
Szilárd Zsolt Fazekas

REPETITIVE SUBWORDS

PhD Dissertation

Supervised by Masami Ito

Department of Romance Studies

· Tarragona, 2010 ·

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Supervisor

Professor Masami Ito
Institute of Computer Sciences

Faculty of Science

Kyoto Sangyo University

603-8555 Kyoto-City

Japan

Tutor

Dr. Gemma Bel Enguix
Research Group on Mathematical Linguistics

Rovira i Virgili University

Avinguda Catalunya, 35

43002 Tarragona
Spain

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Abstract

The central notion of this thesis is repetitions in words. We study problems related
to contiguous repetitions. More specifically we will consider repeating scattered
subwords of non-primitive words, i.e. words which are complete repetitions of other
words. We will present inequalities concerning these occurrences as well as giving
a partial solution to an open problem posed by Salomaa et al. We will characterize
languages, which are closed under the operation of duplication, that is repeating any
factor of a word. We also give new bounds on the number of occurrences of certain
types of repetitions of words. We give a solution to an open problem posed by
Calbrix and Nivat concerning regular languages consisting of non-primitive words.
We also present some results regarding the duplication closure of languages, among
which a new proof to a problem of Bovet and Varricchio.

. . . there was no telling what people might find out once they felt free
to ask whatever questions they wanted to.

Joseph Heller

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Acknowledgments

This thesis is the result of four years of work in the Research Group in Mathematical
Linguistics at the Department of Romance Filology of Rovira i Virgili University.
Many people have contributed, one way or another, to this effort and I would like
to express my gratitude to all of them.
First of all, I am most grateful to Professor Masami Ito for granting me the honour
of doing a PhD under his supervision. His professional guidance as well as his help
during research visits and his friendly attitude towards me meant very much to me.
I had the opportunity to learn a lot from him not only about science but also about
Japanese culture. The time spent in Kyoto visiting him influenced me beyond the
limits of my chosen topic of research.
Special thanks are due to Professor Carlos Mart́ın-Vide for accepting me into the
3rd International PhD School in Formal Languages and Applications and for all the
hard work he has done to provide a wonderful setting for study and research. He
made all this possible by building a group where it was a pleasure to work and by
helping to obtain generous funding for the time of my studies.
It is my pleasure to thank Professor Pál Dömösi for his guidance and advices he
offered me ever since I first started working under his supervision towards my mas-
ter’s thesis. I greatly appreciate the efforts he made to help me anytime I asked.
I would like to thank Professor Sheng Yu and Professor Arto Salomaa for their
support and suggestions during my visit to London, Ontario.
I have learned a lot from Professor Maxime Crochemore and Professor Costas Il-
iopoulos and I would like to thank both for the possibility to work with them.
I would also like to thank Tamás Gaál for giving me the opportunity to take a
peek into industry related research. I very much enjoyed the time spent at Xerox
Research Center Europe and many thanks go to him for it.
I am grateful to Professor Zoltán Ésik and Professor Victor Mitrana for their advice
on scientific matters.
I would like to say thanks to my coauthors with whom it was always exciting
putting the results together and who have a great merit in the realisation of this
thesis. I would like to thank all my friends and colleagues from the Research Group
in Mathematical Linguistics from Rovira i Virgili both for the interesting scientific
discussions and for turning the last few years spent in Tarragona into a fantastic
life experience.
Finally, I would like to thank the programme Formación de Profesorado Universi-
tario run by the Spanish Ministry of Education for the funding they made available
to me during my PhD.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Contents

1 Introduction 3

2 Background 9

2.1 Combinatorics on words . 9

2.2 Formal languages and automata theory 18

3 Bounds on powers 25

3.1 A bound on repeats with exponent e, with 1 < e < 2 27

3.2 A bound on primitively rooted cubes 30

3.3 Conclusion . 38

4 Counting scattered subwords 39

4.1 Parikh matrices and subword histories 40

4.2 Primitivity in the Context of Multisets 42

4.3 Counting scattered subwords . 45

4.4 Subwords of the Thue-Morse word 51

4.5 Inferring primitivity from partial information 54

4.6 Subword inequalities . 56

5 Powers of regular languages 65

5.1 Roots and Powers of Regular Languages 66

5.2 The power of a regular language . 69

5.3 Conclusion . 75

6 Duplication closure of binary languages 77

Bibliography 85

1

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

List of Figures

2.1 Finite automaton accepting (0∗10∗10∗)∗ 21

2.2 Some closure properties of Chomsky language classes. 22

3.1 Structure of word, w . 28

3.2 Repetitions of exponent 1.5 in a9ba17 29

3.3 Cubes of word a4k+3 . 30

3.4 Cubes of word akbakbakbak . 31

3.5 Cubes u3 and v3 beginning at the same position i. 37

6.1 Automaton accepting (a3b2a4c3)♥≤2 79

6.2 Automaton accepting (abc)♥≤3 . 80

2

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 1

Introduction

The concept of repetition plays a major role in natural sciences, in general, and in

mathematics and computer science, in particular. This is due to the fact that in

most of the cases repetition is what makes a structure easier to describe and analyse.

From repeating genes in DNA strands to regularly occurring events in astronomy

and economy, the study of repetitive phenomena is generally the foundation on

which theories are laid out. Repetitions can be of several types. In everyday

language repetition may suggest similarity ranging from identical matches of several

objects observed at little or no distance (be that space or time, etc.) from each

other to approximate reproductions of an event happening possibly with a large

time difference.

In mathematics repetitions can occur in a wide variety of contexts. Binary

idempotencies are an example of this phenomenon and we will study a particular

idempotence relation in Chapter 6. In computer science, perhaps the most evident

and earliest example is the appearance of subroutines. Writing the same piece of

code repeatedly even if in a slightly different form is far from efficient. This was

recognised early on by computer scientists and they came up with reusable program

parts to save storage space and working hours. This takes us to the idea of com-

pactness. Not to waste valuable storage space it is often required to compress the

stored data. This is most often achieved by, roughly speaking, replacing repeatedly

occurring data blocks with some shorter code that identifies this block and thus it

is only required that the duplicated block is stored once.

3

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 1: Introduction 4

A great number of papers and books on Combinatorics on Words start by re-

voking the work of Axel Thue on square free sequences. Thus it turns out that the

theoretical study of repetitions in strings marks the beginning of Combinatorics on

Words. Avoiding repetitions and other patterns became a central topic in combi-

natorics since then.

Theory in this domain has very close links to practical applications. The software

industry boom experienced in the last few years happened to a large extent due

to emerging companies which turned searching and structuring information into a

lucrative business. The algorithms used in text-search and information retrieval

are in many cases direct results of theoretical work in the field of Combinatorics

on Words. A great number of these algorithms used for searching and producing

compact representation of information are based on finding and processing repetitive

substrings.

A basic notion in string combinatorics connected to repetitions is primitivity.

Primitive words are simply words that are not formed by concatenating several

copies of another word. Primitive words have received strong interest both in Com-

binatorics on Words and in Formal Language Theory. The latter field has grown

out of the efforts of Church, Kleene, Post Turing and Chomsky. Although basically

part of Theoretical Computer Science, this field always had tight relations with

linguistics. The “holy grail” of formal language theorists is finding a suitable gen-

erative or accepting device to model natural language grammars. Here, suitable is

subject to interpretation; however, a common ground is probably that context-free

grammars are not quite enough and context-sensitive languages are too complex for

efficient parsing. Hence,a class of languages in between should be found, one that

retains the beneficial properties of both classes, namely it is powerful enough to

describe natural languages but still parsable in deterministic polynomial time. One

of the arguments brought in favour of a class wider than that of the context-free

languages is that in some languages repetitive constructions like ambnambn or ww

may appear and context free grammars are not capable of generating these lan-

guages. We can see that the topic of repetitions is fundamental in formal languages

as well. Besides the questions with obvious practical importance, there have been

a number of purely theoretical problems proposed in relation with primitive words.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

5

A well known example is the question of the language of all primitive words being a

context-free language. Dömösi et al. posed this problem in [13]. Despite the numer-

ous attempts to prove the intuitive negative answer, the problem is still open after

more than 15 years. In connection with this problem, regular and context-free lan-

guages consisting solely of primitive or non-primitive words have been investigated.

We will reflect on this topic in Chapter 5.

Another problem omnipresent in science is the inference of an entire object from

partial information. An instance of this problem in computer science is the inference

of strings from information about its subsequences. The chapter on subwords in [41]

deals in detail with this. What is really interesting here is the case of words having

repeating subsequences or being entirely repetitive themselves, since for words which

are highly non-repetitive, we often require an amount of partial information that is

close to the information content of the entire string.

Finally we mention a field which receives a lot of attention lately and where

repetitions play a central role. Ever since the beginning of the Human Genome

Project the need to process large data sets defined the research directions in Bioin-

formatics. We already mentioned how the algorithms used in this field relate in

many ways to repetitions in strings. There is another aspect, though, which pushes

repetitions into the spotlight. One of the operations by which the genome evolves is

the so called gene repeating duplication. Basically, this means the reoccurrence of a

previously existing nucleotide sequence at another spot on a DNA strand. Analysis

of these gene duplications can lead to results of public interest as in some cases it

holds clues to the function or the origins of specific genes. This gave rise to the

study of duplications in computer science, which we will detail in Chapter 6.

Repetition is such a general notion that we believe that it exceeds the scope of

a PhD thesis to cover all aspects of it even when restricted to computer science.

We will try to give an overview of the topics mentioned above and present results

to some problems from these topics.

Chapter 2 surveys briefly the main concepts and notations needed in the other

chapters. Very basic results on words, languages and automata theory are given.

Chapter 3 considers the bounds for the maximum number of integer and frac-

tional powers occurring in strings. The Θ(n logn) bound for square occurrences in

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 1: Introduction 6

strings of length n is known since [6]. The upper bound for squares implies the

same for higher integer powers and we show how to reach the same lower bound for

these powers. We also give a Θ(n2) bound for both the maximal number of distinct

powers and the maximal number of occurrences of powers with exponent between

1 and 2. The number of distinct squares in a word is conjectured to be at most n

in a word of length n. We cannot settle this question but we prove that this bound

holds for higher powers, in fact it decreases as the exponent grows.

In Chapter 4 we investigate conditions given in terms of scattered subword

multiplicities for words to be non-primitive. First we take a look at the Parikh

image of languages consisting only of primitive words and then we move on to state

a characteristic inequality which is a necessary condition for a word to be non-

primitive. We also analyze an open problem posed by Mateescu et al. [46] concerning

the fundamental question of decidability of scattered subword inequalities. We

provide partial results but the general problem remains open.

In Chapter 5 we discuss some problems related to repetitions occurring in formal

language theory. After briefly surveying the state of research on the open problem

of Dömösi et al. mentioned previously, we go on to solve a decidability question

posed by Calbrix and Nivat [5] regarding the so called power of a regular language.

Previous attempts by Cachat [4] and Horváth et al. [27] resulted in partial solu-

tions. Rather than extending their results, we choose an alternative path and give

a positive answer to the decidability problem.

In Chapter 6 we describe the mathematical model of gene repeating duplication,

introduced for this purpose by Dassow et al. [11], although it was studied before

with different terminology (see copying systems [15]). We present a reproof of a

theorem by Bovet and Varricchio [3] which states that over a binary alphabet, the

duplication closure of any recursively enumerable language is regular. The original

proof that duplication over a binary alphabet is a well quasi order, is done through

demonstrating by contradiction that no anti-chain exists with respect to binary

duplication. Our proof, on the other hand, reduces this order to the scattered

subword order. It is shorter and simpler than the one by Bovet and Varricchio and

perhaps more illustrative of the relation itself.

The material of the thesis comes mostly from papers [7], [19], [20], [16], [17]

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

7

and [18] authored or co-authored by me. However, some new results are introduced

and some of the proofs are improved.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 2

Background

In this chapter we will introduce the notation used throughout the thesis and de-

scribe the context of the results presented later. First we will give a short overview

of basic notions in combinatorics on words. The theorems presented in this sec-

tion are at the very foundation of the field and perhaps it is not exaggerated to

say that they come up in almost all works dealing with combinatorial properties of

words. Among these we can find the theorem of Fine and Wilf, the Defect theorem

and some other so called folklore results that are widely used, but it is not always

possible to trace back their origins to a specific paper. In the second section of

the chapter we give a short presentation of formal language theory. We look at

the Chomsky-hierarchy of languages, the equivalent classes of accepting machines,

as well as several basic results and closure properties that will come handy in our

treatise.

2.1 Combinatorics on words

Let Σ be a set that we shall call an alphabet. Its elements will be called letters.

In this thesis we only deal with words over a finite alphabet, so without further

mentioning we suppose that Σ is finite.

A word over the alphabet Σ is a finite sequence of elements of Σ:

(a1, a2, . . . , an), ai ∈ Σ.

9

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 2: Background 10

We will use non-capital letters from the beginning of the English alphabet to denote

letters and non-capitals from the end to denote words. The set of all words over

alphabet Σ is denoted by Σ∗. It is equipped with a binary operation obtained by

concatenating two sequences.

(a1, a2, . . . , an)(b1, b2, . . . , bm) = (a1, a2, . . . , an, b1, b2, . . . , bm).

We will call this operation concatenation. It is associative, which allows writing a

word as

a1a2 · · · an

instead of

(a1, a2, . . . , an),

by identifying a letter a ∈ Σ with the sequence (a).

The empty sequence, called the empty word, is a neutral element for the opera-

tion of concatenation. It is denoted by λ. For any word w:

λw = wλ = w .

The concatenation of two sets of words A and B is denoted by AB and represents

the set

AB = {uv | u ∈ A ∧ v ∈ B}.

The repeated concatenation of words or sets will be denoted as powers. That is u2

represents uu and AnA we will write as An+1. The Kleene-closure or star closure

of a (possibly empty or singleton) set of words A is

A∗ = {λ} ∪A ∪A2 ∪A3 ∪ ...

A semigroup is a set with an associative binary operation, hence Σ∗ \ {λ} equipped

with concatenation is a semigroup. A monoid is a set M with a binary operation

that is associative and has a neutral element denoted by 1M , that is a semigroup

completed with a neutral element. Hence, what has been defined on the set Σ∗ is a

monoid structure.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

11 2.1 Combinatorics on words

A morphism of a monoid M into a monoid N is a mapping ϕ of M into N that

preserves the operations of M and N and translates the neutral element of M into

that of N :

ϕ(mm′) = ϕ(m)ϕ(m′), m,m′ ∈M,

and such that ϕ(1M) = 1N .

Proposition 1. For any mapping α of Σ into a monoid M , there exists a unique

morphism ϕ of monoids from Σ∗ into M such that the following diagram is com-

mutative:

-

?

Z
Z

Z
Z

Z~

Σ Σ∗

M

i

α ϕ

where i is the natural injection of Σ into Σ∗.

Because of this property, the set Σ∗ of all words over the alphabet Σ is called the

free monoid over the set Σ.

The set of all nonempty words over Σ will be denoted by Σ+:

Σ+ = Σ∗ \ {λ}.

Σ+ is called the free semigroup over Σ. It may be readily verified that Proposi-

tion 1 can be stated for Σ+ instead of Σ∗ by replacing the term “monoids” by

“semigroups”.

Let u = a1a2...an be a word over the alphabet Σ. The length of the word

w = a1a2 · · · an, ai ∈ Σ is the number n of the letters w is a product of. It will be

denoted by |w|:

|w| = n .

The length of the empty word is 0. The length of a word can be computed by the

mapping || : Σ∗ → IN , which is a morphism of the free monoid A∗ onto the additive

monoid IN of positive integers.

For a letter a of the alphabet Σ, we denote by |w|a the number of occurrences

of a in w, e.g. |aab|a = 2.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 2: Background 12

Denoted by alph(w) is the subset of the alphabet formed by the letters actually

occurring in w. Therefore a ∈ Σ belongs to alph(w) iff

|w|a ≥ 1 .

A word v ∈ Σ∗ is said to be a factor of a word x ∈ Σ∗ if there exist words

u,w ∈ Σ∗ such that

x = uvw .

The relation “v is factor of x” is an order on Σ∗. A factor v of x ∈ Σ∗ is said to

be proper if v 6= x.

A word v is said to be a prefix of x ∈ Σ∗ if there exists a word w ∈ Σ∗ such that

x = vw ,

and w is said to be a suffix if v 6= x. The relation “v is a prefix of x” is again an

order on Σ∗; it will be denoted by

v ≤ x .

This order has the fundamental property that if

v ≤ x, v′ ≤ x,

then v and v′ are comparable: v ≤ v′ or v′ ≤ v.

More precisely, if

vw = v′w′,

either there exists s ∈ Σ∗ such that v = v′s (and then sw = w′) or there exists

t ∈ Σ∗ such that v′ = vt (and then w = tw′).

The definition of a suffix is symmetrical to that of a prefix. The reversal of a

word w = a1a2 · · · an, ai ∈ Σ, is the word

wr = an · · · a2a1 .

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

13 2.1 Combinatorics on words

Hence v is a prefix of x iff vr is a right factor of xr . For all u, v ∈ Σ+,

(uv)r = vrur .

This last property means that reversal is a so called anti-morphism. A word w is

palindrome if w = wr.

A word v ∈ Σ∗ is said to be a (scattered) subword of a word x ∈ Σ∗ if

v = a1a2 · · · an, ai ∈ Σ, n ≥ 0,

and there exist y0, y1, . . . , yn ∈ Σ∗ such that

x = y0a1y1a2 · · · anyn .

Therefore v is a subword of x if it is a sub-sequence of x. The term subword in

the literature is often used also with the same meaning as factor, and what we call

here subwords are referred to as scattered subwords. However, as we are mostly

concerned with subsequences, we will use the shorter subword for them and keep

factor to refer to continuous subsequences. In accordance with |w|a meaning the

number of occurrences of the letter a in the word w we extend the notation to

subwords, i.e. by |w|u the number of times u occurs as a subword of w with any

two occurrences differing by at least one position. Looking at our previous example

the word ab occurs twice in aab because we can choose to match the first letter

of ab with any of the two a’s in aab, therefore |aab|ab = 2. In [41] the notation

used is
(
aab

ab

)
, taken from the binomial coefficients. Indeed, over a unary alphabet,

|an|ak =
(
n

k

)
. From here we acquire the convention that the empty word occurs once

in any word, that is |w|λ = 1 (|λ| = 0 and
(
n

0

)
= 1). The prefix, suffix and scattered

subword orders mentioned above are all partial orders, i.e. it is possible for two

words to be incomparable with respect to them. Natural extensions of the prefix

order to total orderings are the lexicographic and the alphabetic orders. Suppose

our alphabet Σ is totally ordered by some relation ≺. The lexicographic order is

defined as follows: u ≺l v if

• u is a prefix of v or

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 2: Background 14

• there exist words x, y, z ∈ Σ∗ and letters a ≺ b such that u = xay and v = xbz.

