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Investigation group

I  have carried  out  my investigation  project  in  the  SEES Lab investigation  group

(  Science  and Engineering  of  Emerging  Systems )  in  the  Chemical  Engineering

Department, Rovira and Virgili University. Is a research group that is specialized in:

● Complex Systems,  where individual  components interact  with each other,

usually in non-linear ways, giving rise to complex networks of interactions that

are  neither  totally  regular  nor  totally  random.  Partly  because  of  the

interactions  themselves  and  partly  because  of  the  interaction's  topology,

complex  systems  cannot  be  properly  understood  by  just  analyzing  their

constituent parts. Cells, ecosystems and economies are examples of complex

systems.

● Data Science,  Humans generate information at an unprecedented pace so

processing this data requires new tools and new approaches at the interface

of statistics, statistical  and machine learning, network theory and statistical

physics.

● Multidisciplinarity,  the goal is to push forward the boundaries of science.

They  are  interested  in  addressing  fundamental  questions  in  all  areas  of

science including natural,  social  and economic sciences.  Putting a special

emphasis  in  the  development of  tools  that  aid  scientific  discovery through

understanding and quantification of a specific phenomenon. To this end the

group  has  assembled  a  multidisciplinary  team and  have  established  solid

collaborations  with  experts  in  biology,  social  sciences,  ecology  and

economics.

1



Summary and keywords

The proliferation of cancerous tissues is directly related with the cell cycle speed and

its duration. Control the cytological and physical-chemical factors that are involved in

the phase change over the cell cycle and the cell division processes is necessary for

the development of effective therapies for rapidly proliferating tumors.

Even though the regulation of the cell cycle has been a subject of extensive study for

a long time, there are no still assessments of whether we can predict when a cell is

going to divide or not. So, in this project, we have developed a statistical model that

will allow us to predict when a cell is going to change its cell cycle phase, specifically,

when the transition between the G1 phase and the S phase is going to happen.

The experiments carried out have generated some promising models that have quite

good results on our dataset and also have shown the most promising factors in the

prediction  of  this  phase changing,  such as the  cumulative cytoplasmic area,  the

instantaneous tension and traction forces and the cumulative energies (calculated as

the product between the cell area and the forces).

Keywords

● DNA ( deoxyribonucleic acid ): polynucleotide formed from covalently linked

deoxyribonucleotide  units.  It  serves  as  the  store  of  hereditary  information

within a cell and the carrier of this information from generation to generation.

● S phase: period of a eukaryotic cell cycle in which DNA is synthesized.

● M phase: period of the eukaryotic cell  cycle during which the nucleus and

cytoplasm divides.

● G phase: describes a cellular state outside of the replicative cell cycle.

● Mitosis:  the  division  of  the  nucleus  of  a  eukaryotic  cell,  involving

condensation of  the DNA into visible  chromosomes,  and separation of  the

duplicated chromosomes to  form two identical  sets.  (From Greek  mitos, a

thread,  referring  to  the  threadlike  appearance  of  the  condensed

chromosomes.).

● Cytokinesis: division of the cytoplasm of a plant or animal cell into two, as
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distinct from the division of its nucleus (which is mitosis).

● Overfitting:  the production of an analysis which corresponds too closely or

exactly to a particular set of data, and may therefore fail to fit additional data

or predict future observations reliably. [Source: 

 https://en.oxforddictionaries.com/definition/overfitting]

● Selection bias: error in choosing the individuals or groups to take part in a

study. Ideally, the subjects in a study should be very similar to one another

and to the larger population from which they are drawn. If there are important

differences,  the  results  of  the  study  may  not  be  valid.  [Source:

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/selection-

bias?redirect=true]

● Logistic function: or logistic curve is a common "S" shape (sigmoid curve),

with equation: f (x)=
L

1+e−k (x−x0)

● Sigmoid function: mathematical function having a characteristic "S"-shaped

curve or sigmoid curve.

● Logit function: or the log-odds is the logarithm of the odds 
p

1−p
 where p is

the probability. It is a type of function that creates a map of probability values

from [ 0 , 1 ] to [ − ∞ , + ∞ ]. It is the inverse of the sigmoid "logistic" function.
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1. Introduction

The cell cycle speed and duration is a very important factor in the proliferation of

cancerous tissues.  In  order  to  develop effective therapies for  rapidly proliferating

tumors, it is necessary to control the physical-chemical and cytological factors that

control these processes of phase changing over the cell cycle and cell division.

The regulation of the cell cycle has been a subject of extensive study for a long time.

Intracellular  pathways and  soluble  chemical  factors  have been  hard  analyzed  to

understand  how they  influence the  cell  cycle  for  decades (Saxton and  Sabatini,

2017; Yu et al., 2015; Lloyd, 2013). Early work, over the study of a single isolated

cell, established that the shape and adhesion are potent regulators of DNA synthesis

and cell growth (Folkman and Moscona, 1978, Watt  et al., 1988). However, it still

remains unclear how the cell size (Chen et al., 1997), the cell nucleus size (Roca-

Cusachs et al., 2008), the growing rates (Son et al., 2012), the cytoskeletal tension

(Huang et al., 1998) or the cell-ECM traction directly regulate the duration of the cell

cycle.

Although these premises, it has been believed for a long time that cell division is

regulated  by  the  physical  forces  between  cells  and  between  the  cell  and  the

extracellular matrix (Mih  et al., 2012; Aragona  et al., 2013; Streichan  et al., 2014;

LeGoff and Lecuit, 2015; Benham-Pyle et al., 2015; Pinheiro et al., 2017; Gudipaty

et al. 2017; Lancaster,  et al. 2013; Vianay  et al. 2018). However, the evolution of

these forces during the cell cycle in a tissue had never been measured, so it was

unclear whether physical forces have an effect on  the cell cycle progression.

Recently in a collaboration between the laboratory of Dr. X. Trepat (IBEC, Barcelona)

and the Sees Lab - Rovira and Virgili University (Dr. Guimerà and Dr. Sales-Pardo),

they made, for the first time, detailed measurements of the geometry of the cell and

the forces that act on the cells belonging to a tissue during the cell cycle. These

measurements  have  revealed  mechanical-temporal  patterns  that  regulate  the

duration of the cycle:  the cells that undergo a greater tension are more likely to

transit between the G1 and S phases and, in general, have a shorter cell cycle (G1

and S-G2-M phases).
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At the moment, there is a model that explains the duration of the G1 phase with the

accumulation of mechanical energy via mechanical stress (Uroz, M. et al. 2018) but

there are no still  assessments of whether we can predict when a cell is going to

divide or not. So, this is the main objective of this project, to develop a statistical

model that will allow us to predict when a cell is going to change its cell cycle phase,

specifically, we want to predict when the transition between the G1 phase and the S

phase is going to happen. To do that I  use the magnitudes measured during the

experiments in the paper from Uroz, M.  et al.,  such as the cell  area, the tension

forces and much more.

1.1. Cell Cycle

Cell  reproduction  begins  with  duplication  of  the  cell's  contents,  followed  by

distribution  of  those  contents  into  two  daughter  cells.  Chromosome  duplication

occurs during the S phase of the cell cycle, whereas most other cell components are

duplicated continuously  throughout  the cycle.  During the M phase,  the replicated

chromosomes are segregated into individual nuclei (mitosis), and the cell then splits

in two (cytokinesis). S phase and M phase are usually separated by gap phases

called  G1  and  G2,  where  cell-cycle  progression  can  be  regulated  by  various

intracellular and extracellular signals. Cell-cycle organization and control have been

highly conserved during evolution, and studies in a wide range of systems - including

yeasts, frog embryos, and mammalian cells in culture - have led to a unified view of

eukaryotic cell-cycle control (Alberts et al., 2002). 

1.2. G1/S transition

The transition from G1 phase, in which the cell grows, and the S phase, during which

DNA is replicated, is a stage in the cell cycle at the boundary between these two

phases.  During  this  transition  the  cell  makes  decisions,  based  on  its  state,

environmental cues and molecular signaling inputs, to become quiescent (enter G0),

differentiate, make DNA repairs or proliferate. An accurate G1/S transition is crucial

for  the  control  of  eukaryotic  cell  proliferation,  and  its  misregulation  promotes

oncogenesis, so it is governed by cell cycle checkpoints to ensure the integrity of this
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cycle. The subsequent S phase can also pause in response to improperly or partially

replicated DNA (Bartek and Lukas, 2001; Bertoli et al., 2013),

2. Project hypotheses and objectives

Recent results in the literature show that intracellular tension and the cumulative

mechanical energy are better predictors of the duration of the G1 phase than any

other geometric property of the cell, such as the cell area or the growth rate of the

cell area (Uroz, M. et al. 2018). 

