

ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE

ARCHITECTURES
David Ródenas Picó

Dipòsit Legal: T-1350-2011

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author.

http://www.tesisenxarxa.net/
http://www.tesisenred.net/
http://www.tesisenxarxa.net/

David Ródenas Picó

ALGORITHMS ACCELERATION
OF PATTERN-MATCHING IN

 MULTI-CORE ARCHITECTURES

DOCTORAL THESIS

directed by Dr. Francesc Serratosa Casanelles

Departament
d'Enginyeria Informàtica i Matemàtiques

Tarragona
2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Index

Index..i
List of publications of this thesis..v
Glossary...vii
Figure index...ix
Index of tables..xi
Index of algorithms...xiii
Abstract..xv

1 Introduction..19
1.1 Current Desktop Processors..22

1.1.1. Architectures...22
1.2 Algorithms and Parallelism..24

1.2.1. Parallelization tools..24
1.3 Graph Matching algorithms..27
1.4 Streaming and Scientific applications..28

2 Objectives...31
2.1 Graph Matching and Scientific applications..32
2.2 Annotated Programming Model over Multi-Core..33
2.3 Annotated Programming Model over Distributed Memory..........................35
2.4 Heterogeneous processor simulator..38
2.5 Graph Matching preprocessing and Streaming applications........................41
2.6 Annotation based programming models and streaming...............................43
2.7 Graph matching on current architectures...47

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

ii INDEX

3 State Of The Art...51
3.1 Graph matching..51
3.2 Benchmarks...55
3.3 Architectures...63
3.4 Tools..74

4 Related Work..89

5 New Contributions...107
5.1 Multi-Processor tools over Multi-Core Homogeneous Shared Memory. . .107
5.2 Annotation based Programming Model over Distributed Memory...........113
5.3 Heterogeneous Modular Multi-Core simulator...116
5.4 Annotation Based Programming Model For Streaming Applications........121
5.5 Graph Matching on Current Architectures...129
5.6 New Tools..132

6 Practical Evaluation..135
6.1 Multi-Processor tools over multi-core...135
6.2 Annotation programming model over distributed memory.......................141
6.3 Heterogeneous modular multi-core simulator...143
6.4 Annotation Based Programming Model Over Heterogeneous Distributed

Memory Streaming Applications...146
6.5 Graph Matching on Current Architectures...152

7 Community Results Based On This Thesis...159

8 Conclusions..165
8.1 Future work...167

9 References...169

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

List Of Publications Of This Thesis

[1] D. Ródenas et al., “Optimizing NANOS OpenMP for the IBM Cyclops
multithreaded architecture,” 19TH IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2005), 2005.

[2] D. Rodenas, X. Martorell, J. Costa, T. Cortes, and J. Labarta, “Running BT
Multi-Zone on non-shared memory machines with OpenMP SDSM instead of
MPI,” Proceedings of the XVI Jornadas de Paralelismo, Sep. 2005.

[3] D. Ródenas et al., “Exploiting multilevel parallelism using OpenMP on a
massive multithreaded architecture,” Journal of Embedded Computing, vol. 2, p.
141–155, Apr. 2006.

[4] P. Carpenter, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade, “Code
generation for streaming applications based on an abstract machine
description,” Universitat Politécnica de Catalunya, UPC-DAC-RR-CAP-2007-3,
2007.

[5] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade, “A
module-based cell processor simulator,” 3rd HiPEAC Advanced Computer
Architecture and Compilation for Embedded Systems. ISBN: 978-90-382-1127-5,
2007.

[6] A. Rico, F. Cabarcas, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade,
“Implementation and validation of a Cell simulator using UNISIM,” 3rd
HiPEAC Industrial Workshop, IBM Haifa, Israel, 2007

[7] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, and A. Ramirez, “CellSim: A
Validated Modular Heterogeneous Multiprocessor Simulator,” Proceedings of
the XVII Jornadas de paralelismo, Apr. 2007.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

vi LIST OF PUBLICATIONS OF THIS THESIS

[8] P. Carpenter, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguadé, “A
streaming machine description and programming model,” in Proceedings of the
7th international conference on Embedded computer systems: architectures, modeling,
and simulation, Berlin, Heidelberg, 2007, p. 107–116.

[9] P. Carpenter, D. Rodenas, A. Ramirez, X. Martorell, and E. Ayguade, “Code
generation for streaming applications based on an abstract machine
description.” IST ACOTES Project Deliverable D2.2, May-2007.

[10] P. Carpenter, A. Ramirez, X. Martorell, D. Rodenas, and R. Ferrer, “Report on
Streaming Programming Model and Abstract Streaming Machine Desription
1st version.” IST ACOTES Project Deliverable D2.1, Sep-2007.

[11] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade,
“CellSim: A Cell Processor Simulation Infrastructure,” 4th HiPEAC Advanced
Computer Architecture and Compilation for Embedded Systems. ISBN: 978-90-382-
1288-3, 2008.

[12] D. Rodenas, R. Ferrer, X. Martorell, and E. Ayguade, “ACOTES Stream
Programming Model,” 4th HiPEAC Advanced Computer Architecture and
Compilation for Embedded Systems. ISBN: 978-90-382-1288-3, pp. 19-22, Jul. 2008.

[13] P. Carpenter, A. Ramirez, X. Martorell, D. Rodenas, and R. Ferrer, “Report on
Streaming Programming Model and Abstract Streaming Machine Desription
Final version.” IST ACOTES Project Deliverable D2.2, Sep-2008.

[14] D. Rodenas, F. Serratosa, and A. Solé-Ribalta, “Graph Matching on a Low-cost
& Parallel Architecture,” Iberian Conference on Pattern Recognition and Image
Analysis, IbPRIA 2011, LNCS 6669, p. 508–515, 2011.

[15] D. Rodenas, F. Serratosa, and A. Solé-Ribalta, “Parallel Graduated Assignment
Algorithm for Multiple Graph Matching based on a Common Labelling,”
Graph based Representations, GbR2011, Münster, Germany, LNCS 6658, pp. 164-
174.

[16] D. Rodenas, F. Serratosa, and A. Solé-Ribalta, “Massive Parallel Graduated
Assignment Graph Matching Experiences on Low Power Architectures,”
Submited to IJPRAI.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Glossary

annotation based programming model: programming model which extends an
existing programming models with annotations, as directives or comments.
Annotations improves the existing information and the capacity of taking
advantage of underlying architecture without changing application structure
significantly.

cache: small memory with a small latency that contains a partial copy of main
memory data.

cluster: group of one or more processing units sharing the same memory on a
distributed memory system.

core: part of a microprocessor which is composed by one or more execution threads,
functional units and data cache.

distributed memory: system with multiple process units which each process unit
has its own memory and restricted access to memory of other process units. It is
required explicit communication between process units in order to receive or to
send required information.

execution thread: set of ordered instructions with its own register file.

functional unit: process hardware which executions mathematical computations
usually real computations.

hardware: physical part of a computer, normally part that electronically computes a
function.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

viii GLOSSARY

heterogeneous system: system with multiple process units which has more than one
instruction set and characteristics.

homogeneous system: system with multiple process units which all its units share
the same instruction set and characteristics.

many-core processor: a multi-core with many cores.

multi-core: micro-processor containing two or more cores.

multi-threading (processor): processor that contains multiple execution threads at
any of its cores.

multiprocessor: system composed with multiple processors interconnected, and, if
not is explicit, with shared memory and homogeneous.

process unit: core.

programming model: set of tools of compilation and programming.

register file: set of small and very fast memories directly accessible by assembler
instructions used as temporal values, it includes the program counter which
contains the address of next instruction.

shared memory: system which all its process units have access with no restrictions to
all available memory, but small time penalizations.

software: data that encodes instructions to execute an algorithm.

system with lineal memory address: system which all its process units can access to
memory of all other units without restrictions but paying a great time
penalization. It is possible found specific instructions designed to send and
receive information as memory distributed.

thread: execution thread.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Figure Index

Figure 3.1: NPB-MZ [41] BT-MZ visual mesh of zones..58
Figure 3.2: Tolower stream graph...61
Figure 3.3: Wordhash stream graph..61
Figure 3.4: FMradio stream graph..62
Figure 3.5: Overview of the BlueGene/Cyclops processor architecture........................65
Figure 3.6: Overview of the BlueGene/Cyclops memory hierarchy...............................65
Figure 3.7: Cell B.E. Sony Playstation3 processor implementation block diagram.....68
Figure 3.8: Cell B.E. PPE (main processor) and SPE (auxiliary vector processors)
blocks diagrams...70
Figure 3.9: Current desktop computer overview..72
Figure 3.10: Overview of a desktop computer multi-core CPU.....................................72
Figure 3.11: NVIDIA GPGPU architecture overview...73
Figure 3.12: OpenMP fork/join thread execution model...75
Figure 3.13: Unisim connection model based on ports and three signals.....................83
Figure 3.14: CUDA logical execution space...87
Figure 6.1: Cache behaviour for the MG Class W program in the IBM
BlueGene/Cyclops architecture. ...136
Figure 6.2: Scalability of the NPB programs Class W in the IBM BlueGene/Cyclops
architecture...137
Figure 6.3: Scalability of the NPB-MZ programs class W in the IBM
BlueGene/Cyclops...138
Figure 6.4: SP-MZ groups effect on the cache of the IBM BlueGene/Cyclops............139
Figure 6.5: BT-MZ sharing threads on the same core effect on the cache of the IBM

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

x FIGURE INDEX

BlueGene/Cyclops...140
Figure 6.6: BT-MZ Class W memory map of page misses for each node on a SDSM.
..141
Figure 6.7: BT-MZ Class A zone 16 execution timing...142
Figure 6.8: BT-MZ Class A performance comparison for MPI and SDSM..................143
Figure 6.9: Cell B.E. versus Cell Sim SPE interconnection bus behaviour study........145
Figure 6.10: Stream programming model prototype scalability of FMradio and
Nokia's Wifi 802.11a using only task and pipeline parallelism....................................147
Figure 6.11: Stream programming model prototype scalability of the FFD filter using
only data parallelism...147
Figure 6.12: Stream programming model prototype scalability of the FMradio
without data parallelism (1) and FMradio with data parallelism (2) both using task
and pipeline parallelism...148
Figure 6.13: Paraver traces of the tolower benchmark as stream program.................149
Figure 6.14: Streaming annotated programming model characteristics by example.
..151
Figure 6.15: Run time of the 4 scalability tests respect to the number of vertices and
speed-up of the parallel solutions (SC2, SC3, SC4) respect to the serial solution (SC1).
Both plots vertical axis are in logarithmic scale..154
Figure 6.16: Run time and speedup of the small graph multiple matching algorithm
given an architecture, a dataset and the number of graphs..157

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Index Of Tables

Table 3.1: NPB 3.0 [40] characteristics...57
Table 3.2: NPB-MZ [41] program SP-MZ Class W zone characteristics........................58
Table 3.3: NPB-MZ [41] BT-MZ Class W zone characteristics...58
Table 3.4: NPB-MZ [41] BT-MZ Class A zone characteristics..59
Table 3.5: BlueGene/Cyclops prototype configuration used on this thesis...................66
Table 3.6: Intel + NVIDIA GPGPU desktop computer architectures used on this

thesis..74
Table 6.1. List of algorithms and architectures evaluated...153
Table 6.2. List of algorithms and architectures evaluated...155

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Index Of Algorithms

Algorithm 3.1...53
Algorithm 3.2...54
Algorithm 3.3...54
Algorithm 3.4...55
Algorithm 3.5...60
Algorithm 3.6...60
Algorithm 3.7...61

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Abstract

Pattern matching algorithms are a classification task of pattern recognition that
attempts to assign each input value to one of a given set of classes. Some of these
algorithms use graphs because they have more capacity to capture the knowledge of
the model but their comparison or matching is also more computationally expensive.
This restriction makes them computationally not suitable for real-time applications.

In the current market scenario desktop computer architectures have evolved
towards supercomputing architectures. These architectures generally provide a vast
computing capabilities, but they require parallelise existing applications in order to
take advantage of existing hardware. Consequently, applications and algorithms
must be modified and adapted in order to take advantage of all available resources.

Algorithms and programs must be redesigned to be able to work on parallel
environments. In order to redesign algorithms, programmers and algorithm
designers must be aware of architecture limitations and must know parallelism
techniques. The parallelisation of any program is usually a very complex tasks, but
in many cases these require an expert programmer who knows specialised
techniques for parallelism. We focus on OpenMP. OpenMP is a programming model
which allows to parallelise an application by adding just few directives or
comments. This programming model is very easy to use, and almost a non-expert on
parallelisation can use it in order to achieve a good parallelisation and resource
usage. It was initially designed for supercomputers with shared-memory with
multiple processors instead of multiple cores.

We group research on this thesis on two steps: 1) for developing tools to allow
non-expert programmers to take advantage of parallel architectures and 2) for
applying extracted knowledge and create a version of graph pattern-matching

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

xvi ABSTRACT

algorithms able to run quasi real-time on current desktop computers, focusing on
those having low power consumption.

We use supercomputers as a starting point. They have been computing parallel
programs for many years and almost all their users are no computer scientists. We
have selected OpenMP from all available tools because it is one of the tools with
better usability. Supercomputers are not desktop computers. Supercomputer
programs and benchmarks does not include our target algorithms.

Firsts steps of this thesis compare multi-core processors with supercomputers.
General purpose multi-core, now available on almost any desktop computer, are
very close to shared-memory multiprocessors supercomputers. We use OpenMP as a
target programming model, and we use existing and well known parallel
supercomputing benchmarks in order to validate our affirmation. We will explore
some critical differences as cache behaviour and we will solve how to overcome
them and have good results on multi-core. We also will focus on one kind of parallel
applications which has multiple levels of parallelism, having an external level of
parallelism working with coarse-grain parallelism. Firsts distributed-memory and
heterogeneous multi-core processor have been introduced, and we try to validate
OpenMP on these architectures. First we prove that OpenMP is able to have a good
performance on distributed-memory architectures. In this case we found that it have
a special good performance on programs with multiples levels of parallelism. We
also realise that OpenMP has an important lack of expressiveness for distributed-
memory and heterogeneity. We propose a programming model derived from
OpenMP able to extract streaming parallelism from serial applications. This model
introduces two clauses able to convert a serial program into a streaming program.
Proposed directives are able to create a graph representation of a streaming
program, nodes are executing kernels and edges communication nodes. In that point
we realise that multi-core can become very complex, and we collaborate in the
creation of a modular simulator of heterogeneous multi-core. We contribute with an
abstraction which allows to connect each module in any configuration. We expect
from this simulator to help to create architectures closer to programmer needs and
programming models restrictions.

In the lasts steps of the thesis we use extracted knowledge to effectively create
parallel versions of the pattern matching algorithms. We focus on graph matching
algorithms and we implement them on desktop computers. Target computer used

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

xvii

are desktop computers, but we do not limit our implementations to the general-
purpose CPU: our target processors are either main processor and graphic processor.
Main processor is a shared-memory homogeneous multi-core, very close to our firsts
steps, on the other hand, graphic processor unit is a massive parallel processor
which has distributed-memory and heterogeneous environment. We adapt previous
OpenMP like tools to these final architecture and we use them to parallelise serial
algorithms. We also introduce two common techniques in parallel programming
which allows to redesign existing algorithms but without changing algorithm
results. We show a methodology which allows to apply previous techniques, it
transforms program equations in order to obtain an optimal parallelisable
performance. We also show how to take advantage of existing private memory
inside graphic processors but without rewriting the application. We evaluate
presented algorithms and transformations to show how they effectively use
underlying existing resources on desktop computers.

Nowadays desktop computers are indeed desktop supercomputers, not only by
its performance, but also because its complexity and programmability. We show how
a programming model can help to create parallel applications and how this
applications can take advantage of existing hardware. One thing we have for sure,
serial programs will not use efficiently existing hardware on desktop computers.
This thesis has the objective to help to overcome this limitation.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Chapter 1. Introduction

Classification is a task of pattern recognition that attempts to assign each input value
to one of a given set of classes. Pattern recognition algorithms generally aim to
provide a reasonable answer for all possible inputs and to do inexact matching of
inputs. Pattern recognition is studied in many fields such as psychology, cognitive
science, computer science and so on. Depending on the application, inputs of the
pattern recognition model or objects to be classified are described by different
representations. The most usual representation is a set of real values but other
common ones are strings, trees or graphs. These structures have more capacity to
capture the knowledge of the model but their comparison or matching is also more
computationally expensive. The distance between a pair of strings or trees is
computed in polynomial time; nevertheless, the computation of the distance between
a pair of graphs is exponential respect the number of vertices. For this reason, some
algorithms that compute the distance between graphs have been presented obtains a
sub-optimal distance. Although these last algorithms have a polynomial
computational cost, the real run time is not acceptable for some applications such as
fingerprint classification, on-line face identification or robot navigation, between
others.

Nowadays desktop computer architectures have evolved towards
supercomputing architectures. These architectures generally provide multiple
processors and complex memory hierarchy [17]. A simple desktop computer may
contain tens of small processors called cores [18], some of them present at main
processor [19], but most of them are present as auxiliary coprocessors like graphical
processors [20]. Main processor is usually a general-purpose processor [21]: a
processor that contains at least one core able to execute almost any algorithm with an

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

20 Introduction

acceptable trade off in efficiency. As a counterpart, some specialized algorithms, like
video decoding or 3D computations can not be executed on reasonable time and
real-time is not possible on such processors. Specialized cores [22], like graphical
processor cores, are provided in order to speed-up these algorithms. As the number
of cores grows, the complexity of the memory hierarchy and its interconnection
network also grows. Consequently, applications and algorithms must be modified
and adapted in order to take advantage of all available resources.

Most graph-matching algorithms are designed to be executed on a single core and
general-purpose processor [23-25]. Consequently, they are not designed to take
advantage of all available resources on current desktop computers. On the other
hand, as the number of cores on desktop computers grows, the execution speed of a
generic core remains unchanged [26], that means that classical graph-matching
algorithms have no faster execution on improved architectures. Graph-matching
algorithms must be redesigned to take advantage of all present resources in order to
achieve real time applications.

There are three major challenges on new paradigm programming: work
distribution, data distribution and synchronization [27]. The implementation of
classical algorithms assumes that there is only one processor, which means that all
instructions are executed in sequential order. Adaptation of these algorithms to the
parallel paradigm starts in the identification of independent algorithm steps, those
that can be executed concurrently. Each step access to a certain group of data, data
can be accessed locally or must be transferred from another location. All steps must
process data to achieve the final algorithm result, which means that synchronization
is required to ensure a correct computation. Algorithms parallelisation is a complex
task that usually requires a deep knowledge of the underlying architecture and, for
the same reason, their performance are limited to computers with analogous
architectures.

Compilers do not transform or adapt algorithms automatically. Automatic
parallelisation might be perfect to this task: they are able to transform automatically
applications to their underlying architecture. Unfortunately there is not much
practical application: a compiler does not know programmer intentions, compiler
can not go beyond information presented at compile time [28-30]. Some recompile-
just-in-time techniques are able to overcome this limitation by collecting statistical

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

1. Introduction 21

data from current execution. This technique allow to modify code from the original
program in order to obtain statistically re-engineered code. Therefore, once again,
the compiler does not know the programmer's intentions, just the programmer's
instructions. Because of that, the compiler is not able to know for sure which
transformations are safe and coherent with ideas beyond the original code. There is
only one solution: programming model must allow the addition of relevant
information to the compiler. The compiler must use these provided information to
optimize a program to the underlying architecture. Nevertheless, while defining this
new programming model, it has to be considered that there are a large number of
programmers that implement their algorithms in current languages, and so, any
addition of information must respect existing programming models and take
advantage of already written code.

The aim of this thesis is to present a new research on multi-core architectures
applied to graph-matching algorithms in order to easy their adaptation. The starting
point are supercomputers: they already have multiple processors and a large list of
programming models and compilers. Supercomputer's programming models and
compilers help non expert programmers to take advantage of supercomputers
resources. The first steps of this thesis are to compare graph-match algorithms
against typical supercomputer algorithms and check their similarities. The second
step is to compare multi-processors against multi-core processors. They can be quite
similar, but memory hierarchy and cache behaviours can affect algorithms
performance. As third step we will compare and adapt shared memory multi-
processor programming models to distributed memory. Our aim is to increase
distributed-memory usability. The fourth step is to develop a model to help to
understand current architectures and close incoming architectures. The fifth step is
to compare data acquisition from graph-matching algorithms to streaming
applications. The sixth step is to adapt existing multi-processor programming
models to streaming applications. The final step is to validate created programming
model by presenting a version of the graph-matching algorithms which takes
advantage of present resources on a desktop computers with a reasonable effort to a
programmer or algorithm designer.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

22 Introduction

Section 1.1. Current Desktop Processors

Since the first desktop computers to first years of XXI century all market processor
has followed the same tendency: each new generation has improved significantly the
execution time of programs in comparison to previous generations. These
improvements have been implied an exponential improvement related to time. As a
consequence, algorithm design and programming has used the same tools to
describe tasks for decades.

Limitations over instruction level parallelism (ILP) and energy consumption has
broken this tendency [26]. Nowadays desktop computers increases the number of
cores and execution units in order to maintain the exponential improvement, but,
now it is required to re-engineer existing programs and algorithms to use additional
execution units.

1.1.1. Architectures

We focus on three main topics: multi-core, homogeneous versus heterogeneous, and
memory hierarchy (distributed versus shared memory).

Market has demonstrated that multi-core are present on most of our homes and
offices, we have to deal with them. Multi-core processors are quite close to
multiprocessors, both have similar structure: multi-core are a kind of multiprocessor
embedded into a simple chip die. Multi-core distances are shorter than
multiprocessor, so communication and synchronization are faster (between cores).
As a counter part, multi-core have less room for cache memory for each core and
memory bandwidth, both are shared between all cores of the same die.

Homogeneous systems are simpler to deal with than heterogeneous systems.
Homogeneous systems have basically the same unit processors replicated, and any
of them can execute the same functions at almost the same speed. Heterogeneous are
quite more complex, they have many kinds of unit processors. Each unit processor
can have its specific characteristics. The main advantage of heterogeneous
architectures is that they have specialized computing units, so there are some
computations are many times faster. As a drawback, each unit processor from a
heterogeneous architecture can execute only a set of functions. The programmer
must decide how to create each set of functions and how may them interact. As the

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

1.1. Current Desktop Processors 23

number of cores grows, there are more chances to have specialized cores, like
happens on CellBE, Fusion, Larrabee, or even on desktop computers with CPU and
GPGPUs.

Memory hierarchy is usually defined by multiple levels of cache. As smaller is the
memory component faster it is. Main memory usually is slow in comparison to the
processor. In order to reduce latency there are caches between memory and
processor. Caches near to the processor are smaller, but at the same time they are
faster. Closer caches to the processors (Level 1, and Level 2) are usually embedded
on the same die with the processing units. That is the big problem of caches and
multi-core/multi-processor: multiple processing units are sharing the same main
memory, so they should have a consistent view of its content. Unfortunately, it
means that either all of them share the same caches or all caches must be aware of all
memory changes. There are two schemas to face this problem of memory
hierarchies: shared memory (add some kind of coherence protocol) and distributed
memory (avoid the problem and be inconsistent). Shared memory assumes that all
processors are sharing the same data, so changes must be coherently notified to all
caches. On the other hand, distributed memory slices memory into multiple isolated
regions. It avoids the problem, so there is no need to maintain coherency between all
caches. Shared memory is easier to use, programmer does not need to know where is
the data located, just use it. Distributed memory require a strict control about data
location and synchronization, programmer must decide where to store data, and
how synchronize parameters and results. In other words: someone has to solve the
problem. Shared-memory implies that the architecture solves the problem,
distributed-memory implies that the programmer must solve the problem of data
distribution.

Original desktop computers started as single core homogeneous (there is only one
processor, so there is only one kind of processor) shared memory (there is only one
coherent cache hierarchy), but they are now multiple core homogeneous shared
memory [19], and it seems that they are turning heterogeneous with distributed
memory [31]. We also can consider that they are becoming dual processor systems,
one generic CPU and one general-purpose graphics processing unit [20].

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

24 Introduction

Section 1.2. Algorithms And Parallelism

Most algorithms are designed to be executed on a single core and general-purpose
processor. Consequently, they are not designed to take advantage of all available
resources on current desktop computers. By not taking into account available
resources, it appears a gap between effective algorithm performance and potential
algorithm performance. This gap will increase at the same rate that cores count on
computers increases.

There are many approaches to solve the gap between existing algorithms and
existing architectures. The first and naive way is to rewrite completely existing
algorithms and applications to work in those new architectures. This approach is
very complex, requires a great effort, and also requires a large amount of qualified
people able to transform algorithms. As we have already stated: a perfect approach
would be automatic transformations, like automatic parallelisation, but there is a
lack of required information at compile level. Our selected approach is using
annotations.

Annotated programming model is a programming model based on an existing
model, but annotations are added to increases the available compile time
information. A good example of annotated programming model is OpenMP.
OpenMP is designed as a set of annotations over C, C++ and Fortran applications.
OpenMP targets multiprocessors and split the algorithm into multiple parallel
computations. In order to enable parallel computation on OpenMP, programmers
should add a few annotations on their programs. OpenMP will adapt the application
to the many multiprocessors and use the underlying tools and thread libraries
automatically.

1.2.1. Parallelization Tools

In order to parallelise an application we have to transform an application to use the
underlying architecture, but we also must study the application to know which
processes are critical to parallelise.

This parallelisation task requires many tools, each of them covers a partial set of
requirements and some of them overlaps on their features. This tools are, from lower
levels to higher levels: compiler, dynamic linker, auxiliary libraries (like libc), threads

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

1.2. Algorithms and Parallelism 25

library, synchronization libraries, communications libraries, runtimes, profilers,
profiling libraries, profiler visualizers, and simulators.

Compiler is the most basic tool, it translates an algorithm to binary code.
Compilers usually work with the higher level code: transforms code to low level
operations. This transformation looses most of high level information. This
information includes variable names, loops structures, … The compiler is the first
responsible to take advantage of underlying computer architecture. As a
consequence it requires the maximum information about the algorithm and target
architecture.

Execution environment is not fixed, even the same binary can run on machines
with different configurations (as an example, each machine can have a different
amount of physical memory). Compiler does not generate a binary for each
architecture (mainly because it is not practical). Instead of this, compilers use
auxiliary libraries (such libc or a run-time) to adapt the binary to a specific
environment. Dynamic linkers are key on this process, they link, and completes the
binary, with the most suitable library for the executing architecture.

Thread libraries and synchronization libraries are usually highly coupled and
usually shipped as a single library (for instance pthreads library). There are two
main classifications: user threads and kernel threads. User threads are threads
controlled by user space, they are usually mapped onto a single kernel thread, and
I/O operations may block all of them. Kernel threads are threads controlled by the
operating system and they can be mapped over multiple physical threads or
processor units. Most threads libraries mix user threads and kernel threads to
achieve optimum performance.

Synchronization libraries are highly coupled to thread libraries, the main
motivation is to select the most suitable wait policy and perform it. Default wait
policy is usually suspending thread execution; this action requires the exact
knowledge of threads implementation in order to change active thread. On the other
hand, for high performance applications waiting kernel threads policy is based on
active waits. They use this kind of waits in order to resume work as fast as possible.
Two main synchronization primitives are mutexes and barriers. Mutex ensures
mutual exclusion on critical shared structure manipulations. Some mutexes are
replaced by the compiler with atomic instructions, if there are atomic instructions for

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

26 Introduction

the enclosed operation. Barriers are used to synchronize execution of multiple
threads. Threads are collaborating on the same problem, for each step or point of
synchronization a barrier primitive is used. Barrier ensures that all threads have
reached a specific point.

Communications libraries are required for distributed memory systems, but they
are uncommon on shared memory systems. There are four main primitives: send,
receive, broadcast and reduce. Send and receive are designed to send or receive a
simple piece of data, usually point to point. Broadcast sends the same data to many
execution threads. Reduce primitive summarises many data into a single result, it
receives a data set from many locations and performs the reduce operation (for
example a summation operation). Synchronization primitives are often synchronous,
that means that they require to use a synchronization library in order to wait on
receive operations, if data is not yet present, or send operations, if there is not
enough buffers to store the result (or if the operation is defined as completely
synchronous).

Runtimes are libraries designed to support the compiler or the behaviour of a
programming model. Runtime library provides a new set of primitives related to
each programming model, it allows to express high level concepts. These primitives
use other libraries to spawn threads, synchronize and communicate data. Compiler
does not need to know how to deal with this low level libraries, it needs to know
which primitives are implemented by the runtime. For example, there is an OpenMP
runtime primitives defining a parallel region. Runtime decides how many threads
are created to execute this parallel region. Compiler just creates a binary using this
primitive. But there is a more important point, the resulting binary does not contain
information limited to thread creation (as it should happen using low level libraries
as pthreads), it also has information about parallel regions structures, and this
information can be used to adapt the binary to each environment.

Annotated programming model and compilers are based on hints or comments
over serial working code. That means that a starting point for an annotated program
is a common serial well known and tested application. Annotations are just
comments, they can be added one by one ensuring a correct behaviour. At the same
time, they can be disabled (just removing or using common comments) to return to
the serial behaviour.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

1.2. Algorithms and Parallelism 27

Profiling tools are useful to achieve a good performance on parallel architectures.
Amdahl's law [32] states that an application 95% parallelisable can be speedup x20,
but no more (even if you use a thousand processing units). As a consequence, it is
important to know which parts can be easily parallelised and how many threads can
be used. Profiling tools are more than time watches: they report important
information like data movements, false sharing, or load balancing. This information
is usually collected while the application is running helped by profiling libraries. In
addition, some profiling libraries also includes user events, they help to add runtime
information or programmer relevant information.

Collected profiling information is usually studied by the user or programmer.
Some times this information is also used by some compilers and runtimes to
optimize future executions. Provided information allows to know the impact of the
architecture on the program. There are some tools that just list some statistics, but
there are some other tools that visualises the execution.

Simulators are one step further on profiling tools. They use profiling information
and architecture information in order to extrapolate the behaviour on different
architectures. Simulators also helps to predict algorithm performance on
experimental architectures, when real hardware does not exist yet.

Section 1.3. Graph Matching Algorithms

One of the objectives of graph matching algorithms is the computer vision. In this
premise real-time response is the requirement for the viability of an algorithm. There
are many algorithms close to be executed on real time; in order to make them viable,
these algorithms must be able to extract the maximum performance from current
computer architectures.

Computer vision process is usually split in two processes: image acquisition and
preprocessing and image recognition. Image acquisition transform a raw image
information (a sequence of pixel colours) into a more usable information (as for
example border maps, frequency maps or regions of adjacency maps). Image
recognition tries to understand acquired information, in order to perform this task, it
designates symbolic information to acquired information.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

28 Introduction

There are many processes and algorithms to do computer vision. From all of them
we have selected a graph matching algorithms. These algorithms first require to
transform acquired image into a graph representation. A typical transformation
process is to convert input image into a segmented image by regions. Once this is
converted, an adjacency regions graph is created. Result graph is matched against
other representative graphs in order to detect known patterns.

Section 1.4. Streaming And Scientific Applications

High performance computing is known by its effort to extract the maximum
performance from underlying computer architecture. Moreover, high performance
underlying architectures usually involve multiple processing units and complex
memories hierarchies. For this reason, their target applications are a good candidate
as a starting point for multi-core. These applications are usually scientific
applications, and their structure seems to be very close to graph matching
algorithms.

On the other hand, data acquisition systems are usually designed to work in real-
time on embedded devices. These devices can have multiple processors and
specialized units in order to achieve real-time and low consumption requirements.
Embedded systems usually works with streaming programs, these programs are
designed to process a continuous flow of data. Streaming programs are very close to
acquisition image and transformation algorithms of computer vision, and even many
of them are already converted to streaming programs [33].

Beyond instruction level parallelism (performed by processors themselves), there
are two main kinds of parallelism on applications: task parallelism and data
parallelism. Task parallelism assumes that there are multiple tasks (or functions),
these functions can be executed simultaneously and independently. Data parallelism
assumes that each task replicates the same computation over each element of a large
set of elements, computation for each element can be performed simultaneously and
independently.

There are two main operations on data parallelism: parallel map and parallel
reduction. Parallel map applies the same operation over each element from a large
set of elements. Parallel reduction applies an associative operation over all elements

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

1.4. Streaming and Scientific applications 29

of a large set. As a result, parallel map obtains a set of elements. Each result element
is computed in parallel, computation must be independent from other elements. All
elements can (not as a requirement) be computed in parallel. An example of parallel
map is to multiply per two all elements of a set. Parallel reduction computes as a
single result element. This result is the computation of an associative operation over
all elements of a set. In order to parallelise these operations, multiple associative
operations can be performed over distinct sets of elements simultaneously (they
must be independent). Resulting partial results are combined with the same
associative operations until obtain a final result. An example of parallel reduction is
summation of all elements of a set.

Streaming applications and algorithms are usually designed to exploit first task
parallelism and, if there are enough free resources, then data parallelism. Streaming
programs exploit task parallelism with techniques known as pipelining: data
processing is split in stages, each stage computes over the result of the previous
stage and produces the data required for the next stage; all stages are computed
simultaneously for different time sliced sets of data.

Scientific applications and algorithms are usually designed to exploit data
parallelism. These applications usually computes over a large sets of data, and
usually computes iteratively over the set until reach to a solution or expected state.
Each data element is computed in parallel, but the application must wait to finalise
the processing of all data elements before starting a new iteration. A good example is
a weather simulation: a grid represents values from the atmosphere (for example
pressure, humidity or temperature). For each grid cell it computes the next time
values using contiguous cell values. In order to simulate a large time weather
prediction, this process is repeated many times. All cells can be processed in parallel
for one algorithm iteration, but results of this process are required to start the next
step.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Chapter 2. Objectives

The objective is to find a set of tools and directives to help algorithm designers in
computer vision and pattern matching. These tools and directives will allow to
algorithm designers take advantage of current underlying computer architectures
and their possibilities. We want to demonstrate that existing tools for
supercomputers are helpful for multi-cores. We will focus on those tools that do not
require a deep knowledge about computer architecture. We expect that this kind of
tools are suitable for described task with an acceptable performance. We will
evaluate these tools on many environments or architectures. Recommendations will
be performed in order to improve their efficiency.

We define two main criteria to evaluate tools and directives: usability and
performance. We expect from tools to be usable by people with no deep insights of
underlying architectures. Adapted algorithms and applications must run with an
acceptable performance. We are looking for a trade off between this two criteria:
performance and usability. For example, it is worthy to lose a 20% of maximum
performance if it can be achieved by a standard algorithm designer with a small
effort. We do not expect to require an architecture expert plus a great effort on the
algorithm or program parallelisation and distribution.

Usability criteria is related with required knowledge: the possibility to exploit a
many kinds of architectures with the same source, and of course, the possibility of
incremental code transformation and debugging. Usability criteria will benefit those
solutions which hide architecture details and focus on algorithm semantics. We
expect from an algorithm designer to know insights from its algorithm, but not to
know from architecture details. That means that tools should be focused on
algorithm semantics better than architecture details. Tools should allow to provide

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

32 Objectives

enough information to take advantage of current architecture. If the additional
information is good enough, it should be useful for many kinds of architectures. On
the other hand, we can not expect from a programmer to adapt a large application or
algorithm at once to a new architecture. For this reason tools may help to change
parts of the algorithm or application incrementally; at each step, the algorithm
designer or programmer may be able to test if provided information is correct, and if
results (algorithm and performance) are expected. If at any step the application do
not works properly, we expect that the programmer will debug the application in
order to solve any problem.

Performance criteria is more related with the possibility of increasing application
performance on future processor architectures than to have a very good performance
in a current or specific architecture. For years we have assumed that a single
threaded will increase its performance over each new processor generation, now we
know that it is not longer true. Current market trends seems to indicate that the
number of cores and available threads will increase, in this scenario, a good
performance criteria is scalability. Scalability studies how an algorithm or program is
able to keep improving its performance in the same ratio that cores or hardware
threads increases. A good scalability will ensure that future processors, with an
increasing number of cores, will be able to speedup the application.

Section 2.1. Graph Matching And Scientific Applications

Scientific applications have been used on supercomputers and many architectures
for decades. In other words, scientific applications are a very well known problem.
On the other hand, research and practical uses of graph matching algorithms on
supercomputing environment are not common. In other words, graph matching
algorithms are still in research and there are many potential problems to solve. By
using scientific applications, instead of graph matching algorithms, on first steps of
this thesis, we can reduce potential unexpected problems.

