

DISSENY D'UNA PLANTA DE PRODUCCIÓ DE LÍQUID IÒNIC

TREBALL DE FI DE GRAU

Alumne/a: Clara López Colom

Titulació: Grau en Enginyeria Química ETSEQ Universitat Rovira i Virgili

> Tutor: Josep Enric Mañé Abel Toscano

Data de lliurament: 20 de maig de 2015

Nombre d'identificació: 1508

Agrair la la col·laboració i paciència a totes aquelles persones que directament i indirectament s'han vist involucrades en l'elaboració d'aquest projecte.

1. ESPECIFICACIONS DEL PROJECTE	4
1.1. Definició del projecte	4
1.1.1. Objectiu del projecte	4
1.1.2. Abast del projecte	4
1.1.3. Ubicació de la planta química	5
1.2. Origen, propietats i aplicacions dels líquids iònics	7
1.3. Aplicació del líquid iònic sintetitzat a APLICAT S.L	8
1.4. Descripció del procés de producció del líquid iònic 2-HEAPE	8
1.4.1. Reactius	8
1.4.2. Etapa de reacció	9
1.4.3. Producte	10
1.5. Constitució de la planta	10
1.5.1. Normativa	10
1.5.2. Disposició dels equips a camp	11
1.5.3. Plantilla de treballadors	11
1.6. Balanç de matèria	12
1.7. <i>Utilities</i> de la planta	13
2. EQUIPS	14
2.1. Equips de la instal·lació industrial	14
2.1.1. Tancs T-101, T-201 i T-301	14
2.1.2. Cubeta de retenció	14
2.1.3. Bescanviadors de calor E-201 i E-301	15
2.1.4. Dimensionament del reactor R-101	17
2.1.5. Bombes de la instal·lació industrial i característiques	21
2.1.6. Unitat de producció de nitrogen	22
2.2. Fulls d'especificació dels equips	22
3. CONTROL I INSTRUMENTACIÓ	38
3.1. Objectiu, característiques i tipus de sistema de control	38
3.2. Tipus de senyals	38
3.3. Llaços de control de la planta química	39
3.3.1. Llaç de control del tanc d'emmagatzematge T-101	39
3.3.2. Llaç de control per a la càrrega del reactiu àcid valèric al reactor R-101	40
3.3.3. Llaç de control del tanc T-201	40

3.3.4.	Llaç de control per a la dosificació del reactiu etanolamina al reactor	R-10141
3.3.5.	Llaç de control del reactor R-101	41
3.3.6.	Descàrrega del producte del reactor R-101	42
3.3.7.	Llaç de control del tanc d'emmagatzematge T-301	42
3.3.8.	Descàrrega del tanc T-301	43
3.4. industrial	Llistat dels elements finals de control i de la instrumentació de la in	nstal·lació
4. Cano	onades, vàlvules, bombes i accessoris	44
4.1.	Característiques de les canonades i llistat	44
4.2.	Designació de vàlvules	
4.3.	Justificació d'equips d'impulsió	
4.3.1.	Selecció del tipus de bombes i instal·lació	
4.3.2.	Nomenclatura	53
5. SEG	URETAT I HIGIENE	55
5.1.	Introducció	55
5.2.	Normativa d'aplicació	55
5.2.1.	Legislació general	55
5.2.2.	Prevenció d'incendis	55
5.2.3.	Maquinària	56
5.3.	Principals riscos de la instal·lació industrial	56
5.4.	Disponibilitat d'espai i condicions ambientals de les zones de treball	57
5.5.	Substàncies químiques	57
5.5.1.	Fitxes de seguretat de les substàncies químiques de la planta	57
5.6.	Senyalització, i equips de protecció i protecció contra incendis	62
6. EST	UDI DE L'IMPACTE sobre el medi ambient	63
6.1.	Introducció	63
6.2.	Descripció del projecte: Marc legal	63
6.3.	Anàlisi d'alternatives de procés	63
6.4.	Descripció del medi	64
6.4.1.	Medi físic	64
6.4.2.	Medi biològic	64
6.4.3.	Medi humà	65
6.5.	Identificació d'impactes i caracterització	65
6.5.1.	Identificació d'impactes atenent a l'activitat humana	65
6.5.2.	Caracterització dels impactes segons el RD 1131/1988	66

6.1.	Avaluació i valoració dels impactes	69
6.1.1	. Matriu de Leopold	69
6.2.	Mesures correctores	72
6.3.	Síntesi de l'impacte generat per la construcció i explotació de la planta	73
7. AV.	ALUACIÓ ECONÒMICA	74
7.1.	Introducció	74
7.2.	Viabilitat de la instal·lació industrial	74
7.2.1	. Inversió inicial de la planta	74
7.2.2	Determinació de costos	75
7.2.3	. Determinació d'ingressos	76
7.2.4	. Costos totals anuals de la planta	76
7.2.5	. Cashflow (CF)	77
7.2.6	. Determinació del VAN i la TIR i Pay-back	78
8. MA	NUAL D'OPERACIÓ	80
8.1.	Engegada i apagada en un procés semi-batch	80
8.1.1	. Carrega de l'àcid valèric.	80
8.1.2	. Carrega de l'etanolamina, etapa de reacció	81
8.1.3	Buidat del reactor	81
8.2.	Apagada d'emergència	82
9. DIA	GRAMES	83
10. BIB	LIOGRAFIA	91
ANNEXC	9S	94
A.1. Di	mensionament dels tancs T-101, T-201 i T-301	94
A.2. Di	mensionament de la cubeta de retenció	102
A.3. Di	mensionament dels bescanviadors E-201 i E-301	104
A.3.1.	Dimensionament del bescanviador E-201	104
A.3.2.	Dimensionament del bescanviador E-301	113
A.4. Di	mensionament del reactor R-101	119
A.5. De	terminació de la potència de les bombes de la planta química	130
A.6. Di	mensionament de les canonades de procés	141
A.7. Av	aluació econòmica de la planta	145

1. <u>ESPECIFICACIONS DEL PROJECTE</u>

1.1. Definició del projecte

1.1.1. Objectiu del projecte

Estudi i disseny d'una planta química per a la producció de 2 Tm/dia d'un líquid iònic sintetitzat a escala de laboratori a l'Empresa Aplicacions de la Catàlisi S.L. (Aplicat). El líquid iònic, 2-hidroxi pentanoat d'etilamoni (2-HEAPE), s'obté a partir d'una reacció de neutralització entre àcid valèric i etanolamina mitjançant un procés *batch*.

El projecte a part de ser viable econòmicament i tècnicament també ha de complir la normativa i legislació vigent. En aquest projecte es presenta el disseny de tots els equips de procés, els diagrames i plànols i el manual d'operació de la planta química. Les especificacions pel disseny de la planta química de producció de líquid iònic es presenten a continuació:

- Capacitat de producció: 2 Tm/dia, per a un funcionament de 44 setmanes, 5 dies/setmana i per tant, una producció de 440 Tm/any
- Funcionament de la planta: 1760 h/any de producció efectiva.
- Presentació de producte final: Líquid iònic líquid de puresa 95,97% (w/w) per transportar en camions cisterna.

1.1.2. Abast del projecte

El projecte presenta els següents punts:

- Ubicació de la planta de producció
- Disseny i especificacions dels equips involucrats en el procés.
- Disseny dels diagrames: P&ID, PFD, layout.
- Definició del sistema de control de la planta.
- Disseny i especificacions de les canonades.
- Estudi de sistemes de seguretat dels equips de la planta.
- Estudi de l'impacte mediambiental de la planta.

- Avaluació econòmica de la planta.
- Manual d'operació

1.1.3. Ubicació de la planta química

L'Empresa APLICAT S.L. ha dissenyat la nova planta de producció de líquid iònic per encàrrec de l'empresa SC S.A. (No es detalla l'empresa per a la qual es realitza el disseny de la instal·lació industrial), per a ser ubicada al municipi de Tarragona, concretament a la carretera C-31B (41.106755, 1.208694) (ref. 1) del Polígon Francolí de Tarragona.

Per a la seva ubicació s'han tingut en compte aspectes com la proximitat amb l'empresa SC S.A., dedicada a la síntesi i modificació de capes asfàltiques de carretes que apliquen el líquid iònic per a la regeneració d'aquestes. També unes condicions climàtiques no extremes que no afectin les condicions d'operació de la planta en excés. A la Figura 1.1.1 i 1.1.2 es pot veure el terreny on s'ubicarà la planta de producció.

Figura 1.1.1. Mapa de la zona de Tarragona i del Polígon Industrial.

Figura 1.1.2. Zona industrial on s'ubicarà la planta de producció de líquid iònic (Carretera C-31B del Polígon Francolí de Tarragona).

Els criteris per a la ubicació de la planta són:

- <u>Proximitat a la empresa SC S.A. ja existent</u>: la planta química se situa a la carretera del Polígon Francolí de Tarragona, a la C-31B, al municipi de Tarragona, ja que l'Empresa SC S.A. està situada en el mateix polígon d'aquest municipi, en un terreny annex. D'aquesta manera es poden aprofitar els serveis generals de l'empresa, així com una millor gestió del personal.

- <u>Proximitat amb altres indústries asfàltiques</u>: en aquesta zona industrial també s'hi situen altres empreses dedicades al desenvolupament, fabricació i comercialització de betums com són PROAS-CEPSA situada al Polígon Entrevies, Asfaltos Españoles S.A. (ASESA), una empresa també especialitzada en la producció de betum asfàltic la qual se situa al Polígon Industrial de Tarragona, concretament a la carretera de Salou.

- <u>Condicions climàtiques (ref. 2)</u>: l'època de l'any més calorosa és l'estiu, concretament el juliol i agost, amb una temperatura màxima mitjana de 27 °C, però la temperatura mitjana a l'agost és de 23.6 °C. A l'època més freda de l'any, els mesos de gener i desembre, la temperatura mitjana és de 9-10 °C. La temperatura mitjana anual és d'uns 16-17 °C. Es pot dir que els estius són calorosos i els hiverns moderats. Pel que fa a distribució de precipitacions és irregular tal i com es pot veure a la figura 1.1.3 (Climograma de la ciutat de Tarragona). L'estació més plujosa és la tardor, especialment el mes d'octubre. La menys plujosa, l'estiu, en concret el mes de juliol. La precipitació és de 560 mm a l'any essent el mes més sec, juliol, de 17 mm i el mes amb majors precipitacions, octubre, amb una mitjana de 75 mm.

Figura 1.1.3. Climograma de la ciutat de Tarragona (ref. 2).

1.2. Origen, propietats i aplicacions dels líquids iònics

Els líquids iònics són sals en estat líquid i normalment s'utilitza aquest terme per sals amb un punt de fusió per sota dels 100°C. El seu origen es remunta al 1914, moment en què Walden va sintetitzar nitrat d'etilamoni [EtNH₃][NO₃], amb un punt de fusió de 13 °C. Aquesta nova substància es va formar amb la reacció entre etilamina i àcid nítric concentrat. En aquell moment no va ser de gran interès aquest descobriment. (ref. 3). El 1948 Hurley i Wier van desenvolupar nous líquids iònics formats per ions clor-aluminats a l'Institut Rice de Texas com a dissolucions per a la electrodeposició d'alumini. Tot i així no va ser fins a finals de 1970 quan els líquids iònics van ser més coneguts en l'àmbit de la investigació quan els grups de treball d'Osteryoung i Wilkes els van redescobrir generant una síntesi de sals líquides a temperatura ambient (ref. 4).

Els líquids iònics són uns compostos amb estabilitat química i amb un ampli rang d'estabilitat tèrmica arribant el seu límit superior a 350-400°C, depenent de la naturalesa d'aquests. També es caracteritzen per la seva elevada viscositat. La pressió de vapor és pràcticament negligible i, conseqüentment, fàcilment manipulables. Aquesta propietat permet emprar-los substituint els tradicionals dissolvents orgànics volàtils. També cal destacar la seva importància degut a que es poden modificar les seves propietats físiques i químiques variant la naturalesa dels cations i anions que els constitueixen per tal d'adaptar-los als requeriments d'una determinada aplicació. N'hi ha que estan constituïts per exemple de cations que són aromàtics amb àtoms de nitrogen en l'anell, mentre que els anions acostumen a estar constituïts per diferents elements químics com per exemple, Cl⁻, Br⁻, PF6⁻ entre altres (ref. 5). Es pot trobar una gran varietat d'aplicacions dels líquids iònics degut a la possibilitat de modificar les propietats físiques i químiques d'aquests. Són aplicats com a catalitzadors, tant en síntesi orgànica com inorgànica, biocatàlisis i polimeritzacions (ref. 6). En la última dècada ha incrementat l'estudi de la seva utilització com a dissolvents en processos d'extracció líquidlíquid tradicionals i en absorció de gasos ja que es pot ajustar la seva capacitat hidròfoba a unes temperatures no gaire altes. I una altra aplicació dels líquids iònics és que són usats com a lubricants degut a la seva alta estabilitat tèrmica. Per exemple, el líquid iònic [bmim+][BF4-] (catió 1-butil-3-metilimidazolio ([bmim]+ i anió BF4-) és un lubricant aplicable en diferents materials com són el contacte acer/acer, acer/ceràmica, acer/coure, acer/alumini.

1.3. <u>Aplicació del líquid iònic sintetitzat a APLICAT S.L.</u>

El líquid iònic sintetitzat a l'Empresa APLICAT S.L, 2-hidroxi pentanoat d'etilamoni (2-HEAPE), és emprat com a regenerador dels asfalts de les carreteres quan aquestes sofreixen tensions i s'originen esquerdes.

1.4. Descripció del procés de producció del líquid iònic 2-HEAPE

El *P&ID* del procés de síntesi del líquid iònic 2-HEAPE es pot trobar al capítol 9. La Figura 1.4.1 presenta el diagrama de blocs del procés:

Figura 1.4.1. Diagrama de blocs del procés de producció de líquid iònic.

1.4.1. Reactius

Els reactius requerits són l'àcid valèric i l'etanolamina. L'àcid valèric té una puresa del 99,5 % w/w i és un líquid incolor, amb olor característica i poc miscible en aigua. Sí ho és en alcohol i èter. Es pot obtenir per oxidació del n-pentanol. Està emmagatzemat al tanc T-101 a la temperatura de 25°C i a pressió atmosfèrica. Inicialment l'àcid valèric és carregat amb la bomba centrífuga P-101 al reactor R-101 a les condicions de temperatura i pressió esmentades. La càrrega d'àcid valèric al tanc T-101 es realitza amb camions cisterna. Es disposa d'un sistema auxiliar connectat al tanc T-101 en el qual hi ha instal·lada una bomba centrífuga P-101 i també es disposa d'un transmissor de nivell situat en aquest per evitar una sobrecàrrega del dipòsit.

L'etanolamina és un líquid viscós i tòxic amb una olor semblant a la de l'amoníac i corrosiu de puresa 98,5 % w/w. L'etanolamina està emmagatzemada al tanc T-201 a la temperatura de 25°C i a pressió atmosfèrica. L'etanolamina és subministrada de forma dosificada al reactor R-101 en les condicions esmentades anteriorment mitjançant la bomba P-201A de forma que reacciona amb l'àcid valèric carregat inicialment. En cas que s'hagués iniciat l'etapa de reacció i fallés aquesta bomba, es disposa d'una segona bomba dosificadora de recanvi idèntica, P-201B. Per tal d'adequar les condicions de l'etanolamina a l'entrada del reactor R-101 es disposa d'un bescanviador de calor de doble tub E-201. Concretament, l'etanolamina té un punt de fusió de 10°C. Com es tracta d'un valor fàcilment assolible en època hivernal, per tal d'evitar-ne la seva solidificació a l'interior del tanc, el sistema de control actua en el moment que la temperatura és de 15°C de manera que es fa recircular l'etanolamina cap el bescanviador E-201 amb la bomba P-201.0, que utilitza aigua a temperatura de 50°C, com a fluid calent, de forma que torni a augmentar la temperatura del reactiu fins a 25°C. La càrrega d'etanolamina al tanc T-201 es realitza amb camions cisterna. També disposa d'un sistema auxiliar format per una bomba centrífuga, P-E201 i un transmissor de pressió com a element de control per assegurar el bon funcionament de la bomba i, també, d'un transmissor de nivell instal·lat en el dipòsit d'emmagatzematge de forma que es controla el cabal que impulsa la bomba P-E201. En el moment que s'assoleix el màxim nivell de líquid a l'interior del tanc T-201, és enviada la senyal pel transmissor de nivell a la bomba P-E201 de forma que aquesta s'atura.

1.4.2. Etapa de reacció

La síntesi de 2-hidroxi pentanoat d'etilamoni (2-HEAPE) es basa en un procés discontinu. En què té lloc una reacció de neutralització exotèrmica entre un àcid, àcid valèric i una base, l'etanolamina en què el tipus de reacció és el presentat a continuació:

$$(HOCH_2CH_2)NH_2 + HOOC(CH_2)_3(CH_3) \to (HOCH_2CH_2)NH_3^+(-OOC(CH_2)_3)(CH_3))$$
(1.4.1)

Es tracta d'una reacció exotèrmica en fase líquida en què la temperatura màxima que s'assoleix és de 50°C. Per mantenir la temperatura a 25°C el reactor R-101 disposa d'una camisa de refrigeració. La pressió d'operació és d'1 atm. En primer lloc es carrega l'àcid valèric. A continuació se subministra de forma dosificada l'etanolamina, com s'ha mencionat

anteriorment. Durant la dosificació de l'etanolamina està en funcionament l'agitador M-0.1 del reactor R-101 per afavorir una bona mescla dels reactius. Aquesta dosificació es realitza fins a una relació equimolar dels dos reactius, la qual es regula mitjançant el seguiment del nivell de líquid del reactor. La conversió assolida és del 95% respecte l'àcid valèric i el producte obtingut, el líquid iònic, es troba en fase líquida però es caracteritza per tenir elevada viscositat. I per seguretat, el reactor R-101 disposa d'una vàlvula de seguretat per sobrepressió.

1.4.3. Producte

Un cop finalitzada l'etapa de reacció i sintetitzat el líquid iònic, 2-hidroxi pentanoat d'etilamoni, és conduït des del reactor R-101 fins al tanc d'emmagatzematge T-301 per mitjà de la bomba peristàltica P-301. El líquid iònic s'emmagatzema a pressió atmosfèrica i a 25°C. Es tracta d'un líquid de color ataronjat que es caracteritza per la seva elevada viscositat i per una pressió de vapor pràcticament negligible. Tot i que és molt estable tèrmicament es disposa del bescanviador E-301 de conformació en espiral. Permet que en cas que la temperatura disminuís fins a 20°C actuï el sistema de control i escalfi el producte fins a 25°C, per tal d'evitar l'augment de viscositat i mantenir unes bones condicions de manipulació del compost. La descàrrega de líquid iònic es realitza amb camions cisterna. Es disposa d'una bomba auxiliar, P-E301, que impulsa el producte des del tanc T-301 fins al camió. Per comprovar que la bomba funciona correctament hi ha instal·lat un transmissor de pressió just a la sortida de la bomba. Hi ha instal·lat un transmissor de nivell detecta el nivell mínim de líquid a l'interior del tanc, aquesta senyal és transmesa a la bomba P-E301 i aquesta s'atura.

1.5. Constitució de la planta

1.5.1. Normativa

 CODI API 650: Inclou el procediment de càlcul per tancs construïts amb acer, a pressió atmosfèrica i a temperatures no més elevades de 90°C.

- APQ-1 (Reglament d'emmagatzematge de productes químics): Inclou el procediment de càlcul de volums de cubetes de retenció, distàncies mínimes entre tancs, distribució de productes atenent a les seves propietats entre altres.
- Normativa ANSI: Inclou el disseny de canonades amb acceptació de l'ús d'acers inoxidables.
- Normativa impacte ambiental especificada al capítol 6.
- Normativa de seguretat i higiene especificada al capítol 5.

1.5.2. Disposició dels equips a camp

La disposició general de les diverses zones que conformen la planta de producció de líquid iònic es pot consultar al capítol 9, diagrama 104. L'extensió de terreny requerida és aproximadament de 25m (de Nord a Sud) x 35 m (Est a Oest), 700 m² en total. A la zona Est se situen els tancs d'emmagatzematge d'àcid valèric, etanolamina i líquid iònic. S'estableix una distància mínima d'1,5 m de separació entre els tres tancs atenent a les instruccions del Reglament d'emmagatzematge de productes químics (APQ-1, Article 17). A la zona Oest se situa la instal·lació on es pot trobar l'equip de reacció, la sala de control i la instal·lació de producció de nitrogen. Al voltant dels tancs d'emmagatzematge i de la zona de procés s'ha reservat espai suficient per tal de facilitar l'accés de camions. Tots els equips i serveis, els tancs d'emmagatzematge (T-101, T-201, T-301), el reactor (R-101) situat a la zona de procés, i la sala de control i la instal·lació de producció de nitrogen se situen a nivell de terra.

1.5.3. Plantilla de treballadors

La planta de producció treballa en discontinu. S'estableix una producció de 2 Tm diàries per a un funcionament de 44 setmanes, essent la producció de 440 Tm/any. Les setmanes restants es dediquen al manteniment de la planta, possibles imprevistos i vacances dels treballadors. Els diferents perfils de treballadors de què es disposarà són directiu i tècnic, s'estableix un únic director responsable i tècnic a la vegada de la gestió de l'empresa (1), especialistes tècnics, són els responsables repartits en l'enginyeria química, industrial, mecànica i elèctrica (2), administratius, seran els responsables de portar la comptabilitat, màrqueting, entrada i sortida de matèries primeres, l'atenció als clients (1), operaris, treballadors que estan en contacte directe a la planta per reparar i/o mantenir els diversos equips que componen la planta (2) i altres, personal de seguretat. Tot el personal tindrà jornades laborals de 8h i 5 dies a la setmana. Tot el personal especificat anteriorment exceptuant els dos operaris tindran una dedicació parcial, ja que són treballadors de l'empresa SC. S.L. En l'estudi de la viabilitat econòmica se'ls assigna l'equivalent a un cost del 10% dels operaris de la planta. Els treballadors tindran una jornada de 8h a 17h cinc dies a la setmana de dilluns a divendres.

1.6. Balanç de matèria

El diagrama de flux del procés es pot consultar al capítol 9, diagrama 002. El balanç de matèria s'ha realitzat per a una producció de 2 Tm/dia de 2-hidroxi pentanoat d'etilamoni (2-HEAPE) amb una puresa del 95,97% (wt). Aquest líquid iònic es forma a partir de l'àcid valèric, que té una puresa del 99,5 % (wt) i de l'etanolamina, amb una puresa del 98,5 % (wt). La reacció que té lloc és equimolar (ref. 7). La conversió de la reacció és del 95% referida a l'àcid valèric. En base a les consideracions anteriors s'ha realitzat el balanç de matèria el qual es detalla a la Taula 1.6.1.

CORRENT	100.1	100.2	100.3	100.4	100.5*
Temperatura (°C)	25,0	25,0	25,0	25,0	25,0
Pressió abs. (atm)	1,0	1,5	0,8	0,8	0,8
Fracció de vapor	0,00	0,00	0,00	0,00	0,00
Càrrega (kg/Batch)	1271	1271	729	729	729
Composició Àcid valèric wt (%)	99,50	99,50	0,00	0,00	0,00
Composició Inert 1 wt (%)	0,50	0,50	0,00	0,00	0,00
Composició Etanolamina wt (%)	0,00	0,00	98,50	98,50	98,50
Composició Inert 2 wt (%)	0,00	0,00	1,50	1,50	1,50
Composició Líquid iònic wt (%)	0,00	0,00	0,00	0,00	0,00
CORRENT	100.6	100.7*	100.8	100.9	100.10
CORRENT Temperatura (°C)	100.6 25,0	100.7* 25,0	100.8 25,0	100.9 25,0	100.10 25,0
CORRENT Temperatura (°C) Pressió abs. (atm)	100.6 25,0 1,9	100.7* 25,0 1,9	100.8 25,0 1,9	100.9 25,0 0,1	100.10 25,0 0,5
CORRENT Temperatura (°C) Pressió abs. (atm) Fracció de vapor	100.6 25,0 1,9 0,00	100.7* 25,0 1,9 0,00	100.8 25,0 1,9 0,00	100.9 25,0 0,1 0,00	100.10 25,0 0,5 0,00
CORRENT Temperatura (°C) Pressió abs. (atm) Fracció de vapor Càrrega (kg/Batch)	100.6 25,0 1,9 0,00 729	100.7* 25,0 1,9 0,00 729	100.8 25,0 1,9 0,00 729	100.9 25,0 0,1 0,00 2000	100.10 25,0 0,5 0,00 2000
CORRENT Temperatura (°C) Pressió abs. (atm) Fracció de vapor Càrrega (kg/Batch) Composició Àcid valèric wt (%)	100.6 25,0 1,9 0,00 729 0,00	100.7* 25,0 1,9 0,00 729 0,00	100.8 25,0 1,9 0,00 729 0,00	100.9 25,0 0,1 0,00 2000 3,16	100.10 25,0 0,5 0,00 2000 3,16
CORRENT Temperatura (°C) Pressió abs. (atm) Fracció de vapor Càrrega (kg/Batch) Composició Àcid valèric wt (%) Composició Inert 1 wt (%)	100.6 25,0 1,9 0,00 729 0,00 0,00	100.7* 25,0 1,9 0,00 729 0,00 0,00	100.8 25,0 1,9 0,00 729 0,00 0,00	100.9 25,0 0,1 0,00 2000 3,16 0,32	100.10 25,0 0,5 0,00 2000 3,16 0,32
CORRENT Temperatura (°C) Pressió abs. (atm) Fracció de vapor Càrrega (kg/Batch) Composició Àcid valèric wt (%) Composició Inert 1 wt (%) Composició Etanolamina wt (%)	100.6 25,0 1,9 0,00 729 0,00 0,00 98,50	100.7* 25,0 1,9 0,00 729 0,00 0,00 98,50	100.8 25,0 1,9 0,00 729 0,00 0,00 98,50	100.9 25,0 0,1 0,00 2000 3,16 0,32 0,00	100.10 25,0 0,5 0,00 2000 3,16 0,32 0,00
CORRENTTemperatura (°C)Pressió abs. (atm)Fracció de vaporCàrrega (kg/Batch)Composició Àcid valèric wt (%)Composició Inert 1 wt (%)Composició Inert 1 wt (%)Composició Inert 2 wt (%)	100.6 25,0 1,9 0,00 729 0,00 0,00 98,50 1,50	100.7* 25,0 1,9 0,00 729 0,00 0,00 98,50 1,50	100.8 25,0 1,9 0,00 729 0,00 0,00 98,50 1,50	100.9 25,0 0,1 0,00 2000 3,16 0,32 0,00 0,55	100.10 25,0 0,5 0,00 2000 3,16 0,32 0,00 0,55

Taula 1.6.1. Balanc de matèria per a la producció de líquid iònic.

*Els corrents 100.5 i 100.7 són auxiliars en cas de fallada de la bomba P-201A.

1.7. *<u>Utilities de la planta</u>*

L'aigua de xarxa és requerida com a sistema anti-incendis i com a neteja general de les instal·lacions. És subministrada per la instal·lació industrial de la planta SC S.A. ja existent.

L'aigua de refrigeració s'utilitza a l'etapa de reacció de la instal·lació industrial per tal de refredar la mescla continguda al reactor R-101 mentre té lloc la síntesi de líquid iònic. L'aigua de refrigeració de la què es disposa té una temperatura d'entrada en el sistema de refrigeració del reactor R-101 de 10°C i, la de sortida, de 22°C, essent el cabal de 0,55 m³/h, corresponent a 1,375 m³/batch per les 2,5 h que dura la reacció.

L'aigua d'escalfament permet escalfar els reactius i el producte, en cas que la temperatura d'aquests disminuís. Concretament l'àcid valèric pot ser escalfat en el Reactor R-101 abans de l'inici del procés de reacció en cas que la seva temperatura fos inferior a 5°C. L'altre reactiu, l'etanolamina, és escalfat en el bescanviador de calor E-201 en cas que la seva temperatura fos de 15°C o inferior fins tornar a assolir la temperatura de 25°C. També s'usa aigua d'escalfament en el bescanviador de calor E-301. En aquest cas es posa en funcionament el sistema d'escalfament quan la temperatura del producte és de 20°C o inferior, per tal d'evitar un augment considerable de la viscositat.

Les característiques del corrent elèctric que se subministra a la planta de producció de líquid iònic per tal d'accionar els motors de què es disposa són: voltatge de 380/220 V, trifàsic, freqüència de 50 Hz. La potència instal·lada a la planta és de 20 kW.

Per netejar les canonades per on circulen els productes i reactiu, els tancs d'emmagatzematge i el reactor s'usa gas inert, concretament nitrogen. Les característiques de la unitat de generació de nitrogen es presenten al capítol 2, apartat 2.1.6. Aquesta unitat és proporcionada per una empresa especialitzada en producció de gasos.

2. EQUIPS

2.1. Equips de la instal·lació industrial

2.1.1. Tancs T-101, T-201 i T-301

Pel disseny dels tancs d'emmagatzematge dels reactius, àcid valèric i etanolamina, i del producte, 2-HEAPE, s'ha seguit el CODI API 650 ja que inclou el procediment de càlcul per a tancs construïts amb acer, a pressió atmosfèrica i a temperatures inferiors a 90 °C. S'han dimensionat els tancs per a la capacitat d'emmagatzematge per a una producció de líquid iònic de 4 setmanes. A la Taula 2.1.1 es presenten les característiques principals del tanc T-101, que conté àcid valèric, T-201, que conté etanolamina i T-301, líquid iònic.

material dels tancs.								
Tanc T-101 Tanc T-201 T-301								
Producte	Àcid valèric	Etanolamina	Líquid iònic					
Formo	Cilíndric amb	Cilíndric amb	Cilíndric amb					
Forma	sostre cònic	sostre cònic	sostre cònic					
Diàmetre D ₀ (m)	3,46	2,81	4,01					
Alçada <i>H_t</i> (m)	5,65	4,59	6,55					
Gruix <i>th</i> (mm)	5	5	5					
Material	SS316L	SS316L	SS316L					

Taula 2.1.1. Producte contingut en els tancs, forma, diàmetre exterior, altura total, gruix i material dels tancs.

Els càlculs realitzats per determinar les característiques dels tancs es troben al capítol Annexos, apartat A.1 com són el dimensionament del sostre cònic, la pressió de disseny i la pressió màxima i el moment de ventegi per efecte del vent entre altres.

2.1.2. Cubeta de retenció

La cubeta de retenció pels tancs T-101, T-201 i T-301 s'ha dimensionat segons la normativa Reglament d'emmagatzematge de productes químics APQ-1 ("Emmagatzematge de líquids inflamables i combustibles"). L'àcid valèric i l'etanolamina són combustibles i, per tant, s'ha seguit la normativa esmentada atenent als productes de Classe C (productes combustibles).

S'ha dissenyat una sola cubeta de retenció tal i com indica la normativa atès que els dos reactius són de la mateixa classe i poden situar-se a la mateixa zona d'emmagatzematge. I juntament amb el producte, el líquid iònic, ja que és de risc inferior. La disposició dels tancs dins de la cubeta és la presentada a la Figura 2.1.1.

Figura 2.1.1. Disposició dels tancs T-101, T-201 i T-301 a la cubeta de retenció.