 However,  these  studies  have  not  attempted  to  make  instantaneous  predictions

about whether a cell is going to divide or not in the near future taking into account its

current  physical/geometrical  state/properties.  In  this  project,  I  will  work under  the

assumption that it is possible to accurately determine from physical properties when

a cell will enter into cell division and the duration of the cycle.

The objective of the project is precisely to develop computational and mathematical

models  the  use/take  into  account  the  measurements  of  geometric  and  physical

properties of a cell to predict:

● the moment in which said cell enters cell division, when cell changes from the

G1 phase to the S phase.

● the duration of the cell cycle.
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3. Materials and Methods

The objective of the project is to develop a model that is able to predict when a cell

enters cell division using some of the measured magnitudes of the given data, from

now on I will refer to these magnitudes and combinations as features. To generate

this model I had to do a preliminary exploration of the data, generate new features

and get those features that are more significant for using them as an input for the

model. 

3.1. Data

The data I use in this project has been provided by Xavier Trepat’s lab (Uroz, M. et

al. 2018). This study reported for the first time measurements of the cell geometry

and the forces that act on the cells in a tissue during the cell cycle. In addition to

measuring the shape of all the cells, they also quantified cell–cell tension and cell–

ECM (extracellular  matrix)  traction  throughout  the  complete  cycle  of  a  large cell

population in a growing epithelium. The process was done as follows:

As  a  model  system  for  epithelial  growth,  they  used  the  expansion  of  a

micropatterned colony of MDCK cells. They placed a polydimeth-ylsiloxane

(PDMS) membrane with  a  300-μ m-wide rectangular  opening on top  of  a

collagen-I-coated polyacrylamide gel  (11 kPain stiffness) 26,27. To monitor

the cell cycle during growth of the colony, they seeded MDCK-Fucci cells on

the pattern  and allowed them to  adhere  and form a  confluent  monolayer.

MDCK-Fucci cells express Ctd1-red fluorescent protein (RFP) during G1 and

S phases and geminin-green fluorescent protein (GFP) during the S–G2–M

phases, which allowed them to monitor the state of each cell in the cycle and

capture all the data.

The dataset consists of a set of 40 cells for which we have the following information

over the entire cell cycle: 

● cell size measured in μm2 

● cell nucleus size measured in μm2

● cell-cell tension measured in Pa 
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● cell-ECM traction measured in Pa

From this initial data, I have generated some other features that we thought that will

be  useful  during  the  analysis  phase  (see  Figure  1).  Some  of  them  have  been

significant in existing results and the others come from that physical attributes that I

think that can be affected during the evolution of the cell cycle:

● cell cytoplasmic size, which results in the difference between the cell size and

the cell nucleus size.

● the mechanical energy that results of the product between the cell size and

the cell-cell tension (μJ ), it will be called Energy from here onwards.

● the mechanical energy that results of the product between the cell size and

the cell-ECM traction (μJ ), it will be called Energy 2 from here onwards.

The “Roll” Energies are calculated in the same way as the normal Energy but for

each value I use a rolling window with the 5 last values.

Figure 1. Representation over the time of all the calculated features of 10 of the cells
in the dataset. There is a moment from which the features get a 0 value, this is
because, from that timestamp, there are no further measures. Energy corresponds
to the product between the cell size and the cell-cell tension. Energy 2 corresponds
to  the  product  between  the  cell  size  and  the  cell-ECM traction.  (full  dataset  in
Appendix A Figure 18)
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3.1.1. Building the dataset

The first step was to build the dataset with which I had to work. The provided data is

divided in 5 different csv format files. In the first file, the “divisions.txt” file, there is the

information about the initial frame from which the measurements start, the frame in

which happens the cell cycle transition from the G1 phase to the S phase and the

frame in which the cell division happens (see an example in Figure 2).

Figure  2. Representation of the data in the "divisions.txt" file of the 10 first cells.
From  each  cell  there  is  the  information  about  the  initial  frame  from  which
measurements are done, the G1 to S cell cycle phase change frame and the cell
division frame.

The  other  4  files  contain  the  information  about  the  measures  taken  of  the  4

measured features ( cell area, cell nucleus area and tension and traction forces ) in

each time stamp. Each row of each file corresponds to all the measures taken of a

single feature from a single cell (see an example in Figure 3).

Figure  3.  Content  example  of  the  "CArea.txt"  file,  in  this  table  each  column
corresponds to a different cell, showing a total of 5 cells, and each row represents
each time stamp in which the cell area measure was taken, showing a total amount
of 6 time stamps.
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Once the data is loaded, I organize them into two different data frames (the Y and X

variables). The Y variable has the information about if the cell is going to transite

from the G1 phase to the S phase in the next 5 time stamps (True/False value) for

each time stamp and cell (see an example in Figure 4). On the other hand, the X

variable contains all the measured features values in each timestamp for all the cells,

the feature values readen from the input files and the artificial generated features

values, such as the cytoplasmic area, the energy values and the cumulative values

(see an example in Figure 5).

Figure  4.  Y  variable  content  example,  in  each  row  it  is
indicated the cell to which the data refers, the time stamp that
we are considering and if in the next 5 time stamps the cell is
going to change from the G1 to S cell cycle phase (here I am
only showing the first 5 time stamps of the first cell).

5. Figure. X variable content example, in each row it is indicated the cell to which the
data refers, the time stamp that we are considering and the values of all features
with which I will work (because of the huge amount of data, here I am only showing
the first 5 time stamps of the first cell and some of all the features).
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3.2. Cross-Validation

Cross-validation is an evaluation technique used to assess how the results obtained

for the dataset being analyzed will generalize to an independent dataset. It is often

used in predictive tasks, in which the goal is to estimate how the predictive model will

perform in practice (e.g. out-of-sample predictions).

In  a  prediction  problem,  cross-validation  works  as  follows.  Suppose  we  have  a

dataset D:={(yi,  xi)} where y is typically the dependent variable we want to predict

and xi is the vector of independent variables/features we want to use for prediction.

Our goal is thus to develop a model/algorithm that predicts y from x. To assess the

predictive  power  of  a  predictive  model,  we  split  the  dataset  into  two  parts:  the

training set and the test set. Then, first, we fit our model using the training set and,

after that, we evaluate the trained model using the test set. Once the evaluation is

done, we use the prediction results (ypred) and the dependent variable real values (y)

of the test set to evaluate the model performance.

There  are  two  main  types  of  cross-validation  for  the  classification  accuracy

estimation (Joanneum, 2005-2006):

● K-fold Cross-validation: In this case, we generate an initial partition of D into K

equal  size subsets of  a random permutation of the sample set,  which are

called folds.  Then,  we construct  K train-test  combinations.  In  each one of

these, one fold is retained as the validation data for testing the model (test

set) and the remaining K - 1 folds pooled together are used as training data

(training set). Finally, we fit the model to the training set and its accuracy is

evaluated on the test set (this process is repeated K times, once for each

fold ). The resulting accuracy estimation comes from the average of all the

accuracy estimations obtained after each iteration.

● Leave-one-out Cross-Validation: In this case the test set consists of only a

point in the dataset and the remaining data composes the training set. As in

the other case, for each test-train combination,we fit the model to the training

set and we evaluate it with the test set (a single point, in this case). 

Although these techniques are very useful in most of the cases, they are not suitable

for our dataset. This is because our dataset consists of complete time-histories of
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individual cells and therefore points in the trajectory of one cell are correlated with

one another.  As  a result,  for  cross-validation  purposes we need to  consider  the

history of each individual cell as a single sample. We therefore designed a specific

Cross-Validation type for our concrete use case,  what  we called Cell-fold Cross-

Validation. It is quite similar to a  K-fold approach, but in this case each fold is not a

random partition of the dataset, each fold corresponds to each one of the cells, doing

as much iterations as cells are in the dataset.

For each cell-fold, we fit the model and make predictions for each one of the points

in the test trajectory: ( 0, if the model predicts the cell will remain in the G1 phase

during the 5 posterior time points, or 1, if the model predicts that the cell is going to

change to the S phase). 

3.2.1. Evaluation of cross-validation performance in classification tasks

A simple/way to visualize the performance of a model/algorithm in a cross-validation

strategy is to build a confusion matrix (see Figure 6). A confusion matrix compares

predicted classifications (ypred )  with real classifications (y). In this case, there are

only two possible values for y=True (meaning that the cell will enter the S phase

within the next five time steps) and False (meaning that the cell will remain in the

actual cell cycle phase), therefore we can define: 

● True positives (TP): the number of points for which ypred=True and y=True.

