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Glossary

annotation  based  programming  model:  programming  model  which  extends  an 
existing  programming  models  with  annotations,  as  directives  or  comments. 
Annotations  improves  the  existing  information  and  the  capacity  of  taking 
advantage  of  underlying  architecture  without  changing  application  structure 
significantly.

cache:  small  memory  with  a  small  latency  that  contains  a  partial  copy  of  main 
memory data.

cluster:  group  of  one  or  more  processing  units  sharing  the  same memory  on  a 
distributed memory system.

core: part of a microprocessor which is composed by one or more execution threads, 
functional units and data cache.

distributed memory:  system with multiple process units which each process unit 
has its own memory and restricted access to memory of other process units. It is 
required explicit communication between process units in order to receive or to 
send required information.

execution thread: set of ordered instructions with its own register file.

functional  unit:  process  hardware  which  executions  mathematical  computations 
usually real computations.

hardware: physical part of a computer, normally part that electronically computes a 
function.
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viii GLOSSARY

heterogeneous system: system with multiple process units which has more than one 
instruction set and characteristics.

homogeneous system: system with multiple process units which all its units share 
the same instruction set and characteristics.

many-core processor: a multi-core with many cores.

multi-core: micro-processor containing two or more cores.

multi-threading (processor): processor that contains multiple execution threads at 
any of its cores.

multiprocessor: system composed with multiple processors interconnected, and, if 
not is explicit, with shared memory and homogeneous. 

process unit: core.

programming model: set of tools of compilation and programming. 

register file: set of small and very fast memories directly accessible by assembler 
instructions used as temporal  values,  it  includes  the program counter  which 
contains the address of next instruction.

shared memory: system which all its process units have access with no restrictions to 
all available memory, but small time penalizations. 

software: data that encodes instructions to execute an algorithm.

system with lineal memory address: system which all its process units can access to 
memory  of  all  other  units  without  restrictions  but  paying  a  great  time 
penalization.  It  is  possible  found  specific  instructions  designed  to  send  and 
receive information as memory distributed.

thread: execution thread.
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Abstract

Pattern  matching  algorithms  are  a  classification  task  of  pattern  recognition  that 
attempts to assign each input value to one of a given set of classes. Some of these 
algorithms use graphs because they have more capacity to capture the knowledge of 
the model but their comparison or matching is also more computationally expensive. 
This restriction makes them computationally not suitable for real-time applications. 

In  the  current  market  scenario  desktop  computer  architectures  have  evolved 
towards supercomputing architectures. These architectures generally provide a vast 
computing capabilities, but they require parallelise existing applications in order to 
take  advantage  of  existing  hardware.  Consequently,  applications  and  algorithms 
must be modified and adapted in order to take advantage of all available resources.

Algorithms and  programs  must  be  redesigned  to  be  able  to  work  on  parallel 
environments.  In  order  to  redesign  algorithms,  programmers  and  algorithm 
designers  must  be  aware  of  architecture  limitations  and  must  know  parallelism 
techniques. The parallelisation of any program is usually a very complex tasks, but 
in  many  cases  these  require  an  expert  programmer  who  knows  specialised 
techniques for parallelism. We focus on OpenMP. OpenMP is a programming model 
which  allows  to  parallelise  an  application  by  adding  just  few  directives  or 
comments. This programming model is very easy to use, and almost a non-expert on 
parallelisation can use it  in  order to  achieve a  good parallelisation and resource 
usage.  It  was  initially  designed  for  supercomputers  with  shared-memory  with 
multiple processors instead of multiple cores.

We group research on this thesis on two steps: 1) for developing tools to allow 
non-expert  programmers  to  take  advantage  of  parallel  architectures  and  2)  for 
applying  extracted  knowledge  and  create  a  version  of  graph  pattern-matching 
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xvi ABSTRACT

algorithms able to run quasi real-time on current desktop computers, focusing on 
those having low power consumption.

We use supercomputers as a starting point. They have been computing parallel 
programs for many years and almost all their users are no computer scientists. We 
have selected OpenMP from all available tools because it is one of the tools with 
better  usability.  Supercomputers  are  not  desktop  computers.  Supercomputer 
programs and benchmarks does not include our target algorithms.

Firsts  steps  of  this  thesis  compare multi-core processors  with supercomputers. 
General  purpose multi-core,  now available  on almost  any desktop computer,  are 
very close to shared-memory multiprocessors supercomputers. We use OpenMP as a 
target  programming  model,  and  we  use  existing  and  well  known  parallel 
supercomputing benchmarks in order to validate our affirmation. We will explore 
some critical  differences as cache behaviour and we will  solve how to overcome 
them and have good results on multi-core. We also will focus on one kind of parallel 
applications which has multiple levels of parallelism, having an external  level  of 
parallelism working with coarse-grain parallelism. Firsts  distributed-memory and 
heterogeneous multi-core processor have been introduced, and we try to validate 
OpenMP on these architectures. First we prove that OpenMP is able to have a good 
performance on distributed-memory architectures. In this case we found that it have 
a special good performance on programs with multiples levels of parallelism. We 
also realise that OpenMP has an important lack of expressiveness for distributed-
memory  and  heterogeneity.  We  propose  a  programming  model  derived  from 
OpenMP able to extract streaming parallelism from serial applications. This model 
introduces two clauses able to convert a serial program into a streaming program. 
Proposed  directives  are  able  to  create  a  graph  representation  of  a  streaming 
program, nodes are executing kernels and edges communication nodes. In that point 
we  realise  that  multi-core  can  become  very  complex,  and  we  collaborate  in  the 
creation of a modular simulator of heterogeneous multi-core. We contribute with an 
abstraction which allows to connect each module in any configuration. We expect 
from this simulator to help to create architectures closer to programmer needs and 
programming models restrictions.

In the lasts steps of the thesis we use extracted knowledge to effectively create 
parallel versions of the pattern matching algorithms. We focus on graph matching 
algorithms and we implement them on desktop computers. Target computer used 
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xvii

are desktop computers,  but we do not limit  our implementations to the general-
purpose CPU: our target processors are either main processor and graphic processor. 
Main processor is a shared-memory homogeneous multi-core, very close to our firsts 
steps,  on  the  other  hand,  graphic  processor  unit  is  a  massive  parallel  processor 
which has distributed-memory and heterogeneous environment. We adapt previous 
OpenMP like tools to these final architecture and we use them to parallelise serial 
algorithms.  We also  introduce  two common techniques  in  parallel  programming 
which  allows  to  redesign  existing  algorithms  but  without  changing  algorithm 
results.  We  show a  methodology  which  allows  to  apply  previous  techniques,  it  
transforms  program  equations  in  order  to  obtain  an  optimal  parallelisable 
performance.  We  also  show how to  take  advantage  of  existing  private  memory 
inside  graphic  processors  but  without  rewriting  the  application.  We  evaluate 
presented  algorithms  and  transformations  to  show  how  they  effectively  use 
underlying existing resources on desktop computers.

Nowadays desktop computers are indeed desktop supercomputers, not only by 
its performance, but also because its complexity and programmability. We show how 
a  programming  model  can  help  to  create  parallel  applications  and  how  this 
applications can take advantage of existing hardware. One thing we have for sure, 
serial  programs will  not use efficiently existing hardware on desktop computers. 
This thesis has the objective to help to overcome this limitation.
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Chapter 1. Introduction

Classification is a task of pattern recognition that attempts to assign each input value 
to  one  of  a  given  set  of  classes.  Pattern  recognition algorithms generally  aim to 
provide a reasonable answer for all possible inputs and to do inexact matching of 
inputs. Pattern recognition is studied in many fields such as psychology, cognitive 
science, computer science and so on. Depending on the application, inputs of the 
pattern  recognition  model  or  objects  to  be  classified  are  described  by  different 
representations.  The  most  usual  representation  is  a  set  of  real  values  but  other 
common ones are strings, trees or graphs. These structures have more capacity to 
capture the knowledge of the model but their comparison or matching is also more 
computationally  expensive.  The  distance  between  a  pair  of  strings  or  trees  is 
computed in polynomial time; nevertheless, the computation of the distance between 
a pair of graphs is exponential respect the number of vertices. For this reason, some 
algorithms that compute the distance between graphs have been presented obtains a 
sub-optimal  distance.  Although  these  last  algorithms  have  a  polynomial 
computational cost, the real run time is not acceptable for some applications such as 
fingerprint  classification,  on-line  face  identification  or  robot  navigation,  between 
others.

Nowadays  desktop  computer  architectures  have  evolved  towards 
supercomputing  architectures.  These  architectures  generally  provide  multiple 
processors and complex memory hierarchy  [17]. A simple desktop computer may 
contain tens of  small  processors called cores  [18],  some of  them present at  main 
processor [19], but most of them are present as auxiliary coprocessors like graphical 
processors  [20].  Main  processor  is  usually  a  general-purpose  processor  [21]:  a 
processor that contains at least one core able to execute almost any algorithm with an 
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20 Introduction

acceptable trade off in efficiency. As a counterpart, some specialized algorithms, like 
video decoding or 3D computations can not be executed on reasonable time and 
real-time is not possible on such processors.  Specialized cores  [22],  like graphical 
processor cores, are provided in order to speed-up these algorithms. As the number 
of  cores  grows,  the  complexity  of  the  memory hierarchy  and its  interconnection 
network also grows. Consequently, applications and algorithms must be modified 
and adapted in order to take advantage of all available resources.

Most graph-matching algorithms are designed to be executed on a single core and 
general-purpose  processor  [23-25].  Consequently,  they  are  not  designed  to  take 
advantage of  all  available  resources  on current  desktop computers.  On the other 
hand, as the number of cores on desktop computers grows, the execution speed of a 
generic  core  remains  unchanged  [26],  that  means  that  classical  graph-matching 
algorithms  have  no  faster  execution  on  improved  architectures.  Graph-matching 
algorithms must be redesigned to take advantage of all present resources in order to 
achieve real time applications.

There  are  three  major  challenges  on  new  paradigm  programming:  work 
distribution,  data  distribution  and  synchronization  [27].  The  implementation  of 
classical algorithms assumes that there is only one processor, which means that all 
instructions are executed in sequential order. Adaptation of these algorithms to the 
parallel paradigm starts in the identification of independent algorithm steps, those 
that can be executed concurrently. Each step access to a certain group of data, data 
can be accessed locally or must be transferred from another location. All steps must  
process data to achieve the final algorithm result, which means that synchronization 
is required to ensure a correct computation. Algorithms parallelisation is a complex 
task that usually requires a deep knowledge of the underlying architecture and, for 
the  same  reason,  their  performance  are  limited  to  computers  with  analogous 
architectures.

Compilers  do  not  transform  or  adapt  algorithms  automatically.  Automatic 
parallelisation might be perfect to this task: they are able to transform automatically 
applications  to  their  underlying  architecture.  Unfortunately  there  is  not  much 
practical application: a compiler does not know programmer intentions, compiler 
can not go beyond information presented at compile time [28-30]. Some recompile-
just-in-time techniques are able to overcome this limitation by collecting statistical 
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data from current execution. This technique allow to modify code from the original 
program in order to obtain statistically re-engineered code. Therefore, once again, 
the compiler  does  not  know the programmer's  intentions,  just  the programmer's  
instructions.  Because  of  that,  the  compiler  is  not  able  to  know  for  sure  which 
transformations are safe and coherent with ideas beyond the original code. There is 
only  one  solution:  programming  model  must  allow  the  addition  of  relevant 
information to the compiler. The compiler must use these provided information to 
optimize a program to the underlying architecture. Nevertheless, while defining this 
new programming model, it has to be considered that there are a large number of  
programmers  that  implement  their  algorithms in  current  languages,  and so,  any 
addition  of  information  must  respect  existing  programming  models  and  take 
advantage of already written code.

The aim of this thesis is  to present a new research on multi-core architectures 
applied to graph-matching algorithms in order to easy their adaptation. The starting 
point are supercomputers: they already have multiple processors and a large list of 
programming models  and compilers.  Supercomputer's  programming models  and 
compilers  help  non  expert  programmers  to  take  advantage  of  supercomputers 
resources.  The  first  steps  of  this  thesis  are  to  compare  graph-match  algorithms 
against typical supercomputer algorithms and check their similarities. The second 
step is to compare multi-processors against multi-core processors. They can be quite 
similar,  but  memory  hierarchy  and  cache  behaviours  can  affect  algorithms 
performance.  As  third  step  we  will  compare  and  adapt  shared  memory  multi-
processor  programming  models  to  distributed  memory.  Our  aim  is  to  increase 
distributed-memory  usability.  The  fourth  step  is  to  develop  a  model  to  help  to 
understand current architectures and close incoming architectures. The fifth step is 
to  compare  data  acquisition  from  graph-matching  algorithms  to  streaming 
applications.  The  sixth  step  is  to  adapt  existing  multi-processor  programming 
models to streaming applications. The final step is to validate created programming 
model  by  presenting  a  version  of  the  graph-matching  algorithms  which  takes 
advantage of present resources on a desktop computers with a reasonable effort to a 
programmer or algorithm designer.
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Section 1.1. Current Desktop Processors

Since the first desktop computers to first years of XXI century all market processor 
has followed the same tendency: each new generation has improved significantly the 
execution  time  of  programs  in  comparison  to  previous  generations.  These 
improvements have been implied an exponential improvement related to time. As a 
consequence,  algorithm  design  and  programming  has  used  the  same  tools  to 
describe tasks for decades.

Limitations over instruction level parallelism (ILP) and energy consumption has 
broken this tendency  [26]. Nowadays desktop computers increases the number of 
cores and execution units in order to maintain the exponential improvement, but, 
now it is required to re-engineer existing programs and algorithms to use additional 
execution units.

1.1.1. Architectures

We focus on three main topics: multi-core, homogeneous versus heterogeneous, and 
memory hierarchy (distributed versus shared memory). 

Market has demonstrated that multi-core are present on most of our homes and 
offices,  we  have  to  deal  with  them.  Multi-core  processors  are  quite  close  to 
multiprocessors, both have similar structure: multi-core are a kind of multiprocessor 
embedded  into  a  simple  chip  die.  Multi-core  distances  are  shorter  than 
multiprocessor, so communication and synchronization are faster (between cores). 
As a counter part, multi-core have less room for cache memory for each core and 
memory bandwidth, both are shared between all cores of the same die.

Homogeneous  systems  are  simpler  to  deal  with  than  heterogeneous  systems. 
Homogeneous systems have basically the same unit processors replicated, and any 
of them can execute the same functions at almost the same speed. Heterogeneous are 
quite more complex, they have many kinds of unit processors. Each unit processor 
can  have  its  specific  characteristics.  The  main  advantage  of  heterogeneous 
architectures  is  that  they  have  specialized  computing  units,  so  there  are  some 
computations are many times faster.  As a  drawback,  each unit  processor  from a 
heterogeneous  architecture  can  execute  only  a  set  of  functions.  The programmer 
must decide how to create each set of functions and how may them interact. As the 
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number  of  cores  grows,  there  are  more  chances  to  have  specialized  cores,  like 
happens on CellBE, Fusion, Larrabee, or even on desktop computers with CPU and 
GPGPUs.

Memory hierarchy is usually defined by multiple levels of cache. As smaller is the 
memory component faster it is. Main memory usually is slow in comparison to the 
processor.  In  order  to  reduce  latency  there  are  caches  between  memory  and 
processor. Caches near to the processor are smaller, but at the same time they are 
faster. Closer caches to the processors (Level 1, and Level 2) are usually embedded 
on the same die with the processing units. That is the big problem of caches and 
multi-core/multi-processor:  multiple  processing  units  are  sharing  the  same  main 
memory,  so  they  should  have  a  consistent  view  of  its  content.  Unfortunately,  it 
means that either all of them share the same caches or all caches must be aware of all  
memory  changes.  There  are  two  schemas  to  face  this  problem  of  memory 
hierarchies: shared memory (add some kind of coherence protocol) and distributed 
memory (avoid the problem and be inconsistent). Shared memory assumes that all  
processors are sharing the same data, so changes must be coherently notified to all  
caches. On the other hand, distributed memory slices memory into multiple isolated 
regions. It avoids the problem, so there is no need to maintain coherency between all  
caches. Shared memory is easier to use, programmer does not need to know where is 
the data located, just use it. Distributed memory require a strict control about data 
location and synchronization,  programmer must decide where to store data,  and 
how synchronize parameters and results. In other words: someone has to solve the 
problem.  Shared-memory  implies  that  the  architecture  solves  the  problem, 
distributed-memory implies that the programmer must solve the problem of data 
distribution.

Original desktop computers started as single core homogeneous (there is only one 
processor, so there is only one kind of processor) shared memory (there is only one 
coherent  cache  hierarchy),  but  they  are  now multiple  core  homogeneous  shared 
memory  [19],  and it  seems that  they are  turning heterogeneous with distributed 
memory [31]. We also can consider that they are becoming dual processor systems, 
one generic CPU and one general-purpose graphics processing unit [20].
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Section 1.2. Algorithms And Parallelism

Most algorithms are designed to be executed on a single core and general-purpose 
processor.  Consequently,  they are not designed to take advantage of  all  available 
resources  on  current  desktop  computers.  By  not  taking  into  account  available 
resources, it appears a gap between effective algorithm performance and potential 
algorithm performance. This gap will increase at the same rate that cores count on 
computers increases. 

There are many approaches  to  solve the gap between existing algorithms and 
existing  architectures.  The  first  and  naive  way  is  to  rewrite  completely  existing 
algorithms and applications to work in those new architectures.  This approach is 
very complex, requires a great effort, and also requires a large amount of qualified 
people able to transform algorithms. As we have already stated: a perfect approach 
would be automatic transformations, like automatic parallelisation,  but there is  a 
lack  of  required  information  at  compile  level.  Our  selected  approach  is  using 
annotations.

Annotated programming model is a programming model based on an existing 
model,  but  annotations  are  added  to  increases  the  available  compile  time 
information.  A  good  example  of  annotated  programming  model  is  OpenMP. 
OpenMP is designed as a set of annotations over C, C++ and Fortran applications. 
OpenMP  targets  multiprocessors  and  split  the  algorithm  into  multiple  parallel 
computations. In order to enable parallel  computation on OpenMP, programmers 
should add a few annotations on their programs. OpenMP will adapt the application 
to  the  many  multiprocessors  and  use  the  underlying  tools  and  thread  libraries 
automatically.

1.2.1. Parallelization Tools

In order to parallelise an application we have to transform an application to use the 
underlying  architecture,  but  we  also  must  study the  application  to  know which 
processes are critical to parallelise. 

This parallelisation task requires many tools, each of them covers a partial set of 
requirements and some of them overlaps on their features. This tools are, from lower 
levels to higher levels: compiler, dynamic linker, auxiliary libraries (like libc), threads 
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library,  synchronization  libraries,  communications  libraries,  runtimes,  profilers, 
profiling libraries, profiler visualizers, and simulators. 

Compiler  is  the  most  basic  tool,  it  translates  an  algorithm  to  binary  code. 
Compilers usually work with the higher level code: transforms code to low level 
operations.  This  transformation  looses  most  of  high  level  information.  This 
information includes variable names, loops structures, … The compiler is the first 
responsible  to  take  advantage  of  underlying  computer  architecture.  As  a 
consequence it requires the maximum information about the algorithm and target 
architecture.

Execution environment is not fixed, even the same binary can run on machines 
with different  configurations  (as  an  example,  each machine  can  have a  different 
amount  of  physical  memory).  Compiler  does  not  generate  a  binary  for  each 
architecture  (mainly  because  it  is  not  practical).  Instead  of  this,  compilers  use 
auxiliary  libraries  (such  libc  or  a  run-time)  to  adapt  the  binary  to  a  specific 
environment. Dynamic linkers are key on this process, they link, and completes the 
binary, with the most suitable library for the executing architecture. 

Thread  libraries  and synchronization  libraries  are  usually  highly  coupled and 
usually shipped as a single library (for instance pthreads library).  There are two 
main  classifications:  user  threads  and  kernel  threads.  User  threads  are  threads 
controlled by user space, they are usually mapped onto a single kernel thread, and 
I/O operations may block all of them. Kernel threads are threads controlled by the 
operating  system  and  they  can  be  mapped  over  multiple  physical  threads  or 
processor  units.  Most  threads  libraries  mix  user  threads  and  kernel  threads  to 
achieve optimum performance. 

Synchronization  libraries  are  highly  coupled  to  thread  libraries,  the  main 
motivation is to select  the most suitable wait policy and perform it.  Default wait 
policy  is  usually  suspending  thread  execution;  this  action  requires  the  exact 
knowledge of threads implementation in order to change active thread. On the other 
hand, for high performance applications waiting kernel threads policy is based on 
active waits. They use this kind of waits in order to resume work as fast as possible.  
Two  main  synchronization  primitives  are  mutexes  and  barriers.  Mutex  ensures 
mutual  exclusion  on  critical  shared  structure  manipulations.  Some  mutexes  are 
replaced by the compiler with atomic instructions, if there are atomic instructions for 

UNIVERSITAT ROVIRA I VIRGILI 
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES 
David Ródenas Picó 
DL: T.1350-2011 



26 Introduction

the  enclosed  operation.  Barriers  are  used  to  synchronize  execution  of  multiple 
threads. Threads are collaborating on the same problem, for each step or point of 
synchronization a  barrier  primitive is  used.  Barrier  ensures  that  all  threads have 
reached a specific point.

Communications libraries are required for distributed memory systems, but they 
are uncommon on shared memory systems. There are four main primitives: send, 
receive, broadcast and reduce. Send and receive are designed to send or receive a 
simple piece of data, usually point to point. Broadcast sends the same data to many 
execution threads. Reduce primitive summarises many data into a single result, it 
receives  a  data  set  from many locations  and performs the  reduce  operation  (for 
example a summation operation). Synchronization primitives are often synchronous, 
that means that they require to use a synchronization library in order to wait on 
receive  operations,  if  data  is  not  yet  present,  or  send  operations,  if  there  is  not 
enough  buffers  to  store  the  result  (or  if  the  operation  is  defined  as  completely 
synchronous). 

Runtimes are libraries  designed to support the compiler or the behaviour of a 
programming model.  Runtime library provides a new set of primitives related to 
each programming model, it allows to express high level concepts. These primitives 
use other libraries to spawn threads, synchronize and communicate data. Compiler 
does not need to know how to deal with this low level libraries, it needs to know 
which primitives are implemented by the runtime. For example, there is an OpenMP 
runtime primitives defining a parallel region. Runtime decides how many threads 
are created to execute this parallel region. Compiler just creates a binary using this 
primitive. But there is a more important point, the resulting binary does not contain 
information limited to thread creation (as it should happen using low level libraries 
as  pthreads),  it  also  has  information  about  parallel  regions  structures,  and  this 
information can be used to adapt the binary to each environment.

Annotated programming model and compilers are based on hints or comments 
over serial working code. That means that a starting point for an annotated program 
is  a  common  serial  well  known  and  tested  application.  Annotations  are  just 
comments, they can be added one by one ensuring a correct behaviour. At the same 
time, they can be disabled (just removing or using common comments) to return to 
the serial behaviour.
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Profiling tools are useful to achieve a good performance on parallel architectures. 
Amdahl's law [32] states that an application 95% parallelisable can be speedup x20, 
but no more (even if you use a thousand processing units). As a consequence, it is 
important to know which parts can be easily parallelised and how many threads can 
be  used.  Profiling  tools  are  more  than  time  watches:  they  report  important 
information like data movements, false sharing, or load balancing. This information 
is usually collected while the application is running helped by profiling libraries. In 
addition, some profiling libraries also includes user events, they help to add runtime 
information or programmer relevant information.

Collected profiling information is  usually studied by the user  or programmer. 
Some  times  this  information  is  also  used  by  some  compilers  and  runtimes  to 
optimize future executions. Provided information allows to know the impact of the 
architecture on the program. There are some tools that just list some statistics, but 
there are some other tools that visualises the execution.

Simulators are one step further on profiling tools. They use profiling information 
and  architecture  information  in  order  to  extrapolate  the  behaviour  on  different 
architectures.  Simulators  also  helps  to  predict  algorithm  performance  on 
experimental architectures, when real hardware does not exist yet.

Section 1.3. Graph Matching Algorithms

One of the objectives of graph matching algorithms is the computer vision. In this 
premise real-time response is the requirement for the viability of an algorithm. There 
are many algorithms close to be executed on real time; in order to make them viable,  
these algorithms must be able to extract the maximum performance from current 
computer architectures.

Computer vision process is usually split in two processes: image acquisition and 
preprocessing  and  image  recognition.  Image  acquisition  transform  a  raw  image 
information (a  sequence  of  pixel  colours)  into  a  more usable information (as  for 
example  border  maps,  frequency  maps  or  regions  of  adjacency  maps).  Image 
recognition tries to understand acquired information, in order to perform this task, it 
designates symbolic information to acquired information. 
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There are many processes and algorithms to do computer vision. From all of them 
we have selected a  graph matching algorithms.  These algorithms first  require to 
transform  acquired  image  into  a  graph  representation.  A typical  transformation 
process is to convert input image into a segmented image by regions. Once this is 
converted, an adjacency regions graph is created. Result graph is matched against 
other representative graphs in order to detect known patterns.

Section 1.4. Streaming And Scientific Applications

High  performance  computing  is  known  by  its  effort  to  extract  the  maximum 
performance from underlying computer architecture. Moreover, high performance 
underlying  architectures  usually  involve  multiple  processing  units  and  complex 
memories hierarchies. For this reason, their target applications are a good candidate 
as  a  starting  point  for  multi-core.  These  applications  are  usually  scientific 
applications,  and  their  structure  seems  to  be  very  close  to  graph  matching 
algorithms. 

On the other hand, data acquisition systems are usually designed to work in real-
time  on  embedded  devices.  These  devices  can  have  multiple  processors  and 
specialized units in order to achieve real-time and low consumption requirements. 
Embedded systems usually  works  with  streaming programs,  these  programs are 
designed to process a continuous flow of data.  Streaming programs are very close to 
acquisition image and transformation algorithms of computer vision, and even many 
of them are already converted to streaming programs [33].

Beyond instruction level parallelism (performed by processors themselves), there 
are  two  main  kinds  of  parallelism  on  applications:  task  parallelism  and  data 
parallelism. Task parallelism assumes that there are multiple tasks (or functions), 
these functions can be executed simultaneously and independently.  Data parallelism 
assumes that each task replicates the same computation over each element of a large 
set of elements, computation for each element can be performed simultaneously and 
independently.

There  are  two main operations  on data  parallelism:  parallel  map and parallel 
reduction. Parallel map applies the same operation over each element from a large 
set of elements. Parallel reduction applies an associative operation over all elements 
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of a large set. As a result, parallel map obtains a set of elements. Each result element 
is computed in parallel, computation must be independent from other elements. All 
elements can (not as a requirement) be computed in parallel. An example of parallel  
map is to multiply per two all elements of a set. Parallel reduction computes as a 
single result element. This result is the computation of an associative operation over 
all  elements of a set.  In order to parallelise these operations, multiple associative 
operations  can  be  performed over  distinct  sets  of  elements  simultaneously  (they 
must  be  independent).  Resulting  partial  results  are  combined  with  the  same 
associative operations until obtain a final result. An example of parallel reduction is 
summation of all elements of a set.

Streaming applications and algorithms are usually designed to exploit first task 
parallelism and, if there are enough free resources, then data parallelism. Streaming 
programs  exploit  task  parallelism  with  techniques  known  as  pipelining:  data 
processing is split  in stages,  each stage computes over the result  of  the previous 
stage and produces the data required for the next stage; all  stages are computed 
simultaneously for different time sliced sets of data. 

Scientific  applications  and  algorithms  are  usually  designed  to  exploit  data 
parallelism.  These  applications  usually  computes  over  a  large  sets  of  data,  and 
usually computes iteratively over the set until reach to a solution or expected state.  
Each data element is computed in parallel, but the application must wait to finalise 
the processing of all data elements before starting a new iteration. A good example is 
a weather simulation: a grid represents values from the atmosphere (for example 
pressure,  humidity or temperature).  For each grid cell  it  computes the next time 
values  using  contiguous  cell  values.  In  order  to  simulate  a  large  time  weather 
prediction, this process is repeated many times. All cells can be processed in parallel  
for one algorithm iteration, but results of this process are required to start the next 
step. 
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Chapter 2. Objectives

The objective is to find a set of tools and directives to help algorithm designers in  
computer  vision  and  pattern  matching.  These  tools  and  directives  will  allow  to 
algorithm designers take advantage of  current underlying computer architectures 
and  their  possibilities.  We  want  to  demonstrate  that  existing  tools  for 
supercomputers are helpful for multi-cores. We will focus on those tools that do not 
require a deep knowledge about computer architecture. We expect that this kind of 
tools  are  suitable  for  described  task  with  an  acceptable  performance.  We  will 
evaluate these tools on many environments or architectures. Recommendations will 
be performed in order to improve their efficiency.

We  define  two  main  criteria  to  evaluate  tools  and  directives:  usability  and 
performance. We expect from tools to be usable by people with no deep insights of 
underlying architectures.  Adapted algorithms and applications must run with an 
acceptable performance.  We are looking for a trade off between this two criteria: 
performance and usability.  For example,  it  is  worthy to lose a 20% of maximum 
performance if it  can be achieved by a standard algorithm designer with a small 
effort. We do not expect to require an architecture expert plus a great effort on the 
algorithm or program parallelisation and distribution.

Usability criteria is related with required knowledge: the possibility to exploit a 
many kinds of architectures with the same source, and of course, the possibility of  
incremental code transformation and debugging. Usability criteria will benefit those 
solutions  which  hide  architecture  details  and  focus  on  algorithm  semantics.  We 
expect from an algorithm designer to know insights from its algorithm, but not to 
know  from  architecture  details.  That  means  that  tools  should  be  focused  on 
algorithm semantics better than architecture details. Tools should allow to provide 
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enough  information  to  take  advantage  of  current  architecture.  If  the  additional 
information is good enough, it should be useful for many kinds of architectures. On 
the other hand, we can not expect from a programmer to adapt a large application or 
algorithm at once to a new architecture. For this reason tools may help to change 
parts  of  the  algorithm  or  application  incrementally;  at  each  step,  the  algorithm 
designer or programmer may be able to test if provided information is correct, and if 
results (algorithm and performance) are expected. If at any step the application do 
not works properly, we expect that the programmer will debug the application in 
order to solve any problem.

Performance criteria is more related with the possibility of increasing application 
performance on future processor architectures than to have a very good performance 
in  a  current  or  specific  architecture.  For  years  we  have  assumed  that  a  single 
threaded will increase its performance over each new processor generation, now we 
know that it is not longer true. Current market trends seems to indicate that the 
number  of  cores  and  available  threads  will  increase,  in  this  scenario,  a  good 
performance criteria is scalability. Scalability studies how an algorithm or program is 
able to keep improving its performance in the same ratio that cores or hardware 
threads  increases.  A good scalability  will  ensure  that  future  processors,  with  an 
increasing number of cores, will be able to speedup the application.

Section 2.1. Graph Matching And Scientific Applications

Scientific applications have been used on supercomputers and many architectures 
for decades. In other words, scientific applications are a very well known problem. 
On the other hand, research and practical  uses of  graph matching algorithms on 
supercomputing  environment  are  not  common.  In  other  words,  graph  matching 
algorithms are still in research and there are many potential problems to solve. By 
using scientific applications, instead of graph matching algorithms, on first steps of 
this thesis, we can reduce potential unexpected problems.

In our research we want to face only one problem at a time. When we have started 
this  research  there  was  little  applicability  of  supercomputer  tools  in  multi-cores. 
Doing  graph  matching  and  using  supercomputer  tools  in  multi-cores  faces  two 
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problems at a time: 1) supercomputing tools on multi-core, and 2) graph matching 
with supercomputer  tools.  There are two approaches:  1)  port  graph matching to 
supercomputing  using  supercomputer  tools,  or  2)  port  a  well  tested  scientific 
application  with  supercomputing  tools  to  multi-cores.  Approach  one  has  a 
considerable drawback: supercomputers are really very expensive; moreover, results 
on supercomputers are not extensive to multi-core. Approach two, per contra, makes 
available a very large list of bibliography to solve the problem. We have selected 
approach two.

First steps of this thesis will start doing research with supercomputing scientific 
applications.  As  our  objective  is  to  port  graph  matching  and  computer  vision 
algorithms to multi-core, we first will compare scientific and vision algorithms in 
order to find an equivalence.

Hypothesis  1:  Graph  matching  algorithms  have  common characteristics  with  scientific  
applications  used  at  supercomputing. There  are  many  kinds  of  applications  from 
scientific world used on supercomputing. Most of these applications shares patterns 
and structures, in addition they are focused to intensive computations. For example, 
scientific  applications  patterns  and structures  differ  from classical  administration 
applications. 

Objective  1:  Prove  that  graph  matching  algorithms  have  common  characteristics  with  
scientific applications. From all available scientific applications, we focus only on a set 
of  applications that 1) have potentially common characteristics  with target graph 
algorithms  and  2)  have  been  successfully  adapted  to  many  supercomputing 
environments using tools that satisfies our criteria of usability and performance.

Section 2.2. Annotated Programming Model Over Multi-Core

A  homogeneous  multiprocessor  with  shared  memory  is  the  most  usable 
supercomputer architecture. Annotated programming models for these architectures 
have  one  of  the  best  trade  off  between  usability  and  performance.  We  want  to 
achieve the same trade off in multi-core architectures. 
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Multi-processor  are  basically  multiple  processors  of  the  same  kind  and 
characteristics interconnected sharing the same data. In other words: all threads have 
the  same  computations  capabilities  and  can  use  the  same  data  simultaneously. 
Complex memory operations like data synchronization are hidden from application 
programmer by hardware.

Annotated programming models  uses  annotations in order to  extend available 
information at compile time. As less information is required, and less specific, more 
usable  is  the  programming  model.  Most  popular  multi-processor  annotated 
programming models  are  born  in  multi-processor  homogeneous  shared  memory 
architectures.  Shared  memory  implies  no  need  for  data  partitioning  or  explicit 
communications  annotations  (like  any  standard  application).  Homogeneous 
property allows to execute the same code in any arbitrary hardware thread.

Shared memory homogeneous multi-processor annotated programming model, as 
OpenMP, focus on annotations to express algorithm parallelism. These annotations 
help the compiler to identify which parts can be executed in parallel, in other words, 
which parts have no dependences. It allows the compiler and the runtime to decide 
how many threads use and how to perform synchronizations. This decisions can be 
different  for  each  architecture,  ensuring  a  good  performance  under  many 
architectures. At the same time, OpenMP can hide architecture to the programmer. 
These properties enable usability and performance.

We focus only in tools for multi-processor homogeneous shared memory. Multi-
processor  and multi-core differs  on communication and synchronization velocity, 
cache size, and memory bandwidth. On the other hand, multi-processor and multi-
core both run multiple hardware threads. A set of annotations based on expressing 
algorithm parallelism help the compiler to take advantage of hardware threads, no 
matter if threads are multiple processors or multiple cores. We expect to overcome 
differences  like  communication  velocity  or  cache  by  changes  on  the 
compiler/runtime.  We  also  expect  to  allow  applications  to  exploit  multi-core 
improved communication and synchronization latencies.

