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Repetitions in Partial Words

Doctoral Thesis

Supervised by

Francine Blanchet-Sadri

Department of Romance Studies

Tarragona, Spain, 2010

UNIVERSITAT ROVIRA I VIRGILI 
REPETITIONS IN PARTIAL WORDS 
Robert George Mercas 
ISBN:978-84-693-7670-6/DL:T-1749-2010 



Supervisor :

Professor Francine Blanchet-Sadri
Department of Computer Science

University of North Carolina

P.O. Box 26170

27402–6170 Greensboro, NC

USA

Tutor :

Dr. Maria Dolores Jiménez López
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Abstract

The object of this thesis is repetitions in partial words, words that besides
the regular letters, may have a number of unknown symbols, called “holes”,
“wild cards” or “do not know” symbols. More specifically, we present and
conclude an extension of the notion of repetition-freeness introduced by
Axel Thue. We do a counting of the maximum distinct number of squares
(2-repetitions) compatible with factors of a partial word. We also study
some properties of unbordered and primitive partial words and give a char-
acterization of the language of partial words having a critical factorization.
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Chapter 1

Introduction

The area of Combinatorics on Words took birth at the beginning of the last
century, when Thue initiated a systematic study of words in a series of pa-
pers [Thu06, Thu10, Thu12, Thu14]. In these papers, several combinatorial
problems that arose in the study of the sequences of symbols were considered,
problems which were solved with the usual tools of discrete mathematics.
While the second and the fourth paper deal with word problems for finitely
presented semigroups (the so called Thue system), where he managed to
solve the problem for special cases (in 1947 the general case is showed to be
unsolvable independently in [Mar41] and [Pos47]), the first and third paper
contained results regarding repetitions (consecutive occurrences of a factor)
inside a word (see [Ber92, Thu06, Thu12], or “Section 1.6: Repetitions in
words” from [AS03]).

Since then, several results on repetitions in words have been re-proven
several times in various ways. According to Currie, [Cur93], “One reason for
this sequence of rediscoveries is that non-repetitive sequences have been used
to construct counterexamples in many areas of mathematics: ergodic theory,
formal language theory, universal algebra and group theory, for example. . . .”

The topic becomes of more interest in the early 80’s due to its connection
to avoidability of patterns [BEM79] and the theory of fixed points of iterated
morphisms.

In the 90’s Fraenkel and Simpson “restart” the study of squares, two
consecutive repetitions of the same factor, in words. More precisely they
are at first interested in infinite words avoiding large squares (squares of
length 2×3 or higher), see [FS95] and later on in counting the total number
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of distinct squares a word might have [FS98]. A few years ago, Ilie gave a
simpler proof of this result [Ili05], and then improved the result by a small
margin [Ili07]. The subject also gained more interest in algorithmics, as
Gusfield and Stoye gave in 2004 a linear time algorithm that marks end
points of squares in the suffix tree of the word [GS04].

Periodicity and borderedness are two fundamental properties of words
that play a role in several research areas including string searching algo-
rithms [CP91, CR94, CR02, GS83], data compression [Sto88], theory of
codes [BP85], sequence assembly [MS95] and superstrings [BJJ97] in com-
putational biology, and serial data communication systems [BI80]. It is well
known that these two word properties do not exist independently from each
other.

Having as motivation some intriguing practical problems that appear as
applications of the central topics in the field of Combinatorics on Words,
such as gene comparison, Berstel and Boasson suggested the usage of par-
tial words in this context, [BB99]. Partial words, a canonical extension of
the classical words, are sequences that, besides regular letters, may have
a number of unknown symbols, called “holes” or “do not know” symbols.
More precisely, the holes, denoted by �, can be taken as any of the letters
of the alphabet the word is defined on. Molecular biology, in particular, has
stimulated a considerable interest in the study of combinatorics on partial
words; for example, the alignment of the DNA sequences is conceived as a
construction of two compatible partial words [BB99, Leu05].

Until now, several combinatorial properties of the partial words have
been investigated. Among these we mention periodicity, i.e., Fine and Wilf’s
Theorem for weak and strong periods (see [SK01, BSH02, SG04, BSBS08,
BSOR]), conjugacy and primitivity, i.e., Defect Theorem, Critical Factoriza-
tion Theorem (see [BS04, BS05, BSD05, BSW07]), avoidability of sets, i.e.,
properties, decidability and complexity (see [BSBP07, BSBK+09, BSJP09,
BBSGR09, BBSG+09]). Also, in [BS04], Blanchet-Sadri made a first step
in investigating languages of partial words by introducing the concept of
pcodes, sets of partial words fulfilling a code-like property. New approaches
from this point of view were also given by Leupold in [Leu04], and Lischke in
[Lis06]. Following all these, the study of repetitions in partial words comes
somehow natural, considering the full words history.

This thesis contains three main parts structured as follows:

4
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The first part of this work refers to the classical problem of repetitions.
If we consider the English word banana, then we notice that the letter b is
followed by a 5

2 -repetition of the word an, that is two full occurrences of an
followed by the first letter a. It is easy to note that over a binary alphabet all
words of length 4 or larger contain a repetition. Since in many applications
the length of the words investigated can be arbitrarily long, it was natural
to study infinite words. The concept of partial word is extended to that
of infinite partial word. In this framework, we will present the problem of
identifying and constructing k-free partial words, i.e., words that do not
contain k consecutive factors which are pairwise compatible. The study is
aimed in two directions: the interest is in both combinatorial and algorithmic
aspects regarding the k-freeness of infinite partial words. We prove that in
order to avoid squares (2-repetitions) and overlaps (5

2 -repetitions) a ternary
alphabet is necessary when we have an infinity of holes. For powers of 3
or larger, three or more repetitions of the same factor, we can construct
such words over a binary alphabet. Also, we show that for alphabets of size
eight, five and four, we can construct infinite full words in which, replacing
arbitrary positions with holes keeps the partial word, square-, overlap- and,
respectively, cube-free. Moreover we prove that these results are optimal.
The result for cubes appeared as joint work with Florin Manea [MM07], the
results for squares and overlaps represent joint work with Francine Blanchet-
Sadri and Geoffrey Scott [BSMS09] and Francine Blanchet-Sadri, Abraham
Rashin and Elara Willett [BSMRW09].

In the second part we study the maximum number of squares a (partial)
word can have. The most common approach when counting the maximum
number of distinct squares a word of a certain length can have, is that
of counting the last occurrence of each of the squares. In the case of full
words, Fraenkel and Simpson proved that, for a word w of length n, if we
denote by sw(i) the number of squares that have their last occurrence at
position i in the word w, then sw(i) < 3. In the case of partial words, it
is somehow natural to count the maximum number of distinct full words
that are squares and are compatible with factors of our partial word. We
prove that the bounds for these words are related to the length of the partial
word, the alphabet size the words are defined on, and the number of holes
they contain. Moreover, we prove that the number of distinct full squares
compatible with factors of a partial word with one hole of length n is bounded

5
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by 7n
2 . These results represent a joint work with Francine Blanchet Sadri

[BSM09] and also Geoffrey Scott [BSMS08].
The last part of the thesis refers to primitive and unbordered words.

A word is called primitive if it cannot be expressed as a power of another
word. A word is unbordered if it is primitive and, none of its proper pre-
fixes equals one of its proper suffixes. It is well known that these two word
properties do not exist independently from each other. A very important
property of unbordered words is that none of the unbordered factors of a
word overlap. At first we extend to partial words a result of Ehrenfeucht and
Silberger [ES79] which states that if a word can be written as concatenation
of non-empty prefixes of another word, then it can be written as a unique
concatenation of non-empty unbordered prefixes of the second word. We
also study properties of the longest unbordered prefix of a partial word and
investigate the relationship between the minimal weak period of a partial
word and the maximal length of its unbordered factors. Later on, we inves-
tigate the maximum number of holes a partial word can have and still fail to
be bordered. Finally we discuss the so-called critical factorization theorem
and look into some properties of it when the partial words are unbordered.
Moreover, we show that the language generated by all partial words having
a critical factorization is context sensitive according to the Chomsky hierar-
chy. This part represents joint work with Francine Blanchet Sadri together
with Crystal D. Davis, Joel Dodge and Margaret Moorefield [BSDD+09],
and Emily Allen and Cameron Byrum [ABSBM09].

6
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Chapter 2

Preliminaries

In this chapter we present the main definitions and results that are to be
used throughout this paper.

In the following, we denote by N the set of natural numbers (note that
0 ∈ N). For i, j ∈ N, {i, . . . , j} denotes the set {k | k ∈ N and i ≤ k ≤ j}.

2.1 Finite and infinite words

Let A be a non-empty finite set, called alphabet . An element a from A is
usually called symbol or letter ; if A has k elements it is called a k-letter
alphabet and its cardinality is denoted by ||A||.

A finite word w over the alphabet A is a finite sequence of letters from
A; usually, a finite word is depicted as w = a0 · · · an−1, where ai ∈ A for
0 ≤ i < n. The sequence with no letters, or the empty word , is denoted by
ε. Observe that a finite word w = a0 · · · an−1 can be defined as a mapping
w : {0, . . . , n− 1} → A, with w(i) = ai, for 0 ≤ i < n.

For example the sequence of letters banana represents a word defined
over the alphabet A = {a, b, n}.

Similarly, a one-way infinite word is depicted as: w = a0a1a2 · · · , and
can be formally defined as a mapping from N to A, that associates to each
position of the word the letter that is present at that position.

We denote by A∗ the set of finite words over the alphabet A, by A+

the set of non-empty finite words over A, and by Aω the set of one-way
infinite words over the same alphabet. It is not hard to see that A∗ is the
free monoid generated by A, under the operation of catenation of words (the

8
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catenation of two words u and v is defined as the string uv), while the unit
element in this monoid is represented by the empty word ε. We stress out
the fact that we can apply catenation also to pairs consisting of a finite word
and a one-way infinite word, given that the left factor is finite.

The length of a finite word w over the alphabet A, denoted by |w|, is
defined as the number of occurrences of the letters from A in that word. We
denote by An the set of all words of length n over the alphabet A. A finite
word v is said to be a factor of the (infinite) word u if u = xvy, where x
is a finite word. Moreover, v is a prefix of u if x = ε and v is finite, and
v is a suffix of u if y = ε and x is a finite word (note that v is infinite if
u is infinite). We say that v is a proper factor of u if v 6= ε and v 6= u.
A factorization of a word w is a sequence of words w0, w1, . . . , wi such that
w = w0w1 · · ·wi.

Considering again the word banana of length 6, we have that ba is a
prefix of it, na is a proper factor and a suffix, and ba, na, na is one of its
factorizations.

For a word u over A, the powers of u are defined inductively by u0 = ε

and, for any n ≥ 1, un = uun−1. If u is non-empty, then v is a root of u if
u = vn for some positive integer n. The shortest root of u, denoted by

√
u,

is called the primitive root of u, and u is itself called primitive if
√
u = u.

If u = (
√
u)n, then

√
u is the unique primitive word v and n is the unique

positive integer such that u = vn. All positive powers of u have the same
primitive root. As an example, the word nana has na as a primitive root
and can be expressed as nana = (na)2.

A word w is called p-periodic, if for all positions i, j with 0 ≤ i, j < |w|,
w(i) = w(j) whenever i ≡ j mod p. More precisely, all symbols that are a
multiple of p apart are equal. The word anana has a period of 2

A non-empty word w is unbordered if p(w) = |w|. Otherwise, it is bor-
dered. A non-empty word x is a border of a word w if w = xv = ux for
some non-empty words u and v. Unbordered words turn out to be primi-
tive. Considering the previous examples, the word banana is unbordered,
while the word anana has borders of length 1 and 3.

Given two alphabets A and B, a morphism is a mapping φ : A∗ → B∗

that satisfies φ(uv) = φ(u)φ(v), for all u, v ∈ A∗. Since A∗ is the free monoid
generated by A, φ is completely defined by the values φ(a), for all a ∈ A, and
φ(ε) = ε. Given a morphism φ we can canonically define how this morphism

9
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works for infinite words. For example in the case of w = a0a1a2 · · · ∈ Aω,
we have φ(w) = φ(a0)φ(a1)φ(a2) · · · . If φ : A∗ → A∗ is a morphism such
that there exists a letter a ∈ A verifying φ(a) = aw with w ∈ A+, then φ

is said to be prolongable on a ∈ A. Because a is a prefix of φ(a), it follows
that φi(a) is a prefix of φi+1(a). Consequently, the limit (called the infinite
word defined by iterating the morphism φ) w = limi→∞ φi(a) exists. This
infinite word is a fixed point of the morphism φ, i.e. φ(w) = w.

For a more detailed presentation of these aspects, as well as for the proofs
of the results cited here, we refer to [CK97, Lot97, KL06].

2.2 Finite and infinite partial words

A partial word of length n over the alphabet A is defined as a partial function
w : {0, . . . , n− 1} → A. For i ∈ {0, . . . , n− 1}, if w(i) is defined we say that
i belongs to the domain of w (denoted by i ∈ D(w)), otherwise we say that
i belongs to the set of holes of w (denoted by i ∈ H(w)). A partial word
having an empty set of holes is called full word.

Let � be a symbol that does not belong to A. For convenience, partial
words are seen as full words over the extended alphabet A� = A ∪ {�}. If
w is a partial word of length n over A, then w is the total function (or the
full word) w : {0, . . . , n − 1} → A ∪ {�}. For example, the partial word
w = a�bb�ab�a will have D(w) = {0, 2, 3, 4, 5, 6, 8} and H(w) = {1, 4, 7}.

Usually, a partial word w of length n is depicted as w = a0 · · · an−1,
where ai = w(i). In this way, one can easily define the catenation of partial
words, as the catenation of the corresponding full words over A�, and the
length of partial words, as the length of the corresponding full words over
A�. Quite naturally, we denote by A∗

� the set of finite partial words over the
alphabet A, by A+

� the set of non-empty finite partial words over A and by
An
� the set of all partial words of length n over the same alphabet.

The partial words u and v are said to be equal if u and v have the same
length, D(u) = D(v) and u(i) = v(i) for all i ∈ D(u). If u and v are two
partial words of equal length, then u is said to be contained in v, u ⊂ v, if all
the elements of D(u) are contained in D(v) and u(i) = v(i) for all i ∈ D(u).
We say that u is properly contained in v, u @ v, if u ⊂ v and u 6= v. Note
that for a full word u and a partial word v, with |u| = |v|, if u ⊂ v then
u = v.

10
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The least upper bound of u and v is denoted by u ∨ v. By this we mean
u ⊂ u ∨ v and v ⊂ u ∨ v and D(u ∨ v) = D(u) ∪ D(v). Note that if
u(i) 6= v(i) for some i ∈ D(u)∩D(v), then u∨v is not defined. For example,
considering the words u = a�b��c and v = ab�c�c we have u ∨ v = abbc�c
with a�b��c ⊂ abbc�c and ab�c�c ⊂ abbc�c.

Similarly to the case of full words, we say that the partial word v is a
factor of the partial word u if there exist partial words x and y such that
u = xvy. If x = ε we say that v is a prefix of u, and if y = ε we say that
v is a suffix of u. Also, v is a proper factor if both v 6= ε and v 6= u. If
w = a0 · · · an−1, we denote by w[i..j] the factor ai · · · aj of w, and by w(i) the
symbol ai. We say that w(i) is the symbol placed at the ith position in the
partial word w. Just like the full word case, a factorization of a partial word
w is a sequence of partial words w0, w1, . . . , wi such that w = w0w1 · · ·wi,
and is sometimes denoted as (w0, w1, . . . , wi−1).

The unique maximal common prefix of u and v will be denoted by
pre(u, v). For a subset X of A∗

�, we denote by P (X) the set of prefixes
of elements in X and by S(X) the set of suffixes of elements in X. If X is
the singleton {w}, then P (X) (respectively, S(X)) will be abbreviated by
P (w) (respectively, S(w)). The elements of the set X = {aba, ab�} have as
maximal common prefix pre(aba, ab�) = ab, P (x) = {ε, a, ab, aba, ab�} and
S(x) = {ε, a, �, ba, b�, aba, ab�}.

For a subset X of A∗
� and an integer i ≥ 0, the set

{w0w1 · · ·wi−1 | w0, . . . , wi−1 ∈ X}

is denoted by Xi. The submonoid of A∗
� generated by X will be denoted by

X∗ where X∗ =
⋃

i≥0X
i and X0 = {ε}. The subsemigroup of A∗

� generated
by X is denoted by X+ where X+ =

⋃
i>0X

i. By definition, each partial
word w in X∗ admits at least one factorization (w0, w1, . . . , wi−1) whose
elements are all in X. Such a factorization is called an X-factorization.

A (strong) period of a partial word w over A is a positive integer p such
that w(i) = w(j) whenever i, j ∈ D(w) and i ≡ j mod p. In such a case,
we call w (strongly) p-periodic. Similarly, a weak period of w is a positive
integer p such that w(i) = w(i+p) whenever i, i+p ∈ D(w). In such a case,
we call w weakly p-periodic. The partial word abb�bbcbb is weakly 3-periodic
but it is not 3-periodic. The latter shows a difference between partial words
and full words since every weakly p-periodic full word is p-periodic. Another
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difference worth noting is the fact that, even if the length of a partial word
w is a multiple of a weak period of it, w is not necessarily a power of a
shorter partial word. The minimum period of w is denoted by p(w), and the
minimum weak period by p′(w).

For a partial word w, positive integer p and integer 0 ≤ i < p, define

wi,p = w(i)w(i+ p)w(i+ 2p)...w(i+ jp)

where j is the largest non-negative integer such that i + jp < |w|. Then
w is (strongly) p-periodic if and only if wi,p is (strongly) 1-periodic for all
0 ≤ i < p, and w is weakly p-periodic if and only if wi,p is weakly 1-periodic
for all 0 ≤ i < p. Strongly 1-periodic partial words as well as the full factors,
that is factors that are full words, of weakly 1-periodic partial words are over
a singleton alphabet.

We say that two partial words u and v are compatible, denoted by u ↑ v,
if there exists a partial word w such that u ⊂ w and v ⊂ w. We note that
u ↑ v implies v ↑ u.

Using the concatenation one gets the following straightforward rules:

Lemma 1. [BB99]
Let u, v, w, x, y ∈ A∗

�. The following hold:

Multiplication: If u ↑ v and x ↑ y, then ux ↑ vy.

Simplification: If ux ↑ vy and |u| = |v|, then u ↑ v and x ↑ y.

Weakening: If u ↑ v and w ⊂ u, then w ↑ v.

The following result extends to partial words the equidivisibility property
of words, or, Lévi’s lemma.

Lemma 2. [BB99]
Let u, v, x, y ∈ A∗

� be such that ux ↑ vy.

• If |u| ≥ |v|, then there exist w, z ∈ A∗
� such that u = wz, v ↑ w, and

y ↑ zx.

• If |u| ≤ |v|, then there exist w, z ∈ A∗
� such that v = wz, u ↑ w, and

x ↑ zy.

12
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A partial word u is primitive if there exists no word v such that u ⊂ vn

with n ≥ 2. Note that the empty word is not primitive, and that if v is
primitive and v ⊂ u, then u is primitive as well. If u is a non-empty partial
word, then there exists a primitive word v and a positive integer n such that
u ⊂ vn. Uniqueness does not hold for partial words. For example, if u = a�,
then u ⊂ a2 and u ⊂ ab for distinct letters a, b.

For u, v ∈ A∗
�, if there exists a primitive word x such that uv ⊂ xn

for some positive integer n, then there exists a primitive word y such that
vu ⊂ yn. Consequently, if uv is primitive, then vu is primitive.

For partial words we have two distinct types of borders. If w = x1v =
ux2, where x1 ⊂ x and x2 ⊂ x, we say that x is a simple border if |x| ≤ |v|,
and a nonsimple (overlapping) border, otherwise. A bordered partial word
w is called simply bordered if a minimal border x exists such that |w| ≥ |2x|.
For example, the word a�b�bb has the simple and minimal border abb and
the nonsimple border abbbb, and thus it is simply bordered.

The notion of one-way infinite partial word extends the notion of partial
word in a natural way. A one-way infinite partial word over the alphabet
A is a partial function w : N → A. As in the case of finite partial words,
for i ∈ N, such that w(i) is defined, we say that i belongs to the domain
of w (i ∈ D(w)). Otherwise we say that i belongs to the set of holes of
w (i ∈ H(w)). The infinite partial words that do not contain any hole are
called infinite full words. One-way infinite partial words are seen as elements
of Aω

� and an infinite partial word is usually depicted as w = a0a1a2 · · · , with
ai ∈ A�.

For a more detailed presentation of these aspects, as well as for the proofs
of the results cited here, we refer to [BS08].

13
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Chapter 3

Freeness for Partial Words

In [Thu06], Thue gives a construction of an infinite square-free word over a
three-letter alphabet using a “uniform tag system” and an infinite square-
free word over a four-letter alphabet using iterative morphisms (see [Ber92]).
Later on, in [Thu12], the author introduces the so-called Thue-Morse word,
and shows that all two-sided infinite overlap-free words are derived from this
sequence. Moreover, he gives a complete description of circular overap-free
words and gives an iterative morphism over three letters that constructs an
infinite square-free word.

Because Thue’s results were published in obscure Norwegian journals,
they remained unknown for a long time and were independently rediscovered
by S. E. Arshon in 1937 and by M. Morse and G. Hedlund from 1938 to
1944. For more information see [BEM79]. It is interesting to note, as the
authors say, that while Thue saw analogies with the theory of Diophantine
equations, the work of Morse and Hedlund was grounded in the investigation
of flows on surfaces of negative curvature, and Arshon’s work was done in
order to answer a question which A.Y. Khinchin posed in 1933.

Since Aω is an uncountable set, hence, there is no effective way to define
the elements of this set, the focus is on infinite words that can be described
through some precise method. The most frequently used method to define
infinite words (as stated in the survey [KL06]) is that of iterating a morphism
that is prolongable. In the following we present an example of an infinite
word defined using this method.

Example 1. (The Thue-Morse word)
Let φ : {a, b}∗ → {a, b}∗ be a morphism defined by φ(a) = ab and
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φ(b) = ba. We define τ0 = a and τi = φi(a). Remark that τi+1 = φ(τi)
and that τi+1 = τiτ i, where x is the word obtained from x by replacing
each occurrence of a with b and each occurrence of b with a. We define the
Thue-Morse word by:

τ = lim
i→∞

τi = lim
i→∞

φi(a)

The Thue-Morse word τ is a fixed point for the morphism φ, i.e., φ(τ) = τ .

We say that an (infinite) word w is k-free if there does not exist a word x
such that xk is a factor of w. Also, a (infinite) word is called overlap-free if it
does not contain any two instances of the same factor overlapping. In other
words it does not contain a factor of the form ayaya with a ∈ A. For more
details see [Lot97]. It is clear that any overlap-free word w is k−free, for
k ≥ 3, and, as well, any 2-free word is overlap-free. For simplicity, a 2-free
word is said to be square-free , and a 3-free word is said to be cube-free.

A result that will be used throughout the chapter regarding the Thue
Morse infinite word τ defined in Example 1, is the following:

Theorem 1. (Thue Theorem)[Ber92, Thu06, Thu12] The Thue-Morse word
τ is overlap-free.

Remark 1. As a consequence of Theorem 1, it follows that the Thue-Morse
word τ is k-free for all k ≥ 3.

In the same papers A. Thue also gave a word that is square-free. The
word was defined over a three-letter alphabet, using a morphism whose
sum of the length of the images was 18. It has been shown by Carpi in
[Car83] that this is actually the optimal bound for a morphism preserving
square-freeness. Later on, however, Hall [Hal64] manages to give a simpler
morphism that generates a fixed point word that is square-free. Let σ be
the fixed point of the morphism ψ : {a, b, c}∗ → {a, b, c}∗ with ψ(a) = abc,
ψ(b) = ac and ψ(c) = b.

Theorem 2. [Lot97] The word σ is square-free.

A partial word w ∈ A∗
� is said to be k-free if for any non-empty factor

x0 · · ·xk−1 of w, there does not exist a partial word u, such that xi ⊂ u

for all i ∈ {0, . . . , k − 1}. Now looking at the definition of overlap-freeness
we see that things are a bit different from the full word case. We notice
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that, for a word of the form a0w0a1w1a2, we say that it is a strong overlap
if w0 ↑ w1 and a0, a1 and a2 are pairwise compatible, and that it is a weak
overlap if w0 ↑ w1 and a0 ↑ a1 and a1 ↑ a2. Please note that the notions of
strongly and weakly overlap-freeness come naturally from the definitions of
strong and weak periods. Moreover, we see that a word is a strong overlap
if it is compatible with a full word of the form awawa and a weak overlap if
both overlapping factors are both compatible with a word of the form awb,
where a and b are letters and w is a word over the alphabet A.

Remark 2. It is rather simple to note that any partial word w over A, with
|w| ≥ 2 and H(w) 6= ∅, cannot be square-free, since it contains at least one
of the factors a� or �a, where a ∈ A�. Also, if w is n-free, then w is m-free
for m ≥ n.

Remark 3. Inserting a hole is defined as replacing a letter with a hole in a
fixed position of a word (the length of the word remains the same). When we
introduce holes into arbitrary positions of a word, we impose the restriction
that every two holes must have at least two non-hole letters between them.

Without imposing this restriction, it would always be possible to obtain
a repetition of order k of the form �k or �k−ia�i−1, where a is a letter of the
alphabet and k and i are integers with i < k.

Remark 4. Since for all words of the form a�b we have a� ↑ �b, all holes
present after the first position determine a weak overlap. Hence, we will say
that a word is a weak overlap, if it does not contain any overlap, except the
trivial a�b, for some letters a, b.

For a more detailed presentation of these aspects, as well as for the proofs
of the results cited here, we refer to [Ber92, BS08, CK97, KL06, Lot97].

3.1 Square-freeness

To generalize Thue’s result, we wish to find a square-free partial word with
infinitely many holes, and an infinite full word that remains square-free even
after replacing an arbitrary selection of letters with holes. Unfortunately,
every partial word containing at least one hole and having length at least
two contains a square (as stated in Remark 2, either a� or �a cannot be
avoided, where a denotes a letter from our alphabet). Furthermore, since it
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is obvious that if we replace with holes 2n consecutive letters in a full word,
the corresponding factor of the resulting partial word will be a square, the
restriction defined in Remark 3 must be applied.

Motivated by these observations, we call a word trivial square if it is
of the form a�, �a or �ab�, for any letters a, b. Any other square is called
non-trivial, [BSMS09]. The study of squares of different lengths is not new.
Following the results of Thue, see [Ber92, Thu06], Dekking studies in [Dek76]
the properties of infinite binary sequences. One of his first results in the
paper from 1976, states the following.

Theorem 3. [Dek76] There exists an infinite binary sequence free from
triple repetitions and free from repetitions of length 4 or greater.

A second result talks about the number of words avoiding repetitions of
length greater than 3.

Theorem 4. [Dek76] Binary sequences that are free from triple repetitions,
and contain no repetitions of length 3 or greater, are finite.

The first result was improved after almost 30 years, in [RSW05] where
a somehow simpler construction for an infinite binary word avoiding both
cubes xxx and squares yy with |y| ≥ 4 is given. In the same paper the
authors also give a simpler construction for the implementation of an infinite
binary word avoiding all squares except 02, 12, and (01)2 a result originally
from Fraenkel and Simpson [FS95]. This is done using a series of morphisms
over two and four letters.

With these restrictions, the study of square-free partial words becomes
much more subtle, as we will see in the following. First we find an infinite
partial word containing infinitely many holes and avoiding all squares but
the ones of the form a� and �a, and later, we find an infinite full word that
remains non-trivial square-free even after replacing an arbitrary selection of
letters with holes. As a visual aid throughout this section, we will underline
the first and (n + 1)th symbol in a word that is a square and has length
2n. These results represent joint work with Francine Blanchet-Sadri and
Geoffrey Scott [BSMS09].

3.1.1 Square-free partial words

Let us first see if it is possible to have infinite words that do not contain
squares.
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Theorem 5. There exist infinitely many infinite partial words with infinitely
many holes over a three-letter alphabet that do not contain any squares other
than squares of the form �a or a�.

Proof. Let σ be the fixed point defined in Theorem 2. We can define the
word σ′ by applying a morphism δ on the word σ that replaces a with ψ4(a)′,
b with ψ4(b), and c with ψ4(c) where

ψ4(a) = abcacbabcbacabcacbacabcb

and
ψ4(a)′ = abcacbabcbac�bcacbacabcb

Here the a representing the 13th symbol of ψ4(a) is changed into a �. Set
σ = a0a1 . . . , and let σ′ = b0b1 . . . be the partial word δ(σ). We claim that
σ′ satisfies the desired property.

First, σ′ contains no squares of length 4, other than c� and �b. To
see this, it is enough to check the word bac�bca. Now, assume that σ′

contains a non-trivial square. Then there exist integers i ≥ 0, k > 0 such
that bibi+1 . . . bi+k−1 ↑ bi+kbi+k+1 . . . bi+2k−1. Since σ itself is square-free,
the square in σ′ must contain a hole. If k < 7, then the square factor is
also a factor of ψ4(a)′. It can be checked explicitly that ψ4(a)′ is non-trivial
square-free. Therefore, k ≥ 7. We proceed by showing that if bi+j = �,
then bi+k+j ∈ {�, a} and that if bi+k+j = �, then bi+j ∈ {�, a}. This will
show that every hole in σ′ can be filled with the letter a while preserving the
square factor in the word. However, the result of filling all holes in σ′ with
the letter a is the square-free word σ, so we will arrive at a contradiction.
Since both implications are proved using the same logic, we will only show
that if bi+j = �, then bi+k+j ∈ {�, a}. Let us consider the possibilities where
the hole can appear. Suppose bi+j = �.

• If 0 ≤ j < k − 2, then bi+j . . . bi+j+2 = �bc. It is easy to check, by
looking at the description of ψ, that the only factors of σ′ compatible
with �bc are �bc and abc. Since bi+k+j · · · bi+k+j+2 must be compatible
with �bc, it follows that bi+k+j ∈ {�, a}.

• If 5 ≤ j < k, then bi+j−5 . . . bi+j = bcbac�. It is easy to check that
the only factors of σ′ compatible with bcbac� are bcbac� and bcbaca.
Therefore, bi+k+j ∈ {�, a}.
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• If k− 2 ≤ j < 5, then bi+j−1 . . . bi+j+1 = c�b. Since the only factors of
σ′ compatible with c�b are c�b and cab, it follows that bi+k+j ∈ {�, a}.

Corollary 1. There exist infinitely many infinite partial words with an ar-
bitrary number of holes over a three-letter alphabet that do not contain any
squares other than squares of the form �a or a�.

Proof. If not all a’s are replaced by ψ4(a)′ (some could be replaced by ψ4(a)
instead), then we get the result with an arbitrary number of holes.

3.1.2 Generalization of square-freeness

We now turn our attention to words that remain non-trivial square-free after
replacing an arbitrary collection of letters with holes.

We begin by stating an obvious remark that will be used several times
throughout this section.