The alphabetic order ≺a, as opposed to the lexicographic one, takes into account

the length of the two sides: u ≺a v if

• |u| < |v| or

• |u| = |v| and there exist words x, y, z ∈ Σ∗ and letters a ≺ b such that u = xay

and v = xbz.

Note that for words of the same length the two orders coincide. Now let us turn to

another fundamental property of words that is very relevant to us, periodicity. We

will introduce the notions of conjugacy, primitive words and a few famous results

concerning these.

A word x ∈ Σ∗ is said to be primitive if it is not a power of another word; that

is, if x 6= λ and x ∈ z∗ for z ∈ Σ∗ implies x = z.

Two words x and y are said to be conjugate if there exist words u, v ∈ Σ∗ such

that

x = uv, y = vu. (2.1)

This is an equivalence relation on Σ∗ since x is conjugate to y iff y can be obtained

by a cyclic permutation of the letters of x. A primitive word w is a Lyndon word

if it is minimal with respect to the lexicographic order among its conjugate words,

that is

u = a1a2 . . . an is a Lyndon word⇔ ∀i, 1 < i ≤ n, u ≺l ai . . . ana1 . . . ai−1.

Proposition 2. If

xn = ym, x, y ∈ Σ∗, n,m ≥ 0,

there exists a word z such that x, y ∈ z∗.

In particular, for each word w ∈ Σ+, there exists a unique primitive word x such

that w ∈ x∗.

The primitive word x in our previous proposition is called the primitive root of

w and we denote it by
√
w. We can extend the meaning of this term to languages,

i.e. arbitrary sets of words for now. For a set A of words,
√
A is the collection of

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

15 2.1 Combinatorics on words

all the roots of the words in A, formally

√
A = {√w | w ∈ A} .

We will call
√
A the primitive root of the language A.

Proposition 3. Two words x, y ∈ Σ+ commute (xy = yx) iff they are powers of

the same word. More precisely the set of words commuting with a word x ∈ Σ+ is

a monoid generated by a single primitive word.

Proposition 4. Let x, y ∈ Σ∗ and z, t be the primitive words such that x ∈ z∗,

y ∈ t∗. Then x and y are conjugate iff z and t are also conjugate; in this case, there

exists a unique pair (u, v) ∈ Σ∗ × Σ+ such that z = uv, t = vu.

Proposition 5. Two words x, y ∈ Σ+ are conjugate iff there exists a z ∈ Σ∗ such

that

xz = zy. (2.2)

More precisely, equality (2.2) holds iff there exist u, v ∈ Σ∗ such that

x = uv, y = vu, z ∈ u(vu)∗. (2.3)

Before we arrive to discuss periods, let us say a few words about the defect

theorem, which is a very important result on words. It is often considered to be

a folklore result due to the fact that there are many papers and results describing

the same phenomenon. Without presenting the rather various formalizations of this

theorem, we will give the following intuitive description: if a set of n words satisfies

a non-trivial relation, then these words can be expressed simultaneously as products

of at most n− 1 words.

It may be observed that, in accordance with the defect theorem, the equality

xz = zy implies x, y, z ∈ {u, v}∗, a submonoid with two generators.

At this point we have to define periodicity. If a word w is a prefix of some

uk, with u primitive, |u| < |w| and k > 1 then we say that w is periodic and |u|

is its period. We can relax the requirements of u being primitive and say that if

w(i) = w(i + p) for some p ≥ 1 and for all 1 ≤ i ≤ |w| − p then p is a period

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 2: Background 16

of w. Unless stated otherwise we will use period meaning the latter. Sometimes

in the literature it is required that the length of w is a multiple of the length of

u, however we will allow for so called fractional powers. We have seen earlier that

uu is called a square, uk a k-th power of u, etc. In accordance with this we say

that a word w = (uv)ku for some non-empty words u and v is a power of exponent

k + |u|
|u|+|v| . Generalizing the propositions above we can get periodicity enforcing

conditions. These are very much sought after in the field and several of them are

known. Let us see some of the most common properties ensuring periodicity:

• any non-trivial relation on {x, y} ⊆ Σ∗;

• any pair of non-trivial identities on X = {x, y, z} ⊆ Σ+ of the form xα = yβ,

yγ = zδ with α, β, γ, δ ∈ X∗;

• any condition on X = {x1, x2, . . . , xn} ⊆ Σ+ if the transitive closure relation

ρ defined as

xρy ↔ xXω ∩ yXω = ∅

equals X ×X . Here ω is the infinite power operator.

Another classical result enforcing periodicity is the Lyndon-Schützenberger the-

orem:

Proposition 6. If the equation

umvn = wk

for some non-empty words u, v, w and exponents m,n, k ≥ 2 then all three words u,

v and w are powers of the same word.

Next we are going to present a refinement of Proposition 2 known as the theorem

of Fine and Wilf. Intuitively it tells us how far two periodic events (strings) have

to match in order to guarantee a common period, that is to guarantee that the two

sequences are ultimately the same.

Proposition 7. Let x, y ∈ Σ∗, n = |x|, m = |y|, d = gcd(n,m). If two powers xp

and yq of x and y have a common left factor of length at least equal to n+m− d,

then x and y are powers of the same word.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

17 2.1 Combinatorics on words

Example 1. Consider the sequence of words on Σ = {a, b} defined as follows:

f1 = b, f2 = a and

fn+1 = fnfn−1 , n ≥ 2.

The sequence of the lengths | fn | is the Fibonacci sequence. Two consecutive

elements |fn| and |fn+1| for n ≥ 3 are relatively prime. Let gn be the left factor of

fn of length |fn−2| for n ≥ 3. Then

gn+1 = f2
n−1gn−2

for n ≥ 5, as it may be verified by induction. We then have simultaneously

fn+1 ≤ f2
n, gn+1 ≤ f3

n−1 .

Therefore, for each n ≥ 5, f2
n and f3

n−1 have a common left factor of length

|fn|+ |fn−1| − 2. This shows that the bound given by Proposition 7 is optimal. For

instance,

g7 =

f6
︷ ︸︸ ︷

a b a a b
︸ ︷︷ ︸

f5

a b a a b
︸ ︷︷ ︸

f5

a

The periodicity theorem of Fine and Wilf can be restated in various forms,

among them as follows, which are sometimes more comfortable to use.

Corollary 1. If a word w ∈ Σ+ has periods p and q, and |w| ≥ p + q − gcd(p, q)

then it also has a period gcd(p, q).

As we have seen in Example 1, the bound is optimal in general. In fact it is

possible to find many more examples certifying the bound.

Proposition 8. For each pair (p, q) of coprimes there exists a unique binary word

(up to a renaming) w of length p + q − 2 such that both p and q are periods of w.

More generally for coprimes p > q and some k with 2 ≤ k ≤ q, there exists a unique

word wk (up to a renaming) such that

• |wk| = p+ q − k,

• |alph(w)| = k and

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 2: Background 18

• both p and q are periods of wk.

With this we conclude the introductory section on combinatorics on words.

There will be several other notions and results of the topic used later, but as they

are not of general nature to the whole thesis, they will be presented in due course

at the beginning of the respective chapters.

2.2 Formal languages and automata theory

Since the 1950’s, the subject of formal language theory, hand in hand with automata

theory, has been developed by computer scientists, linguists and mathematicians.

Formal languages (or simply languages) are sets of words over finite sets of symbols,

called alphabets. There are many ways to describe such languages starting from

set theoretical presentations which specify certain properties that hold for some

words and including regular expressions (which “generate” languages), finite au-

tomata (which “accept” languages), grammars (which “generate” languages) and

Turing machines (which “accept” languages). Many natural examples of formally

presentable languages can be found even outside computer science. However, the

interest in the theory was mainly brought about by the need of a formal tool to

tackle some problems occurring early in computing. Examples of languages among

the ones first studied are the set of identifiers of a given programming language,

which can be described by a regular expression or a finite automaton, and the set

of all strings of tokens that are generated by the grammar of a programming lan-

guage. There are many categorizations of languages based on the device generating

(accepting) them, based on the time or space complexity of their membership prob-

lem, the number of words in the language at given lengths or even based on some

properties of their morphic images. In this section we will present the grammar cat-

egories known as the Chomsky-hierarchy and the abstract machines accepting the

languages generated by these grammars. A particular emphasis is laid on regular

languages, an exciting language class, where several different ways of describing a

language come to common ground.

A grammar is a construct G = 〈N,Σ, S,H〉, where N,Σ are the non-terminal

and terminal alphabets, with N ∩ Σ = ∅; they are finite sets. S ∈ N is a special

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

19 2.2 Formal languages and automata theory

symbol, called the start symbol. H is a finite set of pairs, where a pair is written in

the form v → w with v ∈ {N ∪Σ}∗N{N ∪ Σ}∗ and w ∈ {N ∪ Σ}∗. H is the set of

derivation rules. A sequence of letters v ∈ {N ∪Σ}∗ is called a sentential form. As

in the previous section, we refer to elements of Σ∗ as words and we use λ to denote

the empty word.

Let G be a grammar and v, w ∈ {N ∪Σ}∗. Then v ⇒ w is a direct derivation if

and only if there exist v1, v2, v
′, w′ ∈ {N ∪ Σ}∗ such that v = v1v

′v2, w = v1w
′v2

and v′ → w′ ∈ H . A derivation v ⇒∗ u holds if and only if either v = u or there is

a finite sequence of sequential forms which connects them, i.e. v = v0, v1, ...vm = u

in which vi ⇒ vi+1 is a direct derivation for each 0 ≤ i < m.

The language generated by a grammar G is the set of (terminal) words that can

be derived from the start symbol: L(G) = {w|S ⇒∗ w ∧w ∈ Σ∗}.

The Chomsky hierarchy of languages is based on the following classification

of generative grammars. • type 1, or context-sensitive grammars: all derivation

rules are in the form v1Av2 → v1wv2, with v1, v2 ∈ {N ∪ Σ}∗, A ∈ N and w ∈

(N ∪Σ)∗ \ {λ} (except possibly for the rule S → λ, in which case S does not occur

on any right hand side of a rule).

• type 2, or context-free grammars: for every rule the next scheme holds: A → v

with A ∈ N and v ∈ {N ∪ Σ}∗.

• type 3, or right-linear grammars: each derivation rule is one of the following forms:

A→ w, A→ wB; where A,B ∈ N and w ∈ Σ∗.

As languages are simply set of words, the usual set operations are valid for lan-

guages as well. That is for languages L1, L2 ⊆ Σ∗, their union L1 ∪L2, intersection

L1 ∩ L2, concatenation L1L2 and difference L1 \ L2 are languages too defined the

same way it goes for arbitrary sets. If we start out with the simplest building blocks

and apply some of these operations and the Kleene-closure defined in the previous

section we get so called regular expressions. For a regular expression e we denote

by L(e) the language described by e. Let us see the inductive definition for regular

expressions and the languages generated by them.

• ∅ is a regular expression and L(∅) = ∅;

• λ is a regular expression and L(λ) = {λ};

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 2: Background 20

• for all a ∈ Σ, a is a regular expression and L(a) = {a};

• for arbitrary regular expressions e1 and e2:

(e1)
∗,

(e1e2) and

(e1∪e2) are all regular expressions with the languages generated by them

being L(e1)
∗, L(e1)L(e2) and L(e1) ∪ L(e2), respectively.

We call a language L regular if there exists a regular expression e such that

L = L(e). Now we will define finite automata, a class of abstract machines that

happen to accept the languages generated by regular expression or by right linear

grammars.

A finite automaton is a quintuple A = 〈Σ, Q, q0, F, σ}〉 with the following com-

ponents

• Σ is the input alphabet,

• Q is a finite set called the set of states,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final states and

• σ : Q× Σ→ 2Q is the transition function.

The language accepted by the finite automaton A is

L(A) = {w = a1a2 . . . an | ∃q1, q2, . . . , qn−1 ∈ Q, qn ∈ F s.t.∀1 ≤ i ≤ n : qi ∈ σ(qi−1, ai)}.

Intuitively, a finite automaton can be thought of as a directed graph where the

vertices are labeled with the states and the edges are labeled with the transitions.

An word is accepted by the automaton if there is a path from the vertex labeled

with the initial state to a vertex labeled with a final state composed of edges labeled

with the letters of the word following each other in the correct order.

Example 2. Take the automaton A = 〈{0, 1}, {q0, q1}, q0, {q0}, σ〉, where the tran-

sition function σ is given by the transition table in Figure 2.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

21 2.2 Formal languages and automata theory

σ 0 1
q0 q0 q1
q1 q1 q0

q0 q1
1

1

0 0

Figure 2.1: Finite automaton accepting (0∗10∗10∗)∗

The language accepted by automaton A is

L(A) = {w ∈ Σ∗ |∃k ≥ 0 : |w|1 = 2k},

that is all binary words having an even number of 1’s. For any occurrence of a 1,

the automaton switches states, whereas upon reading a 0 it stays in the same state.

If it switched an even number of times by the time of reaching the end of the input

word, it accepts, otherwise rejects.

The definition we gave for finite automata is in fact the definition for the general

case of non-deterministic automata. Non-determinism in automata has to do with

the possibility to transition from a state to more than one others by reading the

same input letter. Therefore if we modify our transition function σ to map from

Q×Σ to Q instead of 2Q we get the definition of deterministic finite automata. As

it turns out, the class of languages accepted by non-deterministic and deterministic

automata are the same. This is a fact widely applied in automata theoretic proofs.

Our example automaton is actually a deterministic one. According to the famous

theorem by Kleene, in the free semigroup Σ∗ the language classes accepted by finite

automata, described by regular (rational) expressions and generated by right-linear

grammars are the same. This is a very important theorem of language theory and

provides the foundations for most results concerning regular languages, since proofs

are generally significantly easier or even only doable by reasoning with automata

rather than regular expressions or grammars. Given two finite automata A1 and A2

there are algorithms available to construct the automata accepting the languages

L(A1)∩L(A2), L(A1) = Σ∗\L(A1) and therefore L(A1)\L(A2). Moreover, we have

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 2: Background 22

REG CF CS
L∗

1 • • •
L1 • •

L1 ∪ L2 • • •
L1 ∩ L2 • •

Figure 2.2: Some closure properties of Chomsky language classes.

algorithms for determinising and minimising automata, which makes it possible to

decide the equality of the accepted languages. From Kleene’s theorem we have

the same properties for languages described by regular expressions. The closure

properties of the Chomsky language classes are summarised in the table in Figure

2.2.

As it is not really relevant to our thesis, we only mention here that the class of

context-free languages is the same as the class accepted by push-down automata,

whereas the context-sensitive class is accepted by linear-bounded Turing machines.

Finally, let us explain the notion of Parikh sets and semi-linearity.

Definition 1. For a word w the Parikh vector ψ(w) associated to a w is an n-tuple,

where n is the cardinality of the alphabet Σ = {a1, . . . , an}, defined in the following

way:

ψ(w) = (wa1 , . . . , wan
).

This can be extended to languages, taking the set of all Parikh-vectors associated

to the words of the language. This set is usually called the Parikh image (Parikh

set) of the language.

A language L is linear in the Parikh sense if the Parikh-set of the language is

the linear combination of some vectors Vi.

ψ(L) =

{

V0 +
∑

i

ciVi

}

.

A language L is semi-linear (in the Parikh-sense) if the Parikh-set of the lan-

guage is a finite union of some linear sets.

PL =
⋃

k

{

V0,k +
∑

i

ci,kVi,k

}

Parikh’s theorem tells us that the Parikh image of any context-free language is a

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

23 2.2 Formal languages and automata theory

semi-linear set. This can be used to prove that a given language is not context-free.

Other tools for placing languages correctly in the Chomsky hierarchy are the so

called pumping lemmas. There are several of them known in the literature, but

here we will only show the two most widely used, the pumping lemma for regular

languages and the Bar-Hillel lemma for context-free languages.

Lemma 1. (Pumping lemma for regular languages) For every regular language L

there exist constants p and q depending only on the language such that every w ∈ L

with |w| > p can be written in the form w = uvz for some words u, v, z ∈ Σ∗, with

|uv| ≤ q, v 6= λ, and uviz ∈ L for all i ≥ 0.

Lemma 2. (Bar-Hillel lemma) If L is a context-free language then there exist

p, q ∈ IN such that every w ∈ L with |w| > p can be written in the form w = uvxyz,

with u, v, x, y, z ∈ Σ∗, |vxy| < q, |vy| > 0 and uvixyiz ∈ L for all i ≥ 0.

With this we conclude the introductory chapter. For a more detailed introduc-

tion to the theory of formal languages one might consult the first chapters of [51].

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 3

Bounds on powers

The subject of this section is the evaluation of the number of powers in strings.

This is one of the most fundamental topics in combinatorics on words not only for

its own combinatorial aspects considered since the beginning of last century by the

precursor A. Thue [59], but also because it is related to lossless text compression,

string representation, and analysis of molecular biological sequences, to quote a few

applications. These applications often require fast algorithms to locate repetitions

because either the amount of data to be treated is huge or their flow is to be

analysed on the fly, but their design and complexity analysis depends of the type

of repetitions considered and of their bounds.

As defined in Chapter 2 a repetition is a string composed of the concatenation

of several copies of another string whose length is called a period. The exponent of

a string is informally the number of copies and is defined as the ratio between the

length of the string and its smallest period. This means that the repeated string,

called the root, is primitive (it is not itself a nontrivial integer power). Here we

consider two types of strings: integer powers—those having an integer exponent at

least 2, and fractional powers—those having a fractional exponent between 1 and

2. For both of them we consider their maximal number in a given string as well as

their maximal number of occurrences.

It is known that all occurrences of integer powers in a string of length n can

be computed in time O(n log n) (see three different methods in [6], [1], and [43]).

Indeed these algorithms are optimal because the number of occurrences of squares

25

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 3: Bounds on powers 26

(powers of exponent 2) can be of the order of n logn [6].

The computation of occurrences of fractional powers with exponent at least 2 has

been designed initially by Main [42] who restricted the question to the detection of

their leftmost maximal occurrences only. Eventually the notion of runs—maximal

occurrences of fractional powers with exponent at least 2—introduced by Iliopoulos

et al. [30] for Fibonacci words led to a linear-time algorithm for locating all of them

on a fixed-sized alphabet. The algorithm, by Kolpakov and Kucherov [33, 34], is

an extension of Main’s algorithm but their fundamental contribution is the linear

number of runs in a string. They proved that the number of runs in a string of length

n is at most cn, could not provide any value for the constant c, but conjectured

that c = 1. After that, in a series of papers dealing with runs, this bound received

a lot of attention and has been improved as follows:

• Rytter [52] proved that c ≤ 5,

• then c ≤ 3.44 in [53],

• Puglisi et al. [50] that c ≤ 3.48,

• Crochemore and Ilie [8] that c ≤ 1.6,

• and Giraud [23] that c ≤ 1.5.

