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Abstract

Long, uninterrupted, and homogeneous climate data sets essential for

climatological research, applications and user services make up large data sets that

are not usually readily accesible. In this dissertation POSTIMPACT is presented,

a Shiny web application that allows users to interact and visualize in various forms

with climatological data from the IMPACTRON and POST-AWS networks in an

ubiquitous, straightforward and flexible way, fostering collaboration within

researchers and stakeholders in general. The application has been successfully

tested performing the analysis of some statistics, specifically the behaviour of the

mean ∆tx in the Ebro Observatory where 8 segments were found to form three

groups according to the characteristics of their biases, and were the magnitude of

the mean differences of these groups varies along the year with Winter and

Autumn months showing the minimal mean differences. Additionally, the analysis

of the mean of ∆tx and the mean of ∆tn for the whole IMPACTRON data set

showed a bias characterized by a slight negative sign for ∆tn, due, in essence, to

the negative sign of the spring and summer mean differences.
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1 | Introduction

This document constitutes the dissertation thesis for the Degree in Geography and

Territorial Management taught by the University Rovira i Virgili. In this

introductory chapter the objectives, the context, IMPACTRON and POST-AWS

networks, and value of the application, are presented.

1.1 Objectives

The following objectives are proposed:

1. To develop an application that allows the interactive visualization in a web

client of the database of IMPACTRON and POST-AWS datasets.

2. To analyze the biases found between MAN and AWS stations in the

IMPACTRON and POST-AWS datasets studies using this app.

1.2 Context

Climatological research, applications, and user services depend, in many cases, on

the availability of long, uninterrupted, and homogeneous climate data sets of

meteorological/climatological data (e.g., air temperature, precipitation, humidity,

atmospheric motion, atmospheric pressure, evaporation, sunshine, and present

weather) (WMO, 2011).

Climatic data have been being collected worldwide since the second half of the

19th century (or even before in a limited numbers of locations) by National

Meteorological and Hydrological Services (NMHSs) as well as other institutions

1



1.2. Context 2

(e.g., in Spain, Hydrographical Confederations or in Andorra Electrical

Companies). However, the availability of centennial series, especially at the daily

resolution and in digital format, is restricted, except for some regions mainly

located in the northern hemisphere, to a period beginning at the last third of the

20th century (when most weather information began to being collected by NMS’s

or other institutions) being, thus, spatially and temporally limited (Brunet and

Jones, 2011; WMO, 2011).

Homogeneous climate data sets have been defined succinctly as climate time

series where variations are caused only by variations in weather and climate(Aguilar

et al., 2003; Venema, 2012) and are free of other influences. However, most, if not all,

long term climate data sets have been affected by many non-climatic factors, such

as changes in the location or the environment of weather stations, changes of the

instrumentation, of averaging methods, among many others, that have introduced

discontinuities, or inhomogeneities, that can lead to erroneous interpretations of the

studied climate and its fluctuations (Li-Juan and Zhong-Wei, 2012; Ribeiro et al.,

2016; Venema, 2012).

The frequency of such inhomogeneities varies, but a study of homogenization of

instrumental western climate records point to frequency around one homogeneity

break every 20 years. The same study indicates a bias in temperature trends of half

degree Celsius in the period between the 1870s to the 1980s a bias similar to the

long-term global climate trends (Auer et al., 2007).

Also, interruptions in climatic data sets are frequent and in many cases prevent

(or should prevent) researchers to use them. Whereas Western European and North

American countries are not exempt of such data gaps (Staudt et al., 2007), the

problem worsens in regions such as South America, Africa, Eastern Europe and parts

of Oceania and Asia. Interruptions may include a whole region for long periods of

time, or specific sub-regions during short to medium periods of time. At the Expert

Team on Climate Change Detection and Indices (ETCCDI) Regional Workshop

held in Guayaquil (Ecuador) in January 2011, a selection of data for more than 200

TX, TN, and RR daily data was subject to analysis and participants found that

many time-series contained large data gaps or missing values that compromised its
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suitability for many types of climatological research (Skansi et al., 2013). In most

of Eastern Europe and Western Asia big data gaps appeared when an important

number of stations stopped working in the 1990’s after the dissolution of the USSR

(Hu et al., 2014; Syrakova and Stefanova, 2009).

One source of inhomogeneities that is increasingly affecting climatic data sets is

the transition from Manual (MAN) to Automatic Weather Stations (AWS). WMO

(2008) report indicates how the ratio of AWS to conventional weather stations

increases persistently as the capabilities of the former increases and their operation

costs represent significant savings compared with those of the observer-staffed

weather stations. However, it must be mentioned that the deployment of AWSs

requires strict and costly maintenance costs, including calibration, to keep the

system in good functioning. This kind of transition will be further discussed later

on this chapter.

