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About the centre 

This final degree project of Biotechnology is based on a research stay made by the 

author in the Computational Biology and Systems Biomedicine Group at the IIS 

Biodonostia (Donostia-San Sebastián, Guipúzcoa, Spain) from June to August of 2019. 

IIS Biodonostia is one of the three main medical research institutes of the Basque 

public health system (Osakidetza). The institute has 26 research groups and more than 

350 researchers. Their structure is divided into up to 9 platforms that give research 

assistance to inner groups, external collaborators, and local health organizations. We 

developed the current project in the Computational Biology Platform, in the 

Computational Biology and Systems Biomedicine Group headed by Prof. Marcos J. 

Araúzo-Bravo. 

The Computational Biology and Systems Biomedicine Group focus on several 

objectives backed by research computational methods. Such objectives include the 

modelling of cell pluripotency and differentiation, the analysis of genetic and epigenetic 

networks, the development of computer vision algorithms for the study of cell structures 

or the analysis of clinical histories through artificial intelligence, among others. 

Currently, they work on several lines of research, for instance, the characterization of 

regulatory elements in pluripotent and stem cells or the development of computational 

frameworks for omics data analysis. 

Our project belongs mainly to the line of research of the discovery of DNA sequence 

patterns for the generation of omics dictionaries. However, we developed our work in a 

transversal way, such that our results also relate to the discovery of regulatory 

elements involved in pluripotency. Also, we expect to implement a generic omics 

analysis software appliable to different scenarios and reusable in future projects. 
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Abstract 

Epigenomic regulation is a complex process mediated by multiple factors. 

Understanding the functionality of DNA sequences involved in such process is crucial 

for clinical and research aims. DNA methylation is a crucial epigenetics mark 

responsible for gene silencing. Hence, motifs extracted from DNA methylation sites 

include specific DNA words relatable to many crucial biological processes, including 

cell reprogramming and differentiation. As methylation regulation is suggested to be a 

cooperative mechanism between different molecules and protein domains, methylation 

motifs do not necessarily need to appear centred on the methylation target. Instead, 

steric hindrance between different DNA binding domains should be considered when 

analysing DNA methylation motifs. If methylation regulator proteins are affected by 

steric hindrance, then DNA methylation motifs should be positioned at some bases of 

displacement from the methylation target. We implemented an extensive, genome-wide 

methylation motif discovery pipeline runnable in Slurm-based HPC clusters. We 

optimized the pipeline for the analysis of hundreds of displacements in one run. Our 

pipeline discloses motifs independently of their positioning relative to the DNA 

methylation target. We study the prevalence of displaced methylation motifs in cell lines 

at multiple differentiation levels and disclose valuable trends of motif quality at specific 

displacements from the methylation target. We relate our result to molecular 

mechanisms involved in differentiation and propose new models for the repression of 

genes involved in pluripotency. 

Key words 

DNA motifs, Methylation, Epigenomics, Bioinformatics, Differentiation 
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Introduction 

Epigenetics and cell regulation 

Cell regulation is a multi-factor process orchestrated by several types of molecules, 

including DNA, RNA, microRNA, or proteins. As a rule, coding regions of the DNA 

define the “how-to” of regulatory molecule synthesis, whereas non-coding regions, 

mainly gene promoters and enhancers, define its “when-to”. Thus, in a clearly 

mechanistic point of view, we could consider the DNA as a universal Turing machine3 

codifying the instructions to building and keeping up and running itself, self-repairing, 

and self-dismantling. Far from the naïve and classical Mendelian perspective, cells are 

not only regulated by basic genetic traits. Instead, epigenetic marks play a crucial role 

in cell complexity and functionality. 

The term epigenetics describes the study of heritable phenotypic features not directly 

related to changes in the DNA sequence. We call epigenome the collection of 

epigenetic modifications in the whole genome of a single organism. Epigenetic 

modifications comprise covalent modifications of histones and DNA [1] and are 

regulated by several factors that include three-dimensional genomic structure, 

nucleosome positioning and the influence of different proteins and signal molecules [2]. 