The best value computed so far is c = 1.048 [9] (for further details see the Web page

http://www.csd.uwo.ca/ ilie/runs.html). Franek et al. showed a lower bound

of 0.927...n in [22], which was improved by Matsubara et al. in [37] to 0.944565n.

These lower bounds also point in the direction of Kolpakov and Kucerov’s conjec-

ture. Runs capture all the repetitions in a string but without discriminating among

them according to their exponent. For example, the number of runs is not easily

related to the number of occurrences of squares. This is why we consider an orthog-

onal approach here. We count and bound the maximal number of repetitions having

a fixed exponent, either an integer larger than 1 or a fractional number between 1

and 2. We also bound the number of occurrences of these repetitions.

After introducing the notations and basic definitions which we did not meet yet

Section 3.1 deals with fractional powers with exponent between 1 and 2. It is shown

that the maximum number of primitively-rooted powers with a given exponent e,

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

27 3.1 A bound on repeats with exponent e, with 1 < e < 2

1 < e < 2, in a string can be quadratic as well of course as their maximum number

of occurrences. In Section 3.2, we consider primitively-rooted integer powers and

show that the maximum number of occurrences of powers of a given exponent

k, k ≥ 2, is Θ(n logn). This latter result contrasts with the linear number of

such powers. We also present an efficient algorithm for constructing the strings

in question. Finally, we show that distinct repetitions of a fixed exponent greater

than 2 have an upper bound of n in a string of length n. This is an improvement

of the implied value coming from the bound for distinct squares established in 2n

by Fraenkel and Simpson in [21] and improved by Ilie to 2n−O(log n) in [29].

Recall that a k-th power is the concatenation of k copies of a non-empty word,

and extending this definition we can talk about e-powers with 1 < e < 2 as seen in

the introductory chapter. A prefix of the length of a period of w is a root of w.

When w 6= ǫ, w3 is called a cube, with root w. Take a primitive word uv, such

that vu forms a Lyndon word and v is nonempty. In the cube (uv)3, we call central

Lyndon position the one at |uvu|, uvu.vuv. For two non-empty words u and v it is

known that uv = vu implies u, v ∈ z+ for some z ∈ A∗, therefore every word has a

unique Lyndon position.

If a word w can be written as w = uv = vz, for some words u, v, z ∈ A+, then

we say that w is bordered (v is a border of w). If a word w is bordered, then there

exists u ∈ A+, v ∈ A∗ such that w = uvu, that is a bordered word w always has

a border of length at most half the length of w. Moreover, it is easy to see that a

bordered word uvu cannot be a Lyndon word, because then either uuv (if u < v)

or vuu (if v < u) is lexicographically smaller than uvu.

3.1 A bound on repeats with exponent e, with 1 <

e < 2

In this section, we show that the number of distinct repetitions with exponent e,

with 1 < e < 2 is bound by Θ(n2). We do this by looking at the number of such

repetitions that can start at a position in words of the form akba
k

e−1−1, where k is

any positive integer such that c|k, where e = c+d
d

and gcd(c+ d, d) = 1.

First we consider an example with e = 3
2 and k = 9, ie. w = a9ba17 (see Fig 3.2).

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 3: Bounds on powers 28

a ... aba ... a

k
k

e−1 − 1

Figure 3.1: Structure of word, w

At the first position in this word, we can have 5 repetitions of exponent 3
2 , namely

a9ba5, a9ba8, a9ba11, a9ba14 and a9ba17. Moving on to the second position, we will

have only 4 repetitions of exponent 3
2 , namely a8ba6, a8ba9, a8ba12 and a8ba15. In

the third position also, we are able to have the repetitions a7ba7, a7ba10 and a7ba13.

However, now we will have one extra repetition as we can also have a7ba4. It is

clear that at every other position in the word, as we get closer to the b, we will have

an extra repetition. The number of repetitions of exponent 3
2 at each position are

now 5, 4, 4, 3, 3, 2, 2, 1, 1 (see Fig. 3.2). The total number of repetitions can now be

summed up to ((5 ∗ 6)/2) + (((5− 1) ∗ 5)/2) = 25. We will generalise this example

in the next theorem.

Theorem 1. The maximal number of distinct repetitions of exponent e, with 1 <

e < 2, in a word of length n is Θ(n2).

Proof. The upper bound is trivial because no factor of the string can be counted

twice as an e-th power for given e, so let us turn to proving the lower bound.

We shall count the number of repetitions starting at each position in a word. For

an exponent, e, with 1 < e < 2, we consider a word, w, formed as shown in Fig.

3.1. Here, we concatenate a repetition of exponent, e, with root akb and a
k

e−1−1,

where k is any positive integer such that c|k, where e = c+d
d

and gcd(c+ d, d) = 1.

In this case the length of our string will be k · e
e−1 .

For e-powers starting at the first position, the end positions can be (k+1)(e−1),

(k + 1)(e− 1) + (c+ d), (k + 1)(e− 1) + 2 · (c+ d),...

From here we get that the number of e-th powers starting at the first position is

|w| − (k + 1)(e− 1)

c+ d
+ 1 =

k · e
e−1 − (k + 1)(e− 1)

c+ d
+ 1

Substituting c+d
d

for e in the formula above we get that the number of e-th powers

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

29 3.1 A bound on repeats with exponent e, with 1 < e < 2

a a a a a a a a a b a a a a a a a a a a a a a a a a a

Figure 3.2: Repetitions of exponent 1.5 in a9ba17

starting at the first position is:

k · d− c
d · c −

1

d
+ 1

This formula proves useful because by substituting k−i for k and taking the integer

part of the result (since we are talking about the number of occurrences) we get the

number of e-th powers starting at position i+ 1. Now let us sum up the number of

e-th power occurrences starting at any one of the first k positions:

k∑

i=1

⌊i · d− c
d · c −

1

d
+ 1⌋

For any positive n its integer part ⌊n⌋ is greater or equal than n − 1. As we are

trying to give a lower bound to the number of occurrences, it is alright to subtract

1 from the formula instead of taking its integer part:

k∑

i=1

(

i · d− c
d · c −

1

d

)

= k · (k + 1) · d− c
2d · c −

k

d

This means that the number of e-th powers in our string is quadratic in k. At the

same time the length of the string, as we mentioned in the beginning, is k · e
e−1 , so

for a given e, the number of e-th powers in a string of length n is Θ(n2).

It is easy to see that every occurrence of an e-th power in this string is unique and

this concludes the proof.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 3: Bounds on powers 30

1 k+1 2k+2 3k+3 4k+3

a a a a a a a a a a a a a a a a a

...

...

} 4k + 1
cubes

Figure 3.3: Cubes of word a4k+3

3.2 A bound on primitively rooted cubes

After considering powers between 1 and 2, we shall take a look at powers greater

than 2. First, we will show that it is possible to construct strings of length n, which

have Ω(n logn) occurrences of cubes. We can extend the procedure to all integer

powers greater than 2, and this, together with the O(n log n) upper bound implied

by the number of squares (see [6]) leads us to the Θ(n logn) bound. Finally, we will

prove that the sum of all occurrences of powers at least 2 (including non-integer

exponents) is quadratic.

Lemma 3. The maximal number of primitively rooted cubes in a word of length n

is Ω(n logn).

Proof. Let us suppose there are two primitively rooted cubes (uv)3 and (xy)3 in w

such that their central Lyndon positions uvu.vuv and xyx.yxy are the same. First

let us look at the case where the cubes have to be of different length. Without loss

of generality we can assume |uv| < |xy|. In this case vu is at the same time a prefix

and suffix of yx. Hence, yx is bordered and cannot be a Lyndon word contradicting

the assumption that x.y is a Lyndon position. This proves that should there be

more cubes which have their central Lyndon position identical, they all have to be

of the same length. Naturally, the first and last position of a word cannot be central

Lyndon to any cube and this gives us the bound n− 2 if we disregard cubes of the

same length which have their central Lyndon positions at the same place (see Fig.

3.3). It is easy to see, that because of the periodicity theorem the only string of

length n, for which n− 2 different positions are central Lyndon ones to some cube,

is an.

Now take the word a4k+3. According to our previous argument it has at most

4k+1 cubes. However, if we change a’s into b’s at positions k+1,2k+2 and 3k+3 we

get that the number of primitively rooted cubes in this word is 4k+1−9+(k+1) =

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

31 3.2 A bound on primitively rooted cubes

5k − 7. This is because by introducing each b we lose three cubes but in the end

we gain another k + 1 cubes of the form (ajbak−j)3 with 0 ≤ j ≤ k (see Fig. 3.4).

Note that these latter cubes all have their central Lyndon position after the first b

(assuming a < b).

We introduced three b’s in the previous step but of course we can repeat the

procedure for the four block of a’s delimited by these b’s and then in turn for the

new, smaller blocks of a’s that result and so on. In the second step, however,

we need to introduce 12 b’s - that is, 3 for each of the 4 blocks of a’s - not to

disrupt the cubes of length 3k + 3. This way we lose 12 · 3 = 36 cubes and we gain

(⌊(k − 3)/4⌋+ 1) · 4 new ones. Performing the introduction of b’s until the number

of cubes we lose in a step becomes greater or equal to the ones we gain, gives us

a string with the maximal possible number of cubes for its length. If k equals 4j,

1 k+1 2k+2 3k+3 4k+3

a a a a a a b a a a a b a a a a b a a a a a a...

... }
}

added
k + 1
cubes

removed
3 ∗ 3
cubes

Figure 3.4: Cubes of word akbakbakbak

4j + 1 or 4j + 2 for some j then according to the formula above the number of

cubes we gain is 4j. Note that if k = 4j + 3 than the number of cubes we gain

in the second step is 4j + 4 = k + 1, i.e. the same as in the first step. However,

together with the delimiting b’s introduced before we would get a big cube which

is not primitively rooted anymore, so we need to move the newly introduced b’s 1,

2 and 3 positions to the left, respectively. This gives us that in this case too the

number of newly formed cubes will be 4j. The smallest length at which introducing

the b’s does not induce less cubes is 35 that is with k = 8. Summarizing the points

above we get that for a string of length n the maximum increase in the number of

cubes for the ith (i > 1) consecutive application of our procedure is:

(n− 3)

4
− 9 · 4i−1

To be able to sum these increases we have to know the number of steps performed.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 3: Bounds on powers 32

This is given by solving for i the equation:

n− 3

4
= 9 · 4i−1

From here we get that the number of steps performed is #steps = ⌊log4
n−3

9 ⌋, where

by ⌊x⌋ we mean the integer part of x.

Hence the number of cubes for length n ≥ 39 is:

n− 2 + 1 +

#steps
∑

i=1

(
n− 3

4
− 9 · 4i−1

)

= n− 1 +
(n− 3)⌊log4

(n−3)
9 ⌋

4
− 9(1− 4⌊log4

n−3
9 ⌋)

−3

= n+ 2 +
(n− 3)⌊log4

(n−3)
9 ⌋

4
− 3 · 4⌊log4

n−3
9 ⌋

The plus one after n − 2 comes from the first application of the insertion of b’s

where we get (n− 3)/4 + 1 cubes instead of (n− 3)/4. For strings shorter than 39

therefore the count is one less.

Since the first paragraph of the proof is valid for any integer power, we can

extend the proof by giving the construction of the strings that prove the lower

bound in general for a string of length n and power k (see Fig. 3.2).

Algorithm ConstructStrings1 (n, k)
Input: n ≥ 0, k ≥ 0
Output: A string which proves the lower bound of the number of occurrences of

integer powers.
1. ℓ = n
2. string = aℓ

3. power(1, ℓ)
4. Procedure: power(start, end)
5. ℓ = end - start
6. if ℓ < k3 + k2 + k
7. then return
8. else string[start + ⌊ℓ/(k + 1)⌋] = b
9. string[start + 2 · ⌊ℓ/(k + 1)⌋] = b
10. . . .
11. string[start + k · ⌊ell/(k+ 1)⌋] = b
12. for i ←0 to k
13. power(start + i · ℓ/(k + 1), start + (i+ 1) · ℓ/(k + 1))

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

33 3.2 A bound on primitively rooted cubes

Algorithm ConstructStrings2 (n, k)
Input: n ≥ 0, k ≥ 0
Output: A string which proves the lower bound of the number of occurrences of

integer powers.
1. ℓ = n
2. while ℓ ≥ k3 + k2 + 3k + 2
3. do ℓ= ℓ−k

k+1

4. string = (ak2+1 + b)k + a(k+1)·ℓ−k3−k

5. delimiter = b
6. while length(string) ∗ (k + 1) + k < n
7. do string = (string + delimiter)k + string
8. if delimiter = b
9. then delimiter = a
10. else delimiter = b
11. (∗ changing the delimiter is needed to stay primitive ∗)
12. string = string + an−length(string)

The algorithm above produces strings which have O(n logn) occurrences of k-th

powers. Note, that if we perform the procedure the other way around, we only need

O(log n) cycles and we can eliminate the recursion:

Theorem 2. Algorithm ConstructStrings2 (see Fig. 3.2) produces a string of

length n that has Ω(n logn) occurrences of primitively rooted cubes.

Proof. Before entering the second while loop, the length of string and the number

of k-th power occurrences in it are both c = (k + 1) · ℓ + k. Now we will show by

induction on i that after the i-th iteration of the second while loop the length of

string will be (k + 1)i · (c + 1) − 1 and the number of occurrences of k-th powers

will be (k + 1)i · c+ i · (k + 1)i−1(c+ 1).

Note that if the length of string was m and the number of k-th power occurrences

was p after the previous cycle, then concatenating k + 1 copies of string delimited

by k copies of delimiter we get (k+ 1) · p+m+ 1 powers in the new string, which

will have length (k+ 1) ·m+ k. Therefore, after the first cycle the length of string

will be

(k + 1) · c+ k = (k + 1) · c+ (k + 1)− 1 = (k + 1)1 · (c+ 1)− 1

At the same time the number of k-th powers will be

(k + 1) · c+ c+ 1 = (k + 1)1 · c+ 1 · (k + 1)0 · (c+ 1)

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 3: Bounds on powers 34

so our statement holds for i = 1. Now suppose it is true for some i ≥ 1. From here

we get that for i+ 1 the length of string will be:

(k + 1) · ((k + 1)i · (c+ 1)− 1) + k = (k + 1)i+1 · (c+ 1)− 1

whereas the number of k-th powers is:

(k + 1) · ((k + 1)i · c+ i · (k + 1)i−1 · (c+ 1)) + ((k + 1)i · (c+ 1)− 1) + 1

= (k + 1)i+1 · c+ i · (k + 1)i · (c+ 1) + (k + 1)i · (c+ 1)

= (k + 1)i+1 · c+ (i+ 1) · (k + 1)i(c+ 1)

Now let us look at the running time of the algorithm. In the first while loop we di-

vide the actual length by k+1 and we do it until it becomes smaller than k3+k2+k

therefore we perform O(log n) cycles. The second while loop has the same number

of cycles, with one string concatenation performed in each cycle, hence substituting

logn for i in the formula above concludes the proof.

Corollary 2. In a string of length n the maximal number of primitively rooted k-th

powers, for a given integer k ≥ 2, is Θ(n logn).

Proof. We know from [10] that the maximal number of occurrences of primitively

rooted squares in a word of length n is O(n logn). This implies that the number

of primitively rooted greater integer powers also have an O(n log n) upper bound,

while in Theorem 2 we showed the lower bound Ω(n logn).

Remark 1. The first part of the proof is directly applicable to runs so we have that

in a string of length n the number of runs of length at least 3p− 1, where p is the

(smallest) period of the run is at most n − 2. Unfortunately we cannot apply the

proof directly for runs shorter than that because we need the same string on both

sides of the central Lyndon position.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

35 3.2 A bound on primitively rooted cubes

We have seen that the number of occurrences of k-th powers for a given k(≥ 2)

in a string of length n is Θ(n logn), but what happens if we sum up the occurrences

of k-th powers for all k ≥ 2?

Remark 2. The upper bound of the sum of all occurrences of k-th powers with

primitive root, where k ≥ 2, in a word w with |w| = n is n·(n−1)
2 . Moreover, the

bound is sharp.

Proof. First consider the word an, for some n > 0. Clearly, taking any substring

ak, with 2 ≤ k ≤ n, we get a k-th power, so the number of powers greater or equal

to two is given by the number of contiguous substrings of length at least two, that

is n·(n−1)
2 . Now we will show that this is the upper bound. Let us suppose that

any two positions i and j in the string delimit a k-th power with k ≥ 2, just like

in the example above. We need to prove that the same string cannot be considered

a k1-th power and a k2-th power at the same time, with k1, k2 ≥ 2 and k1 6= k2.

Suppose the contrary, that is there are 1 ≤ m < ℓ ≤ j−i
2 so that both m and ℓ are

periods of w[i, j]. Since j− i > m+ ℓ−gcd(m, ℓ) the periodicity lemma tells us that

w[i, j] has a period p smaller than m with p|m and p|ℓ, and this, in turn, means

w[i, i+ ℓ] is not primitive.

Let us turn now to counting distinct powers in strings. As opposed to before, now

we are not concerned about how many copies a repetition has in a given string but

rather about how many pairwise different repetitions can show up. The problem

is has a quite different taste to it than counting all the occurrences. Here, the

strings having the most distinct powers are not as repetitive in some sense as the

ones having the most occurrences of powers. Also the way of proving bounds with

respect to this is different in that for every repetition we usually have to designate a

particular occurrence of it in the string that we will consider. In other words, what

we can do here is to show some restrictions on the overlap of the last occurrences

of some repetitions. The question was first considered by Fraenkel and Simpson

in [21], where they considered the maximal number of distinct squares.

Theorem 3. [21, 28] The number of distinct squares in a word of length n is at

most 2n.

Their proof uses intricate combinatorics to achieve the desired bound and they

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 3: Bounds on powers 36

conjectured, supported by computer verification, that a sharp upper bound would

be no greater than n. Later on, Ilie presented a simpler proof for the 2n bound

in [28]. For a while there has been no progress on the issue and then Ilie improved

the bound by a logarithmic term.

Theorem 4. [29] The maximal number of distinct squares in a word of length n

is 2n−O(log n).

Although his result does not get very close to the conjectured bound, the meth-

ods he uses may prove very useful in further developments. In particular the fol-

lowing lemma suggests that maybe it is possible to relate the upper bounds on the

number of runs in a string to the number of distinct squares.

Lemma 4. [29] If the last occurrences of some squares u2, v2, with |u| < |v| start

at position i, and the last occurrence of another square w2 starts at position i+ 1,

then either |w| ∈ {|u|, |v|} or |w| > 2|u|.