Hypothesis  2:  Supercomputer  architectures  based  on  multiprocessors  have  similar  
characteristics  to  multi-core and multi-threading processors  in order to  execute scientific  
applications. Both architectures execute multiple hardware threads and have multiple 
functional units allowing true parallelism. But, on the other hand, there are some 
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important differences related to communication and synchronization (multi-core are 
faster) or related to memory hierarchies (multiprocessor have more high speed cache 
capacity).  Communication  and  synchronization  speed  should  open  new 
opportunities  on  fine  grain  parallelism  (parallelism  which  more  frequent 
synchronizations), but low capacity on cache might affect negatively to execution of 
large data sets. We expect that low capacity on cache might be compensated by high 
speed synchronizations.

Objective  2:  Prove  that  multi-core  processors  present  similar  characteristics  to  
supercomputer  architectures  and  they  execute  successfully  scientific  applications. Our 
objective is not to create a new adaptation of scientific applications for multi-core 
architecture, but use the same tools for multiprocessors on multi-core processors. We 
have explained in main objectives that selected scientific applications use tools that 
provides usability and performance. We focus on programming models based on 
annotations,  which  provides  desired  usability.  Target  scientific  applications  must 
execute successfully (with good performance) on multi-core with minimum changes. 
Runtime and compilers might be adapted in order to help performance.

Section 2.3. Annotated Programming Model Over Distributed Memory

As  the  number  of  processors  increases  and  memory  hierarchies  becomes  more 
complex architectures  are more likely  to  be distributed memory ([17],  [31],  [34]). 
Annotated programming models are not designed for distributed memory, and they 
do not specify data movement. We want to study if it is possible to use annotated 
programming models under distributed memory and which changes are required. 

Shared-memory is logical view of the physical memory. When there are multiple 
processors or cores, multiple caches, and many levels for replication, there is not a  
unique real data view. Each cache can contain many versions of the same data. When 
we  talk  about  shared  memory  systems,  or  either  we  have  a  unique  memory 
hierarchy, or we have a very complex piece of hardware that creates a logical shared 
memory.
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Shared  memory  illusion  is  usually  kept  by  cache  coherence  protocols.  These 
protocols coordinate all caches for all levels sharing the same memory in order to 
synchronize values. Special hardware, implemented at caches and communication 
buses,  maintain the coherency between all  caches.  When memory hierarchies are 
very  complex,  this  hardware  is  also  very  complex  and  coherency  becomes  very 
expensive.

Distributed  memory  architectures  avoids  shared  memory  complexity  by  not 
implementing it. Distributed memory architectures are organized in clusters: groups 
of  computing  resources  (like  processors,  nodes)  sharing  the  same  memory. 
Distributed  memory  architectures  have  a  specialized  communication  network  in 
order to transfer data between all nodes of the same system. This network allows to 
send and to receive data explicitly from hardware threads of the network. Each node 
logical memory is like an independent computer which it is connected through a 
network.  Nodes  uses  the  network  to  send  and  receive  data  to  complete  its 
computation in collaboration with all other nodes.

Distributed memory architectures expect from the application programmer and 
from the algorithm designer to deal with multiple memories. All  complexity and 
responsibilities taken from hardware architecture are given to the programmer. For 
this  reason programming for  such architectures  is  harder than programming for 
shared  memory  architectures.  Programmer  must  distribute  the  data  and  the 
program itself into multiple nodes, in addition it must design its communication and 
synchronization.

Distribution  work  made  by  the  programmer  is  usually  better  than  any 
distribution  performed  automatically.  Programmer  knows  perfectly  application 
behaviour, programmer can foresee program necessities and rearrange application 
behaviour  in  order  to  reduce  required  communication.  On  distributed  memory 
architectures,  latencies  are  usually  high  and  all  synchronizations  and 
communications must be minimised. This minimisation impact is so important that 
is  the  key  to  the  design  of  distributed  algorithms  and  distributed  applications. 
Communications  and  synchronizations  becomes  critical.  The  viability  of  an 
application usually depends on the capacity to minimise such communications on a 
large  number  of  nodes.  Usually  best  policy  is  trying  to  keep  together  data  and 
computations, in other words, best policy is having a high locality. 
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Annotated  programming  models  were  designed  to  simplify  multi-processor 
programming. Shared-memory architectures are simple to use, and in order to avoid 
complexity, most annotated programming models focus on shared-memory. These 
programming  models  relay  on  shared-memory  in  order  to  avoid  explicit  data 
communication annotations and data distribution. 

Some annotated programming models have experimental run-times that allows to 
simulated a shared memory on distributed memory architectures,  they are called 
software-distributed-shared-memory  systems  (SDSM).  These  run-times  uses 
software techniques  to  emulate shared memory.  For example,  not  locally  present 
memory pages can be invalidated on the current node and page fault can be used as  
a substitute for a cache miss. SDSM run-times allow that applications created for run 
shared  memory  architectures  to  work  on  distributed  memory  systems. 
Unfortunately, most of these applications are not able to have a good performance 
and  scalability  on  SDSMs.  Some  benchmarks  even  presents  a  slowdown: 
performance is worst two nodes (more execution resources) than one single node. 
This behaviour is not surprising: shared memory applications are not designed to 
work on distributed shared memory and they are prone to compute with pieces of  
data spread through all cluster, in other words, they have a low locality. Locality was 
important but not critical on shared-memory architectures.

Distributed shared memory systems faces two problems: 1) some decisions about 
the design of applications are not aware of distributed nature of architecture and 2)  
there is a large latency to receive required data not present locally. Solving problem 1 
requires  the  expertise  from  the  algorithm  designer  or  from  the  application 
programmer, so some applications must be rewritten in order to increase its locality. 
Nature of problem two is a little more tricky. All shared-memory hardware threads 
stalls (halts) when data is not ready (for example, if data is not present on the cache, 
thread must wait until data is received). When data is not locally present, it is likely 
that it  is  being used by another node,  the latter node must send the data to the 
former in order to be used. 

Prefetch technique allows to send or receive a data from another cluster before the 
execution requires the data. Prefetch technique is able to avoid thread stalls for data 
by  advancing  data  communication.  Data  communication  can  be  performed  in 
parallel  with  computations  to  hide  its  transference  cost.  A  good  prefetch 
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performance  is  able  to  hide  all  communication  costs  and  show  a  performance 
comparable to shared architectures. A poor prefetch performance can send wrong 
pages and invalidate them on source node. As a result, source node will have to ask 
again for data that  originally was present.  Distributed shared memory run-times 
uses  prefetch,  but  annotations  does  not  have  information  related  about  data 
movements, so they have to perform predictions.

Hypothesis 3:  Annotation based programming models are also valid on environments of  
distributed memory. Algorithms and applications designed to have a high locality, in 
addition to good prefetch predictors (or some annotations) can have a good usability 
and performance on distributed memory architectures. 

Objective 3:  Prove that annotation based programming models can effectively (usability +  
performance) run on distributed memory architectures. Addition information required by 
the programming model should be minimal and do not require a great effort on 
application  restructuration.  We  deal  with  a  trade  off  between  application 
transformation  and  performance.  We  expect  a  little  effort  from  the  algorithm 
designer or programmer in order to increase locality and performance, but not the 
same complexity required by explicitly programming for distributed memory.

Section 2.4. Heterogeneous Processor Simulator

Not  every  architecture  is  designed  to  have  a  good  usability.  There  are  many 
architectures  designed to  be  used by  expert  programmers  on such  architectures, 
usually limited for target tasks. Small changes on those architectures can jeopardize 
the  maximum  performance,  but  can  enable  better  results  from  non  expert 
programmers. One of the biggest problems is distributed memory, but distributed 
memory having a  global  linear  address  space  can improve its  usability.  In  other 
words, a mechanism to use memory remotely, even at expenses of paying a large 
latency.

As  more  complex  is  an  architecture,  more  knowledge  it  is  required  from  the 
algorithm  designed  and  application  programmer  of  underlying  architecture. 
General-purpose  old  fashioned processors  allows to  achieve a  good performance 
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without  any special  knowledge.  Some specific  architectures  have special  features 
that  allows performances  many times better than any general-purpose processor. 
Unfortunately to achieve such performance it is required to use such special features. 
Using  these  features  requires  a  high  knowledge  of  architecture.  On  most  of  the 
specific  architectures,  if  especial  features  are  not  used,  their  performance  can be 
lower than generic architectures. 

As the number of cores grows, there are more chances of having specialized cores. 
Having 16 cores identical for general-purpose is not a good idea: there are many 
tasks running on general-purpose computers that can take advantage of special cores 
(graphics processing, video streaming, …). But there are not too much tasks able to 
take advantage of  multiple  identical  general-purpose threads.  It  even is  likely  to 
have dedicated cores for each kind of task, in order to achieve a high performance.

There  are  two  main  problems  of  heterogeneous  architectures:  each  core  is 
specialized in computing a kind of code, and they usually have distributed memory. 
It has two consequences: the programmer must deal with code distribution (which 
function or task is executed by which core) and data distribution (where data will be 
located and how will be transferred). 

Having specialized cores implies that the programmer or algorithm designer must 
decide  how  to  use  each  core.  In  other  words,  the  programmer  must  create 
applications for multiple processor kinds on the same code. It is not usable, kinds of 
cores  can change between processor  generations  as  available  and require  a  very 
complex task for a programmer. This problem is already present on general-purpose 
processors,  like  Intel  ones:  specialized  vectorial  instructions  have  evolved, 
specialized  programs  must  be  rewritten  in  order  to  take  advantage  of  each 
generation (MMX, 3DNow!,  SSE,  SSE2,  SSE3,  SSSE3,  AVX, CVT16, FMA3, FMA4, 
XOP).  Some  compilers  enable  automatic  vectorisation  (they  choose  for  a  target 
architecture which instructions to use), but their usually require to use annotations 
like #pragma ivdep (equivalent to #pragma omp parallel for) in order to enable some 
optimizations (in this case, the programmer reports that there are no dependences 
between loop iterations,  even if  compiler  can  not  ensure).  Nowadays,  maximum 
support in this line is to allow the addition of some annotations in order to enable 
optimizations  (ignored  if  the  underlying  architecture  does  not  support  some 
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features) or describe requirements in some parts of the code (used to decide target 
processor).

Distributed memory is a difficult problem. In Objective 3 we try to show that there 
is possible to use distributed memory as shared memory, so programming task can 
be  lighter,  but  we  also  add one  requirement:  some  mechanism to  allow specify 
address to be read. Usually all pointers on distributed memory architectures focus 
only  on  certain  nodes:  all  pointers  are  relative  to  one  node  and  there  is  no 
information related to which machine has the information. That limitation requires 
from  the  user  to  know  where  a  pointer  points,  to  which  node  memory.  This 
information  usually  is  nowhere  else  than  the  programmers  mind,  and  prone  to 
errors. 

There is a concept, global linearly addressable memory, that allows to have global 
pointers,  even  in  distributed  memory.  It  can  be  seen  as  an  architecture  with 
distributed memory which pointers mix local address to current relative node plus a 
cluster id. On this kind of architecture, addresses from other clusters can be read 
(with a simple load or store instruction) but they may be slow and require special 
instructions in order to keep local pointers fast. 

Global linearly addressable memory allows to increase usability: a programmer 
can iteratively optimise an application. First the programmer creates an application 
assuming shared-memory (even if it is very slow), and then, iteratively step by step, 
the  programmer  transforms  global  accesses  by  local  accesses.  With  this  model, 
distribution on firsts steps may have poor performance, but the programmer can 
start  to  distribute  data  (or  add annotations  for  such finality)  without  writing all  
process from scratch (or even paying small penalties for few distributed accesses). 

There are already some architectures that  are distributed and they are a good 
challenge for theirs programmers. We state that to modify such architectures in order 
to have global linearly addressable memory may be worth. This change is not free, it 
requires to pay some kind of penalty.  We propose to use a simulator in order to 
modify the hardware and to evaluate the performance for non expert programmers.

A simulator  for  a  heterogeneous  multi-core  is  relative  new.  Most  simulators 
provides  capability  to  simulate  one  processor,  with  one  kind  of  ISA,  with  one 
memory  hierarchy.  Distributed  heterogeneous  multi-core  are  a  bigger  issue.  We 
require  a  modular  simulator  able  to  create  almost  an  arbitrary  hierarchy  with 
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multiple local  addressable memoires and cache hierarchies.  In order to  show the 
usability  of  global  linearly  addressable  memory  architectures,  first,  we  need  to 
simulate a distributed memory processor,  validate it,  and perform modifications. 
Results must be evaluated in order to know how changes impacts on usability and 
on performance.

Hypothesis 4:  Small  changes  on architecture can help to improve usability. There is a 
trade of between usability and architecture performance. Some architectures have 
very good performance results with almost any code (like generic architectures), but 
some  other  architectures  need  deep  knowledge  of  the  architecture  in  order  to 
achieve the maximum performance. It is possible to modify architecture in order to 
increase usability, but on the other hand, the architecture can decrease its maximum 
performance. We state that some changes on architecture can create a good balance 
between  two  possibilities:  to  make  available  good  performance  ratios  with  low 
knowledge of underlying architecture.

Objective  4:  Present  changes  in  the  architecture  that  increases  usability  on  complex  
architectures,  even  if  we  loose  partial  hypothetical  maximum  performance. In  order  to 
satisfy this objective we use a simulator and other architectures in order to prove 
candidate  changes.  Changes  must  show  how  concepts  like  global  linearly 
addressable memory on distributed memory can help to increase usability with an 
acceptable cost.

Section 2.5. Graph Matching Preprocessing And Streaming Applications

Streaming  applications  have  perfect  properties  for  heterogeneous  distributed 
memory  architectures:  they  have  multiple  independent  kernels  (functions)  with 
explicit  data  flows.  Graph  matching  preprocessing  algorithms  are  in  fact  image 
acquisition  programs.  This  kind  of  programs  usually  present  streaming 
characteristics. Streaming applications have been used on multiple research and are 
deployed on multiple  commercial  system.  If  we stablish that  they have common 
characteristics  with graph matching preprocessing algorithms,  we can use a well 
known algorithms in order to perform firsts steps with streaming architectures.
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As we stated above on section 2.1 we want to face a only problem at a time. There is 
a  large research on some streaming applications on many kinds of  architectures. 
There  are  also  a  large  number  of  streaming  programs  deployed  on  commercial 
systems. On the other hand, there is not an annotated programming model to create 
streaming  applications.  So  we  stablish  once  again  three-step  research:  select 
streaming applications comparable to graph matching preprocessing, use streaming 
applications  to  define  a  programming  model  for  streaming  applications,  apply 
resulting knowledge to graph matching preprocessing.

Streaming  applications  are  based  on  independent  kernels  with  explicit 
communication data flows. A kernel is like a function, executed in its own thread, 
within a loop whose iterations are computed each time that a data set is received. 
Kernel  memory  is  private,  this  memory  is  not  accessed  by  other  kernels.  All 
communications between kernels are performed using synchronous data channels, 
or specialized asynchronous directives.  Kernels  computations are performed over 
incoming  data  from  synchronous  data  channels.  Their  results  are  sent  to  other 
kernels through outgoing synchronous data channels.

Synchronous data  channels  communicates  kernels,  they represent  a  data  flow. 
There are three main operations over synchronous data channels: push, peek, and 
pop. Data channels are flows of one single type of data. Push operation is applied to 
outgoing synchronous data channels, it adds one data element to the channel. Push 
operation is synchronous, it  can stop its kernel execution if there are not enough 
available space to receive data. Pop operation reads and discards one element from a 
synchronous data channel.  Pop reads elements in the same order that push adds 
elements. If a synchronous data channel is empty, pop blocks its kernel execution. 
Peek operation reads one arbitrary non discarded element from a synchronous data 
channel. If required element is not yet pushed, peek blocks its kernel execution. Peek 
operation  is  performed  carefully  because  it  decides  the  minimum  number  of 
elements of  synchronous data channels  buffers.  Peek operation can induce dead-
locks when there are loops or cycles in the data flow. 

Some architectures do not allow kernels to block. For this reason, the number of 
consumed elements and produced elements for each kernel must be known by run-
time. 
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Any streaming application is in fact a graph: each node is a kernel, and each edge 
is  a  synchronous  communication  data  channel.  This  structure  is  very  malleable: 
nodes and edges can be grouped in order to share affine resources. If a compiler 
knows the streaming application structure and properties, it can decide how map 
each  node  and  edge  to  available  architecture  resources.  If  a  graph  matching 
preprocessing  algorithm  can  be  expressed  as  a  streaming  graph,  it  can  be 
implemented  as  any  streaming  program  and  take  advantage  from  streaming 
optimisations.

Hypothesis  5:  Image  acquisition  algorithms  for  a  graph  matching  algorithms  presents  
similar characteristics to streaming applications. Streaming applications are focused on 
data streams treatment and transformation, they usually acquire data from external 
devices or large data files and process elements as an ordered sequence. Data results 
are produced as input is read. Given a time-stamp, current results only depends on 
current  and  previous  inputs,  but  are  independent  from incoming  future  results. 
These  applications  base  its  behaviours  on  multiple  processors  with  private 
memories. We state that graph matching preprocessing are in fact image acquisition 
algorithms and the same parallelisation techniques can be applied. As a consequence 
these  applications  can  be  executed  successfully  on  heterogeneous  multi-core 
distributed memory systems. 

Objective  5:  Prove  that  image  acquisition  algorithms for  computer  vision  have  similar  
characteristics  to  streaming  applications. Image  acquisition  algorithms  must  present 
characteristics from streaming applications relevant to time sliced data processing, 
multiple kernels, and private memories for kernels. 

Section 2.6. Annotation Based Programming Models And Streaming

Giving information about data transferences can help the compiler and the runtime 
to improve the performance on distributed memory systems. Streaming applications 
are conceptually equivalent to multiple kernels (independent processing tasks) and 
data  transfers  channels.  Annotations  can  be  defined  in  order  to  extend  the 
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information  provided  by  the  programmer  to  the  compiler.  These  extensions  can 
allow the compiler to manipulate a standard application as a streaming application.

Streaming applications are basically graphs: their nodes are execution kernels and 
their edges are synchronous data channels. A kernel is a function, in other words, a 
delimited region of code. A synchronous data channel is a data flow from one kernel 
to another, in other words, a kernel result stored into an intermediate memory and 
an input data read by another kernel.

Kernel functions are usually activated (executed) depending on inputs. Producer 
kernels are able to generate many elements without an input, as for example a kernel  
of  device reading.  Another kernels  can consume all  elements  without  generating 
elements for another kernel (as for example a kernel of device generator). Kernels 
must be executed at specific frequency, usually inputs define this frequency.

Kernels also generates output elements. These elements are generated each time 
that the kernel are activated. The number of generated elements depends of each 
kernel. There are two kinds of kernels: 1) kernels that generate a constant number of 
element given a number of input elements, and 2) kernels that generate an arbitrary 
number of elements (some times depending of input values). Former kernels allow a 
large number of optimisations due to the kernel  scheduling can be precomputed 
even in compile time. The latter requires a dynamic scheduling.

Streaming  exploits  task  parallelism  naturally:  each  kernel  by  definition  is  a 
function  which  task  can  be  executed  in  parallel  with  another  kernels.  Required 
synchronization is  given by synchronous data  channels.  Some kernels  also allow 
data  parallelism.  Data parallelism can be  exploited on streaming applications  by 
replicating kernels (multiple instances of the same kernel) and slicing data streams; 
as  an  example  kernel  instance  1  computes  even elements,  and kernel  instance  2 
computes  odd elements.  Each  kernel  instance  is  a  new kernel.  Regardless  every 
instance of the same kernel performs the same computation, each instance has its 
own private state (private memory). This state is not shared with other instances. For 
this reason, data parallelism is usually restricted to those kernels which state does 
not need to be shared among instances. It can be achieved by not having state, or by 
replicating computations to update state.

Peek operations on synchronous data channels are very common on streaming 
applications.  Peek is  performed in order to  access  data  already present  on input 
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streams. Objectives of peek operation are to avoid kernel state variables and reuse 
streaming buffers.  A classical use of peek is to implement very efficiently sliding 
windows. The implementation of an average of last four inputs, as an example, can 
be computed with a state variable or by peeking the last four elements on the input 
data channel. First implementation does not allow to use data parallelism, but peek 
solution allows data parallelism. Peek must be used carefully: it requires to access to 
data from multiple activations. First  activation has to  wait for data equivalent to 
many activations. For this reason first activation occurs after all required elements 
are received and ready to be peeked. Input elements and output elements ratios are 
lost.  For  example,  if  a  slider  window of  4  elements  is  required  to  generate  one 
element (as the 4-average example), it is not a 1:1 ratio because three first inputs are 
not producing an output (it should be a ratio about 1:0.9999, the exact ratio depends 
on the number of processed elements).

Most streaming programs also use non synchronous data in order to control some 
non critical  aspects,  as  for example volume level.  These data produces no kernel 
activations. Asynchronous data are written externally as soon as possible by other 
processes or kernels themselves checks for updates.

Annotations  on  streaming  applications  must  allow  the  compiler  to  transform 
serial programs into streaming ones. Annotations must be able to provide required 
information in order to identify kernel functions, input and output synchronous data 
channels, peeks over input channels, state variables, how to create multiple instances 
of a single kernel, and which are asynchronous variables. With all this information, 
the compiler and the runtime should be able to generate the equivalent streaming 
graph from the serial program. A program converted to a streaming graph can be 
adapted to any architecture capable to execute streaming programs.

Given the complexity of creating a streaming program, we give a great relevance 
to usability. Streaming programming model was created by imitation of electronic 
circuits: each kernel was a physical component, and each data channel was a wire 
connecting two components. On the physical world, wires carries continuous signals 
(non discrete signals). Input and output ratios are always perfect; there is no such as 
a failure because there is a wire having no data. On software world, data channels 
carries  discrete  elements.  Ratio  of  element  consumption  has  to  be  controlled 
perfectly.  A producer  which  produces  more  elements  that  can  be  consumed can 
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produce a buffer overflow on the output. A producer which produces less elements 
that are consumed can produce a dead-lock if there are cycles. Simple linear data-
flows has not such problems,  but feedback data loops and convergence of  many 
flows is critical to control producer and consumer ratios.

In  order  to  achieve  usability  we  must  ensure  two  conditions:  incremental 
construction and control about consumer/producer ratios. Annotated programming 
models  are  incremental,  but  changes  only  affect  to  current  region.  A streaming 
application connects many parts of the application graph. If a new kernel is defined, 
its synchronous data channels must be created and connected to its producers and to 
its consumers. Kernel can not work if required synchronous connections are missing 
or  are  miss-connected.  At  the  same  time,  this  connections  must  ensure  that 
consumer/producer ratios are kept, and as a consequence, the frequency of kernel 
invocation and its ratio is the expected. These two points leads us to one conclusion: 
create connections between kernels are a very critical task on usability. And this task 
requires to interconnect parts remotely.

Creating a new kernel, or removing an existing kernel (for debugging purposes,  
as example) requires two actions: to define a kernel and to define correct channels 
and  connections.  As  a  consequence  required  annotations  must  allow  to  specify 
minimum information and let to the compiler reconstruct from semantics remaining 
required  information.  Kernels  can  be  defined  as  a  block  of  code  (defined  as  a 
function to be executed as a kernel), but to create synchronous data channels must 
require to connect at least two kernels and comply with all requirements for legal 
connections. Annotations should be based on kernel definition and provide enough 
information in order to let the compiler build the application graph.

Hypothesis 6:  Annotation based programming models can be used to describe streaming  
algorithms. Annotation based can be extended to describe required information to 
split streaming algorithms into multiple kernels and data flows. Annotations about 
kernels must be able to select independent algorithms parts (kernels) with private 
data  with  input  and  output  for  data  flows.  Annotations  should  be  able  to  link 
dataflows from multiple  kernels  and create  data  flow paths.  Annotations  should 
assume a  minimal  effort  from the  algorithm designer  or  programmer.  Compiler 
must  be  able  to  identify  different  parts  correctly  and  generate  a  streaming 
applications able to be executed on streaming architectures.
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Objective 6:  Demonstrate that there is a small set of annotations able to create streaming  
applications from serial algorithms. Selected serial applications (applications that have 
specialized  streaming  versions)  can  be  converted  effectively  to  streaming 
applications  (not  necessary  the  same).  Compiler  must  be  able  to  do  this 
transformation using existing serial  code plus  annotations.  Transformations  must 
keep  global  objectives  (usability  and  performance).  Annotations  must  be  simple 
enough and versatile in order to have a high degree of usability: annotations must be 
able  to  be  introduced  iteratively  (step  by  step)  and  minimise  the  possibility  of 
introducing  bugs  for  non  expert  streaming  programmers.  Result  programs 
performance must be comparable to existing performance of streaming programs.

Section 2.7. Graph Matching On Current Architectures

We  have  been  focused  on  providing  usability  and  performance  on  incoming 
architectures.  We  expect  to  have  discovered  enough  properties  in  order  to  take 
advantage  of  acquired  knowledge  and  apply  to  graph  matching  algorithms  and 
image acquisition. We pretend present graph matching algorithms adaptations as a 
prove of concept.  At the same time,  we also want to present some directives for 
future  developers  and  designers  in  order  to  maximize  their  capacity  of  taking 
advantage of incoming architectures.

We have  researched  in  two  main  lines  of  algorithms:  scientific  applications  and 
streaming applications. Each of this kind of applications have different requisites 
and different properties:  streaming applications are able  take advantage of  small 
tasks with small  memories,  scientific  applications require random access  to  large 
amounts of data. It is likely that streaming applications are suitable for almost any 
architecture,  but  scientific  applications  must  be  carefully  designed  in  order  to 
maximize locality.

We expect to implement image acquisition algorithms as a streaming program. In 
fact, nowadays, these kinds of algorithms are already used on digital television. We 
expect no major problems. The objective is to identify a set of tasks and channels in 
order to create the application streaming graph. Steps used should be create a serial 
application (in other words, a common application for a general-purpose processor), 
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and then,  add required annotations  in  order  to  define  the  application streaming 
graph.

Graph matching algorithms, on the other hand, requires access to larger data sets, 
and  there  are  not  too  many  scientific  applications  using  graphs  in  their 
implementation. The first step should be to transform the original algorithm into an 
algorithm able to exploit maximum locality. Once the algorithm is transformed, it 
must be encoded as a serial application. This application must run on a general-
purpose processor without any change. At this point, required annotations must be 
added in order to provide enough information in order to let the compiler parallelise 
and distribute (if it is required by the architecture) the application. 

All process must show that the discovered knowledge is applicable to the original 
problem.  Final  results  must  provide and acceptable  performance  and be  enough 
usable.  Performance  must  show  that  the  application  is  able  to  scale  in  many 
architectures  and  provided  annotations  are  enough.  The  same  annotations  must 
allow the compiler  to  adapt the application to each tested architecture.  Usability 
should be  good enough to  allow a programmer (non expert  on  architecture  but 
assisted by the presented tools) to reproduce experiments. 

Hypothesis  7:  All  presented  techniques  can  be  applied  to  target  algorithms:  image  
acquisition algorithms and graph matching algorithms. Until this point we have studied 
similarities  between  this  to  target  algorithms  and  state  of  art  algorithms  on 
supercomputers. We have hypothesised that graph matching algorithms are similar 
to  scientific  supercomputing  applications  and  image  acquisition  algorithms  are 
similar  to  streaming  algorithms.  We  also  have  hypothesised  that  scientific 
applications can be executed efficiently on multi-core processors using usable tools. 
We have also stated that streaming applications can be expressed efficiently with 
annotation based tools. As a result we hypothesise that graph matching algorithms 
execute efficiently  as  scientific  applications  do,  and image acquisition algorithms 
execute efficiently as streaming applications do.

Objective 7: Prove that computer vision techniques based on a graph matching algorithms  
can benefit  from incoming computer architectures. They should be able to execute on 
multi-core with a high degree of scalability and in a programming model able to 
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allow incoming  programmers  to  express  their  knowledge  about  algorithms  in  a 
manner that they can effectively use underlying architecture.
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Chapter 3. State Of The Art

Section 3.1. Graph Matching

We focus on graph matching algorithms and its efficient implementation on current 
multi-core architectures. Classification is a task of pattern recognition that attempts 
to  assign  each  input  value  to  one  of  a  given  set  of  classes.  Pattern  recognition 
algorithms generally aim to provide a reasonable answer for all possible inputs and 
to do inexact matching of inputs. Pattern recognition is studied in many fields such 
as psychology,  cognitive science,  computer  science and so  on.  Depending on the 
application, inputs of the pattern recognition model or objects to be classified are 
described by different representations. The most usual representation is a set of real 
values, but other common ones are strings, trees or graphs. These structures have 
more  capacity  to  capture  the  knowledge  of  the  model  but  their  comparison  or 
matching is also more computationally expensive. The distance between a pair of 
strings or trees is computed in polynomial time; nevertheless, the computation of the 
distance between a pair of graphs is exponential respect the number of vertices. For 
this reason, some algorithms that compute the distance between graphs have been 
presented that obtain a sub-optimal distance  [24].  Although these last  algorithms 
have  a  polynomial  computational  cost,  the  run  time  is  not  acceptable  for  some 
applications. 

Graph structures have more capacity to capture the knowledge of the model but 
their comparison or matching is also computationally more expensive. Sometimes in 
graph  based  pattern  recognition  applications,  given  a  set  of  graphs,  which  all 
represent  equivalent  or related structures,  it  is  required to  find global  consistent 
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correspondences  among  all  those  graphs.  These  correspondences  are  called  a 
Common  Labelling  (CL).  Algorithms  like  [25] and  [35] does  pair  matching  and 
reconstructs  a general  correspondence,  other  algorithms like  [36] uses  Graduated 
Assignment [24] to generate the CL by matching all graph nodes to a virtual node set 
in a polynomial time. 

Graduated Assignment Graph Matching. We denote a pair of attributed graphs by 
G p  and G q . Attributes on vertices are denoted by Ga

p  and Gi
q . In our application, 

attributes  are  a  bi-dimensional  value  representing  the  position  of  the  node. 
Attributes on the edges (arcs) are denoted by Aab

p  and Aij
q . In our application, arcs 

do  not  have  attributes,  then  Aab
p
∈{0,1}  and  Aij

q
∈{0,1}  take  binary  values 

representing the absence or presence of an edge.
We define a matrix  F by  F ai∈{0,1}  such that  F ai=1  if  node  a of  G p  matches 

node i of G q  and F ai=0  otherwise. F represents an isomorphism between a pair of 
graphs.  Moreover,  we define the compatibility between two nodes as  Cai

pq
∈[0,1] . 

Due to the binary nature of the attributes on the edges, the compatibility between 
two edges is represented by the product of them Aab

p · Aij
q .

Most of the algorithms that compute an error tolerant isomorphism between two 
graphs aim to minimize an objective function. The objective function usually has the 
following form:

EG (G p , G q , F pq )∈[−1,0 ]=
−1

R (R−1)∑a=1

R

∑
b=1

R

∑
i=1

R

∑
j=1

R

P pq [a , i ]⋅P pq [b , j ]⋅Caibj
pq given a≠b ,i≠ j (3.1)

The objective function relates the isomorphism given by the probability matrix 
P pq with the cost given by the function Caibj

pq . The probability matrix P pq  represents 

F pq  in  a  continuous  form.  The  cost  Caibj
pq ∈[0,1]  measures  the  compatibility  of 

labelling nodes a and b of  G p  to nodes i  and j  of  G q  plus the compatibility of 
labelling  the  corresponding  edges  between  them.  In  our  application,  we  define 
Caibj

pq =Aab
p⋅A ij

q⋅Cai
pq⋅C bj

pq . Due to the high computational cost that it is needed to find the 
minimum value of the energy in equation 3.1, it is usual to approximate it  at point

(P f
pq )

0 , using Taylor series expansion:
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E G (G p , G q , P pq )≈( E G (G p , G q , P pq ) )
'
=∑

a=1

R

∑
i=1

R

∑
b=1

R

∑
j=1

R

( P pq
[a , i ])

0
⋅( P pq

[b , j ])
0
⋅C aibj

p q
−

∑
a=1

R

∑
i=1

R

[∑b=1

R

∑
j=1

R

(P pq
[b , j ])

0
⋅C aibj

p q ] ( P pq
[a , i ]−( P pq

[a , b ])
0 )

(3.2)

Analysing equation 3.2 it is deduced that: 

argmin{E '}≡argmax {∑a=1

R

∑
i=1

R

Q ai
pq−P pq[a , i ]} (3.3)

where the P and Q are obtained as follows [24]:

∀
a=1

R
∀
i=1

R
P pq

[a , i ]=exp(βQ ai
q
)  and Qai

pq=[∑b=1

R

∑
j=1

R

(P pq [b , j ])⋅C aibj
pq ] (3.4)

The  Graduated  Assignment  [24] algorithm  is  probably  the  most  popular 
algorithm to compute a suboptimal solution for the graph matching among others. It  
minimises  the  objective  function  equation  3.1 in  a  suboptimal  way by  means  of 
approximating  the  energy  as  in  equation  3.3. The  problem  is  equivalent  to  the 
quadratic assignment one where Q represents a cost matrix, and P represents the 
stochastic matrix which contains the desired assignation probability. Algorithm 3.1 
shows the main schema of the Graduated Assignment [24]. Update function obtains 
the  probability  matrix  as  in  equation  3.4 and  Normalise  function  makes  the 
probability matrix double stochastic [37].

Algorithm 3.1: Graduated assignment.

 Input G p  and G q

Initialise P pq  and β
  repeat
    repeat 
     P pq=Update (P pq , Ap , Aq , C pq )  

     P pq
=Normalise (P pq )

    until P pq  convergence
    β = β · βr

  until β > βf

Algorithm  3.2 shows  an  implementation  of  Normalise function  based  on  the 
Sinkhorn method [37] as follows,
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Algorithm 3.2: Sinkhorn stochastic matrix transformation algorithm.

repeat 

     ∀
a=1

R
∀
i=1

R
P pq

[a ,i ]= P pq
[a , i ]

∑x=1

R
P pq

[a ,x ]
(3.5)

     ∀
a=1

R
∀
i=1

R
P pq

[a ,i ]= P pq
[a , i ]

∑x=1

R
P pq

[x , i ]
(3.6)

 until P pq convergence

Graduated Assignment Common Labelling. Graduated Assignment  [36] is one of 
the  algorithms  considered  to  have  a  good  run-time  performance  between  most 
popular common labelling algorithms. This algorithm approximates a distance and a 
labelling between multiple graphs using a polynomial time method respect the order 
of  the  graphs.  The  result  of  the  CL algorithm  is  a  set  of  probability  matrices  {
Ph
1 , Ph

2 , ... , P h
N } that represents, for each matrix, the probability of matching a node of 

one of  p graph to a virtual node. Since any  p matrix  P h
p  values are continuous, a 

discretisation process of  the probability matrix  [38] is  applied to obtain the final 
labelling between graph nodes.