1.2.1 Transitions

Weather stations and in general climate monitoring networks are inevitably subject

to gradual or abrupt changes through time. As previously stated, these changes are

originated by numerous non climatic events and can lead to inhomogeneities. Jones

et al. (1986) group the most important causes of inhomogeneities in a climatological

data set in four classes:

• Changes in station environment

• Changes in station location

• Changes in observation times and calculation methods

• Changes in exposure, measurement techniques and instruments

The type of instruments, their exposure and the techniques used to measure the

collected data for most of the weather stations and of course national programs have

been subjected to numerous changes through time that affect the homogeneity of

its series. In the case of air temperatures several examples can illustrate this kind

of changes.
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The fact that the air is a poor conductor of heat have made the issue of the

exposure and its changes through time one of the main concern of researchers. The

necessity to protect the measurement instrument from direct or indirect radiation

with the use of a screen, which in turn creates the problem of a micro climate

developing within the screen due to the lack of ventilation, have lead to a plethora

of screen designs in the last two centuries.

In the 19th century, instruments were typically placed on building walls facing

north and protected from direct sun radiation with a metal screen. When it was

realized that the temperature of the building affected the temperature of the screen,

various types of screen were introduced and installed away from buildings (Venema,

2012). Among these open-air screens one can mention the introduction of, among

many others, the so called French or Montsouri shelter or the Glaisher (also known

as Greenwich) stand, both provided with a roof and vertical panels but fully open

at the front and the bottom.

Later, the Stevenson screen was introduced, with its many variants such as the

‘Cotton Region Shelter’ in the United States. The newly introduced screen was

the fruit of the design of the Scottish engineer Thomas Stevenson, who, in 1886,

introduced the double louvred approach and the front an bottom closures in his

design. Although the Stevenson screens coexisted with many other models, they

soon became the de facto standard in many countries (Burt, 2014). In Spain, the

change from the aforementioned two models of screens to the Stevenson screen was

carried out, for most of the stations of the network at the time, in the mid-1910’s

(Brunet et al., 2011).

The transitions between different screen systems clearly have the effect of

introducing non climatic discontinuities in climatic series. Parker (1994) reported

that in several comparisons between Montsouri and Stevenson screens carried out

in several European locations during the 19th and 20th centuries warm biases were

found. More recently Brunet et al. (2011) made an attempt to adjust the bias with

respect to modern readings in a comparison study between Montsouri and

Stevenson screens for Spanish stations where about 6 years of daily paired

temperature observations for daily maximum (Tx) and minimum (Tn) temperature
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data recorded at two experimental sites were analyzed. The study found a strong

warm bias in Tx data of about 1 oC at annual scale with clear higher seasonal

values in summer.

1.2.2 Transitions from Manual (MAN) to Automatic

Weather Stations (AWS)

Very often changes from manned to automated systems take place in a whole

network and to evaluate the biases they introduce widely used approaches has

been to compare nearby stations, conduct a series of side by side measurements

and/or perform instruments intercomparisons. These approaches have also

produce valuable datasets, suitable for the study of the shape and size of the

potential inhomogeneities that would affect a climate time series experiencing

changes equal or similar to those studied.

But before detailing these approaches a few concepts relating to AWS are

presented next.

1.2.3 The Automatic Weather Stations (AWS)

Since the introduction of the first sealed liquid-in-glass thermometer around 1641

(Middleton, 1969), many developments and improvements have been made

including the recent adoption of the electrical resistance temperature sensor used

in Automatic Weather Stations (AWS). This kind of sensor (in the case of

temperature readings) is only one of many components of the AWS which is

defined by WMO (1992) as a meteorological station at which observations are

made and transmitted automatically. Thus, in AWS many components must work

together not only to record observations automatically but also to transmit them

automatically. The WMO (2011) groups these components into two large

subsystems: the AWS software and the AWS hardware.

The AWS software is a costly component, especially when ill designed code

that is no flexible enough to easily cope with changes, is used. It have two main

components: the application software, build upon algorithms used to process the
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data in accordance to the user needs (usually includes functions for conversion of

sensor output to meteorological data, manual entry of observations, quality

control, transmission and display, among others) and, the system software which

manage the processor and the application programs and is usually put into the

Central Process Unit (CPU) as a firmware, being accessible only to the

manufacturer (although this is changing as users are increasingly developing their

own software).