El fons de la cubeta tindrà un pendent de forma que tot el producte vessat flueixi ràpidament cap a la zona de la cubeta més allunyada de la projecció dels recipients, de les canonades i dels equips de la xarxa d'incendis. La separació mínima entre cada tanc és d'1,5 m i la distància de separació entre la paret del tanc i la paret de la cubeta, també d'1,5 m. Les dimensions d'amplada i longitud de la cubeta s'han sobredimensionat per tal d'assegurar que la cubeta tingui capacitat suficient per si hagués de retenir la capacitat total dels tres tancs d'emmagatzematge en cas de fuita. A la Taula 2.1.2 es presenten les dimensions de la cubeta de retenció:

Taula 2.1.2. Dimensions de la cubeta de retenció.							
Amplada A (m)Longitud L (m)Alçada H (m)Volum V (m3)							
7,30	17,00	1,50	186				

2.1.3. Bescanviadors de calor E-201 i E-301

Els bescanviadors de calor del procés E-201 i E-301 formen part d'un circuit secundari de control de temperatura dels tancs T-201 i T-301 respectivament. El tanc T-201 conté etanolamina, amb un punt de fusió de 10°C. Com és un valor fàcilment assolible en època hivernal, per evitar-ne la seva solidificació a l'interior del tanc, el sistema de control actua en

16 - 148

més elevada, 50°C, així torna a augmentar la temperatura del reactiu fins a 25°C. El tanc T-301 conté líquid iònic, molt estable tèrmicament. Tot i aquest avantatge es disposa del bescanviador E-301. Permet que en cas que la temperatura disminuís fins a 20°C actuï el sistema de control i escalfi el producte fins a 25°C, per evitar l'augment de viscositat i mantenir unes bones condicions de manipulació del compost. Es va dissenyar el bescanviador E-301 amb la configuració de doble tub però, es va obtenir un valor del coeficient global de transferència de calor baix, 14,8 W/m²K. Per tant, es va proposar l'alternativa d'un bescanviador en forma d'espiral (veure Figura 2.1.3.) i les condicions de disseny dels intercanviadors es presenten a la Taula 2.1.3.

Figura 2.1.3. Dimensions del bescanviador E-301 en espiral.

Dades	Etanolamina E-201	Líquid iònic E-301
Conformació	Doble tub	Espiral
Quantitat producte a tractar (m) (kg)	20420	56000
Temps d'operació (t) (h)	8	12
Temperatura d'entrada T _{in} (°C)	15	20
Temperatura de sortida T _{out} (°C)	25	25

Taula 2.1.3. Dades pel disseny dels bescanviadors E-201 i E-301.

Les característiques dels bescanviadors de calor E-201 i E-301 es presenten seguidament:

Dimensions	Bescanviador E-201
Di (mm)	29
<i>thi</i> (mm)	2
D0 (mm)	41
<i>th</i> 2 (mm)	2
De (mm)	45
Longitud tub (m)	2,0
Longitud de tub efectiva (m)	1,8
Tubs n	8
$A_{disseny} (m^2)$	1,17
A _{efectiva} (m ²)	1,31
<i>U</i> (W/m ² °C)	530

Taula 2.1.4. Dimensions del bescanviador E-201.

Taula 2.1.5. Dimensions del bescanviador E-301.

Dimensions	Bescanviador E-301				
	Líquid iònic	Aigua			
Espai de plat b (cm)	0,4	0,5			
Amplada de plat <i>H</i> (cm)	1,32	1,32			
ΔP (bar)	0,37	$2,38 \cdot 10^{-4}$			
<i>U</i> (W/m ² °C)	66,7				
Àrea geomètrica A_g (m ²)	11	1,9			
Longitud de l'espiral L (m)	9	9			
Radi extern R_f (cm)	22	2,8			
Nombre de voltes N	1	1			

Els càlculs detallats per a determinar les dimensions dels bescanviadors E-201 i E-301 es poden trobar al capítol Annexos, apartat A.3.

2.1.4. Dimensionament del reactor R-101

2.1.4.1 Disseny cinètic del reactor R-101

En el reactor R-101 té lloc la reacció de neutralització exotèrmica en fase líquida entre àcid valèric i etanolamina. La temperatura a la que es mantindrà el reactor és de 25°C i a pressió atmosfèrica. La reacció produeix líquid iònic, com s'ha esmentat anteriorment, amb una conversió del 95% respecte l'àcid valèric. Per dimensionar el reactor s'ha determinat experimentalment a escala de laboratori condicions com són la temperatura i el temps de reacció per tal de definir la cinètica que regeix el procés de neutralització entre els reactius establerts i els corresponents balanços de matèria i energia. Els valors de la cinètica de la reacció es mostra al capítol Annexos, apartat A.4. A partir de les equacions del balanç de matèria i energia i la llei de velocitat de reacció s'ha dimensionat el reactor de forma que el volum de reacció és de 2,25 m³ i una conversió del 94,9 % i un temps de reacció de 2,5h. I com es tracta d'una reacció exotèrmica, el reactor disposa d'una camisa de refrigeració amb aigua la qual se subministra a 10°C. El coeficient global de transferència de calor U és de 500 W/m²·K (ref. 8) i l'àrea de 6m². Es pot veure a la Figura 2.1.4 que la concentració del reactiu B (etanolamina) és pràcticament 0 durant tota la reacció, ja que en ser una reacció de neutralització, B reacciona ràpidament amb el reactiu A (àcid valèric), carregat en primer lloc al reactor R-101. La concentració final que s'obté de C (líquid iònic) és de 5,13 kmol/m³.

Figura 2.1.4. Concentració dels reactius i el producte en funció del temps de reacció. (Ca: concentració d'àcid valèric, Cb: concentració d'etanolamina, Cc: concentració de líquid iònic).

A la Figura 2.1.5 es pot observar que la temperatura del reactor no es manté constant al llarg de la reacció al valor de 25 °C ja que als 30' arriba a 33 °C. Aquest fet és degut a que s'ha definit un cabal constant d'aigua de refrigeració de 540 l/h. Es pot observar que sense regular el cabal de refrigeració l'increment de la temperatura no seria excessiu, i al final de la reacció s'estabilitzaria a una temperatura de 22,5 °C. El sistema de control permet ajustar el cabal d'aigua de refrigeració de manera que la reacció es mantingui a 25°C.

Figura 2.1.5. Evolució de la temperatura del reactor i de l'aigua de refrigeració en funció del temps de reacció.

A la Figura 2.1.6 es pot veure la variació del volum de líquid en el reactor i la conversió fins assolir el 95% per un temps de reacció de 2,5 h.

Figura 2.1.6. Volum de líquid de reacció i conversió en funció del temps de reacció.

2.1.4.2 Disseny mecànic del reactor R-101

El reactor R-101 serà construït en forma cilíndrica, amb el cap i fons d'aquest acabats en forma tori esfèrica. A la Taula 2.1.6 es presenten les seves dimensions:

Taula 2.1.6. Dimensions del reactor R-101.								
Part	Tipus	Diàmetre intern <i>Di</i> (m)	Altura h - h' (m)	<i>Vi</i> (m ³)	Gruix (mm)			
Cos	cilíndric	1,25	1,90	2,30	5			
Capçal	tori esfèric	1,25	0,26	0,20	5			
Fons	tori esfèric	1,25	0,26	0,20	5			

El volum total del reactor R-101 és de 2,70 m³ de forma que per a cada lot de 2 Tm diàries de líquid iònic produïdes s'omple un 83,7% de la seva capacitat total i, com s'ha presentat anteriorment, la camisa de refrigeració té una àrea A de 6 m², i se situa envoltant la part cilíndrica del reactor R-101 essent la seva llargada de 1,52 m. Els càlculs es presenten al capítol Annexos, apartat A.4.

2.1.4.3 Dimensionament de l'agitador del Reactor R-101

En el reactor R-101 té lloc una reacció en la qual el producte format, líquid iònic, és molt viscós. La millor opció és el disseny d'un agitador de turbina. Aquest agitador està format per 6 pales. Es pot veure a la Figura 2.1.7 la representació gràfica general d'un agitador de 4 pales.

Figura 2.1.7. Representació gràfica de l'agitador del reactor R-101.

L'agitador disposa de plaques deflectores, plaques verticals perpendiculars a la paret del dipòsit. Com el reactor és de petites dimensions, amb 4 plaques deflectores és suficient. S'instal·len per tal d'evitar remolins i formació de vòrtex i consta de 6 pales planes. A continuació es presenten les dimensions obtingudes que tindrà l'agitador del reactor R-101 i la potència consumida per aquest. El procediment de càlcul es presenta al capítol Annexos, apartat A.4.

Taula 2.1.7. Dimensions de l'agitador del reactor R-101.								
	Dimensions de l'agitador							
Diàmetre agitador Da (m)	Amplada plaques deflectores j (m)	Altura del rodet sobre el fons del tanc <i>E</i> (m)	Amplada de les pales W (m)	Longitud de les pales L (m)	Potència consumida (W)			
0.42	0.11	0.42	0.08	0.11	210*			

*Per tal de calcular la potència consumida de l'agitació s'ha establert una freqüència de gir de 100 rpm, valor habitual a la indústria.

2.1.5. Bombes de la instal·lació industrial i característiques

La bomba P-101 és centrífuga. Impulsa el primer reactiu, àcid valèric, des del tanc T-101 fins al reactor R-101 (ref. 9). La bomba P-201A és dosificadora. Transporta el segon reactiu, etanolamina, des del tanc T-201 fins al reactor R-101 de forma intermitent (ref. 10). (Es disposa d'una bomba de recanvi, P-201B, en cas de fallada de la bomba P-201A un cop s'hagués iniciat l'etapa de reacció. La bomba P-301 és peristàltica. Impulsa el producte format, líquid iònic, des del reactor R-101 fins al tanc T-301 (ref. 10). La P-201.0 és bomba centrífuga situada en el circuit auxiliar del tanc T-201. Permet fer recircular el reactiu, etanolamina, en el tanc d'emmagatzematge, en cas que la temperatura disminuís de 15°C. (ref. 9). És el mateix model de bomba que la P-101. La P-301.0 és una bomba peristàltica situada en el circuit auxiliar del tanc T-301. Permet recircular el producte, líquid iònic, en el tanc, en cas que la temperatura disminuís de 20°C (ref. 10). Les bombes auxiliars de càrrega i descàrrega permetran un cabal de càrrega/descàrrega de 40 m³/h. La bomba P-E101 i P-E201 són bombes centrífugues que impulsen un cabal màxim de 54 m³/h (ref. 11). La bomba P-E101 impulsa l'àcid valèric des del camió cisterna fins al tanc T-101. La bomba P-E201 impulsa l'altre reactiu, etanolamina, des del camió cisterna fins al tanc T-201. La bomba P-E301 és una bomba peristàltica que impulsa un cabal màxim de 44 m³/h (ref. 12). Aquest equip descarrega el líquid iònic contingut en el tanc T-301 fins al camió cisterna.

2.1.6. Unitat de producció de nitrogen

La unitat de producció de nitrogen és proporcionada per una empresa especialitzada en producció de gasos com s'ha esmentat anteriorment. El nitrogen generat té una puresa del 99% i es disposa d'un cabal de 25 Nm³/h. Disposa també d'un filtre de retenció de partícules, un dipòsit pulmó de 2 m³. El nitrogen se subministra a una pressió de 3 barg.

2.2. Fulls d'especificació dels equips

A continuació es presenten els fulls d'especificació dels equips que conformen la planta.

PROJEC	ГЕ	Disseny d'un síntesi de li	a planta de íquid iònic		ESPECIFICACIÓ				N° EULL N	oŢ	1 6	1
EMPRES	: Δ	A PLIC							DATA	•	08/03	/2015
EÀ BRIC		ALLC	чт <u>э.</u> г.			Tanc				RAT	Clara	López
1 Abide	2 x								REVISA	AT	Clara	López
PLANT A	A Contraction	Líquid iònic	2-HEAPE		٨D	т те л т	T 2 T		APROVAT Clara Lópe		López	
ÍTFM		T_1	01		AI.		3.L .		N° UNITATS 1		1	
SED	VET	1-1	101						Ew	mogetzer	mataa d'ào	i vid volària
SEK	DESCR	IPCIÓ			Tanc emmaga	tzematge			En	magaizei	naige u ac	
ý	PRODU	JCTE			Àcid valèric							
vcrć	TEMPH	ERATURA			25,00	°C						
ER/	PRESS	RESSIÓ			1,00	atm						
OP	DENSI CARAL (TAT TÀ PRECA			939,00	kg/m3						
	CABAL C	DESCÀRREO	GA		40	m3/h						
			TIF	US	cilíndric							
	COS		DIÀMETR	E (int.)	3,45	m		CODIS		Tanc API	650 vertica	1
	COD		ALTURA		5,18	m						
			GRUIX		5,00	159		CONDICIONS	TEMP	ERAT.	40	°C
Ó	O SOSTRE		ALTURA		0.46	15" m	٧A	CONDICIONS	PRE	SSIÓ	1,54	atm
CCI			GRUIX		5,00	mm	ROV		DEN			
RU	FONS		TIPUS		pla		(TP	DE	DENS	SITAT	921,16	Kg/m3
LSN	TONS		GRUIX		5,00	mm	EN	DISSENY				
CO	N N		VOL. UTIL	A T	38,62	m3	ISS	PRESSIO DE	HIDRA	ULICA	1,85	atm
	VOL. / PE	S	PESO (BUI	AL T)	2.825	lii5 kg	-	GRUIX DE CORR		ATICA	2	mm
		PESO (PLE))	45.520 kg			EFICÀCIA DE SO	OLDADURA		0,85	
	INSTA	L·LACIÓ			Vertical		ALLEUJAMENT	DE TENS	IONES	Si		
	AÏLLA	MENT						RADIOGRAFIAT	[Parcial	
	PINTU.	KA			DES	CRIPCIÓ			COME	INTARIS		
-	COS				SS316L							
	SOSTR	STRE/FONS			SS316L							
	BRIDE	S COS			SS316L							
S	BRIDE	S TUBULAI	OUR.		SS316L							
RIAJ	CARG	DLS/CARG.	INT.		5	SS16L						
VTEI	CARG	OLS/CARG.	EXTER.		S	SS316L						
MA	JUNTE	5 INTERIOR	S		S	SS316L						
	JUNTE	S EXTERNE	S		S	SS316L						
	PLACA	ANULAKI	FUNS		2	5310L						
	MA	ARCA	QUANT.	D (1	10.11.10.1	SERVEI			D.N.		RATING	
		E S	1	Entrada d	l'acid valèric				2"			
S		H	1	Boca d'h	ome				24"			
ION	I	E/S	1	Entrada/s	sortida de nitrog	gen			2"			
IEX		Т	1	Sensor d	e temperatura				2"			
NNO	P	VRV	1	Vàlvula c	le seguretat per	buit-sobreg	pressió		2"			
Ũ		L	1	Sensor d	e nivell	mergencia			2"			
		P	1	Sensor d	e pressió				2"			
res												
NO												

PROJECTE	Disseny d'una planta de	ESPECIFICACIÓ	N°	2
	síntesi de líquid iònic		FULL N°	2 de 2
EMPRESA	APLICAT S.L.	Tanc	DATA	08/03/2015
FABRICA			PREPARAT	Clara López
PLANTA	Liquid ionic 2- HEAPE		A PROVAT	Clara López
ÍTEM	T-101	APLICAI S.L.	Nº LINITATS	
SERVEL	1 101		Emmagatzem	top d'àcid valèria
	T F L			

		Dissenv d'un	a planta de					N°		1			
PROJEC	ГE	síntesi de lí	quid iònic		ESPECIFICACIÓ						V°	1 0	le 2
EMPRES	SA	APLICA	AT S.L.			-			DATA		08/03	/2015	
FÀBRIC	A					Tanc				PREPA	RAT	Clara	López
										REVIS	AT	Clara	López
PLANTA	A	Líquid iònic	2-HEAPE		Δ	рі іслт	T 2			APRO	VAT	Clara López	
ÍTEM		T_2	01		А	I LICAI				Nº LINI	TATS		1
	DI	1-2	01						4 11 4	1 .			
SERVI					T					Em	magatzen	hatge d'eta	anolamina
	PRODUCT				I anc emm	agatzematge							
CIÓ	TEMPERA	TURA			25.00	°C							
RA(PRESSIÓ				1,00	atm							
DPE	DENSITA	Т			1.012	kg/m3							
Ŭ	CABAL C	ÀRREGA			40	m3/h							
	CABAL D	ESCÀRREC	A			m3/h							
			TIF DIÁ METR	PUS E (int)	cilíndric			CODIS			T A DI	(50	1
	COS			E (mt.)	2,80	m		CODIS			Tanc API	650 vertica	1
			GRUIX		5.00	mm				TEMP	FRAT.	40	°C
			TIPUS		cònic	15°		CONDIC	IONS	DD	estó	1 40	
IÓ	SOSTRE		ALTURA		0,34	m	VA			PRE	5510	1,48	atm
JCC			GRUIX		5,00	mm	RO				SITAT		
IRL	FONS		TIPUS		pla		(IP	DE				998,8	Kg/m3
NS			GRUIX		5,00	mm m2	EN	DISSENY				1 79	otm
CC			VOL. UTIL	A.L.	24,33	m3	DIS	PROVA	DE	NEUM	ÀTICA	1,78	atin
	VOL / PES PES (BUIT) PES (PLE))	1.862	kg		GRUIX DE CORR		OSIÓ		2	mm
					26.366	kg		EFICÀ	CIA DE SO	OLDADU	RA	0,85	
	INSTAI	.∕LACIÓ				Vertical		ALLEU	JJAMENT	DE TENS	IONS	Si	
	AÏLLAMENT							RADIO)GRAFIA7	Γ		Parcial	
	PINTUF	RA			г	ESCRIPCIÓ				COM			
	COS				L	SS316L				COM			
	SOSTRI	E/FONS				SS316L							
	BRIDES	COS				SS304							
S	BRIDES	TUBULAD	UR.			SS304							
IAL	TUBUL	BULADURES				SS304							
TER	CARGO	LS/CARG. I	INI. EXTER	SS304									
TA	JUNTES	SINTERIOR	S	SS304									
~	JUNTES	SEXTERNE	S		SS304								
	PLACA	ANULAR	FONS		SS316L								
	МА	RCA	OUANT.			SERVEL				D.N.		RATING	
	H	El	1		Е	ntrada d'etano	lamina			2"			
		S	1		<u>s</u>	Sortida d'àcid v	valèric			2"			
]	H	1			Boca d'hor	ne			24"			
NS	E,	/S T	1		Entr	ada/sortida de	nitrogen	l		2"			
VIO	PV	r /RV	1		Vàlvula de s	seguretat per h	uit-sobre	enressió		2"			
INE	E	RV	1		Vàlvula	d'alleujament o	d'emergèr	ncia		2"			
CON		L	1			Sensor de ni	vell			2"			
Ŭ		Р	1			Sensor de pre	ssió			2"			
	H		1		Entrada d	le recirculació	d'etanola	mina		2"			
	2	52	1		Sortida c	le recirculacio	d'etanola	mina		2"			
S													
)TE													
ž													

PROJECTE	Disseny d'una planta	ESDECIFICACIÓ	N°	2
PROJECTE	iònic	ESPECIFICACIO	FULL N°	2 de 2
EMPRESA	APLICAT S.L.	Tanc	DATA	08/03/2015
FÀBRICA			PREPARAT	Clara López
PLANTA	Líquid iònic 2-		REVISAT	Clara López
	HEAPE	APLICAT S.L.	APROVAT	Clara López
ÍTEM	T-201		N° UNITATS	1
SERVEI			Emmagatzema	tge d'etanolamina
	T P S2 T P P	$E1 \qquad H \qquad $	- 51 L	

PROJE	ECTE	Disseny d'un síntesi de lí	a planta de quid iònic		ES	PECIFIC	<u>ACIÓ</u>		N⁰ FULLI	No.	1 0	1 le 2	
EMPR	ESA	APLICA	AT S.L.			-				DATA		08/03	/2015
FÀBR	ICA					Tanc				PREPA	RAT	Clara	López
DLAN	T A	T /111								REVIS.	AT	Clara	López
PLAN	IA .		2-HEAPE		A	PLICAT	S.L.			APRO	VAT	Clara López	
ÍTEN	Л	T-3	01						Nº UNITATS			1	
SER	VEI								Em	magatzen	natge de 2	-HEAPE	
	DESCRIPC	CIÓ			Tanc emma	agatzematge							
Q	PRODUCI				2-HEAPE	90							
RAC	PRESSIÓ	ATURA			25,00	atm							
DEI	DENSITA	Т			1.155	kg/m3							
U	CABAL C.	ÀRREGA				m3/h							
	CABALD	ESCARREC	GA TU		40 ailín dria	m3/h							
			TII DIÁMETR	2 <u>US</u> (E.(int.)	clindric 4 00	m		CODIS			Tanc API	650 vertica	1
	COS		ALTURA		6,00	m		CODID			14110 1 11 1		
			GRUIX		5,00	mm				TEMP	ERAT.	40	°C
	SOSTRE		TIPUS		cònic	15°	A	CONDIC	IONS	PRE	SSIÓ	1,62	atm
CIÓ			ALTURA		5.00	mm	OV						
RUC	FONG		TIPUS		pla		IPR	DE		DEN	SITAT	949,46	Kg/m3
NST	FUNS		GRUIX		5,00	mm	NY	DISSENY	ζ –				
CO			VOL. ÚTIL	<u>,</u>	70,78	m3	DISE	PRESSIÓ	DE	HIDRÀ	ULICA	1,94	atm
	VOL. / PES	5	PES (BUIT	AL	3,796	m5 kg	-	GRUIX	DECOR	ROSIÓ	ATICA	2	mm
			PES (PLE)	,	70.996	kg		EFICÀ	CIA DE SO	OLDADU	RA	0,85	
	INSTAL	.∕LACIÓ				Vertical		ALLEU	JJAMENT	DE TENS	SIONS	Si	
	AÏLLAMENT							RADIO)GRAFIA]	Γ		Parcial	
	FINION				D	ESCRIPCIÓ				COM	ENTARIS		
	COS					SS316L							
	SOSTRE	E/FONS				SS316L							
	BRIDES COS BRIDES TUBULADUR.					SS304 SS304							
VLS	TUBUL	IBULADURES				SS304							
ERL/	CARGO	LS/CARG.	INT.			SS304							
IATI	CARGO	LS/CARG.	EXTER.										
Σ	JUNTES	S EXTERNE	s s		SS304 SS304								
	PLACA	ANULAR	FONS			SS316L							
	MA	RCA	OUANT.			SERVEI		1		D.N.		RATING	
	E	E1	1		F	entrada de 2-H	EAPE			2"			
	S	51	1		S	Sortida de 2-H	EAPE			2"			
	E	H //S	1		Entra	Boca d'hor ada/sortida de	ne nitroger	1		24"			
SNC	 [Г	1		Se	ensor de temp	eratura	•		2"			
EXIC	PV	/RV	1		Vàlvula de s	eguretat per b	ouit-sobr	epressió		2"			
NNC	E	RV	1		Vàlvula	d'alleujament	d'emergè	ncia		2"			
ö	1	L P	1			Sensor de ni	ssió			2"			
	E	E2	1		Entrada	de recirculació	ó de 2-HE	EAPE		2"			
	S	\$2	1		Sortida d	le recirculació	de 2-HE	APE		2"			
S													
OTE													
ž													

PROJECTE	Disseny d'una planta de síntesi de líquid	ESPECIFICACIÓ	N°	2
	iònic		FULL N°	2 de 2
EMPRESA	APLICAT S.L.	Tanc	DATA	08/03/2015
FABRICA			PREPARAT	Clara López
PLANTA	HEAPE	ADUCATSI	APROVAT	Clara López
ÍTEM	T_301	AFLICAI S.L.	Nº UNITATS	1
SEPVET	1-501		Emmogetzerre	top de 2 LIEADE
	T ‡ F P	$E1 \qquad H \qquad H \qquad O \qquad O$	E2 L S2 L L 2	

		Dissenv d'una planta de			·	Nº	1	
PROJE	ECTE	producció de líquid		ESPECIEI	CACIÓ	IN	1	
		iònic		Lor Lon 1		FULL N°	1 de 1	
EMPR	ESA	APLICATSL				DATA	09/04/15	
EÀDDI		THE BIGATT BIB	B	escanviado	r doble-tub		Class Lánas	
FABR	ICA					PREPARAI	Clara Lopez	
DLAN	тл					REVISAT	Clara López	
PLAN	IA			APLICA	TSL.	APROVAT	Clara López	
ÍTEM		E-201				Nº LINITATS	1	
1112/1		E 201					1	
SERV	Ð	Escalfament etar	nolamina					
			CONI	DICIONS D'OPE	RACIÓ			
					TUB INTERN	TUB E	XTERN	
PROD	UCTE				Etanolamina	Ai	gua	
CABA	L TOTA	L	kg/h		2.553	8	47	
				ENTRADA	SORTIDA	ENTRADA	SORTIDA	
VAPO	R		kg/h					
LÍQUI	D		kg/h	2.553	2.553	847	847	
INCON	NDENSA	BLES	kg/h		•			
FLUID	VAPOR	ITZAT	kg/h					
FLUID	CONDE	NSAT	kg/h					
	DENS	ITAT	kg/m3	1.021		988		
Ð	VISCO	DSITAT	cP	10,10		0,55		
QU	CALC	OR ESPECÍFICA	kJ/kg°C	2,08		4,18		
LÍ	CONI	D.TÈRMICA	kcal/(h.m.°C)	· · · · ·				
	TENS	. SUPERFICIAL	N/m					
	DENS	ITAT	kg/m3					
Ď	VISCO	DSIDAD	cP					
AP	CALC	OR ESPECÍFICA	kcal/kg°C					
>	CONI	D.TÈRMICA	kcal/(h.m.°C)					
CALO	R LATEN	JT	kcal/kg					
PRESS	SIÓ OPER	ACIÓ	atm	1,80	1,53	1,0	0,95	
TEMP	ERATUR	A OPERACIÓ	°C	15,0	25,0	50,0	35,0	
VELOO	CITAT		m/s		1,1	(),5	
PÈRDU	JA DE CA	ÀRREGA Admis./Cal	atm		0,27	0	.05	
¥	SENS	IBLE	kcal/h					
TC	LATE	INT	kcal/h					
CA	TOTA	\L	kcal/h					
Embru	tament Fo	ouling	W/m2°C		0,0002	0,0	001	
ÀREA	(m2)	<u> </u>			1,31			
SOBRED	IMENSI	ONAT U calculada (W	//m2°C)		530			
			ELE	MENTS DE CON	ISTRUCCIÓ			
			n°	Dimensió (mm)	n°	Dimensió (mm)		
	Tub	intern	8		Tub extern	8		
Diàmetre	intern			29	Diàmetre extern		45	
Gruix				2	Gruix		2	
Longitud	l/tram de	tub		2.000	Longitud/tram de tub		2.000	
Longitut	efectiva/	tram de tub		1800	Longitud efectiva/tram de tub		1.800	
			ESPI	ECIFICACIÓ DE	MATERIALS			
			MATERIAL	COMENTARIS	PRES. DISSENY	5,4	atm	
TUBS	INTERNS	S	SS 316L		TEMP. DISSENY	15,00	°C	
TUBS	EXTERN	S	SS 316L		PRES. PROVA	40	atm	
COLZI	ES		SS 316L		Hidràulica			
BRIDE	ES		SS 316L		Neumàtica			
					ALLEUG. TENS.			
					RADIOGRAF.			
					ESP. CORROS.			
					EF. SOLDAD.			
					AÏLLAMENT			
					TRACTAMENT			
					DE SUPERFÍCIES			
		NOTE	S		ACCESSORIS			
1								

Disseny d'una planta						NTO	1					
PROIE	CTE	producció de líquid	F	SPECIFIC AC	IÓ	N ⁻	1					
TROJE		iònic	LA		10	FULL N°	1 de 1					
EMDD		ADLICATSI					20/04/15					
EMPR	ESA	APLICAT S.L.	Besca	nviador en e	sniral	DATA	20/04/13					
FABR	ICA		20500		spirar	PREPARAT	Clara López					
						REVISAT	Clara López					
PLAN	TA		Α.	DIICATS	т		Clara Lánaz					
,			А	PLICAI 5.	L.	AFROVAT	Clara Lopez					
ÍTEM		E-301	N° UNITATS									
SERV	EI	Escalfament líqu	d iònic									
5		Localiant infa	CONDIC		IÓ							
			CONDIC	JONS D OPERACI	ZONA DE DAG DI							
DROD	LICER			ZUNA DE PAS I	ZONA DE PAS DI	L FLUID CALENT						
PROD	UCIE			Liquid	1 ionic	Aı	gua					
CABA	L TOTAL		kg/h	4.6	567	1.9	978					
				ENTRADA	SORTIDA	ENTRADA	SORTIDA					
VAPO	R		kg/h									
LÍQUI	D		kg/h	4.667	4.667	396	396					
INCON	NDENSAL	BLES	kg/h									
FLUID	VAPORI	TZAT	kg/h									
FLUID	CONDEN	NSAT	kg/h									
	DENS	ITAT	ka/m2	1 155		988						
0	VISCO	ITAT	مn م	1,000		0.55						
5			CP	1.000		4 10						
ĴQ	CALO	DK ESPECIFICA	KJ/Kg°C	1,98		4,18						
Ц	CONE	D. I ERMICA	kcal/(h.m.°C)									
	TENS.	. SUPERFICIAL	N/m									
×	DENS	ITAT	kg/m3									
IO.	VISCO	DSIDAD	cP									
/Ał	CALO	OR ESPECÍFICA	kcal/kg°C									
-	COND	D.TÈRMICA	kcal/(h.m.°C)									
CALO	RLATEN	Т	kcal/kg									
PRESS	SIÓ OPER	ACIÓ	kg/cm2g	6.86	649	1.00	1.00					
TEMP	FRATUR	A OPFRACIÓ	<u>۹۲ اور اور اور اور اور اور اور اور اور اور</u>	20.0	25.0	50.0	30.0					
VELOC			m/s	20,0	23,0	0(p ₄					
		DDECA Admin /Cal	lif S	0,2	215	2.29	10.4					
PERDU	UA DE CA	ARREGA Admis./Cal	bar	0,	51	2,38	·10-4					
Ö	SENSI	IBLE	kcal/h									
AL	LATE	NT	kcal/h									
С	TOTA	L	kcal/h									
Factor	de fricció	5		0,2	263	0,0)24					
ÀREA	. (m2)											
RADI	EXTERN	ESPIRAL (cm)										
NOME	BRE DE V	OLTES	11									
SOBREE	DIMENSI	ONAT U calculada / U	J dissenv(W/m2K)		6	67						
			ELEMI	NTS DE CONSTR	UCCIÓ							
			Dimen	sió (m)	00010	Dimensió (m)						
	Zona f	luid fred	Dinki	510 (III)	Zona fluid calent							
Fanaida	plat		0.0	04	Espei de plet	0.0	05					
Americado	plat de mlet		0,0	22	Annelada da relat		20					
Ampiada	i de plat		l,	32 00	Ampiada de plat	9.00						
Longitud	1		9,	00	Longitud	9,	00					
Diametre	hidráulic		0,0		Diametre hidraulic	0,	01					
			ESPECI	FICACIO DEMAT	ERIALS	150						
			MATERIAL	COMENTARIS	PRES. DISSENY	15,0	atm					
PLAQ	UES		SS 316L		TEMP. DISSENY	15,0	°C					
BRIDE	ES		SS 316L		PRES. PROVA	35	atm					
					Hidràulica							
					Neumàtica							
					ALLEUG. TENS.							
					RADIOGRAF.							
					ESP. CORROS.							
					EF. SOLDAD.							
					AÏLLAMENT							
					TRACTAMENT							
					DESUPEREÍCIES							
NOTES			TES		ACCESSORIS		1					
		NU.			ACCESSONS							