In our research we want to face only one problem at a time. When we have started
this research there was little applicability of supercomputer tools in multi-cores.
Doing graph matching and using supercomputer tools in multi-cores faces two

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

2.1. Graph Matching and Scientific applications 33

problems at a time: 1) supercomputing tools on multi-core, and 2) graph matching
with supercomputer tools. There are two approaches: 1) port graph matching to
supercomputing using supercomputer tools, or 2) port a well tested scientific
application with supercomputing tools to multi-cores. Approach one has a
considerable drawback: supercomputers are really very expensive; moreover, results
on supercomputers are not extensive to multi-core. Approach two, per contra, makes
available a very large list of bibliography to solve the problem. We have selected
approach two.

First steps of this thesis will start doing research with supercomputing scientific
applications. As our objective is to port graph matching and computer vision
algorithms to multi-core, we first will compare scientific and vision algorithms in
order to find an equivalence.

Hypothesis 1: Graph matching algorithms have common characteristics with scientific
applications used at supercomputing. There are many kinds of applications from
scientific world used on supercomputing. Most of these applications shares patterns
and structures, in addition they are focused to intensive computations. For example,
scientific applications patterns and structures differ from classical administration
applications.

Objective 1: Prove that graph matching algorithms have common characteristics with
scientific applications. From all available scientific applications, we focus only on a set
of applications that 1) have potentially common characteristics with target graph
algorithms and 2) have been successfully adapted to many supercomputing
environments using tools that satisfies our criteria of usability and performance.

Section 2.2. Annotated Programming Model Over Multi-Core

A homogeneous multiprocessor with shared memory is the most usable
supercomputer architecture. Annotated programming models for these architectures
have one of the best trade off between usability and performance. We want to
achieve the same trade off in multi-core architectures.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

34 Objectives

Multi-processor are basically multiple processors of the same kind and
characteristics interconnected sharing the same data. In other words: all threads have
the same computations capabilities and can use the same data simultaneously.
Complex memory operations like data synchronization are hidden from application
programmer by hardware.

Annotated programming models uses annotations in order to extend available
information at compile time. As less information is required, and less specific, more
usable is the programming model. Most popular multi-processor annotated
programming models are born in multi-processor homogeneous shared memory
architectures. Shared memory implies no need for data partitioning or explicit
communications annotations (like any standard application). Homogeneous
property allows to execute the same code in any arbitrary hardware thread.

Shared memory homogeneous multi-processor annotated programming model, as
OpenMP, focus on annotations to express algorithm parallelism. These annotations
help the compiler to identify which parts can be executed in parallel, in other words,
which parts have no dependences. It allows the compiler and the runtime to decide
how many threads use and how to perform synchronizations. This decisions can be
different for each architecture, ensuring a good performance under many
architectures. At the same time, OpenMP can hide architecture to the programmer.
These properties enable usability and performance.

We focus only in tools for multi-processor homogeneous shared memory. Multi-
processor and multi-core differs on communication and synchronization velocity,
cache size, and memory bandwidth. On the other hand, multi-processor and multi-
core both run multiple hardware threads. A set of annotations based on expressing
algorithm parallelism help the compiler to take advantage of hardware threads, no
matter if threads are multiple processors or multiple cores. We expect to overcome
differences like communication velocity or cache by changes on the
compiler/runtime. We also expect to allow applications to exploit multi-core
improved communication and synchronization latencies.

Hypothesis 2: Supercomputer architectures based on multiprocessors have similar
characteristics to multi-core and multi-threading processors in order to execute scientific
applications. Both architectures execute multiple hardware threads and have multiple
functional units allowing true parallelism. But, on the other hand, there are some

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

2.2. Annotated Programming Model over Multi-Core 35

important differences related to communication and synchronization (multi-core are
faster) or related to memory hierarchies (multiprocessor have more high speed cache
capacity). Communication and synchronization speed should open new
opportunities on fine grain parallelism (parallelism which more frequent
synchronizations), but low capacity on cache might affect negatively to execution of
large data sets. We expect that low capacity on cache might be compensated by high
speed synchronizations.

Objective 2: Prove that multi-core processors present similar characteristics to
supercomputer architectures and they execute successfully scientific applications. Our
objective is not to create a new adaptation of scientific applications for multi-core
architecture, but use the same tools for multiprocessors on multi-core processors. We
have explained in main objectives that selected scientific applications use tools that
provides usability and performance. We focus on programming models based on
annotations, which provides desired usability. Target scientific applications must
execute successfully (with good performance) on multi-core with minimum changes.
Runtime and compilers might be adapted in order to help performance.

Section 2.3. Annotated Programming Model Over Distributed Memory

As the number of processors increases and memory hierarchies becomes more
complex architectures are more likely to be distributed memory ([17], [31], [34]).
Annotated programming models are not designed for distributed memory, and they
do not specify data movement. We want to study if it is possible to use annotated
programming models under distributed memory and which changes are required.

Shared-memory is logical view of the physical memory. When there are multiple
processors or cores, multiple caches, and many levels for replication, there is not a
unique real data view. Each cache can contain many versions of the same data. When
we talk about shared memory systems, or either we have a unique memory
hierarchy, or we have a very complex piece of hardware that creates a logical shared
memory.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

36 Objectives

Shared memory illusion is usually kept by cache coherence protocols. These
protocols coordinate all caches for all levels sharing the same memory in order to
synchronize values. Special hardware, implemented at caches and communication
buses, maintain the coherency between all caches. When memory hierarchies are
very complex, this hardware is also very complex and coherency becomes very
expensive.

Distributed memory architectures avoids shared memory complexity by not
implementing it. Distributed memory architectures are organized in clusters: groups
of computing resources (like processors, nodes) sharing the same memory.
Distributed memory architectures have a specialized communication network in
order to transfer data between all nodes of the same system. This network allows to
send and to receive data explicitly from hardware threads of the network. Each node
logical memory is like an independent computer which it is connected through a
network. Nodes uses the network to send and receive data to complete its
computation in collaboration with all other nodes.

Distributed memory architectures expect from the application programmer and
from the algorithm designer to deal with multiple memories. All complexity and
responsibilities taken from hardware architecture are given to the programmer. For
this reason programming for such architectures is harder than programming for
shared memory architectures. Programmer must distribute the data and the
program itself into multiple nodes, in addition it must design its communication and
synchronization.

Distribution work made by the programmer is usually better than any
distribution performed automatically. Programmer knows perfectly application
behaviour, programmer can foresee program necessities and rearrange application
behaviour in order to reduce required communication. On distributed memory
architectures, latencies are usually high and all synchronizations and
communications must be minimised. This minimisation impact is so important that
is the key to the design of distributed algorithms and distributed applications.
Communications and synchronizations becomes critical. The viability of an
application usually depends on the capacity to minimise such communications on a
large number of nodes. Usually best policy is trying to keep together data and
computations, in other words, best policy is having a high locality.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

2.3. Annotated Programming Model over Distributed Memory 37

Annotated programming models were designed to simplify multi-processor
programming. Shared-memory architectures are simple to use, and in order to avoid
complexity, most annotated programming models focus on shared-memory. These
programming models relay on shared-memory in order to avoid explicit data
communication annotations and data distribution.

Some annotated programming models have experimental run-times that allows to
simulated a shared memory on distributed memory architectures, they are called
software-distributed-shared-memory systems (SDSM). These run-times uses
software techniques to emulate shared memory. For example, not locally present
memory pages can be invalidated on the current node and page fault can be used as
a substitute for a cache miss. SDSM run-times allow that applications created for run
shared memory architectures to work on distributed memory systems.
Unfortunately, most of these applications are not able to have a good performance
and scalability on SDSMs. Some benchmarks even presents a slowdown:
performance is worst two nodes (more execution resources) than one single node.
This behaviour is not surprising: shared memory applications are not designed to
work on distributed shared memory and they are prone to compute with pieces of
data spread through all cluster, in other words, they have a low locality. Locality was
important but not critical on shared-memory architectures.

Distributed shared memory systems faces two problems: 1) some decisions about
the design of applications are not aware of distributed nature of architecture and 2)
there is a large latency to receive required data not present locally. Solving problem 1
requires the expertise from the algorithm designer or from the application
programmer, so some applications must be rewritten in order to increase its locality.
Nature of problem two is a little more tricky. All shared-memory hardware threads
stalls (halts) when data is not ready (for example, if data is not present on the cache,
thread must wait until data is received). When data is not locally present, it is likely
that it is being used by another node, the latter node must send the data to the
former in order to be used.

Prefetch technique allows to send or receive a data from another cluster before the
execution requires the data. Prefetch technique is able to avoid thread stalls for data
by advancing data communication. Data communication can be performed in
parallel with computations to hide its transference cost. A good prefetch

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

38 Objectives

performance is able to hide all communication costs and show a performance
comparable to shared architectures. A poor prefetch performance can send wrong
pages and invalidate them on source node. As a result, source node will have to ask
again for data that originally was present. Distributed shared memory run-times
uses prefetch, but annotations does not have information related about data
movements, so they have to perform predictions.

Hypothesis 3: Annotation based programming models are also valid on environments of
distributed memory. Algorithms and applications designed to have a high locality, in
addition to good prefetch predictors (or some annotations) can have a good usability
and performance on distributed memory architectures.

Objective 3: Prove that annotation based programming models can effectively (usability +
performance) run on distributed memory architectures. Addition information required by
the programming model should be minimal and do not require a great effort on
application restructuration. We deal with a trade off between application
transformation and performance. We expect a little effort from the algorithm
designer or programmer in order to increase locality and performance, but not the
same complexity required by explicitly programming for distributed memory.

Section 2.4. Heterogeneous Processor Simulator

Not every architecture is designed to have a good usability. There are many
architectures designed to be used by expert programmers on such architectures,
usually limited for target tasks. Small changes on those architectures can jeopardize
the maximum performance, but can enable better results from non expert
programmers. One of the biggest problems is distributed memory, but distributed
memory having a global linear address space can improve its usability. In other
words, a mechanism to use memory remotely, even at expenses of paying a large
latency.

As more complex is an architecture, more knowledge it is required from the
algorithm designed and application programmer of underlying architecture.
General-purpose old fashioned processors allows to achieve a good performance

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

2.4. Heterogeneous processor simulator 39

without any special knowledge. Some specific architectures have special features
that allows performances many times better than any general-purpose processor.
Unfortunately to achieve such performance it is required to use such special features.
Using these features requires a high knowledge of architecture. On most of the
specific architectures, if especial features are not used, their performance can be
lower than generic architectures.

As the number of cores grows, there are more chances of having specialized cores.
Having 16 cores identical for general-purpose is not a good idea: there are many
tasks running on general-purpose computers that can take advantage of special cores
(graphics processing, video streaming, …). But there are not too much tasks able to
take advantage of multiple identical general-purpose threads. It even is likely to
have dedicated cores for each kind of task, in order to achieve a high performance.

There are two main problems of heterogeneous architectures: each core is
specialized in computing a kind of code, and they usually have distributed memory.
It has two consequences: the programmer must deal with code distribution (which
function or task is executed by which core) and data distribution (where data will be
located and how will be transferred).

Having specialized cores implies that the programmer or algorithm designer must
decide how to use each core. In other words, the programmer must create
applications for multiple processor kinds on the same code. It is not usable, kinds of
cores can change between processor generations as available and require a very
complex task for a programmer. This problem is already present on general-purpose
processors, like Intel ones: specialized vectorial instructions have evolved,
specialized programs must be rewritten in order to take advantage of each
generation (MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3, AVX, CVT16, FMA3, FMA4,
XOP). Some compilers enable automatic vectorisation (they choose for a target
architecture which instructions to use), but their usually require to use annotations
like #pragma ivdep (equivalent to #pragma omp parallel for) in order to enable some
optimizations (in this case, the programmer reports that there are no dependences
between loop iterations, even if compiler can not ensure). Nowadays, maximum
support in this line is to allow the addition of some annotations in order to enable
optimizations (ignored if the underlying architecture does not support some

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

40 Objectives

features) or describe requirements in some parts of the code (used to decide target
processor).

Distributed memory is a difficult problem. In Objective 3 we try to show that there
is possible to use distributed memory as shared memory, so programming task can
be lighter, but we also add one requirement: some mechanism to allow specify
address to be read. Usually all pointers on distributed memory architectures focus
only on certain nodes: all pointers are relative to one node and there is no
information related to which machine has the information. That limitation requires
from the user to know where a pointer points, to which node memory. This
information usually is nowhere else than the programmers mind, and prone to
errors.

There is a concept, global linearly addressable memory, that allows to have global
pointers, even in distributed memory. It can be seen as an architecture with
distributed memory which pointers mix local address to current relative node plus a
cluster id. On this kind of architecture, addresses from other clusters can be read
(with a simple load or store instruction) but they may be slow and require special
instructions in order to keep local pointers fast.

Global linearly addressable memory allows to increase usability: a programmer
can iteratively optimise an application. First the programmer creates an application
assuming shared-memory (even if it is very slow), and then, iteratively step by step,
the programmer transforms global accesses by local accesses. With this model,
distribution on firsts steps may have poor performance, but the programmer can
start to distribute data (or add annotations for such finality) without writing all
process from scratch (or even paying small penalties for few distributed accesses).

There are already some architectures that are distributed and they are a good
challenge for theirs programmers. We state that to modify such architectures in order
to have global linearly addressable memory may be worth. This change is not free, it
requires to pay some kind of penalty. We propose to use a simulator in order to
modify the hardware and to evaluate the performance for non expert programmers.

A simulator for a heterogeneous multi-core is relative new. Most simulators
provides capability to simulate one processor, with one kind of ISA, with one
memory hierarchy. Distributed heterogeneous multi-core are a bigger issue. We
require a modular simulator able to create almost an arbitrary hierarchy with

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

2.4. Heterogeneous processor simulator 41

multiple local addressable memoires and cache hierarchies. In order to show the
usability of global linearly addressable memory architectures, first, we need to
simulate a distributed memory processor, validate it, and perform modifications.
Results must be evaluated in order to know how changes impacts on usability and
on performance.

Hypothesis 4: Small changes on architecture can help to improve usability. There is a
trade of between usability and architecture performance. Some architectures have
very good performance results with almost any code (like generic architectures), but
some other architectures need deep knowledge of the architecture in order to
achieve the maximum performance. It is possible to modify architecture in order to
increase usability, but on the other hand, the architecture can decrease its maximum
performance. We state that some changes on architecture can create a good balance
between two possibilities: to make available good performance ratios with low
knowledge of underlying architecture.

Objective 4: Present changes in the architecture that increases usability on complex
architectures, even if we loose partial hypothetical maximum performance. In order to
satisfy this objective we use a simulator and other architectures in order to prove
candidate changes. Changes must show how concepts like global linearly
addressable memory on distributed memory can help to increase usability with an
acceptable cost.

Section 2.5. Graph Matching Preprocessing And Streaming Applications

Streaming applications have perfect properties for heterogeneous distributed
memory architectures: they have multiple independent kernels (functions) with
explicit data flows. Graph matching preprocessing algorithms are in fact image
acquisition programs. This kind of programs usually present streaming
characteristics. Streaming applications have been used on multiple research and are
deployed on multiple commercial system. If we stablish that they have common
characteristics with graph matching preprocessing algorithms, we can use a well
known algorithms in order to perform firsts steps with streaming architectures.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

42 Objectives

As we stated above on section 2.1 we want to face a only problem at a time. There is
a large research on some streaming applications on many kinds of architectures.
There are also a large number of streaming programs deployed on commercial
systems. On the other hand, there is not an annotated programming model to create
streaming applications. So we stablish once again three-step research: select
streaming applications comparable to graph matching preprocessing, use streaming
applications to define a programming model for streaming applications, apply
resulting knowledge to graph matching preprocessing.

Streaming applications are based on independent kernels with explicit
communication data flows. A kernel is like a function, executed in its own thread,
within a loop whose iterations are computed each time that a data set is received.
Kernel memory is private, this memory is not accessed by other kernels. All
communications between kernels are performed using synchronous data channels,
or specialized asynchronous directives. Kernels computations are performed over
incoming data from synchronous data channels. Their results are sent to other
kernels through outgoing synchronous data channels.

Synchronous data channels communicates kernels, they represent a data flow.
There are three main operations over synchronous data channels: push, peek, and
pop. Data channels are flows of one single type of data. Push operation is applied to
outgoing synchronous data channels, it adds one data element to the channel. Push
operation is synchronous, it can stop its kernel execution if there are not enough
available space to receive data. Pop operation reads and discards one element from a
synchronous data channel. Pop reads elements in the same order that push adds
elements. If a synchronous data channel is empty, pop blocks its kernel execution.
Peek operation reads one arbitrary non discarded element from a synchronous data
channel. If required element is not yet pushed, peek blocks its kernel execution. Peek
operation is performed carefully because it decides the minimum number of
elements of synchronous data channels buffers. Peek operation can induce dead-
locks when there are loops or cycles in the data flow.

Some architectures do not allow kernels to block. For this reason, the number of
consumed elements and produced elements for each kernel must be known by run-
time.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

2.5. Graph Matching preprocessing and Streaming applications 43

Any streaming application is in fact a graph: each node is a kernel, and each edge
is a synchronous communication data channel. This structure is very malleable:
nodes and edges can be grouped in order to share affine resources. If a compiler
knows the streaming application structure and properties, it can decide how map
each node and edge to available architecture resources. If a graph matching
preprocessing algorithm can be expressed as a streaming graph, it can be
implemented as any streaming program and take advantage from streaming
optimisations.

Hypothesis 5: Image acquisition algorithms for a graph matching algorithms presents
similar characteristics to streaming applications. Streaming applications are focused on
data streams treatment and transformation, they usually acquire data from external
devices or large data files and process elements as an ordered sequence. Data results
are produced as input is read. Given a time-stamp, current results only depends on
current and previous inputs, but are independent from incoming future results.
These applications base its behaviours on multiple processors with private
memories. We state that graph matching preprocessing are in fact image acquisition
algorithms and the same parallelisation techniques can be applied. As a consequence
these applications can be executed successfully on heterogeneous multi-core
distributed memory systems.

Objective 5: Prove that image acquisition algorithms for computer vision have similar
characteristics to streaming applications. Image acquisition algorithms must present
characteristics from streaming applications relevant to time sliced data processing,
multiple kernels, and private memories for kernels.

Section 2.6. Annotation Based Programming Models And Streaming

Giving information about data transferences can help the compiler and the runtime
to improve the performance on distributed memory systems. Streaming applications
are conceptually equivalent to multiple kernels (independent processing tasks) and
data transfers channels. Annotations can be defined in order to extend the

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

44 Objectives

information provided by the programmer to the compiler. These extensions can
allow the compiler to manipulate a standard application as a streaming application.

Streaming applications are basically graphs: their nodes are execution kernels and
their edges are synchronous data channels. A kernel is a function, in other words, a
delimited region of code. A synchronous data channel is a data flow from one kernel
to another, in other words, a kernel result stored into an intermediate memory and
an input data read by another kernel.

Kernel functions are usually activated (executed) depending on inputs. Producer
kernels are able to generate many elements without an input, as for example a kernel
of device reading. Another kernels can consume all elements without generating
elements for another kernel (as for example a kernel of device generator). Kernels
must be executed at specific frequency, usually inputs define this frequency.

Kernels also generates output elements. These elements are generated each time
that the kernel are activated. The number of generated elements depends of each
kernel. There are two kinds of kernels: 1) kernels that generate a constant number of
element given a number of input elements, and 2) kernels that generate an arbitrary
number of elements (some times depending of input values). Former kernels allow a
large number of optimisations due to the kernel scheduling can be precomputed
even in compile time. The latter requires a dynamic scheduling.

Streaming exploits task parallelism naturally: each kernel by definition is a
function which task can be executed in parallel with another kernels. Required
synchronization is given by synchronous data channels. Some kernels also allow
data parallelism. Data parallelism can be exploited on streaming applications by
replicating kernels (multiple instances of the same kernel) and slicing data streams;
as an example kernel instance 1 computes even elements, and kernel instance 2
computes odd elements. Each kernel instance is a new kernel. Regardless every
instance of the same kernel performs the same computation, each instance has its
own private state (private memory). This state is not shared with other instances. For
this reason, data parallelism is usually restricted to those kernels which state does
not need to be shared among instances. It can be achieved by not having state, or by
replicating computations to update state.

Peek operations on synchronous data channels are very common on streaming
applications. Peek is performed in order to access data already present on input

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

2.6. Annotation based programming models and streaming 45

streams. Objectives of peek operation are to avoid kernel state variables and reuse
streaming buffers. A classical use of peek is to implement very efficiently sliding
windows. The implementation of an average of last four inputs, as an example, can
be computed with a state variable or by peeking the last four elements on the input
data channel. First implementation does not allow to use data parallelism, but peek
solution allows data parallelism. Peek must be used carefully: it requires to access to
data from multiple activations. First activation has to wait for data equivalent to
many activations. For this reason first activation occurs after all required elements
are received and ready to be peeked. Input elements and output elements ratios are
lost. For example, if a slider window of 4 elements is required to generate one
element (as the 4-average example), it is not a 1:1 ratio because three first inputs are
not producing an output (it should be a ratio about 1:0.9999, the exact ratio depends
on the number of processed elements).

Most streaming programs also use non synchronous data in order to control some
non critical aspects, as for example volume level. These data produces no kernel
activations. Asynchronous data are written externally as soon as possible by other
processes or kernels themselves checks for updates.

Annotations on streaming applications must allow the compiler to transform
serial programs into streaming ones. Annotations must be able to provide required
information in order to identify kernel functions, input and output synchronous data
channels, peeks over input channels, state variables, how to create multiple instances
of a single kernel, and which are asynchronous variables. With all this information,
the compiler and the runtime should be able to generate the equivalent streaming
graph from the serial program. A program converted to a streaming graph can be
adapted to any architecture capable to execute streaming programs.

Given the complexity of creating a streaming program, we give a great relevance
to usability. Streaming programming model was created by imitation of electronic
circuits: each kernel was a physical component, and each data channel was a wire
connecting two components. On the physical world, wires carries continuous signals
(non discrete signals). Input and output ratios are always perfect; there is no such as
a failure because there is a wire having no data. On software world, data channels
carries discrete elements. Ratio of element consumption has to be controlled
perfectly. A producer which produces more elements that can be consumed can

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

46 Objectives

produce a buffer overflow on the output. A producer which produces less elements
that are consumed can produce a dead-lock if there are cycles. Simple linear data-
flows has not such problems, but feedback data loops and convergence of many
flows is critical to control producer and consumer ratios.

In order to achieve usability we must ensure two conditions: incremental
construction and control about consumer/producer ratios. Annotated programming
models are incremental, but changes only affect to current region. A streaming
application connects many parts of the application graph. If a new kernel is defined,
its synchronous data channels must be created and connected to its producers and to
its consumers. Kernel can not work if required synchronous connections are missing
or are miss-connected. At the same time, this connections must ensure that
consumer/producer ratios are kept, and as a consequence, the frequency of kernel
invocation and its ratio is the expected. These two points leads us to one conclusion:
create connections between kernels are a very critical task on usability. And this task
requires to interconnect parts remotely.

Creating a new kernel, or removing an existing kernel (for debugging purposes,
as example) requires two actions: to define a kernel and to define correct channels
and connections. As a consequence required annotations must allow to specify
minimum information and let to the compiler reconstruct from semantics remaining
required information. Kernels can be defined as a block of code (defined as a
function to be executed as a kernel), but to create synchronous data channels must
require to connect at least two kernels and comply with all requirements for legal
connections. Annotations should be based on kernel definition and provide enough
information in order to let the compiler build the application graph.

Hypothesis 6: Annotation based programming models can be used to describe streaming
algorithms. Annotation based can be extended to describe required information to
split streaming algorithms into multiple kernels and data flows. Annotations about
kernels must be able to select independent algorithms parts (kernels) with private
data with input and output for data flows. Annotations should be able to link
dataflows from multiple kernels and create data flow paths. Annotations should
assume a minimal effort from the algorithm designer or programmer. Compiler
must be able to identify different parts correctly and generate a streaming
applications able to be executed on streaming architectures.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

2.6. Annotation based programming models and streaming 47

Objective 6: Demonstrate that there is a small set of annotations able to create streaming
applications from serial algorithms. Selected serial applications (applications that have
specialized streaming versions) can be converted effectively to streaming
applications (not necessary the same). Compiler must be able to do this
transformation using existing serial code plus annotations. Transformations must
keep global objectives (usability and performance). Annotations must be simple
enough and versatile in order to have a high degree of usability: annotations must be
able to be introduced iteratively (step by step) and minimise the possibility of
introducing bugs for non expert streaming programmers. Result programs
performance must be comparable to existing performance of streaming programs.

Section 2.7. Graph Matching On Current Architectures

We have been focused on providing usability and performance on incoming
architectures. We expect to have discovered enough properties in order to take
advantage of acquired knowledge and apply to graph matching algorithms and
image acquisition. We pretend present graph matching algorithms adaptations as a
prove of concept. At the same time, we also want to present some directives for
future developers and designers in order to maximize their capacity of taking
advantage of incoming architectures.

We have researched in two main lines of algorithms: scientific applications and
streaming applications. Each of this kind of applications have different requisites
and different properties: streaming applications are able take advantage of small
tasks with small memories, scientific applications require random access to large
amounts of data. It is likely that streaming applications are suitable for almost any
architecture, but scientific applications must be carefully designed in order to
maximize locality.

We expect to implement image acquisition algorithms as a streaming program. In
fact, nowadays, these kinds of algorithms are already used on digital television. We
expect no major problems. The objective is to identify a set of tasks and channels in
order to create the application streaming graph. Steps used should be create a serial
application (in other words, a common application for a general-purpose processor),

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

48 Objectives

and then, add required annotations in order to define the application streaming
graph.

Graph matching algorithms, on the other hand, requires access to larger data sets,
and there are not too many scientific applications using graphs in their
implementation. The first step should be to transform the original algorithm into an
algorithm able to exploit maximum locality. Once the algorithm is transformed, it
must be encoded as a serial application. This application must run on a general-
purpose processor without any change. At this point, required annotations must be
added in order to provide enough information in order to let the compiler parallelise
and distribute (if it is required by the architecture) the application.

All process must show that the discovered knowledge is applicable to the original
problem. Final results must provide and acceptable performance and be enough
usable. Performance must show that the application is able to scale in many
architectures and provided annotations are enough. The same annotations must
allow the compiler to adapt the application to each tested architecture. Usability
should be good enough to allow a programmer (non expert on architecture but
assisted by the presented tools) to reproduce experiments.

Hypothesis 7: All presented techniques can be applied to target algorithms: image
acquisition algorithms and graph matching algorithms. Until this point we have studied
similarities between this to target algorithms and state of art algorithms on
supercomputers. We have hypothesised that graph matching algorithms are similar
to scientific supercomputing applications and image acquisition algorithms are
similar to streaming algorithms. We also have hypothesised that scientific
applications can be executed efficiently on multi-core processors using usable tools.
We have also stated that streaming applications can be expressed efficiently with
annotation based tools. As a result we hypothesise that graph matching algorithms
execute efficiently as scientific applications do, and image acquisition algorithms
execute efficiently as streaming applications do.

Objective 7: Prove that computer vision techniques based on a graph matching algorithms
can benefit from incoming computer architectures. They should be able to execute on
multi-core with a high degree of scalability and in a programming model able to

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

2.7. Graph matching on current architectures 49

allow incoming programmers to express their knowledge about algorithms in a
manner that they can effectively use underlying architecture.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Chapter 3. State Of The Art

Section 3.1. Graph Matching

We focus on graph matching algorithms and its efficient implementation on current
multi-core architectures. Classification is a task of pattern recognition that attempts
to assign each input value to one of a given set of classes. Pattern recognition
algorithms generally aim to provide a reasonable answer for all possible inputs and
to do inexact matching of inputs. Pattern recognition is studied in many fields such
as psychology, cognitive science, computer science and so on. Depending on the
application, inputs of the pattern recognition model or objects to be classified are
described by different representations. The most usual representation is a set of real
values, but other common ones are strings, trees or graphs. These structures have
more capacity to capture the knowledge of the model but their comparison or
matching is also more computationally expensive. The distance between a pair of
strings or trees is computed in polynomial time; nevertheless, the computation of the
distance between a pair of graphs is exponential respect the number of vertices. For
this reason, some algorithms that compute the distance between graphs have been
presented that obtain a sub-optimal distance [24]. Although these last algorithms
have a polynomial computational cost, the run time is not acceptable for some
applications.

Graph structures have more capacity to capture the knowledge of the model but
their comparison or matching is also computationally more expensive. Sometimes in
graph based pattern recognition applications, given a set of graphs, which all
represent equivalent or related structures, it is required to find global consistent

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

52 State of the art

correspondences among all those graphs. These correspondences are called a
Common Labelling (CL). Algorithms like [25] and [35] does pair matching and
reconstructs a general correspondence, other algorithms like [36] uses Graduated
Assignment [24] to generate the CL by matching all graph nodes to a virtual node set
in a polynomial time.

Graduated Assignment Graph Matching. We denote a pair of attributed graphs by
G p and G q . Attributes on vertices are denoted by Ga

p and Gi
q . In our application,

attributes are a bi-dimensional value representing the position of the node.
Attributes on the edges (arcs) are denoted by Aab

p and Aij
q . In our application, arcs

do not have attributes, then Aab
p
∈{0,1} and Aij

q
∈{0,1} take binary values

representing the absence or presence of an edge.
We define a matrix F by F ai∈{0,1} such that F ai=1 if node a of G p matches

node i of G q and F ai=0 otherwise. F represents an isomorphism between a pair of
graphs. Moreover, we define the compatibility between two nodes as Cai

pq
∈[0,1] .

Due to the binary nature of the attributes on the edges, the compatibility between
two edges is represented by the product of them Aab

p · Aij
q .

Most of the algorithms that compute an error tolerant isomorphism between two
graphs aim to minimize an objective function. The objective function usually has the
following form:

EG (G p , G q , F pq)∈[−1,0]=
−1

R (R−1)∑a=1

R

∑
b=1

R

∑
i=1

R

∑
j=1

R

P pq [a , i]⋅P pq [b , j]⋅Caibj
pq given a≠b ,i≠ j (3.1)

The objective function relates the isomorphism given by the probability matrix
P pq with the cost given by the function Caibj

pq . The probability matrix P pq represents

F pq in a continuous form. The cost Caibj
pq ∈[0,1] measures the compatibility of

labelling nodes a and b of G p to nodes i and j of G q plus the compatibility of
labelling the corresponding edges between them. In our application, we define
Caibj

pq =Aab
p⋅A ij

q⋅Cai
pq⋅C bj

pq . Due to the high computational cost that it is needed to find the
minimum value of the energy in equation 3.1, it is usual to approximate it at point

(P f
pq)

0 , using Taylor series expansion:

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.1. Graph matching 53

E G (G p , G q , P pq)≈(E G (G p , G q , P pq))
'
=∑

a=1

R

∑
i=1

R

∑
b=1

R

∑
j=1

R

(P pq
[a , i])

0
⋅(P pq

[b , j])
0
⋅C aibj

p q
−

∑
a=1

R

∑
i=1

R

[∑b=1

R

∑
j=1

R

(P pq
[b , j])

0
⋅C aibj

p q] (P pq
[a , i]−(P pq

[a , b])
0)

(3.2)

Analysing equation 3.2 it is deduced that:

argmin{E '}≡argmax {∑a=1

R

∑
i=1

R

Q ai
pq−P pq[a , i]} (3.3)

where the P and Q are obtained as follows [24]:

∀
a=1

R
∀
i=1

R
P pq

[a , i]=exp(βQ ai
q
) and Qai

pq=[∑b=1

R

∑
j=1

R

(P pq [b , j])⋅C aibj
pq] (3.4)

The Graduated Assignment [24] algorithm is probably the most popular
algorithm to compute a suboptimal solution for the graph matching among others. It
minimises the objective function equation 3.1 in a suboptimal way by means of
approximating the energy as in equation 3.3. The problem is equivalent to the
quadratic assignment one where Q represents a cost matrix, and P represents the
stochastic matrix which contains the desired assignation probability. Algorithm 3.1
shows the main schema of the Graduated Assignment [24]. Update function obtains
the probability matrix as in equation 3.4 and Normalise function makes the
probability matrix double stochastic [37].

Algorithm 3.1: Graduated assignment.

 Input G p and G q

Initialise P pq and β
 repeat
 repeat
 P pq=Update (P pq , Ap , Aq , C pq)

 P pq
=Normalise (P pq)

 until P pq convergence
 β = β · βr

 until β > βf

Algorithm 3.2 shows an implementation of Normalise function based on the
Sinkhorn method [37] as follows,

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

54 State of the art

Algorithm 3.2: Sinkhorn stochastic matrix transformation algorithm.

repeat

 ∀
a=1

R
∀
i=1

R
P pq

[a ,i]= P pq
[a , i]

∑x=1

R
P pq

[a ,x]
(3.5)

 ∀
a=1

R
∀
i=1

R
P pq

[a ,i]= P pq
[a , i]

∑x=1

R
P pq

[x , i]
(3.6)

 until P pq convergence

Graduated Assignment Common Labelling. Graduated Assignment [36] is one of
the algorithms considered to have a good run-time performance between most
popular common labelling algorithms. This algorithm approximates a distance and a
labelling between multiple graphs using a polynomial time method respect the order
of the graphs. The result of the CL algorithm is a set of probability matrices {
Ph
1 , Ph

2 , ... , P h
N } that represents, for each matrix, the probability of matching a node of

one of p graph to a virtual node. Since any p matrix P h
p values are continuous, a

discretisation process of the probability matrix [38] is applied to obtain the final
labelling between graph nodes.

Given a set of graphs {G1, G2, ...,GN} (that have R vertices) and their respective
adjacency matrices {A1, A2, ...,AN}, the general outline of the graduated assignment
common labelling is shown in algorithm 3.3 and 3.4.

Algorithm 3.3: General diagram of the Graduated Assignment Common
Labelling.

β = β0

Initialise Ph

begin Do until β ≥ βf

 begin Do until Ph
 convergence

 Pf
pq= P h

p ·(P h
p q)T

 Q= Approx_Q(Pf, Ph, C)
 P h

p [a,w1]= exp(β· Qa , w1

p)
 P h

p = Stochastic(P h
p)

 end
 β= β·βr

end
Mpq = Discretise P h

p

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.1. Graph matching 55

Algorithm 3.4: Approx_Q function description.

for 2 ≤ p ≤ N
 Qp= 0
 for 1 ≤ q ≤ N ∧ p≠q
 for 1 ≤ a,i ≤ R
 v1= 0
 for 1 ≤ b,j ≤ R ∧ b≠a ∧ j≠i
 v1 = v1 + P h

p [b , j] · C aibjpq

 end
 for 1 ≤ w1 ≤ R
 Qa , w1

p = Qa , w1

p
 + v1· P h

p [i ,w1]

 end
 end
 end
end

Caibj
pq represents the compatibility of labelling edge (a,b) of graph Gp to edge (i,j) of

graph Gq and their respective ending nodes. In order to optimize Caibj
pq computation it

is defined as:

Caibj
pq

=
1

1+C ai
pq
+Cbj

pq
+dist (Aab

p , A ij
q
)

 (3.7)

Cai
pq is the precomputed distance between vertex a from graph p and vertex i from

graph q, dist function determines the distance defined by the existence of graph p ab
edges and graph q ij edges.

Function Stochastic obtains a double stochastic matrix [36] using the Sinkhorn
method [37] (see algorithm 3.2).

Section 3.2. Benchmarks

Benchmarks are the key point for the evaluation of a new architecture or technique.
They are able to obtain a objective quantitative value for a established evaluation.
Benchmarks results can be used to compare many solutions in order to provide an
objective criteria. We have selected a set of well known benchmarks in order to
evaluate the objectives of this thesis.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

56 State of the art

Benchmarks are designed to evaluate some specified characteristics and only on
some environments. Each specific benchmark has one target evaluation and
environment. Choosing the right benchmark is key the evaluate or results and
progress in the right direction. In this section we will present benchmarks used for
this thesis. For each benchmark we present its definition, its evaluation objective and
target architectures. We also show some benchmarks characteristics which might
impact on our evaluations.

NASA Advanced Computing Parallel Benchmarks. NASA Advanced Computing
Parallel Benchmarks (NPB [39]) are a set of small programs designed to evaluate the
performance of parallel supercomputers. This benchmark measures performance of
supercomputers by measuring the execution time of 5 characteristic programs. It is
also provided a serial version for each parallel program in order to compute the
speedup, relation between serial execution time and parallel execution time.
Benchmarks programs are derived from computational fluid dynamics (CFD) which
are computational intensive, original applications for these programs are weather
forecast, Monte Carlo applications, and many others. These programs are originally
implemented in Fortran or C, and have available many classes in order to scale to
many sizes. Nowadays there are many flavours and versions of NPB covering many
architectures and programming models.