Here we are not going to consider distinct squares but rather look at distinct

k-th powers with k greater than two. The earlier mentioned results give an implicit

upper bound for greater powers as well. On the other hand, it may be the case that

we can show significantly smaller upper bounds for cubes, 4-th powers and so on.

Indeed it is the case as the next theorem illustrates.

Theorem 5. The number of distinct k-th powers, for a fixed integer k ≥ 3, in a

string of length n is at most n
k−2 .

Proof. We will show the upper bound by considering the last occurrences of every

k-th power. The proof is split into two parts. We will prove the statement for cubes

by considering their starting positions while for higher exponents we will look at

their root positions (see below).

Let us start with the case k = 3. Suppose the last occurrence of two different

cubes u3 and v3 with |u| < |v| start at the same position i in the string. By a

simple argument we will arrive at a contradiction by looking at the two cases shown

in Figure 3.5.

First let us look at the case when |u3| ≤ |v2|. In this case there is another

occurrence of u3 starting at position i + |v| contradicting our assumption of the

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

37 3.2 A bound on primitively rooted cubes

|u3| < |v2|

v v v

u u u

u u u

|u2| < |u3| < |v3|

w w w w w w w w w w

v v v

v v v

Figure 3.5: Cubes u3 and v3 beginning at the same position i.

previous occurrence being the last.

Now we are left to treat the case when |v2| < |u3| < |v3|. The overlap between the

two cubes in this case is at least 2 · |v| which is greater than |v|+ |u| and from this,

Fine and Wilf’s theorem tells us it has a period of length gcd(|u|, |v|). Therefore,

there exists some w such that u = wm and v = wn, for some integers m < n.

It is easy to see then that in |w3n| the last occurrence of |w3m| starts at position

i+ 3 · (m− n) · |w| contradicting our assumption again.

We showed that there can be no two different cubes which have their last occurrence

starting at the same position. This implies the bound n for higher distinct powers

as well. However, we can prove something stronger, as we claim in the theorem.

To achieve that result, we will look at root positions. In a power uk starting at

position i, with the smallest period of u being p, we will call position i + p the

second root position, i+2p the third root position and so on. We show that for the

last occurrences of two 4-th powers u4 and v4, with |u| < |v|, u4 starting at position

i and v4 starting at position j, the following positions cannot coincide:

1. the second root position of u and the second root position of v:

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 3: Bounds on powers 38

if 3|u| < 2|v| then u4 occurs at i+ |v|, contradiction;

if 2|v| ≤ 3|u| then according to Fine and Wilf’s theorem v has period

k · p, for some k and then u4 occurs at i+ p, contradiction.

2. the second root position of u and the third root position of v:

if 3|u| ≤ |v| then u4 occurs at i+ |v|, contradiction;

if |v| < 3|u| ≤ 2|v| then again Fine and Wilf’s theorem gives us u4

occurring at i+ p, contradiction;

if 2|v| < 3|u|: if this is the case then similarly as before u and v are

powers of the same word and hence v4 occurs at j + p, contradiction;

3. the second root position of v and the third root position of u:

if 3|u| < |v| then u4 occurs at i+ |v|, contradiction;

if |v| ≤ 3|u| then u4 occurs at i+ p, contradiction.

4. the third root position of u and the third root position of v:

if 2|u| ≤ |v| then u4 occurs at i+ |v|, contradiction;

if |v| < 2|u| then u4 occurs at i+ p.

We can apply the same argument for 5-th powers looking at the second, third

and fourth root positions and so on for greater powers as well, getting the desired

bound.

3.3 Conclusion

In conclusion, we have proven the following bounds on repetitions in words:

(i) The maximal number of distinct repetitions of exponent, e, with 1 < e < 2,

in a word of length n is Θ(n2).

(ii) The maximal number of primitively rooted k-th powers in a word of length n

is Ω(n logn).

We have also described an O(m log n) algorithm which can be used to construct

strings to illustrate these bounds. Here O(m) is the time complexity of concatenat-

ing two strings of length n.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4

Counting scattered subwords

A widely investigated topic in combinatorics on words and formal language theory

is that of primitive words. From a formal language point of view most studies are re-

lated to languages consisting of only primitive words or just the opposite, languages

made up of powers. We take a look at the language of words that stay primitive

even when considering their commutative closure. In particular we give some cri-

teria based on the number of scattered subword occurrences which are sufficient

but not necessary for a word to be primitive starting from the simplest subwords

and going on to formulate inequalities between subword occurrence multiplicities

that need hold in order for the containing word to be non-primitive. We consider

another interpretation of powers when the building blocks do not need to be exactly

the same but rather need to have the same Parikh vector. We show that in the limit

this property is equivalent to the classical notion of non-primitivity from the point

of view of the number of scattered subword occurrences. After this we move on to

investigating how much information about scattered subwords suffices to identify

the word uniquely. Eventually, closing the chapter, in Section 4.6 we discuss some

cases of an open problem regarding general inequalities between scattered subword

multiplicities. In [46] the authors define the so called subword histories, which are

formal power series representing the number of subword occurrences. They settle

the question of decidability of equalities between these polynomials and ask whether

there exists an algorithm to decide whether an inequality of this kind holds for all

words over an alphabet. We approach the problem in an incremental way by first

39

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 40

showing that only trivial inequalities between monomial subword histories hold and

then characterising subword inequalities with the smaller side consisting of one and

the greater side consisting of two terms (a (1, 2) instance of subword inequalities).

The latter may give rise to the decidability of a wide range of subword inequalities

decomposable into simple (1, 2) instances.

4.1 Parikh matrices and subword histories

A general problem regarding subword multiplicities is to reconstruct a word w if we

know the values |w|u for some u. For instance over the alphabet {a, b}∗ a word w

is uniquely determined by the values |w|a = |w|b = 4 and |w|ab = 15. The word in

question is a3bab3. On the other hand a word of length 4 is not uniquely determined

by the values |w|u, |u| ≤ 2. Both abba and baab satisfy the equations. It is shown

in the chapter on subwords in [41] that the equation

|vb|ua = |v|ua + δa,b|v|u

where

δi,j =







1 when a = b

0 when a 6= b

together with the already mentioned

|w|λ = 1 and |w|u = 0 if |w| < |u|

suffice to compute all values |w|u. As we saw in Chapter 2, Parikh vectors tell us

how many times the letters of the alphabet occur in a word. Sometimes, however,

we need more information about structure. A powerful yet simple tool is provided

by an extension of the Parikh mapping. In [45] the Parikh matrix is introduced,

which extends the notion of the Parikh vector. For an alphabet of n letters the

Parikh matrix of a word is an (n + 1) × (n + 1) upper triangular matrix that

contains information about those scattered subwords of the word that are factors

of the concatenation of the alphabet.

Definition 2. Let Σ = {a1, ..., ak} be an alphabet and Mk+1 denote the monoid of

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

41 4.1 Parikh matrices and subword histories

square matrices of dimension k + 1 with matrix multiplication. The Parikh matrix

mapping, denoted Ψk, is the morphism: Ψk : Σ∗ →Mk+1, defined by the condition:

if Ψk(aq) = (mi,j), 1 ≤ i, j ≤ (k + 1), then for each 1 ≤ i ≤ (k + 1),mi,i =

1,mq,q+1 = 1, all other elements of the matrix Ψk(aq) being 0.

It is a morphism, i.e. Ψk(a1a2 . . . an) = Ψk(a1)×Ψk(a2)× . . .×Ψk(an), where ×

is the usual matrix multiplication. The Parikh matrix mapping is further extended

in [57]:

Definition 3. Let Σ be an alphabet and u = b1...b|u| be a word in Σ∗ (bi ∈ Σ for all

1 ≤ i ≤ |u|). The Parikh matrix mapping induced by the word u over the alphabet,

denoted Ψu, is the morphism Ψu : Σ∗ → M|u|+1 defined by the condition: if a ∈ Σ

and Ψu(a) = (mi,j)1≤i,j≤|u|+1, then:

mi,j =







1 if j = i

δa,bj
if j = i+ 1

0 otherwise

,

where δ is the Kronecker symbol defined above.

The following is an important property [46, 57] of these mappings that we will

use later:

Lemma 5. Consider u = b1...b|u| ∈ Σ∗ (bi ∈ Σ for all 1 ≤ i ≤ |u|) and w ∈ Σ∗.

The matrix Ψu(w) = (mi,j)1≤i,j≤|u|+1, has the following properties:

1. mi,j = 0, for all 1 ≤ j < i ≤ |u|+ 1,

2. mi,i = 1, for all 1 ≤ i ≤ |u|+ 1,

3. mi,j+1 = |w|ui,j
, for all 1 ≤ i ≤ j ≤ |u|, where ui,j is the word bibi+1...bj.

This means that for any word w and arbitrary letters x1, x2, . . . , xn the gener-

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 42

alised Parikh matrix Ψx1x2...xn
holds the following values

Ψx1x2...xn
(w) =
















1 |w|x1 |w|x1x2 . . . |w|x1x2...xn−1 |w|x1x2...xn

0 1 |w|x2 . . . |w|x2...xn−1 |w|x2...xn

...
...

...
...

...

0 0 0 . . . 1 |w|xn

0 0 0 . . . 0 1
















The value of each minor of an arbitrary Parikh matrix is a nonnegative integer [46].

From here one can obtain the so called Cauchy inequality for words and its dual.

Theorem 6. [46,54] The inequality

|w|y|w|xyz ≤ |w|xy|w|yz

holds for arbitrary words w, x, y and z.

Theorem 7. [54] For all words u, v, z and w:

|uvz|w|v|w ≤ |uv|w|vz|w.

4.2 Primitivity in the Context of Multisets

In this section we are going to look into languages where just by looking at the

Parikh vectors of the language we can decide if it is made up of primitive words or

powers greater than or equal to two. As the Parikh vector does not tell us anything

about the order of the letters, our investigation is limited to so called commutative

languages here.

Definition 4. The commutative closure of a language L consists of all words that

can be formed by permuting the letters in the words of L:

com(L) = {u|ψ(u) = ψ(w), w ∈ L} .

We call a language commutative if it is equal to its commutative closure.

Definition 5. The language of primitive words over an alphabet Σ (QΣ) consists

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

43 4.2 Primitivity in the Context of Multisets

of all such words:

QΣ = {w ∈ Σ∗|w = up ⇒ p = 1} .

In the following by the cyclic permutation of a word w we mean the set cp(w)

consisting of w’s conjugates.

Definition 6. The language of Lyndon words has the lexicographically smallest

word among the cyclic permutations of w, for all primitive words w .

L = {w|w ∈ Q and w ≤ u, ∀u ∈ cp(w)}.

First, we analyze the language of words for which every permutation is primitive,

in other words the maximal commutative language containing only primitive words.

Definition 7. The commutative primitive language is the commutative language

which consists of all primitive words over Σ whose Parikh equivalent words are

primitive. We will denote by ComPrimΣ the commutative primitive language over

an alphabet Σ.

We might omit the subscript Σ when it does not create confusion or if a statement

is valid for any alphabet. We require that each word that can be formed of the letters

of any word in ComPrim to be primitive. We can ensure this by the following:

Proposition 9. [13] A word is in ComPrimΣ for some alphabet Σ if and only if

the elements of its Parikh-vector are relatively prime.

Now let us see what happens with the commutative primitive languages, when

a symbol is deleted from or added to the alphabet.

Remark 3. Let Σ = {a1, .., ak} and Σ′ = {a1, .., ak, ak+1} be some ordered al-

phabets. If w ∈ ComPrimΣ, with Parikh-vector ψ(w) = (n1, .., nk) then w′ ∈

ComPrimΣ′ , with ψ(w′) = (n1, .., nk, nk+1), for every value of nk+1. However,

the converse does not hold, i.e. if we delete a letter from Σ′, then the scattered

version of the word which was previously in ComPrimΣ′ will not necessarily be in

ComPrimΣ.

Proof. The first part of the statement trivially holds because for any number nk+1

if gcd(n1, .., nk) = 1, then gcd(n1, .., nk, nk+1) = 1, where gcd means the greatest

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 44

common divisor. The second part can be easily handled too. Let us take w′ s.t.

ψ(w′) = (n1, .., nk, nk+1), where gcd(n1, .., nk) > 1 but gcd(n1, nk+1) = 1, and thus

w′ ∈ ComPrimΣ′ . Clearly, removing ak+1 from the alphabet, i.e. deleting the

occurrences of this symbol from w′ leads us to a word w, with ψ(w) = (n1, .., nk),

which by Lemma 9 does not belong to ComPrimΣ, e.g. in the case of an alphabet

{a, b, c} taking the Parikh-vector (6, 10, 15).

Moreover, if we simply delete an occurrence of a letter from a word having

Parikh-vector (6, 10, 15), the resulting word is not in the language anymore.

From Proposition 9 it follows that the greatest common divisor of the numbers

in the Parikh-vector of a non-primitive word is greater than 1. Thus it seems that

both ComPrimΣ and its complement are non-semilinear languages. Indeed it is

the case as it is shown in [13, 49]. We give here an alternative proof.

Theorem 8. ComPrim is not semi-linear.

Proof. We can restrict ourselves to the case of binary alphabets without loss of

generality. Let us suppose that the commutative primitive language is semi-linear.

It is well known (see e.g. [35]) that for every semi-linear language there is a regular

one which is letter-equivalent to it. So, due to our assumption there is a regular

language L such that for any relatively prime q and r there exists a word w ∈ L for

which ψ(w) = (q, r). Take two different primes p1 > n, p2 > (n + 1)p1 + 1, where

n is the number of states of the minimal automaton accepting L. Then there is a

word bx1abx2a...abxp1+1 ∈ L with x1, ..., xp1+1 ≥ 0,
∑p1+1

i=1 xi = p2. Then there is at

least one xi that is bigger than n. Now this means that there is a sequence of length

l ≤ n consisting only of b’s that can be pumped arbitrarily many times so that the

resulting word will be in L. But since p1 is prime and n < p1 any such l will be

a generator of the group of the numbers modulo p1 with addition, hence pumping

enough times will result in a word with Parikh vector (p1, kl + p2) for some k so

that gcd(p1, kl + p2) > 1, so we arrived to a contradiction.

It is well-known and it also follows directly from Proposition 9, that all prime-

length words are primitive, except the words that are powers of a single letter.

The commutative language containing the non-primitive words contains all words

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

45 4.3 Counting scattered subwords

of the form ax where x ≥ 2, a ∈ Σ. The commutative closure of the language of

primitive words is the same as the commutative closure of the language of Lyndon

words (com(QΣ) = com(Lyn)), and it is exactly the regular language that is the

complement of the commutative language containing only non-primitive words:

Σ∗ \ {am|m ≥ 2, a ∈ Σ}

Note, that the word a2b2 is in com(QΣ), but not in ComPrimΣ.

Hence the commutative language containing only non-primitive words and the

commutative closure of the language of primitive words are semi-linear languages

in the Parikh sense.

Now, let us look at the complements of the languages mentioned before. Let

QΣ denote the complement of QΣ (for |Σ| ≥ 2), i.e., the language of non-primitive

words over an alphabet containing at least two letters. The Parikh image of QΣ

is the same as the complement of the Parikh image of the commutative primitive

language over Σ, so it is the set of all vectors whose elements are not relatively

prime. So as a consequence of Theorem 8

Proposition 10. The language QΣ (|Σ| ≥ 2) is not semi-linear.

Proof. We get this result, because the class of semi-linear languages is closed un-

der multiset complementation ([35]), and as we proved earlier in Theorem 8, the

commutative primitive language is not semi-linear.

As it is well-known that the family of context-free languages are semi-linear,

Proposition 10 provides yet another proof for the language of non-primitive words

to be outside the context-free class.

Proposition 11. [13] The language QΣ (|Σ| > 2) is not context-free.

4.3 Counting scattered subwords

In [46] the authors describe a nice extension of the Parikh mapping to one that

carries more information about the words. They start out by the simple observation

that |w|a|w|b = |w|ab + |w|ba and they further develop it into subword histories.

Starting from the equality above we can state some simply verifiable requirements

for words to be primitive.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 46

Lemma 6. For any non-primitive word w and all words u = a1a2..an, with

ai 6= aj , ∀i 6= j, 1 ≤ i < j ≤ n and |w|u > 0, there exists a set P consisting of

permutations of u such that |P | ≥ 2n − n and for all p ∈ P , |w|p > 0.

Proof. Since the letters of u are all different, some permutation u′ of u must be

present as a scattered subword in the primitive root
√
w of w. As w is at least the

second power of
√
w, we have at least two non-overlapping occurrences of u′ in w.

Hence by taking k letters from the first occurrence of u′ in all possible ways and

the remaining n− k letters from its second occurrence we get
(
n

k

)
permutations of

u′ different from each other that are scattered subwords of w. Note that by taking

the first k letters from the first occurrence we get u′ itself, so when summing all the

possible combinations for 0 ≤ k ≤ n, the identical permutation, i.e. u′ is counted

n + 1 times. Hence the least (depending on the word there may be more) number

of permutations of u′ that are different from each other and are scattered subwords

of w is:
(
n

0

)

+

(
n

1

)

+ ...+

(
n

n

)

− n = 2n − n.

By taking the set of all these permutations to be P we get the statement above.

Note, that in the previous proof in fact we only needed w to have a factor which

is a second power of some word, thus the statement can be more generally stated

for all words of the form w = xvvy, where v is not the empty word.

The fact that both Parikh-matrices and Lyndon words look like they require

smaller letters (w.r.t. the ordering of the alphabet) to be at the beginning of the

word suggests that there is some kind of a connection between the minimal words

(w.r.t. the ordering of the alphabet) and the words with the maximal Parikh-matrix

(maximal in the sum of the elements of the matrix). However, as we will shortly see

we were not successful in establishing a general relation between them. But first let

us state a condition for the maximality of the Parikh-matrix of w among its cyclic

permutations in the case of binary alphabets.

Remark 4. The Parikh-matrix of any word w ∈ {a, b}∗ is maximal (a < b) among

its cyclic permutations if and only if for any decomposition w = uv:

|u|a|v|b ≥ |u|b|v|a.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

47 4.3 Counting scattered subwords

The validity of the following examples can be easily seen with the help of Remark

4. For any word containing at most five blocks, i.e. of the forms a∗b∗a∗b∗a∗,

b∗a∗b∗a∗b∗, for every word w that has the maximal (a < b) Parikh-matrix among

its cyclic permutations either w (a < b) or its reverse (b < a) is a Lyndon word.

For words having more blocks than 5 the statement is not true; it is contradicted

by, say a3ba4bab, as Lyndon words depend on the prefix blocks of the word rather

than the value of the Parikh-matrix.