PROJEC	ROJECTE Disseny d'una planta d síntesi de líquid iònic				ESH	PECIFIC	ACIÓ		N° EULL	NIO	1.4	1
EMPRE	54		PLICAT S.L.							N ⁻	20/04	/2015
EVIT KL	אפ איז	ALLCA	11 <u>5.</u> L.			Reacto	r			PAT	Clara	1 ópez
TADAC									REVIS		Clara	López
PLANT A	A	Líquid iònic	2-HEAPE		٨D		I S T		APRO	VAT	Clara López	
ÍTEM		P _1	01		Ar							
CED.									IN UNI	Daga	iá do nou	1 tuolitzo oió
SEK	DESCR	TRCIÓ			Pogogió pou	ralització				React	no de neu	Irailizacio
CIÓ	PRODI	JCTE			2-HEAPE	Tantzacio						
RA	TEMPH	ERATURA			25,00	°C						
OPE	PRESS	IÓ			1,00	atm						
	DENSI	ТАТ	TIDUC		1.155	kg/m3						
				RE(int)	1 25	m		CODIS		Norr	n DIN	
	COS		ALTURA		1,90	m	٨A	00210		1.011		
			GRUIX		5,00	mm	RO		TEMP	ERAT.	40	°C
			TIPUS		tori esfèric		ΥIF	CONDICIONS DE	PRESSIÓ)	6	atm
	SOSTRE		ALTURA	ALTURA TRUIX		m	SEN	DISSENY				
			TIPUS		tori esfèric	11111	DIS]	DENSIT A	АT	1155	Kg/m3
TRL	FONS		PROFUND	PROFUNDITAT		m			gió		2	
,SNC			GRUIX		5,00	mm		GRUIX DE CORRO	SIO		2	mm
ŭ	VOLUM		VOL. ÚTIL	, 	2,25	m3		ÍTEM			M-0.1	
	CAMISA	DE	VOL. TOT.	AL	2,70	m3	Ж	TIPUS	ECTOPE	0	turbina	
	REFRIGE	ERACIÓ LONGITUI		D	1,52	m	ĄĎ	N° PALES		3	6	
	INSTAL	LACIÓ			7-	Vertical	CI1	DIÀMETRE AGITA	ADOR		0,42	m
	AÏLLAM	ENT					A	INSTAL LACIÓ			Vertical	
	PINTUR	A			POTÈNCIA						210	W
	COS				DE	SCRIPCIO SS316I			COM	ENTARIS		
	SOSTR	E/FONS				SS316L						
	BRIDE	BRIDES COS				SS316L						
Ş	BRIDE	RIDES TUBULADUR.				SS316L						
IAL												
TER												
MA												
	MA	ARCA	QUANT.			SERVEI			D.N.		RATING	
		El	1	Entrada	d'àcid valèric				4"			
-	F	E2 PSV	1	Valvula o	d etanolamina de seguretat pe	r pressió			4 2"			
ONS		LT	1	Sensor d	le nivell	1 pressio			2"			
EXI	,	ТТ	2	Sensor d	le temperatura				2"			
NNC		M	1	Agitador	r				2"			
S		S	1	Sortida d	le líquid iònic				2"			
s												
ES												
NOTES												
NOTES												
NOTES												

PROJECTE	Disseny d'una planta de	ESPECIEICACIÓ	N°	2
PROJECTE	síntesi de líquid iònic	ESPECIFICACIO	FULL N°	2 de 2
EMPRESA	APLICAT S.L.	Reactor	DATA	08/03/2015
FÀBRICA		Keactor	PREPARAT	Clara López
PLANTA	Líquid iònic 2-		REVISAT	Clara López
érren a	HEAPE	APLICAT S.L.	APROVAT	Clara López
ITEM	R-101		N° UNITATS	1
SERVEI			Reacció	ó de neutralització
		$\left(\begin{array}{c} I \\ H \\$		

				-		Nº	1				
DDOJECTE	Disseny d'una planta		ESP	ECIFICACIÓ)		1 1 1				
PROJECTE	de produccio de					PAGINA N°	I de I				
	liquid ionic		Rom	ha centrífug	9	DATA	26/03/2015				
EMPRESA	APLICAT S.L.		Dom	ba centinug	а	PREPARAT	Clara López				
			4.00			REVISAT	Clara López				
PLANIA			AP	LICAI S.L.		APROVAT	Clara López				
ÍTEM		P-1	01								
SERVEI	Impulsió d'àcid val	èric al react	or R-101								
TIPUS		Ce	ntrífuga								
N° UNITATS			1								
CONDICI	ONS D'OPERACIÓ										
	NORMAL	2,7	m3/h								
CAPACITAT	MÀXIM	3,4	m3/h								
ALTURA DIFER	ENCIAL	5,8	m.c.l.			-					
PRESSIÓ	IMPULSIÓ	1,48	atm	1							
1100010	ASPIRACIÓ	0,97	atm			0					
	PRODUCTE	Ào	cid valèric	6		50EN					
Ð	SÓLIDS	0,00	%peso	1.1							
ILU	PRES. VAPOR	20	Pa								
Щ	TEMPERATURA	25	°C	(Ac)							
	DENSITAT	939	kg/m3								
	VISCOSITAT	2,41	cP								
NPSH	DISPONIBLE	10,9	m.c.l.		13 1						
MO	REQUERIT		m.c.l. X 70/50M	3	111						
PES	DEL	0.50	A-70/30101		F						
PENDIMENT		9,50	к <u>у</u> %								
POTÈNCIA A BS	ORBIDA	0.69	kW	1							
POTÈNCIA MO	TOR	0.37	kW								
OPERACIÓ											
CO	NNEXIONS										
RATING DE	IMPULSIÓ		#								
LES BRIDES	ASPIRACIÓ		#								
TAMANY DE	IMPULSIÓ		inch								
LES BRIDES	ASPIRACIO		inch								
MATERIAI	S / CONSTRUCCIO)			ACOB	LAMENT					
COS		Acer i	noxidable		TIPUS	6					
	TIPUS				INJECCIO DE L						
RODET	MATERIAL	Acerı	noxidable	TANCA	REFRIGERACIO						
FIX	TAMANT	Aceri	novidable		TIDUS						
FUNDA FIX		ALEI	nonuable	ACCIONAM	PROTECCIÓ						
CAMISA ESTA	TOR			neeronanii.	MARCA MODI	EL					
COIXINETS ROT	OR			AÏLLAMIENT							
COIXINETS EIX				CODI							
JUNTA											
TANCA											
ALTRES											
COMENTARIS											
Esquema del Fab	oricant PRODOMO										

						-		
	ESDECIEICACIÓ				N°	1		
PROJECTE	de producció de		ESI	PECIFICACI	5	PÀGINA Nº	1 de 1	
	líquid iònic		_			DATA	26/03/2015	
EMPRESA	APLICAT S.L.		Bom	ba dosificado	ora	PREPARAT	Clara López	
						REVISAT	Clara López	
PLANTA			A	<mark>PLICAT S.L.</mark>		APROVAT	Clara López	
ÍTEM		P-20)1					
SERVEI	Impulsió etanolar	ina al reacto	r R-101					
TIDUS	inpuisio comonin	Dos	ificadora					
Nº UNITATS		205	2					
CONDIC	CIONS D'OPERACI	Ó	2					
	NORMAL	0.72	m3/h					
CAPACITAT	MÀXIM	0,90	m3/h					
ALTURA DIFE	RENCIAL	11,5	m.c.l.					
pppagtó	IMPULSIÓ	1,94	atm					
PRESSIO	ASPIRACIÓ	0,84	atm		9	2		
	PRODUCTE	Etanola	mina		Iterat	• m 1		
0	SÓLIDS	0.00	%peso		5			
5	PRES. VAPOR	53	Pa					
E	TEMPERATURA	25	°C					
	DENSITAT	1.012	kg/m3		e an	E Gera	-	
	VISCOSITAT	25	cP				EC	
) marr	DISPONIBLE	8,8	m.c.l.		- MARININI		~	
NPSH	REQUERIT		m.c.l.			I THE		
MO	DEL	S3Ba (041	030 PVT)		2 mm			
PES		24,00	kg		Part -			
RENDIMENT			%			and and		
POTÈNCIA ABS	SORBIDA		kW					
POTÈNCIA MO	TOR	0,55	kW					
OPERACIÓ								
0	CONNEXIONS							
RATING DE	IMPULSIÓ		#					
LES BRIDES	ASPIRACIÓ		#					
TAMANY DE	IMPULSIÓ		inch					
LES BRIDES	ASPIRACIÓ		inch					
MATERIA	ALS / CONSTRUCC	IÓ			ACOBL	AMENT		
COS		Acer ir	noxidable		TIPUS			
	TIPUS				INJECCIÓ DE LÍQU	ЛD		
RODET	MATERIAL	Acer ir	noxidable	TANCA	REFRIGERACIÓ			
	TAMANY		inch		MARCA MODEL			
EIX		Acer ir	noxidable		TIPUS			
FUNDA EIX				ACCIONAM.	PROTECCIO			
CAMISA ESTA	TOR				MARCA MODEL			
COLVINETS ROT	UK			AILLAMIENT				
UNITA				CODI				
COMENTADIC								
Esquema del Fak	ricant ProMinent							
Loquenia dei l'at	meant i folyiment							
	D.					· · · · ·	N ^o	1
------------------	------------	------------	------------------	---------------	------------	-----------------------	----------------	-------------
PROJECTE	Dissen	y d'una		ESPECIFICACIÓ		PÀ GINA №	1 de 1	
TROJECTE	de líou	id iònic						1 UC 1
	- DI IG	- T G I	Bomba Helicoïdal			26/03/2015		
EMPRESA	APLICA	AT S.L.			PREPARAI	Clara Lopez		
PLANTA				А	PLICAT S.	L.	REVISAT	Clara López
fremen a			D 2	01			APROVAT	Clara Lopez
	T 1:4	1 14 11	P-3	01 T 201				
SERVEI	Impulsio	de liquid	ionic al tar	nc 1-301				
Nº UNITATS			Perista	altica				
CONDICI			<u>`</u>	1				
CONDICI	NOPM		1 73	m3/h				
CAPACITAT	MÀXI	M	2.16	m3/h				
ALTURA DIFER	RENCIAL		102,00	m.c.l.				
DDESSIÓ	IMPUI	SIÓ	11,39	atm				
PRESSIO	ASPIR	ACIÓ	0,003	atm				a)
	PROD	UCTE	2	-HEAPE			\mathcal{R}	P
Ð	SÓLID	S	0,00	%peso			∑>/ ``	
LLU.	PRES.	VAPOR	32	Pa			$\gamma $	-
Щ	TEMPER	ATURA	25	°C		シア		
	DENSI	TAT	1.155	kg/m3		NI)
	VISCO		3.000	cP			/	ľ
NPSH	DISPU		0,25	m.c.l.			14	
MODEL	Dulco	o flex DFD	a040 Prom	inent		1 A	K. Aller	V
PES		-		kg		and the second second		
RENDIMENT				%			3	
POTÈNCIA ABS	SORBIDA		1,50	kW			Ť	
POTÈNCIA MO	TOR			kW				
OPERACIO		NC						
	IMPLIES	NS IÓ		#				
LES BRIDES	ASPIRA			#				
TAMANYDE	IMPLIES	ió		inch				
LES BRIDES	ASPIRA	CIÓ		inch				
MATERIAI	S / CONS	STRUCC	Ó			ACOBI	LAMENT	
COS			Acer in	oxidable		TIPUS		
	TIPUS					INJECCIÓ DE LÍQ	UID	
RODET	MATERI	AL	Acer in	oxidable	TANCA	REFRIGERACIÓ		
EIV	TAMAN	Y	A `	inch		MARCA MODEL		
EIA FUNDA FIX			Acer in	UNICADIE	ACCIONAM	PROTECCIÓ		
CAMISA ESTA	TOR				ACCIONAIN.	MARCA MODEL		
COIXINETS ROT	OR				AÏLLAMIENT			
COIXINETS EIX					CODI			
JUNTA								
TANCA								
ALTRES								
COMENTARIS	wigger + D	Minant						
Esqueina del Fat	meant Pro	nvinent						

	Disseny d'una planta	ESPECIFICACIÓ				N°	1
PROJECTE	de producció de		LSFL			PÀGINA Nº	1 de 1
	líquid iònic	Bomba Centrífuga				DATA	26/03/2015
EMPRESA	APLICAT S.L.	DUIIDa		a Centinuga		PREPARAT	Clara López
PLANTA			API	JCAT S.L.		REVISAT	Clara López Clara López
ÍTEM			P-201.0				
SERVEI	Impulsió etanolar	nina recir	culació T-201				
TIPUS	x		Centrífuga				
N° UNITATS			1				
CONDICI	ONS D'OPERACIÓ						
CAPACITAT	NORMAL	2,5	m3/h				
Chindini	MÀXIM	3,2	m3/h				
ALTURA DIFER	ENCIAL	9,5	m.c.l.			-	
PRESSIÓ		1,80	atm			5 0	
	BRODUCTE	0,89	Etonolomino			04	
2		0.00	Etanoianiina			DO DE	-
E E	SOLIDS	0,00	%peso	0,		No.	
E	TEMPERATURA	25	Pa °C				M L
	DENSITAT	1.012	kg/m3				
	VISCOSITAT	25	cP	W.			
NIDCH	DISPONIBLE	9,3	m.c.l.		- 1m		
NPSH	REQUERIT		m.c.l.		191		
MO	DEL		CCX-70/50M				
PES		9,50	kg				
RENDIMENT		54	%				
POTENCIA ABS	ORBIDA	0,69	kW				
OPERACIÓ		0,37	kW				
CO	NNEXIONS						
RATINGDE	IMPULSIÓ		#				
LES BRIDES	ASPIRACIÓ		#				
TAMANY DE	IMPULSIÓ		inch				
LES BRIDES	ASPIRACIÓ		inch				
MATERIAI	<mark>S / CONSTRUCCIÓ</mark>)			ACOB	LAMENT	
COS			Acer inoxidable		TIPUS	(or m.	
DODET	TIPUS		A · · · 1 1 1	TANGA	INJECCIO DE L		
RODEI	MAIERIAL TAMANY		Acer moxidable	IANCA	MARCA MOD	J FI	
EIX			Acer inoxidable		TIPUS		
FUNDA EIX				ACCIONAM.	PROTECCIÓ		
CAMISA ESTA	TOR		_		MARCA MODI	EL	
COIXINETS ROT	OR			AÏLLAMIENT			
COIXINETS EIX			CODI				
JUNTA							
TANCA							
ALIRES							
Esquema del Fab	ricant PRODOMO						
Esquenia del l'at							

	D	11				,	N°	1
PROJECTE	nlanta de i	y u una producció		ESPECIFICACIO		PÀGINA №	1 de 1	
TROJECTE	de líqui	d iònic	Derske Hellerödel		DATA	26/03/2015		
EMPRESA	A PLIC	ATSI	Bomba Helicoïdal		PREPARAT	Clara López		
	711 LAC	TT D.L.			PEVISAT	Clara López		
PLANTA				A	PLICAT S.	L.	APROVAT	Clara López
ÍTEM			P-30	1.0				
SERVEI	Impul	lsió IL rec	irculació T	-301				
TIPUS			Perist	àltica				
Nº UNITATS				1				
CONDICI	ONS D'O	PERACIÓ)					
	NORM	AL	4,04	m3/h				
CAFACITAT	MÀXI	М	5,05	m3/h				
ALTURA DIFER	RENCIAL		61,05	m.c.l.				
PRESSIÓ	IMPUL	SIO	6,86	atm				<i>.</i>
	ASPIR	ACIO	0,06	atm		-		• •
	PROD	UCTE	2	-HEAPE				ľ
Ð	SÓLID	S	0,00	%peso			O/	
ELC .	PRES.	VAPOR	32	Pa			γ α	-
	TEMPER	ATURA	25	°C		$\supset \mathcal{A}$	1 10	
	DENSI		1.155	kg/m3		. 81		1 9
	DISPO	NIBLE	0.79	mcl				
NPSH	REQUE	RIT	0,77	m.c.l.			125	
MODEL	Dulco	flex DFC	a070 Prom	inent		a state of the sta		Ť
PES				kg				
RENDIMENT				%			\sim	
POTÈNCIA ABS	SORBIDA		2,20	kW			-	
POTÉNCIA MO	TOR			kW				
OPERACIO	NNEXIO	NS						
RATINGDE		Ó		#				
LES BRIDES	ASPIRAC	CIÓ		#				
TAMANY DE	IMPULSI	Ó		inch				
LES BRIDES	ASPIRAC	CIÓ		inch				
MATERIAI	S / CONS	STRUCC	Ó			ACOBI	AMENT	
COS			A cer in	oxidable		TIPUS		
	TIPUS					INJECCIÓ DE LÍQ	UID	
RODET	MATERI	AL	Acer in	oxidable	TANCA	KEFRIGERACIO		
FIX	TAMAN	I	Acerin	inch oxidable		TIPUS		
FUNDA FIX			/ seer III	GAGGOIC	ACCIONAM	PROTECCIÓ		
CAMISA ESTA	TOR					MARCA MODEL		
COIXINETS ROT	OR				AÏLLAMIENT			
COIXINETS EIX					CODI			
JUNTA								
TANCA								
ALIKES								
Esquema del Fab	ricant Pro	Minent						

3. <u>CONTROL I INSTRUMENTACIÓ</u>

3.1. Objectiu, característiques i tipus de sistema de control

L'operació de producció de líquid iònic en les condicions desitjades s'aconsegueix mitjançant un bon sistema de control. Aquest és un software informàtic que rep la informació del conjunt de sistemes de mesures, les quals són transformades en senyals que seguidament són dirigides als actuadors finals, com poden ser bombes, vàlvules entre altres. L'objectiu és proporcionar en temps real la informació de les diverses variables mesurades en el procés de producció de líquid iònic. I també, controlar variables d'interès, com poden ser temperatura de reactor. El sistema de control és de llaç simple on cada variable mesurada, és controlada només amb una variable manipulable. En concret és control feedback. Aquest control consisteix en mesurar una variable controlada, és comparada amb el valor de consigna o *set-point* i actua sobre una variable manipulada, en el procés de producció. I l'altre és control *On-off*: tipus de control feedback caracteritzat pel fet que només engloba dos estats d'actuació per mantenir el *set-point*, obrint o tancant totalment la vàlvula de control. Aquest control és establert en la descàrrega del producte format, líquid iònic, del reactor R-101.

3.2. <u>Tipus de senyals</u>

El tipus de senyals associades als diversos equips i instrumentació amb les quals treballa el sistema de control. Les senyals d'entrada/sortida (I/O) estan detallades als diagrames *P&ID's*. El criteri seguit és el següent:

 Motors: senyal digital de sortida (posada en marxa i apagament) i senyal analògica de sortida.

- Vàlvules de control i vàlvules de procés: senyal analògica de sortida
- Indicador: senyal analògica d'entrada
- Transmissors: senyal analògica d'entrada

A continuació es presenta un exemple per tal d'entendre el llaç de control. Els llaços de control es poden consultar als diagrames al capítol 9 Diagrames.

Com es pot veure a la Figura 3.2.1, la variable controlada és la pressió a la sortida de la bomba, per tant, la nomenclatura de l'instrument és PT, i el valor x201.0 és el valor fixat en aquest cas. El número 201 és la zona d'emmagatzematge del tanc T-201 i .0 indica que és el circuit secundari de bescanvi de calor del tanc T-201. Enlloc de representar línies discontínues en els diagrames P&ID s'associa el mateix valor a la bomba (P). L'altre valor que apareix, XX2, també indica que aquesta bomba també actuarà en funció de la variable controlada que té de valor XX2, que tal i com es pot observar al P&ID, correspon a la variable controlada de temperatura del tanc T-201. Per tant, aquesta bomba regula el cabal a recircular en funció de la temperatura del tanc d'emmagatzematge i de la pressió a la qual circula el fluid.

Figura 3.2.1. Exemple de llaç de control del tanc T-201 de la instal·lació industrial.

3.3. Llaços de control de la planta química

3.3.1. Llaç de control del tanc d'emmagatzematge T-101

Els llaços de control establerts pels tanc d'emmagatzematge T-101 són:

Tanc d'emmagatzematge T-101					
Variable controlada	Variable manipulada	Tipus de llaç	Equip/instrument a actuar		
Nivell de líquid	Cabal d'entrada/ sortida	Feedback	Bomba P-101/ Bomba P-E101 Vàlvula manual		
Pressió	Cabal de nitrogen	Feedback	Vàlvula de cabal FVX1O/ Vàlvula de cabal FVX1I		

Taula 3.3.1. Llaç de control del tanc d'emmagatzematge T-101.

El tanc d'emmagatzematge d'àcid valèric T-101 disposa de sistemes de seguretat, una vàlvula de seguretat per buit-sobrepressió (PVRV) i una vàlvula de buit i sobrepressió d'emergència (ERV).

3.3.2. Llaç de control per a la càrrega del reactiu àcid valèric al reactor R-101

Els llaços de control establerts per a la càrrega d'àcid valèric al reactor R-101 són:

	1	01.		
Càrrega d'àcid valèric del tanc T-101 al reactor R-101				
Variable controlada	Variable manipulada	Tipus de llaç	Equip/instrument a actuar	
Nivell de líquid del reactor R- 101	Cabal de sortida del tanc T-101	Feedback	Bomba P-101	
Cabal d'àcid valèric		Feedback	Vàlvula de cabal FVX02	
Pressió d'impulsió de l'àcid valèric	Cabal d'entrada al reactor R-101	Feedback	Bomba P-101	
Temperatura del reactor R-101	Cabal d'aigua del sistema de refrigeració/escalfament	Feedback	Vàlvula FVx09	

Taula 3.3.2. Sistema de control de la càrrega d'àcid valèric del tanc T-101 al reactor R-101

3.3.3. Llaç de control del tanc T-201

Els llaços de control establerts del tanc T-201 són:

Taula 5.5.5. Elaç de control del talle d'elinnagatzematge 1-201.					
	Tanc d'emmagatzematge T-201				
Variable controlada	Variable manipulada	Tipus de llaç	Equip/instrument a actuar		
Nivell de líquid	Cabal d'entrada al tanc T-201 Cabal de sortida del tanc T-201	Feedback Feedback	Bomba P-E201 Bomba P-201A/B Vàlvula manual		
Pressió	Cabal de nitrogen	Feedback	Vàlvula de cabal FVX2O/FVX2I		
Temperatura	Cabal d'aigua del sistema d'escalfament	Feedback	Vàlvula de cabal FVXX2O		

Taula 3.3.3. Llaç	de control del	tanc d'emmag	gatzematge	T-201

El tanc d'emmagatzematge d'etanolamina T-201 disposa de sistemes de seguretat, una vàlvula de seguretat per buit-sobrepressió (PVRV) i una vàlvula de buit i sobrepressió d'emergència (ERV).

3.3.4. Llaç de control per a la dosificació del reactiu etanolamina al reactor R-101

Els llaços de control per a la dosificació de l'etanolamina al reactor R-101 són:

		101.		
Càrrega d'àcid valèric del tanc T-101 al reactor R-101				
Variable controlada	Variable manipulada	Tipus de llaç	Equip/instrument a actuar	
Cabal d'etanolamina	Cabal d'entrada al reactor R-101	Feedback	Bomba P-201A/B	
Pressió d'impulsió d'etanolamina	Cabal d'etanolamina	Feedback	Bomba P-201/B	

Taula 3.3.4. Sistema de control de la dosificació d'etanolamina del tanc T-201 al reactor R-101

3.3.5. Llaç de control del reactor R-101

Els llaços de control del reactor R-101 són:

	Taula 3.3.5. Sistema de control del reactor R-101.				
Càrrega d'àcid valèric del tanc T-101 al reactor R-101					
Variable controlada	Variable manipulada	Tipus de llaç	Equip/instrument a actuar		
Temperatura	Cabal d'aigua de refrigeració del reactor R-101	Feedback	Vàlvula FVX06.1.2		
Nivell de líquid	Cabal d'etanolamina	Feedback	Bomba P-201A/B		

Taula 3.3.5. Sistema de control del reactor R-101.

3.3.6. Descàrrega del producte del reactor R-101

Els llaços de control de la descàrrega del producte del reactor R-101 són:

140	Deseñveran del reactor D 101 d'àcid valària				
Variable controlada	Variable manipulada	Tipus de llaç	Equip/instrument a actuar		
Nivell de líquid	Cabal de líquid iònic	On-off	FV.3X03 P-301		
Cabal		Feedback	FVX07		

Taula 3.3.6. Sistema de control de la descàrrega del reactor R-101.

3.3.7. Llaç de control del tanc d'emmagatzematge T-301

Els llaços de control del tanc d'emmagatzematge T-301 són:

Tanc d'emmagatzematge T-301				
Variable controlada	Variable manipulada	Tipus de llaç	Equip/instrument a actuar	
Nivell de líquid	Cabal d'entrada al tanc T-301	Feedback	Bomba P-E301 Bomba P-301	
Three as near	Cabal de sortida del tanc T-301	Feedback		
Pressió	Cabal de nitrogen	Feedback	Vàlvula de cabal FVX3O/FVX3I	
Temperatura	Cabal d'aigua del sistema d'escalfament	Feedback	Vàlvula de cabal FVXX3O	

Taula 3.3.7. Llaç	de control de	l tanc d'emma	gatzematge T-301
-------------------	---------------	---------------	------------------

3.3.8. Descàrrega del tanc T-301

Els llaços de control de la descàrrega del tanc T-301:

Taula 3.3.8 Sistema de control de la descàrrega del tanc T-301.											
	Descàrrega del tanc T-301 de líquid iònic										
Variable controlada	Variable manipulada	Tipus de llaç	Equip/instrument a actuar								
Nivell de líquid	Cabal de líquid iònic	Feedback	P-E301 Vàlvula manual								
Pressió	Cabal de líquid iònic	Feedback	P-E301								

3.4. Llistat dels elements finals de control i de la instrumentació de la instal·lació industrial

	Quantitat d'instrumentac	ió en cada I	P&ID	
Taula 3.4.1.Tip	us d'instruments i quantitat c	le la planta d	le producció	de líquid iònic.

Quantitat a	moti unicitae			
Tipus instrument	100	101	102	103
Vàlvula neteja amb N2	9	4	8	7
Vàlvula anti-retorn	3	1	2	1
Vàlvula de comporta	1	0	0	0
Vàlvula manual	18	6	12	9
Vàlvula de globus	2	0	0	0
Vàlvula de papallona	9	3	5	5
Vàlvula de tres vies	2	0	2	0
Emergency relief valve	3	1	1	1
Pressure vacuum relief valve	3	1	1	1
Pressure safety valve	1	0	1	1
Transmissor de pressió	6	2	5	3
Transmissor de nivell	4	1	1	1
Transmissor de temperatura	3	0	0	0
Transmissor de cabal	3	0	0	0
Indicador de temperatura	3	1	1	1
TOTAL	70	20	39	29

*Els instruments establerts poden estar comptats més d'una vegada si apareixen en diversos diagrames P&ID.

4. CANONADES, VÀLVULES, BOMBES I ACCESSORIS

4.1. Característiques de les canonades i llistat

Els materials de les canonades s'han escollit en funció de les propietats dels reactius i producte tractats i de les condicions en què són tractats, com són pressió i temperatura. Es detallen les línies de procés mitjançant les seves condicions de treball, pressió, temperatura, classe de fluid i estat d'aquest. Pel seu disseny s'ha seguit la normativa ANSI ja que aquest codi accepta l'ús d'acers inoxidables. El procediment de càlcul es pot trobar de forma detallada a al capítol Annexos, apartat A.6. Cada línia de procés té una nomenclatura la qual està formada per lletres i números. Es pot veure que totes les canonades presenten quatre grups. El primer grup indica el diàmetre exterior de la canonada. El valor d'aquest es troba en mm. Un cop suposada una velocitat de disseny del fluid i el cabal a tractar es calcula el diàmetre intern mínim requerit i a continuació es pot procedir a buscar canonades estandarditzades, i en les taules corresponents obtenir el diàmetre exterior i gruix de cadascuna de les canonades. El segon grup està format per lletres i números. Concretament les dues primeres lletres fan referència al tipus de material, SS indica que la canonada està construïda amb acer inoxidable i el número juntament amb una lletra (316L) que segueix és una varietat del material escollit. El tercer grup indica el fluid que circula a través de la canonada. I el quart grup indica el número de línia. Per exemple, la canonada 28-SS316L-VA-100.2, és de 28 mm de diàmetre exterior, construïda amb acer inoxidable, concretament del model 316L, per on circula àcid valèric i 100.2 és el número que permet identificar cada canonada del procés.

A continuació es presenta el llistat de canonades del procés en el qual es pot trobar el diàmetre exterior, gruix, el fluid i l'estat d'aquest que contenen, la temperatura i pressió d'operació entre altres.

45 - 148

Taula 4.1.1. Llistat de canonades de la planta química.

REV	Núm. de línia	Diàmetre exterior (mm)	Gruix (mm)	P&ID	Inici	Final	Fluid	Fase del fluid a condicions normals d'operació	Temp. Normal d'operació (°C)	Pressió normal d'operació (abs) (atm)
Disseny	Procés	Procés	Canonada	Procés	Canonada	Canonada	Procés	Procés	Procés	Procés
-	100.1	33	1	100	Tanc T- 101	Bomba P- 101	Àcid valèric	Líquid	25	0,97
-	100.2	28	1	100	Bomba P- 101	Reactor R-101	Àcid valèric	Líquid	25	1,48
-	100.3	20	1	100	Tanc T- 201	Vàlvula V3/2-201	Etanolamina	Líquid	25	0,84
-	100.4	20	1	100	Vàlvula V3/2-2.1	Bomba P- 201A	Etanolamina	Líquid	25	0,84
-	100.5	20	1	100	Vàlvula V3/2-2.1	Bomba P- 201B	Etanolamina	Líquid	25	0,84

46 - 148

Núm. de línia	Temp. de disseny (°C)	Pressió de disseny (abs) (atm)	Temperatura especial d'operació (°C)	Pressió especial d'operaci ó (atm)	Pressió màxima de treball (abs) (atm)	Material	Gruix (mm)	Comentaris	Llargada (m)	Densitat (Kg/m ³)
Procés	Procés	Procés	Procés	Procés	Canonada	Disseny	Disseny	Canonada	Disseny	Procés
100.1	93,33	2,91	-	-	56,3	SS316L	0,068	Nova línia	3	939
100.2	93,33	4,43	-	-	66,6	SS316L	0,081	Nova línia	17	939
100.3	93,33	2,51	-	-	94,3	SS316L	0,037	Nova línia	2	1012
100.4	93,33	2,51	-	-	94,3	SS316L	0,037	Nova línia	1,5	1012
100.5	93,33	2,51	-	-	94,3	SS316L	0,037	Nova línia	1,5	1012

Continuació Taula 4.1.1. Llistat de canonades de la planta química.