Programs from NPB are: multigrid (MG) benchmark, conjugate gradient (CG)
benchmark, 3-D FFT PDE (FT) benchmark, integer sort (IS) benchmark, and
simulated CFD applications lower-upper diagonal LU benchmark, scalar
pentadiagonal (SP) benchmark, and block tridiagonal (BT) benchmark. For each
benchmark program there are 6 data size available: Class A, Class B, Class C and
Class D (from smaller to bigger) and two extra classes for very small data sizes Class
S and Class W.

Benchmark programs are designed as a kernel that operates over a data iteratively
until it reaches a result. The execution starts with data initialization, and one kernel
program kernel invocation. These steps are not timed and the first kernel invocation
is not timed in order to warm up system data caches. After these steps the program
benchmark starts the clock, invokes the kernel for hundreds of iterations (benchmark
program dependant) and stops the clock. The final step is to evaluate the correctness
of the result and display the execution time. This final evaluation is resumed as two

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.2. Benchmarks 57

messages “SUCCESSFUL” and “UNSUCCSESSFUL”. Only successful execution
times can be considered. An unsucessful appears when the evaluated environment
breaks the program (as an example a too aggressive optimisation), in this case then
execution time is not valid. The correctness of result also considers that computer
real numbers operations order are not exchangeable, but as most parallel
implementations change the order, a tolerance error factor in results is implemented.

NPB benchmarks versions used on this thesis are: NPB 3.0 for OpenMP [40] and NPB
multizone (NPB-MZ) [41]. NPB 3.0 was designed for OpenMP. It uses a serial version
from NPB 2.3 [42] for serial version programs and parallel version programs. In
addition parallel version programs add OpenMP directives to implement
parallelism. All benchmark programs, but IS, are in Fortran. Characteristics of each
benchmark program can be found on table 3.1.

Table 3.1: NPB 3.0 [40] characteristics.

Size (num. iterations)

Benchmark Class S Class W
LU 12 (50) 33 (300)
MG 32 (4) 64 (40)
SP 12 (100) 36 (400)
BT 12 (60) 24 (200)
CG 7000 (15) 14000 (15)

NPB-MZ [41] is focused on CFD programs: SP, BT, and LU. It provides a new set of
programs called SP-MZ, BT-MZ, and LU-MZ. These applications are inspired from
programs targeted to the MPI programming model, but implemented with OpenMP.
This version, instead of parallelising the whole kernel at once, it splits the
computational space into multiple zones (see figure 3.1). Each iteration first
computes each zone independently, and then, it exchanges values from boundaries
in order to synchronize results between zones. This benchmark is designed to exploit
multiple levels of parallelism, in this case we have two levels of parallelism: one
coarse-grain parallelism between zones, and other with fine-grain parallelism inside
each zone. First parallelism level is to compute each zone in parallel, the underlying
idea is to assign each zone to a set of close processors or threads in order to increase
performance of memory hierarchy. Second level is inside each zone, in this level the

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

58 State of the art

previous assigned set of threads compute, in parallel, the same zone. This level of
parallelism have the same behaviour than NPB 3.0 for OpenMP [40] but replicated
for each zone. SP-MZ benchmark zones characteristics can be found on table 3.2, it
presents a very regular mesh of zones. BT-MZ and LU-MZ presents almost the same
characteristics. We focus on BT-MZ. BT-MZ zones characteristics for Class W and
Class A can be found on tables 3.3 and 3.4 respectively. The main challenge that they
present is that zones are not balanced: each zone has a different size and as a
consequence require a different computing power. This situation creates an
unbalance between requirements from each zone that must be solved by the correct
assignation of resources for each zone. As an example, Class A zone 16 is almost 20
times larger than Class A zone 1, as a consequence it should require 20 more
resources.

1 2 3 4

5

9

13

6 7 8

10 11 12

14 15 16

Figure 3.1: NPB-MZ [41] BT-MZ visual mesh of zones.

Table 3.2: NPB-MZ [41] program SP-MZ Class W zone characteristics.

zone x-dim y-dim z-dim elements
1-16 16 16 8 2048
Total 32768

Table 3.3: NPB-MZ [41] BT-MZ Class W zone characteristics.

zone x-dim y-dim z-dim elements
1 6 6 8 288
2 11 6 8 528
3 18 6 8 864
4 29 6 8 1392
5 6 11 8 528
6 11 11 8 968
7 18 11 8 1584

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.2. Benchmarks 59

zone x-dim y-dim z-dim elements
8 29 11 8 2552
9 6 18 8 864
10 11 18 8 1583
11 18 18 8 2592
12 29 18 8 4176
13 6 29 8 1392
14 11 29 8 2552
15 18 29 8 4176
16 29 29 8 6728

Total 32768

Table 3.4: NPB-MZ [41] BT-MZ Class A zone characteristics

zone x-dim y-dim z-dim elements
1 13 13 16 2704
2 21 13 16 4368
3 36 13 16 7488
4 58 13 16 12064
5 13 21 16 4368
6 21 21 16 7056
7 36 21 16 12096
8 58 21 16 19488
9 13 36 16 7488
10 21 26 16 8736
11 36 26 16 14976
12 58 26 16 24128
13 13 58 16 12064
14 21 58 16 19488
15 36 58 16 33408
16 58 58 16 53824

Total 243744

Synthetics: memory copy and matrix multiplication. These two synthetics benchmarks
are used in order to stablish environment memory access limitations. Both measure the
time required to perform an operation given a data size and a number of repetitions,
they can expose some characteristics of the underling architecture. Memory copy
benchmark is an intensive benchmark which only copies a region of memory to
another. This benchmark exposes bandwidth limitations between memory and
processors. Matrix multiplication (see algorithm 3.5) is a common task inside many
algorithms and programs. Its main characteristic is the k iteration over matrix B: each

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

60 State of the art

iteration access to a different row. As a consequence, memory access pattern for B is
not linear so cache can not hide successfully memory latency (low data locality).
Matrix multiplication helps to determine how an architecture is able to work with
complex access patterns to memory as an opposition to memory copy benchmarks.
Some architectures present B matrix transposed, so all memory accesses are
consecutive as it is on A matrix. In this case B matrix transposition must be taken into
account in benchmark computation.

Algorithm 3.5: Matrix multiplication algorithm.

for 1 ≤ a , i ≤ N do
 C[a][i] = 0
 for 1 ≤ k ≤ N do
 C[a][i] = C[a][i] + A[a][k] * B[k][i]
 end for
end for

Synthetics: tolower, wordhash. These synthetic benchmarks compute over an input
stream of data and produce an output stream, they target is to evaluate the ability to
parallelise through a stream of data. Target architectures are usually embedded and
streaming oriented architectures. These benchmarks have in common an input
stream data. Each one reads an input stream and performs multiple transformations
step by step. As a result it obtains another stream of data. A parallelisation of this
benchmarks may take advantage of data and function parallelism. Function
parallelism will consist in the computation in parallel of all steps but with a different
input each time.

Algorithm 3.6: Tolower algorithm.

while read(&a) do
 if 'A' ≤ a ≤ 'Z' then
 a = a - 'A' + 'a'
 end if
 write(a)
end while

Tolower algorithm is shown at algorithm Error: Reference source not found and
the data stream is at figure 3.2. It just reads one element, evaluates if it is lowercase,
and transforms into lowercase if not. The output is the lowercase string. This

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.2. Benchmarks 61

benchmark is a minimum program of a stream processing: one consumer step, one
transformation step, one producer step.

1.read 2.tolower 3.write

Figure 3.2: Tolower stream graph.

Wordhash benchrmark algorithm can be found at 3.7, and stream processing
graph at 3.3. This example uses complex data structures: word (as a collection of
characters). It first computes the lowercase (as the previous synthetic benchmark),
next it collects a word, and then computes a complex hash functions. At last it writes
the output value. This benchmark tries to show the ability to collect multiple
elements into a single one, split output from one step to two parallel steps, and
finally collect two elements from two steps into the final result. This benchmark
produces less elements than consumed.

Algorithm 3.7: Wordhash algorithm.

while read(&a) do
 tolower(&a)
 word[n] = a; n = n + 1; if a = EOF then n = 0
 v = hashA(word)
 w = hashB(word)
 h = hash(v, w)
 write(h)
 end if
 write(a)
end while

1.read 2.tolower

5.hashB

6.hash3.word

4.hashA

7.write

Figure 3.3: Wordhash stream graph.

FMradio benchmark. This benchmark program decodes a raw signal from FMradio and
computes the wave sound corresponding for a determinate channel. As tolower and
wordhash program benchmarks it is used to evaluate the ability of streaming

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

62 State of the art

programs to take advantage of streaming architectures. FMradio benchmark is under
GPL license. It comes from GNU Radio [43] application examples. FMradio initial
structure is designed as a collection of filters (or application data processing steps)
plus a runtime which creates a glue synchronizing and invoking each step as data is
available. This benchmark is a pure streaming application with no serial equivalence
available. Later, this kernel was extracted from GNU Radio by Marco Cornero from
STMicroelectronics. In this extraction all dependences with GNUradio were
removed. Extracted code was modified in order to be able to run in serial without
the runtime, but it still require large structures representing data streams. Moreover,
output varies depending of the internal data stream representation lengths. Later in
this thesis it was modified in order to create a pure serial algorithm as wordhash or
tolower which processes element by element.

FMradio filter structures is shown at figure 3.4 , the source is about 500 lines and it
is available under GPL license. This benchmark is organized in ten transformation
steps. Each step has a different cost and a correct load balancing is required on
parallel environments. Steps from FM_QD_Demod to SubMultSq are executed 8
more times than other steps. The same computation (FFD) is reused on multiple
steps, but with different configurations. The filter FFD is the most time consuming
task. The parameter specified is the size of the sliding window. The larger is the
sliding window, heavier is the computation, there are more elements to process. The
FMradio benchmark presents unbalance between transformation steps, stream
splitting, stream join, multiple consume ratios, and filter reuse.

8x

Reader

Writer

FM_QD_Demod

FFD 1,407FFD 1,407 FFD 1,813 FFD 1,813

FFD 8,407

SubMultSq

FFD 8,407

Figure 3.4: FMradio stream graph.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.2. Benchmarks 63

IEEE 802.11a benchmark. This benchmark program decodes a raw radio signal of a Wifi
IEEE 802.11a transmissions and computes the received data packet. This benchmark is
provided by Nokia as part of its collaboration in the European project ACOTES IST-
034869. The code is not available to the scientific community and it is proprietary.
This program benchmark is provided as standard C application, and unlike
FMradio, as a simple serial application. It presents a structure more complex than
FMradio, and it uses more signal control variables. We use this benchmark to
evaluate the expressiveness of a programming model and its ability to scale.

StreamIt cookbook [44]. Is a collection of a programs written as a collection of filters used
to evaluate the expressiveness of a programming model. StreamIt cookbook is written by
the MIT university and contains near to a dozen different programs. Each program is
presented as a graph of streaming filters connected together to compute one result.
Applications used on this thesis are echo, fft filter, equalizer, and others. As FMradio
StreamIt cookbook programs are provided as a pure streaming applications, we have
converted these programs into serial programs.

Section 3.3. Architectures

Architectures are the underlying hardware which is responsible of the execution of a
program. Program behaviour and execution are tied to the architecture. The same
program on different architecture can have different behaviour and execution time.
Programs can be rewritten or changed to take advantage of underlying architectures.
By choosing right architectures and appropriate programming techniques programs
can speedup its execution time in many orders.

We present architectures used on this thesis and their characteristics. These
architectures are used to perform benchmark evaluations. They are also modified in
order to obtain a better performance as a part of current reseach. We focus on those
characteristics which has a direct impact on our evaluation. As the range of
characteristics is very large we focus on multi-core chips with multiple cores and
multiple threads and in its memory hierarchy.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

64 State of the art

IBM BlueGene/Cyclops [45-47] architecture. This is a simulated architecture of a
configurable processor with 32 cores, 4 threads per core, and main memory on chip plus a
configurable cache per core. This architecture was presented by IBM at 2002 as a part of
the BlueGene supercomputer project. Cyclops was a prototype for a supercomputer
on a chip as a processor for the whole system.

The objective of BlueGene project is to create a supercomputer powerful enough
to stand between the 5 first positions of the Top500 [48] best supercomputers of the
world. The supercomputer is designed as a large array of computers connected by a
specific hyper-toroidal network. Each computer, or node, from the supercomputer is
designed to have low power consumption, and prepared to be replaced by newer
processor generations. First working BlueGene supercomputer had more than 100
thousand nodes of BlueGene/L processor, a low power two core processor.

BlueGene/Cyclops was conceived as an architecture for the execution of
applications with high degrees of parallelism. It is achieved by integrating on the
same chip several thread units and sharing memories with a small latency. This
strategy is currently used by other architectures also used on this thesis as CUDA
[49].

BlueGene/Cyclops was defined before the standardisation of multi-core
nomenclature. All related work and publications of this thesis name
BlueGene/Cyclops as a massive multi-threading architecture (one of the first
prototype of a general purpose processor with more than 100 threads). Cores are
named as a quads or thread groups. Hardware threads are also named as thread
units.

Figure 3.5 shows the default configuration of the BlueGene/Cyclops processor. As
default configuration it has 32 cores, 4 threads per core, one data cache per core, one
floating point unit per core and one instruction cache for each pair of cores. It also
have an embedded DRAM memory a special hardware for communications and off-
chip memory.

Figure 3.6 shows the memory hierarchy of the Cyclops processor architecture. The
main difference between current multi-core architectures and Cyclops architecture is
that each core can access to data stored on all other caches. Current computers cores
can access only to its own memory, a protocol of memory coherence or converting
caches into core private memory is used to overcome this limitation. Cyclops allows

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.3. Architectures 65

to use data caches from other cores but with a latency penalty: accesses to local
caches are faster than accesses to remote caches.

memory banks

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

core

i-
ca

ch
e

core

memory banks

communications off-chip memory

d-
ca

ch
e

thread

thread

.

thread

FP
U

Figure 3.5: Overview of the BlueGene/Cyclops processor architecture.

memory
bank 0

cache 0

thread

cache switch

 core

memory switch

cache 1

thread

 core

cache 31

thread

 core

. . .

memory
bank 1

memory
bank 15. . .

Figure 3.6: Overview of the BlueGene/Cyclops memory hierarchy.

Cyclops have no global directory for all data stored on processor caches. It uses
the data access address to localize the cache responsible for the storing of its data. It
has two address modes, one for private memory, and other for shared memory.
Private memory is used when a special range of the effective memory addresses is
accessed. When a data is requested by any thread of one core it is always stored on
its local cache. Private memory allows duplicate data on data-caches under the
responsibility of the programmer. Shared memory mode is used otherwise.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

66 State of the art

Hardware ensures that each main memory address maps directly to a single data
cache. Selected data cache is determined by the memory address, hardware uses a
static scrambling bijective function to map memory addresses to data caches. This
mechanism allows to use all caches as a single very large cache. Hardware
determines the destination cache as follows: bits 0 to 5 of the effective address
determines the byte inside the line cache, bits 6 to 10 determines the line among all
data cache lines and bits 11 to 15 determines the data cache who owns the line.

As BlueGene/Cyclops was a prototype, we present on table 3.5 the configuration
that we have used. The configuration presented is the default configuration but we
have increased the available memory to 256MB in order to run benchmarks. Table 3.5
(a) presents the memory latencies for each kind of access and (b) shows the exact
count of elements, sizes, and configurations for simulator components.

Table 3.5: BlueGene/Cyclops prototype configuration used on this thesis.

(a) memory latency (b) components

Memory access type Latency Component # units Params./unit
Local cache hit 6 Cores 32 4 threads, 1FPU, 1 data cache
Local cache miss 24 Threads 128 single issue, in order, 500 MHz
Remote cache hit 17 FPU 32 1 add, 1 multiply, 1 div/sqrt
Remote cache miss 36 Data-cache 32 16 KB, 8 way assoc., 64-byte line

Instr.-cache 16 32 KB, 8 way assoc., 32-byte line
Mem. banks 32 8MB each, total 256 MB

BlueGene/Cyclops architecture provides a full environment support for
developers. This environment is based on Linux Red Hat 7. The most important tool
is the simulator of the architecture, evaluated and verified at [46]. The simulator is
provided with source code under a privative license, it is ready to be modified or
adapted in order to change configurations. This simulator is also ready to measure
almost any performance metric, as for example kinds and distributions of cache
accesses. It is also provided a cross-compiler tools based on GNU toolkit. These tools
provides a gcc 2.95.3 and a binutils 2.11.2 retargeted for the BlueGene/Cyclops. In
addition to these tools a raw debugger is provided able to debug a program running
inside the simulator at any of the threads by following assembler instructions. The
binutil addr2line or objdump -DS proves to be very useful on this condition. Finally,
it is also provided a library for OS emulation. This library is linked to the program to
run inside the simulator and provides a basic OS routines. As the BlueGene/Cyclops

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.3. Architectures 67

is conceived to work inside a large network of thousands of processors (as [48]), the
OS library reserves one thread for the execution of network communication routines.
As a consequence, there is a maximum of 127 threads available for the programmer
on an environment with a configuration of a total of 128 threads.

Kandake cluster architecture. Kandake is a cluster of common market computers
connected through a high performance Myrinet network. Kandake is a supercomputer
designed research on distributed systems. It has 8 computing nodes. Each node has
two processors at 266MHz and has available 128MB memory. Memory is not shared
between nodes, each node can only access to its own memory. Nodes can be
communicated explicitly through a high performance myrinet network. This
network provides a very small latency and a large bandwidth.

 One typical requirement of parallel programs is the necessity to communicate
partial results between execution units. Communications on embarrassing parallel
programs are usually negligible, unfortunately, most of parallel programs requires
an efficient communication network in order to obtain partial results. Programs
explicitly wait for data from their parallel execution units. While partial results
production is determined by the processor speed, wait synchronizations are
determined by the network speed. If the processor is very fast, proportionally to the
network, waiting for data can have a large impact. A good relationship is able to
speedup programs with a high degree of dependence in parallel programming.

This architecture is very specific: processors are small, but the network is fast. This
feature provides a reasonable relationship between processor performance and
network capabilities (clusters, in contrast, usually have a very poor processor-
network relationship). Multi-core architectures usually shares this good relationship:
processors are fast, but networks between cores are built inside the same chip, so
they are also very fast. Kandake architecture is suitable to simulate multi-core
distributed architectures, it just scales size and time scale.

Cell Broadband Engine [31]. Cell processor is an initiative of Sony, Toshiba and IBM in
order to create an heterogeneous multi-core processor suitable for gaming and video
processing. Cell Boradband Engine is not one processor but a specification of multi-
core heterogeneous processor. It describes kinds of processors, memory hierarchy,
internal processor networks and external connections. The original idea is to provide

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

68 State of the art

a framework able to design any kind of multi-core processor just selecting
convenient cores for each task. Cell processors can be composed in order to obtain a
specific processor for a specific program. This capacity of specialisation is the main
cause of a high degree of proliferation papers about specialized cores.

The first implementation of this processor was presented as the main processor of
the Sony PlayStation3. Its initial concept was to develop a processor with a main
generic core to act as a controller and 8 more vector processors known as synergistic
processor elements. This processor was able to achieve performance peaks ten times
better than other processors developed at the same year. As a counterpart it required
a tedious and careful programming and not all applications are suitable for this
processor. In fact, this is not a surprising due to the target program was gaming and
video.

The second noticeable implementation was presented as the main processor of the
Microsoft Xbox 360 [50]. Instead of having one general purpose processor and 8
vector processor, it has three general purpose processors and no vector processor.
This architecture assumes that main computations will performed on the main
processor, and graphics computations are performed in a separated graphics
processor unit. This architecture shows the versatility of the Cell Broadband Engine
specification capabilities.

The overview of the cell processor is presented at figure 3.7. All components are
connected through the EIB (element interconnection bus), the main network of the
processor. SPEs, PPE (L2 and PPU see figure 3.8) and memory and input/output
interface are connected to the EIB. Main processor core is the PPE, which is a generic
processor. SPEs are vector processor cores for specialized computations. Memory
and i/o interfaces are designed as a bridge for off-chip communications.

Figure 3.7: Cell B.E. Sony Playstation3 processor implementation block diagram.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.3. Architectures 69

EIB (element interconnection bus) is indeed the most important element in the
processor. It is focused on streaming processing. EIB interconnects all elements in a
four-ring segmented buses. Each ring has one direction and can be used
simultaneously for multiple communications, if they do not overlap on the same
cycle. Each element before using the bus issues a command, a bus arbiter decides
how to perform communications and how to extract the maximum bandwidth. The
maximum bandwidth of the whole EIB is 96B/cycle. Each Cell B.E. element has a
connection to the EIB. These connections have a maximum bandwidth of 16B/cycle,
including memory. There is a possible configuration which is to use memory and i/o
interfaces simultaneously to access memory, in this case, the maximum bandwidth
with memory is of 32B/cycle, 3 times slower than maximum EIB bandwidth. If we
consider that data has been consuming from L2 and memory, we have a maximum
of 48B/cycle, 2 times slower than maximum EIB bandwidth. As a consequence we
deduce that cell implementation architects has assumed that the full bandwidth of
the EIB is achieved in internal communications. This kind of communications are
suitable for stream processing where results from one processor are sent directly to
another processor, without using main memory. In other words, maximum
bandwidth can only be achieved by direct data transfers between processors.

PPE (power processor element) is a generic core processor. The PPE is a simplified
PowerPC processor in order to die (silicon chip) size restrictions. It is a 64-bit in
order processor, with two execution threads. The L2 is a 512 KiB 64 bytes per line
cache. The PPU L1 cache has 64 KiB, 32 KiB for data cache and 32 KiB for instruction
cache. The PXU (processor execution unit) has a FPU (floating point unit) shared
between both execution threads. The PXU provides of AltiVec [51] vectorial
instructions extensions and one vectorial processor unit. Without vectorial
instructions, at 3.2GHz, the PPE can achieve up to 6.4 GFLOPS of double precision.
With vectorial instructions, at the same 3.2GHz, the PPE can achieve up to
25.6GFLOPS of single precision. This is very important to take account, there is some
literature comparing PPE against SPE, but, although SPE are only vectorial, they
compare non-optimized scalar PPE results against optimized vectorial SPE results.
Moreover, the PPE is less sophisticated than other processors of the same period, so
its performance is not as good as other architectures, and this must be also
considered on benchmarks.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

70 State of the art

 SPE PPE

SXU

 SPU

LS

MFC

L2

 PPU

L1

PXU

Figure 3.8: Cell B.E. PPE (main processor) and SPE (auxiliary vector processors) blocks diagrams.

SPE (synergistic processor element), also called accelerator, is a specialized vector
processor. It is a simple processor of one single thread with in order execution. The
SXU has a 128 bank register, register size is 128 bits. SXU instruction set is different
from the PXU and only provides vector instructions. As the PXU AltiVec it can
achieve, at 3.2GHz, 25.6 GFLOPS of single precision floating point. SXU has no direct
access to main memory, it only can access to local storage (LS). Access to LS are
performed in a modulo addressing mode, so all addresses are valid. Only lower bits
of the LS access address are used, an MMU is not required and there are not any
invalid memory access. Local storage is a small memory and fast. It is usually
defined as a self managed cache. LS size is 256KiB, this space is shared between
instruction and code. Data can be copied from/to main memory to/from the LS
through the MFC, a DMA controller. Copies are asynchronous and the SXU can
query the MFC about the status of the transfers.

MFC (memory flow controller) is a very sophisticated DMA controller. It is fully
programmable and some times is considered as the third kind of core inside the Cell.
MFC is programmed by the SXU, but also by the PXU. MFC exposes a set of registers
to the virtual address space in order to be programmed by any other device. MFC
also exposes state registers to the SXU from its SPE. MFC is designed to do more
than one memory copy simultaneously. SXU or PXU can program one or more data
transfers based on effective addresses. Each of these transfers can copy a data from
main memory to the local storage, from the local storage to main memory, but also
from one local storage to another, or even to any valid effective address. The MFC is
able to overlap many data transfer commends, reschedule, in order to take
maximum advantage from EIB. It also provides of commands to tag transfers,
stablish barriers and fences, and query the status of a transfer. Experimentally has
been shown that MFC memory transfers bust be greater than 1 KiB in order to use
the maximum EIB bandwidth [46].

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.3. Architectures 71

Cell software-development-kit (SDK), operating system, and environment for
research consist on a Linux Fedora Core 4. In addition, IBM has also provided
MAMBO [52], a full-system cell-simulator. The operating system provides a
specialized library called libSPE in order to provide a framework to use the SPEs. OS
and applications are executed on the PPE, as a common PowerPC processor. When
an application requires to use any SPE, it uses the libSPE in order to launch kernels
into any SPE. The OS provides an abstraction layer in order allow manage multiple
applications using SPE, although the SPE change of context is expensive.

As SPE and PPU does not share the same instruction set architecture (ISA) it is
required to compile two different binaries for an application. It is provided a full
compilation environment and tool kit from GNU for a PowerPC; it is also provided a
cross-compiler version in order to create binaries of the SPE. The program is
composed by two binaries. Both binaries can be combined in a single file, or
provided as many files. If binaries are combined in a single file, the file is a PowerPC
binary (for the PPU) which stores SPE binaries as global data. LibSPE is responsible
to load SPE binaries, either from independent files, or from program global data.

BladeServer JS21 blade computing node. We have used single Marenostrum
supercomputer nodes in order to perform some tests and benchmarks. BladeServer JS21 is a
computer with two processors IBM PowerPC 970MP sharing memory. Each
processor is 64 bits and dual core. Each core has 1MB of L2 cache. The processor
speed is 2.3GHz, and the blade has 8GiB of memory. The operating system is SuSe
Linux 9 from Novell. Main memory is shared with memory coherence protocols
among all cores of the architecture.

Sur computer architecture. Sur is a dual processor computer based on Power5 [53]. Sur
computer haves two Power 5 processor. Power 5 is a RISC multi-core multi-
threading 64 bits processor. It is composed by two cores, each core has two execution
threads. L1 4-way set associative d-cache and 2-way set associative i-cache for each
core. In core shared L2 cache 1.9 MB, 10-way set associative. L3 directory is on-chip
in order to speedup accesses to L2. Main memory is shared with memory coherence
protocols among all cores of the architecture.

CUDA enabled NVIDIA GPGPU + Intel CPU desktop computer architecture. This
architecture is present on most desktop computers. It consist of a standard Intel compatible

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

72 State of the art

CPU and a graphical processor. The graphical processor is able to execute generic programs.
Nowadays most desktop computers are composed by a generic processor (CPU) and
by a graphics processing unit (GPU, see figure 3.9). We are interested on this
architecture because is close to supercomputers, in fact, current GPU have thousands
of hardware threads running simultaneously. Both, CPU and GPU are connected to
the main memory. Although some GPU have its own memory, both CPU and GPU
have access to main memory. Access to memory is restricted by latency, but also by
the bandwidth. Data bus bandwidth defines the maximum data that can be
transferred from/to main memory to/from any processor.

desktop
computer main memory

CPU GPU / GPGPU
data bus

Figure 3.9: Current desktop computer overview.

Although for many years desktop computer CPUs were simple processors,
current CPUs are composed by multiple cores and a complex cache hierarchy (see
figure 3.10). Each core can have one or more physical threads and its own memory
cache. A memory-coherency protocol is implemented in order to provide the same
memory space for all threads.

multi-core CPU

L1
cache

physical threads

core

L2
cache

L1
cache

physical threads

core

Figure 3.10: Overview of a desktop computer multi-core CPU.

Current desktop computers GPUs are in fact a General Purpose GPUs (GPGPU).
GPGPU, in contrast to simple GPU, are capable to execute an arbitrary code and they
are not limited to graphical processes. Current GPGPU are specialised to intensive
computations, mainly addressed to graphic tasks. They are able to execute simple
functions usually called kernels. GPGPUs are massively multi-threaded
architectures, they have thousands of physical threads.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.3. Architectures 73

NVIDIA GPGPUs are composed by several multiprocessors (see figure 3.11), each
one has multiple cores and a shared memory. Cores are processing units that
compute thread instructions. Shared memory can have multiple data accesses
simultaneously. Shared memory size is small, but it has a very low latency.

NVIDIA GPGPUs characteristics are organized by CUDA Compute Capabilities.
We have focused on a low power GPGPU with CUDA Compute Capability 1.1. This
architecture assumes that there are 8196 threads per multiprocessor, 96 threads per
core, and shared memory size is 16384 bytes.

shared memory

core core core core

core core core core

active threads

shared memory

core core core core

core core core core

active threads

GPGPU

multiprocessor multiprocessor

Figure 3.11: NVIDIA GPGPU architecture overview.

NVIDIA GPGPUs are massively multi-threaded architectures. The idea
underlying of this architecture is to hide memory latency by executing many
threads. In addition, memory is organized as a memory banks and usually
optimized to fetch a row of data with consecutive addresses. As each thread executes
a scalar operation, NVIDIA introduced the concept of coalescence. Threads are
ordered, as memory is ordered. Coalescence ensures that consecutive threads
accessing consecutive memory addresses will take advantage of memory
organization.

Almost any CPU have vector-instructions, NVIDIA GPGPU is close to a vector
processor but does not have visible vector-instructions. Vector programming is very
complex and forces to organize execution and memory in basis of multiples of vector
size. NVIDIA GPGPU can be said that operates in vectors, but, instead having
instructions to operate with many data simultaneously, it defines multiple threads.
For each vector element there is one thread. All threads of the same vector must
execute the same program, but they are not forced to perform all operations. They
are just suggested to do so. Threads computing over the same vector are called
warps. These warps (32 threads, or even half warps, 16 threads) are supposed to be

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

74 State of the art

executed together. If one thread of a warp diverges from the execution, the
performance is affected, but the behaviour is correct.

Table 3.6 discuss our target architectures details. ViewSonic is the architecture of a
nettop, a computer designed to be part of a home cinema. It is a very small computer
and has a very low power consumption. MacBook Air is corresponding to the model
released by Apple on October 20 of 2010. It is a light laptop computer with low
power consumption. GA-965P-DS4 is a desktop computer of 2008 targeted for
gaming. We have not executed benchmark on its CPU processor due to we had
limited access. NOX is a desktop computer targeted for intensive computations. It
has a processor with many threads, and CUDA Compute Capability 2.1 on the
GPGPU.

Table 3.6: Intel + NVIDIA GPGPU desktop computer architectures used on this thesis.

Computer Proc / GPGPU GHz Power Cores Threads Bandwidth

ViewSonic Intel Atom 330 1.6 8W 2 4 5 GB/s
ViewSonic NVIDIA 9400 1.1 10W 16 1536 5 GB/s
MacBook Air Intel Core 2 Duo 0.97 35W 2 2 10 GB/s
MacBook Air NVIDIA 320M 2.16 14W 48 4608 10 GB/s
GA-965P-DS4 NVIDIA 8800GT 1.65 > 50W 96 10752 53 GB/s
NOX Intel i7 950 3.0 130W 4 8 21 GB/s
NOX NVIDIA GT 430 1.4 49W 96 3072 21 GB/s

Section 3.4. Tools

Tools are software artefacts, or just specifications implemented in some way, which
helps as a fulcrum of any research. Our research have relied on some of them, which
give us the means to progress with a good environment. We have prioritized those
tools which are open source, or at least we had access to its sources. Some presented
tools have been modified in order to adapt them to our research, but at the same
time, we have contributed with them to the scientific community.

Tools used in this thesis are: compilers, runtimes, simulators and tracing utilities.
As compilers we understand from simple C or Fortran compilers to full

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.4. Tools 75

programming models. Runtimes are auxiliary libraries which help to implement
some programming model. Runtimes help to spawn (create) parallelism,
synchronize the execution flow, or even to communicate data. We use, and later
contribute, hardware simulators. Simulators provides us the possibility to adapt
hardware and research for better programming models beyond existing hardware
limitations. Tracing utilities are usually known as profilers, but a profiler is the most
simple form of a tracing utility. Profilers are designed to obtain general statistics in
order to know which parts of a program needs to be improved, and some related
information. Tracing utilities goes beyond this point, they are designed to record
execution in a trace of events and posterior analysis. They allow to visualise the
execution and gives a better understanding of real problems and hazards.

We present a set of tools that we have used on this thesis. We have ordered them
by kinds of research and kinds of tools. We start with tools used for homogeneous
shared memory multi-core, then with homogeneous distributed memory, simulator,
heterogeneous distributed streaming, and finally tools used for pattern-matching
algorithms.

OpenMP [54]. OpenMP is a parallel programming model designed to parallelise C, C++
and Fortran programs on homogeneous multiprocessor architectures. It is uses the same
parallelism than a user threads library, but, it frees the programmer to use a low
level library. OpenMP allows programmers to add few directives to enable
parallelism. Directives are like comments, they report to the compiler that some
parallelisations can be performed without breaking the application semantics.
Compiler generates low level thread library calls automatically from existing
directives enabling parallelism.

CPU

thread thread thread

#pragma omp parallel for
{{

}
join

fork

Figure 3.12: OpenMP fork/join thread execution model.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

76 State of the art

OpenMP thread execution model is fork/join (see figure 3.12). Each time that the
serial execution reaches a parallel annotation, OpenMP splits the execution into
multiple parallel threads. When a parallel execution reaches the end of a parallel
annotated region, it waits for all threads and resumes a serial execution.

OpenMP has many directives and clauses. Each of one has a specific semantic and
is suitable for many structures. Although, from all directives, there is one directive
construct which is usually the first step and the most useful: “parallel for”. This
directive helps to create a basic parallel region from iteration constructs. It also has
the optative clause reduction, which helps to summarize a computation with many
elements into a single element. Thus, from all OpenMP directives we emphasise on
the following OpenMP directive:

#pragma omp parallel for [reduction(OP:r)]
for i0 ≤ i ≤ if do
 ··· for body
end for

Parallel for directive creates a parallel region and distribute the following for
construct iterations across multiple threads. Each thread executes the for body given
a subset of i iterations. All i iterations are executed once and only once by all threads.
Optionally a reduction operation can be performed: it summarises a single value r as
an operation OP over a large set of values corresponding for each i (an example of
reduction is a summation).

OpenMP NanosCompiler [55] based on Parafrase-2 [56]. OpenMP NanosCompiler is
a source to source compiler. It compiles (translates) Fortran programs with OpenMP
annotations into a Fortran programs with calls to an OpenMP runtime. A source to source
compiler is a compiler able to transform one program into another. Even nowadays,
where compilers are able to compile by default OpenMP, they are difficult to modify
or adapt for research terms.

Any OpenMP compiler basically translates directives into a code which explicitily
creates the parallelism and makes any runtime library calls required. The OpenMP
NanosCompiler transforms source code to a code with runtime calls, after this
transformation it generates a new Fortran code but with code transformed in order

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.4. Tools 77

to implement OpenMP directives. There are three advantages: generated code can be
modified, runtime library can be changed, and there is not a target architecture.

OpenMP NanosCompiler generated code is basically the original code
reorganized plus runtime library calls. The OpenMP NanosCompiler processes all
parallel directives and extracts code within parallel regions. For each region it creates
one or more function containing the original code. These functions have as
parameters the variables and values required for the correct execution of the
extracted code. Original code and parallel OpenMP directives are removed and
replaced by runtime library calls in order to implement the required behaviour.

Even if we have no access to the compiler source, source generated by OpenMP
NanosCompiler is plain Fortran code. Generated code can be modified or adapted
manually by the researcher. This possibility allows us to adapt or change the
resulting code in order to do further changes or tests. This possibility allows us to
change or introduce concepts in the programming model.

Resulting transformed code is compiled to a binary by the native compiler. In this
process, the source is linked to a runtime library. This library is responsible of many
parallelism decisions, such as scheduling, lock policy, … We can link against any
runtime which satisfies interfaces assumed by code transformation. As a
consequence we can select or adapt a runtime able to make desired experiments.

OpenMP NanosCompiler just transforms source to source, thus it requires a
native binary compiler. The generated source is just Fortran, no additions and no
OpenMP directives are present. This resulting source can be compiled again with
any compiler, so it can be compiled to any target. This makes the result of this
compiler as portable as the original program and the runtime library.

NthLib user-level thread library [57]. NthLib is a portable thread library used as a
OpenMP runtime for the OpenMP NanosCompiler. NthLib is based on nano-threads
library, and it is ported to several platforms, including BlueGene/Cyclops,
Linux/DSM, Linux/Pentium, Linux/IA64, IRIX/MIPS, AIX/POWER and
SPARC/Solaris. NthLib supports C and Fortran. It also has support for multiple
levels of parallelism and for some experimental OpenMP clauses as groups [58].