Although the above mentioned attempt did not lead to a direct relation between

Parikh-matrices and Lyndon words, we can say the following:

Proposition 12. For all words w = a1...an, wr = ana1...an−1, wl = a2...ana1 over

a binary alphabet the minimal among the three (w.r.t. the ordering of the alphabet)

has the maximal Parikh-matrix.

For alphabets having more than two letters the statement does not hold, e.g.

in the case of the word accb (which is lexicographically the smallest among its

conjugates) the sum of the elements in its Parikh matrix is 9 whereas for its lexico-

graphically greater conjugate bacc this sum is 10.

In [44] the authors consider the problem of deciding about a matrix whether

or not there exists a word which has this matrix as its extended Parikh image.

Besides the formal requirements of Parikh matrices - that is, they need to be upper-

triangular and the main diagonal has to consist of 1’s - the values are restricted by

subword histories. For instance the simplest and most frequently used subword

history relation is |w|a|w|b = |w|ab + |w|ba, for some word w and letters a 6= b (the

distinction is necessary since |w|aa =
(
|w|a

2

)
). This equality clearly restricts the

values of the third diagonal in terms of the second. Above that, i.e. about the

values of the fourth, fifth, etc. diagonals we cannot say much. In fact it is shown

that they can be almost arbitrary positive integers. [44] also provides a polynomial

time algorithm to check if there is any word the image of which is the given matrix.

We will see in this section that things are easier when we have non-primitive words

instead of arbitrary ones. Moreover, the results presented here apply to the extended

Parikh matrices too, introduced in [57].

The main result of this section is the following theorem:

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 48

Theorem 9. For all words w, u ∈ Σ+, u = a1a2...ak and n, k > 1:

|wn|u ≤
(
n+ 1

2n

)k−1

|wn|a1 |wn|a2 ...|wn|ak
.

To prove the theorem we need to see a few other statements first. First of

all, counting the number of subword occurences in a non-primitive word should be

possible by knowing only its root, and indeed it is.

Lemma 7. For all words w, u ∈ Σ∗, u = a1a2...ak:

|wn|u =

min(|u|,n)
∑

i=1





(
n

i

)
∑

u=u1...ui

i∏

j=1

|w|uj





where all uj are non-empty factors of u.

Proof. It is easy to see that the number of occurrences of a word u in some power

of w can be computed by factoring u in all possible ways and for each factorization

multiplying the number of occurrences of these factors in w.

For Theorem 9 we need to establish a relation between the multiplicities of

different permutations of the same word.

Lemma 8. For all words wn ∈ Σ+ and a, b ∈ Σ, with n > 1 and |wn|a, |wn|b > 0

we have:

n− 1

n+ 1
≤ |w

n|ab

|wn|ba
≤ n+ 1

n− 1
.

Proof. For a = b the value of the fraction is 1 so the inequality holds. Hence we

may assume that a 6= b. By Lemma 7 we have a formula for |wn|ab in terms of

n and |w|ab. If we express |w|ab from this formula and use basic equalities from

subword histories, we get:

|w|ab =
2n|wn|ab − (n− 1)|wn|a|wn|b

2n2

=
2n|wn|ab − (n− 1)(|wn|ab + |wn|ba)

2n2

=
(n+ 1)|wn|ab − (n− 1)|wn|ba

2n2
(4.1)

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

49 4.3 Counting scattered subwords

Since |w|a|w|b = |w|ab + |w|ba, we also know that

|w|ab ≤ |w|a|w|b =
|wn|a
n

|wn|b
n

=
|wn|ab + |wn|ba

n2
(4.2)

From equations (4.1) and (4.2) it follows that:

(n+ 1)|wn|ab − (n− 1)|wn|ba ≤ 2(|wn|ab + |wn|ba)

n− 1

n+ 1
≤ |w

n|ba
|wn|ab

.

If we follow the same procedure for |w|ba we get the other bound too.

In particular taking n = 2 this means that for a word w if |w|ab

|w|ba
is less than 1

3 or

more than 3 then w is primitive. Note that because of Lemma 6, if the conditions

|w|ab, |w|ba > 0 are not satisfied, we can state directly that w is a primitive word.

Theorem 10. In Lemma 8:

1. the bounds are sharp, i.e. the equality is reached if and only if

pr{a,b}(w) ∈ a+
1 a

+
2 , a1, a2 ∈ {a, b}, a1 6= a2

2. the ratio is equal to 1 if pr{a,b}(w) is a palindrome but the converse does not

hold.

where prΣ(w) is the projection of w on the alphabet Σ.

Proof. 1. the if part is fairly easy to show. We can get the number |wn|a1a2 by

summing up for all occurrences of a1 the a2’s that follow them. So if ψ(w) = (n1, n2)

then this number will be n1(n2n)+n1(n2(n−1))+ ..+n1n2 = n1n2
n(n+1)

2 whereas

for |wn|a2a1 we get n2(n1(n−1))+n2(n1(n−2))+ ..+n2n1 = n2n1
(n−1)n

2 . Dividing

one with the other results in the bounds of Lemma 8. For the only if part we may

assume that
|wn|a1a2

|wn|a2a1
= n+1

n−1 . Lemma 7 tells us that

|wn|a1a2

|wn|a2a1

=
n|w|a1a2 +

(
n

2

)
|w|a1 |w|a2

n|w|a2a1 +
(
n

2

)
|w|a1 |w|a2

=
2|w|a1a2 + (n− 1)(|w|a1a2 + |w|a2a1)

2|w|a2a1 + (n− 1)(|w|a1a2 + |w|a2a1)
.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 50

Using the initial assumption
|wn|a1a2

|wn|a2a1
= n+1

n−1 we get that

(n+ 1)2|w|a2a1 + (n2 − 1)|w|a1a2 = (n2 − 1)|w|a1a2 + (n− 1)2|w|a2a1

and after short computation this leads us to |w|a2a1 = 0 so we can conclude the

proof. For the other bound the argumentation goes along the same line.

2. w being a palindrome means w is equal to its reverse wr. We can easily see that

for all words u, v the relation |u|v = |ur|vr holds, so |w|a1a2 = |wr|a2a1 = |w|a2a1

and this proves our claim. The converse does not hold in general; take for instance

the word w = abaaabbaa which is not a palindrome, but |wn|ab = |wn|ba holds for

any n.

Now we are ready to prove Theorem 9.

Proof. (of Theorem 9) If u is not a subword of wn then the inequality is trivially

satisfied. From Lemma 8 we know that for all pairs ai, aj :

n− 1

n+ 1
≤ |w

n|aiaj

|wn|ajai

≤ n+ 1

n− 1

and we have from subword histories that

|w|a|w|b = |w|ab + |w|ba.

So we get

|wn|aiaj

|wn|ai
|wn|aj

≤ |wn|aiaj

|wn|aiaj
+ |wn|ajai

≤ n+ 1

2n
⇒

⇒ |wn|aiaj
≤ n+ 1

2n
|wn|ai

|wn|aj
(4.3)

At the same time from the general form of Theorem 6 we have:

|wn|a2 |wn|a3 ...|wn|ak−1
|wn|a1a2...ak

≤ |wn|a1a2 |wn|a2a3 ...|wn|ak−1ak
(4.4)

Thus equations (4.3) and (4.4) yield:

|wn|a2 ...|wn|ak−1
|wn|a1a2...ak

≤
(
n+ 1

2n

)k−1

|wn|a1 |wn|2a2
...|wn|2ak−1

|wn|ak
.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

51 4.4 Subwords of the Thue-Morse word

Dividing both sides by |wn|a2 ...|wn|ak−1
reduces the inequality to the desired form.

Note that the bounds are sharp, that is the inequality becomes an equality

exactly in the cases of Theorem 10. As we have seen, the bound for the difference

between the number of occurrences of a word u and some permutation of it in some

non-primitive word wn decreases as n increases. At the same time - as it is to be

expected intuitively - as n grows, the ratio between the number of occurrences of

some u in wn and in wn+k decreases for a fixed k.

Proposition 13. For all words w, u, numbers n1 ≤ n2 and k such that |wn1+k|u ≥ 0

we have:

|wn1 |u
|wn1+k|u

≤ |wn2 |u
|wn2+k|u

.

Proof. From the dual of the Cauchy inequality (Theorem 7) for words [46] we have

that:

|w(n2−n1)wn1wk|u|wn1 |u ≤ |wn2−n1wn1 |u|wn1wk|u.

i.e. |wn2+k|u|wn1 |u ≤ |wn2 |u|wn1+k|u. If |wn1+k|u > 0 we can order the factors to

get the desired form.

4.4 Subwords of the Thue-Morse word

Investigation concerning subword multiplicities of specific primitive words have been

done in the past. Some of these results concerned factors of the Thue-Morse word.

For the morphism h generating the Thue-Morse word h(a) = ab and h(b) = ba

let un = hn(a), vn = hn(b). First we mention two earlier results from others that

were achieved in this direction and then present our result concerning subword

multiplicities of words from the concatenation power of some word sets. In [48] the

following statement is shown:

Proposition 14. [48] For every word x such that 0 ≤ |x| ≤ n, |un|x = |vn|x.

Furthermore there exists a word x of length n+ 1 such that |un|x 6= |vn|x.

In [2] a similar line of study is followed. Let t[m] denote the prefix of length m

of the Thue-Morse word. Then we get:

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 52

Proposition 15. [2] For every prime number p, and for every positive integer n,

there exists a positive integer m = f(p, n) such that, for every non-empty word v of

length less than or equal to n, |t[m]|v ≡ 0 mod p.

Our next theorem, although it is more general, has some implications for the

scattered subword complexity of non-primitive words too. Namely if we take two

sets of words S1 and S2 such that all the words in S1 have the same Parikh vector

and all the words in S2 have the same Parikh vector then, as n increases, the ratio

of the number of occurrences of some words w1, w2 of the same length in a word

u ∈ Sn
1 and in a word v ∈ Sn

2 , respectively, will tend towards a number that depends

only on the Parikh-images of w1, w2, S1, S2.

Theorem 11. For two sets S1 = {u1, u2, ..., uk}, S2 = {v1, v2, ..., vl} with ui, vj ∈

Σ+ such that ψ(S1) = {ψ(u1)}, ψ(S2) = {ψ(v1)}, for some strictly increasing func-

tion g : IN → IN , for some functions fi : IN → S+
i with f1(n) ∈ Sg(n)

1 , f2(n) ∈ Sg(n)
2

and for all words w1 = a1a2...ar and w2 = b1b2...br such that alph(w1) =

alph(w2) = alph(u1) = alph(v1):

lim
n→∞

|f1(n)|w1

|f2(n)|w2

=
|u1|a1 |u1|a2 ...|u1|ar

|v1|b1 |v1|b2 ...|v1|br

.

Proof. For some n let f1(n) = ui1ui2 ...uig(n)
, f2(n) = vj1vj2 ...vjg(n)

. Now for any n

such that g(n) ≥ r

|f1(n)|w1 =

g(n)
∑

t=1

|uit
|w1 +

g(n)−1
∑

t1=1

g(n)
∑

t2=t1+1

r−1∑

t3=1

|ut1 |a1..at3
|ut2 |at3+1...ar

+ ...+

g(n)−r+1
∑

t1=1

g(n)−r+2
∑

t2=t1+1

...

g(n)
∑

tr=tr−1+1

|ut1 |a1 |ut2 |a2 ...|utr
|ar
.

The formula is similar for f2(n). This means that we take all possible decompo-

sitions of w1 and all possible combinations of the words ui in which they appear.

Hence the lth term in the formula stands for the sum of decomposing w1 in l parts

w1 = w′
1w

′
2...w

′
l, choosing l components of f1(n) and multiplying the number of

appearances of w′
i in the ith component picked for all 1 ≤ i ≤ r. Formally this lth

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

53 4.4 Subwords of the Thue-Morse word

term is:

g(n)−r+1
∑

t1=1

g(n)−r+2
∑

t2=t1+1

...

g(n)
∑

tl=tl−1+1

∑

w1=w′

1w′

2...w′

l

|ut1 |w′

1
|ut2 |w′

2
...|utl

|w′

l
.

Now let us define

Termi(l) = {|u1|w′

1
|u2|w′

2
...|ul|w′

l
| wi = w′

1w
′
2...w

′
l, uj ∈ Si, 1 ≤ j ≤ l}

as the set of the number of occurrences of wi in words from the set Sn
i . Moreover

let

fmaxi(n) =

r∑

j=1

(
n

j

)

maxTermi(j),

fmini(n) =

r∑

j=1

(
n

j

)

min Termi(j).

Now it is clear that

fmin1(g(n))

fmax2(g(n))
≤ |f1(n)|w1

|f2(n)|w2

≤ fmax1(g(n))

fmin2(g(n))

for every n s.t. g(n) ≥ r. Notice that fmaxi and fmini are polynomials in g(n)

of degree r with the terms of the highest degree in them being
(
n
r

)
maxTermi(r)

and
(
n
r

)
min Termi(r), respectively so the limit of the fractions above is given by

the ratio of these terms. At the same time

maxTerm1(r) = min Term1(r) =

(
n

r

)

|u1|a1 |u1|a2 ...|u1|ar

maxTerm2(r) = minTerm2(r) =

(
n

r

)

|v1|b1 |v1|b2 ...|v1|br

so we get

lim
n→∞

fmin1(g(n))

fmax2(g(n))
= lim

n→∞

fmax1(g(n))

fmin2(g(n))
= lim

n→∞

|f1(n)|w1

|f2(n)|w2

=

=
|u1|a1 |u1|a2 ...|u1|ar

|v1|b1 |v1|b2 ...|v1|br

.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 54

The following two examples apply the result for a special kind of primitive words

and for non-primitive words.

Example 3. Let un, vn be factors of the Thue-Morse word as defined at the be-

ginning of this section. Then for any two words w1, w2 with |w1| = |w2| over the

alphabet {a, b}:

lim
n→∞

|un|w1

|vn|w2

= 1.

This follows from Theorem 11 because un, vn ∈ {01, 10}2n

. Note that this example

is also a direct consequence of Ochsenschlager’s theorem (Proposition 14 above).

Example 4. For any words u, v and w = a1a2...ak such that alph(u) = alph(v) =

alph(w):

lim
n→∞

|un|w
|vn|w

=
|u|a1 |u|a2 ...|u|ak

|v|a1 |v|a2 ...|v|ak

4.5 Inferring primitivity from partial information

It would be nice to know what subword multiplicities we have to know about a

word w so that we can tell whether w is primitive. As it is known, there is no fixed

set S of words so that knowing the multiplicities of the elements of S as scattered

subwords of a word w would uniquely identify w. As we will see we can establish

a similar result concerning primitive words, namely that there is no set S as before

based on which one could decide the primitivity of any word. In what follows Tk

means an alphabet of k letters. We recall from [55] the following:

Lemma 9. [55] Assume that S ⊂ Σ∗
k, k ≥ 2, is a set of words of a finite cardinality

i, the longest word in S being of length j. Then there is a bound t0 such that,

whenever t ≥ t0, there are different words w,w′ ∈ Σ∗
k with |w| = |w′| = t such that

|w|u = |w′|u, for every u ∈ S.

We can conclude a similar fact about primitive words.

Theorem 12. Assume that S ⊂ Σ∗
k, k ≥ 2, is a set of words of a finite cardinality.

Then we can always find a primitive word z and a non-primitive one z′ such that,

|z|u = |z′|u , for every u ∈ S ∪ Σ.

Proof. Let w be the concatenation of all the words in S. Note that Lemma 9 is

valid for any finite set, hence also for the set of factors of w, so there exist two

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

55 4.5 Inferring primitivity from partial information

different words v1, v2 which have the same Parikh matrix with respect to w. S

is a subset of the set of w’s factors, so for some words v1, v2, Ψw(v1) = Ψw(v2)

implies |v1|u = |v2|u, for every u ∈ S. From Ψw(v1) = Ψw(v2) it follows that

Ψw(vt
1v

t
2) = Ψw((v1v2)

t). (v1v2)
t is obviously not primitive so now we only have to

show that vt
1v

t
2 is primitive. So let us suppose it is non-primitive (remember that

v1 6= v2). We can distinguish five cases depending on the length of the supposed

primitive root of vt
1v

t
2:

1. |
√

vt
1v

t
2| = 1: in this case both v1 and v2 would be powers of the same letter,

meaning v1 = v2, contradiction.

2. |
√

vt
1v

t
2| = 2: in this case v2

1 = v2
2 hence v1 = v2, contradiction.

3. |
√

vt
1v

t
2| = t: in this case we get directly v1 = v2, contradiction.

4. |
√

vt
1v

t
2| = 2t: in this case v2

1 = v2
2 see 2.

5. |
√

vt
1v

t
2| = t2: in this case vt

1 = vt
2 which means v1 = v2, contradiction.

This way we proved that vt
1v

t
2 is primitive, so choosing z = vt

1v
t
2 and z′ = (v1v2)

t

we can conclude the proof.

We can see now that no fixed set is enough for deciding the primitivity of a word.

However, as it is shown in [55] if the size of the set depends on the length of the

word we want to infer, it is possible to reconstruct the word based on information

about scattered subwords.

Theorem 13. [55] Assume that w and w′ are words over the alphabet {a, b} with

the same Parikh vector (r, s) and that

|w|abi = |w′|abi , 1 ≤ i ≤ min(r, s)

Then w = w′.

However, a non-primitive word can probably be uniquely inferred from less in-

formation.

Conjecture 1. Assume that w and w′ are non-primitive words over the alphabet

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 56

{a, b} with the same Parikh vector (r, s) and that

|w|abi = |w′|abi , 1 ≤ i ≤ min(r, s)

scd(r, s)

where scd(r, s) is the smallest common divisor of r and s which is greater than 1.

Then w = w′.

4.6 Subword inequalities

The idea of considering subword histories stems from a simple observation as de-

scribed in [46]:

|w|ab + |w|ba = |w|a|w|b

for any w ∈ Σ∗ and a 6= b. From here one can develop all sorts of useful relations

between the count of subword occurrences.

Definition 8. [46] Consider an alphabet Σ and a word w ∈ Σ∗. A subword history

in Σ and its value in w are defined recursively as follows.

• Every u ∈ Σ∗ is a subword history in Σ, referred to as monomial, and its

value in w equals |w|u.

• Assume that SH1 and SH2 are subword histories with values α1 and α2,

respectively. Then

−(SH1), (SH1) + (SH2) and (SH1)× (SH2)

are subword histories with values

−α1, α1 + α2 and α1α2,

respectively.

Two subword histories are termed equivalent if they assume the same value in

any w. A subword history is linear if it is obtained without using the operation ×.

Perhaps the most basic question about two subword histories is whether they are

equivalent or not. This question is settled by the authors in the same paper they

define subword histories.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

57 4.6 Subword inequalities

Theorem 14. Every subword history is equivalent to a linear subword history.

