬[ x′′
m[ ]

1
]
0
→ [ [ x′′]

1
]
0
{r5m}.

These rules simulate the matrices of the second and fourth type of M .

Initially, objects X and A are placed in the membrane with label 1. In the first
step, by using rule r1m object X is replicated to Ym and λ, and object Ym sent to
the inner membrane.

In the same step rule r2m is de-inhibited so it can be executed in the next step.
By using rule r2m the object A is replicated to object x′

m and object x′′
m, |x′

m| ≤ 1,
|x′′

m| ≤ 1, and these objects are distributed into membrane 2 and membrane 0,
respectively, while the rule inhibits itself; moreover, rules r3m and r5m are de-
inhibited. In the next step, objects Y and x′′ are introduced in the membrane with
label 1 simultaneously, while rule r4m is de-inhibited by rule r3m. Then object x′

enters into membrane 1 from membrane 2. In this way the first rule of the matrix
has been simulated.

The simulation of a matrix m : (X → Y,A → #), with X,Y ∈ N1, and A ∈ N2,
is done using the rules:

r6m : [ X[ ]
2
]
1
→ [ [ Ym]

2
]
1
λ{r7m, r8m},

r7m : ¬[ A[ ]
2
]
1
→ [ [ λ]

2
]
1
#,

r8m : ¬[ Ym[ ]
3
]
2
→ [ [ Ym]

3
]
2
λ{r8m},

r9m : [ Ym[ ]
4
]
3
→ [ [ λ]

4
]
3
Ym{r10m},

r10m : ¬[ Ym[ ]
3
]
2
→ [ [ λ]

3
]
2
Y {r10mr7m},

r11 : [ #[ ]1]0 → [ [ #]1]0λ,

r12 : [ #[ ]2]1 → [ [ λ]2]1#,

ra : [ a]
0
→ [ ]

0
a, for all a ∈ T .

When object X is rewritten to the object Ym, it enters to the inner membrane
with label 2 by using the rule r6m and the rule r7m is de-inhibited. If any object A
appears in region 1, then the trap object # is produced and so the computation
cannot halt. If the rule r7m is not applied, after 4 steps, the object Y come in the
region where object X is present and the rule r7m will be inhibited again. Thus,
also the matrix in appearance checking is simulated in the correct way and the
process can be iterated.

The result of the computation is collected in the environment; from the above
explanation it follows that the set of vectors generated by Π is exactly the Parikh
image of L(G). 2
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4.3.4 An Efficiency Result for AID P Systems

The SAT problem (satisfiability of propositional formula in the conjunctive nor-
mal form) is probably the most known NP-complete problem. It asks whether or
not for a given formula in the conjunctive normal form there is a truth-assignment
of variables such that the formula assumes the value true. Let us consider a propo-
sitional formula in the conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β of SAT will be encoded in the rules of a P system by using the
multisets vj and v′

j of symbols, corresponding to the clauses satisfied by true and
false assignment of xj , respectively:

vj = {ci | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n,

v′
j = {ci | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n.

We use here the most investigated way to obtain exponential work space–
membrane division.

The next theorem shows how to solve the SAT problem by using the
inhibiting/de-inhibiting mechanism without changing the labels of membranes,
still in linear time.

Theorem 4.3.5 AID P systems with rules of types (e) and rdn, constructed in a semi-
uniform manner, can deterministically solve SAT in linear time with respect to the num-
ber of the variables and the number of clauses.

Proof
We construct the AID P system

Π = (O,H, I, µ, w0, · · · , w7, R), with

O = {ai | 1 ≤ i ≤ n} ∪ {ci | 1 ≤ i ≤ m}

∪ {di | 1 ≤ i ≤ m} ∪ {ei | 0 ≤ i ≤ 2n + m + 3}

∪ {yes, no} ∪ {ti, fi | 1 ≤ i ≤ n},

H = {i | 0 ≤ i ≤ 6},

I = {gi | 1 ≤ i ≤ 2n + m + 2} ∪ {hi | 1 ≤ i ≤ 4},

µ = [ [ [ [ ]
3
]
2
]
1
[ [ [ ]

6
]
5
]
4
]
0
,

w1 = a1 · · · an, w4 = e0, w0 = w2 = w3 = w5 = w6 = λ,

with the following rules, divided according to their use.
The global control rules are the following ones:

h1 : [ ei[ ]
5
]
4
→ [ [ ei+1]5]4λ,
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h2 : [ ei[ ]
6
]
5
→ [ [ λ]

6
]
5
ei+1, 0 ≤ i ≤ 2n + m.

The control variables ei counts the computing steps in the nested control mem-
branes. As we shall see, after 2n + m + 2 derivation steps, the answer yes ap-
pears outside the skin membrane if the given satisfiability problem has a solution,
whereas in the case that no solution exists, in one or two steps more, the answer
no appears in the environment.

• Generation phase:

g1 : [ a1]1 → [ t1]1[ f1]1{g2},

gi : ¬[ ai]1 → [ ti]1[ fi]1{gi+1}, 2 ≤ i ≤ n.

In the first step of the computation, using rule g1 with object a1, we produce
the truth values true and false assigned to the variable x1, placed in two new
separate copies of membrane 1, and, at the same time, the rule g2 is de-inhibited.

Therefore the previously de-inhibited rules gi, 2 ≤ i ≤ n, will be executed in
the next step.

In this way, in n steps we assign the truth values to all variables, hence we get
all 2n truth-assignments, placed in 2n separate copies of membrane 1.

Objects ti corresponds to the true value of variable xi, while object fi corre-
sponds to the false value of variable xi.

In the n-th step, after applying the rule gn, the rule gn+1 can be executed.

gn+i : ¬[ ti[ ]
2
]
1
→ [ [ vi]2]1λ{gn+i+1},

[ fi[ ]
2
]
1
→ [ [ v′

i]2]1λ{gn+i+1}, 1 ≤ i ≤ n.

By using the rules gn+i, 1 ≤ i ≤ n, every object ti and fi evolves into objects ci

(corresponding to clauses Ci, satisfied by the true or false values chosen for xi)
and object λ, respectively; and they are distributed into the inner and surround-
ing membranes.

• Checking phase:

g2n+i : [ ci[ ]3]2 → [ [ ci]3]2di{g2n+i+1, g2n+i}, 1 ≤ i ≤ m.

In the checking phase, by using the rules g2n+i, object ci, 1 ≤ i ≤ n, is placed in
membranes labeled 2, and replicated into object ci and counter object di. Object ci

is sent into the direct inner elementary membrane, and object di is sent out to the
surrounding membrane. Meanwhile, the rule g2n+i itself is inhibited and the rule
g2n+i+1 is de-inhibited in order to check the next object.

If all objects ci, 1 ≤ i ≤ m, are present in any membrane, then after m steps,
object dm is produced into the membranes with label 1.

• Output phase:

g2n+m+1 : ¬[ dm[ ]
2
]
1
→ [ [ λ]

2
]
1
dm,
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70 CHAPTER 4. INHIBITING/DE-INHIBITING P SYSTEMS

g2n+m+2 : [ dm[ ]
1
]
0
→ [ [ λ]

1
]
0
yes {g2n+m+2h4}.

If β has a solution, after 2n + m + 2 steps, objects dm appears in the skin mem-
brane by using the rules g2n+m+1, and again, one object dm, non-deterministically
chosen, will output object yes into environment, while the rule is inhibited to
avoid further output. This is in the case that the formula is satisfiable and the
computation stops (this step was the (2n + m + 3)th step of the entire computa-
tion).

h3 : [ e2n+m+1(2)[ ]
5
]
4
→ [ [ λ]

5
]
4
e2n+m+2(3),

h4 : [ e2n+m+2(3)[ ]
4
]
0
→ [ [ λ]

4
]
0
no.

If β has no solution and if 2n + m + 1 is an odd step, then after two more
steps the counter object e2n+m+3 will output the answer no to the environment.
Otherwise, after one more step object e2n+m+2 will execute this operation. 2

4.4 Remarks and Further Research

In this chapter, we have considered a mechanism of chemical reactions in the
cell biology, which is used to control the computation steps in P systems by
inhibiting/de-inhibiting their general rules.

We investigated in Section 4.2 the computational power of this mechanism in
both generative and accepting P systems. In particular we proved that univer-
sality can be obtained by using one catalyst and one membrane. If we use only
non-cooperative rules and one membrane, then we can obtain at least the family
of Parikh images of the languages generated by ET0L systems.

In Section 4.3 we have illustrated how the inhibit and de-inhibit mechanism
can be introduced to P systems using active membranes. In particular, we have
shown that NP-complete problems, in particular SAT, can be solved in linear
time by using this model. Moreover, universality (in the generative and accept-
ing case) can be obtained by using simple inhibiting/de-inhibiting active mem-
brane’s rules and without the change of labels.

Finally, in the previous section we have introduced a new way of simulating
Boolean gates and circuits. This idea is very attractive because apart from using
less biological resources (only two objects and two types of rules for the simula-
tion of Boolean gates) than the previous simulations, we also proposed a system
which has a self-embedded synchronization of the objects in the circuit without
being necessary other tools to coordinate the computation.
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Chapter 5

Spiking Neural P Systems

5.1 The Biological Source of the Concept

We recall here from [1], [54], [55] some notions about the neural cell, mainly fo-
cusing on the electric pulses a neuron is transmitting through its synapses; such
a pulse is usually called a spike, or action potential.

In Figure 5.1 (a drawing by the Spanish Nobel prize winner Ramón y Cajal,
one of the pioneers of neuroscience around 1900, reproduced from [33]), an ex-
ample of a neural action potential is schematically given altogether with the main
parts of a neuron – the cell itself (soma), the axon, the dendrites (a filamentous
bush around the soma, where the synapses are established with the endbulbs of
the axons of other neurons).

The neuronal signals consist of short electrical pulses (that can be observed as
suggested in the figure by placing a fine electrode close to the soma or on the axon
of a neuron) having an amplitude of about 100 mV and typically a duration of 1-
2 ms. The form of the pulse does not change as the action potential propagates
along the axon. A sequence of such impulses which occur at regular or irregular
intervals is called a spike train. Since all spikes of a given neuron look alike, the
form of the action potential does not carry any information. Rather, it is the number
and the timing of spikes what matter.

So, the size and the shape of a spike is independent of the input of the neuron,
but the time when a neuron fires depends on its input.

Action potentials in a spike train are usually well separated. Even with very
strong input, it is impossible to excite a second spike during or immediately af-
ter a first one. The minimal distance between two spikes defines the refractory
period of the neuron.

The closeness of the axon of a neuron with the dendrites of another neuron
is called a synapse. The most common type of synapse in the vertebrate brain
is a chemical synapse. When an action potential arrives at a synapse, it triggers
a complex chain of bio-chemical processing steps that lead to a release of neuro-
transmitter from the presynaptic neuron into the postsynaptic neuron. As soon as
transmitter molecules have reached the postsynaptic side, they will be detected
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72 CHAPTER 5. SPIKING NEURAL P SYSTEMS

Figure 5.1: A neuron and its spiking

by specialized receptors in the postsynaptic cell membrane, and through specific
channels, the ions from the extracellular fluid flow into the target cell. The ion in-
flux, in turn, leads to a change of the membrane potential at the postsynaptic site
so that, in the end, the chemical signal is translated into an electrical response.
The voltage response of the postsynaptic neuron to a presynaptic action potential
is called the postsynaptic potential.

In the following section, we will capture some of these ideas in the framework
of neural-like P systems (defined in Section 2.4.4) as existing in the membrane
computing literature, adapting the definition to the case of spiking.

5.2 The Initial Model

We pass from the definition of a neural-like P system to a model which makes
explicit the restriction to work only with spikes. This means that we have to use
only one impulse, hence symbol, identifying a generic electrical neural impulse, a
“quanta” of electricity used in neural interaction. We will also remove the states
of neurons; the firing will be controlled by the number of spikes present in a
neuron and by the time elapsed since the previous spiking, in a very simple way;
we will also relax the definition of successful computations, removing the halting
condition (but adding a sort of simplicity condition: the output neuron can spike
only twice).

Specifically, we consider a spiking neural P system (in short, an SN P system),
of degree m ≥ 1, in the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);
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5.2. THE INITIAL MODEL 73

2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:

a) ni ≥ 0 is the initial number of spikes contained by the neuron;

b) Ri is a finite set of rules of the following two forms:

(1) E/ar → a; t, where E is a regular expression over O, r ≥ 1, and
t ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any
rule E/ar → a; t of type (1) from Ri;

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
among neurons);

4. i0 ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are firing (we also say spiking) rules: provided that the con-
tents of the neuron (the number of spikes present in it) is described by the regular
expression E (we return immediately to this aspect), r spikes are consumed (this
corresponds to the result of the quotient of language L(E) with respect to ar, thus
motivating the notation E/ar from the firing rules), the neuron is fired, and it
produces a spike which will be sent to other neurons after t time units (a global
clock is assumed, marking the time for the whole system, hence the functioning
of the system is synchronized).

We have here two important actions which can take place in a step: getting
fired and spiking.

A neuron gets fired when using a rule E/ar → a; t, and this is possible only
if the neuron contains n spikes such that an ∈ L(E) and n ≥ r. This means
that the regular expression E “covers” exactly the contents of the neuron. (For
instance, a rule a(aa)+/a3 → a; 1 can be applied to a neuron which contains seven
copies of a, because a7 ∈ L(a(aa)+) = {a2n+1 | n ≥ 1}, and then only four spikes
remain in the neuron; now, the rule cannot be applied again – in general, the rule
a(aa)+/a3 → a; 1 cannot be applied if the neuron contains any even number of
spikes.)

This is an important detail concerning the use of spiking rules, and we stress
it again, especially because it contrasts the “standard” way of using rules in P
systems, by rewriting parts of a multiset, in the maximally parallel mode both
locally (in each compartment) and globally (at the level of the system). Here, at
the level of each neuron we work in a sequential mode, with at most one rule used
in each step, covering all spikes present in the neuron. Still, we have a maximal
parallelism at the level of the system, in the sense that in each step all neurons
which can evolve (use a rule) have to do it. We will come back to this aspect.

Now, about spiking. The use of a rule E/ar → a; t in a step q means firing
in step q and spiking in step q + t. That is, if t = 0, then the spike is produced
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74 CHAPTER 5. SPIKING NEURAL P SYSTEMS

immediately, in the same step when the rule is used. If t = 1, then the spike
will leave the neuron in the next step, and so on. In the interval between using
the rule and releasing the spike, the neuron is assumed closed (in the refractory
period), hence it cannot receive further spikes, and, of course, cannot fire again.
This means that if t ≥ 1 and another neuron emits a spike in any moment q, q +
1, . . . , q + t − 1, then its spike will not pass to the neuron which has used the
rule E/ar → a; t in step q. In the moment when the spike is emitted, the neuron
can receive new spikes (it is now free of internal electricity and can receive new
electrical impulses). This means that if t = 0, then no restriction is imposed, the
neuron can receive spikes in the same step when using the rule. Similarly, the
neuron can receive spikes in moment t, in the case t ≥ 1.

If a neuron σi spikes, its spike is replicated in such a way that one spike is
sent to all neurons σj such that (i, j) ∈ syn, and σj is open at that moment. If a
neuron σi fires and either it has no outgoing synapse, or all neurons σj such that
(i, j) ∈ syn are closed, then the spike of neuron σi is lost; the firing is allowed, it
takes place, but it produces no spike.

The rules of type (2) are forgetting rules: s spikes are simply removed (“forgot-
ten”) when applying as → λ. Like in the case of spiking rules, the left hand side
of a forgetting rule must “cover” the contents of the neuron, that is, as → λ is
applied only if the neuron contains exactly s spikes.

As defined above, the neurons can contain several rules, without restrictions
about their left hand sides. More precisely, it is allowed to have two spiking rules
E1/a

r1 → a; t1, E2/a
r2 → a; t2 with L(E1)∩L(E2) 6= ∅ (but not forgetting rules as →

λ with as ∈ L(Ei), i = 1, 2). This leads to a non-deterministic way of using the
rules. If we use the spiking neural P systems in a generative mode (starting from
the initial configuration, we evolve non-deterministically, and collect all results
of all successful computations – we define immediately the used terms), then
we cannot avoid the non-determinism (deterministic systems will compute only
singleton sets). In the accepting mode of using our systems, as considered in
Section 5.2.2, the non-determinism is no longer necessary.

However, we have imposed a minimal determinism-like restriction (we can also
consider this as a coherence condition: either firing or forgetting, without be-
ing possible to chose among these two actions): no forgetting rule can be inter-
changed with a spiking rule. Thus, only in the case of spiking we allow branch-
ings.

As suggested above, the rules are used in the non-deterministic manner, in a
synchronous way at the level of the system: in each step, all neurons which can
use a rule, of any type, spiking or forgetting, have to evolve, using a rule.

A spike emitted by a neuron i will pass immediately to all neurons j such that
(i, j) ∈ syn and are open, that is, the transmission of a spike takes no time, the
spikes are available in the receiving neurons already in the next step.

The distribution of spikes in neurons and the states of neurons corresponding
to the spiking intervals specified by the last rules used in each neuron (the open-
close status and the time since the neurons were closed, depending on the rule
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used) define the configuration of the system. The initial configuration is defined
by the number of initial spikes, n1, . . . , nm, with all neurons being open (no rule
was used before). Formally, 〈r1/t1, . . . , rm/tm〉 is the configuration where neuron
i = 1, 2, . . . ,m contains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps; with
this notation, the initial configuration is C0 = 〈n1/0, . . . , nm/0〉.

Using the rules in this way, we pass from a configuration of the system to
another configuration; such a step is called a transition. For two configuration
C1, C2 of Π we denote by C1 =⇒ C2 the fact that there is a direct transition from
C1 to C2 in Π. The reflexive and transitive closure of the relation =⇒ is denoted
by =⇒∗. A sequence of transitions, starting in the initial configuration, is called a
computation.

With a computation we can associate several results. One possibility is the
standard one in membrane computing: to consider only halting computations
(reaching a configuration where no rule can be used) and to count the number
of spikes present in the output neuron in the halting configuration, or sent to the
environment by the output neuron during a halting computation. However, this
is not in the style of spiking neurons, that is why we will consider here outputs
related to the time when certain events take place. One idea is to take into account
the moments when the output neuron, that with label i0, spikes (not when it fires),
and already we have two possibilities: if neuron i0 spikes at times t1, t2, . . . , then
(i) either the set of numbers t1, t2, . . . can be considered as computed by Π, or (ii)
the set of intervals between spikes, ts − ts−1, s ≥ 2, can be the set computed by Π.
Another possibility is to take a sequence of symbols/bits 0 and 1 as the result of
a computation, with 0 associated with a moment when the output neuron does
not spike and 1 associated with a spiking step. Finite and also infinite sequences
of bits can be obtained in this way.

All these possibilities look very attractive, some of them will be considered
below but their systematic study remains as a research topic. In what follows,
we consider a further possibility, rather relaxed: we do not care whether or not
the computation halts, but we only request that the output neuron spikes exactly
twice during the computation. Then, the number of steps elapsed between the
two spikes is the number computed by the system along that computation.

We denote by N2(Π) the set of numbers computed in this way by a system
Π, with the subscript 2 reminding of the way the result of a computation is de-
fined, and by Spik2Pm(rulek, consp, forgq) the family of all sets N2(Π) computed
as above by spiking neural P systems with at most m ≥ 1 neurons, using at most
k ≥ 1 rules in each neuron, with all spiking rules E/ar → a; t having r ≤ p, and
all forgetting rules as → λ having s ≤ q. When one of the parameters m, k, p, q is
not bounded, then it is replaced with ∗.

5.2.1 Examples

We illustrate here the previous definitions with several examples, most of them
also useful later.
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76 CHAPTER 5. SPIKING NEURAL P SYSTEMS

The first example concerns the system Π1 given in a graphical form in Figure
5.2 – and in this way we also introduce a standard way to pictorially represent a
configuration of an SN P system, in particular, the initial configuration. Specifi-
cally, each neuron is represented by a “membrane” (a circle or an oval), marked
with a label and having inside both the current number of spikes (written explic-
itly, in the form an for n spikes present in a neuron) and the evolution rules; the
synapses linking the neurons are represented by arrows; besides the fact that the
output neuron will be identified by its label, i0, it is also suggestive to draw a
short arrow which exits from it, pointing to the environment.

Using this example, we also introduce the following convention: if a spiking
rule is of the form E/ar → a; t, with L(E) = {ar} (this means that such a rule
is applied when the neuron contains exactly r spikes – and all these spikes are
consumed), then we will write this rule in the simpler form ar → a; t. Another
simplification we adopt concerns the fact that we often refer to a neuron σi by its
label, thus saying “neuron i” instead of “neuron σi”.

In the system Π1 we have three neurons, with labels 1, 2, 3; neuron 3 is the
output one. In the initial configuration we have spikes in neurons 1 and 3, and
these neurons fire already in the first step. The spike of neuron 3 exits the system,
so the number of steps from now until the next spiking of neuron 3 is the number
computed by the system. After firing, neuron 3 remains empty, so it cannot spike
again before receiving a new spike. In turn, neuron 2 cannot fire until collecting
exactly k spikes.
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Figure 5.2: A simple example of an SN P system

After firing, neuron 1 will be closed/blocked for the next two steps; in the
third step it will release its spike, sending it to neuron 2, and in step 3 will fire
again. Thus, neuron 1 fires in every third step, consuming one of the spikes: any
number n ≥ 1 of spikes is “covered” by the regular expression a+. In the step
3k, neuron 2 will receive the kth spike emitted by neuron 1, hence in the next
moment, 3k + 1, it will fire. The delay between firing and spiking is of one time
unit for neuron 2, hence its spike will reach neuron 3 in step 3k + 2, meaning
that neuron 3 spikes again in step 3k + 3. Therefore, the computed number is
(3k + 3) − 1 = 3k + 2.
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The computation continues until consuming (and thus moving to neuron 2)
all spikes from neuron 1, hence further 3(k − 1) steps. However, neurons 2 and 3
will never fire again. If we have at least one more spike in neuron 1, then neuron
2 accumulates again k spikes, will fire for the second time, and the spike sent to
neuron 3 will allow this neuron to spike for the third time. Such an event would
make the computation unacceptable, we will get then no result.

The next example is presented in Figure 5.3 – we denote this SN P system by
Π2.

'

&

$

%

'

&

$

%

'

&

$

%
'

&

$

%
�
�
�
�

�
�
�
�

'

&

$

%

�
�

�
�	

PPPPi

@
@

@
@@I

�
�

�
�

���

�����*

������

HHHHHHj

�����1

�����9

A
A
A
A
A
A
A
A
A
AAU-

�

1

2

3

4

5

6

6

7
a2

a2 → a; 0

a3 → λ
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a → a; 1

a → a; 0

a → a; 0
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a → λ

a2

a2 → a; 0

a → λ

Figure 5.3: An SN P system generating all even natural numbers

In the beginning, only neurons 1, 2, 3, and 7 (which is the output neuron) con-
tain spikes, hence they fire in the first step – and spike immediately. In particular,
the output neuron spikes, hence we have to count the number of steps until the
next spike, to define the result of the computation.

Note that in the first step we cannot use the forgetting rule a → λ in neurons
1, 2, 3, because we have more than one spike present in each neuron.

The spikes of neurons 1, 2, 3 will pass to neurons 4, 5, 6. In step 2, neurons 1,
2, 3 contain no spike inside, hence will not fire, but neurons 4, 5, 6 fire. Neurons
5, 6 have only one rule, but neuron 4 behaves non-deterministically, choosing
between the rules a → a; 0 and a → a; 1. Assume that for m ≥ 0 steps we use
here the first rule. This means that three spikes are sent to neuron 7, while each
of neurons 1, 2, 3 receives two spikes. In step 3, neurons 4, 5, 6 cannot fire, but
all neurons 1, 2, 3 fire again. After receiving the three spikes, neuron 7 uses its
forgetting rule and gets empty again. These steps can be repeated arbitrarily
many times.

In order to fire again neuron 7, we have to use sometimes the rule a → a; 1 of
neuron 4. Assume that this happens in step t (it is easy to see that t = 2m + 2).
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78 CHAPTER 5. SPIKING NEURAL P SYSTEMS

This means that at step t only neurons 5, 6 emit their spikes. Each of neurons 1, 2,
3 receives only one spike – and forgets it in the next step, t + 1. Neuron 7 receives
two spikes, and fires again, thus sending the second spike to the environment.
This happens in moment t + 1 = 2m + 2 + 1, hence the computed number is
2m + 2 for some m ≥ 0. The spike of neuron 4 (the one “prepared-but-not-yet-
emitted” there by using the rule a → a; 1 in step t) will reach neurons 1, 2, 3, and
7 in step t + 1, hence it can be used only in step t + 2; in step t + 2 neurons 1, 2, 3
forget their spikes and the computation halts. The spike from neuron 7 remains
unused, there is no rule for it. Note that we cannot avoid using the forgetting
rules a → λ from neurons 1, 2, 3: without such rules, the spikes of neurons 5, 6
from step t will wait unused in neurons 1, 2, 3 and, when the spike of neuron 4
will arrive, we will have two spikes, hence the rules a2 → a; 0 from neurons 1, 2,
3 would be enabled again and the system will spike again.

Table 5.1 presents the computation of number 4 by the system Π2; in each step,
for each neuron we indicate in the first line the used rule and, in the second line,
the spikes present in the neuron, with a dash used when no rule is applied and/or
no spike is present; an exclamation mark indicates the spikes of the output neu-
ron; the newly received spikes have a subscript which indicates their originating
neuron.