Remark 5. Let t0 = a0a1a2 and t1 = b0b1b2 be full words. It is possible to
insert holes into t0 and t1 such that the resulting partial words are compatible
if and only if there exists i such that ai = bi (or the letters in position i of t0
and t1 are equal). This is due to Remark 3 that states that every two holes
must have at least two non-hole symbols between them.

To insert holes in t0 = abb and t1 = acc in order to make them compatible
(with the convention in Remark 3), one can create t′0 = a�b and t′1 = ac�
respectively. However, this is impossible when t0 = abb and t1 = bcc.

Proposition 1. Let t be a full word over an alphabet A. If every factor
of length n of t contains n distinct elements of A, then it is impossible to
insert holes into t such that the resulting partial word contains a non-trivial
square w0w1 with w0 ↑ w1 and |w0| = |w1| < n.

Proof. All positions i and i + k have a different letter for 3 ≤ k < n and
thus the position i or i+ k must gain a hole. So there must be two holes at
distance 1 or 2.

Theorem 6. There exists an infinite word over an eight-letter alphabet that
remains non-trivial square-free after an arbitrary insertion of holes.
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Proof. Recall that σ is square-free according to Theorem 2.
We construct the desired word t by applying a uniform morphism δ on

the word σ that replaces

• a with defghijk,

• b with deghfkij, and

• c with dehfgjki.

We claim that t satisfies our desired properties.
Assume that it is possible to change a selection of positions in t to holes

such that the resulting partial word t′ contains a non-trivial square. It is
clear that t′ has no factors that are non-trivial squares of length less or
equal to 4. Therefore, we can restrict our attention to factors of the form
w0w1 with w0 ↑ w1 and |w0| = |w1| ≥ 3. That is, if t = a0a1a2 . . . and
t′ = b0b1b2 . . . , then there exist i ≥ 0 and k ≥ 3 such that

bibi+1bi+2 . . . bi+k−1 ↑ bi+kbi+k+1bi+k+2 . . . bi+2k−1

There are two cases to be analyzed:

Case 1. k ≡ 0 mod 8
Setting k = 8(m+ 1), note that aiai+1ai+2 . . . ai+k−1 is of the form

w00δ(c0)δ(c1) . . . δ(cm−1)w01

and ai+kai+k+1ai+k+2 . . . ai+2k−1 is of the form

w10δ(cm+1)δ(cm+2) . . . δ(c2m)w11

with w01w10 = δ(cm), |wpr| = |wqr| with wpr, wqr ∈ {d, e, f, g, h, i, j, k}∗ and
cl ∈ {a, b, c} for all p, q, r ∈ {0, 1} and l ∈ {0, 1, . . . , 2m}.

Also note that if cp 6= cm+p+1 for any 0 ≤ p < m, then it is impossible to
insert holes into δ(cp) and δ(cm+p+1) such that the resulting partial words
are compatible. Therefore, cp = cm+p+1 for all 0 ≤ p < m.

If |w01| ≥ 5, then by Remark 5, w11 must be a prefix of δ(cm). Hence,

c0c1 . . . cm−1cmcm+1cm+2 . . . c2mcm
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is a factor of σ. Since σ is square-free and cp = cm+p+1 for 0 ≤ p < m, this
is a contradiction. If |w01| < 5, then |w00| ≥ 4 and it follows that w00 and
w10 are suffixes of δ(cm). Then

cmc0c1 . . . cm−1cmcm+1cm+2 . . . c2m

is a factor of σ. Since σ is square-free, this is a contradiction.

Case 2. k 6≡ 0 mod 8
Suppose that ai+l = ai+k+l = d for some 0 ≤ l < k − 4. Then the words

ai+l+1 . . . ai+l+4 and ai+k+l+1 . . . ai+k+l+4

can only be efgh, eghf , or ehfg. Since k 6≡ 0 mod 8, it follows that
ai+l+1 . . . ai+l+4 is different from ai+k+l+1 . . . ai+k+l+4. However, if we select
any two different strings from efgh, eghf and ehfg, it is easy to see that they
cannot be made compatible through the introduction of holes. Therefore,
it is clear that bi+l+1 . . . bi+l+4 is not compatible with bi+k+l+1 . . . bi+k+l+4.
This contradicts with the assumption that

bibi+1bi+2 . . . bi+k−1 ↑ bi+kbi+k+1bi+k+2 . . . bi+2k−1

Therefore, there is no l satisfying 0 ≤ l < k− 4 such that ai+l = ai+k+l = d.
In fact, this argument remains true if we replace the letter d with any letter
in the set {d, e, f, g, h, i, j, k}. Thus, there exists no l satisfying 0 ≤ l < k−4
such that ai+l = ai+k+l. By Remark 5, it follows that ai+l = ai+k+l for
some 0 ≤ l < 3. If k ≥ 7, this same l would satisfy 0 ≤ l < k− 4. Therefore,
k < 7.

We observe that every factor of length six of t contains no repeated
letters. By Proposition 1, it follows that k = 6. Every factor of length 12
in t is contained in δ(c1)δ(c2)δ(c3) for some ci ∈ {a, b, c}. It is a tedious
yet finite process to check that it is impossible to insert holes into any of
the above factors to create a square. This can be done using a computer
program.

Since all cases lead to contradiction we conclude that t satisfies the de-
sired properties.

Of course, it is natural to ask whether such a word can be constructed
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over a smaller alphabet. This question is intimately related to the study of
full words of the form v0awav1, where a ∈ A and v0, v1, w ∈ A∗.

Proposition 2. Let t = v0awav1 be a full word over the alphabet A, where
a ∈ A and vi, w ∈ A∗. If any of the following hold, then it is possible to
insert holes into t so that the resulting partial word contains a non-trivial
square:

1. |w| = 2 and |t| ≥ 6,

2. |w| = 3, |t| ≥ 8 and |vi| ≥ 1,

3. |w| = 4 and |vi| ≥ 2,

4. |w| = 5, |vi| ≥ 4 and |A| ≤ 7.

Proof. Let bi ∈ A. For Statement 1, if t has factors of the form ab0b1ab2b3,
b0ab1b2ab3, or b0b1ab2b3a, then by replacing b0 and b3 with holes into t we
get partial words containing factors that are squares of the form a�b1ab2�,
�ab1b2a�, or �b1ab2�a respectively.

For Statement 2, if t has a factor b0ab1b2b3ab4b5 or b0b1ab2b3b4ab5, we
can insert holes into t such that the resulting partial word has square factors
�ab1�b3a�b5 or b0�ab2�b4a� respectively.

For Statement 3, if t has a factor of the form b0b1ab2b3b4b5ab6b7, we can
insert holes into t such that the resulting partial word has the square factor
�b1a�b3b4�ab6�.

For Statement 4, it is obvious that |t| ≥ 15. Hence, if t has a factor of
the form

b0b1b2b3ab4b5b6b7b8ab9b10b11b12

then we argue as follows. If bi = bj for any 4 ≤ i < j < 9, then by the
previous three statements we can insert holes into the factor such that the
resulting partial word contains a non-trivial square (note that if j = i + 1
or j = i+ 2, we could create the non-trivial squares bibi or bi�bibk, for some
letter bk). For the same reason, bi 6= a for 4 ≤ i < 9. Therefore, we assume
that the letters bi for 4 ≤ i < 9 are pairwise non-equal and distinct from a.
Similarly, we can assume that b9 6= bi for 5 ≤ i < 9 and b9 6= a. If b9 = b4,
then we can insert holes into the factor such that the resulting partial word
contains the square �b3ab4�b6b7�ab9b10�. Thus, the letters bi for 4 ≤ i < 10
are pairwise non-equal and distinct from a. Using the same logic, the letters
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bi for 3 ≤ i < 9 are pairwise non-equal and distinct from a. Since ‖A‖ ≤ 7,
we must have b3 = b9.

Next, b10 must be distinct from a and bi for 6 ≤ i < 10, so either b10 = b5

or b10 = b4. If b10 = b5, we can insert holes into the factor such that the
resulting partial word contains the non-trivial square �b3a�b5b6b7�ab9b10�.
Therefore, b10 = b4. Using the same logic, we find that b2 = b8.

Finally, we can insert holes into our factor such that the obtained partial
word contains the non-trivial square �b2b3�b4b5�b7b8�b9b10�b12.

Corollary 2. Let t be an infinite word over an alphabet A such that any
partial word obtained by inserting holes in t is square-free. Then ‖A‖ ≥ 8.

Proof. Let t be an infinite word over the alphabet A = {a0, a1, . . . , a6},
where ai 6= aj for all 0 ≤ i < j ≤ 6. If t has a factor of the form v0awav1,
where a ∈ A, vi, w ∈ A∗, 2 ≤ |w| ≤ 5 and |vi| ≥ 4, then according to the
previous proposition it is possible to introduce holes into t to create square
factors (note that if |w| = 1, then we can replace w with � to create the
non-trivial square a�ab). To avoid this, t must have a factor of the form

a0a1a2a3a4a5a6a0a1a2a3a4a5a6

up to an isomorphism between the letters. This implies that t contains
squares that will certainly be preserved when holes are added. Therefore,
at least eight letters are needed to create an infinite word satisfying our
conditions.

3.2 Overlap-freeness

As previously mentioned, Axel Thue was first to investigate avoidable regu-
larities, especially words without overlapping factors and square-free words.
His two papers [Thu06, Thu12] on this topic contain the definitions of the
words τ , see example 1, and of a word similar to σ, see [AS99].

In order to prove the overlap-freeness, two lemmas were used.

Lemma 3. [Lot97] Let X = {ab, ba}; if x ∈ X∗, then axa /∈ X∗ and
bxb /∈ X∗.

Lemma 4. [Lot97] Let w ∈ A+. If w has no overlapping factor, then φ(w)
has no overlapping factor (φ is the morphism used in the Example 1).
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From Lemma 3 and Lemma 4, Theorem 1 regarding the overlap-freeness
comes naturally.

Besides this result, in these papers Thue also gives a description of cir-
cular overlap-free words and mentions the problem of counting the number
of overlap-free words over two letters.

Theorem 7. [Thu12] Every circular overlap-free word over the two-letter
alphabet A = {a, b} is of the form φn(ab), φn(aab) or φn(abb) for some
n ≥ 0.

In this section, consisting of results from [BSMS09], we will extend the
concept of overlap-freeness to partial words. We use the standard defini-
tion of overlap-freeness given in the preliminaries, but we still adhere to the
restriction described in Remark 3 when replacing an arbitrary selection of
letters in a word with holes. First we prove the existence of an overlap-free
partial word with infinitely many holes, and later on we find an infinite full
word that remains overlap-free even after replacing an arbitrary selection of
letters with holes. As a visual aid, we will underline the ai’s of the overlap-
ping factor a0w0a1w1a2 to distinguish an overlap present in a sequence of
letters. Moreover, let us note that our definition of weak overlap is actually
a generalization of the overlap definitions used in [BSMS09] and [HHKS09],
since here a factor is considered to be an overlap of length 2p+ 1 if it has a
weak period p, while in the previous papers, the factor had to have a strong
period p.

3.2.1 Overlap-free partial words

Let us first look at a lower bound for the size of an alphabet necessary for
constructing this type of words.

Lemma 5. There exists an infinity of overlap-free infinite binary partial
words containing one hole.

Proof. Recall that the Thue-Morse word is overlap-free. We claim that the
Thue-Morse word preceded by a hole, �τ , is also overlap-free. Let φ be
the Thue-Morse morphism. Because τ is overlap-free, any overlap occurring
in �τ must contain the hole. It suffices, therefore, to show that �φi(a) is
overlap-free for any positive i. Note that

φi+3(a) = φi(a) φi(a) φi(a) φi(a) φi(a) φi(a) φi(a) φi(a)
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contains a copy of both aφi(a) and bφi(a) (due to the factors φi(a)φi(a) and
φi(a)φi(a)). Since the Thue-Morse word is overlap-free, φi+3(a) is as well.
Therefore, neither aφi(a) nor bφi(a) contain an overlap. This implies that
�φi(a) is overlap-free. Furthermore, adding a hole in front of an iteration’s
conjugate will not give us an overlap either. In order to obtain new words
that are overlap-free, it is enough to add a hole in front of words obtained
after taking out the prefix of length |φi+3(a)|, from the Thue-Morse word.
It is also clear that, �τ is overlap-free as well.

Remark 6. Over a binary alphabet all words of length greater than six with
a hole in the third position contain an overlap.

To see this, note that if the partial word has a factor of the form a�a, aa�
or �aa, then it clearly contains an overlap. Therefore, we can assume that
any overlap-free binary word with a hole in the third position has a prefix
of the form ab�ab. If this factor is followed by aa, then the word contains
the overlap ab�abaa. Similarly, if the factor is followed by ab, ba, or bb, it
will contain �abab, ab�abba, or bbb respectively.

Proposition 3. There is no infinite overlap-free binary partial word with
more than one hole.

Proof. To see this, note that by Remark 6, an infinite overlap-free binary
partial word cannot contain a hole after the second position. However, it
cannot contain holes in both the first and second positions, as an overlap of
the form ��a would clearly appear. Thus, only one hole is allowed.

Please note that all previous results hold for both weak and strong over-
laps, since a strong overlap implies a weak overlap. We conclude that in
order to get a word that has an infinity of holes without failing to be overlap-
free, we need at least a three-letter alphabet. We will now prove that the
non-trivial square-free word given in Proposition 5 is also overlap-free.

Proposition 4. There are infinitely many overlap-free infinite partial words
with an arbitrary number of holes over a three-letter alphabet.

Proof. In Theorem 5 we showed that the word σ′ constructed there does not
contain any squares other than squares of the form �b or c�. Because σ is
square-free and hence overlap-free, any overlap in σ′ must contain a hole. So
it remains only to show that σ′ contains no overlaps of the form a0a1a2 with
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a0, a1, a2 ⊂ b or a0, a1, a2 ⊂ c. Note that if a1 = �, this is a trivial overlap,
hence the result will hold for both weak and strong overlaps. However, any
such overlapping factor is so small that it would be contained in ψ4(a)′. It is
easy to check that ψ4(a)′ does not contain any such overlapping factor.

The concept of overlap-freeness is also investigated in [HHKS09] (only
our notion of strong overlap is considered in the paper). Here a new concept
of overlap is introduced:

Definition 1. A partial word w is k-overlap-free if it is cube-free and, for
any factor v of w, there is no overlap xyxyx such that v ⊂ xyxyx and
|x| = k.

Note that this means that a k-overlap-free partial word does not con-
tain factors of the form xyx′y′x′′ with x, x′, x′′, and respectively y, y′ pair-
wise compatible non-empty partial words, and |x| = k. It is obvious that
any k-overlap-free word is also k′-overlap-free for k′ ≥ k, and that a word
is 1-overlap-free if and only if it is overlap-free. For example, the word
ab�abaabba is 3-overlap-free but not 2-overlap-free since it contains the fac-
tor ab�abaab. Let us now recall the main result regarding this concept.

Theorem 8. [HHKS09] There exist infinitely many 2-overlap-free binary
partial words containing infinitely many holes.

Since over a binary alphabet no overlap-free (1-overlap-free) words exist,
this result is actually optimal.

3.2.2 Generalization of overlap-freeness

In the previous section, we gave infinite words that are (weakly) overlap-free
even after carefully selected letters in the word were changed to holes. Now
we will give overlap-free words that remain (weakly) overlap-free even after
an arbitrary selection of their letters are changed to holes.

Proposition 5. There is no infinite word over a four-letter alphabet that
remains overlap-free after an arbitrary selection of its positions are changed
to holes.

Proof. Assume that such a word t exists over the four-letter alphabet A.
Clearly, it contains no factors of the form bba or bab where a, b ∈ A, since
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holes could be introduced to form the overlap factors bb� and b�b respec-
tively. If the word contains no factor of the form ba0a1b where ai ∈ A for
all i, then every factor of t of length four contains no repeated letters. This
would imply that t is of the form

. . . a0a1a2a3a0a1a2a3a0a1a2a3 . . .

Therefore, we can assume that t has a factor of the form a0a1a2ba3a4ba5a6,
where b 6= ai, for all i > 0. If a5 = a3, then �ba3a4ba5� is an overlap
(symmetrically, a4 6= a2 to avoid the overlap �a2b�a4ba5). Therefore, a5 6=
a3. Similarly, we must have a5 6= a4, a5 6= a6, a4 6= a6 and a4 6= a3 to avoid
the overlaps a4�a5, �a5a6, �ba3a4b�a6, and �a3a4 respectively. Since b, a4,
a5 and a6 are pairwise non-equal, they must be four different letters. Since
A is a four-letter alphabet and a3 is distinct from b, a4 and a5, it follows
that a3 = a6.

We use similar logic to determine that a1 = a4. We arrive at our desired
contradiction by introducing holes to get the overlap �a1a2�a3a4�a5a6

This proposition gives us a lower bound of five for a minimum alphabet
size necessary to construct a word that is strongly overlap-free after an
arbitrary selection of its letters are changed to holes. Since strong overlap-
freeness implies weak overlap-freeness, the result holds for this other case
as well. The rest of this section contains results obtained together with
Francine Blanchet-Sadri, Abraham Rashin and Elara Willett [BSMRW09].

First let us state a result regarding factors of a certain size of a pro-
longable morphism.

Lemma 6. If in a prolongable morphism the set of factors of length n of
the i-th iteration equals the set of factors of length n of the i+1-th iteration,
it must be that it also equals the set of factors of length n of the fixed point
of the morphism.

Let us note that our definition of overlap is actually a generalization of
the overlap definitions used in [BSMS09] and [HHKS09], since here a factor
is considered to be an overlap of length 2p + 1 if it has a weak period p,
while in the previous papers, the factor had to have a strong period p. Let us
define a morphism γ : {a, b, c, d}∗ → {a, b, c, d}∗ with γ(a) = ad, γ(b) = ac,
γ(c) = cb, and γ(d) = ca. Since a is a prefix of γ(a), γ is prolongable. Thus,
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we define a fixed point of γ, Γ = lim
i→∞

γi(a). Let us consider some properties
of w.

Remark 7. Both γ3(a) = adcacbad and γ4(a) = adcacbadcbacadca have
only ac, ad, ba, ca, cb and dc as their length 2 factors. Thus, by Lemma 6,
these are the only length 2 factors of Γ.

Lemma 7. The infinite full word Γ is square-free.

Proof. It suffices to show that every γn(a) is square-free. Clearly γ0(a) =
ε is square-free. Now let n ≥ 0 and γn(a) be square-free. Suppose, for
contradiction, that γn+1(a) has a square factor of length 2p starting at
position i. Since the letters b and d appear only at odd positions of γn+1(a),
hence, even distance apart, if p is odd, the factor would be of the form
{a, c}∗. Since all binary words of length 5 contain squares, it must be that
p = 1, which is a contradiction according to Remark 7.

Therefore p must be even, say p = 2q. If the factor starts at an even
position, since γn+1(a) = γ(γn(a)) it follows that γn(a) contains a square,
contradiction with the initial assumption. Hence, the factor must start at
an odd position. Since, γ(f) ends in a different letter for all f ∈ {a, b, c, d},
it follows that we will have a factor that is a square starting with position
i− 1, which is an even position. Following the previous reasoning we again
reach a contradiction.

Now let δ : {a, b, c, d}∗ → {f, g, h, i, j}∗ be a morphism defined by δ(a) =
fgifh, δ(b) = fghij, δ(c) = jigjh, and δ(d) = jihgf . We claim that δ(Γ)
is overlap-free after an arbitrary (2-valid) insertion of holes.

Proposition 6. There are no factors of δ(w) of length ≤ 21 that can be
turned into weak overlaps by insertion of holes.

Proof. It suffices to check that for all p ≤ 10, there is no factor of δ(w) of
length 2p + 1 that contains a 2-valid weakly-p-periodic partial word. For
every p ≤ 10, its set of factors of length 2p + 1 was computed, and each of
these was checked for containment of 2-valid weakly-p-periodic words. We
remind that, factors of the form a�b are considered to be trivial overlaps,
and not weak overlaps.

Let us recall that according to Remark 5, for two factors of length three
to be compatible after hole insertion, it must be that they have at least two
equal symbols.
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Lemma 8. In δ(Γ), any two length seven sequences starting with the same
character will contain at least three consecutive mismatches if they are not
identical.

Proof. According to Remark 7 the only length two factors of Γ are ac, ad,
ba, ca, cb and dc. We prove the lemma for sequences starting with letter f ,
the other cases being similar. If a sequence starts with f , then it must be
either fgifhji, a prefix of both δ(ac) and δ(ad), fghijfg, prefix of δ(ba),
fjigjh, suffix of δ(dc), or, fhjigjh and fhjihgf , suffixes of δ(ac) and δ(ab).
It is easy to check that each two of these blocks contain three consecutive
mismatches once aligned.

Proposition 7. No factor of δ(w) of length 2p+1 > 21 with p not divisible
by 5 can be turned into a weak overlap.

Proof. Let us assume towards a contradiction that there exists a0v0a1v1a2,
a factor that can be transformed into an overlap after insertion of holes.
Since p is not divisible by 5, it follows that the images of δ in a0v0 and
a1v1 will not be aligned. Let us look at the second position in a0v0. If this
one aligns with the second position in a1v1, then applying Lemma 8 we get
a contradiction. If the two positions do not match, following Remark 5 it
must be that either the first or the third positions must match. Using the
same technique we get a contradiction in both these cases. Therefore, no
factor of δ(w) of length 2p+ 1 > 21 with p not divisible by 5 can be turned
into a weak overlap.

Proposition 8. No factor of δ(w) of length 2p+ 1 > 21 with p divisible by
5 can be turned into a weak overlap.

Proof. Let us assume towards a contradiction that a factor a0v0a1v1a2 can
be transformed into an overlap after insertion of holes. Since |a0v0| = 5k,
for some k > 2, it follows that the images of δ will be aligned in a0v0 and
a1v1. By looking at the blocks of δ we see that only the images of b and
d do not contain 3 consecutive mismatches once aligned. Hence, we will
consider the case when these two images are aligned, the other cases being
straightforward by Remark 5.

We notice that the only character preceding d in Γ is a, and the only
character preceding b is c, while the only character following d in Γ is c, and
the only character following b is a. Let us assume that the block determined
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by δ(d) ends before the last position in aivi with i ∈ {0, 1}. The character
following this block is a j, while the one following the block δ(b) is an f . We
notice that this letter together with the last two characters of the block gives
us the sequences gfj and ijf , that will not match after a valid insertion of
holes, by Remark 5.

If the block δ(d) starts at a position greater than 5, it follows that it
is preceded by δ(a). Since δ(a) will align with a block δ(c) according to
the previous observations, by Remark 5 we conclude that a matching is
impossible.

Theorem 9. The infinite word δ(Γ) over a five-letter alphabet is weakly
overlap-free after an arbitrary insertion of holes.

Proof. This follows directly from Propositions 6, 7, and 8.

3.3 Cube-freeness

In this section we analyze the concept of cube-freeness for partial words,
while we still adhere to the restriction stated in Remark 3. We remind that
in order for a partial word to be k-free it must be that the word does not
contain a factor of the form w0w1 · · ·wn−1 such that there exists a partial
word u with wi ⊂ u, for 0 ≤ i < n.

As mentioned before, the property of cube-freeness was for the first time
analyzed by Axel Thue in [Thu06, Thu12]. The τ word present in Theorem 1
is overlap-free, hence, it is cube-free. As a visual aid throughout this section,
we will underline the first, (n+ 1)th and (2n+ 1)th symbols in a word that
is a cube and has length 3n. The results for cubes appeared as joint work
with Florin Manea [MM07].

3.3.1 Cube-free partial words

The main result we present here is that for k ≥ 3 there exist k-free infinite
partial words, containing an arbitrary number of holes, over binary alpha-
bets. Moreover, we present an algorithm that, given a natural number n as
input, constructs in O(n) time a cube-free partial word that contains exactly
n holes.

Proposition 9. There exist arbitrarily many cube-free infinite partial words,
containing exactly one hole, over a binary alphabet.
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Proof. Assume that we replace an arbitrary position in τ with a hole and
let τ ′ be the infinite partial word that we obtain in this manner. We will
prove that for a non-empty factor w0w1w2 of τ ′, and a partial word w such
that wi ⊂ w, for all i ∈ {0, 1, 2}, we have |wi| < 4 and |wi| 6= 2, for all
i ∈ {0, 1, 2}.

Indeed, if none of the factors w0, w1, w2 contains the hole inserted in τ ,
the result is an immediate consequence of Remark 1. Hence, we may assume
that the hole is contained in one of the words w0, w1 or w2.

Assume that there exist a non-empty factor w0w1w2 of τ ′ and a partial
word w, such that:

• one of the factors w0, w1 and w2 contains a hole,

• wi ⊂ w, for all i ∈ {0, 1, 2},

• |wi| ≥ 4 or |wi| = 2, for all i ∈ {0, 1, 2}.

Without loss of generality, we may assume that the hole was placed in w0

(the other cases can be approached similarly). Also, let w′0 be the factor of
τ in which a hole was inserted in order to obtain w0; note that w1, w2 and
w′0w1w2 are factors of τ , and we have w1 = w2 = w and w′0 6= u.

There are several cases to be analyzed:

Case 1: |w0| = 2k, for k ≥ 1, and the first symbol of w0 is placed at
an even position in τ ′. Since τ = φ(τ), τ is cube-free and in τ ′ was inserted
exactly one hole, it follows that w1 = w2 = w = h(a0 · · · ak−1), where
aj ∈ {a, b} for all j ∈ {0, . . . , k − 1}, and w′0 = h(a0 · · · al−1a

′
lal+1 · · · ak−1),

where a′l 6= al, for an integer l, with l < k. Moreover, one of the two letters
of φ(a′l) was replaced with a hole to obtain w0. If a′l = b it follows that
al = a. But, since φ(a′l) = ba and φ(al) = ab, we get that any partial word
that can be obtained from φ(a′l) by replacing one of its letters with a hole
cannot be contained in φ(al). The same argument holds in the case when
a′l = a and al = b. Thus, we reach a contradiction.

Case 2: |w0| = 2k, for k ≥ 1, and the first symbol of w0 is placed
at an odd position in τ ′. It follows that w1 = w2 = w = b0h(a0 · · · ak−1)b1
with b0, b1, aj ∈ {a, b}, for all j ∈ {0, . . . , k − 1}. Note that b0 6= b1, since
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b1b0 = φ(f), for some f ∈ {a, b}. In this case, the word w′0 may have one of
the following forms:

• w′0 = b′0φ(a0 · · · ak−1)b1 with b′0 6= b0, or

• w′0 = b0φ(a0 · · · ak−1)b′1 with b′1 6= b1, or

• w′0 = b0φ(a0 · · · al−1a
′
lal+1 · · · ak−1)b1, for some integer l with al 6= a′l

and 0 ≤ l < k.

The last possibility leads to a contradiction similar to the one in Case 1. If
w′0 = b′0h(a0 · · · ak−1)b1 with b′0 6= b0, since b0 6= b1, it follows that τ contains
the factor

h(a0 · · · ak−1)b1w1w2 = φ(a0 · · · ak−1)b1b0φ(a0 · · · ak−1)b1b0φ(a0 · · · ak−1)b1

a contradiction to the fact that τ is overlap-free.
Finally, if w′0 = b0φ(a0 · · · ak−1)b′1, with b′1 6= b1, it follows b′1 = b0, and

hence b0b0 = φ(f), for some f ∈ {a, b}, again a contradiction.

Case 3: |w0| = 2k + 1, for k ≥ 2, and the first symbol of w0 is
placed at an even position in τ ′. It follows that w1 = eφ(a0 · · · ak−1), and
w2 = φ(b0 · · · bk−1)f , where e, f, aj , bj ∈ {a, b}, for all j ∈ {0, . . . , k − 1}.
We can easily observe that aj 6= bj , for j ∈ {0, . . . , k − 1}, and aj−1 6= bj ,
for j ∈ {1, . . . , k − 1}. Consequently, aj = aj+1 and bj = bj+1, for all
j ∈ {0, . . . , k − 2}. Since τ is cube-free, it follows that k = 2. We may
assume, without loss of generality, that e = a. Hence, w1 = w2 = ababa.
But this is a contradiction to the fact that τ is overlap-free.

Case 4: |w0| = 2k + 1, where k ≥ 2 and the first symbol of w0 is
placed at an odd position in τ ′. It follows that w1 = φ(a0 · · · ak−1)e, and
w2 = fφ(b0 · · · bk−1), where e, f, aj , bj ∈ {a, b}, for all j ∈ {0, . . . , k− 1}. As
in the former case, we observe that aj 6= bj , for all j ∈ {0, . . . , k − 1} and
aj+1 6= bj , for all j ∈ {0, . . . , k− 2}. Consequently, aj = aj+1 and bj = bj+1,

for all j ∈ {0, . . . , k−2}. In particular, we obtain that a0 6= bk−1. Thus, the
first letter of φ(a0) and last letter of φ(bk−1) coincide. Since e equals the
last letter of φ(bk−1) and f equals the first letter of φ(a0), it follows that
e = f . This is not possible, since ef = φ(c), for some letter c ∈ {a, b}.
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All the cases lead to a contradiction. Consequently, we have proved
that for a non-empty factor w0w1w2 of τ ′, and a partial word w, such that
wi ⊂ w, for all i ∈ {0, 1, 2}, we have |w0| < 4 and |w0| 6= 2.

Therefore, if we want to replace a letter of the infinite word τ with a
hole, and obtain an infinite cube-free partial word τ ′, we should only verify
that this replacement does not cause the apparition in τ ′ of a non-empty
factor w0w1w2 with |w0| = |w1| = |w2| and |w0| ∈ {1, 3}, for which there
exists a partial word w such that wi ⊂ w, for all i ∈ {0, 1, 2}.

We observe that there exist positions in τ where a substitution, respect-
ing the restrictions described above, can be performed. For example, in the
word

φ5(a) = abbabaabbaababbabaababbaabbabaab

which is a prefix of τ , the underlined letter can be replaced with a hole, and
the partial word we obtain remains cube-free.

Also, we observe that φ5(a) has an infinite number of occurrences as a
factor of τ . For each such occurrence, we can construct a cube-free infinite
partial word with exactly one hole, by replacing the 14th letter in φ5(a) with
�. The infinite word we obtain will have the form

xabbabaabbaaba�babaababbaabbabaaby

with x ∈ {a, b}∗ a prefix of τ , and y ∈ {a, b}ω a suffix of τ .
In conclusion, we have proved that there exist infinitely many cube-free

infinite partial words, containing exactly one hole.

Since any cube-free infinite partial word is k-free, for k ≥ 3 (as noted in
Remark 2), we obtain, as a corollary of Proposition 9, the following result:

Corollary 3. For k ≥ 3, there exist infinitely many k-free infinite partial
words, containing exactly one hole, over a binary alphabet.

We also obtain, as another consequence, an already known result (see
[Bra83, Lot97]):

Corollary 4. For k ≥ 3, there exist infinitely many k-free infinite full words,
over a binary alphabet.