Continuació Taula 4.1.1. Llistat de canonades de la	planta química.
---	-----------------

REV	Núm. de línia	Diàmetre exterior (mm)	Gruix (mm)	P&ID	Inici	Final	Fluid	Fase del fluid a condicions normals d'operació	Temp. Normal d'operació (°C)	Pressió normal d'operació (abs) (atm)
Disseny	Procés	Procés	Canonada	Procés	Canonada	Canonada	Procés	Procés	Procés	Procés
-	100.6	18	1	100	Bomba P- 201A	Vàlvula V3/2-2.2	Etanolamina	Líquid	25	1,94
-	100.7	18	1	100	Bomba P- 201B	Vàlvula V3/2-2.2	Etanolamina	Líquid	25	1,94
-	100.8	18	1	100	Vàlvula V3/2-2.2	Reactor R- 101	Etanolamina	Líquid	25	1,94
-	100.9	35	0,8	100	Reactor R- 101	Bomba P- 301	Líquid iònic	Líquid	25	338 (Pa)
-	100.10	32	1	100	Bomba P- 301	Гапс Т-301	Líquid iònic	Líquid	25	11,39

Núm. de línia	Temp. de disseny (°C)	Pressió de disseny (abs) (atm)	Temperatura especial d'operació (°C)	Pressió especial d'operaci ó (atm)	Pressió màxima de treball (abs) (atm)	Material	Gruix (mm)	Comentaris	Llargada (m)	Densitat (Kg/m³)
Procés	Procés	Procés	Procés	Procés	Canonada	Disseny	Disseny	Canonada	Disseny	Procés
100.6	93,33	5,81	-	-	105,3	SS316L	0,068	Nova línia	8	1012
100.7	93,33	5,81	-	-	105,3	SS316L	0,068	Nova línia	8	1012
100.8	93,33	5,81	-	-	105,3	SS316L	0,068	Nova línia	10	1012
100.9	93,33	0,01	-	-	42,2	SS316L	$2,33.10^{-4}$	Nova línia	1,25	1155
100.10	93,33	34,18	-	-	58,1	SS316L	0,621	Nova línia	8	1155

Continuació Taula 4.1.1. Llistat de canonades de la planta química.

49 - 148

REV	Núm. Diàmetre Gruix P&ID Inici de línia (mm) (mm)		Final	Fluid	Fase del fluid a condicions normals d'operació	Temp. Normal d'operació (°C)	Pressió normal d'operació (abs) (atm)			
Disseny	Procés	Procés	Canonada	Procés	Canonada	Canonada	Procés	Procés	Procés	Procés
-	100.001	32	1	101	Tanc T-201	Bomba P- 201A.0	Etanolamina	Líquid	25	0,87
-	100.002	29	1	101	Bomba P- 201A.0	Bescanviador de calor E-201	Etanolamina	Líquid	25	1,80
-	100.003	32	1	101	Bescanviador de calor E-201	Tanc T-201	Etanolamina	Líquid	25	1,53

Continuació Taula 4.1.1. Llistat de canonades de la planta química.

Continuació Taula 4.1.1. Llistat de canonades de la planta quín	nica
---	------

REV	Núm. de línia	Diàmetre exterior (mm)	Gruix (mm)	P&ID	Inici	Final	Fluid	Fase del fluid a condicions normals d'operació	Temp. Normal d'operació (°C)	Pressió normal d'operació (abs) (atm)
Disseny	Procés	Procés	Canonada	Procés	Canonada	Canonada	Procés	Procés	Procés	Procés
-	100.004	50,8	1	104	Tanc T-301	Bomba P-301.0	Líquid iònic	Líquid	25	0,06
-	100.005	48	1	104	Bomba P- 301.0	Bescanviador de calor E-301	Líquid iònic	Líquid	25	6,86
-	100.006	48	1	104	Bescanviador de calor E-301	Tanc T-301	Líquid iònic	Líquid	25	6,50

Núm. de línia	Temp. de disseny (°C)	Pressió de disseny (abs) (atm)	Temperatura especial d'operació (°C)	Pressió especial d'operació (atm)	Pressió màxima de treball (abs) (atm)	Material	Gruix (mm)	Comentaris	Llargada (m)	Densitat (Kg/m³)
Procés	Procés	Procés	Procés	Procés	Canonada	Disseny	Disseny	Canonada	Disseny	Procés
100.004	93,33	0,19	-	-	36,2	SS316L	0,006	Nova línia	1,25	1155
100.005	93,33	20,58	-	-	38,4	SS316L	0,544	Nova línia	5	1155
100.006	93,33	19,49	-	-	38,4	SS316L	0,515	Nova línia	5	1155

Continuació Taula 4.1.1. Llistat de canonades de la planta química.

S'identifiquen tots els tipus de vàlvules de la instal·lació atenent al seu mecanisme de funcionament. Es classifiquen com a regulació, si regulen cabal obtenint-se diferents graus d'obertura i, de tall de flux ("tot-res"), que tenen únicament dos posicions les quals són contràries. O es troben totalment tancades o bé, totalment obertes. I segons com s'accionen poden classificar-se com manuals, requereixen ser accionades directament per una persona. Es disposa d'aquestes vàlvules ja que permeten aïllar els diversos equips de la resta del sistema, o bé també per seguretat en cas que alguna vàlvula accionada automàticament fallés. I les vàlvules accionades pel sistema de control que està instal·lat a la planta. A la Taula 4.2.1 es presenta la classificació de les vàlvules de la instal·lació industrial atenent al criteri de funcionament:

Taula 4.2.1. Classificació de les vàlvules de la instal·lació industrial segons el seu mecanisme de funcionament.

Vàlvula	Funcionament	
Per a neteja amb nitrogen (Accessori)	Regulació	
Anti-retorn	"tot-res"	
Comporta	"tot-res"	
Manual	"tot-res"	
Globus	Regulació	
Papallona	Regulació	
De tres vies	"tot-res"	
Pressure safety valve	"tot-res"	
Emergency relief valve	"tot-res"	
Pressure vacuum relief valve	"tot-res"	

4.3. Justificació d'equips d'impulsió

4.3.1. Selecció del tipus de bombes i instal·lació

Per a l'elecció del tipus de bombes s'han tingut en compte els diversos mecanismes de funcionament que poden presentar-se, així com les propietats dels fluids a impulsar.

- Per impulsar l'àcid valèric al reactor R-101, s'ha optat per una bomba centrífuga ja que aquesta permet treballar amb fluids incompressibles i, a més, per la funció que ha de realitzar, que és transportar el reactiu des del tanc T-101 fins al reactor R-101, és adient degut a que la funció general d'aquest tipus d'equip és bombejar líquids. També es disposa d'una bomba centrífuga auxiliar per carregar el tanc T-101.

- Per impulsar l'etanolamina, en aquest cas s'ha considerat com a criteri principal per a l'elecció de la bomba el seu mecanisme de funcionament. Com l'objectiu és bombejar de forma dosificada el reactiu des del tanc T-201 fins al reactor R-101, s'ha escollit una bomba dosificadora. En canvi, per a la recirculació d'aquest fluid en el circuit secundari del tanc T-201, s'ha escollit una bomba centrífuga. Per a la càrrega d'etanolamina al tanc T-201 també és disposa d'una bomba centrífuga.

- I per tractar el líquid iònic, en aquest cas el criteri principal a considerar ha estat la seva elevada viscositat. Així s'ha elegit una bomba peristàltica. Es disposarà de tres bombes d'aquest model, una per a la càrrega del tanc T-301, una altra pel circuit secundari del mateix dipòsit i una tercera per a la descàrrega del dipòsit.

Totes les bombes de la planta química han d'estar instal·lades a nivell de terra, sobre una placa de formigó que sigui completament llisa i que no presenti desnivells de manera que l'eix del motor i la bomba es mantinguin alineats. Aquesta placa elevarà uns centímetres la bomba del terra. Aquesta placa de formigó ha de tenir la capacitat suficient d'absorbir qualsevol tipus de vibració i formar un suport rígid i permanent per a l'equip d'impulsió. Com a norma general el seu pes ha de ser entre 2 i 3 vegades el pes de la bomba (ref. 13). El nivell de soroll de bombeig dels líquids no ha superar un màxim de 90 dB a un metre de distància (ref. 14).

4.3.2. Nomenclatura

4.3.2.1 Bombes de zona de procés

Les bombes de la zona de procés són les que estan instal·lades en les canonades que contenen els fluids que es dirigeixen des dels tancs d'emmagatzematge fins al reactor R-101,

àcid valèric i etanolamina, i una tercera bomba situada a la canonada que connecta el reactor R-101 amb el tanc T-301, que conté líquid iònic. La nomenclatura d'aquestes bombes està formada per una lletra seguida d'un nombre. La lletra indica l'equip, en aquest cas, tots els equips d'impulsió del procés són bombes i, per tant, s'associa la lletra P, i el nombre que segueix indica en quina part de la zona dels tancs d'emmagatzematge es troba. Si és 101, es troba a la zona més propera al tanc d'emmagatzematge T-101, si és 201, la bomba se situa a la zona propera al tanc d'emmagatzematge T-201 i 301, propera a la zona del tanc d'emmagatzematge 301. Per exemple, P-201A/B, es tracta d'una bomba situada a prop del tanc d'emmagatzematge 201, concretament en la canonada que conté etanolamina, que connecta aquest dipòsit amb el reactor R-101. En aquest cas, A/B indica que es disposa de dues bombes idèntiques. En cas que fallés una d'aquestes, encara es disposa de l'altra.

4.3.2.2 Bombes del circuit secundari dels tancs d'emmagatzematge

Cadascuna de les bombes que està instal·lada en el circuit secundari d'un dels tancs d'emmagatzematge segueix la mateixa nomenclatura que per a les bombes de zona de procés però es distingeixen en el fet que s'hi afegeix un tercer valor, 0. Per exemple, P-201.0, és una bomba situada en el circuit secundari de control de temperatura del tanc d'emmagatzematge T-201.

4.3.2.3 Bombes per a càrrega i descàrrega

Les bombes per a la càrrega dels reactius als corresponents tancs d'emmagatzematge i per descarregar el producte s'anomenen de manera que en primer lloc apareix una lletra, P, la qual indica quin tipus d'equip és, una bomba, seguit d'una altra lletra, E, que fa referència a l'operació de càrrega/descàrrega i seguida d'un número, el qual indica quin és el tanc que s'està carregant/descarregant. Per exemple, P-E101 es tracta d'una bomba situada en una canonada auxiliar que es connecta amb el tanc T-101 per tal de carregar el reactiu a aquest dipòsit.

5. <u>SEGURETAT I HIGIENE</u>

5.1. Introducció

La seguretat i higiene són dos objectius bàsics i de gran importància a la indústria. Es tracta de la prevenció d'accidents que poden causar danys a persones, instal·lacions o al medi ambient com també les mesures d'actuació que permeten minimitzar els efectes de possibles accidents.

5.2. Normativa d'aplicació

5.2.1. Legislació general

 Llei 31/01/1995 del 8 de novembre, de Prevenció de Riscos Laborals (B.O.E. de 3de desembre).

- R.D. 1627/1997, del 24 d'octubre sobre Seguretat, Salut i Medicina en el Treball.

- R.D. 379/2001, del 6 d'abril, pel que s'aprova el Reglament d'emmagatzematge de productes químics i les seves instruccions tècniques complementàries ITC-MIE-APQ-1, ITC-MIE-APQ-2, ITC-MIE-APQ-3, ITC-MIE-APQ-4,ITC-MIE-APQ-5, ITC-MIE-APQ-6, ITC-MIE-APQ7 .B.O.E número 112 del 10 de maig de 2001.

5.2.2. Prevenció d'incendis

- R.D. 2267/2004, del 3 de desembre, pel que s'aprova el Reglament de seguretat contra incendis en establiments Industrials.

56 - 148

- R.D. 1942/1993, del 5 de desembre pel que s'aprova el Reglament d'instal·lacions de protecció contra incendis

- R.D. 314/2006, del 17 de març, pel que s'aprova el Codi Tècnic d'Edificació, en el que es contemplen les exigències bàsiques de seguretat en caso d'incendis "SI".

5.2.3. Maquinària

- R.D. 1495/1986 del 26 de maig, Reglament de Seguretat en les Màquines (B.O.E. del 21 de juliol de 1986). Modificat en el B.O.E. del 4 d'octubre de 1986.

- R.D. 773/1997 del 30 de maig sobre Disposicions Mínimes de Seguretat i Salut relatives a la Utilització pels Treballadors d'Equips de Protecció Individual.

5.3. Principals riscos de la instal·lació industrial

Els principals riscos que es poden produir en aquesta instal·lació industrial són explosions i incendis. Un incendi és un foc no controlat de grans dimensions el qual provoca danys materials, personals i ambientals. En la instal·lació industrial es tracta amb productes combustibles, àcid valèric i etanolamina. Els efectes que pot causar un incendi poden ser calor, en general en forma de radiació, fums asfixiants i/o tòxics i ones de sobrepressió en condicions d'acceleració de la velocitat de reacció. Una explosió és el fenomen en què s'allibera una gran quantitat d'energia en un temps tan breu que genera una ona de pressió. Es caracteritzen per anar acompanyades d'elevades temperatures i alliberació de gasos. Els diferents tipus d'explosió existent són de vapors confinats, de vapors no confinats i explosions per l'expansió de vapors d'un líquid en ebullició.

5.4. Disponibilitat d'espai i condicions ambientals de les zones de treball

En el procés de construcció de la instal·lació industrial s'ha de seguir una normativa aplicable a tota l'àrea de producció. Atenent al Real Decret RD 486/1997 s'han de tenir en compte les zones de pas, sortides i vies de circulació previstes per a l'evacuació en casos d'emergència, sense obstacles que puguin dificultar la seva operació. Els llocs de treball, equips, instal·lacions i altres s'hauran de netejar periòdicament per tal de mantenir-los en unes condicions higièniques adequades. Les condicions ambientals de les zones de treball no han de causar un efecte negatiu en aquests. S'han de mantenir unes condicions de temperatura, humitat i ventilació correctes en el lloc de treball atenent a l'Annex III del RD 486/1997.

5.5. Substàncies químiques

Les substàncies químiques es classifiquen atenent a la normativa Reglament d'emmagatzematge de productes químics APQ-1 ("emmagatzematge de líquids inflamables i combustibles"). Segons aquesta normativa l'àcid valèric i l'etanolamina són combustibles, pertanyent a la Classe C (Productes el punt d'inflamació dels quals està entre 55°C i 100°C).

5.5.1. Fitxes de seguretat de les substàncies químiques de la planta

A continuació es presenten les fitxes de seguretat de les substàncies químiques de la planta, àcid valèric i monoetanolamina. Les fitxes de seguretat inclouen informació com la identificació de la substància, identificació de perills, primers auxilis, manipulació i vessament, propietats físico-químiques entre altres.

ACIDO VAL	ERICO			ICSC: 0346				
 Image: A state of the state of								
TIPOS DE PELIGRO/ EXPOSICION	PELIGROS/ SINTOMAS AGUDOS	PREVENCION	PRIMEROS AUXILIOS/ LUCHA CONTRA INCENDIOS					
INCENDIO	Combustible.	Evitar las llamas.	Polvo, agua pulverizada, espuma, dióxido de carbono.					
EXPLOSION	Por encima de 86°C pueden formarse mezclas explosivas vapor/aire.	Por encima de 86°C, sistema cerrado, ventilación.						
EXPOSICION		¡EVITAR TODO CONTACTO!	¡CONSULTAR AL MEDICO EN TODOS LOS CASOS!					
• INHALACION	Sensación de quemazón. Tos. Dolor de garganta.	Ventilación, extracción localizada o protección respiratoria.	Aire limpio, reposo. Proporcionar asistencia médica.					
• PIEL	Enrojecimiento. Quemaduras cutáneas. Dolor.	Guantes protectores. Traje de protección.	Quitar las ropas contaminadas. Aclarar la piel con agua abundante o ducharse. Proporcionar asistencia médica.					
• OJOS	Enrojecimiento. Dolor. Quemaduras profundas graves.	Pantalla facial.	Enjuagar con agua abundante durante varios minutos (quitar las lentes de contacto si puede hacerse con facilidad), después proporcionar asistencia médica.	-				
INGESTION	Dolor abdominal. Sensación de quemazón. Shock o colapso.	No comer, ni beber, ni fumar durante el trabajo.	Enjuagar la boca. NO provocar el vómito. Dar a beber agua abundante. Proporcionar asistencia médica.					
DERR	AMES Y FUGAS	ALMACENAMIENTO	ENVASAD	O Y ETIQUETADO				
Recoger el líquido recipientes tapad derramado con a que este producto ambiente.	o procedente de la fuga en Se os. Eliminar el líquido gua abundante. NO permitir o químico se incorpore al	eparado de bases fuertes.	NU (transporte): Ver pictograma en Clasificación de Pi CE: símbolo C R: 34-52/53 S: 1/2-26-36-45-61	I cabecera eligros NU: 8				
ICSC: 0346	VEAS			E. IPC8, 2003				
1050: 0346	Prepara	ua en el Contexto de Cooperación entr	e el IPCS y la Comisión Europea © C	E, IPG8, 2003				

PROPIEDADES FISICAS	Punto de ebullición: 186-187°C Punto de fusión: -34.5°C Densidad relativa (agua = 1): 0.94 Solubilidad en agua, g/100 ml: 2.4 Presión de vapor, kPa a 20°C: 0.02	Densidad relativa de vapor (aire = 1): 3.52 Punto de inflamación: 86°C c.c. Temperatura de autoignición: 400°C Límites de explosividad, % en volumen en el aire: 1.6-7.6 Coeficiente de reparto octanol/agua como log Pow: 1.39				
DATOS AMBIENTALES	La sustancia es nociva para los organismos acu	ncia es nociva para los organismos acuáticos.				
	NOT	AS				
Ficha de emergencia de transporte (Transport Emergency Card): TEC (R)-80GC3-II+III Código NFPA: H 2; F 2; R 0;						
	INFORMACION	ADICIONAL				
Los valores LEP pued dirección: http://www	Última revisión IPCS: 2002 Traducción al español y actualización de valores límite y etiquetado: 2003 FISQ: 6-022					
ICSC: 0346 ACIDO VALERICO © CE, IPC0, 2003						
NOTA LEGAL IMPORTANTE: Esta ficha contiene la opinión colectiva del Comité Internacional de Expertos del IPCS y es independiente de requisitos legales. Su posible uso no es responsabilidad de la CE, el IPCS, sus representantes o el INSHT, autor de la versión española.						

2-AMINOETANOL			ICSC: 0152
			Octubre 2002
2-1	Hidroxietilamina	Etanolar	mina
CAS: 141-43-5 RTECS: KJ5775000 NU: 2491 CE Índice Anexo I: 603-030-00-8 CE / EINECS: 205-483-3		C ₂ H ₇ NO / H ₂ NCH ₂ CH ₂ OH Masa molecular: 61.1	
TIPO DE PELIGRO / EXPOSICIÓN	PELIGROS AGUDOS / SÍNTOMAS	PREVENCIÓN	PRIMEROS AUXILIOS / LUCHA CONTRA INCENDIOS
INCENDIO	Combustible. En caso de incendio se desprenden humos (o gases) tóxicos e irritantes.	Evitar las llamas.	Polvo, espuma resistente al alcohol, agua pulverizada, dióxido de carbono,
EXPLOSIÓN	Por encima de 85°C pueden formarse mezclas explosivas vapor/aire.	Por encima de 85 °C, sistema cerrado, ventilación.	
EXPOSICIÓN		HIGIENE ESTRICTA! EVITAR LA FORMACIÓN DE NIEBLA DEL PRODUCTO!	
Inhalasián	Teo Deles de enhane la faire	Ventilezión extracción	Aim limpia second Dreposieros

		PRODUCTO!	
Inhalación	Tos. Dolor de cabeza. Jadeo. Dolor de garganta.	Ventilación, extracción localizada o protección respiratoria.	Aire limpio, reposo. Proporcionar asistencia médica.
Piel	Enrojecimiento. Dolor. Quemaduras cutáneas.	Guantes de protección. Traje de protección.	Quitar las ropas contaminadas. Actarar la piel con agua abundante o ducharse. Proporcionar asistencia médica.
Ojos	Enrojecimiento. Dolor. Quemaduras profundas graves.	Pantalla facial o protección ocular combinada con la protección respiratoria.	Enjuagar con agua abundante durante varios minutos (quitar las lentes de contacto si puede hacerse con facilidad), después proporcionar asistencia médica.
Ingestión	Dolor abdominal. Sensación de quemazón. Shock o colapso.	No comer, ni beber, ni fumar durante el trabajo.	Enjuagar la boca. Dar a beber uno o dos vasos de agua. NO provocar el vómito. Proporcionar asistencia médica.

DERRAMES Y FUGAS	ENVASADO Y ETIQUETADO
Recoger el líquido procedente de la fuga en recipientes precintables. Neutralizar con precaución el líquido derramado Eliminarlo a continuación con agua abundante. Protección personal: Filtro respiratorio para vapores orgánicos y gases.	No transportar con alimentos y piensos. Clasificación UE Símbolo: C R: 20/21/22-34; S: (1/2-)26-36/37/39-45 Clasificación NU Clasificación de Peligros NU: 8 Grupo de Envasado NU: III

RESPUESTA DE EMERGENCIA	ALMACENAMIENTO		
Ficha de emergencia de transporte (Transport Emergency Card): TEC (R)-80GC7-II+III Código NFPA: H 3; F 2; R 0;	Separado de oxidantes fuertes, ácidos fuertes, aluminio, alimentos y piensos. Mantener en lugar seco. Ventilación a ras del suelo.		
IPCS International Programme on Chemical Safety WHO	HINSTERIO DETRARADO DE TRARADO DE TRARADO DE LITARADO		
Preparada en el Contexto de Cooperación (entre el IPCS y la Comisión Europea @ IPCS, CE 2005		

2-AMINOETANOL

	DATOS IMPORTANTES			
ESTADO FÍSICO; ASPECTO: Liquido higroscópico, incoloro y viscoso, de olor ca PELIGROS QUÍMICOS: La sustancia se descompone al calentarla intensan arder, produciendo gases tóxicos y corrosivos, incl de nitrógeno. La sustancia es moderadamente bás Reacciona nitrato de celulosa, originando peligro d explosión. Reacciona violentamente con ácidos fue oxidantes fuertes. Ataca al cobre, al aluminio y sus al caucho. LÍMITES DE EXPOSICIÓN: TLV: como TWA, 3 ppm; como STEL, 6 ppm (ACG MAK: Sh; Riesgo para el embarazo: grupo C (DFG LEP UE: 1 ppm, 2.5 mg/m ³ como TWA, 3 ppm, 7.6 STEL (piel) (CE 2006).	VÍAS DE EXPOSICIÓN: La sustancia se puede absorber por inhalación, por ingestión y a través de la piel. nente y al uyendo óxidos uyendo óxidos ica. e incendio y rtes y aleaciones y IH 2004). IH 2004). guyma ⁿ como EFECTOS DE EXPOSICIÓN DE CORTA DURACIÓN: La sustancia e s corrosiva para el tracto respiratorio, la piel y los ojos. Corrosivo por ingestión. El vapor irrita los ojos, la piel y el tracto respiratorio. La sustancia puede causar efectos en sistema nervioso central. La exposición podría causar disminución de la consciencia. EFECTOS DE EXPOSICIÓN PROLONGADA O REPETIDA: El contacto prolongado o repetido puede producir sensibilización de la piel.			
F	PROPIEDADES FÍSICAS			
Punto de ebulición: 171 °C Punto de fusión: 10 °C Densidad relativa (agua = 1): 1.02 Solubilidad en agua: muy elevada Presión de vapor, Pa a 20 °C: 53 Densidad relativa de vapor (aire = 1): 2.1 Densidad relativa de la mezcla vapor/aire a 20 °C (aire = 1): 1.00 Punto de inflamación: 85 °C c.c. Temperatura de autoignición: 410 °C Límites de explosividad, % en volumen en el aire: 5.5-17 Coeficiente de reparto octanol/agua como log Pow: -1.31 (estimado) DATOS AMBIENTALES Está indicado examen médico periódico dependiendo del grado de exposición. La alerta por el olor es insuficiente. NO llevar a casa				
Linies de exposición, ingestión- rimeios Adxilos				
IN	FORMACIÓN ADICIONAL			
Límites de exposición profesional (INSHT 2011): VLA-ED: 1 ppm; 2,5 mg/m ³ VLA-EC: 3 ppm, 7,5 mg/m ³ Notas: vía dérmica.				
Nota legal Esta ficha contiene la o de requisitos legales. S INSHT, autor de la vers	pinión colectiva del Comité Internacional de Expertos del IPCS y es independiente u posible uso no es responsabilidad de la CE, el IPCS, sus representantes o el ión española.			
	© IPCS, CE 2005			

ICSC: 0152

5.6. <u>Senyalització, i equips de protecció i protecció contra incendis</u>

La instal·lació industrial també disposarà de la senyalització de seguretat i salut segons el Real Decret 485/1997, del 14 d'Abril. La instal·lació industrial disposa d'equips de protecció individual i equips de protecció col·lectiva (campanes, vitrines, protecció de màquines, ...) amb l'objectiu de prevenir riscos d'accidents o d'efectes perjudicials per a la salut. El Conveni número 155 de l'Organització Internacional del Treball, del 22 de juny de 1981, estableix a l'article 16.3 l'obligació de subministrar robes i equips de protecció apropiats als treballadors en funció del lloc de treball. També se segueix la definició de l'article 2 del Real Decret 773/1997, de 30 de maig, sobre disposicions mínimes de seguretat i salut relatives a l'ús per part dels treballadors d'equips de protecció individual (EPI). El Real Decret 2267/2004, de 3 de desembre, pel qual s'aprova el Reglament de seguretat contra incendis en els establiments industrials, defineix els medis de protecció contra incendis dels que ha de disposar la planta química. També es té en compte el Real Decret 314/2006, del 17 de març, pel qual s'aprova el Codi Tècnic de l'Edificació.

6. ESTUDI DE L'IMPACTE SOBRE EL MEDI AMBIENT

6.1. Introducció

Es realitza l'estudi de l'impacte sobre el medi ambient que pot causar la construcció i instal·lació de la planta química i també en la fase operativa d'aquesta.

6.2. Descripció del projecte: Marc legal

- Caracterització dels impactes causats per les activitats humanes segons el RD 1131/1988.
- Annex 1 del Real Decret Legislatiu 1/2008 (Llei 21/2013):
 - Instal·lacions químiques integrades.
- Contingut, segons l'article 2 del Decret 114/1988 (*Llei 21/2013*):
 - Descripció del Medi Físic
- Llei 6/1993 Reguladora de Residus de la Generalitat de Catalunya.

6.3. <u>Anàlisi d'alternatives de procés</u>

Una millora a aplicar en el procés és reduir les impureses que conté el producte final, el líquid iònic, però això implicaria la instal·lació d'un equip de separació, però s'ha avaluat l'opció i no resulta rendible econòmicament i igualment la puresa dels reactius també és molt elevada. Es conclou que les condicions d'operació de la planta són òptimes. No es requereixen uns equips d'elevat cost. Es treballa a condicions de pressió i temperatura ambient i, conseqüentment, no hi ha una despesa econòmica excessiva ni un ús excessiu de materials per a la construcció dels diversos equips que componen la planta.

6.4. Descripció del medi

En aquest apartat es presenten les característiques del medi on s'ubica la planta química, des de la vessant física i biològica fins a la humana. Així es pot estudiar l'impacte que pot tenir la construcció i funcionament de la nova planta comparant-ho amb l'estat inicial del medi.

6.4.1. Medi físic

El clima és Mediterrani Literal Sud. L'època de l'any de més calor és l'estiu, en especial juliol i agost, amb una temperatura màxima aproximada de 27 °C, i l'època més freda de l'any, gener i desembre amb 9-10 °C. La mitjana anual de les temperatures és d'uns 16-17° C. Pel que fa a distribució de precipitacions és irregular. L'estació més plujosa és la tardor, especialment el mes de setembre. La menys plujosa, l'estiu, en concret el mes de juliol (ref. 2). Referent a la geologia, Aquesta zona de Tarragona es caracteritza per haver-hi materials mesozoic i paleògens. Els materials mesozoics estan constituïts per calcàries i dolomies de colors blaus, conglomerats i argiles de colors vermells. També s'hi troben litosòls i regosòls, els quals es caracteritzen per tenir poc horitzó orgànic (ref. 15).

6.4.2. Medi biològic

Quant a flora, predomina el pi blanc i l'alzina. Altres formacions vegetals que hi tenen presència són els boscos de ribera, el romaní, el margalló, el coscoll, el llentiscle i les mates. A la línia costanera, als terrenys sorrencs, s'hi poden identificar plantes com la sabina (ref. 16). Pel que fa a fauna, hi viuen diverses espècies, com són la musaranya, la mostela, l'esquirol i l'eriçó. Tot i que com la zona dels voltants a la de la planta química de líquid iònic ja està edificada per altres indústries, s'hi troba molt poca quantitat d'espècies (ref. 16).

6.4.3. Medi humà

La ciutat de Tarragona té una població de 133.545 habitants l'any 2013. La figura 6.4.1 presenta l'evolució de la demografia des de l'any 1998 fins el 2013. Es pot veure que ha augmentat tenint un màxim l'any 2010 arribant als 140.000 habitants, però a partir d'aquí una disminució mantenint-se estable entre el 2011 i el 2013 (ref. 17).

Figura 6.4.1. Evolució del padró municipal d'habitants de Tarragona entre el 1998 i 2013 (ref. 17).

6.5. Identificació d'impactes i caracterització

Es presenten els impactes que es poden produir des de l'inici del projecte, construcció i instal·lació de la nova planta química fins al seu complet desenvolupament i funcionament i la caracterització d'aquests. Per tal de caracteritzar els impactes, se segueix el RD 1131/1988, el qual presenta els diferents modes com poden ser aquests.

6.5.1. Identificació d'impactes atenent a l'activitat humana

S'identifiquen els possibles impactes produïts en la construcció i operació de la planta química. La fase de construcció tot i ser breu en comparació amb el temps d'explotació de la planta, agrupa la major part dels impactes, entre els quals destrucció del paisatge. La plataforma de muntatge i cimentació de la poden causar impactes com: erosió del sòl, destrucció de la

vegetació existent i, per tant, transformació del paisatge, contaminació de l'aire a causa dels materials emprats per a la cimentació, sorolls degut a les màquines pesades per a la plataforma i la cimentació. Es tracta d'una activitat sobre un terreny que es trobava sense ús, per exemple, sense activitat agrícola i, per tant, sense cap pèrdua. El muntatge de la planta de la planta requereix de màquines de grans dimensions i pesades per poder alçar la planta. Els impactes causats són generació de soroll, generació de moviments d'aire contaminat de pols i també contaminació de la vegetació. La producció de líquid iònic pot provocar impactes com poden ser el soroll generat pels equips que componen la planta. En el procés d'operació també pot haver ruptures dels equips i, conseqüentment, el vessament dels reactius i/o producte. Degut a aquests vessaments es produeix també un impacte que pot ser social, que afecti la salut de les persones com ambiental, perjudicant les pròpies instal·lacions.

Pel manteniment de la planta s'ha de tenir en compte la possible generació de residus, per exemple, per a la neteja dels diversos equips.

I referent al consum elèctric, pel funcionament de la planta és necessari l'ús de bombes i bescanviadors, els quals tenen un impacte negatiu econòmicament com en l'ambiental, pel possible soroll que poden causar entre altres efectes.

6.5.2. Caracterització dels impactes segons el RD 1131/1988

A la Taula 6.5.1 es presenten tots els possibles impactes originats degut a les accions humanes compreses en la fase de construcció i d'explotació de la planta química i la caracterització d'aquests segons el RD 1131/1988:

	Caracterització dels impactes generats en la fase de construcció i explotació								
	Impactes gen	nerats	Erosió del sòl	Destrucció de la vegetació existent	Transforma-ció del paisatge	Contami- nació de l'aire	Generació de soroll	Contamina-ció de vegetació	Generació de residus
	Caracteritza	ció							
Tinua I	Qualitat	Positiu							
Tipus I	ambiental	Negatiu	Х	Х	Х	Х	X	Х	X
	Causa-efecte	Notable				Х		Х	X
Tipus		Mínim	Х	Х	Х		X		
ĪI		Directe	Х	Х	Х	Х			X
		Indirecte						Х	Х
		Simple	Х				X		
Tipus III	Accions/efectes	Acumulatiu		Х	X	Х		Х	
		Sinèrgic				Х		Х	Х
Tipus	Moment	A curt termini		X	X	X		X	X
IV	Moment	A mig termini							

Taula 6.5.1. Caracterització dels diversos impactes causats per la fase de construcció i explotació de la planta química.