Table 5.1: A computation in the system from Figure 5.3

Step 0 1 2 3 4 5 6
Neuron

1 a2 → a; 0 — a2 → a; 0 — a → λ a → λ
aa — a4a5 — a5 a4 —

2 a2 → a; 0 — a2 → a; 0 — a → λ a → λ
aa — a4a5 — a5 a4 —

3 a2 → a; 0 — a2 → a; 0 — a → λ a → λ
aa — a4a6 — a6 a4 —

4 — a → a; 0 — a → a; 1 — —
— a1 — a1 — — —

5 — a → a; 0 — a → a; 0 — —
— a2 — a2 — — —

6 — a → a; 0 — a → a; 0 — —
— a3 — a3 — — —

7 a2 → a; 0 ! — a3 → λ — a2 → a; 0 ! —
aa — a4a5a6 — a5a6 a4 a

We formally conclude that:

N2(Π2) = {2n | n ≥ 1} ∈ Spik2P7(rule2, cons2, forg3).
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5.2. THE INITIAL MODEL 79

The next example is given both in a pictorial way, in Figure 5.4, and formally:

Π3 = ({a}, σ1, σ2, σs, syn, 3), with

σ1 = (2, {a2/a → a; 0, a → λ}),

σ2 = (1, {a → a; 0, a → a; 1}),

σ3 = (3, {a3 → a; 0, a → a; 1, a2 → λ}),

syn = {(1, 2), (2, 1), (1, 3), (2, 3)}.

This system works as follows. All neurons can fire in the first step, with neu-
ron 2 choosing non-deterministically between its two rules. Note that neuron 1
can fire only if it contains two spikes; one spike is consumed, the other remains
available for the next step.

Both neurons 1 and 2 send a spike to the output neuron, 3; these two spikes
are forgotten in the next step. Neurons 1 and 2 also exchange their spikes; thus,
as long as neuron 2 uses the rule a → a; 0, the first neuron receives one spike, thus
completing the needed two spikes for firing again.
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Figure 5.4: An SN P system generating all natural numbers greater than 1

However, at any moment, starting with the first step of the computation, neu-
ron 2 can choose to use the rule a → a; 1. On the one hand, this means that the
spike of neuron 1 cannot enter neuron 2, it only goes to neuron 3; in this way, neu-
ron 2 will never work again because it remains empty. On the other hand, in the
next step neuron 1 has to use its forgetting rule a → λ, while neuron 3 fires, using
the rule a → a; 1. Simultaneously, neuron 2 emits its spike, but it cannot enter
neuron 3 (it is closed this moment); the spike enters neuron 1, but it is forgotten
in the next step. In this way, no spike remains in the system. The computation
ends with the expelling of the spike from neuron 3. Because of the waiting mo-
ment imposed by the rule a → a; 1 from neuron 3, the two spikes of this neuron
cannot be consecutive, but at least two steps must exist in between.

Thus, we conclude that (remember that number 0 is ignored)

N2(Π3) = N − {1} ∈ Spik2P3(rule3, cons3, forg2).
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At the price of using one more neuron, we can compute all natural numbers.
Such a system is given, without further details, in Figure 5.5 (it is denoted by Π4

and its output neuron is 4).
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a3 → λ

Figure 5.5: An SN P system generating all natural numbers

These last three examples will be useful in the next sections. Moreover, many
of the proofs which follow are based on explicit constructions, hence further ex-
amples can be found in the sequel.

5.2.2 The Computational Power of SN P Systems

A Characterization of NFIN

In the continuation of the examples before, where an SN P system was presented
with three neurons which computes an infinite set of numbers, let us examine the
power of systems with one or two neurons only.

We start with the observation that by using any type of rules, spiking or forget-
ting rules, in a neuron σi we diminish the number of spikes from σi. In general,
the number of spikes can increase in the whole system, because the spikes are
replicated in the case of multiple synapses starting from a given neuron. How-
ever, if we have only one neuron in the system, then no replication is possible,
hence each computation lasts at most as many steps as the number of spikes ini-
tially present in the neuron.

Consequently, SN P systems with only one neuron can only compute finite
sets of numbers. Interesting enough, any finite set can be computed by a one-neuron
system. Indeed, let us take a finite set of numbers, F = {n1, n2, . . . , nk}, ni ≥ 1, 1 ≤
i ≤ k, and construct the system ΠF with only one neuron, containing initially two
spikes, and the following rules:

a2/a → a; 0,

a → a; ni − 1, for each i = 1, 2, . . . , k.
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5.2. THE INITIAL MODEL 81

The system spikes in the first step by means of the rule a2/a → a; 0, then, because
one spike remains inside, it fires again the next step, using any of the rules a →
a; ni. This means that the next spike is sent out in step ni + 1, hence N2(ΠF ) = F .

What about systems consisting of two neurons? One of them should be the
output one, and the output neuron can spike only twice. This means that this neu-
ron can increase the number of spikes in the system at most with two. The other
neuron does not have a synapse to itself, hence, like in the case of single-neurons
systems, it cannot use more rules than the number of spikes initially present in it,
maybe plus two, those possibly received from the output neuron. This means that
all computations are of a bounded length, hence the set of numbers computed by
the system is again finite.

We synthesize these observations in the form of a theorem, mainly in view of
the third example from the previous section: this is the best result of this type (in
what concerns the number of neurons):

Theorem 5.2.1 NFIN = Spik2P1(rule∗, cons1, forg0) =
Spik2P1(rule∗, cons∗, forg∗) = Spik2P2(rule∗, cons∗, forg∗).

From these very small systems, let us now jump to the most general case,
without any restriction on the number of neurons, or on other parameters.

Computational Completeness

The next inclusions follow directly from the definitions, with the inclusion in
NRE provable in a straightforward manner (or, we can invoke for it the Turing-
Church thesis):

Lemma 5.2.1 Spik2Pm(rulek, consp, forgq) ⊆ Spik2Pm′(rulek′ , consp′ , forgq′) ⊆
Spik2P∗(rule∗, cons∗, forg∗) ⊆ NRE, for all m′ ≥ m ≥ 1, k′ ≥ k ≥ 1, p′ ≥ p ≥ 1,
q′ ≥ q ≥ 0.

Surprisingly enough, taking into account the restrictive form of our systems,
the spiking neural P systems prove to be computationally universal:

Theorem 5.2.2 Spik2P∗(rulek, consp, forgq) = NRE for all k ≥ 2, p ≥ 3, q ≥ 3.

Proof In view of Lemma 5.2.1, we only have to prove the inclusion NRE ⊆
Spik2P∗(rule2, cons3, forg3). To this aim, we use the characterization of NRE by
means of register machines.

Let M = (m, I, l0, lh) be a register machine, having the properties specified in
Section 2.2.3: the result of a computation is the number from register 1 and this
register is never decremented during the computation.

We construct a spiking neural P system Π as follows.
Instead of specifying all technical (and difficult to follow) details of the con-

struction, we present the three main types of modules of the system Π, with the
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82 CHAPTER 5. SPIKING NEURAL P SYSTEMS

neurons, their rules, and their synapses represented graphically. All neurons are
initially empty, with the single exception of the neuron with label l0 (the label of
the initial instruction of M ), which contains exactly two spikes (two copies of a).

What we want to do is to have Π constructed in such a way (1) to simulate the
register machine M , and (2) to have its output neuron spiking only twice, at an
interval of time which corresponds to a number computed by M .

In turn, simulating M means to simulate the ADD instructions and the SUB
instructions. Thus, we will have a type of modules associated with ADD instruc-
tions, one associated with SUB instructions, and one dealing with the spiking of
the output neuron (a FIN module). The modules of the three types are given in
Figures 5.6, 5.7, 5.8, respectively. The neurons appearing in these figures have
labels l1, l2, l3, as in the instructions from I , labels 1, 2, . . . ,m associated with the
registers of M , l′1, l

′′
1 , l

′′
1 associated with the label l1 identifying ADD and SUB in-

structions from I , br (from “before r”, because this neuron is used by all ADD
instructions when sending a spike to neuron r), f1, f2, f3, f4, f5, f6, used by the
FIN module, as well as out, labeling the output neuron.
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a2 → a; 0
a → λ

l′1 l′′1 l′′′1

br

a → a; 0

a → a; 0 a → a; 1
a → a; 0
a → a; 1

l2 l3
a2 → a; 0

a → λ

a2 → a; 0
a → λ

r

Figure 5.6: Module ADD (simulating l1 : (ADD(r), l2, l3))

Before describing the work of these modules, let us remember that the labels
are uniquely associated with the instructions of M , hence each label precisely
identifies one instruction, either an ADD or a SUB one, with the halting label
having a special situation – it will be dealt with by the FIN module.
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Simulating an ADD instruction l1 : (ADD(r), l2, l3) – module ADD (Figure 5.6).
The initial instruction, that labeled with l0, is an ADD instruction. Assume

that we are in a step when we have to simulate an instruction l1 : (ADD(r), l2, l3),
with two spikes present in neuron l1 (like in the initial configuration) and no spike
in any other neuron, except those neurons associated with the registers. Having
two spikes inside, neuron l1 gets fired. Its spike will simultaneously go to four
neurons, l′1, l

′′
1 , l

′′′
1 , and br.

In the next step, both neurons l′′1 and br will send a spike to neuron r, the
one which corresponds to register r of M . In this way, the contents of neuron
r increases by two. In each moment, if register r has value n, then neuron r
will contain 2n spikes. In Figure 5.6, neuron r contains no rules, but, as we will
see immediately, the neurons associated with registers have two rules each, used
when simulating the SUB instructions, but both these rules need an odd number
of spikes to be applied (this is true also for the module FIN, which only deals
with the neuron associated with register 1). Therefore, during the simulation of
an ADD instruction, neuron r just increases by 2 its contents, and never fires.

Now, the problem is to pass non-deterministically to one of the instructions
with labels l2 and l3, that is, in our system we have to ensure the firing of neurons
l2 or l3, non-deterministically choosing one of them. To this aim, we use the non-
determinism of the rules in neuron l′1. One of them will be used, thus consuming
the unique spike existing here. If we use the rule a → a; 0, then both neurons l2, l3
receive a spike from l′1. For l3 this is the unique spike it receives now (note that
neuron l′′′1 fires now but its spike will leave one step later), hence in the next step
the forgetting rule of neuron l3 should be used. Instead, neuron l2 receives two
spikes, one from neuron l′1 and one from neuron l′′1 , hence in the next step it is
fired.

However, if instead of rule a → a; 0 we use the rule a → a; 1 of neuron l′1
(note that the only difference is the time of spiking), then it is l2 which receives
only one spike, and immediately it “forgets” it, while in the next step neuron l3
receives two spikes, and fires.

Therefore, from firing neuron l1, we pass to firing non-deterministically one
of neurons l2, l3, while also increasing by 2 the number of spikes from neuron r.

Simulating a SUB instruction l1 : (SUB(r), l2, l3) – module SUB (Figure 5.7).
Let us examine now Figure 5.7, starting from the situation of having two

spikes in neuron l1 and no spike in other neurons, except neuron r, which holds
an even number of spikes (half of this number is the value of the corresponding
register r). The spike of neuron l1 goes immediately to three neurons, l′1, l

′′
1 , and

r. Neuron l′1 will send in the next step a spike to neuron l2, while neuron l′′1 will
send a spike to neuron l3 one step later.

A similar situation appears in neuron r: because it contains now an odd num-
ber of spikes, it gets fired, and it will either spike immediately, if the first rule is
used (a(aa)+/a3 → a; 0), or one step later, if the second rule is used (a → a; 1).
In turn, the first rule is used if and only if neuron r contains at least three spikes;
one spike has just came from neuron l1, hence at least two existed in the neuron,
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l1
a2 → a; 0
a → λ

l′1 l′′1

a → a; 0 a → a; 1r

a(aa)+/a3 → a; 0

a → a; 1

l2
a2 → a; 0

a → λ

l3

a2 → a; 0

a → λ

Figure 5.7: Module SUB (simulating l1 : (SUB(r), l2, l3))

which means that the value of register r was at least one. The two spikes which
reach neuron l2 make this neuron fire, as requested by simulating the SUB in-
struction. The spike from neuron l3 will be removed by the local forgetting rule.
If in neuron r there is only one spike (this corresponds to the case when register r
is empty), then the second rule is used, hence the neuron spikes at the same time
with l′′1 , in the next step. This means that neuron l2 receives only one spike (and
removes it), while neuron l3 receives two, and fires.

The simulation of the SUB instruction is correct, we started from l1 and we
ended in l2 if the register was non-empty and decreased by one, and in l3 if the
register was empty.

Note that there is no interference between the neurons used in the ADD and
the SUB instructions, other than correctly firing the neurons l2, l3 which may label
instructions of the other kind. In particular, the ADD instructions do not use any
rule for handling the spikes of neurons 1, 2, . . . ,m. The only neurons used by
several rules are those which correspond to registers and neuron br, used as a sort
of interface before sending a spike to neuron r; then, each neuron r associated
with a register which is subject of a SUB instruction sends a spike to several,
possibly to all, neurons with labels l ∈ lab(M) – but only one of these neurons
also receives at the same time a spike from the corresponding neurons l′1, l

′′
2 , hence

only the correct neuron fires, all others forget immediately the unique spike.
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Ending a computation – module FIN (Figure 5.8).
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1
a3(aa)+/aa → a; 0

a3 → a; 0

lh

a2 → a; 0

a → λ

f5

a → a; 0

f1

a → a; 0

f2
a → a; 0

out

-a → a; 0

f3

a2 → a; 0

a → λ

a2 → a; 0
a → λ

f6

a3 → λ
a2 → a; 0

Figure 5.8: Module FIN (ending the computation)

Assume now that the computation in M halts, which means that the halting
instruction is reached. For Π this means that the neuron lh gets two spikes and
fires. At that moment, neuron 1 contains 2n spikes, for n being the contents of
register 1 of M . The spike of neuron lh reaches immediately neurons 1, f1, f5. This
means that neuron 1 contains now an odd number of spikes, and it can fire. It is
important to remember that this neuron was never involved in a SUB instruction,
hence it does not contain any rule as those from Figure 5.7.

Let t be the moment when neuron lh fires.
At moment t + 1, neurons f1, f5, and 1 fire and all of them spike immediately.

The spiking of neuron 1 means subtracting one from the value of the associated
register: by using the rule a3(aa)+/a2 → a; 0, two copies of a are consumed (hence
the number of spikes remains odd, the rule can be used again next step). The
spike of neuron 1 goes to four neurons, f3, f4, f5, and f6. This means that in step
t + 1 neuron f6 receives three spikes (from neurons f1, f5, and 1), which are im-
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mediately forgotten.
In step t + 2, neurons f2, f3, f5, and 1 fire and spike; again neuron f6 receives

three spikes, which are forgotten immediately. The spike from neuron f2 reaches
the output neuron, out, which in step t + 3 will fire and spike. This is the first
spike of the output neuron. The number of steps from this spike to the next one
is the number computed by the system.

Let us see how the neurons f3, f4 interplay: in each step, each of them receives
a spike from neuron 1. We start with neuron f3 fired first; it sends a spike to
neuron f6 and one to the companion neuron f4. This means that in the next step
neuron f4 is fired (he has received one spike from 1 and one from f3), while neu-
ron f3, having only the spike from neuron 1, removes it. In the next step the roles
of neurons f3, f4 are interchanged. This means that in each step one of them fires
and sends a spike to the other (and one to neuron f6), while the other only forgets
one spike.

Then, let us observe that neuron 1 sends in each moment two spikes towards
neuron f6, one reaching immediately the target, the other one with one step delay,
because it passes through neuron f5. In turn, neuron f5 never contains more than
one spike, because the spike of neuron lh reaches it in the first step and those from
neuron 1 in the subsequent steps.

This means that the process of removing two spikes from neuron 1 continues,
iteratively, without having neuron f6 spiking, until using the rule a3 → a; 0. This
is the last time when neuron 1 fires, hence this is step t+n (for 2n being the initial
contents of neuron 1). In the next step, t + n + 1, one of neurons f3, f4 still fires,
because it has two spikes, and the same with neuron f5. No other neuron fires
in this step. This means that neuron f6 receives only two spikes, and this makes
it spike in the next step, t + n + 2. This is the only spiking in this step, all other
neurons are empty.

In step t+n+3 also the output neuron spikes, and this ends the computation,
the system contains no spike.

The interval between the two spikes of neuron out is (t + n + 3) − (t + 3) = n,
exactly the value of register 1 of M in the moment when its computation halts.
Consequently, N2(Π) = N(M) and this completes the proof. 2

The previous construction contains only a few neurons which do not spike
immediately, but their role in the correct functioning of the system is essential.
Also the forgetting rules are crucial in this proof. Can these features be avoided
(without decreasing the power of SN P system)? This problem was (affirmatively)
solved in [35]. Another (standard) open problem is whether or not the parameters
used in the theorem are optimal, or they can be improved. Of course, systems
with only one rule in each neuron are deterministic, hence for such systems we
have to look for other types of results of computations, e.g., the infinite sequence
of bits marking the spiking of the output neuron. However, in what concerns the
number of neurons behaving non-deterministically, a spectacular (especially by
its metaphoric interpretation) result can be obtained:
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Corollary 5.2.1 Each set from NRE can be computed by an SN P system Π having only
one neuron with rules which can be used non-deterministically.

Proof It is enough to observe that we have non-deterministic neurons only in
the module ADD – this is the case with neuron l′1. Let us “unify” all these neurons
for all ADD instructions, in the form of a neuron lndet containing the rules

a → a; 0, a → a; 1,

with synapses (l1, lndet) for all instructions l1 : (ADD(r), l2, l3) in the register ma-
chine we want to simulate, and (lndet, l) for all l ∈ H . When starting to sim-
ulate any instruction l1 : (ADD(r), l2, l3), neuron lndet receives a spike, fires, and
either spikes immediately, or in the next step. The spike is sent to all neurons σl,
l ∈ lab(M), but it meets another spike only in one neuron: l2 if lndet spikes im-
mediately and l3 if it spikes in the next step. In all neurons different from these
neurons, the spike is forgotten. The system obtained in this way is clearly equiv-
alent with the one constructed in the proof of Theorem 5.2.2 and it contains only
one non-deterministic neuron. 2

This result can have a nice interpretation: it is sufficient for a “brain” (in
the form of an SN P system) to have only one neuron which behaves non-
deterministically in order to achieve “complete (Turing) creativity”.

Now, in what concerns the number of spikes consumed for firing and the
number of forgotten spikes, the problem remains whether or not the value 3 from
the theorem can be decreased. Finally, it would be interesting to have universality
results for systems with a bounded number of neurons, maybe paying in other
parameters, such as the number of rules in neurons.

The previous construction can easily be modified – actually, simplified – in
order to obtain an universality proof for the case where the result of a computa-
tion is defined as the number of spikes present in the output neuron in the last
configuration of a halting computation (in this case we cannot avoid imposing
the halting condition, because we have to make sure that no further spike will
be added to the output): we just replace the module FIN with the module from
Figure 5.9.
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a2 → a; 0

a → λ
out

Figure 5.9: Module FIN in the case of counting the number of the spikes

When the halting instruction of the register machine M is reached, the neuron
labeled lh sends a spike to neuron 1, which has now 2n + 1 spikes inside, and
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can start to send spikes to neuron out. Exactly as in the proof of Theorem 5.2.2,
the spiking of neuron 1 corresponds to decreasing by one the first register of M ,
hence the number of spikes accumulated in neuron out is equal to the value of
register 1 in the end of a computation of M .

If we add the rule a → a; 0 to neuron out, then in each step, after receiving a
spike from neuron 1, neuron out spikes, hence in this way we obtain the result in
the environment.

Spiking Neural P Systems Working in the Accepting Mode

An SN P system can be also used in the accepting mode. We consider here the fol-
lowing way of introducing the number to be accepted, again in the spirit of spik-
ing neurons, with the time as the main data support: the special neuron i0 is used
now as an input neuron, which can receive spikes from the environment of the
system (in the graphical representation an incoming arrow will indicate the input
neuron); we assume that exactly two spikes are entering the system; the number
n of steps elapsed between the two spikes is the one analyzed; if, after receiv-
ing the two spikes, the system halts (not necessarily in the moment of receiving
the second spike), then the number n is accepted. We denote by Nacc(Π) the set of
numbers accepted by a system Π, and by SpikaccPm(rulek, consp, forgq) the family
of sets of this form corresponding to the family Spik2Pm(rulek, consp, forgq).

In the accepting mode we can impose the restriction that in each neuron, in
each time unit at most one rule can be applied, hence that the system behaves de-
terministically. When considering only deterministic SN P systems, the notation
SpikaccPm(rulek, consp, forgq) will get a letter “D” in front of it.

Of course, inclusions as those in Lemma 5.2.1 are valid both for deterministic
and non-deterministic accepting SN P systems, and we also have the inclusion
DSpikaccPm(rulek, consp, forgq) ⊆ SpikaccPm(rulek, consp, forgq), for all m, k, p, q
(numbers or ∗). A counterpart of Theorem 5.2.2 is also true:

Theorem 5.2.3 DSpikaccP∗(rulek, consp, forgq) = NRE for all k ≥ 2, p ≥ 3, q ≥ 2.

Proof The proof is a direct consequence of the proof of Theorem 5.2.2. Namely,
we start from a deterministic register machine M and we construct the SN P sys-
tem Π as in the proof of Theorem 5.2.2 – with changes which will be immediately
mentioned –, as well as a further module, called INPUT, which takes care of ini-
tializing the work of Π. This time Π has no object inside, and the same is true
with the new module.

The module INPUT is indicated in Figure 5.10. Its functioning is rather clear.
Because the system contains no spike inside, no rule can be applied. When a
spike enters neuron in, this neuron sends a spike to all neighbors c1, c2, c3, c4 (they
are new neurons). Neurons c1, c2 do nothing, they just wait for a second spike.
Neurons c3, c4 spike immediately, sending together two spikes to neuron 1 (it
corresponds to the first register of M ), as well as to each other. This means that in
each step each of c3, c4 fires, hence in each step the contents of neuron 1 increases
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a → a; 0

c1 c2
c3 c4

a2 → a; 0 a2 → a; 0

l0
a2 → a; 0
a → λ

a → a; 0

a2 → λ

a → a; 0

a2 → λ

1

Figure 5.10: Module INPUT (initializing the computation)

again with two spikes. If at some moment, at n steps after the first spike coming to
the system, a second spike enters neuron in coming from the environment, then
this neuron spikes again. For neurons c1, c2 this entails the firing, and thus neuron
l0 gets the necessary spikes to fire, while for neurons c3, c4 this means the end of
work, because the spikes are erased by the rules a2 → λ. Therefore, on the one
hand, the contents of neuron 1 remains 2n, on the other hand, neuron l0 triggers
the simulation of a computation in M , starting with the instruction labeled with
l0, in recognizing the number n.

Note that this is consistent with the way the system Π from the proof of Theo-
rem 5.2.2 works: the neuron l0 starts by having two spikes inside, and the contents
of register 1 is double the number to analyze.

Now, we start using modules ADD and SUB associated with the register
machine M , with modules ADD constructed for instructions of the form l1 :
(ADD(r), l2). This means that the module ADD is now much simpler than in Figure
5.6, namely, it looks like in Figure 5.11.

The functioning of this modified ADD module is obvious, hence we omit the
details.

The modules SUB remain unchanged, while the module FIN is simply re-
moved, with the neuron lh remaining in the system, with no rule inside. Thus,
the computation will stop if and only if the computation in M stops. The obser-
vation that the only forgetting rule as → λ with s = 3 was present in module FIN,
which is no longer used, completes the proof. 2

It is worth noting that both in this section and in the previous one, we use
only firing rules with immediate spiking and with spiking at the next step. Fur-
thermore, the regular expressions we have used (in the SUB and FIN modules)
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Figure 5.11: Module ADD in the deterministic case

are only meant to check the parity of the number of spikes present in the neuron.
Both these parameters – the maximal delay in spiking and the complexity of the
regular expressions used in rules – can be considered as complexity parameters
of our systems (and the results above show that universality can be obtained even
for rather simple systems from these points of view).

A Characterization of Semilinear Sets of Numbers

Let us now try to be more “realistic”, not allowing the neurons to hold arbitrarily
many spikes at the same time. This reminds of the sigmoidal function relating the
input excitations to the neuron exciting: after a given threshold, the additional
spikes do not matter, they are simply ignored.

Not very surprising (this reminds other characterizations of semilinear sets
of numbers of or vectors of numbers in terms of P systems – see, e.g., [36]), but
interesting by the proof, the SN P systems which have a bound on the number of
spikes they hold during a computation generate exactly semilinear sets of natural
numbers.

Let us denote by Spik2Pm(rulek, consp, forgq, bounds) the family of sets of
numbers N2(Π) computed by SN P systems Π with at most m neurons, using at
most k rules in each neuron, consuming at most p and forgetting at most q spikes
in each rule, and with at most s spikes present at any time in any neuron (if a
computation reaches a configuration where a neuron accumulates more than s
spikes, then it aborts, such a computation does not provide any result). As usual,
we replace by ∗ the parameters which are not bounded (bound∗ will mean that
we consider only SN P systems with a bound on the number of spikes present
in any neuron, but this bound is not specified; when boundα is simply missing
from the notation, this will mean that the number of spikes in neurons can grow
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arbitrarily, beyond any limit – like in the previous sections).
In this section we prove the following theorem:

Theorem 5.2.4 SLIN1 = Spik2P∗(rulek, consp, forgq, bounds), for all k ≥ 3, q ≥
3, p ≥ 3, and s ≥ 3.

We start with the inclusion which is simpler to prove:

Lemma 5.2.2 Spik2P∗(rule∗, cons∗, forg∗, bound∗) ⊆ SLIN1.

Proof Take a system Π with a bound s on the number of spikes in each neuron.
The number of neurons is given, their contents is bounded, the number of rules
in neurons (hence the length of the refractory periods) is given, hence the number
of configurations reached by Π is finite. Let C be their set, and let C0 be the initial
configuration of Π.