Given a set of graphs {G1,  G2,  ...,GN} (that have  R vertices) and their respective 
adjacency matrices {A1, A2, ...,AN}, the general outline of the graduated assignment 
common labelling is shown in algorithm 3.3 and 3.4.

Algorithm 3.3: General diagram of the Graduated Assignment Common 
Labelling.

β = β0

Initialise Ph

begin Do until β ≥ βf

  begin Do until Ph
 convergence

    Pf
pq= P h

p ·( P h
p q)T

    Q= Approx_Q(Pf, Ph, C)
    P h

p [a,w1]= exp(β· Qa , w1

p )
    P h

p = Stochastic( P h
p )

  end
  β= β·βr

end
Mpq = Discretise P h

p
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Algorithm 3.4: Approx_Q function description.

for 2 ≤ p ≤ N
 Qp= 0
 for 1 ≤ q ≤ N ∧ p≠q
  for 1 ≤ a,i ≤ R
   v1= 0
   for 1 ≤ b,j ≤ R ∧ b≠a ∧ j≠i
    v1 = v1 + P h

p [b , j ] · C aibjpq

   end
   for 1 ≤ w1 ≤ R
    Qa , w1

p = Qa , w1

p
 + v1· P h

p [i ,w1]

   end 
  end
 end
end

Caibj
pq  represents the compatibility of labelling edge (a,b) of graph Gp to edge (i,j) of 

graph Gq and their respective ending nodes. In order to optimize Caibj
pq  computation it 

is defined as: 

Caibj
pq

=
1

1+C ai
pq
+Cbj

pq
+dist (Aab

p , A ij
q
)

 (3.7)

Cai
pq is the precomputed distance between vertex a from graph p and vertex i from 

graph q, dist function determines the distance defined by the existence of graph p ab 
edges and graph q ij edges.

Function  Stochastic obtains  a  double  stochastic  matrix  [36] using the  Sinkhorn 
method [37] (see algorithm 3.2).

Section 3.2. Benchmarks

Benchmarks are the key point for the evaluation of a new architecture or technique. 
They are able to obtain a objective quantitative value for a established evaluation. 
Benchmarks results can be used to compare many solutions in order to provide an 
objective  criteria.  We have selected a  set  of  well  known benchmarks  in  order to 
evaluate the objectives of this thesis. 
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Benchmarks are designed to evaluate some specified characteristics and only on 
some  environments.  Each  specific  benchmark  has  one  target  evaluation  and 
environment.  Choosing  the  right  benchmark  is  key  the  evaluate  or  results  and 
progress in the right direction. In this section we will present benchmarks used for 
this thesis. For each benchmark we present its definition, its evaluation objective and 
target  architectures.  We also  show some benchmarks  characteristics  which might 
impact on our evaluations.

NASA  Advanced  Computing  Parallel  Benchmarks. NASA Advanced  Computing  
Parallel  Benchmarks  (NPB  [39])  are  a  set  of  small  programs  designed  to  evaluate  the  
performance  of  parallel  supercomputers. This  benchmark  measures  performance  of 
supercomputers by measuring the execution time of 5 characteristic programs. It is 
also provided a serial version for each parallel  program in order to compute the 
speedup,  relation  between  serial  execution  time  and  parallel  execution  time. 
Benchmarks programs are derived from computational fluid dynamics (CFD) which 
are computational intensive, original applications for these programs are weather 
forecast, Monte Carlo applications, and many others. These programs are originally 
implemented in Fortran or C, and have available many classes in order to scale to 
many sizes. Nowadays there are many flavours and versions of NPB covering many 
architectures and programming models.

Programs from NPB are:  multigrid  (MG) benchmark,  conjugate  gradient  (CG) 
benchmark,  3-D  FFT  PDE  (FT)  benchmark,  integer  sort  (IS)  benchmark,  and 
simulated  CFD  applications  lower-upper  diagonal  LU  benchmark,  scalar 
pentadiagonal  (SP)  benchmark,  and  block  tridiagonal  (BT)  benchmark.  For  each 
benchmark program there are 6 data size available: Class A, Class B, Class C and 
Class D (from smaller to bigger) and two extra classes for very small data sizes Class 
S and Class W. 

Benchmark programs are designed as a kernel that operates over a data iteratively 
until it reaches a result. The execution starts with data initialization, and one kernel 
program kernel invocation. These steps are not timed and the first kernel invocation 
is not timed in order to warm up system data caches. After these steps the program 
benchmark starts the clock, invokes the kernel for hundreds of iterations (benchmark 
program dependant) and stops the clock. The final step is to evaluate the correctness 
of the result and display the execution time. This final evaluation is resumed as two 
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messages  “SUCCESSFUL”  and  “UNSUCCSESSFUL”.  Only  successful  execution 
times can be considered. An unsucessful appears when the evaluated environment 
breaks the program (as an example a too aggressive optimisation), in this case then 
execution time is not valid. The correctness of result also considers that computer 
real  numbers  operations  order  are  not  exchangeable,  but  as  most  parallel 
implementations change the order, a tolerance error factor in results is implemented.

NPB benchmarks versions used on this thesis are: NPB 3.0 for OpenMP [40] and NPB 
multizone (NPB-MZ) [41]. NPB 3.0 was designed for OpenMP. It uses a serial version 
from NPB 2.3  [42] for  serial  version programs and parallel  version programs.  In 
addition  parallel  version  programs  add  OpenMP  directives  to  implement 
parallelism. All benchmark programs, but IS, are in Fortran. Characteristics of each 
benchmark program can be found on table 3.1.

Table 3.1: NPB 3.0 [40] characteristics.

Size (num. iterations)

Benchmark Class S Class W
LU 12 (50) 33 (300)
MG 32 (4) 64 (40)
SP 12 (100) 36 (400)
BT 12 (60) 24 (200)
CG 7000 (15) 14000 (15)

NPB-MZ [41] is focused on CFD programs: SP, BT, and LU. It provides a new set of 
programs called SP-MZ, BT-MZ, and LU-MZ. These applications are inspired from 
programs targeted to the MPI programming model, but implemented with OpenMP. 
This  version,  instead  of  parallelising  the  whole  kernel  at  once,  it  splits  the 
computational  space  into  multiple  zones  (see  figure  3.1).  Each  iteration  first 
computes each zone independently, and then, it exchanges values from boundaries 
in order to synchronize results between zones. This benchmark is designed to exploit 
multiple levels of parallelism, in this case we have two levels of parallelism: one 
coarse-grain parallelism between zones, and other with fine-grain parallelism inside 
each zone. First parallelism level is to compute each zone in parallel, the underlying 
idea is to assign each zone to a set of close processors or threads in order to increase 
performance of memory hierarchy. Second level is inside each zone, in this level the 
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previous assigned set of threads compute, in parallel, the same zone. This level of 
parallelism have the same behaviour than NPB 3.0 for OpenMP [40] but replicated 
for each zone. SP-MZ benchmark zones characteristics can be found on table 3.2, it 
presents a very regular mesh of zones. BT-MZ and LU-MZ presents almost the same 
characteristics. We focus on BT-MZ. BT-MZ zones characteristics for Class W and 
Class A can be found on tables 3.3 and 3.4 respectively. The main challenge that they 
present  is  that  zones  are  not  balanced:  each  zone  has  a  different  size  and  as  a 
consequence  require  a  different  computing  power.  This  situation  creates  an 
unbalance between requirements from each zone that must be solved by the correct 
assignation of resources for each zone. As an example, Class A zone 16 is almost 20 
times  larger  than  Class  A zone  1,  as  a  consequence  it  should  require  20  more 
resources.

1 2 3 4

5

9

13

6 7 8

10 11 12

14 15 16

Figure 3.1: NPB-MZ [41] BT-MZ visual mesh of zones.

Table 3.2: NPB-MZ [41] program SP-MZ Class W zone characteristics.

zone x-dim y-dim z-dim elements
1-16 16 16 8 2048
Total 32768

Table 3.3: NPB-MZ [41] BT-MZ Class W zone characteristics.

zone x-dim y-dim z-dim elements
1 6 6 8 288
2 11 6 8 528
3 18 6 8 864
4 29 6 8 1392
5 6 11 8 528
6 11 11 8 968
7 18 11 8 1584
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zone x-dim y-dim z-dim elements
8 29 11 8 2552
9 6 18 8 864
10 11 18 8 1583
11 18 18 8 2592
12 29 18 8 4176
13 6 29 8 1392
14 11 29 8 2552
15 18 29 8 4176
16 29 29 8 6728

Total 32768

Table 3.4: NPB-MZ [41] BT-MZ Class A zone characteristics

zone x-dim y-dim z-dim elements
1 13 13 16 2704
2 21 13 16 4368
3 36 13 16 7488
4 58 13 16 12064
5 13 21 16 4368
6 21 21 16 7056
7 36 21 16 12096
8 58 21 16 19488
9 13 36 16 7488
10 21 26 16 8736
11 36 26 16 14976
12 58 26 16 24128
13 13 58 16 12064
14 21 58 16 19488
15 36 58 16 33408
16 58 58 16 53824

Total 243744

Synthetics: memory copy and matrix multiplication. These two synthetics benchmarks  
are used in order to stablish environment memory access limitations. Both measure the 
time required to perform an operation given a data size and a number of repetitions, 
they can expose some characteristics of the underling architecture.  Memory copy 
benchmark is  an intensive benchmark which only  copies  a region of  memory to 
another.  This  benchmark  exposes  bandwidth  limitations  between  memory  and 
processors. Matrix multiplication (see algorithm 3.5) is a common task inside many 
algorithms and programs. Its main characteristic is the k iteration over matrix B: each 
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iteration access to a different row. As a consequence, memory access pattern for B is 
not linear so cache can not hide successfully memory latency (low data locality). 
Matrix multiplication helps to determine how an architecture is able to work with 
complex access patterns to memory as an opposition to memory copy benchmarks. 
Some  architectures  present  B matrix  transposed,  so  all  memory  accesses  are 
consecutive as it is on A matrix. In this case B matrix transposition must be taken into 
account in benchmark computation. 

Algorithm 3.5: Matrix multiplication algorithm.

for 1 ≤ a , i ≤ N do
    C[a][i] = 0
    for 1 ≤ k ≤ N do
      C[a][i] = C[a][i] + A[a][k] * B[k][i]
    end for
end for

Synthetics:  tolower,  wordhash. These  synthetic  benchmarks  compute  over  an  input  
stream  of  data  and  produce  an  output  stream,  they  target  is  to  evaluate  the  ability  to  
parallelise  through a  stream of  data. Target  architectures are usually embedded and 
streaming  oriented  architectures.  These  benchmarks  have  in  common  an  input 
stream data. Each one reads an input stream and performs multiple transformations 
step by step. As a result it obtains another stream of data. A parallelisation of this 
benchmarks  may  take  advantage  of  data  and  function  parallelism.  Function 
parallelism will consist in the computation in parallel of all steps but with a different 
input each time. 

Algorithm 3.6: Tolower algorithm.

while read(&a) do
    if 'A' ≤ a ≤ 'Z' then
      a = a - 'A' + 'a'
    end if
    write(a)
end while

Tolower algorithm is shown at algorithm Error: Reference source not found and 
the data stream is at figure 3.2. It just reads one element, evaluates if it is lowercase, 
and  transforms  into  lowercase  if  not.  The  output  is  the  lowercase  string.  This 
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benchmark is a minimum program of a stream processing: one consumer step, one 
transformation step, one producer step.

1.read 2.tolower 3.write

Figure 3.2: Tolower stream graph.

Wordhash  benchrmark  algorithm can  be  found  at  3.7,  and  stream  processing 
graph at  3.3. This example uses complex data structures: word (as a collection of 
characters). It first computes the lowercase (as the previous synthetic benchmark), 
next it collects a word, and then computes a complex hash functions. At last it writes 
the  output  value.  This  benchmark  tries  to  show  the  ability  to  collect  multiple 
elements into a single one,  split  output  from one step to two parallel  steps,  and 
finally collect  two elements from two steps into the final  result.  This  benchmark 
produces less elements than consumed.

Algorithm 3.7: Wordhash algorithm.

while read(&a) do
    tolower(&a)
    word[n] = a; n = n + 1; if a = EOF then n = 0
      v = hashA(word)
      w = hashB(word)
      h = hash(v, w)
      write(h)
    end if
    write(a)
end while

1.read 2.tolower

5.hashB

6.hash3.word

4.hashA

7.write
     

 

Figure 3.3: Wordhash stream graph.

FMradio benchmark. This benchmark program decodes a raw signal from FMradio and  
computes  the  wave  sound  corresponding  for  a  determinate  channel. As  tolower  and 
wordhash  program  benchmarks  it  is  used  to  evaluate  the  ability  of  streaming 
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programs to take advantage of streaming architectures. FMradio benchmark is under 
GPL license. It comes from GNU Radio  [43] application examples. FMradio initial 
structure is designed as a collection of filters (or application data processing steps) 
plus a runtime which creates a glue synchronizing and invoking each step as data is 
available. This benchmark is a pure streaming application with no serial equivalence 
available. Later, this kernel was extracted from GNU Radio by Marco Cornero from 
STMicroelectronics.  In  this  extraction  all  dependences  with  GNUradio  were 
removed. Extracted code was modified in order to be able to run in serial without  
the runtime, but it still require large structures representing data streams. Moreover, 
output varies depending of the internal data stream representation lengths. Later in 
this thesis it was modified in order to create a pure serial algorithm as wordhash or 
tolower which processes element by element.

FMradio filter structures is shown at figure 3.4 , the source is about 500 lines and it 
is available under GPL license. This benchmark is organized in ten transformation 
steps.  Each step has a different  cost  and a  correct  load balancing is  required on 
parallel  environments.  Steps  from FM_QD_Demod to  SubMultSq  are  executed 8 
more times than other steps.  The same computation (FFD) is reused on multiple 
steps, but with different configurations. The filter FFD is the most time consuming 
task. The parameter specified is the size of the sliding window. The larger is the 
sliding window, heavier is the computation, there are more elements to process. The 
FMradio  benchmark  presents  unbalance  between  transformation  steps,  stream 
splitting, stream join, multiple consume ratios, and filter reuse.

8x

Reader

Writer

FM_QD_Demod

FFD 1,407FFD 1,407 FFD 1,813 FFD 1,813

FFD 8,407

SubMultSq

FFD 8,407

Figure 3.4: FMradio stream graph.
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IEEE 802.11a benchmark. This benchmark program decodes a raw radio signal of a Wifi  
IEEE 802.11a transmissions and computes  the received data packet. This  benchmark is 
provided by Nokia as part of its collaboration in the European project ACOTES IST-
034869. The code is not available to the scientific community and it is proprietary. 
This  program  benchmark  is  provided  as  standard  C  application,  and  unlike 
FMradio, as a simple serial application. It presents a structure more complex than 
FMradio,  and  it  uses  more  signal  control  variables.  We  use  this  benchmark  to 
evaluate the expressiveness of a programming model and its ability to scale.

StreamIt cookbook [44]. Is a collection of a programs written as a collection of filters used  
to evaluate the expressiveness of a programming model. StreamIt cookbook is written by 
the MIT university and contains near to a dozen different programs. Each program is 
presented as a graph of streaming filters connected together to compute one result. 
Applications used on this thesis are echo, fft filter, equalizer, and others. As FMradio 
StreamIt cookbook programs are provided as a pure streaming applications, we have 
converted these programs into serial programs.

Section 3.3. Architectures

Architectures are the underlying hardware which is responsible of the execution of a 
program. Program behaviour and execution are tied to the architecture. The same 
program on different architecture can have different behaviour and execution time. 
Programs can be rewritten or changed to take advantage of underlying architectures. 
By choosing right architectures and appropriate programming techniques programs 
can speedup its execution time in many orders.

We  present  architectures  used  on  this  thesis  and  their  characteristics.  These 
architectures are used to perform benchmark evaluations. They are also modified in 
order to obtain a better performance as a part of current reseach. We focus on those 
characteristics  which  has  a  direct  impact  on  our  evaluation.  As  the  range  of 
characteristics is very large we focus on multi-core chips with multiple cores and 
multiple threads and in its memory hierarchy. 
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IBM  BlueGene/Cyclops  [45-47] architecture. This  is  a  simulated  architecture  of  a  
configurable processor with 32 cores, 4 threads per core, and main memory on chip plus a  
configurable cache per core. This architecture was presented by IBM at 2002 as a part of 
the BlueGene supercomputer project. Cyclops was a prototype for a supercomputer 
on a chip as a processor for the whole system. 

The objective of BlueGene project is to create a supercomputer powerful enough 
to stand between the 5 first positions of the Top500 [48] best supercomputers of the 
world. The supercomputer is designed as a large array of computers connected by a 
specific hyper-toroidal network. Each computer, or node, from the supercomputer is 
designed to have low power consumption, and prepared to be replaced by newer 
processor generations. First working BlueGene supercomputer had more than 100 
thousand nodes of BlueGene/L processor, a low power two core processor. 

BlueGene/Cyclops  was  conceived  as  an  architecture  for  the  execution  of 
applications with high degrees of parallelism. It is achieved by integrating on the 
same chip several  thread units  and sharing memories  with a  small  latency.  This 
strategy is currently used by other architectures also used on this thesis as CUDA 
[49].

BlueGene/Cyclops  was  defined  before  the  standardisation  of  multi-core 
nomenclature.  All  related  work  and  publications  of  this  thesis  name 
BlueGene/Cyclops  as  a  massive  multi-threading  architecture  (one  of  the  first 
prototype of a general purpose processor with more than 100 threads).  Cores are 
named as a quads or thread groups. Hardware threads are also named as thread 
units.

Figure  3.5 shows the default configuration of the BlueGene/Cyclops processor. As 
default configuration it has 32 cores, 4 threads per core, one data cache per core, one 
floating point unit per core and one instruction cache for each pair of cores. It also  
have an embedded DRAM memory a special hardware for communications and off-
chip memory. 

Figure 3.6 shows the memory hierarchy of the Cyclops processor architecture. The 
main difference between current multi-core architectures and Cyclops architecture is 
that each core can access to data stored on all other caches. Current computers cores 
can access only to its own memory, a protocol of memory coherence or converting 
caches into core private memory is used to overcome this limitation. Cyclops allows 
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to use data  caches from other  cores but  with a latency penalty:  accesses  to  local 
caches are faster than accesses to remote caches. 
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Figure 3.5: Overview of the BlueGene/Cyclops processor architecture.
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Figure 3.6: Overview of the BlueGene/Cyclops memory hierarchy.

Cyclops have no global directory for all data stored on processor caches. It uses 
the data access address to localize the cache responsible for the storing of its data. It  
has  two address  modes,  one  for  private  memory,  and other  for  shared memory. 
Private memory is used when a special range of the effective memory addresses is 
accessed. When a data is requested by any thread of one core it is always stored on 
its  local  cache.  Private  memory  allows  duplicate  data  on  data-caches  under  the 
responsibility  of  the  programmer.  Shared  memory  mode  is  used  otherwise. 
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Hardware ensures that each main memory address maps directly to a single data 
cache. Selected data cache is determined by the memory address, hardware uses a 
static scrambling bijective function to map memory addresses to data caches. This 
mechanism  allows  to  use  all  caches  as  a  single  very  large  cache.  Hardware 
determines  the  destination  cache  as  follows:  bits  0  to  5  of  the  effective  address 
determines the byte inside the line cache, bits 6 to 10 determines the line among all  
data cache lines and bits 11 to 15 determines the data cache who owns the line.

As BlueGene/Cyclops was a prototype, we present on table 3.5 the configuration 
that we have used. The configuration presented is the default configuration but we 
have increased the available memory to 256MB in order to run benchmarks. Table 3.5 
(a) presents the memory latencies for each kind of access and (b) shows the exact 
count of elements, sizes, and configurations for simulator components.

Table 3.5: BlueGene/Cyclops prototype configuration used on this thesis.

(a) memory latency (b) components

Memory access type Latency Component # units Params./unit
Local cache hit 6 Cores 32 4 threads, 1FPU, 1 data cache
Local cache miss 24 Threads 128 single issue, in order, 500 MHz
Remote cache hit 17 FPU 32 1 add, 1 multiply, 1 div/sqrt
Remote cache miss 36 Data-cache 32 16 KB, 8 way assoc., 64-byte line

Instr.-cache 16 32 KB, 8 way assoc., 32-byte line
Mem. banks 32 8MB each, total 256 MB

BlueGene/Cyclops  architecture  provides  a  full  environment  support  for 
developers. This environment is based on Linux Red Hat 7. The most important tool 
is the simulator of the architecture, evaluated and verified at  [46]. The simulator is 
provided with source code under a privative license, it is ready to be modified or 
adapted in order to change configurations. This simulator is also ready to measure 
almost  any performance  metric,  as  for  example  kinds and distributions  of  cache 
accesses. It is also provided a cross-compiler tools based on GNU toolkit. These tools 
provides a gcc 2.95.3 and a binutils 2.11.2 retargeted for the BlueGene/Cyclops. In 
addition to these tools a raw debugger is provided able to debug a program running 
inside the simulator at any of the threads by following assembler instructions. The 
binutil addr2line or objdump -DS proves to be very useful on this condition. Finally,  
it is also provided a library for OS emulation. This library is linked to the program to 
run inside the simulator and provides a basic OS routines. As the BlueGene/Cyclops 
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is conceived to work inside a large network of thousands of processors (as [48]), the 
OS library reserves one thread for the execution of network communication routines.  
As a consequence, there is a maximum of 127 threads available for the programmer 
on an environment with a configuration of a total of 128 threads.

Kandake  cluster  architecture. Kandake  is  a  cluster  of  common  market  computers  
connected through a high performance Myrinet network. Kandake is a supercomputer 
designed research on distributed systems. It has 8 computing nodes. Each node has 
two processors at 266MHz and has available 128MB memory. Memory is not shared 
between  nodes,  each  node  can  only  access  to  its  own  memory.  Nodes  can  be 
communicated  explicitly  through  a  high  performance  myrinet  network.  This 
network provides a very small latency and a large bandwidth. 

 One typical requirement of parallel  programs is the necessity to communicate 
partial results between execution units. Communications on embarrassing parallel 
programs are usually negligible, unfortunately, most of parallel programs requires 
an  efficient  communication  network  in  order  to  obtain  partial  results.  Programs 
explicitly  wait  for  data  from  their  parallel  execution  units.  While  partial  results 
production  is  determined  by  the  processor  speed,  wait  synchronizations  are 
determined by the network speed. If the processor is very fast, proportionally to the 
network, waiting for data can have a large impact. A good relationship is able to 
speedup programs with a high degree of dependence in parallel programming. 

This architecture is very specific: processors are small, but the network is fast. This 
feature  provides  a  reasonable  relationship  between  processor  performance  and 
network  capabilities  (clusters,  in  contrast,  usually  have  a  very  poor  processor-
network relationship). Multi-core architectures usually shares this good relationship: 
processors are fast, but networks between cores are built inside the same chip, so 
they  are  also  very  fast.  Kandake  architecture  is  suitable  to  simulate  multi-core 
distributed architectures, it just scales size and time scale. 

Cell Broadband Engine [31]. Cell processor is an initiative of Sony, Toshiba and IBM in  
order  to  create  an  heterogeneous  multi-core  processor  suitable  for  gaming  and  video  
processing. Cell Boradband Engine is not one processor but a specification of multi-
core heterogeneous processor. It describes kinds of processors, memory hierarchy, 
internal processor networks and external connections. The original idea is to provide 
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a  framework  able  to  design  any  kind  of  multi-core  processor  just  selecting 
convenient cores for each task. Cell processors can be composed in order to obtain a 
specific processor for a specific program. This capacity of specialisation is the main 
cause of a high degree of proliferation papers about specialized cores.

The first implementation of this processor was presented as the main processor of 
the Sony PlayStation3. Its initial concept was to develop a processor with a main 
generic core to act as a controller and 8 more vector processors known as synergistic 
processor elements. This processor was able to achieve performance peaks ten times 
better than other processors developed at the same year. As a counterpart it required 
a  tedious and careful  programming and not all  applications  are suitable  for  this 
processor. In fact, this is not a surprising due to the target program was gaming and 
video.

The second noticeable implementation was presented as the main processor of the 
Microsoft  Xbox 360  [50].  Instead of  having one general  purpose processor  and 8 
vector processor, it has three general purpose processors and no vector processor. 
This  architecture  assumes  that  main  computations  will  performed  on  the  main 
processor,  and  graphics  computations  are  performed  in  a  separated  graphics 
processor unit. This architecture shows the versatility of the Cell Broadband Engine 
specification capabilities.

The overview of the cell processor is presented at figure 3.7. All components are 
connected through the EIB (element interconnection bus), the main network of the 
processor.  SPEs,  PPE (L2 and PPU see figure  3.8)  and memory and input/output 
interface are connected to the EIB. Main processor core is the PPE, which is a generic 
processor.  SPEs are vector  processor cores  for  specialized computations.  Memory 
and i/o interfaces are designed as a bridge for off-chip communications.

Figure 3.7: Cell B.E. Sony Playstation3 processor implementation block diagram.
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EIB (element interconnection bus) is indeed the most important element in the 
processor. It is focused on streaming processing. EIB interconnects all elements in a 
four-ring  segmented  buses.  Each  ring  has  one  direction  and  can  be  used 
simultaneously for multiple communications, if  they do not overlap on the same 
cycle. Each element before using the bus issues a command, a bus arbiter decides 
how to perform communications and how to extract the maximum bandwidth. The 
maximum bandwidth of the whole EIB is 96B/cycle. Each Cell B.E. element has a 
connection to the EIB. These connections have a maximum bandwidth of 16B/cycle, 
including memory. There is a possible configuration which is to use memory and i/o 
interfaces simultaneously to access memory, in this case, the maximum bandwidth 
with memory is of 32B/cycle, 3 times slower than maximum EIB bandwidth.  If we 
consider that data has been consuming from L2 and memory, we have a maximum 
of 48B/cycle, 2 times slower than maximum EIB bandwidth. As a consequence we 
deduce that cell implementation architects has assumed that the full bandwidth of 
the EIB is achieved in internal communications. This kind of communications are 
suitable for stream processing where results from one processor are sent directly to 
another  processor,  without  using  main  memory.  In  other  words,  maximum 
bandwidth can only be achieved by direct data transfers between processors.

PPE (power processor element) is a generic core processor. The PPE is a simplified 
PowerPC processor in order to die (silicon chip) size restrictions. It  is  a 64-bit in 
order processor, with two execution threads. The L2 is a 512 KiB 64 bytes per line 
cache. The PPU L1 cache has 64 KiB, 32 KiB for data cache and 32 KiB for instruction 
cache. The PXU (processor execution unit) has a FPU (floating point unit) shared 
between  both  execution  threads.  The  PXU  provides  of  AltiVec  [51] vectorial 
instructions  extensions  and  one  vectorial  processor  unit.  Without  vectorial 
instructions, at 3.2GHz, the PPE can achieve up to 6.4 GFLOPS of double precision. 
With  vectorial  instructions,  at  the  same  3.2GHz,  the  PPE  can  achieve  up  to 
25.6GFLOPS of single precision. This is very important to take account, there is some 
literature comparing PPE against  SPE,  but,  although SPE are only vectorial,  they 
compare non-optimized scalar PPE results against optimized vectorial SPE results. 
Moreover, the PPE is less sophisticated than other processors of the same period, so  
its  performance  is  not  as  good  as  other  architectures,  and  this  must  be  also 
considered on benchmarks.
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Figure 3.8: Cell B.E. PPE (main processor) and SPE (auxiliary vector processors) blocks diagrams.

SPE (synergistic processor element), also called accelerator, is a specialized vector 
processor. It is a simple processor of one single thread with in order execution. The 
SXU has a 128 bank register, register size is 128 bits. SXU instruction set is different 
from the  PXU and only  provides  vector  instructions.  As  the  PXU AltiVec  it  can 
achieve, at 3.2GHz, 25.6 GFLOPS of single precision floating point. SXU has no direct 
access to main memory, it  only can access to local storage (LS).  Access to LS are 
performed in a modulo addressing mode, so all addresses are valid. Only lower bits 
of the LS access address are used, an MMU is not required and there are not any 
invalid  memory  access.  Local  storage  is  a  small  memory  and  fast.  It  is  usually 
defined as a self  managed cache. LS size is 256KiB, this space is shared between 
instruction  and  code.  Data  can  be  copied  from/to  main  memory  to/from the  LS 
through the MFC, a  DMA controller.  Copies  are asynchronous and the SXU can 
query the MFC about the status of the transfers.

MFC (memory flow controller) is a very sophisticated DMA controller. It is fully 
programmable and some times is considered as the third kind of core inside the Cell.  
MFC is programmed by the SXU, but also by the PXU. MFC exposes a set of registers 
to the virtual address space in order to be programmed by any other device. MFC 
also exposes state registers to the SXU from its SPE. MFC is designed to do more 
than one memory copy simultaneously. SXU or PXU can program one or more data 
transfers based on effective addresses. Each of these transfers can copy a data from 
main memory to the local storage, from the local storage to main memory, but also 
from one local storage to another, or even to any valid effective address. The MFC is 
able  to  overlap  many  data  transfer  commends,  reschedule,  in  order  to  take 
maximum  advantage  from  EIB.  It  also  provides  of  commands  to  tag  transfers, 
stablish barriers and fences, and query the status of a transfer. Experimentally has 
been shown that MFC memory transfers bust be greater than 1 KiB in order to use 
the maximum EIB bandwidth [46].
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Cell  software-development-kit  (SDK),  operating  system,  and  environment  for 
research  consist  on  a  Linux  Fedora  Core  4.  In  addition,  IBM  has  also  provided 
MAMBO  [52],  a  full-system  cell-simulator.  The  operating  system  provides  a 
specialized library called libSPE in order to provide a framework to use the SPEs. OS 
and applications are executed on the PPE, as a common PowerPC processor. When 
an application requires to use any SPE, it uses the libSPE in order to launch kernels 
into any SPE. The OS provides an abstraction layer in order allow manage multiple 
applications using SPE, although the SPE change of context is expensive.

As SPE and PPU does not share the same instruction set architecture (ISA) it is 
required to compile two different binaries for an application. It is provided a full  
compilation environment and tool kit from GNU for a PowerPC; it is also provided a 
cross-compiler  version  in  order  to  create  binaries  of  the  SPE.  The  program  is 
composed  by  two  binaries.  Both  binaries  can  be  combined  in  a  single  file,  or  
provided as many files. If binaries are combined in a single file, the file is a PowerPC 
binary (for the PPU) which stores SPE binaries as global data. LibSPE is responsible 
to load SPE binaries, either from independent files, or from program global data.

BladeServer  JS21  blade  computing  node. We  have  used  single  Marenostrum  
supercomputer nodes in order to perform some tests and benchmarks. BladeServer JS21 is a 
computer  with  two  processors  IBM  PowerPC  970MP  sharing  memory.  Each 
processor is 64 bits and dual core. Each core has 1MB of L2 cache. The processor 
speed is 2.3GHz, and the blade has 8GiB of memory. The operating system is SuSe 
Linux 9 from Novell.  Main memory is  shared with memory coherence protocols 
among all cores of the architecture.

Sur computer architecture. Sur is a dual processor computer based on Power5 [53]. Sur 
computer  haves  two  Power  5  processor.  Power  5  is  a  RISC  multi-core  multi-
threading 64 bits processor. It is composed by two cores, each core has two execution 
threads. L1 4-way set associative d-cache and 2-way set associative i-cache for each 
core. In core shared L2 cache 1.9 MB, 10-way set associative. L3 directory is on-chip 
in order to speedup accesses to L2. Main memory is shared with memory coherence 
protocols among all cores of the architecture.

CUDA enabled NVIDIA GPGPU + Intel CPU desktop computer architecture. This  
architecture is present on most desktop computers. It consist of a standard Intel compatible  
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CPU and a graphical processor. The graphical processor is able to execute generic programs. 
Nowadays most desktop computers are composed by a generic processor (CPU) and 
by  a  graphics  processing  unit  (GPU,  see  figure  3.9).  We  are  interested  on  this 
architecture because is close to supercomputers, in fact, current GPU have thousands 
of hardware threads running simultaneously. Both, CPU and GPU are connected to 
the main memory. Although some GPU have its own memory, both CPU and GPU 
have access to main memory. Access to memory is restricted by latency, but also by 
the  bandwidth.  Data  bus  bandwidth  defines  the  maximum  data  that  can  be 
transferred from/to main memory to/from any processor. 

desktop 
computer main memory

CPU GPU / GPGPU
data bus

Figure 3.9: Current desktop computer overview.

Although  for  many  years  desktop  computer  CPUs  were  simple  processors, 
current CPUs are composed by multiple cores and a complex cache hierarchy (see 
figure 3.10). Each core can have one or more physical threads and its own memory 
cache. A memory-coherency protocol is implemented in order to provide the same 
memory space for all threads. 

multi-core CPU

L1
cache

physical threads

core

L2
cache

L1
cache

physical threads

core

Figure 3.10: Overview of a desktop computer multi-core CPU.

Current desktop computers GPUs are in fact a General Purpose GPUs (GPGPU). 
GPGPU, in contrast to simple GPU, are capable to execute an arbitrary code and they 
are not limited to graphical processes. Current GPGPU are specialised to intensive 
computations, mainly addressed to graphic tasks. They are able to execute simple 
functions  usually  called  kernels.  GPGPUs  are  massively  multi-threaded 
architectures, they have thousands of physical threads. 
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NVIDIA GPGPUs are composed by several multiprocessors (see figure 3.11), each 
one  has  multiple  cores  and  a  shared  memory.  Cores  are  processing  units  that 
compute  thread  instructions.  Shared  memory  can  have  multiple  data  accesses 
simultaneously. Shared memory size is small, but it has a very low latency. 

NVIDIA GPGPUs characteristics are organized by CUDA Compute Capabilities. 
We have focused on a low power GPGPU with CUDA Compute Capability 1.1. This 
architecture assumes that there are 8196 threads per multiprocessor, 96 threads per 
core, and shared memory size is 16384 bytes. 

shared memory

core core core core

core core core core

active threads

shared memory

core core core core

core core core core

active threads

GPGPU

multiprocessor multiprocessor

Figure 3.11: NVIDIA GPGPU architecture overview.

NVIDIA  GPGPUs  are  massively  multi-threaded  architectures.  The  idea 
underlying  of  this  architecture  is  to  hide  memory  latency  by  executing  many 
threads.  In  addition,  memory  is  organized  as  a  memory  banks  and  usually 
optimized to fetch a row of data with consecutive addresses. As each thread executes 
a  scalar  operation,  NVIDIA introduced  the  concept  of  coalescence.  Threads  are 
ordered,  as  memory  is  ordered.  Coalescence  ensures  that  consecutive  threads 
accessing  consecutive  memory  addresses  will  take  advantage  of  memory 
organization. 