		A llarg termini	Х						Х
Tipus	Densistère sie	Permanent	Х		Х		Х		Х
V	Persistencia	Temporal		Х		X		Х	
Tipus	Desistibilitat	Reversible				X	Х		
νī	Resistibilitat	Irreversible	Х	Х	Х			Х	Х
Tipus	Recuperabilitat	Recuperable		Х	Х	X	Х	Х	Х
VII		Irrecuperable	Х						
		Continu				X	Х		Х
Times	Periodicitat	Discontinu	Х	Х	Х			Х	
VIII		Periòdic				X	Х		Х
		Aparició irregular	Х	X	Х			Х	

6.1. Avaluació i valoració dels impactes

Una vegada caracteritzats els impactes generats, s'avaluaran i valoraran els impactes aplicant un mètode com és la Matriu de Leopold, detallada a continuació.

6.1.1. Matriu de Leopold

La matriu de Leopold és un mètode quantitativa que consisteix en un quadre de doble entrada on els factors ambientals que poden ser afectats pel projecte se situen en les files i les accions que causen els impactes en columnes.

En cada casella on es creua un factor ambiental i una acció es divideix mitjançant una diagonal. En la meitat superior de la casella es presenta el valor de la magnitud de l'impacte. Significa l'extensió que pot tenir l'impacte en qüestió, de l'1 (mínim) a 10 (màxima magnitud) i positiu si és beneficiós o bé, negatiu, si és perjudicial.

En la meitat inferior de la casella es detalla la importància de la magnitud. Fa referència a la rellevància que pot tenir aquest impacte sobre la qualitat del medi. S'avalua des de 1, mínima importància fins a 10, de gran rellevància.

A continuació es presenta la Matriu de Leopold. Taula 6.1.1.

			Fase de co	onstrucció	Fase d'explotació				
Accions Factors del medi		Camí accés	Plata- forma de muntatge	Cimentació de la planta	Muntatge de la planta	Producció	Manteniment	Consum energètic	
	Geologia i geomorfologia	Estabilitat del sòl	-2 3	-2 5					
	Edafologia	Qualitat del sòl	-2 3	-2 5				-5 6	
Medi físic	Recurs. hídrics	Qualitat de l'aigua superficial	-1 2					-2 2	
		Qualitat de l'aigua subterrània	-1 2					-2 2	
	Qualitat del aire i nivell de soroll ambiental	Qualitat de l'aire						-2 2	
		Nivell de soroll ambiental	-5 5	-5 5	-4 6	-4 5	-3 3	-3 4	-3 5
	Fauna	Habitat i composició d'espècies							
Medi biològic	aquàtica	Desplaçament d'espècies							
	Fauna terrestre	Habitat i composició d'espècies	-2 3	-2 3					

Taula 6.1.1. Matriu de Leopold per a l'estudi de la planta de producció de líquid iònic.
		Desplaçament d'espècies	-2 3					
		Composició florística	-1 4	-3 4				
		Coberta vegetal	-2 7	-3 5				
	Flora	Regeneració vegetal	-1 2					
		Paisatge	-1 . 2	-2 2	-2 2	-2 2		
	Association	Educació						
	demogràfics	Salud					-6 7	
Medi	Aspectos	Treball	+5 7	+5 7	+5 6	+6 7		+4 8
social	econòmics	Desenvolupament econòmic sostenible						
	Aspectes culturals	Estructura social	+5 3	+5 4				

Tal i com es pot observar en la Matriu de Leopold, la fase de construcció, la qual inclou la construcció del camí d'accés, la plataforma de muntatge, la cimentació de la planta i el muntatge de la planta, causen un gran impacte físic com és el nivell de soroll ambiental. Per aquesta raó es pot observar que és l'impacte considerat més extens i negativament i també pel que fa a importància. En la fase d'explotació, per exemple, un dels factors que afecten més negativament i de considerable importància és el consum energètic dels diversos equips. També es pot observar a la matriu de Leopold que s'han considerat aspectes negatius de poca magnitud i de no excessiva importància la construcció de la planta. Això és deu a què el lloc on s'ubica la planta és una zona industrial. De forma que la modificació del paisatge no implica un gran impacte. I un altre factor a comentar, el qual ha estat avaluat de forma positiva i de gran magnitud i importància és el factor social-econòmic ja que permet la creació de nous llocs de treball tant en la fase de construcció de la planta química com en la fase d'explotació.

6.2. <u>Mesures correctores</u>

Per tal de reduir el màxim possible els impactes causats per les accions humanes en la fase de construcció i d'explotació de la planta química segueixen mesures correctores.

Degut a la construcció d'una nova planta causant la transformació del paisatge, una bona mesura correctora per tal de disminuir el grau d'impacte produït és escollir un disseny de la nova infraestructura que permeti integrar-se entre els elements que conformen el medi ambient, d'aquesta forma, indueix a què la societat no detecti un canvi tan excessiu en el paisatge. També es poden construir zones amb petits jardins de forma que l'impacte visual que pugui causar en la població no sigui tan gran. El soroll generat per les màquines usades en la fase de construcció de la planta han de complir la normativa vigent de manera que no superin el llindar màxim establert. Cal dir que serà de breu durada en comparació de la fase d'explotació. En la fase d'explotació, l'ús d'equips com bombes i el reactor, també hauran de complir la normativa de sorolls vigent. Per tal d'evitar la molèstia del soroll també s'estableix només treballar en horari diürn i delimitar el temps invertit en la fase de construcció evitant excedir-se de la data establerta de finalització d'obres. Els residus generats durant la fase d'explotació, entre altres, en el manteniment, s'ha d'aplicar mesures de recollida selectiva de residus tal i com aplica la

Llei 6/1993 Reguladora de Residus de la Generalitat de Catalunya. També una mesura que cal considerar és usar matèries primeres d'alta puresa per tal d'evitar la possible acumulació de residus que contenen aquestes. En el cas que sigui possible pel disseny de la planta i dels propis equips escollir materials reciclables de manera que contribueixin a la disminució de generació de residus. Un cop acabada la fase de construcció, realitzar una neteja de tota l'àrea evitant així l'acumulació de brutícia com pols i altres. Per tal de reduir al mínim l'erosió del sòl i la destrucció de la vegetació existent, s'ha de determinar i dissenyar prèviament a la construcció de la planta els límits estrictes i necessaris de l'accés a la planta i de la zona edificada per la instal·lació, de forma que s'eviti un impacte medi ambiental major al requerit.

6.3. Síntesi de l'impacte generat per la construcció i explotació de la planta

La construcció i explotació d'una planta química com és el cas de la síntesi d'un líquid iònic implica uns determinats impactes ambientals presentats anteriorment. En concret les accions humanes que més han influït en el procés ha estat la implementació de la nova infraestructura essent l'impacte més greu la generació de soroll. Un altre aspecte que causa un impacte sobre el medi ambient és la generació de residus degut al manteniment de la planta, en especial, en la neteja dels equips. Per a aquest fet s'ha de seguir la normativa vigent de recollida de residus. Tot i aquests impactes negatius cal tenir en compte que la zona on s'ha ubicat la planta és destinada a aquest tipus d'activitat humana ja que prèviament a aquest disseny no hi havia cap altre activitat com pot ser agrícola en l'àrea seleccionada i, per tant, no s'ha destruït cap zona que ja fos pròpiament activa econòmicament. Igualment, per tal d'evitar un impacte excessiu en la població de cara a la nova instal·lació i funcionament de la planta, s'han estudiat millores, com pot ser un dissenv que s'integri en el paisatge i l'ús de pintures per a un acabat final que redueixin la visibilitat de la planta. En conclusió, s'ha dut a terme un projecte que té un objectiu econòmic i social i evitant el màxim possible l'impacte ambiental causat aplicant un conjunt de mesures correctores basades en una eficient gestió de les activitats de construcció i en la integració en l'entorn.

7. AVALUACIÓ ECONÒMICA

7.1. Introducció

S'ha realitzat l'avaluació econòmica del projecte mitjançant l'aplicació de dos mètodes financers: el VAN (Valor Actual Net) i la TIR (Taxa interna de rendibilitat) per tal de determinar la viabilitat de posar en marxa aquesta instal·lació industrial. S'estableix una vida útil de 10 anys per a la planta química. Es presenta a continuació la determinació de la inversió inicial, els costos de producció i els ingressos de ventes. El procediment de càlcul establert per determinar la viabilitat econòmica de la planta es presenta al capítol Annexos, apartat A.7.

7.2. Viabilitat de la instal·lació industrial

7.2.1. Inversió inicial de la planta

La inversió inicial de la planta considera els costos dels equips de la planta, la instal·lació d'aquests i els imprevistos. El preu de cadascun dels equips, de la instrumentació i del sistema informàtic pel control de la planta $C_{BM,i}$ són valors proporcionats per l'Empresa APLICAT S.L. i es presenten a la Taula 7.2.1:

Fauins/Instrument	N ^o unitats/magnitud	Cost (£/unitat)	Cost (f)
Equips/mstrument	14 unitats/magnituu	Cost (Cruintat)	$\cos(c)$
Reactor amb camisa	1	25000	25000
Tancs	3	8500	25500
Bombes	7	1500	10500
Bescanviador de calor	2	2500	5000
Agitador reactor	1	700	700
Vàlvules	90	1500	135000
Canonada	160 (m)	50	8000
Instrumentació	26	1000	26000
Sistema producció nitrogen	1	40000	40000
Sistema informàtic control	1	40000	40000
Total (€)			315700
Total (\$)			354215

Taula 7.2.1. Costos dels equips, instrumentació i sistema informàtic que componen la instal·lació industrial.

Per tant, el costat total dels equips, instrumentació i sistema informàtic de la sala de control de la instal·lació industrial $\sum_{i=1}^{n} C_{BM,i}$ és de 354.215 (\$). El *Total module cost* C_{TM} (\$) és el cost que inclou imprevistos i també el contractista. I a continuació també s'ha determinat el *Grass Roots Cost* (C_{GR}), que representa el cost de la instal·lació de tot l'equipament en una zona on no s'ha construït anteriorment. Seguidament s'ha determinat la inversió en necessitats de capital de treball I_{NCT} (\$) i, finalment, la inversió inicial de la planta I_0 (\$) (Annexos, apart

Aquests costos es presenten a la Taula 7.2.2:

Taula 7.2.	2. Determinació de	e la inversió i	nicial de la instal·la	ació industrial.
Cost total d'equips $(\sum_{i=1}^{n} C_{BM,i})$ (\$)	Total module cost (C _{TM})(\$)	Grass Roots cost (C _{GR})(\$)	Necessitats de capital de treball (I _{NCT}) (\$)	Inversió inicial (I ₀) (\$)
354.215	417.974	595.082	104.139	699.221

7.2.2. Determinació de costos

- <u>Fixed Capital Investment (FCI)</u>: correspon al Grass Roots Cost (C_{GR})

- <u>Cost d'operarisC_{OL}</u>: els operaris treballaran de 8h a 17h 5 dies a la setmana. La planta no opera de forma contínua. Es disposarà de dos operaris/setmana. El sou de cada operari serà de 30.000€/any. El cost total anual dels operaris C_{OL} serà de 60.000 € (67320 \$). Però com també s'ha de tenir en compte, un percentatge de temps dedicat dels altres treballadors de l'empresa, com són el director tècnic i administratius entre altres, al cost total anual d'operaris se li afegeix un 10% de cost addiciona. D'aquesta forma, el cost tot anual d'operaris i altres treballadors serà de 66.000 € (74.052 \$).

- <u>Cost de les *utilities*</u> C_{UT} : es presenta el cost total de les *utilities* requerides en la producció de líquid iònic.

Taula 7.2.3. Cost anual de les <i>utilities</i> de la instal·lació industrial.						
Utility	€/unitat	Unitat	Capacitat	Cost anual (€)		
Aigua de refrigeració	2,5	m ³	500	1250		
Aigua d'escalfament	2,5	m ³	3.170	7.926		
Electricitat	0,21	kWh	1.052	1.500		
Total				10.676 (€)		
Total				11.978 (\$)		

T 1 7 2 2 C

* El cost del nitrogen queda englobat en el cost presentat a la inversió inicial de producció de nitrogen.

- <u>Cost de matèries primeres C_{RM} </u>: el cost de l'àcid valèric i l'etanolamina, són proporcionats per l'empresa APLICAT S.L. Detallar que la producció diària és de 2 Tm diàries de líquids iònic i que se'n produeix 44 setmanes a l'any. El cost anual es presenta a la 7.2.4:

	Taula 7.2.4. Cost anual de les matèries primeres.				
Matèria primera	Cost (€/kg)	Quantitat anual (kg/any)	Cost anual (€/any)		
Àcid valèric	0,95	279.620	265.639		
Etanolamina	2,96	160.380	474.725		
Total (€)			740.364		
Total (\$)			830.688		

7.2.3. Determinació d'ingressos

Taula 7.2.5. J	Ingressos	anuals	de la	venda	de lí	quid iònic.
----------------	-----------	--------	-------	-------	-------	-------------

Producte	Cost (€/kg)	Quantitat anual (kg/any)	Cost anual (€/any)
Líquid iònic 2-HEAPE	3,7	440.000	1.628.000
Total (\$)			1.826.616

7.2.4. Costos totals anuals de la planta

Per tal de determinar els costos totals anuals de la planta COM* s'ha calculat el COM, que és la suma de costos directes, indirectes i generals de producció, el DMC, costos directes variables de manufacturació, el *FMC*, costos fixos de manufacturació, i també s'han determinat els costos generals de manufactura GE (ref. 18). A la Taula 7.2.6 es presenten els valors de cadascun dels costos calculats i el cost total de les despeses anuals de la planta química:

Taula 7.2.6. Costos directes variables, fixos, generals de manufactura i despesa total anual de la planta

		de la plaita.		
СОМ (\$)	DMC (\$)	FMC (\$)	GE (\$)	<i>COM</i> * (\$)
1.405.264	925.885	152.403	243.305	1.420.082

7.2.5. Cashflow (CF)

Per tal de determinar el *Cashflow* (CF) de la planta, s'ha establert que el primer any de funcionament de la planta produeix al 60% de la seva capacitat, el segon any al 80% i a partir del tercer any ja al 100% i una taxa impositora del 35%.

Per tant, el Cashflow obtingut pel primer al desè any de vida útil de la planta és el següent:

	Any 1
Ingressos	1.095.970 (\$)
- Despeses	1.420.082 (\$)
- Amortització	69.922 (\$)
Beneficis abans d'impostos	-394.034 (\$)
- Impostos	-137.912 (\$)
Beneficis després d'impostos	-256.122 (\$)
Cashflow	-186.200 (\$)

Taula 7.2.7. *Cashflow* del primer any de vida útil de la planta química.

Taula 7.2.8. *Cashflow* del 2n any de vida útil de la planta química.

A	ny 2
Ingressos	1.461.293 (\$)
- Despeses	1.420.082 (\$)
- Amortització	69.922 (\$)
Beneficis abans d'impostos	-28.711 (\$)
- Impostos	-10.049 (\$)
Beneficis després d'impostos	-18.662 (\$)
Cashflow	51.620 (\$)

Any	y 3-10
Ingressos	1.826.616 (\$)
- Despeses	1.420.082 (\$)
- Amortització	69.922 (\$)
Beneficis abans d'impostos	336.612 (\$)
- Impostos	117.814 (\$)
Beneficis després d'impostos	281.798 (\$)
Cashflow	288.798 (\$)

Taula 7.2.9. *Cashflow* des del 3r fins al desè any de vida útil de la planta química.

7.2.6. Determinació del VAN i la TIR i Pay-back

Es presenten els mètodes financers VAN (Valor Actual Net) i la TIR (Taxa interna de rendibilitat) per tal de determinar si és viable la construcció i explotació d'aquesta instal·lació industrial. El mètode financer VAN (Valor Actual Net) ve definit per l'expressió:

$$VAN = -I_0 + \sum_{I=1}^{10} \frac{CF_i}{(1+k)^i}$$
(x.x)

On I_0 és la inversió inicial, k és el tipus d'interès, del 13%, CF_i és cadascun dels valors de *cashflow* calculats anteriorment i i és el temps establert de vida útil de la planta, essent de 10 anys.

La TIR és la taxa d'interès k que fa que el Valor Actual Net del projecte sigui de 0:

$$0 = -I_0 + \sum_{I=1}^{10} \frac{CF_i}{(1+k)^i}$$
(x.x)

De forma que s'obté un VAN de **232.794** \in , positiu, de forma que és viable la posada en marxa de la planta i, la TIR, del **19** %. A continuació, a la Figura 7.2.1 es presenta el *Pay-back* o període de retorn. Aquest paràmetre dóna una idea del termini requerit per a recuperar la inversió inicial.

Figura 7.2.1. Pay-back o període de retorn.

Es pot observar que a partir del primer any i mig de funcionament de la planta ja es recupera la inversió inicial. Es conclou que sí és factible construir aquesta planta química de producció de líquid iònic i la seva explotació ja que el mètode financer VAN és positiu i la recuperació de la inversió inicial és assolible a l'any i mig de funcionament.

8. MANUAL D'OPERACIÓ

A continuació es presenta el manual d'operació de la planta química de producció de líquid iònic en discontinu.

8.1. Engegada i apagada en un procés semi-batch

El sistema instal·lat per a l'engegada i apagada del procés és automàtic. La primera operació del procés és omplir el reactor R-101 amb àcid valèric des del tanc TK-101 fins al nivell fixat. El procediment consistirà:

8.1.1. Càrrega de l'àcid valèric.

0) Hom comprova que tots els instruments de la línia 1 estan en posició correcte.

1) S'engega el quadre de control de la línia 1 (càrrega d'àcid valèric al reactor) de forma que s'obre la vàlvula FV.1X03, situada just a la sortida del tanc TK-101, en el corrent 1.

2) Seguidament s'engega la bomba centrífuga, P-101, que està ajustada pel cabal definit pel procés.

3) La bomba s'aturarà quan el nivell de líquid de reactiu en el reactor R-101 sigui el valor fixat per tal de produir les 2 Tm diàries de producte. El senyal del valor mesurat serà enviat pel transmissor de nivell LTX03 a la bomba P-101 i seguidament es tancarà també la vàlvula FV.1X03 a la qual també li arriba el senyal enviat pel transmissor. Llavors el quadre de control de la línia 1 s'apaga.

 4) Si la temperatura de l'àcid valèric, no és la l'establerta, 25°C, entrarà en funcionament el sistema de calefacció/refrigeració (E-101) amb aigua calenta/freda durant la càrrega del reactor R-101.

1508

8.1.2. Càrrega de l'etanolamina, etapa de reacció.

0) Hom comprova que tots els instruments de la línia 2 estan en posició correcte.

1) S'engega el quadre de control de la línia 2 (etapa de reacció). S'obre la vàlvula FV.2X03 situada just a la sortida del tanc TK-201, corrent 2.

2) Es posa en marxa el sistema d'agitació M-0.1 del reactor R-101.

3) Seguidament s'engega la bomba dosificadora, P-201A, que està ajustada pel sistema de control al cabal de procés. En el cas que aquesta fallés, i el procés d'addició d'aquest reactiu ja s'hagués iniciat, es disposa d'una segona bomba dosificadora de recanvi, P-201B. Se subministra de forma intermitent per evitar un increment sobtat de la temperatura de reacció. Si la temperatura s'excedís el reactor R-101 disposa d'un sistema de refrigeració d'aigua.

4) Un cop el producte s'ha format, controlat pel nivell de líquid al reactor R-101, s'atura la bomba dosificadora P-201A i es tanca la vàlvula FV.2X03. Llavors s'apaga el quadre de control de la línia 2.

5) S'atura el sistema d'agitació M-0.1 del reactor R-101.

8.1.3. Buidat del reactor.

0) Hom comprova que tots els instruments de la línia 3 estan en posició correcte.

1) S'engega el quadre de control de la línia 3 (buidat del reactor). S'obre la vàlvula FV.3X03 situada just a la sortida del reactor R-101.

2) Seguidament es posa en marxa la bomba P-301, amb variador de velocitat, que està ajustada a les condicions de procés. Aquest valor es controla amb mitjançant la mesura del cabal transmesa amb el transmissor FT X07 a la bomba P-301.

3) Un cop és buidat el reactor, mesurat amb el sensor de nivell, l'ordre és enviat pel transmissor LTX03 a la bomba P-301 per a què s'aturi.

4) Seguidament es tancarà la vàlvula FV.3X03 a la sortida del reactor R-101 ja que també li haurà arribat el valor del senyal del transmissor de nivell LTX03. Llavors s'apaga el quadre de control de la línia 3.

8.2. Apagada d'emergència

1) En primer lloc s'haurien d'aturar les bombes que estenguin en funcionament.

2) S'han de tancar les vàlvules automàtiques de control exceptuant la del sistema de refrigeració del reactor.

3) A continuació, s'haurien de tancar les vàlvules manuals de la línia que estigui en funcionament per evitar els moviments dels reactius i/o productes.

4) Aturada de l'agitador M-0.1 en el cas que la temperatura del reactor fos crítica.

9. DIAGRAMES

Es presenta en primer lloc la simbologia d'equips i instrumentació l, el *Process Flow Diagram* i els *Piping and Instrumentation Diagrams* de la instal·lació industrial.

Disseny d'una planta de producció de líquid iònic

Disseny d'una plant de líquid i			a ue pro ònic	uuttiv	Substitu	IN UU I leix a	
Escala	5/03/13 D: ~~	c. Lopez	nlant	a da nra	ducció		N1000 1
Comprovat	3/03/15	C. López					
Dibuixat	2/03/15	C. López			UNIVERSIT	TAT RO	OVIRA I VIRGIL
	Data	Nom					
, .	<u> </u>	J					
CW/H\	W Aigua freda/a	aigua calent	а				
N2	Nitrogen						
DO	Senyal de sortida	a digital	IL	Liquid íč	DNIC		
AI			MEA	Monoet	anolamina		
	Sonval d'antrada	analògica					
AO	Senval de sortida	analògica	VA	Àcid val	èric		
FT	Transmissor de o	cabal	Ρ	Bomba			
		temperatur	[°] M-0.1	Motor R	eactor R-101	SS316I	Acer inoxidable 31
\bigcirc	Transmissor do	temporatur	IVIK		UIIDa	55504	
	Transmissor de I	nivell	MC	Motorh	ombo	55204	Acor inovidable 20
	Indicador de tem	nperatura	FV	Vàlvula	de cabal	т	Tanc
PT	Transmissor de	pressió	MV	Vàlvula	manual	R	Reactor
	ERV (Emergency	relief valve)		PVRV (Pr re	ressure vacuum lief valve)		Pressure safety valv
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		Би		- Bomba j	oeristáltica –	\bigcirc	Bomba dossificador
	Romha contrifiu	n a				\frown	
Χ	Vàlvula de papa	llona	1 21	Vàlvula	de tres vies		
$\overline{\mathbf{A}}$	Vàlvula manual		\bowtie	Vàlvula	de globus	#	Brida
Ţ	Vàlvula per a ne nitrogei	iteja amb n	\sim	Vàlvula	anti-retorn	\bowtie	Vàlvula de comport

UNIVERSITAT ROVIRA I VIRGILI

Nº103

Substitueix a

Substituït per

10. BIBLIOGRAFIA

1. <u>HTTPS://WWW.GOOGLE.ES/MAPS/PLACE/41%C2%B006'24.3%22N+1%C2%B0</u> <u>12'31.3%22E/@41.10675,1.2086944,17Z/DATA=!3M1!4B1!4M2!3M1!1S0X0:0X0</u>

- 2. http://es.climate-data.org/location/1565/
- 3. http://repositorio.bib.upct.es:8080/jspui/bitstream/10317/3094/1/eis.pdf
- 4. <u>http://www.scielo.org.co/scielo.php?pid=S0120-</u> 100X2012000100008&script=sci_arttext
- 5. http://www.rac.es/ficheros/doc/00680.pdf (ES REVISTA CIENTIFICA)
- 6. <u>http://www.inese.es/html/files/pdf/amb/iq/460/13ARTICULOJUN.pdf</u>
- Cota, I., Gonzalez-Olmos, R., Iglesias, M., Medina, F. 2007. New short aliphatic chain ionic liquids: synthesis, physical properties, and catalytic activity in aldol condensations. The Journal of Physical Chemistry B, 111, 12468-12477.
- HEWITT, G. F., SHIRES, G.L., BOTT, T.R., Process Heat Transfer. CRC Press, Inc., 1994.
- 9. <u>http://itur.eu/CE-PRODOMO.pdf</u>
- 10. <u>http://share.prominent.com/Product-Catalogues/Catalogo-De-Productos/bombas-dosificadoras-procesos-motora-catalogo-de-productos-ProMinent-folio-3.pdf</u>
- 11. http://www.bombaprinze.com/catalogo.php?op=1&idCat=2

12. http://www.albinpump.com/albindoc/brochures/ALH_Brochure_SPA.pdf

- 13. <u>https://www.gouldspumps.com/ittgp/medialibrary/goulds/website/Literature/Instructio</u> <u>n%20and%20Operation%20Manuals/Numerical/3700_IOM_Spanish.pdf?ext=.pdf</u>
- 14. http://www.flowserve.com/files/Files/Literature/FPD/71569092-s.pdf
- 15. <u>http://aca-</u> web.gencat.cat/aca/documents/ca/publicacions/espais_fluvials/publicacions/altres_estu dis/080P0001/03012_01A03_AX_Geologia_v3.pdf
- 16. http://blocs.xtec.cat/ceipmiquelmartiipol/files/2011/02/tarragones.pdf
- 17. <u>http://www.idescat.cat/territ/BasicTerr?TC=5&V0=1&V1=43148&V3=669&V4=446</u> <u>&ALLINFO=TRUE&PARENT=1&CTX=B</u>
- 18. R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, *Analysis, Synthesis and Design of Chemical Processes,* Second Edition. Ed. Prentice Hall.
- 19. http://exaktglass.com/what-is-2205-duplex-stainless-steel-and-why-we-use-it/
- 20. <u>http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_017d/0901b8038017d</u> 302.pdf?filepath=amines/pdfs/noreg/111-01375.pdf&fromPage=GetDoc
- 21. http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html
- 22. KERN D.Q., Procesos de Transferencia de Calor. Cecsa, 1976.
- 23. <u>http://issuu.com/ingenieriaarquitecturausat/docs/operaciones_y_procesos_unitarios/25</u> <u>6</u>
- 24. http://www.grupohastinik.com/catalogos/Catalogo_general_Hastinik_12-10.pdf

- 25. Picón-Núñez, M., Polley, G.T., Riesco-Ávila, J.M. 2012. Design Space for the Sizing and Selection of Heat Exchangers of the Compact Type. Chemical Engineering Transactions. 29, 217-222.
- 26. http://www.engineersedge.com/heat_transfer/thermal_conductivity_of_liquids_9921.h tm
- 27. http://www.goodfellow.com/S/Acero-Inoxidable-AISI-316.html
- 28. http://www.sc.ehu.es/sbweb/fisica_//cinematica/circular/casete/casete2.html
- 29. http://webbook.nist.gov/cgi/cbook.cgi?ID=C109524&Units=SI&Mask=7
- 30. Fogler H.S., Elements of chemical reaction engineering, Fourth edition, 2006.
- 31. http://www.fondeyur.com/fondos-conformados-en-frio.pdf
- 32. http://es.slideshare.net/guest6d731e/agitacion-1735401
- 33. http://es.slideshare.net/JoseLuisBrunelli/agitadores-25010350
- Robert L. Mott. Mecánica de fluidos. Sexta Edición. Pearson Education, Inc. 2006, México.
- 35. http://fisica.laguia2000.com/complementos-matematicos/diagrama-de-moody
- 36. <u>http://www.leonindustrial.com.ar/backend/archivos/PERDIDAS%20POR%20FRICCI</u> <u>ON.pdf</u>
- 37. <u>http://www.recercat.cat/bitstream/handle/2072/151825/PFC_ACECAT_v04.pdf?seque</u> <u>nce=7</u>

ANNEXOS

A.1. Dimensionament dels tancs T-101, T-201 i T-301

A la Taula A.1.1 es presenten les dades pel disseny dels tancs dels reactius i el producte.

Taula A.1.1. Dades pel disseny dels tancs de reactius i productes (ref. 20).						
Dades	Àcid valèric	Etanolamina	Líquid iònic			
kg/ <i>Batch</i> ∙dia	1271	729	2000			
Dies	28	28	28			
Densitat (kg/m ³)		000.0	0.40.4.6			
(a temperatura	921,16	998,8	949,46			
40°C)						
Densitat relativa	0,94	1,02	0.97			
G		7 -	- 7			

- Determinació del volum del cos, alçada i diàmetre del tanc

El volum (v) (m³) que ocupa el líquid emmagatzemat durant un temps de 28 dies és de:

$$v = \frac{kg/Batch \cdot dia \cdot dies \ emmagatzematge}{\rho} \tag{A.1.1}$$

On ρ és la densitat de la substància a emmagatzemar (kg/m³) la qual es defineix a la temperatura de disseny que és de 40°C. En el sistema d'operació d'un tanc d'emmagatzematge per tal de mantenir sempre una mínima quantitat de producte de forma que mai es queda completament buit el tanc, se sobredimensiona en un 20%, de manera que el nou volum (*V*) serà:

$$V = 1, 2 \cdot \nu \tag{A.1.2}$$

On V és en m³.

El volum final intern del tanc V_i (m³) serà:

$$V_i = V \cdot 1,04 \tag{A.1.3}$$

El factor 1,04 indica que es sobredimensiona el volum del tanc en un 4% per motius de seguretat. Un cop s'ha determinat el volum final intern del tanc (volum del cos del tanc) es pot procedir al càlcul del diàmetre i altura que tindrà atenent a que la seva forma serà cilíndrica i a la relació:

$$\frac{H}{D} = 1,5 \tag{A.1.4}$$

On *H* és l'altura del tanc i, *D*, el diàmetre del tanc. I sabent que el volum d'un cos cilíndric és:

$$V_c = \pi \cdot r^2 \cdot h \tag{A.1.5}$$

On V_c és el volum del cos del tanc que té forma cilíndrica (m³), r és el radi del tanc (m) i, h, l'altura del cos del tanc (m). A partir de la relació A.1.4. i l'equació A.1.5 i sabent el valor de V_i ja es poden determinar els valors de r i h. El diàmetre nominal (m) del tanc és doncs:

$$D = 2 \cdot r \tag{A.1.6}$$

El valor final del volum intern del cos del tanc V_{if} queda reajustat. Per tant, els valors obtinguts per cada tanc són els presentats a la Taula A.1.2:

Tadia A.1.2. Resultais de les diffensions dels talles del proces.						
Tanc	v (m ³)	V (m ³)	V_i (m ³)	h (m)	D (m)	V_{if} (m ³)
Àcid valèric	38,6	46,4	48,2	5,20	3,45	48,4
Etanolamina	20,4	24,5	25,5	4,20	2,80	25,9
Líquid iònic	59,0	70,8	73,6	6	4	75,4

Taula A.1.2. Resultats de les dimensions dels tancs del procés.

Un cop calculat el volum del tanc, es procedeix a la selecció del material.

- Selecció del material

S'ha elegit l'acer inoxidable 316L ja que és un dels més efectius en termes de corrosió atenent als diversos productes amb els que es treballa. A la Taula A.1.3 se'n presenten les propietats:

	Taula A.1.3.	Propietats de l'acer	r inoxidable 316I	ب
Material	Densitat ρ _{SS316L} (kg/m ³)	Tolerància de corrosió <i>CA</i> (mm)	Esforç de disseny S _d (MPa)	Esforç de proba hidrostàtica <i>S_t</i> (MPa)
SS316L	8027 (ref. 19)	2	145	155

* Els valors d'esforç de disseny i esforç de proba hidrostàtica s'han obtingut del Codi API 650.