(equivalent to hit)

● True negative (TN): when a false sample is predicted as false (equivalent to

correct rejection)

● False positive (FP): when a false sample is predicted as true (equivalent with

false alarm)

● False negative (FN): when a true sample is predicted as false (equivalent

with miss)

12
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3.3. Metrics

Once we had determined the evaluation technique that we were going to use to get

the prediction results, we need to specify the metrics that will help us to understand

these results. From the confusion matrix I get the precision and recall values:

● Precision: It is the proportion of predicted positive values that are a correctly

real positive values.

Precision=
true positive

true positive+ false positive

● Recall: It is  the fraction of positive values that have been retrieved over the

total amount of positive values

Recall=
true positive

true positive+ false negative

From these two values, one can calculate the F1 Score which is a more realistic

measure  of  our  classifier’s  performance,  it  corrects  those  cases  in  which  the

arithmetic mean between the precision and recall can give us a wrong conclusion

(like when the precision has a very high value and the recall is close to 0) (Sasaki,

2007; Chinchor, 1992):

● F1 Score: It is the harmonic mean of precision and recall. 

F1Score=2×
Precision×Recall
Precision+Recall

Note that its maximum value is 1 when Precision=Recall=1 and its lowest

value is equal to 0 when either Precision or Recall are equal to 0.

When the models M we use to make predictions are generative models, that is the

model assigns a probability to each prediction value p( y pred∣M , x), we can estimate

the  plausibility  of  the  overall  predictions  the  model  makes  using  the  held-out

likelihood.

● Held-out likelihood: It is the likelihood (or log-likelihood) of the test set given

the  model  obtained  by  fitting  the  training  set.  If  we  assume  that  each

observation is independent, the  held-out log likelihood can be written as:

ℒ (X )=logL(X )=∑
i=1

X

log p ( y i∣M , X i)

where X  is the test data set, y is the class to which each sample belongs to

and M  is the model (Wallach et al., 2009).  In general, this metric penalizes
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overfitted models which will  give high probabilities for  the training set,  but

generalize  poorly,  so  that  probabilities  for  the  test  set  are  low.  A higher

likelihood value implies a more predictive model. 

3.4. Machine Learning

Classification  is  a  fundamental  issue  in  machine  learning  and  data  mining.  In

classification, the goal of a learning algorithm is to construct a classifier given a set

of training examples with class labels. Typically, an example  x is represented by a

tuple  of  attribute  values  (x1 , x2 ,... , xn),  where  x i is  the  value  of  attribute  i.  Let  Y

represent the classification variable, and let y be the value of Y .

3.4.1. Logistic Regression

In statistics, it is a model that uses a logistic function to model a binary dependent

variable.  It  is  used to describe data and to explain the relationship between one

dependent binary variable and one or more nominal, ordinal, interval or ratio-level

independent variables.

The model dependent variable has two possible values, such as pass/file, win/loss,

or in our case, the phase change happens or not, where these values are labeled “0”

and “1”. The probability of each one of the two values is expressed in terms of a

linear combination of one or more independent variables (“predictors”) which can be

categorical (two classes) or continuous (any real value). 

In logistic regression,  p( y=1∣x)  is modeled via the logistic function - a sigmoid

function that takes any real input and outputs a value between zero and one. The

logistic function g(z ) is defined as follows:

g(z )=
e z

ez+1
=

1
1+e−z

If  we  assume  that  z is  a  linear  combination  of  multiple  explanatory  variables

x1, x2, ... , xn. We can then express z as follows:

z=α0+α 1 x1+α 2 x2+ ...+αn xn=α 0+∑
i=1

n

α i x i

So p( y=1∣x ,θ)   can be written as:
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p( y=1∣x ;θ)=
1

1+e
−(α0+∑

i=1

n

α1 x1)

where  θ are the parameters of the linear model (α 0 , α1 , α2 ,... , α n). 

Note that by consistency, p( y=0∣x;θ)=1−p ( y=1∣x;θ).

To train the model, I compute the error of the predictions with respect to the real

values with Cost function (Maximum log-Likelihood)

J (θ)=
1
m
∑
i=1

m

Cost (hθ(x
(i))− y(i))

A=
−1
m

[∑
i=1

m

y(i) log(hθ(x
(i)))+(1− y(i)) log(1−hθ(x

(i)))]

and  I  adjust  the  initial  θ values  by  applying  the  Gradient  descent  algorithm  to

minimize the cost function value.

θ j=θ j−α
1
m
∑
i=1

m

(hθ(x
(i ))− y(i))x j

(i)

Now, the Logistic regression model is ready to predict new data. Using the new x

values as an input we get the predicted y values.

3.4.2. Random Forest Classifier

Random  Forest  Classifier  (RF)  is  an  ensemble  machine  learning  method  for

classification.

RF operates with decision trees. A decision tree is a representation of a decision

procedure for determining the class ( y) of a given instance (x). Each node of the tree

represents a feature that partitions the space of instances at the node according to

the possible outcomes of the test.  Each subset of the partition corresponds to a

classification subproblem for that subspace of the instance, which is solved by a

subtree. So, each link (branch) represents a decision (rule) that will generate a new

subtree to solve a part of the initial problem and each leaf represents an outcome

(categorical or continuous value) (Utgoff, 1989).

During the training phase,  RF operates by constructing an ensemble of  decision

trees, where each one of them will fit to a subset of the training dataset, this is what

we call a forest. After, when using this model to do a prediction over a sample, the

algorithm works as follows: each one of the decision trees makes a prediction, and
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the forest prediction comes from the all  individual trees prediction mode/average.

The main difference between a normal decision tree, like the ID3 decision tree, and

the ones used in this algorithm is that when considering the features to do the space

partition on each node, it only considers a random subset of all the available features

(from here comes the “Random” of the algorithm name).

This classifier fixes the overfitting problem that appears in decision trees. The RF is

less sensible to little input data changes than the decision tree and has a better

global precision in classification tasks. However, the computational cost in creating

the relational  forest  and using it  is  higher  and explaining the results  obtained is

harder than using a single decision tree.

3.4.3. Gaussian Naive Bayes

Naive Bayes (NB) is the simplest form of Bayesian network, in which we assume that

all  p(x1 ,... , xn∣y )=∏
i=1

n

p (x i∣y ), i.e. attributes are independently affected by the class

value y (Zhang, 2004). 

As a conditional probability model, naive Bayes assigns a probability  p( y∣x1 , ... , xn)

for each of the possible classes to a problem instance. This instance is represented

by a vector x=(x1, ... , xn) representing some n features (independent variables). The

problem with this formulation appears when the number of features n is large or if a

feature can take on a large number values, then basing such a model on probability

tables is infeasible. To solve this issue we reformulate the model to make it more

tractable by using Bayes' theorem, the conditional probability can be decomposed

as:

p( y∣x)=
P( y)P(x∣y)

P(x )
=

P ( y)∏
i=1

n

p (x i∣y )

P(x )
, 

which using Bayesian probability terminology can be written as:

posterior=
prior×likelihood

evidence

As we use Gaussian NB, the likelihood of the features is assumed to be Gaussian:
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p(x i∣y)=
1

√2πσ y
2
exp(

−(x i−μ y)
2

2σ y
2 )

The  naive  Bayes  classifier  combines  this  naive  Bayes  probability  model  with  a

decision rule. We use the MAP (maximum a posteriori) decision rule which consists

in picking the hypothesis that is most probable. The corresponding Bayes classifier is

a function that assigns a class label y= y for some Y  as follows:

y=argmax y p ( y )∏
i=1

n

p (x i∣y )

4. Results and discussion

4.1. Preliminary Analysis

My first step was to represent the time evolution of the different measured quantities

(features) for every cell. As you can see in Figure 1 the values for all the features

from the different cells followed the same trend. 

The cell area and the cell nucleus area increase over time while tension and force

decrease. On the other hand, the traction force seems to remain stable. The other

variables shown in the figure, correspond to features generated from the first ones

(cell and nucleus areas and tension and traction forces). The cytoplasmic area and

the energies calculated using the traction force increase over  the time while  the

energies calculated using the tension force seems to remain stable. 

A remarkable fact is that while the trends are clear, the values in each timestamp

were quite different between the cells; this can become a problem when treating the

data.