Almost any CPU have vector-instructions, NVIDIA GPGPU is close to a vector 
processor but does not have visible vector-instructions. Vector programming is very 
complex and forces to organize execution and memory in basis of multiples of vector 
size.  NVIDIA GPGPU  can  be  said  that  operates  in  vectors,  but,  instead  having 
instructions to operate with many data simultaneously, it defines multiple threads. 
For each vector element there is one thread. All  threads of the same vector must 
execute the same program, but they are not forced to perform all operations. They 
are  just  suggested to  do so.  Threads computing over the same vector  are  called 
warps. These warps (32 threads, or even half warps, 16 threads) are supposed to be 
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executed  together.  If  one  thread  of  a  warp  diverges  from  the  execution,  the 
performance is affected, but the behaviour is correct. 

Table  3.6 discuss our target architectures details. ViewSonic is the architecture of a 
nettop, a computer designed to be part of a home cinema. It is a very small computer 
and has a very low power consumption. MacBook Air is corresponding to the model 
released by Apple on October 20 of 2010. It  is  a light laptop computer with low 
power  consumption.  GA-965P-DS4  is  a  desktop  computer  of  2008  targeted  for 
gaming.  We have not  executed benchmark on its  CPU processor  due to we had 
limited access. NOX is a desktop computer targeted for intensive computations. It 
has  a  processor  with  many  threads,  and  CUDA Compute  Capability  2.1  on  the 
GPGPU.

Table 3.6: Intel + NVIDIA GPGPU desktop computer architectures used on this thesis.

Computer Proc / GPGPU GHz Power Cores Threads Bandwidth   

ViewSonic Intel Atom 330 1.6 8W 2 4 5 GB/s   
ViewSonic NVIDIA 9400 1.1 10W 16 1536 5 GB/s   
MacBook Air Intel Core 2 Duo 0.97 35W 2 2 10 GB/s   
MacBook Air NVIDIA 320M 2.16 14W 48 4608 10 GB/s   
GA-965P-DS4 NVIDIA 8800GT 1.65 > 50W 96 10752 53 GB/s   
NOX Intel i7 950 3.0 130W 4 8 21 GB/s   
NOX NVIDIA GT 430 1.4 49W 96 3072 21 GB/s   

Section 3.4. Tools

Tools are software artefacts, or just specifications implemented in some way, which 
helps as a fulcrum of any research. Our research have relied on some of them, which 
give us the means to progress with a good environment. We have prioritized those 
tools which are open source, or at least we had access to its sources. Some presented 
tools have been modified in order to adapt them to our research, but at the same 
time, we have contributed with them to the scientific community.

Tools used in this thesis are: compilers, runtimes, simulators and tracing utilities. 
As  compilers  we  understand  from  simple  C  or  Fortran  compilers  to  full 
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programming models.  Runtimes  are  auxiliary  libraries  which  help  to  implement 
some  programming  model.  Runtimes  help  to  spawn  (create)  parallelism, 
synchronize the execution flow,  or  even to communicate data.  We use,  and later 
contribute,  hardware  simulators.  Simulators  provides  us  the  possibility  to  adapt 
hardware and research for better programming models beyond existing hardware 
limitations. Tracing utilities are usually known as profilers, but a profiler is the most 
simple form of a tracing utility. Profilers are designed to obtain general statistics in 
order to know which parts of a program needs to be improved, and some related 
information. Tracing utilities  goes beyond this point,  they are designed to record 
execution in a trace of  events and posterior analysis.  They allow to visualise the 
execution and gives a better understanding of real problems and hazards. 

We present a set of tools that we have used on this thesis. We have ordered them 
by kinds of research and kinds of tools. We start with tools used for homogeneous 
shared memory multi-core, then with homogeneous distributed memory, simulator, 
heterogeneous distributed streaming,  and finally  tools  used for  pattern-matching 
algorithms.

OpenMP  [54]. OpenMP is a parallel programming model designed to parallelise C, C++  
and Fortran programs on homogeneous multiprocessor architectures. It is uses the same 
parallelism than a user threads library, but, it frees the programmer to use a low 
level  library.  OpenMP  allows  programmers  to  add  few  directives  to  enable 
parallelism.  Directives  are  like  comments,  they  report  to  the  compiler  that  some 
parallelisations  can  be  performed  without  breaking  the  application  semantics. 
Compiler  generates  low  level  thread  library  calls  automatically  from  existing 
directives enabling parallelism.

CPU

thread thread thread

#pragma omp parallel for
{{

}
join

fork

Figure 3.12: OpenMP fork/join thread execution model.
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OpenMP thread execution model is fork/join (see figure 3.12). Each time that the 
serial  execution  reaches  a  parallel  annotation,  OpenMP splits  the  execution  into 
multiple parallel threads. When a parallel  execution reaches the end of a parallel  
annotated region, it waits for all threads and resumes a serial execution. 

OpenMP has many directives and clauses. Each of one has a specific semantic and 
is suitable for many structures. Although, from all directives, there is one directive 
construct  which  is  usually  the  first  step  and the  most  useful:  “parallel  for”.  This 
directive helps to create a basic parallel region from iteration constructs. It also has 
the optative clause reduction, which helps to summarize a computation with many 
elements into a single element. Thus, from all OpenMP directives we emphasise on 
the following OpenMP directive:

#pragma omp parallel for [reduction(OP:r)]
for i0 ≤ i ≤ if do
   ··· for body
end for

Parallel  for directive  creates  a  parallel  region  and  distribute  the  following  for 
construct iterations across multiple threads. Each thread executes the for body given 
a subset of i iterations. All i iterations are executed once and only once by all threads. 
Optionally a reduction operation can be performed: it summarises a single value r as 
an operation OP over a large set of values corresponding for each i (an example of 
reduction is a summation). 

OpenMP NanosCompiler [55] based on Parafrase-2 [56]. OpenMP NanosCompiler is  
a  source  to  source  compiler.  It  compiles  (translates)  Fortran  programs  with  OpenMP  
annotations into a Fortran programs with calls to an OpenMP runtime. A source to source 
compiler is a compiler able to transform one program into another. Even nowadays, 
where compilers are able to compile by default OpenMP, they are difficult to modify 
or adapt for research terms. 

Any OpenMP compiler basically translates directives into a code which explicitily 
creates the parallelism and makes any runtime library calls required. The OpenMP 
NanosCompiler  transforms  source  code  to  a  code  with  runtime  calls,  after  this 
transformation it generates a new Fortran code but with code transformed in order 
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to implement OpenMP directives. There are three advantages: generated code can be 
modified, runtime library can be changed, and there is not a target architecture. 

OpenMP  NanosCompiler  generated  code  is  basically  the  original  code 
reorganized plus runtime library calls. The OpenMP NanosCompiler processes all 
parallel directives and extracts code within parallel regions. For each region it creates 
one  or  more  function  containing  the  original  code.  These  functions  have  as 
parameters  the  variables  and  values  required  for  the  correct  execution  of  the 
extracted  code.  Original  code  and  parallel  OpenMP directives  are  removed  and 
replaced by runtime library calls in order to implement the required behaviour.

Even if we have no access to the compiler source, source generated by OpenMP 
NanosCompiler is plain Fortran code. Generated code can be modified or adapted 
manually  by  the  researcher.  This  possibility  allows  us  to  adapt  or  change  the 
resulting code in order to do further changes or tests. This possibility allows us to  
change or introduce concepts in the programming model. 

Resulting transformed code is compiled to a binary by the native compiler. In this 
process, the source is linked to a runtime library. This library is responsible of many 
parallelism decisions, such as scheduling, lock policy, … We can link against any 
runtime  which  satisfies  interfaces  assumed  by  code  transformation.  As  a 
consequence we can select or adapt a runtime able to make desired experiments.

OpenMP NanosCompiler  just  transforms  source  to  source,  thus  it  requires  a 
native binary compiler. The generated source is just Fortran, no additions and no 
OpenMP directives are present. This resulting source can be compiled again with 
any compiler,  so  it  can be  compiled to  any target.  This  makes  the result  of  this  
compiler as portable as the original program and the runtime library.

NthLib user-level  thread library  [57]. NthLib  is  a  portable  thread  library  used  as  a  
OpenMP runtime for the  OpenMP NanosCompiler. NthLib is based on nano-threads 
library,  and  it  is  ported  to  several  platforms,  including  BlueGene/Cyclops, 
Linux/DSM,  Linux/Pentium,  Linux/IA64,  IRIX/MIPS,  AIX/POWER  and 
SPARC/Solaris.  NthLib  supports  C  and Fortran.  It  also  has  support  for  multiple 
levels of parallelism and for some experimental OpenMP clauses as groups [58].

We have used NthLib because we had access to the sources, it was ported to our 
target architectures, it is compatible with OpenMP NanosCompiler, and because it 
has suport for nested parallelism.
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Nested parallelism is one of the key points of this thesis. We mix two levels of 
parallelism with  two  grains  of  parallelism in  order  to  obtain  better  locality  and 
achieve better results. In order to have efficient nested parallelism, the NthLib has 
available two kinds of threads:  nano-threads and work-descriptors.  Nano-threads 
are full threads, as they can be pthreads. Nano-threads have their own stack, their 
own dependency list, and they require saving/restoring context in order to use them. 
They have the same flexibility than pthreads. On the one hand, it also implements 
work-descriptor [59]. Work-descriptors are a kind of list of task, each task is basically 
a function call with parameters. They are not really a thread library, but tasks can be 
scheduled  and  executed  serially  by  any  real  thread.  If  there  are  more  than one 
thread,  we  can  execute  multiple  word-descriptors  simultaneously.  The  main 
limitation of work-descriptors is that they have been executed on the same stack than 
his parent, and they can not block and switch to another work-descriptor (they have 
no context change). 

OpenMP NanosCompiler  is  adapted  to  produce  source  with  function  calls  to 
NthLib runtime using both kind of threads. An extra clause on the OpenMP Fortran 
source hints which kind of threads are used on source generation for each parallel 
construct. By default it uses nano-threads for all parallel constructs (by doing this 
OpenMP NanosCompiler ensures that the result will always work). We need nano-
threads  for  grain  parallelism  and  for  outer  levels  of  parallelism,  so  for  those 
corresponding parallel constructs nano-threads are fine. For inner parallelism and 
fine grain parallelism nano-threads can imply a great overhead, so we select which 
parallel constructs can be converted into word-descriptors. We provide of additional 
compiler the compiler by adding the corresponding clause.

NthLib  is  a  library  with  a  high  degree  of  versatility  and  very  efficient,  it 
implements some OpenMP clauses as GROUPS and also by implementing two kinds 
of threads it helps us to create parallel programs with a very good performance.

NthLib  runtime  for  Cyclops  [60]. NthLib  was  initially  ported  as  a  prototype  to  
BlueGene/Cyclops architecture with a reasonable performance. The objective of the porting 
of the NthLib for cyclops was to made available the OpenMP programming model 
for  BlueGene/Cyclops architecture.  This  environment  was based on the OpenMP 
NanosCompiler, which is executed on a host machine (a intel laptop), and generated 
(transformed) code is compiled to Cyclops binary by the gcc cross-compiler toolset. 
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Benchmarking for scalability usually tests the same benchmark with a different 
number of threads. If we select to execute a benchmark with less user threads than 
available hardware threads, we might decide how to place them on the processor. 
Given that we have multiple threads per core (and FPU), it is reasonable to control 
how threads are mapped and which FPUs are shared. 

NthLib  for  Cyclops  has  an  extra  scalar  numeric  parameter  called  stride.  User 
threads and Cyclops hardware  threads are  numbered.  If  no  stride is  specified it  
maps  user  threads  to  the  hardware  thread  with  the  same  number.  If  stride  is 
specified it  assigns  one user  thread to  a  hardware thread every  stride hardware 
threads. If stride mapping reaches the maximum number of threads, it starts again 
reusing free hardware threads. Cyclops threads are ordered by cores, so, if there is 4 
threads per core, and 32 cores, threads 0, 1, 2 and 3 are mapped to core 0, threads 4,  
5, 6 and 7 are mapped to core 1, and so on. As an example, with stride 1, threads 0, 1,  
2, and 3 are mapped to core 0, 32, 64 and 96 are mapped to core 0. If there are less  
user threads than cores on the last configurations, there should be a maximum of one 
user thread per core.

Cyclops simulator  [45]. Cyclops simulator  is  the  parametrizable  simulator of  the  IBM  
BlueGene/Cyclops  processor. The processor architecture,  simulator and development 
environment is described on the previous section. 

Paraver [61]. Paraver is a trace visualizer tool. Its name comes from spanish “for see” 
and it was designed literally for this task. The underlying idea of Paraver is first to  
run  the  application  with  some  kind  of  execution  tracer,  and  then  visualize  the 
behaviour  of  the  application  at  offline.  Paraver  was  initially  developed  by  the 
European Center for Parallelism of Barcelona (CEPBA) under the supervision of Dr. 
Jesús Labarta.

Paraver  traces  are  text  files  describing  the  application  behaviour.  Each  line 
describes a state, an event or a communication at given time stamping and thread 
identifier.  These  traces  are  usually  generated  by  specialised  libraries  and  then 
converted into Paraver. 

State line describes a change of program state. Some of most common states are 
idle,  running and  waiting for communication. Running state describes that at given 
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timestamp  a  thread  started  computations.  At  idle  state  means  that  at  given 
timestamp a thread begins to wait for some kind of synchronization. Waiting for 
communications also specified if waiting for input data or for output data. States are 
assumed to persist on the same thread until a new state is registered for the same 
thread. 

Events are located at given timestamp and thread identifier. Events are described 
as a pair kind-value. Each event can report any kind of information and they can be 
user-defined. There are no restrictions for values, but some times value 0 is used in 
order to report that a previous event was finished. Events can report function calls 
and exits, cache misses, partial IPC, and any other relevant information. 

Communications  describes  data  transfers  between  two  thread  identifiers.  It  is 
composed by a communication channel, a data packet size, thread identifier for the 
sender, thread identifier for the receiver, and timestamps for synchronization. Time 
stamps  are  designed  in  order  to  have  information  about  all  synchronization 
involving a communication. It  gives enough information to know if  there is data 
contention on the sending, or if the receiver was waiting. This information is also 
combined with the state in order to reflect special states for idle in case of waiting for 
communications.

Paraver is a visual tool and all trace information is presented visually. It has many 
kinds of visualisations as statistics, 2D grid displays, or linear time views. Views are 
no tied to predefined values or event. Paraver uses mathematical functions in order 
to  decide  how  to  draw  traces  on  visualisations.  Some  of  these  mathematical 
functions can be state value as is for linear time view (as first step to know when the 
application was running),  event  stack composite  of  function calls  for  linear  time 
views (which uses value 0 in order to compute exits), or even a map of page faults of 
pairs of thread identifiers and memory regions for 2D views (for analyse memory 
behaviour).

All Paraver configurations and associated views and mathematical functions can 
be combined or even saved for future reuse. In fact Paraver provides some of more 
useful configurations.

libFASTparparaver. This  is  a  library  designed  to  collect  manually  information  from  
parallel  programs for  Paraver. LibFASTparparaver is  a  user library which allows to 
collect information about the execution of a program. This library is optionally used 
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by the OpenMP NanosCompiler to generate a binary which produces a trace of its 
execution.  This  library  contains  function  calls  to  determinate  the  state  of  the 
execution and add events.  Although OpenMP NanosCompiler is  able to generate 
function calls to the libFASTparparaver, this library is also available for the user to 
generate  any  trace  required.  This  library  has  no  special  requirements  but  its 
functionality limited only to shared memory architecture and only is able to generate 
trace states and events.

MPI  [62]. Message  passing  interface  (MPI)  is  a  library  interface  to  run  programs  on  
distributed memory clusters. MPI is actually implemented on many architectures and 
almost any scientific  application for clusters  is  written using it.  MPI hides  many 
architecture details (as node configurations, networks, …) and it has been proved to 
have a very good scalability [39]. 

MPI  programming  model  is  based  on  multiple  copies  of  the  same  program 
running on every node (computer) of a cluster. Each node executes the same binary, 
but each instance has a different identifier. MPI assumes that there is no distributed 
memory and all information and result exchange must be done through library calls 
(passing  messages).  MPI  library  calls  allows  to  exchange  information  but  also 
synchronize.  There  are many MPI primitives,  some examples  are:  point  to  point 
communication, broadcasting, reduction, and more.

Main  difference  between  MPI  and  OpenMP  is  that  MPI  forces  to  rethink 
algorithms to work with distributed memory. The programmer must decide how the 
algorithm  is  split  and  how  to  synchronize  data  and  control.  As  a  reward, 
programmer can decide exactly how to parallelise and distribute it and consequently 
MPI can achieve a very good performance. As a counterpart, MPI applications are 
more difficult to write and debugging involves many nodes (computers), its states, 
and network state.

NanosDSM and OpenMP [63]. Distributed shared memory (DSM) systems are libraries  
designed  to  emulate  a  shared  memory  architecture  on  distributed  shared  memories. As 
OpenMP  requires  shared  memory  to  work.  A  DSM  can  enable  OpenMP  on 
distributed  memory  clusters  by  fulfilling  the  requisite  of  shared  memory.  DSMs 
usually  relies  on  page  fault  mechanism  in  order  to  emulate  memory-coherency 
across nodes of a cluster. Using DSM over a cluster, it opens the opportunity to use 
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OpenMP  and  as  a  consequence  easy  programming  and  debugging  of  parallel 
applications.

We  have  worked  with  NanosDSM  [63].  NanosDSM  is  considered  to  be  an 
everything-shared DSM and it uses all Nanos infrastructure to provide an efficient 
solution. OpenMP NanosCompiler is adapted in order to generate special function 
calls  for  the  NanosDSM  runtime.  NthLib  is  also  modified  to  be  in  touch  with 
NanosDSM. NanosDSM relays on the compiler and NthLib runtime to control the 
full architecture. 

As MPI, NanosDSM us running on all nodes (machines) of the cluster. When a 
OpenMP  physical  thread  is  spawned,  NanosDSM  select  a  node  to  execute  the 
corresponding  threads  and  sends  the  function  pointer  and  the  stack  pointer. 
Automatically at this point the thread starts to execute, even if the stack content or 
function code is not available on the node. If at any time the program is not able to 
execute it produces a page fault. NanosDSM captures page faults and solves it. As a 
result,  NanosDSM is  able  to  control  all  memory  accesses  and  maintain  memory 
coherence across machines of a cluster.

NanosDSM  uses  page  faults  to  implement  memory-coherency.  Each  memory 
logical page is owned by its master. The master controls the correct coherency of the 
page. A page can have two possible states: shared for reading or exclusive access for 
modification. If a program thread starts to read a page that is not present on its node, 
it causes a read page fault, NanosDSM captures it, it request to the master a copy for 
read, NanosDSM restores the content of the page, and atomically makes it available 
to the current node. If the page was previously acquired for an exclusive write, the 
master changes page protections to only read, and changes page state to shared read. 
If write is requested, it invalidates all other copies, notifies the new state of the page 
and changes page protections to read/write.

NanosDSM presents a very interesting architecture.  It  emulates an architecture 
with a cache line of one page and a high communication latency.

UNISIM [64]. UNIted SIMulation environment (UNISIM) is a simulation infrastructure  
which helps to create modular simulators and reusable components. Unisim simulator is 
designed to provide a real modular simulator. While other simulators like systemC 
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claims  to  be  modular,  but  each  configuration  require  specific  control  modules, 
Unisim is designed to distribute control as well as modules. 

Unisim is conceived as a collection of modules connected by ports. Modules can 
be almost plain C++ classes or a composition of other modules. Both kind of modules 
have some special variables called ports and also can be parametrized. Unisim uses 
C++ templates to make modules parametrizable. C++ templates are used in order to 
define  variable  number  of  ports,  variable  number  of  subcomponents,  …  All 
components are connected by the Unisim runtime, which constructs the simulator 
instancing  all  classes  and  computes  all  required  behaviour.  Unisim  also  adds  a 
special kind of port called clock. This port allows to synchronize all the simulator 
through a clock and construct pure sender modules.

Unisim has its own protocol to connect modules using input-output ports (shown 
at figure  3.13). Each port has a type (C++ type) and three signals: data, accept and 
enable. Unisim uses these three signals to distribute the control. Output ports from 
one  module  are  connected  to  input  ports  of  other  module.  To  communicate  to 
connected modules,  the output port first sends the data,  second if the input port 
receiver of the data can accept it sends back the signal accept as true, and third the 
sender module can enable or disable the data setting enable signal to true or false.  
Data  is  used  to  communicate  the  value  of  the  connection,  accept  is  designed to 
control data contention (for example, receiver may have the input buffers full), and 
finally  the  enable  helps  to  build  routers  by  sending  the  same  data  to  multiple 
modules, but just enable to receive data to one module. 

Sender
Module

Receiver
Module

1) data

3) enable

2) accept

output
port

input
port

Figure 3.13: Unisim connection model based on ports and three signals.

Unisim  is  a  cycle  oriented  simulator.  Although  Unisim  can  simulate 
combinational circuits thanks to the triple protocol.  For each simulation cycle,  all 
signals must be written once and only once. When a signal is written it fires a trigger  
on the receiving signal which executes a function to handle the signal. Each signal 
trigger is handled as a small independent process. This is a very flexible policy but 
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also  make programming more  difficult  by  distributing  module  behaviour  across 
many functions.

Unisim runtime is  responsible  to  activate  all  signal  processes,  including  those 
signals activated by the Unisim clock signal. At the beginning of the cycle, Unisim 
runtime activates all rising edge processes connected to the clock. These processes 
may write the data value of output ports. When it finishes, some receiver data ports 
have been activated, and Unisim runtime executes all activated input data processes. 
As a consecuence more data ports can be written and activated as well as accept 
signals. Unisim runtime activates all pending data processes and also executes all 
activated accept processes. After this step enables can be activated, as well as more 
data and accepted signals. Unisim continues executing all actived signals until there 
is no more activations (ensured by the limitation of one change per cycle). After the 
last activation, actives all falling edges processes. These processes can active more 
signals, and once again Unisim runtime starts to execute all activated processes until 
the system stabilises. At the end, Unisim checks that all values have been activated.

Unisim  is  a  very  flexible  and  powerful  simulator  infrastructure.  In  addition, 
Unisim is distributed under an open source license GPLv2 and it  has available a 
large list of modules able to built a simulator from scratch in short time.

LibSPE [65]. The libSPE is the library provided by IBM for the Cell B.E. processor in order  
to execute and control processes at SPE accelerators (see figure 3.8). As we have presented 
previously the Cell  B.E.  has two main kind of  cores:  a general-purpose core and 
accelerators. For the point of view of a program the architecture of the Cell B.E. is  
just a PowerPC: the OS is running at the PPE and it executes 64 bit PowerPC binary 
code.  On the  other  hand,  SPE are  accelerators,  they  are  not  designed to  execute 
whole applications or an OS, they just are designed to accelerate some processes. 
LibSPE is the bridge from a classical PowerPC to a Cell B.E.: libSPE allows to run 
processes or functions at SPE accelerators from the PPE core. 

There are two versions of the libSPE. The first version SPE status and execution 
was managed by the library, the second version the SPE status must be executed and 
monitored by the program. As a short explanation of the second version, it requires 
that  the  programmer  creates  multiple  threads  in  order  to  control  each  SPE 
accelerator status. We focus on the first version.
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LibSPE is not much different from a threads library. Main functions are designed 
to load a function binary into memory (it differs from PowerPC binary), execute the 
function present with selected arguments, and wait for a result or query for an error. 
As other threads libraries, it also has synchronization primitives and communication 
primitives. Unlike thread libraries, libSPE has two sets of interfaces: one interface for 
the  PPE and other  interface  for  the  SPEs.  These  two interfaces  are  designed for 
different roles, for example, the PPE is responsible of creating SPE processes. 

LibSPE also has all required functionalities to work with MFC and local storage 
(SPE memory, LS). In order to work with the MFC, it provides primitives that starts 
DMA memory transfers, mailbox communication, query MFC state, and signalling. 
A specific primitives for the LS is available from the PPE, it allows the program to 
map the SPE local storage into an effective address. Mapping the LS to an effective 
address  makes  visible  the local  storage for  all  the program as a simple memory 
region. Main utility is to enable DMA transfers between SPEs.

MCXX Mercurium Compiler. MCXX Mercurium Compiler is a LGPL licensed C/C++  
source to source compiler which allows to transform source codes following a set of rules.  
MCXX is mainly divided in a front-end, engine, and modules. The front-end is the C/C++ 
parser.  This  front-end  is  designed  to  parse  a  small  snipset  of  code  (function, 
instruction,  declaration  or  expression)  or  a  full  file.  The  engine  coordinates  the 
module task. MCXX Mercurium Compiler is designed to be modular, each module 
represents  a  compilation  phase,  many  phases  can  be  added  in  order  to  create 
complex compiling pipelines. 

MCXX  Mercurium  Compiler  was  designed  for  directive  processing  (but  not 
limited),  but  at  the  same  time,  it  is  designed  to  remove  the  necessity  to  work 
transforming  the  AST  (abstract  syntax  tree  representing  the  code).  A  classical 
module,  or transformation phase,  is  to  provide to the engine a callback for each 
directive. Each time that the directive is found by the engine it invokes the callback 
with the  primitive  AST and context.  For  example,  if  the callback phase function 
wants to warp the original code by a loop, the function just creates a string with the 
code of the loop and as a body the pretty print of the AST primitive content, and 
replace the primitive AST by the string of the new code. MCXX Mercurium Compiler 
automatically solves variable references, declarations, and other inconsistencies that 
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might appear. This behaviour makes the compiler very flexible and useful even for 
non compilers experts (you just print the code as you should write).

MCXX  Mercurium  Compiler  is  shipped  with  support  for  OpenMP,  software 
transactional  memory,  Cell  SuperScalar,  loop  transformation  utilities,  functions 
instrumentation and instrumentation for pthreads, and many other examples.

Note:  MCXX  Mercurium  Compiler  is  different  from  previous  Mercurium 
Compiler. MCXX is the re-engineering of the previous Mercurium Compiler, but it is  
more reliable, more flexible, supports C++, and templates are plain C++ classes.

NVIDIA  CUDA  programming  framework  [66].  NVIDIA  compute  unified  device  
architecture (CUDA) is  a  parallel  programming model  based on C and C++ designed to  
program NVIDIA GPGPUs. CUDA is designed to simplify the programming of the 
NVIDIA GPGPU  architecture.  This  architecture  is  very  complex  compared  with 
common commercial  software:  it  is  massively  parallel  and  usually  has  available 
thousands of threads. Consequently CUDA is focused to deliver the power of high 
parallel architectures to common programmers. 

The programming framework is  focused (as OpenMP does)  from the point  of 
view of massive parallelisation of loops. CUDA has decided to conceptualise loops 
as logical spaces, if you have two or more nested loops you have a two or more 
dimensional space. If those loops are independent between iterations, they can be 
converted into a CUDA kernel invocation. CUDA kernels are just like C functions 
but they are executed in the GPGPU and called asynchronously from the standard C 
program.

As memory hierarchy is a big challange on almost all architectures CUDA has 
decided to have a mix between Cyclops and Cell B.E. memory architecture. CUDA 
assumes that there is a shared memory for a group of threads and modifies C data 
typing in order to make this memory visible. The design objective is to have a self  
managed cache which allows to hide memory latency and save memory bandwidth 
by high reuse of shared memory content between threads. This shared memory has 
visibility only for groups of threads (called blocks), other groups (or blocks) can not 
access to this memory. Although that shared memory is private, CUDA allows to 
access to main memory data, but paying a high penalty for the latency. In order to  
hide this latency, CUDA relays on tens of threads in order to reduce the pennalty. 
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CUDA uses a logical execution space (see figure  3.14)  as  an abstraction of the 
GPGPU  architecture.  This  abstraction  maps  physical  threads,  core  memory,  and 
physical cores into logical threads, block memory and blocks. When the sequential 
code reaches a kernel invocation, it configures a logical grid of blocks defined by the 
programmer and launches its execution on the GPGPU. A kernel code is executed 
concurrently by all threads of the defined grid of blocks. Each block is physically 
mapped into a GPGPU multiprocessor, and many blocks can be mapped into the 
same  multiprocessor.  The  threads  of  a  block  are  executed  in  the  cores  of  one 
multiprocessor and the block memory is mapped into the shared memory of the 
multiprocessor (figures 3.14 and 3.11). 
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generic
instructions
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Figure 3.14: CUDA logical execution space.

This  logical  space  is  configured  in  the  kernel  invocation  by  the  generic  CPU 
program, but each thread has one position inside a block, and the block has one 
position  inside  the  configured  grid.  As  each  thread  has  a  logical  position,  this 
position is available to the programmer. This position can be consulted from kernel 
functions by two predefined variables.  These two variables are designed as three 
dimensional points, each point (each variable) has the x position, the y position and 
the z  positions.  All  threads which block position coordinate has the same value, 
shares the same shared memory. It can be used with the thread position value in 
order to  coordinate partial  results  between threads and coordinate them into the 
computation of a result.

There are no directives on the CUDA programming model.  This programming 
model is based on function encapsulation: code intended to be executed in parallel is  
isolated  in  a  function.  These  functions  (named  kernels)  are  executed  massively 
parallel.  Each  invocation  (function  call)  to  a  kernel  has  a  configuration  which 
describes the logical grid (see figure  3.14). Kernels access to kernel local variables 
(equivalent to function local variables), shared variables (variables stored at block 
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memory shared by all  threads of  the same block)  and global  memory (variables 
whose value is stored on main memory accessible by CPU and GPGPU).

An illustrative example of CUDA is the following:

parallel for 1 ≤ a , i ≤ N do
  C[a][i] = A[a][i] + B[a][i]
end do

This algorithm translated into a parallel kernel as follows:

__device__ f_kernel(float C[N][N], float A[N][N], float B[N][N]) {
  int a = blockIdx.x, i = threadIdx.x;
  C[a][i] = A[a][i] + B[a][i];
}
f_kernel<<<N, N>>>(C, A, B);
cudaThreadSyncrhonize();

In  this  case,  we  have  decided  to  parallelise  a through  blocks  and  i through 
threads. When f_kernel kernel function is invoked it configures a grid with N blocks, 
and each block with N threads. As we do not require more dimensions, we only use 
the x dimension of both spaces (blocks and threads). Block position is used as a index 
of  the  loop,  and  x thread  position  is  used  as  i value  of  the  loop.  The 
cudaThreadSynchronize is used to wait for the result of the kernel invocation. In 
CUDA, by default, all kernel invocations are computed in parallel with general CPU 
execution.

CUDA has been proved to be a very reliable programming framework and a very 
powerful  programming model.  There  are  lots  of  community  research  on CUDA, 
community adapts and optimises existing algorithms to CUDA architecture. CUDA, 
like OpenMP, express parallelism through loops. CUDA, instead of reusing a loop 
construct, adds kernel configuration and invocation, which is equivalent to OpenMP 
parallel for directive. Maybe a step further to emulate OpenMP should give even 
better usability to CUDA.
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The main challenge of  this  thesis  is  the viability of  multi-core processors for  the 
common programmer. In a few years, multi-core processors has become common 
and cheap. As processors complexity grown, processors designers realised that more 
hardware will not achieve better performance, so they just replicated the processor. 
At least,  from the theoretical point of view of the problem, it  just could speedup 
programs  as  well  as  previous  solutions.  But  the  reality  was  different  [26]. 
Programmers does not want to care about threads and parallel programming. For 
many years  parallel  programming was not  a  requirement.  As a  consequence the 
programmer effort in parallelisation was almost superfluous and very expensive. At 
this point, programmers tendency and processor tendency started to diverge. 

Nowadays we have a vast collection of code, programs, components and many 
kinds of artefacts. Most of these artefacts were created assuming serial processors. 
These artefacts did not care about threads or parallelism, but neither their original 
algorithms or underlying theories. As far as processor designers were able to stand, 
they decide to support better serial execution. It takes no advantage in supporting a 
non used features. But this situation ended, and as consequence hardware designers 
tried to create parallel hardware as close as possible to the mainstream programmers 
and their necessities. 

In the beginning of common market multi-cores there was a great divergence of 
possibilities. Not all multi-cores tried to target the same applications and the same 
programmers. Probably the first steps on this direction were vector-instructions, but 
that was just the beginning. These instructions required a little effort from an expert  
programmer.  Their  use  was  limited  to  critical  sections  to  give  a  very  significant 
improvement on many applications. Slowly some architectures limited to replicate 

UNIVERSITAT ROVIRA I VIRGILI 
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES 
David Ródenas Picó 
DL: T.1350-2011 



90 Related Work

the  number  of  cores,  just  enough  to  increment  the  number  of  processes  to  be 
executed  simultaneously.  Others  based  their  architectures  on  vector  processors 
which were designed to increase vector-instructions performance, and others, tried 
to simplify a very complex hardware just adding thousands of threads. 

These new challenges brought the need to create a synergy between computer 
architectures  and  programmers  habits.  This  synergy  brought  new  programming 
models as foundations of the interrelation between programmers and architectures. 
The  main  objective  of  programming  models  is  to  hide  as  most  as  possible  the 
architecture particularities,  try to give a view as close as possible to well  known 
single core processors. At this point, like architectures, many programming models 
have been emerged and compete for the mainstream programming environment. 
The key point to achieve the success is the capacity to give a useful environment able 
to  take advantage  of  existing code and programmer knowledge,  but  also  a  very 
competitive motivation to embrace the change. 

Some programming models and architectures are highly dependent nowadays. 
Most programming models are specific for just one architecture, or in other words, 
just  too expensive to  use or  slow on others.  This  heterogeneity  of  models  forces 
programmers  to  be  expert  on  many  programming  models  if  they  want  take 
advantage  of  each  hardware  available  to  them.  Nowadays,  simple  desktop 
computers, are often provided with two different architectures: simple generic multi-
core, and GPGPUs.

In this section, we will present some of the programming models and how they 
target their architectures, or even how they try to overcome their architecture. This 
research is the basis for this thesis and many of them have influenced the presented 
work. There is a large list of programming models and architectures, and each of 
them was designed or even improved to solve a different problem. Each piece of 
knowledge apported is one step closer to the general objective which is give multi-
core for the mainstream programmers.

From single-core to multi-core. Before multi-core processors come multi-threaded 
processors. These multi-threaded processors were called multi-streamed processors, 
because they were designed to execute more than one stream of instructions. They 
based their design on the three main components of a single processor: register bank, 
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arithmetic logic and control logic. Register logic and arithmetic logic where simple 
components which specialised purpose. First processors map assembler instructions 
directly on these two resources: each instruction operates a selected registers over a 
determined  arithmetic.  Logic  for  this  kind  of  processor  architecture  was  really 
simple.  Later,  as processors start  to parallelise instructions (using techniques like 
segmentation  or  out-of-order  processors)  the  control  logic  began  to  be  more 
complex. The control logic started to translate logic instructions to real hardware. 
This translation becomes complex and expensive. 

The observation from multi-stream processors researches was the following: there 
is more hardware involved in computing the control of the parallelisation of a single 
thread (stream of instructions) than the required hardware to duplicate the stream of 
instructions. The main idea was simple: instead of create more and more complex 
control hardware, they execute multiple threads with the same hardware. When one 
thread gets stalled (it has to wait because any control risk), the processor resume the 
execution of another thread. This though was impulsed the researches into the multi-
core era, and the same though that impulsed this thesis on the beginning. 