The crosstalk between such factors provides a highly flexible epigenomics profile for 

each organism and gives answer to many complex phenotypes that cannot be 

completely modelled by basic genetic traits. As a result, epigenetic biomarkers are 

gaining great interest for the clinical study of disease variations [1], specially focusing 

on DNA methylation and histone modification analysis. 

Epigenetic studies are backed by academically successful projects such as the 

Encyclopaedia of DNA Elements (ENCODE) [3], an international consortium with a 

broad number of publicly available epigenomics datasets from various cell types. 

ENCODE offers a web server and a user-friendly portal4 of great value for epigenomics 

studies, working as an encyclopaedia in the sense that it serves as a reference 

database for epigenetic knowledge and data. In this work, we hypothesize with the 

possibility of creating a dictionary of DNA words ruling epigenetic regulations. Such a 

dictionary would help, first, to navigate through such a vast database, and second, it 

 
3 Turing machine: abstract computational model and formal language developed by Alan 
Turing in 1936 for the interpretation of an infinite sequential input, a “tape”, of symbols. It 
consists of a finite set of symbols and a finite number of states. It starts in the initial state and 
each transition from one symbol to another in the input “tape” implies a transition rule from one 
state of another. Thus, the global state of the system changes according to the sequence of the 
input symbols. 
4 https://www.encodeproject.org 
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would contribute to a mechanistic knowledge of epigenetics by providing relationships 

between basic DNA words and their possible regulatory meaning. A deeper insight into 

epigenetic regulatory units could as a result ease the use of current molecular tools 

such as CRISPR/Cas9 [2], for instance, in gene therapy and cell reprogramming 

experiments. 

Previous research on identification and quantification of the activity of regulatory DNA 

patterns include transcription factor (TF) binding site (TFBS) classification [4], DNA 

methylation motif identification [2,5–7] and super enhancer search improvement [8], 

among others. DNA motifs are sequence patterns with significantly higher appearance 

frequency in the genome than random sequences of the same length. Frequently, DNA 

motifs are related to biological functionalities and show some degree of evolutive 

conservation. 

Despite earlier work toward a full comprehension of the DNA language, such an 

objective is far from completed. Starting from the premise of interpreting epigenetic 

regulation as a language of DNA, we would associate DNA words with the semantics of 

the language, and the interaction rules between such words as the syntax. Based on 

this model, we find studies disclosing both semantic and syntactic components of 

epigenetics. From the semantic part, most of the results are focused on the retrieval of 

TF binding motifs (TFBMs) [4–6], motifs related to histone marks [2] and DNA 

methylation motifs [6,7]. From the syntactic part we find, for example, research on 

uncovering super enhancers [8], insulators [9] and combinatory patterns of TFBMs [10]. 

In this work, we target DNA methylation motifs as a continuation of the original work by 

Luu et al. [7]. 

Biological relevance of DNA methylation 

DNA methylation is a crucial epigenomics modification. In eukaryotic cells, a methyl 

group is covalently bound to the carbon-5 position of a cytosine and yields a 5-

methylcitosine residue [11]. Methylation values and patterns across the genome are 

highly variable between species and cell types. In animals, DNA methylation takes 

place mainly in CpG dinucleotides and less frequently in non-CpG DNA targets [12]. 

The number of CpG dinucleotides in an organism is massive, i.e. the human genome 

has 28 million CpG sites. However, to remain labelled as epigenetic mark, the 

methylation state of a CpG target must be stable through cell divisions [13]. Currently 

many genome-wide methylation mapping techniques are available for methylation state 

analysis, mostly based on whole genome bisulfite sequencing (WGBS). Yet, raw and 

annotated WGBS data from several species and cell lines can be downloaded from 
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various web servers, like the Roadmap Epigenomics Project [14] or the previously 

mentioned ENCODE portal [3]. 