My next step was to analyze correlations between variables (Appendix B Figure 19),

since  highly  correlated  variables  are  redundant  for  modeling  and  predictive

purposes.  To  my surprise,  the  cell  area  and  the  cell  nucleus  area  were  not  as

correlated as I would have expected, and the tension and traction forces are weakly

correlated  with  the  other  features,  so  we  can  conclude  that  these  features  are

independent from the other features. The cytoplasmic cell area is strong correlated

to the cell  area but not to the cell  nucleus area, this makes sense because this
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feature comes from the difference between these two features, having the cell area a

much  higher  value  than  the  cell  nucleus  area.  Finally,  the  energies  which  are

calculated using the tension force are more correlated to the cell area than the ones

calculated using the traction force. 

Next, my goal was to identify the proper features number to use in the predictive

analysis.  To that end, I  picked up different sets of  all  the initial  data (sets had a

different  number  of  features,  and  the  sets  with  the  same  size  had  a  different

combination of those features), and I evaluated the performance of three models I

consider (Logistic Regression, Random Forest Classifier and Naive Bayes), using

the cell-fold cross validation method.

Here, I observed that using all the features for predictions does not necessarily entail

getting the better results. When using a high number of characteristics seems that

the algorithms have troubles in treating all the data and the results are worse than

when  I  use  a  small  number  of  features.  So,  as  our  objective  is  to  create  a

mathematical model, we decided to use only two features to create an initial simple

model and study how it works with the data.

4.2.  Selection  of  the  best  machine  learning  algorithm  and

features for prediction

The objective in this phase was to assess which of the algorithms used had better

prediction results and with which features. To do that, I examined all possible two-

feature combinations with each algorithm. Then I picked up those combinations that

had a better  metrics results  (superposing  the Held-Out  likelihood value over  the

other metrics).

4.2.1. Overall comparison of the algorithms performance

An  initial  held-out  likelihood  analysis  of  the  used  algorithms  gave  the  results

represented in the following figures: 
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Figure 7. Comparison of the Held-out likelihood values obtained in the evaluation of
the Gaussian Naive Bayes and Logistic Regression models using as an input all
possible two features combinations.

Figure 8. Comparison of the Held-out likelihood values obtained in the evaluation of
the Gaussian Naive Bayes and Random Forest Classifier models using as an input
all possible two features combinations.

Figure 7 shows that the Logistic regression algorithm has the worst performance. It

has a lower held-out likelihood value for most of the feature combinations and the

best F1 Score achieved is lower than 0.4, which is lower than the values achieved

with the Gaussian Naive Bayes algorithm (Tables 11, 12, 15 and 16 Appendices C

and E). On the other hand, Random Forest has a better held-out likelihood values

than Gaussian NB in most of the cases. Unfortunately, there are some of them in

which I get a minus infinite value (points at the left in Figure 8), this means that the
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algorithm overfits the dataset. F1 scores (see Table 14 Appendix D and Table 16

Appendix  E  )  reinforce  the  selection  of  Gaussian  NB  as  the  best  performing

algorithm for this task, since F1 score values are higher than the ones achieved by

the RF algorithm, the NB Gaussian model does not overfit the dataset and it also has

good held-out likelihood values.

4.2.2. Analysis of the best models for each algorithm

In this section, I analyze the results obtained by the different algorithms in terms of

performance and of the best biological features for prediction.

4.2.2.1. Best Logistic Regression model results

The best  result  I  obtain  using  Logistic  Regression(LR)  corresponds to  using  the

traction force and the cumulative nucleus area as features (see Table 1).   Using

these two features,  I  get  a  quite  good held-out  likelihood (see Figs 7 and 8 for

likelihood values) and a precision metric of 0.65. Unfortunately, the recall value is too

low (I  consider  low values  those which  are  under  0.35)  to  consider  LR a  good

predictive model.

Best 2 Features Logistic Regression Model Result

Features Held-out likelihood F1 Score Precision Recall

Traction cumulative Nucleus Area -452.47 0.38 0.65 0.27

Table 1. Best LR result.

In fact, taking a look at global results (see Tables 11 and 12 Appendix C), it becomes

apparent that LR priorizes precision over recall. This means that the model aims at

minimizing false positives rather  than  maximizing the number of true positives. So,

using  a  model  like  this  one,  you  will  detect  less  phase  changes  but  that  ones

detected have a higher probability of not being a false positive.

Best models generated by this algorithm suggest that the best features for predicting

the  phase  change  are  the  traction  force,  the  cumulative  cell  nucleus  and  the

cytoplasmic areas and the mechanical energy that results of the product between the

cell size and the cell-ECM traction (Energy 2).
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4.2.2.2. Best Random Forest Classifier results

Random Forest results are not as consistent as those of LR, therefore I am going to

discuss three different scenarios. 

First, if I consider the cumulative traction force and the cumulative cytoplasmic area

as features, I get the best held-out likelihood value; in fact, this is the best held-out

likelihood value obtained taking into account all three models and all possible feature

combinations. Despite the result in this metric, the other results are under the 0.2

value, in particular, the recall value is 0.07 which means that this model is only able

to predict the 7% of the cases in which the phase change is going to happen.

The next case is when using the cumulative cell area and the cumulative tension

force. Using these features, in spite of simultaneously getting the higher recall and

F1  Score,  these  results  are  not  as  good  as  those  obtained  with  the  Logistic

Regression model.

The last scenario is when I use the Energy roll and the cumulative tension force as

features.  Here,  I  get  the maximum precision possible  but  also the  lowest  recall,

which  means  that  although  this  model  guesses  correctly  when  predicting  that  a

phase  change  is  going  to  happen,  it  is  only  able  to  recover  the  5% of  all  true

positives.

Best 2 Features Random Forest Classifier Results

Features
Held-out
likelihood

F1 Score Precision Recall

cumulative Traction cumulative Cytoplasmic Area -423.85 0.10 0.19 0.07

cumulative Cell Area cumulative Tension -431.93 0.36 0.62 0.25

Energy roll cumulative Tension -600.66 0.10 1.00 0.05

Table 2. Best RF results, each row corresponds to the best result taking into account one of

the metrics: held-out likelihood, F1 score and Precision respectively.

Taking a look at the global results (see Tables 13 and 14 Appendix D), RF, as LR

does,  prioritizes  high precision rather than high recall.

In this case, the best models generated by the RF algorithm suggest that the best

features  for  predicting  the  phase  change  are  the  cumulative  tension  force,  the

cumulative cytoplasmic area and the Energy 2.
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4.2.2.3. Best Gaussian Naive Bayes model results

As in the case of the RF, I consider different cases.

The best held-out likelihood score is achieved when using the Traction force and the

cumulative cell  area as features (see Table 3),  which is better  than the best  LR

results (see Appendix C Table 11) but worse than the best RF result (-423.85). 

The best F1 score values are achieved when using the cumulative nucleus area with

the cumulative cytoplasmic area or with the cumulative cell area (Appendix E Table

16), but, as these pair of features are quite correlated between them, I also take into

account the pair formed by the cumulative cytoplasmic area and cumulative Energy

2, which has the third best F1 score value.

Finally, the best precision value is achieved by using the feature pair of tension force

and cumulative cell area and the best recall value by using the cumulative cell area

and the cumulative nucleus area.

2 Features Gaussian Naive Bayes Model Results

Features
Held-out
likelihood

F1
Score

Precision Recall

Traction cumulative Cell Area -449.62 0.43 0.45 0.42

cumulative Nucleus Area cumulative Cytoplasmic Area -653.92 0.50 0.40 0.67

cumulative Cytoplasmic Area cumulative Energy 2 -706.27 0.48 0.40 0.60

Tension cumulative Cell Area -463.94 0.46 0.46 0.46

cumulative Cell Area cumulative Nucleus Area -671.53 0.49 0.39 0.68

Table 3. Best Gaussian NB results, each section corresponds to the best result taking into

account one of the metrics: held-out likelihood, F1 score, Precision and Recall respectively.

Taking a look to global results (see Tables 15 and 16 Appendix E), in contrast with

the models generated with the other algorithms, the Gaussian NB models prioritizes

a high recall over the precision, even though the precision values are not as low as

the recall values achieved by the other models.

Best  models  generated  by  the  NB algorithm  suggest  that  the  best  features  for

predicting  the  phase change are  the  tension  and traction  forces,  the  cumulative

cytoplasmic and cell areas and the cumulative Energy 2.
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4.3. Analysis and Interpretation of the best models

As I have already discussed Gaussian NB is the overall best performing algorithm for

the  classification  task.  By  merging  the  model  results  discussed  in  the  previous

sections, although their performances are different, the best features are consistent

across the algorithms. So, the best pairs of feature combinations are the following:

● the accumulative cytoplasmic area and the cumulative Energy 2 (calculated

as the product between the traction force and the cell area)

● the tension force and cumulative cell area

● the traction force and cumulative cell area

Now, to define a mathematical model first I wanted to identify trends in the predictive

models. To do that, I had to visualize what the Gaussian NB looks like in terms of

model  predictions  for  different  feature values.  For  each one of  the  best  pairs  of

feature combinations, I created a grid of values of the two selected features, and

then  plotted  the  prediction  of  the  trained  model  for  each  pair  of  values  of  the

features.