We construct the right-linear grammar G = (N, {a}, (C0, 0), P ), where N =
C × {0, 1, 2}, and P contains the following rules:

1. (C, 0) → (C ′, 0), for C,C ′ ∈ C such that there is a transition C =⇒ C ′ in Π
during which the output neuron does not spike;

2. (C, 0) → (C ′, 1), for C,C ′ ∈ C such that there is a transition C =⇒ C ′ in Π
during which the output neuron spikes;

3. (C, 1) → a(C ′, 1), for C,C ′ ∈ C such that there is a transition C =⇒ C ′ in Π
during which the output neuron does not spike;

4. (C, 1) → a(C ′, 2), for C,C ′ ∈ C such that there is a transition C =⇒ C ′ in Π
during which the output neuron spikes;

5. (C, 2) → λ, for C ∈ C if there is a halting computation C =⇒∗ C ′ in Π
during which the output neuron never spikes, or there is an infinite com-
putation starting in configuration C during which the output neuron of Π
never spikes.

The way of controlling the derivation by the two components of the nonterminals
in N ensures the fact that N2(Π) is the length set of the regular language L(G),
hence it is semilinear.

It is worth noting that the construction of grammar G is effective, because the
conditions involved in defining the rules – including those from step 5 – can be
decided algorithmically. 2

The opposite inclusion is based on the observation that any semilinear set of
numbers is the union of a finite set with a finite number of arithmetical progres-
sions. Now, a finite set is the union of a finite number of singleton sets. Thus, it
suffices to prove the closure under union and the fact that singleton sets and arith-
metical progressions are in Spik2P∗(rule3, cons3, forg3, bound3), and we will do
this in the following series of lemmas, whose conjunction – together with Lemma
5.2.2 – proves the theorem.
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92 CHAPTER 5. SPIKING NEURAL P SYSTEMS

Lemma 5.2.3 Each singleton {n}, n ≥ 1, is in Spik2P1(rule2, cons1, forg0, bound2).

Proof Take the system with only one neuron, containing initially two spikes,
and two rules:

a2/a → a; 0, a → a; n − 1.

The first spike exits in step 1, the second one in step 2+(n−1), hence the computed
number is n. 2

Lemma 5.2.4 Each arithmetical progression {ni | i ≥ 1}, n ≥ 3, is in Spik2Pn+2(rule3,
cons3, forg2, bound3).

Proof For given n as in the statement of the lemma, we consider the SN P
system in Figure 5.12.
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Figure 5.12: An SN P system generating an arithmetical progression

The neuron out spikes in step 1. The spike emitted by it goes along the path
1, 2, . . . , n − 2 until getting doubled when passing from neuron n − 2 to neurons
n − 1 and 0. Both these last neurons get fired. As long as neurons 0 and n − 1
spike in different moments (because neuron 0 uses the rule a → a; 1), no further
spike exits the system (neuron out gets only one spike and forgets it immediately),
and one passes along the cycle of neurons 1, 2, . . . , n − 1, n again and again. If
neurons 0 and n − 1 spike at the same time (neuron 0 uses the rule a → a; 0),
then the system spikes again – hence in a moment of the form ni, i ≥ 1. The
spike of neuron out arrives at the same time in neuron 1 with the spike of neuron
n, and this halts the computation, because of the rule a2 → λ, which consumes
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the spikes present in the system. Consequently, the system computes the “pure”
arithmetical progression {ni | i ≥ 1}. 2

However, we have to compute not only “pure” progressions, but also of the
form {r+ni | i ≥ 1}, for n ≥ 1 and r ≥ 1. This is ensured by the following general
result:

Lemma 5.2.5 If Q ∈ Spik2Pm(rulek, consp, forgq, bounds) and r ≥ 1, then {x + r |
x ∈ Q} ∈ Spik2Pm+1(rulek, consp, forgq, bounds), for all m ≥ 1, k ≥ 2, p ≥ 3, q ≥
0, s ≥ 3.

Proof Having a system Π, generating a given set Q, we add to this system a
further neuron, labeled with out′, with a synapse from the output neuron of Π to
this new neuron; the new neuron has initially a2 inside, and the rules

a3 → a; 0, a → a; r.

Let Π′ be the system obtained in this way, with the output neuron out′. If the
system Π spikes at moments t1 and t2, then Π′ spikes at the moments t1 + 1 and
t2 + 1 + r, hence if Π computes the number t2 − t1, then Π′ computes the number
(t2 + 1 + r) − (t1 + 1) = (t2 − t1) + r. 2

We still have to consider two particular progressions, the one with step 2
and the one with step 1. The former case was already covered by the sec-
ond example from Section 5.2.1 (Figure 5.3). The latter is the set N, which,
from the fourth example from Section 5.2.1 (Figure 5.5) is know to be in
Spik2P4(rule2, cons2, forg3, bound2).

For proving the closure under union we need an auxiliary result. For an SN
P system Π, let us denote by spin(Π) the maximal number of spikes present in a
neuron in the initial configuration of Π.

Lemma 5.2.6 For every SN P system Π (not necessarily with a bound on the number of
spikes present in its neurons), there is an equivalent system Π′ such that spin(Π′) = 1.
The system Π′ has spin(Π) + 1 additional neurons, all of them containing only one rule,
of the form a → a; 0.

Proof Take an arbitrary SN P system Π and construct a system Π′ as follows.
We consider further spin(Π) + 1 neurons, with labels 0, 1, 2, . . . , spin(Π) (we as-
sume that these labels are not used also in Π). Neuron 0 is the only one in the
whole system which contains any spike, namely one (we remove all spikes from
the neurons of system Π). The old neurons have the same rules as in Π, while
each new neuron contains only the rule a → a; 0. From neuron 0 start synapses to
all neurons 1, 2, . . . , spin(Π). From these neurons we establish as many synapses
to the neurons of Π as many spikes they have in the initial configuration of Π
(precisely, if a neuron l of Π has nl spikes in the initial configuration of Π, then we
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94 CHAPTER 5. SPIKING NEURAL P SYSTEMS

establish the synapses (i, l), for all 1 ≤ i ≤ nl). Thus, after two steps, all neurons
of Π′ which correspond to neurons of Π contain exactly as many spikes as they
contained in the initial configuration of Π. No synapse goes back to the new neu-
rons, hence from now on the system works exactly as Π, that is, N2(Π

′) = N2(Π).
2

We can now complete the proof of Theorem 5.2.4, by proving the “union
lemma”:

Lemma 5.2.7 If Q1, Q2 ∈ Spik2Pm(rulek, consp, forgq, bounds), for some m ≥ 1, k ≥
2, p ≥ 2, q ≥ 1, s ≥ 2, then Q1 ∪ Q2 ∈ Spik2P2m+6(rulek, consp, forgq, bounds).

Proof Take two SN P systems Π1, Π2 in the normal form given by Lemma 5.2.6.
Let in1, in2 be the labels of neurons in Π1, Π2, respectively, containing initially one
spike. We construct a system Π as suggested in Figure 5.13.
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Figure 5.13: The idea of the union construction

In the system Π constructed in this way only neuron 0 contains a spike (those
from neurons in1, in2 were removed. The non-deterministic functioning of neu-
ron 2 will enable either the (sub)system Π1, or the (sub)system Π2, hence Π can
compute whatever any of the two systems can compute. 2

Note that also this lemma holds true for arbitrary systems, not only for the
bounded ones.

UNIVERSITAT ROVIRA I VIRGILI 
MEMBRANE COMPUTING: TRACES, NEURAL INSPIRED MODELS, CONTROLS 
Armand-Mihai Ionescu 
ISBN:978-84-691-9877-3/DL:T-127-2009



5.2. THE INITIAL MODEL 95

Theorem 5.2.4 can be interpreted in the following way: even if we use time as
a support for information, without using the classic workspace as a resource and
without considering information also encoded in the number of objects used in
the system, we cannot compute “too much” – precisely, we cannot go beyond the
semilinear sets (the length sets of regular languages).

From Theorem 5.2.4, all closure properties of the family SLIN1 are transferred
to the family Spik2P∗(rule∗, cons∗, forg∗, bound∗); for instance, we get the closure
under sum, intersection, complement, and the non-closure under product. Still
more precise results also follow from Lemmas 5.2.7 and 5.2.5, concerning the clo-
sure under union and the sum with a given number. A similar situation is met
with respect to the non-closure under product:

Corollary 5.2.2 There are sets Q1, Q2 in the family
Spik2P3(rule3, cons3, forg2, bound3) such that Q1Q2 = {nm | n ∈ Q1,m ∈ Q2} is not
in Spik2P∗(rule∗, cons∗, forg∗, bound∗).

Proof We take Q1 = Q2 = {2, 3, . . . }. From the third example in Section 5.2.1
we know that Q1 ∈ Spik2P3(rule3, cons3, forg2, bound3). Because Q1Q2 is the set
of all composite numbers, and this set is not semilinear, from Theorem 5.2.4 it
follows that Q1Q2 /∈ Spik2P∗(rule∗, cons∗, forg∗, bound∗). 2

We end this section with the following general remark: all SN P systems con-
sidered in the constructions from the proofs in this section and from Section 5.2.2
always halt (maybe a few steps) after the second spiking. Thus, all results above
are valid also in the restrictive case of considering successful only halting com-
putations (which spike exactly twice).

5.2.3 Remarks and Further Research

Starting from the definition of neural-like P systems and following the idea of
spiking neurons from neurobiology, we have proposed a class of spiking neural
P systems for which we have proved the universality in the general case and a
characterization of semilinear sets of numbers in the case when the number of
spikes is bounded.

These results are the basic ones in this area, and many research directions
remain to be explored (several of them will be presented in the following sec-
tions), starting with considering further ideas from neurobiology. Inhibiting/de-
inhibiting mechanisms, dynamic structures of synapses, changing the neurons
themselves during their “lives” (maybe “damaging” ones and letting other neu-
rons to replace them), assigning a more important role to the environment, learn-
ing and adapting to new inputs from the environment, and so on and so forth,
can be issues to investigate.

Then, returning to the theoretical framework, the similarity with Petri nets
is visible (both models move “tokens” across a network), and equally the differ-
ences (there is no delay in spiking, forgetting rules, counting states in Petri nets,
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Figure 5.14: A “small” SN P system computing a non-semilinear set of numbers

neither universality for the basic classes of nets); each domain has probably to
import ideas and results from the other one.

We conclude this section with a technical open problem. In Section 5.2.2 we
have seen that two neurons can compute at most finite sets. How many neurons
– with unbounded contents – suffice in order to compute a non-semilinear set of
numbers?

Figure 5.14 gives a first answer, using 18 neurons. We start with 5 spikes in
neuron 1, one in neuron 4, and two spikes in each neuron 16 and 17. Iteratively,
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5.3. ON STRING LANGUAGES GENERATED BY SN P SYSTEMS 97

the 2n + 1 spikes from neuron 1 are moved to neuron 7, doubling all but the last
one spike, hence getting 4n + 1 spikes in neuron 7. The process is somewhat sim-
ilar to that carried by the modules FIN and SUB from the proof of Theorem 5.2.2
(2n is meant to represent the number n, which thus is doubled when passing from
neuron 1 to neuron 7). From neuron 7, all spikes are then moved back to neuron
1. After each cycle, neurons 6 and 10 spike. As long as the rule a → a; 0 is used
in neuron 13, the spike of neuron 10 is forgotten on the way towards the output
neuron. Similarly, the two spikes coming from neuron 6 to the output neuron are
forgotten in neuron 18. When neuron 13 uses the rule a → a; 1, neuron out spikes,
once when receiving the signal from neuron 10 and once when receiving the sig-
nal from neuron 6, and this means that in between we have m steps, for 2m + 1
being the contents of neuron 1 just moved to neuron 7. We leave the details to the
reader and we only mention that N2(Π) = {2n | n ≥ 2}, hence this non-semilinear
set belongs to Spik2P18(rule3, cons3, forg2).

Can these parameters be (significantly) decreased? Which is the smallest num-
ber of neurons sufficient for computing a non-semilinear set of numbers?

5.3 On String Languages Generated by SN P Systems

We continue the study of SNP systems by considering these computing devices as
binary string generators: the set of spike trains of halting computations of a given
system constitutes the language generated by that system. Specifically, with any
computation (halting or not) we associate a spike train, the sequence of symbols 0
and 1 describing the behavior of the output neuron: if the output neuron spikes,
then we write 1, otherwise we write 0.

More formally, let Π = (O, σ1, . . . , σm, syn, i0) be an SN P system and let γ
be a halting computation in Π, γ = C0 =⇒ C1 =⇒ . . . =⇒ Ck (C0 is the initial
configuration, and Ci−1 =⇒ Ci is the ith step of γ). Let us denote by bin(γ) the
string b1b2 . . . bk, where bi ∈ {0, 1}, and bi = 1 if and only if the (output neuron of
the) system Π sends a spike into the environment in step i of γ. We denote by B
the binary alphabet {0, 1}, and by COM(Π) the set of all halting computations of
Π. Moreover, we define the language generated by Π by

Lbin(Π) = {bin(γ) | γ ∈ COM(Π)}.

In the next sections we will illustrate these definitions with a series of exam-
ples.

By LbinSNPm(rulek, consp, forgq) we denote the family of languages Lbin(Π),
generated by systems Π with at most m neurons, each neuron having at most k
rules, each of the spiking rules consuming at most p spikes, and each forgetting
rule removing at most q spikes. As usual, a parameter m, k, p, q is replaced with ∗
if it is not bounded. If the underlying SN P systems are finite (i.e., contain only a
bounded number of spikes), we denote the corresponding families of languages
by LbinFSNPm(rulek, consp, forgq).
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5.3.1 An Illustrative Example

We consider a system with a simple architecture, but with an intricate behavior,
given pictorially.
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Figure 5.15: The initial configuration of the system Π1

Figure 5.15 represents the initial configuration of the system Π1. We have
three neurons, labeled with 1, 2, 3, with neuron 3 being the output one. Each
neuron contains two rules, with neurons 1 and 2 having the same rules (firing
rules which can be chosen in a non-deterministic way, the difference between
them being in the delay from firing to spiking), and neuron 3 having one firing
and one forgetting rule. In the figure, the rules are labeled, and these labels are
useful below.

The evolution of the system Π1 can be analyzed on a transition diagram as
that from Figure 5.16: because the system is finite, the number of configurations
reachable from the initial configuration is finite, too, hence, we can place them in
the nodes of a graph, and between two nodes/configurations we draw an arrow
if and only if a direct transition is possible between them. In Figure 5.16 we have
also indicated the rules used in each neuron, with the following conventions: for
each rij we have written only the subscript ij, with 31 being written in italics, in
order to indicate that a spike is sent out of the system at that step; when a neuron
i = 1, 2, 3 uses no rule, we have written i0, and when it spikes (after being closed
for one step), we write is.

The functioning of the system can easily be followed on this diagram, so that
we only briefly describe it. We start with spikes in all neurons. Neurons 1 and 2
behave non-deterministically, choosing one of the two rules. As long as they use
the rules a → a; 0, the computation cycles in the initial configuration: neurons
1 and 2 exchange spikes, while neuron 3 forgets its two spikes. If both neurons
use the second rule the rule a → a; 1, then both neurons fire, but do not spike im-
mediately, and we reach the configuration 〈0/1, 0/1, 0/0〉. In the next step, both
neurons spike, and we return to the initial configuration. When only one of neu-
rons 1, 2 uses the rule a → a; 0 (and therefore spikes immediately) and the other
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Figure 5.16: The transition diagram of system Π1

one uses the rule a → a; 1 (and fires, but does not spike, hence, is closed and can-
not receive spikes), then only one spike arrives in neuron 3, and in the next step
neuron 3 as well as the neuron having used the rule a → a; 1 now send out a spike.
If neuron 1 has used the rule a → a; 0 and neuron 2 has used the rule a → a; 1, we
reach the configuration 〈2/0, 0/0, 1/0〉; neurons 1 and 2 now cannot apply a rule
anymore, thus after one more spiking of neuron 3 we reach the halting configu-
ration 〈3/0, 0/0, 0/0〉. If, conversely, neuron 1 uses the rule a → a; 1 and neuron
2 uses the rule a → a; 0, then we first get the configuration 〈0/1, 0/0, 1/0〉; in the
next step, neuron 1 sends its spike to neurons 2 and 3, while neuron 3 also spikes,
and “reloads” neuron 1. Then the computation can either run along the cycles de-
picted in the central part of the diagram from Figure 5.16, or it can reach again the
initial configuration, or else it can reach the halting configuration 〈4/0, 0/0, 0/0〉
from the configuration 〈2/0, 1/0, 2/0〉 in two or three steps (as indicated in the
bottom part of the diagram).

The transition diagram of a finite SN P system can be interpreted as the
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100 CHAPTER 5. SPIKING NEURAL P SYSTEMS

representation of a non-deterministic finite automaton, with C0 being the ini-
tial state, the halting configurations being final states, and each arrow being
marked with 0 if in that transition the output neuron does not send a spike out,
and with 1 if in the respective transition the output neuron spikes; in this way,
we can identify the language generated by the system. In the case of the fi-
nite SN P system Π1, the generated language is the following one: Lbin(Π1) =
L((0∗0(11 ∪ 111)∗110)∗0∗(011 ∪ 0(11 ∪ 111)+(0 ∪ 02)1)).

We here do not present further examples, because many of the results in the
next section are based on effective constructions of SN P systems.

5.3.2 The Language Generative Power of SN P Systems

In what follows we will see that the power of SN P systems used as language
generators is rather “ex-centric”: “easy” languages cannot be generated, but on
the other hand some “hard” languages can be generated.

We start by pointing out an example of the first type.

Theorem 5.3.1 No language of the form Lk,j = {0k, 10j}, for k ≥ 1, j ≥ 0, can be
generated by an SN P system.

Proof In order to generate a string 10j , in the initial configuration the output
neuron must contain at least one spike. In such a case, no string of the form 0k

can be generated: if k = 1, then we need a forgetting rule ar → λ which can be
applied at the same time with a spiking rule, and this is not possible, by definition
(no forgetting rule can be interchanged with a spiking rule); if k ≥ 2, then in the
first step the output neuron should not use a rule, but this is not allowed by the
way of defining the computations in a synchronized way. 2

The simplest language of the form above is L1,0 = {0, 1}, which does not
belong to LbinSNP∗(rule∗, cons∗, forg∗). The same argument works for any lan-
guage of the form {0k, 1x}, where x is an arbitrary string over the binary alphabet.
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r11 : a → a; 0

r12 : a → a; 1

a5

r21 : a5/a3 → a; 0

r22 : a3 → λ

r23 : a → λ

r31 : a → a; 0

2
31

Figure 5.17: An SN P system (Π2) generating the language {100, 01}

This does not at all mean that languages consisting of two words similar to
those considered above (one word starting with 1 and one with 0) cannot be gen-
erated by our systems. An example is the language {100, 01}, which is generated
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Figure 5.18: The transition diagram of the system Π2

by the system Π2 from Figure 5.17; for the reader’s convenience, the transition
diagram of system Π2 is given in Figure 5.18.

We remain in the same area, of finite languages, mentioning the following
three results.

Theorem 5.3.2 If L = {x}, x ∈ B+, |x|1 = r ≥ 0, then L ∈ LbinFSNP2(ruler+1,
cons1, forg0).

Proof Let us consider a string x = 0n110n2 . . . 0nr10nr+1 , for nj ≥ 0, 1 ≤ j ≤ r+1
(if x = 0n1 , then r = 0). The SN P system from Figure 5.19 generates the string
x. The output neuron initially contains r spikes. At step 1, the rule ar/a → a; n1

can be applied. One spike is removed and at step n1 + 1 one spike is sent out.
We continue in this way until using the rule a/a → a; nr, i.e., until exhausting
the spikes; the last spike is sent out at step

∑r
i=1 ni + r. The second neuron (not

having a synapse with the output one) is meant to make the computation last
exactly |x| steps. Note that |x| − (

∑r
j=1 nj + r) = nr+1, therefore the system halts

after generating nr+1 more occurrences of 0.

In the case r = 0, the system contains no rule in neuron 1, but there is one rule
in neuron 2, that is why we have ruler+1 in the theorem statement. 2

Actually, modulo a supplementary final occurrence of 1, any finite language
can be generated.

Theorem 5.3.3 If L ∈ FIN , L ⊆ B+, then L{1} ∈ LbinFSNP1(rule∗, cons∗, forg0).
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Figure 5.19: An SN P system generating a singleton language

Proof Let us assume that L = {x1, x2, . . . , xm}, with |xj1| = nj ≥ 2, 1 ≤ j ≤ m;
denote αj =

∑j
i=1 ni, for all 1 ≤ j ≤ m. We write xj1 = 0sj,110sj,21 . . . 10sj,rj 1, for

rj ≥ 1, sj,l ≥ 0, 1 ≤ l ≤ rj .
An SN P system which generates the language L{1} is the following:

Π = ({a}, σ1, ∅, 1),

σ1 = (αm + 1, R1),

R1 = {aαm+1/aαm+1−αj → a; sj,1 | 1 ≤ j ≤ m}

∪ {aαj−t+2/a → a; sj,t | 2 ≤ t < rj − 1, 1 ≤ j ≤ m}

∪ {aαj−rj+2 → a; sj,rj
| 1 ≤ j ≤ m}.

Initially, only a rule aαm+1/aαm+1−αj → a; sj,1 can be used, and in this way we
non-deterministically chose the string xj to generate. After sj,1 steps, for some
1 ≤ j ≤ m, we output a spike, hence, in this way the prefix 0sj,11 of the string xj

is generated. Because αj spikes remain in the neuron, we have to continue with
rules aαj−t+2/a → a; sj,t, for t = 2, and then for the respective t = 3, 4, . . . , rj−1; in
this way we introduce the substrings 0sj,t1 of xj , for all t = 2, 3, . . . , rj −1. The last
substring, 0sj,rj 1, is introduced by the rule aαj−rj+2 → a; sj,rj

, which concludes the
computation.

We observe that the rules which are used in the generation of a string xj1
cannot be used in the generation of a string xk1 with k 6= j. 2

Corollary 5.3.1 Every language L ∈ FIN , L ⊆ B+, can be written in the form L =
∂r

1(L
′) for some L′ ∈ LbinFSNP1(rule∗, cons∗, forg0).

A sort of “mirror result” can be obtained, based on the idea used in the proof
of Theorem 5.3.2.

Theorem 5.3.4 If L ∈ FIN , L ⊆ B+, L = {x1, x2, . . . , xn}, then {0i+3xi | 1 ≤ i ≤
n} ∈ LbinFSNP∗(rule∗, cons1, forg0).

Proof For each xi ∈ L, xi = 0ni,110ni,21 . . . 10ni,ri 10ni,ri+1 , there is a system as
in the proof of Theorem 5.3.2, consisting of a neuron which outputs spikes in the
moments which correspond to the digits 1 of xi, and a companion neuron which
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Figure 5.20: An SN P system generating a finite set, prefixed by zeroes

just makes sure that the computation lasts |xi| steps. We combine such subsys-
tems, each one taking care of one string xi, into a system as that from Figure 5.20.

In the bottom of Figure 5.20 there are the modules (wi, ti) for generating
xi, 1 ≤ i ≤ n, as in Figure 5.19, except that there is no spike in the neurons
wi; the corresponding sets of rules are denoted by R1, R2, . . . , Rn. If there is an i
such that |xi|1 = 0 (note that in this case we have Ri = ∅), then we set ri = 1 in
the construction from Figure 5.20. The work of the system is triggered by neu-
ron 1, which selects one of its rules to be applied non-deterministically in step 1:
if the rule a → a; i is applied, then the module for generating xi+1 is activated,
i = 0, 1, , . . . , n− 1. The neurons ci, 1 ≤ i ≤ n, count the time steps, so that at step
i one spike is sent to ci+1 and one to c′i. All these spikes are forgotten, except the
one which arrives in c′i at the same time with the spike emitted by neuron 1, and
these spikes load the necessary number of spikes in the corresponding working
module wi, and also send one spike to the timing neuron ti. As in the proof of
Theorem 5.3.2, these two neurons ensure the generation of xi – with i + 3 occur-
rences of 0 in the left hand, corresponding to the i+2 steps necessary for the spike
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104 CHAPTER 5. SPIKING NEURAL P SYSTEMS

of neuron 1 to reach the working neurons and to the step necessary for passing a
spike from neuron wi to neuron out. 2

We now pass to investigating the relationships with the family of regular lan-
guages, and we start with a result already proved by the considerations above.

Theorem 5.3.5 The family of languages generated by finite SN P systems is strictly
included in the family of regular languages over the binary alphabet.

Proof The inclusion follows from the fact that for each finite SN P system we
can construct the corresponding transition diagram associated with the computa-
tions of the SN P system and then interpret it as the transition diagram of a finite
automaton (with an arc labeled by 1 when the output neuron spikes and labeled
by 0 when the output neuron does not spike) as already done in the example of
Section 5.3.1. The strictness is a consequence of Theorem 5.3.1. 2

However, each regular language, over any alphabet, not only on the bi-
nary one, can be represented in an easy way starting from a language in
LbinFSNP∗(rule∗, cons∗, forg∗).

Theorem 5.3.6 For any language L ⊆ V ∗, L ∈ REG, there is a finite SN P system Π
and a morphism h : V ∗ −→ B∗ such that L = h−1(Lbin(Π)).

Proof Let V = {a1, a2, . . . , ak} and let L ⊆ V ∗ be a regular language. Consider
the morphism h : V ∗ −→ B∗ defined by

h(ai) = 0i+11, 1 ≤ i ≤ k.

The language h(L) is regular. Consider a right-linear grammar G = (N,B, S, P )
such that L(G) = h(L) and having the following properties:

1. N = {A1, A2, . . . , An}, n ≥ 1, and S = An,

2. the rules in P are of the forms Ai → 0s1Aj or Ai → 0s1, for s ∈ {2, 3, . . . , k +
1}, i, j ∈ {1, 2, . . . , n}.