We have used NthLib because we had access to the sources, it was ported to our
target architectures, it is compatible with OpenMP NanosCompiler, and because it
has suport for nested parallelism.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

78 State of the art

Nested parallelism is one of the key points of this thesis. We mix two levels of
parallelism with two grains of parallelism in order to obtain better locality and
achieve better results. In order to have efficient nested parallelism, the NthLib has
available two kinds of threads: nano-threads and work-descriptors. Nano-threads
are full threads, as they can be pthreads. Nano-threads have their own stack, their
own dependency list, and they require saving/restoring context in order to use them.
They have the same flexibility than pthreads. On the one hand, it also implements
work-descriptor [59]. Work-descriptors are a kind of list of task, each task is basically
a function call with parameters. They are not really a thread library, but tasks can be
scheduled and executed serially by any real thread. If there are more than one
thread, we can execute multiple word-descriptors simultaneously. The main
limitation of work-descriptors is that they have been executed on the same stack than
his parent, and they can not block and switch to another work-descriptor (they have
no context change).

OpenMP NanosCompiler is adapted to produce source with function calls to
NthLib runtime using both kind of threads. An extra clause on the OpenMP Fortran
source hints which kind of threads are used on source generation for each parallel
construct. By default it uses nano-threads for all parallel constructs (by doing this
OpenMP NanosCompiler ensures that the result will always work). We need nano-
threads for grain parallelism and for outer levels of parallelism, so for those
corresponding parallel constructs nano-threads are fine. For inner parallelism and
fine grain parallelism nano-threads can imply a great overhead, so we select which
parallel constructs can be converted into word-descriptors. We provide of additional
compiler the compiler by adding the corresponding clause.

NthLib is a library with a high degree of versatility and very efficient, it
implements some OpenMP clauses as GROUPS and also by implementing two kinds
of threads it helps us to create parallel programs with a very good performance.

NthLib runtime for Cyclops [60]. NthLib was initially ported as a prototype to
BlueGene/Cyclops architecture with a reasonable performance. The objective of the porting
of the NthLib for cyclops was to made available the OpenMP programming model
for BlueGene/Cyclops architecture. This environment was based on the OpenMP
NanosCompiler, which is executed on a host machine (a intel laptop), and generated
(transformed) code is compiled to Cyclops binary by the gcc cross-compiler toolset.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.4. Tools 79

Benchmarking for scalability usually tests the same benchmark with a different
number of threads. If we select to execute a benchmark with less user threads than
available hardware threads, we might decide how to place them on the processor.
Given that we have multiple threads per core (and FPU), it is reasonable to control
how threads are mapped and which FPUs are shared.

NthLib for Cyclops has an extra scalar numeric parameter called stride. User
threads and Cyclops hardware threads are numbered. If no stride is specified it
maps user threads to the hardware thread with the same number. If stride is
specified it assigns one user thread to a hardware thread every stride hardware
threads. If stride mapping reaches the maximum number of threads, it starts again
reusing free hardware threads. Cyclops threads are ordered by cores, so, if there is 4
threads per core, and 32 cores, threads 0, 1, 2 and 3 are mapped to core 0, threads 4,
5, 6 and 7 are mapped to core 1, and so on. As an example, with stride 1, threads 0, 1,
2, and 3 are mapped to core 0, 32, 64 and 96 are mapped to core 0. If there are less
user threads than cores on the last configurations, there should be a maximum of one
user thread per core.

Cyclops simulator [45]. Cyclops simulator is the parametrizable simulator of the IBM
BlueGene/Cyclops processor. The processor architecture, simulator and development
environment is described on the previous section.

Paraver [61]. Paraver is a trace visualizer tool. Its name comes from spanish “for see”
and it was designed literally for this task. The underlying idea of Paraver is first to
run the application with some kind of execution tracer, and then visualize the
behaviour of the application at offline. Paraver was initially developed by the
European Center for Parallelism of Barcelona (CEPBA) under the supervision of Dr.
Jesús Labarta.

Paraver traces are text files describing the application behaviour. Each line
describes a state, an event or a communication at given time stamping and thread
identifier. These traces are usually generated by specialised libraries and then
converted into Paraver.

State line describes a change of program state. Some of most common states are
idle, running and waiting for communication. Running state describes that at given

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

80 State of the art

timestamp a thread started computations. At idle state means that at given
timestamp a thread begins to wait for some kind of synchronization. Waiting for
communications also specified if waiting for input data or for output data. States are
assumed to persist on the same thread until a new state is registered for the same
thread.

Events are located at given timestamp and thread identifier. Events are described
as a pair kind-value. Each event can report any kind of information and they can be
user-defined. There are no restrictions for values, but some times value 0 is used in
order to report that a previous event was finished. Events can report function calls
and exits, cache misses, partial IPC, and any other relevant information.

Communications describes data transfers between two thread identifiers. It is
composed by a communication channel, a data packet size, thread identifier for the
sender, thread identifier for the receiver, and timestamps for synchronization. Time
stamps are designed in order to have information about all synchronization
involving a communication. It gives enough information to know if there is data
contention on the sending, or if the receiver was waiting. This information is also
combined with the state in order to reflect special states for idle in case of waiting for
communications.

Paraver is a visual tool and all trace information is presented visually. It has many
kinds of visualisations as statistics, 2D grid displays, or linear time views. Views are
no tied to predefined values or event. Paraver uses mathematical functions in order
to decide how to draw traces on visualisations. Some of these mathematical
functions can be state value as is for linear time view (as first step to know when the
application was running), event stack composite of function calls for linear time
views (which uses value 0 in order to compute exits), or even a map of page faults of
pairs of thread identifiers and memory regions for 2D views (for analyse memory
behaviour).

All Paraver configurations and associated views and mathematical functions can
be combined or even saved for future reuse. In fact Paraver provides some of more
useful configurations.

libFASTparparaver. This is a library designed to collect manually information from
parallel programs for Paraver. LibFASTparparaver is a user library which allows to
collect information about the execution of a program. This library is optionally used

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.4. Tools 81

by the OpenMP NanosCompiler to generate a binary which produces a trace of its
execution. This library contains function calls to determinate the state of the
execution and add events. Although OpenMP NanosCompiler is able to generate
function calls to the libFASTparparaver, this library is also available for the user to
generate any trace required. This library has no special requirements but its
functionality limited only to shared memory architecture and only is able to generate
trace states and events.

MPI [62]. Message passing interface (MPI) is a library interface to run programs on
distributed memory clusters. MPI is actually implemented on many architectures and
almost any scientific application for clusters is written using it. MPI hides many
architecture details (as node configurations, networks, …) and it has been proved to
have a very good scalability [39].

MPI programming model is based on multiple copies of the same program
running on every node (computer) of a cluster. Each node executes the same binary,
but each instance has a different identifier. MPI assumes that there is no distributed
memory and all information and result exchange must be done through library calls
(passing messages). MPI library calls allows to exchange information but also
synchronize. There are many MPI primitives, some examples are: point to point
communication, broadcasting, reduction, and more.

Main difference between MPI and OpenMP is that MPI forces to rethink
algorithms to work with distributed memory. The programmer must decide how the
algorithm is split and how to synchronize data and control. As a reward,
programmer can decide exactly how to parallelise and distribute it and consequently
MPI can achieve a very good performance. As a counterpart, MPI applications are
more difficult to write and debugging involves many nodes (computers), its states,
and network state.

NanosDSM and OpenMP [63]. Distributed shared memory (DSM) systems are libraries
designed to emulate a shared memory architecture on distributed shared memories. As
OpenMP requires shared memory to work. A DSM can enable OpenMP on
distributed memory clusters by fulfilling the requisite of shared memory. DSMs
usually relies on page fault mechanism in order to emulate memory-coherency
across nodes of a cluster. Using DSM over a cluster, it opens the opportunity to use

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

82 State of the art

OpenMP and as a consequence easy programming and debugging of parallel
applications.

We have worked with NanosDSM [63]. NanosDSM is considered to be an
everything-shared DSM and it uses all Nanos infrastructure to provide an efficient
solution. OpenMP NanosCompiler is adapted in order to generate special function
calls for the NanosDSM runtime. NthLib is also modified to be in touch with
NanosDSM. NanosDSM relays on the compiler and NthLib runtime to control the
full architecture.

As MPI, NanosDSM us running on all nodes (machines) of the cluster. When a
OpenMP physical thread is spawned, NanosDSM select a node to execute the
corresponding threads and sends the function pointer and the stack pointer.
Automatically at this point the thread starts to execute, even if the stack content or
function code is not available on the node. If at any time the program is not able to
execute it produces a page fault. NanosDSM captures page faults and solves it. As a
result, NanosDSM is able to control all memory accesses and maintain memory
coherence across machines of a cluster.

NanosDSM uses page faults to implement memory-coherency. Each memory
logical page is owned by its master. The master controls the correct coherency of the
page. A page can have two possible states: shared for reading or exclusive access for
modification. If a program thread starts to read a page that is not present on its node,
it causes a read page fault, NanosDSM captures it, it request to the master a copy for
read, NanosDSM restores the content of the page, and atomically makes it available
to the current node. If the page was previously acquired for an exclusive write, the
master changes page protections to only read, and changes page state to shared read.
If write is requested, it invalidates all other copies, notifies the new state of the page
and changes page protections to read/write.

NanosDSM presents a very interesting architecture. It emulates an architecture
with a cache line of one page and a high communication latency.

UNISIM [64]. UNIted SIMulation environment (UNISIM) is a simulation infrastructure
which helps to create modular simulators and reusable components. Unisim simulator is
designed to provide a real modular simulator. While other simulators like systemC

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.4. Tools 83

claims to be modular, but each configuration require specific control modules,
Unisim is designed to distribute control as well as modules.

Unisim is conceived as a collection of modules connected by ports. Modules can
be almost plain C++ classes or a composition of other modules. Both kind of modules
have some special variables called ports and also can be parametrized. Unisim uses
C++ templates to make modules parametrizable. C++ templates are used in order to
define variable number of ports, variable number of subcomponents, … All
components are connected by the Unisim runtime, which constructs the simulator
instancing all classes and computes all required behaviour. Unisim also adds a
special kind of port called clock. This port allows to synchronize all the simulator
through a clock and construct pure sender modules.

Unisim has its own protocol to connect modules using input-output ports (shown
at figure 3.13). Each port has a type (C++ type) and three signals: data, accept and
enable. Unisim uses these three signals to distribute the control. Output ports from
one module are connected to input ports of other module. To communicate to
connected modules, the output port first sends the data, second if the input port
receiver of the data can accept it sends back the signal accept as true, and third the
sender module can enable or disable the data setting enable signal to true or false.
Data is used to communicate the value of the connection, accept is designed to
control data contention (for example, receiver may have the input buffers full), and
finally the enable helps to build routers by sending the same data to multiple
modules, but just enable to receive data to one module.

Sender
Module

Receiver
Module

1) data

3) enable

2) accept

output
port

input
port

Figure 3.13: Unisim connection model based on ports and three signals.

Unisim is a cycle oriented simulator. Although Unisim can simulate
combinational circuits thanks to the triple protocol. For each simulation cycle, all
signals must be written once and only once. When a signal is written it fires a trigger
on the receiving signal which executes a function to handle the signal. Each signal
trigger is handled as a small independent process. This is a very flexible policy but

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

84 State of the art

also make programming more difficult by distributing module behaviour across
many functions.

Unisim runtime is responsible to activate all signal processes, including those
signals activated by the Unisim clock signal. At the beginning of the cycle, Unisim
runtime activates all rising edge processes connected to the clock. These processes
may write the data value of output ports. When it finishes, some receiver data ports
have been activated, and Unisim runtime executes all activated input data processes.
As a consecuence more data ports can be written and activated as well as accept
signals. Unisim runtime activates all pending data processes and also executes all
activated accept processes. After this step enables can be activated, as well as more
data and accepted signals. Unisim continues executing all actived signals until there
is no more activations (ensured by the limitation of one change per cycle). After the
last activation, actives all falling edges processes. These processes can active more
signals, and once again Unisim runtime starts to execute all activated processes until
the system stabilises. At the end, Unisim checks that all values have been activated.

Unisim is a very flexible and powerful simulator infrastructure. In addition,
Unisim is distributed under an open source license GPLv2 and it has available a
large list of modules able to built a simulator from scratch in short time.

LibSPE [65]. The libSPE is the library provided by IBM for the Cell B.E. processor in order
to execute and control processes at SPE accelerators (see figure 3.8). As we have presented
previously the Cell B.E. has two main kind of cores: a general-purpose core and
accelerators. For the point of view of a program the architecture of the Cell B.E. is
just a PowerPC: the OS is running at the PPE and it executes 64 bit PowerPC binary
code. On the other hand, SPE are accelerators, they are not designed to execute
whole applications or an OS, they just are designed to accelerate some processes.
LibSPE is the bridge from a classical PowerPC to a Cell B.E.: libSPE allows to run
processes or functions at SPE accelerators from the PPE core.

There are two versions of the libSPE. The first version SPE status and execution
was managed by the library, the second version the SPE status must be executed and
monitored by the program. As a short explanation of the second version, it requires
that the programmer creates multiple threads in order to control each SPE
accelerator status. We focus on the first version.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.4. Tools 85

LibSPE is not much different from a threads library. Main functions are designed
to load a function binary into memory (it differs from PowerPC binary), execute the
function present with selected arguments, and wait for a result or query for an error.
As other threads libraries, it also has synchronization primitives and communication
primitives. Unlike thread libraries, libSPE has two sets of interfaces: one interface for
the PPE and other interface for the SPEs. These two interfaces are designed for
different roles, for example, the PPE is responsible of creating SPE processes.

LibSPE also has all required functionalities to work with MFC and local storage
(SPE memory, LS). In order to work with the MFC, it provides primitives that starts
DMA memory transfers, mailbox communication, query MFC state, and signalling.
A specific primitives for the LS is available from the PPE, it allows the program to
map the SPE local storage into an effective address. Mapping the LS to an effective
address makes visible the local storage for all the program as a simple memory
region. Main utility is to enable DMA transfers between SPEs.

MCXX Mercurium Compiler. MCXX Mercurium Compiler is a LGPL licensed C/C++
source to source compiler which allows to transform source codes following a set of rules.
MCXX is mainly divided in a front-end, engine, and modules. The front-end is the C/C++
parser. This front-end is designed to parse a small snipset of code (function,
instruction, declaration or expression) or a full file. The engine coordinates the
module task. MCXX Mercurium Compiler is designed to be modular, each module
represents a compilation phase, many phases can be added in order to create
complex compiling pipelines.

MCXX Mercurium Compiler was designed for directive processing (but not
limited), but at the same time, it is designed to remove the necessity to work
transforming the AST (abstract syntax tree representing the code). A classical
module, or transformation phase, is to provide to the engine a callback for each
directive. Each time that the directive is found by the engine it invokes the callback
with the primitive AST and context. For example, if the callback phase function
wants to warp the original code by a loop, the function just creates a string with the
code of the loop and as a body the pretty print of the AST primitive content, and
replace the primitive AST by the string of the new code. MCXX Mercurium Compiler
automatically solves variable references, declarations, and other inconsistencies that

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

86 State of the art

might appear. This behaviour makes the compiler very flexible and useful even for
non compilers experts (you just print the code as you should write).

MCXX Mercurium Compiler is shipped with support for OpenMP, software
transactional memory, Cell SuperScalar, loop transformation utilities, functions
instrumentation and instrumentation for pthreads, and many other examples.

Note: MCXX Mercurium Compiler is different from previous Mercurium
Compiler. MCXX is the re-engineering of the previous Mercurium Compiler, but it is
more reliable, more flexible, supports C++, and templates are plain C++ classes.

NVIDIA CUDA programming framework [66]. NVIDIA compute unified device
architecture (CUDA) is a parallel programming model based on C and C++ designed to
program NVIDIA GPGPUs. CUDA is designed to simplify the programming of the
NVIDIA GPGPU architecture. This architecture is very complex compared with
common commercial software: it is massively parallel and usually has available
thousands of threads. Consequently CUDA is focused to deliver the power of high
parallel architectures to common programmers.

The programming framework is focused (as OpenMP does) from the point of
view of massive parallelisation of loops. CUDA has decided to conceptualise loops
as logical spaces, if you have two or more nested loops you have a two or more
dimensional space. If those loops are independent between iterations, they can be
converted into a CUDA kernel invocation. CUDA kernels are just like C functions
but they are executed in the GPGPU and called asynchronously from the standard C
program.

As memory hierarchy is a big challange on almost all architectures CUDA has
decided to have a mix between Cyclops and Cell B.E. memory architecture. CUDA
assumes that there is a shared memory for a group of threads and modifies C data
typing in order to make this memory visible. The design objective is to have a self
managed cache which allows to hide memory latency and save memory bandwidth
by high reuse of shared memory content between threads. This shared memory has
visibility only for groups of threads (called blocks), other groups (or blocks) can not
access to this memory. Although that shared memory is private, CUDA allows to
access to main memory data, but paying a high penalty for the latency. In order to
hide this latency, CUDA relays on tens of threads in order to reduce the pennalty.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

3.4. Tools 87

CUDA uses a logical execution space (see figure 3.14) as an abstraction of the
GPGPU architecture. This abstraction maps physical threads, core memory, and
physical cores into logical threads, block memory and blocks. When the sequential
code reaches a kernel invocation, it configures a logical grid of blocks defined by the
programmer and launches its execution on the GPGPU. A kernel code is executed
concurrently by all threads of the defined grid of blocks. Each block is physically
mapped into a GPGPU multiprocessor, and many blocks can be mapped into the
same multiprocessor. The threads of a block are executed in the cores of one
multiprocessor and the block memory is mapped into the shared memory of the
multiprocessor (figures 3.14 and 3.11).

block
(0, 0)

grid

block
(1, 0)

block
(2, 0)

block
(0, 1)

block
(1, 1)

block
(2, 1)

GPGPU

thread
(0, 0)

thread
(1, 0)

thread
(2, 0)

thread
(3, 0)

thread
(0, 1)

thread
(1, 1)

thread
(2, 1)

thread
(3, 1)

thread
(0, 2)

thread
(1, 2)

thread
(2, 2)

thread
(3, 2)

block (1, 0)Generic CPU

Kernel

generic
instructions

generic
instructions

Figure 3.14: CUDA logical execution space.

This logical space is configured in the kernel invocation by the generic CPU
program, but each thread has one position inside a block, and the block has one
position inside the configured grid. As each thread has a logical position, this
position is available to the programmer. This position can be consulted from kernel
functions by two predefined variables. These two variables are designed as three
dimensional points, each point (each variable) has the x position, the y position and
the z positions. All threads which block position coordinate has the same value,
shares the same shared memory. It can be used with the thread position value in
order to coordinate partial results between threads and coordinate them into the
computation of a result.

There are no directives on the CUDA programming model. This programming
model is based on function encapsulation: code intended to be executed in parallel is
isolated in a function. These functions (named kernels) are executed massively
parallel. Each invocation (function call) to a kernel has a configuration which
describes the logical grid (see figure 3.14). Kernels access to kernel local variables
(equivalent to function local variables), shared variables (variables stored at block

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

88 State of the art

memory shared by all threads of the same block) and global memory (variables
whose value is stored on main memory accessible by CPU and GPGPU).

An illustrative example of CUDA is the following:

parallel for 1 ≤ a , i ≤ N do
 C[a][i] = A[a][i] + B[a][i]
end do

This algorithm translated into a parallel kernel as follows:

__device__ f_kernel(float C[N][N], float A[N][N], float B[N][N]) {
 int a = blockIdx.x, i = threadIdx.x;
 C[a][i] = A[a][i] + B[a][i];
}
f_kernel<<<N, N>>>(C, A, B);
cudaThreadSyncrhonize();

In this case, we have decided to parallelise a through blocks and i through
threads. When f_kernel kernel function is invoked it configures a grid with N blocks,
and each block with N threads. As we do not require more dimensions, we only use
the x dimension of both spaces (blocks and threads). Block position is used as a index
of the loop, and x thread position is used as i value of the loop. The
cudaThreadSynchronize is used to wait for the result of the kernel invocation. In
CUDA, by default, all kernel invocations are computed in parallel with general CPU
execution.

CUDA has been proved to be a very reliable programming framework and a very
powerful programming model. There are lots of community research on CUDA,
community adapts and optimises existing algorithms to CUDA architecture. CUDA,
like OpenMP, express parallelism through loops. CUDA, instead of reusing a loop
construct, adds kernel configuration and invocation, which is equivalent to OpenMP
parallel for directive. Maybe a step further to emulate OpenMP should give even
better usability to CUDA.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Chapter 4. Related Work

The main challenge of this thesis is the viability of multi-core processors for the
common programmer. In a few years, multi-core processors has become common
and cheap. As processors complexity grown, processors designers realised that more
hardware will not achieve better performance, so they just replicated the processor.
At least, from the theoretical point of view of the problem, it just could speedup
programs as well as previous solutions. But the reality was different [26].
Programmers does not want to care about threads and parallel programming. For
many years parallel programming was not a requirement. As a consequence the
programmer effort in parallelisation was almost superfluous and very expensive. At
this point, programmers tendency and processor tendency started to diverge.

Nowadays we have a vast collection of code, programs, components and many
kinds of artefacts. Most of these artefacts were created assuming serial processors.
These artefacts did not care about threads or parallelism, but neither their original
algorithms or underlying theories. As far as processor designers were able to stand,
they decide to support better serial execution. It takes no advantage in supporting a
non used features. But this situation ended, and as consequence hardware designers
tried to create parallel hardware as close as possible to the mainstream programmers
and their necessities.

In the beginning of common market multi-cores there was a great divergence of
possibilities. Not all multi-cores tried to target the same applications and the same
programmers. Probably the first steps on this direction were vector-instructions, but
that was just the beginning. These instructions required a little effort from an expert
programmer. Their use was limited to critical sections to give a very significant
improvement on many applications. Slowly some architectures limited to replicate

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

90 Related Work

the number of cores, just enough to increment the number of processes to be
executed simultaneously. Others based their architectures on vector processors
which were designed to increase vector-instructions performance, and others, tried
to simplify a very complex hardware just adding thousands of threads.

These new challenges brought the need to create a synergy between computer
architectures and programmers habits. This synergy brought new programming
models as foundations of the interrelation between programmers and architectures.
The main objective of programming models is to hide as most as possible the
architecture particularities, try to give a view as close as possible to well known
single core processors. At this point, like architectures, many programming models
have been emerged and compete for the mainstream programming environment.
The key point to achieve the success is the capacity to give a useful environment able
to take advantage of existing code and programmer knowledge, but also a very
competitive motivation to embrace the change.

Some programming models and architectures are highly dependent nowadays.
Most programming models are specific for just one architecture, or in other words,
just too expensive to use or slow on others. This heterogeneity of models forces
programmers to be expert on many programming models if they want take
advantage of each hardware available to them. Nowadays, simple desktop
computers, are often provided with two different architectures: simple generic multi-
core, and GPGPUs.

In this section, we will present some of the programming models and how they
target their architectures, or even how they try to overcome their architecture. This
research is the basis for this thesis and many of them have influenced the presented
work. There is a large list of programming models and architectures, and each of
them was designed or even improved to solve a different problem. Each piece of
knowledge apported is one step closer to the general objective which is give multi-
core for the mainstream programmers.

From single-core to multi-core. Before multi-core processors come multi-threaded
processors. These multi-threaded processors were called multi-streamed processors,
because they were designed to execute more than one stream of instructions. They
based their design on the three main components of a single processor: register bank,

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

4. Related Work 91

arithmetic logic and control logic. Register logic and arithmetic logic where simple
components which specialised purpose. First processors map assembler instructions
directly on these two resources: each instruction operates a selected registers over a
determined arithmetic. Logic for this kind of processor architecture was really
simple. Later, as processors start to parallelise instructions (using techniques like
segmentation or out-of-order processors) the control logic began to be more
complex. The control logic started to translate logic instructions to real hardware.
This translation becomes complex and expensive.

The observation from multi-stream processors researches was the following: there
is more hardware involved in computing the control of the parallelisation of a single
thread (stream of instructions) than the required hardware to duplicate the stream of
instructions. The main idea was simple: instead of create more and more complex
control hardware, they execute multiple threads with the same hardware. When one
thread gets stalled (it has to wait because any control risk), the processor resume the
execution of another thread. This though was impulsed the researches into the multi-
core era, and the same though that impulsed this thesis on the beginning.

One of firsts works into this direction comes from Eggers et al. at [67]. They
experiment with the number of threads in order to find the exact ratio of the benefit
of using multi-streamed processors in front of complex computers. The idea of this
work was to prove the viability of the previous assessment and to compute the
number of hardware threads that can be added in order to take advantage present
hardware. They have shown that with the hardware that they had available, it was
possible to add up to four hardware threads with a very good efficiency. Later, at
[68] they have found that there was a misbehaviour in the cache performance.

If multi-streaming processors had shown that they helped to increase the number of
parallel instructions executed by hardware they also have been found a serious
drawback: cache seemed to diminish its effectiveness when multiple threads are
executing on the same processor.

Far to be unexpected this feedback was quite logical. Multi-streaming processors,
or current multi-cores, are sharing the same data bus with the memory. Most of
previous works with multiple hardware instruction streams were conducted on
multiprocessors. Multiprocessors are really many independent cores, each core has
its own connection to the memory, its own cache, and to summarise: its own

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

92 Related Work

independent resources. Multiprocessors gives to each instruction stream (thread) its
own cache and memory bandwidth. As a consequence threads are no competing for
resources as caches and they can scale properly, even better, in some cases because
the total of available cache increases there appears an effect called super-linearity
[69]: the parallel program is more than the number of processors used faster
(speedup, parallel speed/serial speed) is greater than the number of processors). This
effect appears because the size of the available cache for the program execution
increases as the number of processors and caches are many times faster than main
memory. But this changes on multi-streaming processors or multi-core. In this
scenario a single processor execution have to share the same cache with all the
present threads, and these threads are competing for the resources.

The effect of many threads in the same core are presented at: [70-72]. They present
that more threads have more misses. They have tested many benchmarks on multi-
threading architectures with a different number of threads. Their work shown that as
the number of threads is increased, the number of cache misses also growns. This
proved that threads were really competing for the same results. Gulati et al. [73]
extended this work to try to characterise benchmarks and their impact on multi-
threading architectures. They have shown that the ratio of the increasing cache
misses were dependent to the benchmark, and each benchmark had its own cache
interference patterns.

OpenMP over multi-core processors. One of the most important contribution for
multiprocessor system is OpenMP [74]. OpenMP is a programming model designed
for shared-memory multiprocessors. OpenMP has some very special properties:
scalability, incremental parallelisation, portability, high level API, data parallelism
and performance oriented. All these properties made the OpenMP an excellent
programming model for this kind of multiprocessors.

Most current multi-core CPUs and multi-core and multi-threading processors
presented at the beginning are very close to share-memory multiprocessor: they
have a common vision of the memory and multiple threads which can be exploited
by calls to a user threads library. This similarity made OpenMP a very good
candidate, the only restriction to execute OpenMP is the capability of having a user
thread library plus a shared-memory view of the system. From this point of view

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

4. Related Work 93

multiprocessors are very close in semantics, and OpenMP can be implemented on a
multi-core. Martinez et al. at [60] (as we have presented above in section 3.4, tools)
have ported an OpenMP implementation to the IBM BlueGene/Cylops processor.
This work shows that it was possible to execute OpenMP on multi-core architectures.
Unfortunately performance were not as good as expected, benchmarks not scaled as
well as expected. The processor has hundreds of threads, but the average speedup is
of x15.

One of the largest architectures based on multiprocessors with shared-memory is
constellations. This architecture assumes multiple homogeneous processors, but a
large computer, where each memory bank has a variable distance/latency with each
processor. This architecture is very close to cluster, there are multiple nodes, each
node can have multiple processors with shared-memory, and there is a fast
interconnection network between all nodes. Constellations, in contrast to clusters,
provides a shared-memory illusion. They have a specialised hardware to manage
memory accesses and provide memory-coherency.

On constellations not all accesses have the same latency. A processor accessing to a
local memory (memory present on the same node) it obtains the data faster than if it
is present into a remote memory. Programmers of constellations architectures must
be aware of memory accesses penalties. In addition, many programming models (or
even languages through specialised directives) added special commands in order to
decide data position. As a consequence, programs must be written in order to
localise maximum working data at the same processor which will process it.

Most of NAS parallel benchmarks for OpenMP (NPB for OpenMP [40], presented
above in section 3.2., benchmarks) were not implemented to take maximum
advantage on such architectures. These benchmarks access more or less uniformly to
all address space, in other words, all processors requires to access to all memories.
As a consequence there is no better data distribution: every body pays a penalty to
access remote memories.

Fortunately NPB were implemented originally on MPI. MPI works on distributed-
memory and applications must be rebuilt in order to work with local memory, access
to remote memory is so expensive to be considered. As a consequence, NPB for MPI
was already written to use small memories. Gonzalez et al. presented at [75], [76] the
NAS MultiZone parallel benchmark for OpenMP (NPB-MZ, more details are

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

94 Related Work

presented above in section 3.2., benchmarks). This was a new version of OpenMP
NPB based on the NPB MPI benchmarks. This version of the benchmark was
constructed on two levels: first level (outer level) emulates the work distribution
across clusters, each parallel group computes the same region, and the second level
(inner level) emulates the local computation of each node. As results show, the
benchmark is able to take advantage of localised memory access and speedup the
process.

Constellations can be compared with multi-cores: multi-cores are composite by
many cores each one with its L1 cache (as each cluster has its memory) and each core
has multiple threads accessing to the same memory (as processors of the same
cluster have fast access to local memory of the cluster). We expect that coarse-grain
parallelism will allow us to overcome this challenge.

OpenMP over distributed memory systems. We focus on OpenMP as a
programming model in this thesis because it has many important advantages (as
scalability, incremental parallelisation, portability, high level API, data parallelism
and performance oriented), unfortunately it has a very important drawback: it
requires shared-memory.

Nowadays all top 10 supercomputers [77] are distributed (non-shared) memory
computers. Distributed computers are more complex to program (it forces the user
to do data distribution) so there is a good motivation for such architectures:
performance. Distributed computers have a very good performance, and for a very
good reason: it is very difficult to maintain memory coherency on large systems.
Distributed computers have no shared memory, so they do not need to keep an
imaginary unique view of memory. The programmer is forced to encode in this
environment and must keep every required data or result where it is required. The
complexity is moved to the user, who, potentially, knows better the program and its
behaviour.

Distributed computers problem is double: they demand to modify the program in
order to face distributed memory, and moreover, they also visualise the computer as
many different machines making difficult the program construction and debugging.
The former is also faced partially on shared-memory, as we have explained that not
all the memories have the same speed so keep things locally is better. But this is not

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

4. Related Work 95

mandatory, it is only a recommendation: the program works in any case, the
difference is the performance. The former problem is also important, most
supercomputer users are not expert programmers, but to program, run, and follow
the execution of a program across multiple machines is quite difficult. Moreover, the
programmer must follow each execution, and try to know what is doing each
machine and single program instance at each step. A common problem as a barrier
misplaced can be a great issue.

Distributed shared-memory systems (DSM) are software able to give a view of
shared-memory onto distributed memory systems. In this case, the addition specific
hardware it is not required: a software controls the memory-coherency. The main
advantages of DSM is that it have none of previous exposed distributed systems
drawbacks, the main disadvantage is that DSM are not able to adapt any program to
a distributed memory as good as programmers do.

The DSM needs to know the structure of the programs in order to increase the
efficiency of the communications. The main problem is the following: if a
determinate thread program needs a data outside its cluster, it freezes until the DSM
recovers it. A programmer of distributed memory will reduce this waits as much as
possible, and will replace some parallel structures by efficient distributed memory
primitives. With no information, DSM can not assume any structure inside of a
program beyond a collection of instructions and data, and consequently can not
replace any of them by the proper primitive. A simple hint about a reduction
operation would help to save lots of unnecessary data movements.

OpenMP was proposed as programming model for DSM at [78], [79]. The
assumption is the following: OpenMP knows the parallel program structure and it is
able to replace some structures with proper directives and add information to have
more efficient data movement. The theory proposed is heading in the right direction,
but resulting performance is not as good as expected. Unfortunately, many of
successful OpenMP benchmarks had a very poor performance on DSM systems.
They have too many memory dependences to have a good scalability on DSMs.

DSM where limited in order to achieve better performance. The first limitation
was to separate data spaces into two regions: private memory for each node and
shared-memory for all the system. In this case, variables stored on private memory
were fast and not subjected to the network distribution primitives. Amza et al. [80]

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

96 Related Work

presented TreadMarks, a DSM with a relaxed memory consistency model. As Lo et
al. [81] shown, to weak some memory coherence characteristics are able speedup
applications. The underlying ideas under both authors is to ignore some restrictions,
and allow an inconsistency between memory values among nodes. Under this
premise, benchmarks need to be rewritten, but there is a new hazard: memory
inconsistency. Memory inconsistency can be controlled by the programmer carefully
and avoid any arising problems, but programmer must know exactly, not only about
values stored in the memory, but also about they consistent state. Basumallik et al. at
[82] gone one step further: instead of executing the program under a software
emulating a distributed system, the compiler translates an OpenMP program
directly to an MPI program. They also have assumed the same restrictions than
previous works, but in addition, they require to expand directives with memory
hints.

Costa et al. at [63] have proposed a very different approach compared to the
mainstream research: use an everything-shared DSM (no private memory regions)
and use a full memory consistency model (no need to rewrite existing programs).
Their assumption is one step further into the de detection of the OpenMP structures:
all layers of the OpenMP programming model must collaborate in order to achieve a
good performance. In this case, the compiler, the runtime and the DSM software
were interconnected. Some presented solutions are the assumption of a cache line
size as logical page size, the use of loop iterations to predict the presend (send data
to future consumers before they request) of data, and adjust scheduling of iterations
to avoid false sharing. Presented results were good but limited to some benchmarks
with characteristic behaviours.

Beyond the research field OpenMP is already used on production at
supercomputers. As we have commented MPI has a very good performance on
distributed memory system, but for shared-memory OpenMP is a more suitable
model. MPI bases its execution of ditributed memory, this is a multiprocess single
thread program execution in multiple machines. MPI can use multiple processors or
threads on a shared-memory machine, but it requires one independent process for
each thread. As this solution is very expensive, a hybrid programming model is used
to obtain the better performance from both models. Many researchers, as [83], [84],
has concluded that an MPI+OpenMP hybrid model can achieve a very good

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

4. Related Work 97

performance. MPI is used to create one process for each memory independent node,
and OpenMP is used to spawn parallelism inside a single model.

One implementation of a benchmark on MPI+OpenMP for our thesis is the NPB
MPI+OpenMP [85], implementation. There are two levels of parallelism presented.
The outer level is performed by the MPI programming model. This parallelism level
is responsible to distribute zones across the supercomputer. The inner level of
parallelism is performed by OpenMP. OpenMP parallelism is analogous to the
OpenMP implementation of NPB benchmarks. This solution is practically analogous
to the previously presented NPB-MZ nested parallelism. This work is very relevant
because it reveals some important points: 1) OpenMP is used even on distributed-
memory architectures (cluster can have multiprocessor nodes), 2) NPB
MPI+OpenMP and NPB-MZ has analogous implementations, 3) NPB-MZ is more
simple and it can be used as previous step, and 4) when memory is close it is better
to take advantage of present data using it by as many threads as possible.

Almost every solution proposed for DSM requires some sort of hardware support.
Balart et al. at [86] proposes to use a compiler transformation in order to allow the
software itself simulate shared-memory. They replace every access to the memory by
a convenient primitive of memory access. They present the case for the Cell B.E.
which accesses to remote memory are performed through DMA accesses. The
efficiency is not as good as hardware supported DSM.

A multi-core modular and configurable simulator. Multi-core era is about of
processors with many cores. When the number of cores is high, the number of
possible internal architectures grows and also the possibility of the specialisation of
any of present threads. In many ways a multi-core with tens of threads is as complex
as a supercomputer and also is limited to the same criteria. The main difference
between multi-core processor and a supercomputer is not the scale, it is the price and
the availability. Nowadays multi-core are available for the mainstream
programmers. These programmers might be able to program them and take
advantage of multi-core possibility.

Perhaps the most previous quality for a multi-core is not the performance, but the
capacity to extract maximum performance from its programmers. A multi-core able
to run 10 times faster is not useful if the target programmer it is not able to extract

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

98 Related Work

this performance. When Cell B.E. was publicly presented a great problem was
spotted: it is very difficult to program. Nowadays, although its performance and
power consumption, the Cell B.E. project was cancelled at 2009 [87].