Moreover, given a subword history, an equivalent linear subword history can be

effectively constructed.

Probably the most natural question to ask after equivalence, where applicable,

is about inequalities. We write SH1 ≤ SH2 if, for all words w, the value of SH1

in w is at most that of SH2 in w. The problem posed in [46] is: is the inequality

decidable for two given subword histories?

Theorem 14 tells us that it is enough to consider subword histories that are

linear. From now on we will use the term subword inequality (SI) rather than the

longer inequality between subword histories, and we mean basically the same, except

for the coefficients of the terms. A SI is of the form:

m∑

i=1

αi|w|ui
≤

n∑

j=1

βj |w|vj

where the α’s and β’s are positive integers, the coefficients of the terms. For the

sake of simplicity we will write the above SI as
∑m

i=1 αiui ≤
∑n

j=1 βjvj .

In [46] the authors give an example of a SI which is true for any word:

baab < bab+ baaab

It turns out that this example encompasses the very essence of the problem. In fact,

all SIs that are ”extended” versions of the one above hold for any word. We will

elaborate in this section on what extended in the previous sentence exactly means.

In addition to the notions introduced in the opening chapter and the first section

of this chapter, we will often refer to the number of blocks of a given word. A

continuous subword z of the word w is a block of w if z = ak, for some a ∈ Σ, k > 0,

and there are no words u, v such that w = uazv or w = uzav. In other words, blocks

are maximal continuous subwords that are powers of one letter. If w = ak1
1 a

k2
2 ...a

kn
n

with ai 6= ai+1 for 1 ≤ i ≤ n− 1, we will call red(w) = a1a2...an the reduced form

of w, and pow(w) = (k1, k2, .., kn) the power vector of w. First we examine the

inequalities where both sides comprise exactly one term.

Theorem 15. For any two words u, v ∈ Σ∗ with u 6= v there exist w1, w2 ∈ Σ∗

such that:

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 58

• |w1|u < |w1|v and

• |w2|u > |w2|v

Proof. We will treat the problem by decomposing it into two cases.

1. Neither of the words u and v is a subword of the other.

In this case by choosing w1 = v and w2 = u the statement is proved.

2. u is a subword of v (the symmetric case of v being a subword of u can be

treated identically).

In this case w2 = u takes care of the second part of the statement so we

have to find w1 such that |w1|u < |w1|v. Consider writing v in the form v =

ak1
1 a

k2
2 ...a

kn
n , with ai ∈ Σ, ki ≥ 1 for 1 ≤ i ≤ n, and ai 6= ai+1, 1 ≤ i ≤ n − 1.

Since u is a subword of v we can write it in the form u = al1
i1
al2

i2
...alm

im
, where

ij ≤ n for 1 ≤ j ≤ m, and ij < ij+1 for 1 ≤ j ≤ m− 1.

Now consider some word w0 = ak
1a

k
2 ...a

k
n with

k > max(max
j
{lj},max

i
{ki})

. The block sequence of an occurrence I = (i1, i2, .., ir) of u in w0, in symbols

bseq(I, w0), obtained by replacing every i in I with ⌊(i− 1)/k⌋ + 1, that is

with the index of the w0 block containing the respective letter (here ⌊x⌋ is the

integer part of x). For example, an occurrence of aabb in aabbaabb is (1, 2, 4, 7),

and the block sequence corresponding to it is (1, 1, 2, 4), because the two a’s

were taken from the first block and the b’s from the second and the fourth

block, respectively. Denote with bseq(u,w0) the number of different block

sequences corresponding to all occurrences of u in w0. For each different block

sequence we mark with bperb(j) the number of different indices corresponding

to the j-th block in u, e.g. for w0 = aabbaabb, u = aabb and the block sequence

(1, 3, 4, 4) we get bperb(1) = 2 and bperb(2) = 1. Using this notation, the

number of occurrences of u in w0 corresponding to a particular block sequence

is
m∏

j=1

(
k · bperb(j)

lj

)

and this is clearly smaller than or equal to
∏m

j=1

(
nk
lj

)
. Hence, summing for

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

59 4.6 Subword inequalities

all block sequences we get that

|w0|u ≤ bseq(u,w0) ·
m∏

j=1

(
n · k
lj

)

Note that bseq(u,w0) does not depend on k and n is fixed, so |w0|u is bounded

from above by a polynomial in k of degree
∑m

j=1 lj = |u|. At the same time

|w0|v =

n∏

i=1

(
k

ki

)

that is |w0|v is a polynomial in k of degree
∑n

i=1 ki = |v|. Moreover, u is a

subword of v, i.e. |u| < |v|, therefore there exists some K such that for any

k > K:

|ak
1a

k
2 ...a

k
n|u < |ak

1a
k
2 ...a

k
n|v

We saw that inequalities between monomial subword histories, i.e. of the form

u ≤ v, hold if and only if u = v.

Next we will look at a basic form of SI’s, where the coefficients of the terms are all

equal to 1, but we shall cite the following result first:

Lemma 10. [46] Two linear subword histories are equivalent iff they are identical,

apart from the order of terms.

Because of this, if we find the same term appearing on both sides of a SI, we can

simply remove them without affecting the relation. From now on we will consider

only SI’s where there are no identical terms on the two sides. Let us start with the

case when the left hand side has one term and the right hand side has two.

Lemma 11. A SI of the form z ≤ u+ v holds if and only if for some x1, x2 ∈ Σ∗

and a ∈ Σ:

• z = x1ax2

• u = x1x2

• v = x1a
2x2

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 60

Proof. Remember that for keeping things simple we omitted the subword notation

when writing down a SI. However, here in the proof we will refer to w quite often,

so please recall that w comes from the complete form of a SI:

|w|z ≤ |w|u + |w|v

where the inequality is supposed to hold for every w ∈ Σ∗.

(IF)

Consider the words u = a1a2...am and v = am+3...an. An occurrence of ua2v in a

word w is given by the vector (i1, .., im, im+1, .., in), where im+1 and im+2 indicate

the position of the a’s in the middle. To count the occurrences of ua2v in w we can

proceed by taking all the occurrences where the indices corresponding to u and v

are different and multiplying them with the number of possibilities of choosing a’s

from w(im, im+3). So if we fix the position of u and v in w and only consider the

possibilities for choosing the a’s we get the following:

|w(im, im+3)|a ≤ 1 + |w(im, im+3)|aa

and this holds because
(
n
1

)
≤

(
n
0

)
+

(
n
2

)
for any n > 0.

(ONLY IF)

Suppose the three words cannot be written in the form given by the theorem. Now,

depending on the length of the words, we have to distinguish among a few cases:

1. |u| ≥ |z| and |v| ≥ |z|: by choosing w = z, we get |w|u = |w|v = 0 and

|w|z = 1 which contradicts the SI.

2. |u| < |z| and |v| < |z|: if z = a1a2...am one can find a counterexample of the

form w = ak
1a

k
2 ...a

k
m. The proof goes similarly to Theorem 15: |w|u and |w|v

are polynomials of smaller degree than |w|z .

3. |u| < |z|, |v| ≥ |z| and z is not a subword of v: first, u needs to be a subword

of z otherwise w = z leads to a contradiction. Then we have three subcases:

(a) red(z) = b1b2...bn 6= red(v): again some

w = bk1b
k
2 ...b

k
n

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

61 4.6 Subword inequalities

will contradict the SI, just like in the proof of Theorem 15.

(b) red(z) = red(v) = b1b2...bn and there exist j1 6= j2 such that pow(z)

differs from pow(u) at position j1 and pow(z) differs from pow(v) at

position j2: let pow(u) = (p1, .., pn), pow(z) = (k1, .., kn) and pow(v) =

(l1, .., ln) be the power vectors of u, z and v, respectively. In this case

there is some i ≤ n such that ki < li. Now, for a big enough k (see proof

of Theorem 15) consider the word

w = bk1b
k
2 ...b

ki

i ...b
k
n

(that is, we leave the i-th block unchanged). |w|v = 0 reduces the SI to

|w|z ≤ |w|u and results in |w|z being a polynomial in k of degree |z|−ki.

At the same time pj < kj so |w|u is a polynomial in k of degree smaller

than |z| − ki, thus w contradicts the SI. Note that the same argument

does not work if a decomposition mentioned in the theorem exists, since

then the only block we could leave unchanged for reducing |w|v to 0 is

the exact block where we could make |w|z grow faster than |w|u, making

it impossible to find a counterexample of the mentioned form.

(c) z = x1a
izx2, u = x1a

iux2 and v = x1a
ivx2: as we have seen in the (IF)

part the SI reduces to

(
n

iz

)

≤
(
n

iu

)

+

(
n

iv

)

and since either iu 6= iz − 1 or iz 6= iv − 1 it is easy to find an n that

leads to contradiction.

The decomposition in Lemma 11 is not unique for a given left hand side term.

For example, if the term baabba is on the left hand side, we can choose the triple

(x1, a, x2) to be (ba, a, bba) or (baa, b, ba), respectively. The resulting SIs (with dots

marking the decomposition):

• ba.a.bba ≤ ba.bba+ ba.aa.bba

• and baa.b.ba ≤ baa.ba+ baa.bb.ba hold in both cases.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 62

In the proof of the previous lemma we saw that whenever the terms are identical

except for one block, the SI reduces to an inequality between binomial coefficients.

Let’s take, for instance,

b.a.b+ b.aaa.b ≤ bb+ b.aa.b+ b.aaaa.b

It becomes clear that this inequality holds when we express it in terms of binomial

coefficients:
(
n

1

)

+

(
n

3

)

≤
(
n

0

)

+

(
n

2

)

+

(
n

4

)

In general, using some basic properties of binomial coefficients, we can extend the

previous lemma to multiple terms on both sides.

Lemma 12. Let us consider a set of inequalities ui ≤ vi + vi+1, 1 ≤ i ≤ n. If all

these inequalities hold and in addition to this, vi+1 ≤ ui +ui+1 for all 1 ≤ i ≤ n−1,

then

u1 + u2 + ..+ un ≤ v1 + v2 + ..+ vn+1

also holds.

Proof. From Lemma 11 we know that the conditions formulated in this lemma

induce that all the terms on the left hand side and on the right hand side will

have the same reduced form and their power vectors will be different in exactly one

position, so we get a SI looking like this:

x1ax2 + x1a
3x2 + ..+ x1a

2k+1x2 ≤ x1x2 + x1a
2x2 + ..+ x1a

2k+2x2

which reduces to

(
n

1

)

+

(
n

3

)

+ ..+

(
n

2k + 1

)

≤
(
n

0

)

+

(
n

2

)

+ ..+

(
n

2k + 2

)

Now using Pascal’s rule , i.e.
(
n

k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
, and removing identical terms

appearing on both sides we arrive at

0 ≤
(
n− 1

2k + 2

)

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

63 4.6 Subword inequalities

so we can conclude the proof.

In |w|bakb ≤ |w|bak−1b + |w|bak+1b the central block of a’s needs to be closely

bounded from below and above to make up for the w’s which have n a’s in the

middle so that
(

n
k+1

)
<

(
n
k

)
. If we allow the coefficients of the terms to be different

than 1, then we can relax the strict condition for the number of a’s by multiplying

the terms on the right hand side to make up for the cases where
(

n
k+1

)
has not

outgrown
(
n
k

)
yet. For example bab ≤ bb+baaab does not hold but bab ≤ 2bb+baaab

does. In general for baib ≤ bajb+ bakb, where j < i < k, the term with k a’s will be

equal to the one with i a’s when the containing word will have i+ k a’s so we have

to set the coefficient of the shorter term in such a way that it compensates for the

cases when the containing word has less than i+ k a’s in the middle.

Lemma 13. A SI of the form αz ≤ β1u + β2v holds if and only if there exist

x1, x2 ∈ Σ∗, a ∈ Σ and 0 ≤ j < i < k such that:

• z = x1a
ix2,

• u = x1a
jx2,

• v = x1a
kx2 and

• α
(

n
i

)
≤ β1

(
n
j

)
+ β2

(
n
k

)
holds for every n ≥ 0.

Proof. The proof is basically the same as the one for Lemma 11 except for the last

part, because the last condition of this lemma makes up precisely for point 3.(c) in

the proof of Lemma 11.

Now for SI’s having arbitrary coefficients we can state our main result, which

follows from Lemma 12 and Lemma 13.

Theorem 16. A SI of the form α1u1 + ..+ αnun ≤ β1v1 + ..+ βn+1vn+1 holds if

both αiui ≤ βivi + βi+1vi+1 and βi+1vi+1 ≤ αiui + αi+1ui+1 hold for every i ≤ n

and i ≤ n− 1, respectively.

Naturally, if we have some true SI’s, their sum is also a valid SI, therefore if

we can decompose a SI into others of the form mentioned in Theorem 16, then the

SI holds. As an example let us look at the following SI:

baba+ baaaba+ baabba < bba+ 2baaba+ baaaaba+ baabbba

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 4: Counting scattered subwords 64

This SI is the sum of

baba+ baaaba ≤ bba+ baaba+ baaaaba

and

baabba ≤ baaba+ baabbba

both of which satisfy Theorem 16, therefore hold for any word.

It can be seen that a terminating algorithm can perform this decomposition (in-

cluding, of course, the verification whether the components hold), so if one can

prove that the only SI’s that hold are the ones that can be decomposed in the

aforementioned way, the decidability question would be solved.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 5

Powers of regular languages

The concept of primitive roots, just like that of primitive words, came up with

the paper [12] of Lyndon and Schützenberger and it has received special interest

in the algebraic theory of codes and formal languages. As mentioned briefly in

the introduction, perhaps the most thrilling question about primitive words over a

given alphabet is whether the language formed by them is context-free. Although

the formulation is simple - like with other famous open problems - it has proved

very difficult to answer it. The first thought, of course, was to try the well-known

pumping lemmas for context-free languages. We have several of them, they are easy

to use, but as Dömösi et al. proved in [13], they are of no help this time. In [13]

another condition for being context-free, namely semi-linearity was investigated. It

was shown that Q∩ (a∗b)n (where n ≥ 1) is Parikh semi-linear, so this attack failed

too. It was shown, thatQ is not deterministic context-free [12] and moreover, cannot

be generated by an unambiguous context-free grammar [49]. At the same time it can

easily be seen that Q is accepted by a deterministic linear bounded automaton. On

the other hand, the language of non-primitive words is not context-free by Ogden’s

lemma. Unfortunately this does not help us with the original question as the class

of context-free languages is not closed under complementation.

A related open problem posed by Calbrix and Nivat concerns the regularity of

certain languages consisting mainly of non-primitive words. After quickly going

through the partial results obtained previously on the matter we are going to solve

the problem in the following sections.

65

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 5: Powers of regular languages 66

5.1 Roots and Powers of Regular Languages

Strongly connected with the notion of primitive words is that of the root of a word.

For a nonempty word w, there exists a unique primitive word p and n ≥ 1 such that

w = pn. This primitive word p is called the root of w, denoted by
√
w. The set of all

roots of words from a language L form the root of L, denoted by
√
L. Horváth and

Kudlek [26] have shown that the membership problem in Q, that is the language

of primitive words is decidable in quadratic time. Lischke [40] investigates general

relationships between the computational complexity of a language L and that of its

root, showing that the complexity of the root can be arbitrarily great. It is easy to

see that
√

Σ∗ = Q,
√
L ⊆ Q for each language L, and

√
L = L if and only if L ⊆ Q.

In this chapter we turn towards an open problem which is, as we will see, in strong

connection with the roots of languages.

Calbrix and Nivat [5] define the power pow(L) of a language L. This is the

set of all words pk where p ∈ L and k is a natural number. It is easy to see that

for a regular language, its power may be a regular language too or not. Take for

instance the regular language ab∗ whose power is not even context-free. Calbrix and

Nivat raised the problem to characterize those regular languages whose powers are

also regular, and to decide the problem whether a given regular language has this

property. They conjecture that ”rational languages such that their power is also

rational are ’almost’ a union of rational subsemigroups of Σ∗ and the point is to

give the right sense to this almost”. We recall the context in which the problem was

proposed. The rational ω-languages are characterized by their ultimately periodic

words, of the form uvω. Of course uvω = u(vk)ω = uvl(vk)ω, l, k ≥ 0. Given

M ⊆ Σω one defines its ”periods”: per(M) = {v ∈ Σ+|∃u ∈ Σ∗, uvω ∈ M} ⊆ Σ∗.

An important result is that if M is rational, then per(M) is rational. Note that

pow(per(M)) = per(M). We can also consider a partial representation L ∈ Rat(Σ∗)

such that pow(L) = per(M), and ask whether pow(L) ∈ Rat(Σ∗). For classes of the

Chomsky hierarchy other than the regular languages, the question of the stability of

the power operator is easy and has a positive answer. We note the following facts:

• the power of a recursively enumerable language is recursively enumerable too:

one can enumerate the same way as IN2;

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

67 5.1 Roots and Powers of Regular Languages

• the power of a recursive language L is also recursive: a Turing Machine can,

in a finite time, look for all decompositions of a word u ∈ Σ∗, in the form of

a power u = vk, and test if v ∈ L (on another part of the band);

• we have the same result for context-sensitive languages.

The set of rational languages over a finite alphabet Σ denoted by Rat(Σ∗) is the

smallest set of languages which contains the finite languages and is closed under

union (∪), concatenation (·), and star (∗) (the reflexive transitive closure of the

concatenation). It is known [32] that Rat(Σ∗) is also the set of languages which are

recognizable by finite automata, and is closed under complement and intersection.

Cachat [4] gives a partial solution to this problem showing that for a regular

language L over a one-letter alphabet, it is decidable whether pow(L) is regular.

He restricts himself essentially to the special case of a one-letter alphabet and

gives an effective solution for it. With this restriction, the languages can be easily

represented as sets of integers, and we can use some elementary facts of arithmetic.

For a one-letter alphabet Σ = {a} each word ak of a∗ is characterized by its

length k ∈ IN . We identify a given L ⊆ a∗ with the set {k ≥ 0|ak ∈ L} ⊆ IN .

The product of sets of integers is defined with the usual multiplication: ∀M,O ⊆

IN,M ·O = {m · n|m ∈M,n ∈ O}. We might omit the symbol (·) for the multipli-

cation. For any L ⊆ a∗, pow(L) is isomorphic to MIN , with M = {k ≥ 0|ak ∈ L},

just because (ak)j = akj for j ≥ 0. That is to say, multiplication over the inte-

gers corresponds to the power operation over words. Now we can formulate the

problem in terms of integers: given M ∈ Rat(IN) we want to determine whether

MIN ∈ Rat(IN).

By convention nIN = {nk|k ∈ IN}, and [a, b) is the segment of integers between

a and b (a included, b excluded). In the situation of this lemma, using the terms

from [14] we will say that n is eligible as a period for M , and (n,m, I, P) is a

representation of the rational language M .