- Càlcul del gruix del cos del tanc

Pel càlcul del gruix del cos del tanc s'ha seguit el mètode d'un peu (permès quan el diàmetre no és superior als 60m). S'ha d'escollir l'opció que doni un gruix major.

Les equacions són les següents:

$$t_d = \frac{4,9D(H-0.3)G}{(S_d)(E)} + CA \tag{A.1.7}$$

On t_d és el gruix de disseny del cos del tanc (mm), D és el diàmetre nominal del tanc (m), H és el nivell de líquid de disseny (m), G la densitat relativa del líquid a emmagatzemar, S_d l'esforç de disseny (MPa), *E* és l'eficiència de soldadura, que s'ha seleccionat un valor de 0,85 i, CA, la tolerància de corrosió (mm). I l'alçada de líquid de disseny es calcula a partir de:

$$H = \frac{V}{\pi \cdot (\frac{D}{2})^2} \tag{A.1.8}$$

$$t_t = \frac{4.9D(H-0.3)G}{(S_t)(E)}$$
(A.1.9)

On t_t és el gruix del cos del tanc per proba hidrostàtica (mm) i S_t l'esforç per proba hidrostàtica (MPa). El valor mínim que ha de tenir el gruix de les parets del tanc (t) ha de ser de 5mm per tancs de diàmetre nominal inferior a 15 m.

Tanc	<i>t_d</i> (mm)	<i>t</i> _t (mm)	H (m)		
Àcid valèric	2,601	0,598	4,96		
Etanolamina	2,418	0,384	3,98		
Líquid iònic	2,822	0,793	5,63		

Taula A.1.4. Gruix de disseny i de proba del cos del tanc (mm) i alçada de líquid de disseny (m).

- Càlcul del gruix del sostre

Els tres tancs del procés tenen un sostre fix i cònic. Pel càlcul del gruix d'aquest tipus de sostre se segueix la següent equació:

$$t_t = \frac{D}{4,8 \cdot \sin\theta} \ge 5mm; No \ major \ a \ 12,5 \ mm$$
(A.1.10)

L'angle permès serà:

$$9,5^{\underline{o}} \le \theta \le 37^{\underline{o}} \tag{A.1.11}$$

On *D* és el diàmetre nominal del tanc (m) i θ és l'angle que forma el sostre cònic respecte l'eix horitzontal (°). En aquest cas, el que s'ha establert, és definir un gruix mínim de 5mm (*t*) tal i com marca la normativa i determinar l'angle format. Com aquest angle és menor a 9,5°C, s'estableix un angle fixat de 15°. Aquesta inclinació de 15° és l'opció més econòmica.

Taula A.1.5. Gruix del sostre cònic (mm) i angle d'inclinació.					
Tanc	<i>t_t</i> (mm)	θ (°)			
Àcid valèric	5	15			
Etanolamina	5	15			
Líquid iònic	5	15			

- Càlcul de l'alçada del sostre

Un cop se sap l'angle que forma el sostre cònic i el radi del tanc, per mitjà del teorema del cosinus es pot determinar la longitud que té el sostre des del centre fins a qualsevol punt del radi del tanc L (m).

$$\cos\theta = \frac{r}{L} \tag{A.1.12}$$

-*r* és el radi del tanc (m). I a continuació ja es pot determinar l'alçada del sostre cònic h_c (m):

$$h_{\mathcal{C}} = \sin\theta \cdot L \tag{A.1.13}$$

Taula A.1.6. Dimensions del sostre cònic (m).				
Tanc	<i>L</i> (m)	<i>h</i> _C (m)		
Àcid valèric	1,79	0,46		
Etanolamina	1,45	0,38		
Líquid iònic	2,07	0,54		

- Càlcul del volum del sostre

El sostre del tanc és cònic i l'equació que permet calcular el seu volum v_c (m³) és:

$$\nu_C = \frac{1}{3} (\pi \cdot r^2 \cdot h_C) \tag{A.1.14}$$

On r és el radi del tanc (m).

Taula A.1.7. Volum del sostre cònic (m ³).				
Tanc	v_{c} (m ³)			
Àcid valèric	1,44			
Etanolamina	0,77			
Líquid iònic	2,24			

- Càlcul del pes del tanc

En aquest apartat es calcula el pes del tanc buit, i també carregat amb el producte.

La massa de producte emmagatzemat $M_{Producte}$ (kg) és:

$$M_{Producte} = \rho \cdot V \tag{A.1.15}$$

On ρ és la densitat del producte (kg/m³) i V és el volum indicat a l'equació A.1.16. El volum total del tanc (m³) sense tenir en compte el gruix del material és:

$$V_T = V_{if} + v_c \tag{A.1.16}$$

Volum total del cos cilíndric del tanc V_{TC} tenint en compte el gruix t:

$$V_{TC} = \pi \cdot (r+t)^2 \cdot (h+t)$$
 (A.1.17)

On totes les dimensions estan en metres.

El volum total del sostre cònic tenint en compte el gruix és:

$$v_{TC} = \frac{1}{3} (\pi \cdot (r+t)^2 \cdot (h_C + t))$$
(A.1.18)

El volum total del tanc tenint en compte el gruix és:

$$V_{Total} = V_{TC} + v_{TC} \tag{A.1.19}$$

El volum d'acer inoxidable total necessari per construir el tanc és de:

$$V_{acer} = V_{Total} - V_T \tag{A.1.20}$$

El pes del tanc buit M_{acer} (kg) és:

$$M_{acer} = \rho_{SS316L} \cdot V_{acer} \tag{A.1.21}$$

El pes final del tanc (kg) un cop carregat és:

$$M_{Total} = M_{Producte} + M_{acer} \tag{A.1.22}$$

A la Taula A.1.8 es presenta un resum dels càlculs realitzats.

		-					· · · ·	
Tanc	M _{Producte} (kg)	<i>V_T</i> (m ³)	<i>V_{TC}</i> (m ³)	ν _{TC} (m ³)	V _{Total} (m ³)	V _{acer} (m ³)	M _{acer} (kg)	M _{Total} (kg)
Àcid valèric	42696	49,82	48,70	1,46	50,17	0,35	2825	45520
Etanol- amina	25504	26,63	26,08	0,79	26,86	0,23	1862	26366
Líquid iònic	67200	77,64	75,84	2,28	78,12	0,47	3796	70996

TaulaA.1.8. Pes del producte emmagatzemat i total (kg) i volums dels tancs (m³).

- Càlcul de la pressió de disseny i pressió màxima

Per calcular la pressió de disseny del tanc se segueix l'equació (A.1.24). En aquest cas es tracta d'un sostre cònic auto-suportat, i l'àrea de la secció transversal es calcula per l'equació:

$$A = \frac{D^2}{432000 \cdot \sin\theta} \tag{A.1.23}$$

On A és l'àrea de la secció transversal pel perfil sobre el qual descansa el sostre cònic autosuportat (cm²), *D* és el diàmetre d'assentament del con (cm) i θ és l'angle que forma el sostre respecte l'horitzontal (°). I a continuació ja es pot determinar la màxima pressió de disseny seguint la següent equació:

$$P = \frac{11265408ATang\theta}{D^2} + 8th$$
(A.1.24)

On D aquí és el diàmetre nominal del tanc (cm), *th* el gruix mínim del sostre (cm) i P és la pressió màxima de disseny (cm columna d'aigua). Llavors si el tanc opera a pressió atmosfèrica, la màxima pressió de disseny seria:

$$P_d = 1 atm + P \tag{A.1.25}$$

Com el valor obtingut en els tres casos és petit, es decideix establir la pressió de disseny per temes de seguretat com:

$$P_{df} = P_t + 0.1 \cdot P_t + \rho \cdot g \cdot h \tag{A.1.26}$$

On P_{df} és la pressió final de disseny (Pa), P_t és la pressió de treball, en aquest cas 101325 Pa, ρ és la densitat del líquid que conté el tanc (kg/m³), g és la gravetat (m/s²) i h és l'alçada de líquid que pot contenir el dipòsit (m). Aquesta és doncs la pressió màxima final de disseny que pot suportar el tanc.

La pressió de prova hidràulica es defineix com:

$$P_p = 1,2 \cdot P_{df} \tag{A.1.27}$$

A la Taula A.1.9 es presenta un resum dels càlculs realitzats.

Tadia 7(.1.): Affea de secció transversar (em).						
Tanc	A (cm ²)	P (cmca)	P_d (atm)	P _{df} (atm)	P_p (atm)	
Àcid valèric	1,06	30,88	1,03	1,54	1,85	
Etanolamina	0,70	30,98	1,03	1,48	1,78	
Líquid iònic	1,43	30,99	1,03	1,62	1,94	

Taula A.1.9. Àrea de secció transversal (cm²)

- Placa anular de fons i accés a la boca d'home per mitjà d'escala

Els tres tancs disposen d'una placa anular de reforçament situada al fons. Aquesta té un gruix mínim de 6,3 mm. I està construïda amb acer inoxidable. Per tal de tenir accés a la boca d'home dels tres tancs, situada a la part superior, es disposa d'una escala metàl·lica, amb un amplada mínima de 610 mm capaç de suportar una càrrega de 453 kg amb passamans situats als dos costats de les escales rectes.

- Càlcul del moment de ventegi per efecte del vent

Per tal de determinar si és necessari l'ancoratge del tanc degut a l'efecte del vent es procedeix al càlcul mostrat a continuació:

$$M = \frac{P_v \cdot D_0 \cdot H_t^2}{2} \tag{A.1.28}$$

On el diàmetre exterior engloba el gruix de les parets (th) de 5mm:

$$D_0 = D + (2 \cdot t) \tag{A.1.29}$$

L'altura total del tanc és:

$$H_t = (h + h_c) + (2 \cdot t)$$

Si el moment de gir M compleix la següent desigualtat llavors el tanc no requereix d'ancoratge:

$$M < \frac{2}{3} \cdot \left(\frac{W \cdot D}{2}\right) \tag{A.1.30}$$

On W és el pes mort del tanc resistent a l'aixecament (kg), es considera el tanc ple, (kg) i D és el diàmetre nominal del tanc.

A la Taula A.1.10 es presenta un resum dels càlculs realitzats.

Taula A.1.10. Diàmetre exterior del tanc, altura total del tanc, moment de gir, pes total del tanc i requeriment d'ancoratge del tanc.

Tanc	D ₀ (m)	$H_t(\mathbf{m})$	M (kg-m)	<i>W</i> (kg)	Requeriment ancoratge
Àcid valèric	3,46	5,65	8055	45520	No
Etanolamina	2,81	4,59	4313	26366	No
Líquid iònic	4,01	6,55	12543	70996	No

A.2. Dimensionament de la cubeta de retenció

La cubeta de retenció es dissenya atenent la normativa Reglament d'emmagatzematge de productes químics APQ-1 ("Emmagatzematge de líquids inflamables i combustibles"). L'àcid valèric i l'etanolamina, tenen un punt d'inflamació de 86°C i 85°C, respectivament, els quals són combustibles. Segons la classificació de productes pertanyen a la Classe C (Productes el

punt d'inflamació dels quals està entre 55°C i 100°C). S'emmagatzema de forma conjunta els reactius, ja que estan inclosos dins la mateixa classe i, juntament, amb el líquid iònic ja que aquest és de risc inferior. La distància de separació mínima entre cada tanc és d'1,5 m i la distància de separació entre tanc i paret de la cubeta, també d'1,5 m. D'aquesta forma, l'amplada A (m) es pot determinar com es presenta a continuació:

$$A = D_1 + 2d_{t-c} (A.2.1)$$

On D_1 és el diàmetre exterior del tanc més gran (m), en aquest cas, T-301, que conté líquid iònic i d_{t-c} és la distància entre la paret del tanc i la paret de la cubeta de retenció. La llargada de la cubeta *L* és (m):

$$L = 2d_{t-c} + 2d_{t-t} + D_1 + D_2 + D_3$$
(A.2.2)

On d_{t-t} és la distància entre tanc i tanc (m), d'1,5m, D_2 i D_3 són els diàmetres exteriors dels altres dos tancs, T-101 i T-201. Els valors obtinguts d'amplada i longitud i els valors finals reajustats per a la construcció de la cubeta es presenten a continuació:

Taula A.2.1. Amplada i longitud calculats de la cubeta de retenció.

	Amplada A (m)	Longitud L (m)
Amplada calculada	7,01	16,28
Amplada final de	7,30*	17,00*
construcció		

^{*} Es pot veure que les dimensions d'amplada i longitud de la cubeta s'han reajustat a valors majors que els mínims calculats per tal d'assegurar que la cubeta tingui capacitat suficient per si hagués de retenir la capacitat total dels tres tancs d'emmagatzematge en cas de fuita.

Per tal de determinar el volum de la cubeta de retenció se segueix la següent equació:

$$V = 1,15V_{TC} + V_{1(H)} + V_{2(H)} + V_{3(H)}$$
(A.2.3)

On *V* és el volum que ha de tenir la cubeta (m³), V_{TC} és el volum del cos cilíndric que conforma el tanc d'emmagatzematge més gran (m³), concretament és el tanc T-301 de 75,84 m³, i $V_{1(H)}$, $V_{2(H)}$, $V_{3(H)}$ és el volum que ocupa cada tanc, T-301, T-101 i T-201, respectivament, fins a

l'alçada H que tindrà la cubeta de retenció. Els volums dels tancs queden expressats en funció de l'alçada H i, el diàmetre emprat, és el diàmetre exterior presentat a la Taula A.1.10.

També se sap que el volum de la cubeta ve determinat per la següent equació:

$$V = A \cdot L \cdot H \tag{A.2.4}$$

On H és l'alçada de la cubeta (m), en què el valor màxim establert pel Reglament d'emmagatzematge de productes químics MIE-APQ. A partir de les dues equacions anteriors es pot determinar l'alçada i es presenta també el valor final reajustat de construcció incrementant-lo un 40% per motius de seguretat tal i com s'han esmentat anteriorment:

Taula A.2.2. Valor obtingut de l'alçada de la cubeta i valor final d'aquesta.

Alçada calculada H (m)	Alçada amb increment de 40% (m)	Alçada final de construcció (m)
1,02	1,42	1,50

Les dimensions de la cubeta de retenció que contindrà els tancs T-301, T-101 i T-201 són:

Taula A.2.3. Dimensions finals de la cubeta de retenció.				
Amplada A (m)	Longitud L (m)	Alçada <i>H</i> (m)	Volum V (m ³)	
7,30	17,00	1,50	186	

A.3. Dimensionament dels bescanviadors E-201 i E-301

A.3.1. Dimensionament del bescanviador E-201

- Dades inicials pel dimensionament del bescanviador E-201

A la Taula A.3.1 es presenten les dades de disseny per determinar les dimensions dels bescanviador E-201. La base de disseny és la màxima quantitat que es pot emmagatzemar en els tancs, que corresponen a una producció de 4 setmanes. Aquest sistema de d'escalfament entrarà en funcionament quan el líquid del tanc sigui de 15°C, per tal de tornar-ho a la

temperatura de 25°C. El temps d'operació és defineix com el temps necessari per escalfar des de 15°C fins a 25 °C tot el reactiu emmagatzemat en el tanc T-201.

Taula A.3.1. Dades pel disseny del bescanviador E-201.		
Dades	Etanolamina E-201	
Quantitat producte a tractar (m) (kg)	20420	
Temps d'operació (t) (h)	8	
Temperatura d'entrada T _{in} (°C)	15	
Temperatura de sortida T _{out} (°C)	25	

Les temperatures d'entrada i de sortida de l'aigua de servei pel bescanviador E-201 són:

Aigua	Etanolamina E-201	
Temperatura d'entrada T _{in}	50	
Temperatura de sortida T _{out}	35	

Taula A.3.2. Temperatura de l'aigua del bescanviador E-201.

Les propietats físiques de l'etanolamina i de l'aigua d'escalfament es presenten a la Taula A.3.3:

21).				
Pronietat	Etanolamina	Aigua		
Topiciai	(15°C)	(50°C)		
Capacitat calorífica <i>cp</i> (kJ/kg·°C)	2,08	4,18		
Viscositat μ (Pa·s)	0,0101	5,47·10 ⁻⁴		
Densitat ρ (kg/m ³)	1020,8	988		
Conductivitat tèrmica k (W/m·K)	0,299	0,650		
Nombre de Prandtl Pr	70,293	3,518		

Taula A.3.3. Propietats físiques de l'etanolamina (ref. 20) i de l'aigua d'escalfament (ref.

- Càlcul de la calor a subministrar i cabals de disseny

En primer lloc es calcula la calor necessària Q (kJ) per escalfar el reactiu/producte mitjançant la següent equació:

$$Q = m \cdot cp \cdot (T_{out} - T_{in}) \tag{A.3.1}$$

On *m* és la quantitat de producte/reactiu a tractar (kg), per exemple, pel cas de l'etanolamina, 20420 kg, cp és la capacitat calorífica (kJ/kg·°C), i T_{in} és la temperatura a l'entrada del bescanviador (°C) i T_{out} és la temperatura a la sortida del bescanviador (°C).

En segon lloc es determina la potència \dot{Q} (kW) tenint en compte el temps d'operació *t* expressat en segons (definit a la Taula A.3.1).

$$\dot{Q} = \frac{Q}{t} \tag{A.3.2}$$

El cabal màssic de reactiu/producte \dot{m} (kg/s) es pot calcular a partir de l'equació A.3.1. I seguidament ja es pot obtenir el cabal màssic d'aigua \dot{m}_a necessari (kg/s), tenint en compte les seves temperatures d'entrada i de sortida, amb l'equació següent:

$$\dot{m}_a = \frac{\dot{Q}}{cp \cdot (T_{in} - T_{out})} \tag{A.3.1}$$

On cp, T_{in} , T_{out} són la capacitat calorífica, la temperatura d'entrada i la temperatura de sortida respectivament, de l'aigua. Els resultats obtinguts es presenten a la Taula A.3.4:
Dades	Etanolamina E-201
Calor Q (kJ)	$42,5 \cdot 10^4$
Potència Q (kW)	14,75
Cabal ṁ (kg/h)	2553
Cabal <i>m</i> _a (kg/h)	847

Taula A.3.4. Valors obtinguts de calor i potència requerits, cabals de reactiu i cabal d'aigua de servei.

- Càlcul de l'àrea dels bescanviadors de doble tub

Per tal de determinar les dimensions dels dos bescanviadors del procés, es fixa un valor inicial del coeficient global de transferència de calor U de 600 W/m² C (ref. 22). A continuació es determina la variació de temperatura mitjana logarítmica que té lloc en l'equip mitjançant el següent procediment:

$$\Delta T_1 = T_{h,i} - T_{c,o} \tag{A.3.3}$$

$$\Delta T_2 = T_{h,o} - T_{c,i} \tag{A.3.4}$$

On $T_{h,i}$ és la temperatura del fluid calent a l'entrada del bescanviador, en aquest cas, l'aigua de servei, i $T_{c,o}$ és la temperatura del fluid fred a la sortida, que es tracta de l'etanolamina o bé, el líquid iònic, $T_{h,o}$ és la temperatura del fluid calent a la sortida, aigua, i $T_{c,i}$ del fluid fred a l'entrada, etanolamina o líquid iònic. Totes les temperatures es troben en °C.

$$\Delta T_{ml} = \frac{\Delta T_1 - \Delta T_2}{\ln(\frac{\Delta T_1}{\Delta T_2})} \tag{A.3.5}$$

Seguidament ja es pot determinar l'àrea $A(m^2)$ de cadascun dels bescanviadors de calor:

$$A = \frac{\dot{Q}}{U \cdot \Delta T_{ml}} \tag{A.3.6}$$

On \dot{Q} és la potència calculada anteriorment en W i U amb un valor de 600 W/m²°C.

Els resultats es presenten a la Taula A.3.5:

Dades	Etanolamina E-201
ΔT_1	25,0
ΔT_2	20,0
ΔT_{ml}	22,4
\mathbf{A} (m ²)	1,10

Taula A.3.5. Dimensionament inicial dels intercanviadors de calor.

Amb aquest dimensionament preliminar es poden definir les condicions per a determinar les velocitats dels diferents corrents, així com una distribució geomètrica que permetin el càlculs dels coeficients de convecció dels diferents intercanviadors, i fer el dimensionament definitiu.

- Determinació de les dimensions dels tubs dels bescanviadors

L'esquema i nomenclatura del bescanviador de calor de doble tub es presenta a la Figura A.3.1.

Figura A.3.1. Representació gràfica de la secció dels tubs que conforma el bescanviador E-201.

On D_i és el diàmetre intern del tub interior, *thi* és el gruix del tub interior, D_0 és el diàmetre intern del tub exterior, th_2 és el gruix del tub exterior i D_e és el diàmetre exterior del tub exterior. Les velocitats de disseny pels diferents fluids i intercanviadors es presenten a la Taula A.3.6:

TaulaA.3.6. Velocitats de disseny dels fluids.		
Dades Etanolamina E		
Velocitat v _i (m/s) (etanolamina/ líquid iònic)	1,10	
Velocitat aigua v_a (m/s)	0,50	

Sabent el valor de les velocitats dels fluids i el cabal es pot determinar l'àrea de pas A_i (m²):

$$A_i = \frac{\dot{m}}{v_i} \tag{A.3.7}$$

On el cabal volumètric \dot{m} d'etanolamina és en m³/s i v_i en m/s. Per a calcular l'àrea de pas de l'aigua $A_{i,a}$ (m²) es duu el procediment de la mateixa manera:

$$A_{i,a} = \frac{m_a}{v_a} \tag{A.3.8}$$

Per calcular el diàmetre intern D_i (m) dels tubs per on circula el producte se segueix la següent equació:

$$D_i = \sqrt{\frac{4 \cdot A_i}{\pi}} \tag{A.3.9}$$

On A_i és l'àrea interna de pas del fluid calculada anteriorment (m²). A continuació, per calcular el diàmetre D_0 (m) s'ha de tenir en compte el gruix de la canonada *thi* per on circula el producte, aquest s'ha fixat en 2mm (gruix suficient pel rang de pressions de treball):

$$D_0 = \sqrt{\frac{4(A_{i,a} + \frac{\pi}{4}(D_i + 2 \cdot thi)^2)}{\pi}}$$
(A.3.10)

Totes les dimensions han d'estar en metres. Els resultats obtinguts es presenten a la Taula A.3.7.

Dades	Etanolamina E-201
$A_i (\mathrm{cm}^2)$	6,37
$A_{i,a}$ (cm ²)	4,76
D _i (cm)	2,85
D ₀ (cm)	4,08

Taula A.3.7. Dimensionament de l'intercanviador de calor.

- <u>Determinació del règim dels fluids, nombre de Nusselt, coeficient de convecció i coeficient</u> <u>global de transferència de calor U</u>

Per tal de determinar el règim del reactiu, etanolamina, es calcula el nombre de Reynolds:

$$Re = \frac{v_i \cdot D_i}{v} \tag{A.3.11}$$

On v és la viscositat cinemàtica de l'etanolamina (m²/s). Per determinar el nombre de Reynolds per a l'aigua, se segueix l'equació:

$$Re = \frac{v_a \cdot (D_0 - (D_i + 2thi))}{v_a}$$
(A.3.12)

v és la viscositat cinemàtica de l'aigua (m²/s). Els resultats obtinguts es presenten a la Taula A.3.8.

	Bescanviador E-201	
Dades	Etanolamina	Aigua
Re	3166	7488
Tipus de règim	Turbulent	Turbulent

El règim de l'etanolamina i l'aigua és turbulent i, el nombre de Nusselt es calcula (ref. 23):

$$Nu = 0.023 \cdot (Re^{0.8}) \cdot (Pr^{0.4}) \tag{A.3.13}$$

Un cop determinat el nombre de Nusselt es pot calcular el coeficient de convecció h (W/m²°C). Per a l'etanolamina és:

$$h_i = \frac{k \cdot Nu}{D_i} \tag{A.3.14}$$

I per a l'aigua, fluid extern, es calcula com es mostra a continuació:

$$h_a = \frac{k \cdot Nu}{D_e - D_i} \tag{A.3.15}$$

I finalment es determina el coeficient global de transferència de calor U (W/m²°C):

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_a} + R_i + R_a}$$
(A.3.16)

On R_i i R_a són els factors de fouling de l'etanolamina, suposant valors de 0,0002W/m²°C, i de l'aigua, 0,0001W/m²°C, respectivament (ref.22). El valor obtingut de U s'ha d'iterar començant el procés de càlcul en l'equació A.3.6 fins que el valor obtingut en A.3.16 sigui el mateix. El valor convergit d'U es presenta a la taula A.3.9.

 Nu
 79,60

 h_i (W/m^{2o}C)
 836

 h_a (W/m^{2o}C)
 2532

 U (W/m^{2o}C)
 530

Taula A.3.9. Nombre de Nusselt, coeficient de convecció de calor i coeficient global de transferència de calor.

Convergit el càlcul, es reajusta l'àrea de transferència de calor i la longitud de tub requerida:

Dades	Etanolamina E-201
<i>A</i> (m ²)	1,24
<i>L</i> (m)	13,9

Taula A.3.10. Àrea de transferència de calor i longitud final dels tubs del bescanviador.

Un cop dissenyat el bescanviador de calor amb un coeficient global de transferència de calor U de 530 W/m²°C, s'ha cercat un fabricant de canonades (Hastinik, S.A.) (ref. 24) per tal de construir aquests equips amb unes mesures de diàmetres i gruixos estandarditzats. Per tant, les dimensions finals són:

Bescanviador E-201		
Di (mm)	29	
thi (mm)	2	
D0 (mm)	41	
<i>th</i> 2 (mm)	2	
<i>De</i> (mm)	45	

Un cop establertes les dimensions dels diàmetres de tubs i gruixos estandarditzats, es determina la longitud de tub L (m) del bescanviador per on circula l'etanolamina en base al diàmetre intern del tub D_i (m) i l'àrea del bescanviador A (m²).

$$L = \frac{A}{\pi \cdot D_i} \tag{A.3.17}$$

Per determinar el nombre de trams de tub (n), es fixa una longitud de tram d'2,0 m per escalfar l'etanolamina. Per tant el nombre de trams de tub serà:

$$n = L/l \tag{A.3.18}$$

El nombre de trams de tub obtingut n s'aproxima a un valor enter n'. Cada tram de tub del bescanviador (n') té una longitud efectiva de bescanvi de calor de 1,8m en el bescanviador per escalfar l'etanolamina. De manera que l'àrea efectiva real del bescanviador queda reajustada segons l'equació:

$$A = n' \cdot l' \cdot \pi \cdot D_i \tag{A.3.19}$$

On l' és la longitud efectiva de bescanvi de calor (m) i D_i és el diàmetre intern del tub interior (m). A continuació es presenten les dimensions finals del bescanviador de calor:

Bescanviador E-201		
<i>U</i> (W/m ² °C)	530	
Àrea A (m ²)	1,24	
Longitud total tub L	13,64	
Longitud de tram <i>l</i> (m)	2,0	
Nombre de trams de tub n calculat	6,8	
Nombre real de trams de tub n'	8	
Longitud efectiva/ tram $l'(m)$	1,80	
Àrea efectiva (m ²)	1,31	

Taula A.3.12. Coeficient global de transferència de calor i nombre de tubs del bescanviador E-201.

A.3.2. Dimensionament del bescanviador E-301

- Dades inicials pel dimensionament del bescanviador E-301

En aquest apartat es presenta el procediment de càlcul per dissenyar el bescanviador de calor en forma d'espiral E-301 (ref. 25) que permet escalfar el líquid iònic emmagatzemat al tanc T-301.

Taula A.3.13. Dades pel disseny del bescanviador E-301.		
Dades	Líquid iònic E-301	
Quantitat producte a tractar (m) (kg)	56000	
Temps d'operació (t) (h)	12	
Temperatura d'entrada T _{in} (°C)	20	
Temperatura de sortida T _{out} (°C)	25	

A la Taula A.3.14 es defineixen les temperatures d'entrada i de sortida de l'aigua de servei pel bescanviador de calor E-301 i les propietats físiques del líquid iònic i de l'aigua d'escalfament es presenten a la Taula A.3.15.

Taula A.3.14 Temperatura de l'aigua en el bescanviador E-301.		
Aigua	Líquid iònic E-301	
Temperatura d'entrada T _{in}	50	
Temperatura de sortida T _{out}	30	

Taula A.3.15. Propietats físiques del líquid iònic (ref. 7) i de l'aigua d'escalfament (ref. 21,26).

Propietat	Líquid iònic (20°C)	Aigua
		(50°C)
Capacitat calorífica <i>cp</i> (kJ/kg·°C)	1,98	4,18
Viscositat μ (Pa·s)	1	5,47.10-4
Densitat ρ (kg/m ³)	1155	988
Conductivitat tèrmica $k (W/m \cdot K)$	0,140	0,650
Nombre de Prandtl Pr	42522	3,518

- Càlcul de la calor a subministrar i cabals de disseny

Per tal de calcular la calor a subministrar i el cabal de líquid iònic i aigua necessaris per a l'operació se segueixen les equacions A.3.1 i A.3.2 de l'apartat anterior. Els resultats obtinguts es presenten a continuació.

Taula A.3.16. Valors obtinguts de calor i potència requerits, cabal del producte i cabal d'aigua de servei.

Dades	Líquid iònic E-301
Calor Q (kJ)	$5,57 \cdot 10^5$
Potència Q (kW)	12,86
Cabal ṁ (kg/h)	4667
Cabal <i>m</i> _a (kg/h)	396

- Càlcul de la temperatura mitjana logarítmica

Per tal de calcular la temperatura mitjana logarítmica del bescanviador de calor E-301, se segueixen les equacions A.3.3, A.3.4 i a.3.5. Els resultats es presenten a la Taula A.3.17.

Taula A.3.17. Determinació de la temperatura mitjana logarítmica del bescanviador E-301.

Dades	Líquid iònic E-301
ΔT_1	25,0
ΔT_2	10,0
ΔT_{ml}	16,4

- Determinació de les dimensions del bescanviador E-301

Per tal de determinar les dimensions del bescanviador de calor es fixen uns valors inicials d'espai de plat b (m) i d'amplada de plat H (m), l'ampla de plat és la mateixa per ambdós fluids. Aquestes dimensions es poden veure a la Figura 2.1.3. Amb aquests valors inicials ja es pot calcular el nombre de Reynolds *Re*. En primer lloc es calcula pel fluid fred, i seguidament es calcula pel fluid calent.

$$Re = \frac{D_h M}{\mu A_c} \tag{A.3.20}$$

On D_h és el diàmetre hidràulic (m), M és el cabal màssic (kg/s), μ és la viscositat dinàmica (Pa·s) i A_c , l'àrea de pas del fluid (m²). Per calcular el diàmetre hidràulic se segueix la següent equació:

$$D_h = \frac{2bH}{b+H} \tag{A.3.21}$$

I l'àrea de pas A_c es calcula:

$$A_c = Hb \tag{A.3.22}$$

La velocitat dels fluids V_f es pot determinar amb la següent expressió:

$$V_f = \frac{M}{\rho A_c} \tag{A.3.23}$$

On ρ és la densitat (kg/m³). Ja es pot calcular la longitud *L* (m) de bescanviador fixant una caiguda de pressió per a cada fluid. En el cas de la secció per on circula l'aigua es fixa una caiguda màxima de pressió de 0,8 bar i per a l'aigua de 0,3 bar. L'equació que permet determinar-ne la longitud és:

$$\Delta P = \frac{2fLM^2}{\rho D_h A_c^2} \tag{A.3.24}$$

On ΔP és la caiguda de pressió (Pa), f és el factor de fricció, ρ és la densitat (kg/m³). I el factor de fricció es pot calcular com es presenta seguidament:

$$\frac{1}{\sqrt{f}} = 1,56\ln(Re) - 3,00 \tag{A.3.25}$$

Un cop calculada la llargada associada a cada fluid tenint en compte que no sobrepassi la caiguda de pressió establerta, s'ha de modificar aquesta de forma que les dues tinguin el mateix valor. Per tal de realitzar el procediment, s'itera el valor de l'espai de plat d'un fluid o de l'altre. A continuació es calcula el nombre de Nusselt (ref. 25):

$$Nu = 0.04Re^{0.74}Pr^{0.4} \tag{A.3.26}$$

El coeficient de convecció de calor h és:

$$h = \frac{kNu}{D_h} \tag{A.3.27}$$

Es pot calcular el coeficient global de transferència de calor U (W/mK):

$$U = \frac{1}{\frac{1}{h_h} + \frac{\tau}{k_m} + \frac{1}{h_c}}$$
(A.3.28)

117 - 148

On h_h és el coeficient de convecció de calor del fluid calent, aigua, (W/m²K), τ és el gruix de plat, fixat de 3 mm (m), k_m és la conductivitat tèrmica del material de construcció, en aquest cas d'acer inoxidable 316L, de valor 16 W/m·K (ref. 27) i h_c és el coeficient de convecció de calor del fluid fred, líquid iònic (W/m²K). Seguidament es pot trobar l'àrea d'intercanvi de calor A (m²):

$$A = \frac{\dot{Q}}{U\Delta T_{ml}} \tag{A.3.29}$$

On \dot{Q} és la potència (W).