Our claim is that a processor performance is not the theoretical peak performance,
the processor performance is given by the ability of the programmer to extract
performance from the processor. As there are a vast possibilities of multi-core
processor configurations, it is possible that a few changes may reduce peak
performance, but the same change will indeed increase the performance achieved by
their programmers. Our objective is to present those small changes that will help to
change the ability of the programmer to obtain better performance. For example,
many scientific applications are not ready for clusters, and users execute many
instances of the same program on multiple nodes (they do not want/know to use
MPI), but most of them are able to parallelise their applications using OpenMP. We
have seen previously that some works are able to transform one kind of architecture
to another, they use software emulations. Unfortunately most of hardware required
for the emulation are not present on multi-core processors.

Simulators were developed in order to test and verify new architectures before its
implementation. First simulators were simple, they just had to simulate an
architecture with one simple thread, one core and one memory hierarchy. With the
arrival of multi-cores, specialised processor simulators become more difficult to
build. Nowadays a simulator involves the execution of multiple streams of
instructions, multiples levels of cache and memory-coherency, buses simulation for
memory transfers, and many other components not present on old fashioned single-
cores. Current simulators must face the a wider range of exploration space, many
cores compositions and distributions, many memory hierarchies and multiple
memory address spaces. They must be created modularly and each module must be
easily reused for further designs or space exploration.

One of the most spread simulator, also usually applied to industry, is SystemC
[88]. It is in fact a simulator infrastructure, and, in many characteristics this simulator
is close to UNISIM [64] (we have presented it above in section 3.4, tools). UNISIM
was build to supply lacks from SystemC. Another simulator designed to be modular
is the M5 simulator [89]. This simulator is written in C++ and python (in many
aspects its architecture is comparable to the GNUradio [43]), C++ is used to program

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

4. Related Work 99

modules and python is used to describe the composition of modules. We do not use
this simulator as infrastructure of our simulator because there was no modules
available for PowerPC cores.

Our target architecture to be simulated is a Cell B.E. like. This is a very powerful
processor but it lacks of enough versatility. The main problem is that the effort
required to encode an application in order to have an acceptable speedup is too
complex. We wanted to propose changes in the architecture in order to easy such
development.

MAMBO [52] is the Cell B.E. simulator provided by IBM. This simulator is a full
system simulator, able to boot a RedHat Linux operating system, and it has a very
good accuracy in its simulated performance. It is also able to execute very fast with a
reasonable simulation time. The objective of MAMBO was to make available the Cell
B.E. architecture before its commercialisation. The drawback is that there is no
source code available for the community and it can not be modified, so in many
terms, it is as useless as the processor itself for architecture design exploration.
Concurrently with this thesis was presented SimCell [90]. This japanese simulator do
not included the PPE and had no simulation of the memory hierarchy. Their
simulation objective differs from ours: they want to test different SPE configurations
or kinds, and its programs. So their design exploration space was limited to
reconfigure accelerators.

Simulator validation. Simulators are a very good tool for research on space
exploration, but results are useless if simulators have no validation. Simulator must
validate its behaviour in order to ensure that results are correct [91]. A proper
validation can ensure that there is not hidden bugs that changes the simulation, or
even there no are important restrictions or bottlenecks not implemented on the
simulator.

We focus on the Cell B.E. as a simulator. One of the most complex components,
and at the same time totally undocumented (we assume due to industrial secrets)
was the EIB (the bus interconnection of all other processor components). Moreover,
having buses of this complexity are not common on most simulators, so, while most
of the other components have been validated and tuned extensively on most of the
literature, there was to little literature about simulating multi-core processors
internal connection high speed bus.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

100 Related Work

In order to do an extensive validation of the simulated interconnection bus we
required an extensive performance analysis. We used results and benchmarks from
Jimenez et al. [92]. They presented an extensive set of communications through the
real Cell processor in order to characterise its behaviour. The other problem is that,
although we know that the interconnection bus was a four rings based bus, we did
not know the details. We use the bus analysis from computer networks of Girona et
al. [93] in order to simulate the bus. In their work they shown that any kind of
network bus can be simulated with an exact number of broadcast buses.

Streaming programming programs. As we deep in the study of multi-core and its
characteristics, it is more evident that they are becoming more complex [17]. Future
processor generations will add more kind of cores (specialised to many tasks) and
complex memory hierarchy. Due to the expensiveness of maintain memory-
coherence is likely that they will have distributed memory and complex.

This complexity becomes more urgent on mobile devices or processors.
Specialised hardware, in other words, specialised cores and specialised
communication buses, reduce significantly the power required to compute tasks
whose hardware was designed for. As an example of this necessity was the creation
of the ACOTES [94] project. This project, leaded by Nokia, Philips, NXP, Silicon Hive
and STMicroelectronics focused on the creation of an infrastructure for mobile
computing, but at the same considering the programmer experience.

As more complex the architecture more difficult is to find a programming model
able to extract the performance. The programming model must be able to take
advantage of heterogeneity and compile and execute each code to its more suitable
core. Moreover, as this architecture becomes more complex, the variety of possible
target architectures usually is greater. The compiler and the programming model
must face this reality and adapt the program to have a good performance at each
variation of the architecture.

Fortunately exists one programming abstraction able to face this complexity. It is
the streaming programming model. One of the first (if not the first) descriptions
where presented by Lee and Messerschmitt at [95]. This model assumes two main
components: kernels and communication streams. Kernels are assumed as isolated
processes running independently. Communication streams act as data transfers but

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

4. Related Work 101

also as process controllers. Communication streams are point to point channels from
kernels to kernels. They are usually defined statically and represents a continuous
infinite flow of data. Communications streams are the only way to communicate
kernels.

Streaming programs are able to execute naturally on distributed architectures,
take advantage of specialised cores and even improve cache reuse [96] on shared
memory architectures. They work naturally on distributed architectures because
there is no communications between running threads, only explicit communications
through streams. Kernels represents small functions. Some of these kernels can be
easily vectorised, and even some of them can be classified by required computing
resource. It is also possible to provide many alternatives (as for example function
libraries) in order to find for each candidate which kind of core is the most suitable
kernel. It helps to adapt these applications for changing heterogeneous architecture.
Moreover, even communications are explicit and many times it is provided enough
information to know the type, frequency and bandwidth and even source and target.
It can allow to choose the most suitable hardware communication channel, as can be
mailboxes, DMAs, and any other kind of bus. Kernels focus on the consumption of
data coming from input streams and production to output streams and kernels
activations are related to those streams. Blocking techniques can be applied in order
to fit data in cache lines. Moreover, kernels can be fused in order to take advantage
of already present data on cache lines. This optimisations can create super-linearity
effects.

Streaming programming models. Like DSM systems, a streaming program requires
information about its structure. If the programming language or framework does not
provide extra information about programs kernels and streams, compiler and
runtime can do very little in order to extract some structure. It is required that the
programming language and environment adds information about the program
structure.

Almost all programming models or libraries for create pure streaming
applications are designed as two parts: one to create kernels, another to create
connections. In manner of speaking they are as building blocks and glue. Kernels are
basically the execution of the program or a determinate basic task. All kernels
conform the building blocks of the program. The glue is the connection of kernels

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

102 Related Work

into a unique application. Usually most of the programming models allow to create
components by fusing kernels. These components can be glued again in greater
components. Finally a program is the glue of all components into another
component.

GNUradio [43] is one of the first libraries designed to build streaming
applications. It was created in order to process radio signal directly through software
and make hardware independent from changes in the standard. GNUradio has a
large collection of filters (and its sources) to build many kinds of streaming
programs. It includes the source of the FMradio benchmark used on this thesis.
GNUradio framework consists of two parts: one for kernels and another for glue.
Kernels are written in C++ a set of libraries designed to build streaming applications.
The glue is written in python, it just creates the program structure. GNUradio
provides a runtime to execute the program. It even has some modules ready to run
on FPGAs in order to obtain relevant speedups.

One of the firsts programming models/languages for building streaming
programs is StreamC/KernelC [97]. This language was created in order to provide
an infrastructure to program the Imagine processor [98], a kind of massive multi-
core data flow oriented processor. This programming model is structured into two
languages: StreamC and KernelC. Both languages are designed as close as possible
to C or C++. StreamC is the language specialised on the creation of communications
and the building of the program. StreamC is the glue, it literally instances modules
(kernels or collections already connected of kernels) and creates the connections
between them, becoming a new module available, or even the main program.
KernelC is the language used to create a kernel. It is programmed like a function
which arguments and results are input and output streams, and its body is the
processing of those streams. StreamC/KernelC has a greater control over the
program than the GNUradio.

StreamIt [44], [99] is a programming model/language. It is inspired on
StreamC/KernelC but modified to handle some hazards and to allow maximum
control of the execution to compiler and runtime. The main difference with
StreamC/KernelC is that it combines both in a single source. In addition they have
limited input and output streams to a single flow of real elements. Multiple streams
can be emulated with special collectives for data distribution or collection. Even with

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

4. Related Work 103

these limitations StreamIt has a large list of applications successfully ported. The
main contribution of StreamIt is the analysis about how a streaming program can be
modified and adapted to the underlying architecture [99]. In this work, Gordon et
al., explains how a streaming program can take advantage of task, data and pipeline
parallelism. The pipeline parallelism is obtained by executing each stage of the
stream process for a different temporal set of data in parallel, like processors does
with instructions streams. The task parallelism is achieved by executing concurrent
independent kernels simultaneously. Data parallelism is achieved when the same
kernel is instantiated multiple times (or just manipulated to appear so) in order to
process multiple input data simultaneously. In the case of StreamIt data parallelism
can only be achieved when a kernel does not have state, in other words, when there
is no local variables required to process the following element. As this limitation is
represented as a stream from the kernel to itself. This cyclic stream presents a heavy
dependence, it limits program parallelisation.

OpenMP like streaming languages. Previous presented models creates a new
language to create streaming programs. Our target is to present a solution as close as
possible to OpenMP. We believe that OpenMP characteristics are desirable, and the
addition of streaming information to a plain C program should allow the creation of
programs able to take advantage of streaming characteristics.

One of the firsts adaptations of OpenMP to implement pipelined executions was
presented by Gonzalez et al. at [100]. They have exposed that there are some
complex dependencies between tasks which can not be handled by OpenMP. They
have proposed two new directives for OpenMP: pred and succ. This two clauses
creates a pipeline execution from the producer of data to the consumer of the same
data. There is no concept of stream, they relay on the shared-memory to store results
and retrieve it later. In this case, the communication is limited to control. This two
new directives are tied to de parallel for and to a for loop iteration. Each time that the
pred directive is reached it hints which iteration has completed, and consequently its
information is available on shared-memory. The succ marks which iteration is
expected to be reached in order to read the result from the shared-memory. If the
information is not available it stops the execution. Both, pred and succ are just one
step of stream communication. Because there is no real stream and no kernels,

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

104 Related Work

synchronization is defined on runtime and there is no such producer and consumer
kernels connected. Any thread can be a consumer, any thread can be the producer.

Grid SuperScalar [101] (GridSS) is designed for the grid. GridSS execution is based
on multiple binaries running on multiple computers with files as only mean of
synchronization. The binary execution and file synchronization is based on the same
superscalar model to solve dependences from supersclar computers. The idea is that
these tools can be ported to all levels of the execution, even to the grid. Each
program of the GridSS is constructed as many small programs communicated
through files. The only communication performed between these small programs are
files. They use files as input, and files as output results, but there is no other kind of
communication of synchronization. All GridSS processes where controlled by a
single C program or Script which represents all binaries invocations as simple
function calls whose parameters and results are files. The GridSS runtime controls
programs distribution, file synchronization and copy and, in some cases, also
duplication and recovery. GridSS is not a streaming programming model and its
results are not as we understand streaming. But it is very close, each program is like
a kernel, and it also has the capacity to work on a heterogeneous environment where
some programs can only be computed on some architectures and some
communication lines are faster than others. The only thing which does not converts
this programming model to streaming is the lack of capacity to create stable
communication channels: each function invocation is independent and the runtime
creates its dependence when is executed. When the program is executed,
dependences disappears and no structure can be reused.

The Cell SuperScalar [102] (CellSS) programming model is based on annotations
and targets heterogeneous and distributed memory multi-cores. It is also based on
the same principle of GridSS and it also uses the same proposals: superscalar model
to solve dependences from supercomputers can be ported to all levels of the
execution. In this case, instead of having small programs, CellSS uses functions. This
functions declarations are annotated with OpenMP like directives, these annotations
complement the C definition of a function in order to express if any array parameter
value is for input or for output. Arrays are like GridSS files, and the same rules are
also applied. In this case, the serial program executes normally. When a function
with its declaration annotated is reached, the CellSS computes function dependences

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

4. Related Work 105

and schedules it to be executed in any of existing available resources. The same from
GridSS similitude and differences are applied. In this case CellSS uses some kind of
true streaming if the same function is called many times, it transfers the data and
results continuously from parallel functions, or it even creates direct transfers
between cores. The main drawback of CellSS is the scheduling. While GridSS works
over network and scheduling overhead is negligible, CellSS works inside the same
processor. Communications inside the processor and computations are so fast that
the overhead of scheduling is very significant. It is possible that there is room for
many optimisations, but because the model does not observe tasks as a persistent
kernels consuming a stable flux of data, it must reschedule functions and data flows
each time that an annotated function is reached.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Chapter 5. New Contributions

The aim of this thesis is to create or adapt a programming model in order to make
multi-core processors accessible by almost every programmer. This objective
includes existing codes and algorithms reuse, debuggability, and the capacity to
introduce changes incrementally. We face multi-cores with many architectures
including homogeneity versus heterogeneity and shared-memory versus
distributed-memory. We also contribute by exposing real algorithms and
applications and showing how some of them can be used for quasi realtime
applications. For each section we present one step of this research, we introduce
which publications support our thesis, and we expose our contributions.

Section 5.1. Multi-Processor Tools Over Multi-Core Homogeneous
Shared Memory

Contributions exposed on this section were presented in publications [1] and [3]. The
former relates to the optimisation of multi-core architecture and optimisation of the
OpenMP execution and its viability on multi-core homogeneous processors. The
latter relates to the use of multiple levels of parallelism in order to take advantage of
tight communications of multiple threads of the same core.

Multi-core processors and OpenMP. In [1] we demonstrate the viability of the multi-core
processors and we relate its viability to the existing multiprocessor architectures. Previous
work ([60]) had shown the possibility of executing OpenMP over the many-core
(multi-core with many cores) IBM BlueGene/Cyclops architecture, but its results did

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

108 New Contributions

not shown a good scalability. Using this previous work as a basement we do a
scalability analysis, a cache usage study, analyse bottlenecks, and propose two
solutions in order to increase parallelism. As a result we demonstrate the viability of
multi-core for running OpenMP programs by showing a good scalability.

Our first step is to reproduce original experiments and run a scalability study. We
present a study of scalability using NAS 3.0 benchmarks [40]. For each benchmark
program, given a variable number of threads, we compare the behaviour to the serial
version of the benchmark with no parallel overhead. Comparisons are measured as
speedups. Programs are executed from 1 thread to the maximum of threads of
parallelism available for each program. Most of the benchmarks fails to scale
properly as they were expected in basis of multiprocessors results.

We present a detailed statistics of the cache behaviour of analysed programs.
Many of previous work has spotted the cache as the bottleneck for multi-core
processors ([68], [70-72]). We present a statistics of how programs access to caches.
For each program we show its characteristic signature in the cache usage. We also
present statistics about cache hit ratio and access counts. These statistics are also
presented and shown for a varying number of threads, showing how the use of
threads impacts on the use of the cache.

We present an analysis about how cache affects to the program execution on
multi-core. By examining previous results, we establish that threads, program stack
mapping, cache organization and cache associativity are highly relevant. We state
from experiments that with the same program, and the same input, if we increase the
number of threads the number of cache hits decreases. Program characteristics
presented shows that program threads stack mapping has a relevant effect on the
diminishing of cache performance. Used architecture helps us to evaluate how large
caches (like L2 caches) are related to the program performance. We show that the
associativity of the cache is critical, there is a high number of cache conflicts and the
associativity requires to be related to the number of hardware threads. Results shows
that a 4-way cache is good for 1 thread but not for tens of threads.

Previous analysis and results spotted that cache was effectively the main issue
which prevents multi-core performing good results. We focus on the proposal of
realistic solutions. Solutions can modify the software, or can modify the hardware
solutions. Our solutions have been ensured to be realistic. For example, we have

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.1. Multi-Processor tools over Multi-Core Homogeneous Shared Memory 109

avoided solutions like: having 4-way associativity is good for 1 thread, so for 128
threads we need 512-way associativity (128 x 4). Even if such cache can be
implemented, the cost of the implementation is too expensive. The objective of our
solutions is to avoid increasing the associativity.

We present that program stacks behaviours is one of the most relevant problems.
Analysis of cache behaviours had shown that one of the most relevant effects on the
cache misbehaviour are accesses from program stacks. Usually operating system and
all libraries tries to align structures to multiples of powers of 2. We have proven that
this behaviour, unfortunately, is catastrophic: many stacks are aligned in the same
cache-line, so their execution conflicts. In addition, as happens with most of the
OpenMP programs and other programs with regular parallelism, executions of all
threads follows approximately the same execution path. It results in a catastrophic
behaviour because all threads collides on the same cache lines simultaneously. This
problem increments with the number of threads, given that the number of thread
stacks increases, and as a consequence possible conflicts increase.

First solution presented is to modify how stacks are placed in order to avoid
conflicts. We propose to introduce a dis-align relative to thread stacks themselves in
order to avoid stack accesses collisions. We show that a determined dis-align
between stacks can place these stacks strategically in order to avoid collisions.

Second solution proposes to change cache scrambling function in order to
distribute stacks across different cache region. This solution has three objectives:
avoid stacks cache conflicts, localise stacks closers to the core responsible for that
stack and avoid data parallelism conflicts. As our target architecture cache has
different latency depending of the thread location, we will locate stacks closer to its
threads and study the effect. Data parallelism slices large data into a regular blocks,
if this blocks are multiples of the cache size there can appear also a conflict between
threads on cache access. Cache scrambling function is the responsible to decide,
given a memory access address, which cache line storage is responsible for given
address. If cache is 4-way associative and scrambling functions sends 5 accesses to
the same cache line storage, one access is discarded. Usually, the scrambling function
discards the bits which references a byte inside a cache line, and uses the number of
cache line storage to get the following lower bits. This create a modulo space which
accesses cache line storages at reasonable distance may collide. We change

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

110 New Contributions

scrambling function in order to use higher bits corresponding to the stack spacing.
This solution have better performance than the software solution and it satisfies all
three objectives.

As a result and thanks to all the analysis we conclude that multi-core can be
effectively used by providing the tools required to increase the performance of
applications on many-core processors.

Multi-core processors and multi-level parallelism. In [3] we demonstrate that multi-
level parallelism programs can take advantage of multi-core processors characteristics.
Previous presented work we have proved that OpenMP can achieve good
performance on multi-core BlueGene/Cyclops architecture. This work tries to go one
step further and achieve an even better performance by using a program which
parallelism mimics multi-core architecture. As part of this research we have re-
analysed previous results, ported multi-level parallelism programs to the multi-core
architecture, we ported and effectively use the OpenMP compiler for nested
parallelism, we studied programs and how the distribution of work affects to the
performance, and we determined under which parameters is better to share cache
for inner parallelism. We use previous research in order to have an optimised
infrastructure.

The placement of the most used stack section is critical and OpenMP can help to
detect it. We based our experiments in previous hardware solution for a good
performance. We have discovered that parallel 1 thread execution is faster than serial
programs (which has no overhead for parallel zone creations or further
synchronizations). As part of the analysis we have discovered that as part of our
solution the OpenMP runtime places new threads aligned to the closer cache. As a
consequence, when the application spawns one thread as part of a parallel region,
the stack for the new thread is mapped strategically on the cache. Usually, parallel
regions encloses the most critical and time consuming tasks. These tasks are now
perfectly aligned and can use effectively closer cache. We have discovered that
OpenMP allows to realign stacks in order to place critical functions on closer caches
for each core.

We port the OpenMP implementation for multiple levels to a multi-core
architecture. There are previous versions of the OpenMP of multiple levels but none

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.1. Multi-Processor tools over Multi-Core Homogeneous Shared Memory 111

ready for multi-core. We adapt the NthLib [57] extension for multiple level, included
the support for the experimental groups clause [58] (described above in section 3.4.
tools). Within the modifications we finish the porting of two kinds of spawning
parallelism of NthLib and we also add architecture dependent primitives for
synchronization and idle threads. The latter implies that spin-locks (often used on
supercomputing) are complemented with directives to sleep waiting threads.

We port NPB-MZ 3.0 for OpenMP to a multi-core architecture. We use our
OpenMP compiler to compile the multi-zone benchmark for the multi-core
environment. We test it, we verify results and, in addition, we also modify
benchmark programs to take advantage of experimental groups clause. We focus con
class W.

We run an extensive benchmarking of NPB-MZ including 4 parameters and 3
statistics and present a summary of results. We run the three programs included on
MZ benchmarks: SP-MZ, BT-MZ and LU-MZ. Results from LU-MZ are not
presented due to its similarities to BT-MZ. For each program we vary the number of
threads used, the number of groups of zones (from 1 to 16 for the outer level of
parallelism, having total threads divided by groups as the number of threads per
group), and the distribution of user threads in hardware threads (using from one
thread per core up to four threads per core). As a results, we present statistics about
scalability (by varying the number of threads and size of the groups), and statistics
about cache usage including application characteristics (including changes in the
number of threads and groups), number of accesses and which kinds, and cache hit
%.

We reveal that NPB-MZ BT-MZ and LU-MZ programs are limited by load
balancing up to speedup close to x30. Loop collapsing over code is required for a
better parallelisation. Our benchmarks use small classes and as a consequence they
are not designed to scale using a large number of threads. Benchmark SP-MZ
presents a good scalability, up to speedup of 90 by using 127 threads and only 32
FPUs. The main characteristic SP-MZ is the regularity in its parallel regions and a
good thread balancing. Each zone of SP-MZ has the same size and the execution time
is almost the same for all zones. BT-MZ and LU-MZ are unbalanced. We focus on BT-
MZ. We compute using limits on its for directives that there is a zone very large and
it is not sliced in enough threads. If we assume that the maximum number of threads

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

112 New Contributions

is used, the most time consuming thread of the BT-MZ requires 1/29 of the serial
execution time. As a consequence the maximum theoretical speedup is of 29. Our
results gives a speedup slightly better than 30, thanks to cache locality. Load
balancing limits speedup and parallel limits. We propose to perform loop collapsing
in order to increase the available parallelism and decrease the size of non-
parallelisable region.

We expose that as more threads we use, more accesses to cache are performed.
Our results shows that as we increase the number of threads it also increases the
number of thread accesses. We detect three reasons to increase the number accesses:
more stacks replicated, more pressure over shared variables, and more
synchronization operations. Each thread has its own stack, and its own variables.
Although many of variables are smaller because they have been distributed, many
others for temporal computations are replicated, and, as a consequence, the cache
usage. There is also a set of global variables, accessed by all threads. If we have more
threads, there are more simultaneous accesses for those variables. As a consequence
increases the number of accesses. At last, each thread must be synchronized with
other threads, most of these synchronizations are based on spin-locks, and all of
them are based on shared memory. As a consequence, the number of accesses and
collisions also increases.

Greater number of groups have better performance and less overhead. We test
benchmarks varying the number of threads and groups. For a given number of
threads, we test many group distributions. Results shows that experiments having a
large number of groups have better performance than experiments having a small
number of groups (with lots of threads). We detect that bigger groups requires less
communications and less expensive synchronizations. More groups also creates
smaller global data to share easing pressure over cache.

Experiments show that is better to share cache when there is a small number of
threads. We previously have determined that the greater is the number of threads or
lesser is the number of groups, greater is the number of accesses to the cache and its
conflicts. We have determined that with a low number of threads it is better to share
the same cache and the same core between all of them. We can use the same cache
for many threads to speed communications. But, when the number of cores
increases, the required amount of memory and cache pressure also increases, and as

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.1. Multi-Processor tools over Multi-Core Homogeneous Shared Memory 113

a consequence the number of cache hits decreases. At this scenario, it is better to give
a larger cache to each thread than try to reuse the same cache to speed
communications.

Section 5.2. Annotation Based Programming Model Over Distributed
Memory

Contributions exposed on this paper are presented in publication [2]. This
publication presents a novel comparison of MPI versus OpenMP but taking into
consideration MPI-like applications. We demonstrate that an application almost
prepared for MPI can be executed efficiently on a DSM system but with all the
benefits from de OpenMP programming. As an example, we take a nested
programming model and we intend to emulate the behaviour of a multi-core with
distributed memory between nodes.

OpenMP can be run efficiently on distributed-memory architectures. In [2] we
demonstrate that an OpenMP program can be as efficiently as an MPI program on a
distributed-memory architecture. MPI programs are designed to have low
communication rates (coarse-grain parallelism) and a great cohesion inside each
node (fine or medium coarse parallelism, if there is any parallelism). In addition, a
programmer also must deal with a distributed environment and distribution
primitives. We state that the same version of the algorithms can work on DSM
efficiently, but, in addition, MPI drawbacks as distributed environment or
distribution primitives are not required. In order to prove this, we optimise the
OpenMP at the DSM and parallelism runtime, but we do not modify the original
program.

As we have done on multi-core, we also port the OpenMP with support to
multiple levels of parallelism to a DSM. As we have done before we base our porting
on an existing DSM and already ported NthLib. Existing ported libraries only
supported one level of parallelism. We implement the additional support for nested
parallelism and groups clause.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

114 New Contributions

We port NPB-MZ 3.0 for OpenMP to DSM. We port the multi-zone benchmarks,
but we will focus our research on BT-MZ. This benchmark presents (as LU-MZ) a
irregular zone shapes which creates challenges relative to load balancing.

We execute BT-MZ and present traces for analysis. We present a trace of memory
accesses and a trace of tasks execution of BT-MZ class A. Trace memory allows us to
detect conflicts in thee zones: thread stacks, NthLib runtime library (due to locks and
synchronizations), and global data of the program. We present two kinds of analysis
of BT-MZ task executions: one with a maximum of one node for each zone, and
another one for two nodes for zone 16 (the zone computation is split among two
nodes). We determine that spliting zones creates so many communications that it can
not run efficiently (the execution time almost doubles).

We present an optimisation for work distribution. As part of the memory-accesse
conflicts come from stacks and from synchronizations, we decide to re-implement
NthLib runtime library to handle remote communications. The optimisation is
performed for nano threads (threads with stacks). This optimisation consist in: 1)
creating a work-descriptor for the task (it includes the function to execute and stack
parameters), 2) sending of the descriptor through network to the corresponding
node, and 3) replacing finalisation synchronization by a message from the executing
node to the parent node. This optimisation removes almost all memory conflicts
from stacks and conflicts from the library.

We optimise runtime library synchronization primitives to use message locks
between nodes and spin-locks inside each node. Previous implementation of DSM
and NthLib based all locks on messages, so their implementation are fast to
synchronize multiple nodes. But this implementation is slow to synchronize threads
inside the same node due to message passing overhead. We implement a double lock
system: spin-lock for local locks and remote-lock to synchronize remote.

We optimise paddings inside application to consider a page as a line size. Most
multiprocessor programs consider the line size in order to avoid false sharing
conflicts. Usually small paddings are added to align data structures to line size (just
few tens of bytes). DSM library uses page faults to emulate shared memory, so we
might consider a page size as a line size. As we have detected conflicts in the use of
global structures, we modify paddings from program structures to assume that the

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.2. Annotation based Programming Model over Distributed Memory 115

line size is the logical memory page size. It removes all conflicts from structures not
involved on zone borders communications.

The maximum speedup for BT-MZ class A is obtained with 5 nodes. We present
traces of the execution of BT-MZ. We have determined that execution time of zone
number 16 takes 1/5 of the whole serial execution time. As a consequence, if we want
to keep zones inside nodes (in order to exploit coarse grain parallelism), the
benchmark execution time can not be faster than zone number 16 execution time. We
find that to split the zone number 16 into two nodes harms the performance.

Detection of reads for immediate updates does not help to split zones. We have
detected that a significant part of the overhead comes from reads before updates: the
program reads a value from a page, and immediately after it writes the result on the
same page. The problem is that the first time, it requests the page shared and it pays
one overhead. The second time it requests the page again, but for write permissions,
it pays the second overhead. We develop a predictor which uses the instruction for
read failed to annotate if there is an immediate update after. If the predictor has
recorded that a read should do a posterior update, it request the page for write
permissions and paying only one overhead. The effect of the predictor is almost
negligible.

The execution of the optimised OpenMP is competitive against MPI results. We
have evaluated the BT-MZ before optimisation, after optimisation and the same BT
program for MPI. We have compared the three executions. The first version before
any optimisation has not competitive results, but it scales. This demonstrates that
coarse-grain parallelism can be well supported on distributed-memory by OpenMP.
Optimisations have been proven to be very successful by achieving results
competitive to the MPI.

Better control over zone synchronisation and communication can increase
performance. Almost all unnecessary communications has been removed with
optimisation. The only synchronisation remained (shown in figure 6.6) are zones
update and access over some accesses to parent data. These updates are usually well
known by the user, as a consequence, the user can hint data transfers and
requirements. We propose the addition of directives to hint data sending and data
receiving instead of waiting the page fault.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

116 New Contributions

Section 5.3. Heterogeneous Modular Multi-Core Simulator

Contributions exposed on this section were presented in publications [5], [6], [11]
and [7]. We performed a tutorial of the simulator at conference PACT 2007. These
publications expose the design, the construction and the validation of a
heterogeneous-processor modular simulator. The simulator is built as blocks
connected by a glue which allows to change the configuration. The glue is the
memory-access abstraction concept which establishes a unique and common
protocol for all the modules and the main contribution of this thesis. This simulator
intends to cover the necessity to adapt and configure multi-core processors for
programs. The idea is to be able to find a trade off between peak performance and
usable performance.

Memory-access as the glue of the simulator. The memory-access is the cornerstone of
the design of the simulator, it provides a common framework to interconnect every module in
almost any configuration. As the multi-core becomes more complex, it can combine
many kinds of processors, but also can have a very complex memory hierarchy. Each
module can be any processor of any kind, a memory storage, or a complex bus, but
usually all of them, soon or later, communicates the same information: a piece of
data. Memory-access has been designed to mimic the behaviour of a IP network but
inside the simulator. As all modules must be designed to handle memory-accesses
packets, they can be interconnected in any distribution.

We reuse ports semantics from UNISIM but we present a unique interface for all
ports called memory-access. Modules can have many ports, but each port uses a
memory-access as interface. Modules have ports, for receiving data or to send data.
This behaviour is inherited for UNISIM infrastructure [64]. Unfortunately UNISIM
infrastructure is not sufficient to create a real modular simulator: all modules must
use the same protocol and interfaces. We have decided that all ports of our
infrastructure has only one type: a memory-access. Modules use ports to send
(output ports) and receive (input ports) memory-accesses. As part of UNISIM
infrastructure, input ports can reject the receiving of memory-accesses.

We require a set of addresses for each module. On a network, each node know
which address it has and programs knows the address of the node where to send
information. As part of the glue, we require each module of the simulator to have an

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.3. Heterogeneous Modular Multi-Core simulator 117

address range, and if it can route memory-accesses, neighbours addresses. Each
module will implement its functionalities based on memory-accesses to its own
address range.

The memory-access description is the source address, the target address, the kind
of access (read or write) and the data involved. The only interaction between
modules are these memory-access. The kind of access determines if there will be a
write command on a determinate address, or a data will be read from a determinate
address. If memory-access address destination matches with the current module, it
applies the memory-access command. Read commands usually fills the memory-
access data with the requested state, and returns it, using the source address as
target and write access. Write commands changes the state of the module with the
data provided by the memory-access.

We define routers or memory-accesses buses as modules connecting many
modules. Routers modules have many ports and for each port can have many more
modules, and consequently, many candidate target addresses. These modules must
have a list of target addresses and forward accesses to each module. Routing
modules should be able to send to any of their output ports the corresponding
memory-access, defined by the target address. Thus, as part of its configuration, in
addition to connections, it has output ports addresses. In addition, routers can
emulate pauses, delays, latencies, congestions, and any other

Our infrastructure is described around memory-accesses, not module
functionalities. Modules can be as complex as required, but the infrastructure only
emulates memory-accesses. This proposed infrastructure is designed to handle
memory-accesses. There is no restriction about module shape, functionalities or
timing. A module can be a functional simulator of a processor, a full simulator of
each functional unit, or just an interpreter of a trace from an execution. The only
requirement is to be able to produce and consume their respective memory-accesses
and emulate timing for a correct simulation of the whole system.

Full power processor simulator and infrastructure. In [5] we present the main building
blocks of the heterogeneous simulator and its functionality. We have developed a first
version of the simulator for the PPE and the memory hierarchy. We also develop the
OS emulation and the elf loader. PPE is verified by executing in the simulator the
“hello world” program. This publication also presents another independent

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

118 New Contributions

simulator focused on the Cell B.E. SPE built by another group of researchers. We
eventually fuse both works under our thesis infrastructure.

We design the simulator to be heterogeneous multi-core with PPE (common
processor) and SPE (accelerators). We implement each module following the
interface for the infrastructure based on memory-accesses. There are two processor
modules, one for the PPE based on PowerPC, and other for SPE based on Cell vector
processors.

The provided simulator is developed by two teams. There is one team for the
development of SPE and another for the development of the PPE. This publication
presents the simulator as two independent simulators not connected. The other team
implements the SPE. Our team is responsible for the PPE, memory hierarchy,
memory, and simulation configurability.

We implement a module for memory storage. This is a simple module which has
an array (to store data), and receives memory-accesses as operations to perform over
the array. This emulates a simple memory.

We implement the PPE and its memory-access interface. As part of the simulator
we develop the PPE. This is the functional simulator of the cell general-purpose core.
It is based on a PowerPC 405 with some additions of vector-instructions. The PPE
reads instructions from memory and interprets them. The result of instructions can
be a system call (resolved by the PPE itself) or memory-access to resolve load and
store instructions. In addition the PPE has special memory-access target addresses
for: set state and receive answers to read requests. State exposed registers contains
the PC and if the PPE is running or halted.

We provide an operating system emulation based on continuations and memory-
access for user space. We implement the operating system of the simulator based on
UNIX system calls. We allow the program to perform some actions as access to files
(or file descriptors as the standard output for debugging), get information, or even
call exit. System calls are executed in native code, but their parameters (data from
application address space) is acquired from the simulator using memory-accesses.
When a system call requires a data access from the simulated program, it executes
the system call on other context stack, and when an access is required, this is
emulated by the PPE by memory-accesses. While the access is being solved, the
context stack of the system call is halted. When the memory access finishes the

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.3. Heterogeneous Modular Multi-Core simulator 119

system call is resumed. No instructions are interpreted from PPE while the system
call is executing. This mechanism allows system call programmers to program the
system call without states in the same way that they can program it on any machine.

We provide an elf loader able to load static linked programs. We implement an elf
loader to load binaries based on static linkage. We do not support dynamic libraries.
The elf loader works as a system calls and uses memory-accesses to store binary and
data into memory inside the simulator (it does not need to know about the shape of
the simulator) and uses memory-access to program the CPU responsible to start the
execution. This elf loader is not modified since this stage, and it has been working for
many configurations of the simulator, proving the benefits from memory-accesses.

We decided an effective address space for applications of 32 bits and 64Kb for
page size and translation for effective to physical pages. We have decided these
parameters to simplify and speedup address translation. With 32 bits of address
space and pages of 64Kb we are able to create a translation table of 64K positions. As
the effective space is common for all the simulator, we use the mapping for all
simulator. The emulation of effective addresses is required by the elf loader, but also
it is required to map SPE memories or to map memory regions for double buffering.
Almost all communications inside the simulator are performed over physical
addresses as it should work on a real processor. Effective addresses are relevant for
processors simulators.

A simple “hello world” application is simulated. We implement this application as
a proof of concept that all the PPE system is working. The elf loader maps binary
into memory. It programs the PPE to the start PC and set the state running. The PPE
is able to execute the program and emulate its instructions. Finally the PPE performs
the write system call (printf function is performed by the native libc) and exit system
call.