Cachat’s main result is the following:

Theorem 17. [4] For a given language L ∈ Rat(IN), one can decide algorithmi-

cally whether LIN ∈ Rat(IN). We denote Inv(m, q) = {x ∈ [m,m+ q)|gcd(x, q) =

1}, the set of integers relatively prime to q (”invertible” in Z/qZ), between m and

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 5: Powers of regular languages 68

m+ q − 1. Algorithm: Rationality test for LIN , L rational

Input: L ∈ Rat(IN) represented by (q,m, I, P) with L = I ∪ (P + qIN), where

q ≥ 1,m ≥ 0, I ∈ [0,m), P ∈ [m,m+ q)

Output: LIN ∈ Rat(IN) or LIN /∈ Rat(IN)

1. If 1 ∈ L, then LIN ∈ Rat(IN), end.

2. Else, if ∅ 6= Inv(m, q) ∪ P 6= Inv(m, q), then LIN /∈ Rat(IN), end.

3. Else, if Inv(m, q) ⊆ P , obtain the answer with the equivalence:

LIN ∈ Rat(IN)⇔ ∀p ≤ m+ q, pprime, ∃b ≥ 1, pb ∈ L, end.

4. Else we have ∅ = Inv(m, q) ∩ P . Compute, for each prime divisor u of q such

that ∃x ∈ P, u|x,

Iu = { x

gcd(u, x)
|x ∈ I},

Pu = {x ∈ P |u ∤ x} ∪
⋃

x∈P,u|x

{x
u
,
x+ q

u
, ...,

x+ q(u− 1)

u
},

and I ′u = (Iu ∪ (Pu + qIN)) ∩ [0,m), P ′
u = (Pu + qIN) ∩ [m,m+ q). Call recursively

the algorithm with (q,m, I ′u, P
′
u), to determine whether L′

uIN ∈ Rat(IN), where

L′
u = I ′u ∪ (P ′

u + qIN) and L′
uIN = uIN∩LIN

u
. Collect every answer. Then answer

with: LIN ∈ Rat(IN)⇔ ∀uprime, u|q, such that ∀x ∈ P, u|x, L′
uIN ∈ Rat(IN)

Cachat also suggests to consider as the set of exponents not only the whole set

IN of natural numbers but also an arbitrary regular set of natural numbers. This

suggestion is taken up in [27] in the definition of powH(L). The authors answer

partially the problem of Calbrix and Nivat and the open question of Cachat for

languages over any finite alphabet and almost any finite set of exponents.

The class REG of regular sets can be split up into two classes FR and IR of

sets whose roots are finite and infinite, respectively. It is proved by Horvath et al.

that FR is closed under the power with an arbitrary finite set. Later on they show

that the power of any set from IR with any nonempty regular exponent containing

none of the numbers 0, 1, 2, is context-sensitive but not context-free. In their paper

it is also discussed whether it is decidable for a regular set whether its power with

any nonempty regular exponent is regular too. For the set N of all natural numbers

as an exponent the only case left open is when the language has a non-regular

intersection with its root and the difference between the power of the language and

the language itself has a finite root. It is supposed by the authors that also in this

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

69 5.2 The power of a regular language

case the regularity of the power of the language is decidable. As we mentioned the

notion of power used in [5] is extended here:

powH(L) = {wk|w ∈ L, k ∈ H}

For a regular grammar G and a nonempty set H ⊆ N , Horváth et al. propose

the following procedure to decide the quality of powH(L(G)). Let L = L(G).

1. If H ⊆ {0, 1} then powH(L) ∈ REG.

2. Decide whether
√
L is finite.

3. If
√
L is finite then

if H is finite then powH(L) ∈ REG,

if H = IN then it is decidable whether powH(L) ∈ REG.

4. If
√
L is infinite then

if H ∈ {{2}, {0, 2}} then powH(L) /∈ REG,

if H \ {0, 1, 2} 6= ∅ then

if 1 /∈ H or L∩
√
L is regular or powH(L) \L has an infinite root then

powH(L) /∈ CF .

Note that from the original problem of Calbrix and Nivat (H = N) the following case

is left open in [27]: given a regular language L which has a non-regular intersection

with its root, and for which powH(L)\L has a finite root is the power of L regular?

The authors suppose a positive answer, and we will prove their conjecture in the

next section.

5.2 The power of a regular language

To make proofs easier in this section, we will need a corollary of Theorem 6 by

Lyndon and Schützenberger. The result was first obtained by Shyr and Yu, but as

the original proof is rather long and involved, we present it here with a short and

simple proof.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 5: Powers of regular languages 70

Corollary 3. [58] Let u, v be primitive words such that u 6= v. Then there is at

most one non-primitive word in u+v+.

Proof. Let w = umvn be non-primitive. Then either m = 1 or n = 1 by Theorem

6. So, by symmetry let uvn = wi for some primitive word w and i ≥ 2. We may

choose n to be minimal with that property. It is enough to show that all uvn+k are

primitive. By contradiction, suppose that uvn+k is not primitive for some k ≥ 1,

that is there exists some z ∈ Q and j ≥ 2 such that zj = uvn+k. It follows that

wivk = zj.

First consider the case k ≥ 2. Since i, j, k ≥ 2, we can apply the Lyndon-

Schützenberger theorem and get that
√
w =

√
v =

√
z, but then u = v, a con-

tradiction.

Now let us see the case k = 1. Non-primitivity is invariant to cyclic shifts, so wi and

zj being non-primitive gives us that vnu and vnuv are non-primitive too. Hence

there are words w1, z1 ∈ Q such that wi
1 = vnu and zj

1 = vnuv, moreover |w1| = |w|

and |z1| = |z|. From here zj
1 = wi

1v. As v is a prefix of wi
1, we have that zj

1 has

both periods |z1| and |w1|. Now we can apply the theorem of Fine and Wilf and get

that z1 = w1 = v. This means w = z = v and then u = v, a contradiction again.

From here we get the following:

Corollary 4. For all words x, y, z ∈ Σ∗ with y 6= λ with |√xyz| 6= |√y|, there is at

most one non-primitive word in the language xy+z.

Proof. Suppose there exist numbers i, j ≥ 1 with i < j such that both xyiz and

xyjz are non-primitive. Non-primitivity is invariant to cyclic shifts, so zxyi and

zxyj are non-primitive too.

If zx is non-primitive then we can apply the Lyndon-Schützenberger theorem on

zxyj and get that
√
zx =

√
y. This would mean

√
zxy =

√
y and from here

|√xyz| = |√y|, a contradiction.

If zx is primitive then from Theorem 3 we have that only one of the words zxyi

and zxyj is non-primitive, contradicting our original assumption.

Now we are ready to move on to the open problem mentioned in the previous

section. There are easy examples for non-trivial regular languages that do not have

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

71 5.2 The power of a regular language

a regular power. Besides the one mentioned before one could take aaa(aa)∗ whose

power {ak : k is not a power of 2} is not even context-free (in particular, powers of

regular languages are not semi-linear, in general).

In fact, as it turns out, it is quite difficult to come up with examples of regular

languages L with regular power other than the ones for which L = L∗ or L = L∗\K,

where either K is finite or K =
⋃

w∈S w
∗ for some finite set of words S. This seems

to justify the conjecture formulated by Calbrix and Nivat cited before. Hence,

rather than trying to solve the case left open in [27] one might try a new approach.

Indeed, as we will shortly see, we can give an equivalent criterion for a regular

language to have a regular power, i.e., we can now give sense to that ‘almost’.

Theorem 18. Let L be a regular language. Then pow(L) is regular if and only if

pow(L) \ L is a regular language such that its primitive root is a finite language.

Proof. The class of regular languages is closed under union and taking the difference

of two sets, therefore if pow(L)\L is a regular language then so is (pow(L)\L)∪L =

pow(L).

Now let us look at the ”only if” part. If pow(L) is regular then so is Ldiff =

pow(L) \ L. Note that Ldiff consists solely of non-primitive words. Let n be the

number of states of the minimal deterministic automaton accepting Ldiff . Now

suppose that
√
Ldiff is infinite. In this case there must be some w ∈ Ldiff such

that |√w| > n. On the other hand the pumping property of regular languages

tells us that w = xyz for some xz, y /∈ {λ} with |y| ≤ n such that xyiz ∈ Ldiff

for all i ≥ 0, so xyiz is non-primitive for all i. Corollary 4 says that in this case

|√xyz| = |√y| ≤ |y| ≤ n, contradicting the assumption |√w| > n.

Throughout the following proofs we will need the notion of syntactic monoid.

For two words u, v ∈ Σ∗ and a language L ⊆ Σ∗, by saying that u ≡ v(PL) we mean

the following

xuy ∈ L if and only if xvy ∈ L for all x, y ∈ Σ∗.

For a word w ∈ Σ∗ the congruence class [w]PL
consists of all words congruent with

w according to PL, that is [w]PL
= {v ∈ Σ∗ | w ≡ v(PL)}. Since PL is a congruence

relation, Σ∗/PL = {[w] | w ∈ Σ∗} is a monoid, which is called the syntactic monoid

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 5: Powers of regular languages 72

of L and denoted by Synt(L).

Lemma 14. Let L be a regular language given by an NFA having n states. If

pow(L) is regular, then we have

pow(L) ⊆ L ∪ {√ui | u ∈ L ∧ |u| ≤ max(n2,m) ∧ i ≥ 1},

where m is the size of Synt(L).

Proof. We have seen in Theorem 18 that pow(L) being regular means that it has to

be a subset of L ∪⋃

u∈U u
+ for some finite set U of words. We need to prove that

for every w ∈ Ldiff there is a u ∈ L such that w ∈ √u+
and |u| ≤ max(n2,m).

Take the shortest u ∈ L such that w is a power of u. If |u| > max(n2,m) then

according to the pumping property of regular languages u can be written as xyz

for some y 6= λ 6= xz such that xyjz ∈ L for all j ≥ 0. Here we can distinguish two

cases.

1. If |y| is a multiple of |√u| then |√u| ≤ n. As u ∈ √u+ ∩ L we can apply

the pumping argument on powers of
√
u as if it was a unary language. If k is

the smallest number for which
√
u

k ∈ L then k ≤ n, or else there would be

some numbers p, q with p < q < k such that from the initial state we reach

the same state by reading
√
u

p
or
√
u

q
, and we could cut out

√
u

q−p
from the

word. From here we get that there is a word
√
u

k ≤ n2 having the same root

as w.

2. We are left with the case when in any decomposition u = xyz, |y| is not a

multiple of |√xyz| and |u| > m. Then we find a decomposition u = xyz with

0 < |y| ≤ m and [xy] = [x] in Synt(L). This way we know that xyjz ∈ L,

for all j ≥ 1. As a consequence of Corollary 4 we also know that at most one

of these xyjz can be a non-primitive word. At the same time Ldiff has finite

root, hence for all but finitely many values of j, (xyjz)+ ⊆ L, so we find some

j such that xyjz ∈ L and xyjz is primitive and at the same time (xyjz)+ ⊆ L

. Due to [xy] = [x] in Synt(L) we can conclude (xyz)+ ⊆ L. However, we

supposed that w ∈ Ldiff is some power of xyz, a contradiction.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

73 5.2 The power of a regular language

So for every w ∈ Ldiff there is some u ∈ L, with |u| ≤ max(n2,m) such that

√
w =

√
u and this concludes the proof.

To make it easy to see why the latter half of the previous theorem can be

checked effectively, we should replace max(n2,m) with a bound depending only on

the number of states n of the automaton accepting L.

Remark 5. Let L be a regular language given by an NFA having n states. If pow(L)

is regular, then we have

pow(L) ⊆ L ∪ {ui | u ∈ L ∧ |u| ≤ 2n2 ∧ i ≥ 1},

where m is the size of Synt(L).

Proof. This is clear because n2 < 2n2

and the syntactic monoid is a divisor of the

monoid of Boolean n× n matrices, so Synt(L) has size at most 2n2

.

Let us recall the following result from the paper by Calbrix and Nivat about

languages which are equal to their power.

Lemma 15. [5] Let L be a regular language of Σ∗. Then pow(L) = L if and only

if there are regular languages (Li)1≤i≤n such that L =
⋃n

i=1 L
+
i .

The statement above is useful for testing if a language is equal to its power or

not, we only need to specify the languages Li for an effective construction. Using

the syntactic monoid of L gives us the tool we need. We can translate pow(L) = L

into the following statement involving the congruence classes of PL:

⋃

u∈L

[u]+ ⊆ L =
⋃

u∈L

[u] ⊆
⋃

[u]+.

Given an automaton accepting L we can effectively construct its syntactic monoid

and from here we can effectively define the set of words in the class [u] for all u ∈ L.

In the case of a regular language PL induces a finite number of classes, so we can

decide whether the equality holds or not. Hence, we can state the following.

Proposition 16. For a regular language L it is decidable whether pow(L) = L

holds or not.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 5: Powers of regular languages 74

Now we are ready to proceed with the algorithm. Theorem 18 reduces the

original problem to an equivalent one of deciding whether the language, in some

sense, lacks only a “few” words to be equal to its power. Lemma 14 provides the

means to find those “few” missing words and after adding them to our starting

language Proposition 16 will tell us whether the result is a power or not, that is

whether the power of the original language is regular or not.

Theorem 19. For a regular language L it is decidable whether pow(L) is regular.

Proof. We propose the following algorithm:

1. Input: an NFA A = {Σ, Q, I, F, σ}.

2. Output: “YES”, if pow(L(A)) is regular, and “NO” otherwise.

3. U = ∅

4. FOR all words w ∈ L(A) shorter than 2|Q|2:

5. —IF w∗ \ L(A) 6= ∅ THEN:

6. ——IF pow((
√
w)∗ ∩ L(A)) is regular THEN add w to U

7. ——ELSE output ”NO”

8. compute the syntactic monoid for L′ = L(A) \⋃

u∈U (
√
u)∗

9. IF L′ = pow(L′) then output “YES”

10. ELSE output “NO”

The enumeration of words in L(A) shorter than 2|Q|2 can be done in finite time due

to the length limit. The condition in line 5 can be checked effectively too. First

we have to perform the difference of two regular languages, then check whether

the result is empty or not. As it is stated in [27], the condition in line 6 can be

verified using Cachat’s algorithm [4], because (
√
w)∗ ∩ L(A) is isomorphic to a

unary language, which can be computed effectively. In step 8 we have to compute

the syntactic monoid for a regular language, which is the difference of a regular

language and the finite union of some regular languages, all effectively presented. If

a regular language L is equal to M ∪N for some regular languages M and N , such

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

75 5.3 Conclusion

that
√
M∩
√
N = ∅, then from the closure properties of the regular class we get that

pow(L) is regular if and only if both pow(M) and pow(N) are regular. Moreover,

L and M being powers implies N being a power as well. Therefore, in step 9 we

only need to check whether a regular language is equal to its power or not; by

Proposition 16 this is decidable too. Hence, the algorithm terminates after finitely

many steps; however, the complexity is at least exponential due to both Cachat’s

algorithm and the exponential length bound on the words we need to check in step

4.

5.3 Conclusion

We managed to characterize regular languages that have regular power following the

conjecture of Calbrix and Nivat formulated in [5] and we gave an effective albeit

inefficient procedure to decide this property. Although the decision procedure is

not a direct extension of previous results [4,27], Cachat’s algorithm is needed in an

essential step, which identifies those ”few words” in pow(L) missing from L.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 6

Duplication closure of binary

languages

Mathematically speaking duplication is a binary idempotence, that is a relation or

operation the type x = xx, where the application of the operation on two identical

elements gives the same element as a result. This notion of duplication, adapted

to strings, is the one standing at the basis of this chapter. It is a relation having

a strong motivation from outside of pure mathematics, namely it was first intro-

duced in the context of DNA computing. Several DNA computation models were

summarized by Pǎun et al. in their book on DNA Computing [68].

One of the most frequently occurring phenomena in genome rearrangement is

gene duplication or the duplication of a segment of a chromosome [47]. In the

process of gene repeating duplication, a stretch of DNA is duplicated to produce

two adjacent copies, resulting in a tandem repeat. Several mathematical models

have been proposed for the production of tandem repeats including replication,

slippage and unequal crossing over [39, 56, 60]. The straightforward way to model

such processes is to consider the string operation that takes a factor of a string and

inserts a copy of it right next to the original occurrence.

With Σ being the alphabet, and arbitrary words u, v, w ∈ Σ∗ with v 6= λ we say

that the ordered relation uvw → uvvw is a duplication. Its transitive and reflexive

closure →∗ has the following meaning: if u →∗ v we can obtain v from u by

iterative duplications. The language generated from a word u through duplication

77

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 6: Duplication closure of binary languages 78

or, in other words, the duplication closure of u, is u♥:

u♥ = {w ∈ Σ∗|u→∗ w}.

The duplication closure of a language L is denoted similarly by L♥:

L♥ =
⋃

u∈L

u♥.

This operation has been extensively studied in theoretical computer science and

bioinformatics. Bovet and Varricchio in a 1992 paper ([3]) proved that closure under

duplication, copy languages in their terminology, of arbitrary recursively enumerable

languages over a binary alphabet stays regular. Independently, in 1999 the study

of duplication as we defined it just above restarted with a paper by Dassow et al.

([11]) in which the regularity of the duplication closure of a word over a binary

alphabet is proved.

The notion of bounded duplication was introduced in [38]. On one hand it is

motivated by the fact that in biology it is unrealistic to suppose that an arbitrarily

large segment of a DNA strand can duplicate. On the other hand, for computational

reasons it makes sense to put a bound on the length of the duplicating segments.

Often in the cases where an algorithm to compute duplication the distance or to

decide if u→∗ v for two words u and v the general case probably presents us with

possibly NP hard problems, whereas the bounded version of the same problem can

be even linear.

For a positive integer n and words u, v, w as before, the relation uvw→≤n uvvw

with |v| ≤ n is an n-bounded duplication. Again, the reflexive and transitive

closure u→∗
≤n v means that v can be obtained from u through iterated n-bounded

duplication and the n-bounded duplication closure of u is

u♥≤n = {w ∈ Σ∗|u→≤n}∗w,

and the n-bounded duplication closure of a language L is

L♥≤n =
⋃

u∈L

u♥≤n.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

79

a

a

a

a

b

b

a

b

a

a

a

a

b

b

b

a
c

c

c

a

a

c
a

Figure 6.1: Automaton accepting (a3b2a4c3)♥≤2

By substituting ≤ with = in the previous definitions we get the notion of n-length

or uniformly n-bounded duplication.

Example 5.