A grammar with these properties can easily be found (the first property is a
matter of renaming the nonterminals, the second property is ensured by the fact
that the strings of h(L) consist of blocks of the form 0s1 for 2 ≤ s ≤ k + 1).

For uniformity, let us assume that there exists a further nonterminal, A0, and
that all terminal rules Ai → 0s1 are replaced by Ai → 0s1A0, hence, all rules have
the generic form Ai → 0s1Aj . It is important to note that we always have at least
two occurrences of 0 in the rules.
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We construct the following SN P system:

Π = ({a}, σ1, . . . , σn+3, n + 3),

σ1 = (2, {a2/a → a; 0, a2/a → a; 1, a → λ}),

σ2 = (2, {a2/a → a; 0, a → λ}),

σi = (0, {a → a; 0}), i = 3, 4, . . . , n + 2,

σn+3 = (2n, {an+i/an+i−j → a; s | Ai → 0s1Aj ∈ P}

∪ {aj → a; k + 2 | 1 ≤ j ≤ n}).

For an easier understandability, the system is also given graphically, in Fig-
ure 5.21.
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Figure 5.21: The SN P system from the proof of Theorem 5.3.6

The output neuron already fires in the first step, by a rule a2n/a2n−j → a; s
associated with a rule An → 0s1Aj from P (where An is the axiom of G) and its
spike exits the system in step s + 1. Because s ≥ 2, the neuron n + 3 is closed
at least two steps, hence, no spike can enter from neurons 3, 4, . . . , n + 2 in these
steps (this is true in all subsequent steps of the computation when rules of G are
simulated).

Neurons 1 and 2 are meant to continuously “reload” neuron n + 3 with n
spikes, through the intermediate “multiplier neurons” 3, 4, . . . , n + 2: as long as
neuron 1 uses the rule a2/a → a; 0, neurons 1 and 2 send to each other a spike,
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returning to the initial state, while neuron 2 also sends a spike to all neurons
3, 4, . . . , n + 2. In each step, neuron 1 can however use the rule a2/a → a; 1.
Simultaneously, neuron 2 spikes, but its spike does not enter neuron 1. In the
next step, neuron 2 uses its forgetting rule a → λ, and receives one spike from
neuron 1. This spike is forgotten in the next step, and the work of neurons 1 and
2 ends. In this way, also the reloading of neuron n + 3 stops.

Let us now return to the work of neuron n + 3 and assume that we have n + i
spikes in it, for some 1 ≤ i ≤ n (initially, i = n). The only rule which can be used
is an+i/an+i−j → a; s, for Ai → 0s1Aj ∈ P . There remain j spikes; if the neuron
receives n spikes from neurons 3, 4, . . . , n + 2 in step s + 1 (the spikes sent earlier
are lost), then the output neuron ends the step s + 1 with n + j spikes inside. If
j ≥ 1, then the simulation of rules in G can be repeated.

If in the moment when a rule an+i/an+i−0 → a; s is applied (i.e., a rule
Ai → 0s1A0 is simulated) the output neuron does not receive further spikes from
neurons 3, 4, . . . , n + 2, which means that neurons 1, 2 have finished their work,
then no spike remains in the system and the computation halts. The generated
string is one from L(G) = h(L).

If the work of neurons 1 and 2 stops prematurely, i.e., in neuron n+3 we apply
a rule an+i/an+i−j → a; s and no spike comes from neurons 3, 4, . . . , n + 2 in step
s + 1, then the rule aj → a; k + 2 is immediately applied, and the computation
stops after producing the string 0k+21, as a suffix of the generated string.

Similarly, if after using a rule an+i/an+i−0 → a; s we still receive spikes from
neurons 3, 4, . . . , n + 2, then in the next step the rule an → a; k + 2 is used, and
again the string 0k+21 is introduced, possibly repeated several times before the
computation halts.

Therefore, h(L) ⊆ Lbin(Π) and Lbin(Π) − h(L) ⊆ B∗{0k+21}+. Because a string
containing a substring 0k+2 is not in h(V ∗) and because h is injective, we have
h−1(Lbin(Π)) = L. 2

As expected, the power of SN P systems goes far beyond the regular lan-
guages. We first illustrate this assertion with an example, namely, the system
Π3 from Figure 5.22, for which we have Lbin(Π3) = {0n+41n+4 | n ≥ 0}; observe
that due to the rule a(aa)+/a2 → a; 0 in neuron 10 this SN P system is not finite.

The reader can check that in n ≥ 0 steps when neuron 1 uses the rule a2/a →
a; 0 the output neuron accumulates 2n + 6 spikes. When neuron 1 uses the rule
a2/a → a; 1, one more spike will arrive in neuron 10 (in step n+4). In this way, the
number of spikes present in neuron 10 becomes odd, and the rule a(aa)+/a2 →
a; 0 can be repeatedly used until only one spike remains; this last spike is used by
the rule a → a; 0, thus n + 4 occurrences of 1 are produced.

Much more complex languages can be generated. First, the previous construc-
tion can be extended to non-context-free languages consisting of strings of the
form 0n11n20n3 with a precise relation between n1, n2, n3. Then, languages with
non-semilinear blocks in their strings can be generated.

Theorem 5.3.7 LbinSNP22(rule3, cons3, forg3) − MAT 6= ∅.
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Figure 5.22: An SN P system generating a non-regular language

Proof In Figure 5.14 from Section 5.2.3 one considers an SN P system Π (with
18 neurons, of the complexity described by rule3, cons3, forg3) which produces all
spike trains of the form 0k102n

10w, for any n ≥ 2, and some k ≥ 1 and an infinite
binary sequence w. To this system we add a halting module as that suggested in
Figure 5.23, which waits until receiving two spikes from the output neuron of Π,
then sends three spikes to neurons 6 and 10 of Π; these neurons play an important
rôle in iterating the work of Π, but they cannot handle more than two spikes. In
this way, the work of Π is blocked after producing two spikes. (The same effect is
obtained if we send three spikes to all neurons of Π, except the output one, so the
reader should not mind which is the precise role of neurons 6 and 10 in Π.) Thus,
the obtained system, let us denote it by Π′, will halt after sending out two spikes,
hence, it generates a language Lbin(Π′) included in {0}∗{102n

1 | n ≥ 2}{0}∗ such
that

(({0}∗{1})\Lbin(Π′))/({1}{0}∗) = {02n

| n ≥ 1}.

The family MAT is closed under right and left quotients by regular languages [22]
and all one-letter matrix languages are regular [34], therefore Lbin(Π′) /∈ MAT .

2
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Figure 5.23: A halting module (as used in the proof of Theorem 5.3.7)

The strong restriction that in order to produce a string of length n we have
to work exactly n steps (and the fact that the workspace used during these steps
cannot increase exponentially) directly implies the fact that languages generated
by SN P systems are recursive. Indeed, their membership problem can be solved
in the following easy way: consider a string x and a system Π; start from the
initial configuration of Π and construct the computation tree with |x| + 1 levels,
then check whether there is a path in this tree which corresponds to a halting
computation and which produces the string x. Therefore, we have the following
result.

Theorem 5.3.8 LbinSNP∗(rule∗, cons∗, forg∗) ⊂ REC.

We do not know whether this result can be improved to the inclusion
LbinSNP∗(rule∗, cons∗, forg∗) ⊂ CS.

However, a characterization of recursively enumerable languages is possible
in terms of languages generated by SN P systems.

Theorem 5.3.9 For every alphabet V = {a1, a2, . . . , ak} there are a morphism h1 : (V ∪
{b, c})∗ −→ B∗ and a projection h2 : (V ∪ {b, c})∗ −→ V ∗ such that for each language
L ⊆ V ∗, L ∈ RE, there is an SN P system Π such that L = h2(h

−1
1 (Lbin(Π))).

Proof The two morphisms are defined as follows:

h1(ai) = 10i1, for i = 1, 2, . . . , k,

h1(b) = 0,

h1(c) = 01,

h2(ai) = ai, for i = 1, 2, . . . , k,

h2(b) = h2(c) = λ.
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5.3. ON STRING LANGUAGES GENERATED BY SN P SYSTEMS 109

For a string x ∈ V ∗, let us denote by valk(x) the value in base k + 1 of x (we
use base k + 1 in order to consider the symbols a1, . . . , ak as digits 1, 2, . . . , k, thus
avoiding the digit 0 in the left hand of the string). We extend this notation in
the natural way to sets of strings. Now consider a language L ⊆ V ∗. Obviously,
L ∈ RE if and only if valk(L) is a recursively enumerable set of numbers. In turn,
a set of numbers is recursively enumerable if and only if it can be accepted by a
deterministic register machine. Let M be such a register machine, i.e., N(M) =
valk(L).

We construct an SN P system Π performing the following operations (c0 and
c1 are two distinguished neurons of Π, the first one being empty and the second
one having three spikes in the initial configuration):

1. Output a spike in the first time unit.

2. For some 1 ≤ i ≤ k, output no spike for i steps, but introduce the number
i in neuron c0; in the construction below, a number n is represented in a
neuron by storing there 3n spikes, i.e., the previous task means introducing
3i spikes in neuron c0.

3. When this operation is finished, output a spike (hence, up to now we have
produced a string 10i1).

4. Multiply the number stored in neuron c1 (initially, we here have number
0) by k + 1, then add the number from neuron c0; specifically, if neuron c0

holds 3i spikes and neuron c1 holds 3m spikes, m ≥ 0, we end this step with
3(m(k + 1) + i) spikes in neuron c1 and no spike in neuron c0. In the mean-
time, the system outputs no spike (hence, the string was continued with a
number of occurrences of 0; this number depends on the duration of the
operation above, but it is greater than 1). When the operation is completed,
output two spikes in a row (hence, the string is continued with 11).

5. Repeat from step 2, or, non-deterministically, stop the increase of spikes
from neuron c1 and pass to the next step.

6. After the last increase of the number of spikes from neuron c1 we have got
valk(x) for a string x ∈ V + such that the string produced by the system up to
now is of the form 10i110j1110i210j211 . . . 110im10jm , for 1 ≤ il ≤ k and jl ≥ 1,
for all 1 ≤ l ≤ m, i.e., h1(x) = 10i1110i21 . . . 10im1. We now start to simu-
late the work of the register machine M in recognizing the number valk(x).
During this process, we output no spike, but we output one if (and only if)
the machine M halts, i.e., when it accepts the input number, which means
that x ∈ L. After emitting this last spike, the system halts. Therefore, the
previous string 10i110j1110i210j211 . . . 110im10jm is continued with a suffix of
the form 0s1 for some s ≥ 1.

From the previous description of the work of Π, it is clear that we stop, after
producing a string of the form y = 10i110j1110i210j211 . . . 110im10jm0s1 as above, if
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110 CHAPTER 5. SPIKING NEURAL P SYSTEMS

and only if x ∈ L. Moreover, it is obvious that x = h2(h
−1
1 (y)): we have h−1

1 (y) =
ai1b

j1−1cai2b
j2−1c . . . aimbjm+s−1c (this is the only way to cover correctly the string x

with blocks of the forms of h1(ai), h1(b), h1(c)); the projection h2 simply removes
the auxiliary symbols b, c.

Now, it remains to construct the system Π.
Instead of constructing it in all details, we rely on the fact that a register ma-

chine can be simulated by an SN P system, as already shown in the previous
section – for the sake of completeness and because of some minor changes in the
construction, we below recall the details of this simulation. Then, we also sup-
pose that the multiplication by k + 1 of the contents of neuron c1 followed by
adding a number between 1 and l is done by a register machine (with the num-
bers stored in neurons c0, c1 introduced in two specified registers); we denote this
machine by M0. Thus, in our construction, also for this operation we can rely on
the general way of simulating a register machine by an SN P system. All other
modules of the construction (introducing a number of spikes in neuron c0, send-
ing out spikes, choosing non-deterministically to end the string to generate and
switching to the checking phase, etc.) are explicitly presented below.

A delicate problem which appears here is the fact that the simulations of both
machines M0 and M have to use the same neuron c1, but the correct work of the
system (the fact that the instructions of M0 are not mixed with those of M ) will
be explained below.

The overall appearance of Π is given in Figure 5.24, where M0 indicates
the subsystem corresponding to the simulation of the register machine M0 =
(m0, I0, l0,0, lh,0) and M indicates the subsystem which simulates the register ma-
chine M = (m, I, l0, lh). Of course, we assume lab(M0) ∩ lab(M) = ∅.

We start with spikes in neurons 6, 7, 8, and 18 (besides the three spikes from
neuron c1), hence, we spike in the first step. As long as neurons 6, 7 do not receive
a spike from neuron 8, they spike and send a spike to each other and three spikes
to neuron c0.

If neuron 8 starts by using some rule a → a; i − 1, 1 ≤ i ≤ k, then after i − 1
steps a spike is sent from neuron 8 to all neurons 6, 7 (which stop working), 4, 5
(which load two spikes in neuron l0,0, thus starting the simulation of the register
machine M0), and 17; from here, the spike goes to the output neuron 18, which
spikes exactly in the moment when the simulation of M0 starts.

Now, the subsystem corresponding to the register machine M0 works a num-
ber of steps (at least one); after a while the computation in M0 stops, by activating
the neuron lh,0 (this neuron will get two spikes in the end of the computation and
will spike; see below). This neuron sends a spike to both neurons 9 and 10.

Neuron 9 is the one which non-deterministically chooses to continue the string
(the case of using the rule a → a; 0) or to stop growing the string and to pass to
checking whether it is in our language (the case of using the rule a → a; 1). If both
neurons 9 and 10 spike immediately, then neuron 14 fires, but neuron 15 forgets
the two spikes.

Neuron 14 sends a spike to the output neuron and one to neuron 16. In the
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Figure 5.24: The structure of the SN P system from the proof of Theorem 5.4.6

next step, besides sending a spike outside, the system returns neurons 6, 7, 8,
and 18 to the initial state (having one spike). This means that a sequence of two
spikes are sent out, and the process continues by introducing another substring
0i1 in the string produced by the system.

When neuron 9 uses the rule a → a; 1, the spikes of neurons 10 and 9 arrive,
in this order, in neuron 15, which spikes and sends the spikes to neuron 13. This
neuron waits for the two spikes, and, after having both of them, spikes and thus
sends two spikes to l0, the initial label of the register machine M . We start sim-
ulating the work of this machine, checking whether or not the number stored in
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Figure 5.25: Module ADD (simulating l1 : (ADD(r), l2))

neuron c1 belongs to valk(L). In the affirmative case, neuron lh is activated, it
sends a spike to the output neuron of the system, and the computation stops. If
the number stored in neuron c1 is not accepted, then the computation continues
forever, hence, the system does not produce a string.

In order to complete the proof we have to show how the two register machines
are simulated, using the common neuron c1 but without mixing the computa-
tions. To this aim, we consider the modules ADD and SUB from Figures 5.25 and
5.26. Neurons are associated with each label of the machine (they fire if they have
two spikes inside and forget a single spike), with each register (with 3t spikes rep-
resenting the number t from the register), and there also are additional neurons
with primed labels – it is important to note that all these additional neurons have
distinct labels.

The simulation of an ADD instruction is easy, we just add three spikes to the
respective neuron; no rule is needed in the neuron. The instructions SUB of ma-
chine M0 are simulated by modules as in the left side of Figure 5.26 and those of
M by modules as in the right hand of the figure. The difference is that the rules
for M0 fire for a content of the neuron described by the regular expression (a3)+a
while the rules for M fire for a content of the neuron described by the regular
expression (a3)+a2 (that is why the module for M has two additional neurons,
g′
1, g

′
2). This ensures the fact that the rules of M0 are not used instead of those of

M or vice versa. It is also important to note that the neurons corresponding to the
labels of the register machines need two spikes to fire, hence, the unique spike
sent by neuron c1 (and by other neurons involved in subtraction instructions) to
other neurons than the correct ones identified by the instruction are immediately
forgotten. 2

The previous theorem given a characterization of recursively enumerable lan-
guages, because the family RE is closed under direct and inverse morphisms.
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Figure 5.26: Module SUB (simulating l1 : (SUB(r), l2, l3))

Corollary 5.3.2 The family LbinSNP∗(rule∗, cons∗, forg∗) is incomparable with all
families of languages FL such that FIN ⊆ FL ⊂ RE (even if we consider only lan-
guages over the binary alphabet) which are closed under direct and inverse morphisms.

The system Π constructed in the proof of Theorem 5.4.6 depends on the lan-
guage L, while the morphisms h1, h2 only depend on the alphabet V . Can this
property be reversed, taking the system Π depending only on the alphabet V and
the morphisms (or other stronger string mappings, such as a gsm mapping) de-
pending on the language? A possible strategy of addressing this question is to
use a characterization of RE languages starting from fixed languages, such as the
twin-shuffle language [23] or the copy languages [24].

5.3.3 Remarks and Future Research

We have considered the natural question of using spiking neural P systems as
language generators, and we have investigated their power with respect to fam-
ilies in the Chomsky hierarchy. Several topics remain to be investigated, mainly,
concerning possible changes in the definition of SN P systems, starting with con-
sidering different types of rules. For instance, what about using forgetting rules
of the form E/ar → λ, with E being a regular expression like in firing rules? An-
other extension is to have rules of the form E/ac → ap; d, with p ≥ 1 (at least
in the output neuron): when we output i spikes in one moment, we can record
a symbol bi in the generated string, and in this way we produce strings over ar-
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114 CHAPTER 5. SPIKING NEURAL P SYSTEMS

bitrary alphabets, not only on the binary one. This possibility is investigated in
Section 5.5 below.

Another variant of interest is to consider a sort of rough-set-like rule, of the
form (s, S)/ac → ap; d, with 0 ≤ s ≤ c ≤ S ≤ ∞. The meaning is that if the
number of spikes from the neuron is k and s ≤ k ≤ S, then the rule fires and c
spikes are consumed. This reminds the lower and the upper approximations of
sets in rough sets theory [76], [77] and it is also well motivated from the neuro-
biology point of view (it reminds the sigmoid function of neuron exciting). It is
interesting to note that all rules of the form an/ac → a; d are of this type: just take
(n, n)/ac → a; d. Thus, all examples and results until Theorem 5.3.6, including
this theorem, are valid also for SN P systems with rough-set-like rules. Are there
such systems able to generate non-regular languages? This is a question worth to
be considered.

It is also of interest to see whether or not languages from other families can be
represented starting from languages generated by specific classes of SN P systems
and using various operations with languages (as we have done here with the
regular languages – Theorem 5.3.6, and with recursively enumerable languages
– Theorem 5.3.9). For instance, are there such representations – maybe using
other operations and/or restricted/extended variants of SN P systems – for other
families of languages from the Chomsky hierarchy, such as CF and CS?

5.4 Trace Languages Associated to SN P Systems

We continue our investigation of SN P systems by incorporating them the notion
investigated in Chapter 3: the languages of traces generated by a special spike.

Now, we distinguish a spike by “marking” it and we follow its path through
the neurons of the system, thus obtaining a language.

In contrast to the previous spiking models, the current one will miss the out-
put neuron, but we allowe synapses (i, 0) for any neuron σi; actually, in the trace
case investigated here we do not really need such synapses, but we consider them
just because such links with the environment are “realistic”.

Consider an SN P system of degree m ≥ 1, Π = (O, σ1, . . . , σm, syn) defined as
above, and distinguish one of the neurons of the system as the input one (thus, we
add a further component, in, to the system description, with in ∈ {1, 2, . . . ,m}).
In the initial configuration of the system we “mark” one spike from this neuron
– the intuition is that this spike has a “flag” – and we follow the path of this flag
during the computation, recording the labels of the neurons where the flag is present in
the end of each step. Actually, for neuron σi we consider the symbol bi in the trace
string. (When presenting the initial configuration of the system, the number nin,
of spikes present in the input neuron, is written in the form n′

in, to indicate that
the marked spike is here.)

The previous definition contains many delicate points which need clarifica-
tions – and we use a simple example to do this.
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5.4. TRACE LANGUAGES ASSOCIATED TO SN P SYSTEMS 115

Assume that in neuron σi we have three spikes, one of them marked; we write
aaa′ to represent them. Assume also that we have a spiking rule aaa/aa → a; 0.
When applied, this rule consumes two spikes, one remains in the neuron and one
spike is produced and sent along the synapses going out of neuron σi. Two cases
already appear: the marked spike is consumed or not. If not consumed, it remains
in the neuron. If consumed, then the flag passes to the produced spike. Now, if
there are two or more synapses going out of neuron σi, then again we can have a
branching: only one spike is marked, hence only on one of the synapses (i, j) we
will have a marked spike and that synapse is non-deterministically chosen (on
other synapses we send non-marked spikes). If σj is an open neuron, then the
marked spike ends in this neuron. If σj is a closed neuron, then the marked spike
is lost, and the same happens if j = 0 (the marked spike exits in the environment).
Anyway, if the marked spike is consumed, at the end of this step it is no longer
present in neuron i; it is in neuron σj if (i, j) ∈ syn and neuron σj is open, or it is
removed from the system in other cases.

Therefore, if in the initial configuration of the system neuron σi contains the
marked spike, then the trace can start either with bi (if the marked spike is not
consumed) or with bj (if the marked spike was consumed and passed to neuron
σj); if the marked spike is consumed and lost, then we generate the empty string,
which is ignored in our considerations. Similarly in later steps.

If the rule used is of the form aaa/aa → a; d, for some d ≥ 1, and the marked
spike is consumed, then the newly marked spike remains in neuron σi for d steps,
hence the trace starts/continues with bd

i . Similarly, if no rule is used in neuron σi

for k steps, then the trace records k copies of bi.
If a forgetting rule is used in the neuron where the marked spike is placed,

then the trace string stops (and no symbol is recorded for this step).
Therefore, when considering the possible branchings of the computation, we

have to take into account the non-determinism not only in using the spiking rules,
but also in consuming the marked spike and in sending it along one of the possi-
ble synapses.

The previous discussion has, hopefully, made clear what we mean by recording
the labels of the neurons where the flag is present in the end of each step, and why we
have chosen the end of a step and not the beginning: in the latter case, all traces
would start with the same symbol, corresponding to the input neuron, which is a
strong – and artificial – restriction.

In the next section, we will illustrate all these points by examining in detail an
example.

Anyway, we take into account only halting computations: irrespective
whether or not a marked spike is still present in the system, the computation
should halt (note that it is possible that the marked spike is removed and the
computation still continues for a while – but this time without adding further
symbols to the trace string).

For an SN P system Π we denote by T (Π) the language of all strings describ-
ing the traces of the marked spike in all halting computations of Π. Then, we
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116 CHAPTER 5. SPIKING NEURAL P SYSTEMS

denote by TSNPm(rulek, consp, forgq) the family of languages T (Π), generated
by systems Π with at most m neurons, each neuron having at most k rules, each
of the spiking rules consuming at most p spikes, and each forgetting rule remov-
ing at most q spikes. As usual, a parameter m, k, p, q is replaced with ∗ if it is not
bounded.

5.4.1 Two Examples

We consider here two examples, both illuminating the previous definitions and
relevant for the intricate work of SN P systems as language generators by means
of traces; indications on the power of these devices are also obtained in this way.

'

&

$

%

'

&

$

%

'

&

$

%
-

�

�
�

�
���

�
�
�
�
�
�
��

A
A

A
A
AKA

A
A
A
A
A
AAU

21

a3

a3/a2 → a; 0

a2 → λ
a → λ

a3/a2 → a; 0

aaa′

a3/a2 → a; 1

a → λ

3

a3

a3/a2 → a; 0

a2 → λ
a → λ

Figure 5.27: The initial configuration of system Π1

We start with a system already having a complex behavior, the one whose
initial configuration is given in Figure 5.27 (we denote it by Π1), with the marked
spike indicated by a prime; synapses of the form (i, 0) are indicated by arrows
pointing to the environment.

We have three neurons, labeled with 1, 2, 3, with neuron σ1 being the input
one. Each neuron contains three rules, and only neuron σ1 has two spiking rules,
but the non-determinism of the system is considerable, due to the possible traces
of the marked spike.

The evolution of the system Π1 can be analyzed on a transition diagram as that
from Figure 5.28: because the number of configurations reachable from the initial
configuration is finite, we can place them in the nodes of a graph, and between
two nodes/configurations we draw an arrow if a direct transition is possible be-
tween them.

It should be noted in Figure 5.28 an important detail: when presenting a con-
figuration of the system where there is a marked spike, it is no longer sufficient
to indicate only the number of spikes and the open status of neurons, but we also
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〈0/0, 0/0, 0/0〉

〈1′/0, 1/0, 1/0〉 〈1/0, 1/0, 1/0〉〈1/0, 1′/0, 1/0〉 〈1/0, 1/0, 1′/0〉

〈1′/1, 2/0, 2/0〉 〈1/1′, 2/0, 2/0〉 〈1/1, 2′/0, 2/0〉 〈1/1, 2/0, 2′/0〉

〈3′/0, 3/0, 3/0〉 〈3/0, 3′/0, 3/0〉 〈3/0, 3/0, 3′/0〉
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Figure 5.28: The transition diagram of system Π1

have to indicate the place of the marked spike (if the system still contains such
a spike). This is done by priming either the number of spikes from the neuron
where the marked spike is, or by priming the number of steps until the neuron is
open, in the case when a marked spike was produced by means of a spiking rule
with delay.

In Figure 5.28 we have also indicated on the arrows the symbol introduced in
the trace string by that arrow (this is bj , where σj is the neuron where the marked
spike arrives in the end of this step). Thus, following the marked arrows, we can
construct the language of all traces.

Let us follow on this diagram some of the possible traces. As long as neuron
σ1 uses the rule a3/a2 → a; 0, the marked spike circulates among neurons σ1, σ2, σ3

and the computation continues. Note that the marked spike can be consumed or
not; in the first case it moves to one of the partner neurons, non-deterministically
chosen, in the latter case it remains in the neuron where it is placed.