Full Cell B.E. modular simulator. In [6] we present the simulator working and a first
validation of its behaviour. Previous work we have presented the PPE simulator and a
modular simulator infrastructure. We develop the compiling infrastructure, the
libspe and libpthreads compatibility, and the optimisation of the PPE to reduce the
execution time. Memory-accesses are adopted as a communication standard for all
the simulator. The team responsible for the SPE integrates their work in our
simulator and focus their effort on interconnection bus and MFC.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

120 New Contributions

Other team implements the EIB emulation and MFC using memory-accesses.
Their previous SPE simulator has not implemented the MFC and it was not based on
memory-accesses. They implement the EIB as a k-bus to interconnect modules using
memory-access and enabling a high degree of functionality. They also implement the
SPE DMA memory controller called MFC. They also map registers from MFC to be
accessed through memory-accesses.

We provide source compatible compiling infrastructure. We decide to not
construct a full system simulator and give compatibility to Cell B.E. programs
through source compatibility. Programs targeting the simulator must be recompiled
to use specific libraries created for this purpose.

We develop a library compatible with libSPE. Although the other team was the
responsible for the SPE, SPEs are programmed and controlled from the PPE. We
implement an interface compatible library for libSPE which simulates the
functionality of the library inside the simulator. This library has parametrized the
physical addresses of SPE modules in order to access them from the PPE. It maps
SPE physical addresses to effective addresses for the local storage (memory from
PPE) and for MFC registers. It loads the binaries for SPE kernels from files into PPE
local storage. It also programs (writes) MFC registers to start execution at desired
PC. It also queries MFC registers to be noticed when the execution finishes.

We develop a library compatible with pthreads library. The simulator is intended
to have more than one PPE in order to emulate a general-purpose multi-core. We use
pthreads (as we use on common processors) to start threads on other processors. We
implement pthreads library by satisfying its API in order to execute functions in
other PPEs. Our pthreads library has a list with PPE and its register states. When a
thread is created it modifies the PC and the state of a free PPE.

We implement a cache with invalidation protocol. We have to add cache support.
Not all memory accesses can be cacheable. We create a list (like the effective to
physical address map) which decides which physical addresses are cacheable and
which physical addresses are not. We implement a parametrizable cache. Cache is
able to invalidate its data if it receives an empty data for a memory address. Bus
must notify to the cache of such invalidations.

We perform a functional validate the PPE. We create a set of programs in order to
validate that the PPE has the expected behaviour. Programs emulates scientific

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.3. Heterogeneous Modular Multi-Core simulator 121

applications but also uses some specific simulator functionalities, as SPE
programming.

We perform a performance analysis of the simulator. Although the overhead
introduced by the UNISIM infrastructure, we have optimised the PPE to execute up
to 5 millions of instructions per second.

Validation of the heterogeneous and modular simulator. In [11] and [7] we present
the validation of the simulation and a proof of concept of its modularity. A simulator can
not be trustful if it is not well validated. In this publication we validate the simulator
against performance benchmarks. We also provide a some tested configurations.

As our first intention was to construct a Cell B.E. simulator we focus on Cell B.E.
simulators to validate its performance. The most important piece for the validation is
data communication inside the bus. We use the benchmarks from Jimenez et al. [92].
These benchmarks are focused on memory transfers from inside of the processor. We
compile the same benchmarks for the simulator and we execute. We compare results
in order to prove the correct functionality of the simulator.

We demonstrate simulator modularity. Although our first objective is to emulate
the Cell B.E. (the first massively distributed heterogeneous processor) we also want
to perform architecture exploration space with the compiler. We build several
possible architectures and we present it. Some of the presented architecture
configurations are the Cell B.E. itself, general-purpose multi-core, heterogeneous
modules with different kinds of accelerators or DMAs, multi-cores with scratch-pads
and caches for SPEs.

Section 5.4. Annotation Based Programming Model For Streaming
Applications

Contributions exposed in this section were presented in publications [4], [8], [9], [10],
[13] and [12]. These papers relate the construction of a OpenMP like streaming
programming model. We have designed a programming model for streaming
programs, and built a compiler demonstrate its viability. We present a programming
model able to take advantage of streaming characteristics presented by Gordon et al.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

122 New Contributions

at [99], but at the same time able to take advantage of existing code and
programmers.

The first version of this work was presented on the ACOTES meeting at
Eindhoven, October 2006 [103]. We just have presented some ideas developed in a
blackboard on summer of the same year as the starting point of a streaming model
based on kernels and communication flows.

Many publications presented on this section also talks about an Abstract
Programming Machine. This part belongs to Paul Carpenter. It presents an
abstraction of a streaming program and also an abstract processor architecture. The
idea of combining two works, the work on this thesis and the Carpenter's abstract
programming machine, is to make possible to the compiler to adapt the code to any
underlying architecture.

Basis for the OpenMP like streaming programming model. In [4], [8] and [9] we
present a programming model OpenMP like designed to build streaming programs from
serial programs. We use the OpenMP as a start of a streaming programming model.
We pursue the same benefits of the OpenMP and we use the same kind of
annotations to hint kernels and possible communications to the compiler. We
provide an algorithm to transform such annotations on serial code in order to
demonstrate that it can be performed. As a proof of concept of the result we also
provide some examples converted and analysed.

We present the first streaming programming model based on OpenMP. We design
a programming model able to take advantage of existing code. We assume that there
is no automatic parallelisation, and we do not require an expert knowledge of
streaming programming. The presented model is designed to be compatible with
OpenMP and it is also based on directives and clauses working on top of serial valid
code.

We implement almost all desired properties from OpenMP. Our programming
model is designed to have scalability, allow incremental parallelisation, portability
(in fact has better portability than OpenMP, due to there is no shared-memory
assumption), high level, performance oriented and data parallelism. Data parallelism
is implemented by computing multiple elements of the stream in parallel, it only can
be applied as on StreamIt if there is no state on kernels (we have solved this problem
on later works). It allows incremental parallelisation by allowing to identify kernels

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.4. Annotation Based Programming Model For Streaming Applications 123

one by one and creating and routing streams automatically based on serial program
semantics.

Only three main directives are required. In order to obtain an easy to use
programming model we define three core directives: taskgroup, task, and
input/output. Taskgroup directive (originally named pipeline) defines a region
where streaming tasks are contained, it allows to mix serial parts with streaming
parts. Task directive identifies the code of a streaming kernel. This kernel is executed
as many times as it has been reached on serial code. Tasks are persistent and they
keep their state between invocations. Input and output directives defines an input or
output port for a stream. It is based on variables whose value is received or sent.
Stream is created by the compiler.

We present an algorithm to transform the application based on directives. As part
of the demonstration of the viability of the programming model and as part of the
definition, we supply an algorithm which describes how to transform the
application. This application explains step by step how tasks are identified, ports are
added, and how stream connections are created automatically.

We present a method to optimise streaming graph. The result of the previous
algorithm can produce limited results: it can produce cycles in streams graph when
they are not required. We propose a method which can be easily implemented on
intermediate representation to remove unneeded cycles and optimise connections. It
exposes consumption and production from/to a stream as consumption and
production instructions. Consumptions are placed as soon as possible, productions
as late as possible. If a consumption and production of the same value are
consecutive, it creates a bypass.

We expose directives for explicit communications implementations. We present
input and output as task clauses and stand-alone directives. We state that if all input
and output directives are mandatory, produced graphs from the adapted original
algorithm are always optimised. This schema can be reused on DSM for explicit
communications.

We present a stream implementation with no locks. In order to make a proof of
concept we implement a stream library based on no locks. This library uses two
counters in order to determine the number of elements produced and the number of
elements consumed. Atomic updates are used in order to update values for

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

124 New Contributions

production or consumption. Consumer waits for elements if there are not present,
and given a buffer size the producer waits for enough room.

We implement tolower and worddhash as a proof of concept. In order to
demonstrate that the algorithm and directives are sufficient to build a streaming
application we transform two programs. We apply the algorithm manually to
tolower and wordhash algorithms and we developed parallel versions which uses
streams in its executions.

We present execution traces with different optimisations. We present Paraver
traces in order to show the program behaviour. We also present zooms of the traces
in order to show details. We have developed three versions of presented programs:
1) direct transformation by applying the algorithm, 2) stream graph optimisation by
applying optimisation method, and 3) optimisation by applying blocking to kernels.
The first version contains cycles, the second version remove cycles, and the third
version takes advantage that there are no cycles to enclose task kernels into loops
and reduce the number of communications.

Presented programming model is designed to generate the graph at compile time.
Our main objective is to define a programming model able to do the same
transformations that presented by Gordon et al. at [99]. For this reason the
programming model is designed to work at compile time (unlike OpenMP). The idea
is that almost all required transformations transforms binary code. Although these
changes can be performed by a very sophisticated runtime, the overhead can become
too expensive.

First definition of the programming model. In [10] we present the first definition of the
programming model, clauses and directives. Previous work has been focused on
presenting main semantics and directives, but there are many other functionalities
required by the industry not present on the previous work. We define all directives
and clauses of the programming model and theirs behaviour.

We present first formal definition for each element. This definition is inspired in
the OpenMP standard definition and includes detailed information about all
directives and clauses.

We define the first following directives: taskgroup, task, port (as a replacement for
standalone previous input and output directives), for_distribute (to use existing

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.4. Annotation Based Programming Model For Streaming Applications 125

loops as part of kernels control loop) and update (to update asynchronous pseudo-
shared variables).

We define the first version of clauses. Some clauses are deprecated on posterior
versions. We define the following clauses: input, output (to create ports), import,
export (to use user-managed streams accessible directly from programmers code),
target-input, target-output (to allow create explicit graph connections), firstprivate,
lastprivate, pivate (to handle state), async (to declare pseudo-shared variables),
shared (to declare real shared variable), requires (to specify specific properties
required by the code).

We define the acolib interface for program generation. Directives and clauses are
translated to a lower level library. Acolib is the definition of the primitives used by
the streaming program defined by directives. These primitives are designed to be
used as part of the intermediate representation of the compiler in order to be subjet
to low level transformations and optimisations.

We present examples of stream graph optimisation. We present many examples of
the utilisation of the programming model, their translation, and how their stream
graph is optimised.

Full definition of the programming model. In [13] we present the first definition of the
programming model, clauses and directives. Previous definition was the first step but
there was many requirements from stream programs not achieved. We define the
execution and memory model, new semantics to correct problems with state
definition and directives for an effective handling of data parallelism.

We define the memory and the execution model. We define the memory and the
execution for tasks. This model assumes that tasks can be created at the same time
that taskgroup streaming environment is reached. Tasks execution is driven by
control stream inputs. If no direct connections are performed, task kernel invocation
is performed as many times as serial program executes it. There are defined four
kinds of memory: private (private variables which value does not survive from one
invocation to another), state (private variables which values are kept between
invocations), pseudo-shared variables (variables whose values can be synchronized
between tasks, but synchronisation is performed lazily), and true shared variables
(as default OpenMP, they limit where task can be placed if two shares the same
variable).

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

126 New Contributions

We define programming model directives. We define the following directives:
taskgroup, task, teamreplicate (replicates computations to keep state up to date with
data parallelism), port, for_replicate, peek (maps an array to a stream queue),
update, check (ensures that a pseudo-shared variable value is updated), ivdep,
dividesby and aligned (to boost and guide automatic vectorisation).

We define programming model clauses. We define the following clauses :input,
output, bypass (enhance graph optimisation), private (private variables), state,
copyinstate, copyoutstate, initialisestate, finalisestate (for state variables, whose
initial value is obtained from serial program or it uses an initialisator or finalisator to
compute it), async, sync (for pseudo-shared variables), shared, team, inputreplicate
(enables and defines inputs behaviour for teamreplicate) and requires.

Although we have defined clauses for constants, they do not appear on this
specification. These clauses allow to define variables whose value is constant for all
the execution and it allows many optimisations.

We present an extended of the acolib in order to translate all directives and
clauses to intermediate representation. In this case some functions are proposed to
be exposed to the user to have better control of some processes.

The working version and demonstration of the programming model. In [12] we
present an almost complete working version of compiler and reference library of the
programming model. In previous works we have defined, studied, verified, and
iterated over the definition of the programming model. In this work we present a
fully functional compiler able, automatically without human interaction, to translate
a serial program with annotations to a streaming program. We also implement a
library able to perform almost all the acolib primitives in order to emulate a
distributed-memory processor and demonstrate its effectiveness. We evaluate serial
programs transformed into streaming, and we present a set of synthetic examples as
a guide of the programming model.

We annotate FMradio, Wifi 802.11a and FFD filter. As a demonstration of the
correct behaviour of programming model, compiler, and acolib we annotate serial
version programs of FMradio and Nokia Wifi 802.11a. We also extract the FFD filter
from the FMradio application as a stand-alone benchmark. All these programs are
compiled correctly using the compiler. We link to our acolib implementation in order
to demonstrate its functionality.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.4. Annotation Based Programming Model For Streaming Applications 127

We present an evaluation of the created streaming programs. We use serial
programs (ignoring directives) to evaluate the streaming programs. For each
program we study the capacity to correctly detect and create the application graph
(not published for Wifi program due to copyright restrictions), we execute with our
simulation to demonstrate that scalability is possible. We also demonstrate data
parallelism on the FFD filter.

We present an incremental construction example. We present the construction of a
streaming program from serial program step by step. A plain C serial code is first
annotated with the taskgroup directive which defines the zone to be streamised. It
allows to mix serial and streaming zones. Next step defines task kernels by adding
task directives. Finally we show how the graph is optimised.

We present an assisted loop blocking. We present the possibility to use the
for_replicate directive to reuse a task outer loop as a control loop of the task. It enables
direct loop blocking optimisation by ensuring multiples of number of invocations for
the kernel. One of the best utilities of the loop blocking is to have a good
vectorisation: automatic vectorisation is usually performed over loops with
independent iterations. This vectorisation can be ensured if tasks are prone to have
the same behaviour for all elements, and if those tasks are able to exploit data
parallelism.

We present the advanced state handling. We present state related clauses to
handle states. We present examples of state complex variables initialised and
finalised by serial code inside each task.

We present asynchronous update of variables. We present how some variables can
be updated remotely and checked. They help to give a kind of shared-memory view,
but the programmer knows that values are not always up-to-date.

We present how to use stream queue. The main challenge of this option is how to
access to specific hardware as stream queues but reusing at the same time serial
code. We show how the peek directive is able to use an existing array as the stream
queue. Peek reduces the overhead of copying stream queue and at the same time it
reduces the required state variables.

We present data parallelism support for tasks with states. We present an example
which is able to exploit data parallelism and use at the same time state variables.
Presented example illustrates the utilisation of the teamreplicate directive and the

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

128 New Contributions

inputreplicate clause. The execution trace of the example is also shown to illustrate
the mechanism.

We present how elements are balanced between two data parallelised tasks. Each
task that exploits data parallelism creates multiple instances of the same task. Each
instance is computing a part of the input data. This data is distributed across all
instances in order to have load balancing. If we have two consecutive tasks
exploiting data parallelism, and they have a different number of instances, results
must be communicated in order to ensure load balancing. We define and show
module computations in order to select how to send each result.

In addition, presented as part of these work, we want to emphasise three more
contributions: a solution for consumer/production ratio, collaboration in the
Multicore Streaming Framework, and the implementation of the FMradio.

We provide a solution for the consumer/producer ratio. One of the most
important problems is the consumer/producer ratio. Almost every streaming
programming model suffers from this problem. Usually stream programs are
designed as a circuit: there are many components connected and each connection is a
flow of electrons. But there is a problem, on streaming problem there are not almost
infinite flow of electrons, there a finite set of data. Most of streaming components
define a ratio between production and consumption. This ratio define how many
elements are produced related to how many elements are consumed. It should
ensure that no problems like one component receiving data from two flows, but
consuming one of the flows at half peace. If it happens a data overflow, then data can
be lost. This effect can be seen on most of video decoders as a lack of synchronisation
between audio and video solved by stopping and playing again from the current
point. The solution proposed by other programming models is to ask to the
programmer to be careful. Our solution is easy: follow serial program semantics.
This effect is impossible on serial programs, so its conversion to streaming does not
break this semantic and programmer is protected against these failures.
Nevertheless, we allow expert programmers to create direct connections. In this case,
consumer/production ratio problem can appear, but it will be created by the expert
user, not by the average programmer.

Collaboration in the definition of the IBM Multicore Streaming Framework (MSF).
As final stages of this work we have collaborated with IBM Haifa research labs in

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.4. Annotation Based Programming Model For Streaming Applications 129

order to use MSF as a back-end for our streaming programming model. We have
defined the only requirement to interrupt a task and resume later, as part of the
requirement for incremental streaming program construction.

We write the serial version of the FMradio. We have as a reference application the
FMradio, an adaptation from the GNUradio source. The problem is that this
application was developed as streaming application, with explicit streams and tasks.
We have converted the FMradio from streaming program to a serial program, able to
work on serial. The serial version developed by us of the application is used later by
the literature as their reference implementation.

Section 5.5. Graph Matching On Current Architectures

Contributions exposed on this section were presented in publications [14], [16] and
[15]. All three papers are related to the parallelisation of graduated assignment
algorithms targeted to desktop processors, focusing low power architectures. Our
target processors are either main processor and graphic processor. The firsts two
papers relates to the parallelisation of the graduated assignment graph matching
algorithm. The third paper is related to the parallelisation of the common labelling
algorithm.

Graduated Assignment Graph Matching Parallellisation. In [14] and [16] we perform
two parallelisations of graduated assignment graph matching for low power consumption
architectures. We present a methodology to transform an algorithm into a parallel
algorithm: we use two basic transformations, loop tiling and reordering, and three
OpenMP like primitives for parallelisation. We also determine for the graduated
assignment algorithm that we require two different parallelisations: one focused on
large graphs, and another focused on multiple small graphs. For each parallelisation
we apply the methodology step by step. Resulting algorithms are implemented and
compared against the serial version.

We present two OpenMP like directives to express parallelism in two levels.
Parallelism on NVIDIA CUDA have a duality of strategies: coarse grain parallelism
for loosely coupled task, and fine grain parallelism for highly coupled tasks. We

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

130 New Contributions

develop a hybrid OpenMP like directive, based on OpenMP for directive, which
allows to express data parallelism. This directive allows to specify if the specified
level is block parallelism (coarse-grain parallelism) or thread parallelism (fine-grain
parallelism). In addition we also add support to reduce operation. We contribute
with the required semantics to compile the same code by an OpenMP compiler, or by
a CUDA compiler. Reduction operation is implemented following the CUDA
reference implementation [104].

We present an OpenMP like directive to express local data on CUDA. CUDA
programming model provides block memory, which is assumed that has a very low
latency and can be accessed by all threads of the same block. This is a private
memory, not supported by OpenMP standard (implies distributed memory). We
define an OpenMP like directive, inspired on previously presented peek directive
(see section 5.4.). This directive defines a region of a larger matrix to be copied to
local memory. It uses an access pattern to each index of the matrix to define when the
local copy is accessed. Optionally a set of permutation of indexes can be specified for
reordering dimensions of the sub-matrix stored at block memory. It allows to ensure
high-performance by data coalescence. Synchronization are added in order to ensure
that there is no data hazards. If statement contains any sub-matrix element
modification, it flushes the whole sub-matrix to main memory.

We present a methodology to transform serial algorithms to parallel algorithms.
There are many ways to transform a serial program into a parallel program. Many of
these techniques are applied automatically by compilers, but lack of information
prevents them. Although some algorithms can be completely transformed, or rebuilt
from scratch, to create a parallel new algorithm, we present a methodology based on
two transformations which helps to parallelise a program without changing its
semantics. Methodology is based on two loop transformations: loop tiling and loop
reordering. Loop tiling is usually performed automatically by parallel compilers and
run-times when a parallel for is executed (there are less processors than iterations
and a double loop is created). We use loop tiling technique to classify accesses by
sub-matrices. These accesses allow to restrict the amount of data accessed
simultaneously by all threads. This gives the change to use the block memory
efficiently. Loop reordering technique allows programmer to reorder loops, and to
expose required loops for parallelism. It gives a perfect control of executing threads,

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.5. Graph Matching on Current Architectures 131

and at the same time, this technique allows to fine tune the access to sub-matrices
and to reduce the amount of block memory required.

We have presented a parallelisation for large graphs. For the same algorithm there
are many parallelisations. In this case, we have presented a parallelisation oriented
to scalability based on the number of nodes of the graph. This parallelisation is
focused on the premise that the graph does not fit on block memory. We have a very
good performance and we also have been executed this algorithm for a very large
number of nodes. We have not found any literature showing the graduated
assignment graph matching of any graph as large as we present. This parallelisation
presents a very good performance and scalability. It only have a poor scalability for
small graphs.

We have presented a parallelisation for small graphs. We have seen that previous
parallelisation has a poor scalability on small graphs. In this case, we have presented
a parallelisation oriented to performance which graphs have a low number of nodes.
Under this premise we can assume that graph representation fits on block memory.
That means that the computation can be only performed by one block. In order to
take advantage of all present hardware, we do multiple small graphs matchings in
parallel. This algorithm parallelisation mimics NPB-MZ nested parallelism: outer
level has very coarse-grain parallelism with almost no communication, inner level
has a very fine-grain parallelism with coupled communication.

Graduated Assignment Common Labelling. In [15] we present a parallelisation of the
graduated assignment common labelling for low power consumption architectures. We
validate previously presented methodology to transform an algorithm into a parallel
algorithm. In this case we determine that even small graphs are able to extract good
performance if there are enough graphs to create the common labelling. We present
the performance and the scalability of the resulting algorithm. The resulting version
of the algorithm presents the same results of the serial algorithm.

We validate the previously presented methodology. Although the current
algorithm is also based on graduated assignment, the algorithm is different and so
its parallelisation. We use the same tools presented on the previous work. In this case
we use the methodology to merge and split some parts of the algorithm to create
highly coupled kernels. We use loop reordering to find common loops on many
parts of the algorithm to merge them. In addition, we split some parts of the

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

132 New Contributions

algorithm by loop fission. After all modifications, the resulting parallel algorithm has
the same result than serial algorithms.

We have validated previously presented directives. We have used the same
semantics from directives presented in [16] to express algorithm parallelism. These
annotations have been useful to express parallelism and understand parallelism
consequences.

We have presented the graduated assignment common labelling parallel
algorithm. We have presented the parallel version of the algorithm and how we have
applied the methodology to obtain it. The parallelisation is presented in two kernels.
The first kernel computes an auxiliary introduced variable, this kernel parallelisation
is very close to the graduated assignment computation. The second kernel computes
the common labelling, the exponentiation, and performs the normalisation of the
result.

We present performance and scalability results. We have implemented the
sequential algorithm and the proposed parallel algorithm. Both algorithms have
been tested over a GPGPU parallel architecture and over a generic Intel architecture.
We have used two databases to obtain algorithm performance. We execute the
algorithm on a low power architecture and we show the performance and scalability
for each data set used.

Section 5.6. New Tools

Contributions exposed in this section are available as GPL licensed software. Almost
any research or experiment requires a tool to perform required demonstrations. In
this thesis, we have used two types of tools: computers and software. We have tested
high performance computers (expensive) and common desktop computers (non-
expensive). The cost of software depends on licence and its accessibility.

In this section we present a set of tools and software available to the scientific
community. Although in the beginning, we do not put a great effort to make our
tools publicly available (most of them provide from already existing non free tools),
in the lasts stages of this thesis we licensed new created tools with GPL in order to

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

5.6. New Tools 133

make them free and publicly available. We only regret not to find/apply a license to
force tools modification distribution if a paper is published using such tools.

Some of the tools with no free license constructed are: IBM BlueGene/Cyclops
simulator add-ons to obtain cache usage statistics and the simulation of the
hardware solution, the port of nested parallelism of NthLib to IBM
BlueGene/Cyclops, the port of nested parallelism of NthLib to DSM, and the
optimisations over NthLib and DSM for nested parallelism.

Tools created with GPL free license which allows the community to create new
research on top of them are: a tracing library, a portable light threads library, the
heterogeneous modular simulator, the pure serial FMradio benchmark, acotes
prototype compiler and acotes prototype runtime.

Mintaka tracing library. We have developed a library to take traces of programs.
This library provides an API to trace the application and generate Paraver traces. To
use this library the user must use ibrary definitions and link against it. This library
supports the tracing of states, the tracing of events, and the tracing of
communications. This library also has support for hardware counters, it is able to
flush automatically information related to hardware counters. In addition, the
library records flushes of the trace to the disc. Library timing function can be
replaced. Library also provides of support to synchronise clocks between multiple
machines. This library is fully configurable and it is designed to work
simultaneously on shared-memory and distributed-memory.

Portable light threads. We have developed a library in order to provide portable
light threads. We have implemented a library based on C calls longjmp, setjmp and
alloca to create non kernel threads. This library warps this calls in its API and allows
to create very cheap threads with no dependence with assembler. Lonjmp and
setjmp are used to save the context and change the contest of the current thread
execution, they act as scheduler. Alloca function is used to modify the stack pointer
to point to the stack of a new thread.

A validated heterogeneous modular simulator. We have developed a simulator as
part of this thesis. All the simulator is available under the GPL license. In this
simulator we have taken advantage of GPL license and we have used PowerPC 405
ISA implementation from other GPL project.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

134 New Contributions

Pure serial FMradio benchmark. Previously we have presented the original
FMradio. This benchmark was provided by Marco Cornnero of STMicroelectronics
extracted from GNUradio. The benchmark has structured as a set of functions and
data structures emulating streams. We have adapted this benchmark to create a pure
serial application with no emulation of streams. As the original GNUradio project
was licensed as GPL, the serial version of the benchmark kept this license.

Acotes streaming programming model prototype compiler. We have developed the
OpenMP like streaming programming model prototype compiler over the
Mercurium compiler on its first stages of development. The Mercuirum compiler is
an infrastructure designed to process C/C++ code with annotations and transform to
other C/C++. We have developed the Acotes prototype compiler over this
infrastructure. We provide of a compilation phase which transforms all annotations
into stand-alone functions and calls to the run-time. Source is designed in two layers
to separate stream program model from run-time. It is possible to change easily the
run-time to adapt to any other existing run-time.

Acotes streaming prototype run-time library. We have developed a library as a
proof of concept to support the acotes streaming programming model. This library is
built on top of pthreads and Mintaka library. It emulates distributed tasks with no
direct access to shared-memory. This library is able to create multiple tasks, stream
connections between them, and even support complex data parallelism.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Chapter 6. Practical Evaluation

Section 6.1. Multi-Processor Tools Over Multi-core

This section shows results supporting contributions exposed on section 5.1. Exposed
results and figures are extracted from publications [1] and [3]. In these results we
show the cache impact, the performance and the scalability of benchmark programs.
Results validate proposed optimisation, expose cache statistics, and nested
parallelism behaviour.

In [1] we study the viability and we expose that multi-core architecture can run
efficiently programs designed for multiprocessor architectures. Previous work of
porting OpenMP to multi-core [60] architecture has shown that multi-core is able to
execute OpenMP applications, but performance was not as good as expected.

We develop a set of experiments and metrics based on OpenMP and a multi-core
architecture. Our target benchmarks are NPB for OpenMP [40] (described at section
3.2.). Target architecture is IBM BlueGene/Cyclops [45] (described at section 3.3.).
The base environment is NthLib [57] and the OpenMP NanosCompiler [55]
(described at section 3.3.). We have executed benchmark programs in the original
OpenMP and IBM BlueGene/Cyclops environment and we compare its behaviour
against two improved environments proposed.

Figure 6.1 shows the cache behaviour for the MG class W program. We can see
that the original version has a bottleneck on cache 29, and the number of threads
decreases the cache hit % ratio. Proposed optimisations solves the cache problem
satisfactory. Software solution has a better cache hit ratio, but threads stacks are

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

136 Practical Evaluation

placed far from the executing thread (column 1, highest bars). Hardware solution
has good cache hit ratio, but not as good as software solution. In this case we can
observe that access to cache 9 to 19 (accesses to global data) are higher, it degrades
cache hit ratio. In the other hand, hardware solution stacks are close to its threads,
low latencies compensates the loose of cache hit ratio.

NPB Class W, program MG
Cache Usage Characterisation Cache Hit %

O
riginal V

ersion

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

data cache

m
ili

o
n

s
o

f a
cc

es
se

s

4th

64th

85

87

89

91

93

95

97

99

1 2 4 8 16 32 64

threads

ca
ch

e
h

it
 %

Sof
w

are
O

ptim
isation

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

data cache

m
ill

io
ns

 o
f a

cc
es

se
s

4th

64th

85

87
89

91

93

95

97

99

1 2 4 8 16 32 64

threads

ca
ch

e
h

it
 %

H
ardw

are
O

ptim
isation

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

data cache

m
ill

io
n

s
o

f a
cc

es
se

s

4th

64th

85

87
89

91

93

95

97

99

1 2 4 8 16 32 64

threads

ca
ch

e
h

it
 %

Figure 6.1: Cache behaviour for the MG Class W program in the IBM BlueGene/Cyclops
architecture.

Figure 6.2 shows the speedup of the Class W NPB benchmarks. Although the
Cyclops has 32 cores (like a multiprocessor of 32 processors) we can observe that
original platform performance is far away of expected of 30. The software solution
improves the performance of all benchmarks, the gain is between 10% and 70%
depending of the application. The hardware solution improves in all programs but

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.1. Multi-Processor tools over multi-core 137

CG, performance improvement is between a 40% and a 100%. CG has best
improvement on software solution. BT has an impressive improvement on the
hardware solution.

NPB Class W
MG and CG LU, SP and BT

O
riginal V

ersion

0

5

10

15

20

25

30

35

40

0 16 32 48 64

threads

sp
ee

du
p

mg
cg

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30

sp
ee

d
up

lu
sp
bt

Sof
w

are
O

ptim
isation

0

5

10

15

20

25

30

35

40

0 16 32 48 64

threads

sp
ee

du
p

mg
cg

0

5

10

15

20

25

30

35

0 10 20 30

threads

sp
ee

du
p

lu
sp
bt

H
ardw

are
O

ptim
isation

0

5

10

15

20

25

30

35

40

0 16 32 48 64

threads

sp
ee

d
u

p

mg
cg

0

5

10

15

20

25

30

0 10 20 30

threads

sp
ee

d
up

lu
sp
bt

Figure 6.2: Scalability of the NPB programs Class W in the IBM BlueGene/Cyclops architecture.

In [3] we study how to take advantage of multiple threads sharing the same core
(and core resources) by using two levels of parallelism: one for coarse-grain
parallelism and other for fine-grain parallelism. We expose that this kind of multi-
level parallelism can exploit the underlying architecture. We analyse the
performance, the cache effect and the effect of coarse-grain parallelism and sharing
cores.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

138 Practical Evaluation

We present a set of experiments and metrics based on nested parallelism on
OpenMP and a multi-core architecture. Our target benchmarks are NPB-MZ for
OpenMP [41] (described at section 3.2.). Target architecture is IBM BlueGene/Cyclops
[45] (described at section 3.3.) with the modification of the hardware solution from
previous work. The base environment is NthLib [57] and the OpenMP
NanosCompiler [55] (described at section 3.3.). NthLib stack allocation policy maps
stacks into closer caches. Presented experiments have metrics to evaluate the
speedup of many configurations, to study the cache impact, and how to distribute
threads across cores.

NPB-MZ Class W Speedup

SP-M
Z

0

10

20

30

40

50

60

70

80

90

1
1

2
2

2
4

4
4

2
8

4
8

8
8

2
16

4
16

8
16

16
16

4
24

8
24

16
24

1
32

2
32

4
32

8
32

16
32

1
64

2
64

4
64

8
64

16
64

8
96

16
96

16
127

groups/threads

sp
ee

d
u

p

B
T-M

Z

0

5

10

15

20

25

30

35

1
1

2
2

2
4

4
4

4
8

4
12

4
16

5
16

4
24

5
32

8
32

5
48

6
48

8
48

12
48

16
48

8
64

12
64

16
64

8
96

12
96

16
96

8
127

12
127

16
127

groups / threads

sp
ee

d
u

p

Figure 6.3: Scalability of the NPB-MZ programs class W in the IBM BlueGene/Cyclops.

Figure 6.3 shows the speedup of the Class W NPB-MZ benchmarks. We have
focused on SP-MZ and BT-MZ programs. For each program we have executed it
from 1 threads up to 127 threads (the 128th hardware thread is reserved for
communication). Scalability of SP-MZ is really good, with 16 groups and 127 (almost
to 8 threads for each group) it achieves a x80 (three more times than SP no MZ
version, shown in the previous work). We can see that increasing the number of
groups increases the performance. Only 16/24 execution do not satisfy this condition,

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.1. Multi-Processor tools over multi-core 139

it does not balance well threads between groups. Unfortunately BT-MZ, as we have
explained (due to unbalanced tasks) has a maximum theoretical performance of x30.

Figure 6.4 shows the cache access of the SP-MZ varying the number of groups.
The first chart shows that the larger is the number of groups the smaller is the
number of accesses. This behaviour corresponds to the fact that the external level
involves more communications than the internal levels. With more zones, we have
smaller groups to coordinate and consequently less overhead. The second chart
shows the data distribution for 1 and 16 groups. We can see that both almost have
the same pattern of accesses, basically changes the scale.

SP-MZ Class W Groups Effect on Cache

0

200

400

600

800

1000

1200

1400

1 2 4 8 16

groups

m
ill

io
n

s
o

f
ac

ce
ss

es

32threads

64threads

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

data cache number

m
ill

io
n

s
o

f
ac

c
es

se
s

32 threads 1 group 32 threads 16 groups

Figure 6.4: SP-MZ groups effect on the cache of the IBM BlueGene/Cyclops.

Figure 6.5 shows the effect of the usage of multiple threads per core. We have
used the stride option from NthLib for Cyclops. With stride 1 we use four threads
per core, with stride 4 we use 1 thread per core. First chart shows the kind of
accesses to the cache given a number of threads and groups. We can see that given a
low number of nodes is better to use multiple threads per core. The next chart shows
the access pattern to the cache. Stride 1 has more accesses to the same cache, the

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

140 Practical Evaluation

number of local accesses are larger. Use stride 4 balances better the number of
accesses for each cache. Last chart compares a large execution of stride 1 against to
stride 4. Stride 1 concentrates many of the accesses into the firsts chaches, but with
stride 4, it is able to take advantage of the whole cache.

BT-MZ Class W Stride Effect on the Cache

0

50

100

150

200

250

4
4

4
8

4
12

5
16

4
24

8
32

groups / threads

m
ill

io
n

s
o

f
ac

c
es

se
s

local accesses stride 1 remote accesses stride 1

local accesses stride 4 remote accesses stride 4

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

data cache number

m
ill

io
n
s

o
f

ac
c
es

se
s

4 threads 4 groups, stride 1 4 threads 4 groups, stride 4

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

data cache number

m
il
li
o

n
s

o
f

ac
ce

ss
es

32 threads 8 groups, stride 1 32 threads 8 groups, stride 4

Figure 6.5: BT-MZ sharing threads on the same core effect on the cache of the IBM
BlueGene/Cyclops.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.2. Annotation programming model over distributed memory 141

Section 6.2. Annotation Programming Model Over Distributed Memory

This section shows results supporting contributions exposed on section 5.2. Exposed
results and figures are extracted from publication [2]. In these results we show
memory page distribution and access across nodes of a cluster, impact of coarse-
grain parallelism on distributed-memory and the performance of the proposed
solution. Results validate our proposal to use OpenMP and coarse-grain parallelism
on the software-distributed-shared-memory.

We have developed a set of experiments and metrics based on OpenMP and a
distributed-memory architectures. Our target benchmarks are NPB for OpenMP [41]
(described at section 3.2.), more exactly the BT-MZ Class A. Target architecture is the
Kandake machine (a cluster of Pentium computers connected by a Myrinet network,
described at section 3.3.). The base environment is NthLib [57], the OpenMP
NanosCompiler [55] and the NanosDSM library [63] (described at section 3.3.). In
addition we have traced experiments with libFASTparparaver and visualised with
Paraver [61].

BT-MZ Class W Unoptimised DSM Page Misses

BT-MZ Class W Optimised DSM Page Misses

Figure 6.6: BT-MZ Class W memory map of page misses for each node on a SDSM.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

142 Practical Evaluation

Figure 6.6 shows a trace for the page misses of program BT-MZ on a DSM cluster.
Each row represents a node, each column a range of program effective address
space. Each square shows how many page misses are present on a given node and
for a given address range. White squares are no page misses. Light squares presents
some page misses, and dark squares presents a large number of page misses. Left
squares are the program variables in global memory, central squares are NthLib
runtime variables, and right squares are thread stacks. First trace is the
corresponding for the unoptimised execution. Second trace is the corresponding for
the optimised runtime. We can observe in the second trace that almost all page
misses have disappeared. Only remains some page misses in the right
(corresponding to basic parameters for all threads, almost negligible), and left misses
(corresponding to zone borders synchronisations). We advocate to use streaming like
directives to communicate results directly.