Proof. Let τ ′ be one of the infinite k-free partial word constructed in the
proof of Proposition 9. We replace the hole in τ ′ with an a letter; it is
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clear that the word obtained in this manner is a k-free infinite full word,
for k ≥ 3. This procedure can be applied to each of the infinite partial
words constructed in the proof of Proposition 9 and obtain an infinite full
word. Moreover, each two of these newly obtained infinite full words are
different.

Next, we extend the result stated in Proposition 9 in order to obtain
cube-free partial words, with infinitely many holes. First, note the following.

Remark 8. The word φk(a), where k ≥ 1, has an infinite number of non-
overlapping occurrences in τ , with its first letter placed at an even posi-
tion. To begin with, φk(a) has one occurrence in τ , with the first letter
placed at the position 0. Also, since φi+1(a) = φi(a)φi(a), thus φi+2(a) =
φi(a)φi(a)φi(a)φi(a), and |φi(a)| = 2i, for all i ≥ 1, it can be easily proved
by induction that φk(a) occurs at least 2l times in φk+l+1(a). Moreover, all
of these occurrences have their first letter placed at an even position.

Now let us look at partial words with infinitely many holes.

Theorem 10. There exists a cube-free partial word, containing infinitely
many holes, over a binary alphabet.

Proof. From Remark 8 it follows that in the Thue-Morse word τ there exist
an infinite number of non-overlapping occurrences of the word φ5(a), each
having its first letter placed at an even position. Furthermore, for each of
these occurrences of φ5(a), we replace its fourteenth letter (the underlined
letter in the factor abbabaabbaababbabaababbaabbabaab) with a hole, in this
manner resulting in an infinite partial word, with an infinite number of holes,
τ ′. It is clear that τ ′ can be obtained from τ applying on τ a morphism δ

that takes a to φ5(a) = abbabaabbaaba�babaababbaabbabaab and b to φ5(b).
We claim that the partial word τ ′ is cube-free.

Note that if there exist a non-empty factor w0w1w2 of τ ′ and a partial
word w such that wi ⊂ w, for i ∈ {0, 1, 2}, only a finite number of holes are
contained in this factor; let n be this number. Consequently, to prove our
claim it is sufficient to show that any word obtained by replacing n letters
of τ with holes, at some of the aforementioned positions, is cube-free, for all
integers n ≥ 0.
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We prove this result by induction on n: for n = 0 and n = 1 it was
already shown to be true in the proof of Proposition 9. We assume the
statement holds for all k < n, and prove it for n.

Let τ ′ be a word obtained by replacing n letters of τ with holes, on n

of the positions already defined. Assume, for the purpose of contradiction,
that τ ′ contains a non-empty factor w0w1w2 and there exists a partial word
w such that wi ⊂ w, where i ∈ {0, 1, 2}. Obviously, all holes must be con-
tained in the factor w0w1w2 since otherwise, we obtain, using the procedure
described above, a non-cube-free infinite partial word with less than n holes,
a contradiction to the induction hypothesis.

Note that in the infinite partial word τ ′ there are at least thirty-one
letters between two distinct holes. Moreover, since n ≥ 2, it follows that the
factor w0w1w2, whose length is divisible by three, has at least thirty-three
symbols, and, consequently, |wi| ≥ 11, for all i ∈ {0, 1, 2}. Also, remark that
any hole appearing in τ ′ replaces a b letter, and, consequently, the position
that corresponds in w to that hole is occupied by an a letter (otherwise, the
hole is not necessary, and, again, we obtain a contradiction to the induction
hypothesis). Finally, note that all the holes are placed at an odd position in
τ .

There are several cases to be analyzed.

Case 1. First let us assume that w0 contains at least one hole.
We have some factorizations w0 = w00e0w01, w1 = w10e1w11, and w2 =
w20e2w21, with e0 = � and w = u0au1, where wij ⊂ uj , for i ∈ {0, 1, 2} and
j ∈ {0, 1}. Again, there are two cases to be discussed:

• e1 = a, and,

• e1 = �.

Note that e1 and e2 cannot be simultaneously equal to �, because, otherwise,
none of the holes e0, e1 and e2 is necessary, getting a contradiction with the
induction hypothesis.

We will only describe how the first case leads to a contradiction, since the
other one can be treated similarly. We remark that |w0| ≥ 11. Therefore,
we have |w00|+ |w01| ≥ 10, so either |w00| or |w01| is at least 5. If |w00| ≥ 5,
it follows that baaba� is a factor of w0, and, consequently, baabaa is a factor
of u. Thus, baabaa or a partial word contained in baabaa, with exactly
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one � replacing one of the a letters, is a factor of w1. But, this leads to a
contradiction. Indeed, in the case when no hole appears in this factor, since
τ ′ was obtained by substituting some of the letters of τ = φ(τ) with holes,
it follows that at least one of the two factors aa should be the image of a
letter through the morphism φ, which is impossible. In the other case, when
a hole replaces an a letter, considering the way we introduce holes into τ ,
it follows that � can replace only the last a in the sequence. This coincides
with the letter denoted by e1. we have a contradiction with the assumption
that e1 6= �.

If |w00| < 5 and |w01| ≥ 6, it follows that �babaab is a factor of w0. If 5 >
|w00| ≥ 1, it follows that aababaab is a factor of w. Consequently aababaab
(or a partial word contained in aababaab, with exactly one � replacing an a
letter) is a factor of w1, again a contradiction, using the same reasoning as
above.

If |w00| = 0, it follows that ababaababba is a factor of w. Hence,
ababaababba (or a partial word contained in ababaababba, with exactly one
� replacing one of the a letters, other than the first) is a prefix of w1. Note
that no partial word contained in ababaababba, with a hole instead of an a

other than the first one, can be obtained by the procedure that we use, since
any hole should be followed by the factor babaab or preceded by an a letter.
Therefore, ababaababba is a prefix of w1. Also, note that the first symbol of
w1 is at an odd position in τ ′ (otherwise, the factor aa would have been the
image of a letter through the morphism φ, a contradiction). In this case,
since w0 starts with �, and a hole can be placed only at odd positions, we
obtain that the length of the string w01 is odd. Since the first letter of w1

is an a, it follows that the last letter of w01 is a b, as well as the last letter
of w. This implies that the last letters of w1 and w2 are b letters. Since
the last letter of w2 is placed at an even position, it follows that the letter
placed exactly after w2 in τ ′ is an a. Consequently, y0 = w01e1, y1 = w11e2,
y2 = w21a and y0y1y2 are factors of τ ′, and u′ = u1a is a partial word, such
that yi ⊂ u′, for i ∈ {0, 1, 2}. Moreover, y0y1y2 contains n− 1 holes, which
is a contradiction to the induction hypothesis.

Case 2. w2 contains at least one hole, and w0 does not contain any
hole, or w1 contains at least one hole, and both w0 and w2 do not contain
any holes.
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We assume that w0 does not contain any hole, and analyze the rest of
the cases. If w1 = w10�w11, with w10 6= ε, or w2 = w20�w21, with w20 6= ε,
we can apply similar arguments as in the previous case, and reach the same
conclusion. If none of these cases occur, it follows that holes may replace
only the letters placed at the first positions of w1 and w2. Therefore, n ≤ 2.
But, due to the induction hypothesis, we have n ≥ 2, and, thus, we obtain
n = 2. Hence, we have w1 = �u and w2 = �u, for some word u, and no other
� exists in τ ′. Moreover, w0 = u = au. It follows that, au�u�u is a factor
of τ ′, where u is a non-empty word that does not contain any hole. Thus,
ububu is a factor of τ , a contradiction to the fact that τ is overlap-free.

Since all the cases lead to a contradiction, we conclude that the assump-
tion we made is false, and conclude our proof.

Considering that in τ there exist infinitely many non-overlapping occur-
rences of φ5(a) having their first letter placed at even positions, it follows
that we can obtain an infinite number of cube-free infinite partial words with
infinitely many holes. This can be done by choosing, randomly, infinitely
many such occurrences of φ5(a) and substitute, in each of them, the four-
teenth letter with a hole, in the same way we have described in the proof of
Theorem 10. It is clear that all the infinite partial words obtained in this
manner are cube-free.

The following corollary is immediate:

Corollary 5. For k ≥ 3, there exist arbitrarily many k-free partial words,
containing an infinite number of holes, over a binary alphabet.

The proof of Theorem 10 provides an efficient solution to the following
algorithmic problem: given the natural number n find a k-free partial word
(for some k ≥ 3) containing exactly n holes. In the following, we propose
an algorithm that constructs a cube-free partial word with exactly n holes,
offering, thus, a solution for this problem.

As stated in Remark 8, the word φn+6(a), with n ≥ 1, contains at least
2n non-overlapping occurrences of φ5(a) having the first letter on an even
position. Also, note that both the computational time and space needed to
construct φn(a) are O(2n). Thus, φdlog2 ne+6(a) has O(n) letters and can be
constructed in O(n) time. Also, it contains n non-overlapping occurrences
of φ5(a), each having its first letter on an even position.
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Algorithm 1 Construct-cube-free-word(n)

1: construct φdlog2 ne+6(a)
2: identify n non-overlapping occurrences of φ5(a) in φdlog2 ne+6(a), having

their first letters on even positions
3: for each of these occurrences do
4: substitute its fourteenth letter with �
5: end for
6: denote by τ ′dlog2 ne+6 the word obtained after the n substitutions were

performed
7: return Construct-cube-free-word(n):= τ ′dlog2 ne+6 (the algorithm stops)

According to the proof of Theorem 10, Algorithm 1 constructs a cube-
free partial word.

The running time of the above algorithm is clearly O(n). Indeed, we
have already stated that the step where φdlog2 ne+6(a) is constructed can be
performed in linear time. Furthermore, the identification of the occurrences
of φ5(a) as well as the step where the fourteenth letter of each of these
strings is substituted with a hole can be completed in O(n) steps.

We note that it is impossible to solve this problem with an algorithm
that requires less than n steps, since the string we construct must have at
least n letters, the holes.

3.3.2 Generalization of cube-freeness

There have been studied applications of both partial and infinite words in the
processing and analysis of DNA strings ([Har06, Leu05]), which are encoded
over the four-letter alphabet {a, c, g, t}. Therefore, it seems interesting to
us to analyze the existence and construction of k-free partial words that
contain effectively four letters.

To begin with, we use a morphism δ defined on {a, b} with values in
{a, b, c, d}∗ defined as follows: δ(a) = abcd and δ(b) = badc. Let w = δ(τ)
be the infinite word obtained by applying our morphism to the Thue-Morse
word τ . We observe that if we delete the c and d letters from w, we obtain
τ . Also, if we delete the a and b letters, we obtain the Thue-Morse word
in which a is replaced by c and b by d, respectively. To keep the exposure
simple, assume that the distance between two letters of w, placed at the
positions n0 and n1 of w, respectively, is defined as |n0 −n1|. Note that the
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distance between two identical letters of w can be 4s, 4s + 1 or 4s + 3, for
some integer s > 0.

It is not hard to see that w is cube-free. To prove this, assume, for the
purpose of contradiction, that w contains a factor xxx, with x ∈ {a, b, c, d}+.
Also, assume that x has an a as its first letter. First, it follows that |x| = 4k,
|x| = 4k+1 or |x| = 4k+3, with k ≥ 0, since |x| equals the distance between
the first letter of the first x factor and the first letter of the second x factor,
which are identical. If |x| = 4k it follows that if we delete the c and d letters
from xxx we obtain a non-empty factor yyy, for y ∈ {a, b}+, contained in
the Thue-Morse word τ . But, this would mean that τ is not cube-free, a
contradiction to Theorem 1. If |x| is odd it follows that the distance between
the first letter of the first factor x and the first letter of the third factor x
is 4p+ 2, for some integer p ≥ 0, a contradiction. If x has as first letter a b,
a c or a d, similar arguments lead to a contradiction.

Also, we observe that any word that can be obtained from w by substi-
tuting one of its letters with a hole is still cube-free. Let w′ be an infinite
word obtained by replacing a letter of w with a hole. Also, assume that w′

contains a non-empty factor w0w1w2 and there exists a partial word u such
that wi ⊂ u for all i ∈ {0, 1, 2}. First, note that |w0| > 1. If |w0| = 4k, with
k > 0, and � replaces a c or a d letter, then we proceed as above and delete
the c and the d letters, as well as the �, and obtain that τ is not cube-free, a
contradiction. The same strategy is applied for the case when � replaces an
a or a b letter, but now the deleted symbols are a, b and �. If |w0| = 4k+ 1
or |w0| = 4k + 3, with k ≥ 0, it follows, from the proof of the fact that w is
cube-free, that one of the first symbols of w0, w1 or w2 is a hole (otherwise
the distance between two identical letters of w is 4p + 2, for some integer
p ≥ 0). But, this would mean that the symbols at the second positions
of each of these factors coincide. Hence, the distance between the second
letter of w0 and the second letter of w2, which are identical, is 4p + 2 with
p ≥ 0, a contradiction. Finally, with the same arguments, |w0| 6= 4k + 2.
Consequently, the assumption that we made is false, and by replacing any
letter by a hole, in w, we still obtain a cube-free word.

Remark that in the case of three-letter alphabets it is impossible to
construct an infinite word w in which we can substitute randomly one of its
letters with a hole and obtain a cube-free word in all the cases. Indeed, if
such a word exists it follows that the number of letters between two identical
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letters of w is at least 2. But the words that verify this condition are of the
form a0a1a2a0a1a2a0a1a2 · · · , where a0, a1 and a2 are different letters of the
alphabet. A word having this form is not cube-free, and, thus, the partial
word obtained by replacing one of its letters with a hole is not cube-free, as
well.

Theorem 11. If w′ is an infinite partial word obtained from w = δ(τ)
by replacing infinitely many of its letters with holes, such that each two
consecutive holes are separated by at least two letters, then w′ is cube-free.

Proof. Assume, for the purpose of contradiction, that w′ contains a non-
empty factor w0w1w2 and there exists a partial word u, such that wi ⊂ u,
for all i ∈ {0, 1, 2}.

It is not hard to see that |w0| ≥ 3. Note that there exists k ≤ |w0|
such that kth letters of w0 and w2 are both different from �; this holds
since otherwise, it is impossible to have at least two letters between every
two consecutive holes according to Remark 5. This remark proves that
the length of |w0| is even (otherwise, the distance between the two identical
letters placed at the kth position of x0 and x2 is a number of the form 4m+2,
a contradiction). In a similar fashion we can show that there exists l < |w0|
such that lth symbols of w0 and w1 are both different from �. Combined
with the fact that |w0| is even, this leads to the fact that |w0| = 4m, for
some integer m ≥ 0.

Let w′0, w
′
1 and w′2 be the factors of w from which w0, w1 and, respec-

tively, w2 were obtained, by replacing some of their letters with holes. Since
|w′i| = |wi| = 4m, for i ∈ {0, 1, 2}, it follows that these words have the
following form: w′i = wi0bi,0 · · · bi,m−1wi1, such that: bi,j = δ(ei,j), with
ei,j ∈ {a, b}, |w00| = |w10| = |w20|, |w01| = |w11| = |w21|, w01w10 = δ(e0),
and w11w20 = δ(e1), with e0, e1 ∈ {a, b}. We assume that, for i ∈ {0, 1, 2},
we have wi = ui0ci,0 · · · ci,m−1ui1, where ci,j was obtained from bi,j , ui0 from
wi0, and ui1 from wi1, for all i and j, respectively, by replacing some of their
letters with holes.

If there exist j ∈ {0, . . . ,m− 2} and i, k ∈ {0, 1, 2} such that i 6= k and
bi,j 6= bk,j , it follows that bi,j and bk,j differ at every position, i.e., the lth
letter of bi,j differs from the lth letter of bk,j , for all integers l ∈ {0, 1, 2, 3}.
Consequently, at least four letters in both these words must be substituted
with holes in order to obtain ci,j and ck,j , which are both included in the
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same partial word. But this is impossible, since two consecutive holes are
separated by at least two letters, see Remark 5. Thus, we obtain that
b0,j = b1,j = b2,j , for all 0 ≤ j ≤ m− 1. This proves that w′i = wi0zwi1, for
0 ≤ i ≤ 2, and z = δ(z′), for some factor z′ of τ .

In the same manner, we can show that w01w10 = w11w20, and, as a
consequence e0 = e1 = e, for e ∈ {a, b}. Note that if z 6= ε, we deduce
that w contains the factor zδ(e)zδ(e)z, and, since z = δ(z′), it follows that
τ is not overlap-free (having as a factor the word z′ez′ez′), a contradiction.
Hence, we may assume, for the rest of the proof, that z = ε.

Moreover, we can obtain, similarly, that if |w00| ≥ 3, then w00 = w10 =
w20. But this would prove that w contains the factor fw′0w

′
1w

′
2, where f ∈

{a, b, c, d} ∪ {ε} such that fw00 = w01w10 = w11w20 = δ(e). Consequently,
w contains the factor fw00w01w10w11w20, a contradiction to the fact that w
is cube-free. Analogously, the case when |w01| ≥ 3 leads to a contradiction.

Thus, the only possibility left to be analyzed is when we have |wi0| =
|wi1| = 2, for all i ∈ {0, 1, 2}. If w00 = w10 or w21 = w01, we obtain
again, easily, a contradiction. Hence, we have w00 6= w10 (which implies
that they differ at every position) and w21 6= w01 (also implying that they
differ on every position). Since wij′ was obtained from wij by substituting
some of their letters with holes, for all i ∈ {0, 1, 2} and j ∈ {0, 1}, it follows
that the strings w′21w

′
00 and w′01w

′
10 are both contained in the same word

(which consists in the last two letters of u followed by the first two letters
of u). Again, this means that at least four letters in the strings w21w00

and w01w10 were substituted with holes. According to Remark 5 this is
impossible because each two consecutive holes are separated by at least two
letters.

We have shown that all the cases lead to a contradiction, and, conse-
quently, the assumption that we have made, namely that w′ is not cube-free,
is false. This concludes our proof.

The following corollary results immediately.

Corollary 6. If w′ is an infinite partial word obtained from w = δ(τ) by
inserting an infinite number of holes, such that each two consecutive holes
are separated by at least two letters, then w′ is k-free, for every k ≥ 3.

This time, an algorithm that produces a k-free word with n holes, for
k ≥ 3, can be obtained more easily. We construct the prefix of length 3n−2
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Algorithm 2 Construct-cube-free-word-4-letters(n)

1: construct φdlog2d 3n
4 ee(a) (this word has

⌈
3n
4

⌉
letters)

2: construct u = δ(φdlog2d 3n
4 ee(a)) (this word has at least 3n letters)

3: construct v as the prefix of length 3n− 2 of u
4: construct v′ from v by replacing the letters at the positions 0, 3, . . . , 3(n−

1) with holes
5: return Construct-cube-free-word-4-letters(n):= v′

of δ(τ) and replace n of its letters with holes, such that the number of letters
between two consecutive holes is two. In this way Algorithm 2 will return a
cube-free partial word (thus, k-free partial word) with exactly n holes.

The time complexity of this algorithm, as in the case of Algorithm 1, is
clearly O(n), as well as its space complexity. Note, also, that the partial
word produced by this algorithm has the minimal length that a cube-free
partial word containing n holes can have. Indeed, if the length of a partial
word w is less than 3n−2 it follows that in this word one can find two holes
that are separated by at most one letter, and, consequently, it has at least
one factor of the form ��a, �a� or a��, for some letter a. In all these cases
w is not cube-free.

3.4 Algorithms

In this chapter we propose two main algorithms. A first one that, given a
finite partial word w and a natural number k, decides whether w is k-free or
not (joint work with Florin Manea [MM07]), and a second one that, given
a full word w, and two integers d and p, determines if partial words can
be created by puncturing holes into w, such that the newly created partial
words have period p and no two holes within distance d (joint work with
Francine Blanchet-Sadri, Abraham Rashin and Elara Willett [BSMRW09]).

Now, let w be a partial word. If w is not k-free, the algorithm computes
a non-empty factor x0 · · ·xk−1 of the input word w and a partial word u

such that xi ⊂ u, for all i ∈ {0, . . . , k − 1}. We analyze the soundness
and the time complexity of this algorithm (on the random access machine
model). In the following we assume that the input partial word w is over
the alphabet A, and ∗ is a symbol not contained in A. Moreover, we denote
by n the length of w.
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First, we define the two-dimensional array ↑ [ ][ ], with n rows,
⌊

n
k

⌋
columns, with elements from A ∪ {�}, as follows:

↑ [i][l] =



a if there exists an a such that w[i+ hl] ⊂ a for all

h ∈ {0, . . . , k − 1}, and, for any symbol b, such that

w[i+ hl] ⊂b for all h ∈ {0, . . . , k − 1}, we have a ⊂ b

∗ otherwise

(3.1)

The usage of the symbol ↑ to denote this array is motivated by the
fact that ↑ [i][l] 6= ∗ if and only if every two symbols a and b in the set
{w[i], . . . , w[i+ (k − 1)l]} are compatible (therefore, a ↑ b), and both a and
b are contained in ↑ [i][l].

The values stored in this array can be computed using the following
relation:

↑ [i+ l][l] =



↑ [i][l] if w[i+ lk] ⊂ ↑ [i][l], and w[i+ lh] 6= �,

for some h ∈ {1, . . . , k − 1};

w[i+ lk] if w[i+ lh] = �, for all h ∈ {1, . . . , k − 1};

∗ otherwise.

(3.2)

An algorithm that effectively computes this array consists basically in
the following two steps:

• for each possible value of l and for each i, such that i ≤ l, we compute
↑ [i][l], using the definition 3.1 of the array ↑ [ ][ ].

• we use the relation 3.2, defined above, to compute recursively the
elements ↑ [i+ l][l], . . . , ↑ [i+ l

⌊
(n−i−(k−1)l)

l

⌋
][l].

By a careful implementation of the above strategy, the time needed to com-
pute all the elements of the array ↑ [ ][ ], on an input consisting of the partial
word w, with |w| = n, and the natural number k, is O(n2

k ).
Further we show how this array can be used to decide whether a given

partial word is k-free or not.
In order to prove the soundness of Algorithm 3, we note the following

immediate facts:
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Algorithm 3 Free(w, k): Testing k-freeness for a word w
1: n := |w|
2: for l = 1 to

⌊
n
k

⌋
do

3: counter := 0, s := 0
4: for i = 1 to n− l ∗ k + 1 do
5: if ↑ [i][l] 6= ∗ then
6: counter := counter + 1
7: if s = 0 then
8: s := i
9: end if

10: else
11: counter := 0, s := 0
12: end if
13: if counter = l then
14: print w is not k-free. We have xj = w[s+jl..s+(j+1)l−1], j ∈

{1, . . . , k}, and u =↑ [s][l] . . . ↑ [s+ l − 1][l]
15: return Free(w, k) := False (the algorithm stops)
16: else
17: counter := 0
18: end if
19: end for
20: end for
21: return Free(w, k) := True (the algorithm stops)

• For two partial words u and v, both of length l, we have u ⊂ v if and
only if u(i) ⊂ v(i), for all i ∈ {1, . . . , l}.

• Consequently, for a non-empty factor x = x1 · · ·xk of the partial word
w there exists a partial word u, of length l > 0, such that xi ⊂ u if
and only if the string u′ =↑ [r][l] ↑ [r + 1][l] . . . ↑ [r + l− 1][l] does not
contain the symbol ∗, where r is the first position of the factor x in w.

• If the input word w is not k-free, and, by definition, there exists a factor
x1 · · ·xk of w and a non-empty partial word u, such that xi ⊂ u, for
all i ∈ {1, . . . , k}, then the length of a factor xi is bounded by

⌊
n
k

⌋
.

The algorithm we propose identifies, if any, a non-empty factor x1 · · ·xk

of the input word w and a partial word u such that xi ⊂ u, for all i ∈
{1, . . . , k}. According to the facts presented above, we note that w is not
k-free if and only if the sequence ↑ [1][l], . . . , ↑ [n − lk + 1][l] contains l
consecutive positions that differ from ∗. Moreover, if this sequence contains
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l such consecutive positions, starting from the position s, it follows that a
possibility to choose the k factors x1, . . . , xk of w and the partial word u,
proving that the input word is not k-free, is to set u =↑ [s][l] . . . ↑ [s+l−1][l]
and xi = w[s+(i−1)l..s+ il−1], for i ∈ {1, . . . , k}. Once such a possibility
is discovered, the algorithm stops and concludes that w is not k-free; if
no such possibility is identified for any l ≤

⌊
n
k

⌋
, the algorithm stops, and

decides that w is k-free.
The overall time complexity of Algorithm 3 is clearly O(n2

k ), where n =
|w|, since the most time consuming operation is the computation of the array
↑ [ ][ ]. The space needed by this algorithm is also O(n2

k ).
Finally, we note that Algorithm 3 can be applied, as well, for full words.

However, in this case, an algorithm working in time O(n log n) can be de-
veloped using suffix arrays ([CR02, MM93]).

Now let us go to the second algorithm. We say two positions i, j in a
partial word u are d-proximal if 0 < |j − i| ≤ d, where d denotes a positive
integer. We say that u obeys the hole constraint d (or u is d-valid) if no
two holes in u are d-proximal. When the value of d is clear from context,
we may suppress reference to it, simply referring to the “hole constraint” or
to “proximal” positions.

Let w be a length n full word defined over an alphabet A of size k. In
this section, we present an O(nd) time algorithm, which finds, for given
positive integers d and p both less than n, a d-valid p-periodic partial word
contained in w, if any exists. In other words, it determines whether it is
possible to insert holes into w with no two holes within distance d, such
that the resulting partial word has strong period p. If this is possible, such
a word is returned.

In order to work with words of length n more easily, we write them in
rows of length p. For a partial word u and for an integer x, 0 ≤ x < p, we
will call column x the sequence of positions (or letters at these positions)
x, x+ p, . . . , x+ lp, where l is the maximal integer such that x+ lp < n. For
example in Figure 3.1, if w = caadabecabdaeecaad, p = 7, and d = 2, then
u = caadabeca�da�ecaad is obtained using our algorithm. For an integer x,
0 ≤ x < p, let Sx = {w(i) | 0 ≤ i < n, i ≡ x mod p} be the set of distinct
letters appearing in column x of w. We construct a new set of partial words
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Figure 3.1: The words w and u with columns 2 and 5 highlighted

Ω = {ω | ω(i) ∈ Si}, and call u ⊂ w a partial word induced by the choice
ω ∈ S0 × S1 × · · · × Sp−1, if u ⊂ ωl, for some rational l. Now, u, induced by
ω, is d-valid if and only if for any two proximal positions i and j (0 ≤ i, j < n,
0 < |i− j| ≤ d), it is not the case that u(i) = � = u(j).

Remark 9. The choice of letters ω ∈
∏p−1

x=0 Sx induces a d-valid word if and
only if for every two proximal positions i, j, u(i) = ω(i mod p) or u(j) =
ω(j mod p).

This suggests a geometric approach for determining which choices of
letters do not cause a hole constraint violation. For (a0, b0) ∈ A2, let the
cross centered at (a0, b0) be the set +(a0, b0) = {(a, b) ∈ A2 | a = a0 or
b = b0}. Then, the choices of letters a for column x and b for column y

that do not cause any hole constraint violations, are precisely those in the
intersection of the crosses centered at (w(i), w(j)), for i, j proximal positions
in columns x, y.

The subsets of A2 formed by intersecting crosses, however, are of special
forms. The following theorem describes these forms, and shows that they
can be determined in l-linear time, where l is the number of crosses that
need to be intersected (the number of distinct ordered pairs (i, j) where i, j
are proximal positions in columns x, y, respectively).

Theorem 12. Considered as a set of entries in a k × k matrix, any set T
formed by intersecting crosses must be of one of the forms:

1. FULL: the universe A2;

2. CROSS(a0, b0): a cross +(a0, b0);

3. ROW(a0): a row of the matrix {(a0, b) | b ∈ A};

4. COL(b0): a column of the matrix {(a, b0) | a ∈ A};
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5. TWO((a1, b1), (a2, b2)): a set of two points (a1, b1) and (a2, b2) in nei-
ther the same row nor column;

6. ONE(a0, b0): a singleton set {(a0, b0)};

7. NULL: the null set ∅.

Proof. Let us denote by m the number of crosses that are intersected: T =⋂m
s=1 +(as, bs). If m = 0, then T = A2 is FULL. Moreover, the form FULL

is only possible for m = 0. If m = 1, then T = +(a1, b1) is CROSS(a1, b1).
Now suppose that m > 1 and let T ′ =

⋂m−1
s=1 +(as, bs). We consider

what happens when we intersect +(am, bm) with T ′, for T ′ in each of the
above forms.

Let T ′ = CROSS(a0, b0). If (am, bm) = (a0, b0), then T ′ = +(am, bm),
and we get that T = T ′. If am = a0 and bm 6= b0, then T = ROW(a0).
If bm = b0 and am 6= a0, then T = COL(b0). If am 6= a0 and bm 6= b0,
then T = TWO((a0, bm), (am, b0)). Therefore, intersecting +(am, bm) with
a CROSS matrix results in a CROSS, ROW, COL, or TWO matrix, as
depicted in Figure 3.2. a).

If T ′ = ROW(a0) and am = a0, then T = T ′ ⊂ +(am, bm). Otherwise,
T = ONE(a0, bm). Furthermore, if T ′ = COL(b0) and bm = b0, then T =
T ′ ⊂ +(am, bm). Otherwise, T = ONE(am, b0).

Now, let T ′ = TWO((a, b), (a′, b′)). If (am, bm) is equal to (a, b′) or to
(a′, b), then T = T ′ ⊂ +(am, bm). Now, if a = am or b = bm then (a, b) ∈
+(am, bm), but (a′, b′) /∈ +(am, bm), and so T = ONE(a, b). Similarly, if
a′ = am or b′ = bm then T = ONE(a′, b′). Finally, if a 6= am, b 6= bm,
a′ 6= am and b′ 6= bm, then (a, b), (a′, b′) /∈ +(am, bm), so T = NULL.
Therefore, intersecting +(am, bm) with a TWO matrix results in a TWO,
ONE, or NULL matrix, as depicted in Figure 3.2. b).

If T ′ = ONE(a0, b0) and am = a0 or bm = b0, then T ′ ⊂ +(am, bm),
so T = T ′. Otherwise, T = NULL. Finally, if T ′ = NULL, then T =
NULL.

Now, returning to the question of which ω ∈
∏p−1

x=0 Sx induce d-valid
partial words, for two columns x, y < p, we define the constraint matrix
Mxy, to be a k × k matrix such that, for all a, b ∈ A, Mxy(a, b) is ∗ if for
every pair of proximal positions i, j in columns x, y, (a, b) ∈ +(w(i), w(j)),
and 0 otherwise. Note that, trivially, the constraint matrix from x to y is
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Figure 3.2: Intersection of different matrices

the transpose of the constraint matrix from y to x, and that ω ∈
∏p−1

x=0 Sx

induces a d-valid partial word if and only if for every x, y ∈ {0, . . . , p − 1},
Mxy(ω(x), ω(y)) = ∗.