Methylation of genomics sequences regulates gene translation. Genes with strongly 

methylated bodies tend to be highly expressed [4] and anomalous DNA methylation 

patterns have been established as indicators for many diseases [1,11,12]. Also, 

methylation level of active gene regulatory elements, such as promoters, is inversely 

correlated with gene expression [4]. The influence of DNA methylation on gene 

expression partly comes from the methylation-dependent interaction between TFs and 

DNA. TFs are proteins that recognise specific DNA sequences and regulate the 

expression level of genes associated with such sequences [7]. The binding of TFs with 

DNA can be dependent on DNA methylation levels, positively or negatively depending 

on the TF family [4]. Similarly, gene expression can be actively or passively regulated 

by DNA methylation. In active regulation, methylated DNA avoids the binding of TFs to 

their target sequence by steric hindrance. In passive regulation, instead, proteins 

related to gene transcription regulation detect methylated residues in their target 

sequence [4]. 

Besides the basic and fundamental relationship with gene expression, DNA 

methylation is essential in many higher-level biological processes. For instance, it 

guarantees the correct inactivation of the X chromosome during development. Also, it 

is the key regulator of genomic imprinting, that is, a non-Mendelian inheritance process 

in which one of the two inherited alleles for a concrete gene is silenced by DNA 

methylation [12]. Aberrant DNA methylation has been proven to work as an indicator of 

cancerous diseases, and specific CpG methylation profiles are currently being used as 

biomarkers for several cancers in preclinical phases [1]. Gains in methylation levels, for 

instance, can lead to tumour suppressor gene repression. However, due to the inherent 

plasticity of the epigenome and the fact that methylation patterns can vary during 

tumour progressions, it is not trivial to define which methylation traits are directly 

coupled with each case. Hence, a better knowledge of the DNA methylation mechanics 

could favour current preclinical diagnosis methods. 

Embryonic stem cells (ESC) are undifferentiated, pluripotent cells isolated from the 

inner cell mass of the early mammalian embryo. The term pluripotent describes those 

cells with the capacity to develop into any of the three germ layers of the embryo. 

Consequently, a pluripotent cell can develop into any differentiated cell type except for 

non-embryonic cell tissues (e.g. the placenta), which makes ESCs of great interest for 

medicament evaluation and regenerative medicine. ESCs are restricted for 

experimentation though, both for technical and ethical reasons. Consequently, cellular 
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reprogramming of somatic cells into induced pluripotent stem cells (iPSC) has gained 

attention instead. We find previous evidence about reprogramming being modulated by 

DNA methylation. TFs that are differentially inhibited by methylated CpG (mCpG) have 

been ontologically associated with cell differentiation, whereas TFs positively affected 

by mCpG are related to embryonic and organismal developmental processes [4]. 

Previous studies have found differentially methylated regions in specific tissues too 

[12]. Methylation-specific DNA binding domains (MBD) have also been linked with cell 

pluripotency and reprogramming. MBD2a and MBD2t, for example, regulate the 

expression of OCT4 and NANOG, both crucial genes for pluripotency. Knocking down 

MBD3 in human fibroblasts also improved their reprogramming efficiency to iPSC [4]. 

Therefore, reprograming is mediated by both genetic and epigenetic factors, and 

although its procedure is extensively used today, we still do not have a global 

understanding of its mechanism. Our current knowledge about reprogramming would 

benefit from a broader insight into the DNA methylation process. 

mCpG recognition and sequence context 

The classical model of the interaction between proteins and methylated DNA does not 

support sequence-specific recognition of methylation patterns [12]. In plain words, 

proteins that directly interact with DNA methylation could be classified into “writers”, 

“editors” and “readers” [11]. ‘Writer” proteins settle and preserve methylation patterns 

across the genome during cell development and differentiation. DNA 

methyltransferases (DNMT), the enzymes that catalyse the previously explained DNA 

methylation reaction, belong to this family. “Editor” proteins change the state of 

methylated DNA. For instance, ten-eleven translocation (TET) enzymes pertain to DNA 

methylation “editors”. TET proteins oxidize the 5-methylcytosine into 5-

hydroximethylcytosine, which yields to DNA demethylation. Finally, “reader” proteins 

bind mCpG and regulate the interaction between DNA methylation, histone 

modifications and chromatin topology. “Reader” proteins include methyl-CpG-binding 

domain (MBD) proteins, among others. This fundamental view of the methylated DNA-

protein interaction holds that the binding of MBD proteins to methylated DNA is mostly 

non-sequence-specific, whereas TFs can sequence-specifically bind to non-methylated 

DNA at TFBSs [12]. Thus, DNA methylation motifs are not compatible with the classical 

interaction pattern, as the only way of TFs and other regulator proteins for interacting 

with mCpG is through MBDs. Recent evidence, however, suggests that such 

interaction is much more complex and could be driven in a sequence-specific manner. 