As for the AWS hardware, it is grouped into three main components:

1. A set of sensors: their requirements are not very different from those of

sensors at MAN stations and in general any sensor with electrical output

(analogue, digital or "intelligent") is suitable. For temperature, pure metal

resistance thermometers are the most common types, being the platinum

resistance thermometer (100 at 0C) the preferred for its good long-term

stability.

2. A CPU: although in a majority of cases it consists of one microprocessor

based system installed near the sensors, depending on different requirements

and circumstances the CPU functions may be executed by different units. Its

main functions are are data acquisition, data processing, data storage and data

transmission.

3. Peripheral equipment: These are basically the power supply (designed to

provide high stability and interference-free operation),the real-time clock

(powered by a battery for functioning even during power outages), the

built-in test equipment (monitoring automatically vital components) and,

the local display and terminals (allowing observations to be entered or edited

manually)

As Gilabert (2016) points out, the introduction of AWS has been accompanied

with a large increase in the spatial and temporal resolution of the observations and

in the real-time data availability but not without introducing systematic biases

that compromise homogeneity and reduce robustness and reliability of temperature

series. The differences between MAN and AWS systems or among different AWS
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types could be associated with several factors (some of them not directly related to

automation itself) as the technological differences among automatic sensors, screen

changes, station relocation, or different response-time related to different

atmospheric conditions.

1.2.4 Parallel measurements

A common approach used to evaluate changes that take place in the whole network,

as is the case with the introduction of AWS, has been to perform a series of parallel

measurements and/or conduct instruments inter comparisons, procedures that as a

by side product leave valuable data sets.

In the parallel approach the objective is to set the new configuration maintaining

as much as possible the old set-up, documenting the elements that have changed,

and keeping the operations of the old set-up for an overlap period (Baddour and

Kontongomde, 2007).

As this approach will require maintaining two set-ups at each site undergoing

the change, its associated costs are high. Nevertheless references to comparisons are

found as early as 1864 and it is identified as a good practice by the WMO (Aguilar

et al., 2003).

Alternatively, paired observations can be selected as an approach when parallel

observations are not feasible or possible. This approach consists in reproducing, as

much as possible, the old set-up and take paired observations using a new set-up

for a period of time, ideally covering the full range of climatic seasons(Baddour and

Kontongomde, 2007).



1.3. The IMPACTRON and POST-AWS projects 8

1.3 The IMPACTRON and POST-AWS projects

In Spain, the State Meteorological Agency (AEMET), currently has more than 850

automatic weather stations throughout Spain and the Meteorological Service of

Catalonia, currently has 187 automatic stations (METEOCAT, 2017).

IMPACTRON and POST-AWS are projects that aim to better understand the

inhomogeneities caused by the transition from MAN to AWS weather stations by

compiling a database with parallel measurements and analysing it.

1.3.1 IMPACTRON

The Assesment of the Impact Over Air Temperature Series of the Transition

Between Observation System (IMPACTRON hereafter) was a scientific network

which lasted between 2015 and 2017 and funded by the Spanish Ministry of

Economics and Competitiveness (MINECO), which involved the Spanish State

Metereological Agengy (AEMET) , the Meteorologic Service of Catalonia, the

University of Zaragoza, the Cantabria Univerity, the Ebro Observatory, and the

Rovira i Virgili University (Aguilar, 2015).

Its main objective was to document and analyze the effects over the air

temperature series of the most relevant transitions of observing systems in the

Spanish observational network. To accomplish this, firstly an identification and

analyzes of relevant parallel measurements was done, followed by "a comprehensive

description of the effect of each transition over the statistical distribution of air

temperatures" and an evaluation of "its impact over the climate series at different

resolutions".

The IMPACTRON network allows to reduce the effects of transitions over the

Spanish Network temperature series making improvements for its use in climatic

analyzes, contributing thus to improve the description of the climatic change and

variability. It does so by offering an objective assessment of the bias introduced by

transitions in climatic series, enabling the inclusion of such biases in benchmarking

processes, providing a complementary approach to purely statistical

homogenization, making possible more adjusted climatic analyzes, and by
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contributing with indications to the meteorological instrument manufacturers and

the managers of the observational networks about the impact of the changes

introduced.

1.3.2 POST-AWS-temp

The Parallel Observations Science Team (POST) is an independent project that

aims to compile a global database with parallel measurements, in order to better

understand inhomogeneities that distort the climate signal and make the assessment

of trends and variability more difficult. As the specific transitions depends on local

climate, answers to questions about the systematic large-scale biases produced by

transitions need a large global parallel dataset. POST have several ongoing studies:

• POST-AWS-temp. Studying the influence of automation on temperature.

• POST-AWS-precip. Studying the influence of automation on precipitation.

• POST-early. Versing about the temperature change due to the transition of early

screens to Stevenson screens.