One of  firsts  works  into  this  direction  comes  from Eggers  et  al.  at  [67].  They 
experiment with the number of threads in order to find the exact ratio of the benefit  
of using multi-streamed processors in front of complex computers. The idea of this 
work was to  prove the  viability  of  the  previous assessment  and to  compute  the 
number of hardware threads that can be added in order to take advantage present 
hardware. They have shown that with the hardware that they had available, it was 
possible to add up to four hardware threads with a very good efficiency. Later, at 
[68] they have found that there was a misbehaviour in the cache performance.

If multi-streaming processors had shown that they helped to increase the number of 
parallel  instructions  executed  by  hardware  they  also  have  been  found a  serious 
drawback:  cache  seemed to  diminish its  effectiveness  when multiple  threads  are 
executing on the same processor. 

Far to be unexpected this feedback was quite logical. Multi-streaming processors, 
or current  multi-cores,  are sharing the same data bus  with the memory.  Most of 
previous  works  with  multiple  hardware  instruction  streams  were  conducted  on 
multiprocessors. Multiprocessors are really many independent cores, each core has 
its  own  connection  to  the  memory,  its  own  cache,  and  to  summarise:  its  own 
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independent resources. Multiprocessors gives to each instruction stream (thread) its 
own cache and memory bandwidth. As a consequence threads are no competing for 
resources as caches and they can scale properly, even better, in some cases because 
the total of available cache increases there appears an effect called super-linearity 
[69]:  the  parallel  program  is  more  than  the  number  of  processors  used  faster 
(speedup, parallel speed/serial speed) is greater than the number of processors). This 
effect  appears  because  the  size  of  the  available  cache  for  the  program execution 
increases as the number of processors and caches are many times faster than main 
memory.  But  this  changes  on  multi-streaming  processors  or  multi-core.  In  this 
scenario  a  single  processor  execution  have to  share  the  same cache  with  all  the 
present threads, and these threads are competing for the resources. 

The effect of many threads in the same core are presented at: [70-72]. They present 
that more threads have more misses. They have tested many benchmarks on multi-
threading architectures with a different number of threads. Their work shown that as 
the number of threads is increased, the number of cache misses also growns. This 
proved that threads were really competing for the same results.  Gulati et al.  [73] 
extended this work to try to characterise benchmarks and their  impact on multi-
threading  architectures.  They  have  shown  that  the  ratio  of  the  increasing  cache 
misses were dependent to the benchmark, and each benchmark had its own cache 
interference patterns.

OpenMP over multi-core processors. One of the most important contribution for 
multiprocessor system is OpenMP [74]. OpenMP is a programming model designed 
for  shared-memory  multiprocessors.  OpenMP has  some  very  special  properties: 
scalability,  incremental parallelisation, portability,  high level  API,  data parallelism 
and  performance  oriented.  All  these  properties  made  the  OpenMP an  excellent 
programming model for this kind of multiprocessors.

Most  current  multi-core  CPUs  and  multi-core  and  multi-threading  processors 
presented  at  the  beginning  are  very  close  to  share-memory  multiprocessor:  they 
have a common vision of the memory and multiple threads which can be exploited 
by  calls  to  a  user  threads  library.  This  similarity  made  OpenMP  a  very  good 
candidate, the only restriction to execute OpenMP is the capability of having a user 
thread library plus a shared-memory view of the system. From this point of view 
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multiprocessors are very close in semantics, and OpenMP can be implemented on a 
multi-core. Martinez et al. at [60] (as we have presented above in section 3.4,  tools) 
have ported an OpenMP implementation to the IBM BlueGene/Cylops processor. 
This work shows that it was possible to execute OpenMP on multi-core architectures. 
Unfortunately performance were not as good as expected, benchmarks not scaled as 
well as expected. The processor has hundreds of threads, but the average speedup is 
of x15.

One of the largest architectures based on multiprocessors with shared-memory is 
constellations. This architecture assumes multiple homogeneous processors,  but a 
large computer, where each memory bank has a variable distance/latency with each 
processor. This architecture is very close to cluster, there are multiple nodes, each 
node  can  have  multiple  processors  with  shared-memory,  and  there  is  a  fast 
interconnection network between all  nodes. Constellations, in contrast to clusters, 
provides a shared-memory illusion. They have a specialised hardware to manage 
memory accesses and provide memory-coherency. 

On constellations not all accesses have the same latency. A processor accessing to a 
local memory (memory present on the same node) it obtains the data faster than if it  
is present into a remote memory. Programmers of constellations architectures must 
be aware of memory accesses penalties. In addition, many programming models (or 
even languages through specialised directives) added special commands in order to 
decide  data  position.  As  a  consequence,  programs  must  be  written  in  order  to 
localise maximum working data at the same processor which will process it.

Most of NAS parallel benchmarks for OpenMP (NPB for OpenMP [40], presented 
above in  section  3.2.,  benchmarks)  were  not  implemented  to  take  maximum 
advantage on such architectures. These benchmarks access more or less uniformly to 
all address space, in other words, all processors requires to access to all memories. 
As a consequence there is no better data distribution: every body pays a penalty to 
access remote memories.

Fortunately NPB were implemented originally on MPI. MPI works on distributed-
memory and applications must be rebuilt in order to work with local memory, access 
to remote memory is so expensive to be considered. As a consequence, NPB for MPI 
was already written to use small memories. Gonzalez et al. presented at [75], [76] the 
NAS  MultiZone  parallel  benchmark  for  OpenMP  (NPB-MZ,  more  details  are 
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presented  above in  section 3.2.,  benchmarks). This was a new version of OpenMP 
NPB  based  on  the  NPB  MPI  benchmarks.  This  version  of  the  benchmark  was 
constructed on two levels:  first  level  (outer level)  emulates the work distribution 
across clusters, each parallel group computes the same region, and the second level 
(inner  level)  emulates  the  local  computation  of  each  node.  As  results  show,  the 
benchmark is able to take advantage of localised memory access and speedup the 
process.

Constellations can be compared with multi-cores:  multi-cores are composite by 
many cores each one with its L1 cache (as each cluster has its memory) and each core 
has  multiple  threads  accessing  to  the  same  memory  (as  processors  of  the  same 
cluster have fast access to local memory of the cluster). We expect that coarse-grain 
parallelism will allow us to overcome this challenge.

OpenMP  over  distributed  memory  systems. We  focus  on  OpenMP  as  a 
programming model in this thesis because it  has many important advantages (as 
scalability,  incremental parallelisation, portability,  high level  API,  data parallelism 
and  performance  oriented),  unfortunately  it  has  a  very  important  drawback:  it 
requires shared-memory. 

Nowadays all top 10 supercomputers  [77] are distributed (non-shared) memory 
computers. Distributed computers are more complex to program (it forces the user 
to  do  data  distribution)  so  there  is  a  good  motivation  for  such  architectures: 
performance. Distributed computers have a very good performance, and for a very 
good reason: it  is very difficult to maintain memory coherency on large systems. 
Distributed computers  have no shared memory,  so they do not  need to  keep an 
imaginary unique view of  memory.  The programmer is  forced to  encode in  this 
environment and must keep every required data or result where it is required. The 
complexity is moved to the user, who, potentially, knows better the program and its  
behaviour.

Distributed computers problem is double: they demand to modify the program in 
order to face distributed memory, and moreover, they also visualise the computer as 
many different machines making difficult the program construction and debugging. 
The former is also faced partially on shared-memory, as we have explained that not 
all the memories have the same speed so keep things locally is better. But this is not 
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mandatory,  it  is  only  a  recommendation:  the  program  works  in  any  case,  the 
difference  is  the  performance.  The  former  problem  is  also  important,  most 
supercomputer users are not expert programmers, but to program, run, and follow 
the execution of a program across multiple machines is quite difficult. Moreover, the 
programmer  must  follow  each  execution,  and  try  to  know  what  is  doing  each 
machine and single program instance at each step. A common problem as a barrier 
misplaced can be a great issue.

Distributed shared-memory systems (DSM) are software able to give a view of 
shared-memory onto distributed memory systems. In this case, the addition specific 
hardware it is not required: a software controls the memory-coherency. The main 
advantages of DSM is that  it  have none of previous exposed distributed systems 
drawbacks, the main disadvantage is that DSM are not able to adapt any program to 
a distributed memory as good as programmers do. 

The DSM needs to know the structure of the programs in order to increase the 
efficiency  of  the  communications.  The  main  problem  is  the  following:  if  a 
determinate thread program needs a data outside its cluster, it freezes until the DSM 
recovers it. A programmer of distributed memory will reduce this waits as much as 
possible, and will replace some parallel structures by efficient distributed memory 
primitives.  With no information,  DSM can not  assume any structure  inside  of  a 
program beyond a  collection of  instructions  and data,  and consequently  can not 
replace  any  of  them  by  the  proper  primitive.  A simple  hint  about  a  reduction 
operation would help to save lots of unnecessary data movements. 

OpenMP  was  proposed  as  programming  model  for  DSM  at  [78],  [79].  The 
assumption is the following: OpenMP knows the parallel program structure and it is 
able to replace some structures with proper directives and add information to have 
more efficient data movement. The theory proposed is heading in the right direction,  
but  resulting  performance  is  not  as  good  as  expected.  Unfortunately,  many  of 
successful  OpenMP benchmarks  had a  very  poor performance  on DSM systems. 
They have too many memory dependences to have a good scalability on DSMs.

DSM where limited in order to achieve better performance. The first limitation 
was to separate data spaces into two regions: private memory for each node and 
shared-memory for all the system. In this case, variables stored on private memory 
were fast and not subjected to the network distribution primitives. Amza et al.  [80] 
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presented TreadMarks, a DSM with a relaxed memory consistency model. As Lo et 
al.  [81] shown, to weak some memory coherence characteristics are able speedup 
applications. The underlying ideas under both authors is to ignore some restrictions, 
and  allow  an  inconsistency  between  memory  values  among  nodes.  Under  this 
premise,  benchmarks  need  to  be  rewritten,  but  there  is  a  new  hazard:  memory 
inconsistency. Memory inconsistency can be controlled by the programmer carefully 
and avoid any arising problems, but programmer must know exactly, not only about 
values stored in the memory, but also about they consistent state. Basumallik et al. at 
[82] gone  one  step  further:  instead  of  executing  the  program  under  a  software 
emulating  a  distributed  system,  the  compiler  translates  an  OpenMP  program 
directly  to  an MPI program.  They also  have assumed the same restrictions  than 
previous works,  but in addition,  they require to  expand directives with memory 
hints.

Costa  et  al.  at  [63] have proposed a  very  different  approach compared to  the 
mainstream research: use an everything-shared DSM (no private memory regions) 
and use a full memory consistency model (no need to rewrite existing programs). 
Their assumption is one step further into the de detection of the OpenMP structures: 
all layers of the OpenMP programming model must collaborate in order to achieve a 
good performance.  In this case,  the compiler,  the runtime and the DSM software 
were interconnected. Some presented solutions are the assumption of a cache line 
size as logical page size, the use of loop iterations to predict the presend (send data  
to future consumers before they request) of data, and adjust scheduling of iterations 
to avoid false sharing. Presented results were good but limited to some benchmarks 
with characteristic behaviours.

Beyond  the  research  field  OpenMP  is  already  used  on  production  at 
supercomputers.  As  we  have  commented  MPI  has  a  very  good performance  on 
distributed  memory  system,  but  for  shared-memory  OpenMP is  a  more  suitable 
model. MPI bases its execution of ditributed memory, this is a multiprocess single 
thread program execution in multiple machines. MPI can use multiple processors or 
threads on a shared-memory machine, but it requires one independent process for 
each thread. As this solution is very expensive, a hybrid programming model is used 
to obtain the better performance from both models. Many researchers, as [83], [84], 
has  concluded  that  an  MPI+OpenMP  hybrid  model  can  achieve  a  very  good 
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performance. MPI is used to create one process for each memory independent node, 
and OpenMP is used to spawn parallelism inside a single model.

One implementation of a benchmark on MPI+OpenMP for our thesis is the NPB 
MPI+OpenMP [85], implementation. There are two levels of parallelism presented. 
The outer level is performed by the MPI programming model. This parallelism level 
is  responsible  to  distribute  zones  across  the  supercomputer.  The  inner  level  of 
parallelism  is  performed  by  OpenMP.  OpenMP parallelism  is  analogous  to  the 
OpenMP implementation of NPB benchmarks. This solution is practically analogous 
to the previously presented NPB-MZ nested parallelism. This work is very relevant 
because it reveals some important points: 1) OpenMP is used even on distributed-
memory  architectures  (cluster  can  have  multiprocessor  nodes),  2)  NPB 
MPI+OpenMP and NPB-MZ has analogous implementations, 3) NPB-MZ is more 
simple and it can be used as previous step, and 4) when memory is close it is better  
to take advantage of present data using it by as many threads as possible. 

Almost every solution proposed for DSM requires some sort of hardware support. 
Balart et al. at [86] proposes to use a compiler transformation in order to allow the 
software itself simulate shared-memory. They replace every access to the memory by 
a convenient primitive of memory access.  They present the case for the Cell  B.E. 
which  accesses  to  remote  memory  are  performed  through  DMA accesses.  The 
efficiency is not as good as hardware supported DSM.

A  multi-core  modular  and  configurable  simulator. Multi-core  era  is  about  of 
processors  with  many cores.  When  the  number  of  cores  is  high,  the  number  of 
possible internal architectures grows and also the possibility of the specialisation of 
any of present threads. In many ways a multi-core with tens of threads is as complex  
as a supercomputer and also is limited to the same criteria.  The main difference 
between multi-core processor and a supercomputer is not the scale, it is the price and 
the  availability.  Nowadays  multi-core  are  available  for  the  mainstream 
programmers.  These  programmers  might  be  able  to  program  them  and  take 
advantage of multi-core possibility.

Perhaps the most previous quality for a multi-core is not the performance, but the 
capacity to extract maximum performance from its programmers. A multi-core able 
to run 10 times faster is not useful if the target programmer it is not able to extract  
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this  performance.  When  Cell  B.E.  was  publicly  presented  a  great  problem  was 
spotted:  it  is  very difficult to program. Nowadays, although its performance and 
power consumption, the Cell B.E. project was cancelled at 2009 [87]. 

Our claim is that a processor performance is not the theoretical peak performance, 
the  processor  performance  is  given  by  the  ability  of  the  programmer  to  extract 
performance  from  the  processor.  As  there  are  a  vast  possibilities  of  multi-core 
processor  configurations,  it  is  possible  that  a  few  changes  may  reduce  peak 
performance, but the same change will indeed increase the performance achieved by 
their programmers. Our objective is to present those small changes that will help to 
change the ability of the programmer to obtain better performance. For example, 
many  scientific  applications  are  not  ready  for  clusters,  and  users  execute  many 
instances of the same program on multiple nodes (they do not want/know to use 
MPI), but most of them are able to parallelise their applications using OpenMP. We 
have seen previously that some works are able to transform one kind of architecture 
to another, they use software emulations. Unfortunately most of hardware required 
for the emulation are not present on multi-core processors.

Simulators were developed in order to test and verify new architectures before its 
implementation.  First  simulators  were  simple,  they  just  had  to  simulate  an 
architecture with one simple thread, one core and one memory hierarchy. With the 
arrival  of  multi-cores,  specialised  processor  simulators  become  more  difficult  to 
build.  Nowadays  a  simulator  involves  the  execution  of  multiple  streams  of 
instructions, multiples levels of cache and memory-coherency, buses simulation for 
memory transfers, and many other components not present on old fashioned single-
cores. Current simulators must face the a wider range of exploration space, many 
cores  compositions  and  distributions,  many  memory  hierarchies  and  multiple 
memory address spaces. They must be created modularly and each module must be 
easily reused for further designs or space exploration.

One of the most spread simulator, also usually applied to industry, is SystemC 
[88]. It is in fact a simulator infrastructure, and, in many characteristics this simulator 
is close to UNISIM [64] (we have presented it  above in section  3.4,  tools). UNISIM 
was build to supply lacks from SystemC. Another simulator designed to be modular 
is  the  M5 simulator  [89].  This  simulator  is  written  in  C++  and python (in  many 
aspects its architecture is comparable to the GNUradio [43]), C++ is used to program 
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modules and python is used to describe the composition of modules. We do not use 
this  simulator  as  infrastructure  of  our  simulator  because  there  was  no  modules 
available for PowerPC cores.

Our target architecture to be simulated is a Cell B.E. like. This is a very powerful 
processor  but  it  lacks  of  enough versatility.  The main  problem is  that  the  effort  
required to encode an application in order to have an acceptable speedup is too 
complex. We wanted to propose changes in the architecture in order to easy such 
development.

MAMBO [52] is the Cell B.E. simulator provided by IBM. This simulator is a full 
system simulator, able to boot a RedHat Linux operating system, and it has a very 
good accuracy in its simulated performance. It is also able to execute very fast with a 
reasonable simulation time. The objective of MAMBO was to make available the Cell 
B.E.  architecture  before  its  commercialisation.  The  drawback  is  that  there  is  no 
source code available for the community and it can not be modified, so in many 
terms,  it  is  as  useless  as  the  processor  itself  for  architecture  design  exploration. 
Concurrently with this thesis was presented SimCell [90]. This japanese simulator do 
not  included  the  PPE  and  had  no  simulation  of  the  memory  hierarchy.  Their 
simulation objective differs from ours: they want to test different SPE configurations 
or  kinds,  and  its  programs.  So  their  design  exploration  space  was  limited  to 
reconfigure accelerators.

Simulator  validation. Simulators  are  a  very  good  tool  for  research  on  space 
exploration, but results are useless if simulators have no validation. Simulator must 
validate  its  behaviour  in  order  to  ensure  that  results  are  correct  [91].  A proper 
validation can ensure that there is not hidden bugs that changes the simulation, or 
even  there  no  are  important  restrictions  or  bottlenecks  not  implemented  on  the 
simulator. 

We focus on the Cell B.E. as a simulator. One of the most complex components, 
and at the same time totally undocumented (we assume due to industrial secrets)  
was the EIB (the bus interconnection of all other processor components). Moreover, 
having buses of this complexity are not common on most simulators, so, while most 
of the other components have been validated and tuned extensively on most of the 
literature,  there  was  to  little  literature  about  simulating  multi-core  processors 
internal connection high speed bus. 
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In order to do an extensive validation of the simulated interconnection bus we 
required an extensive performance analysis. We used results and benchmarks from 
Jimenez et al. [92]. They presented an extensive set of communications through the 
real Cell processor in order to characterise its behaviour. The other problem is that, 
although we know that the interconnection bus was a four rings based bus, we did 
not know the details. We use the bus analysis from computer networks of Girona et 
al.  [93] in order to  simulate the bus.  In their  work they shown that any kind of 
network bus can be simulated with an exact number of broadcast buses.

Streaming programming programs. As we deep in the study of multi-core and its 
characteristics, it is more evident that they are becoming more complex [17]. Future 
processor generations will add more kind of cores (specialised to many tasks) and 
complex  memory  hierarchy.  Due  to  the  expensiveness  of  maintain  memory-
coherence is likely that they will have distributed memory and complex.

This  complexity  becomes  more  urgent  on  mobile  devices  or  processors. 
Specialised  hardware,  in  other  words,  specialised  cores  and  specialised 
communication  buses,  reduce  significantly  the  power  required  to  compute  tasks 
whose hardware was designed for. As an example of this necessity was the creation 
of the ACOTES [94] project. This project, leaded by Nokia, Philips, NXP, Silicon Hive 
and  STMicroelectronics  focused  on  the  creation  of  an  infrastructure  for  mobile 
computing, but at the same considering the programmer experience.

As more complex the architecture more difficult is to find a programming model 
able  to  extract  the  performance.  The  programming  model  must  be  able  to  take 
advantage of heterogeneity and compile and execute each code to its more suitable 
core. Moreover, as this architecture becomes more complex, the variety of possible 
target architectures usually is greater.  The compiler and the programming model 
must face this reality and adapt the program to have a good performance at each 
variation of the architecture. 

Fortunately exists one programming abstraction able to face this complexity. It is 
the streaming programming model.  One of the first  (if  not the first)  descriptions 
where presented by Lee and Messerschmitt at  [95]. This model assumes two main 
components: kernels and communication streams. Kernels are assumed as isolated 
processes running independently. Communication streams act as data transfers but 
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also as process controllers. Communication streams are point to point channels from 
kernels to kernels. They are usually defined statically and represents a continuous 
infinite flow of data.  Communications streams are the only way to communicate 
kernels. 

Streaming programs are able  to  execute naturally on distributed architectures, 
take advantage of specialised cores and even improve cache reuse  [96] on shared 
memory  architectures.  They  work  naturally  on  distributed  architectures  because 
there is no communications between running threads, only explicit communications 
through streams. Kernels represents small functions. Some of these kernels can be 
easily vectorised, and even some of them can be classified by required computing 
resource. It is also possible to provide many alternatives (as for example function 
libraries) in order to find for each candidate which kind of core is the most suitable 
kernel. It helps to adapt these applications for changing heterogeneous architecture. 
Moreover, even communications are explicit and many times it is provided enough 
information to know the type, frequency and bandwidth and even source and target.  
It can allow to choose the most suitable hardware communication channel, as can be 
mailboxes, DMAs, and any other kind of bus. Kernels focus on the consumption of 
data  coming  from input  streams  and  production  to  output  streams  and  kernels 
activations are related to those streams. Blocking techniques can be applied in order 
to fit data in cache lines. Moreover, kernels can be fused in order to take advantage 
of already present data on cache lines. This optimisations can create super-linearity 
effects.

Streaming programming models. Like DSM systems, a streaming program requires 
information about its structure. If the programming language or framework does not 
provide  extra  information  about  programs  kernels  and  streams,  compiler  and 
runtime can do very little in order to extract some structure. It is required that the 
programming  language  and  environment  adds  information  about  the  program 
structure.

Almost  all  programming  models  or  libraries  for  create  pure  streaming 
applications  are  designed  as  two  parts:  one  to  create  kernels,  another  to  create 
connections. In manner of speaking they are as building blocks and glue. Kernels are  
basically  the  execution  of  the  program  or  a  determinate  basic  task.  All  kernels 
conform the building blocks of the program. The glue is the connection of kernels 
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into a unique application. Usually most of the programming models allow to create 
components  by  fusing  kernels.  These  components  can  be  glued  again  in  greater 
components.  Finally  a  program  is  the  glue  of  all  components  into  another 
component. 

GNUradio  [43] is  one  of  the  first  libraries  designed  to  build  streaming 
applications. It was created in order to process radio signal directly through software 
and make hardware independent from changes in the standard. GNUradio has a 
large  collection  of  filters  (and  its  sources)  to  build  many  kinds  of  streaming 
programs.  It  includes  the  source of  the FMradio  benchmark used on this  thesis. 
GNUradio framework consists of two parts: one for kernels and another for glue. 
Kernels are written in C++ a set of libraries designed to build streaming applications. 
The  glue  is  written  in  python,  it  just  creates  the  program  structure.  GNUradio 
provides a runtime to execute the program. It even has some modules ready to run 
on FPGAs in order to obtain relevant speedups.

One  of  the  firsts  programming  models/languages  for  building  streaming 
programs is StreamC/KernelC [97].  This language was created in order to provide 
an infrastructure to program the Imagine processor  [98], a kind of massive multi-
core data flow oriented processor. This programming model is structured into two 
languages: StreamC and KernelC. Both languages are designed as close as possible 
to C or C++. StreamC is the language specialised on the creation of communications 
and the building of the program. StreamC is the glue, it literally instances modules 
(kernels  or  collections  already connected  of  kernels)  and creates  the  connections 
between  them,  becoming  a  new  module  available,  or  even  the  main  program. 
KernelC is the language used to create a kernel. It is programmed like a function 
which  arguments  and results  are  input  and output  streams,  and its  body is  the 
processing  of  those  streams.  StreamC/KernelC  has  a  greater  control  over  the 
program than the GNUradio.

StreamIt  [44],  [99] is  a  programming  model/language.  It  is  inspired  on 
StreamC/KernelC  but  modified  to  handle  some hazards  and to  allow maximum 
control  of  the  execution  to  compiler  and  runtime.  The  main  difference  with 
StreamC/KernelC is that it combines both in a single source. In addition they have 
limited input and output streams to a single flow of real elements. Multiple streams 
can be emulated with special collectives for data distribution or collection. Even with 
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these limitations StreamIt has a large list  of applications successfully ported. The 
main contribution of StreamIt is the analysis about how a streaming program can be 
modified and adapted to the underlying architecture  [99]. In this work, Gordon et 
al., explains how a streaming program can take advantage of task, data and pipeline 
parallelism.  The  pipeline  parallelism  is  obtained  by  executing  each  stage  of  the 
stream process for a different temporal set of data in parallel, like processors does 
with instructions streams. The task parallelism is achieved by executing concurrent 
independent kernels simultaneously.  Data parallelism is achieved when the same 
kernel is instantiated multiple times (or just manipulated to appear so) in order to 
process multiple input data simultaneously. In the case of StreamIt data parallelism 
can only be achieved when a kernel does not have state, in other words, when there 
is no local variables required to process the following element. As this limitation is 
represented as a stream from the kernel to itself. This cyclic stream presents a heavy 
dependence, it limits program parallelisation.

OpenMP  like  streaming  languages.  Previous  presented  models  creates  a  new 
language to create streaming programs. Our target is to present a solution as close as 
possible to OpenMP. We believe that OpenMP characteristics are desirable, and the 
addition of streaming information to a plain C program should allow the creation of 
programs able to take advantage of streaming characteristics.

One of the firsts adaptations of OpenMP to implement pipelined executions was 
presented  by  Gonzalez  et  al.  at  [100].  They  have  exposed  that  there  are  some 
complex dependencies between tasks which can not be handled by OpenMP. They 
have proposed two new directives  for  OpenMP:  pred and  succ.  This  two clauses 
creates a pipeline execution from the producer of data to the consumer of the same 
data. There is no concept of stream, they relay on the shared-memory to store results 
and retrieve it later. In this case, the communication is limited to control. This two 
new directives are tied to de parallel for and to a for loop iteration. Each time that the 
pred directive is reached it hints which iteration has completed, and consequently its 
information  is  available  on  shared-memory.  The  succ marks  which  iteration  is 
expected to be reached in order to read the result from the shared-memory. If the 
information is not available it stops the execution. Both,  pred and  succ are just one 
step  of  stream  communication.  Because  there  is  no  real  stream  and  no  kernels,  
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synchronization is defined on runtime and there is no such producer and consumer 
kernels connected. Any thread can be a consumer, any thread can be the producer. 

Grid SuperScalar [101] (GridSS) is designed for the grid. GridSS execution is based 
on  multiple  binaries  running  on  multiple  computers  with  files  as  only  mean  of 
synchronization. The binary execution and file synchronization is based on the same 
superscalar model to solve dependences from supersclar computers. The idea is that 
these  tools  can  be  ported  to  all  levels  of  the  execution,  even  to  the  grid.  Each 
program  of  the  GridSS  is  constructed  as  many  small  programs  communicated 
through files. The only communication performed between these small programs are 
files. They use files as input, and files as output results, but there is no other kind of 
communication  of  synchronization.  All  GridSS  processes  where  controlled  by  a 
single  C  program  or  Script  which  represents  all  binaries  invocations  as  simple 
function calls whose parameters and results are files. The GridSS runtime controls 
programs  distribution,  file  synchronization  and  copy  and,  in  some  cases,  also 
duplication and recovery. GridSS is not a streaming programming model  and its 
results are not as we understand streaming. But it is very close, each program is like 
a kernel, and it also has the capacity to work on a heterogeneous environment where 
some  programs  can  only  be  computed  on  some  architectures  and  some 
communication lines are faster than others. The only thing which does not converts  
this  programming  model  to  streaming  is  the  lack  of  capacity  to  create  stable 
communication channels: each function invocation is independent and the runtime 
creates  its  dependence  when  is  executed.  When  the  program  is  executed, 
dependences disappears and no structure can be reused.

The Cell SuperScalar [102] (CellSS) programming model is based on annotations 
and targets heterogeneous and distributed memory multi-cores. It is also based on 
the same principle of GridSS and it also uses the same proposals: superscalar model 
to  solve  dependences  from  supercomputers  can  be  ported  to  all  levels  of  the 
execution. In this case, instead of having small programs, CellSS uses functions. This 
functions declarations are annotated with OpenMP like directives, these annotations 
complement the C definition of a function in order to express if any array parameter 
value is for input or for output. Arrays are like GridSS files, and the same rules are 
also applied. In this case,  the serial program executes normally. When a function 
with its declaration annotated is reached, the CellSS computes function dependences 
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and schedules it to be executed in any of existing available resources. The same from 
GridSS similitude and differences are applied. In this case CellSS uses some kind of 
true streaming if the same function is called many times, it transfers the data and 
results  continuously  from  parallel  functions,  or  it  even  creates  direct  transfers 
between cores. The main drawback of CellSS is the scheduling. While GridSS works 
over network and scheduling overhead is negligible, CellSS works inside the same 
processor. Communications inside the processor and computations are so fast that 
the overhead of scheduling is very significant. It is possible that there is room for 
many optimisations, but because the model does not observe tasks as a persistent 
kernels consuming a stable flux of data, it must reschedule functions and data flows 
each time that an annotated function is reached.
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Chapter 5. New Contributions

The aim of this thesis is to create or adapt a programming model in order to make 
multi-core  processors  accessible  by  almost  every  programmer.  This  objective 
includes  existing  codes  and  algorithms reuse,  debuggability,  and  the  capacity  to 
introduce  changes  incrementally.  We  face  multi-cores  with  many  architectures 
including  homogeneity  versus  heterogeneity  and  shared-memory  versus 
distributed-memory.  We  also  contribute  by  exposing  real  algorithms  and 
applications  and  showing  how  some  of  them  can  be  used  for  quasi  realtime 
applications.  For each section we present one step of this  research,  we introduce 
which publications support our thesis, and we expose our contributions.

Section 5.1. Multi-Processor Tools Over Multi-Core Homogeneous  
Shared Memory

Contributions exposed on this section were presented in publications [1] and [3]. The 
former relates to the optimisation of multi-core architecture and optimisation of the 
OpenMP execution  and  its  viability  on  multi-core  homogeneous  processors.  The 
latter relates to the use of multiple levels of parallelism in order to take advantage of 
tight communications of multiple threads of the same core.

Multi-core processors and OpenMP. In [1] we demonstrate the viability of the multi-core  
processors and we relate its viability to the existing multiprocessor architectures. Previous 
work ([60])  had shown the possibility of  executing OpenMP over the many-core 
(multi-core with many cores) IBM BlueGene/Cyclops architecture, but its results did 
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not  shown a good scalability.  Using  this  previous  work  as  a  basement  we do  a 
scalability  analysis,  a  cache  usage  study,  analyse  bottlenecks,  and  propose  two 
solutions in order to increase parallelism. As a result we demonstrate the viability of 
multi-core for running OpenMP programs by showing a good scalability. 

Our first step is to reproduce original experiments and run a scalability study. We 
present a study of scalability using NAS 3.0 benchmarks  [40]. For each benchmark 
program, given a variable number of threads, we compare the behaviour to the serial 
version of the benchmark with no parallel overhead. Comparisons are measured as 
speedups.  Programs  are  executed  from 1  thread  to  the  maximum of  threads  of 
parallelism  available  for  each  program.  Most  of  the  benchmarks  fails  to  scale 
properly as they were expected in basis of multiprocessors results. 

We present  a  detailed  statistics  of  the  cache  behaviour  of  analysed programs. 
Many  of  previous  work  has  spotted  the  cache  as  the  bottleneck  for  multi-core 
processors ([68], [70-72]). We present a statistics of how programs access to caches. 
For each program we show its characteristic signature in the cache usage. We also 
present statistics about cache hit ratio and access counts.  These statistics are also 
presented and shown for a varying number of  threads,  showing how the use of 
threads impacts on the use of the cache. 

We present  an analysis  about  how cache affects  to  the  program execution on 
multi-core. By examining previous results, we establish that threads, program stack 
mapping, cache organization and cache associativity are highly relevant. We state 
from experiments that with the same program, and the same input, if we increase the 
number  of  threads  the  number  of  cache  hits  decreases.  Program  characteristics 
presented shows that program threads stack mapping has a relevant effect on the 
diminishing of cache performance. Used architecture helps us to evaluate how large 
caches (like L2 caches) are related to the program performance. We show that the 
associativity of the cache is critical, there is a high number of cache conflicts and the 
associativity requires to be related to the number of hardware threads. Results shows 
that a 4-way cache is good for 1 thread but not for tens of threads.

Previous analysis and results spotted that cache was effectively the main issue 
which prevents multi-core performing good results.  We focus on the proposal of 
realistic solutions. Solutions can modify the software, or can modify the hardware 
solutions. Our solutions have been ensured to be realistic.  For example, we have 
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avoided solutions like: having 4-way associativity is good for 1 thread, so for 128 
threads  we  need  512-way  associativity  (128  x  4).  Even  if  such  cache  can  be 
implemented, the cost of the implementation is too expensive. The objective of our 
solutions is to avoid increasing the associativity.

We present that program stacks behaviours is one of the most relevant problems. 
Analysis of cache behaviours had shown that one of the most relevant effects on the 
cache misbehaviour are accesses from program stacks. Usually operating system and 
all libraries tries to align structures to multiples of powers of 2. We have proven that 
this behaviour, unfortunately, is catastrophic: many stacks are aligned in the same 
cache-line,  so  their  execution conflicts.  In  addition,  as  happens with most  of  the 
OpenMP programs and other programs with regular parallelism, executions of all 
threads follows approximately the same execution path. It results in a catastrophic 
behaviour because all threads collides on the same cache lines simultaneously. This 
problem increments with the number of threads, given that the number of thread 
stacks increases, and as a consequence possible conflicts increase.

First  solution presented is  to  modify how stacks  are placed in order to  avoid 
conflicts. We propose to introduce a dis-align relative to thread stacks themselves in 
order  to  avoid  stack  accesses  collisions.  We  show  that  a  determined  dis-align 
between stacks can place these stacks strategically in order to avoid collisions. 

Second  solution  proposes  to  change  cache  scrambling  function  in  order  to 
distribute  stacks  across  different  cache  region.  This  solution has  three objectives: 
avoid stacks cache conflicts, localise stacks closers to the core responsible for that 
stack  and  avoid  data  parallelism  conflicts.  As  our  target  architecture  cache  has 
different latency depending of the thread location, we will locate stacks closer to its 
threads and study the effect. Data parallelism slices large data into a regular blocks, 
if this blocks are multiples of the cache size there can appear also a conflict between 
threads on cache access.  Cache scrambling function is  the  responsible  to  decide,  
given a memory access address, which cache line storage is responsible for given 
address. If cache is 4-way associative and scrambling functions sends 5 accesses to 
the same cache line storage, one access is discarded. Usually, the scrambling function 
discards the bits which references a byte inside a cache line, and uses the number of 
cache line storage to get the following lower bits. This create a modulo space which 
accesses  cache  line  storages  at  reasonable  distance  may  collide.  We  change 
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scrambling function in order to use higher bits corresponding to the stack spacing. 
This solution have better performance than the software solution and it satisfies all 
three objectives. 