The main proof of sequence-specific binding of proteins to methylated DNA are MBDs 

lacking mammalian TFs that can bind with mCpG [12]. Additionally, some proteins can 
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bind non-methylated or methylated sequences depending on the target-surrounding 

sequence. CEBPα, for instance, binds the sequence 5’-TGACGTCA, but it can bind 5’-

mCGTGA too when DNA is methylated [12]. Other proteins, such as KLF4, have strictly 

different and not intersecting binding sequences if DNA is methylated or unmethylated 

[12]. 

Preceding research on DNA methylation motifs has also demonstrated sensitivity 

between methylation of CpGs and their sequence context. Luu et al. [7] proposed that if 

DNA methylation/unmethylation mechanisms could discriminate between CpG with 

different sequence context, CpG loci with disparate sequences in both strands would 

have higher variability in methylation distribution than CpG loci with similar sequence in 

both strands, that is, palindromic sequences. Luu et al. statistically validated such 

hypothesis in human fibroblasts, ESCs and iPSC and developed an algorithm for de 

novo discovery of DNA methylation words centred on CpGs. Not only such sequence 

specificity has been proven for DNA methylation motifs, but also for other epigenetic 

targets such as histone marks [2]. Yin et al. [4] demonstrated that TFs could pertain to 

one from up to five families depending on their type of interaction of methylated DNA, 

and evidenced sequence-specificity in the binding of some TFs to their methylated 

TFBS. They identified many TFBS motifs and classified TFs into “no CpG” (TFs with no 

CpG in their TFBSs), “little effect” (TFs with CpG in their TFBS but not affected by DNA 

methylation), “methyl-minus” (TFs with CpG in their TFBS that bind more weakly to 

their methylated TFBS) and “methyl-plus” (TFs with CpG in their TFBS that show 

higher affinity for their methylated TFBS). Different studies also obtained similar results 

[6,12]. Thus, sequence-specific recognition of mCpG would be feasible, and 

consequently, DNA methylation motif determination would be justified. 

Different models have been proposed for the sequence-specific interaction of proteins 

with mCpG. Recent studies suggest that some proteins could directly bind to mCpG 

with specific binding domains and modulate methylation (Fig. 1A) [12], which would be 

coherent with TF families described by Yin et al. [4]. In fact, most MBD protein families, 

in which many TFs are included, present various sequence-specific DNA-binding 

domains such as transcription repressor domains (TRD), or DDT domains (responsible 

for transcription and chromosome remodelling) [11].  
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Figure 1 Examples for two hypothetic DNA methylation modulation models. We represent DNA 
methylation with a black filled circle. (A) A unique protein binds the DNA with a sequence-specific DNA 
binding domain (i.e., a DDT domain) and a sequence-unspecific domain (MBD) interacts with the CpG. 
The protein in (A) is based on the model for the MBD family protein TIP5/BAZ2A described by Du et al. 
[11]. (B) A first protein with a sequence-specific domain binds the DNA (a TF, in its TFBS) and recruits a 
second protein that interacts with a CpG and modulates its methylation state (MUF). In neither of the 
models the protein domain sequence-specifically interacting with DNA and the protein domain interacting 
with the CpG can bind in the same DNA locus, and thus there should be a gap between the targeted CpG 
and the sequence-specific binding site. Created with BioRender.com [15]. 

Luu et al. [7] proposed a cooperative model where proteins that sequence-specifically 

recognize CpGs interact with methylation “writers” and “editors” and recruit them to the 

target CpG (Fig. 1B). We could since label methylation “writers” and “editors”, which 

may interject with TFs, as methylation/unmethylation factors (MUFs): Some results 

sustain the coordinated model for the modulation of DNA methylation. There exists 

evidence that DNMTs can assemble with chromatin remodeler enzymes and TFs [12]. 

The nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) can recruit 

TET1 too, unmethylating its surrounding mCpGs [12]. Even TFs have been suggested 

to work in clusters of multiple TFs, co-factors, and different protein complexes [5,10]. 

Cooperative regulation models are not rare, in fact, gene transcription is also 

cooperative, with DNA sequence-specific TFs recruiting transcription machinery to the 

gene promoter. Both models seem feasible and could coexist in the cell context. 

Displaced DNA methylation motifs 

The work by Luu et al. [7] that we take as reference only analysed CpG-centred 

methylation motifs. In our contemplated models, that would not necessarily be the only 

DNA methylation motif placement with respect to the CpG. In addition, steric hindrance 

must be considered, as MUFs and sequence-specific DNA readers cannot physically 

collocate on the same DNA target with different DNA binding domains. Thus, we would 
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expect some degree of displacement from the CpG loci (sequence-specifically or non-

sequence-specifically interacting with MUFs) to the DNA methylation motif (sequence 

specifically interacting with proteins such as TFs) (see Fig. 1). 

Here, we present a generalization and a readjustment of the pioneer de novo motif 

discovery algorithm by Luu et al. [7] capable of identifying DNA methylation patterns 

irrespective of the CpG target position from a FASTA5 sequence of the genome and the 

annotated methylation results as input.  

Our proposal differs from previous motif discovery methods. The Autoseed pipeline 

[4,5] is also a de novo motif discovery algorithm whose input sequences must be 

previously filtered. It is used, for instance, after a Chip-Seq assay, thus ignoring 

sequences not binding to the specific proteins being analysed. Our method allows a 

complete analysis of the methylation-related motifs in a genome, independently of the 

protein domains they bind. Epigram and Homer [2] have also been used exclusively 

with a previous Chip-Seq step. On the contrary, the Multiple Expression motifs for Motif 

Elicitation (MEME) [12] needs an input training dataset before motif recognition, and 

cannot be classified as a de novo motif discovery algorithm. 

We propose a new perspective of omics experiment design and result analysis. 

Classical omics studies need to analyse at least two conditions, generally a wild type 

and a genetically or environmentally perturbed sample and evaluate Differentially 

Signalled Regions (DSR) between both. Inversely, we only need an input condition, as 

our algorithm searches similar signals in different positions of the input data without 

control samples. Classical methods compare locus in at least two different samples, 

whereas our method intrinsically uses the DSR states of different loci of a unique 

sample as control.  

DSR methods are complementary and synergic to our algorithm, as they target 

different objectives. DSR methods are an appropriate perspective for the analysis of 

epigenetics signals in different experimental conditions. However, they are usually only 

capable of working on a unique region length and do not provide single nucleotide level 

information. We instead run an algorithm that self-adapts to region lengths and whose 

results are adjusted to the degree of similarity between different genomic regions, both 

advantageous features for the analysis of genome-intrinsic, variable length DNA words. 

We have generalized the mathematical description of the method by Luu et al. [7] to 

detect motifs at variable displacements from the CpG target. Due to limitations related 

to computation resources, data analytic libraries and the algorithm itself, it was 

 
5 FASTA: text file format for the representation of nucleotide or amino acidic sequences. 
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unfeasible for the original algorithm to compute hundreds of displacements at one run, 

an essential capability for our study. Hence, we have delineated parallelization 

techniques, optimized the source code with low-level routines and adapted the program 

for running on High Performance Computing (HPC) clusters (see Annex B: 

Computational optimizations of the original algorithm). 
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Hypothesis 

Previous work has demonstrated that DNA methylation is sensitive to the sequence 

around CpG targets. Recent results suggest that methylation is a complex, coordinated 

mechanism between various proteins, were factors as steric hindrance between 

molecules take relevance, and thus DNA methylation motifs could emerge displaced 

from the CpG target. However, only CpG-centred motifs have been studied. Here, we 

hypothesize that the optimal distance to modulate the DNA methylation of a CpG 

target is different from zero. 