• POST-move. On the influence of relocation on temperature.

POST-AWS-temp has gathered up until now data from from 10 countries:

Argentina (9 pairs), Australia (13), Brazil (4), Israel (5), Kyrgyzstan (1), Peru

(31), Slovenia (3), Spain (46), Sweden (8), USA (6). POST-AWS-temp, and in

general POST, expect to gather enough data to asses station settings impact and

also understand whether different climates produce different biases or not.
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1.4 App value

Static graphical representation can pose serious limitations as the amount of data to

be represented grows in number and complexity. It presents the caveat of predefined

graphics that often do not satisfy the needs of users, or do not allow them to choose

specific data to be represented. On the other hand, dynamic ways of representing

big data sets allow users to select and interact, at different levels, with such data in

more efficient and enriching ways.

One common way to provide dynamic representations has been the building of

applications that provide online portals, but this approach usually requires complex

data interactions and a combination of, at least, a development of HTML, CSS, or

Java tools (Ellis and Merdian, 2015). More recently, Shiny, a technology created by

RStudio that only requires knowledge in the R programming language, permits the

move from static to dynamic graphic representation in a relatively straightforward

way.

While Shiny has been mostly used in the fields of statistics, biology, and even

phsicology, to process, analyze and graphically convey data or to create

educational tools (Bahar et al., 2017; Doi et al., 2016; Ellis and Merdian, 2015), it

uses also extend to the field of Geography and Environmental Sciences, with

applications made for geo-spatial analyzes of patient data (Moraga, 2017),

mapping of species (Feng et al., 2017) or building population pyramids for

educational purposes(Zaragozí et al., 2016) to cite some examples.

In Climatology studies, one can find some examples of web applications tools,

some of them developed with Shiny, as is the case of WebXTREME, an online tool for

the evaluation of indices of climatic extremes (Klein et al., 2017), or the Terrestrial

Precipitation Analysis (TPA) a set of web tools packages that allows researchers to

calculate precipitation statistics (Lemoine et al., 2016).

In this work we present the POSTIMPACT App, an interactive web application.

Implemented using the Shiny framework, POSTIMPACT has the ability to let users

easily create various types of plots to represent the data available from the project

without the need of running any command in R, making it suitable for the use of
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people without any programming skills.

This facilitates the assessment of such data and make it available globally on

any web browser where users can navigate through data creating interactive

visualizations. Additionally, the various libraries available to enhance the plots

represent a significant added value, as is the case of the plotly library, that allows

users to interact with the graphics in various ways, facilitating visual analyses.

This and other libraries used will be further discussed in the Data and

Methodology chapter.



2 | Data and Methodology

2.1 Shiny

POSTIMPACT was built using Shiny (Chang et al., 2017), an elegant, simple and

powerful extension to the R programming Language designed to create interactive

applications oriented to the analysis and visualization of data. One of the main

advantages of Shiny is that in order to build applications there is no need of any

knowledge of HTML, CCS, or JavaScript (although enhancements can be done, if

desired, through the use of those languages). Another great advantage is that Shiny

can make use of all the powerful functions of R.

Shiny applications can be executed locally and can be hosted either locally or

in an external server. To host and run locally, the user have to install the Shiny

package in the R environment. Installing the Shiny package is also the way to

develop any Shiny application. To execute an application from a server the user just

need a web browser. Besides the Shiny package itself, numerous other packages add

functionalities to Shiny, and are either specifically designed to be used with it or are

packages that add general enhancements to R.

Any Shiny application must have at least two components: the file ui.R and the

file server.R. These two files must be contained in the same directory along with

other documents that may be necessary for the application to work, such as data

sets or images. The file ui.R contains the instructions that define the user interface

of the application, and therefore controls its design and its appearance. The file

server.R contains the instructions that the computer needs to build the application,

that is, the instructions that will make the necessary calculations and graphs.

The user interface (ui.R) explores the different data processing options encoded

12
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in the controller (server.R).To build the user interface, Shiny offers a wide range

of widgets or control elements (such as buttons, lists, sliders, radio buttons, check

boxes, text, file up loaders, action buttons, dates and select boxes, among others),

which automatically give the desired appearance and are required for the handling

and visualization of the data. POSTIMPACT makes use of just one of such widgets:

select box (figure 2.1) which opens a drop-down list with several options where only

one can be selected.. It also provides different layouts, so tabs and navigation

menus can be implemented and the output window can be adjusted to the desired

appearance specifying, with the use of output functions, the location of each of the

output element (e.g. tables, graphs).