As RF has the best held-out likelihood prediction results, I visualized the model in the

same manner to understand which is the difference between the two algorithms and

see  if  this  one  is  also  a  good  candidate  to  be  represented  by  a  mathematical

function.
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Figure  9.  Gaussian  Naive  Bayes  and  Random Forest  models  trained  using  the
cumulative cytoplasmic area and the cumulative energy (the result of the product
between the cell area and the traction force) features. In the first column it is shown
models  behaviour  (the  gradient  colour  indicates  the  prediction  value,  where
probability 0 is represented by the colour red and 1 is represented by the colour
blue). In the second column our dataset is added (red points mean that the cell is
going to remain in the G1 cell cycle phase for the next 5 time stamps, while blue
points mean that the cell is going to change from G1 to S phase in the next 5 time
stamps).

Figure  9  shows that  RF Classifier  overfits  the training set,  the model  gets good

results but only for this dataset, if I use some data that is quite different from the one

I have used on the training phase, the results will have no sense. On the other hand,

the NB model seems to perform bad predictions, as the model generated does not fit

the data used in the training phase. Despite this, when I consider the metrics used to

evaluate the model performance, the results (see Table 4) show that the Gaussian

NB model does better predictions than the RF model.

Held-Out Likelihood F1 Score Precision Recall

Gaussian Naive Bayes -706.3 0.48 0.40 0.60

Random Forest Classifier -inf 0.24 0.28 0.21

Table 4. First comparison between the bests Gaussian NB and RF Classifier models.

Table 4 shows that the held-out likelihood value reaches a minus infinity value on the

random  forest  model,  which  means  that  the  model  overfits  the  dataset,  and  a

-706.30 value on the NB. About the other metrics, in all of them, the NB results are

0.2 points over the ones obtained with the RF. The most significant result in this
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analysis is that the NB model is able to recover, to predict properly, the 60% of the

true values in the test set.

Figure  10.  Gaussian Naive Bayes and Random Forest  models trained using the
tension force and the cumulative cell area features. In the first column it is shown
models  behaviour  and  in  the  second  column our  dataset  is  added  to  the  initial
representation.

In  this  case,  happens the  same than in  the previous analysis,  the  RF Classifier

model overfits the training set, as can be seen in Figure 10, and I get better results

with the Gaussian NB model than with the other one (see Table 5).

Held-Out Likelihood F1 Score Precision Recall

Gaussian Naive Bayes -463.9 0.46 0.46 0.46

Random Forest Classifier -inf 0.28 0.34 0.23

Table 5. Second Comparison between the bests Gaussian NB and RF Classifier models.

Results in Table 5 show that in spite of RF model results are higher than the ones

obtained with the previous RF model, they still do not reach the ones achieved by

the NB models.
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Figure  11.  Gaussian Naive Bayes and Random Forest  models trained using the
traction force and the cumulative cell area features. In the first column it is shown
models  behaviour  and  in  the  second  column our  dataset  is  added  to  the  initial
representation.

Finally, as in the other two cases, Figure 11 shows that the RF Classifier model

overfits the training set and Gaussian NB model results are better (seeTable 6).

Held-Out Likelihood F1 Score Precision Recall

Gaussian Naive Bayes -449.9 0.43 0.45 0.42

Random Forest Classifier -441.89 0.23 0.43 0.16

Table 6. Third Comparison between the bests Gaussian NB and RF Classifier models.

Despite RF model has drastically increased the precision, it has decreased the recall

in the same measure. So, I am not going to consider this RF model either.

Comparing the Gaussian NB trained models,  using the accumulative cytoplasmic

area values and the cumulative Energy 2 values, I get a significantly better recall

value and, as a consequence, a better F1 Score, which means that the first model is

able to recover a higher number of true samples than the others. 

On the other hand, with the other models I get a better precision value, which means

that  by  using  these pairs  of  feature  combinations (the  pair  of  tension  force  and

cumulative cell area and the pair of traction force and cumulative cell area) when the

models assign a true value to a sample, this prediction is correct in more cases than

when this is done by the first model.

Comparing the two last models between each other, the one that uses the tension

force and the cumulative cell area features has higher precision, recall and F1 score
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values  than  the  one  that  uses  the  traction  force  and  the  cumulative  cell  area

features, while the second one has a higher held-out likelihood value.

4.4. Definition of the Generative Model

Focusing on how NB and RF  models behave, the Gaussian Naive Bayes model

corresponds  to  an  ellipsoidal-shape  function,  whose  behaviour  resembles  a

propagation wave that is created when throwing a stone in calm water. So In Figure

9 what you can see is that for cytoplasmic areas larger than a certain value and

accumulated energies above a certain value the model predicts phase change. A

way to try to reproduce this 'step' behaviour i by using a sigmoidal factor. I.e. the

probability that a cell divides is a sigmoidal factor of the area minus some reference

value for the area. A hyperbolic tangent is an example of easy to handle sigmoidal

function. According to the NB model there is a similar behaviour for the accumulated

Energy 2, so it makes sense to try to model this as a product of sigmoidal functions.

The biological interpretation is that the cells that have both a larger accumulated

area and a larger accumulated energy are more likely to divide. 

Taking this into account, we performed the first generative model version in which we

used the hyperbolic tangent function to try to imitate this sigmoid-shape that the

obtained curves have.

The performed likelihood function is:

ℒ=∏
ti ;1

p (1∣x1
i , x2

i
)∏
t j; 0

p(0∣x1
j , x2

j
)

where our parameters are ℒ=f (α , X1 , β , X2),

and the probability for a sample to be predicted as True ( y pred=1, the cell is going to

change to the S phase within the next five time steps):

p(1∣x1
i , x2

i
)=(

1+ tgh[α (x1
i
−X1)]

2
)(

1+tgh [β (x2
i
−X 2)]

2
),

so the probability for a sample to be predicted as False ( y pred=0, the cell will remain

in the G1 phase, at least for the next five time steps) is:

p(0∣x1
i , x2

i
)=1−p(1∣x1

i , x2
i
) 

Being  x1
i , x2

i  the values of cumulative cytoplasmic area and cumulative Energy 2 of

sample  i,  X1 and  X2 can be explained explained as the boundary values of these
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features  that  will  identify  if  each  variable  has  the  minimum  value  to  affect  the

prediction in having a True or a False result. On the other hand,  α  and  β are the

constants that indicate in which measure each one of the features affects to the final

prediction.

4.5. Evaluating the Generative Model

Once the generative model was defined I evaluated it in our data set. The first step is

to  fix  the  initial  values  that  I  will  assign  to  the  likelihood  function  parameters  (

α , X1 , β , X2).  To get the initial X1and X2values (the boundary values for each one of

the features that will perform the model) I look for the timestamp in which each cell

changes from the G1 to the S phase of the cell cycle and I pick up the instant value

of the features that we are using as an input for likelihood function. The value for

these constants comes from the average of the values for all cell folds. After that, I

calculate the α  and β values as the inverse value of X1and X2, respectively, divided

by 100. 

After setting the initial parameter values, I analyse the model with the cell-fold cross

validation technique. First, I minimize its error by adjusting these parameters to the

training  set  with  the  BFGS  method  (this  step  has  as  an  output  the  optimized

constants). Then I test our likelihood function model by using the test set and the

optimized constants.

I  repeated this  process for  all  two-possible  features  combinations,  because in  a

preliminary analysis the models that used the features we set as the best in previous

phases got too bad results. Table 7 shows the features used in generative models

that achieved the best results.

2 Features Generative Models Results

Features
Held-out
likelihood

F1
Score

Precision Recall

cumulative Cytoplasmic Area cumulative Energy -485.83 0.35 0.51 0.26

cumulative Energy cumulative Energy 2 roll -570.40 0.41 0.52 0.34

Energy cumulative Cell Area -694.61 0.03 1.00 0.02

cumulative Energy 2 cumulative Energy 2 roll -870.61 0.36 0.38 0.35

Table 7. Results obtained by the best Generative models performed.
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For studying the best generative models behaviour,  I  printed in a figure the best

models  I  obtained  (taking  into  account  the  held-out  likelihood  and  the  F1 score

metrics) and how it  fits  our dataset.  Figures 12 and 13 show that  the optimized

models fit the dataset in a similar way than the Gaussian NB models do, despite this

the results achieved are not as good as the ones obtained by the models generated

by the NB algorithm.