As a  result  and thanks to all  the analysis  we conclude that multi-core can be 
effectively  used  by  providing  the  tools  required  to  increase  the  performance  of 
applications on many-core processors.

Multi-core processors and multi-level parallelism. In [3] we demonstrate that multi-
level  parallelism  programs  can  take  advantage  of  multi-core  processors  characteristics. 
Previous  presented  work  we  have  proved  that  OpenMP  can  achieve  good 
performance on multi-core BlueGene/Cyclops architecture. This work tries to go one 
step  further  and achieve  an even better  performance  by using a  program which 
parallelism mimics  multi-core  architecture.  As  part  of  this  research  we  have  re-
analysed previous results, ported multi-level parallelism programs to the multi-core 
architecture,  we  ported  and  effectively  use  the  OpenMP  compiler  for  nested 
parallelism, we studied programs and how the distribution of work affects to the 
performance, and we determined under which parameters is better to share cache 
for  inner  parallelism.  We  use  previous  research  in  order  to  have  an  optimised 
infrastructure.

The placement of the most used stack section is critical and OpenMP can help to 
detect  it.  We  based  our  experiments  in  previous  hardware  solution  for  a  good 
performance. We have discovered that parallel 1 thread execution is faster than serial 
programs  (which  has  no  overhead  for  parallel  zone  creations  or  further 
synchronizations). As part of the analysis we have discovered that as part of our 
solution the OpenMP runtime places new threads aligned to the closer cache. As a 
consequence, when the application spawns one thread as part of a parallel region, 
the stack for the new thread is mapped strategically on the cache. Usually, parallel 
regions encloses the most critical and time consuming tasks. These tasks are now 
perfectly  aligned  and  can  use  effectively  closer  cache.  We  have  discovered  that 
OpenMP allows to realign stacks in order to place critical functions on closer caches 
for each core.

We  port  the  OpenMP  implementation  for  multiple  levels  to  a  multi-core 
architecture. There are previous versions of the OpenMP of multiple levels but none 
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ready for multi-core. We adapt the NthLib [57] extension for multiple level, included 
the support for the experimental  groups clause  [58] (described above in  section 3.4. 
tools).  Within the modifications  we finish the porting of  two kinds of  spawning 
parallelism  of  NthLib  and  we  also  add  architecture  dependent  primitives  for 
synchronization and idle threads. The latter implies that spin-locks (often used on 
supercomputing) are complemented with directives to sleep waiting threads.

We  port  NPB-MZ  3.0  for  OpenMP  to  a  multi-core  architecture.  We  use  our 
OpenMP  compiler  to  compile  the  multi-zone  benchmark  for  the  multi-core 
environment.  We  test  it,  we  verify  results  and,  in  addition,  we  also  modify 
benchmark programs to take advantage of experimental groups clause. We focus con 
class W.

We run an extensive benchmarking of  NPB-MZ including 4  parameters  and 3 
statistics and present a summary of results. We run the three programs included on 
MZ  benchmarks:  SP-MZ,  BT-MZ  and  LU-MZ.  Results  from  LU-MZ  are  not 
presented due to its similarities to BT-MZ. For each program we vary the number of 
threads used, the number of groups of zones (from 1 to 16 for the outer level of 
parallelism, having total threads divided by groups as the number of threads per 
group), and the distribution of user threads in hardware threads (using from one 
thread per core up to four threads per core). As a results, we present statistics about 
scalability (by varying the number of threads and size of the groups), and statistics 
about  cache usage including application characteristics  (including changes  in the 
number of threads and groups), number of accesses and which kinds, and cache hit
%.

We  reveal  that  NPB-MZ  BT-MZ  and  LU-MZ  programs  are  limited  by  load 
balancing up to speedup close to x30. Loop collapsing over code is required for a 
better parallelisation. Our benchmarks use small classes and as a consequence they 
are  not  designed  to  scale  using  a  large  number  of  threads.  Benchmark  SP-MZ 
presents a good scalability, up to speedup of 90 by using 127 threads and only 32 
FPUs. The main characteristic SP-MZ is the regularity in its parallel regions and a 
good thread balancing. Each zone of SP-MZ has the same size and the execution time 
is almost the same for all zones. BT-MZ and LU-MZ are unbalanced. We focus on BT-
MZ. We compute using limits on its for directives that there is a zone very large and 
it is not sliced in enough threads. If we assume that the maximum number of threads 
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is used, the most time consuming thread of the BT-MZ requires 1/29 of the serial 
execution time. As a consequence the maximum theoretical speedup is of 29. Our 
results  gives  a  speedup  slightly  better  than  30,  thanks  to  cache  locality.  Load 
balancing limits speedup and parallel limits. We propose to perform loop collapsing 
in  order  to  increase  the  available  parallelism  and  decrease  the  size  of  non-
parallelisable region. 

We expose that as more threads we use, more accesses to cache are performed. 
Our results shows that as we increase the number of threads it also increases the 
number of thread accesses. We detect three reasons to increase the number accesses: 
more  stacks  replicated,  more  pressure  over  shared  variables,  and  more 
synchronization operations. Each thread has its own stack, and its own variables. 
Although many of variables are smaller because they have been distributed, many 
others for temporal computations are replicated, and, as a consequence, the cache 
usage. There is also a set of global variables, accessed by all threads. If we have more 
threads, there are more simultaneous accesses for those variables. As a consequence 
increases the number of accesses. At last, each thread must be synchronized with 
other threads,  most of these synchronizations are based on spin-locks,  and all  of  
them are based on shared memory. As a consequence, the number of accesses and 
collisions also increases.

Greater number of groups have better performance and less overhead. We test 
benchmarks  varying  the  number  of  threads  and groups.  For  a  given  number  of 
threads, we test many group distributions. Results shows that experiments having a 
large number of groups have better performance than experiments having a small 
number of groups (with lots of threads). We detect that bigger groups requires less 
communications  and  less  expensive  synchronizations.  More  groups  also  creates 
smaller global data to share easing pressure over cache.

Experiments show that is better to share cache when there is a small number of 
threads. We previously have determined that the greater is the number of threads or 
lesser is the number of groups, greater is the number of accesses to the cache and its 
conflicts. We have determined that with a low number of threads it is better to share 
the same cache and the same core between all of them. We can use the same cache 
for  many  threads  to  speed  communications.  But,  when  the  number  of  cores 
increases, the required amount of memory and cache pressure also increases, and as 
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a consequence the number of cache hits decreases. At this scenario, it is better to give 
a  larger  cache  to  each  thread  than  try  to  reuse  the  same  cache  to  speed 
communications.

Section 5.2. Annotation Based Programming Model Over Distributed  
Memory

Contributions  exposed  on  this  paper  are  presented  in  publication  [2].  This 
publication presents  a  novel  comparison of  MPI versus OpenMP but  taking into 
consideration  MPI-like  applications.  We  demonstrate  that  an  application  almost 
prepared for  MPI  can be  executed efficiently  on a  DSM system but  with all  the 
benefits  from  de  OpenMP  programming.  As  an  example,  we  take  a  nested 
programming model and we intend to emulate the behaviour of a multi-core with 
distributed memory between nodes. 

OpenMP can be  run efficiently  on distributed-memory architectures. In  [2] we  
demonstrate  that  an  OpenMP program  can  be  as  efficiently  as  an  MPI  program  on  a  
distributed-memory  architecture. MPI  programs  are  designed  to  have  low 
communication  rates  (coarse-grain  parallelism)  and  a  great  cohesion  inside  each 
node (fine or medium coarse parallelism, if there is any parallelism). In addition, a 
programmer  also  must  deal  with  a  distributed  environment  and  distribution 
primitives.  We state  that  the  same version  of  the  algorithms  can  work  on  DSM 
efficiently,  but,  in  addition,  MPI  drawbacks  as  distributed  environment  or 
distribution primitives  are  not  required.  In  order  to  prove this,  we optimise  the 
OpenMP at the DSM and parallelism runtime, but we do not modify the original 
program. 

As  we  have  done  on  multi-core,  we  also  port  the  OpenMP with  support  to 
multiple levels of parallelism to a DSM. As we have done before we base our porting 
on  an  existing  DSM  and  already  ported  NthLib.  Existing  ported  libraries  only 
supported one level of parallelism. We implement the additional support for nested 
parallelism and groups clause. 

UNIVERSITAT ROVIRA I VIRGILI 
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES 
David Ródenas Picó 
DL: T.1350-2011 



114 New Contributions

We port NPB-MZ 3.0 for OpenMP to DSM. We port the multi-zone benchmarks, 
but we will focus our research on BT-MZ. This benchmark presents (as LU-MZ) a 
irregular zone shapes which creates challenges relative to load balancing.

We execute BT-MZ and present traces for analysis. We present a trace of memory 
accesses and a trace of tasks execution of BT-MZ class A. Trace memory allows us to 
detect conflicts in thee zones: thread stacks, NthLib runtime library (due to locks and 
synchronizations), and global data of the program. We present two kinds of analysis 
of BT-MZ task executions: one with a maximum of one node for each zone,  and 
another one for two nodes for zone 16 (the zone computation is split among two 
nodes). We determine that spliting zones creates so many communications that it can 
not run efficiently (the execution time almost doubles).

We present an optimisation for work distribution. As part of the memory-accesse 
conflicts come from stacks and from synchronizations, we decide to re-implement 
NthLib  runtime  library  to  handle  remote  communications.  The  optimisation  is 
performed for nano threads (threads with stacks). This optimisation consist in: 1) 
creating a work-descriptor for the task (it includes the function to execute and stack 
parameters),  2)  sending  of  the  descriptor  through network  to  the  corresponding 
node, and 3) replacing finalisation synchronization by a message from the executing 
node to  the parent  node.  This  optimisation removes almost  all  memory conflicts 
from stacks and conflicts from the library. 

We  optimise  runtime  library  synchronization  primitives  to  use  message  locks 
between nodes and spin-locks inside each node. Previous implementation of DSM 
and  NthLib  based  all  locks  on  messages,  so  their  implementation  are  fast  to 
synchronize multiple nodes. But this implementation is slow to synchronize threads 
inside the same node due to message passing overhead. We implement a double lock 
system: spin-lock for local locks and remote-lock to synchronize remote.

We optimise paddings inside application to consider a page as a line size. Most 
multiprocessor  programs  consider  the  line  size  in  order  to  avoid  false  sharing 
conflicts. Usually small paddings are added to align data structures to line size (just 
few tens of bytes). DSM library uses page faults to emulate shared memory, so we 
might consider a page size as a line size. As we have detected conflicts in the use of  
global structures, we modify paddings from program structures to assume that the 
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line size is the logical memory page size. It removes all conflicts from structures not 
involved on zone borders communications.

The maximum speedup for BT-MZ class A is obtained with 5 nodes. We present 
traces of the execution of BT-MZ. We have determined that execution time of zone 
number 16 takes 1/5 of the whole serial execution time. As a consequence, if we want 
to  keep  zones  inside  nodes  (in  order  to  exploit  coarse  grain  parallelism),  the 
benchmark execution time can not be faster than zone number 16 execution time. We 
find that to split the zone number 16 into two nodes harms the performance. 

Detection of reads for immediate updates does not help to split zones. We have 
detected that a significant part of the overhead comes from reads before updates: the 
program reads a value from a page, and immediately after it writes the result on the 
same page. The problem is that the first time, it requests the page shared and it pays 
one overhead. The second time it requests the page again, but for write permissions, 
it pays the second overhead. We develop a predictor which uses the instruction for 
read failed to annotate if  there is an immediate update after.  If  the predictor has 
recorded that a read should do a posterior update,  it  request  the page for  write  
permissions and paying only one overhead.  The effect  of  the predictor  is  almost 
negligible.

The execution of the optimised OpenMP is competitive against MPI results. We 
have evaluated the BT-MZ before optimisation, after optimisation and the same BT 
program for MPI. We have compared the three executions. The first version before 
any optimisation has not competitive results, but it scales. This demonstrates that 
coarse-grain parallelism can be well supported on distributed-memory by OpenMP. 
Optimisations  have  been  proven  to  be  very  successful  by  achieving  results 
competitive to the MPI. 

Better  control  over  zone  synchronisation  and  communication  can  increase 
performance.  Almost  all  unnecessary  communications  has  been  removed  with 
optimisation.  The only synchronisation remained (shown in figure  6.6)  are zones 
update and access over some accesses to parent data. These updates are usually well 
known  by  the  user,  as  a  consequence,  the  user  can  hint  data  transfers  and 
requirements. We propose the addition of directives to hint data sending and data 
receiving instead of waiting the page fault.
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Section 5.3. Heterogeneous Modular Multi-Core Simulator

Contributions exposed on this section were presented in publications  [5],  [6],  [11] 
and  [7]. We performed a tutorial of the simulator at conference PACT 2007. These 
publications  expose  the  design,  the  construction  and  the  validation  of  a 
heterogeneous-processor  modular  simulator.  The  simulator  is  built  as  blocks 
connected  by  a  glue  which  allows  to  change  the  configuration.  The  glue  is  the 
memory-access  abstraction  concept  which  establishes  a  unique  and  common 
protocol for all the modules and the main contribution of this thesis. This simulator 
intends  to  cover  the  necessity  to  adapt  and  configure  multi-core  processors  for 
programs. The idea is to be able to find a trade off between peak performance and 
usable performance. 

Memory-access as the glue of the simulator. The memory-access is the cornerstone of  
the design of the simulator, it provides a common framework to interconnect every module in  
almost any configuration. As the multi-core becomes more complex, it can combine 
many kinds of processors, but also can have a very complex memory hierarchy. Each 
module can be any processor of any kind, a memory storage, or a complex bus, but  
usually all of them, soon or later, communicates the same information: a piece of  
data. Memory-access has been designed to mimic the behaviour of a IP network but 
inside the simulator. As all modules must be designed to handle memory-accesses 
packets, they can be interconnected in any distribution.

We reuse ports semantics from UNISIM but we present a unique interface for all 
ports called memory-access.  Modules can have many ports,  but each port uses a 
memory-access as interface. Modules have ports, for receiving data or to send data. 
This behaviour is inherited for UNISIM infrastructure  [64]. Unfortunately UNISIM 
infrastructure is not sufficient to create a real modular simulator: all modules must 
use  the  same  protocol  and  interfaces.  We  have  decided  that  all  ports  of  our 
infrastructure  has  only  one  type:  a  memory-access.  Modules  use  ports  to  send 
(output  ports)  and  receive  (input  ports)  memory-accesses.  As  part  of  UNISIM 
infrastructure, input ports can reject the receiving of memory-accesses.

We require a set of addresses for each module. On a network, each node know 
which address it has and programs knows the address of the node where to send 
information. As part of the glue, we require each module of the simulator to have an 
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address  range,  and  if  it  can  route  memory-accesses,  neighbours  addresses.  Each 
module  will  implement  its  functionalities  based  on  memory-accesses  to  its  own 
address range.

The memory-access description is the source address, the target address, the kind 
of  access  (read  or  write)  and  the  data  involved.  The  only  interaction  between 
modules are these memory-access. The kind of access determines if there will be a  
write command on a determinate address, or a data will be read from a determinate 
address. If memory-access address destination matches with the current module, it 
applies  the memory-access command. Read commands usually fills  the memory-
access  data  with the requested state,  and returns  it,  using the source address as 
target and write access. Write commands changes the state of the module with the 
data provided by the memory-access.

We  define  routers  or  memory-accesses  buses  as  modules  connecting  many 
modules. Routers modules have many ports and for each port can have many more 
modules, and consequently, many candidate target addresses. These modules must 
have  a  list  of  target  addresses  and  forward  accesses  to  each  module.  Routing 
modules  should  be  able  to  send  to  any  of  their  output  ports  the  corresponding 
memory-access, defined by the target address. Thus, as part of its configuration, in 
addition  to  connections,  it  has  output  ports  addresses.  In  addition,  routers  can 
emulate pauses, delays, latencies, congestions, and any other 

Our  infrastructure  is  described  around  memory-accesses,  not  module 
functionalities. Modules can be as complex as required, but the infrastructure only 
emulates  memory-accesses.  This  proposed  infrastructure  is  designed  to  handle 
memory-accesses.  There  is  no  restriction  about  module  shape,  functionalities  or 
timing. A module can be a functional simulator of a processor, a full simulator of  
each functional unit, or just an interpreter of a trace from an execution. The only 
requirement is to be able to produce and consume their respective memory-accesses 
and emulate timing for a correct simulation of the whole system.

Full power processor simulator and infrastructure. In [5] we present the main building  
blocks of  the heterogeneous simulator  and its  functionality. We have developed a first 
version of the simulator for the PPE and the memory hierarchy. We also develop the 
OS emulation and the elf loader. PPE is verified by executing in the simulator the 
“hello  world”  program.  This  publication  also  presents  another  independent 
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simulator focused on the Cell B.E. SPE built by another group of researchers. We 
eventually fuse both works under our thesis infrastructure.

We  design  the  simulator  to  be  heterogeneous  multi-core  with  PPE  (common 
processor)  and  SPE  (accelerators).  We  implement  each  module  following  the 
interface for the infrastructure based on memory-accesses. There are two processor 
modules, one for the PPE based on PowerPC, and other for SPE based on Cell vector 
processors.

The provided simulator is  developed by two teams. There is one team for the 
development of SPE and another for the development of the PPE. This publication 
presents the simulator as two independent simulators not connected. The other team 
implements  the  SPE.  Our  team  is  responsible  for  the  PPE,  memory  hierarchy, 
memory, and simulation configurability.

We implement a module for memory storage. This is a simple module which has 
an array (to store data), and receives memory-accesses as operations to perform over 
the array. This emulates a simple memory.

We implement the PPE and its memory-access interface. As part of the simulator 
we develop the PPE. This is the functional simulator of the cell general-purpose core.  
It is based on a PowerPC 405 with some additions of vector-instructions. The PPE 
reads instructions from memory and interprets them. The result of instructions can 
be a system call (resolved by the PPE itself) or memory-access to resolve load and 
store instructions. In addition the PPE has special memory-access target addresses 
for: set state and receive answers to read requests. State exposed registers contains 
the PC and if the PPE is running or halted.

We provide an operating system emulation based on continuations and memory-
access for user space. We implement the operating system of the simulator based on 
UNIX system calls. We allow the program to perform some actions as access to files  
(or file descriptors as the standard output for debugging), get information, or even 
call exit. System calls are executed in native code, but their parameters (data from 
application address space) is acquired from the simulator using memory-accesses. 
When a system call requires a data access from the simulated program, it executes 
the  system  call  on  other  context  stack,  and  when  an  access  is  required,  this  is 
emulated by the  PPE by memory-accesses.  While  the  access  is  being solved,  the 
context  stack  of  the  system call  is  halted.  When the  memory access  finishes  the 
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system call is resumed. No instructions are interpreted from PPE while the system 
call is executing. This mechanism allows system call programmers to program the 
system call without states in the same way that they can program it on any machine. 

We provide an elf loader able to load static linked programs. We implement an elf 
loader to load binaries based on static linkage. We do not support dynamic libraries. 
The elf loader works as a system calls and uses memory-accesses to store binary and 
data into memory inside the simulator (it does not need to know about the shape of  
the simulator) and uses memory-access to program the CPU responsible to start the 
execution. This elf loader is not modified since this stage, and it has been working for 
many configurations of the simulator, proving the benefits from memory-accesses.

We decided an effective address space for applications of 32 bits and 64Kb for 
page size and translation for  effective  to  physical  pages.  We have decided these 
parameters  to  simplify and speedup address  translation.  With 32 bits  of  address 
space and pages of 64Kb we are able to create a translation table of 64K positions. As 
the  effective  space  is  common for  all  the  simulator,  we use  the  mapping  for  all  
simulator. The emulation of effective addresses is required by the elf loader, but also 
it is required to map SPE memories or to map memory regions for double buffering.  
Almost  all  communications  inside  the  simulator  are  performed  over  physical 
addresses as it should work on a real processor. Effective addresses are relevant for 
processors simulators.

A simple “hello world” application is simulated. We implement this application as 
a proof of concept that all the PPE system is working. The elf loader maps binary 
into memory. It programs the PPE to the start PC and set the state running. The PPE 
is able to execute the program and emulate its instructions. Finally the PPE performs 
the write system call (printf function is performed by the native libc) and exit system 
call.

Full Cell B.E. modular simulator.  In  [6] we present the simulator working and a first  
validation of its behaviour. Previous work we have presented the PPE simulator and a 
modular  simulator  infrastructure.  We  develop  the  compiling  infrastructure,  the 
libspe and libpthreads compatibility, and the optimisation of the PPE to reduce the 
execution time. Memory-accesses are adopted as a communication standard for all 
the  simulator.  The  team  responsible  for  the  SPE  integrates  their  work  in  our 
simulator and focus their effort on interconnection bus and MFC. 
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Other  team  implements  the  EIB  emulation  and  MFC  using  memory-accesses. 
Their previous SPE simulator has not implemented the MFC and it was not based on 
memory-accesses. They implement the EIB as a k-bus to interconnect modules using 
memory-access and enabling a high degree of functionality. They also implement the 
SPE DMA memory controller called MFC. They also map registers from MFC to be 
accessed through memory-accesses.

We  provide  source  compatible  compiling  infrastructure.  We  decide  to  not 
construct  a  full  system  simulator  and  give  compatibility  to  Cell  B.E.  programs 
through source compatibility. Programs targeting the simulator must be recompiled 
to use specific libraries created for this purpose. 

We develop a library compatible with libSPE. Although the other team was the 
responsible for the SPE,  SPEs are programmed and controlled from the PPE. We 
implement  an  interface  compatible  library  for  libSPE  which  simulates  the 
functionality of the library inside the simulator. This library has parametrized the 
physical addresses of SPE modules in order to access them from the PPE. It maps 
SPE physical addresses to effective addresses for the local storage (memory from 
PPE) and for MFC registers. It loads the binaries for SPE kernels from files into PPE 
local storage. It also programs (writes) MFC registers to start execution at desired 
PC. It also queries MFC registers to be noticed when the execution finishes.

We develop a library compatible with pthreads library. The simulator is intended 
to have more than one PPE in order to emulate a general-purpose multi-core. We use 
pthreads (as we use on common processors) to start threads on other processors. We 
implement pthreads library by satisfying its API in order to execute functions in 
other PPEs. Our pthreads library has a list with PPE and its register states. When a 
thread is created it modifies the PC and the state of a free PPE.

We implement a cache with invalidation protocol. We have to add cache support. 
Not  all  memory  accesses  can be cacheable.  We create  a  list  (like the effective to 
physical address map) which decides which physical addresses are cacheable and 
which physical addresses are not. We implement a parametrizable cache. Cache is 
able to invalidate its data if it receives an empty data for a memory address. Bus 
must notify to the cache of such invalidations.

We perform a functional validate the PPE. We create a set of programs in order to 
validate  that  the  PPE  has  the  expected  behaviour.  Programs  emulates  scientific 
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applications  but  also  uses  some  specific  simulator  functionalities,  as  SPE 
programming.

We  perform  a  performance  analysis  of  the  simulator.  Although  the  overhead 
introduced by the UNISIM infrastructure, we have optimised the PPE to execute up 
to 5 millions of instructions per second.

Validation of the heterogeneous and modular simulator. In  [11] and [7] we present  
the validation of the simulation and a proof of concept of its modularity.  A simulator can 
not be trustful if it is not well validated. In this publication we validate the simulator 
against performance benchmarks. We also provide a some tested configurations.

As our first intention was to construct a Cell B.E. simulator we focus on Cell B.E. 
simulators to validate its performance. The most important piece for the validation is 
data communication inside the bus. We use the benchmarks from Jimenez et al. [92]. 
These benchmarks are focused on memory transfers from inside of the processor. We 
compile the same benchmarks for the simulator and we execute. We compare results 
in order to prove the correct functionality of the simulator.

We demonstrate simulator modularity. Although our first objective is to emulate 
the Cell B.E. (the first massively distributed heterogeneous processor) we also want 
to  perform  architecture  exploration  space  with  the  compiler.  We  build  several 
possible  architectures  and  we  present  it.  Some  of  the  presented  architecture 
configurations  are  the  Cell  B.E.  itself,  general-purpose  multi-core,  heterogeneous 
modules with different kinds of accelerators or DMAs, multi-cores with scratch-pads 
and caches for SPEs.

Section 5.4. Annotation Based Programming Model For Streaming  
Applications

Contributions exposed in this section were presented in publications [4], [8], [9], [10], 
[13] and  [12].  These  papers  relate  the  construction  of  a  OpenMP like  streaming 
programming  model.  We  have  designed  a  programming  model  for  streaming 
programs, and built a compiler demonstrate its viability. We present a programming 
model able to take advantage of streaming characteristics presented by Gordon et al. 
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at  [99],  but  at  the  same  time  able  to  take  advantage  of  existing  code  and 
programmers.

The  first  version  of  this  work  was  presented  on  the  ACOTES  meeting  at 
Eindhoven, October 2006  [103]. We just have presented some ideas developed in a 
blackboard on summer of the same year as the starting point of a streaming model 
based on kernels and communication flows.

Many  publications  presented  on  this  section  also  talks  about  an  Abstract 
Programming  Machine.  This  part  belongs  to  Paul  Carpenter.  It  presents  an 
abstraction of a streaming program and also an abstract processor architecture. The 
idea of combining two works, the work on this thesis and the Carpenter's abstract 
programming machine, is to make possible to the compiler to adapt the code to any 
underlying architecture.

Basis for the OpenMP like streaming programming model. In  [4],  [8] and  [9] we  
present  a  programming model  OpenMP like  designed to  build streaming programs from  
serial programs. We use the OpenMP as a start of a streaming programming model.  
We  pursue  the  same  benefits  of  the  OpenMP  and  we  use  the  same  kind  of 
annotations  to  hint  kernels  and  possible  communications  to  the  compiler.  We 
provide  an  algorithm  to  transform  such  annotations  on  serial  code  in  order  to 
demonstrate that it can be performed. As a proof of concept of the result we also 
provide some examples converted and analysed.

We present the first streaming programming model based on OpenMP. We design 
a programming model able to take advantage of existing code. We assume that there 
is  no  automatic  parallelisation,  and  we  do  not  require  an  expert  knowledge  of 
streaming programming. The presented model is  designed to be compatible with 
OpenMP and it is also based on directives and clauses working on top of serial valid 
code.

We implement  almost  all  desired properties  from OpenMP. Our programming 
model is designed to have scalability, allow incremental parallelisation, portability 
(in  fact  has  better  portability  than  OpenMP,  due  to  there  is  no  shared-memory 
assumption), high level, performance oriented and data parallelism. Data parallelism 
is implemented by computing multiple elements of the stream in parallel, it only can 
be applied as on StreamIt if there is no state on kernels (we have solved this problem 
on later works). It allows incremental parallelisation by allowing to identify kernels 
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one by one and creating and routing streams automatically based on serial program 
semantics.

Only  three  main  directives  are  required.  In  order  to  obtain  an  easy  to  use 
programming  model  we  define  three  core  directives:  taskgroup,  task,  and 
input/output.  Taskgroup  directive  (originally  named  pipeline)  defines  a  region 
where streaming tasks are contained, it allows to mix serial parts with streaming 
parts. Task directive identifies the code of a streaming kernel. This kernel is executed 
as many times as it has been reached on serial code. Tasks are persistent and they 
keep their state between invocations. Input and output directives defines an input or 
output port for a stream. It is based on variables whose value is received or sent. 
Stream is created by the compiler.

We present an algorithm to transform the application based on directives. As part 
of the demonstration of the viability of the programming model and as part of the 
definition,  we  supply  an  algorithm  which  describes  how  to  transform  the 
application. This application explains step by step how tasks are identified, ports are 
added, and how stream connections are created automatically.

We present a method to optimise streaming graph.  The result  of  the previous 
algorithm can produce limited results: it can produce cycles in streams graph when 
they are not required. We propose a method which can be easily implemented on 
intermediate representation to remove unneeded cycles and optimise connections. It 
exposes  consumption  and  production  from/to  a  stream  as  consumption  and 
production instructions. Consumptions are placed as soon as possible, productions 
as  late  as  possible.  If  a  consumption  and  production  of  the  same  value  are 
consecutive, it creates a bypass.

We expose directives for explicit  communications implementations. We present 
input and output as task clauses and stand-alone directives. We state that if all input 
and output directives are mandatory, produced graphs from the adapted original 
algorithm are always optimised.  This  schema can be reused on DSM for  explicit  
communications.

We present a stream implementation with no locks. In order to make a proof of  
concept we implement a stream library based on no locks.  This library uses two 
counters in order to determine the number of elements produced and the number of  
elements  consumed.  Atomic  updates  are  used  in  order  to  update  values  for 
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production or consumption. Consumer waits for elements if there are not present, 
and given a buffer size the producer waits for enough room.

We  implement  tolower  and  worddhash  as  a  proof  of  concept.  In  order  to 
demonstrate that  the algorithm and directives are sufficient  to  build a streaming 
application  we  transform  two  programs.  We  apply  the  algorithm  manually  to 
tolower and wordhash algorithms and we developed parallel versions which uses 
streams in its executions.

We  present  execution  traces  with  different  optimisations.  We  present  Paraver 
traces in order to show the program behaviour. We also present zooms of the traces 
in order to show details. We have developed three versions of presented programs: 
1) direct transformation by applying the algorithm, 2) stream graph optimisation by 
applying optimisation method, and 3) optimisation by applying blocking to kernels. 
The first version contains cycles, the second version remove cycles, and the third 
version takes advantage that there are no cycles to enclose task kernels into loops 
and reduce the number of communications. 

Presented programming model is designed to generate the graph at compile time. 
Our  main  objective  is  to  define  a  programming  model  able  to  do  the  same 
transformations  that  presented  by  Gordon  et  al.  at  [99].  For  this  reason  the 
programming model is designed to work at compile time (unlike OpenMP). The idea 
is that almost all required transformations transforms binary code. Although these 
changes can be performed by a very sophisticated runtime, the overhead can become 
too expensive.

First definition of the programming model. In [10] we present the first definition of the  
programming  model,  clauses  and  directives. Previous  work  has  been  focused  on 
presenting main semantics and directives, but there are many other functionalities 
required by the industry not present on the previous work. We define all directives 
and clauses of the programming model and theirs behaviour.

We present first formal definition for each element. This definition is inspired in 
the  OpenMP  standard  definition  and  includes  detailed  information  about  all 
directives and clauses.

We define the first following directives: taskgroup, task, port (as a replacement for 
standalone  previous  input  and  output  directives),  for_distribute  (to  use  existing 
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loops as part of kernels control loop) and update (to update asynchronous pseudo-
shared variables).

We define the first version of clauses. Some clauses are deprecated on posterior 
versions. We define the following clauses:  input,  output (to create ports),  import, 
export (to use user-managed streams accessible directly from programmers code), 
target-input, target-output (to allow create explicit graph connections), firstprivate, 
lastprivate,  pivate  (to  handle  state),  async  (to  declare  pseudo-shared  variables), 
shared  (to  declare  real  shared  variable),  requires  (to  specify  specific  properties 
required by the code).

We define the acolib interface for program generation. Directives and clauses are 
translated to a lower level library. Acolib is the definition of the primitives used by 
the streaming program defined by directives. These primitives are designed to be 
used as part of the intermediate representation of the compiler in order to be subjet  
to low level transformations and optimisations.

We present examples of stream graph optimisation. We present many examples of 
the utilisation of the programming model, their translation, and how their stream 
graph is optimised.

Full definition of the programming model. In [13] we present the first definition of the  
programming model, clauses and directives. Previous definition was the first step but 
there was many requirements from stream programs not achieved. We define the 
execution  and  memory  model,  new  semantics  to  correct  problems  with  state 
definition and directives for an effective handling of data parallelism. 

We define the memory and the execution model. We define the memory and the 
execution for tasks. This model assumes that tasks can be created at the same time 
that  taskgroup  streaming  environment  is  reached.  Tasks  execution  is  driven  by 
control stream inputs. If no direct connections are performed, task kernel invocation 
is performed as many times as serial program executes it. There are defined four 
kinds of memory: private (private variables which value does not survive from one 
invocation  to  another),  state  (private  variables  which  values  are  kept  between 
invocations), pseudo-shared variables (variables whose values can be synchronized 
between tasks, but synchronisation is performed lazily), and true shared variables 
(as default  OpenMP, they limit  where task can be placed if  two shares the same 
variable). 

UNIVERSITAT ROVIRA I VIRGILI 
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES 
David Ródenas Picó 
DL: T.1350-2011 



126 New Contributions

We define  programming model  directives.  We define  the  following directives: 
taskgroup, task, teamreplicate (replicates computations to keep state up to date with 
data  parallelism),  port,  for_replicate,  peek  (maps  an  array  to  a  stream  queue), 
update,  check  (ensures  that  a  pseudo-shared  variable  value  is  updated),  ivdep, 
dividesby and aligned (to boost and guide automatic vectorisation).

We define programming model clauses. We define the following clauses :input, 
output,  bypass  (enhance  graph  optimisation),  private  (private  variables),  state, 
copyinstate,  copyoutstate,  initialisestate,  finalisestate  (for  state  variables,  whose 
initial value is obtained from serial program or it uses an initialisator or finalisator to 
compute it), async, sync (for pseudo-shared variables), shared, team, inputreplicate 
(enables and defines inputs behaviour for teamreplicate) and requires.

Although  we  have  defined  clauses  for  constants,  they  do  not  appear  on  this 
specification. These clauses allow to define variables whose value is constant for all 
the execution and it allows many optimisations.

We  present  an  extended  of  the  acolib  in  order  to  translate  all  directives  and 
clauses to intermediate representation. In this case some functions are proposed to 
be exposed to the user to have better control of some processes. 

The working version and demonstration of the programming model. In  [12] we 
present an almost complete working version of compiler and reference library of the 
programming model.  In  previous  works  we have defined,  studied,  verified,  and 
iterated over the definition of the programming model. In this work we present a 
fully functional compiler able, automatically without human interaction, to translate 
a serial program with annotations to a streaming program. We also implement a 
library  able  to  perform  almost  all  the  acolib  primitives  in  order  to  emulate  a 
distributed-memory processor and demonstrate its effectiveness. We evaluate serial 
programs transformed into streaming, and we present a set of synthetic examples as 
a guide of the programming model. 

We annotate FMradio,  Wifi  802.11a and FFD filter.  As a  demonstration of  the 
correct behaviour of programming model, compiler, and acolib we annotate serial 
version programs of FMradio and Nokia Wifi 802.11a. We also extract the FFD filter 
from the FMradio application as a stand-alone benchmark. All these programs are 
compiled correctly using the compiler. We link to our acolib implementation in order 
to demonstrate its functionality.
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We  present  an  evaluation  of  the  created  streaming  programs.  We  use  serial 
programs  (ignoring  directives)  to  evaluate  the  streaming  programs.  For  each 
program we study the capacity to correctly detect and create the application graph 
(not published for Wifi program due to copyright restrictions), we execute with our 
simulation  to  demonstrate  that  scalability  is  possible.  We  also  demonstrate  data 
parallelism on the FFD filter.