Fig. 2.1. Select box widget with generic appearance

The outputs can be anything R alone could output, like tables, plots or plain

text. However, many packages extend the range of possible outputs available. Some

of them make JavaScript implementations work in R, allowing users to interact with

the outputs (e.g. selecting a point in a plot) or create maps. POSTIMPACT makes

use of two of such libraries: plotly, and leaflet.

The plotly package connects R to the open source JavaScript graphing library

allowing with just one line of code the composing, editing, and sharing of interactive

data plots. Plotly’s R library is free and open-source.

Leaflet is a very popular open-source JavaScript library for interactive maps

(Cheng et al., 2018). The R Leaflet package makes it easy to integrate and control

Leaflet maps in R. Such maps have powerful features as:

1. Controls and interactions: overview, zoom slider, zoom in / out buttons, scale

bar, map shift, zoom and rotation, selection of entities.

2. Definition of styles and personalization: styles of entities: points, lines,
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polygons and icons, customizable appearance of the controls using CSS3.

3. Events : great flexibility to create pop up descriptions and markers

4. Overlays: linking of listener functions to attend events on the map

Leaflet basemap in POSTIMPACT uses a slightly modified Mapbox (a large

provider of custom online maps) NorthStar tiles style.

The file server.R works in a similar way to the input. Within each output

functions (related to a corresponding output function in ui.R), the server code defines

the outputs to be displayed and, through the previous inputs, executes the code

and displays in the application window the pertinent output corresponding to these

inputs.

The exchange of data between the ui.R and the server.R files is done

automatically, so when any value of the menu is modified (update input) the part

of the code that deals with it is rerun and the new output is showed; this is what is

referred to as "reactive programming" (Wan and Hudak, 2000) a feature that

allows programmers to build, trough the use of reactive functions, an interface that

responds immediately to any change that the user makes. This implies that any

part of the code which needs to rerun due to interaction, will have to be within a

reactive object.

The functions to be used are decided according to the type of output that is

wanted and they have to be adapted to the definitions of inputs and outputs in the

ui.R. Normally the renders (table ta1)are used, without the need to create a reactive

concrete variable, since, being reactive functions, they allow to update the outputs

directly. However, in some cases a reactive variable is declared and then used within

the render function.
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FUNCTION DESCRIPTION

renderPlot generates a plot

renderPlotly generates a plotly plot

renderPrint prints output and/or return a printable R object

renderUI returns a dynamically generated object

renderDataTable returns a data frame or a matrix

renderLeaflet returns a leaflet map object

Table 2.1: Resume of render functions used

2.2 Database and statistics description

For the POSTIMPACT, data gathered for the IMPACTRON project is used. The

data is divided in three .txt files: AWSstations.txt, statistics.txt and,

analysis_txtn_qc_segmented.txt. All of them have rows for observations and

variables for columns. The first row of each file contains the name of the variables

and the data is separated by blank spaces (one or more spaces, tabulators, ...), and

the decimal separator is a point.

The AWSstations.txt file contains the station identifiers, the latitude and

longitude (table 2.2) of 51 Spanish stations that under the IMPACTRON project

have made parallel measures between AWS an MAN stations (Figures 2.2 and 2.3).

Figure 2.4 shows a World map displaying the location of the AWS in 10 countries

for which data data is available for the POST-AWS project.

The statistics.txt file have the daily data of each station for several statistics

along with data for the year, month, day, segment and, season. Table 2.3 resume

the statistics contained in this file.

Finally, the analysis_txtn_qc_segmented.txt have the data of various statistics

grouped by station, season and segment. Table 2.4 shows the statistics contained in

this file.
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STATION LAT LON STATION LAT LON