When neuron σ1 uses the rule a3/a2 → a; 1, then the computation passes to the
halting phase – in the diagram from Figure 5.28, we leave the upper level and we
pass to the next level of configurations. If the marked spike was in neuron σ1, it is
or not consumed; this is the case when reaching the configurations 〈1′/1, 2/0, 2/0〉,
〈1/1′, 2/0, 2/0〉: all neurons consume two spikes, but neurons σ2 and σ3 exchange
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118 CHAPTER 5. SPIKING NEURAL P SYSTEMS

one spike, hence they end the step with two spikes inside; neuron σ1 has only one
spike inside (it is closed, does not accept spikes from neurons σ2 and σ3) and one
ready to be emitted, and either one of them can be the marked one.
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a3/a2 → a; 0
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a
a → a;n − 1

a
a → a;m − 1

Figure 5.29: The initial configuration of system Π2

In each case, after two more steps the computation halts with no spike in the
system.

Thus, the traces start with an arbitrary string x over {b1, b2, b3}, and end with
one of the strings b1b1, b1b2, b1b3, b2, b3, depending on the last symbol of x.

We continue with a simpler example, the system Π2 given in Figure 5.29. It
generates the language T (Π2) = {bn

1 , b
m
2 }, for n,m ≥ 1. In the first step, neuron

σ1 consumes or does not consume the marked spike, thus keeping it inside or
sending it to neuron σ2. One spike remains in neuron σ1 and one is placed in
neuron σ2. Simultaneously, neurons σ3 and σ4 fire, and they spike after n − 1 and
m− 1 steps, respectively. Thus, in steps n and m, neurons σ1 and σ2, respectively,
receive one more spike, which is forgotten in the next step together with the spike
existing there.

Note that n and m can be equal or different.

5.4.2 The Power of SN P Systems as Trace Generators

The following inclusions are direct consequences of the definitions:

Lemma 5.4.1 TSNPm(rulek, consp, forgq) ⊆ TSNPm′(rulek′ , consp′ , forgq′) ⊆
TSNP∗(rule∗, cons∗, forg∗) ⊆ RE, for all 1 ≤ m ≤ m′, 1 ≤ k ≤ k′, 1 ≤ p ≤ p′,
1 ≤ q ≤ q′.

We pass now to investigating the relationship with the families of languages
from Chomsky hierarchy, starting with a counterexample result.

Theorem 5.4.1 There are singleton languages not in TSNP∗(rule∗, cons∗, forg∗).
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5.4. TRACE LANGUAGES ASSOCIATED TO SN P SYSTEMS 119

Proof Let us consider the language L = {b1b2b1b3}. In order to generate it, at
least three neurons should be used, with labels 1, 2, 3. Moreover, the synapses
(1, 2), (2, 1), (1, 3) are necessary. The existence of the synapses (1, 2), (2, 1) makes
possible also the trace b1b2b1b2: the marked spike exists after the third step and it
can go non-deterministically to each neuron σ2 and σ3. Thus, T (Π) cannot be a
singleton, for an SN P system Π such that b1b2b1b3 ∈ T (Π). 2

Clearly, this reasoning can be applied to any string of the form w =
w1bibjw2bibkw3 with j 6= k, and to any language which contains a string like w
but not also the string w1bibjw2bibjw3.

Let us mention now a result already proved by the considerations related to
the first example from the previous section (this introduces another complexity
parameter, of a dynamical nature: the number of spikes present in the neurons
during a computation).

Theorem 5.4.2 The family of trace languages generated by SN P systems by means of
computations with a bounded number of spikes present in their neurons is strictly in-
cluded in the family of regular languages.

Proof The inclusion follows from the fact that the transition diagram associ-
ated with the computations of an SN P system which use a bounded number of
spikes is finite and can be interpreted as the transition diagram of a finite au-
tomaton, as already done in Section 5.4.1. The fact that the inclusion is proper is
a consequence of Theorem 5.4.1. 2

However, modulo some simple squeezing operations, SN P systems with a
bounded number of spikes inside can generate any regular language:

Theorem 5.4.3 For each language L ⊆ V ∗, L ∈ REG there is an SN P system Π
such that each neuron from any computation of Π contains a bounded number of spikes,
and L = h(∂r

c (T (Π)) for some coding h, and symbol c not in V ; actually, T (Π) ∈
TSNPmL

(rulekL
, conspL

, forg0), for some constants mL, kL, pL depending on language
L.

Proof Let us assume that V = {b1, b2, . . . , bn}, and take a regular grammar
G = (N, V, S, P ) generating the language L. Without loss of the generality, we
may assume that each rule A → biB from P has A 6= B. If this is not the case
with the initial set of rules, then we proceed as follows. Take a rule A → biA; we
consider a new nonterminal, A′, and we replace the rule A → biA with A → biA

′,
then we also add the rule A′ → biA as well as all rules A′ → bjB for each A →
bjB ∈ P . Let us continue to denote by G the obtained grammar. It is clear that
this change does not modify the language generated by G, but it diminishes by
one the number of rules having the same nonterminal in both sides. Continuing
in this way, we eliminate all rules of this form.

Assume that G contains k rules of the form A → biB (from the previous dis-
cussion, we know that A 6= B). We construct the SN P system Π as follows.

The set of neurons is the following:
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120 CHAPTER 5. SPIKING NEURAL P SYSTEMS

1. σ〈S〉 = (1′, {a → a; 0}),

2. σ〈i,B〉 = (0, {aj → a; 0 | 1 ≤ j ≤ k − 1}), for each rule A → biB of G,

3. σ〈i〉 = (0, {aj → a; 0 | 1 ≤ j ≤ k − 1}, for each rule A → bi of G,

4. σf = (0, {aj → a; 0 | 1 ≤ j ≤ k − 1}),

5. σci
= (0, {a → a; 0}), for i = 1, 2, . . . , k,

6. σ1 = (2, {a2/a → a; 0, a2/a → a; 1}),

7. σ2 = (2, {a2/a → a; 0, a → λ}),

8. σ3 = (0, {a → a; 0, a2 → λ}).

Among these neurons, we take the following synapses:

syn = {(〈S〉, 〈i, A〉) | S → biA ∈ P}

∪ {(〈i, A〉, 〈j, B〉 | A → bjB ∈ P, 1 ≤ i ≤ n}

∪ {(〈i, A〉, 〈j〉) | A → bj ∈ P, 1 ≤ i ≤ n}

∪ {(〈S〉, 〈j〉) | S → bj ∈ P}

∪ {(〈i〉, f) | 1 ≤ i ≤ n}

∪ {(1, 2), (2, 1), (1, 3), (2, 3)} ∪ {(3, ci) | 1 ≤ i ≤ k}

∪ {(ci, 〈j, A〉), (ci, 〈j〉 | 1 ≤ i ≤ k, 1 ≤ j ≤ n,A ∈ N}.

We start with a single spike in the system, marked, placed in neuron σ〈S〉; the
input neuron spikes in the first step.

The neurons σ1, σ2, σ3, σf , σc1 , . . . , σck
will be discussed separately below.

Among neurons with labels of the form 〈S〉, 〈i, A〉, and 〈j〉, we have synapses
only if the labels of these neurons are linked by a rule of the grammar. If there
are several rules of the form A → bi1B1, . . . , A → birBr, then the spike emitted
by each neuron σ〈j,A〉, 1 ≤ j ≤ n, goes to all neurons σ〈it,Bt〉, 1 ≤ t ≤ r – and
the marked spike can take any of these choices. Conversely, we can have several
(actually, at most k − 1) synapses coming to the same neuron, if more rules have
the same right hand member. Thus, in any neuron we can collect at most k − 1
spikes in a step. All of them are immediately consumed, hence never the number
of spikes from any neuron becomes greater than k − 1. Clearly, the marked spike
can follow a derivation in G.

Because the grammar G can contain cycles (for instance, pairs of rules of the
form A → biB,B → biA), the system Π can contain pairs of self-sustaining neu-
rons, hence the computation in Π could not stop, even if a derivation in G was
correctly simulated (this is due to the fact that the spikes leaving a neuron are
replicated to all neurons to which we have a synapse).

In order to prevent such “wrong” evolutions, we use the “halting module”,
composed of the neurons σ1, σ2, σ3, σf , σc1 , . . . , σck

: neurons σ1, σ2 exchange spikes
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5.4. TRACE LANGUAGES ASSOCIATED TO SN P SYSTEMS 121

for an arbitrary number of steps; when σ1 uses the rule a2/a → a; 1, their inter-
play stops, but neuron σ3 fires and sends a spike to all neurons σci

, 1 ≤ i ≤ k.
These neurons will send spikes to all neurons σ〈j,A〉, σ〈j〉, and σ〈S〉 of the system,
thus halting their evolution (they do not have rules for handling more than k − 1
spikes). The computation halts.

What is not ensured yet by the construction of Π is the fact that the computa-
tion is not halted as above before finishing the derivation in G which we want to
simulate, that is, with the marked spike present inside the system. This aspect is
handled by the squeezing mechanism: we take the alphabet

U = {b〈i,A〉 | 1 ≤ i ≤ n,A ∈ N} ∪ {b〈i〉 | 1 ≤ i ≤ n},

the symbol c = bf , and the coding h : U∗ −→ V ∗ defined by

h(b〈i,A〉) = bi, 1 ≤ i ≤ n,A ∈ N,

h(b〈i〉) = bi, 1 ≤ i ≤ n.

The right derivative with respect to bf selects from T (Π) only those traces for
which the marked spike reaches the “final” neuron σf , which is accessible only
from a “terminal” neuron σ〈i〉, hence the marked spike has followed a complete
derivation in G. Then, the coding h renames the symbols, thus delivering exactly
the strings of L(G).

Clearly, we can determine the constants mL, kL, pL as in the statement of the
theorem, depending on the size of grammar G, and this observation completes
the proof. 2

A related result can be obtained by slightly changing the previous proof.

Theorem 5.4.4 For each regular language L ⊆ V ∗ there is an SN P system Π such
that each neuron from any computation of Π contains a bounded number of spikes, and
L = h(T (Π) ∩ U∗

1 U2), for some coding h and alphabets U1, U2.

As expected, also non-regular languages can be generated – of course, by us-
ing systems whose computations are allowed to use an unbounded number of
spikes in the neurons. We skip the proof of the next result.

Theorem 5.4.5 TSNP12(rule2, cons2, forg1) − REG 6= ∅.

Actually, languages “far from being regular” can be also generated:

Theorem 5.4.6 Every unary language L ∈ RE can be written in the form L = h(L′) =
(d∗

1\L
′) ∩ d∗

2, where L′ ∈ TSNP∗(rule2, cons3, forg3), and h is a projection.

Proof This result is a consequence of the fact that SN P systems can simulate
register machines. Specifically, as proved in Section 5.2.2, starting from a register
machine M , we construct an SN P system Π which halts its computation with 2n
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122 CHAPTER 5. SPIKING NEURAL P SYSTEMS

spikes in a specified neuron σout if and only if n can be generated by the register
machine M ; in the halting moment, a neuron σlh of Π associated with the label of
the halting instruction of M gets two spikes and fires. The neuron σout contains no
rule used in the simulation of M (the corresponding register is only incremented,
but never decremented – see the details of the construction from Section 5.2.2).

Now, consider a language L ⊆ b∗2, L ∈ RE. There is a register machine M
such that n ∈ N(M) if and only if bn

2 ∈ L. Starting from such a machine M , we
construct the system Π as in Section 5.2.2, having the properties described above.
We append to the system Π six more neurons, as indicated in Figure 5.30. There
is a marked spike in neuron σ1, and it will stay here during all the simulation of
M . In the moment when neuron σlh of Π spikes, its spike goes both to neuron σout

and to neuron σ1.
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Figure 5.30: The SN P system from the proof of Theorem 5.4.6

Neurons σ3, σ4, σ5, σ6 send a spike to neuron σ2 only when neuron σout has
finished its work (this happens after n steps of using the rule a(aa)+/a2 → a; 0,
for 2n being the contents of neuron σout in the moment when neuron σlh spikes).

The marked spike leaves neuron σ1 four steps after using the rule a2 → a; 4,
hence five steps after the spiking of neuron σlh . This means that the marked spike
waits in neuron σ2 exactly n steps. When the spike of neuron σ6 reaches neuron
σ2, the two spikes present here, the marked one included, are forgotten.

Thus, the traces of the marked spike are of the form br
1b

n
2 , for some r ≥ 1

and n ∈ N(M). By means of the left derivative with the regular language b∗1 we
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5.5. SPIKING NEURAL P SYSTEMS WITH EXTENDED RULES 123

can remove prefixes of the form bk
1 and by means of the intersection with b∗2 we

ensure that the maximal prefix of this form is removed. Similarly, the projection
h : {b1, b2}

∗ −→ {b1, b2}
∗ defined by h(b1) = λ, h(b2) = b2, removes all occurrences

of b1. Consequently, L = (b∗1\T (Π)) ∩ b∗2 = h(T (Π)).
The system Π from Section 5.2.2 (Theorem 5.2.2 there) has the rule complexity

described by rule2, cons3, forg3; one sees that the construction from Figure 5.30
does not increase these parameters. 2

In what concerns the number of neurons, we do not have a bound for the
language L′ from the previous theorem.

Corollary 5.4.1 Each family TSNP∗(regk, consp, forgq) with k ≥ 2, p ≥ 3, q ≥ 3,
is incomparable with each family of languages FL which (i) contains the singleton lan-
guages, (ii) is closed under left quotients with regular languages and intersection with
regular languages, or under projections, and (iii) does not contain all unary recursively
enumerable languages.

5.4.3 Remarks and Further Research

We have considered here the possibility of generating a language by means of a
spiking neural P system by following the traces of a distinguished spike during a
halting computation. The power of such devices seems to be rather large – Theo-
rem 5.4.6 – but we do not have a precise characterization of the obtained families
of languages. Theorem 5.4.6 also raises the natural question whether RE lan-
guages over arbitrary alphabets can be represented starting from trace languages
of SN P systems.

The main difficulty in handling the trace languages of SN P systems is, in
the previous setup, the non-determinism of the marked spike evolution. A pos-
sible way to better control the marked spike is to consider spiking rules of the
forms E ′/ac → a; d and E/a′ac → a′; d, with the meaning that the prime indicates
whether or not the rule consumes the marked spike: this is not the case when the
prime is attached to E, but this happens if the prime marks one of the consumed
spikes, and hence also the produced spike. This removes the non-determinism
induced by the use of the marked spike when applying the rules, but still non-
determinism remains in what concerns the choice of synapses toward neighbor-
ing neurons (and this was the basis of the easy counterexample from Theorem
5.4.1). How also this non-determinism can be removed remains as a research
topic.

5.5 Spiking Neural P Systems with Extended Rules

In this section we consider SN P systems with rules allowed to introduce zero,
one, or more spikes at the same time – they are called extended SN P systems. The
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124 CHAPTER 5. SPIKING NEURAL P SYSTEMS

(mathematical) motivation comes both from constructing small universal systems
and from generating strings.

An extended spiking neural P system of degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),

where all components are as above, but the rules of neurons are of the form
E/ac → ap, where E is a regular expression over a and c ≥ 1, p ≥ 0, with the
restriction c ≥ p.

A rule E/ac → ap is applied as follows. If the neuron σi contains k spikes,
and ak ∈ L(E), k ≥ c, then the rule can fire, and its application means consuming
(removing) c spikes (thus only k − c remain in σi) and producing p spikes, which
will exit immediately the neuron.

Note that we do not consider here a delay between firing and spiking (i.e.,
rules of the form E/ac → ap; d, with d ≥ 0), because we do not need this feature
in the proofs below, but such a delay can be introduced in the usual way. (As
a consequence, here the neurons are always open.) Moreover, because p = 0
means producing no spike, rules as above also cover the case of forgetting rules,
which are now of a generalized form, with a regular expression controlling their
application.

If a rule E/ac → ap has E = ac, then we will write it in the simplified form
ac → ap. If all rules E/ac → ap have L(E) = {ac}, then we say that the system is
finite.

The spikes emitted by a neuron σi go to all neurons σj such that (i, j) ∈ syn,
i.e., if σi has used a rule E/ac → ap, then each neuron σj receives p spikes.

As usual, if several rules can be used at the same time, then the one to be
applied is chosen non-deterministically.

During the computation, a configuration of the system is described by the
number of spikes present in each neuron; thus, the initial configuration is de-
scribed by the numbers n1, n2, . . . , nm.

We denote by N2(Π) the set of numbers generated by an extended
SN P system in the form of the number of steps between the first two
steps of a computation when spikes are emitted into environment, and by
Spik2SN ePm(rulek, consp, prodq) the family of sets N2(Π) generated by SN P sys-
tems with at most m neurons, at most k rules in each neuron, consuming at most
p and producing at most q spikes. Any of these parameters is replaced by ∗ if it
is not bounded. (The superscript e points out the fact that we work with extended
rules.)

5.5.1 Extended SN P Systems as Number Generators

Because non-extended SN P systems – without delay; see [35] – are already com-
putationally universal, this result is directly valid also for extended systems.
However, the construction on which the proof is based is much simpler in the
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5.5. SPIKING NEURAL P SYSTEMS WITH EXTENDED RULES 125

extended case and it is also instructive for the way the small universal systems
are found, that is why we briefly present it.

Theorem 5.5.1 NRE = Spik2SN eP∗(rule4, cons5, prod2).

Proof The proof of the similar result from Section 5.2.2 is based on construct-
ing an SN P system Π which simulates a given register machine M . The idea is
that each register r has associated a neuron σr, with the value n of the register
represented by 2n spikes in neuron σr. Also, each label of M has a neuron in Π,
which is “activated” when receiving two spikes. We do not recall other details
from the proof, and we pass directly to presenting – in Figures 5.31, 5.32, and 5.33
– modules for simulating the ADD and the SUB instructions of M , as well as an
OUTPUT module, in the case of using extended rules.
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Figure 5.31: Module ADD, for simulating an instruction li : (ADD(r), lj, lk)

Because the neurons associated with labels of ADD and SUB instructions have
to produce different numbers of spikes, in the neurons associated with “output”
labels of instructions we have written the rules in the form a2 → aδ(l), with δ(l) = 1
for l being the label of a SUB instruction and δ(l) = 2 if l is the label of an ADD
instruction.

Because li precisely identifies the instruction, the neurons ciα are distinct
for distinct instructions. However, an interference between SUB modules ap-
pears in the case of instructions SUB which operate on the same register r:
synapses (r, cis), (r, ci′s), s = 4, 5, exist for different instructions li : (SUB(r), lj, lk),
li′ : (SUB(r), lj′ , lk′). Neurons σci′s

, σci′5
receive 1 or 2 spikes from σr even when

simulating the instruction with label li, but they are immediately forgotten (this
is the role of rules a → λ, a2 → λ from neurons σci4

, σci5
from Figure 5.32).

The task of checking the functioning of the modules from Figures 5.31, 5.32,
5.33 is left to the reader. 2
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Figure 5.32: Module SUB, for simulating an instruction li : (SUB(r), lj, lk)
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Figure 5.33: Module OUTPUT

5.5.2 Languages in the Restricted Case

We pass now to considering extended SN P systems as language generators, start-
ing with the restricted case, when the system outputs a symbol in each compu-
tation step. Specifically, with a step when a system Π sends out i ≥ i spikes we
associate the symbol bi (thus, when no spike is emitted, we produce the symbol
b0). The set of strings of this type associated with all halting computations in Π is
denoted by Lres(Π) - with res pointing out the fact that in each step one symbol
is produced. Another possibility, much more flexible , is to ............ b0 a “no sym-
bol”, i.e., to introduce no symbol in the steps when no spike is produced. In this
case we denote the generated language by Lλ(Π).

Then, by LαSNPm(rulek, consp, prodq) we denote the family of all languages
Lα(Π) generated in mode α ∈ {res, λ}, by extended SN P systems with at most m
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5.5. SPIKING NEURAL P SYSTEMS WITH EXTENDED RULES 127

neurons, at most k rules in each neuron, consuming at most p and producing at
most q spikes.

In all considerations below, we work with the alphabet V = {b1, b2, . . . , bs}, for
some s ≥ 1. By a simple renaming of symbols, we may assume that any given
language L over an alphabet with at most s symbols is a language over V . When
a symbol b0 is also used, it is supposed that b0 /∈ V .

A Characterization of FIN

As we have seen before, SN P systems with standard rules cannot generate all
finite languages, but extended rules help in this respect.

Lemma 5.5.1 LαSN eP1(rule∗, cons∗, prod∗) ⊆ FIN , α ∈ {res, λ}.

Proof In each step, the number of spikes present in a system with only one
neuron decreases by at least one, hence any computation lasts at most as many
steps as the number of spikes present in the system at the beginning. Thus, the
generated strings have a bounded length. 2

Lemma 5.5.2 FIN ⊆ LαSN eP1(rule∗, cons∗, prod∗), α ∈ {res, λ}.

Proof Let L = {x1, x2, . . . , xn} ⊆ V ∗, n ≥ 1, be a finite language, and let
xi = xi,1 . . . xi,ri

for xi,j ∈ V, 1 ≤ i ≤ n, 1 ≤ j ≤ ri = |xi|. Denote l = max{ri | 1 ≤
i ≤ n}. For b ∈ V , define index(b) = i if b = bi. Define αj = ls

∑j
i=1 |xi|, for all

1 ≤ j ≤ n.
An SN P system that generates L is shown in Figure 5.51.

-

aαn+ls

aαn+ls/aαn−αj+s → aindex(xj,1)

1 ≤ j ≤ n

aαj+(l−t+1)s/as → aindex(xj,t)

2 ≤ t ≤ rj − 1, 1 ≤ j ≤ n

aαj+(l−rj+1)s → aindex(xj,rj
)

1 ≤ j ≤ n

'

&

$

%
Figure 5.34: An extended SN P system generating a finite language

Initially, only a rule aαn+ls/aαn−αj+s → aindex(xj,1) can be used, and in this way
we non-deterministically chose the string xj to generate. This rule outputs the
necessary number of spikes for xj,1. Then, because αj + (l − 1)s spikes remain in
the neuron, we have to continue with rules aαj+(l−t+1)s/as → aindex(xj,t), for t = 2,
and then for the respective t = 3, 4, . . . , rj −1; in this way we introduce xj,t, for all
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128 CHAPTER 5. SPIKING NEURAL P SYSTEMS

t = 2, 3, . . . , rj − 1. In the end, the rule aαj+(l−rj+1)s → aindex(xj,rj
) is used, which

produces xj,rj
and concludes the computation.

It is easy to see that the rules which are used in the generation of a string xj

cannot be used in the generation of a string xk with k 6= j. Also, in each rule the
number of spikes consumed is not less than the number of spikes produced. The
system Π never outputs zero spikes, hence Lres(Π) = Lλ(Π) = L. 2

Theorem 5.5.2 FIN = LαSN eP1(rule∗, cons∗, prod∗), α ∈ {res, λ}.

This characterization is sharp in what concerns the number of neurons, be-
cause of the following result:

Proposition 5.5.1 LαSN eP2(rule2, cons3, prod3) − FIN 6= ∅, α ∈ {res, λ}.

Proof The SN P system Π from Figure 5.35 generates the infinite language
Lres(Π) = Lλ(Π) = b∗3b1{b1, b3}. 2

�
�
�
�
'
&
$
%

-

�
-

1 2
a3

a3 → a3

a3

a3 → a3

a3 → a

Figure 5.35: An extended SN P system generating an infinite language

Representations of Regular Languages

Such representations are obtained in Section 5.3 starting from languages of the
form Lbin(Π), but in the extended SN P systems, regular languages can be repre-
sented in an easier and more direct way.

Theorem 5.5.3 If L ⊆ V +, L ∈ REG, then {b0}L ∈ LresSN eP4(rule∗, cons∗, prod∗).

Proof Consider a regular grammar G = (N, V, S, P ) such that L = L(G), where
N = {A1, A2, . . . , An}, n ≥ 1, S = An, and the rules in P are of the forms Ai →
bkAj, Ai → bk, 1 ≤ i, j ≤ n, 1 ≤ k ≤ s.

Then {b0}L can be generated by the SN P system shown in Figure 5.36.
In each step, neurons σ1 and σ2 will send n + s spikes to neuron σ3, provided

that they receive spikes from neuron σ3. Neuron σ3 fires in the first step by a
rule a2n+s/a2n−j+s → ak (or a2n+s → ak) associated with a rule An → bkAj (or
An → bk) from P , produces k spikes and receives n + s spikes from neuron σ2.
In the meantime neuron σ4 does not spike, hence it produces the symbol b0, and
receives spikes from neuron σ3, therefore in the second step it generates the first
symbol of the string.
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an+i+s → an+s
an+2s

'
&

$
%i = 1, . . . , s

an+i+s → an+s
an+2s

'
&

$
%i = 1, . . . , s

a2n+s

an+i+s → ak

for Ai → bk ∈ P

'

&

$

%

forAi → bkAj ∈P

an+i+s/an+i−j+s → ak

1 2

3

ai → ai

4'
&

$
%i = 1, . . . , s

-

�

6 6�
�

�
��=

?

?

Figure 5.36: The SN P system from the proof of Theorem 5.5.3

Assume in some step t, the rule an+i+s/an+i−j+s → ak, for Ai → bkAj , or
an+i+s → ak, for Ai → bk, is used, for some 1 ≤ i ≤ n, and n + s spikes are
received from neuron σ2.

If the first rule is used, then k spikes are produced, n + i − j + s spikes are
consumed and j spikes remain in neuron σ3. Then in step t + 1, we have n + j + s
spikes in neuron σ3, and a rule for Aj → bkAl or Aj → bk can be used. In step
t + 1 neuron σ3 also receives n + m spikes from σ2. In this way, the computation
continues, unless the second rule is used.

If the second rule is used, then k spikes are produced, all spikes are consumed,
and n + m spikes are received in neuron σ3. Then, in the next time step, neuron
σ3 receives n + m spikes, but no rule can be used, so no spike is produced. At the
same time, neuron σ4 fires using spikes received from neuron σ3 in the previous
step, and then the computation halts.