We present an incremental construction example. We present the construction of a 
streaming program from serial program step by step. A plain C serial code is first 
annotated with the taskgroup directive which defines the zone to be streamised. It 
allows to mix serial and streaming zones. Next step defines task kernels by adding 
task directives. Finally we show how the graph is optimised.

We  present  an  assisted  loop  blocking.  We  present  the  possibility  to  use  the 
for_replicate directive to reuse a task outer loop as a control loop of the task. It enables 
direct loop blocking optimisation by ensuring multiples of number of invocations for 
the  kernel.  One  of  the  best  utilities  of  the  loop  blocking  is  to  have  a  good 
vectorisation:  automatic  vectorisation  is  usually  performed  over  loops  with 
independent iterations. This vectorisation can be ensured if tasks are prone to have 
the  same behaviour  for  all  elements,  and  if  those  tasks  are  able  to  exploit  data 
parallelism.

We  present  the  advanced  state  handling.  We  present  state  related  clauses  to 
handle  states.  We  present  examples  of  state  complex  variables  initialised  and 
finalised by serial code inside each task.

We present asynchronous update of variables. We present how some variables can 
be updated remotely and checked. They help to give a kind of shared-memory view, 
but the programmer knows that values are not always up-to-date.

We present how to use stream queue. The main challenge of this option is how to 
access to specific  hardware as stream queues but reusing at the same time serial 
code. We show how the peek directive is able to use an existing array as the stream 
queue. Peek reduces the overhead of copying stream queue and at the same time it 
reduces the required state variables.

We present data parallelism support for tasks with states. We present an example 
which is able to exploit data parallelism and use at the same time state variables.  
Presented example illustrates the utilisation of the teamreplicate directive and the 
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inputreplicate clause. The execution trace of the example is also shown to illustrate 
the mechanism.

We present how elements are balanced between two data parallelised tasks. Each 
task that exploits data parallelism creates multiple instances of the same task. Each 
instance is computing a part of the input data.  This data is distributed across all 
instances  in  order  to  have  load  balancing.  If  we  have  two  consecutive  tasks 
exploiting data parallelism, and they have a different number of instances, results 
must  be  communicated in  order  to  ensure  load  balancing.  We define  and show 
module computations in order to select how to send each result.

In  addition,  presented as  part  of  these  work,  we want  to  emphasise  three  more 
contributions:  a  solution  for  consumer/production  ratio,  collaboration  in  the 
Multicore Streaming Framework, and the implementation of the FMradio.

We  provide  a  solution  for  the  consumer/producer  ratio.  One  of  the  most 
important  problems  is  the  consumer/producer  ratio.  Almost  every  streaming 
programming  model  suffers  from  this  problem.  Usually  stream  programs  are 
designed as a circuit: there are many components connected and each connection is a 
flow of electrons. But there is a problem, on streaming problem there are not almost  
infinite flow of electrons, there a finite set of data. Most of streaming components 
define a ratio between production and consumption. This ratio define how many 
elements  are  produced  related  to  how  many  elements  are  consumed.  It  should 
ensure that no problems like one component receiving data from two flows,  but 
consuming one of the flows at half peace. If it happens a data overflow, then data can 
be lost. This effect can be seen on most of video decoders as a lack of synchronisation 
between audio and video solved by stopping and playing again from the current 
point.  The  solution  proposed  by  other  programming  models  is  to  ask  to  the 
programmer to be careful.  Our solution is easy: follow serial  program semantics. 
This effect is impossible on serial programs, so its conversion to streaming does not 
break  this  semantic  and  programmer  is  protected  against  these  failures. 
Nevertheless, we allow expert programmers to create direct connections. In this case, 
consumer/production ratio problem can appear, but it will be created by the expert 
user, not by the average programmer.

Collaboration in the definition of the IBM Multicore Streaming Framework (MSF). 
As final stages of this work we have collaborated with IBM Haifa research labs in 
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order to use MSF as a back-end for our streaming programming model. We have 
defined the only requirement to interrupt a task and resume later,  as part of the 
requirement for incremental streaming program construction.

We write the serial version of the FMradio. We have as a reference application the 
FMradio,  an  adaptation  from  the  GNUradio  source.  The  problem  is  that  this 
application was developed as streaming application, with explicit streams and tasks. 
We have converted the FMradio from streaming program to a serial program, able to 
work on serial. The serial version developed by us of the application is used later by 
the literature as their reference implementation.

Section 5.5. Graph Matching On Current Architectures

Contributions exposed on this section were presented in publications [14],  [16] and 
[15].  All  three  papers  are  related  to  the  parallelisation  of  graduated  assignment 
algorithms targeted to desktop processors, focusing low power architectures. Our 
target processors are either main processor and graphic processor.  The firsts  two 
papers relates to the parallelisation of  the graduated assignment graph matching 
algorithm. The third paper is related to the parallelisation of the common labelling 
algorithm. 

Graduated Assignment Graph Matching Parallellisation. In [14] and [16] we perform 
two parallelisations of graduated assignment graph matching for low power consumption  
architectures. We present a methodology to transform an algorithm into a parallel 
algorithm: we use two basic transformations, loop tiling and reordering, and three 
OpenMP like  primitives  for  parallelisation.  We also  determine for  the graduated 
assignment algorithm that we require two different parallelisations: one focused on 
large graphs, and another focused on multiple small graphs. For each parallelisation 
we apply the methodology step by step. Resulting algorithms are implemented and 
compared against the serial version.

We  present  two  OpenMP like  directives  to  express  parallelism  in  two  levels. 
Parallelism on NVIDIA CUDA have a duality of strategies: coarse grain parallelism 
for loosely coupled task,  and fine grain parallelism for highly coupled tasks.  We 
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develop a hybrid OpenMP like directive,  based on OpenMP for  directive,  which 
allows to express data parallelism. This directive allows to specify if the specified 
level is block parallelism (coarse-grain parallelism) or thread parallelism (fine-grain 
parallelism). In addition we also add support to reduce operation. We contribute 
with the required semantics to compile the same code by an OpenMP compiler, or by 
a  CUDA  compiler.  Reduction  operation  is  implemented  following  the  CUDA 
reference implementation [104]. 

We present  an OpenMP like directive to  express local  data  on CUDA. CUDA 
programming model provides block memory, which is assumed that has a very low 
latency  and can  be  accessed  by  all  threads  of  the  same block.  This  is  a  private 
memory,  not  supported  by  OpenMP standard  (implies  distributed  memory).  We 
define an OpenMP like directive, inspired on previously presented peek directive 
(see  section 5.4.). This directive defines a region of a larger matrix to be copied to 
local memory. It uses an access pattern to each index of the matrix to define when the 
local copy is accessed. Optionally a set of permutation of indexes can be specified for 
reordering dimensions of the sub-matrix stored at block memory. It allows to ensure 
high-performance by data coalescence. Synchronization are added in order to ensure 
that  there  is  no  data  hazards.  If  statement  contains  any  sub-matrix  element 
modification, it flushes the whole sub-matrix to main memory. 

We present a methodology to transform serial algorithms to parallel algorithms. 
There are many ways to transform a serial program into a parallel program. Many of 
these techniques  are applied automatically  by compilers,  but  lack of  information 
prevents them. Although some algorithms can be completely transformed, or rebuilt 
from scratch, to create a parallel new algorithm, we present a methodology based on 
two  transformations  which  helps  to  parallelise  a  program  without  changing  its 
semantics. Methodology is based on two loop transformations: loop tiling and loop 
reordering. Loop tiling is usually performed automatically by parallel compilers and 
run-times when a parallel for is executed (there are less processors than iterations 
and a double loop is created). We use loop tiling technique to classify accesses by 
sub-matrices.  These  accesses  allow  to  restrict  the  amount  of  data  accessed 
simultaneously  by  all  threads.  This  gives  the  change  to  use  the  block  memory 
efficiently. Loop reordering technique allows programmer to reorder loops, and to 
expose required loops for parallelism. It gives a perfect control of executing threads, 
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and at the same time, this technique allows to fine tune the access to sub-matrices  
and to reduce the amount of block memory required. 

We have presented a parallelisation for large graphs. For the same algorithm there 
are many parallelisations. In this case, we have presented a parallelisation oriented 
to  scalability  based on the number  of  nodes  of  the graph.  This  parallelisation is  
focused on the premise that the graph does not fit on block memory. We have a very 
good performance and we also have been executed this algorithm for a very large 
number  of  nodes.  We  have  not  found  any  literature  showing  the  graduated 
assignment graph matching of any graph as large as we present. This parallelisation 
presents a very good performance and scalability. It only have a poor scalability for 
small graphs.

We have presented a parallelisation for small graphs. We have seen that previous 
parallelisation has a poor scalability on small graphs. In this case, we have presented 
a parallelisation oriented to performance which graphs have a low number of nodes. 
Under this premise we can assume that graph representation fits on block memory. 
That means that the computation can be only performed by one block. In order to 
take advantage of all present hardware, we do multiple small graphs matchings in 
parallel.  This  algorithm parallelisation mimics  NPB-MZ nested parallelism:  outer 
level has very coarse-grain parallelism with almost no communication, inner level 
has a very fine-grain parallelism with coupled communication.

Graduated Assignment Common Labelling. In [15] we present a parallelisation of the  
graduated  assignment  common  labelling  for  low  power  consumption  architectures. We 
validate previously presented methodology to transform an algorithm into a parallel 
algorithm. In this case we determine that even small graphs are able to extract good 
performance if there are enough graphs to create the common labelling. We present 
the performance and the scalability of the resulting algorithm. The resulting version 
of the algorithm presents the same results of the serial algorithm.

We  validate  the  previously  presented  methodology.  Although  the  current 
algorithm is also based on graduated assignment, the algorithm is different and so 
its parallelisation. We use the same tools presented on the previous work. In this case 
we use the methodology to merge and split some parts of the algorithm to create 
highly coupled kernels.  We use loop reordering to find common loops on many 
parts  of  the  algorithm  to  merge  them.  In  addition,  we  split  some  parts  of  the 
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algorithm by loop fission. After all modifications, the resulting parallel algorithm has 
the same result than serial algorithms.

We  have  validated  previously  presented  directives.  We  have  used  the  same 
semantics from directives presented in [16] to express algorithm parallelism. These 
annotations  have  been  useful  to  express  parallelism  and  understand  parallelism 
consequences. 

We  have  presented  the  graduated  assignment  common  labelling  parallel 
algorithm. We have presented the parallel version of the algorithm and how we have 
applied the methodology to obtain it. The parallelisation is presented in two kernels. 
The first kernel computes an auxiliary introduced variable, this kernel parallelisation 
is very close to the graduated assignment computation. The second kernel computes 
the common labelling, the exponentiation,  and performs the normalisation of the 
result. 

We  present  performance  and  scalability  results.  We  have  implemented  the 
sequential  algorithm and the  proposed  parallel  algorithm.  Both  algorithms  have 
been tested over a GPGPU parallel architecture and over a generic Intel architecture. 
We  have  used  two  databases  to  obtain  algorithm  performance.  We  execute  the 
algorithm on a low power architecture and we show the performance and scalability 
for each data set used.

Section 5.6. New Tools

Contributions exposed in this section are available as GPL licensed software. Almost 
any research or experiment requires a tool to perform required demonstrations. In 
this thesis, we have used two types of tools: computers and software. We have tested 
high  performance  computers  (expensive)  and  common desktop  computers  (non-
expensive). The cost of software depends on licence and its accessibility.

In  this  section  we  present  a  set  of  tools  and  software  available  to  the  scientific  
community. Although in the beginning, we do not put a great effort to make our 
tools publicly available (most of them provide from already existing non free tools), 
in the lasts stages of this thesis we licensed new created tools with GPL in order to 
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make them free and publicly available. We only regret not to find/apply a license to 
force tools modification distribution if a paper is published using such tools.

Some of the tools  with no free license constructed are:  IBM BlueGene/Cyclops 
simulator  add-ons  to  obtain  cache  usage  statistics  and  the  simulation  of  the 
hardware  solution,  the  port  of  nested  parallelism  of  NthLib  to  IBM 
BlueGene/Cyclops,  the  port  of  nested  parallelism  of  NthLib  to  DSM,  and  the 
optimisations over NthLib and DSM for nested parallelism.

Tools created with GPL free license which allows the community to create new 
research on top of them are: a tracing library, a portable light threads library, the 
heterogeneous  modular  simulator,  the  pure  serial  FMradio  benchmark,  acotes 
prototype compiler and acotes prototype runtime.

Mintaka tracing library. We have developed a library to take traces of programs. 
This library provides an API to trace the application and generate Paraver traces. To 
use this library the user must use ibrary definitions and link against it. This library 
supports  the  tracing  of  states,  the  tracing  of  events,  and  the  tracing  of 
communications. This library also has support for hardware counters, it is able to 
flush  automatically  information  related  to  hardware  counters.  In  addition,  the 
library  records  flushes  of  the  trace  to  the  disc.  Library  timing  function  can  be 
replaced. Library also provides of support to synchronise clocks between multiple 
machines.  This  library  is  fully  configurable  and  it  is  designed  to  work 
simultaneously on shared-memory and distributed-memory. 

Portable light threads. We have developed a library in order to provide portable 
light threads. We have implemented a library based on C calls longjmp, setjmp and 
alloca to create non kernel threads. This library warps this calls in its API and allows 
to  create  very  cheap  threads  with  no  dependence  with  assembler.  Lonjmp  and 
setjmp are used to save the context and change the contest of the current thread 
execution, they act as scheduler. Alloca function is used to modify the stack pointer 
to point to the stack of a new thread. 

A validated heterogeneous modular simulator. We have developed a simulator as 
part  of  this  thesis.  All  the  simulator  is  available  under  the  GPL license.  In  this 
simulator we have taken advantage of GPL license and we have used PowerPC 405 
ISA implementation from other GPL project.
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Pure  serial  FMradio  benchmark.  Previously  we  have  presented  the  original 
FMradio. This benchmark was provided by Marco Cornnero of STMicroelectronics 
extracted from GNUradio. The benchmark has structured as a set of functions and 
data structures emulating streams. We have adapted this benchmark to create a pure 
serial application with no emulation of streams. As the original GNUradio project 
was licensed as GPL, the serial version of the benchmark kept this license.

Acotes streaming programming model prototype compiler. We have developed the 
OpenMP  like  streaming  programming  model  prototype  compiler  over  the 
Mercurium compiler on its first stages of development.  The Mercuirum compiler is 
an infrastructure designed to process C/C++ code with annotations and transform to 
other  C/C++.  We  have  developed  the  Acotes  prototype  compiler  over  this 
infrastructure. We provide of a compilation phase which transforms all annotations 
into stand-alone functions and calls to the run-time. Source is designed in two layers 
to separate stream program model from run-time. It is possible to change easily the 
run-time to adapt to any other existing run-time.

Acotes  streaming prototype  run-time library. We have developed a  library  as  a 
proof of concept to support the acotes streaming programming model. This library is 
built on top of pthreads and Mintaka library. It emulates distributed tasks with no 
direct access to shared-memory. This library is able to create multiple tasks, stream 
connections between them, and even support complex data parallelism.
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Chapter 6. Practical Evaluation

Section 6.1. Multi-Processor Tools Over Multi-core

This section shows results supporting contributions exposed on section 5.1. Exposed 
results and figures are extracted from publications  [1] and  [3]. In these results we 
show the cache impact, the performance and the scalability of benchmark programs. 
Results  validate  proposed  optimisation,  expose  cache  statistics,  and  nested 
parallelism behaviour. 

In  [1] we study the viability and we expose that multi-core architecture can run 
efficiently  programs designed  for  multiprocessor  architectures.  Previous  work  of 
porting OpenMP to multi-core [60] architecture has shown that multi-core is able to 
execute OpenMP applications, but performance was not as good as expected.

We develop a set of experiments and metrics based on OpenMP and a multi-core 
architecture. Our target benchmarks are NPB for OpenMP [40] (described at section
3.2.).  Target architecture is IBM BlueGene/Cyclops  [45] (described at  section 3.3.). 
The  base  environment  is  NthLib  [57] and  the  OpenMP  NanosCompiler  [55] 
(described at  section 3.3.). We have executed benchmark programs in the original 
OpenMP and IBM BlueGene/Cyclops environment and we compare its behaviour 
against two improved environments proposed. 

Figure  6.1 shows the cache behaviour for the MG class W program. We can see 
that the original version has a bottleneck on cache 29, and the number of threads 
decreases the cache hit % ratio. Proposed optimisations solves the cache problem 
satisfactory.  Software solution has a better  cache hit  ratio,  but  threads stacks  are 
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placed far from the executing thread (column 1, highest bars). Hardware solution 
has good cache hit ratio, but not as good as software solution. In this case we can 
observe that access to cache 9 to 19 (accesses to global data) are higher, it degrades 
cache hit ratio. In the other hand, hardware solution stacks are close to its threads, 
low latencies compensates the loose of cache hit ratio.

NPB Class W, program MG
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Figure 6.1: Cache behaviour for the MG Class W program in the IBM BlueGene/Cyclops 
architecture. 

Figure  6.2 shows the speedup of the Class W NPB benchmarks. Although the 
Cyclops has 32 cores (like a multiprocessor of 32 processors) we can observe that 
original platform performance is far away of expected of 30. The software solution 
improves  the  performance  of  all  benchmarks,  the  gain  is  between 10% and 70% 
depending of the application. The hardware solution improves in all programs but 
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CG,  performance  improvement  is  between  a  40%  and  a  100%.  CG  has  best 
improvement  on  software  solution.  BT  has  an  impressive  improvement  on  the 
hardware solution.
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Figure 6.2: Scalability of the NPB programs Class W in the IBM BlueGene/Cyclops architecture.

In  [3] we study how to take advantage of multiple threads sharing the same core 
(and  core  resources)  by  using  two  levels  of  parallelism:  one  for  coarse-grain 
parallelism and other for fine-grain parallelism. We expose that this kind of multi-
level  parallelism  can  exploit  the  underlying  architecture.  We  analyse  the 
performance, the cache effect and the effect of coarse-grain parallelism and sharing 
cores.
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We present  a  set  of  experiments  and  metrics  based  on  nested  parallelism on 
OpenMP and a  multi-core  architecture.  Our  target  benchmarks  are  NPB-MZ for 
OpenMP [41] (described at section 3.2.). Target architecture is IBM BlueGene/Cyclops 
[45] (described at  section 3.3.) with the modification of the hardware solution from 
previous  work.  The  base  environment  is  NthLib  [57] and  the  OpenMP 
NanosCompiler [55] (described at section 3.3.). NthLib stack allocation policy maps 
stacks  into  closer  caches.  Presented  experiments  have  metrics  to  evaluate  the 
speedup of many configurations, to study the cache impact, and how to distribute 
threads across cores. 
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Figure 6.3: Scalability of the NPB-MZ programs class W in the IBM BlueGene/Cyclops.

Figure  6.3 shows the speedup of  the Class  W NPB-MZ benchmarks.  We have 
focused on SP-MZ and BT-MZ programs.  For each program we have executed it 
from  1  threads  up  to  127  threads  (the  128th  hardware  thread  is  reserved  for 
communication). Scalability of SP-MZ is really good, with 16 groups and 127 (almost 
to 8 threads for each group) it  achieves a x80 (three more times than SP no MZ 
version, shown in the previous work).  We can see that increasing the number of 
groups increases the performance. Only 16/24 execution do not satisfy this condition, 
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it does not balance well threads between groups. Unfortunately BT-MZ, as we have 
explained (due to unbalanced tasks) has a maximum theoretical performance of x30.

Figure  6.4 shows the cache access of the SP-MZ varying the number of groups. 
The first  chart  shows that  the larger  is  the  number of  groups  the smaller  is  the 
number of accesses. This behaviour corresponds to the fact that the external level 
involves more communications than the internal levels. With more zones, we have 
smaller  groups  to  coordinate  and  consequently  less  overhead.  The  second  chart 
shows the data distribution for 1 and 16 groups. We can see that both almost have 
the same pattern of accesses, basically changes the scale. 
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Figure 6.4: SP-MZ groups effect on the cache of the IBM BlueGene/Cyclops.

Figure  6.5 shows the effect of the usage of multiple threads per core. We have 
used the stride option from NthLib for Cyclops. With stride 1 we use four threads 
per  core,  with  stride  4  we  use  1  thread per  core.  First  chart  shows the  kind  of 
accesses to the cache given a number of threads and groups. We can see that given a 
low number of nodes is better to use multiple threads per core. The next chart shows 
the access pattern to the cache. Stride 1 has more accesses to the same cache, the 
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number  of  local  accesses  are  larger.  Use  stride  4  balances  better  the  number  of 
accesses for each cache. Last chart compares a large execution of stride 1 against to 
stride 4. Stride 1 concentrates many of the accesses into the firsts chaches, but with 
stride 4, it is able to take advantage of the whole cache.
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Figure 6.5: BT-MZ sharing threads on the same core effect on the cache of the IBM 
BlueGene/Cyclops.
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Section 6.2. Annotation Programming Model Over Distributed Memory

This section shows results supporting contributions exposed on section 5.2. Exposed 
results  and  figures  are  extracted  from publication  [2].  In  these  results  we  show 
memory page distribution and access across nodes of a cluster,  impact of coarse-
grain  parallelism  on  distributed-memory  and  the  performance  of  the  proposed 
solution. Results validate our proposal to use OpenMP and coarse-grain parallelism 
on the software-distributed-shared-memory.

We have  developed  a  set  of  experiments  and  metrics  based  on  OpenMP and  a 
distributed-memory architectures. Our target benchmarks are NPB for OpenMP [41] 
(described at section 3.2.), more exactly the BT-MZ Class A. Target architecture is the 
Kandake machine (a cluster of Pentium computers connected by a Myrinet network, 
described  at  section  3.3.).  The  base  environment  is  NthLib  [57],  the  OpenMP 
NanosCompiler  [55] and the NanosDSM library  [63] (described at  section 3.3.). In 
addition we have traced experiments with libFASTparparaver and visualised with 
Paraver [61]. 

BT-MZ Class W Unoptimised DSM Page Misses

BT-MZ Class W Optimised DSM Page Misses

Figure 6.6: BT-MZ Class W memory map of page misses for each node on a SDSM.
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Figure 6.6 shows a trace for the page misses of program BT-MZ on a DSM cluster.  
Each  row represents  a  node,  each  column a  range  of  program effective  address 
space. Each square shows how many page misses are present on a given node and 
for a given address range. White squares are no page misses. Light squares presents 
some page misses, and dark squares presents a large number of page misses. Left  
squares  are the  program variables  in  global  memory,  central  squares  are  NthLib 
runtime  variables,  and  right  squares  are  thread  stacks.  First  trace  is  the 
corresponding for the unoptimised execution. Second trace is the corresponding for 
the  optimised runtime.  We can observe  in  the  second trace  that  almost  all  page 
misses  have  disappeared.  Only  remains  some  page  misses  in  the  right 
(corresponding to basic parameters for all threads, almost negligible), and left misses 
(corresponding to zone borders synchronisations). We advocate to use streaming like 
directives to communicate results directly.

BT-MZ Class A Zone 16 Execution Timing on one Node

BT-MZ Class A Zone 16 Execution Timing on two Nodes

BT-MZ Class A Zone 16 Execution Timing on two Nodes with Read/Write Predictor

Figure 6.7: BT-MZ Class A zone 16 execution timing.

Figure 6.7 shows the trace of the execution timing of each task of the zone 16 of 
the BT-MZ program. Each trace has the same time scale and each row is one node. 
Blocks inside the line represents different tasks for the processing of zone 16. Zone 
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16  execution  time  in  one  node  is  3.099  seconds,  the  same  zone,  if  we  split  the 
execution into two zones, it requires 5.696 seconds. Last trace shows the zone splited 
in two nodes and the action of the read with intention for modification predictor. 
The execution time is 5.601 seconds. This time is slightly better than the original, but 
anyway, it is more expensive that execute the zone in one single node.

Figure 6.8 shows performance comparative of the BT-MZ Class A in a cluster. We 
compare  the  MPI  version  against  the  OpenMP.  We  have  presented  results  of 
OpenMP  using  two  versions  of  the  OpenMP,  the  original  SDSM  version 
unoptimised,  and the  optimised  version  proposed  in  our  publication  [2].  Figure 
shows  that  the  original  SDSM  unoptimised  is  able  to  scale.  Although  its  bad 
performance,  it  has  no  slowdown.  Optimised  SDSM  version  has  a  very  good 
scalability. In spite of the fact that this solution is not as fast as the MPI version, the  
difference is acceptable. The OpenMP version is easier to program and maintain.
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Figure 6.8: BT-MZ Class A performance comparison for MPI and SDSM.

Section 6.3. Heterogeneous Modular Multi-core Simulator

This section shows results supporting contributions exposed on section 5.3. Exposed 
results and figures are extracted from publications  [6] and  [7]. In these results, we 
expose the behaviour of the CellSim simulator. This behaviour is compared to the 
behaviour of the Cell B.E. processor.

We study the behaviour of the CellSim simulator based on the behaviour of the bus. 
We have used [93] to replace the original Cell B.E. EIB interconnection bus with a k-
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bus. We use benchmarks from  [92] in order to compare both executions. We have 
recompiled with our libSPE in order to be executed inside the CellSim simulator. 

Figure  6.9 shows  the  comparative  between  Cell  B.E.  bus  performance  against 
CellSim simulator bus simulated performance. The CellSim configuration selected 
has a k-bus of four buses. Memory transfers are more optimistic in the CellSim, this 
is because we do not implement the memory interface. Cell B.E. chart shows that the 
maximum bandwidth for single SPE with memory is limited (following charts shows 
that the EIB does not have a 8GB/s limitation per one SPE). Although this difference 
simulator behaviour is correct. The second group of charts shows the transfers for 
many SPEs in a ring fashion: SPE0 sends to SPE1, which sends data to SPE2,  … 
which sends data  to  SPEN-1,  which sends data  to  SPE0.  This  should be the most 
efficient communication pattern, but it shows some transfer contention. Our k-bus of 
4 rings simulates best results for many SPEs. Up to 4 SPEs it performs similar. Last 
pair of charts represents couples of SPEs communicating point to point one with 
each other. This is the most efficient communication pattern in Cell B.E. (as shown it  
its chart). Cell B.E. is able to route multiple communications in the same ring if they 
do not overlap. Our k-bus design is limited to 4 communications simultaneously, 
and as a consequence it  achieves its  maximum bandwith with 4 SPEs.  Although 
behaviours are not exactly the same, performance patterns are close. Many of the 
limitations presented by the k-bus can be solved by adapting the number of buses 
involved. We can approximate the correct behaviour to each application. In addition, 
we can not also rely on the scalability of Cell EIB bus, because, on the one hand EIB  
details are not public and confidential, and on the other hand, nothing ensures that 
Cell B.E. EIB behaviour is scalable to other chip configurations.
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SPE Data Transfers Parametrised by Size
Cell B.E. Cell Simulator
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Figure 6.9: Cell B.E. versus Cell Sim SPE interconnection bus behaviour study.
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Section 6.4. Annotation Based Programming Model Over Heterogeneous  
Distributed Memory Streaming Applications

This section shows results supporting contributions exposed on section 5.4. Exposed 
results and figures are extracted from publication  [12] and [8]. In these results, we 
show how the annotated programming model works, its characteristics, and some 
performance benchmarks of the prototype (compiler and run-time). Results validate 
proposed  programming  model,  and  exposes  the  capability  of  obtaining  a  good 
performance exploiting many kinds of parallelism. 

In  [12] we  have  summarised  all  characteristics  from  the  annotation  based 
programming  model  for  streaming  applications.  Previous  works  to  this 
programming model have been suggested that annotations are able to extract good 
performance, and at the same time, they are able to adapt parallelism for existing 
programmers. In addition we also have seen that the performance can be increased 
by exploiting coarse-grain parallelism and making explicit some communications.

We  have  developed  a  working  prototype  of  the  programming  model.  This 
prototype is  developed in C and C++.  It  is  implemented in shared-memory.  Our 
target architecture is distributed memory, we have introduced limitations over the 
prototype in order to simulate distributed-memory architecture characteristics. Our 
compiler prototype is based on the MCXX Mercurium compiler (described at section
3.3.). It converts a C serial program to a streaming program. We also have executed 
some of the working prototypes on a dual processor IBM Power5 with a dual core, in 
addition each core has two threads. We have used Acolib prototype library as run-
time to execute resulting streaming programs. We have to remark that this library 
does an emulation of distributed memory. This emulation has an overhead which 
diminishes the maximum performance.

Figure 6.10 shows the scalability of two benchmarks in the prototype. This figure 
focuses on task parallelism scalability. The speedup of FMradio is up to 3.5 due to 
limitations on the FMradio tasks. There is a FFD task with a heavy unbalance which 
limits  the  maximum  performance.  Nokia's  Wifi  802.11a  presents  a  good 
performance. It is able to scale slightly better than the number of present cores. Both 
programs  are  initially  programmed  as  plain  C,  and  later  transformed  into  a 
streaming programs by the compiler automatically. Prototype compiler and runtime 
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have performed all  the  transformation  automatically.  Resulting stream graphs  of 
both  applications  corresponds  to  the  expected  from  a  manual  creation  of  the 
streaming application.
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Figure 6.10: Stream programming model prototype scalability of FMradio and Nokia's Wifi 
802.11a using only task and pipeline parallelism.
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Figure 6.11: Stream programming model prototype scalability of the FFD filter using only data 
parallelism.

Figure 6.11 shows the scalability of the FFD filter task using data parallelism. FFD 
filter corresponds to the most expensive task from the FMradio benchmark. We have 
executed two versions of the FFD filter: 1,813 and 1,8310. These two versions are the 
same filter but with different parameters. First parameters are the original FMradio 
FFD filters parameters, second parameters are a more expensive configuration. This 
figure shows how the task is  able to increase its performance by exploiting data 
parallelism.  It  increases  the  number  of  instances  for  each  task.  Each  instance 
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processes a distinct set of elements in parallel. First configuration shows a limited 
scalability. This poor scalability is given by the overhead introduced by our run-time: 
the runtime is not designed to execute as fast as possible streaming programs but as 
a proof of concept. In order to verify that the scalability limitation is imposed by the 
overhead of the run-time, we increase the size of the filter parameters. Results shows 
on  the  second  configuration  that  data  parallelism  is  as  effective  on  our  stream 
programming model than on StreamIt. 

Figure  6.12 shows the scalability of the FMradio using task, pipeline and data 
parallelism. This figure presents that the FMradio with data parallelism is able to use 
effectively all  four available cores.  We have enabled data parallelism on the FFD 
filter task, as a consequence the performance is improved. This figure is a conclusive 
demonstration that our stream programming model is as flexible as StreamIt and it 
can exploit the same three kinds of parallelism. 
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Figure 6.12: Stream programming model prototype scalability of the FMradio without data 
parallelism (1) and FMradio with data parallelism (2) both using task and pipeline parallelism.

Figure 6.13 shows traces of the execution of a stream program generated by our 
programming  model.  All  of  three  traces  use  the  same  time  scale.  Light  lines 
represents  communication  synchronizations  through  streams.  We  show  three 
versions of the same program. The first version represents the unoptimized stream 
graph  version.  This  version  has  cyclic  communications  (this  is  represented  by 
crossed communication lines). There are some gaps in the execution, they are the 
operating system scheduler. The second version is the same program but with an 
optimised stream graph. In this case, communications have no cycles and we can see 
that  tasks  finishes  as  soon as  they  have computed all  input  elements.  The third 
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version  is  a  modification  of  the  second.  It  takes  advantage  of  no  cycles  and  do 
blocking over communications. The third version sends a block of data instead a 
single element. It warps kernel invocation inside a for-loop which can be unrolled 
and vectorised. In addition, it also saves synchronization overhead by operating in 
groups of data. As a result, the third version has a very good performance.

unoptimised 
stream graph

optimised 
stream graph

task blocking 
applied

Figure 6.13: Paraver traces of the tolower benchmark as stream program.

Figure 6.14 shows the characteristics of the programming model by example. The 
first  group  explains  the  transformation  of  a  C  standard  serial  program  into  a 
streaming program. For each column, it  shows the code, the task graph program 
diagram, and an example of trace obtained in the execution. In this trace, P1 line 
represents  the  time  line  of  the  main  processor  execution,  and  A1  and  A2  lines 
represents  the  time  line  of  each  of  available  accelerators.  Arrows  represents 
communications  between processors.  Each  column introduces  a  new concept  for 
better understanding the programming model. The last column shows the manually 
graph  optimisation.  This  step  is  explained  separated  by  two  reasons:  1)  our 
prototype compiler has limited information about variables usage (so method for 
graph  optimisation  explained  at  [8] can  not  be  applied  automatically  by  our 
prototype) and 2) it allows to explain better how ports are connected and how the 
graph  is  optimised.  Second  part  of  the  figure  shows  other  features  of  the 
programming model and some examples. Two of the most important features are 
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stream peeking  and data  parallelism.  Stream peaking allows  to  map an  existing 
array into a stream buffer. The array size defines window size and the initial content  
of the stream buffer. It allows to save memory by reusing existing buffer, but it also  
helps  to  stabilise  consumer/production  ratio:  in  contrast  to  StreamIt,  it  does  not 
require to fill the buffer with data from previous kernel activations. StreamIt by this 
behaviour  breaks  consumer/production  ratios  making  them  variable,  StreamIt 
elements used to fill  the buffer are not used to produce elements.  Peek directive 
orchestrates all peek and pop operations: when the peek directive is reached the last 
element  is  effectively  popped from the stream.  Task fission helps  to  exploit  data 
parallelism. In this case we also explain how to exploit data parallelism when there 
are state variables. Teamreplicate directive allows to replicate a computation in all 
instances of the same task in order to keep the state updated. We also show how two 
tasks with a different number of instances can distribute elements statically in order 
to have a good load balancing and not loosing elements order.