SP81810A 41.28 2.07 SP81840B 41.68 2.80

SP80530A 42.57 -6.60 SP81840C 42.32 2.10

SP81480A 41.77 2.48 SP81840D 42.38 3.00

SP81810F 41.84 2.81 SP80110A 43.57 -6.03

SP81410A 41.63 -4.75 SP80020A 43.30 -8.37

SP82100A 40.65 -4.67 SP81810B 41.70 2.20

SP82130A 40.94 -4.12 SP827200 39.89 -4.03

SP81300A 41.52 -5.73 SP826100 39.47 -6.33

SP82020A 40.95 -5.50 SP81840B 42.26 2.37

SP82320A 40.84 -1.87 SP838300 37.27 -6.90

SP81810C 42.32 2.17 SP841900 37.18 -3.78

SP81810D 42.11 2.21 SP848700 36.84 -2.35

SP81810E 41.93 2.25 SP84330B 37.77 -0.80

SP83480A 38.99 -3.92 SP828000 39.00 -1.85

SP84100A 37.84 -4.84 SP823500 40.35 -1.12

SP83910A 37.42 -5.87 SP828400 39.48 -0.47

SP84510A 36.75 -6.05 SP828600 39.95 -0.07

SP84330A 37.78 -0.80 SP808000 42.87 -2.73

SP84300A 37.98 -1.12 SP808500 42.77 -1.65

SP83590A 38.37 -0.48 SP81710B 41.63 0.90

SP82310A 40.07 -2.13 SP81760B 40.96 0.32

SP80840A 42.45 -2.33 SP81760C 41.25 0.73

SP81710A 42.35 1.43 SP60010A 28.63 -17.75

SP81710B 41.35 0.67 SP60015A 28.47 -16.32

SP81750A 41.15 1.17 SP60001A 27.82 -17.89

SP81710C 41.69 1.20

Table 2.2: Spanish AWS of the IMPACTRON project
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Fig. 2.2. Stations in mainland Spain.

Fig. 2.3. Stations in Canary Islands (Spain).
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Fig. 2.4. IMPACTRON and POST-AWS stations network.

NAME CONTENT NAME CONTENT

tx maximum temperature qcdtn quality control

qctx quality control tm mean temperature

(∆tx) difference in Tx (∆tm) difference in Tm

qcdtx quality control pc precipitatioN

tn minimum temperature qcpc quality control

qctn quality control (∆rn) difference in Rn

(∆tn) difference in Tn qcder quality control

rn

Table 2.3: Resume of statistics in statistics.txt file
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NAME CONTENT

bias corresponding bias

rmse Root Mean Sq. Error

p10 percentile 10

p25 percentile 25

median corresponding median

p75 percentile 75

p90 percentile 90

IQR Interquartile range

Table 2.4: Selected statistics in analysis_txtn_qc_segmented.txt file



3 | Results

3.1 POSTIMPACT

POSTIMPACT allows users to visualize data from each individual station of the

IMPACTRON and POST-AWS projects through scatter plots and box plots,

presents a box plot graphic for the mean of all stations seasonally, shows the data

of all the statistics of every station and, displays a map where users can locate all

of the stations and select any of them to visualize a basic box plot of it. All of

these features can be seen simply by clicking on four tabs and selecting items from

various drop-down lists. Furthermore, the application allows user interactions such

as map padding and zooming, table filtering, and plots download, among many

others.

The application consists of seven tabs:

(1) a "Scatter plots" tab (figure 3.1) where user can select from a drop-down list

named "Choose a station to display" a particular station and also can select from an

other drop-down list named "Choose a variable to display" the statistic to be shown

in the form of a scatter plot. Once these two arguments are chosen, an scatter plot

is drawn. The x axis of the graph represents the data through time, from the first

measure taken to the last, while the y axis represent the value of the statistic for

each each single measure taken.

The plot also shows a black dotted line across the zero value of the y axis and

several red dotted lines (its number depending of the number of segments of the

selected station) across the mean of each each segment. Each of the data values

represented by a point can be either a quality control accepted, suspicious or very

suspicious value (blue, orange and red dots respectively).

20
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Below the scatter plot a statistical summary of each of the segments gives

information about the minimal value, the first quarter value, the median, the

mean, the third quarter and the maximum value.

Fig. 3.1. Scatter plots tab

(2) a Box plots tab (figure 3.2) that presents the user with box plots of the

selected station data. As in the previous tab, the selection is made by means of

drop-down list, in this case labelled "Choose a station to display", "Show by" and

"Choose a variable to display". Here the "Show by" drop-down list presents three

choices: month, season or segment. Each one of them allows the selected station

data to be grouped accordingly. Worth mentioning is that for the box plots in this

tab, only (∆tx), (∆tm), (∆tn) and (∆rn) as these statistics are at the key tools of

the analyses.

Also as in the previous tab a black dotted line across the zero value of the y

axis is present. Thanks to the plotly library, there are some added functionalities

in the plots. When the cursor is rolled over the presented graphics, a menu (figure

3.3)appears at the top right corner. Within this menu the user can click on different

icons to: download plot as png ; zoom; pan; zoom in; zoom out; auto scale; reset

axes; and toggle spike lines. Additionally, the minimal value, the first quarter value,

the median, the mean, the third quarter and the maximum value are show for each
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Fig. 3.2. Box plots tab

box when the cursor is placed over it.

Fig. 3.3. Plotly menu

(3) an IMPACTRON tab (figure 3.5) representing the data not by station this

time but by statistic for the whole set of stations. The resulting box plot has similar

functionalities to the box plots of the previous tab.