(ab)♥ = {ab, aab, aabb, aababb, ...}= a{a, b}∗b

(ab)♥≤2 = {ab, aab, aabb, aababb, ...} = a{a, b}∗b

(ab)♥=2 = {ab, abab, ababab, ...} = (ab)+

The closure of language classes under bounded and uniformly bounded duplica-

tion is settled.

Theorem 20. [31] For an arbitrary regular language L over a binary alphabet,

L♥≤n is regular for all n ≥ 1.

Theorem 21. [31] Over an alphabet having at least three letters, the class of

regular languages is not closed under n-bounded duplication with n ≥ 4

Let us turn now to the missing case of 3-bounded duplication over at least

ternary alphabets. It is clear from the next example that if we consider 2-bounded

duplication then the size of the alphabet does not really make a difference (see

Figure 6.1).

The reason for this is that by duplicating a string of length at most 2 only creates

two new blocks in the word and does not ”mess up” the order (see [31]). A similar

thing happens when considering 3-bounded duplication, as we will shortly see.

Proposition 17. Let L be a regular language. Then, L♥≤3 is regular.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 6: Duplication closure of binary languages 80

a b c
b

a
c

b

c
b

a
b

a

a

c

b

a
c

b

b c

Figure 6.2: Automaton accepting (abc)♥≤3

Proof. In Figure 6.2 we can see an automaton accepting the 3-bounded duplication

closure of abc, the simplest example for a word over an at least ternary alphabet,

where 3-bounded duplication differs from 2-bounded duplication. Here we started

from the simple automaton that accepts only abc and added the loops to cover dupli-

cations of length 1, 2 and 3. We can extend the idea to arbitrary words and regular

languages. For any regular language L we can construct a non-deterministic finite

automaton A = {Σ, Q, q0, F, σ} such that for all u, v ∈ Σ∗ if σ(q0, u) ∩ σ(q0, v) 6= ∅

then either u is a suffix of v or u and v have a common suffix of length 3. We

can achieve this by duplicating the paths which begin with a state reachable by

at least two different words that do not have a common suffix of length 3. After

this we only need to introduce the loops seen in Figure 6.2 for every state of the

automaton. In this case it is clear that the automaton accepts all words that can be

obtained from words of the original language by 3-bounded duplication. Also, since

we started from an automaton in which any state is reachable only by words ending

in the same 3 letters, adding these loops will not introduce words which cannot be

obtained by 3-bounded duplication.

We can see right away that even if the context-free language class is not closed

under bounded duplication, we would not be able to prove it neither by using the

pumping lemmata seen before nor by Parikh’s theorem because duplication closures

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

81

inherently incorporate pumping. In fact, as the following result tells us, no other

proof for this could be given.

Theorem 22. [31] The class of context-free languages is closed under n-bounded

duplication over arbitrary alphabet.

Uniformly bounded duplications were considered by Leupold et al. [38]. They

investigated the closure of words under this operation.

Theorem 23. [38] For all words w ∈ Σ∗, the language w♥=n is a regular language

over arbitrary alphabet Σ for all n ≥ 1.

We proceed now to give a new proof of the result by Bovet and Varricchio

concerning the regularity of the duplication closure of any binary language.

Theorem 24. [3] For all recursively enumerable languages L ⊆ {a, b}∗, the lan-

guage L♥ is regular.

The original argument goes on by showing directly that duplication over a binary

alphabet induces a well-quasi order on words and then uses the generalization of the

Myhill-Nerode theorem given by Ehrenfeucht et al. to show that all these languages

closed under duplication are regular.

Theorem 25. [14] A language L of a finitely generated free monoid Σ∗ is regular

if and only if it is closed with respect to a monotone well quasi order.

The main difference between our method and the one given in [3] lies in proving

that duplication is a well quasi order. The original proof is done by reductio ad

absurdum supposing that there is an infinite antichain with respect to binary dupli-

cation. However, the contradiction comes from a rather involved formal argument.

We do this by reducing this order to the scattered subword relation which is known

to be a well quasi order [24,25]. Then the finite basis property of well quasi orders

leads us to the eventual result. Our proof is somewhat shorter and we believe it

is simpler as well. We recall the notion of blocks from the section on subword in-

equalities in Chapter 4. In the case of a word an1bn2ank we say that the word is

composed of k blocks. By the reduced form(“print”) of a word w = an1
1 an2

2 ...anm

m

we mean red(w) = a1a2...am.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 6: Duplication closure of binary languages 82

Proposition 18. If two words u, v are composed of the same number of blocks and

u is a scattered subword of v then u→∗ v.

Proof. Since the words consist of the same number of blocks, the only way that u

can be a scattered subword of v is that the ith block of u is a scattered subword of

the ith block of v. From this it is obvious that v can be obtained by duplicating

some letters inside the blocks of u.

For a relation to be a well quasi order the following conditions have to be fulfilled:

• there is no infinite decreasing series with respect to this order

• there is no infinite series of pairwise incomparable elements

Lemma 16. For any fixed n, duplication induces a well quasi order on the words

consisting of n blocks.

Proof. If the number n of blocks is fixed, then regardless of the size of the alphabet

there can only be finitely many different prints among the words with n blocks.

Hence, it is enough to prove that duplication induces a well quasi order on the words

having the same print. As the prints are the same, any word can be represented

by a vector of n dimensions holding the length of each block. In this case the

duplication relation translates into an element-wise ≤. This structure is isomorphic

to the duplication relation on binary words with the same number of blocks, and

thus by Proposition 18 it is isomorphic to the scattered subword relation. At the

same time the scattered subword relation is a well quasi order [24, 25] so we can

conclude the proof.

Theorem 26. The relation u→∗ v induces a well quasi order on a binary alphabet.

Proof. Since for two different words u, v the relation u→∗ v implies |u| < |v| there is

no infinite decreasing series with respect to duplication. As for the second condition,

let us suppose that there is an infinite series w1, w2, ... of words in which there are

no two words wi, wj such that wi →∗ wj . This is possible in one of the two cases

below.

1. There are infinitely many words composed of the same number of blocks. In

this case Lemma 16 tells us there can be no infinite antichain among them.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

83

2. There are infinitely many numbers n such that there are finitely many (more

than 0) words which are composed of n blocks. It is easy to see that from

a word an1bn2 it is possible to obtain by duplication any word of the form

an1Σ∗bn2 the following way:

an1bn2 →∗ an1a∗(ba)∗b∗bn2 .

Then by forming the necessary number of blocks we just duplicate the let-

ters inside the block. Let us take the outer two blocks of the words wi, i.e.

ani,1 ...bni,2 . By the argument used above for words consisting of the same

number of blocks there cannot be infinitely many words whose outer blocks

are not comparable by duplication. This means that there must be at least

one wi such that there are infinitely many words in the series whose outer

blocks can be obtained from ani,1 ...bni,2 by duplication. For the sake of sim-

plicity consider the vector of the lengths of the blocks instead of the blocks

themselves. Furthermore, let us separate the vectors of the ’a’ blocks from the

vectors of the ’b’ blocks. Then having an infinite antichain means that for any

vector vi there cannot be another vector such that some scattered subvector

of it would be greater or equal than vi element-wise. Now let the vector of the

word containing the least number of blocks have m+1 values, with the great-

est among them being max. From the previous argument we have that every

vector of the antichain contains at most m elements ≥ max, so every vec-

tor can be written as (p1, ...pn1 , q1, pn1+1, ..., pn2 , q2,, qm, pnm+1, ..., pnm+1),

where pi < max, 1 ≤ i ≤ nm+1, and every qi can take up arbitrary values,

and . The number of the qi values is fixed so we can divide each of these

vectors into 2m+ 1 parts with m fixed:

(p1, ...pn1), (q1), (pn1+1, ..., pn2), (q2), (...., qm), (pnm+1, ..., pnm+1)

Now we can look at the odd parts of these vectors as words over a finite alpha-

bet, because the number of values they can take up is finite. In a well quasi

order we know that in any infinite sequence there must exist a perfect subse-

quence, i.e. an infinite strictly increasing sequence. So we know that there is

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Chapter 6: Duplication closure of binary languages 84

an infinite increasing sequence of “words” over the “letters” {1, 2, ...,m− 1}

in every odd position of the above list. Similarly, in the even positions there

are words over a unary alphabet, again holding infinite perfect subsequences.

This readily gives us that there can be no infinite antichain with respect to the

vectors of the letters of the alphabet. Combining these vectors and applying

the same argument all over again proves our statement.

Theorem 27. [11] For all words w ∈ {a, b}∗ their duplication closure w♥ is a

regular language.

As we have seen the duplication relation is a well quasi order on Σ∗, and so it

possesses the finite basis property, that is every subset of Σ∗ has at least one and at

most finitely many minimal elements w.r.t. duplication. This in turn means, that

for every language L ⊆ {a, b}∗ there is a finite set of words M ⊆ L such that for

all words w ∈ L there is a u ∈ M with u →∗ w, so the duplication closure of L is

the (finite) union of the duplication closures of these minimal elements, that is, the

union of finitely many regular languages:

L♥ =
⋃

u∈M

u♥.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

Bibliography

[1] A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in

a string. Theoret. Comput. Sci., 22(3):297–315, 1983.

[2] J. Berstel, M. Crochemore, and J.-E. Pin. Thue-morse sequence and p-adic

topology for the free monoid. Discrete Mathematics, 76(2):89–94, 1989.

[3] D. P. Bovet and S. Varricchio. On the regularity of languages on a binary

alphabet generated by copying systems. Inf. Process. Lett., 44(3):119–123,

1992.

[4] T. Cachat. The power of one-letter rational languages. In Kuich et al. [36],

pages 145–154.

[5] H. Calbrix and M. Nivat. Prefix and period languages of rational mega-

languages. In Developments in Language Theory, pages 341–349, 1995.

[6] M. Crochemore. An optimal algorithm for computing the repetitions in a word.

Inf. Process. Lett., 12(5):244–250, 1981.

[7] M. Crochemore, S. Z. Fazekas, C. S. Iliopoulos, and I. Jayasekera. Bounds

on powers in strings. In M. Ito and M. Toyama, editors, Developments in

Language Theory, volume 5257 of Lecture Notes in Computer Science, pages

206–215. Springer, 2008.

[8] M. Crochemore and L. Ilie. Maximal repetitions in strings. J. Comput. Syst.

Sci., 2007. In press.

[9] M. Crochemore, L. Ilie, and L. Tinta. Towards a solution to the “runs” con-

jecture. In P. Ferragina and G. M. Landau, editors, Combinatorial Pattern

Matching, LNCS. Springer-Verlag, Berlin, 2008. In press.

85

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

BIBLIOGRAPHY 86

[10] M. Crochemore and W. Rytter. Squares, cubes and time-space efficient string-

searching. Algorithmica, 13(5):405–425, 1995.

[11] J. Dassow, V. Mitrana, and G. Pǎun. On the regularity of duplication closure.

Bulletin of the EATCS, 69:133–136, 1999.

[12] P. Dömösi, S. Horváth, and M. Ito. Formal languages and primitive words.

Publicationes Mathematicae, 42(3-4):315–321, 1993.

[13] P. Dömösi, S. Horváth, M. Ito, L. Kászonyi, and M. Katsura. Formal languages

consisting of primitive words. In Z. Ésik, editor, FCT, volume 710 of Lecture

Notes in Computer Science, pages 194–203. Springer, 1993.

[14] A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of context-free

languages. Theor. Comput. Sci., 27:311–332, 1983.

[15] A. Ehrenfeucht and G. Rozenberg. On regularity of languages generated by

copying systems. Discrete Applied Mathematics, 8:313–317, 1984.

[16] S. Z. Fazekas. On inequalities between subword histories. Int. J. Found. Com-

put. Sci., 19(4):1039–1047, 2008.

[17] S. Z. Fazekas. Powers of regular languages. In V. Diekert and D. Nowotka,

editors, Developments in Language Theory, volume 5583 of Lecture Notes in

Computer Science, pages 221–227. Springer, 2009.

[18] S. Z. Fazekas, M. Ito, and K. Shikishima-Tsuji. Duplication closure of languages

over a binary alphabets. In International Conference on Automata, Languages

and Related Topics, 2008. Debrecen, Hungary.

[19] S. Z. Fazekas and B. Nagy. Primitive words and permutations. In 4th Confer-

ence of PhD Students in Computer Science, 2004. Szeged, Hungary.

[20] S. Z. Fazekas and B. Nagy. Scattered subword complexity of non-primitive

words. Journal of Automata, Languages and Combinatorics, 13(3/4):233–247,

2008.

[21] A. S. Fraenkel and J. Simpson. How many squares can a string contain? J.

Comb. Theory, Ser. A, 82(1):112–120, 1998.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

87 BIBLIOGRAPHY

[22] F. Franek, R. J. Simpson, and W. F. Smyth. The maximum number of runs

in a string. In M. M. . K. Park, editor, Proc. 14th Australasian Workshop on

Combinatorial Algorithms, pages 26–35, 2003.

[23] M. Giraud. Not so many runs in strings. In C. Martin-Vide, editor, 2nd

International Conference on Language and Automata Theory and Applications,

2008.

[24] L. H. Haines. On free monoids partially ordered by embedding. J. Comb.

Theory, 6:94–98, 1969.

[25] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math.

Soc., 2(2):326–336, 1952.

[26] S. Horváth and M. Kudlek. On classification and decidability problems of

primitive words. Pure Math. Appl., 6(2-3):171–189, 1995.

[27] S. Horváth, P. Leupold, and G. Lischke. Roots and powers of regular languages.

In M. Ito and M. Toyama, editors, Developments in Language Theory, volume

2450 of Lecture Notes in Computer Science, pages 220–230. Springer, 2002.

[28] L. Ilie. A simple proof that a word of length has at most 2 distinct squares.

J. Comb. Theory, Ser. A, 112(1):163–164, 2005.

[29] L. Ilie. A note on the number of squares in a word. Theor. Comput. Sci.,

380(3):373–376, 2007.

[30] C. S. Iliopoulos, D. Moore, and W. F. Smyth. A characterization of the squares

in a Fibonacci string. Theoret. Comput. Sci., 172(1–2):281–291, 1997.

[31] M. Ito, P. Leupold, and K. Shikishima-Tsuji. Closure of language classes under

bounded duplication. In O. H. Ibarra and Z. Dang, editors, Developments in

Language Theory, volume 4036 of Lecture Notes in Computer Science, pages

238–247. Springer, 2006.

[32] S. C. Kleene. Representation of events in nerv nets and finite automata. In

C. Shannon and J. McCarthy, editors, Automata Studies. Princeton University

Press, 1956.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

BIBLIOGRAPHY 88

[33] R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear

time. In Proceedings of the 40th IEEE Annual Symposium on Foundations of

Computer Science, pages 596–604, New York, 1999. IEEE Computer Society

Press.

[34] R. Kolpakov and G. Kucherov. On maximal repetitions in words. J. Discret.

Algorithms, 1(1):159–186, 2000.

[35] M. Kudlek and V. Mitrana. Closure properties of multiset language families.

Fundam. Inform., 49(1-3):191–203, 2002.

[36] W. Kuich, G. Rozenberg, and A. Salomaa, editors. Developments in Language

Theory, 5th International Conference, DLT 2001, Vienna, Austria, July 16-

21, 2001, Revised Papers, volume 2295 of Lecture Notes in Computer Science.

Springer, 2002.

[37] K. Kusano, W. Matsubara, A. Ishino, H. Bannai, and A. Shinohara. New lower

bounds for the maximum number of runs in a string. CoRR, abs/0804.1214,

2008.

[38] P. Leupold, C. Mart́ın-Vide, and V. Mitrana. Uniformly bounded duplication

languages. Discrete Applied Mathematics, 146(3):301–310, 2005.

[39] G. Levinson and G. Gutman. Slipped-strand mispairing: a major mechanism

for dna sequence evolution. Molec. Biol. Evol., 4:203–221, 1987.

[40] G. Lischke. The root of a language and its complexity. In Kuich et al. [36],

pages 272–280.

[41] M. Lothaire. Combinatorics on Words. Addison Wesley, Reading, MA, 1983.

[42] M. G. Main. Detecting leftmost maximal periodicities. Discret. Appl. Math.,

25:145–153, 1989.

[43] M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all repeti-

tions in a string. J. Algorithms, 5(3):422–432, 1984.

[44] A. Mateescu and A. Salomaa. Matrix indicators for subword occurrences and

ambiguity. Int. J. Found. Comput. Sci., 15(2):277–292, 2004.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

89 BIBLIOGRAPHY

[45] A. Mateescu, A. Salomaa, K. Salomaa, and S. Yu. A sharpening of the parikh

mapping. ITA, 35(6):551–564, 2001.

[46] A. Mateescu, A. Salomaa, and S. Yu. Subword histories and parikh matrices.

J. Comput. Syst. Sci., 68(1):1–21, 2004.

[47] A. Meyer. Molecular evolution: Duplication, duplication. Nature, 421:31–32,

2003.

[48] P. Ochsenschlager. Binomialkoeffizenten und shuffle-zahlen. Technischer

Bericht, Fachbereit Informatik, T.H. Darmstadt, 1981.

[49] H. Petersen. On the language of primitive words. Theor. Comput. Sci.,

161(1&2):141–156, 1996.

[50] S. J. Puglisi, J. Simpson, and W. F. Smyth. How many runs can a string

contain?, 2007. Personal communication, submitted.

[51] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages.

Springer, 2004.

[52] W. Rytter. The number of runs in a string: Improved analysis of the linear

upper bound. In B. Durand and W. Thomas, editors, STACS, volume 3884 of

Lecture Notes in Computer Science, pages 184–195. Springer, 2006.

[53] W. Rytter. The number of runs in a string. Inf. Comput., 205(9):1459–1469,

2007.

[54] A. Salomaa. Counting (scattered) subwords. Bulletin of the EATCS, 81:165–

179, 2003.

[55] A. Salomaa. Connections between subwords and certain matrix mappings.

Theor. Comput. Sci., 340(1):188–203, 2005.

[56] C. Schlotterer and D. Tautz. Slippage synthesis of simple sequence dna. Nucleic

Acids Res., 20:211–215, 1992.

[57] T.-F. Serbanuta. Extending parikh matrices. Theor. Comput. Sci., 310(1-

3):233–246, 2004.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

BIBLIOGRAPHY 90

[58] H.-J. Shyr and S.-S. Yu. Bi-catenation and shuffle product of languages. Acta

Inf., 35(8):689–707, 1998.

[59] A. Thue. Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I Math-Nat.

Kl., 7:1–22, 1906.

[60] R. Wells. Molecular basis of genetic instability of triplet repeats. J. of Biological

Chemistry, 271:2875–2878, 1996.

UNIVERSITAT ROVIRA I VIRGILI
REPETITIVE SUBWORDS
Szilard Zsolt Fazekas
ISBN:978-84-693-1540-8/DL:T-640-2010