In this way, all the strings in {b0}L can be generated. 2

Corollary 5.5.1 Every language L ∈ REG,L ⊆ V +, can be written in the form L =
∂l

b0
(L′) for some L′ ∈ LresSN eP4(rule∗, cons∗, prod∗).

One neuron in the previous representation can be saved, by adding the extra
symbol in the right hand end of the string.
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130 CHAPTER 5. SPIKING NEURAL P SYSTEMS

Theorem 5.5.4 If L ⊆ V +, L ∈ REG, then L{b0} ∈ LresSN eP3(rule∗, cons∗, prod∗).

Proof The proof is based on a construction similar to the one from the proof
of Theorem 5.5.3. Specifically, starting from a regular grammar G as above, we
construct a system Π as in Figure 5.37, for which we have Lres(Π) = L{b0}. We
leave the task to check this assertion to the reader. 2

an+i+s → an+s
an+2s

'
&

$
%i = 1, . . . , s

an+i+s → an+s
an+2s

'
&

$
%i = 1, . . . , s

a2n+s

'
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$

%
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3

-
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��=
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an+i+s/an+i−j+s → ak

forAi → bkAj ∈P

an+i+s → ak

for Ai → bk ∈ P

Figure 5.37: The SN P system for the proof of Theorem 5.5.4

Corollary 5.5.2 Every language L ∈ REG,L ⊆ V +, can be written in the form L =
∂r

b0
(L′) for some L′ ∈ LresSN eP3(rule∗, cons∗, prod∗).

Going Beyond REG

We do not know whether the additional symbol b0 can be avoided in the previous
theorems (hence whether the regular languages can be directly generated by SN P
systems in the restricted way), but such a result is not valid for the family of min-
imal linear languages (generated by linear grammars with only one nonterminal
symbol).

Lemma 5.5.3 The number of configurations reachable after n steps by an extended SN
P system of degree m is bounded by a polynomial g(n) of degree m.

Proof Let us consider an extended SN P system Π = (O, σ1, . . . , σm, syn, i0) of
degree m, let n0 be the total number of spikes present in the initial configuration
of Π, and denote α = max{p | E/ac → ap ∈ Ri, 1 ≤ i ≤ m} (the maximal number
of spikes produced by any of the rules of Π). In each step of a computation, each
neuron σi consumes some c spikes and produces p ≤ c spikes; these spikes are
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5.5. SPIKING NEURAL P SYSTEMS WITH EXTENDED RULES 131

sent to all neurons σj such that (i, j) ∈ syn. There are at most m − 1 synapses
(i, j) ∈ syn, hence the p spikes produced by neuron σi are replicated in at most
p(m − 1) spikes. We have p(m − 1) ≤ α(m − 1). Each neuron can do the same,
hence the maximal number of spikes produced in one step is at most α(m − 1)m.
In n consecutive steps, this means at most α(m − 1)mn spikes. Adding the initial
n0 spikes, this means that after any computation of n steps we have at most n0 +
α(m − 1)mn spikes in Π. These spikes can be distributed in the m neurons in less
that (n0 + α(m − 1)mn)m different ways. This is a polynomial of degree m in n
(α is a constant) which bounds from above the number of possible configurations
obtained after computations of length n in Π. 2

Theorem 5.5.5 If f : V + −→ V + is an injective function, card(V ) ≥ 2, then there is
no extended SN P system Π such that Lf (V ) = {x f(x) | x ∈ V +} = Lres(Π).

Proof Assume that there is an extended SN P system Π of degree m such
that Lres(Π) = Lf (V ) for some f and V as in the statement of the theorem. Ac-
cording to the previous lemma, there are only polynomially many configurations
of Π which can be reached after n steps. However, there are card(V )n ≥ 2n

strings of length n in V +. Therefore, for large enough n there are two strings
w1, w2 ∈ V +, w1 6= w2, such that after n steps the system Π reaches the same con-
figuration when generating the strings w1 f(w1) and w2 f(w2), hence after step n
the system can continue any of the two computations. This means that also the
strings w1 f(w2) and w2 f(w1) are in Lres(Π). Due to the injectivity of f and the def-
inition of Lf (V ) such strings are not in Lf (V ), hence the equality Lf (V ) = Lres(Π)
is contradictory. 2

Corollary 5.5.3 The following languages are not in LresSN eP∗(rule∗, cons∗, prod∗)
(in all cases, card(V ) = k ≥ 2):

L1 = {xmi(x) | x ∈ V +},

L2 = {xx | x ∈ V +},

L3 = {x cvalk(x) | x ∈ V +}, c /∈ V.

Note that language L1 above is a non-regular minimal linear one, L2 is context-
sensitive non-context-free, and L3 is non-semilinear. In all cases, we can also add
a fixed tail of any length (e.g., considering L′

1 = {xmi(x)z | x ∈ V +}, where
z ∈ V + is a given string), and the conclusion is the same – hence a result like that
in Theorem 5.5.4 cannot be extended to minimal linear languages.

5.5.3 Languages in the Non-Restricted Case

As expected, the possibility of having intermediate steps when no output is pro-
duced is helpful, because this provides intervals for internal computations. In
this way, we can get rid of the operations used in the previous sections when
dealing with regular and with recursively enumerable languages.
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132 CHAPTER 5. SPIKING NEURAL P SYSTEMS

Relationships with REG

Lemma 5.5.4 LλSN eP2(rule∗, cons∗, prod∗) ⊆ REG.

Proof In a system with two neurons, the number of spikes from the system
can remain the same after a step, but it cannot increase: the neurons can consume
the same number of spikes as they produce, and they can send to each other the
produced spikes. Therefore, the number of spikes in the system is bounded by the
number of spikes present at the beginning. This means that the system can pass
through a finite number of configurations and these configurations can control
the evolution of the system like states in a finite automaton. Consequently, the
generated language is regular (see similar reasonings, with more technical details,
in the previous sections). 2

Lemma 5.5.5 REG ⊆ LλSN eP3(rule∗, cons∗, prod∗).

Proof For the SN P system Π constructed in the proof of Theorem 5.5.4 (Figure
5.37) we have Lλ(Π) = L(G). 2
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a2

a2 → a2

a → a

a4

(a2)+/a2 → a2

(a2)+/a3 → a2

a(a2)+/a4 → a

a3 → λ

a2

a2 → a2

a → a

Figure 5.38: An SN P system generating a non-regular language

This last inclusion is proper:

Proposition 5.5.2 LλSN eP3(rule4, cons4, prod2) − REG 6= ∅.

Proof The SN P system Π from Figure 5.38 generates the language Lλ(Π) =
{bn

2b
n+1
1 | n ≥ 1}. Indeed, for a number n ≥ 0 of steps, neuron σ2 consumes

two spikes by using the rule (a2)+/a2 → a2 and receives four from the other two
neurons. After changing the parity of the number of spikes (by using the rule
(a2)+/a3 → a2), neuron σ2 will continue by consuming four spikes (using the
rule a(a2)+/a4 → a) and receiving only two. When only 3 spikes remain, the
computation stops (the two further spikes received by σ2 from σ1 and σ3 cannot
fire again neuron σ2). 2

Corollary 5.5.4 LλSN eP1(rule∗, cons∗, prod∗) ⊂ LλSN eP2(rule∗, cons∗, prod∗) ⊂
LλSN eP3(rule∗, cons∗, prod∗), strict inclusions.
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Going Beyond CF

Actually, much more complex languages can be generated by extended SN P sys-
tems with three neurons.

Theorem 5.5.6 The family LλSN eP3(rule3, cons6, prod4) contains non-semilinear lan-
guages.

Proof The system Π from Figure 5.39 generates the language

Lλ(Π) = {b2
4b2b

22

4 b2 . . . b2n

4 b2 | n ≥ 1}.

We start with 2 + 4 · 20 spikes in neuron σ1. When moved from neuron σ1 to
neuron σ3, the number of spikes is doubled, because they pass both directly from
σ1 to σ3, and through σ2. When all spikes are moved to σ3, the rule a2 → a of σ1

should be used. With a number of spikes of the form 4m + 1, neuron σ3 cannot
fire, but in the next step one further spike comes from σ2, hence the first rule of
σ3 can now be applied. Using this rule, all spikes of σ3 are moved back to σ1 –
in the last step we use the rule a2 → a2, which makes again the first rule of σ1

applicable.
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a2(a4)+/a4 → a4
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a6 → a32

a4 → a4

a → a 3

a2(a4)+/a4 → a4

a2 → a2

Figure 5.39: An SN P system generating a non-semilinear language

This process can be repeated any number of times. In each moment, after
moving all but the last 6 spikes from neuron σ1 to σ3, we can also use the rule
a6 → a3 of σ1, and this ends the computation: there is no spike in σ1, neuron σ2

cannot work when having 3 spikes inside, and the same with σ3 when having
4m + 3 spikes.

Now, one sees that σ3 is also the output neuron and that the number of times
of using the first rule of σ3 is doubled after each move of the contents of σ3 to σ1.

2

In this proof we made an essential use of the fact that no spike of the out-
put neuron means no symbol introduced in the generated string. If we work
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134 CHAPTER 5. SPIKING NEURAL P SYSTEMS

in the restricted case, then symbols b0 are shuffled in the string, hence the non-
semilinearity of the generated language is preserved, that is, the result also holds
for the restricted case.

A Characterization of RE

If we do not bound the number of neurons, then a characterization of recursively
enumerable languages is obtained.
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Figure 5.40: The structure of the SN P system from the proof of Lemma 5.5.6

As in Section 3.1, let us write s in front of a language family notation in order
to denote the subfamily of languages over an alphabet with at most s symbols
(e.g., 2RE denotes the family of recursively enumerable languages over alphabets
with one or two symbols).

Lemma 5.5.6 sRE ⊆ sLλSN eP∗(rules′ , conss, prods), where s′ = max(s, 6) and s ≥
1.
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5.5. SPIKING NEURAL P SYSTEMS WITH EXTENDED RULES 135

Proof We follow here the same idea as in the proof of Theorem 5.3.9 from
Section 5.3, adapted to the case of extended rules.

Take an arbitrary language L ⊆ V ∗, L ∈ RE, card(V ) = s. Obviously, L ∈ RE
if and only if vals(L) ∈ NRE. In turn, a set of numbers is recursively enumerable
if and only if it can be accepted by a deterministic register machine. Let M1 be
such a register machine, i.e., N(M1) = vals(L).

We construct an SN P system Π performing the following operations (σc0 and
σc1 are two distinguished neurons of Π, which are empty in the initial configura-
tion):

1. Output i spikes, for some 1 ≤ i ≤ s, and at the same time introduce the
number i in neuron σc0 ; in the construction below, a number n is represented
in a neuron by storing there 3n spikes, hence the previous task means intro-
ducing 3i spikes in neuron σc0 .

2. Multiply the number stored in neuron σc1 (initially, we have here number
0) by s + 1, then add the number from neuron σc0 ; specifically, if neuron σc0

holds 3i spikes and neuron σc1 holds 3n spikes, n ≥ 0, then we end this step
with 3(n(s + 1) + i) spikes in neuron σc1 and no spike in neuron σc0 . In the
meantime, the system outputs no spike.

3. Repeat from step 2, or, non-deterministically, stop the increase of spikes
from neuron σc1 and pass to the next step.

4. After the last increase of the number of spikes from neuron σc1 we have here
vals(x) for a string x ∈ V +. Start now to simulate the work of the register
machine M1 in recognizing the number vals(x). The computation halts only
if this number is accepted by M1, hence the string x produced by the system
is introduced in the generated language only if vals(x) ∈ N(M1).

In constructing the system Π we use the fact that a register machine can be
simulated by an SN P system. Then, the multiplication by s + 1 of the contents of
neuron σc1 followed by adding a number between 1 and s is done by a computing
register machine (with the numbers stored in neurons σc0 , σc1 introduced in two
specified registers); we denote by M0 this machine. Thus, in our construction, also
for this operation we can rely on the general way of simulating a register machine
by an SN P system. All other modules of the construction (introducing a number
of spikes in neuron σc0 , sending out spikes, choosing non-deterministically to end
the string to generate and switching to the checking phase, etc.) are explicitly
presented below.

The overall appearance of Π is given in Figure 5.40, where M0 indicates
the subsystem corresponding to the simulation of the register machine M0 =
(m0, H0, l0,0, lh,0, I0) and M1 indicates the subsystem which simulates the register
machine M1 = (m1, H1, l0,1, lh,1, I1). Of course, we assume H0 ∩ H1 = ∅.

We start with spikes only in neuron σd9 . We spike in the first step, non-
deterministically choosing the number i of spikes to produce, hence the first letter
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Figure 5.41: Module ADD (simulating li : (ADD(r), lj))

bi of the generated string. Simultaneously, i spikes are sent out by the output neu-
ron, 3i spikes are sent to neuron σc0 , and three spikes are sent to neuron σl0,0 , thus
triggering the start of a computation in M0. The subsystem corresponding to the
register machine M0 starts to work, multiplying the value of σc1 with s + 1 and
adding i. When this process halts, neuron σlh,0

is activated, and in this way two
spikes are sent to neuron σd6 .

This is the neuron which non-deterministically chooses whether the string
should be continued or we pass to the second phase of the computation, checking
whether the produced string is accepted. In the first case, neuron σd6 uses the rule
a2 → a, which makes neurons σe1 , . . . , σem spike; these neurons send m spikes to
neuron σd9 , like in the beginning of the computation. In the latter case, one uses
the rule a2 → a2, which activates the neuron σl0,1 by sending three spikes to it,
thus starting the simulation of the register machine M1. The computation stops if
and only if vals(x) is accepted by M1.

In order to complete the proof we need to show how the two register machines
are simulated, using the common neuron σc1 but without mixing the computa-
tions. To this aim, we consider the modules ADD and SUB from Figures 5.41,
5.42, and 5.43. Like in Section 5.6, neurons are associated with each label of the
machine (they fire if they have three spikes inside) and with each register (with
3t spikes representing the number t from the register); there also are additional
neurons with labels cil – it is important to note that all these additional neurons
have distinct labels.

The simulation of an ADD instruction is easy, we just add three spikes to the
respective neuron; no rule is needed in the neuron – Figure 5.41. The SUB in-
structions of machines M0,M1 are simulated by modules as in Figures 5.42 and
5.43, respectively. Note that the rules for M0 fire for a content of the neuron σr de-
scribed by the regular expression (a3)+a and the rules for M1 fire for a content of
the neuron σr described by the regular expression (a3)+a2. To this aim we use the
rule a3 → a2 in σli instead of a3 → a, while in σr we use the rule (a3)+a2/a5 → a4

instead of (a3)+a/a4 → a3. This ensures the fact that the rules of M0 are not used
instead of those of M1 or vice versa. In neurons associated with different labels
of M0,M1 we have to use different rules, depending on the type of instruction
simulated, that is why in Figures 5.41, 5.42, and 5.43 we have written again some
rules in the form a3 → aδ(l), as in Figures 5.49 and 5.50. Specifically, δ(l) = 3 if l
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a3 → aδ(lj) lk

a3 → aδ(lk)

li

a3 → a

r

(a3)+a/a4 → a3

a → a

ci1

a → a

ci2

a → a

ci3

a → a

ci4

a → a

ci5

a5 → a3

a → λ

a2 → λ

a3 → λ

a4 → λ

ci6

a5 → a3

a → λ

a2 → λ

a3 → λ

a4 → λ

a7 → λ

Figure 5.42: Module SUB (simulating li : (SUB(r), lj, lk)) for machine M0

labels an ADD instruction, δ(l) = 1 or δ(l) = 2 if l labels a SUB instruction of M0

or of M1, respectively, and, as one sees in Figure 10, we also take δ(lh,0) = 2.

With these explanations, the reader can check that the system Π works as re-
quested, hence Lλ(Π) = L (in Figures 5.42, 5.43 we have neurons with 6 rules,
that is why s′ = max(s, 6)). 2

Theorem 5.5.7 RE = LλSN eP∗(rule∗, cons∗, prod∗).

In the proof of Lemma 5.5.6, if the moments when the output neuron emits no
spike are associated with the symbol b0, then the generated strings will be shuf-
fled with occurrences of b0. Therefore, L is a projection of the generated language.

Corollary 5.5.5 Every language L ∈ RE,L ⊆ V ∗, can be written in the form L = h(L′)
for some L′ ∈ LresSN eP∗(rule∗, cons∗, prod∗), where h is a projection on V ∪{b0} which
removes the symbol b0.
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Figure 5.43: Module SUB (simulating li : (SUB(r), lj, lk)) for machine M1

5.5.4 Remarks and Further Research

We have investigated here the power of SN P systems with extended rules (rules
allowing to introduce several spikes at the same time) both as number generators
and as language generators. In the first case we have provided a simpler proof of
a known universality result, in the latter case we have proved characterizations
of finite and recursively enumerable languages, and representations of regular
languages.

Finding characterizations (or at least representations) of other families of lan-
guages from Chomsky hierarchy and Lindenmayer area remains as a research
topic. It is also of interest to investigate the possible hierarchy on the number
of neurons, extending the result from Corollary 5.5.4, as well as to decrease the
number of neurons from universal SN P systems.

In the next section, we produce small universal SN P systems.
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5.6. TWO SMALL UNIVERSAL SN P SYSTEMS 139

5.6 Two Small Universal SN P Systems

We have already seen that in both the generating and the accepting case, SN P
systems are universal, they compute the Turing computable sets of numbers. We
have also seen that the proofs are based on simulating register machines, which
are known to be equivalent to Turing machines when computing (generating or
accepting) sets of numbers, [60]. Small universal register machines are produced
in [50].

In [50], the register machines are used for computing functions, with the uni-
versality defined as follows. Let (ϕ0, ϕ1, . . . ) be a fixed admissible enumeration
of the set of unary partial recursive functions. A register machine Mu is said to be
universal if there is a recursive function g such that for all natural numbers x, y
we have ϕx(y) = Mu(g(x), y). In [50], the input is introduced in registers 1 and 2,
and the result is obtained in register 0 of the machine.

l0 : (SUB(1), l1, l2), l1 : (ADD(7), l0),
l2 : (ADD(6), l3), l3 : (SUB(5), l2, l4),
l4 : (SUB(6), l5, l3), l5 : (ADD(5), l6),
l6 : (SUB(7), l7, l8), l7 : (ADD(1), l4),
l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10),
l10 : (SUB(4), l0, l11), l11 : (SUB(5), l12, l13),
l12 : (SUB(5), l14, l15), l13 : (SUB(2), l18, l19),
l14 : (SUB(5), l16, l17), l15 : (SUB(3), l18, l20),
l16 : (ADD(4), l11), l17 : (ADD(2), l21),
l18 : (SUB(4), l0, lh), l19 : (SUB(0), l0, l18),
l20 : (ADD(0), l0), l21 : (ADD(3), l18),
lh : HALT.

Figure 5.44: The universal register machine from [50]

The constructions from Section 5.2.2 do not provide a bound on the number
of neurons, but such a bound can be found if we start from a specific universal
register machine. We will use here the one with 8 registers and 23 instructions
from [50] – for the reader convenience, this machine is recalled in Figure 5.44, in
the notation and the setup introduced in the Section 5.2.2.

Theorem 5.6.1 There is a universal SN P system with 84 neurons.

Proof (Outline) We follow the way used in the first section of the chapter to
simulate a register machine by an SN P system. This is done as follows: neurons
are associated with each register (r) and with each label (li) of the machine; if a
register contains a number n, then the associated neuron will contain 2n spikes;
modules as in Figures 5.11 and 5.7 are associated with the ADD and the SUB
instructions (each of these modules contains two neurons – with primed labels –
which do not correspond to registers and labels of the simulated machine).
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140 CHAPTER 5. SPIKING NEURAL P SYSTEMS

The work of the system is triggered by introducing two spikes in the neuron
l0 (associated with the starting instruction of the register machine). In general,
the simulation of an ADD or SUB instruction starts by introducing two spikes
in the neuron with the instruction label. We do not describe here in detail the
(pretty transparent) way the modules from Figures 5.11 and 5.7 work, as it was
previously described.

Starting with neurons 1 and 2 already loaded with 2g(x) and 2y spikes, respec-
tively, and introducing two spikes in neuron l0, we can compute in our system in
the same way as Mu; if the computation halts, then neuron 0 will contain 2ϕx(y)
spikes. What remains to do is to construct input and output modules, for read-
ing a sequence of bits and introducing the right number of spikes in the neurons
corresponding to registers 1 and 2, and, in the end of the computation, to output
the contents of register 0. Modules of these types are given in Figures 5.45, 5.46,
having seven and two additional neurons, respectively.
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a → a; 0

c1

a3 → a; 0

c2

a3 → a; 0

l0
a2 → a; 0
a → λ

c3

a → a; 0

a → a; 0

c4

1 2

a2/a → a; 0

c5

c6

a2/a → a; 0

Figure 5.45: Module INPUT

After this direct construction, we get a system with 91 neurons (9 for the reg-
isters of the starting register machine – one further register is necessary for tech-
nical reasons, 25 for its labels, 24 × 2 for the ADD and SUB instructions, 7 in the
input module, and 2 in the output module). However, some “code optimiza-
tion” is possible, based on certain properties of the register machine from [50]
(for instance, consecutive ADD instructions can be simulated by a specific mod-
ule, smaller than two separate ADD modules); we skip the technical details and
we only mention that the final SN P system will contain 84 neurons. 2

This is a small number (a small “brain”, compared to the human one; it would
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a2 → a; 0
a → λ

a → a; 0a(aa)+/a2 → a; 0

a(aa)∗/a → a; 0

Figure 5.46: Module OUTPUT

be nice to know where in the evolution scale there are animals with about 84 neu-
rons in their brain), but we do not know whether it is optimal or not. Anyway, we
believe that in the previous setup, we cannot significantly decrease the number
of neurons from a universal SN P system.

However, we can do better starting from the following observation. In many
modules mentioned above we need pairs of intermediate neurons for duplicating
the spike to be transmitted further (this is the case for neurons l′i, l

′′
i in Figure 5.11),

and this suggests to consider a slight extension of the rules of SN P systems: to
allow spiking rules of the form E/ac → ap; d, where all components are as usual,
and p ≥ 1. The meaning is that c spikes are consumed and p spikes are produced.
To be “realistic”, we impose the restriction c ≥ p (the number of produced spikes
is not larger than the number of consumed spikes).

Theorem 5.6.2 There is a universal SN P system with 49 neurons, using rules of the
form E/ac → ap; 0, with p ≥ 1.

(Note that the delay is zero in the rules of the extended form used in the the-
orem.) As above, we do not know whether this result is optimal, but we again
believe that it cannot be significantly improved (without, maybe, changing the
definition of SN P systems in an essential way).

5.7 Using the Rules in an Exhaustive Way

An essential difference between SN P systems and usual P systems is, besides the
use of a unique type of objects, the sequential use of rules at the level of each
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142 CHAPTER 5. SPIKING NEURAL P SYSTEMS

neuron (the system itself is synchronized, in each time unit the neurons work
in parallel, each of them applying a rule). In what follows we introduce paral-
lelism also at the local level, in the sense of the exhaustive use of rules: when a
rule E/ac → ap; d can be applied (the contents of a neuron is described by the
regular expression E), then we apply it as many times as possible in that neuron.
For instance, if we have a rule a(aa)∗/a2 → a; 0 associated with a neuron which
contains 7 spikes, then the rule is enabled (a7 ∈ L(a(aa)∗)); using it exhaustively
means using it 3 times, the maximal number of times a2 is contained in a7; thus,
6 spikes are consumed, one remains in the neuron, and 3 spikes are produced
(one for each use of the rule) and sent to the neighboring neurons (3 spikes to
each neuron to which a synapse exists, originating from the neuron where the
rule was used).

More formally, if a rule E/ac → ap; d is associated with a neuron σi which
contains k spikes, then the rule is enabled (we also say fired) if and only if ak ∈
L(E). Using the rule means the following. Assume that k = sc+r, for some s ≥ 1
(this means that we must have k ≥ c) and 0 ≤ r < c (the remainder of dividing
k by c). Then sc spikes are consumed, r spikes remain in the neuron σi, and sp
spikes are produced and sent to the neurons σj such that (i, j) ∈ syn (as usual,
this means that the sp spikes are replicated and exactly sp spikes are sent to each
of the neurons σj). In the case of the output neuron, sp spikes are also sent to
the environment. Of course, if neuron σi has no synapse leaving from it, then the
produced spikes are lost.

It is important to note that only one rule is chosen and applied, the remaining
spikes cannot evolve by another rule. For instance, even if a rule a(aa)∗/a → a; 0
exists, it cannot be used for the remaining unused spike after applying the rule
a(aa)∗/a2 → a; 0. Of course, the rule a(aa)∗/a → a; 0 can be chosen instead of
a(aa)∗/a2 → a; 0, and then all spikes are consumed. This is the reason for which
we use the term exhaustive and not the term parallel for describing the way the
rules are used.

Another important detail is that the covering of the neuron is checked only
for enabling the rule, not step by step during its application. For instance, the
rule a7/a2 → a; 0 has the same effect as a(aa)∗/a2 → a; 0 in the case of a neuron
containing exactly 7 spikes: the rule is enabled, 6 spikes are consumed, 3 are
produced; the 3 applications of the rule are concomitant, not one after the other,
hence, all of them have the same enabling circumstances.

If several rules of a neuron are enabled at the same time, one of them is non-
deterministically chosen and applied. The computations proceed as usual, and a
spike train is associated with each computation by writing 0 for a step when no
spike exits the system and 1 with a step when one or more spikes exit the sys-
tem. Then, a number is associated – and said to be generated/computed by the
respective computation – with a spike train containing at least two occurrences
of the digit 1, in the form of the steps elapsed between the first two occurrences
of 1 in the spike train.