I l'àrea geomètrica A_g (m²) és:

$$A_g = HL \tag{A.3.30}$$

Els resultats obtinguts es presenten a la Taula A.3.18:

Taula A.3.18. Dimensions del bescanviador en espiral E-301.

	Zon	a
Dimensions	Líquid iònic	Aigua
b (cm)	0,4	0,5
<i>H</i> (m)	1,32	1,32
D_h (cm)	0,80	1,00
A_c (cm ²)	52,8	66,0

Taula A.3.19. Propietats dels fluids del bescanviador en espiral E-301.

	Zona			
Dimensions	Líquid iònic	Aigua		
V_f (m/s)	0,213	0,024		
Re	433	1,96		
f	0,263	0,024		
Longitud L (m)	9	9		
ΔP (bar)	0,37	2,38.10-4		
Nu	4,67	5,87		
<i>h</i> (W/m ² K)	82,0	382,3		

Dimensions				
U (W/mK)	A (m ²)	A_g (m ²)		
66,7	11,8	11,9		

Taula A.3.20. Propietats dels fluids del bescanviador en espiral E-301.

Un cop determinada la longitud de tub i l'espai de plat per a cada plat es pot procedir al càlcul del nombre de voltes que tindrà l'equip (ref. 28). A continuació es presenta una representació gràfica amb la nomenclatura emprada:

Figura A.3.2. Representació gràfica de la forma del bescanviador en espira.

Pel seu disseny se segueix la següent aproximació. Es calcula com a separació $h = h_i$ presentada a la figura com la suma de l'espai de plat del fluid fred (líquid iònic) b_c (m), l'espai de plat del fluid calent b_h i el gruix de paret de separació entre cada fluid th que serà de 3mm (m). Per tant, la separació h_i (m) és:

$$h_i = b_c + b_h + 3th \tag{A.3.31}$$

El radi extern R_f (m) tal i com es mostra a la Figura A.3.2 es determina mitjançant la següent equació:

$$R_f = \sqrt{L\frac{h_i}{\pi} + R_0^2}$$
(A.3.32)

On R_0 és el radi intern de l'espiral amb valor de 0,025m.

I el nombre de voltes N que tindrà el bescanviador és de:

$$N = \frac{R_f - R_0}{h_i} \tag{A.3.33}$$

Els resultats es presenten a la Taula A.3.21.

Taula A.3.21. Dimensions del bescanviador en espiral E-301.				
Dimensions				
h_i (cm) R_f (cm) N				
1,80	22,8	11		

A.4. Dimensionament del reactor R-101

Per dimensionar el reactor s'ha determinat experimentalment a escala de laboratori condicions com són la temperatura i el temps de reacció per tal de definir la cinètica que regeix el procés de neutralització entre els reactius establerts i els corresponents balanços de matèria i energia presentats seguidament. El valor del factor preexponencial k_0 és de 11.625 h⁻¹ i el de l'energia d'activació, E_a de 22·10³ J/mol.

- Dades inicials per a la resolució del balanç de matèria i energia en el reactor

El cabal volumètric v_0 (m³/h) que entra al reactor es tracta d'etanolamina i, és subministrat durant un període de dues hores (temps de duració de la reacció). Com se sap que per produir 2 Tm diàries de líquid iònic es requereix 729 kg d'aquest reactiu s'obté mitjançant l'equació A.4.1:

$$\nu_0 = \frac{m_e}{\rho_e} \cdot \frac{1}{2} \tag{A.4.1}$$

On m_e és la quantitat necessària d'etanolamina (729 kg), ρ_e és la densitat de l'etanolamina (1012 kg/m³). La concentració del cabal volumètric d'etanolamina C_{b0} (kmol/m³) és:

Disseny d'una planta de producció de líquid iònic

$$C_{b0} = \frac{m_e \cdot \frac{98,5}{100} \frac{1}{PM_e}}{\frac{m_e}{\rho_e}}$$
(A.4.2)

On PM_e és el pes molecular de l'etanolamina (kg/kmol). El rang usual de valors del coeficient global de transferència de calor U per a un sistema de camisa de refrigeració amb circulació d'aigua és de 500-700 W/m²K (ref. 8). En aquest cas s'escull el valor inferior de 500 W/m²K.

Per tant el valor del terme $U \cdot A$ (10800 kJ/h·K) on A és l'àrea de la camisa de refrigeració (m²) i es comprovarà que és raonable per tal de mantenir la temperatura del reactor constant (25°C). La temperatura de l'etanolamina que se subministra T_0 és de 298K.

A continuació es duu a terme l'estimació de l'entalpia de reacció ΔH_{Rx}° mitjançant les quantitats que es van emprar a escala de laboratori mostrades a la Taula A.4.1:

Massa d'àcid (g)	Massa d'etanolamina (g)	Massa de líquid iònic obtingut (g)
28,17	16,80	44,97

Taula A.4.1. Quantitats emprades d'àcid valèric i etanolamina per a obtenció de líquid iònic.

La calor despresa Q (kJ) en reaccionar 44,97 g de líquid iònic és de:

$$Q = m_{IL} \cdot C_{PIL} \cdot \Delta T \tag{A.4.3}$$

On m_{IL} és la massa de 0,04497 kg de líquid iónic, C_{PIL} és la capacitat calorífica del líquid iònic (1,984 kJ/kg·K) i ΔT és la variació de temperatura que té lloc en el sistema, en què és de 25°C. Ja es pot determinar l'entalpia de reacció ΔH_{Rx}° (kJ/kmol):

$$\Delta H_{Rx}^{\circ} = \frac{Q}{m_{IL}} \tag{A.4.4}$$

Els resultats es presenten a la Taula A.4.2:

Taula A.4.2. Resultats dels valors de la	a calor de reacció i entalpia de reacció.
Calor despresa de la reacció Q	Entalpia de reacció ΔH_{Rx}°
-2.23	-8097

El volum inicial d'àcid valèric (m³) que conté el reactor és:

$$V_i = \frac{m_{\hat{a}cid_0}}{\rho_{\hat{a}cid}} \tag{A.4.5}$$

On m_{acid_0} és la massa inicial d'àcid que hi ha al reactor, la qual és de 1271 kg requerits per produir 2000 kg de líquid iònic/*Batch*·dia i ρ_{acid} és la densitat de l'àcid valèric, de 939 kg/m³.

Les capacitats calorífiques de l'àcid valèric és 197 kJ/kmol·K (ref. 29) i 324 kJ/kmol·K pel líquid iònic i de l'aigua de refrigeració, de 77,37 kJ/kmol·K. El cabal molar d'etanolamina F_{b0} (kmol/h) que se subministra durant el temps de 2h de procés és:

$$F_{b0} = m_e \cdot \frac{1}{2} \cdot \frac{1}{PM_e}$$
(A.4.6)

La quantitat respectiva d'àcid, etanolamina i líquid iònic N_A , N_B i N_C (kmol) es calcula mitjançant les següents equacions:

 $N_A = V \cdot C_A \tag{A.4.7}$

$$N_B = V \cdot C_B \tag{A.4.8}$$

$$N_{\mathcal{C}} = V \cdot \mathcal{C}_{\mathcal{C}} \tag{A.4.9}$$

- Balanç de matèria i energia en el reactor

Un cop determinats els paràmetres per avaluar la constant cinètica a diferents temperatures i les dades inicials presentades anteriorment, es planteja el balanç de matèria que té lloc en el reactor

semi-*batch*, el qual es carrega inicialment d'àcid valèric i, posteriorment, es va dosificant l'etanolamina. Les equacions del balanç de matèria en el reactor semi-*batch* són:

Per a l'àcid valèric (A):

$$\frac{dC_A}{dt} = r_A - \frac{C_A \cdot v_0}{V} \tag{A.4.10}$$

On C_A és la concentració de l'àcid valèric (kmol/m³), r_A la velocitat de reacció, v_0 el cabal volumètric (m³/s) del reactiu B, etanolamina i V, el volum del reactor (m³).

On:

$$r_A = -k \cdot C_A \tag{A.4.11}$$

Per a l'etanolamina (B):

$$\frac{dC_B}{dt} = \frac{v_0}{V} (C_{B_0} - C_B) + r_B \tag{A.4.12}$$

On

$$r_B = r_A \tag{A.4.13}$$

On C_B és la concentració de l'àcid valèric (kmol/m³), C_{B_0} és la concentració inicial d'etanolamina en el cabal volumètric de l'alimentació, C_B , la concentració d'etanolamina en el reactor i, r_B , la velocitat de reacció. Pel líquid iònic 2-HEAPE (C):

$$\frac{dC_c}{dt} = r_c - \frac{C_c \cdot v_0}{V} \tag{A.4.14}$$

On:

$$r_c = -r_A \tag{A.4.15}$$

123 - 148

On C_c és la concentració de líquid iònic en el reactor (kmol/m³), r_c , la velocitat de recció del producte. I cal considerar també la variació de volum del reactor V (m³) al llarg del procés:

$$V = V_i + v_0 \cdot t \tag{A.4.16}$$

On V_i és el volum inicial d'àcid pentanoic (àcid valèric) en el reactor (m³) i v_0 és el cabal volumètric d'etanolamina subministrat durant el procés (m³/h). I el balanç d'energia (ref. 30):

$$\frac{dT}{dt} = \frac{Q_r - F_{B_0} \cdot Cp_B \cdot (T - T_0) + r_A \cdot V \cdot \Delta H^0 R_\chi}{N_A \cdot Cp_A + N_B \cdot Cp_B + N_C \cdot Cp_C}$$
(A.4.17)

On *T* és la temperatura (K), Q_r és la calor de refrigeració del reactor, F_{B_0} és el cabal màssic d'alimentació d'etanolamina (kmol/s), Cp_B és la capacítat calorífica de l'etanolamina (J/kmol·K), T_0 és la temperatura de l'alimentació d'etanolamina (°C), $\Delta H_{R_X}^0$ l'entalpia estàndard de reacció, N_A , N_B , N_C la quantitat de matèria d'àcid valèric, etanolamina i líquid iònic respectivament (kmol) que hi ha dins al reactor, Cp_A i Cp_C la capacitat calorífica d'àcid valèric i líquid iònic respectivament (J/kmol·K).

La calor de refrigeració Q_r en el procés s'obté mitjançant la següent equació (ref. 30):

$$Q_r = \dot{m}_c \cdot C_{pr} \cdot \left((T_{a1} - T) \cdot \left(1 - \exp\left(\frac{-U \cdot A}{\dot{m}_c \cdot C_{pr}} \right) \right) \right)$$
(A.4.18)

On $\dot{m_c}$ és el cabal molar d'aigua de refrigeració (base de disseny 30 kmol/h), C_{pr} és la capacitat calorífica de l'aigua (kJ/kmol·K), T_{a1} és la temperatura d'entrada de l'aigua (283K). I ja es pot determinar quina és la temperatura de sortida de l'aigua de refrigeració (ref. 30):

$$T_{a2} = T - (T - T_{a1}) \cdot \exp(-U \cdot A/\dot{m}_c/C_{pr})$$
(A.4.19)

- <u>Resultats reactor R-101</u>

A partir de les equacions establertes i la llei de velocitat de reacció s'ha dimensionat el reactor. Seguidament es presenten els resultats obtinguts mitjançant el programa *Polymath*.

POLYMATH Results

No Title 03-15-2015, Rev5.1.225

Calculated values of the DEQ variables

Variable	initial value	minimal value	maximal value	final value
t	0	0	2,5	2,5
Ca	9,	0,2753435	9,	0,2753435
Cb	0	0	0	0
Cc	0	0	5,4827349	5,1281302
Т	298,	295,1803	306,19897	295,1803
mc	30,	30,	30,	30,
Cb0	16,32	16,32	16,32	16,32
UA	1,08E+04	1,08E+04	1,08E+04	1,08E+04
Cpb	127,	127,	127,	127,
ТO	298,	298,	298,	298,
dh	-8097,	-8097,	-8097,	-8097,
k	1,0553434	0,9655677	1,3540387	0,9655677
Vi	1,3533	1,3533	1,3533	1,3533
сра	197,	197,	197,	197,
срс	324,	324,	324,	324,
v0	0,3603	0,3603	0,3603	0,3603
FbO	5,97	5,97	5,97	5,97
ra	-9,498091	-9,498091	-0,2658628	-0,2658628
V	1,3533	1,3533	2,25405	2,25405
Na	12,1797	0,6206381	12,1797	0,6206381
Nb	0	0	0	0
Nc	0	0	11,559062	11,559062
Cpr	75,37	75,37	75,37	75 , 37
Tal	283,	283,	283,	283,
Qr	-3,363E+04	-5,201E+04	-2,731E+04	-2,731E+04
Ta2	297,87361	295 , 07767	306,00398	295,07767
rb	-9,498091	-9,498091	-0,2658628	-0,2658628
rc	9,498091	0,2658628	9,498091	0,2658628
Ca0	9,	9,	9,	9,
NCp	2399,4009	2399,4009	3867,4018	3867,4018
Х	0	0	0,9490432	0,9490432
U	500,	500,	500,	500,

ODE Report (RKF45)

Differential equations as entered by the user

- [1] d(Ca)/d(t) = ((-Ca/V)*v0)+ra
- [2] d(Cb)/d(t) = 0
- $[3] d(Cc)/d(t) = rc-((Cc^*v0)/V)$
- [4] d(T)/d(t) = (Qr-Fb0*Cpb*(T-T0)+ra*V*dh)/NCp

Explicit equations as entered by the user

- [1] mc = 30
- [2] Cb0 = (16320/1000)
- [3] UA = 10800
- [4] Cpb = 127
- [5] **T0 = 298**
- [6] **dh = -8097**

- [7] k = 11625*exp(-22188/(8*T))
- [8] Vi = (13533/10000)
- [9] cpa = 197
- [10] cpc = 324
- [11] v0 = (3603/10000)
- [12] **Fb0 = (597/100)**
- [13] $ra = -k^*Ca$
- [14] V = Vi+v0*t [15] Na = V*Ca
- [15] Na = V Ca[16] $Nb = V^*Cb$
- [17] $NC = V^*CC$
- [18] Cpr = (7537/100)
- [19] Ta1 = 283
- [20] Qr = mc*Cpr*(Ta1-T)*(1-exp(-UA/mc/Cpr))
- [21] Ta2 = T-(T-Ta1)*exp(-UA/mc/Cpr)
- [22] **rb = ra**
- [23] rc = -1*ra
- [24] **Ca0 = 9**
- [25] NCp = (Na*cpa)+(Nb*Cpb)+(Nc*cpc)
- [26] X = ((Ca0*Vi)-(Ca*V))/(Ca0*Vi)
- [27] **U = 500**

Comments

- [6] Cb0 = (16320/1000)
- (kmol/m3)
- [7] UA = 10800(*kJ/h·K*)
- [8] Cpb = 127
- (*kJ/kmol⋅K*) [9] T0 = 298
- 9] 10= (K)
- [10] dh = -8097
- (kJ/kmol)
- [12] Vi = (13533/10000) (*m*3)
- [13] cpa = 197 (kJ/kmol·K)
- [14] cpc = 324
- (*kJ/kmol⋅K*) [15] V = Vi+v0*t
- (*m*3)
- [16] Fb0 = (597/100) (kmol/h)
- [22] Cpr = (7537/100)
- (kJ/kmol·K) Aigua refrigeració [23] Ta1 = 283
- (K)
- [24] mc = 30
- (kmol/h) aigua refrigeració
- [30] v0 = (3603/10000) (m3/h)
- [31] U = 500(*W/m2·K*)
- (/////2///)

Independent variable variable name : t initial value : 0 final value : 2,5

Precision

Step size guess. h = 0,000001Truncation error tolerance. eps = 0,000001

General

number of differential equations: 4 number of explicit equations: 27 Data file: C:\Users\user\Desktop\TFG\Tasc 5. Definició cinètica reacció\ALELUIA.pol

- Disseny mecànic del reactor R-101

El reactor serà construït en forma cilíndrica, amb el cap i fons d'aquest acabats en forma tori esfèrica. Per determinar el volum del cilindre s'estableix la relació:

$$h = 1,5 \cdot Di \tag{A.4.20}$$

On *h* és l'alçada (m) del cilindre i Di és el diàmetre intern (m). El volum del cos cilíndric Vi (m³) és:

$$Vi = \pi \cdot \left(\frac{Di}{2}\right)^2 \cdot h \tag{A.4.21}$$

I a continuació, es calcula el volum que ocupen el capçal i el fons els quals tenen forma tori esfèrica tipus Klöpper (DIN-28011) (ref. 31) presentada a la Figura A.4.1:

Figura A.4.1. Forma tori esfèrica tipus Klöpper pel capçal i fons del reactor R-101.

Per tal de calcular el volum del capçal se segueix l'equació presentada a continuació:

$$Vi_c = 0, 1(Di)^3$$
 (A.4.22)

On Vi_c és el volum del capçal/fons del reactor (m³) i per calcular la seva alçada se segueixen les següents equacions:

Disseny d'una planta de producció de líquid iònic

$$h_1 \ge 3.5 \cdot e \tag{A.4.23}$$

127 - 148

On h_1 és l'alçada de la part recta com s'indica a la Figura A.4.1 (m), *e* és el gruix mínim que ha de tenir el capçal (m), que s'estableix de 5 mm. I la distància que hi ha entre la part més fonda i el punt on comença la curvatura h_2 (m) es calcula com es mostra seguidament:

$$h_2 = 0,1935D_e - 0,455e \tag{A.4.24}$$

On D_e és el diàmetre extern (m):

$$D_e = Di + 2e \tag{A.4.25}$$

Finalment, l'altura total interna del capçal h' (m) és:

$$h' = h_1 + h_2 \tag{A.4.26}$$

El volum total del reactor R-101 és de 2,70 m³. Per a cada lot de 2 Tm diàries de líquid iònic produïdes s'omple un 83,7% de la seva capacitat total. La camisa de refrigeració té una àrea A de 6 m², i se situa envoltant la part cilíndrica del reactor R-101, de forma que la llargada L (m) que recobreix l'equip és:

$$L = \frac{A}{\pi D_e} \tag{A.4.27}$$

- Disseny de l'agitador del Reactor R-101

Les proporcions entre les dimensions de l'equip, reactor R-101 i l'agitador de turbina (ref. 32):

$$\frac{Da}{Dt} = \frac{1}{3} \tag{A.4.28}$$

On Da és el diàmetre de l'agitador (m), Dt és el diàmetre del reactor (m), d'1,26m.

$$\frac{j}{Dt} = \frac{1}{12}$$
 (A.4.29)

On *j* és l'amplada de les plaques deflectores (m).

$$\frac{E}{Dt} = \frac{1}{3} \tag{A.4.30}$$

On E és l'altura del rodet sobre el fons del tanc (m). (A.4.31)

$$\frac{W}{Da} = \frac{1}{5} \tag{A.4.32}$$

On *W* és l'amplada de les pales (m).

$$\frac{L}{Da} = \frac{1}{4} \tag{A.4.33}$$

On L és la longitud de les pales (m). (A.4.34)

Per calcular la potència consumida per l'agitador es determina el nombre de Reynolds N'_{Re} (ref. 32):

$$N'_{Re} = \frac{\rho \cdot N \cdot Da^2}{\mu} \tag{A.4.35}$$

On ρ és la densitat de mescla (kg/m³), en aquest cas s'agafa el valor de densitat del líquid iònic de 1155 kg/m³, *N* és la freqüència de gir (rps), en aquest cas s'agafa un valor habitual a la indústria de 100 rpm i μ és la viscositat de la mescla, però en aquest cas s'agafa el cas menys favorable, la viscositat del líquid iònic de 3000 cp (kg/m·s) (ref. 8). En aquest cas s'obté un nombre de Reynolds de 113. Com es troba entre el valor de 10 i 10000 el règim és de transició.

na A.4	.5. Nombre de Reynolds I lipt	is de legilli del lídid del Reac	101.
	Règim de	e fluid	
	Nombre de Reynolds	Tipus de règim	
	113	Transitiu	I

Taula A.4.3. Nombre de Reynolds i tipus de règim del fluid del Reactor R-101.

A continuació es presenta la Figura A.4.2 (ref. 33) en la qual es pot llegir el valor del nombre de potència Np, que permetrà determinar seguidament la potència consumida per l'agitador, a partir del valor del nombre de Reynolds N'_{Re} .

Figura A.4.2. Nombre de Reynolds N'_{Re} en funció del nombre de potència Np.

En la Figura A.4.2 es pot observar que hi ha cinc corbes. La corba en qüestió a triar és la 1, ja que per les característiques de l'agitador, es tracta d'una turbina de 6 pales planes i amb una relació

$$\frac{Da}{W} = 5 \tag{A.4.36}$$

Per tant, el valor aproximat de Np és de 3.

A continuació ja es pot determinar la potència consumida P (W) per l'agitador del reactor R-101 (ref. 33):

$$P = Np \cdot Da^5 \cdot N^3 \cdot \rho \tag{A.4.37}$$

On *Da* és el diàmetre de l'agitador, calculat anteriorment (m), *N*és la freqüència de gir definida anteriorment (rps), de valor 1,67 rps i ρ és la densitat (kg/m³), esmentada anteriorment.

A.5. Determinació de la potència de les bombes de la planta química

En aquest apartat es presenten els càlculs per determinar les característiques de les bombes de la instal·lació industrial (ref. 34).

- Dades inicials pel disseny de les bombes

A la Taula A.5.1 es presenten les propietats físiques dels reactius i producte necessàries per a determinar les característiques de les bombes, així como les velocitats i cabals de disseny emprats.

Taula A.5.1. Dades inicials pel disseny de les bombes del procés (ref. 8 i 20).					
Dades	Àcid Valèric	Valèric Etanolamina Líquid iò		id iònic	
Bomba	P-101	P-201A/B	P-201.0	P-301	P-301.0
Viscositat µ (cp) a 25 °C	2,41	25	25	3000	3000
Densitat $ ho$ (kg/m ³)) a 25 °C	939	1012	1012	1155	1155
Pressió de vapor P _v (Pa)) a 25 °C	20	53	53	32	32
Cabal ${oldsymbol Q}_{m}^{\cdot}$ (kg/h)	2541	729	2553	2000	4667
Velocitat a l'aspiració ${\cal V}_{a}~({ m m/s})$	1,00	0,80	1,10	0,60	0,60
Velocitat a la impulsió v_i (m/s)	1,50	1,00	1,30	0,75	0,75

- Determinació del règim del fluid

A continuació es presenten el procediment de càlcul seguit per a determinar el cabal volumètric \dot{Q}_v (m³/s), el diàmetre de la canonada D (m), i el tipus de règim del fluid determinant-ne el nombre de Reynolds *Re*.

$$\dot{Q}_{\nu} = \frac{\dot{Q}_m}{\rho \cdot 3600} \tag{A.5.1}$$

131 - 148

$$D = \sqrt{\frac{4 \cdot \dot{Q}_v}{\pi \cdot v_{a/i}}} \tag{A.5.2}$$

On \dot{Q}_{v} és el cabal volumètric (m³/s), $v_{a/i}$ és la velocitat del líquid a l'aspiració o a l'impulsió (m/s). I per tal de determinar el règim del fluid, es procedeix al càlcul del nombre de Reynolds:

$$Re = \frac{\rho \cdot v_{a/i} \cdot D}{\mu} \tag{A.5.3}$$

Un cop calculat el nombre de Reynolds, per determinar en quin règim es troba s'ha de seguir la següent condició:

$$Re < 2100 Règim laminar$$
 (A.5.4)

$$Re > 2100 Règim turbulent$$
 (A.5.5)

Taula A.5.2. Resultats obtinguts en el procés d'aspiració de les bombes.

Aspiració					
Dades	Àcid Valèric	Etanol	Etanolamina		d iònic
Bomba	P-101	P-201A/B	P-201.0	P-301	P-301.0
Velocitat aspiració, v_a (m/s)	1,00	0,80	1,10	0,60	0,60
Cabal \dot{Q}_{v} (m ³ /s)	7,52.10-4	$2,00 \cdot 10^{-4}$	7,01.10-4	4,81.10-4	1,12.10-3
Diàmetre D (m)	0,031	0,018	0,029	0,032	0,049
Nombre de Reynolds (<i>Re</i>)	12055	578	1268	7,38	11,27
Tipus de règim	Turbulent	Laminar	Laminar	Laminar	Laminar

Taula A.5.3. Resultats obtinguts en el procés d'impulsió de les bombes.

	Li Li	mpulsió			
Dades	Àcid Valèric	Etano	Etanolamina		d iònic
Bomba	P-101	P-201A/B	P-201.0	P-301	P-301.0
Velocitat impulsió, v _i (m/s)	1,50	1,00	1,30	0,75	0,75
Cabal \dot{Q}_{v} (m ³ /s)	7,52.10-4	$2,00 \cdot 10^{-4}$	7,01.10-4	4,81.10-4	1,12.10-3
Diàmetre D (m)	0,025	0,016	0,026	0,029	0,044
Nombre de Reynolds (<i>Re</i>)	14764	644	1379	8,25	12,60
Tipus de règim	Turbulent	Laminar	Laminar	Laminar	Laminar

- Determinació del factor de fricció de Fanning

Per determinar les pèrdues per fricció per impulsar els reactius i productes al llarg de la canonada s'ha de determinar el factor de Fricció de Fanning f.

- Factor de fricció de Fanning f per a règim turbulent

Per tal de determinar el factor de fricció de Fanning f per a un fluid de règim turbulent es pot emprar correlacions o bé, gràficament, amb el diagrama de Moody (ref. 35). En aquest cas s'ha utilitzat aquest últim. A continuació es presenta el diagrama de Moody, on es pot llegir el factor de fricció de Fanning en funció del nombre de Reynolds, calculat anteriorment i, en funció de la rugositat relativa, la qual es pot determinar mitjançant el diagrama presentat seguidament.

Figura A.5.1. Diagrama de Moody per a la determinació del factor de fricció de Fanning.

Per tal de determinar la rugositat relativa es disposa del diagrama que es presenta a continuació. La rugositat relativa es troba en funció del material escollit de la canonada i del diàmetre d'aquesta, calculat anteriorment, tant per a l'aspiració com per a la impulsió.

Figura A.5.2. Diagrama de rugositat relativa.

El material de la canonada escollit és acer comercial pels tres casos, tant per l'àcid, la base com pel producte.

- Factor de fricció de Fanning **f** per a règim laminar

Per determinar el factor de fricció de Fanning per a règim laminar se segueix la següent equació:

$$f = \frac{64}{Re} \tag{A.5.6}$$

- Els resultats obtinguts del factor de fricció de Fanning f per a cada reactiu i producte en l'aspiració i impulsió.

	Àcid valèric P-101		Etanolamina P-201A/B		Etanolamina P-201.0	
Tram	Aspiració	Impulsió	Aspiració	Impulsió	Aspiració	Impulsió
ε/D	0,0018	0,0019	-	-	-	-
f	0,0225	0,0230	0,1107	0,0990	0,0505	0,0464
Líquid iònic P-301 Líquid iònic P-301				ic P-301.0		
Tram	Aspiració	Impuls ió	Aspiració	Impulsió		
ε/D	-	-	-	-		
f	8,6719	7,7564	5,6771	5,0778		

Taula A.5.4. Rugositat relativa i factor de fricció de Fanning de les canonades.

- Determinació del treball de fricció h_f

A continuació es determina el treball de fricció h_f (m²/s²) produït pel fluid que circula per la canonada degut a la seva viscositat. Es calcula amb la següent equació:

$$h_f = f \frac{L_e \cdot v_{a/i}^2}{2 \cdot D}$$

On L_e és la longitud equivalent, que és la suma de longitud de canonada més la longitud dels accessoris i vàlvules situats en el tram d'estudi (m) i, *D*, com s'ha esmentat anteriorment, és el diàmetre de la canonada (m).

La longitud L_e es determina de la següent manera:

$$L_e = L_c + L_a \tag{A.5.7}$$

On L_c és la longitud de canonada, a l'aspiració o a l'impulsió, i L_a la longitud corresponent a l'aspiració o a l'impulsió que compren els accessoris i vàlvules i que seguidament es presenta el seu càlcul:

Disseny d'una planta de producció de líquid iònic

$$L_a = \frac{k \cdot v_{i/a}^2}{2 \cdot g} \tag{A.5.8}$$

On k és el factor de cabal, que varia segons la vàlvula, com per a colzes, brides i la resta d'accessoris que es puguin trobar al llarg de la canonada i, g, l'acceleració de la gravetat (m/s²).

	Àcid valèric P-101	Etanolamina P-201A/B	Etanolamina P-201.0	Àcid valèric P-301	Àcid valèric P-301.0
Aspiració (L_c) (m)	3	3,5	1,5	1,25	1,25
Impulsió (L_c) (m)	17	18	18*	8,00	10

Taula A.5.5. Longitud de canonada a l'aspiració i a la impulsió de cada bomba.

*En la longitud equivalent d'impulsió de 18*m s'inclou la longitud total de tub del bescanviador de calor E-201.

Taula A.5.6. Càlcul de la longitud de vàlvules i accessoris en el tram d'aspiració d'àcid
valèric (ref. 36 i 37).

Aspiració àcid valèric P-101						
Vàlvules/Accessoris	Unitats	k	$L_{a}(m)$	L _{a total} (m)		
Globus	0	9,5				
Comporta	0	2				
Papallona	1	118	6,01	6,01		
Anti-retorn	0	70				
Manual	2	10	0,51	1,02		
Colze estàndard 90°	2	1,3	0,07	0,13		
Т	1	1	0,05	0,05		
Brides	6	1	0,05	0,31		

Taula A.5.7. Cà	lcul de la lo	ongitud de	vàlvules i	accessoris of	en el tram	d'impulsió d	1'àcid
			valèric.				

Impulsió àcid valèric P-101						
Vàlvules/Accessoris	Unitats	k	L _a (m)	L _{a total} (m)		
Globus	1	9,5	1,09	1,09		
Comporta	0	2				
Papallona	0	118				
Anti-retorn	1	70	8,03	8,03		
Manual	2	10	1,15	2,29		
Colze estàndard 90°	4	1,3	0,15	0,60		
Т	3	1	0,11	0,34		
Brides	10	1	0,11	1,15		

Aspiració etanolamina P-201A/B						
Vàlvules/Accessoris	Unitats	k	L _a (m)	L _{a total} (m)		
Globus	0	9,5				
Vàlvula de 3 vies	1	10	0,33	0,33		
Papallona	1	118	3,85	3,85		
Anti-retorn	0	70				
Manual	2	10	0,33	0,65		
Colze estàndard 90°	0	1,3				
Т	1	1	0,03	0,03		
Brides	7	1	0,03	0,23		

Taula A.5.8. Càlcul de la longitud de vàlvules i accessoris en el tram d'aspiració d'etanolamina de la bomba P-201A/B.