The result of Theorem 12 is that the constraint matrices can be classified
into a few simple types. Therefore, in practice, we store constraint matri-
ces as objects that encode the form of the matrix (FULL, CROSS, TWO,
etc.), and at most four characters to denote rows and columns (querying the
position of stars in row a0 of the object < TWO, (a, b), (a′, b′) > yields b if
a0 = a, b′ if a0 = a′ and NONE otherwise). These can be constructed and
read in constant time.

Remark 10. If columns x, y are proximal, that is x, y contain proximal
positions, then 0 < |x− y| ≤ d or 0 < p− |x− y| ≤ d.

Fix some variables that will be shared by the algorithms: a table of
constraint matrices, M ; sets FROW, FONE, FTWO and FCROSS, where
FFORM contains (x, y) for which Mxy is of form FORM; a list of letters ω,
where ω(x) is the letter chosen for column x. The following lemmas will be
useful in proving the validity of our algorithms.

Lemma 9. If 0 ≤ x, y < p with 0 < |x− y| ≤ d, then Mxy is not FULL.

Proof. The positions x and y in w are proximal since 0 < |x − y| ≤ d.
Therefore at least one cross (namely, that centered at (w(x), w(y)) is used
in the creation of the matrix Mxy, so it cannot be FULL.

Furthermore, it follows from Theorem 12 that the types of constraints
that one column can exert on another are limited.
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Algorithm 4 Initializing the matrices
1: for (x, y) columns within d do
2: Mxy := FULL
3: end for
4: for i = 0 to n− y step p do
5: intersect Mxy with cross centered at (w(x+ ip), w(y + ip))
6: end for

Lemma 10. If two columns x, y with 0 ≤ x < y < p, contain each at
least two different letters, and Mxy is a CROSS matrix, then |x − y| ≥
max{p− d, d+ 1}.

Proof. Since Mxy is not a FULL matrix, by Remark 10, we have that |x−
y| ≤ d or that p − d ≤ |x − y|. Suppose that |x − y| ≤ d, and let y + sp

be a position in column y, where y ≤ y + sp < n. Thus, x + sp is a
position in column x, since 0 ≤ x ≤ x + sp < y + sp < n. Furthermore,
every position in column y is proximal to some position in column x. Since
Mxy is a CROSS matrix, all ordered pairs (w(i), w(j)), for i, j proximal
positions in columns x, y, must be equal. Therefore all letters in column y

of w are equal, a contradiction. Therefore |x − y| > d and |x − y| ≥ p − d,
so |x− y| ≥ max{p− d, d+ 1}.

There exist even more restrictions regarding CROSS matrices.

Lemma 11. Let x1, x2, x3 be distinct columns with at least two different let-
ters each. If Mx2x3 and Mx1x3 are CROSS matrices, then Mx1x2 is neither
a FULL nor a CROSS matrix.

Henceforth, by columns within d we mean columns x, y such that 0 < |x−
y| ≤ d or 0 < p−|x−y| ≤ d. Any other pair of columns is necessarily related
by a FULL constraint matrix and therefore can be ignored. Algorithm 4
computes all non-FULL constraint matrices of w in O(nd) time.

Corollary 7. The forms (as per Theorem 12) of all the non-FULL con-
straint matrices for w can be determined in O(nd) time via Algorithm 4.

Note that given two proximal columns x and y, and a letter a chosen for
column x, there are either zero, one, or ‖Sy‖ choices of a letter for column y
that do not conflict with the choice of letter a for column x. This observation
suggests an algorithm for labeling multiple columns. Let us now construct
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Algorithm 5 Fill(x, a)
1: initialize Q to be an empty queue accepting columns
2: choose letter a for column x
3: add x to Q
4: while dequeue y from Q do
5: let b = ω(y)
6: for z a neighbor of y do
7: let row be the b row of the matrix Myz

8: remove edges between y and z
9: if row has all ∗’s then

10: next (go to line 4)
11: else if row has exactly one ∗, say at position c then
12: if letter c has already been chosen for column z then
13: next (go to line 4)
14: else if column z is unlabeled then
15: choose letter c for column z
16: add z to Q
17: next (go to line 4)
18: end if
19: end if
20: undo all recent labellings and edge erasures
21: return false
22: end for
23: end while
24: return true

a directed graph G that has vertex set {0, . . . , p−1} and edge set consisting
of edges (x, y) labeled by Mxy when columns x, y are within d.

Theorem 13. For a column x and a letter a ∈ Sx, Algorithm 5 correctly
chooses letters for some additional columns such that, after the completion
of this algorithm no undetermined column is constrained by an already de-
termined column. Additionally, if the constraint matrices have already been
computed, the running-time of Algorithm 5 is O(m), where m is the number
of edges that are traversed.

Proof. The problem of finding a choice of letters for the columns is equivalent
to finding a labeling of the vertices of G, such that every vertex x is labeled
with a letter ω(x) that occurs in column x of w, and for any two columns
x and y within d, the (ω(x), ω(y))-entry of Mxy is a ∗. If such a labeling
exists, then it induces a p-periodic d-valid partial word contained in w, by
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replacing every non-ω(x) letter in each column x with a hole.
The algorithm starts by assuming a labeling of vertex x by the letter a,

and then performs a breadth-first search on the graph G, starting at x. This
is implemented using a queue. Suppose that a vertex y has been marked
by letter b and that we are now traversing an edge from y to z. Then the
constraint matrix Myz either uniquely determines the label c on the sink
vertex z, or it imposes no constraint at all, or there are no choices, in which
case the algorithm immediately fails. In the former case, either the unique
label is applied (ω(z) is set to c) and vertex z is added to the queue for later
traversal, or if ω(z) has already been set to a different value, the algorithm
fails because there cannot be any labeling of G with ω(x) = a and ω(z) with
its original value. In the case when no constraint is imposed (the b row is
filled with ∗’s), this matrix is ignored, since for any value of ω(z) the matrix
will not cause a contradiction. In all cases, the edge (y, z) and its opposite
(z, y) are marked as having been traversed, so that they will not be visited
again. In conclusion, an undetermined column is marked exactly when it
is constrained by an already determined column, thus, ensuring that at the
end of the algorithm no determined column will constrain an undetermined
column. This algorithm visits m edges, no more than once each. On each
edge, it performs a constant time operation. Thus, Algorithm 5 runs in
O(m) time.

Please note that undoing all recent labellings and edge erasures, while
keeping the algorithm’s runtime within O(m), is solved in constant time by
implementing data structures that could be “marked” in a particular state,
and reset to this state later on. These data structures are used for the sets
of neighbors of a vertex, the sets FFORM (of edges of each type), and the
set of labeled vertices. While, all the FFORM’s and labellings can be reset
in constant time, the vertex neighbor sets can be reset in O(l) time, where l
is the number of vertices visited during this run of the algorithm. Since the
number of vertices visited is less than the number of edges visited, l < m,
the overall algorithm runs in O(m) time.

The next lemma will help us prove that we never need to run Algorithm 5
(“Fill(x, a)”) on a vertex more than twice.

Lemma 12. Suppose that x and y are vertices of G such that Mxy = TWO
((a, b), (a′, b′)), Fill(x, a) returns true, and ω ∈

∏p−1
z=0 Sz induces a d-valid
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partial word u with ω(x) = a′. Then, there exists a choice ω′ of letters for
the columns, that induces a d-valid partial word with ω′(x) = a.

Proof. Let T be the set of vertices of G that are labeled by Fill(x, a), and
Q be the labeling of T . For every vertex x of G, let ω′(x) = Q(x) if x ∈ T

and ω′(x) = ω(x) otherwise. Since the labeling Q of T was generated by
Fill(x, a), we know that no letter choice for a vertex outside T is constrained
by any of the letter choices specified in Q. Furthermore, since ω induced
a d-valid partial word, we know that no constraint matrix is violated by
two letter choices in ω. Therefore the letter choices in ω′ do not violate
any constraint matrices, so ω′ induces a d-valid partial word. Also, clearly
ω′(x) = a, so we have our result.

Algorithm 6 traverses all edges corresponding to non-FULL matrices and
finds a consistent labeling of the vertices of G if any exists.

Theorem 14. Algorithm 6 returns a d-valid p-periodic partial word con-
tained in w, unless no such word exists. The running-time of the algorithm
is O(nd).

Proof. If there is a NULL matrix between two columns, then no consistent
labeling of the vertices exists, so the algorithm fails. If any column in w

has all letters equal, then that letter must be assigned for the column, and
Fill(x,w(x)) ran. There can only be one consistent labeling of all vertices if
it succeeds (note that the determination of whether a column has only one
character can be performed in O(n

p ) time, and thus, it can be performed for
all columns in O(n) time). Similarly, if there is a ROW or ONE matrix Mxy

with a ∗ in row a, then a must be chosen for column x. We run Fill(x, a),
and it must succeed for there to be a consistent labeling of the vertices of
G.

If Mxy = TWO((a, b), (a′, b′)) then we know that any consistent labeling
of the vertices of G must have column x labeled with either a or a′. But
by Lemma 12, if some consistent labeling of G exists and Fill(x, a) returns
true, then there exists a consistent labeling of G that agrees on all choices
of letters made by Fill(x, a). Therefore in this case we can simply continue.
Otherwise we try Fill(x, a′). If this fails, then we return false.
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Algorithm 6 Traversing the entire graph
1: initialize matrices
2: for (x, y) columns within d do
3: if Mxy = NULL then
4: return false
5: end if
6: add (x, y) to FFORM
7: end for
8: for column x do
9: if ‖Sx‖ = 1 then

10: Fill(x,w(x))
11: end if
12: end for
13: while exists (x, y) with Mxy of form ROW(a), in FROW do
14: if not Fill(x, a) then return false
15: end while
16: while exists (x, y) with Mxy of form ONE(a, b), in FONE do
17: if not Fill(x, a) then return false
18: end while
19: while exists (x, y) with Mxy of form TWO((a, b), (a′, b′)), in FTWO

do
20: if not Fill(x, a) and not Fill(x, a′) then return false
21: end while
22: for column x do
23: if column x is unlabeled then
24: choose w(x) for column x
25: end if
26: end for
27: for i from 0 to n− 1 do
28: let u(i) be w(i) if w(i) = ω(i mod p) and � otherwise
29: end for
30: return u

At this point in the algorithm, any unlabeled vertices x, y are related
by either a FULL or CROSS matrix, since all other types of matrices have
already been taken into account. Consider a graph T ′ with the so-far unla-
beled vertices of G as the vertex set, and an edge between x and y if and
only if Mxy is a CROSS matrix. We can satisfy all remaining constraints
(the CROSS matrices) by considering every connected component of T ′ sep-
arately. But, by Lemma 11, this graph has no connected components of size
greater than two (since only crosses are left, connecting more than two of
them falls in Lemma 11).
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We claim that we can label any remaining vertex x with w(x) (the first
letter appearing in column x) without introducing any new contradictions.
This is clearly true for any isolated vertex in T ′, since these are uncon-
strained. Now consider x, y vertices in T ′ related by CROSS(a, b). Every
proximal pair of positions i, j in columns x, y must have w(i) = a and
w(j) = b. But between any two columns that have proximal pairs, at least
one of them has its first (top) position proximal to some position in the
other column. Therefore w(x) = a or w(y) = b (or both). Therefore these
choices satisfy the constraint matrix. If the algorithm reached this step,
then there exists a p-periodic d-valid partial word contained in w, namely
the one induced by ω.

Each matrix is visited at most twice (this worst case scenario is achieved
precisely if the edge is examined twice in the loop starting on line 19).
There are at most 2pd matrices in question, and analyzing a row of a matrix
takes constant time. Thus, the running-time is O(pd) plus the running-time
of checking which columns are uniform, and of constructing the constraint
matrices (O(nd) by Corollary 7). Therefore, the total running-time of Al-
gorithm 6 is O(nd).

Let us now look at an example of how this algorithm works.

Example 2. Let us take the full word

w = acbbabcaaababbaaacbbabcaa

and see if it is possible to introduce holes that are not 2-proximal, such that
the obtained word is 8-periodic. First we will arrange the word in rows of
length eight:

a c b b a b c a

a a b a b b a a

a c b b a b c a

a

Now, let us look at the types of constraint matrices created by the intersec-
tions of columns. We see that after using Algorithm 4 the matrices M01 ,
M06, M23, M24, M56 are of type COL; M12, M17, M35, M45, M67 are
of type ROW; M02, M07, M57 are of type CROSS; M13, M34, M46 are of
type TWO; and all the rest of the matrices are FULL ones.
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Let us now run Algorithm 5 for column 0 and letter a. This determines
a choice of a or c for both columns 1 and 6. Choosing c for column 1 gives
us as in columns 3 and 7 and b in column 2. Running now the algorithm
for letter a and column 3 we get a for column 4 and b for column 5. Since
the a of column 4 determines an a in column 6, and for column 6 we have
both a and c as possible solutions, the algorithm ends correctly. A 2-valid
8-periodic partial word contained in w would be

acb�ab�aa�ba�baaacb�ab�aa

Moreover, arranging the word in rows of length eight we now have:

a c b � a b � a

a � b a � b a a

a c b � a b � a

a

3.5 Conclusion

In this section we have presented results regarding the extension of repetition
on full words, to partial words.

The concept of square (overlap, respectively, cube)-free morphisms is
well defined for full words. If Berstel in 1979 and Crochemore in 1982
give characterizations of the square-free morphisms, Bean, Ehrenfeucht and
McNulty investigate the k-free morphisms, in [BEM79]. Would be somehow
interesting the study of such morphism from the partial words point of view.

Even more, in [BEM79] the authors also introduce the concept of so-
called avoidable patterns. The study of avoidable patterns on partial words
has recently been initiated in a couple of papers [BSMSW10, BSSW09],
and lot of progress has been made already. In [BSMSW10] the authors
extend the problem of avoiding binary patterns to partial words. Hence,
they show that the classification of unavoidable binary patterns, started
by Scmidt [Sch86, Sch89], continued by Roth [Rot92] and completed by
Cassaigne [Cas93], is very similar to the one of partial words with infinitely
many holes. The only problems arise for the case of overlaps, which, unlike
the full word case, are not avoidable over binary alphabets.

Dejean in [Dej72] improves some of the original inequalities of Thue and
introduces the notion of threshold repetitiveness. This concept requires that
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the length of a word y separating two occurrences of x is bounded from below
by the length of x times some factor. Actually in this paper it is proved that
for an alphabet of size 3 this threshold is 7

4 and it is conjectured that for 4,
the value is 7

5 . In fact, this result and several other bounds were proved in
1984 by Pansiot and by Moulin-Ollagnier in 1992 up to an alphabet of size
11 and for bigger size alphabets it was conjectured that this threshold is n

n−1 .
These other bounds were proved by Currie and Mohammad-Noori in 2004
for 12 ≤ n ≤ 14 [MNC07]; Currie and Rampersad [CR09c] and Rao [Rao09]
for 15 ≤ n ≤ 26; Currie and Rampersad for 27 ≤ n ≤ 32 [CR09b, CR09a];
and Carpi for n ≥ 33 in [Car07]. For partial words, this topic is much
simpler. Since all letters followed by a hole create a repetition of degree 2, it
must be that the threshold is at least 2. For binary words, using the results
from [BSMS09, HHKS09] one can see that overlaps cannot be avoided, while
2-overlaps are always avoidable. Hence, the threshold in this case is 5

2 . For
alphabets larger than two, the result is actually proved to be 2, [BSMS09],
three letters being enough for the construction of square-free partial words
with infinitely many holes.

Another research direction that has been investigated lately has to do
with the avoidance of large squares. A result due to Entringer, Jackson and
Schatz [EJS74], says that for infinite words avoiding patterns of the form
xx, the bound |x| ≥ 3 is optimal, holds for infinite partial words containing
infinitely many holes. Recently, in [BSCM09], it has been proved that the
result stands for partial words with infinitely many holes as well. Moreover,
a well known result of Fraenkel and Simpson [FS95], that states that for full
words over a binary alphabet one can construct an infinite word containing
less than four distinct squares, has also been extended to partial words. In
this case it has been proved that the result holds for partial words with at
most two holes, and the bound is optimal. In 1976 [Dek76], Dekking shows
that there exists an infinite cube-free binary word that avoids all squares xx
with |x| ≥ 4, and that the bound of four is best possible. In the same paper
of Blanchet-Sadri, Choi and Mercaş [BSCM09], it has been shown that the
result holds for partial words with at most two holes, and proved that for
five or more holes the length of such words is less than 18. Moreover, infinite
cube-free binary partial words containing more than five holes and less than
eleven squares exist, and the bound is the best possible.

From the algorithmic point of view, there are several problems that seem

56

UNIVERSITAT ROVIRA I VIRGILI 
REPETITIONS IN PARTIAL WORDS 
Robert George Mercas 
ISBN:978-84-693-7670-6/DL:T-1749-2010 



interesting to us, and we have not been able yet to solve efficiently nor to
prove that they are intractable. First, given a k-free full word, what is the
maximum number of letters that can be replaced with holes in this word,
such that the partial word we obtain is also k-free? Second, given a partial
word over an alphabet A, find, if any, a possibility to replace each hole with
a letter from A such that the word obtained in this fashion is k-free; is there
a method to compute the number of all these possibilities efficiently? Some
recent work has been done in this direction [DMT09], and the results look
promising.
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Chapter 4

Counting Distinct Squares in

Partial Words

Computing repetitions such as squares in sequences or strings of symbols
from a finite alphabet is profoundly connected to numerous fields such as
biology, computer science, and mathematics [Smy03]. The literature has
generally considered problems in which a period u of a repetition is invariant.
It has been required that occurrences of u match each other exactly. In some
applications however, such as DNA sequence analysis, it becomes interesting
to relax this condition and to recognize u′ as an occurrence of u if u′ is
compatible with u.

Counting the number of squares in a word can be done in various ways.
The counting of all squares in a full word gives quadratic results as referred
to the length of the word, result that can be obtained by looking at one-letter
words. A first approach, according to [Ili07], was to count the number of
primitively rooted squares, squares of the form xx, where x is not an integer
power of another word. In [Cro81], Crochemore proved that the number of
such occurrences is O(n log n), where n is the length of the word, and the
upper bound is reached by the Fibonacci words.

A well known result of Fraenkel and Simpson [FS98] states that the num-
ber of distinct squares in a word of length n is bounded by 2n since at each
position there are at most two distinct squares whose last occurrence start.
In [Ili07], Ilie improves this bound to 2n − Θ(log n). Based on numerical
evidence, it has been conjectured that this number is actually less than n.

In this section, we investigate the problem of counting distinct squares in
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partial words, or sequences over a finite alphabet that may contain some “do
not know” symbols or “holes.” At first, after making some remarks about
the maximum number of distinct full squares compatible with factors of a
partial word, we give some lower bounds for that number. These bounds are
related to the length of the word, the alphabet size this word is defined on,
and the number of holes it contains. In the following part of this section,
we show that for partial words with one hole, there may be more than
two squares that have their last occurrence starting at the same position.
We prove that if such is the case, then the hole is in the shortest square.
There, we also construct for k ≥ 2, a partial word with one hole over a
k-letter alphabet that has more than k squares whose last occurrence start
at position 0. Actually in [HHK09] it has been proven that the maximum
number of squares starting on one position is at most 2k, where k is the
size of the alphabet. All these results are from [BSMS08], a joint work with
Francine Blanchet-Sadri and Geoffrey Scott. In the last part of this chapter,
representing a work done together with Francine Blanchet-Sadri [BSM09],
we prove that, if it is the case that there are more than three squares that
have their last occurrence starting at the same position, then the length of
the shortest square is at most half the length of the third shortest square.
As a result, we show that the number of distinct full squares compatible
with factors of a partial word with one hole of length n is bounded by 7n

2 .

4.1 A first counting of distinct squares

In a full word, every factor of length 2n contains at most one square factor
ww with |w| = n. In a square partial word w0w1 where w0 ↑ w1, we call the
word v = w0 ∨ w1 the general form of the square. For example, the general
form of the square ab��c�a�d��� is abd�c�. We observe that in partial words,
a square w0w1 may be compatible with more than one distinct full square
of length 2|w0|. For example, the word aa�aa� over the alphabet {a, b, c}
is compatible with three distinct full squares of length 6: (aaa)2, (aab)2

and (aac)2. It is easy to see that if aa�aa� is a word over an alphabet of
size k, then it is compatible with exactly k squares of length 6. Whenever
we talk about a full square compatible with a general form, we refer to a
square that has the first half compatible with the general form. In general,
if w = a0a1 . . . a2m−1 is a partial word over a k-letter alphabet A that is
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a square, then w is compatible with exactly k‖H(v)‖ squared full words of
length m, where v = a0a1 . . . am−1 ∨ amam+1 . . . a2m−1.

At this point, we see that the study of distinct squares in partial words
is quite different from the study of distinct squares in full words. In the
case of full words, there exists an upper bound for the number of distinct
squares in a word of length n, no matter what the alphabet size is. The same
statement is certainly untrue for partial words. For example, the number of
distinct non-empty full squares compatible with �� is equal to k, where k is
the alphabet size.

Let w be a partial word over a k-letter alphabet A. We will denote by
fk(w) the number of distinct non-empty full squares over A compatible with
factors of w, and by gh,k(n) the maximum of the fk(w)’s where w ranges
over all partial words over A with h holes of length n. Note that the number
of all distinct full square non-empty words compatible with factors of �n,
where n is a positive integer, over A, is equal to the number of all distinct
full non-empty words of length i ≤

⌊
n
2

⌋
over A. Using this remark,

gn,k(n) =
bn

2
c∑

i=1

ki =
k (kb

n
2 c − 1)

k − 1
(4.1)

Note that if n is odd, then gn−1,k(n− 1) = gn,k(n) and gn−1,k(n) = gn,k(n).
The first equality follows directly from (4.1). For the second equality, note
that the number of distinct non-empty full squares compatible with factors
of �n−1a over the k-letter alphabet A where a ∈ A is at least gn−1,k(n−1) =
gn,k(n) (those compatible with factors of �n−1). Thus, gn−1,k(n) ≥ gn,k(n).
Since the function gh,k(n) is clearly monotonically increasing with respect to
h, k, and n, it follows that gn−1,k(n) ≤ gn,k(n). Thus, gn−1,k(n) = gn,k(n).

As we have seen earlier with the word ��, the number of distinct non-
empty full squares compatible with factors of a partial word may be un-
bounded if we allow the alphabet size to grow arbitrarily large. However,
we can often write this number as a function of the alphabet size. The
following proposition shows that this number is indeed a polynomial in the
alphabet size.

Proposition 10. Let w be a partial word of length n over a k-letter alphabet,
and let S1 be the set of general forms of all factors of w that are squares. Let
Sm be the set of all partial words v that can be written as v = u0 ∨u1 ∨ · · · ∨
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um−1, where ui ∈ S1 for all 0 ≤ i < m and ui 6= uj for all i < j < m. Then
the number of full distinct squares compatible with factors of w is given by

bn
2
c∑

m=1

((−1)m−1
∑

s∈Sm

k‖H(s)‖) (4.2)

Proof. For a set X of partial words, denote by X̂ the set of all full words
compatible with elements of X. The number of full distinct square words
compatible with factors of w is given by ‖Ŝ1‖. By the principle of inclusion-
exclusion,

Ŝ1 =
bn

2
c∑

m=1

((−1)m−1
∑

s∈Sm

‖ ˆ{s}‖)

Since ‖ ˆ{s}‖ = k‖H(s)‖, the proof is complete.

To generalize the study of counting distinct squares in words to partial
words, we are interested in the limiting behavior of gh,k(n) as k increases.
However, as we have seen with the word w = ��, the value limk→∞ fk(w)
may be infinity. Following Proposition 10, if we treat k as an unknown
variable, the number of distinct non-empty full squares compatible with
factors in any partial word is a polynomial with respect to k. If we consider
all such polynomials corresponding to words of length n containing h holes,
the maximal such polynomial would describe this limiting behavior. Given
a finite length n, there exist only finitely many partial words of length n

up to an isomorphism between letters. Therefore, a lower bound for gh,k(n)
can be given using the leading term of this well defined maximal polynomial,
mh,k(n).

The next results give bounds on the leading term in mh,k(n). We begin
by defining a free hole of a square. Let w be a partial word over an alphabet
A that contains a factor v that is a square. A hole in v is called a free hole
of v if the square v is preserved even after we replace the hole with any
letter of A. For example, consider the partial word w = ab�a�� over the
alphabet {a, b, c}. The underlined hole is a free hole of the squares ab�a��
and ��, but not of �a��. It is easy to see that the number of free holes of
a square factor is exactly twice the number of holes in the general form of
that square. Two free holes in positions i and j in a square v are aligned if
i = j + |v|

2 or j = i+ |v|
2 and v(i) = v(j) = �.
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Note that the degree of mh,k(n) is bh
2 c. To see this, let w be a word of

length n with h holes over a k-letter alphabet. Clearly, any factor of w that
is a square has at most bh

2 c holes in its general form. Thus, by (4.2) there
can be no term of mh,k(n) with k raised to a power higher than bh

2 c. Also
note that the word w = �han−h achieves this bound. The following technical
lemma will assist us in proving results about the coefficients of mh,k(n).

Lemma 13. Let l be a positive integer, let w be a partial word of length n,
and let 0 ≤ p1 ≤ p2 < n. Then there are at most bn−2(p2−p1+1)

3 c+ 1 factors
v = w(i)w(i + 1) . . . w(i + 2l − 1) of length 2l in w such that i ≤ p1 and
i+ l > p2.

Proof. Assume that there exist bn−2(p2−p1+1)
3 c+2 such factors of length 2l in

w. Since all of these factors have the same length, no two of them may start
at the same position. Therefore, p1 ≥ bn−2(p2−p1+1)

3 c+ 1. In particular, one
of these factors must start at a position no later than p1− (bn−2(p2−p1+1)

3 c+
1). This gives us that l > ((p2−p1)+bn−2(p2−p1+1)

3 c+1) from the condition
that i + l > p2. For any factor v = w(i)w(i + 1) . . . w(i + 2l − 1) of length
2l in w, we know that the length of w must exceed 2l + i. Since there
exist bn−2(p2−p1+1)

3 c+ 2 such factors, at least one must start at a position i
satisfying i ≥ bn−2(p2−p1+1)

3 c+ 1. Therefore, we obtain the contradiction

n ≥ 2(p2 − p1 + bn− 2(p2 − p1 + 1)
3

c+ 2) + bn− 2(p2 − p1 + 1)
3

c+ 1

n ≥ 3bn− 2(p2 − p1 + 1)
3

c+ 2(p2 − p1 + 1) + 3

n ≥ n− 2(p2 − p1 + 1)− 2 + 2(p2 − p1 + 1) + 3

Intuitively, the above lemma states that for any l > 0, there can be at
most bn−2(p2−p1+1)

3 c+1 factors of length 2l that use the letters w(p1)w(p1 +
1) . . . w(p2) in their first half. We will use this lemma to find upper bounds
for the leading term of mh,k(n).

Theorem 15. The leading term in m2h,k(n) is (bn−2h
3 c+ 1)kh.

Proof. The degree of m2h,k(n) being h, it only remains to show that the
coefficient of kh in m2h,k(n) is equal to bn−2h

3 c + 1. We will give a lower
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bound of this coefficient by constructing a word with the given leading term.
Consider any word w of length n containing 2h holes and the factor

ab
n−2h

3
c�hab

n−2h
3

c�hab
n−2h

3
c

The following is an exhaustive list of general forms of factors of w that are
squares containing 2h free holes:

aaa · · · aa�� · · · ��
aaa · · · a��� · · · �a

...
a�� · · · ��aa · · · aa

��� · · · �aaa · · · aa

These bn−2h
3 c+ 1 partial words are pairwise compatible, but for any words

v1, v2 in the above list, ‖H(v1 ∨ v2)‖ < h. Therefore, by (4.2) we see that
the coefficient of kh in m2h,k(n) will be at least bn−2h

3 c+ 1.
Note that the coefficient of kh corresponding to a word w is equal to the

number of distinct factors in w, that are squares with 2h free holes. Let

w = w0�0w1�1w2�2 . . . �2h−1w2h

where wi ∈ A∗ for all 0 ≤ i ≤ 2h and �i = � for all 0 ≤ i < 2h . Note
that all factors of w with 2h free holes that are squares must have the same
length (because in a square the free hole �0 is aligned with �h, the length of
all such square factors will be twice the distance between �0 and �h). We
observe that all factors of w that are squares containing 2h free holes must
contain the first h holes of w in their first half. Therefore, every such factor
contains �0w1�1 . . . �h−1 in its first half. The length of �0w1�1 . . . �h−1 is at
least h, so by Lemma 13, there exist at most bn−2h

3 c+ 1 such factors.

Proposition 11. The leading term in m2h+1,k(n) is at least (2bn−2h
3 c+1)kh.

Proof. The degree of m2h+1,k(n) being h, it only remains to show that the
coefficient of kh in m2h+1,k(n) is at least 2bn−2h

3 c+ 1. Consider any word w
of length n containing 2h+ 1 holes and the factor

ab
n−2h

3
c�hab

n−2h
3

c−1�h+1ab
n−2h

3
c
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The following is an exhaustive list of general forms of factors of w that are
squares containing 2h free holes:

ab
n−2h

3
c−1a�h−1� ab

n−2h
3

c−2a�h−1�
ab

n−2h
3

c−1��h−1a ab
n−2h

3
c−2��h−1a

...
...

a�h−1�ab
n−2h

3
c−1 �h−1�aab

n−2h
3

c−2

�h−1�ab
n−2h

3
c−1a

There are bn−2h
3 c + 1 words in the left column and bn−2h

3 c words in the
right column. It is easy to check that if we select two compatible words
v1, v2 from the above list of (2bn−2h

3 c+ 1) partial words, ‖H(v1 ∨ v2)‖ < h.
Using (4.2) we get that the coefficient of kh in m2h+1,k(n) will be at least
2bn−2h

3 c+ 1.

Proposition 12. The leading term in m2h+1,k(n) is at most (2bn−2h
3 c+3)kh

for h > 1.

Proof. Let w be a word of length n containing 2h+ 1 holes for some h > 1.
Then w is of the form w0�0w1�1w2�2 . . . �2hw2h+1 where �i = � for all i. We
need to count the number of distinct factors of w that are squares containing
2h free holes. Let S denote the set of all such factors in w. Note that for
every s ∈ S, there exists a hole in w that is not a free hole of s. Let Sj

denote the set of all s ∈ S having the property that �j is not a free hole of
s. Clearly, we have the partition S = ∪0≤j≤2hSj .