For an SN P system Π, we denote by N ex
2 (Π) the set of numbers computed by
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Π in this way, and by Spikgen
2 P ex

m (rulek, consq, forgr) we denote the family of all
sets N ex

2 (Π) generated by SN P systems with at most m ≥ 1 neurons, using at most
k ≥ 1 rules in each neuron, with all spiking rules E/ar → ap; t having r ≤ q, and
all forgetting rules E/ac → λ having c ≤ r. When any of the parameters m, k, q, r
is not bounded, then it is replaced with ∗. The corresponding families of sets of
numbers accepted by SN P systems are denoted by Spikacc

2 P ex
m (rulek, consq, forgr).

We stress the fact that the number to be accepted is introduced as the distance
between two spikes which enter the input neuron of the system, i.e., (i) in each
time unit one or no spike is introduced, not more, and (ii) exactly two spikes are
introduced. When using only deterministic systems (with a unique continuation
in each step of a computation), then we add the letter D in front of Spik.

5.7.1 Examples

In order to clarify the definitions, we start by discussing two examples.
Example 1. In the system Π1 (Figure 5.47) we have two neurons, labeled 1

and 2 (with neuron σ2 being the output one), which have 5 and 3 spikes, respec-
tively, present in the initial configuration. Neuron σ2 fires in the first step of the
computation.

'

&

$

%

'

&

$

%
- -

1 2
a5

a(a2)+/a2 → a
a(a2)+/a2 → a; 1

a3

a3 → a
a2 → a

Figure 5.47: A simple example of an SN P system

One can notice that the regular expression for both firing rules in neuron σ1

covers the number of spikes initially present in this neuron, hence we can non-
deterministically choose the rule to be applied. If σ1 uses the rule without delay
(a(a2)+/a2 → a) in the first step it immediately sends two spikes to neuron σ2

(one for each use of the rule) and neuron σ2 spikes again, in the second step of the
computation using the rule a2 → a. Thus, the result of the computation in this
case is 2 − 1 = 1.

If the rule with delay 1 is used in the first step by neuron σ1, the two spikes
generated reach neuron σ2 with one step delay. In step 3 neuron σ2 fires and the
result of the computation is 3 − 1 = 2.

Hence, Π1 generates the finite set {1, 2}.
Example 2. The second example we consider is depicted in Figure 5.48. The

system has four neurons and all of them, including the output one, fire in the first
step of the computation. Note that neuron σ3 can choose non-deterministically
which rule to apply.

If neurons σ1, σ2, and σ3 are using the same rule (a(a2)+/a2 → a), then they
send to neuron σ4, at every step, 6 spikes (2 from each neuron) which are deleted
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Figure 5.48: An SN P system generating all natural numbers

a step later applying the rule (a3)+/a → λ. At the same time, the spikes that
were consumed in each of the neurons σ1, σ2, and σ3 are replaced by other spikes
coming from the neurons they have incoming synapses with.

If at a moment during the computation, let us say t, neuron σ3 chooses to use
the rule with delay 1, a step later neuron σ4 will receive only 4 spikes (2 from each
of the neurons σ1 and σ2), and it will fire for the second time (in step t + 1) using
the rule a(a3)+/a2 → a. We thus have computed the number t as the result of the
difference between t + 1 and 1.

5.7.2 Computational Completeness

Let us start by making the following simple, but useful observations:

1. If an SN P system Π has only rules of the form ac → ap; d and forgetting
rules as → λ, then in each neuron each rule can be used exactly once, hence
in this case the exhaustive mode coincides with the sequential mode.

2. Then, there are constructions in Section 5.2 where we used neurons with
two spikes and two rules of the form a2/a → a, a → a; n, such that this
neuron spikes twice, at interval of n steps. In the exhaustive mode, when
enabled, the first rule will consume both spikes, but the functioning of the
neuron in the exhaustive mode can be the same as in the constructions from
Section 5.2 if we start with three spikes and use the rules a3/a2 → a, a →
a; n (the first rule consumes two spikes and the second rule consumes the
third spike; each rule is used only once).

Using these observations, several examples and results from Section 5.2 can be
carried to the exhausting case. In particular, this is true for the characterizations
of finite sets of numbers (they equal the sets generated by SN P systems with one
or two neurons) and for semilinear sets of numbers (their family is equal to the
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family of sets of numbers generated by SN P systems with bounded neurons: a
bound there is on the number of spikes contained by the neurons of the system
in any step of a computation).

We do not enter into details, but we just mention that the examples from Fig-
ures 5.3 (generating all even numbers) and 5.5 (generating all natural numbers)
from Section 5.2, as well as all Lemmas 5.2.2 – 5.2.7 from Section 5.2 are valid also
for the exhaustive way of using the rules, via the previous two observations, and
this directly leads to the two characterization results mentioned above.

We pass now to proving the equivalence with Turing machines, considering
first the generative case.

Theorem 5.7.1 Spikgen
2 P ex

∗ (rulek, consp, forgq) = NRE for all k ≥ 5, p ≥ 5, q ≥ 1.

Proof We only have to prove the inclusion NRE ⊆ Spikgen
2 P ex

∗ (rule5,
cons5, forg1), and to this aim, we use the characterization of NRE by means of
register machines.

Let M = (m, I, l0, lh) be a register machine, having the properties specified in
Section 2.2.3: the result of a computation is the number from register 1 and this
register is never decremented during the computation.

We construct a spiking neural P system Π as follows.
For each register r of M we consider a neuron σr in Π whose contents cor-

respond to the contents of the register. Specifically, if the register r holds the
number n ≥ 0, then the neuron σr will contain 3n+1 spikes; thus, number zero
(the case when the register is empty), is represented by a register with 3 spikes
inside, that is, at the beginning of the computation each neuron σr corresponding
to a register r of M contains 3 spikes.

Increasing by one the contents of a register r which holds the number n means
multiplying by 3 the number 3n+1, of spikes from the neuron σr; checking whether
the register is empty amounts at checking whether σr contains exactly 3 spikes,
and decreasing by one the contents of a non-empty register means to divide by 3
the number of spikes.

With each label l of an instruction in M we also associate a neuron σl. Ini-
tially, all these neurons are empty, with the exception of the neuron σl0 associated
with the start label of M , which contains 2 spikes. This means that this neuron is
“activated”. During the computation, the neuron σl which receives 2 spikes will
become active. Thus, simulating an instruction li : (OP(r), lj, lk) of M means start-
ing with neuron σli activated, operating the register r as requested by OP, then
introducing 2 spikes in one of the neurons σlj , σlk , which becomes in this way ac-
tive. When activating the neuron σlh , associated with the halting label of M , the
computation in M is completely simulated in Π, and we have to output the result
in the form of a spike train with the distance between the first two spikes equal
to the number stored in the first register of M .

Further neurons will be associated with the registers and the labels of M in a
way which will be described immediately. All of them are initially empty, with
the exception of the output neuron, which contains 4 spikes.
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146 CHAPTER 5. SPIKING NEURAL P SYSTEMS

The construction itself is not given in technical terms, but we present modules
associated with the instructions of M (as well as the module for producing the
output) in the graphical form introduced in the previous section. These modules
are presented in Figures 5.49, 5.50, 5.51. Before describing these modules and
their work, let us remember that the labels are injectively associated with the
instructions of M , hence each label precisely identifies one instruction, either an
ADD or a SUB one, with the halting label having a special situation – it will be
dealt with by the FIN module.
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Figure 5.49: Module ADD (simulating li : (ADD(r), lj, lk))

Simulating an ADD instruction li : (ADD(r), lj, lk) – module ADD (Figure
5.49).

The initial instruction, labeled l0, is an ADD instruction. Assume that we are
in a step when we have to simulate an instruction li : (ADD(r), lj, lk), with two
spikes present in neuron σli (like σl0 in the initial configuration) and no spike
in any other neuron, except those neurons associated with the registers (and the
output neuron). Having two spikes inside, neuron σli gets fired. Its spike will
simultaneously go to four neurons: σi,1, σi,2, σi,3, and σr.

Let us follow first the functioning of the first three neurons from this list. Their
task is to pass non-deterministically to one of the instructions with labels lj and
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lk, which in our system means activating one of the neurons σlj or σlk . To achieve
this, we use the non-determinism of the rules in neuron σi,2 (the only one which
behaves non-deterministically and the only one which contains a rule with the
delay different from zero). If we use the rule a/a → a, then both neurons σi,4, σi,5

receive immediately a spike from σ. For σi,4 this is the unique spike it receives
now (neuron σi,1 fires now but its spike will leave one step later), hence in the
next step the forgetting rule of neuron σi,4 should be used. Instead, neuron σi,5

receives two spikes, hence in the next step it is fired. Conversely, if instead of rule
a/a → a, in neuron σi,2 we use the rule a/a → a; 1, then it is σi,5 which receives
only one spike, and immediately “forgets” it, while in the next step neuron σi,4

receives two spikes, and fires. Thus, exactly one out of neurons σlj , σlk receives
two spikes, as requested.

Let us now examine the functioning of neurons σr, σr,1, σr,2, σr,3. As long as
the number of spikes from σr is a multiple of 3 no rules can be applied. After
receiving one spike from σli , neuron σr contains 3n + 1 spikes, hence it can use
its rule a(a3)+/a3 → a3. This means that all 3n spikes are consumed and sent
to each of the neurons σr,1, σr,2, σr,3. These spikes arrive in these neurons at the
same time with one spike sent here by σi,3, hence also in these neurons we can
use the rule a(a3)+/a3 → a3. In this way, the contents of σr is returned to σr,
tripled. This happens in a step when this neuron uses the rule a/a → λ, thus
forgetting the remaining spikes here. The number of spikes in σr is now 3n+1,
which corresponds to a value of register r increased with 1. In the next step, each
of neurons σr,1, σr,2, σr,3 forgets the spike remaining in them, hence they return to
the state without any spike inside.

The simulation of the ADD instruction is therefore correctly completed.
The other rules mentioned in Figure 5.49 in neurons σr, σr,1, σr,2, σr,3 are used

in the case of simulating instructions SUB, and we will comment them below.

Simulating a SUB instruction li : (SUB(r), lj, lk) – module SUB (Figure 5.50).
Let us examine now Figure 5.50, starting from the situation of having two

spikes in neuron σli and no spike in other neurons, except neuron σr, which holds
a number of spikes of the form 3n; if n = 1, then this means that register r of M is
empty.

The spikes of neuron σli are sent both to σr and to σi,1. Because of the form of
the number of spikes it contains, neuron σr fires.

Let us assume that the register r is not empty, hence we start with at least 32

spikes in neuron σr. This means that the rule a5(a3)+/a3 → a can be used (and
this is the only rule applicable in this moment). Using this rule, the number of
spikes from σr is divided by 3, and the 2 spikes received from σli remain unused.
All the produced spikes – at least 3 – are sent both to neuron σr,4 and to neuron
σr,5. The first neuron just returns them to neuron σr, simultaneously with using
here the rule a2/a → λ. Thus, the neuron σr returns to a contents of 3n−1 spikes,
which corresponds to subtracting 1 from the contents of register r.

The neuron σr,4 was able to work in this way because it has received before 2
spikes from σi,1; these spikes are immediately forgotten by using the rule a2/a →
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Figure 5.50: Module SUB (simulating li : (SUB(r), lj, lk))

λ.

In the second step both neurons σr,5, σi,2 have received 2 spikes from σi,1. For
σr,5 this happens simultaneously with receiving 3n−1 spikes from σr, hence in the
next step all the spikes from σr,5 are forgotten. Simultaneously, σi,2 sends two
spikes to each neuron σi,3 and σi,4. The first of them fires, hence σlj is activated,
the other one forgets the two spikes. This is a correct simulation of the SUB in-
struction for the case when the register was non-empty.

If the neuron σr contained initially 3 spikes (hence register r was empty), then
the rule to be used in the second step is a5/a5 → a5. This means that both σr,4 and
σr,5 will end this step with 7 spikes insides (2 of them received from σi,1). While
σr,4 returns 3 spikes to σr (in this way, σr ends this step with 3 spikes inside, as
necessary – in the meantime, it has forgotten the 2 spikes remained here), neuron
σr,5 spikes and sends one spike to each of σi,3 and σi,4. Both of them also receive
at the same time 2 spikes from σi,2, hence now σi,4 will spike and σi,3 forgets its
spikes. This means that neuron σlk is activated, and again the simulation of the
SUB instruction was correct.
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In both the ADD and the SUB module we have written the rules from the
neurons σlj , σlk in the form a2/a2 → aδ(ls), because we do not know whether lj
and lk are labels of ADD, SUB, or halting instructions. That is why we use the
function δ : H −→ {1, 2}, defined as follows:

δ(l) =

{

1, if l is the label of an ADD instruction,

2, otherwise.

Let us examine now the interferences between the simulation of different in-
structions. The same neuron σr sends spikes to all neurons σr,s, s = 1, 2, 3, 4, 5,
irrespective of which is the instruction to simulate. However, neurons σr,s, s =
1, 2, 3, receive one additional spike only when simulating an ADD instruction,
while neurons σr,s, s = 4, 5, receive two additional spikes only when simu-
lating a SUB instruction. This means that in the case when any of neurons
σr,s, s = 1, 2, 3, 4, 5, receive spikes without being involved in the correct simula-
tion of an instruction as described above, those spikes are immediately forgotten
by means of the rule (a3)+/a → λ, present in each of them (note that the number
of spikes is indeed a multiple of 3). This happens also with the 5 spikes received
by the neurons σr,s, s = 1, 2, 3, in the case of simulating a SUB instruction on
register r.

It is important in this discussion to remember that each element of H labels
only one instruction of M , and to observe in Figures 5.49, 5.50 that the neurons
are associated either with registers or with labels.

Neurons σr,s, s = 1, 2, 3, 4, send spikes only back to the associated neuron σr,
but this is not the case with neuron σr,5, which sends spikes to all neurons σi,3

and σi,4 associated with all SUB instructions of the form li : (SUB(r), lj, lk) (i.e.,
operating on the register r). However, only one spike is sent; if it reaches a neuron
which is not involved in the current simulation of a SUB instruction, then this
spike is immediately forgotten by the rule a/a → λ present in all neurons of the
form σi,3, σi,4 (the “correct” destinations of the spike emitted by σr,5 also receive 2
spikes from the “correct” σi,2).

Consequently, no incorrect step is possible in Π because of the interference of
neurons appearing in ADD and SUB modules.

Ending a computation – module FIN (Figure 5.51).

Assume now that the computation in M halts, which means that the halting
instruction is reached. For Π this means that the neuron σlh gets two spikes and
fires. At that moment, neuron σ1 contains 3n+1 spikes, for n ≥ 0 being the con-
tents of register 1 of M . The spikes of neuron σlh reaches immediately neurons
σh,s, s = 1, 2, which fire and send spikes to σ1, σout, and σh,4, respectively. Neuron
σ1 contains now 3n+1 +2 spikes and it can fire like in the case of a SUB instruction.
Note however that this neuron was never involved in a SUB instruction, hence it
does not contain any rule as those from Figure 5.50 marked with SUB in front of
them.
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Figure 5.51: Module FIN (ending the computation)

Neurons σ1, σh,3 repeatedly divide by 3 the number of spikes they contain,
by making use of the rules a5(a3)+/a3 → a. These rules can be used, because
alternately in time, 2 spikes are sent to these neurons from σh,3, σh,4, respectively
(first time, in the second step after activating σlh , such spikes are sent to σ1 from
σh,2). In each step, the neurons σ1, σh,3 also send spikes to the output neuron.

The output neuron spikes in the third step after activating σlh , using the 4
spikes initially present in it and the unique spike received from σh,1. Next step
when σout can spike is when receiving exactly 3 spikes from one of σ1 and σ1,4.
This means that in that moment we had 32 + 2 spikes in that neuron, hence this
is the last step when a division with 3 is possible: in the next step, we have 5
spikes in one of σ1 and σ1,4 and 2 spikes in the other one, and all these spikes are
forgotten. At the same time, the output neuron spikes again, which means that
the distance between the two spikes sent out of the system is n.

Of course, if σ1 contains initially only 3 spikes, then only one spiking of σout is
possible, the one from step 3; because we do not have two spikes which exit the
system, the computation provides no output (the number zero is ignored).
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Consequently, N ex
2 (Π) = N(M). The observation that the maximum number

of rules in a neuron is 5, the maximum number of consumed spikes is also 5, and
we always use forgetting rules of the form E/a → λ completes the proof. 2

The delay is used only in modules ADD and if it is non-zero, then the delay
is 1. Actually, this feature can be avoided, at the price of slightly increasing the
number of neurons in modules ADD, following the procedure introduced in [35].
It remains as an open problem to improve the previous result also from other
points of view, such as the number of rules in each neuron, the number of con-
sumed spikes in the rules, the form of the regular expressions, the indegree and
the outdegree of the synapse graph, etc.

The SN P systems with the exhaustive use of rules are computationally com-
plete also in the accepting case, even when using only deterministic systems.

We do not give here a formal statement and a proof of this assertion, but an in-
clusion of the form NRE ⊆ DSpikacc

2 P ex
∗ (rulek, consq, forgr) (with small values of

k, q, r) can be obtained in a way similar to that used in the proof of Theorem 5.7.1:
we start from a register machine M = (m,H, l0, lh, I) working in the accepting
mode (see again Section 2.2.3). Therefore, we may assume that M is determinis-
tic, it starts with the number to be analyzed being introduced in register 1, and
this number is accepted if and only if the machine reaches the halt instruction.

We construct a spiking neural P system Π working in the accepting mode in
the same way as in the proof of the previous theorem, with the following differ-
ences:

1. The ADD modules are simpler than in Figure 5.49, because of the deter-
ministic behavior of the ADD instructions; the changes in the construction
from Figure 5.49 are simple and and the corresponding module of our SN P
system is deterministic.

2. The SUB modules are the same as before, but the FIN module is missing: no
action should be done when we activate the neuron σlh , the computation in
Π halts when the computation in M halts.

3. An input module is necessary, “reading” a spike train containing exactly
two spikes which enter the input neuron at times t and t + n, and loading
the neuron σ1 of Π (hence the neuron corresponding to the first register of
M ) with 3n+1 spikes; when the second spike comes (hence the neuron σ1 is
loaded), two spikes should also be introduced in neuron σl0 , corresponding
to the initial instruction of M , thus starting the computation of Π. We leave
the details of the construction of this module to the reader.

5.7.3 Remarks and Further Research

We have introduced and investigated from the point of view of computing power
a way to use the rules in a spiking neural P systems which we find rather natural:
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in the exhaustive way. Specifically, when a rule is enabled, it is used as many
times as possible in the respective neuron. Turing completeness was proved for
this case for SN P systems used in both generative and accepting mode.

Many issues remain to be investigated for this class of SN P systems. Practi-
cally, all questions considered for sequential SN P systems are relevant also for
the exhaustive case. We just list some of them: associating strings to compu-
tations (not only the binary spike train as considered here, but strings over ar-
bitrary alphabets; specifically, if i ≥ 0 spikes exit the output neuron, then the
symbol bi is generated, with two cases for i = 0: b0 considered as a symbol, or as
the empty string); finding universal SN P systems, if possible, with a small num-
ber of neurons; handling strings or infinite sequences over binary or arbitrary
alphabets (both input and output neurons are considered, with the same con-
vention: if i spikes enter/exit at a time, then the symbols bi is considered in the
input/output string); restricted classes of systems (e.g., with a bounded number
of spikes present at a time in any neuron) or versions of output (taking k neurons
as output neurons and thus producing vectors of dimension k of natural num-
bers). Proof techniques from the previous sections might be useful also in this
case, while the results proved in these papers should be checked to see whether
their counterparts hold true also for exhaustive SN P systems.

Another interesting issue is that of using the parallelism present in our sys-
tems in order to solve computationally hard problems in a polynomial time.
Usual SN P systems are probably not able to do this (unless an arbitrarily large
workspace is freely available/precomputed, initiated in polynomial time, and
self-activated during the computation, as proposed in the following section). Is
the parallelism of our version of SN P systems useful in this respect? (We expect
a negative answer.)

Of course, a major research topic in this area is to incorporate more de-
tails from neurology, thus making the model more “realistic”, and to also bring
ideas/topics from neural computing – but such issues are behind the scope of
this paper, which has only considered the SN P systems in the sense of natural
computing, as bio-inspired computing devices.

5.8 Spiking Neural P Systems with Self-Activation

In this section we address an important issue, somewhat complementary to the
computing power issue considered up to now: the computational efficiency of SN
P systems. Are these devices able to solve hard problems in a polynomial time?
We do not have an answer to this question, but we propose a way to address it, by
means of SN P systems with self-activation. We consider a neuron to be inactive if
it contains no spike (hence no rule can be applied in it). As soon as a spike enters
a neuron (as input in the initial configuration or from another neuron through a
synapse), it makes it active altogether with the synapses that it establishes with
other neurons.
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In a self-activating SN P system we have an arbitrarily large number of neu-
rons which differ by the number of spikes and/or of rules they contain. Some of
these neurons will be active, the others will be inactive.

In what follows, we construct an SN P system for solving SAT problem in
constant time. Let us consider n variables x1, x2, . . . , xn, n ≥ 1, and a propositional
formula with m clauses, γ = C1 ∧ · · · ∧ Cm, such that each clause Ci, 1 ≤ i ≤ m, is
of the form Ci = yi,1 ∨ · · · ∨ yi,ki

, ki ≥ 1, where yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}.
The set of all instances of SAT with n variables and m clauses is denoted by

SAT (〈n,m〉).
The instance γ is encoded as a set over

X = {xi,j, x
′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

where xi,j represents variable xj appearing in clause Ci without negation, while
x′

i,j represents variable xj appearing in clause Ci with negation.

Now, we give an informal description of the precomputed resource structure
devoted to SAT (〈n,m〉). We look at Figure 5.52 which depicts an SN P sys-
tem working in self-activating manner using precomputed resources, where the
nodes and the arrows represent the neurons and the synapses, respectively. One
can notice that the nodes have (four) different shapes (©, ⊚, �, ⊲), but this is just
a way to make the construction easier to understand (the shape does not imply
any differences in the behavior of the nodes). Also, we see that the structure has
a sort of symmetry. Namely, for each clause we have a block of ©-neurons and
⊚-neurons.

The Device Structure The precomputed device (initially inactive) able to deal
with any γ ∈ SAT (〈n,m〉) is formed by 2n(m+1)+2nm+1 neurons and 2n(3m+
1) synapses. Further on we are giving some details on the components of this
structure.

Neurons of type ©cixj1/0: For each variable xj of a clause Ci, we associate 2
neurons ©cixj1 and ©cixj0, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Obviously, the subscript of
the neurons indicates the clause (ci for the clause Ci), and the variable (xj for the
jth variable in the clause). 1 and 0 are used to mark differently the two neurons
needed to encode the same variable; their use will be detailed further on in the pa-
per where the encoding part will be explained. However, each clause is described
by 2n neurons, and there are exactly 2nm neurons of type ©cixj1/0 associated with
m clauses.

Neurons of type ⊚cibin: There are 2n ⊚cibin neurons, associated to each clause Ci,
injectively labeled with elements of {cibin | bin ∈ {1, 0}n}. They correspond to
the 2n truth-assignments for variables variables x1, . . . , xn. In total, the device has
2nm ⊚cibin neurons (2n for each of the m clauses). Later on, we will see that these
neurons will handle, during the computation, boolean operation ∨ (OR) present
in the clauses of the formula.

Synapses ©cixj1/0 −→ ⊚cibin: The connections are in one direction from ©cixj1/0

to ⊚cibin. The synapses are designed in such a way that the two neurons linked
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by a connection have the same prefix of the labels (ci), and the last symbol of
label cixj0/1 is the same with the jth symbol (0 or 1) of the string bin. Each ⊚cibin

neuron is connected to n ©cixj1/0 neurons.
Neurons of type �bin: There are exactly 2n �bin neurons in the device labeled

injectively with strings from bin ∈ {0, 1}n. These neurons are designed to handle
boolean operation ∧ (AND) between the clauses of the formula.

Synapses ⊚cibin −→ �bin: Each �bin neuron is connected to one ⊚cibin neuron
from each clause block, hence, m double circled neurons may send spikes to each
square neuron. Strings bin from the labels of the connected ⊚cibin and �bin neu-
rons are the same.

Neuron of type ⊲4: Finally, there is a unique output neuron ⊲ with label 4. By
choosing label 4 for this neuron we emphasize that it spikes in the 4th step of the
computation if the problem has at least a solution and does not spike in this step,
otherwise. All �bin neurons are connected to the output neuron, hence, there are
2n connections of type �bin −→ ⊲4.

Rules: Here are the rules which apply to each type of neurons:
R◦ = {a → λ, a2 → a; 0, a3 → λ, a4 → a; 0},
R⊚ = {a+/a → a; 0},
R� = {am → a; 0},
R⊲ = {a+/a → a; 0}.

We have described the precomputed device structure for solving SAT problem
as depicted in Figure 5.52, with the neurons in the inactive mode. Note that this
structure is independent of the instance of SAT we want to solve, and it depends
only on n and m. Let us explain now how we encode the particular instance of
the problem into the device.

The Problem Encoding The variables are encoded by spikes as follows: one
assigns values 1 and 0 to each variable xj and ¬xj . Further, a variable xj is en-
coded by two spikes (a2), and one spike (a) if we assign to xj values 1 and 0,
respectively. Similarly, we use a3 and a4 to encode variable ¬xj , which has as-
signed values 1 and 0, respectively.

1 0
xi,j (a2,©cixj1) (a,©cixj0)
¬xi,j (a3,©cixj1) (a4,©cixj0)

Table 5.2: The variable encoding.