Taula A.5.9. Càlcul de la longitud de vàlvules i accessoris en el tram d'impulsió etanolamina de la bomba P-201A/B.

Impulsió etanolamina P-201A/B						
Vàlvules/Accessoris	Unitats	k	L _a (m)	L _{a total} (m)		
Globus	0	9,5				
Vàlvula de 3 vies	1	10	0,51	0,51		
Papallona	0	118				
Anti-retorn	1	70	3,57	3,57		
Manual	2	10	0,51	1,02		
Colze estàndard 90°	3	1,3	0,07	0,20		
Т	1	1	0,05	0,05		
Brides	9	1	0,05	0,46		

Taula A.5.10. Càlcul de la longitud de vàlvules i accessoris en el tram d'aspiració de la bomba P-201.0.

Aspiració etanolamina P-201.0					
Vàlvules/Accessoris	Unitats	k	$L_{a}(m)$	L _{a total} (m)	
Globus	0	9,5			
Vàlvula de 3 vies	0	10			
Papallona	1	118	7,28	7,28	
Anti-retorn	0	70			
Manual	2	10	0,62	1,23	
Colze estàndard 90°	6	1,3	0,08	0,48	
Т	1	1	0,06	0,06	
Brides	6	1	0,06	0,37	

Impulsió etanolamina P-201.0						
Vàlvules/Accessoris	Unitats	k	$L_{a}(m)$	L _{a total} (m)		
Globus	0	9,5				
Vàlvula de 3 vies	0	10				
Papallona	0	118				
Anti-retorn	1	70	6,03	6,03		
Manual	2	10	0,86	1,72		
Colze estàndard 90°	18*	1,3	0,11	2,02		
Т	0	1	0	0		
Brides	6	1	0,09	0,52		

Taula A.5.11. Càlcul de la longitud de vàlvules i accessoris en el tram d'impulsió etanolamina de la bomba P-201.0.

Els colzes que conformen el bescanviador de calor E-201 també s'han tingut en compte per determinar les pèrdues per fricció, per això, a la Taula A.5.12 està detallat el valor de 18 colzes estàndard.

		iònic.				
Aspiració de líquid iònic P-301						
Vàlvules/Accessoris	Unitats	k	L _a (m)	L _{a total} (m)		
Globus	0	9,5				
Comporta	1	2	0,04	0,04		
Papallona	0	118				
Anti-retorn	0	70				
Manual	2	10	0,18	0,37		
Colze estàndard 90°	1	1,3	0,02	0,02		
Т	1	1	0,02	0,02		
Brides	6	1	0,02	0,11		

Taula A.5.12. Càlcul de la longitud de vàlvules i accessoris en el tram d'aspiració de líquid iònic.

Impulsió de líquid iònic P-301									
Vàlvules/Accessoris	Unitats	k	$L_{a}(m)$	L _{a total} (m)					
Globus	1	9,5	0,27	0,27					
Comporta	0	2							
Papallona	0	118							
Anti-retorn	1	70	2,01	2,01					
Manual	2	10	0,29	0,57					
Colze estàndard 90°	3	1,3	0,04	0,11					
Т	1	1	0,03	0,03					
Brides	8	1	0,03	0,23					

Taula A.5.13. Càlcul de la longitud de vàlvules i accessoris en el tram d'impulsió de líquid

Taula A.5.14. Càlcul de la longitud de vàlvules i accessoris en el tram d'aspiració de líquid iònic en el circuit secundari.

Aspiració de líquid iònic P-301.0								
Vàlvules/Accessoris	Unitats	k	L _a (m)	L _{a total} (m)				
Globus	0	9,5						
Comporta	0	2						
Papallona	1	118	2,17	2,17				
Anti-retorn	0	70						
Manual	2	10	0,18	0,37				
Colze estàndard 90°	2	1,3	0,02	0,05				
Т	1	1	0,02	0,02				
Brides	6	1	0,02	0,11				

Taula A.5.15. Càlcul de la longitud de vàlvules i accessoris en el tram d'impulsió de líquid iònic en el circuit secundari.

Impulsió de líquid iònic P-301.0									
Vàlvules/Accessoris	Unitats	k	$L_{a}(m)$	L _{a total} (m)					
Globus	0	9,5							
Comporta	0	2							
Papallona	0	118							
Anti-retorn	1	70	2,01	2,01					
Manual	2	10	0,29	0,57					
Colze estàndard 90°	6	1,3	0,04	0,22					
Т	2	1	0,03	0,06					
Brides	7	1	0,03	0,20					

A continuació es presenten els valors obtinguts de les pèrdues totals per fricció per a cada canonada:

Taula A.J.	Taula A.5.10. Valors obtinguts de la longitud equivalent i treban de meeto.							
	Àcid valèric P- 101	Etanolamina P-201A/B	Etanolamina P-201.0	Líquid iònic P-301	Líquid iònic P-301.0			
		Aspir	ració					
L_{e} (m)	10,52	8,59	10,92	1,81	3,96			
h_f (m ² /s ²)	3,83	17,05	11,71	88,24	82,88			
		Impı	ılsió					
L_{e} (m)	30,50	23,81	28,29	11,22	13,06			
h_f (m ² /s ²)	31,24	73,83	42,36	856,73	459,23*			

Taula A.5.16. Valors obtinguts de la longitud equivalent i treball de fricció.

*El valor h_f inclou les pèrdues del bescanviador de calor en espiral E-301.

- Determinació de la càrrega total requerida **h** (m)

Per tal de determinar la càrrega total requerida h (m) de la bomba se segueix l'equació de Bernouilli:

$$h = (z_2 - z_1) + \frac{(p_2 - p_1)}{\rho \cdot g} + \frac{v_2^2 - v_1^2}{2 \cdot g} + \frac{h_{ftotal}}{g}$$
(A.5.9)

On z_2 és l'alçada final que assoleix el cabal per arribar al segon dipòsit (m), z_1 és l'alçada a la que es troba el líquid en el dipòsit inicial (m), P_2 i P_1 són les pressions a l'interior del primer i segon dipòsit respectivament (Pa), v_2 i v_1 són les velocitats del líquid en el primer i segon dipósit respectivament (m/s) i aquí, h_{ftotal} són les pèrdues per fricció totals, és a dir, la suma de pèrdues per fricció a l'aspiració i a la impulsió. Es presenten les condicions pel transport de l'àcid valèric, etanolamina i líquid iònic i la càrrega total requerida h (m).

Dades	Àcid valèric P- 101	Etanolamina P-201A/B	Etanolamina P-201.0	Líquid iònic P-301	Líquid iònic P-301.0
z ₂ (m)	2,45	2,45	4,20	6	6
z ₁ (m)	0,3	0,3	0,3	0,3	0,3
P ₂ (Pa)	101325	101325	101325	101325	101325
P ₁ (Pa)	101325	101325	101325	101325	101325
v_2 (m/s)	1,50	1,00	1,30	0,75	0,75
v_1 (m/s)	0,00	0,00	0,00	0,00	0,00
h_{ftotal} (m ² /s ²)	35,06	90,88	54,07	945	542
<i>h</i> (m)	5,84	11,47	9,51	102	61,05

Taula A.5.17. Condicions pel transport dels productes i determinació de la càrrega total requerida h (m).

- Càlcul del NPSH disponible

A la Taula A.5.18 es calcula una altra característica del sistema, el $NPSH_d$, que és la càrrega total d'aspiració just a l'entrada de la bomba menys la pressió de vapor del líquid a la temperatura que circula expressada en metres.

$$NPSH_d = z_1 + \frac{v_1^2}{2 \cdot g} + \frac{P_1 - P_v}{\rho \cdot g} - \frac{h_{fa}}{g}$$
(A.5.10)

On h_{fa} és el treball de fricció a l'aspiració (m²/s²).

Taula A.5.18. Valors obtinguts de $NPSH_d$ per a cada bomba del procés.								
	Àcid valèric P- 101	Etanolamina P-201A/B	Etanolamina P-201.0	Líquid iònic P-301	Líquid iònic P- 301.0			
NPSH _d (m)	10,91	8,76	9,31	0,25	0,79			

A.6. Dimensionament de les canonades de procés

- Dades inicials pel dimensionament de les canonades

A la Taula A.6.1 es presenten les dades inicials per determinar les dimensions de les canonades del procés.

Taula A.6.1. Dades pel disseny dels tancs de reactius i productes.								
Canonada	Velocitat fluid v (m/s)	Cabal ṁ (kg/h)	Diàmetre intern calculat D _i (cm)	Pressió d'operació P _o (atm)				
100.1	1,0	2541	3,09	0,97				
100.2	1,5	2541	2,53	1,48				
100.3-100.4-100.5	0,8	729	1,78	0,84				
100.6-100.7-100.8	1,0	729	1,60	1,94				
100.9	0,6	2000	3,19	338 (Pa)				
100.10	0,75	2000	2,86	11,39				
100.001	1,1	2553	2,85	0,87				
100.002	1,3	2553	2,62	1,80				
100.003	1,3	2553	2,62	1,53				
100.004	0,6	4667	4,88	0,06				
100.005	0,75	4667	4,37	6,86				
100.006	0,75	4667	4,37	6,50				

A continuació es presenta el procediment de càlcul seguit per determinar els gruixos mínims que han de tenir les canonades per tal de poder ajustar-los a uns gruixos i diàmetres estàndards proporcionats pel fabricant.

- Determinació del gruix mínim th de les canonades

El gruix mínim th es determina segons la normativa ANSI se segueix la següent equació:

$$th = 0.5 \frac{P_d \cdot D_0}{(SE + P_d \cdot y)}$$
 (A.6.1)

- P_d és la pressió de disseny (kPa). La pressió de disseny P_d s'obté fixant un factor de 3 de forma que la pressió de disseny es calcula de la següent manera:

$$P_d = 3 \cdot P_o$$

- D_0 és el diàmetre extern (mm), que es pot consultar a la Taula A.6.2:

	IN	DE	ANSI	ANSI	AINSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI
(")	(mm)	(mm)	Sch 10	Sch 20	Sch 30	Sch 40	Sch 60	Sch 80	Sch 100	Sch 120	Sch 140	Sch 160
			Espesor	Espesor	Espesor	Espesor	Espesor	Espesor	Espesor	Espesor	Espesor	Espesor
3/8	10	17,1	-	-	-	2,31	-	3,2	-	-	-	-
1/2	15	21,3	-	-	-	2,77	-	3,73	-	-	-	4,78
3/4	20	26,7	-	-	-	2,87	-	3,91	-	-	-	5,56
1	25	33,4	2,77	-	-	3,38	-	4,55	-	-	-	6,35
1 1/4	32	42,2	2,77	-	-	3,56	-	4,85	-	-	-	6,35
1 1/2	40	48,3	2,77	-	-	3,68	-	5,08	-	-	-	7,14
2	50	60,3	2,77	-	-	3,91	-	5,54	-	-	-	8,74
2 1/2	65	73,0	3,05	-	-	5,16	-	7,01	-	-	-	9,53
3	80	88,9	3,05	-	-	5,49	-	7,62	-	-	-	11,12
4	100	114,3	3,05	-	-	6,02	-	8,56	-	11,13	-	13,49
5	125	141,3	3,4	-	-	6,55	-	9,52	-	12,7	-	15,88
6	150	168,3	3,4	-	-	7,11	-	10,97	15.00	14,28	-	18,26
8	200	219,1	4,78	6,35	7,04	8,18	10,31	12,7	15,09	18,26	20,62	23,01
10	250	273,0	4,19	6.35	7,8	9,27	14.27	15,09	18,20	21,44	25,4	28,58
14	250	255.6	6.25	7 92	9.50	11 12	14,27	19.05	22,44	23,4	20,38	25 71
16	400	406.4	6 35	7.92	9.52	12.7	16.66	21.44	26,85	30.96	36.53	40.49
20	500	508.0	6 35	9.52	12.7	15.09	20.62	26.19	32.54	38.1	44 45	50.01
24	600	609.6	6.35	9.52	14.27	17.47	24,61	30,96	38.89	46.03	52.37	59,54
D	N	DE	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI
(m)	(mm)	(mm)	Sch 10	Sch 20	Sch 30	Sch 40	Sch 60	Sch 80	Sch 100	Sch 120	Sch 140	Sch 160
	(1111)	(1111)	Dint	Dint	Dint	Dint	Dint	Dint	Dint	Dint	Dint	Dint
2/9	10	17.1	Dint	- Chine	-	12.6	-	10.9	0		2	-
1/2	15	21.3	-	-	-	15.8	-	13.9	-	-	-	11.8
3/4	20	26.7	-	-	-	20.9	_	18.8	-	-	_	15.5
3/4	25	33.4	28.16	-	-	26.6	-	24.3	-	-	-	20.7
1 1/4	32	42.2	36.86	-	-	35	_	32.5	-	-	_	29.5
1 1/2	40	48.3	42 76	-	-	40.9	-	38.1	-	-	-	34
2	50	60.3	54.76	-	-	52.5	-	49.3	-	-	-	42.8
2 1/2	65	73.0	70	-	-	62.7	-	59	-	-	-	54
/ - 3	80	88.9	82.8	-	-	77.9	-	73 7	-	-	-	66.6
4	100	114.3	108.2	-	-	102.3	-	97.2	-	92	-	87.3
						,-						
5	125	141.3	132.9	-	-	128.2	-	122.2	-	115.9	-	109.6
6	125	141,3 168.3	132,9 161.5	-	-	128,2 154.1	-	122,2 146.3	-	115,9 139.7	-	109,6
6	125 150 200	141,3 168,3 219,1	132,9 161,5 209,54	- 206.4	- 205.02	128,2 154,1 202.7	- 198.48	122,2 146,3 193,7	- 188.92	115,9 139,7 182.5	- 177.86	109,6 131,7 173.1
6 8 10	125 150 200 250	141,3 168,3 219,1 273.0	132,9 161,5 209,54 264,62	- 206,4 260,3	- 205,02 257,4	128,2 154,1 202,7 254,5	- 198,48 247.6	122,2 146,3 193,7 242,9	- 188,92 236,48	115,9 139,7 182,5 230,2	- - 177,86 222.2	109,6 131,7 173,1 215,9
6 8 10 12	125 150 200 250 300	141,3 168,3 219,1 273,0 323,8	132,9 161,5 209,54 264,62 314,76	- 206,4 260,3 311,2	- 205,02 257,4 307,14	128,2 154,1 202,7 254,5 303,2	- 198,48 247,6 295,36	122,2 146,3 193,7 242,9 288,9	- 188,92 236,48 281,02	115,9 139,7 182,5 230,2 273	- 177,86 222,2 266,74	109,6 131,7 173,1 215,9 257,2
6 8 10 12 14	125 150 200 250 300 350	141,3 168,3 219,1 273,0 323,8 355,6	132,9 161,5 209,54 264,62 314,76 342,9	- 206,4 260,3 311,2 339,76	- 205,02 257,4 307,14 336,56	128,2 154,1 202,7 254,5 303,2 333,3	- 198,48 247,6 295,36 325,42	122,2 146,3 193,7 242,9 288,9 317,5	- 188,92 236,48 281,02 307,94	115,9 139,7 182,5 230,2 273 300	- 177,86 222,2 266,74 292,1	109,6 131,7 173,1 215,9 257,2 284,2
6 8 10 12 14 16	125 150 200 250 300 350 400	141,3 168,3 219,1 273,0 323,8 355,6 406,4	132,9 161,5 209,54 264,62 314,76 342,9 393,7	- 206,4 260,3 311,2 339,76 390,56	- 205,02 257,4 307,14 336,56 387,36	128,2 154,1 202,7 254,5 303,2 333,3 381	- 198,48 247,6 295,36 325,42 373,08	122,2 146,3 193,7 242,9 288,9 317,5 363,5	- 188,92 236,48 281,02 307,94 354,02	115,9 139,7 182,5 230,2 273 300 344,5	- 177,86 222,2 266,74 292,1 333,34	109,6 131,7 173,1 215,9 257,2 284,2 325,4
6 8 10 12 14 16 20	125 150 200 250 300 350 400 500	141,3 168,3 219,1 273,0 323,8 355,6 406,4 508,0	132,9 161,5 209,54 264,62 314,76 342,9 393,7 495,3	- 206,4 260,3 311,2 339,76 390,56 488,96	- 205,02 257,4 307,14 336,56 387,36 482,6	128,2 154,1 202,7 254,5 303,2 333,3 381 477,8	- 198,48 247,6 295,36 325,42 373,08 466,76	122,2 146,3 193,7 242,9 288,9 317,5 363,5 455,6	- 188,92 236,48 281,02 307,94 354,02 442,92	115,9 139,7 182,5 230,2 273 300 344,5 431,8	- 177,86 222,2 266,74 292,1 333,34 419,1	109,6 131,7 173,1 215,9 257,2 284,2 325,4 408
	(") 3/8 1/2 3/4 1 1 1/2 2 2 1/2 2 1/2 2 1/2 2 1/2 3 4 4 5 6 6 8 8 10 0 12 2 1/2 3 4 4 5 5 6 6 8 8 10 2 1/2 1 1/4 1 1/4 2 2 2 1/2 2 1/2 2 1/2 1 1/4 1 1/2 2 1/2 1/2 1/2 1/2 1/2 1/	(") (mm) 3/8 10 1/2 15 3/4 20 1 25 1 1/4 32 1 1/2 40 2 50 2 1/2 65 3 80 4 100 5 125 6 150 12 300 10 250 12 300 12 300 12 300 12 300 14 350 15 400 20 500 24 600 20 50 3/8 10 1/2 15 3/8 10 1/2 40 2 50 3 80 2 1/2 3 80 4 100	(") (mm) (mm) - - - 3/8 10 17,1 1/2 15 21,3 3/4 20 26,7 1 25 33,4 1/1 32 42,2 11/2 60 60,3 2 50 60,3 2 50 60,3 2 50 60,3 2 50 60,3 2 50 60,3 2 50 60,3 2 50 73,0 3 80 88,9 4 100 114,3 5 125 141,3 6 150 168,3 8 100 20,33,8 14 350 355,6 16 400 406,4 20 500 508,0 24 600 21,3 3/4 20 26,7	('') (mm) (mm) Sch 10 I I Espesor 3/8 10 17,1 1/2 15 21,3 3/4 20 26,7 1 25 3,4 2,77 11/2 30 42,2 2,77 11/2 50 60,3 2,77 2 50 60,3 2,77 2 50 60,3 2,77 2 50 60,3 2,77 2 50 60,3 2,77 2 50 60,3 2,77 2 50 60,3 3,05 4 100 14,4 3,05 4 100 14,3 3,4 8 200 21,91 4,19 12 300 32,8 4,55 20 500 508,0 6,35 20 500 508,0 6,35 20 500 <td< th=""><th>(") (mm) Sch 10 Sch 20 i i Especor Especor 3/8 10 17,1 - Especor 3/8 10 21,1 - - 3/4 20 26,7 - - 3/4 20 26,7 - - 1 25 33,4 2,77 - 11/2 30 4,77 - 2 50 60,3 2,77 - 2 50 60,3 2,77 - 2 50 60,3 3,05 - 3 80 88,9 3,05 - 3 80 88,9 3,05 - 4 100 114,3 3,04 - 5 125 141,3 3,44 - 6 50 21,0 4,78 6,35 10 250 27,0 4,19 6,35</th><th>('') (mm) (mm) Sch 10 Sch 20 Sch 30 1 Espesor Espesor Espesor Espesor 3/8 10 17,1 - - 3/8 10 17,1 - - 3/8 10 17,1 - - 3/4 20 26,7 - - 1 25 3,4 2,77 - - 11/2 30 3,277 - - - 2 50 60,3 2,77 - - 2 50 60,3 2,77 - - 3 80 88,9 3,05 - - 4 100 14/3 3,05 - - 5 125 141,3 3,4 - - 6 150 213,4 4,75 6,35 7,84 10 240</th><th>(") (mm) (mm) Sch 10 Sch 20 Sch 30 Sch 40 I Espesor Espesor Espesor Espesor Espesor Espesor 3/8 10 17,1 - - - 2,77 3/4 20 26,7 - - 2,87 1 25 33,4 2,77 - - 3,38 11/4 32 42,2 2,77 - - 3,68 1/2 65 73,0 3,05 - - 3,68 1/2 65 73,0 3,05 - - 5,16 1/2 65 73,0 3,05 - - 6,57 3 80 88,9 3,05 - - 6,57 3 10 14,3 3,4 - - 6,57 125 141,3 3,4 - - 7,11 8 10 14,35 3,5</th><th>(") (mm) (mm) Sch 10 Sch 20 Sch 30 Sch 40 Sch 50 (") (mm) Espesor Espesor</th><th>(") (mm) (mm) Sch 10 Sch 20 Sch 30 Sch 40 Sch 60 Sch 80 (") (mm) Espesor E</th><th></th><th></th><th>(ii) (inm) Sch 10 Sch 20 Sch 30 Sch 40 Sch 60 Sch 80 Sch 100 Sch 120 Sch 140 I I Espesor Es</th></td<>	(") (mm) Sch 10 Sch 20 i i Especor Especor 3/8 10 17,1 - Especor 3/8 10 21,1 - - 3/4 20 26,7 - - 3/4 20 26,7 - - 1 25 33,4 2,77 - 11/2 30 4,77 - 2 50 60,3 2,77 - 2 50 60,3 2,77 - 2 50 60,3 3,05 - 3 80 88,9 3,05 - 3 80 88,9 3,05 - 4 100 114,3 3,04 - 5 125 141,3 3,44 - 6 50 21,0 4,78 6,35 10 250 27,0 4,19 6,35	('') (mm) (mm) Sch 10 Sch 20 Sch 30 1 Espesor Espesor Espesor Espesor 3/8 10 17,1 - - 3/8 10 17,1 - - 3/8 10 17,1 - - 3/4 20 26,7 - - 1 25 3,4 2,77 - - 11/2 30 3,277 - - - 2 50 60,3 2,77 - - 2 50 60,3 2,77 - - 3 80 88,9 3,05 - - 4 100 14/3 3,05 - - 5 125 141,3 3,4 - - 6 150 213,4 4,75 6,35 7,84 10 240	(") (mm) (mm) Sch 10 Sch 20 Sch 30 Sch 40 I Espesor Espesor Espesor Espesor Espesor Espesor 3/8 10 17,1 - - - 2,77 3/4 20 26,7 - - 2,87 1 25 33,4 2,77 - - 3,38 11/4 32 42,2 2,77 - - 3,68 1/2 65 73,0 3,05 - - 3,68 1/2 65 73,0 3,05 - - 5,16 1/2 65 73,0 3,05 - - 6,57 3 80 88,9 3,05 - - 6,57 3 10 14,3 3,4 - - 6,57 125 141,3 3,4 - - 7,11 8 10 14,35 3,5	(") (mm) (mm) Sch 10 Sch 20 Sch 30 Sch 40 Sch 50 (") (mm) Espesor Espesor	(") (mm) (mm) Sch 10 Sch 20 Sch 30 Sch 40 Sch 60 Sch 80 (") (mm) Espesor E			(ii) (inm) Sch 10 Sch 20 Sch 30 Sch 40 Sch 60 Sch 80 Sch 100 Sch 120 Sch 140 I I Espesor Es

Taula A.6.2. Diàmetre exterior, interior i nominal de tubs segons la normativa ANSI (mm).

- *SE* és la tensió admissible del material causada per la pressió interna (kPa). El valor de *SE* es pot consultar a la Taula A.6.3. S'escull a una temperatura de disseny fixada de 93,33°C i per a material 316L.

aala Holoi	i ensions de	moon			/• 1 MOI	1000	' P ^{D1} ', '	PDI V	,,, m
Material/ºC	-20,9 to 27,78	93,33	148,89	204,44	260,00	315,56	343,33	371,11	398,89
Material/ºF	-20 to 100	200	300	400	500	600	650	700	750
A 106 A	12	12	12	12	12	12	12	11,7	10,7
A 106 B	15	15	15	15	15	15	15	14,4	13
A 335 Gr P11	15	15	15	15	15	15	15	15	14,8
A 312 TP 316 L	15,7	13,3	11,9	10,8	10	9,4	9,2	9	8,8

Taula A.6.3. Tensions admissibles SE (ksi). 1ksi=1000 psi; 1 psi=6,9 kPa.

Per tant, el valor agafat és 13,3 ksi.
- y és el coeficient que depèn del material i la temperatura de disseny el qual es pot consultar a la Taula A.6.4.

Material/ºC	482	510	538	566	593	621	649	677	Material
Ac. Ferrítico ¹	0,4	0,5	0,7	0,7	0,7	0,7	0,7	0,7	
Ac. Austenitico ²	0,4	0,4	0,4	0,4	0,5	0,7	0,7	0,7	A 312 TP 316 L
Otros metales dúctiles	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	A106 A, A106 B, A335GrP11
Hierro colado	0,4								

Taula A.6.4. Valors del coeficient y en funció de la temperatura.

Com es pot observar, la temperatura mínima a la que es pot llegir el valor del coeficient és de 482°C, per tant, s'agafarà el de 0,4 a aquesta temperatura. Per tant, els valors obtinguts de gruix de les diferents canonades del procés es presenten a la Taula A.6.5:

Taula A.6.5. Resultats obtinguts de pressió de disseny, diàmetre exterior escollit, tensió admissible, coeficient i gruix mínim de canonada.

Canonada	Pressió de disseny P _d (atm)	Diàmetre extern D ₀ (mm)	Tensió admissible <i>SE</i> (kPa)	Coeficient y	Gruix mínim canonada <i>th</i> (mm)
100.1	2,91	42,2	91770	0,4	0,068
100.2	4,43	33,4	91770	0,4	0,081
100.3-100.4- 100.5	2,51	26,7	91770	0,4	0,037
100.6-100.7- 100.8	5,81	21,3	91770	0,4	0,068
100.9	0,01	42,2	91770	0,4	$2,33 \cdot 10^{-4}$
100.10	34,18	33,4	91770	0,4	0,621
100.001	2,66	33,4	91770	0,4	0,049
100.002	5,39	33,4	91770	0,4	0,099
100.003	4,59	33,4	91770	0,4	0,084
100.004	0,19	60,3	91770	0,4	0,006
100.005	20,58	48,3	91770	0,4	0,544
100.006	19,49	48,3	91770	0,4	0,515

Un cop determinat el gruix mínim de les canonades, s'ha cercat un fabricant (Hastinik,S.A.) (ref. 24) de canonades de forma que el gruix estàndard seleccionat sigui superior al gruix mínim calculat anteriorment. Les dimensions de la canonada es presenten de forma gràfica a la Figura A.6.1:

Figura A.6.1. Esquema de les dimensions de les canonades.

Els valors de les dimensions estàndard de les canonades que conformen la planta de producció de líquid iònic són les presentades a la Taula A.6.6 i la pressió màxima de treball P_m de les canonades es pot determinar de la següent manera:

$$P_m = \frac{T \cdot SE}{0,5D_0 - T \cdot y} \tag{A.6.3}$$

On *T* és el gruix de canonada estàndard (mm).

Canonada	Diàmetre extern D (mm)	Gruix T (mm)	Pressió màxima de treball (atm)
100.1	33	1	56,3
100.2	28	1	66,6
100.3-100.4-100.5	20	1	94,3
100.6-100.7-100.8	18	1	105,3
100.9	35	0,8	42,2
100.10	32	1	58,1
100.001	32	1	58,1
100.002	29	1	64,2
100.003	32	1	58,1
100.004	50,8	1	36,2
100.005	48	1	38,4
100.006	48	1	38,4

Taula A.6.6. Dimensions estàndard de les canonades del procés i pressió de disseny final.

A.7. Avaluació econòmica de la planta

- Inversió inicial de la planta

Es considera els costos dels equips de la planta, la instal·lació d'aquests i els imprevistos. El preu de cadascun dels equips, de la instrumentació i del sistema informàtic pel control de la planta $C_{BM,i}$ són valors proporcionats per l'Empresa APLICAT S.L. i es presenten a la Taula 7.2.1 El costat total dels equips, instrumentació i sistema informàtic de la sala de control de la instal·lació industrial és de:

$$\sum_{i=1}^{n} C_{BM,i} = 354.215$$
 \$

A continuació ja es pot determinar el *Total module cost* C_{TM} (\$) (ref. 18). Aquest cost inclou imprevistos i també el contractista.

$$C_{TM} = 1,18 \cdot \sum_{i=1}^{n} C_{BM,i} \tag{A.7.1}$$

Ja es pot calcular *Grass Roots Cost* (C_{GR}), que representa el cost de la instal·lació de tot l'equipament en una zona on no s'ha construït anteriorment (ref. 18):

$$C_{GR} = C_{TM} + 0.50 \cdot \sum_{i=1}^{n} C_{BM,i}$$
(A.7.2)

La inversió en necessitats de capital de treball I_{NCT} (\$) (ref. 18):

$$I_{NCT} = 0,175 \cdot C_{GR} \tag{A.7.3}$$

Per tant, la inversió inicial de la planta I_0 (\$)(ref. 18) és:

$$I_0 = \mathcal{C}_{GR} + I_{NCT} \tag{A.7.4}$$

Per a la determinació de costos també s'ha seguit el procediment de càlcul del llibre *Analysis, Synthesis and Design of Chemical Processes, Second Edition.*

- Determinació dels costos totals

En primer lloc es calcula el *COM*, que és la suma de costos directes, indirectes i generals de producció mitjançant la següent equació:

$$COM = 0.28 \cdot C_{GR} + 2.73 \cdot C_{OL} + 1.23 \cdot (C_{UT} + C_{WT} + C_{RM})$$
(A.7.5)

El costos directes variables de manufactura DMCes determinen segons l'equació A.7.6:

$$DMC = C_{RM} + C_{WT} + C_{UT} + 1,33 \cdot C_{OL} + 0,069 \cdot FCI + 0,03 \cdot COM$$
(A.7.6)

Els costos fixos de manufactura *FMC*:

$$FMC = 0,708 \cdot C_{OL} + 0,168 \cdot FCI$$
 (A.7.7)

Els costos generals de manufactura GE:

$$GE = 0,177 \cdot C_{OL} + 0,009 \cdot FCI + 0,16 \cdot COM \tag{A.7.8}$$

El cost total de les despeses anuals de la planta química són doncs:

$$COM^* = C_{RM} + C_{WT} + C_{UT} + 2,215 \cdot C_{OL} + 0,19 \cdot COM + 0,246 \cdot FCI$$
(A.7.9)

- Determinació del Cashflow (CF)

En aquest apartat ja es pot determinar el Cashflow tal i com es presenta a continuació:

Taula A.7.1. Determinació del Cashflow de la planta.				
Ingressos	Els ingressos són els presentats a l'apartat 7.2.3 S'estableix que el primer any només es produeix el 60%, el segon any el 80% i, el tercer any, ja es produeix al 100%.			
- Despeses (COM*)	Són les despeses totals anuals de la planta.			
- Amortització (A)	Es defineix com $\frac{I_0}{T}$, on T són els anys de vida útil de la planta, que es defineix de 10 anys.			
Beneficis abans d'impostos (BAI)				
- Impostos (I)	Es defineixen com: $I = BAI \cdot t$, on t és la taxa impositora de valor 35%.			
Beneficis després d'impostos (BDI)				

I, per tant, el *Cashflow* es calcula com:

CF = BDI + A

(A.7.10)