BT-MZ Class A Zone 16 Execution Timing on one Node

BT-MZ Class A Zone 16 Execution Timing on two Nodes

BT-MZ Class A Zone 16 Execution Timing on two Nodes with Read/Write Predictor

Figure 6.7: BT-MZ Class A zone 16 execution timing.

Figure 6.7 shows the trace of the execution timing of each task of the zone 16 of
the BT-MZ program. Each trace has the same time scale and each row is one node.
Blocks inside the line represents different tasks for the processing of zone 16. Zone

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.2. Annotation programming model over distributed memory 143

16 execution time in one node is 3.099 seconds, the same zone, if we split the
execution into two zones, it requires 5.696 seconds. Last trace shows the zone splited
in two nodes and the action of the read with intention for modification predictor.
The execution time is 5.601 seconds. This time is slightly better than the original, but
anyway, it is more expensive that execute the zone in one single node.

Figure 6.8 shows performance comparative of the BT-MZ Class A in a cluster. We
compare the MPI version against the OpenMP. We have presented results of
OpenMP using two versions of the OpenMP, the original SDSM version
unoptimised, and the optimised version proposed in our publication [2]. Figure
shows that the original SDSM unoptimised is able to scale. Although its bad
performance, it has no slowdown. Optimised SDSM version has a very good
scalability. In spite of the fact that this solution is not as fast as the MPI version, the
difference is acceptable. The OpenMP version is easier to program and maintain.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 4 5

nodes

sp
ee

d
-u

p

MPI SDSM original SDSM optimized

Figure 6.8: BT-MZ Class A performance comparison for MPI and SDSM.

Section 6.3. Heterogeneous Modular Multi-core Simulator

This section shows results supporting contributions exposed on section 5.3. Exposed
results and figures are extracted from publications [6] and [7]. In these results, we
expose the behaviour of the CellSim simulator. This behaviour is compared to the
behaviour of the Cell B.E. processor.

We study the behaviour of the CellSim simulator based on the behaviour of the bus.
We have used [93] to replace the original Cell B.E. EIB interconnection bus with a k-

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

144 Practical Evaluation

bus. We use benchmarks from [92] in order to compare both executions. We have
recompiled with our libSPE in order to be executed inside the CellSim simulator.

Figure 6.9 shows the comparative between Cell B.E. bus performance against
CellSim simulator bus simulated performance. The CellSim configuration selected
has a k-bus of four buses. Memory transfers are more optimistic in the CellSim, this
is because we do not implement the memory interface. Cell B.E. chart shows that the
maximum bandwidth for single SPE with memory is limited (following charts shows
that the EIB does not have a 8GB/s limitation per one SPE). Although this difference
simulator behaviour is correct. The second group of charts shows the transfers for
many SPEs in a ring fashion: SPE0 sends to SPE1, which sends data to SPE2, …
which sends data to SPEN-1, which sends data to SPE0. This should be the most
efficient communication pattern, but it shows some transfer contention. Our k-bus of
4 rings simulates best results for many SPEs. Up to 4 SPEs it performs similar. Last
pair of charts represents couples of SPEs communicating point to point one with
each other. This is the most efficient communication pattern in Cell B.E. (as shown it
its chart). Cell B.E. is able to route multiple communications in the same ring if they
do not overlap. Our k-bus design is limited to 4 communications simultaneously,
and as a consequence it achieves its maximum bandwith with 4 SPEs. Although
behaviours are not exactly the same, performance patterns are close. Many of the
limitations presented by the k-bus can be solved by adapting the number of buses
involved. We can approximate the correct behaviour to each application. In addition,
we can not also rely on the scalability of Cell EIB bus, because, on the one hand EIB
details are not public and confidential, and on the other hand, nothing ensures that
Cell B.E. EIB behaviour is scalable to other chip configurations.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.3. Heterogeneous modular multi-core simulator 145

SPE Data Transfers Parametrised by Size
Cell B.E. Cell Simulator

SPE to M
em

ory transfer
C

ircular SPE to SPE transfer
D

ual SPE to SPE transfer

Figure 6.9: Cell B.E. versus Cell Sim SPE interconnection bus behaviour study.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

146 Practical Evaluation

Section 6.4. Annotation Based Programming Model Over Heterogeneous
Distributed Memory Streaming Applications

This section shows results supporting contributions exposed on section 5.4. Exposed
results and figures are extracted from publication [12] and [8]. In these results, we
show how the annotated programming model works, its characteristics, and some
performance benchmarks of the prototype (compiler and run-time). Results validate
proposed programming model, and exposes the capability of obtaining a good
performance exploiting many kinds of parallelism.

In [12] we have summarised all characteristics from the annotation based
programming model for streaming applications. Previous works to this
programming model have been suggested that annotations are able to extract good
performance, and at the same time, they are able to adapt parallelism for existing
programmers. In addition we also have seen that the performance can be increased
by exploiting coarse-grain parallelism and making explicit some communications.

We have developed a working prototype of the programming model. This
prototype is developed in C and C++. It is implemented in shared-memory. Our
target architecture is distributed memory, we have introduced limitations over the
prototype in order to simulate distributed-memory architecture characteristics. Our
compiler prototype is based on the MCXX Mercurium compiler (described at section
3.3.). It converts a C serial program to a streaming program. We also have executed
some of the working prototypes on a dual processor IBM Power5 with a dual core, in
addition each core has two threads. We have used Acolib prototype library as run-
time to execute resulting streaming programs. We have to remark that this library
does an emulation of distributed memory. This emulation has an overhead which
diminishes the maximum performance.

Figure 6.10 shows the scalability of two benchmarks in the prototype. This figure
focuses on task parallelism scalability. The speedup of FMradio is up to 3.5 due to
limitations on the FMradio tasks. There is a FFD task with a heavy unbalance which
limits the maximum performance. Nokia's Wifi 802.11a presents a good
performance. It is able to scale slightly better than the number of present cores. Both
programs are initially programmed as plain C, and later transformed into a
streaming programs by the compiler automatically. Prototype compiler and runtime

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.4. Annotation Based Programming Model Over Heterogeneous Distributed
Memory Streaming Applications 147

have performed all the transformation automatically. Resulting stream graphs of
both applications corresponds to the expected from a manual creation of the
streaming application.

1 2 3 4 5 6 7 8

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

FM radio

802.11a

threads

spe
ed

up

Figure 6.10: Stream programming model prototype scalability of FMradio and Nokia's Wifi
802.11a using only task and pipeline parallelism.

1 2 3 4 5 6 7 8

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

FFD 1,813

FFD 1,8130

task instances

spee
dup

Figure 6.11: Stream programming model prototype scalability of the FFD filter using only data
parallelism.

Figure 6.11 shows the scalability of the FFD filter task using data parallelism. FFD
filter corresponds to the most expensive task from the FMradio benchmark. We have
executed two versions of the FFD filter: 1,813 and 1,8310. These two versions are the
same filter but with different parameters. First parameters are the original FMradio
FFD filters parameters, second parameters are a more expensive configuration. This
figure shows how the task is able to increase its performance by exploiting data
parallelism. It increases the number of instances for each task. Each instance

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

148 Practical Evaluation

processes a distinct set of elements in parallel. First configuration shows a limited
scalability. This poor scalability is given by the overhead introduced by our run-time:
the runtime is not designed to execute as fast as possible streaming programs but as
a proof of concept. In order to verify that the scalability limitation is imposed by the
overhead of the run-time, we increase the size of the filter parameters. Results shows
on the second configuration that data parallelism is as effective on our stream
programming model than on StreamIt.

Figure 6.12 shows the scalability of the FMradio using task, pipeline and data
parallelism. This figure presents that the FMradio with data parallelism is able to use
effectively all four available cores. We have enabled data parallelism on the FFD
filter task, as a consequence the performance is improved. This figure is a conclusive
demonstration that our stream programming model is as flexible as StreamIt and it
can exploit the same three kinds of parallelism.

1 2 3 4 5 6 7 8

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

FM Team(1)

FM Team(2)

Figure 6.12: Stream programming model prototype scalability of the FMradio without data
parallelism (1) and FMradio with data parallelism (2) both using task and pipeline parallelism.

Figure 6.13 shows traces of the execution of a stream program generated by our
programming model. All of three traces use the same time scale. Light lines
represents communication synchronizations through streams. We show three
versions of the same program. The first version represents the unoptimized stream
graph version. This version has cyclic communications (this is represented by
crossed communication lines). There are some gaps in the execution, they are the
operating system scheduler. The second version is the same program but with an
optimised stream graph. In this case, communications have no cycles and we can see
that tasks finishes as soon as they have computed all input elements. The third

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.4. Annotation Based Programming Model Over Heterogeneous Distributed
Memory Streaming Applications 149

version is a modification of the second. It takes advantage of no cycles and do
blocking over communications. The third version sends a block of data instead a
single element. It warps kernel invocation inside a for-loop which can be unrolled
and vectorised. In addition, it also saves synchronization overhead by operating in
groups of data. As a result, the third version has a very good performance.

unoptimised
stream graph

optimised
stream graph

task blocking
applied

Figure 6.13: Paraver traces of the tolower benchmark as stream program.

Figure 6.14 shows the characteristics of the programming model by example. The
first group explains the transformation of a C standard serial program into a
streaming program. For each column, it shows the code, the task graph program
diagram, and an example of trace obtained in the execution. In this trace, P1 line
represents the time line of the main processor execution, and A1 and A2 lines
represents the time line of each of available accelerators. Arrows represents
communications between processors. Each column introduces a new concept for
better understanding the programming model. The last column shows the manually
graph optimisation. This step is explained separated by two reasons: 1) our
prototype compiler has limited information about variables usage (so method for
graph optimisation explained at [8] can not be applied automatically by our
prototype) and 2) it allows to explain better how ports are connected and how the
graph is optimised. Second part of the figure shows other features of the
programming model and some examples. Two of the most important features are

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

150 Practical Evaluation

stream peeking and data parallelism. Stream peaking allows to map an existing
array into a stream buffer. The array size defines window size and the initial content
of the stream buffer. It allows to save memory by reusing existing buffer, but it also
helps to stabilise consumer/production ratio: in contrast to StreamIt, it does not
require to fill the buffer with data from previous kernel activations. StreamIt by this
behaviour breaks consumer/production ratios making them variable, StreamIt
elements used to fill the buffer are not used to produce elements. Peek directive
orchestrates all peek and pop operations: when the peek directive is reached the last
element is effectively popped from the stream. Task fission helps to exploit data
parallelism. In this case we also explain how to exploit data parallelism when there
are state variables. Teamreplicate directive allows to replicate a computation in all
instances of the same task in order to keep the state updated. We also show how two
tasks with a different number of instances can distribute elements statically in order
to have a good load balancing and not loosing elements order.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.4. Annotation Based Programming Model Over Heterogeneous Distributed
Memory Streaming Applications 151

ﾺ

ﾺA2

ﾺ
A3

Task ffd

Task ffd

Task ffdh ffd h h

h h ffd h

h h ffdh

ﾺ
A4

Task fwrite

int main()
{
 char c, o, a[3];

 #pragma acotes taskgroup
 while (fread(&c, sizeof(c), 1, stdin)) {

 #pragma acotes task team(3) copyinstate(a[3]) inputreplicate(c) output(o)
 {
 #pragma acotes teamreplicate
 h(c, a)

 o= ffd(c, a);
 }

 #pragma acotes task input(o)
 fwrite(&o, sizeof(o), 1, stdout);
 }

 return 0;
}

Application
Taskgroup

Task
fwrite

Task ffd
Task instance

Task instance

Task instance

re
pl

ic
at

or

m
er

ge
r

P1 Application

A1

Taskgroup

h ffd h h

h h ffd h

h h ffdh

h ffd

h h

h hh

Exploits data parallelism
even with state by

computation replication

Task Fission

ffd

ffd

h

int main()
{
 int i, v, o, a[4]= { 0,0,0,0 };

 #pragma acotes taskgroup
 while (fread(&a, sizeof(a), 1, stdin)) {

 #pragma acotes port output(a[4]:bp_v)

 for (i= 0; i < 4; i++)
 {
 v= a[i]; // useless stream code

 #pragma acotes task forreplicate(i) \
 input(v:bp_v) output(o:bp_o)
 o= f(v);

 a[i]= o; // useless stream code
 }

 #pragma acotes task input(a[4]:bp_o)
 fwrite(&a, sizeof(a), 1, stdout);
 }

 return 0;
}

int main()
{
 int v, o, *buff, stats= 0;

 #pragma acotes initializer(buff) remove
 initialize_buffer(buff);

 #pragma acotes taskgroup
 while (fread(&v, sizeof(v), 1, stdin)) {

 #pragma acotes task input(v) output(o) \
 copyinstate(stats) copyoutstate(stats) \
 initializestate(buff) finalizestate(buff)
 {
 o= compute_buffer(buff, v);
 stats++;
 }

 #pragma acotes task input(o)
 fwrite(&o, sizeof(o), 1, stdout);
 }
 printf(“Item count: %d\n”, stats);

 #pragma acotes finalizer(buff) remove
 finalize_buffer(buff);

 return 0;
}

int main()
{
 float s, volume= 1.0;
 char c;

 #pragma acotes taskgroup
 {
 #pragma acotes task state(c) async(volume)
 while (fread(&c, sizeof(c), 1, stdin)) {
 if (change_volume(c, &volume) {
 #pragma acotes update(volume)
 }
 }

 #pragma acotes task state(s) async(volume)
 while (fread(&s, sizeof(s), 1, mic)) {
 #pragma acotes check(volume)
 s*= volume;
 fwrite(&s, sizeof(s), 1, spk);
 }
 }

 return 0;
}

int main()
{
 char c;

 while (fread(&c, sizeof(c), 1, stdin)) {

 if ('A' <= c && c <= 'Z')
 c= c - 'A' + 'a';

 fwrite(&c, sizeof(c), 1, stdout);
 }

 return 0;
}

int main()
{
 char c;

 #pragma acotes taskgroup
 while (fread(&c, sizeof(c), 1, stdin)) {

 if ('A' <= c && c <= 'Z')
 c= c - 'A' + 'a';

 fwrite(&c, sizeof(c), 1, stdout);
 }

 return 0;
}

int main()
{
 char c;

 #pragma acotes taskgroup
 while (fread(&c, sizeof(c), 1, stdin)) {

 #pragma acotes task input(c) output(c)
 if ('A' <= c && c <= 'Z')
 c= c - 'A' + 'a';

 #pragma acotes task input(c)
 fwrite(&c, sizeof(c), 1, stdout);
 }

 return 0;
}

int main()
{
 char c;

 #pragma acotes taskgroup
 while (fread(&c, sizeof(c), 1, stdin)) {

 #pragma acotes task input(c) output(c:bp)
 if ('A' <= c && c <= 'Z')
 c= c - 'A' + 'a';

 #pragma acotes task input(c:bp)
 fwrite(&c, sizeof(c), 1, stdout);
 }

 return 0;
}

Application Application
Taskgroup

Application
Taskgroup

Task
tolower

Task
fwrite

Application
Taskgroup

Task
tolower

Task
fwrite

P1
ApplicationTaskgroup ApplicationTaskgroup ﾺ

ﾺ ﾺﾺ

ﾺ ﾺ

Application

ﾺ

ﾺ ﾺ

Task tolower

ApplicationTaskgroup

Task fwrite Task fwrite

A1

A2
Task tolower

Plain C Code by
ignoring annotations

Annotated C Single File describes
tasks and graph

User assisted automatic
task graph construction

Mixes serial and
streaming code

Stream region definition

Strong reuse

Plain C Code

Incremental debug

Incremental construction

Automatic task code
isolation and blocking

Task definition

Each task has its own state
allowing complex initializators

State Handling

User managed
shared state .

Shared State

Application
Taskgroup

T1
T1I1

T1I2

T2

T2I3

T2I2

T2I1 1,4,7,.

3,6,9,.

2,5,8,.

1,3,5,7,9.

2,4,6,8,.

Application
Taskgroup

T1 Group 5
T1I1

T1I2

T2 Group 7

T2I3

T2I2

T2I1
1,2,3,4,5,
11,12,.

6,7,8,9,
10,16,17,.

1,2,3,4,
5,6,7,
22,23,.

8,9,10,11,
12,13,14,
28,29,.

15,16,17,
18,19,20,
21,35,36,.

Array elements are used to compute how to distribute iterations

Group Iteration Distributions

Reuse existing loops
as iteration loop blockign

Loop Blocking

int main()
{
 float v, o, a[3]= { 0,0,0 };

 #pragma acotes taskgroup
 while (fread(&v, sizeof(v), 1, stdin)) {

 #pragma acotes task copyinstate(i, a[3]) \
 input(v) output(o)
 {
 #pragma acotes peek(v;a)
 {
 a[2]= a[1];
 a[1]= a[0];
 a[0]= v;
 }

 o= a[0]*.25 + a[1]*.5 + a[2]*.25;
 }

 #pragma acotes task input(o)
 fwrite(&o, sizeof(o), 1, stdout);
 }

 return 0;
}

Reduce copy overhead
and stateless tasks.

Stream Peek

Figure 6.14: Streaming annotated programming model characteristics by example.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

152 Practical Evaluation

Section 6.5. Graph Matching On Current Architectures

This section shows results supporting contributions exposed on section 5.5. Exposed
results and figures are extracted from publications [16] and [15]. In these results we
show the performance and the scalability of three of our parallel algorithms. Results
validate proposed parallel directives, optimisations, and the need of specialised
kinds of parallelism depending the objective.

In [16] we study the parallelisation of the graduated assignment graph matching
algorithm. In previous works, we have seen the ability to express parallelism on
many architectures through OpenMP like annotations. In this work, we define a set
of directives to parallelise the algorithm and a methodology to transform a serial
algorithms into a parallel algorithms. We present two parallel algorithms of the same
serial algorithms. One for large graphs, and another for many small graphs. Results
shows that parallelisation for large graphs has a poor performance on small graphs.
But the solution for small graphs requires multiple graphs, and it is restricted to
small graphs due to limitations on GPGPU block memory.

We present the modification to the algorithm model for large graph
parallelisation. We use loop tiling and loop reordering techniques. We apply these
transformations to computation of the P and Q matrices presented in equation 3.4.
Applied transformations give the same final values but with a different equations.
The probability matrix P is computed as follows,

∀
c=0

R /B
∀
d=1

B
∀
k=0

R /B
∀
l=1

B
P pq

[a , i]=exp (β Qai
q
)

a=c⋅B+d ,i=k⋅B+l
(6.1)

we apply loop tiling to a and i loops obtaining loops c, d, k and l. This operation
divides the use of matrices P and Q into sub-matrices of sizes B × B.

We want to expose c and k loops for block parallelism, and d and l for thread
parallelism. Block parallelism is performed on outer loops, thread parallelism in
inner loops. We reorder c and k loops and d and l loops as follows:

∀
c=0

R /B
∀
k=0

R /B
∀
d=1

B
∀
l=1

B
P pq

[a , i]=exp (β Qai
q
)

a=c⋅B+d ,i=k⋅B+l
(6.2)

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.5. Graph Matching on Current Architectures 153

Now, it is time for matrix Q, we also apply loop tiling,

Qai
q
=∑

e=0

R /B

∑
f=1

B

∑
u=0

R/B

∑
v=1

B

P pq
[b , j]⋅C aibj

pq

a=c⋅B+d ,b=e⋅B+ f , i=k⋅B+l , j=u⋅B+v

(6.3)

we also reorder loops. In this case we want that inner loops match thread
parallelism dimensions, so we move f and v loops into the inner level:

Qai
q =∑

e=0

R /B

∑
u=0

R/B

∑
f =1

B

∑
v=1

B

P pq [b , j]⋅C aibj
pq

a=c⋅B+d ,b=e⋅B+ f , i=k⋅B+l , j=u⋅B+v

(6.4)

we replace Caibj
pq by its definition to obtain the following final expression:

Q ai
q =∑

e =0

R /B

∑
u=0

R /B

∑
f=1

B

∑
v=1

B

P pq[b , j]⋅Aa b
p ⋅Aij

q⋅C ai
pq⋅C bj

pq

a=c⋅B+d , b=e⋅B+f , i=k⋅B+l , j=u⋅B+v

(6.5)

We have present a hybrid programming model based on two directives similar to
OpenMP able to integrate semantics from OpenMP and CUDA language. As we
have stated, CUDA parallel implementations have a duality of strategies: coarse
grain parallelism for loosely coupled task, and fine grain parallelism for highly
coupled tasks. The former targets block parallelism, the latter targets thread
parallelism. Our parallel algorithm notation is designed to share the duality of
strategies with CUDA, but using OpenMP like directives. Our hybrid parallel for
directive can be used to define a coarse grain parallelism or a fine grain parallelism.
From equation 6.5 we parallelise e and u loops in the outer level (coarse grain
parallelism) and f and v loops in the inner level. We also add a parallel fetch directive
in order to use block memory. We use this directive to accelerate the access tu sub-
matrices of A and C matrices from equation 6.5 by using block memory. Semantics of
our directives are the following:

#pragma hy parallel for [into(threads)] [reduction(OP:r)]
for i0 ≤ i ≤ if do
 ··· for body
end for

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

154 Practical Evaluation

Hybrid parallel for directive executes the following for construct in parallel. Each
for body loop i iteration is executed in parallel. If into(threads) is not specified it is
equivalent to OpenMP parallel for directive for the CPU, or it defines a CUDA logical
space which i iterations are computed across blocks of the current grid (see figure
3.5) for a GPGPU. If into(threads) is specified, this directive is ignored on CPU, or it
defines a CUDA logical space which i iterations across threads of the current block
(see figure 3.5). If reduction clause is specified, a summarise OP operation is
performed over r variable. Parallel directives can be nested in order to create a multi-
dimensional logical execution space.

#pragma hy parallel fetch(m : s1 , ... , sD : o1 , ... , oD : i1 , ... , iD [: iσ (1) , ... , iσ(D)])
{ statement }

Hybrid parallel fetch is ignored on CPU and only has effect on a GPGPU. It allows
to specify which data is copied from main memory (see figure 3.1) to block memory
(see figures 3.5 and 3.4). All threads of the same block copy a sub-matrix of size s1 × s2

× . . . × sD from matrix m, which has D dimensions. This directive is inspired in peek
directive from ACOTES programming model [28]. The following statement replaces
all accesses to matrix m from origin indexes { o1 , o2 , ... , oD } plus offset indexes { i1 ,
i2 , ... , iD } by accesses to sub-matrix stored at block memory. Optionally, a set of
permutation of indexes { iσ(1) , iσ(2) , ... , iσ(D) } can be specified for reordering
dimensions of the sub-matrix stored at block memory. Synchronization are added in
order to ensure that there is no data hazards. If statement contains any sub-matrix
element modification, it flushes the whole sub-matrix to main memory.

We have evaluated the scalability of the parallel large graph matching. We have
implemented the corresponding serial version of the algorithm and the CUDA
version of the algorithm. We have tested serial algorithms over generic Intel multi-
core architectures, and we have tested CUDA version over NVIDIA GPGPUs. We
have selected architectures of different power consumptions in order to compare
results for embedded computing. Table 6.1 shows detailed characteristics of our
experiments (tests) for each architecture and algorithm. Generic processors are
multi-core, but serial algorithms are only capable of use one core and one thread.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.5. Graph Matching on Current Architectures 155

Table 6.1. List of algorithms and architectures evaluated.

Test Version Proc. / GPGPU GHz Power Cores Threads
Memory

Bandwith
SC1 Serial Intel Atom 330 1.6 8W 2 4 5 GB/s
SC2 CUDA NVIDIA 9400M 1.1 10W 16 1536 5 GB/s
SC3 CUDA NVIDIA 320M 0.97 14W 48 4608 10 GB/s
SC4 CUDA NVIDIA 8800GT 1.67 >50W 112 10752 53 GB/s

For the serial version, we have implemented the original algorithm based on the
algorithm 3.1. CUDA version is implemented based on the algorithm 3.1 replacing
Update function by the algorithm 3.3, and Normalise function by the algorithm 3.4. We
have tested many B sizes, best results for CUDA have been achieved with B=8.
CUDA occupancy ratio is 67%. This is the implementation of NVIDIA hardware
used for low power consumption.

We have used a synthetic graph generated test set based on the scalability
experiments from [24]. The test set is composed by random graphs with a
connectivity percentage between 10% and 50%. Each graph has cardinality from 16
to 1024 vertices. Given a randomly generated graph, the other graph to be compared
to is obtained from it, the original is copied and modified by randomly changing the
order of nodes, removing and adding edges, changing node values, and removing or
adding some nodes.

16 32 64 128 256 512 1024

0m 0s

0m 1s

0m 9s

1m 26s

14m 24s

2h 24m

1 days

10 days

100 days

Number of Vertices

E
xe

cu
tio

n
 ti

m
e

16 32 64 128 256 512 1024

0.4

0.7

1.3

2.2

4.0

7.1

13

22

40

71

126

225

400

SC1
SC2
SC3
SC4

Number of Vertices

S
p

e
e

d
u

p
 r

e
sp

e
ct

 T
e

st
1

Figure 6.15: Run time of the 4 scalability tests respect to the number of vertices and speed-up of
the parallel solutions (SC2, SC3, SC4) respect to the serial solution (SC1). Both plots vertical axis

are in logarithmic scale.

Figure 6.15 shows the mean run time and speedup of the four scalability
experiments SC1, SC2, SC3 and SC4 given different cardinalities of the graphs. We

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

156 Practical Evaluation

have computed up to R=1024 nodes for all experiments but SC1. We have estimated
that the execution of SC1 for R=1024 will take about 42 days of intensive
computation. The speedup obtained for these benchmarks is 366 times faster for
R=512. SC2 and SC3 presents a slowdown, when they compute small graphs, serial
version is faster than parallel. SC4 has a speedup but it is not as good as expected for
small R sizes. We observe that optimal speedups are achieved from R=64 nodes,
below this size, results are far from maximum performance. SC2 and SC3 have a
very close power consumption, as a result SC3 has better performance per watt. SC3
deteriorates the speedup with 1024 nodes because machine's operating system has a
5 seconds limitation for the parallel kernel execution time. On this test we have
reconfigured kernels to work with smaller sets of data.

We have evaluated the performance of small graph multiple matching algorithm.
We have implemented the corresponding serial version of the algorithm and the
corresponding OpenMP and CUDA version of the algorithm. We have tested three
versions over two machines. Serial and OpenMP are executed on the general
purpose Intel processor, CUDA version is executed in the same machine but on the
GPGPU processor. Table 6.2 shows detailed characteristics for each test given an
architecture and algorithm. Generic processors are multi-core, but serial algorithms
are only capable of use one core and one thread.

Table 6.2. List of algorithms and architectures evaluated.

Test Version Computer Proc. / GPGPU GHz Power Cores Threads
Memory

Bandwith
PF1 Serial ViewSonic VT132 Intel Atom 330 1.6 8W 2 4 5 GB/s
PF2 OpenMP ViewSonic VT132 Intel Atom 330 1.6 8W 2 4 5 GB/s
PF3 CUDA ViewSonic VT132 NVIDIA 9400M 1.1 10W 16 1536 5 GB/s
PF4 Serial NOX Intel i7 950 3.0 130W 4 8 21 GB/s
PF5 OpenMP NOX Intel i7 950 3.0 130W 4 8 21 GB/s
PF6 CUDA NOX NVIDIA GT 430 1.4 49W 96 3072 21 GB/s

For the serial version we have implemented the original algorithm based on the
algorithm 3.1 (shown at page 53). OpenMP and CUDA versions are implemented
based on the serial version, but replacing Update function and Normalise function by
its parrallelised versions using transformations previously presented. OpenMP
version is only parallelised at block level, B constant is assigned to B=1. Loops of size
B (d, l, f, v and s) are automatically removed by the compiler. CUDA version B

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.5. Graph Matching on Current Architectures 157

constant is kept to B=8. We have adapted executions at PF6 to emulate an NVIDIA
with a CUDA compute capability 1.X (the corresponding architecture for low power
consumption NVIDIA GPGPU).

We have used two databases in which nodes are defined over a two-dimensional
domain that represents its plane position (x,y). Edges have binary attribute that
represents the existence of a line between two terminal points. The first dataset is a
subset of high noise level of the Letter dataset created the University of Bern [105].
This data set is composed of 15 classes and 150 graphs per class representing the
Roman alphabet i.e. A, E, F, ..., X, Y, and Z. The second dataset, called GREC dataset,
created at the Universitat Autònoma de Barcelona [105], is composed of 22 classes
and 50 graphs per class representing symbols from architectural and electronic
drawings. We have selected 3 random sets of elements from GREC dataset with
more than 150 elements each plus a random set from LETTER dataset of more than
150 elements. Each set has random elements from all classes with a [8 ... 8], [13 ... 16]
and [18 ... 24] nodes for GREC and [7 ... 8] nodes for LETTER. We have matched one
graph against N [5, 10, 15, 25, 50, 75, 100, 125, 150] random different elements for∈
each set.

Figurs 6.16 shows the execution time and speedup respectively for the mean time
of each databases, machine and number of graphs. This results show that OpenMP
tests (PF2 and PF5) scaled around the number of cores. CUDA tests (PF3 and PF6)
have a good performance even for small R values. PF3 execution has better
performance that PF5, PF3 has better performance per watt. We also can see that
with an N (number of graphs) around 15 we can extract almost the maximum
performance. On PF6 we can observe that N=5, 10 and 15 have the same execution
time. This is given because the number of available cores is higher than the number
of threads, and, as a consequence, there are not enough parallelism to use all
available resources. If we take execution times, the accumulative speedup from serial
PF1 to CUDA PF6 for a large N is about x250. New results give a better performance
with small R if we compare enough graphs. PF3 is able to compare 150 graphs of R
close to 16 in 2.57 seconds and measured execution time from PF6 takes just 0.65
seconds.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

158 Practical Evaluation

LETTER GREC

V
ie

w
So

ni
c

V
T1

32 Ex
ec

ut
io

n
Ti

m
e

5 10 15 25 50 75 100 125 150

0.07s

0.46s

3s

18s

1m 55s

12m 3s

PF1
PF2
PF3

Number of Graphs

5 10 15 25 50 75 100 125 150

0.07s

0.46s

3s

18s

1m 55s

12m 3s

Number of Graphs

Sp
ee

du
p

5 10 15 25 50 75 100 125 150
0.8

1.3

2.0

3.2

5.0

8.0

13

20

32

PF1
PF2
PF3

Number of Graphs

5 10 15 25 50 75 100 125 150
0.8

1.3

2.0

3.2

5.0

8.0

13

20

32

Number of Graphs

N
O

X

Ex
ec

ut
io

n
Ti

m
e

5 10 15 25 50 75 100 125 150

0.07s

0.46s

3s

18s

1m 55s

12m 3s

PF4
PF5
PF6

Number of Graphs

5 10 15 25 50 75 100 125 150

0.07s

0.46s

3s

18s

1m 55s

12m 3s

Number of Graphs

Sp
ee

du
p

5 10 15 25 50 75 100 125 150
0.8

1.3

2.0

3.2

5.0

8.0

13

20

32

PF4
PF5
PF6

Number of Graphs

5 10 15 25 50 75 100 125 150
0.8

1.3

2.0

3.2

5.0

8.0

13

20

32

Number of Graphs

Figure 6.16: Run time and speedup of the small graph multiple matching algorithm given an
architecture, a dataset and the number of graphs.

In [15] we study the parallelisation of the graduated assignment graph common
labelling algorithm. We apply the same methodology and notation used in the
works. In this work, we study the behaviour of a low power computer and its

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

6.5. Graph Matching on Current Architectures 159

scalability by using low power GPGPU. In addition to the previously presented
methodology we also apply loop splitting in order to increase locality. We test the
algorithm with two graph databases. Architecture used is the ViewSonic computer
defined in table 3.6 (and table 6.2).

We have used the same two databases presented in the graph matching
algorightm. The first dataset is a subset of high noise level of the Letter dataset
created the University of Bern [105]. The second dataset is the GREC dataset, created
at the Universitat Autònoma de Barcelona [105].

We have selected 5 classes of each dataset to compare execution speed. For each
class we have randomly selected a number of graphs for N [5, 10, 15, 25, 50, 75,∈
100, 150] for Letter dataset, and N [5, 10, 15, 25, 50] for GREC dataset. Letter∈
dataset classes selected are {1, 6, 8, 12, 13} each one with a mean number of nodes of
{5.3, 5.3, 5.3, 5.4, 4.4}. GREC dataset classes selected are {5, 8, 14, 15, 21} each one with
a mean of {19.4, 8.6, 12.7, 20.7, 17.14}.

3 5 10 15 25 50 75 100 150

0m 0s

0m 1s

0m 9s

1m 26s

14m 24s

2h 24m

1 days

Serial Execution Time

Number of Graphs

3 5 10 15 25 50 75 100 150

0m 0s

0m 1s

0m 9s

1m 26s

14m 24s

2h 24m

1 days

Parallel Execution Time

Number of Graphs

3 5 10 15 25 50 75 100 150

3.0

4.3

6.1

8.6

12

17

25

35

SpeedUp - Serial Time / Parallel Time

1
6
8
12
13

Number of Graphs

Figure 6.17: Letter run time of Serial and Parallel and speedup respect to the number of graphs
for each selected class. Vertical axis are in log. scale.

3 5 10 15 25 50

0m 0s

0m 1s

0m 9s

1m 26s

14m 24s

2h 24m

1 days

Serial Execution Time

Number of Graphs

3 5 10 15 25 50

0m 0s

0m 1s

0m 9s

1m 26s

14m 24s

2h 24m

1 days

Parallel Execution Time

Number of Graphs

3 5 10 15 25 50

3.0

4.3

6.1

8.6

12

17

25

35

SpeedUp - Serial Time / Parallel Time

5
8
14
15
21

Number of Graphs

Figure 6.18: GREC run time of Serial and Parallel and speedup respect to the number of graphs
for each selected class. Vertical axis are in log. scale.

Figure 6.17 shows the mean run time for each one of the five Letter dataset classes
for serial and parallel algorithm experiments for a given different number of the
graphs. Figure 6.18 shows the mean run time for each one of the five GREC dataset

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

160 Practical Evaluation

classes for serial and parallel algorithm experiments for a given different number of
the graphs. The obtained distance is not shown since the sequential and parallel
algorithm obtains exactly the same result. It can be observed a clear improvement on
the run time when the parallel algorithm is used.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Chapter 7. Community Results Based On
This Thesis

The objective of any thesis, beyond to contribute with something new to its science,
is to become useful knowledge to create further contributions. In this section, we are
proud to present some works performed by the community which used our
contributions as part of its basis. We analyse publications of the community, whose
works points to our publications and use them as a basis.

Cuvillo et al. present at [106] a port of the OpenMP to IBM Cyclops 64. The IBM
Cyclops 64 is the next generation of the IBM Cyclops. Unfortunately our OpenMP
port was built on privative software and there was also some major changes between
architectures. As a consequence they can not reuse our compiler neither our run-
time. After our success with the performance of OpenMP they also decide to
research in optimisations in order to reduce OpenMP overheads. They performed
optimisations with either hardware or software. The main proposals to optimise
were the use of scratch-pads, spin-locks and barriers. Scratch-pads solution emulates
our hardware solution, we have placed stacks close to its physical threads to
speedup memory accesses. Instead of creating special regions in the cache to map
stacks close, they use scratch-pads (core private memory) to have a fast access. Spin-
locks and barriers solves one of the problems that we have spotted: the increasing
number of threads increases the memory accesses due to synchronizations primitives
implemented over memory. They create specific hardware to make such
synchronizations and consequently they avoid using memory for such mechanisms.
As a result, they claim that all of three optimisations reduce in a 80% the overhead in
OpenMP constructs

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

162 Community results based on this thesis

Meenderinck et al. at [107] use CellSim simulator to present a video decoder
designed for a heterogeneous processor. They design a set of specialised assembler
instructions in order to speedup video decoding algorithm. Their target is to modify
or implement new SPEs. They take advantage of the GPL license of the CellSim and
modifies the SPE module for two tasks: 1) to improve an algorithm profiling and 2)
to implement and test their new instructions.

There is a work from Giorgi et al. [108] which uses our simulator infrastructure to
validate their thesis. They expand the simulator in order to implement a multi-core
scheduled data-flow processor. They perform the modification by adding three
components: one distributed scheduling element to the CellSim PPE, a local
scheduling element to the CellSim MFC, and a frame memory to the CellSim LS. The
simulator allowed them to test their theory even without a great effort of
implementation.

Azevedo and Juurlink presented at [109] a modification for the Cell B.E.
architecture to implement software cache. The idea of the software cache is to
emulate a shared-memory environment even if there is no shared-memory. They
propose to implement a new instruction to make viable software cache. In order to
demonstrate their theory, they modify the CellSim simulator. Their experiments
execute against the Cell B.E. with only software support, and against the CellSim,
with the experimental modification.