First, assume that there exists j /∈ {0, h, 2h} such that Sj 6= ∅. Then
wj�jwj+1 ↑ wk for some j 6= k. If there exists an i distinct from j such that
Si 6= ∅, then in one of the squares of Si, the hole �j is aligned with �k−1

or �k. In these cases, we get that |wj+1| ≥ |wk| or |wj | ≥ |wk| respectively.
Both cases contradict with wj�jwj+1 ↑ wk. Thus, Si = ∅ for all i 6= j.
Hence, we can replace wj�wj+1 in w with wk and preserve all squares. The
resulting word has only 2h holes. From Theorem 15,

‖S‖ ≤ bn− 2h
3

c+ 1

Next, let us consider the case where Sj = ∅ for every j /∈ {0, h, 2h}. Note
that all squares in S0 have length equal to the distance between �1 and �h+1

in w, since these two holes are aligned in each square of S0. Using the same
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argument, all squares in S2h have length equal to the distance between �1

and �h+1 in w. Therefore, the length of squares in S0 is equal to the length
of the squares in S2h. Note that all squares in S0 and S2h contain the factor
�1w2�2 . . . �h−1 in their first half. The length of this common factor is at
least h−1. By Lemma 13, ‖S0∪S2h‖ ≤ bn−2(h−1)

3 c+1 = bn−2h+5
3 c. Since all

squares in Sh have the same length and contain the factor �0w1�1 . . . �h−1,
it follows from Lemma 13 that ‖Sh‖ ≤ bn−2h

3 c+ 1. Therefore,

‖S‖ ≤ bn− 2h
3

c+ 1 + bn− 2h+ 5
3

c ≤ 2bn− 2h
3

c+ 3

The upper bound for ‖S‖ reached in the second case is always greater than
or equal to the upper bound reached in the first case. Therefore,

‖S‖ ≤ 2bn− 2h
3

c+ 3

Although the following bound is trivial, it yields an interesting construc-
tion.

Proposition 13. The leading term in m3,k(n) is at most 3n
4 k.

Proof. Let w = w0�w1�w2�w3 be a partial word of length n with three
holes. We wish to count the number of possible factors of w that are squares
containing two free holes. Let S1 be all such factors wherein the first hole
of w is not free. Define S2 and S3 similarly. We wish to find the size of
S = ∪1≤i≤3Si. The types of factors in S1, S2, and S3 are illustrated below
(the first half of each factor is written above the second half to show the
alignment of the holes):

S1 (w0�w1)′′ � w′2
w′′2 � w′3

S2 w′′0 � (w1�w2)′

(w1�w2)′′ � w′3

S3 w′′0 � w′1
w′′1 � (w2�w3)′

where v′ and v′′ denote a prefix and suffix of a word v respectively. Because
all factors in S1 have the second and third holes of w aligned, all factors in
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S1 have the same length. Therefore, each factor in S1 ends at a different
position of �w3. Also, the first element of the second half of each factor in
S1 occurs at a different position of w2�. Therefore, ‖S1‖ ≤ |w3| + 1 and
‖S1‖ ≤ |w2| + 1. We can use similar reasoning to arrive at the following
relations:

‖S1‖ ≤ |w2|+ 1 ‖S2‖ ≤ |w0|+ 1 ‖S3‖ ≤ |w0|+ 1

‖S1‖ ≤ |w3|+ 1 ‖S2‖ ≤ |w3|+ 1 ‖S3‖ ≤ |w1|+ 1

Because ‖S‖ = ‖S1‖+ ‖S2‖+ ‖S3‖ and n = |w0|+ |w1|+ |w2|+ |w3|+3,
we determine that

‖S‖ ≤ |w2|+ 1 + |w3|+ 1 + |w1|+ 1 = n− |w0|

‖S‖ ≤ |w2|+ 1 + |w3|+ 1 + |w0|+ 1 = n− |w1|

‖S‖ ≤ |w3|+ 1 + |w0|+ 1 + |w1|+ 1 = n− |w2|

‖S‖ ≤ |w2|+ 1 + |w0|+ 1 + |w1|+ 1 = n− |w3|

Therefore,

‖S‖ ≤ n−max{|w0|, |w1|, |w2|, |w3|} ≤ n− dn− 3
4

e ≤ 3n
4

As we show next, we can improve the bound for the case when there are
only two holes present in the word.

Proposition 14. If n ≡ 2 mod 6, then

m2,k(n)− (
n+ 1

3
)k ≥ n− 2

2

Proof. Using Theorem 15 and the fact that n ≡ 2 mod 6, the leading term
in m2,k(n) is (n+1

3 )k. Therefore, m2,k(n)−(n+1
3 )k is the constant term of the

polynomial m2,k(n). It suffices to construct a partial word w with two holes
over a k-letter alphabet A with |w| = n ≡ 2 mod 6 such that w contains
(n+1

3 )k + n−2
2 distinct squares. Consider the word

w = (ab)l�(ab)l�(ab)l
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Figure 4.1: Squares in (ab)6�(ab)6�(ab)6

of length n over A, such that a, b are distinct letters of A with l = n−2
6 .

The following is an exhaustive list of general forms of factors of w that are
squares:

(ab)l�, b(ab)l−1�a, . . . , �(ab)l

ab, (ab)2, . . . , (ab)b
l
2
c

ba, (ba)2, . . . , (ba)d
l
2
e

(ab)0a, (ab)1a, . . . , (ab)l−1a

(ba)0b, (ba)1b, . . . , (ba)l−1b

Figure 4.1 illustrates these squares for n = 38. These general forms are
pairwise incompatible. Thus, there are a total of

(2l + 1)k + b l
2
c+ d l

2
e+ l + l = (

n− 2
3

+ 1)k + 3l = (
n+ 1

3
)k +

n− 2
2

distinct full words that are squares compatible with factors of w.

4.2 Partial words with one hole

At each position in a full word there are at most two distinct squares whose
last occurrence starts, and thus the number of distinct squares in a word of
length n is bounded by 2n as stated in the following theorem.

Theorem 16 (4). Any full word of length n has at most 2n distinct squares.

A short proof of Theorem 16 is given in [5]. It follows from the unique
decomposition of words into primitive ones, and synchronization (a word w
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is primitive if and only if in ww there exist exactly two factors equal to w,
namely the prefix and the suffix).

We now consider the one-hole case which behaves very differently from
the zero-hole case. We will also count each square at the position where its
last occurrence starts. If the last occurrence of a square in a partial word
starts at position i, then it is a square at position i. In the case of partial
words with one hole, there may be more than two squares that have their last
occurrence starting at the same position. Such is the case with a�aababaab
that has three squares at position 0: a�aa, a�aaba and a�aababaab. We will
prove that if there are more than two squares at some position, then the
hole is in the shortest square. We will also construct for k ≥ 2, a partial
word with one hole over a k-letter alphabet that has more than k squares
at position 0. But first, we recall some results that will be useful for our
purposes.

Lemma 14. [BB99] Let x, y ∈ A∗
� be such that xy has at most one hole. If

xy ↑ yx, then there exist z ∈ A∗ and integers m,n such that x ⊂ zm and
y ⊂ zn.

Lemma 15. [Ili07] Let w ∈ A∗. If w = z1z2z3 = z2z3z4 = z3z4z5 for some
zi ∈ A∗ \ {ε}, then there exist x ∈ A∗ primitive and integers p, q and r,
1 ≤ p ≤ r < q, such that x = x′x′′ for some x′ ∈ A∗ and x′′ ∈ A∗ \ {ε}, and
z1 = xp, z2 = xq−r, z3 = xr−px′, z4 = x′′xp−1x′, and z5 = x′′xq−r−1x′.

Theorem 17. If a partial word with one hole has at least three distinct
squares at the same position, then the hole is in the shortest square.

Proof. Let uu′, vv′ and ww′ be the three shortest squares whose last oc-
currence start at the same position, and assume that |w| < |v| < |u|. It is
impossible for these three squares to be all full (otherwise the subword u2,
a full word, would have three squares starting at its position 0).

For a contradiction, let us assume that ww′ is full (here w = w′). If
w2 ≤ u, then the prefix of length |w2| of u′ is a later occurrence of a square
compatible with w2. And so we must have v < u < w2. If the hole is in u′

but not in v′, then v = v′, and by replacing the hole with the corresponding
letter in u, we obtain the full word u2 that has three distinct squares at
position 0, a contradiction. If the hole is in v′, then set w2 = uz3, u = vz2

and v = wz1. We get w = z1z2z3, v = z1z2z3z1 and u = z1z2z3z1z2. Let
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w2 and w3 be the prefixes of length |w| of v′ and u′ respectively. Since z2z3
is a prefix of both v and v′, let z4 be such that w,w2 ⊂ z2z3z4. Note that
|z4| = |z1|. Two cases occur.

Case 1. The hole is in the suffix of length |v| − |w| of v′.
In this case, let z5 be such that w = z3z4z5. Note that |z5| = |z2|.

Here w = z1z2z3 = z2z3z4 = z3z4z5 and by Lemma 15, there exist x ∈ A∗

primitive and integers p, q and r, 1 ≤ p ≤ r < q, such that x = x′x′′ for some
x′ ∈ A∗, x′′ ∈ A∗ \ {ε}, and z1 = xp, z2 = xq−r, z3 = xr−px′, z4 = x′′xp−1x′,
and z5 = x′′xq−r−1x′. We have w = z1z2z3 = xqx′, v = wz1 = xqx′xp

and u = vz2 = xqx′xpxq−r. If x′ = ε, then a later occurrence of a square
compatible with w2 exists, and so we assume that x′ 6= ε. Since the hole is
in the suffix of length |v| − |w| of v′, the hole is in the suffix of length |xp|
of v′. We can write v′ = xqx′xsx1x2x

p−s−1 where 0 ≤ s < p, |x1| = |x′|
and |x2| = |x′′|, and where the hole is in x1 or x2. Since u ↑ u′, we have
z1z2z3z1z2 ↑ z3z4xsx1x2x

p−s−1 · · · , or xqx′xpxq−r ↑ xrx′xsx1x2x
p−s−1 · · · .

The fact that r < q implies that xq−rx′xpxq−r ↑ x′xsx1x2x
p−s−1 · · · . If s >

0, then x′x′′x′ = x′x′x′′ and x′′x′ = x′x′′, and the latter being an equation of
commutativity implies that a word y exists such that x′ = ym and x′′ = yn

for some integers m,n. In this case, there is obviously a later occurrence of
a square compatible with w2. If s = 0, then xq−rx′xpxq−r ↑ x′x1x2x

p−1 · · · .
Since q > r, by looking at the prefixes of length |xx′| we get x′x′′x′ ↑ x′x1x2

and deduce x′′x′ ↑ x1x2.
If the hole is in x1, then x2 = x′′ and x′′x′ ↑ x1x

′′. By weakening, we get
x′′x1 ↑ x1x

′′, an equation of commutativity that satisfies the conditions of
Lemma 14 since x′′x1 has only one hole. Similarly as above, a word y exists
such that x1 ⊂ ym and x′′ = yn for some integers m,n. Set x1 = yty′ym−t−1

where 0 ≤ t < m and y′ is the factor that contains the hole. Since x1 ⊂ x′,
we deduce that x′ = yty′′ym−t−1 for some y′′. The compatibility x′′x′ ↑ x1x

′′

implies ynyty′′ym−t−1 ↑ yty′ym−t−1yn and by simplification yny′′ ↑ y′yn.
Since x′′ 6= ε, we have n > 0 and obtain y′′ = y. We get x′ = ym, and there
is obviously a later occurrence of a square compatible with w2. We argue
similarly in the case where the hole is in x2.

Case 2. The hole is not in the suffix of length |v| − |w| of v′.
In this case, set w = z2z3z4 and w2 = z2z3z

′
4 and the hole is in z′4.
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Also, set w = z3z
′′
4z5 and w3 = z3z

′
4z5 where both z′4 ⊂ z4 and z′4 ⊂ z′′4 ,

and |z5| = |z2|. We treat the case where z′′4 6= z4 and leave the case where
z′′4 = z4 to the reader.

If z′′4 = z4, then w = z1z2z3 = z2z3z4 = z3z4z5 and by Lemma 15, there
exist x ∈ A∗ primitive and integers p, q and r, 1 ≤ p ≤ r < q, such that
x = x′x′′ for some x′ ∈ A∗, x′′ ∈ A∗ \ {ε}, and z1 = xp, z2 = xq−r, z3 =
xr−px′, z4 = x′′xp−1x′, and z5 = x′′xq−r−1x′. We have w = z1z2z3 = xqx′,
v = wz1 = xqx′xp and u = vz2 = xqx′xpxq−r. Since the hole is in z′4, we
can write v′ = xq−px′(x′′x′)sx2x1(x′′x′)p−s−1xp where 0 ≤ s < p, |x1| = |x′|,
|x2| = |x′′|, and where the hole is in x1 or x2. Since u ↑ u′, we have

z1z2z3z1z2 ↑ z3z′4z1 · · ·

or

xqx′xpxq−r ↑ xr−px′(x′′x′)sx2x1(x′′x′)p−s−1xp · · ·

or

xqx′xpxq−r ↑ xr−p+sx′x2x1(x′′x′)p−s−1xp · · ·

The fact that r − p+ s < q implies that

xq−r+p−sx′xpxq−r ↑ x′x2x1(x′′x′)p−s−1xp · · ·

Since q − r + p − s > p − s, we get by simplification x′x′′ = x′′x′, and the
latter being an equation of commutativity implies that a word y exists such
that x′ = ym and x′′ = yn for some integers m,n. In this case, there is
obviously a later occurrence of a square compatible with w2.

If z′′4 6= z4, then put z1 = xp where x is primitive and p is a positive
integer. Since z1z2z3 = z2z3z4 and the equation z1(z1z2z3) = (z1z2z3)z4
is one of conjugacy, we can write z4 = x′′xp−1x′, where x = x′x′′ with x′′

non-empty, and z1z2z3 = xqx′ for some q ≥ p. Since z1z2z3 = xqx′ and
z1 = xp, we have z2z3 = xq−px′. Say z2 = xty′ where t ≥ 0, and y′ is a
prefix of x with y′ 6= x. Set x = y′y′′ with y′′ non-empty. If y′ = ε, we have
z2 = xt and z3 = xq−p−tx′ and in this case z′′4 = z4, a contradiction. This
can be seen by using the equality z2z3z4 = z3z

′′
4z5. And so y′ 6= ε. Since z′4

has the length of z1, write z′4 = (x′′x′)sx2x1(x′′x′)p−s−1 where 0 ≤ s < p,
|x1| = |x′|, |x2| = |x′′|, and where the hole is in x1 or x2. There are three
cases to consider: (2.1) t < q− p− 1; (2.2) t = q− p− 1; and (2.3) t = q− p.
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For (2.1), z2 = xty′ and z3 = y′′xq−p−t−1x′. Since z1z2z3 = z3z
′′
4z5, we

have xqx′ = y′′xq−p−t−1x′ · · · = y′′x · · · . Since q > p+ t+1 > 0, the prefixes
of length |x| are y′y′′ and y′′y′ respectively. The equality y′y′′ = y′′y′ holds,
and so by commutativity, y′ and y′′ are positive powers of a common word,
leading to x not being primitive, a contradiction.

For 2.2), z2 = xty′ and z3 = y′′x′. Since z1z2z3 = z3z
′′
4z5, we have

xqx′ = y′′x′ · · · . We consider the case where |x′| ≥ |y′| and then the case
where |x′| < |y′|. If |x′| ≥ |y′| or y′ is a prefix of x′, then since q = p +
t + 1 > 0, the prefixes of length |x| are y′y′′ and y′′y′ respectively and
again, the equality y′y′′ = y′′y′ holds, and as above leads to a contradiction.
If |x′| < |y′| or x′ is a prefix of y′, then since z1z2z3 ↑ z3z

′
4z5, we have

xqx′ ↑ y′′x′(x′′x′)sx2x1(x′′x′)p−s−1 · · · .
If s > 0, then the fact that the prefixes of length |x| are compatible

implies that y′y′′ = y′′y′. If s = 0 and the hole is in x1, then x2 = x′′ and
y′′x′x′′ = y′′x = y′′y′y′′ is a prefix of z3z′4z5 in which case y′y′′ = y′′y′ as
above. If s = 0 and the hole is in x2, then x1 = x′ and set y′ = x′y for some
y 6= ε. Here, x′′ = yy′′, and put x2 = y1y2 where y1 ⊂ y and y2 ⊂ y′′. We
get xqx′ ↑ y′′x′x2x1(x′′x′)p−1 · · · = y′′x′y1y2x

′(x′′x′)p−1 · · · .
If the hole is in y2, then y1 = y and y′′x′y1 = y′′x′y = y′′y′ is a prefix

of z3z′4z5 and the result again follows since y′y′′ = y′′y′. If the hole is in y1,
then y′y′′ ↑ y′′x′y1 or x′yy′′ ↑ y′′x′y1, and by weakening (x′y1)y′′ ↑ y′′(x′y1).
The latter being an equation of commutativity, by Lemma 14, we get that
x′y1 ⊂ zm and y′′ = zn for some word z and positive integers m,n. Set
x′y1 = zkz′zm−k−1 where 0 ≤ k < m and z′ is the factor that contains
the hole. Since x′y1 ⊂ x′y, we deduce that x′y = zkz′′zm−k−1 for some z′′.
The compatibility x′yy′′ ↑ y′′x′y1 implies zkz′′zm−k−1zn ↑ znzkz′zm−k−1.
By simplification we obtain z′′zn ↑ znz′, and since n > 0 we get z′′ = z,
and thus y′ = x′y = zm. The result follows since x = y′y′′ = zm+n with
m+ n > 1.

For (2.3), z2 = xty′ and z3 = y 6= ε. Here x′ = y′y, and so x = x′x′′ =
y′yx′′ and y′′ = yx′′. Here

xqx′ = z1z2z3 ↑ z3z′4z5 = y(x′′x′)sx2x1(x′′x′)p−s−1 · · · .

If s > 0, then xqx′ = x′x′′y′ · · · = y′y′′y′ · · · = y′yx′′y′ · · · and y(x′′x′)s · · · =
yx′′x′ · · · = yx′′y′y · · · , and so y′yx′′ = yx′′y′ or y′y′′ = y′′y′, again leading
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to a contradiction.
If s = 0 and the hole is in x1, then x2 = x′′ and set x1 = y2y1 where

y2 ⊂ y′ and y1 ⊂ y. We get y′y′′ · · · = xqx′ ↑ yx2x1 · · · = yx′′y2y1 · · · =
y′′y2y1 · · · . If the hole is in y1, then y2 = y′ and y′′y′ is a prefix of z3z′4z5
and the result again follows since y′y′′ is a prefix of xqx′. If the hole is in
y2, then y′y′′ ↑ y′′y2, and by weakening y2y

′′ ↑ y′′y2. By Lemma 14, a word
z exists such that y2 ⊂ zm and y′′ = zn for some positive integers m,n.
Set y2 = zkz′zm−k−1 where 0 ≤ k < m and z′ is the factor that contains
the hole. Since y2 ⊂ y′, we deduce that y′ = zkz′′zm−k−1 for some z′′.
The compatibility y′y′′ ↑ y′′y2 implies zkz′′zm−k−1zn ↑ znzkz′zm−k−1. Since
n > 0, by simplification we obtain z′′ = z. We get y′ = zm and x is not
primitive.

If s = 0 and the hole is in x2, then x1 = x′ and y′yx′′y′y · · · = x′x′′x′ · · · =
xqx′ ↑ yx2x1 · · · = yx2x

′ · · · = yx2y
′y · · · . We deduce y′yx′′ ↑ yx2y

′, and by
weakening y′yx2 ↑ yx2y

′. By Lemma 14, we get that yx2 ⊂ zm and y′ = zn

for some word z and positive integers m,n. Set yx2 = zkz′zm−k−1 where
0 ≤ k < m and z′ is the factor that contains the hole. Since yx2 ⊂ yx′′,
we deduce that yx′′ = zkz′′zm−k−1 for some z′′. The compatibility y′yx′′ ↑
yx2y

′ implies znzkz′′zm−k−1 ↑ zkz′zm−k−1zn. Since n > 0, by simplification
we obtain z′′ = z. We get y′′ = yx′′ = zm and the result follows since
x = y′y′′ = zm+n with m+ n > 1.

Proposition 15. For k ≥ 2, there exists a partial word with one hole over
a k-letter alphabet that has more than k squares at position 0.

Proof. Let Σ = {a1, a2, . . .} be an infinite ordered set. We build a sequence
of partial words with one hole, (DSi)i≥2, where DSi contains i+ 1 squares
with their last occurrence starting at position 0. In order to do this, we
build an intermediary sequence of partial words with one hole (DS′i)i≥2 and
denote by DS′i(a), the word DS′i in which the hole has been replaced by the
letter a. Let DS2 = a1�a1a1a2a1a2a1a1a2, and for i ≥ 3,

DS′i−1 = DSi−1ai−1

DSi = DS′i−1DS
′
i−1(ai)

In other words, DSi consists of the concatenation of DSi−1 with the last
letter of the smallest alphabet used for creating DSi−1, concatenated again
with the same factor in which the hole has been replaced by a letter not
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present in the word so far. For example,

DS′2 = a1�a1a1a2a1a2a1a1a2a2

DS3 = a1�a1a1a2a1a2a1a1a2a2a1a3a1a1a2a1a2a1a1a2a2

the latter having three squares other than itself at position 0: a1�a1a1,
a1�a1a1a2a1 and a1�a1a1a2a1a2a1a1a2. For k ≥ 2, DSk, a partial word with
one hole over a k-letter alphabet, has k + 1 squares. This is due to the fact
that all previous squares cannot reappear later in the word because of the
newly introduced letter.

The concept is furthermore investigated in [HHK09]. Here, the authors
extend the bound on the number of full squares that have their last com-
patible occurrences starting at a certain position in a partial words with one
hole. Using the pigeonhole principle, they show that the bound goes from
2, in the case of full words, to 2k, where k is the size of the alphabet the
word is defined on.

Proposition 16. [HHK09] Let w be a partial word defined over an alphabet
of size k, such that w contains only one hole. Then the number of full squares
that have their last compatible occurrences in w starting at a position i is
2k.

This result is actually an improvement of Proposition 15, an example
being straightforward:

Example 3. [HHK09] Construct a partial word w such that the number of
full squares that have their last compatible occurrences in w starting at a
position 0 is 2k. Let A = {a1, . . . , ak} and for w = uv define u−1w = v the
left quotient of w by u (if u is not a prefix of w, then u−1w is undefined),
and similarly define the right quotient wu−1. Now, we define w = w2k

recursively. Let w0 = �akak−1 · · · a1 and, for j ∈ {1, 2, . . . , k}, set

w2j−1 = w2j − 2w2j−2(aj)

w2j = w2j−1(�−1w2j−1)a−1
j

For w = w2k, we have 2k full squares that have their last compatible
occurrences in w starting at a position 0.
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4.3 Bound on the number of squares

In this section, we prove that, in a partial word with one hole, if three squares
have their last occurrence starting at the same position, then the length of
the shortest square is at most half the length of the third shortest square.
As a result, we show that the number of distinct full squares compatible
with factors of a partial word with one hole of length n is bounded by 7n

2 .
But first, we recall some lemmas that will be useful for our purposes.

Fundamental results on periodicity of full words include a theorem of
Fine and Wilf which considers the simultaneous occurrence of different pe-
riods in a word. The following lemma extends this result to partial words
with one hole.

Lemma 16. [BB99] Let w ∈ A∗
� be weakly p-periodic and weakly q-periodic.

If H(w) is a singleton and |w| ≥ p+q, then w is (strongly) gcd(p, q)-periodic.

The following lemmas on commutativity and conjugacy will be useful for
our purposes.

Lemma 17. [BB99] Let x, y ∈ A+ and let z ∈ A∗
� be such that H(z) is a

singleton. If z ⊂ xy and z ⊂ yx, then xy = yx.

Lemma 18. [BSBL06] Let x, y, z ∈ A∗
� be such that |x| = |y| > 0. Then

xz ↑ zy if and only if xzy is weakly |x|-periodic.

Lemma 19. [BSL02] Let x, y ∈ A+
� and z ∈ A∗. If xz ↑ zy, then there exist

v, w ∈ A∗ and an integer n ≥ 0 such that x ⊂ vw, y ⊂ wv, and z = (vw)nv.
Consequently, if xz ↑ zy, then xzy is (strongly) |x|-periodic.

Theorem 18. Let ww′, vv′ and uu′ be three squares at the same position,
with |w| < |v| < |u|. If H(uu′) is a singleton, then |ww′| ≤ |u|.

Proof. Since |w| < |v| < |u|, let us denote v = wz1 and u = vz2, for
some partial words z1, z2 over the alphabet A. By contradiction, let us
assume that |ww′| > |u|, and denote ww′ = uz3, where z3 ∈ A∗

�. According
to Theorem 17, the hole is in ww′. We have w′ = z1z2z3, w = z′1z

′
2z

′
3,

v = z′1z
′
2z

′
3z1 and u = z′1z

′
2z

′
3z1z2, where z′i ↑ zi for all i ∈ {1, 2, 3}. Since

v ↑ v′, we get that there exists z4 ∈ A∗ such that z2z3z4 is a prefix of v′ and
|z4| = |z1|, and by looking at the prefixes of length |w| of u and u′, we get
that there exists z5 ∈ A∗, with |z5| = |z2|, such that z′1z

′
2z

′
3 ↑ z3z4z5 (see
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Figure 4.2: The case when |ww′| > |u|

Figure 4.2). There are six cases to consider: Case 1 (respectively, Case 2,
Case 3, Case 4, Case 5, Case 6) where the hole is in z3 (respectively, z2, z1,
z′3, z

′
2, z

′
1).

Case 1. The hole is in z3.
We have w′ = z1z2z3, w = z1z2z

′
3, v = z1z2z

′
3z1 and u = z1z2z

′
3z1z2

where z3 ⊂ z′3. Since z1z2z′3 ↑ z2z3z4, we get z1z2z3 ↑ z2z3z4 by weakening.
By Lemma 18, we get

z1z2z3z4 is weakly |z1|-periodic (4.3)

Now, since w is full, the prefixes of length |w| of v and v′, and respectively
of u and u′ are compatible, and z2z3z4 ⊂ w and z3z4z5 ⊂ w, we get z2z3z4 ↑
z3z4z5. Using Lemma 18 again, we get

z2z3z4z5 is weakly |z2|-periodic (4.4)

Finally, applying the weakening rule for the prefixes of length |w| of u and
u′, we get z1z2z3 ↑ z3z4z5. After using Lemma 18, we get

z1z2z3z4z5 is weakly |z1z2|-periodic (4.5)

From (4.3) and (4.5) we get that z1z2z3z4 is weakly |z1|- and weakly
|z1z2|-periodic. Applying Lemma 16, we get that z1z2z3z4 is gcd(|z1|, |z1z2|)-
periodic. Hence there exists a word x ∈ A∗ of length gcd(|z1|, |z1z2|), such
that z1 = xm and z1z2 = xm+n for some integers m,n > 0.

From (4.4) and (4.5) we get that z2z3z4z5 is weakly |z2|- and weakly
|z1z2|-periodic. Applying Lemma 16, we get that z2z3z4z5 is gcd(|z2|, |z1z2|)-
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periodic. Since gcd(|z1|, |z1z2|) = gcd(|z2|, |z1z2|), we get that z2z3z4z5 is
|x|-periodic. Because |z1| ≥ |x| and |z2| ≥ |x| we get that z1z2z3z4z5 is
|x|-periodic.

Because z1 and z5 share a prefix of length min(|xm|, |xn|) with m,n > 0,
z5 is |x|-periodic and |z5| = |xn|, we get that z5 = xn = z2. Since z3z4z5 is
|x|-periodic, |z5| ≥ |x| and |z4| = |xm|, we get that z4 = xm = z1.

Since z1z2z3z4 is |x|-periodic and z1z2 = xm+n, it results that z3 ⊂
(x′x′′)px′ and z4 = (x′′x′)m where x = x′x′′ and p ≥ 0 is an integer. But
z4 = z1 = xm. Hence, x′x′′ = x′′x′ and there exists a full word y, such that
x′ = yq and x′′ = yr for some integers q, r ≥ 0.

Since v′ ↑ v, we have that z2z3z1z1 ↑ z1z2z′3z1. By cancellation, we get
z2z3z1 ↑ z1z2z′3. Replacing z1 by xm and z2 by xn, we get xnz3x

m ↑ xmxnz′3,
and consequently z3x

m ↑ xmz′3 by cancellation. By Lemma 19, there exist
full words y′, y′′ such that z3 ⊂ y′y′′, z′3 = y′′y′, and xm = (y′y′′)ry′ for some
integer r ≥ 0. By Lemma 17, since z3 ⊂ y′y′′ and z3 ⊂ z′3 = y′′y′, we get
y′y′′ = y′′y′. The latter implies that there exists a full word z such that y′

and y′′ are powers of z. We obtain xm = zm′
for some integer m′, and x and

z are hence powers of a common word z′. We conclude that z1, z2, z3, z′3, z4
and z5 are contained in powers of z′, implying that there is a later occurrence
of a square compatible with w2.

Case 2. The hole is in z2.
Hence, w′ = z1z2z3, w = z1z

′
2z3, where z′2 ↑ z2, v = z1z

′
2z3z1 and

u = z1z
′
2z3z1z2.

Since z1z′2z3 ↑ z2z3z4, we get z1z2z3 ↑ z2z3z4 by applying weakening.
Using Lemma 18, we get

z1z2z3z4 is weakly |z1|-periodic (4.6)

Now, since w′ ⊂ w, by looking at the prefixes of length |w|, z2z3z4 ⊂ w of
v′ and z3z4z5 ⊂ w of u′, we get z2z3z4 ↑ z3z4z5. Using Lemma 19, we get

z2z3z4z5 is |z2|-periodic (4.7)

Finally, for the prefixes of length |w| of u and u′, we have z1z′2z3 = z3z4z5.

76

UNIVERSITAT ROVIRA I VIRGILI 
REPETITIONS IN PARTIAL WORDS 
Robert George Mercas 
ISBN:978-84-693-7670-6/DL:T-1749-2010 



Using Lemma 19, it results that

z1z
′
2z3z4z5 is |z1z2|-periodic (4.8)

From (4.6) and (4.8) we get that z1z2z3z4 is weakly |z1|- and |z1z2|-
periodic. Applying Lemma 16, we have z1z2z3z4 gcd(|z1|, |z1z2|)-periodic.
Hence, there exists a word x ∈ A∗ of length gcd(|z1|, |z1z2|), such that
z1 = xm and z1z2 ⊂ xm+n, for some integers m,n > 0.

From (4.7) and (4.8) we get that z2z3z4z5 is |z2|- and |z1z2|-periodic.
Applying Lemma 16, we get that z2z3z4z5 is gcd(|z2|, |z1z2|)-periodic. It
follows that z1z2z3z4z5 is |x|-periodic.

Because z1 and z5 share a prefix of length min(|xm|, |xn|), and |z5| = |xn|,
we get that z5 = xn. Since z3z4z5 is |x|-periodic, |z5| ≥ |x| and |z4| = |xm|,
we get that z4 = xm = z1.