By  using  the  cumulative  cytoplasmic  area  and  the  cumulative  energy  on  the

likelihood function we obtain the best held-out likelihood value. On the other hand,

using the cumulative Energy 2 roll, instead of the cumulative cytoplasmic area, we

obtain the best F1 score. This last model, having practically the same precision than

the first one, has a highly better recall, which means that is able to recover an 8%

more true positive cases with the same precision.

In addition to the metric results obtained, the consistency of the parameter values of

the different models reinforce the cumulative Energy as a promising feature for the

generation of a model able to predict the G1 to S phase change. In these models

explained, the cumulative Energy boundary value (X2 parameter in the first model

and X1 in the second one) has the same value (1.27E+07) after model optimization

and the constants that specify the importance of the feature in the model (β in the

first  and  α  in the second), in addition to having the same magnitude order,  their

values are very close (2.53E-07 and 2.72E-07). 

Figure 12. Generative model trained using the cumulative cytoplasmic area and the
cumulative  Energy  features.  In  the  first  column  it  is  shown  model  behaviour
(probability 0 is represented by the colour red and 1 is represented by the colour
blue). In the second column our dataset is added (red points mean that the cell is
going to remain in the G1 cell cycle phase for the next 5 time stamps, while blue
points mean that the cell is going to change from G1 to S phase).
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Figure 13.Generative model trained using the cumulative Energy and the cumulative
Energy 2 rolled (the result  of  the product between the cell  area and the traction
force)  features.  In  the  first  column  it  is  shown  model  behaviour.  In  the  second
column our dataset is added.

4.6. Additional Generative Models

The  generative  models  described  in  the  previous  section  have  a  satisfactory

performance even though they do not quite reproduce the ellipsoidal shape of   the

Gaussian NB model. Because of this, we designed new models that were in principle

mathematically closer to the Gaussian NB function shape, with the expectation that

these models would improve prediction metrics.

Specifically, we opted for using a function that had a single sigmoid function instead

of  two.  To  account  for  the  balance  between  biological  features  as  cell  division

predictors (that is, if one of the two features is high but the other is low, the cell would

not divide), the argument of the sigmoid function is then proportional to the product

of a power of the two features plus a constant.

The probability for a sample to be predicted as True ( y pred=1, the cell is going to 

change to the S phase within the next five time steps) then reads as 

p(1∣x1
i , x2

i
)=(

1+ tgh[α 0(x1
i α1)(x2

i α 2)+α 3]

2
),

where α 0 , α1 , α2 , α3 are the parameters of the model. Conversely, the probability for a

sample to be predicted as False ( y pred=0, the cell will remain in the G1 phase, at

least for the next five time steps) is
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p(0∣x1
i , x2

i
)=1−p(1∣x1

i , x2
i
) 

As before we construct the likelihood function for a set of observed data points as:

ℒ=∏
ti ;1

p (1∣x1
i , x2

i
)∏
t j; 0

p(0∣x1
j , x2

j
)

Some of the models obtained using this model have better held-out likelihood value

than the best models implemented by the other algorithms, such as the Gaussian NB

algorithm or the sigmoid product model  from the previous section (see results in

Table 8). Even though the model that has the best held-out likelihood value is gained

when using the Energy 2 and cumulative cell area features, the model performed by

using the cumulative nucleus area, instead of the Energy 2 feature, has better results

in the other metrics and its held-out likelihood value is still over the ones obtained by

the other models. Unfortunately, the values gained in these other metrics (F1 score,

precision and recall) are worse than the ones achieved by the other models.

This  function  has  also  generated  extreme  models  which  prioritize  the  precision

value, such as the one that uses the traction force and the cumulative energy, or

prioritize  the  recall  value,  such  as  the  one  that  uses  the  tension  force  and  the

cumulative cytoplasmic area.

Best 2nd-Generative Models Results

Features
Held-out
likelihood

F1 Score Precision Recall

Energy 2 cumulative Cell Area -436.26 0.32 0.48 0.24

cumulative Cell Area cumulative Nucleus Area -440.64 0.37 0.55 0.28

Traction cumulative Energy -477.03 0.16 0.75 0.09

Tension cumulative Cytoplasmic Area -5512.24 0.14 0.07 1.00

Table 8. Results obtained by the best 2nd-Generative models performed.
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Figure 14. Generative model trained using the Energy 2 and the cumulative cell area
features.  In  the  first  column  it  is  shown  model  behaviour  (the  gradient  colour
indicates the prediction value, where probability 0 is represented by the colour red
and 1 is represented by the colour blue). In the second column our dataset is added
(red points mean that the cell is going to remain in the G1 cell cycle phase for the
next 5 time stamps, while blue points mean that the cell is going to change from G1
to S phase in the next 5 time stamps).

Figure  15.  Generative  model  trained  using  the  cumulative  cell  area  and  the
cumulative nucleus area features. In the first column it is shown model behaviour. In
the second column our dataset is added.

Because the product of sigmoid functions seems to give better results that a single

sigmoid,  we also tried a model  with a product  of  sigmoid functions that have as

arguments the powers of the biological features. In this case,

ℒ=∏
ti ;1

p (1∣x1
i , x2

i
)∏
t j; 0

p(0∣x1
j , x2

j
)

the probability for a sample to be predicted as True is

 p(1∣x1
i , x2

i
)=(

1+ tgh[α 0(x1
i α1)+α 2]

2
×

1+tgh [α3(x2
i α 4)+α5]

2
),

where the model  parameters have now increased from 4 to 6 α 0 , α1 , α2 , α3 , α 4 , α5.
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so the probability for a sample to be predicted as False is:

p(0∣x1
i , x2

i
)=1−p(1∣x1

i , x2
i
) 

The performance of the model with all  possible two-feature combinations showed

two drastic cases. The first one, in which the model that uses the cumulative nucleus

area and the cumulative cytoplasmic area achieves the maximum precision at the

cost of having an awful recall, and another one, in which the models achieve the

maximum recall at the cost of having an awful precision. (Table 9 only shows one of

all the two-pair features models that achieve this recall value of 1.00, see the rest in

Tables 21 and 22 Appendix H).

3rd-Generative Models Results

Features
Held-out
likelihood

F1
Score

Precision Recall

cumulative Nucleus Area cumulative Cytoplasmic Area -504.64 0.05 1.00 0.03

Cell Area Tension -5224.73 0.14 0.07 1.00

Table 9. Results obtained by the best 3rd-Generative models performed.

The behaviour of these models’ performance suggests that only one of the features

are taken into account when doing the predictions. The first generative model only

takes into account the cumulative nucleus area (Figure 16) and the second the cell

area (Figure 17).

Figure 16. Generative model trained using the cumulative cytoplasmic area and the
cumulative nucleus area features. In the first column it is shown model behaviour
(the gradient colour indicates the prediction value, where probability 0 is represented
by the colour red and 1 is represented by the colour blue). In the second column our
dataset is added (red points mean that the cell is going to remain in the G1 cell cycle
phase for the next 5 time stamps, while blue points mean that the cell is going to
change from G1 to S phase in the next 5 time stamps).
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Figure  17.  Generative  model  trained  using  the  cell  area  and  the  tension  force
features. In the first column it is shown model behaviour. In the second column our
dataset is added.

4.7. Future Work

The next  phase  of  the  project  consists  in  trying  to  add  an  extra  feature  to  our

performed models to try to increase its prediction results. The methodology to do that

should be the following:

1. Study which is the feature than improves our best Gaussian NB performed

models by adding it into the training phase.

2. Study the performed model behaviour. As now we will have a 3D model, the

way to do this step is generating many figures where in each one of them are

represented  the  probabilities  by  modifying  the  values  of  two  features  and

letting the third one as a constant value.

3. Extrapolate the results observed to the likelihood functions by adding the third

variable in the proper way.

4. Perform, with the new likelihood functions, and evaluate these new models.
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5. Conclusions

The possibility of having a model able to predict when a cell is going to move from

one cell cycle phase to another and if it has an accelerated or lowered cell cycle can

be a useful tool in the treatment of tissue proliferation diseases such as cancer.

Even though results in this project show that, for achieving this purpose, the best

machine learning tool is the Gaussian Naive Bayes algorithm, generative models

while they are not as predicitve in the current version as Gaussian NB are promising

because of their simplicity and easy biological formulation and interpretation. As I

mentioned  in  the  last  section,  a  way  to  achieve  this  goal  is  by  properly  adding

another variable to the actual likelihood functions.