Ramirez et al. at [110] present TaskSim, a new kind of simulator for multi-core
processors. When we were developing the CellSim simulator we realised that as
more components and more detail we added, more time consuming was the
simulation. This problem is common to all multi-core simulators: there is not a
simulation of one processor, but many processors and its interconnection networks.

The modular heterogeneous simulator presented on this thesis was designed to
work with modules, but with memory-accesses as the only interface. As we have
said previously, we do not made any assumption about processors of its behaviour,
and almost any kind of implementation was compatible. Our processor
implementations were functional processors, and also detailed pipelined processors.
But we were not limited. For example, the operating system emulation was not a
functional processor neither a detailed pipeline processor.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

7. Community results based on this thesis 163

TaskSim reduces the simulation to traces of accesses and synchronisations. The
underlying idea is to acquire traces from working programs, post-process these
traces to create tasks, memory accesses, synchronizations and dependences and
assign each task to a possible simulator module. Each module uses task information
to emulate memory accesses pattern, including waits for processing. Not all TaskSim
modules are processors, it also implements buses, interconnection networks, and
memories. In their presented work they use the k-bus as the main interconnection
network. TaskSim does not use UNISIM due to its overhead.

TaskSim has been demonstrated that to work on memory accesses and base
synchronisations on traces, it can create an excellent tool to do architecture design
space exploration within a reasonable simulation time.

Task directive introduced in the streaming programming model was almost
simultaneously proposed to the OpenMP [111] standard. This directive was
effectively introduced in the OpenMP 3.0. Both teams, the one designing tasks for
shared-memory and us designing streaming tasks, have been working closer and
even sharing the same staff directors. Although its similarities we have two different
starting points: they have basically renamed some already existing semantics of
OpenMP and we have started from scratch in front of a whiteboard. The main
difference between both task models is that OpenMP 3.0 tasks are based on run-time.
Their execution model corresponds to one lifetime task. We, in contrast, define tasks
as kernels kept alive from invocation to invocation. OpenMP tasks are dynamically
created, as a consequence, each invocation needs to be scheduled and suffers for a
great overhead. On the other hand, our tasks are designed to be statically created,
and reused every time that it is required, which creates a more efficient behaviour. In
addition, we decided to stablish the same directive name, because we believed that
this difference in the model is only semantic and any compiler is free to choose the
best implementation (as we have exposed at [12]).

We have found up to 5 publications following the steps of our stream programming
model. Most of them adopt, or even completed, our model and suggest the required
modification to the OpenMP standard to support stream programming or
heterogeneous processors. As an interesting fact, they also base most of their
benchmarks and proofs on the serial FMradio application contributed by this thesis.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

164 Community results based on this thesis

The first proposal is performed by Pop and Pop at [112]. This publication is a
proposal to the OpenMP organisation to slightly modify the OpenMP standard in
order to create a streaming dependence between tasks that we have presented in our
programming model. They plan to extend semantics for firstprivate and lastprivate
clauses in order to enable stream creation. Presented solution in Pops propossal
semantics are exactly the same OpenMP like stream programming model presented
by us at [8]. They use the same semantics, graph description, execution time lines
and examples. The only difference is to use firstprivate keyword instead of input
keyword, and lastprivate keyword instead of output keyword. In our thesis we also
claim that we have built our stream programming model intentionally close to
OpenMP. Pop brothers suggested just a modification of three lines inside the
OpenMP standard will support our programming model.

The same team that have proposed OpenMP 3.0 tasks has also made two
proposals for stream-like task dependence [113] and heterogeneous support [114].
Both publications try to approximate OpenMP 3.0 capabilities to the capabilities
pursued in our programming model, but they try a different approach using CellSS
[115] as an underlying model. In the first work, they extend task directive with input
and output clauses, but instead of defining dependences through variables and
symbols, it defines dependences through memory addresses. This model is indeed
more flexible, but as an important drawback, it forces to compute all dependences
into the run-time, with the consequently execution time overhead. The second work
proposes to annotate function declarations with architecture dependent information.
Their objective is to substitute tasks invocation on the same processor, by invocations
on specific processors or cores. This work is a work-around for the limitation of the
OpenMP to require shared-memory. With its definition, which is the opposite of our
proposals of requires and share clauses, they specify some functions which can be
executed on non-shared memory hardware with specific requirements. But it also
forces to the programmer to create enough versions of the same function for all
possible target processors.

A team from INRIA have published also an extension of the OpenMP
programming model [116] and a runtime library [117] for streaming. In many ways
presented work is one more attempt to standardise our programming model with
some improvements. Their programming model is implemented in a specific branch

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

7. Community results based on this thesis 165

of the GCC. Their suggested changes to the OpenMP only affects to the execution
model (to follow our proposed task model, as Pops have done at [112]) but in
addition they added a special semantic for variable ports description. Their addition
is the possibility to use a special variable as a direct access to stream. Its specification
is a mix between our peek directive and target port modifier. While our peek
directive was designed to co-exists with serial programs, their extension breaks the
compatibility with serial code (the program can not be longer compiled as a serial
program by ignoring directives) and as a consequence they break the
consumer/production ratios protection. We also want to remark that they use the
same applications, our FMradio and restricted access Nokia WiFi application, to
verify its expressiveness and results.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Chapter 8. Conclusions

Since the beginning of this thesis, desktop computers had become heterogeneous
and extremely parallel. This new scenario opens an opportunity for computer vision
algorithms. Many of the new complex architectures are focused on giving
performance ratios tens or even hundreds of times better. The only gap to fill is what
we have focused: the ability of the mainstream programmer to take advantage of
existing architectures. We are proud to say that many computer vision algorithms
are now able to run almost in real-time on desktop architectures.

This thesis was started with the intuition that multi-core would become common
on desktop architectures. Consequently algorithms and programs must be rewritten
in order to take advantage of new hardware. Our initial intuition has gone around
the productivity concept, in this case, complexity of the design versus performance.
Under this premise we had two opposite tendencies: on the one hand chip-makers
fighting against chip complexity, and on the other hand algorithm programmers
fighting against programs complexity. For a long time, commercial chip-makers
focused on the acceleration of serial programming, but, when this strategy cost
becomes so expensive, they started to demand parallelism from programmers.

Our target applications have been graph-matching algorithms. These algorithms
present many opportunities inside computer vision due to representation.
Unfortunately its computation cost was too expensive to be used on real
applications. In this thesis, we have effectively reduced the computation execution
time of these algorithms, and not only on desktop computers, but also on low power
consumption systems. As a consequence we have achieved our main objective that
was to make these algorithms available to field applications.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

168 Conclusions

One of our main objectives is to keep a high degree of usability on multi-core
architectures. We have focused on annotated programming model, mainly OpenMP
adaptations, due to its simplicity and capacity to maintain code readable. Before this
thesis, annotated programming models were limited to supercomputing. We have
demonstrated that annotated programming models can be effectively used on multi-
core processors, distributed-memory architectures and current desktop computers.
We also have presented directives and a model able to transform a serial program
into a streaming program.

Nowadays multi-core processors are present on most of our desktop computers
and also annotated programming models. GCC has implemented support for
OpenMP (gcc -fopenmp), and even market performance benchmarks use OpenMP
applications for analyse new processors behaviours [118]. In this case, Phoronix
reviews the Intel Core i7 990X Extreme Edition, its conclusions is better not to buy it
if you cannot exploit all present cores (literally: “so if you're workload can't efficiently
take advantage of six or more threads, you'd be better off with a Core i5 2500K”). This
example shows the necessity to give access to parallelism for programmers.

One of the keys that we have considered to increase the usability is to create
hardware in conjunction of programming models. We have developed a simulator in
order to prove that small modifications on hardware architecture can help to
programmers. Our objective was to show how to increase programmers capacity to
obtain performance. The main cornerstone proposed is the capacity to have a global
linearly addressable memory (in other words: global pointers), even if we have
latency penalisation. Our best contribution was the memory-access protocol to inter-
connect all simulator modules. We have not demonstrated our initial objective, but
the market has sown it to us: architectures like NVIDIA Tesla [49] or the Cell B.E.
history [87] has shown that our intuition was correct. NVIDIA uses global memory
pointers from its accelerators, and at the same time, it allows to make incremental
modifications to take advantage of local memory. On the other hand, Cell B.E. has
limited the access to main memory.

We have applied all acquired knowledge to adapt matching graph algorithms to
current desktop computers. Current architectures shown a mix of characteristics
from multi-processors (with multi-cores), heterogeneity (with GPGPUs with
different characteristics), and even distributed-memory. All previous work were

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

8. Conclusions 169

confirmed. Based on our experience we have seen that an annotated programming
model and a methodology based on mathematical transformations effectively helps
to adapt algorithms. It is possible to exploit private memory of each GPGPU core to
speedup executions. We have effectively increased the usability, and at the same time
the capacity to extract performance, for programmers.

Section 8.1. Future Work

In this thesis we have focused on the usability of incoming architectures and they
applicability over graph-matching algorithms. We have focused on OpenMP
programming model due to its flexibility and performance. We have seen that
OpenMP is suitable for multi-core, even on massive multi-core architectures. In
addition, we also have seen that OpenMP semantics can be extended in order to
expand its applicability to other architectures.

Our last work, and community results, have been spotted some core research
which should have priority. They are nested parallelism techniques, loop tiling and
loop reorder transformations, memory pre-fetching and input and output directives.

Nested parallelism have effectively improved performance. Separation of coarse-
grain parallelism, where is a low coupled communication, from fine-grain
parallelism (highly coupled communication) has proven to be effective. Even
commercial programming models like CUDA have adapted this double parallelism
model. We need to do further investigation on this kind of parallelism, it has been
demonstrated to be very powerful, but we do not know if there are many
applications which can accept them. One of our challenges is to find how to
implement the Sinkhorn method [37] but using two levels of parallelism, in the same
fashion that NPB-MZ are implemented.

We also have seen some extensions to the OpenMP. Input and output clauses have
effectively converted serial programs into streaming programs. We have presented a
full programming model, with many features, but we have still some problems to
solve. The main problem is how to create many configurations of the same task
inside a loop for (we believe that for_distribute clause can help), but also we should
design a header definition or/and binary format in order to use and connect tasks
embedded in libraries. On the other hand, in our last stages, we have considered

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

170 Conclusions

some extensions to the OpenMP to help to develop CUDA programs. We have
started to use the Mercurium to implement some parts. We have seen that these
directives helped to implement the CUDA versions of the programs, but also
reduced the number of bugs introduced on the manual construction. We believe that
a finished programming model can save a lot of time and headaches.

Introduced OpenMP like directives on our CUDA algorithms have been based in
two concepts and memory management. Two concepts are map operation and
reduction operation. Both operations are applied over loop constructions and
basically provides information to the compiler about data dependences in the loop: if
there is not data dependence, parallelism can be applied. The other directive is fetch,
this directive reports to the compiler which variables would be accessed, and which
ranges. We want to explore how to simplify the annotation of this information and
how the memory directive can be converted into pre-fetching operations, and even
stream operations between tasks, whether applicable. We also have seen that it is
possible to modify automatically the dimensions of the local fetched variable in
order to enhance data locality and coalescence. We have to study and detect under
which circumstances it is possible to automatise and release the programmer from
this responsibility.

Some of our algorithms transformations have used two specific techniques: loop
tiling and loop reorder. There are many loop techniques applied automatically on
mainstream compilers, even loop tiling. Loop tiling is usually applied automatically
by parallelism directives: there are usually less processors than iterations, so each
processor has a loop that executes a sub-range of iterations. This technique and loop
reorder technique have been proven to be very efficient, and almost indispensable.
We want to study how to mix previous directives with these transformations in
order to let to the compiler make the transformation achieving a double objective:
first to release the programmer from the manual transformation and bug
introduction and second to preserve original algorithm structure and
comprehension.

There is still a large path to follow and directives have been proved to be very
useful. We expect that by studying better annotations and progressing in their
applicability we will be able to transform better existing algorithms.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

Chapter 9. References

[1] D. Ródenas et al., “Optimizing NANOS OpenMP for the IBM Cyclops
multithreaded architecture,” 19TH IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2005), 2005.

[2] D. Rodenas, X. Martorell, J. Costa, T. Cortes, and J. Labarta, “Running BT
Multi-Zone on non-shared memory machines with OpenMP SDSM instead of
MPI,” Proceedings of the XVI Jornadas de Paralelismo, Sep. 2005.

[3] D. Ródenas et al., “Exploiting multilevel parallelism using OpenMP on a
massive multithreaded architecture,” Journal of Embedded Computing, vol. 2, p.
141–155, Apr. 2006.

[4] P. Carpenter, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade, “Code
generation for streaming applications based on an abstract machine
description,” Universitat Politécnica de Catalunya, UPC-DAC-RR-CAP-2007-3,
2007.

[5] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade, “A
module-based cell processor simulator,” 3rd HiPEAC Advanced Computer
Architecture and Compilation for Embedded Systems. ISBN: 978-90-382-1127-5,
2007.

[6] A. Rico, F. Cabarcas, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade,
“Implementation and validation of a Cell simulator using UNISIM,” 3rd
HiPEAC Industrial Workshop, IBM Haifa, Israel, 2007.

[7] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, and A. Ramirez, “CellSim: A
Validated Modular Heterogeneous Multiprocessor Simulator,” Proceedings of
the XVII Jornadas de paralelismo, Apr. 2007.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

172 References

[8] P. Carpenter, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguadé, “A
streaming machine description and programming model,” in Proceedings of the
7th international conference on Embedded computer systems: architectures, modeling,
and simulation, Berlin, Heidelberg, 2007, p. 107–116.

[9] P. Carpenter, D. Rodenas, A. Ramirez, X. Martorell, and E. Ayguade, “Code
generation for streaming applications based on an abstract machine
description.” IST ACOTES Project Deliverable D2.2, May-2007.

[10] P. Carpenter, A. Ramirez, X. Martorell, D. Rodenas, and R. Ferrer, “Report on
Streaming Programming Model and Abstract Streaming Machine Desription
1st version.” IST ACOTES Project Deliverable D2.1, Sep-2007.

[11] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade,
“CellSim: A Cell Processor Simulation Infrastructure,” 4th HiPEAC Advanced
Computer Architecture and Compilation for Embedded Systems. ISBN: 978-90-382-
1288-3, 2008.

[12] D. Rodenas, R. Ferrer, X. Martorell, and E. Ayguade, “ACOTES Stream
Programming Model,” 4th HiPEAC Advanced Computer Architecture and
Compilation for Embedded Systems. ISBN: 978-90-382-1288-3, pp. 19-22, Jul. 2008.

[13] P. Carpenter, A. Ramirez, X. Martorell, D. Rodenas, and R. Ferrer, “Report on
Streaming Programming Model and Abstract Streaming Machine Desription
Final version.” IST ACOTES Project Deliverable D2.2, Sep-2008.

[14] D. Rodenas, F. Serratosa, and A. Solé-Ribalta, “Graph Matching on a Low-cost
& Parallel Architecture,” Iberian Conference on Pattern Recognition and Image
Analysis, IbPRIA 2011, LNCS 6669, vol. 2011, p. 508–515, 2011.

[15] D. Rodenas, F. Serratosa, and A. Solé-Ribalta, “Parallel Graduated Assignment
Algorithm for Multiple Graph Matching based on a Common Labelling,”
Graph based Representations, GbR2011, Münster, Germany, LNCS 6658, pp. 164-
174.

[16] D. Rodenas, F. Serratosa, and A. Solé-Ribalta, “Massive Parallel Graduated
Assignment Graph Matching Experiences on Low Power Architectures,”
Submited to IJPRAI, May. 2011.

[17] K. Asanovic et al., “The Landscape of Parallel Computing Research: A View
from Berkeley.” EECS Department, University of California, 2006.

[18] D. Geer, “Industry Trends: Chip Makers Turn to Multicore Processors,”
Computer, vol. 38, p. 11–13, May. 2005.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

9. References 173

[19] E. Rotem et al., “Power and Thermal Management in the Intel Core Duo
Processor,” Intel Technology Journal, vol. 10, no. 2, pp. 109-122.

[20] J. Owens, “Streaming architectures and technology trends,” in ACM
SIGGRAPH 2005 Courses, New York, NY, USA, 2005.

[21] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,
“Introduction to the cell multiprocessor,” IBM Journal of Research and
Development, vol. 49, p. 589–604, Jul. 2005.

[22] C. R. Johns and D. A. Brokenshire, “Introduction to the cell broadband engine
architecture,” IBM Journal of Research and Development, vol. 51, p. 503–519, Sep.
2007.

[23] Sergey Melnik, Hector Garcia-molina, and Erhard Rahm, “Similarity flooding:
A versatile graph matching algorithm.” 2002.

[24] S. Gold and A. Rangarajan, “A Graduated Assignment Algorithm for Graph
Matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
18, no. 4, pp. 377-388, 1996.

[25] B. Bonev, F. Escolano, M. A. Lozano, P. Suau, M. A. Cazorla, and W. Aguilar,
“Constellations and the unsupervised learning of graphs,” in Proceedings of the
6th IAPR-TC-15 international conference on Graph-based representations in pattern
recognition, Berlin, Heidelberg, 2007, p. 340–350.

[26] A. Mendelson, “How many cores are too many cores?,” 3rd HiPEAC Industrial
Workshop, IBM Haifa, Israel, 2007.

[27] D. A. Patterson and J. L. Hennessy, Computer organization and design: the
hardware/software interface. Morgan Kaufmann, 2007.

[28] B. Armstrong and R. Eigenmann, “Application of Automatic Parallelization to
Modern Challenges of Scientific Computing Industries,” in Proceedings of the
2008 37th International Conference on Parallel Processing, Washington, DC, USA,
2008, p. 279–286.

[29] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,” ACM SIGPLAN
Notices, vol. 44, p. 101–110, Feb. 2009.

[30] T. A. Johnson, S.-I. Lee, S.-J. Min, and R. Eigenmann, “Can transactions
enhance parallel programs?,” in Proceedings of the 19th international conference on
Languages and compilers for parallel computing, Berlin, Heidelberg, 2007, p. 2–16.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

174 References

[31] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell broadband engine
architecture and its first implementation: a performance view,” IBM Journal of
Research and Development, vol. 51, p. 559–572, Sep. 2007.

[32] M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,” Computer,
vol. 41, p. 33–38, Jul. 2008.

[33] R. Strzodka, M. Droske, and M. Rumpf, “Image Registration by a Regularized
Gradient Flow. A Streaming Implementation in DX9 Graphics Hardware,”
Computing, vol. 73, p. 373–389, Nov. 2004.

[34] J. Dongarra, T. Sterling, H. Simon, and E. Strohmaier, “High-Performance
Computing: Clusters, Constellations, MPPs, and Future Directions,” Computing
in Science and Engineering, vol. 7, no. 2, pp. 51-59, 2005.

[35] A. Solé-Ribalta and F. Serratosa, “On the Computation of the Common
Labelling of a Set of Attributed Graphs,” in Proceedings of the 14th Iberoamerican
Conference on Pattern Recognition: Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, Berlin, Heidelberg, 2009, p. 137–144.

[36] A. Solé-Ribalta and F. Serratosa, “Graduated Assignment Algorithm for
Multiple Graph Matching based on a Common Labelling. Structural,”
Syntactic, and Statistical Pattern Recognition LNCS, vol. 6218, pp. 180-190, 2010.

[37] R. Sinkhorn, “A Relationship Between Arbitrary Positive Matrices and Doubly
Stochastic Matrices,” The Annals of Mathematical Statistics, vol. 35, no. 2, pp. 876-
879, Jun. 1964.

[38] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83-97, Mar. 1955.

[39] D. H. Bailey et al., “The Nas Parallel Benchmarks,” International Journal of High
Performance Computing Applications, vol. 5, no. 3, pp. 63 -73, 1991.

[40] H. Jin, H. Jin, M. Frumkin, M. Frumkin, J. Yan, and J. Yan, “The OpenMP
Implementation of NAS Parallel Benchmarks and its Performance,” 1999.

[41] R. F. van der Wijngaart and J. Haopiang, NAS Parallel Benchmarks, Multi-Zone
Versions. NASA Ames Research Center, 2003.

[42] David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo,
and Maurice Yarrow, “The NAS Parallel Benchmarks 2.0.” 1995.

[43] E. Blossom, “GNU Radio: Tools for Exploring the Radio Frequency Spectrum,”
Linux Journal, Jun. 2004.

[44] streamit@lists.csail.mit.edu, “StreamIt Cookbook.” .

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

9. References 175

[45] G. Almasi et al., “Dissecting Cyclops: A Detailed Analysis of a Multithreaded
Architecture,” Sigarch Comput. Archit. News, vol. 31, p. 2003, 2002.

[46] C. C. Jose et al., “Evaluation of a Multithreaded Architecture for Cellular
Computing,” In Procidings of the 8th International Symposium on High
Performance Computer Architecture, p. 311--322, 2002.

[47] F. Allen et al., “Blue Gene: a vision for protein science using a petaflop
supercomputer,” IBM Systems Journal, vol. 40, p. 310–327, Feb. 2001.

[48] E. Strohmaier, H. W. Meuer, J. Dongarra, and H. D. Simon, “TOP500
Supercomputers for June 2005.” eScholarship Repository, 22-Jun-2005.

[49] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A
Unified Graphics and Computing Architecture,” IEEE Micro, vol. 28, no. 2, pp.
39-55, 2008.

[50] J. V. Last, “Playing the Fool,” Wall Street Journal, 31-Dec-2008.

[51] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, and Hunter Scales,
“Altivec extension to powerpc accelerates media processing.” 22-Jan-2010.

[52] P. Bohrer et al., “Mambo: a full system simulator for the PowerPC
architecture,” ACM SIGMETRICS Performance Evaluation Review, vol. 31, p. 8–
12, Mar. 2004.

[53] J. Clabes et al., “Design and implementation of the POWER5™
microprocessor,” in Proceedings of the 41st annual Design Automation Conference,
New York, NY, USA, 2004, p. 670–672.

[54] OpenMP Organization, OpenMP Fortran Application Interface. 2000.

[55] M. Gonzàlez, E. Ayguadé, X. Martorell, J. Labarta, N. Navarro, and J. Oliver,
“NanosCompiler: supporting flexible multilevel parallelism exploitation in
OpenMP,” Concurrency: Practice and Experience, vol. 12, no. 12, pp. 1205-1218,
Oct. 2000.

[56] C. D. Polychronopoulos, M. B. Girkar, M. R. Haghighat, C. L. Lee, B. Leung,
and D. Schouten, “Parafrase-2: an environment for parallelizing, partitioning,
synchronizing, and scheduling programs on multiprocessors,” International
Journal of High Speed Computing, vol. 1, p. 45–72, Apr. 1989.

[57] X. Martorell, J. Labarta, N. Navarro, and E. Ayguade, “A Library
Implementation of the Nano-Threads Programming Model,” IN EURO-PAR’96,
vol. 2, p. 644--649, 1996.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

176 References

[58] M. Gonzalez, J. Oliver, X. Martorell, E. Ayguade, J. Labarta, and N. Navarro,
“OpenMP Extensions for Thread Groups and Their Run-time Support,” In
Workshop On Languages And Compilers For Parallel Computing, p. 317--331.

[59] X. Martorell, E. Ayguadé, N. Navarro, J. Corbalán, M. González, and J. Labarta,
“Thread Fork/Join Techniques for Multi-level Parallelism Exploitation in
NUMA Multiprocessors,” In Numa MultiProcessors. In 13th Int. Conference On
SuperComputing ICS’99, Rhodes, p. 294--301, 1999.

[60] F. Martinez et al., “Evaluation of OpenMP for the Cyclops Multithreaded
Architecture,” 2003.

[61] V. Pillet et al., “PARAVER: A Tool to Visualize and Analyze Parallel Code,” IN
WOTUG-18, p. 17--31, 1995.

[62] “MPI 1.1 Standard.” .

[63] J. J. Costa, T. Cortes, X. Martorell, E. Ayguade, and J. Labarta, “Running
OpenMP applications efficiently on an everything-shared SDSM,” Journal of
Parallel and Distributed Computing, vol. 66, no. 5, pp. 647 - 658, 2006.

[64] David August et al., “UNISIM: An Open Simulation Environment and Library
for Complex Architecture Design and Collaborative Development.” 2007.

[65] “SPE Runtime Management Library.” CBEA JSRE Series Cell Broadband
Engine Architecture Joint Software Reference Environment Series.

[66] “Compute Unified Device Architecture Programming Guide.” NVIDIA: Santa
Clara, CA.

[67] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen,
“Simultaneous Multithreading: A Platform for Next-Generation Processors,”
IEEE Micro, vol. 17, p. 12–19, Sep. 1997.

[68] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading:
maximizing on-chip parallelism,” in ACM SIGARCH Computer Architecture
News, New York, NY, USA, 1995, p. 392–403.

[69] N. R. Fredrickson, A. Afsahi, and Y. Qian, “Performance characteristics of
openMP constructs, and application benchmarks on a large symmetric
multiprocessor,” in Proceedings of the 17th annual international conference on
Supercomputing, New York, NY, USA, 2003, p. 140–149.

[70] W. Yamamoto and M. Nemirovsky, “Increasing superscalar performance
through multistreaming,” in Proceedings of the IFIP WG10.3 working conference
on Parallel architectures and compilation techniques, Manchester, UK, UK, 1995, p.
49–58.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

9. References 177

[71] W. Yamamoto, M. J. Serrano, A. R. Talcott, R. C. Wood, and M. Nemirosky,
“Performance estimation of multistreamed, superscalar processors,” in
Proceedings of the Twenty-Seventh Hawaii International Conference on System
Sciences, Wailea, HI, USA, pp. 195-204.

[72] R. Thekkath and S. J. Eggers, “The effectiveness of multiple hardware
contexts,” in ACM SIGPLAN Notices, New York, NY, USA, 1994, vol. 28, p. 328–
337.

[73] M. Gulati and N. Bagherzadeh, “Performance Study of a Multithreaded
Superscalar Microprocessor,” in Proceedings of the 2nd IEEE Symposium on High-
Performance Computer Architecture, Washington, DC, USA, 1996, p. 291–.

[74] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for Shared-
Memory Programming,” IEEE Computational Science & Engineering, vol. 5, p.
46–55, Jan. 1998.

[75] M. Gonzalez, X. Martorell, E. Ayguade, and G. Jost, “Employing nested
OpenMP for the parallelization of multi-zone computational fluid dynamics
applications,” Journal of Parallel and Distributed Computing, vol. 66, no. 5, pp.
686-697, May. 2006.

[76] M. Gonzàlez, E. Ayguadé, X. Martorell, J. Labarta, N. Navarro, and J. Oliver,
“NanosCompiler: supporting flexible multilevel parallelism exploitation in
OpenMP,” Concurrency: Practice and Experience, vol. 12, no. 12, pp. 1205-1218,
Oct. 2000.

[77] H. W. Meuer, “The TOP500 Project: Looking Back Over 15 Years of
Supercomputing Experience,” Informatik-Spektrum, vol. 31, no. 3, pp. 203-222,
Apr. 2008.

[78] H. Lu, Y. C. Hu, and W. Zwaenepoel, “OpenMP on Networks of
Workstations,” 1998.

[79] M. Sato, M. S. Shigehisa, K. Kusano, and Y. Tanaka, “Design of OpenMP
Compiler for an SMP Cluster,” IN EWOMP ’99, p. 32--39, 1999.

[80] C. Amza et al., “TreadMarks: Shared Memory Computing on Networks of
Workstations,” IEEE COMPUTER, vol. 29, p. 18--28, 1996.

[81] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh, and D. M. Tullsen, “Tuning
Compiler Optimizations for Simultaneous Multithreading,” IN
INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, p. 114--124,
1997.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

178 References

[82] A. Basumallik and R. Eigenmann, “Towards automatic translation of OpenMP
to MPI,” in Proceedings of the 19th annual international conference on
Supercomputing, New York, NY, USA, 2005, p. 189–198.

[83] I. Rodero et al., “eNANOS: Coordinated Scheduling in Grid Environments.”
2005.

[84] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP Parallel
Programming on Clusters of Multi-Core SMP Nodes,” in Parallel, Distributed,
and Network-Based Processing, Euromicro Conference on, Los Alamitos, CA, USA,
2009, vol. 0, pp. 427-436.

[85] F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP on IBM SP for the
NAS benchmarks,” in Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), Washington, DC, USA, 2000.

[86] J. Balart, M. Gonzàlez, X. Martorell, E. Ayguadé, and J. Labarta, “Runtime
address space computation for SDSM systems,” in Proceedings of the 19th
international conference on Languages and compilers for parallel computing, Berlin,
Heidelberg, 2007, p. 330–344.

[87] J. Stokes, “End of the line for IBM’s Cell,” ars technica, 23-Nov-2009.

[88] T. Grötker, S. Liao, G. Martin, and S. Swan, System design with SystemC.
Springer, 2002.

[89] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt, “The M5 Simulator: Modeling Networked Systems,” IEEE Micro,
vol. 26, p. 52–60, Jul. 2006.

[90] S. Sato, N. Fujieda, A. Moriya, and K. Kise, “SimCell: A Processor Simulator for
Multi-Core Architecture Research,” IPSJ Online Transactions, vol. 2, pp. 81-92,
2009.

[91] B. Black and J. P. Shen, “Calibration of Microprocessor Performance Models,”
Computer, vol. 31, p. 59–65, May. 1998.

[92] D. Jimenez-Gonzalez, X. Martorell, and A. Ramirez, “Performance Analysis of
Cell Broadband Engine for High Memory Bandwidth Applications,”
Performance Analysis of Systems and Software, IEEE International Symmposium on,
vol. 0, pp. 210-219, 2007.

[93] S. Girona, J. Labarta, and R. M. Badia, “Validation of Dimemas
Communication Model for MPI Collective Operations,” in Proceedings of the 7th
European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, London, UK, 2000, p. 39–46.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

9. References 179

[94] NXP, STMicroelectronics, and Nokia, “EU-funded project to research
advantages of parallel computing in consumer devices.”

[95] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow.”

[96] A. Pop, S. Pop, H. Jagasia,, J. Sjödin, and P. H. J. Kelly, “Improving GNU
Compiler Collection Infrastructure for Streamization Antoniu Pop,” GCC
Developers’ Summit, 2008.

[97] Ben Serebrin et al., “A Stream Processor Development Platform.” 2002.

[98] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany, “The Imagine
Stream Processor,” in Computer Design, International Conference on, Los
Alamitos, CA, USA, 2002, vol. 0, p. 282.

[99] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs,” in ACM SIGOPS Operating
Systems Review, New York, NY, USA, 2006, vol. 40, p. 151–162.

[100] M. Gonzalez, E. Ayguade, X. Martorell, and J. Labarta, “Complex Pipelined
Executions in OpenMP Parallel Applications,” IN: PROCEEDINGS OF THE
INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, p. 295--304.

[101] R. Sirvent, R. M. Badia, J. Labarta, J. M. Pérez, J. M. Cela, and R. Grima,
“Programming Grid Applications with GRID Superscalar,” Journal of Grid
Computing, vol. 1, no. 2, pp. 151-170, 2003.

[102] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs: a programming
model for the cell BE architecture,” in Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, New York, NY, USA, 2006.

[103] “ACOTES presentation at HiPEAC 6th General cluster meeting,” 16-Oct-2006.

[104] M. Harris, “Optimizing Parallel Reduction in CUDA,” NVIDIA Developer
Technology.

[105] K. Riesen and H. Bunke, “IAM Graph Database Repository for Graph Based
Pattern Recognition and Machine Learning,” in Proceedings of the 2008 Joint
IAPR International Workshop on Structural, Syntactic, and Statistical Pattern
Recognition, Berlin, Heidelberg, 2008, p. 287–297.

[106] J. del Cuvillo, W. Zhu, and G. Gao, “Landing openMP on cyclops-64: an
efficient mapping of openMP to a many-core system-on-a-chip,” in Proceedings
of the 3rd conference on Computing frontiers, New York, NY, USA, 2006, p. 41–50.

[107] C. Meenderinck and B. Juurlink, “A Chip MultiProcessor Accelerator for Video
Decoding.”

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

180 References

[108] Roberto Giorgi, Nikola Puzovic, and Zdravko Popovic, “Implementing DTA
support in CellSim.” 04-Nov-2009.

[109] A. Azevedo and B. Juurlink, “An Instruction to Accelerate Software Caches,” in
Architecture of Computing Systems - ARCS 2011, vol. 6566, M. Berekovic, W.
Fornaciari, U. Brinkschulte, and C. Silvano, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 158-170.

[110] A. Ramirez et al., “The SARC Architecture,” IEEE Micro, vol. 30, p. 16–29, Sep.
2010.

[111] E. Ayguadé et al., “A Proposal for Task Parallelism in OpenMP,” in Proceedings
of the 3rd international workshop on OpenMP: A Practical Programming Model for
the Multi-Core Era, Berlin, Heidelberg, 2008, p. 1–12.

[112] A. Pop and S. Pop, “A Proposal for lastprivate Clause on OpenMP task
Pragma.” 2009.

[113] A. Duran, R. Ferrer, E. Ayguadé, R. M. Badia, and J. Labarta, “A proposal to
extend the OpenMP tasking model with dependent tasks,” International Journal
of Parallel Programming, vol. 37, p. 292–305, Jun. 2009.

[114] E. Ayguade et al., “A Proposal to Extend the OpenMP Tasking Model for
Heterogeneous Architectures,” in Proceedings of the 5th International Workshop on
OpenMP: Evolving OpenMP in an Age of Extreme Parallelism, Berlin, Heidelberg,
2009, p. 154–167.

[115] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs: a programming
model for the cell BE architecture,” in Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, New York, NY, USA, 2006.

[116] A. Pop and A. Cohen, “A stream-computing extension to OpenMP,” in
Proceedings of the 6th International Conference on High Performance and Embedded
Architectures and Compilers, New York, NY, USA, 2011, p. 5–14.

[117] C. Miranda, A. Pop, P. Dumont, A. Cohen, and M. Duranton, “Erbium: a
deterministic, concurrent intermediate representation to map data-flow tasks to
scalable, persistent streaming processes,” in Proceedings of the 2010 international
conference on Compilers, architectures and synthesis for embedded systems, New
York, NY, USA, 2010, p. 11–20.

[118] M. Larabel, “Intel Core i7 990X Extreme Review,” 06-Apr-2011.

UNIVERSITAT ROVIRA I VIRGILI
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES
David Ródenas Picó
DL: T.1350-2011

	Index
	List of publications of this thesis
	Glossary
	Figure index
	Index of tables
	Index of algorithms
	Abstract
	Chapter 1. Introduction
	Section 1.1. Current Desktop Processors
	1.1.1. Architectures

	Section 1.2. Algorithms and Parallelism
	1.2.1. Parallelization tools

	Section 1.3. Graph Matching algorithms
	Section 1.4. Streaming and Scientific applications

	Chapter 2. Objectives
	Section 2.1. Graph Matching and Scientific applications
	Section 2.2. Annotated Programming Model over Multi-Core
	Section 2.3. Annotated Programming Model over Distributed Memory
	Section 2.4. Heterogeneous processor simulator
	Section 2.5. Graph Matching preprocessing and Streaming applications
	Section 2.6. Annotation based programming models and streaming
	Section 2.7. Graph matching on current architectures

	Chapter 3. State of the art
	Section 3.1. Graph matching
	Section 3.2. Benchmarks
	Section 3.3. Architectures
	Section 3.4. Tools

	Chapter 4. Related Work
	Chapter 5. New Contributions
	Section 5.1. Multi-Processor tools over Multi-Core Homogeneous Shared Memory
	Section 5.2. Annotation based Programming Model over Distributed Memory
	Section 5.3. Heterogeneous Modular Multi-Core simulator
	Section 5.4. Annotation Based Programming Model For Streaming Applications
	Section 5.5. Graph Matching on Current Architectures
	Section 5.6. New Tools

	Chapter 6. Practical Evaluation
	Section 6.1. Multi-Processor tools over multi-core
	Section 6.2. Annotation programming model over distributed memory
	Section 6.3. Heterogeneous modular multi-core simulator
	Section 6.4. Annotation Based Programming Model Over Heterogeneous Distributed Memory Streaming Applications
	Section 6.5. Graph Matching on Current Architectures

	Chapter 7. Community results based on this thesis
	Chapter 8. Conclusions
	Section 8.1. Future work

	Chapter 9. References
	8_Còpia de PlantillaPortadaTDX.pdf
	Dipòsit Legal: T-1350-2011