Since z1z2z3 is |x|-periodic, it results that z3 = (x′x′′)px′ with x = x′x′′

and some integer p ≥ 0. By looking at the prefixes of length |w| of u and
u′, we notice that z1z′2z3 = z3z1z5. This implies that z1z′2z3z1z5 is |z1z′2|-
periodic, and so z3z1z5 = (x′x′′)px′(x′x′′)m(x′x′′)n is |z1z′2|-periodic. Hence,
by looking at the suffix of length |x| and the corresponding factor starting
|z1z′2| positions before, we get that x′x′′ = x′′x′. Results that there exist
integers q, r with q, r ≥ 0 and a word y such that x′ = yq and x′′ = yr. But
since z1z

′
2z3 = z3z1z5 we get that ym(q+r)z′2y

p(q+r)+q = y(q+r)(m+n+p)+q.
Hence, z′2 = yn(q+r).

We get, again, another factor compatible with y2(q+r)(m+n+p)+2q ⊃ ww′,
starting with position |y|, which is a contradiction.

Case 3. The hole is in z1.
In this case we have that w′ = z1z2z3, w = z′1z2z3, with z′1 ↑ z1, v =

z′1z2z3z1 and u = z′1z2z3z1z2. Also, v′ = z2z3z4z
′′
1 , where z1 ↑ z′′1 .

Since z′1z2z3 = z2z3z4, we get by Lemma 19 that

z′1z2z3z4 is |z1|-periodic (4.9)

Now, looking at the prefixes of length |w|, z′1z2z3 of u and z3z4z5 of u′, we
get z′1z2z3 = z3z4z5. Hence

z′1z2z3z4z5 is |z1z2|-periodic (4.10)
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Finally, for the prefixes of length |w| of v′ and u′, we have z2z3z4 = z′1z2z3 =
z3z4z5. This implies that

z2z3z4z5 is |z2|-periodic (4.11)

From (4.9) and (4.10) we get that z′1z2z3z4 is gcd(|z1|, |z1z2|)-periodic.
Hence there exists a word x ∈ A∗ such that z1 ⊂ z′1 = xm and z1z2 ⊂
z′1z2 = xm+n for some integers m,n > 0 and |x| = gcd(|z1|, |z1z2|). In
addition, z2 = xn, z3 = (x′x′′)px′, z4 = (x′′x′)m where p ≥ 0 is an integer
and x = x′x′′.

From (4.10) and (4.11) we get that z2z3z4z5 is gcd(|z2|, |z1z2|)-periodic.
Since gcd(|z1|, |z1z2|) = gcd(|z2|, |z1z2|), we get that z2z3z4z5 is |x|-periodic.
And so z5 = (x′′x′)n.

Using the simplification rule for v ↑ v′, we get that there exists z′′1 such
that z1 ↑ z′′1 and z′′1 shares a prefix of length min(|xm|, |xn|) with z5. Hence,
we get that either x′x′′ = x′′x′, x1x

′′ ↑ x′′x′ or x′x2 ↑ x′′x′, where the hole
is in x1 or x2, and x1 ⊂ x′ and x2 ⊂ x′′. Following the previous cases, the
first option leads us to a later occurrence of a factor compatible with the
full square w2.

Let us now consider the case where x1x
′′ ↑ x′′x′ (the other case is similar).

By Lemma 19, there exist full words y′, y′′ such that x1 ⊂ y′y′′, x′ = y′′y′,
and x′′ = (y′y′′)ry′ for some integer r ≥ 0. By Lemma 17, since x1 ⊂ y′y′′

and x1 ⊂ x′ = y′′y′, we get y′y′′ = y′′y′. The latter implies that there exists
a full word z such that y′ and y′′ are powers of z. We obtain xm = zm′

for
some integer m′, and x and z are hence powers of a common word z′. We
conclude that z1, z′1, z2, z3, z4 and z5 are contained in powers of z′, implying
that there is a later occurrence of a square compatible with w2.

Case 4. The hole is in z′3.
Looking at the prefixes of length |w| of v and v′, we have z1z2z′3 ↑ z2z3z4.

Applying weakening and Lemma 18, we get that z1z2z′3z4 is weakly |z1|-
periodic. Also, by looking at the prefixes of length |w| of u and u′ we get
that z1z2z′3 ↑ z3z4z5. We apply weakening and Lemma 18 again, and get
that z1z2z′3z4z5 is weakly |z1z2|-periodic. Using Lemma 16, it follows that
z1z2z

′
3z4 is gcd(|z1|, |z1z2|)-periodic. Hence, there exists x such that z1 = xm

and z1z2 = xm+n, for some positive integersm,n, with |x| = gcd(|z1|, |z1z2|).
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If we denote x = x′x′′, it results that z′3 ⊂ (x′x′′)px′, for some integer p ≥ 0,
and z4 = (x′′x′)m.

Since the hole is in z′3 then, either z′3 = (x′x′′)p1x′1(x
′′x′)p2 , where p1 +

p2 = p and x′1 has a hole, or z′3 = (x′x′′)p1x′x′2(x
′x′′)p2x′, where p1+p2+1 = p

and x′2 has a hole. Because z′3 ⊂ z3, it implies that z3 = (x′x′′)p1x1(x′′x′)p2

where x′1 ⊂ x1, or z3 = (x′x′′)p1x′x2(x′x′′)p2x′ where x′2 ⊂ x2. But also,
z1z2z

′
3 ↑ z2z3z4. Hence, we get that xmz′3 ↑ z3z4. This is equivalent to one of

the following cases: xm(x′x′′)p1x′1(x
′′x′)p2 ↑ (x′x′′)p1x1(x′′x′)p2(x′′x′)m when

we get x1 = x′, or xm(x′x′′)p1x′x′2(x
′x′′)p2x′ ↑ (x′x′′)p1x′x2(x′x′′)p2x′(x′′x′)m

when we get x2 = x′′. In either case, z3 = (x′x′′)px′.
Since z1z2z′3 ↑ z3z4z5, there is the possibility that z5 = (x′′x′)n if n ≤ p2.

We leave this case to the reader and assume that n > p2. We get that z5 =
(x′′x′)n1x′′x1(x′′x′)n2 with x′1 ⊂ x1, or z5 = (x′′x′)n1x2x

′(x′′x′)n2 with x′2 ⊂
x2 (in either case n1+n2+1 = n). Since v ↑ v′, it follows that z5 and z1 share
a prefix of length |x|, and so z5 has x′x′′ as a prefix. There are three cases to
consider: (4.1) x′x′′ = x′′x′; (4.2) x′x′′ = x′′x1; and (4.3) x′x′′ = x2x

′. For
(4.1), there exists a full word y such that x′ and x′′ are powers of y. It follows
that z1, z2, z3, z′3 and z4 are contained in powers of y, implying that there is
a later occurrence of a partial word that is compatible with the full square
(w′)2. For (4.2) and (4.3), n1 = 0 and we can denote z5 as x′x′′(x′′x′)n−1.
Furthermore, since z1z2z′3 ↑ z3z4z5 we get that either xm+n+p1x′1(x

′′x′)p2 ↑
xm+px′x′x′′(x′′x′)n−1 or xm+n+p1x′x′2(x

′x′′)p2x′ ↑ xm+px′x′x′′(x′′x′)n−1. We
prove the first case (the other is similar).

If p > n+ p1, then p2 > n a contradiction. If p = n+ p1, then x′1x
′′x′ ↑

x′x′x′′ and x′x′′ = x′′x′, the same contradiction as before follows. If p <
n + p1, we get xn−p2x′1 ↑ x′x′x′′(x′′x′)n−1−p2 . If p2 < n − 1, then again
x′x′′ = x′′x′. If p2 = n − 1, then x′x′′ ↑ x′′x′1. By Lemma 19, there exist
full words y′, y′′ such that x′ = y′y′′, x′1 ⊂ y′′y′, and x′′ = (y′y′′)ry′ for some
integer r ≥ 0. By Lemma 17, since x′1 ⊂ y′′y′ and x′1 ⊂ x′ = y′y′′, we get
y′y′′ = y′′y′. The latter implies that there exists a full word z such that y′

and y′′ are powers of z. We obtain x′ and x′′ are powers of z. We conclude
that z1, z2, z3, z′3, z4 and z5 are contained in powers of z, implying that there
is a later occurrence of a square compatible with (w′)2.

Case 5. The hole is in z′2.
Looking at the prefixes of length |w| of v and v′, we have z1z′2z3 ↑ z2z3z4.
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Applying weakening and Lemma 18, we get that z1z′2z3z4 is weakly |z1|-
periodic. Also, by looking at the prefixes of length |w| of u and u′ we get
that z1z′2z3 ↑ z3z4z5. By applying Lemma 19, we get that z1z′2z3z4z5 is
|z1z2|-periodic. Using Lemma 16, it follows that z1z′2z3z4 is gcd(|z1|, |z1z2|)-
periodic. Hence, there exists x, such that z1 = xm and z1z

′
2 ⊂ xm+n,

for some positive integers m,n and |x| = gcd(|z1|, |z1z2|). Hence we have
z3 = (x′x′′)px′ and z4 = (x′′x′)m, where x = x′x′′ and p ≥ 0.

Since the hole is in z′2 then, either z′2 = (x′x′′)n1x′1x
′′(x′x′′)n2 where x′1

has a hole, or z′2 = (x′x′′)n1x′x′2(x
′x′′)n2 where x′2 has a hole (in either case

n1 +n1 +1 = n). Because z′2 ⊂ z2, it implies that z2 = (x′x′′)n1x1x
′′(x′x′′)n2

where x′1 ⊂ x1, or z2 = (x′x′′)n1x′x2(x′x′′)n2 where x′2 ⊂ x2. But also,
z1z

′
2z3 ↑ z2z3z4. This is equivalent to one of the following cases:

xm(x′x′′)n1x′1x
′′(x′x′′)n2(x′x′′)px′ ↑ (x′x′′)n1x1x

′′(x′x′′)n2(x′x′′)px′(x′′x′)m

when we get x1 = x′, or

xm(x′x′′)n1x′x′2(x
′x′′)n2(x′x′′)px′ ↑ (x′x′′)n1x′x′2(x

′x′′)n2(x′x′′)px′(x′′x′)m

when we get x2 = x′′. In either case, z2 = (x′x′′)n.
We treat the second case (the other is similar). Since z1z′2z3 ↑ z3z4z5,

there is the possibility that z5 = (x′′x′)n if n ≤ n2 + p. We leave this
case to the reader and assume that we have n > n2 + p. We get that
z5 = (x′′x′)n1−px2x

′(x′′x′)n2+p with x′2 ⊂ x2. Since v ↑ v′, it follows that z5
and z1 share a prefix of length |x|, and so z5 has x′x′′ as a prefix. There are
two cases to consider: (5.1) x′x′′ = x′′x′; and (5.2) x′x′′ = x2x

′. For (5.1),
there exists a full word y such that x′ and x′′ are powers of y. It follows that
z1, z2, z

′
2, z3 and z4 are contained in powers of y, implying that there is a later

occurrence of a partial word that is compatible with the full square (w′)2.
For (5.2), n1 = p and we can denote z5 as x′x′′(x′′x′)n−1. Furthermore, since
z1z

′
2z3 ↑ z3z4z5 we get that xn1−px′1(x

′′x′)n2+p+1 ↑ x′x′x′′(x′′x′)n−1.
Since n > n2 + p, we have n1 ≥ p. If n1 = p or n1 ≥ p + 2, then

x′x′′ = x′′x′. If n1 = p + 1, then x′x′′ ↑ x′′x′1. By Lemma 19, there exist
full words y′, y′′ such that x′ = y′y′′, x′1 ⊂ y′′y′, and x′′ = (y′y′′)ry′ for some
integer r ≥ 0. By Lemma 17, since x′1 ⊂ y′′y′ and x′1 ⊂ x′ = y′y′′, we get
y′y′′ = y′′y′. The latter implies that there exists a full word z such that y′

and y′′ are powers of z. We obtain x′ and x′′ are powers of z. We conclude
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that z1, z2, z′2, z3, z4 and z5 are contained in powers of z, implying that there
is a later occurrence of a square compatible with (w′)2.

Case 6. The hole is in z′1.
Since v ↑ v′, we have that z′1z2z3 ↑ z2z3z4. Applying Lemma 19, we

get that z′1z2z3z4 is |z1|-periodic. Since u ↑ u′, we get that z′1z2z3 ↑ z3z4z5,
and z′1z2z3z4z5 is |z1z2|-periodic. Hence, z′1z2z3z4 is |x| = gcd(|z1|, |z1z2|)-
periodic, where z′1 ⊂ xm and z2 = xn, for some word x and integers m,n >
0. This implies that there exist x′, x′′ ∈ A∗, such that x = x′x′′, and
z3 = (x′x′′)px′, for some integer p ≥ 0, z4 = (x′′x′)m and z5 = (x′′x′)n

(because z2z3z4z5 is |z1z2|-periodic and |z2z3z4| > |z1z2|).
Since v ↑ v′, if |z2| ≥ |z1|, then z5 and z1 share a common prefix of

length |xm|. It follows that z1 = (x′′x′)m. But, since z′1 ⊂ z1, it results
that z′1 ⊂ (x′′x′)m, and recall that z′1 ⊂ (x′x′′)m. If m > 1, then we get
x′x′′ = x′′x′ and so there exists y, such that x′ = yq and x′′ = yr for some
non-negative integers q, r, giving us a contradiction with the assumption that
there is no later occurrence of a factor compatible with (w′)2. If m = 1, then
we also get x′x′′ = x′′x′ by Lemma 17. Hence, we may assume that |z2| < |z1|
and z1 has as a prefix (x′′x′)n. Let z6 ∈ A∗, where |z6| = |z2|, such that
z′1z2z3z1 ↑ z3z4z1z6 (the prefixes of length |v| of u and u′ are compatible). By
using simplification we get that z2x′z1 ↑ x′z1z6 and z2x′z1z6 is |z2|-periodic
by Lemma 19. Since |z1| = |xm| > |z2|, it follows that z1 = (x′′x′)m. Since
z′1 ⊂ (x′x′′)m, we get a contradiction as before.

Since Cases 1–6 lead to contradiction we conclude that z3 = ε.

Let us now assume that the hole is at a position i in a word of length
n. The upper bound for the maximum number of factors, compatible with
distinct squares, would be achieved if all these factors, starting before the
hole, would contain the hole (this way more than two squares can start at
the same position). Note that in the case when a square containing a hole
has its last occurrence at a certain position, no other full word that is a
square can have its last occurrence starting at the same position (otherwise
a later occurrence of the same full word, or a word compatible with it, would
appear later in the word). Let us look at the start position j of a square
containing the hole and denote it as j (obviously, there are at most i such

81

UNIVERSITAT ROVIRA I VIRGILI 
REPETITIONS IN PARTIAL WORDS 
Robert George Mercas 
ISBN:978-84-693-7670-6/DL:T-1749-2010 



squares). Let us denote the length of such square by nj .
Hence, if at position j we have a square of length nj , then according

to Theorem 18, up to position 2nj + j we will have counted at most three
distinct squares. Using an induction we notice that up to position 2mnj + j

we will have counted at most 2m + 1 distinct squares. Since the length of
the word is n, we have that the maximum value for m, for squares starting
at position j, is bounded by log(n−j

nj
).

Note that the maximum is achieved for the case when nj is minimum.
Hence we can replace in our formula nj by i−j, which is the smallest length
a square starting at position j and containing the hole may have.

Theorem 19. The number of distinct full squares compatible with factors
in any partial word with one hole of length n is at most 7n

2 .

Proof. Using the previous remarks it is easy to see that the number of
squares at position j and containing the hole is 2 log(n−j

i−j ) + 1. Hence,
we get that the total number of distinct squares that we can obtain is∑i−1

j=0(2 log(n−j
i−j ) + 1) = i+ 2

ln 2

∑i−1
j=0 ln(n−j

i−j )

The sum from the previous formula is equal to
∑n

x=n−i+1 ln(x)−
∑i

y=1 ln(y)
and implicitly, less or equal to

∫ n+1
n−i+1 ln(x)dx−

∫ i
1 ln(y)dy. After integrating

we get

(n+ 1) ln(n+ 1)− (n− i+ 1) ln(n− i+ 1)− i ln(i)

Since the maximum is obtained for i = n+1
2 , the function is hence less than

(n + 1) ln 2. Using Theorem 16 for the rest of the word, we get that the
number of distinct squares, compatible with factors of the word, is bounded
by

2n− n+1
2 + 2

ln 2(n+ 1) ln 2 = 7n
2 + 3

2

Since the last position in the word contains no squares, we get that the
maximum number of factors compatible with distinct full squares is smaller
than 7n

2 .

This bound can be slightly improved by using Ilie’s 2n−Θ(log n) [Ili07].
Motivated by the same conclusion (the results have been investigated

independently at the same time), in [HHK09], the authors show that, by
restricting the alphabet to the binary case, the bound is improved to 3n,
where n is the length of the word.
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Theorem 20. [HHK09] For any binary partial word w, of length n, con-
taining only one hole, the maximum number of distinct squares is at most
3n.

The proof of this result makes use of Theorem 16, which states that
for binary words we cannot have more than 4 last occurrences of factors
compatible with squares at each position.

4.4 Conclusion

Although the computations done so far show that the actual bound for
the one-hole partial words give us at most n distinct squares in any word
of length n, the results obtained here using the approach of Fraenkel and
Simpson make the bound directly dependable on the size of the alphabet.
From our point of view, finding a dependency between the maximum number
of squares starting at one position and the length of the word might be a
solution. Solving this problem, at least partially, could also give a new
perspective to the study of maximum distinct squares within a full word.

Note as well that for arbitrarily large alphabets of size k, we get an upper
bound for all words containing h holes and having length n

gh,k(n) ≤ mh,k(n) + kb
h
2
c

This is due to the fact that the leading term is always maximal in mh,k,
hence adding one to its coefficient we get an upper bound.

In order to improve the bound stated in Theorem 19, we need to somehow
limit to less than 3.5 the average number of squares that have their last
occurrence starting at the positions of the partial word. This requirement
draws attention to positions i where three or more squares have their last
occurrences. Is it true that at positions “neighboring” to i, no squares can
have their last occurrences? In fact, if at position i we have at least three
factors compatible with full squares, this does not imply that at position
i+ 1 we will have less. Indeed, consider the example

ab�abcabbeabcabdabcabbeabcabbabcabbeabcabdabcabbeabcab

where at position 0 we have factors compatible with the squares
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(abc)2, (abdabcabbeabc)2 and (abbabcabbeabcabdabcabbeabc)2

at position 1 factors compatible with the squares

(bca)2, (beabcab)2, (bdabcabbeabca)2 and (bbabcabbeabcabdabcabbeabca)2

and at position 2 factors compatible with

a2, (cab)2, (dabcabbeabcab)2 and (babcabbeabcabdabcabbeabcab)2

In [Ili07], Ilie gave a relation between the lengths of squares at positions
neighboring a position where two squares have their last occurrences. More
precisely, he showed that if v2 < u2 are two squares at position i and w2

is a square at position i + 1, then either |w| ∈ {|v|, |u|} or |w| ≥ 2|v| (see
Lemma 2 in [Ili07]). Referring to the above example, we observe that such
is not the case with partial words with one hole.
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Chapter 5

Unbordered Partial Words

A word is called bordered if one of its proper prefixes is one of its suffixes.
The length of the longest such prefix (also called longest border) is the
length of the word minus the length of its shortest period. The word is
called unbordered otherwise. In other words, it is unbordered if it has no
proper period. For example, abaabb is unbordered while abaab is bordered.
Unbordered words turn out to be primitive, that is, they cannot be written
as a power of another word. Moreover, unborderedness has the following
important property: different occurrences of an unbordered factor never
overlap in the same word. A related property is that no primitive word
u can be an inside factor of uu. Fast algorithms for testing primitivity of
words can be based on this property [CR94].

The study of unbordered partial words was initiated in [BS05]. Later on,
Blanchet-Sadri and Wetzler extended the well known critical factorization
theorem to partial words and their result states that the minimal weak
period of a non-special partial word can be locally determined in at least
one position [BSW07]. The first two sections of this chapter, together with
the last one, represent joint work with Francine Blanchet-Sadri, Crystal
D. Davis, Joel Dodge and Margaret Moorefield, see [BSDD+09], while the
third and the fourth Sections contain work done together with Emily Allen,
Francine Blanchet-Sadri and Cameron Byrum, see [ABSBM09].

5.1 Concatenations of prefixes

First let us state an equivalent definition for the notion of a weak period:
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Lemma 20. For an integer p, the partial word u ∈ A∗
� is weakly p-periodic

if and only if the containments u ⊂ xv and u ⊂ wx hold for some partial
words x, v, w satisfying |v| = |w| = p.

Proof. Write u as v1v2 · · · vkr where |v1| = |v2| = · · · = |vk| = p and 0 ≤
|r| < p, and vk as st where |s| = |r|. Set x1 = v1 · · · vk−1s and x2 = v2 · · · vkr.

If the containments u ⊂ xv and u ⊂ wx hold for some partial words
x, v, w satisfying |v| = |w| = p, then both v1 · · · vk−1s ⊂ x and v2 · · · vkr ⊂ x

hold, and so v1 · · · vk−1s ↑ v2 · · · vkr. By Simplification, v1 ↑ v2, . . . , vk−1 ↑
vk and s ↑ r. Now, let i, i + p ∈ D(u). Then i = lp + j for some 0 ≤ l < k

and 0 ≤ j < p. If l < k − 1, then we get u(i) = vl+1(j) = vl+2(j) = u(i+ p)
since vl+1 ↑ vl+2 and j ∈ D(vl+1) ∩ D(vl+2), and if l = k − 1, then u(i) =
vk(j) = s(j) = r(j) = u(i + p) since s ↑ r and j ∈ D(s) ∩ D(r). In either
case, u is weakly p-periodic. Conversely, if p is a weak period of u, then
vi ↑ vi+1 for all 1 ≤ i < k and s ↑ r. Thus x1 ↑ x2, and there exists x such
that x1 ⊂ x and x2 ⊂ x. Setting v = tr and w = v1, we get u = x1v ⊂ xv

and u = wx2 ⊂ wx with |v| = |w| = p.

For u, v ∈ A∗
�, we write u � v if there exists a sequence v0, . . . , vn−1 of

prefixes of v such that u = v0 · · · vn−1. Obviously, ε � u and u � u. Also,
if u� v and v � w, then u� w.

Theorem 21. [ES79] Let u ∈ A+, v ∈ A∗ be such that u � v. Then there
exists a unique sequence v0, . . . , vn−1 of non-empty unbordered prefixes of v
such that u = v0 · · · vn−1.

Our main result in this section is to extend Theorem 21 to partial words
(see Theorem 22). In order to do this, we introduce two types of bordered
partial words: the well bordered and the badly bordered partial words.

Definition 2. Let u ∈ A+
� be bordered. Let x be a minimal border of u, and

set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x. We call u well bordered if x1

is unbordered. Otherwise, we call u badly bordered.

Note that if a non-empty partial word u is well bordered then x2 can be
either bordered or unbordered, and the same is true if u is badly bordered.

For convenience, we will at times refer to a minimal border of a well
bordered partial word as a good border and of a badly bordered partial word
as a bad border.

As a result of x being a bad border, we have the following Lemma.
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Lemma 21. Let u ∈ A+
� be badly bordered. Let x be a minimal border of u,

and set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x. Then there exists i such
that i ∈ H(x1) and i ∈ D(x2).

Proof. Since x1 is bordered, x1 = r1s1 = s2r2 for non-empty partial words
r1, r2, s1, s2 where s1 ⊂ s and s2 ⊂ s for some s. If no i exists such that i ∈
H(x1) and i ∈ D(x2), then x2 must also be bordered. So x2 = r′1s

′
1 = s′2r

′
2

where r′1 ⊂ r1, r′2 ⊂ r2, s′1 ⊂ s and s′2 ⊂ s, thus s2 ↑ s′1. This means that
there exists a border of u of length shorter that |x| which contradicts the
fact that x is a minimal border of u.

Our goal is to extend Theorem 21 to partial words or to construct, given
any partial words u and v satisfying u� v, a unique sequence of non-empty
unbordered prefixes of v, v0, . . . , vn−1, such that u ↑ v0 · · · vn−1. We will see
that if during the construction of the sequence a badly bordered prefix is
encountered, then the desired sequence may not exist. We first prove two
propositions.

Proposition 17. If v ∈ A∗
�, then there do not exist two distinct compatible

sequences of non-empty unbordered prefixes of v.

Proof. Suppose that v0 · · · vn−1 ↑ v′0 · · · v′m−1 where each vi and each v′i is
a non-empty unbordered prefix of v. If there exists i ≥ 0 such that |v0| =
|v′0|, . . . , |vi−1| = |v′i−1| and |vi| < |v′i|, then v0 = v′0, . . . , vi−1 = v′i−1 and vi

is a prefix of v′i. By simplification, vi · · · vjx ↑ v′i where i ≤ j < n− 1 and x
is a non-empty prefix of vj+1. The fact that x, v′i are prefixes of v satisfying
|v′i| > |x| implies that x is a prefix of v′i. In addition, x is compatible with
the suffix of length |x| of v′i, and consequently v′i is bordered. Similarly,
there exists no i ≥ 0 such that |v0| = |v′0|, . . . , |vi−1| = |v′i−1| and |vi| > |v′i|.
Clearly, n = m and uniqueness follows.

Proposition 18. Let u ∈ A+
� be bordered. Let x be a minimal border of u,

and set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x. Then the following hold:

1. The partial word x is unbordered.

2. If u is well bordered, then u = x1u
′x2 ⊂ xu′x for some u′.

Proof. For Statement 1, assume that r is a border of x, that is, x ⊂ rs and
x ⊂ s′r for some non-empty partial words r, s, s′. Since u ⊂ xv and x ⊂ rs,
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we have u ⊂ rsv, and similarly, since u ⊂ wx and x ⊂ s′r, we have u ⊂ ws′r.
Then r is a border of u. Since x is a minimal border of u, we have |x| ≤ |r|
contradicting the fact that |r| < |x|. This proves (1).

For Statement 2, if |v| < |x|, then u = wtv for some t. Here x1 = wt =
t′w′ for some t′, w′ satisfying |t| = |t′| and |v| = |w| = |w′|. Since x1 ↑ x2, we
have t′w′ ↑ tv and by simplification, t′ ↑ t. The latter implies the existence
of a partial word t′′ such that t′ ⊂ t′′ and t ⊂ t′′. So x1 = t′w′ ⊂ t′′w′ and
x1 = wt ⊂ wt′′. Then t′′ is a border of x1 and x1 is bordered. According
to the definition of u being well bordered, x1 is an unbordered partial word
and this leads to a contradiction. Hence, we have |v| ≥ |x| and, for some u′,
we have v = u′x2 and w = x1u

′, and u = wx2 = x1u
′x2 ⊂ xu′x. This proves

(2).

Note that Proposition 18 implies that if u ∈ A+ is bordered, then u is
well bordered. In this case, u = xu′x where x is the minimal border of u.

Lemma 22. If u, v ∈ A+
� are such that u = v0 · · · vn−1 where v0, . . . , vn−1

is a sequence of non-empty unbordered prefixes of v, then there exists a
unique sequence v′0, . . . , v

′
m−1 of non-empty unbordered prefixes of v such

that u ↑ v′0 · · · v′m−1 (the desired sequence is just v0, . . . , vn−1).

Proof. The statement follows immediately from Proposition 17.

The badly bordered partial words are now split into the specially bor-
dered and the non-specially bordered partial words according to the following
definition.

Definition 3. Let u ∈ A+
� be a partial word that is badly bordered. Let x be

a minimal border of u, and set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x.
If there exists a proper factor x′ of u such that x1 6↑ x′ and x′ ↑ x2, then we
call u specially bordered. Otherwise, we call u non-specially bordered.

Lemma 23. Let v ∈ A+
� be badly bordered. Let y be a minimal border of

v, and set v = y1w
′ = wy2 where y1 ⊂ y and y2 ⊂ y (and thus y1 ↑ y2). If

there exists a sequence v0, . . . , vm−1 of non-empty unbordered prefixes of v
such that v ↑ v0 · · · vm−1, then |y1| < |vm−1| and v is specially bordered.

Proof. By Definition 2, y1 is bordered. If |y1| = |vm−1|, then both y1 and
vm−1 are prefixes of v, and thus y1 = vm−1. We get that y1 is unbordered, a
contradiction. If |y1| > |vm−1|, then set y2 = z1v

′ where |v′| = |vm−1|. Since
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both y1 and vm−1 are prefixes of v, we get that vm−1 is a prefix of y1. So
y1 = vm−1z2 for some z2, and v = vm−1z2w

′ = wz1v
′ with vm−1 ↑ v′. Thus

v has a border of length |vm−1| < |y1| = |y| contradicting the fact that y is
a minimal border. And so |y1| < |vm−1|.

Since v ↑ v0 · · · vm−1, we have |vm−1| ≤ |v|. Since vm−1 is a prefix of v,
and v = y1w

′ and |vm−1| > |y1| there exists z1 such that y1z1 = vm−1. Since
v = wy2 and vm−1 is compatible with a suffix of v, we have vm−1 ↑ z2y2

for some z2. Thus, we get that vm−1 = y1z1 ↑ z2y2. Since vm−1 ↑ z2y2,
set vm−1 = z3y3 where z3 ↑ z2 and y3 ↑ y2. So vm−1 = z3y3 = y1z1. If
y3 ↑ y1, then vm−1 is bordered, a contradiction with the fact that vm−1 is
unbordered. Thus y3 6↑ y1, and since vm−1 is a prefix of v, we have that v is
specially bordered.

The following example illustrates Lemma 23.

Example 4. Consider the partial word

v = aa�aabbaaaaa�b

Here, v is specially bordered (indeed, it has the factor abb such that aa� 6↑ abb
and a�b ↑ abb) and is compatible with a sequence of some of its unbordered
prefixes. Indeed, the compatibility

aa�aabbaaaaa�b ↑ (aa�aabb)(aa�aabb)

holds. The shortest border of v is aab which has length shorter than aa�aabb.

Lemma 24. Let v ∈ A+
� be a well bordered word. Then there exists a

longest sequence v0, v1, . . . , vm−1 of non-empty prefixes of v such that v ↑
v0v1 · · · vm−1, vj is unbordered for every 1 ≤ j < m, and v0 is unbordered
or badly bordered. Moreover, if v0 is badly bordered, then no sequence of
non-empty unbordered prefixes of v exists that is compatible with v.

Proof. Let y0 be a minimal border of w0 = v, and set w0 = x0w
′
1 = w1x

′
0

where x0 ⊂ y0 and x′0 ⊂ y0 (and thus x0 ↑ x′0). By Definition 2, x0 is
unbordered, and

v = w1x
′
0 ↑ w1x0 (5.1)

where both w1 and x0 are prefixes of w0 (and hence of v). If w1 is unbordered,
then v is compatible with a sequence of its non-empty unbordered prefixes.
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If w1 is badly bordered, then no sequence v′0, . . . , v
′
m′−1 of non-empty un-

bordered prefixes of v exists that is compatible with w1 unless w1 is specially
bordered and |y1| < |v′m′−1| by Lemma 23 (here y1 is a minimal border of
w1). If this is the case, then w1 may be compatible with such a sequence of
non-empty unbordered prefixes of v, and if so replace w1 on the right hand
side of the compatibility in (1) by v′0 · · · v′m′−1. If this is not the case, then
no sequence of non-empty unbordered prefixes of v exists that is compatible
with v.