(4) a POST-AWS tab (figure 3.5) representing the data of the POST-AWS by

country and by the mean of the following variables: (∆tx), (∆tn), (∆tm) and (∆tr).

The resulting box plot has similar functionalities to the box plots of the previous

tab.

(5) a Summaries tab (figure 3.6).Presents a table that displays the information of

biases for each segment of the selected station. The user can filter the information by

performing a search in any of the columns or in the entire table. It is also possible to

sort the rows into ascending or descending order of the values of any of the columns.

(6) a Map tab (figure 3.7). This tab shows a modified version of the Mapbox

North Star style zoomed to the area of study and made with Leaflet. At the initial

view, 6 clusters of stations can be seen: five over the Iberic Peninsula and one over
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Fig. 3.4. IMPACTRON tab

the Canary Islands. At the right bottom a collapsible mini map displays the relative

position and at the top left three buttons allow to zoom in or zoom out. Next to

these buttons there is a floating panel labelled "Station explorer" with a drop-down

list widget labelled "Choose a variable to display" and below a box plot of the

variable selected for the active station.

The user can click on any of the station clusters, seen as coloured circles with a

number, or zoom in, and as the map change its scale, each individual station appears

in the form of purple dots. If these purple dots are clicked, a pop up message with

the code of the station emerge and, in the floating window, the box plot actualizes

showing the data for the new station.

(7) an Info tab containing information about the application use (figure 3.8).
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Fig. 3.5. All stations tab. Selected options correspond to the default options

Fig. 3.6. Summaries tab

3.2 Selected statistics analyses

To illustrate the use of the POSTIMPACT an analysis of station SP82380A is

presented followed by an analysis of the median differences in the maximum

temperature (∆tx) for the whole of the stations of the IMPACTRON network.
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Fig. 3.7. Map tab. Default view

Fig. 3.8. Info tab.

3.2.1 Analysis of station SP82380A: Ebro Observatory

The Ebro Observatory, represented as station SP82380A in POSTIMPACT, is

located near the Spanish town of Roquetes (approx. 8.000 inhabitants), at latitude

40.82 N and longitude 0.49 W, on a hilltop surrounded mainly by Mediterranean
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vegetation and have a continuous climate record since 1880 (from 1905 onward at

the same site) (Gilabert, 2016). Figure 3.9 show its location and a preview of its

corresponding box plots for the differences in daily maximum temperature (∆tx)

series between AWS and MAN in the Station explorer floating window.

Fig. 3.9. Map tab. Ebro Observatory location

In the IMPACTRON data set The Ebro Observatory has 8 segments and 7,085

valid observations, that is, observations that have passed a quality control (QC). The

time span of the overlapped observations included in the data goes from 07-01-1991

to 04-14-2015, that is roughly 24 years. According to Gilabert (2016) during this

period, AEMET installed three different AWS: SEAC, SOSS and ESOS AWSs, and

after statistical break points detection and visual inspection 8 validated break points

that could be partially explained by the known changes in the AWS instrumentation

were detected: 2 for SEAC, 3 for SOSS, and 3 for ESOS AWS’s.

Figure 3.10 correspond to the plot presented by the Scatter plot tab for Ebro

Observatory∆tx. The horizontal red dotted lines indicate the AWS-MAN∆tx mean

for each segment. Dots represent observations that have undoubtedly passed QC

(blue dots), or with some degree of doubt (yellow and red dots).

This plot presents a first visual approach to the magnitude and direction of the

biases as it shows how, of the eight segments, five present a negative mean ∆tx and
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Fig. 3.10. Ebro Observatory scatter graphic ∆tx plot

SEGMENT Min 1st Qu Median Mean 3rd Qu Max

1 -1.60 -0.80 -0.60 -0.61 -0.40 1.20

2 -2.30 -1.40 -1.10 -1.13 -0.90 0.10

3 -2.70 -0.90 -0.60 -0.62 -0.40 1.00

4 -1.00 0.10 0.20 0.22 0.40 0.80

5 -0.70 0.10 0.30 0.28 0.50 1.30

6 -1.90 0.20 0.30 0.31 0.50 1.20

7 -1.30 -0.40 -0.30 -0.24 -0.10 0.90

8 -0.80 -0.20 -0.10 -0.04 0.00 24.60

Table 3.1: Summary for ∆tx (oC) in Ebro Observatory.

the other three a positive mean ∆tx.

The summaries for each of the segments (presented in table 3.1) give more detail

of the biases. It can be observed that segments can be grouped according to size

and sign of their ∆tx’s mean. For segments 1, 2 and 3, the mean is negative and

always bigger than 0.6. Segments 4, 5 and 6 have a mean difference of positive sign

that goes from 0.22 oC (segment 4) to 0.28 oC (segment 6). Finally, segments 7 and

8 have negative differences but in a smaller magnitude (-0.24 oC for segment 7 and

-0.04 oC for segment 8).