Another  interesting  thing  that  could  improve  our  models  performance  is  the

availability  of  more  data.  When  using  machine  learning  methods,  having  a  big

amount of data is important because the algorithm examines more cases and can

obtain better models. For example, with more data we could in principle solve the

overfitting  problem in  the  Random Forest  Classifier  models.  In  the  same scope,

another thing that could affect the development of better models is the fact that our

dataset has a huge amount of  False samples (cell  will  remain in the G1 phase)

respect to the number of True samples (cell is going to change from the G1 phase to

the S phase). An option to solve this issue is predicting the transition in the next 10

time steps instead of 5, which would duplicate the number of True samples in the

dataset. 

Despite the current limitations of my analysis, results show that the best predictors

are  cumulative  areas,  the  instantaneous  traction  and  tension  forces  and  the

cumulative energies, which is consistent the results achieved by Uroz, M. et al.. In

this manuscript, the authors proposed the accumulation of mechanical energy via

mechanical stress (our cumulative Energy feature) as an explanation for the duration

of the G1 phase. My results on the models based on cumulative cytoplasmic area

and cumulative Energy features, show that these are the best features for prediction

of change of phase in cell division as well. 

Finally, based on all the experience I have gained during the project, in three-feature
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models, I would combine two cumulative features with an instantaneous one: a first

one that contains information about the area; second one that carries information the

force features; and a last one that is an energy feature (presumably the one that is

not calculated by using the force selected as the second variable).

6. Self evaluation

The personal valoration about the work I have realized in the SEES Lab is, without

any doubt, positive. It has allowed me to put in common in the same project all the

knowledge  acquired  from  both  degrees  (Computer  Science  and  Biotechnology)

during the last 5 years. On the one hand, the experience has helped me on the

understanding of the data with which I worked and explaining the results achieved as

a consequence of processes carried out during the cell cycle. On the other hand, I

had a better comprehension of the algorithms that implement the machine learning

methods used (because I studied some of them during the degree), what helped me

interpreting  the  results  given.  In  addition,  as  I  had  worked  before  with  the

programming language used to carry out all the experiments and I knew most of the

data  structures  used,  I  was  able  to  start  working  without  previous  programming

lessons what agilitzed the work.

During the project, there have been periods in which everything was booming and

others in which I have been discouraged because nothing was going as expected.

This experience has shown me what the research world is and I have fallen in love

with it, this what I want to do in the future. Every day was a challenge, for example:

check the results of the experiments that I started the previous day, which could had

been executing during the night or during the weekend, discover they are useless

and try to find another path to see the light at the end of the tunnel.

Finally, I just wanted to say a big thank you Marta Sales and Roger Guimerà for all

the assistance provided during the project as well as for the trust they have put on

me. Also, I would like to thank Sergio Cobo, PhD researcher in the SEES Lab, for

helping me in those moments in which I was discouraged with the work.
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Appendix A: Data

Figure 18. Representation over the time of all the calculated features of the cells in
the  dataset.  There  is  a  moment  from which  the  features  get  a  0  value,  this  is
because, from that timestamp, there are no further measures. Energy corresponds
to the product between the cell size and the cell-cell tension. Energy 2 corresponds
to the product between the cell size and the cell-ECM traction. The “Roll” Energies
are calculated in the same way as the normal Energy but for each value I use a
rolling window with the 5 last values.
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Appendix B: Feature correlations

Figure  19. Feature correlations. The features are from left to right and from top to
bottom: Cell Area, Nucleus Area, Tension force, Traction force, Cytoplasmic Area,
Energy (product between the cell size and the cell-cell tension), Energy 2 (product
between the  cell  size  and  the  cell-ECM traction),  Energy roll  (calculated  as  the
Energy  value  but  using  a  rolling  window  with  the  5  last  values  instead  of  the
instantaneous value) and Energy 2 roll (calculated as the Energy 2 value but using a
rolling window with the 5 last values instead of the instantaneous value).
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Appendix C: Logistic Regression models results

Logistic Regression Models Results sorted by the Held-Out likelihood value

Features
Held-out
likelihood

F1 Score Precision Recall

Traction cumulative Nucleus Area -452.47 0.38 0.65 0.27

Nucleus Area cumulative Cytoplasmic Area -459.74 0.26 0.53 0.18

Nucleus Area cumulative Nucleus Area -465.06 0.32 0.56 0.23

Cell Area cumulative Nucleus Area -465.58 0.29 0.55 0.20

cumulative Nucleus Area cumulative Cytoplasmic Area -465.97 0.33 0.56 0.23

cumulative Cell Area cumulative Nucleus Area -466.03 0.27 0.56 0.18

Cytoplasmic Area cumulative Nucleus Area -466.14 0.28 0.54 0.19

Tension cumulative Nucleus Area -468.46 0.28 0.59 0.19

Cell Area cumulative Cell Area -470.29 0.27 0.52 0.19

Cell Area cumulative Cytoplasmic Area -482.40 0.29 0.53 0.20

Table 11. Best 10 LR models results sorted by the held-out likelihood value.

Logistic Regression Models Results sorted by the F1 score value

Features
Held-out
likelihood

F1
Score

Precision Recall

Traction cumulative Nucleus Area -452.47 0.38 0.65 0.27

cumulative Energy 2 cumulative Energy 2 roll -598.11 0.33 0.45 0.26

cumulative Nucleus
Area

cumulative Cytoplasmic Area -465.97 0.33 0.56 0.23

Nucleus Area cumulative Nucleus Area -465.06 0.32 0.56 0.23

Energy 2 roll cumulative Energy 2 roll -706.89 0.32 0.40 0.27

Energy 2 roll cumulative Cytoplasmic Area -767.10 0.31 0.38 0.27

Traction cumulative Cell Area -528.00 0.31 0.48 0.23

Energy 2 roll cumulative Energy 2 -718.01 0.30 0.39 0.25

Energy 2 roll cumulative Cell Area -771.20 0.30 0.36 0.26

Cell Area cumulative Nucleus Area -465.58 0.29 0.55 0.20

Table 12. Best 10 LR models results sorted by the F1 Score value.
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Appendix D: Random Forest Classifier models results

2 Features Random Forest Models Results sorted by the Held-Out likelihood value

Features
Held-out
likelihood

F1
Score

Precision Recall

cumulative Traction cumulative Cytoplasmic Area -423.85 0.10 0.19 0.07

cumulative Nucleus Area cumulative Cytoplasmic Area -424.43 0.20 0.41 0.14

cumulative Tension cumulative Cytoplasmic Area -429.75 0.33 0.60 0.23

Traction cumulative Cytoplasmic Area -431.18 0.16 0.35 0.11

cumulative Cell Area cumulative Tension -431.93 0.36 0.62 0.25

CellArea cumulative Cytoplasmic Area -433.36 0.18 0.35 0.13

Cytoplasmic Area cumulative Cytoplasmic Area -435.87 0.11 0.23 0.08

cumulative Cytoplasmic Area cumulative Energy  roll -437.46 0.21 0.40 0.15

CellArea cumulative Cell Area -437.84 0.17 0.34 0.11

cumulative Cell Area cumulative Energy 2 roll -438.48 0.28 0.42 0.21

Table 13. Best 10 RF Classifiers models results sorted by the held-out likelihood value.

2 FeaturesRandom Forest Models Results sorted by the F1 score value

Features
Held-out
likelihood

F1 Score Precision Recall

cumulative Cell Area cumulative Tension -431.93 0.36 0.62 0.25

cumulative Tension cumulative Cytoplasmic Area -429.75 0.33 0.60 0.23

Energy 2 roll cumulative Energy -inf 0.28 0.55 0.19

cumulative Cell Area cumulative Energy 2 roll -438.48 0.28 0.42 0.21

Energy 2 roll cumulative Energy roll -inf 0.27 0.53 0.19

Energy 2 roll cumulative Cell Area -inf 0.27 0.50 0.19

cumulative Cell Area cumulative Energy 2 -inf 0.27 0.43 0.20

cumulative Nucleus Area cumulative Traction -475.72 0.25 0.54 0.17

Cytoplasmic Area cumulative Nucleus Area -484.63 0.24 0.54 0.16

Traction cumulative Cell Area -441.89 0.23 0.43 0.16

Table 14. Best 10 RF Classifiers models results sorted by the F1 Score value.
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Appendix E: Gaussian Naive Bayes Models result

Gaussian Naive Bayes Models Results sorted by the Held-Out likelihood value

Features
Held-out
likelihood

F1 Score Precision Recall

Traction cumulative Cell Area -449.62 0.43 0.45 0.42

Energy cumulative Cell Area -460.09 0.37 0.44 0.33

Energy roll cumulative Cell Area -462.88 0.35 0.40 0.32

Tension cumulative Cell Area -463.94 0.46 0.46 0.46

Traction cumulative Cytoplasmic Area -464.73 0.41 0.44 0.39

Traction cumulative Nucleus Area -474.64 0.42 0.44 0.41

Energy cumulative Cytoplasmic Area -475.90 0.37 0.44 0.32

Nucleus Area cumulative Cell Area -476.73 0.46 0.45 0.47

Tension cumulative Cytoplasmic Area -477.85 0.42 0.43 0.41

Energy roll cumulative Cytoplasmic Area -478.67 0.35 0.40 0.31

Table 15. Best 10 Gaussian NB models results sorted by the held-out likelihood value.