If w1 is well bordered, then repeat the process. Let y1 be a minimal
border of w1, and set w1 = x1w

′
2 = w2x

′
1 where x1 ⊂ y1 and x′1 ⊂ y1 (and

thus x1 ↑ x′1). By Definition 2, x1 is unbordered, and

v = w2x
′
1x

′
0 ↑ w2x1x0 (5.2)

where both w2 and x1 are prefixes of w1 (and hence of v, since w1 is a prefix
of v) and x0 is a prefix of v.

Let w0, w1, . . . , wj−1 be the longest sequence of non-empty well bordered
prefixes defined in this manner. For all 0 ≤ k < j, let yk be a minimal border
of wk, and set wk = xkw

′
k+1 = wk+1x

′
k where xk ⊂ yk and x′k ⊂ yk (and

thus xk ↑ x′k). Again by Definition 2, x0, . . . , xj−1 are unbordered. We have
wj−1 = wjx

′
j−1 ↑ wjxj−1 and thus by induction,

v = wjx
′
j−1 · · ·x′0 ↑ wjxj−1 · · ·x0 (5.3)

where wj , xj−1, . . . , x0 are prefixes of w0 (and hence of v). Now, if wj is
unbordered, then v is compatible with a sequence of some of its non-empty
unbordered prefixes. If wj is badly bordered, then proceed as in the case
above when w1 is badly bordered.

We can thus equate v with sequences of shorter and shorter factors that
are some of its prefixes or compatible with some of its prefixes and the
existence of the required sequence v0, . . . , vm−1 is established.

Theorem 22. Let u, v ∈ A+
� be such that u� v, and let v0, . . . , vm−1 be a

longest sequence of non-empty prefixes of v satisfying u ↑ v0 · · · vm−1. Then,
either all vi’s are unbordered, or u is not compatible with the concatenation
of any sequence of unbordered prefixes of v. In the latter case, some of the
vi’s are badly bordered while the others are unbordered.
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Proof. If v0, . . . , vm−1 are unbordered, then by Lemma 22 we get the unique
sequence of non-empty unbordered prefixes of v whose concatenation is com-
patible with u. If any of the prefixes are well or badly bordered, then proceed
as in Lemma 23 or Lemma 24.

Example 5. Consider the partial words

u = aaaa�babbaaaaa�baa and v = aa�babbaaaaa�b

We have a factorization of u in terms of non-empty prefixes of v. Here, the
compatibility

u ↑ (a)(a)(aa�babbaaaaa�b)(a)(a)

consists of unbordered and badly bordered prefixes of v and is a longest such
sequence (aa�babbaaaaa�b is specially bordered and is not compatible with
any sequence of non-empty unbordered prefixes of v). We can check that no
sequence of non-empty unbordered prefixes of v is compatible with u.

5.2 More results on concatenations of prefixes

In this section, we give more results on concatenations of prefixes. In partic-
ular, we study properties of the longest unbordered prefix of a partial word.
We also investigate the relationship between the minimal weak period of a
partial word and the maximal length of its unbordered factors. Our main
results in this section (Theorems 23 and 24) extend a result of Ehrenfeucht
and Silberger [ES79] which states that if u = xv is a non-empty unbor-
dered word where x is the longest unbordered proper prefix of u, then v is
unbordered.

If u ∈ A+
� , then unb(u) denotes the longest unbordered prefix of u. A

result of Ehrenfeucht and Silberger shows that if u, v ∈ A∗ are such that
u = unb(u)v, then v � unb(u) [ES79]. This does not extend to partial
words as u = (ab)(�b) = unb(u)v provides a counterexample. However, the
following lemma does hold.

Lemma 25. Let u ∈ A+
� , v ∈ A∗

� be such that u = unb(u)v. Then u �
unb(u) if and only if v � unb(u).
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Proof. If v � unb(u), then obviously u � unb(u). For the other direction,
since u � unb(u), we can write u = u0u1 · · ·un−1 where each ui is a non-
empty prefix of unb(u). We can suppose that v 6= ε. Then unb(u) =
u0 · · ·uku

′ for some k < n − 1 and some prefix u′ of uk+1. Since unb(u) is
unbordered, we have that u′ = ε, that k = 0, and hence that unb(u) = u0.
It follows that v = u1 · · ·un−1 and v � unb(u).

We get the following corollary.

Corollary 8. Let u ∈ A∗
�, v ∈ A+

� . Then the following hold:

1. If u� unb(v), then u� v.

2. If w ∈ A∗
� is such that v = unb(v)w and w � unb(v), then u � v if

and only if u� unb(v).

Proof. Statement 1 holds trivially. For Statement 2, by Lemma 25, w �
unb(v) if and only if v � unb(v). Now, if u� v, then since v � unb(v), by
transitivity we get u� unb(v).

Statement 2 of Corollary 8 is not true in general. Indeed, u = ababac�aab
and v = abac�aba provide a counterexample. To see this, v = (abac)(�aba) =
unb(v)w and we have u� v since u = (ab)(abac�a)(ab) where ab and abac�a
are prefixes of v. However u 6� unb(v) (here w 6� unb(v)). However, for
u, v ∈ A∗, u� v if and only if u� unb(v) [ES79].

For u, v ∈ A∗
�, when both u � v and v � u we write u ≈ v. The

relation ≈ is an equivalence relation. A result on words states that for
u, v ∈ A∗, u ≈ v if and only if unb(u) = unb(v) [ES79]. Remember that
P (u) represents the set of prefixes of u, while S(u) its set of suffixes. For
partial words, the following holds.

Proposition 19. For u, v ∈ A∗
�, if u ≈ v, then unb(u) = unb(v).

Proof. Suppose that u ≈ v. Set v = unb(v)w for some partial word w. Since
u � v, we can write u = v0 · · · vn−1 where each vi is a non-empty prefix of
v. Since v � u, there exists a sequence of non-empty prefixes of u, say
u0, . . . , um−1, such that v = u0u1 · · ·um−1. Since unb(v) is a prefix of v, we
have unb(v) = u0 . . . uku

′ where u′ is a prefix of uk+1 and k < m− 1. Since
unb(v) is unbordered, we have u′ = ε, k = 0, and unb(v) = u0. Therefore,
unb(v) is an unbordered prefix of u. Hence, it is a prefix of unb(u). Similarly,
unb(u) is a prefix of unb(v).
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The converse of Proposition 19 does not necessarily hold for partial words
as is seen by considering u = aba� and v = ab�b. We have unb(u) = ab =
unb(v) but u 6≈ v.

If v is an unbordered word and w is a proper prefix of v for which u� w,
then uv and wv are unbordered [ES79]. For partial words, we can prove the
following.

Lemma 26. Let u ∈ A∗
� be unbordered. Then the following hold:

1. If v ∈ P (u) and v 6= u, then vu is unbordered.

2. If v ∈ S(u) and v 6= u, then uv is unbordered.

Proof. Let us prove Statement 1 (the proof of Statement 2 is similar). Set
u = vx for some x. If vu = vvx is bordered, then there exist non-empty
partial words r, s, s′ such that vvx ⊂ rs and vvx ⊂ s′r. If |r| ≤ |v|, then
u = vx is bordered by r. And if |r| > |v|, then r = v′y where |v′| = |v|
and this implies that u = vx is bordered by y. In either case, we get a
contradiction with the assumption that u is unbordered.

Lemma 27. If v ∈ A∗
� is unbordered and u � v and u 6= v, then uv is

unbordered.

Proof. Since u� v, we can write u = v0v1 · · · vn−1 where each vi is a prefix
of v. Therefore, any prefix of u is a concatenation of prefixes of v. Assume
that uv is bordered by y. If |y| > |u|, then set y = u′y′ with u ⊂ u′. We
get y′ a border of v contradicting the fact that v is unbordered. If |y| ≤ |u|,
then we have the following two cases:

Case 1. y contains a prefix of v0
Here y contains a prefix of v and also a suffix of v and therefore, y is a

border of the unbordered word v.

Case 2. v0 · · · vkv
′ ⊂ y where v′ is a prefix of vk+1

If v′ = ε, then v0 · · · vk ⊂ y where vk is a prefix of v. This results in a
suffix of y containing both a prefix and a suffix of v. Similarly, if v′ 6= ε,
then factor y as y = y1y2 where v′ ⊂ y2. Because v′ is a prefix of v, we can
write v = v′z ⊂ y2z. But because |y2| < |v| and we have assumed that uv is
bordered by y = y1y2, we must have that v = z′v′′ with v′′ ⊂ y2. Therefore
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y2 is a border for v. In either case, we get a contradiction with the fact that
v is unbordered.

A result of Ehrenfeucht and Silberger [ES79] states that if u = punb(u)v
is a non-empty unbordered word where punb(u) the longest proper un-
bordered prefix of u, then v is unbordered. The partial word u = ab�ac
where punb(u) = ab and v = �ac and the partial word u = abaca�c where
punb(u) = abac and v = a�c provide counterexamples for partial words.
However, when v is full, the following theorem does hold.

Theorem 23. Let u ∈ A+
� be unbordered. Then the following hold:

1. Let x be the longest proper unbordered prefix of u and let v be such that
u = xv. If v ∈ A∗, then v is unbordered.

2. Let y be the longest proper unbordered suffix of u and let w be such
that u = wy. If w ∈ A∗, then w is unbordered.

Proof. We prove Statement 1 (Statement 2 can be proved similarly). Assume
that v is bordered. Since v is full, there exist non-empty words z, v′ such
that v = zv′z where z is the minimal border of v. Then u = punb(u)zv′z, so
that punb(u)z is a proper prefix of u such that |punb(u)z| > |punb(u)|. It
follows that punb(u)z is bordered, and there exist non-empty partial words
r, r1, r2, s1, s2 such that punb(u)z = r1s1 = s2r2, r1 ⊂ r and r2 ⊂ r (here r
is a minimal border). Let us consider the following two cases:

Case 1. |r| > |z|
In this case, r2 = x′z where x′ is a non-empty suffix of punb(u). Since

r1 ↑ r2, there exist partial words x′′, z′ such that r1 = x′′z′ where x′′ ↑ x′ and
z′ ↑ z. But then, x′′z′s1 = r1s1 = punb(u)z = s2r2 = s2x

′z. It follows that
x′′ is a prefix of punb(u) and x′ is a suffix of punb(u) that are compatible.
As a result, punb(u) is bordered.

Case 2. |r| ≤ |z|
In this case, r2 is a suffix of z and set z = sr2 for some s. We get u =

punb(u)zv′z = r1s1v
′sr2 ⊂ rs1v

′sr, whence r is a border of the unbordered
partial word u.

A closer look at the proof of Theorem 23 allows us to show the following.
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Theorem 24. Let u ∈ A+
� . Then the following hold:

1. Let x be the longest proper unbordered prefix of u and let v be such that
u = xv. If v is bordered, then set v = z1v1 = v2z2 where z1 ⊂ z, z2 ⊂ z

and where z is a minimal border of v. Then xz1 has a minimal border
r such that |r| ≤ |z|. Moreover, if v is well bordered, then |x| ≥ |r|.

2. Let y be the longest proper unbordered suffix of u and let w be such
that u = wy. If w is bordered, then set w = z1v1 = v2z2 where
z1 ⊂ z, z2 ⊂ z and where z is a minimal border of w. Then z2y has a
minimal border r such that |r| ≤ |z|. Moreover, if w is well bordered,
then |y| ≥ |r|.

Proof. We prove Statement 1 (Statement 2 can be proved similarly). Then
u = punb(u)z1v1, so that punb(u)z1 is a proper prefix of u longer than
punb(u). It follows that punb(u)z1 is bordered, and there exist non-empty
partial words r, r1, r2, s1, s2 such that punb(u)z1 = r1s1 = s2r2, r1 ⊂ r and
r2 ⊂ r with r a minimal border. If |r| > |z|, then r2 = x′z1 where x′ is a
non-empty suffix of punb(u). Since r1 ↑ r2, there exist partial words x′′, z′

such that r1 = x′′z′ where x′′ ↑ x′ and z′ ↑ z1. But then, x′′z′s1 = r1s1 =
punb(u)z1 = s2r2 = s2x

′z1. It follows that x′′ is a prefix of punb(u) and x′

is a suffix of punb(u) that are compatible. As a result, punb(u) is bordered,
which contradicts that punb(u) is the longest unbordered proper prefix of u.
And so |r| ≤ |z| and r2 is a suffix of z1. Set z1 = sr2 for some suffix s of s2
(s2 = punb(u)s). If we further assume that v is well bordered, then we claim
that |punb(u)| ≥ |r|. To see this, if |punb(u)| < |r|, then set r1 = punb(u)t
and z1 = ts1 for some t. Since r1 ↑ r2, there exist x′, t′ such that r2 = x′t′

and punb(u) ↑ x′ and t ↑ t′. Since r2 is a suffix of z1, we have that t′ is
a suffix of z1. Consequently, t is a prefix of z1 and t′ is a suffix of z1 that
are compatible. So z1 is bordered and we get a contradiction with v’s well
borderedness, establishing our claim.

The maximum length of the unbordered factors of a partial word u is
denoted by µ(u). Recall that p(u) denotes the minimal period of a (full)
word u. Ehrenfeucht and Silberger studied the relationship between p(u) and
µ(u) in [ES79]. Clearly, µ(u) ≤ p(u). Here, we investigate the relationship
between the minimal weak period of a partial word u, p′(u), and µ(u).

Proposition 20. For all u ∈ A∗
�, µ(u) ≤ p′(u) ≤ p(u).
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Proof. Let w be a factor of u such that |w| > p′(u). Factor w as w = xw1 =
w2y where |w1| = |w2| = p′(u). We have x(i) = w(i) and y(i) = w(i+p′(u)).
This means that whenever x(i) 6= y(i), i ∈ H(x) or i ∈ H(y). Therefore
x ↑ y and w is bordered. So we must have that µ(u) ≤ p′(u).

For any partial word u, Proposition 20 gives an upper bound for the max-
imum length of the unbordered factors of u: µ(u) ≤ p′(u). This relationship
cannot be replaced by µ(u) < p′(u) as is seen by considering u = aba� with
µ(u) = p′(u) = 2.

For any v, w ∈ A∗
�, if there exists a partial word u such that u� w and

u ⊂ v, then we say that v contains a concatenation of prefixes of w. Other-
wise, we say that v contains no concatenation of prefixes of w. Similarly, if
u ∈ P (w) and u ⊂ v, then we say that v contains a prefix of w.

The following result extends to partial words a result on words which
states that if u, v are words such that u = unb(u)vunb(u) and unb(u) is not
a factor of v, then vunb(u) is unbordered (Corollary 2.5 in [Duv82]).

Proposition 21. Let u, v ∈ A∗
� be such that u = hvh where h abbreviates

unb(u). If h is not compatible with any factor of v, then vh is unbordered if
one of the following holds:

1. v is full,

2. v contains a prefix of h or a concatenation of prefixes of h.

Proof. For Statement 1, suppose that v is full and there exist non-empty
x,w1, w2 such that vh ⊂ xw1 and vh ⊂ w2x. We must have that |x| ≤ |v| or
else h, which is unbordered, would be bordered by a factor of x. If |h| < |x|,
then there exists x′ ∈ S(x) such that h ⊂ x′ and because |x| ≤ |v|, there
exists v′ a factor of v with v′ ⊂ x′ and this says that v′ ↑ h, contradicting
our assumption. Now, if |h| ≥ |x|, then set v = rv′ and h = h′s where
|r| = |s| = |x|. In this case, r ⊂ x and s ⊂ x, and there exist non-empty
r ∈ P (v) and s ∈ S(h) such that r ↑ s. But r is full and so r ↑ s implies that
s ⊂ r. But then, by Lemma 26, we have that hs is unbordered, and so hr
is an unbordered prefix of u with length greater than |h|. This contradicts
the assumption that h = unb(u), hence vh must be unbordered.

For Statement 2, first assume that v contains a prefix of h. Let v′ ∈ P (h)
be such that v′ ⊂ v. By Lemma 26, since h is unbordered, we have that v′h
is unbordered. Now, assume that v contains a concatenation of prefixes of h.
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Let v′ be such that v′ � h and v′ ⊂ v. By Lemma 27, since h is unbordered
and v′ � h, we have that v′h is unbordered. In either case, since v′ ⊂ v, vh
is unbordered as well.

5.3 Simply bordered partial words

Once the number of holes in a partial word of a fixed length reaches a certain
bound, the word will have a simple border. In this section, we give a closed
formula for that bound and show that it is constant over all alphabets of
size at least two.

It follows from Proposition 18 that if u is a full bordered word, then
x1 = x is unbordered. In this case, x is the minimal border of u and
u = xu′x. Thus, a bordered full word is always simply bordered and has
a unique minimal border. Since borders for partial words are defined using
containment, it is possible to have numerous borders having the same length.
Thus, a partial word does not necessarily have a unique minimal border.

In [BS07], an open problem related to borderedness in the context of
partial words was suggested by the fact that every partial word of length
five that has more than two holes is simply bordered. The partial word aa��b
shows that this bound on the number of holes for length five is tight. For
length six, every partial word with more than two holes is simply bordered as
well. What is the maximum number of holesmk(n) a partial word of length n
over an alphabet of size k can have and still fail to be simply bordered? Some
values for small n follow: m2(5) = 2, m2(6) = 2, m2(7) = 3, m2(8) = 4,
m2(9) = 5, m2(10) = 5, m2(11) = 6, m2(12) = 7, m2(13) = 8, m2(14) = 8,
and m2(15) = 9. The following theorem gives an answer to this problem.

Theorem 25. For k ≥ 2 and l ≥ 1, the following equalities hold: mk(1) = 1,

mk(2l) = 2l − (
⌊√

l
⌋

+
⌈

l

b
√

lc

⌉
) and mk(2l + 1) = mk(2l) + 1.

Proof. Let A be a k-letter alphabet where k ≥ 2, and let a, b be two distinct
letters of A. We prove the lower bound by constructing a partial word w(n)
of length n over A with mk(n) holes, that is not simply bordered. Take
w(1) = �, and for l ≥ 1,

w(2l) = (a�b
√

lc−1)
l

b
√

lc �l−b
√

lcbb
√

lc

w(2l + 1) = (a�b
√

lc−1)
l

b
√

lc �l+1−b
√

lcbb
√

lc
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where a fractional power of the form (a0 · · · ai−1)
mi+j

i with 0 ≤ j < i is equal
to (a0 · · · ai−1)ma0 · · · aj−1. It is easy to check that for this construction we
never have a prefix of w(n) of length at most

⌊
n
2

⌋
= l compatible with a

suffix. For n ≥ 4, this is due to the fact that no factor of length b
√
lc+ 1 of

the prefix is compatible with the suffix �bb
√

lc, since each such factor has an
a among its last b

√
lc positions.

Now, we prove the upper bound. Let us observe that the simply bordered
words of odd length are not influenced by the middle character. Hence, this
character can always be replaced by a hole so that the number of holes is
maximal. Because of that we can only look at the even length case. Let
us consider a partial word w = a0 · · · a2l−1 of length n = 2l ≥ 4 that is
not simply bordered. Obviously both a0 and a2l−1 are distinct letters of
the alphabet A in order to avoid a trivial one-letter border. Note that any
two factors a0 · · · ai−1 and a2l−i · · · a2l−1 differ in at least one position for
any 0 < i ≤ l. In order to avoid having the second half of w formed only
of letters, we need in the first half at least two occurrences of letters. Let
us suppose that ai is the second occurrence of a letter in the first half of
w (the first occurrence is a0, that is, a0 and ai are letters and between
them there are only holes). This implies that a2l−i · · · a2l−1 ∈ A∗. In other
words, the suffix of length l of the word ends with a word of length i over
A, since otherwise we again would get compatibility for a shorter factor.
Now if we look at the prefix of length 2i, we observe that we need a second
incompatibility relation with the suffix of the same length. This implies that
there exists another occurrence of a letter either in the prefix at a position
j, with j ≤ 2i, or in the suffix at position j, with j > n − 2i. Continuing
the reasoning, and looking at the problem for the following occurrences of
letters in each half, we will finally get an expression of the form i + l

i for
which we have to find the minimum value, for 0 < i ≤ l. Calculating the
first derivative of i+ l

i and equating to zero, we get that i =
√
l. Hence the

minimum number of letters (it is the number of holes that we wish to be

maximized) is
⌊√

l
⌋

+
⌈

l

b
√

lc

⌉
, i.e., the number of consecutive occurrences

of letters from the end of the word plus the number of occurrences of letters
in the first half of the word. Furthermore, we observe that the upper bound
coincides with the lower bound and the obtained computer values.

Note that Theorem 25 implies that the equality mk(n) = m2(n) holds
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for all k ≥ 2, n ≥ 1.

5.4 Bordered partial words

The previously defined concept of the maximum number of holes a “non-
simply bordered” partial word may have can be extended to an “unbordered”
partial word. Let m̂k(n) be the maximum number of holes a partial word of
length n over a k-letter alphabet can have and still fail to be bordered. For
all integers k ≥ 2 and n ≥ 1, the inequality

m̂k(n) ≤ m2(n) (5.4)

holds. To see this, consider a partial word u of length n over a k-letter
alphabet with more than mk(n) holes. The word u necessarily has a simple
border, so u is bordered and m̂k(n) cannot be greater than mk(n). The
inequality then follows by Theorem 25 which implies that mk(n) = m2(n).

Next, let us refine the upper bound (5.4).

Proposition 22. For all integers k ≥ 2 and n ≥ 2, we have the upper bound

m̂k(n) ≤

⌊
n−

√
2k
k − 1

(n− 1)

⌋

Proof. Consider a partial word u of length n over a k-letter alphabet. Say
u = x1v = wx2, for some partial words x1, x2, v and w with x1, x2 of
length i. For u not to have a border of length i, there must exist a pair of
corresponding positions from x1, x2 whose letters are non-compatible. Since
there exist n−1 possible border lengths for u, there must exist at least n−1
such pairs of non-compatible letters for u to be unbordered.

For a given number of letters n − h, the maximum number of non-
compatible pairs will occur when each symbol of the alphabet appears
equally, which would be n−h

k times. Thus, the maximum number of non-
compatible pairs is bounded above by(

n− h

k

)2

(k − 1 + k − 2 + · · ·+ 1) =
(
n− h

k

)2 (
k(k − 1)

2

)
If there are strictly less than n− 1 non-compatible pairs of letters in u,

then u is necessarily bordered. So when n − 1 > (n−h)2(k−1)
2k holds, u will
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be bordered. Thus, a word with h > n −
√

2k
k−1(n− 1) holes is necessarily

bordered. So we have m̂k(n) ≤ bn−
√

2k
k−1(n− 1)c, for all integers k ≥ 2

and n ≥ 2.

5.4.1 A formula for two-letter alphabets

First, we consider the 2-letter alphabet {a, b}. For n ≥ 1, the upper bound

m̂2(n) ≤ bn− 2
√
n− 1c (5.5)

follows from Proposition 22 by letting k = 2 (note that the case when n = 1
is trivial since � is an unbordered word of length one with one hole). We
will show that this upper bound is also a lower bound.

Proposition 23. For all integers i, j, k ≥ 0 where k ≤ i, the partial word
given by (a�i)ja�kabi+1 is an unbordered word of length (i+1)(j+1)+k+2.

Proof. Assume that i, j ≥ 1 (the other cases are similar). Consider a prefix
of length l with 1 ≤ l < (i + 1). This gives us the prefix a�l−1 and the
corresponding suffix bl. Thus, there is no border of this length. Next,
consider a prefix of length l with (i+1) ≤ l < (i+1)j+k+2. Since an a will
appear within at least the last i+1 letters of the prefix and the corresponding
position in the suffix will be b, there cannot be a border of this length. Now,
consider a prefix of length l with (i+1)j+k+2 ≤ l ≤ (i+1)(j+1)+k+1.
The prefix ends with abi

′
, where i′ ≤ i. Since the suffix ends with bi+1, the

last a in the prefix does not agree with the corresponding b in the suffix.

Proposition 24. For all integers n ≥ 5, we have the lower bound

m̂2(n) ≥ bn− 2
√
n− 1c

Proof. First, assume there exists an integer l ≥ 2 such that n = l2 + 1. We
construct the binary word (a�l−1)l−1abl of length l2 +1 which is unbordered
for all integers l ≥ 2 by Proposition 23. This word has (l−1)2 holes. Making
the substitution n = l2 + 1 we have

bn− 2
√
n− 1c = bl2 + 1− 2

√
l2c = l2 + 1− 2l = (l − 1)2

Thus, there exists an unbordered word of length n with bn− 2
√
n− 1c holes.
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Now, assume n cannot be written in the form l2 + 1 for any integer l.
Let

i =

⌊
−1 +

√
1 + 4(n− 2)
2

⌋
+ 1, j = d

√
ne − 3, k = n− (i+ 1)(j + 1)− 2

Let u = (a�i)ja�k abi+1 whose length is given by (i+1)(j+1)+k+2 which
is equivalent to (i+ 1)(j + 1) + n− (i+ 1)(j + 1)− 2 + 2 = n. The number
of holes in u is given by ij+ k = ij+n− (i+ 1)(j+ 1)− 2 = n− i− j− 3 =

n−
⌊
−1+

√
1+4(n−2)

2

⌋
−d

√
ne−1. In order to show that u has bn− 2

√
n− 1c

holes, it suffices to show
⌊
−1+

√
1+4(n−2)

2

⌋
+ d

√
ne + 1 = d2

√
n− 1e. First

we note that for any integer n ≥ 5, there exists a unique integer m ≥ 2 such
that (m− 1)2 < n ≤ m2. The next four bounds will be useful:

First, for (m − 1)(m − 2) + 2 ≤ n < m(m − 1) + 2, we have that
0 ≤ 4(m − 1)(m − 2) ≤ 4(n − 2) < 4m(m − 1). Thus, after adding 1
to, taking the square root of, subtracting 1 from, and dividing by 2 each

part of the inequality yields m − 2 ≤ −1+
√

1+4(n−2)

2 < m − 1, and we get⌊
−1+

√
1+4(n−2)

2

⌋
= m− 2.

Second, for (m − 1)2 < n ≤ m2, we have that (m − 1) <
√
n ≤ m

and so d
√
ne = m.

Third, for (m − 1)2 + 1 < n ≤ m(m − 1) + 1, we have 0 ≤ (m −
1)2 + 1 < n ≤ m(m− 1) + 1.25. Thus, after subtracting 1 from, taking the
square root of, and multiplying by 2 each part of the inequality, this yields
2m− 2 < d2

√
n− 1e ≤ 2m− 1. Hence, we have d2

√
n− 1e = 2m− 1.

Fourth, for m(m− 1)+2 ≤ n ≤ m2 +1, we have m(m− 1)+1.25 <
n ≤ m2 + 1. Thus, after subtracting 1 from, taking the square root of, and
multiplying by 2 each part of the inequality, this yields 2m−1 < 2

√
n− 1 ≤

2m. Thus, we have d2
√
n− 1e = 2m.

Now, if (m−1)2 +1 < n ≤ m(m−1)+1, then
⌊
−1+

√
1+4(n−2)

2

⌋
= m−2,

d
√
ne = m, and d2

√
n− 1e = 2m − 1. If m(m − 1) + 2 ≤ n ≤ m2, then
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⌊
−1+

√
1+4(n−2)

2

⌋
= m− 1, d

√
ne = m, and d2

√
n− 1e = 2m.

Finally we claim that u is unbordered. By Proposition 23, it suffices to
show that k ≤ i. This is equivalent to demonstrating

n ≤ 2d
√
ne −

⌊
−1 +

√
1 + 4(n− 2)
2

⌋
+ d

√
ne

⌊
−1 +

√
1 + 4(n− 2)
2

⌋
− 1

Again, let m be the unique integer such that (m − 1)2 < n ≤ m2. If

(m − 1)2 + 1 < n ≤ m(m − 1) + 1, then
⌊
−1+

√
1+4(n−2)

2

⌋
= m − 2 and

d
√
ne = m. So we have n ≤ m(m− 1) + 1 = 2m− (m− 2) +m(m− 2)− 1.

If m(m− 1) + 1 < n ≤ m2, then
⌊
−1+

√
1+4(n−2)

2

⌋
= m− 1 and d

√
ne = m.

We get
n ≤ m2 = 2m− (m− 1) +m(m− 1)− 1

Theorem 26. For any integer n ≥ 1, m̂2(n) = bn− 2
√
n− 1c.

Proof. For n = 1, the result is trivial as mentioned earlier. For n = 2,
note that a word with at least one hole necessarily has a border of length
one. An unbordered word of length two with no hole is ab, and m̂2(2) =
0 = b2− 2

√
1c. For n = 3, m̂2(3) = 0 = b3− 2

√
2c, and an example of an

unbordered word of length three with no hole is abb. As in the case of words
of length two, a word that has one hole will be bordered. For n = 4, we can
argue similarly. Thus, we have as example abbb, and m̂2(4) = 0 = b4− 2

√
3c.

For n ≥ 5, the result follows from (5.5) and Proposition 24.

5.4.2 A lower bound for three-letter alphabets

Now, we consider the 3-letter alphabet {a, b, c}. For n ≥ 2, the upper bound

m̂3(n) ≤
⌊
n−

√
3(n− 1)

⌋
(5.6)

follows from Proposition 22 by letting k = 3. We will give a lower bound
for m̂3(n).

Proposition 25. For all integers i, j, k ≥ 0 with k ≤ i, the partial word
given by (a�i)ja�kcib is an unbordered word of length (i+ 1)(j + 1) + k + 1.
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Proof. Assume that i, j, k > 0 (the other cases are similar). Consider a
possible border length l with 1 ≤ l ≤ i+ 1. This yields a prefix that begins
with a and a suffix which begins in b or c, so there is no border of length l. If
i+2 ≤ l ≤ j(i+1)+1, we have the letter a within the last i+1 positions of
the prefix which will correspond with c or b in the last i+ 1 positions of the
suffix, so there is no border of this length. If j(i+1)+2 ≤ l ≤ j(i+1)+1+k,
we have a appearing within the last k + 1 positions of the prefix, and since
k ≤ i, the last k + 1 positions of the suffix are c’s and b’s. Finally, if
j(i+ 1) + k+ 2 ≤ l ≤ (j + 1)(i+ 1) + k, we have a prefix that ends in c and
a suffix which ends in b.

Proposition 26. For all integers i, j ≥ 2 and k ≥ 0, the partial word given
by (a�i)j(b�i+1)kcib is an unbordered word of length (i+ 1)(j + k + 1) + k.