UNIVERSITAT ROVIRA I VIRGILI 
ALGORITHMS ACCELERATION OF PATTERN-MATCHING IN MULTI-CORE ARCHITECTURES 
David Ródenas Picó 
DL: T.1350-2011 



6.4. Annotation Based Programming Model Over Heterogeneous Distributed
Memory Streaming Applications 151

ﾺ

ﾺA2

ﾺ
A3

Task ffd

Task ffd

Task ffdh ffd h h

h h ffd h

h h ffdh

ﾺ
A4

Task fwrite
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 #pragma acotes taskgroup
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  {
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    h(c, a)
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int main()
{
 int i, v, o, a[4]= { 0,0,0,0 };
 
 #pragma acotes taskgroup
 while (fread(&a, sizeof(a), 1, stdin)) {

  #pragma acotes port output(a[4]:bp_v)
  
  for (i= 0; i < 4; i++)
  {
    v= a[i]; // useless stream code

    #pragma acotes task forreplicate(i) \
        input(v:bp_v) output(o:bp_o)
    o= f(v);

    a[i]= o; // useless stream code
  }

  #pragma acotes task input(a[4]:bp_o)
  fwrite(&a, sizeof(a), 1, stdout);
 } 

 return 0;
}

int main()
{
 int v, o, *buff, stats= 0;
 
 #pragma acotes initializer(buff) remove
 initialize_buffer(buff);

 #pragma acotes taskgroup
 while (fread(&v, sizeof(v), 1, stdin)) {

  #pragma acotes task input(v) output(o) \
      copyinstate(stats) copyoutstate(stats) \
      initializestate(buff) finalizestate(buff)
  {
    o= compute_buffer(buff, v);
    stats++;
  }

  #pragma acotes task input(o)
  fwrite(&o, sizeof(o), 1, stdout);
 } 
 printf(“Item count: %d\n”, stats);

 #pragma acotes finalizer(buff) remove
 finalize_buffer(buff);

 return 0;
}

int main()
{
 float s, volume= 1.0;
 char c;

 #pragma acotes taskgroup
 {
   #pragma acotes task state(c) async(volume)
   while (fread(&c, sizeof(c), 1, stdin)) {
     if (change_volume(c, &volume) {
       #pragma acotes update(volume)
     }
   }

   #pragma acotes task state(s) async(volume)
   while (fread(&s, sizeof(s), 1, mic)) {
     #pragma acotes check(volume)
     s*= volume;
     fwrite(&s, sizeof(s), 1, spk);
   }
 } 

 return 0;
}

int main()
{
 char c;
 

 while (fread(&c, sizeof(c), 1, stdin)) {

  if ('A' <= c && c <= 'Z') 
  c= c - 'A' + 'a';

  fwrite(&c, sizeof(c), 1, stdout);
 } 

 return 0;
}

int main()
{
 char c;
 
 #pragma acotes taskgroup
 while (fread(&c, sizeof(c), 1, stdin)) {

  if ('A' <= c && c <= 'Z') 
  c= c - 'A' + 'a';

  fwrite(&c, sizeof(c), 1, stdout);
 } 

 return 0;
}

int main()
{
 char c;
 
 #pragma acotes taskgroup
 while (fread(&c, sizeof(c), 1, stdin)) {

  #pragma acotes task input(c) output(c)
  if ('A' <= c && c <= 'Z') 
  c= c - 'A' + 'a';

  #pragma acotes task input(c)
  fwrite(&c, sizeof(c), 1, stdout);
 } 

 return 0;
}

int main()
{
 char c;
 
 #pragma acotes taskgroup
 while (fread(&c, sizeof(c), 1, stdin)) {

  #pragma acotes task input(c) output(c:bp)
  if ('A' <= c && c <= 'Z') 
  c= c - 'A' + 'a';

  #pragma acotes task input(c:bp)
  fwrite(&c, sizeof(c), 1, stdout);
 } 

 return 0;
}
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int main()
{
 float v, o, a[3]= { 0,0,0 };
 
 #pragma acotes taskgroup
 while (fread(&v, sizeof(v), 1, stdin)) {

  #pragma acotes task copyinstate(i, a[3]) \
      input(v) output(o)
  {
    #pragma acotes peek(v;a)
    {
      a[2]= a[1];
      a[1]= a[0];
      a[0]= v;
    }

    o= a[0]*.25 + a[1]*.5 + a[2]*.25;
  }

  #pragma acotes task input(o)
  fwrite(&o, sizeof(o), 1, stdout);
 } 

 return 0;
}

Reduce copy overhead
and stateless tasks.

Stream Peek

Figure 6.14: Streaming annotated programming model characteristics by example.
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Section 6.5. Graph Matching On Current Architectures

This section shows results supporting contributions exposed on section 5.5. Exposed 
results and figures are extracted from publications [16] and [15]. In these results we 
show the performance and the scalability of three of our parallel algorithms. Results  
validate  proposed  parallel  directives,  optimisations,  and  the  need  of  specialised 
kinds of parallelism depending the objective.

In  [16] we study the parallelisation of the graduated assignment graph matching 
algorithm. In previous works,  we have seen the ability to express parallelism on 
many architectures through OpenMP like annotations. In this work, we define a set 
of directives to parallelise the algorithm and a methodology to transform a serial 
algorithms into a parallel algorithms. We present two parallel algorithms of the same 
serial algorithms. One for large graphs, and another for many small graphs. Results  
shows that parallelisation for large graphs has a poor performance on small graphs. 
But the solution for small graphs requires multiple graphs, and it  is restricted to 
small graphs due to limitations on GPGPU block memory.

We  present  the  modification  to  the  algorithm  model  for  large  graph 
parallelisation. We use loop tiling and loop reordering techniques. We apply these 
transformations to computation of the P and Q matrices presented in equation 3.4. 
Applied transformations give the same final values but with a different equations. 
The probability matrix P is computed as follows,

∀
c=0

R /B
∀
d=1

B
∀
k=0

R /B
∀
l=1

B
P pq

[a , i ]=exp (β Qai
q
)

a=c⋅B+d ,i=k⋅B+l
(6.1)

we apply loop tiling to a and i loops obtaining loops c,  d,  k and l. This operation 
divides the use of matrices P and Q into sub-matrices of sizes B × B.

We want to expose  c and  k loops for block parallelism, and  d and  l for thread 
parallelism.  Block parallelism is  performed on outer  loops,  thread parallelism in 
inner loops. We reorder c and k loops and d and l loops as follows:

∀
c=0

R /B
∀
k=0

R /B
∀
d=1

B
∀
l=1

B
P pq

[a , i ]=exp (β Qai
q
)

a=c⋅B+d ,i=k⋅B+l
(6.2)
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Now, it is time for matrix Q, we also apply loop tiling,

Qai
q
=∑

e=0

R /B

∑
f=1

B

∑
u=0

R/B

∑
v=1

B

P pq
[b , j ]⋅C aibj

pq

a=c⋅B+d ,b=e⋅B+ f , i=k⋅B+l , j=u⋅B+v

(6.3)

we  also  reorder  loops.  In  this  case  we  want  that  inner  loops  match  thread 
parallelism dimensions, so we move f and v loops into the inner level:

Qai
q =∑

e=0

R /B

∑
u=0

R/B

∑
f =1

B

∑
v=1

B

P pq [b , j ]⋅C aibj
pq

a=c⋅B+d ,b=e⋅B+ f , i=k⋅B+l , j=u⋅B+v

(6.4)

we replace Caibj
pq  by its definition to obtain the following final expression:

Q ai
q =∑

e =0

R /B

∑
u=0

R /B

∑
f=1

B

∑
v=1

B

P pq[b , j ]⋅Aa b
p ⋅Aij

q⋅C ai
pq⋅C bj

pq

a=c⋅B+d , b=e⋅B+f , i=k⋅B+l , j=u⋅B+v

(6.5)

We have present a hybrid programming model based on two directives similar to 
OpenMP able to  integrate semantics  from OpenMP and CUDA language.  As we 
have  stated,  CUDA parallel  implementations  have a  duality  of  strategies:  coarse 
grain  parallelism for  loosely  coupled  task,  and  fine  grain  parallelism for  highly 
coupled  tasks.  The  former  targets  block  parallelism,  the  latter  targets  thread 
parallelism.  Our  parallel  algorithm  notation  is  designed  to  share  the  duality  of 
strategies  with CUDA, but  using OpenMP like directives.  Our  hybrid  parallel  for 
directive can be used to define a coarse grain parallelism or a fine grain parallelism. 
From equation  6.5 we  parallelise  e and  u loops  in  the  outer  level  (coarse  grain 
parallelism) and f and v loops in the inner level. We also add a parallel fetch directive 
in order to use block memory. We use this directive to accelerate the access tu sub-
matrices of A and C matrices from equation 6.5 by using block memory. Semantics of 
our directives are the following: 

#pragma hy parallel for [into(threads)] [reduction(OP:r)]
for i0 ≤ i ≤ if do
   ··· for body
end for
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Hybrid parallel for directive executes the following for construct in parallel. Each 
for body loop  i iteration is executed in parallel. If  into(threads) is not specified it is 
equivalent to OpenMP parallel for directive for the CPU, or it defines a CUDA logical 
space which  i iterations are computed across blocks of the current grid (see figure 
3.5) for a GPGPU. If into(threads) is specified, this directive is ignored on CPU, or it 
defines a CUDA logical space which i iterations across threads of the current block 
(see  figure  3.5).  If  reduction clause  is  specified,  a  summarise  OP operation  is 
performed over r variable. Parallel directives can be nested in order to create a multi-
dimensional logical execution space.

#pragma hy parallel fetch(m : s1 , ... , sD : o1 , ... , oD : i1 , ... , iD [: iσ (1) , ... , iσ(D)] )
{ statement }

Hybrid parallel fetch is ignored on CPU and only has effect on a GPGPU. It allows 
to specify which data is copied from main memory (see figure 3.1) to block memory 
(see figures 3.5 and 3.4). All threads of the same block copy a sub-matrix of size s1 × s2 

× . . . × sD from matrix m, which has D dimensions. This directive is inspired in peek 
directive from ACOTES programming model [28]. The following statement replaces 
all accesses to matrix m from origin indexes { o1 , o2 , ... , oD } plus offset indexes { i1 , 
i2 , ... ,  iD } by accesses to sub-matrix stored at block memory. Optionally, a set of 
permutation  of  indexes  {  iσ(1) ,  iσ(2) ,  ...  ,  iσ(D) }  can  be  specified  for  reordering 
dimensions of the sub-matrix stored at block memory. Synchronization are added in 
order to ensure that there is no data hazards. If statement contains any sub-matrix 
element modification, it flushes the whole sub-matrix to main memory. 

We have evaluated the scalability of  the parallel  large graph matching.  We have 
implemented  the  corresponding  serial  version  of  the  algorithm  and  the  CUDA 
version of the algorithm. We have tested serial algorithms over generic Intel multi-
core architectures, and we have tested CUDA version over NVIDIA GPGPUs. We 
have selected architectures of different power consumptions in order to compare 
results  for  embedded computing.  Table  6.1 shows  detailed  characteristics  of  our 
experiments  (tests)  for  each  architecture  and  algorithm.  Generic  processors  are 
multi-core, but serial algorithms are only capable of use one core and one thread. 
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Table 6.1. List of algorithms and architectures evaluated.

Test Version Proc. / GPGPU GHz Power Cores Threads
Memory 

Bandwith
SC1 Serial Intel Atom 330 1.6 8W 2 4 5 GB/s
SC2 CUDA NVIDIA 9400M 1.1 10W 16 1536 5 GB/s
SC3 CUDA NVIDIA 320M 0.97 14W 48 4608 10 GB/s
SC4 CUDA NVIDIA 8800GT 1.67 >50W 112 10752 53 GB/s

For the serial version, we have implemented the original algorithm based on the 
algorithm 3.1. CUDA version is implemented based on the algorithm 3.1 replacing 
Update function by the algorithm 3.3, and Normalise function by the algorithm 3.4. We 
have  tested  many  B sizes,  best  results  for  CUDA have been  achieved with  B=8. 
CUDA occupancy ratio  is  67%.  This  is  the implementation of  NVIDIA hardware 
used for low power consumption.

We  have  used  a  synthetic  graph  generated  test  set  based  on  the  scalability 
experiments  from  [24].  The  test  set  is  composed  by  random  graphs  with  a 
connectivity percentage between 10% and 50%. Each graph has cardinality from 16 
to 1024 vertices. Given a randomly generated graph, the other graph to be compared 
to is obtained from it, the original is copied and modified by randomly changing the  
order of nodes, removing and adding edges, changing node values, and removing or 
adding some nodes.
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Figure 6.15: Run time of the 4 scalability tests respect to the number of vertices and speed-up of 
the parallel solutions (SC2, SC3, SC4) respect to the serial solution (SC1). Both plots vertical axis 

are in logarithmic scale.

Figure  6.15 shows  the  mean  run  time  and  speedup  of  the  four  scalability 
experiments SC1, SC2, SC3 and SC4 given different cardinalities of the graphs. We 
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have computed up to R=1024 nodes for all experiments but SC1. We have estimated 
that  the  execution  of  SC1  for  R=1024  will  take  about  42  days  of  intensive 
computation.  The speedup obtained for  these benchmarks is  366 times faster  for 
R=512. SC2 and SC3 presents a slowdown, when they compute small graphs, serial 
version is faster than parallel. SC4 has a speedup but it is not as good as expected for 
small  R sizes.  We observe that  optimal speedups are achieved from  R=64 nodes, 
below this size,  results are far from maximum performance. SC2 and SC3 have a 
very close power consumption, as a result SC3 has better performance per watt. SC3 
deteriorates the speedup with 1024 nodes because machine's operating system has a 
5  seconds limitation for  the parallel  kernel  execution time.  On this  test  we have 
reconfigured kernels to work with smaller sets of data.

We have evaluated the performance of small graph multiple matching algorithm. 
We have implemented the corresponding serial  version of  the algorithm and the 
corresponding OpenMP and CUDA version of the algorithm. We have tested three 
versions  over  two  machines.  Serial  and  OpenMP  are  executed  on  the  general 
purpose Intel processor, CUDA version is executed in the same machine but on the 
GPGPU processor.  Table  6.2 shows detailed characteristics  for each test  given an 
architecture and algorithm. Generic processors are multi-core, but serial algorithms 
are only capable of use one core and one thread. 

Table 6.2. List of algorithms and architectures evaluated.

Test Version Computer Proc. / GPGPU GHz Power Cores Threads
Memory 

Bandwith
PF1 Serial ViewSonic VT132 Intel Atom 330 1.6 8W 2 4 5 GB/s
PF2 OpenMP ViewSonic VT132 Intel Atom 330 1.6 8W 2 4 5 GB/s
PF3 CUDA ViewSonic VT132 NVIDIA 9400M 1.1 10W 16 1536 5 GB/s
PF4 Serial NOX Intel i7 950 3.0 130W 4 8 21 GB/s
PF5 OpenMP NOX Intel i7 950 3.0 130W 4 8 21 GB/s
PF6 CUDA NOX NVIDIA GT 430 1.4 49W 96 3072 21 GB/s

For the serial version we have implemented the original algorithm based on the 
algorithm  3.1 (shown at page  53). OpenMP and CUDA versions are implemented 
based on the serial version, but replacing Update function and Normalise function by 
its  parrallelised  versions  using  transformations  previously  presented.  OpenMP 
version is only parallelised at block level, B constant is assigned to B=1. Loops of size 
B (d,  l,  f,  v and  s)  are automatically  removed by  the  compiler.  CUDA version  B 
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constant is kept to B=8. We have adapted executions at PF6 to emulate an NVIDIA 
with a CUDA compute capability 1.X (the corresponding architecture for low power 
consumption NVIDIA GPGPU).

We have used two databases in which nodes are defined over a two-dimensional 
domain  that  represents  its  plane  position  (x,y).  Edges  have binary  attribute  that 
represents the existence of a line between two terminal points. The first dataset is a 
subset of high noise level of the Letter dataset created the University of Bern [105]. 
This data set is composed of 15 classes and 150 graphs per class representing the 
Roman alphabet i.e. A, E, F, ..., X, Y, and Z. The second dataset, called GREC dataset,  
created at the Universitat Autònoma de Barcelona  [105], is composed of 22 classes 
and  50  graphs  per  class  representing  symbols  from  architectural  and  electronic 
drawings.  We have selected 3 random sets  of  elements  from GREC dataset  with 
more than 150 elements each plus a random set from LETTER dataset of more than 
150 elements. Each set has random elements from all classes with a [8 ... 8], [13 ... 16] 
and [18 ... 24] nodes for GREC and [7 ... 8] nodes for LETTER. We have matched one 
graph against N  [5, 10, 15, 25, 50, 75, 100, 125, 150] random different elements for∈  
each set.

Figurs 6.16 shows the execution time and speedup respectively for the mean time 
of each databases, machine and number of graphs. This results show that OpenMP 
tests (PF2 and PF5) scaled around the number of cores. CUDA tests (PF3 and PF6) 
have  a  good  performance  even  for  small  R values.  PF3  execution  has  better 
performance that PF5, PF3 has better performance per watt.  We also can see that 
with  an  N (number  of  graphs)  around  15  we  can  extract  almost  the  maximum 
performance. On PF6 we can observe that  N=5, 10 and 15 have the same execution 
time. This is given because the number of available cores is higher than the number  
of  threads,  and,  as  a  consequence,  there  are  not  enough  parallelism  to  use  all 
available resources. If we take execution times, the accumulative speedup from serial 
PF1 to CUDA PF6 for a large N is about x250. New results give a better performance 
with small R if we compare enough graphs. PF3 is able to compare 150 graphs of R 
close to 16 in 2.57 seconds and measured execution time from PF6 takes just 0.65 
seconds.
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Figure 6.16: Run time and speedup of the small graph multiple matching algorithm given an 
architecture, a dataset and the number of graphs.

In  [15] we study the parallelisation of  the graduated assignment  graph common 
labelling  algorithm.  We  apply  the  same  methodology  and  notation  used  in  the 
works.  In  this  work,  we  study  the  behaviour  of  a  low power  computer  and  its 
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scalability  by  using low power  GPGPU.  In  addition to  the  previously  presented 
methodology we also apply loop splitting in order to increase locality. We test the 
algorithm with two graph databases. Architecture used is the ViewSonic computer 
defined in table 3.6 (and table 6.2).

We  have  used  the  same  two  databases  presented  in  the  graph  matching 
algorightm. The first  dataset  is  a  subset  of  high noise level  of  the Letter  dataset  
created the University of Bern [105]. The second dataset is the GREC dataset, created 
at the Universitat Autònoma de Barcelona [105]. 

We have selected 5 classes of each dataset to compare execution speed. For each 
class we have randomly selected a number of graphs for N  [5, 10, 15, 25, 50, 75,∈  
100, 150] for Letter dataset,  and  N   [5,  10,  15,  25,  50]  for GREC dataset.  Letter∈  
dataset classes selected are {1, 6, 8, 12, 13} each one with a mean number of nodes of 
{5.3, 5.3, 5.3, 5.4, 4.4}. GREC dataset classes selected are {5, 8, 14, 15, 21} each one with 
a mean of {19.4, 8.6, 12.7, 20.7, 17.14}. 
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Figure 6.17: Letter run time of Serial and Parallel and speedup respect to the number of graphs 
for each selected class. Vertical axis are in log. scale.
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Figure 6.18: GREC run time of Serial and Parallel and speedup respect to the number of graphs 
for each selected class. Vertical axis are in log. scale.

Figure 6.17 shows the mean run time for each one of the five Letter dataset classes 
for serial and parallel algorithm experiments for a given different number of the 
graphs. Figure 6.18 shows the mean run time for each one of the five GREC dataset 
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classes for serial and parallel algorithm experiments for a given different number of 
the graphs. The obtained distance is not shown since the sequential and parallel 
algorithm obtains exactly the same result. It can be observed a clear improvement on 
the run time when the parallel algorithm is used.
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Chapter 7. Community Results Based On 
This Thesis

The objective of any thesis, beyond to contribute with something new to its science, 
is to become useful knowledge to create further contributions. In this section, we are 
proud  to  present  some  works  performed  by  the  community  which  used  our 
contributions as part of its basis. We analyse publications of the community, whose 
works points to our publications and use them as a basis.

Cuvillo et al. present at  [106] a port of the OpenMP to IBM Cyclops 64. The IBM 
Cyclops 64 is the next generation of the IBM Cyclops. Unfortunately our OpenMP 
port was built on privative software and there was also some major changes between 
architectures. As a consequence they can not reuse our compiler neither our run-
time.  After  our  success  with  the  performance  of  OpenMP  they  also  decide  to 
research in optimisations in order to reduce OpenMP overheads. They performed 
optimisations  with  either  hardware  or  software.  The main proposals  to  optimise 
were the use of scratch-pads, spin-locks and barriers. Scratch-pads solution emulates 
our  hardware  solution,  we  have  placed  stacks  close  to  its  physical  threads  to 
speedup memory accesses. Instead of creating special regions in the cache to map 
stacks close, they use scratch-pads (core private memory) to have a fast access. Spin-
locks and barriers solves one of the problems that we have spotted: the increasing 
number of threads increases the memory accesses due to synchronizations primitives 
implemented  over  memory.  They  create  specific  hardware  to  make  such 
synchronizations and consequently they avoid using memory for such mechanisms. 
As a result, they claim that all of three optimisations reduce in a 80% the overhead in 
OpenMP constructs 
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Meenderinck  et  al.  at  [107] use  CellSim  simulator  to  present  a  video  decoder 
designed for a heterogeneous processor. They design a set of specialised assembler 
instructions in order to speedup video decoding algorithm. Their target is to modify 
or implement new SPEs. They take advantage of the GPL license of the CellSim and 
modifies the SPE module for two tasks: 1) to improve an algorithm profiling and 2) 
to implement and test their new instructions.

There is a work from Giorgi et al. [108] which uses our simulator infrastructure to 
validate their thesis. They expand the simulator in order to implement a multi-core 
scheduled  data-flow  processor.  They  perform  the  modification  by  adding  three 
components:  one  distributed  scheduling  element  to  the  CellSim  PPE,  a  local 
scheduling element to the CellSim MFC, and a frame memory to the CellSim LS. The 
simulator  allowed  them  to  test  their  theory  even  without  a  great  effort  of 
implementation.

Azevedo  and  Juurlink  presented  at  [109] a  modification  for  the  Cell  B.E. 
architecture  to  implement  software  cache.  The  idea  of  the  software  cache  is  to 
emulate a shared-memory environment  even if  there is  no shared-memory.  They 
propose to implement a new instruction to make viable software cache. In order to 
demonstrate  their  theory,  they  modify  the  CellSim  simulator.  Their  experiments 
execute against the Cell B.E. with only software support, and against the CellSim, 
with the experimental modification. 

Ramirez  et  al.  at  [110] present  TaskSim,  a  new kind  of  simulator  for  multi-core 
processors.  When we were developing the CellSim simulator  we realised that  as 
more  components  and  more  detail  we  added,  more  time  consuming  was  the 
simulation.  This  problem is  common to  all  multi-core  simulators:  there  is  not  a 
simulation of one processor, but many processors and its interconnection networks. 

The modular heterogeneous simulator presented on this thesis was designed to 
work with modules, but with memory-accesses as the only interface. As we have 
said previously, we do not made any assumption about processors of its behaviour, 
and  almost  any  kind  of  implementation  was  compatible.  Our  processor 
implementations were functional processors, and also detailed pipelined processors. 
But we were not limited. For example, the operating system emulation was not a  
functional processor neither a detailed pipeline processor. 
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TaskSim reduces the simulation to traces of accesses and synchronisations. The 
underlying  idea  is  to  acquire  traces  from  working  programs,  post-process  these 
traces  to  create  tasks,  memory  accesses,  synchronizations  and  dependences  and 
assign each task to a possible simulator module. Each module uses task information 
to emulate memory accesses pattern, including waits for processing. Not all TaskSim 
modules  are processors,  it  also implements  buses,  interconnection networks,  and 
memories. In their presented work they use the k-bus as the main interconnection 
network. TaskSim does not use UNISIM due to its overhead.

TaskSim  has  been  demonstrated  that  to  work  on  memory  accesses  and  base 
synchronisations on traces, it can create an excellent tool to do architecture design 
space exploration within a reasonable simulation time. 

Task  directive  introduced  in  the  streaming  programming  model  was  almost 
simultaneously  proposed  to  the  OpenMP  [111] standard.  This  directive  was 
effectively introduced in the OpenMP 3.0. Both teams, the one designing tasks for 
shared-memory and us designing streaming tasks,  have been working closer and 
even sharing the same staff directors. Although its similarities we have two different 
starting  points:  they  have  basically  renamed some  already  existing  semantics  of 
OpenMP and we have  started  from scratch  in  front  of  a  whiteboard.  The main 
difference between both task models is that OpenMP 3.0 tasks are based on run-time. 
Their execution model corresponds to one lifetime task. We, in contrast, define tasks 
as kernels kept alive from invocation to invocation. OpenMP tasks are dynamically 
created, as a consequence, each invocation needs to be scheduled and suffers for a 
great overhead. On the other hand, our tasks are designed to be statically created, 
and reused every time that it is required, which creates a more efficient behaviour. In 
addition, we decided to stablish the same directive name, because we believed that 
this difference in the model is only semantic and any compiler is free to choose the 
best implementation (as we have exposed at [12]).

We have found up to 5 publications following the steps of our stream programming 
model. Most of them adopt, or even completed, our model and suggest the required 
modification  to  the  OpenMP  standard  to  support  stream  programming  or 
heterogeneous  processors.  As  an  interesting  fact,  they  also  base  most  of  their 
benchmarks and proofs on the serial FMradio application contributed by this thesis.
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The first proposal is performed by Pop and Pop at  [112].  This publication is a 
proposal to the OpenMP organisation to slightly modify the OpenMP standard in 
order to create a streaming dependence between tasks that we have presented in our 
programming model. They plan to extend semantics for firstprivate and lastprivate 
clauses  in  order  to  enable  stream creation.  Presented solution in  Pops  propossal 
semantics are exactly the same OpenMP like stream programming model presented 
by us at  [8]. They use the same semantics, graph description, execution time lines 
and examples. The only difference is to use firstprivate keyword instead of input 
keyword, and lastprivate keyword instead of output keyword. In our thesis we also 
claim  that  we  have  built  our  stream  programming  model  intentionally  close  to 
OpenMP.  Pop  brothers  suggested  just  a  modification  of  three  lines  inside  the 
OpenMP standard will support our programming model.

The  same  team  that  have  proposed  OpenMP  3.0  tasks  has  also  made  two 
proposals for stream-like task dependence  [113] and heterogeneous support  [114]. 
Both  publications  try  to  approximate  OpenMP 3.0  capabilities  to  the  capabilities 
pursued in our programming model, but they try a different approach using CellSS 
[115] as an underlying model. In the first work, they extend task directive with input 
and  output  clauses,  but  instead  of  defining  dependences  through  variables  and 
symbols, it defines dependences through memory addresses. This model is indeed 
more flexible, but as an important drawback, it forces to compute all dependences 
into the run-time, with the consequently execution time overhead. The second work 
proposes to annotate function declarations with architecture dependent information. 
Their objective is to substitute tasks invocation on the same processor, by invocations 
on specific processors or cores. This work is a work-around for the limitation of the 
OpenMP to require shared-memory. With its definition, which is the opposite of our 
proposals of requires and share clauses, they specify some functions which can be 
executed on non-shared memory hardware with specific requirements. But it also 
forces  to  the programmer to create enough versions of  the same function for  all 
possible target processors. 

A  team  from  INRIA  have  published  also  an  extension  of  the  OpenMP 
programming model [116] and a runtime library [117] for streaming. In many ways 
presented work is one more attempt to standardise our programming model with 
some improvements. Their programming model is implemented in a specific branch 
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7. Community results based on this thesis 165

of the GCC. Their suggested changes to the OpenMP only affects to the execution 
model  (to  follow  our  proposed  task  model,  as  Pops  have  done  at  [112])  but  in 
addition they added a special semantic for variable ports description. Their addition 
is the possibility to use a special variable as a direct access to stream. Its specification 
is  a  mix  between  our  peek  directive  and  target  port  modifier.  While  our  peek 
directive was designed to co-exists with serial programs, their extension breaks the 
compatibility with serial code (the program can not be longer compiled as a serial 
program  by  ignoring  directives)  and  as  a  consequence  they  break  the 
consumer/production ratios protection. We also want to remark that they use the 
same applications,  our FMradio  and restricted access  Nokia  WiFi  application,  to 
verify its expressiveness and results.
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Chapter 8. Conclusions

Since the beginning of this thesis,  desktop computers had become heterogeneous 
and extremely parallel. This new scenario opens an opportunity for computer vision 
algorithms.  Many  of  the  new  complex  architectures  are  focused  on  giving 
performance ratios tens or even hundreds of times better. The only gap to fill is what 
we have focused: the ability of the mainstream programmer to take advantage of 
existing architectures. We are proud to say that many computer vision algorithms 
are now able to run almost in real-time on desktop architectures.

This thesis was started with the intuition that multi-core would become common 
on desktop architectures. Consequently algorithms and programs must be rewritten 
in order to take advantage of new hardware. Our initial intuition has gone around 
the productivity concept, in this case, complexity of the design versus performance. 
Under this premise we had two opposite tendencies: on the one hand chip-makers 
fighting against  chip  complexity,  and on the other  hand algorithm programmers 
fighting  against  programs  complexity.  For  a  long  time,  commercial  chip-makers 
focused  on  the  acceleration  of  serial  programming,  but,  when  this  strategy  cost 
becomes so expensive, they started to demand parallelism from programmers. 

Our target applications have been graph-matching algorithms. These algorithms 
present  many  opportunities  inside  computer  vision  due  to  representation. 
Unfortunately  its  computation  cost  was  too  expensive  to  be  used  on  real 
applications. In this thesis, we have effectively reduced the computation execution 
time of these algorithms, and not only on desktop computers, but also on low power 
consumption systems. As a consequence we have achieved our main objective that 
was to make these algorithms available to field applications.
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168 Conclusions

One of our main objectives is to keep a high degree of usability on multi-core 
architectures. We have focused on annotated programming model, mainly OpenMP 
adaptations, due to its simplicity and capacity to maintain code readable. Before this 
thesis, annotated programming models were limited to supercomputing. We have 
demonstrated that annotated programming models can be effectively used on multi-
core processors, distributed-memory architectures and current desktop computers. 
We also have presented directives and a model able to transform a serial program 
into a streaming program. 

Nowadays multi-core processors are present on most of our desktop computers 
and  also  annotated  programming  models.  GCC  has  implemented  support  for 
OpenMP (gcc -fopenmp), and even market performance benchmarks use OpenMP 
applications  for  analyse  new processors  behaviours  [118].  In  this  case,  Phoronix 
reviews the Intel Core i7 990X Extreme Edition, its conclusions is better not to buy it 
if you cannot exploit all present cores (literally: “so if you're workload can't efficiently  
take advantage  of  six or more threads,  you'd be better off  with a Core i5  2500K”).  This 
example shows the necessity to give access to parallelism for programmers.

One of  the keys  that  we have considered to  increase the usability  is  to  create 
hardware in conjunction of programming models. We have developed a simulator in 
order  to  prove  that  small  modifications  on  hardware  architecture  can  help  to 
programmers. Our objective was to show how to increase programmers capacity to 
obtain performance. The main cornerstone proposed is the capacity to have a global 
linearly  addressable  memory  (in  other  words:  global  pointers),  even  if  we  have 
latency penalisation. Our best contribution was the memory-access protocol to inter-
connect all simulator modules. We have not demonstrated our initial objective, but 
the market has sown it to us: architectures like NVIDIA Tesla  [49] or the Cell B.E. 
history [87] has shown that our intuition was correct. NVIDIA uses global memory 
pointers from its accelerators, and at the same time, it allows to make incremental 
modifications to take advantage of local memory. On the other hand, Cell B.E. has 
limited the access to main memory.

We have applied all acquired knowledge to adapt matching graph algorithms to 
current  desktop  computers.  Current  architectures  shown a  mix  of  characteristics 
from  multi-processors  (with  multi-cores),  heterogeneity  (with  GPGPUs  with 
different  characteristics),  and  even  distributed-memory.  All  previous  work  were 
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8. Conclusions 169

confirmed. Based on our experience we have seen that an annotated programming 
model and a methodology based on mathematical transformations effectively helps 
to adapt algorithms. It is possible to exploit private memory of each GPGPU core to  
speedup executions. We have effectively increased the usability, and at the same time 
the capacity to extract performance, for programmers.

Section 8.1. Future Work

In this thesis we have focused on the usability of incoming architectures and they 
applicability  over  graph-matching  algorithms.  We  have  focused  on  OpenMP 
programming  model  due  to  its  flexibility  and  performance.  We  have  seen  that 
OpenMP is  suitable  for  multi-core,  even  on  massive  multi-core  architectures.  In 
addition, we also have seen that OpenMP semantics can be extended in order to 
expand its applicability to other architectures. 

Our last  work,  and community  results,  have been spotted some core research 
which should have priority. They are nested parallelism techniques, loop tiling and 
loop reorder transformations, memory pre-fetching and input and output directives. 

Nested parallelism have effectively improved performance. Separation of coarse-
grain  parallelism,  where  is  a  low  coupled  communication,  from  fine-grain 
parallelism  (highly  coupled  communication)  has  proven  to  be  effective.  Even 
commercial programming models like CUDA have adapted this double parallelism 
model. We need to do further investigation on this kind of parallelism, it has been 
demonstrated  to  be  very  powerful,  but  we  do  not  know  if  there  are  many 
applications  which  can  accept  them.  One  of  our  challenges  is  to  find  how  to 
implement the Sinkhorn method [37] but using two levels of parallelism, in the same 
fashion that NPB-MZ are implemented.

We also have seen some extensions to the OpenMP. Input and output clauses have 
effectively converted serial programs into streaming programs. We have presented a 
full programming model, with many features, but we have still some problems to 
solve.  The main problem is  how to create many configurations of  the same task 
inside a loop for (we believe that for_distribute clause can help), but also we should 
design a header definition or/and binary format in order to use and connect tasks 
embedded in libraries. On the other hand, in our last stages, we have considered 
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some  extensions  to  the  OpenMP to  help  to  develop  CUDA programs.  We  have 
started to use the Mercurium to implement some parts.  We have seen that these 
directives  helped  to  implement  the  CUDA versions  of  the  programs,  but  also 
reduced the number of bugs introduced on the manual construction. We believe that 
a finished programming model can save a lot of time and headaches. 

Introduced OpenMP like directives on our CUDA algorithms have been based in 
two  concepts  and  memory  management.  Two  concepts  are  map  operation  and 
reduction  operation.  Both  operations  are  applied  over  loop  constructions  and 
basically provides information to the compiler about data dependences in the loop: if 
there is not data dependence, parallelism can be applied. The other directive is fetch, 
this directive reports to the compiler which variables would be accessed, and which 
ranges. We want to explore how to simplify the annotation of this information and 
how the memory directive can be converted into pre-fetching operations, and even 
stream operations between tasks, whether applicable. We also have seen that it is 
possible  to  modify  automatically  the  dimensions  of  the  local  fetched variable  in 
order to enhance data locality and coalescence. We have to study and detect under 
which circumstances it is possible to automatise and release the programmer from 
this responsibility. 

Some of our algorithms transformations have used two specific techniques: loop 
tiling and loop reorder. There are many loop techniques applied automatically on 
mainstream compilers, even loop tiling. Loop tiling is usually applied automatically 
by parallelism directives: there are usually less processors than iterations, so each 
processor has a loop that executes a sub-range of iterations. This technique and loop 
reorder technique have been proven to be very efficient, and almost indispensable. 
We want  to  study how to  mix previous directives  with these  transformations  in 
order to let to the compiler make the transformation achieving a double objective: 
first  to  release  the  programmer  from  the  manual  transformation  and  bug 
introduction  and  second  to  preserve  original  algorithm  structure  and 
comprehension.

There is still a large path to follow and directives have been proved to be very 
useful.  We  expect  that  by  studying  better  annotations  and  progressing  in  their 
applicability we will be able to transform better existing algorithms. 
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