Gaussian Naive Bayes Models Results sorted by the F1 Score value

Features
Held-out
likelihood

F1
Score

Precision Recall

cumulative Nucleus Area cumulative Cytoplasmic Area -653.92 0.50 0.40 0.67

cumulative Cell Area cumulative Cytoplasmic Area -688.64 0.49 0.40 0.65

cumulative Cell Area cumulative Nucleus Area -671.53 0.49 0.39 0.68

cumulative Cytoplasmic Area cumulative Energy 2 -706.27 0.48 0.39 0.60

cumulative Cytoplasmic Area cumulative Energy -660.89 0.48 0.39 0.61

cumulative Cytoplasmic Area cumulative Energy 2 roll -710.90 0.47 0.39 0.60

cumulative Cytoplasmic Area cumulative Energy roll -666.26 0.47 0.38 0.60

cumulative Cell Area cumulative Energy -659.79 0.47 0.38 0.61

cumulative Cell Area cumulative Energy 2 -703.16 0.46 0.38 0.60

cumulative Cell Area cumulative Energy 2 roll -708.51 0.46 0.38 0.60

Table 16. Best 10 Gaussian NB models results sorted by the F1 Score value.
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Appendix F: Generative models results

Generative Models Results sorted by the Held-Out likelihood value

Features
Held-out
likelihood

F1 Score Precision Recall

cumulative Cytoplasmic Area cumulative Energy -485.83 0.35 0.51 0.26

cumulative Cell Area cumulative Energy -487.07 0.36 0.52 0.27

cumulative Cytoplasmic Area cumulative Energy roll -487.81 0.38 0.54 0.29

cumulative Nucleus Area cumulative Energy 2 roll -488.80 0.38 0.52 0.30

cumulative Cell Area cumulative Energy roll -489.22 0.38 0.53 0.29

cumulative Tension cumulative Energy 2 roll -492.37 0.20 0.53 0.12

cumulative Cytoplasmic Area cumulative Energy 2 roll -494.98 0.34 0.53 0.25

cumulative Cytoplasmic Area cumulative Energy 2 -498.15 0.32 0.48 0.24

cumulative Nucleus Area cumulative Energy 2 -499.08 0.32 0.46 0.25

cumulative Cell Area cumulative Energy 2 roll -508.98 0.31 0.47 0.24

Table 17. Best 10 Generative models results sorted by the held-out likelihood value.

Generative Models Results sorted by the F1 Score value

Features
Held-out
likelihood

F1 Score Precision Recall

cumulative Energy cumulative Energy 2 roll -570.40 0.41 0.52 0.34

cumulative Energy roll cumulative Energy 2 roll -577.71 0.40 0.49 0.34

cumulative Energy 2 cumulative Energy roll -572.30 0.39 0.49 0.33

cumulative Nucleus Area cumulative Energy 2 roll -488.80 0.38 0.52 0.30

cumulative Cytoplasmic Area cumulative Energy roll -487.81 0.38 0.54 0.29

cumulative Cell Area cumulative Energy roll -489.22 0.38 0.53 0.29

cumulative Energy 2 cumulative Energy 2 roll -870.61 0.36 0.38 0.35

cumulative Energy cumulative Energy 2 -645.69 0.36 0.46 0.30

cumulative Cell Area cumulative Energy -487.07 0.36 0.52 0.27

cumulative Cytoplasmic Area cumulative Energy -485.83 0.35 0.51 0.26

Table 18. Best 10 Generative models results sorted by the F1 Score value.
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Appendix G: 2nd-version Generative models results

2nd-version Generative Models Results sorted by the Held-Out likelihood value

Features
Held-out
likelihood

F1
Score

Precision Recall

Energy 2 cumulative Cell Area -436.26 0.32 0.48 0.24

Energy 2 roll cumulative Cytoplasmic Area -438.19 0.33 0.50 0.25

cumulative Cell Area cumulative Energy 2 -438.95 0.33 0.49 0.25

Cytoplasmic Area cumulative Cell Area -439.01 0.33 0.51 0.24

Cell Area cumulative Cell Area -439.06 0.32 0.51 0.24

cumulative Nucleus Area cumulative Cytoplasmic Area -439.71 0.37 0.55 0.28

cumulative Cell Area cumulative Energy 2 roll -439.75 0.33 0.49 0.25

cumulative Cell Area cumulative Nucleus Area -440.64 0.37 0.55 0.28

Nucleus Area cumulative Cell Area -441.66 0.28 0.46 0.21

cumulative Cell Area cumulative Energy -442.46 0.29 0.45 0.21

Table 19. Best 10 2nd-version Generative models results sorted by the held-out likelihood

value.

2nd-version Generative Models Results sorted by the F1 Score value

Features
Held-out
likelihood

F1 Score Precision Recall

cumulative Cell Area cumulative Nucleus Area -440.64 0.37 0.55 0.28

cumulative Nucleus Area cumulative Cytoplasmic Area -439.71 0.37 0.55 0.28

Traction cumulative Nucleus Area -443.45 0.35 0.61 0.25

Energy 2 roll cumulative Cytoplasmic Area -438.19 0.33 0.50 0.25

cumulative Cell Area cumulative Energy 2 roll -439.75 0.33 0.49 0.25

Cytoplasmic Area cumulative Cell Area -439.01 0.33 0.51 0.24

cumulative Cell Area cumulative Energy 2 -438.95 0.33 0.49 0.25

cumulative Cell Area cumulative Tension -448.67 0.33 0.49 0.25

Cell Area cumulative Cell Area -439.06 0.32 0.51 0.24

Energy 2 cumulative Cell Area -436.26 0.32 0.48 0.24

Table 20. Best 10 2nd-version Generative models results sorted by the F1 Score value.
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Appendix H: 3rd-version Generative models results

4rt-version Generative Models Results sorted by the Held-Out likelihood value

Features
Held-out
likelihood

F1
Score

Precision Recall

cumulative Nucleus Area cumulative Cytoplasmic Area -504.64 0.05 1.00 0.03

cumulative Nucleus Area cumulative Energy 2 -523.36 0.00 0.00 0.00

cumulative Nucleus Area cumulative Energy 2 roll -534.35 0.00 0.00 0.00

cumulative Nucleus Area cumulative Energy roll -556.74 0.00 0.00 0.00

cumulative Nucleus Area cumulative Energy -556.83 0.00 0.00 0.00

cumulative Cell Area cumulative Energy 2 roll -575.64 0.00 0.00 0.00

cumulative Cell Area cumulative Energy 2 -580.23 0.00 0.00 0.00

cumulative Nucleus Area cumulative Traction -594.58 0.00 0.00 0.00

cumulative Nucleus Area cumulative Tension -602.68 0.00 0.00 0.00

cumulative Cell Area cumulative Traction -623.27 0.00 0.00 0.00

Table 21: Best 10 3rd-version Generative models results sorted by the held-out likelihood

value.

3rd-version Generative Models Results sorted by the F1 Score value

Features Held-out likelihood F1 Score Precision Recall

Cell Area Tension -5224.73 0.14 0.07 1.00

Cell Area Energy -5224.73 0.14 0.07 1.00

Nucleus Area Tension -5128.74 0.14 0.07 1.00

Nucleus Area Energy -5128.74 0.14 0.07 1.00

Tension Traction -4834.21 0.14 0.07 1.00

Tension Cytoplasmic Area -4834.21 0.14 0.07 1.00

Tension Energy -4834.21 0.14 0.07 1.00

Tension Energy 2 -4834.21 0.14 0.07 1.00

Tension Energy roll -4834.21 0.14 0.07 1.00

Tension Energy 2 roll -4834.21 0.14 0.07 1.00

Table 22: Best 10 3rd-version Generative models results sorted by the F1 Score value.

47