Proof. Assume that i ≥ 2, j ≥ 2, k ≥ 1 (the case where k = 0 is similar).
Consider a possible border length l with 1 ≤ l ≤ i + 1. Our prefix will
begin with a which is not equal to the corresponding b or c in the suffix.
For i + 2 ≤ l ≤ j(i + 1), we have a within the last i + 1 positions of the
prefix, and the last i+1 positions of the suffix are cib. So there is no border
of length l. For j(i + 1) + 1 ≤ l ≤ j(i + 1) + k(i + 2), we have one of the
following three cases:

If our prefix ends in b, then we have l = j(i + 1) + m(i + 2) + 1 for
some integer m with 0 ≤ m < k. In this case, the a at position l − 1 −
m(i+2)−2(i+1) of the prefix will correspond with b at this position of the
suffix. So there is no border of length l. If our prefix ends with b�i′ such that
1 ≤ i′ ≤ i, then our prefix contains the letter b within the last i+1 positions,
but not at the last position. However, the suffix will have c’s in all of these
positions. If our prefix ends with b�i+1 so that we have l = j(i+1)+m(i+2)
where 1 ≤ m ≤ k, then the a at position l−m(i+ 2)− (i+ 1) of the prefix
will correspond with b at this position of the suffix. So there is no border of
length l.

Finally, consider the case where j(i+ 1) + k(i+ 2) + 1 ≤ l ≤ j(i+ 1) +
k(i+2)+ i. We will have a prefix which ends with c and a suffix which ends
with b, so we have no border for this length.

Proposition 27. For any integer n > 9, we have the lower bound m̂3(n) ≥
n−

⌈
2
√
n+ 3

⌉
+ 2.
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Proof. Let l = d
√
ne, so that l ≥ 4 and (l − 1)2 < n ≤ l2. To show that

m̂3(n) ≥ n−
⌈
2
√
n+ 3

⌉
+ 2 is equivalent to showing that

m̂3(n) ≥


n− 2d

√
ne+ 1 if l2 − 2 ≤ n ≤ l2

n− 2d
√
ne+ 2 if l(l − 1)− 2 ≤ n ≤ l2 − 3

n− 2d
√
ne+ 3 if (l − 1)2 + 1 ≤ n ≤ l(l − 1)− 3

We consider the following five cases, and in each case demonstrate that there
exists an unbordered word of length n with the required number of holes.
Note that in each of the cases we have l = d

√
ne.

First, if (l−1)2 +1 ≤ n ≤ l(l−1)−3, then let u = (a�i)j(b�i+1)kcib

where i = l−2, j = (l−1)l− (n+1), and k = n− (l−1)2. The length of u is
(i+1)(j+k+1)+k = (l−1)((l−1)l−(n+1)+n−(l−1)2+1)+n−(l−1)2 = n.
The number of holes in u is ij + (i+ 1)k = (l− 2)(l(l− 1)− (n+ 1)) + (l−
1)(n − (l − 1)2) = n − 2l + 3. By Proposition 26, to show u is unbordered
it suffices to show i, j ≥ 2. This case only holds for l ≥ 4, so i ≥ 2. Since
n ≤ l(l − 1) − 3, we have 2 ≤ l(l − 1) − n − 1 = j. Thus, there exists an
unbordered word of length n with n− 2d

√
ne+ 3 holes.

Second, if l(l − 1) − 2 ≤ n ≤ l(l − 1), then let u = (a�i)ja�kcib

where i = l − 1, j = l − 3, and k = n − (l − 1)2. The length of u is
(i+ 1)(j + 1) + k + 1 = l(l − 2) + n− l2 + 2l − 1 + 1 = n, and the number
of holes in u is ij + k = (l − 1)(l − 3) + n − l2 + 2l − 1 = n − 2l + 2.
By Proposition 25, u is unbordered if k ≤ i. Since n ≤ l(l − 1), we have
n − l2 + 2l − 1 = k ≤ l − 1 = i. Thus, there exists an unbordered word of
length n with n− 2d

√
ne+ 2 holes.

Third, if l(l − 1) + 1 ≤ n ≤ l2 − 4, then let u = (a�i)j(b�i+1)kcib

where i = l − 1, j = l2 − 2 − n, and k = n − l(l − 1). The length of u is
(i+1)(j+k+1)+k = l(l2−2−n+n−l2+l+1)+n−l(l−1) = n, and the number
of holes in u is ij+(i+1)k = (l−1)(l2−2−n)+ l(n− l(l−1)) = n−2l+2.
By Proposition 26, u is unbordered if i, j ≥ 2. Since n ≥ 7, it must be that
l ≥ 3, and so i ≥ 2. Since n ≤ l2 − 4, we have 2 ≤ l2 − 2 − n = j. Thus,
there exists an unbordered word of length n with n− 2d

√
ne+ 2 holes.
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Fourth, if n = l2 − 3, then let u = (a�i)2(b�i+1)kcib where i = l− 2,
j = 2, and k = l − 3. The length of u is (i + 1)(j + k + 1) + k = (l −
1)(2 + l − 3 + 1) + l − 3 = l2 − 3 = n, and the number of holes in u is
ij+(i+1)k = (l−2)(2)+(l−1)(l−3) = l2−2l−1 = l2−3−2l+2 = n−2l+2.
By Proposition 26, u is unbordered since j = 2 and i ≥ 2, because n ≥ 7 and
l ≥ 4. Thus, there exists an unbordered word of length n with n−2d

√
ne+2

holes.

Fifth, if l2 − 2 ≤ n ≤ l2, then let u = (a�i)ja�kcib where i = l − 1,
j = l − 2, and k = n − l(l − 1) − 1. The length of u is (i + 1)(j + 1) +
k + 1 = l(l − 1) + n − l(l − 1) − 1 + 1 = n. The number of holes in u is
ij+ k = (l− 1)(l− 2)+n− l(l− 1)− 1 = n− 2l+1. By Proposition 25, u is
unbordered if k ≤ i. Since n ≤ l2, we have n−l2+l−1 = k ≤ l−1 = i. Thus,
there exists an unbordered word of length n with n− 2d

√
ne+ 1 holes.

Note that our upper bound and lower bound for m̂3(n) are equal for
n ≤ 27. We believe that our lower bound is tight and have the following
conjecture.

Conjecture 1. The equality m̂3(n) = n−
⌈
2
√
n+ 3

⌉
+2 holds for all n ≥ 6.

5.4.3 A lower bound for four-letter alphabets

Finally, we consider the 4-letter alphabet {a, b, c, d}. By letting k = 4 in
Proposition 22, we have the upper bound

m̂4(n) ≤

⌊
n−

√
8
3
(n− 1)

⌋
(5.7)

for n ≥ 2. We will give a lower bound for m̂4(n).

Proposition 28. The partial word a�i(b�i+1)jcid is an unbordered word of
length (i+ 2)(j + 1) + i, for all i, j ≥ 0 and distinct letters a, b, c, d.

Proof. We assume that i, j ≥ 1 (the other cases are similar). Consider a
border length l. If 1 ≤ l ≤ i+ 1, then we have a prefix which begins with a
and a suffix which begins with c or d. If i+ 2 ≤ l < (j + 1)(i+ 2), then the
prefix ends in either b�i′ or b�i+1, where 0 ≤ i′ ≤ i. If the prefix ends with
b�i′ , then we have the letter b appearing within the last i + 1 positions of
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the prefix which will correspond with either c or d in the suffix. If the prefix
ends with b�i+1, then our prefix will begin with a, and our suffix will begin
with b. If (j + 1)(i + 2) ≤ l ≤ 2i + 1 + j(i + 2), then our prefix ends with
the letter c while our suffix ends with the letter d. In each case, there is no
border of length l.

Proposition 29. For integers n ≥ 7, we have the lower bound

m̂4(n) ≥


l(l − 2) if n = l2 − 2 for some integer l

l2 − l − 1 if n = l2 + l − 2 for some integer l

m̂3(n) otherwise

Proof. First, suppose that n = l2 − 2 for some integer l. Let i = j = l − 2.
The word a�i(b�i+1)jcid is unbordered by Proposition 28. The length of this
word is 2i+ 2 + j(i+ 2) = 2(l− 2) + 2 + (l− 2)l = l2 − 2 = n. The number
of holes in the word is i+ j(i+ 1) = l − 2 + (l − 2)(l − 1) = l(l − 2).

Next, suppose that n = l2 + l − 2 for some integer l. Now let i =
l − 2, j = l − 1. We have the word a�i(b�i+1)jcid, which is unbordered
by Proposition 28. The length of this word is 2i + 2 + j(i + 2) = 2(l −
2) + 2 + (l − 1)l = l2 + l − 2 = n. The number of holes in this word is
i+ j(i+ 1) = l − 2 + (l − 1)(l − 1) = l2 − l − 1.

For all other n, consider an unbordered word with m̂3(n) holes, which is
still unbordered over an alphabet of size 4.

Note that our lower bound can be improved when n = 24, 35, 48, 63, 80
and 99. For instance, m̂4(24) = 16 > m̂3(24) = 15.
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m̂4(24) = 16 a�1b�2c�2c�3b�8add

m̂4(35) = 25 a�2a�2b�3c�3c�4b�11addd

a�2d�2d�3b�3b�4a�11cccd

m̂4(48) = 36 a�1b�2b�2c�3c�3c�3a�4a�18bddd

a�1d�2a�2a�3b�3b�3b�4c�18dcdd

a�1d�2d�2b�3b�3b�3a�4a�18cccd

m̂4(63) ≥ 49 a�2a�3b�3b�3b�3b�4c�4a�5c�22dcddd

a�2a�3b�3b�3b�3c�4c�4a�5c�22bdddd

a�2a�3d�3a�3d�3d�4b�4b�5a�22ccccd

m̂4(80) ≥ 64 a�1b�2b�2c�3c�3c�3c�3c�3c�3c�3a�4a�34bddd

a�1d�2a�2a�3b�3b�3b�3b�3b�3b�3b�4c�34dcdd

a�1d�2d�2b�3b�3b�3b�3b�3b�3b�3a�4a�34cccd

m̂4(99) ≥ 81 a�2a�2b�3c�3c�3c�3c�3c�3c�3c�3c�3c�3c�4b�43addd

a�2d�2d�3b�3b�3b�3b�3b�3b�3b�3b�3b�3b�4a�43cccd

This leads us to the following conjecture.

Conjecture 2. The equality m̂4(l2 − 1) = (l − 1)2 holds for all l > 2.

5.5 Critical factorizations

In this section, we first discuss so-called critical factorizations of a partial
word w, then study some of their properties when w is unbordered (Propo-
sition 30, and Corollaries 9 and 10), and finally investigate the position
in the Chomsky hierarchy of the set of all partial words having a critical
factorization (Theorems 27 and 28).

If w is a non-special partial word of length at least two, then there exists
a factorization (u, v) of w with u, v 6= ε such that the minimal local period
of w at position |u| − 1 (as defined below) equals the minimal weak period
of w [BSD05, BSW07]. Such a factorization (u, v) of w is called critical and
the position |u| − 1 is called a critical point of w.

Definition 4. [BSD05] Let w ∈ A+
� . A positive integer p is called a local

period of w at position i if there exist u, v, x, y ∈ A+
� such that w = uv,

|u| = i + 1, |x| = p, x ↑ y, and such that one of the following conditions
holds for some partial words r, s:

1. u = rx and v = ys (internal square),

107

UNIVERSITAT ROVIRA I VIRGILI 
REPETITIONS IN PARTIAL WORDS 
Robert George Mercas 
ISBN:978-84-693-7670-6/DL:T-1749-2010 



2. x = ru and v = ys (left-external square if r 6= ε),

3. u = rx and y = vs (right-external square if s 6= ε),

4. x = ru and y = vs (left- and right-external square if r, s 6= ε).

The minimal local period of w at position i is denoted by p(w, i). Clearly,
1 ≤ p(w, i) ≤ p′(w) ≤ |w|.

There exist unbordered partial words that have no critical factorizations,
like w = a�bc [Wet].

We now investigate some of the properties of an unbordered partial word
of length at least two and how they relate to its critical factorizations (if
any).

Definition 5. Let u, v ∈ A+
� . We say that u and v overlap if there exist

partial words r, s satisfying one of the following conditions:

1. r ↑ s with u = ru′ and v = v′s,

2. r ↑ s with u = u′r and v = sv′,

3. u = ru′s with u′ ↑ v,

4. v = rv′s with v′ ↑ u.

Otherwise we say that u and v do not overlap.

Proposition 30. Let u, v ∈ A+
� . If w = uv is unbordered, then |u| − 1 is a

critical point of w if and only if u and v do not overlap.

Proof. Let us first consider the first implication and let us suppose u and
v overlap. If we have Type 1 overlap, then w = ru′v′s and r ↑ s for some
partial words r, s, u′, v′. This contradicts the fact that w is unbordered. If
we have Type 2 overlap, then w = u′rsv′ and there is an internal square at
position |u| − 1 of length k = |r| = |s|, so p(w, |u| − 1) ≤ k. But because w
is unbordered, p′(w) = |w|. Of course we have that k < |w| (otherwise we
have Type 1 overlap), so this contradicts that |u| − 1 is a critical point of
w. If we have Type 3 overlap, then w = ru′sv and there is a right-external
square of length |u′s| at position |u| − 1. Because v 6= ε, |u′s| < |w| = p′(w)
and we have that |u| − 1 cannot be a critical point of w, a contradiction.
The case for Type 4 overlap is very similar to Type 3.
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For the other direction we have that u and v do not overlap and let us
suppose that |u| − 1 is not a critical point of w.

Since |u| − 1 is not a critical point, there exist x and y defined as in
Definition 4, with the length of x strictly smaller than the minimal weak
period of w. Let us now look at all the four conditions of the definition. If
we have an internal square, then according to Definition 5 we have a Type
2 overlap of u and v, which is a contradiction with our assumption. For
a left-external, respectively right-external, square we get that either u is
compatible with a factor of v, or v is compatible with a factor of u. Both
cases contradict with the fact that u and v do not overlap, giving us a Type
4, respectively Type 3, overlap.

In the case we have a left- and right-external square we get that x = ru

and y = vs, where x ↑ y and r, s 6= ε. If |r| < |v|, then there exists v′

with |v′| > 0, such that v = rv′. Hence, since ru ↑ rv′s we get a Type 2
overlap, u ↑ v′s, which is a contradiction with our initial assumption. If
|r| ≥ |v|, then there exists r′ such that r = vr′. This implies that |w| =
|uv| ≤ |vr′u| = |ru| = |x| < p′(w) ≤ |w|, which is a contradiction.

Corollary 9. Let u, v ∈ A+
� . If w = uv is unbordered and |u|−1 is a critical

point of w, then w′ = vu is unbordered as well.

Proof. This is immediately implied by Proposition 30 and the fact that if
w′ = vu is bordered, then u and v must overlap.

Corollary 10. Let u, v ∈ A+
� . If w = uv is unbordered and |u| − 1 is a

critical point of w, then |v| − 1 is a critical point of w′ = vu.

Proof. By Proposition 30, u and v do not overlap. By Corollary 9, w′ is
unbordered. Then by Proposition 30, the point |v| − 1 is critical for w′.

We end this section by considering the language

CrFa = {w | w is a partial word over A that has a critical factorization}

where A denotes an arbitrary non-unary fixed finite alphabet (we will assume
that a and b are two distinct letters of A). What is the position of CrFa in
the Chomsky hierarchy? Due to [Zha], we know that CrFa it is not regular.
We prove that CrFa is a context sensitive language that is not context-free.
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Let us first recall a version of the pumping lemma that is due to Bader
and Moura [BM82], and is a generalization of the well known Ogden’s
Lemma.

Lemma 28. [BM82] For any context-free language L, there exists n ∈ N,
the set of non-negative integers, such that for all z ∈ L, if d positions in
z are “distinguished” and e positions are “excluded,” with d > n(e+1), then
there exist u, v, w, x, y such that z = uvwxy and

1. vx contains at least one distinguished position and no excluded posi-
tions,

2. if r is the number of distinguished positions and s is the number of
excluded positions in vwx, then r ≤ n(s+1),

3. for all i ∈ N, uviwxiy ∈ L.

The above lemma says that for any context-free language L, there exists
a natural number n, such that in any word z ∈ L, by marking any d positions
as “distinguished” and e positions as “excluded” with d > n(e+1), we can
decompose z in five contiguous factors that satisfy the three statements. It
is easy to observe that the only restrictions imposed by d and e are on the
three inner factors v, w and x.

Theorem 27. The language CrFa is not context-free.

Proof. Let us assume that the language CrFa is context-free. This implies
that the previously defined pumping lemma holds. Let us take the word

z = ba3n3
ban3�n3

an3
ba3n3

b

where n is the natural number from the lemma, and mark all symbols except
the first and the last one as distinguished and these two as excluded. It
is easy to check that p′(z) = 3n3 + 1, z has a critical factorization (b,
a3n3

ban3�n3
an3

ba3n3
b) and the number of distinguished positions is greater

than n(2+1). From Lemma 28(1) we get that the first and the last occurrences
of b will never be part of either v or x.

Let us first consider the case when u = ε. This implies, by Lemma 28(1),
that v = ε. Hence, w contains exactly one excluded position, implying
x = ak, where 0 < k ≤ n2 by Lemma 28(2). In this case, for i = 0, we
obtain the word
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ba3n3−kban3�n3
an3

ba3n3
b

which is not in CrFa, contradicting Lemma 28(3). To see that this word
does not have a critical factorization, note that it has minimal weak period
greater than 3n3 + 1. However, the minimal local periods at the positions
defined by the factorization (b, a3n3−k, b, an3�n3

an3
, b, a3n3

, b) are 3n3 − k +
1, 3n3 − k + 1, n3 + 1, n3 + 1, 3n3 + 1 and 3n3 + 1 respectively, while the
minimal local period at any other position is 1. Similarly we easily prove
that it is impossible to have y = ε.

From now on, let us consider the cases where both u and y are non-
empty. Then each of u and y contains an excluded position and so vwx

will all be distinguished. And therefore the length of vwx is at most n by
Lemma 28(2).

When vwx matches a∗ and vwx is part of the 1st group of a’s, then
vwx = ak for some 0 < k ≤ n, and v = ak1 and x = ak2 with k1 > 0 or
k2 > 0. In this case take i = 0. The 1st group of a’s is then reduced to
3n3 − k1 − k2, giving us the word

ba3n3−k1−k2ban3�n3
an3

ba3n3
b

that does not have a critical factorization (again, the minimal weak period
is greater than 3n3 + 1 while the minimal local periods are smaller than or
equal to 3n3 +1). A similar argument works for the 2nd, 3rd and 4th groups
of a’s. We are left with the cases when vwx matches a∗ba∗, or a∗�∗ or �∗a∗.

If x matches a∗ba∗, then v is a string of a’s of length at most n− 1 with
the a’s either from the 1st group or the 3rd group. In both cases, taking
i = 0, we get a contradiction with the fact that the words

ba4n3−k1�n3
an3

ba3n3
b

and
ba3n3

ban3�n3
a4n3−k2b

are in CrFa for some 0 ≤ k1, k2 < n. To see that the first word does not
have a critical factorization, note that it has minimal weak period greater
than 4n3+1. However, the minimal local periods at the positions defined by
the factorization (b, a4n3−k1�n3

an3
, b, a3n3

, b) are 4n3−k1 +1, n3 +1, 3n3 +1
and 3n3+1 respectively, while the minimal local period at any other position
is 1. The case where v matches a∗ba∗ is solved analogously to the previous
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one and hence we will omit its proof. By taking i = 2, a contradiction is
reached in the cases where v = ak1 and x = ak2 for some k1, k2 with the a’s
in v from the 1st group of a’s, and the ones in x from the 2nd group of a’s
(respectively, with the a’s in v from the 3rd group of a’s, and the ones in x
from the 4th group of a’s).

If v = ak1�k2 or x = �k1ak2 for some k1, k2, then we get that x = �k3 ,
respectively v = �k3 , with 0 < k1 + k2 + k3 ≤ n. In both cases, taking
i = 2, we obtain a word that does not have a critical factorization. When
v = �k1ak2 or x = ak1�k2 , we proceed similarly. The case vx = ak where
0 < k ≤ n, with the a’s from the 2nd or the 3rd group, is solved similarly.

Since all cases lead to contradictions we conclude that our assumption
is false, hence the language CrFa is not context-free.

Theorem 28. The language CrFa is context sensitive.

Proof. To prove this we will give an LBA (linear bounded automaton) that
recognizes all partial words having a critical factorization. We recall that
the factorization (u, v) of input partial word w is critical if the minimal local
period of w at position |u| − 1 is equal to the minimal weak period of w,
p′(w).

Our LBA will have an input tape of size 3|w| and five auxiliary tapes of
size at most |w|+ 1, that we are going to describe next. We will denote the
word on the input tape as inp.

The input tape will contain, starting from position |w|, the input word
while all other positions will be filled in with �’s. Position |w| (respectively,
2|w| − 1) on the input tape can be easily recognized by using an auxiliary
symbol $ (respectively, #).

The first auxiliary tape, let us call it P , will have size |w| and will be
used for the identification of the minimal weak period of our input word w.
This can be easily done by using an unary numbering system that adds 1’s
until the minimal weak period is discovered. Since the minimal weak period
of a word is greater than or equal to one, we start with a 1 symbol on the
tape.

The second tape, Z, will be used for remembering the current position
in the word. Hence, for position i < |w|, the head will be positioned on the
input tape on the (|w|+ i)th cell, and Tape Z will contain i ones. The tape
is initialized with one 1 and has size |w|+ 1.
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The following tape, X, will have size p′(w) and will be used for checking
the size of the current minimal local period.

The last two tapes, called Y1 and Y2, will have sizes p′(w). They will be
used to save the words of length at most p′(w), positioned to the left and
right of the current position. More exactly these tapes will contain x and y
from the definition of critical factorization.

We now describe how the LBA works, using the notation |T | for denoting
the number of symbols present on Tape T :

1. Starting at position |w| on the input tape, the head marks the current
position and then moves to the right |P | positions and checks if the
symbols are compatible. This step is repeated until the condition
is violated. If this happens, then a 1 is added to Tape P and all
symbols are unmarked. If the end of the word is reached, then the
head moves left to the position |w| and repeats the step for the first
unmarked symbol. The step is repeated until all symbols are marked
or |P | = |w|. This will give us the minimal weak period of the word.

2. Increment the value of X.

3. Starting at position i, where i represents the sum between |w| and
the number of 1’s on Tape Z, the LBA copies the suffix of length
|X| (recall that the number of symbols present on Tape X, or |X|, is
bounded by p′(w)) of the word inp[0..i) on Tape Y1 and the prefix of
length |X| of the word inp[i..3|w|) on Tape Y2.

4. Next the LBA checks if the word on Tape Y1 is compatible with the
word on Tape Y2. This can easily be done just by comparing one
symbol at a time while going in parallel on the two tapes. If the words
are compatible and the sum of 1’s in X is equal to p′(w), then the
automaton stops and outputs the position where a critical factorization
is present (the LBA will accept the word). If the words are compatible
and the sum of 1’s in X is not equal to p′(w), then the automaton fills
the X tape with 1’s and goes to the next step.

5. If X is full, then the tape is brought to the initial configuration and
the LBA adds a 1 on Z. If Z is full, then the automaton stops and
concludes that a critical factorization does not exist, hence, the LBA
will reject the word. Otherwise, the LBA goes to Step 2.
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It is easy to check that the algorithm will always stop. Since the con-
struction of a linear bounded automaton that recognizes all partial words
over {a, b} having a critical factorization was possible, we conclude that
CrFa is a context sensitive language.

5.6 Conclusion

In conclusion, note that the following conjecture is somehow natural, since
increasing the length of a partial word by one is possible through the addition
of at most one hole.

Conjecture 3. The inequalities m̂k(n) ≤ m̂k(n + 1) ≤ m̂k(n) + 1 hold for
all k ≥ 2, n ≥ 1.

This result would imply that, over the same alphabet a word of length
n+ 1 can have at most one hole more than a word of length n. This would
actually help us lower the upper bound in the case of the alphabets of 3 or
more letters.

Now let us give some remarks about conjugacy on partial words. We call
a word u a conjugate of v, and we write u ∼ v, if u = xy while v = yx for
some x and y. Equivalently, u and v are conjugate if and only if there exists
a word z such that uz = zv [LS62]. Clearly, ∼ is an equivalence relation. For
two words u and v, (

√
u)m ∼ (

√
v)n if and only if both m = n and

√
u ∼

√
v.

Thus, every conjugate of a non-primitive non-empty word is bordered. A
main result of Ehrenfeucht and Silberger states that if u is a primitive word
such that a ∈ α(u), then there exists an unbordered conjugate av of u
[ES79]. In other words, if u is such that u =

√
u and a ∈ α(u), then there

exist x, y such that u = xay and v = ayx is unbordered. For instance, if
u = aba, then x = ab and y = ε work for the letter a ∈ α(u).

Now, partial words u and v are conjugate if there exist partial words x
and y such that u ⊂ xy and v ⊂ yx. Again, we denote u is a conjugate
of v by u ∼ v. Here, the relation ∼ is not an equivalence relation: it is
both reflexive and symmetric, but not transitive [BSL02]. Note that the
conjugates a�b, �ba and ba� of u = a�b are bordered. However, we can
easily extend Ehrenfeucht and Silberger’s result by showing that if u is a
primitive partial word and a is a letter of the alphabet A that appears in
the spelling of u, then there exists an unbordered (full) conjugate av of u.
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Index

An, 9
A�, 10
A∗
�, 10

A+
� , 10

CrFa, 109
D(w), 10
H(w), 10
P (X), 11
S(X), 11
≈, 92
γ, 27
m̂k(n), 99
�, 86
µ, 95
ω, 46
φ, 14
pre(u, v), 11
ψ, 15
punb, 94
σ, 15
τ , 15
unb(u), 91
↑, 12, 43
∨, 11, 59
fk(w), 60
gh,k(n), 60
mk(n), 97
mh,k(n), 61
p, 12

p′, 12
p(w, i), 108
w[i..j], 11
wi,p, 12
�, 10

alphabet, 8
k-letter, 8

avoidable pattern, 55

border, 9, 13
bad, 86
good, 86
nonsimple, 13
overlapping, 13
simple, 13

bordered
badly, 86
non-specially, 88
simply, 13
specially, 88
well, 86

cardinality, 8
catenation, see concatenation
COL, 46
compatibility, 12
constraint matrix, 47
containement

proper, 10
containment, 10
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critical
factorization, 107
point, 107

CROSS, 46
cross centered, 46
cube, 15

domain, 10

equal, 10

factor, 9, 11
proper, 9

factorization, 9
X-, 11

fixed point, 10
free

k, 15
k-overlap, 26
cube, 15
hole, 61
overlap, 15
square, 15

FULL, 46

general form, 59

hole, 10
constraint, 45
insertion, 16

induced, 46

Lévi’s lemma, 12
least upper bound, 11
length, 9
letter, 8

mapping, 8

morphism, 9
multiplication, 12

NULL, 47

ONE, 47
overlap, 15

k-, 26
strong, 16
weak, 16

partial word, 10
one way infinite, 13

period, 9
local, 107
strong, 11
weak, 11

power, 9
prefix, 9, 11

maximal common, 11
primitive, 9, 13
prolongable, 10
proper factor, 11
proximal, 45

root, 9
primitive, 9

ROW, 46

set of holes, 10
simplification, 12
square, 15

internal, 107
large, 56
left-external, 108
non-trivial, 17
right-external, 108
trivial, 17
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square at position i, 68
suffix, 9, 11
symbol, 8
synchronization, 67

threshold repetitiveness, 55
TWO, 47

valid, 45

weakening, 12
word

set of one-way infinite, 8
bordered, 9
empty, 8
finite, 8
full, 10
one-way infinite, 8
partial, 10
set of finite, 8
set of non-empty finite, 8
unbordered, 9
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Carlos Mart́ın-Vide, editors, New Developments in Formal
Languages and Applications, pages 11–58. Springer-Verlag,
Berlin, 2007.

[BS08] F. Blanchet-Sadri. Algorithmic Combinatorics on Partial
Words. Chapman & Hall/CRC Press, 2008.

119

UNIVERSITAT ROVIRA I VIRGILI 
REPETITIONS IN PARTIAL WORDS 
Robert George Mercas 
ISBN:978-84-693-7670-6/DL:T-1749-2010 



[BSBK+09] F. Blanchet-Sadri, Naomi C. Brownstein, Andy Kalcic, Justin
Palumbo, and Tracy Weyand. Unavoidable sets of partial
words. Theory of Computing Systems, 45:381–406, 2009.

[BSBL06] F. Blanchet-Sadri, D. Dakota Blair, and Rebeca V. Lewis.
Equations on partial words. In Markus Lohrey, editor, Math-
ematical Foundations of Computer Science 2006, volume 4162
of Lecture Notes in Computer Science, pages 167–178, Berlin/
Heidelberg, Germany, 2006. Springer-Verlag.

[BSBP07] F. Blanchet-Sadri, Naomi C. Brownstein, and Justin Palumbo.
Two element unavoidable sets of partial words. In Kai Salomaa
and Markus Holzer, editors, Developments in Language The-
ory, volume 4588 of Lecture Notes in Computer Science, pages
96–107, Berlin, Germany, 2007. Springer Berlin / Heidelberg.

[BSBS08] F. Blanchet-Sadri, Deepak Bal, and Gautam Sisodia. Graph
connectivity, partial words, and a theorem of Fine and Wilf.
Information and Computation, 206(5):676–693, 2008.

[BSCM09] F. Blanchet-Sadri, Ilkyoo Choi, and Robert Mercaş. Avoiding
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ing distinct squares in partial words. In Erzsébet Csuhaj-Varju
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LITP 86–63, Paris VI, 1986.

[Sch89] Ursula Schmidt. Avoidable patterns on two letters. Theoretical
Computer Science, 63(1):1–17, 1989.

[SG04] Arseny M. Shur and Yulia V. Gamzova. Partial words and the
interaction property of periods. Izvestiya RAN, 68(2):191–214,
2004.

[SK01] Arseny M. Shur and Yulia V. Konovalova. On the periods
of partial words. In MFCS ’01: Proceedings of the 26th In-
ternational Symposium on Mathematical Foundations of Com-
puter Science, volume 2136, pages 657–665, London, UK, 2001.
Springer-Verlag.

[Smy03] William Fennell Smyth. Computing Patterns in Strings. Pear-
son Addison-Wesley, 2003.

[Sto88] James A. Storer. Data compression: methods and theory. Com-
puter Science Press, Inc., New York, NY, USA, 1988.

[Thu06] Axel Thue. Über unendliche Zeichenreihen. Norske Vid. Selsk.
Skr. I, Mat. Nat. Kl. Christiana, 7:1–22, 1906. (Reprinted in
Selected Mathematical Papers of Axel Thue, T. Nagell, editor,
Universitetsforlaget, Oslo, Norway (1977), pp. 139–158).

[Thu10] Axel Thue. Die lösung eines Spezialfalles eines generellen
logischen Problems. Norske Videnskabers Selskabs Skrifter,
I Mathematisch-Naturwissenschaftliche Klasse Christiana, 8,
1910. (Reprinted in Selected Mathematical Papers of Axel
Thue, T. Nagell, editor, Universitetsforlaget, Oslo, Norway
(1977), pp. 273–310).

126

UNIVERSITAT ROVIRA I VIRGILI 
REPETITIONS IN PARTIAL WORDS 
Robert George Mercas 
ISBN:978-84-693-7670-6/DL:T-1749-2010 
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