Figure 3.11 shows the Box plot tab for Ebro Observatory, with the "Segment"

option in the drop down list "Order by" selected and the cursor hovering over the

segment 1 which triggers the apparition of the same information of table 3.1), this
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time only for the selected segment. All in all, this box plot allow users to see in

a graphical way the behaviour of ∆tx. Worth noting is that in the box plot the

distribution of the differences can be appreciated. In the case of segment 2, for

example, is evident that the number of differences falling between the 1st quarter

and the mean is greater than those falling between the mean and the 3rd quarter.

Fig. 3.11. Ebro Observatory ∆tx segments box plot

The seasonal box plots, also in the Box plot tab (figure 3.12), show that

differences varies along the year (DJF winter, MAM spring, JJA summer and SON

autumn). For segments 1,2 and 3, the negative AWS bias is larger in magnitude

for Summer months (June-August) and the largest difference in mean temperature

occurs in segment 3 (-1,30 oC). Winter and Autumn months show the minimal

mean differences. Segments 4, 5 and 6 all exhibit a positive AWS bias is positive in

a lower magnitude than for the aforementioned segments. Winter months show the

larger AWS bias. The last two segments (7 and 8), present a much more smaller

difference in ∆tx and a much less clear yearly variation.
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Fig. 3.12. Ebro Observatory ∆tx Seasonal box plots

3.2.2 Analysis of the median ∆tx and ∆tn (IMPACTRON

tab).

In this case the bias of individual stations are summarized with box plots. Figures

3.13 and 3.14 show the box plots for the differences in the median ∆tx and in the

median ∆tn respectively. The plots are for annual (anu), winter (DJF), spring

(MAM), summer (JJA) and autumn (SON) periods.

For the differences in the median ∆tx the plots for all periods show in average no

biases in the data set, although it seems to be quite a lot of outliers in the positive

side. As for the differences in the median ∆tn, the box plot for the annual data

has a slight negative sign as a consequence of the negative sign of the spring and

summer plots and the neutrality of the autumn and winter plots.
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Fig. 3.13. IMPACRON median ∆tx box plot

Fig. 3.14. IMPACTRON median ∆tn box plot



4 | Discussion

POSTIMPACT 1 provides a solution to visualize and interact with IMPACTRON

and POST-AWS data sets and does not require any knowledge of R nor any special

software installation. It shows how dynamic visualizations tools remain a very useful

alternative to display and communicate big and complex data sets, such as the ones

used in climatological studies, in an ubiquitous, straightforward and flexible way,

fostering collaboration within researchers and stakeholders in general.

The implementation of the app with R and Shiny was justified by the increasing

usage of the first for statistical data analysis and the powerful, elegant and easy to

implement web visualization programming environment the later have.

The application has been successfully tested performing the analysis of some

statistics. Specifically the behaviour of the mean ∆tx in the Ebro Observatory was

carried out and differences of varied sign and magnitude were observed. Succinctly

it can be said that according to the mean of ∆tx, the segments can be classified in

three groups according to the characteristics of the biases, and that the magnitude of

the mean differences of these groups varies along the year with Winter and Autumn

months showing the minimal mean differences.

Additionally the mean of ∆tx and the mean of ∆tn for the whole IMPACTRON

data set were analyzed and a bias characterized by a slight negative sign for ∆tn

was observed, due, in essence, to the negative sign of the spring and summer mean

differences.

Therefore, it can be said that the objectives set in chapter one have been

achieved: An application for the interactive visualization in a web client of the

1available at https://bishopf.shinyapps.io/Impactron/

31
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database of IMPACTRON and POST-AWS datasets have successfully developed

and, using this app, analyzes of the biases between MAN and AWS stations in the

IMPACTRON and POST-AWS data sets were performed.

Furthermore, during the process of preparing this work, various transversal

competences have been acquired or further developed by the author, such as:

critical, logical and creative thinking, and an ability to innovate; autonomy,

responsibility and initiative; and, an advanced knowledge of information and

communication technologies, specifically of a fundamental programming language

for climatological research.

POSTIMPACT can be extended and improved in future versions increasing its

flexibility and enabling more options. Not pretending to be exhaustive, several

enhancements for future versions are suggested: A more fluid progression from one

tab to another, specially from the map tab to others; a more sophisticated table

tab with more statistics to show and the possibility of downloading data; a dates

selection options; options to select countries in the POST-AWS tab, and an

interactive help and guidance tab.
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