In Table 5.2 one can notice how we introduce the encoded variables (the
spikes) into the precomputed device. The (encoded) variables xj or ¬xj , from
a clause Ci, assigned with value 1 are introduced in the neuron with label cixj1
(©cixj1), while the other “half” of the encoding, the one where variable is assigned
with value 0 is introduced in the neuron labeled cixj0, (hence ©cixj0). Some of the
©cixj1/0 neurons will not be activated in the case the corresponding variables are
missing form the given instance of the problem. Anyway, we stress the fact that
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Rules used in ΠSAT (〈2,3〉): R◦ = {a → λ, a2 → a; 0, a3 → λ, a4 → a; 0};
R⊚ = {a+/a → a; 0}; R� = {a3 → a; 0}; R⊲ = {a+/a → a; 0}.

Figure 5.52: Precomputed spiking neural net for SAT(〈2, 3〉)

at most 2nm ©cixj1/0 neurons are activated in when the device is initialized, the
other neurons in the system remaining inactive.

The Computation Starting this moment (when the device is initialized and
the corresponding neurons activated), the computation can be performed and the
problems will be solved in 4 steps. Once the system starts to evolve the spikes
follow the one-directional path:

©-neurons −→ ⊚-neurons −→ �-neurons −→ ⊲-neuron,

as shown in Figure 5.52.

5.8.1 An Example

In order to illustrate the procedure discussed above, let us examine a simple ex-
ample.
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We consider the following instance of SAT, with two variables and three
clauses, γ ∈ SAT (〈2, 3〉),

γ = (x1) ∧ (¬x1 ∨ x2) ∧ (¬x2).

The device structure The system we construct is given in a pictorial way in Fig-
ure 5.52, and has 29 inactive neurons (4 ∗ 22 + 2 ∗ 2 ∗ 3 + 1) and 40 synapses. There
are 3 blocks of neurons, each dealing with a clause of the problem. Each block
contains 4 solid circled (©cix11, ©cix10, ©cix21, ©cix20) neurons – 2 for each vari-
able – to which we assign 1 and 0 (see the labels). In each block, there are also
4 double circled neurons (⊚ci11,⊚ci10,⊚ci01,⊚ci00) connected to the ©cixj1/0 neu-
rons, corresponding to the 22 truth-assignments (see the labels). Moreover, we
have 4 �bin neurons connected to the corresponding ⊚cibin neurons.

Encoding According to the formula γ, in the first clause C1, there is only one
variable x1. We assign values 1 and 0 to x1 and encode it by two spikes (a2) and
one spike (a1) that are placed in ©c1x11 and ©c1x10, respectively. The other two
neurons ©c1x21 and ©c1x20 corresponding to variable x2 remain empty, since there
is no variable x2 or ¬x2 in the clause.

The second clause (C2) is encoded in the following clause block. To each vari-
able ¬x1 and x2 are assigned values 1 and 0. Further, they are encoded by a3 in
©c2x11, a4 in ©c2x10, for ¬x1, and a2 in ©c2x21, a1 in ©c2x20, for x2.

The last clause C3 has only one variable, ¬x2, which is encoded in the neurons
©c3x21 and ©c3x20. The other two neurons corresponding to this clause remain
empty. See Step 1 of Figure 5.53.

Computation Once the encoding is done, single circled neurons are activated
and send signals, or erase spikes according to the rules they contain. In the first
step, neurons having inside a2 and a4 fire, while spikes a1 and a3 from the other
neurons are deleted. We see in Step 2 from Figure 5.53, that only 7 double circled
neurons out of 12 contain spikes, hence only 7 will be activated in the second step.
Then, in next step of computation, double circled neurons containing spikes fire
because of the rules a+/a → a inside. One can notice that neurons �11, �00, and
�10 have received two spikes, and neuron �01 has received only one spike. In the
third step of the computation, only neuron ⊚c201 fires since there was one spike
remained, and nothing else happens in the system. The rule present inside the
square neurons, a3/a → a, cannot be applied, because there is no such neuron
containing three spikes. At the fourth step, the output neuron does not spike,
since no spike has arrived here in the third step of the computation, hence the
given problem has no solution.

We have mentioned before that what happens after the fourth step of the com-
putation is out of our interest because it does not give further details with respect
to the satisfiability of the given problem. We just want to mention that the system
may not stop after giving the answer to our problem.
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Figure 5.53: The steps of the computation for γ ∈ SAT (〈2, 3〉).

5.8.2 A Formal Presentation

Formally, for given (n,m) ∈ N
2, an SN P system using precomputed resources,

working in a self-activating manner, devoted to solve SAT problem with n vari-
ables and m clauses, is a construct

Πn,m
SAT

= (ΠSAT (〈n,m〉), Σ(〈n,m〉))

with:

• ΠSAT (〈n,m〉) = (O, µ, ⊲4), where:

1. O = {a} is the singleton alphabet;

2. µ = (H, Ω, RH , syn) is the precomputed device structure, where:

– H = H1 ∪ H2 ∪ H3 ∪ H4 is a finite set of neuron labels, where
H1 = {cixj1, cixj0 | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
H2 = {cibin | 1 ≤ i ≤ m, bin ∈ {0, 1}n},
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H3 = {bin | bin ∈ {0, 1}n},
H4 = {4};

– Ω = {(0,©h1), (0,⊚h2), (0,�h3), (0, ⊲h4) | h1 ∈ H1, h2 ∈ H2, h3 ∈
H3, h4 ∈ H4} are the empty (inactive) neurons present in the pre-
computed structure (with |Ω| = 2n(m + 1) + 2nm + 1);

– RH = RH1 ∪RH2 ∪RH3 ∪RH4 is a finite set of rules associated to the
neurons, where
RH1={a1 → λ, a2 → a; 0, a3 → λ, a4 → a; 0},
RH2 = RH4 = {a+/a → a; 0},
RH3 = {am → a; 0};

– syn =
⋃m

i=1{(©cixj1,⊚cibin) | bin|j = 1, 1 ≤ j ≤ n, bin ∈ {0, 1}n}
∪

⋃m
i=1{(©cixj0,⊚cibin) | bin|j = 1, 1 ≤ j ≤ n, bin ∈ {0, 1}n}

∪ {(⊚cibin,�bin) | bin ∈ {0, 1}n, 1 ≤ i ≤ m} ∪ {�bin, ⊲4 | bin ∈
{0, 1}n};

3. ⊲4 is the output neuron;

• Σ(〈n,m〉) is a polynomial encoding from an instance γ of SAT into
ΠSAT (〈n,m〉), providing the initialization of the system such that

Σ(〈n,m〉)(γ) = {(1,©cixj0) | xi,j ∈ γ, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(2,©cixj1) | xi,j ∈ γ, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(3,©cixj0) | x′
i,j ∈ γ, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(4,©cixj1) | x′
i,j ∈ γ, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

In the precomputed structure of Π(〈n,m〉) (for any SAT problem with n vari-
ables and m clauses), neurons are described as a pair (spikes inside, neuron). There
are 2n(m + 1) + 2nm + 1 neurons and 2n(3m + 1) synapses initially inactive.
Σ(〈n,m〉) encodes the given instance of the problem in spikes, that is, the en-
coded problem is introduced into the precomputed structure (spikes are assigned
to solid circled neurons) activating the corresponding neurons. It is important to
note that at most 2nm neurons will be activated, hence the initialization takes a
polynomial time.

The system evolves exactly in the same manner as the basic SN P systems. The
result of the computation is obtained in its 4th step. If the system (output neuron)
spikes, then the given problem has at least a solution. Otherwise, it does not have
any solution. The evolution of the system after this step of the computation is
ignored.

Thus, the system evolves as follows:

Step 1: After encoding the problem (the variables) in (the number of) spikes
we introduce into the system, namely in at most 2nm neurons of type
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©ci0xj1/0, these neurons are activated and evolve according to the rules
inside.

Step 2: Neurons of type ⊚cibin which provide information on the truth-
assignments at the level of clauses (OR operations are simulated) –
at most 2nm initially inactive neurons – will be activated, and they
will send spikes to the 2n �bin neurons corresponding to the truth-
assignments at the level of the system.

Step 3: Now, only those neurons of type �bin in which the threshold is
reached (AND operations are simulated, if all m clauses are satis-
fied, hence there exist m spikes inside) will spike (because of the rule
am → a; 0) toward the output neuron.

Step 4: If in the output neuron will spike, it means that our problem has at
least a solution. Otherwise, we do not have any solution for the given
problem.

As already mentioned both in the definition of the system and in the example,
it is not mandatory for the system to halt. We only observe its behavior in the
fourth step of the computation.

Based on the previous explanations we can state that:

Theorem 5.8.1 Πn,m
SAT

can deterministically solve each instance of size (n,m) of SAT in
constant time.

5.8.3 Remarks and Further Research

We have shown that SN P systems are not only computationally universal, but
also computationally efficient devices. We show that the idea of using an al-
ready existing, but inactive, workspace proves to be very efficient in solving NP-
complete problems. We illustrate this possibility with the satisfiability problem.
The initial system is fixed, depending only on the number of variables (n) and
the number of clauses (m). Then any instance of SAT with size nxm is encoded
in a polynomial time in spikes introduced in the system and then it is solved in
exactly 4 steps by our device.

If we use rules of type R◦ = R⊲ = {a+ → a; 0} (and we interpret such a
rule in the sense that if at least one spike is present in a moment inside a neu-
ron, then it should spike immediately and all spikes are consumed) in the system
(ΠSAT (〈n,m〉), Σ(〈n,m〉)), then the computation halts in the fourth step with the sys-
tem spiking if the problem has at least a solution. Otherwise the problem does
not have any solution. After the fourth step, no spike will remain in the system.

Another way to stop the computation after sending the answer out is the fol-
lowing. Let us introduce two intermediate neurons in between each �bin and ⊲4

neuron, so that in step 4 (the intermediate neurons take one step for transmitting
the spikes further) neuron △4 receives an even number of spikes. Then, instead
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of the rule a+/a → a; 0, in neuron ⊲4 we use the rule (a2)+/a → a; 0. Thus, if
any spike reaches neuron ⊲4, then an even number of spikes arrive here; thee rule
(a2)+/a → a; 0 can be used only once, in step 5, because after that the number of
remaining spikes is odd.

In this way, we add 2 · 2n neurons and further 3 · 2n synapses, while the com-
putation lasts five steps only.

Moreover, if we consider 3SAT problem, then each clause block will contain
exactly 14 = 3 ∗ 2 + 23 neurons.

One possible line of research would be to try to investigate other computa-
tionally hard problems with the SN P systems using precomputed resources. Fi-
nally, investigating other computational complexity issues within this framework
would be also very challenging.

5.9 Some Applications of SN P Systems

5.9.1 Simulating Logical Gates and Circuits

In this section we show how SN P systems can simulate logical gates by means of
SN P systems with exhaustive use of rules. We consider that input is given in one
neuron while the output will be collected from the output neuron of the system.
Boolean value 1 is encoded in the spiking system by two spikes, hence a2, while
0 is encoded as one spike.

We collect the result as follows. If the output neuron fires two spikes in the
second step of the computation, then the Boolean value computed by the system
is 1 (hence true). If it fires only one spike, then the result is 0 (false).

Simulating Logical Gates

Lemma 5.9.1 Boolean AND gate can be simulated by SN P systems with exhaustive use
of rules using two neurons and no delay on the rules, in two steps.

Proof We construct the SNP system (consisting on only one neuron):

ΠAND = ({a}, σ1 = (0, {a2 → a; 0, a3 → a; 0, a4/a2 → a; 0}), ∅, 1).

The functioning of the system is rather simple. Suppose in neuron 1 we intro-
duce three spikes. This means we compute the logical AND between 1 and 0 (or
0 and 1). The only rule the system can use is a3 → a; 0 and one spike (hence the
correct result - 0 in this case) is sent to the environment.

If 4 spikes are introduced in neuron 1 (the case 11), the output neuron will fire
using the rule a4/a2 → a; 0, and will send two spikes in the environment. The
system with the input 00 behaves similarly to the 01 or 10 cases. The system we
have constructed gives the right answer in one computational step and gets back
to its initial configuration for a further use, if necessary. 2
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We want to emphasize here that no “extended” rule was used. Of course,
a rule a4 → a2 can substitute, with the same effect, the rule we have preferred
above (namely a4/a2 → a; 0) but, in simulating Boolean gates, we have tried to
minimize the use of such rules. An extended rule is used only once in simulating
Boolean gates, more precisely in the simulation of OR gate.

If in the system above, in the output neuron, we change only the rule a3 → a; 0
(with the rule a3 → a2; 0) we obtain the OR gate.

Lemma 5.9.2 Boolean OR gate can be simulated by SN P systems with exhaustive use
of rules using two neurons and no delay on the rules, in two steps.

We now pass to the simulation of logical gate NOT.

Lemma 5.9.3 Boolean NOT gate can be simulated by SNP systems with exhaustive use
of rules using two neurons, no delay on the rules, in two steps.

Proof We first want to stress that in simulating this gate we use any extended
rules. The case when such rules are used is left to the reader.

Let us construct the following SN P system:

ΠNOT = ({a}, σ1, σ2, {(1, 2), (2, 1)}, 1),

and:

• σ1 = (a, {a2/a → a; 0, a3 → a; 0}),

• σ2 = (0, {a/a → a; 0, a2/a2 → a; 0}).

Let us emphasize that in the initial configuration, neuron 1 contains 1 spike,
which, once used to correctly simulate the gate, has to be present again in the
neuron such that the system returns to its initial configuration. This is done with
the help of neuron 2 which in step 2 of the computation refills neuron 1 with one
spike.

The system is given in its initial configuration in Figure 5.54. If the input in
the Boolean gate is 1, then two spikes are placed in neuron 1. Having three spikes
inside (two from the input, and one initially present inside) neuron 1 can use only
rule a3 → a; 0, thus sending one spike to the environment (hence Boolean 0 – the
correct result – is obtained), and one spike to neuron 2. The latter one will send
the spike back, in the second step of the computation by using rule a/a → a; 0,
and the system regains its initial configuration.

If the input in the Boolean gate is 0, hence one spike is introduced in neuron
1, it uses the rule a2/a → a; 0, two spikes are sent to the environment (and the
result of the computation is 1), and to neuron 2 in the same time. In the second
step of the computation neuron 2 uses the rule a2/a2 → a; 0, consumes the two
spikes present inside, and sends one back to neuron 1. The system recovers its
initial configuration.

2

After showing how SN P systems can simulate logical gates, we pass to the
simulation of circuits.
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Figure 5.54: SN P systems simulating NOT gate

Simulating Circuits

Next, we are presenting an example of how to construct a SN P system to simulate
a Boolean circuit designed to evaluate a Boolean function. Of course, in our goal
we are using the systems ΠAND, ΠOR, and ΠNOT constructed before, to which we
add extra neurons to synchronize the system for a correct output.

We start with the same example considered in Section 4.3.2, namely the func-
tion f : {0, 1}4 → {0, 1} given by the formula

f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ ¬(x3 ∧ x4).

The circuit corresponding to the above formula as well as the spiking system
assign to it are depicted in Figure 5.55. In order for the system that simulates
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Figure 5.55: Boolean Circuit and the Spiking System

the circuit to output the correct result it is necessary for each sub-system (that
simulates the gates AND, OR, and NOT) to receive the input from the above
gate(s) at the same time. To this aim, we have to add synchronization neurons,
initially empty with a single rule inside (a → a; 0). Note that in Figure 5.55 we
have added such a neuron in order for the output of the first AND gate to enter
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gate OR at the same time with the output of NOT gate (at the end of the second
step of the computation).

Having the overall image of the functioning of the system, let us give some
more details on the simulation of the above formula. For that we construct the
SN P system

ΠC = (Π
(1)
AND, Π

(2)
AND, Π

(3)
NOT , Π

(4)
OR)

formed by the sub-SN P systems for each gate, and we obtain the unique result
as follows:

1. For every gate of the circuit with inputs from the input gates we have an SN
P system to simulate it. The input is given in neuron labeled 1 of each gate;

2. For each gate which has at least one input coming as an output of a previous
gate we construct an SN P system to simulate it by considering a synapse
between the output neuron of the gate from which the signal (spike) comes
and the input neuron of the system that simulates the new gate.

Note that if synchronization is needed the new synapse is constructed from
the output neuron of the output gate to the synchronization neuron and
from here another synapse is constructed to the input of the new gate in the
circuit.

For the above formula and the circuit depicted in Figure 5.55 we will have:

– Π
(1)
AND computes the first AND1 gate (x1 ∧ x2) with inputs x1 and x2.

– Π
(2)
AND computes the second AND2 gate (x3∧x4) with inputs x3 and x4; these

two P systems, Π
(1)
AND and Π

(2)
AND, act in parallel.

– Π
(3)
NOT computes NOT gate ¬(x3 ∧ x4) with input (x3 ∧ x4). While Π

(3)
NOT is

working, the output value of the first AND1 gate passes through the syn-
chronization neuron.

– The input enters in the first neuron of OR gate, and SN P system Π
(4)
OR com-

pletes its task. The result of the computation for OR gate (which is the result
of the global P system), is sent into the environment of the whole system.

Generalizing the previous observations the following result holds:

Theorem 5.9.1 Every Boolean circuit α, whose underlying graph structure is a rooted
tree, can be simulated by an SN P system (with exhaustive use of rules), Πα, in linear
time. Πα is constructed from SN P systems of type ΠAND, ΠOR and ΠNOT , by reproduc-
ing in the architecture of the neural structure, the structure of the tree associated to the
circuit.
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5.9.2 A Sorting Algorithm

We pass now to a different problem SN P systems can solve, namely to sort n
natural numbers, this time not using the rules in the exhaustive way, but as in the
original definition of such systems.

We first exemplify our sorting procedure through an example. Let us presume
we want to sort the natural numbers 1, 4, and 2, given in this order. For that we
construct the system given only in its pictorial format below:
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a∗/a → a; 0 a∗/a → a; 0 a∗/a → a; 0

a3 → a; 0
a2 → λ
a → λ

a2 → a; 0
a3 → λ
a → λ

a → a; 0
a2 → λ
a3 → λ

Figure 5.56: Sorting three natural numbers

We encode natural numbers in the number of spikes (1 – one spike, 4 – four
spikes, 2 – two spikes) which we input in the first line of the system (hence in the
neurons labeled i1, i2, an i3). It can be noticed that the neurons in the first layer of
the structure are having the same rule inside (a∗/a → a; 0) and outgoing synapses
to all the neurons in the second layer of the structure (the ones denoted s1, s2, and
s3). Neuron labeled s1 has outgoing synapses with all neurons in the third layer
of the system, only one spiking rule inside (a3 → a; 0, where 3 is the number of
numbers that have to be sorted), and two deletion rules (a2 → λ, and a → λ). For
the other neurons in the second layer, the exponent of the firing rule decreases
one by one as well as the synapses with the neurons from the third layer of the
system.

In the initial configuration of the system we have one spike in neuron i1, four
spikes in neuron i2 and two spikes in neuron i3. In the first step of the compu-
tation, one spike from each neuron is consumed and sent to neurons from the
second layer of the system. Each of them receives the same number of spikes,
namely 3.
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5.9. SOME APPLICATIONS OF SN P SYSTEMS 165

In the second step of the computation, neuron labeled s1 consumes all three
spikes previously received and fires to neurons o1, o2 and o3. Hence, each neuron
from the output layer has one spike inside. The other neurons from the second
layer delete the three spikes they have received. In the same time neurons i2 and
i3 fire again sending 2 spikes (one each) to all neurons from the second layer.

In the third step of the computation, neuron s2 fires only to neurons o2 and o3

(so, they will have one more spike inside, hence 2, while o1 remains with only one
spike), the other spikes from neurons s1 and s3 being deleted. In the same time
neuron i2 refills the neurons in the second layer of the system with one spike,
which will be consumed in the fourth step of the computation by neuron s3 and
sent to the output neuron o3. In the same step neuron i2 spikes again sending the
spike to the neurons from the second layer. Only neuron s3 will spike in the fifth
step of the computation sending its spike to neuron o3.

So, in the last step of the computation there are: 1 spike in the neuron o1, 2
spikes in the neuron o2, and 4 spikes in the neuron o3.

We pass now to the general case, constructing the system in the pictorial form:
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a∗/a → a; 0 a∗/a → a; 0 a∗/a → a; 0

an → a; 0
ai → λ

where 1 ≤ i ≤ n − 1

an−1 → a; 0
aj → λ

with 1 ≤ j ≤ n
and j 6= n − 1

a → a; 0
ak → λ

where 2 ≤ k ≤ n

...

...

...

Figure 5.57: Sorting n natural numbers

The functioning of the system is similar to the one described in the example
above. We introduce n natural numbers encoded as spikes, one in each neuron
from the first layer of the structure (denoted by ij , with 1 ≤ j ≤ n). As long
as they are not empty they consume at each step a spike, and send n spikes,
one to each neuron from the second layer of the structure (denoted by si, with
1 ≤ i ≤ n). The latter neurons have n different thresholds (decreasing one by one
from n – neuron labeled s1, to 1 – neuron labeled sn), and have n different number
of synapses with the neurons from the third layer of the structure. The latter ones
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contain the result of the computation.

Theorem 5.9.2 SN P systems can sort a vector of natural numbers where each number
is given as number of spikes introduced in the neural structure.

Based on the above construction, the time complexity (measured as usually as
the number of configurations reached during the computation) is O(T ), where T
is the magnitude of the numbers to be sorted. Although the time complexity is
better than the ”classical”, sequential algorithm, in this case one can notice that
the construction presented depends on the number of numbers to be sorted.

5.9.3 Remarks and Further Research

Spiking neural P systems are a versatile formal model of computation that can
be used for designing efficient parallel algorithms for solving known computer
science problems. Here we firstly studied the ability of SN P systems to simulate
Boolean circuits. In addition, this simulation, enriched with some ”memory mod-
ules” (given in the form of some SN P sub-systems), may constitute an alternative
proof of the computational completeness of the model.

Another issue studied here regards the sorting of a vector of natural numbers
using SN P systems. In this case, due to its parallel features, the obtained time
complexity for the proposed algorithm overcomes the classical sequential ones.

Several open problems arose during our research. For instance, in case of
Boolean circuits the simulation is done for such circuits whose underlying graphs
have rooted tree structures, therefore a constraint that need further investigations.

In what regards the sorting algorithm, the presented construction depends on
the magnitude of the numbers to be sorted. We conjecture that this inconvenient
might be eliminated. Also, we conjecture that further improvements concerning
time complexity can be made.
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Chapter 6

An SN P Systems Simulator

This chapter will present (various screen-shots from) a software which simulates
the behavior of a SN P system. The software (written in JAVA programming
language) allows the user to construct its own SN P system and then to observe the
way it evolves during the computation.

The variant of the SN P system model chosen to be simulated is the initial
one introduced in Section 5.2. More, the test example used below is the system
depicted in Figure 5.5 (An SN P system generating all natural numbers).

6.1 Construction Area

Construction Area is the top part (Figure 6.1) of the user interface shown in Figure
6.2.

Figure 6.1: Construction Area

Here the user can construct the system whose behavior (or result) wants in a
very easy way, just with the help of the buttons.

Hence, just by pushing ”Add Neuron” button and then clicking in the Simula-
tion Area a neuron will be added there. ”Add Synapse” button constructs a synapse
by clicking on the button and then by dragging the mouse from the pre-synaptic
neuron to the post-synaptic one. ”Add Spike” button adds spikes to the neurons.
If one wants to add 2 spikes to neuron 1 then first clicks on the button and then
goes over neuron 1 and clicks twice. ”Add Rule” button adds rules to the neurons.
The rule to be added is chosen from a (predefined) list of rules and then dragged
to the neuron.

In Figure 6.3 one can see that we have constructed the first neuron of the sys-
tem.
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168 CHAPTER 6. AN SN P SYSTEMS SIMULATOR

Figure 6.2: User Interface

”Mark Output” marks the output neuron of the system. A user should first
click on this button and then to the neuron it designates as the output neuron.
The color of the neuron will then change from blue to yellow.

The last button of this area is ”Erase” button. As it names says it simply deletes
the screen making it ready to construct another system.

6.2 Simulation Area

When the button ”Step” is pushed for the first time, number 1 (indicating that the
first step is simulated) appears on the same line with the buttons in the Simulation
Area and, in the same time, the rules used in this step are colored in red (the rules
without delay) and in pink (the rules with delay – to mark that the neuron is
closed for one/some step/steps). As for the rules, instead of writing a2 → λ we
wrote a2 → a0.

When the same button is clicked again, the number of the step (here 1) does
not change and the rules perform their task with the neurons interchanging
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Figure 6.3: A neuron

spikes between them. For a better understanding of how these system work we
first mark the rules which are going to be used (first click of the button ”Step”)
and only at the second click of the button the computational step is simulated.

Note that when the output neuron spikes, the word ”SPIKE” written in green
appears on the same level with the buttons and the computational step. At the

Figure 6.4: Message when the output neuron spikes

end of the computation the result is given after the text marked in green: ”The
result is: ”.

If the user is not interested in the evolution of the system but only in the result
a particular system can generate then it can click on the button ”All steps” and the
result is prompted immediately.

Button ”Restart” once clicked returns the simulation in its initial phase, hence
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170 CHAPTER 6. AN SN P SYSTEMS SIMULATOR

Figure 6.5: Message at the end of the computation

Figure 6.6: The SN P system during the first step of the computation

in the initial configuration of the SN P system.
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symport/antiport: (Unexpected) Universality results, Proc. 8th Int. Meeting
on DNA Based Computers (M. Hagiya, A. Obuchi, eds.), Sapporo, Japan, 2002,
151–160, and LNCS 2568, Springer, Berlin, 2003, 281–290.

[40] M. Ionescu, C. Martı́n-Vide, A. Păun, Gh. Păun: Unexpected universality
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[42] M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Computing with spiking
neural P systems: Traces and small universal systems, Proceedings of the 12th
International Meeting on DNA Computing (DNA12) (C. Mao, T. Yokomori, B.-
T. Zhang, eds.), Seul, June 2006, 32–42.
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