Objectives 

The overall objectives of the current work are the following: 

1. Analyse the quality of DNA methylation motifs through variable displacements 

from CpG methylation targets. Determine the optimal displacement from the 

target for DNA methylation motifs. 

2. Contribute to the current molecular model for the modulation of DNA 

methylation. 

3. Study methylation motif discovery dynamics with cells at many differentiation 

stages and relate our results to common knowledge about cell reprogramming. 

4. Provide a generic de novo motif discovery software primarily targeting DNA 

methylation but extensible to any epigenomic signal. 

The long-term objectives and linked to the continuity of the project are the subsequent: 

5. Obtain epigenetics DNA words from variably differentiated cells pertaining to 

each of the three germ layers, for different epigenomic signals. Relate DNA 

words to their functional meaning and uncover the crosstalk between them. 

6. Serve as the landmark for a future public resource (implemented as a DNA 

word dictionary) to design DNA targets for CRISPR/Cas9 editing. Ease the 

design of new cellular reprogramming and therapeutic methods.  
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Materials and methods 

Methylation annotation data retrieval 

We analysed three methylation datasets from three different cell lines: foreskin 

fibroblast (FF)-derived iPSCs, fibroblasts (FB) and HUES64 line ESCs6. For the correct 

interpretation of raw WGBS data, it must be correctly processed and converted into a 

standardized annotation format, mainly Browser Extensible Data (BED)7. The WGBS 

data processing pipeline generally consists of an indexing of the reference genome, an 

alignment of the indexed genome with the bisulphite reads and trimming of the results, 

and annotation, signal generation, quantification, quality assessment and final 

formatted file generation [3,16]. We used two different sources to obtain annotated 

methylomes. For iPSCs we downloaded the raw DNA methylomes [17] (fastq files) 

from the Sequence Read Archive (SRA) database8 and processed them with an 

automatic BSseq data analysis software, P3BSseq [16]. For FB and ESC datasets we 

directly downloaded annotated datasets from the ENCODE portal [3]. The ENCODE 

portal provides annotated WGBS data processed with the ENCODE WGBS analysis 

pipeline, which is based on Bismark [18,19]. For further details about the analysed 

datasets, see Annex A: Detailed dataset features. 

Software implementation details 

Our program is structured as a R library (compatible with R 2.7.1 or above). For lower 

level source code optimizations, we used C. We have implemented an encapsulating 

bash script to adapt the software to a Slurm9-based distributed HPC cluster execution 

(see Annex B: Computational optimizations of the original algorithm). 

CpG methylation motif detection algorithm 

We depict the overall pipeline for motif discovery in Fig. 2. The algorithm receives the 

genomic sequence and methylome annotation files as input and executes the same 

pipeline on both DNA strands independently. However, to simplify the explanation we 

only describe the procedure for the positive DNA strand.  

 
6 HUES64: human embryonic stem cells derived from human blastocyst. 
7 BED: text file format based on spaced columns for the representation of genomic regions. It 
includes the coordinates and domain-specific annotations of each region. 
8 https://www.ncbi.nlm.nih.gov/sra 
9 Slurm: Workload manager framework for distributed computing (https://slurm.schedmd.com/). 

https://www.ncbi.nlm.nih.gov/sra
https://slurm.schedmd.com/
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Figure 2. Pipeline of the target position-irrespective CpG methylation motif discovery algorithm. 



German Telmo Eizaguirre Suarez  Universitat Rovira i Virgili, Tarragona  

19 
 

Generation of CpG word dictionaries 

Luu et al. [7] proposed the analysis of 𝑤min = 12 to 𝑤𝑚𝑎𝑥 = 44 word lengths based on 

probabilistic reasoning. The minimum width of 12 was properly justified and 

demonstrated to encompass most of the possible sequences in the genome. Studying 

previous findings on DNA motifs though [2,4,6,7], we see that real motifs hardly reach 

44 bp lengths. Thus, we limit the range of lengths and execute the analysis on DNA 

words from 𝑤min = 12 to 𝑤𝑚𝑎𝑥 = 32.  

 

Figure 3 Extraction method for a w-length word from a CpG target if (A) displacement is 0, that is, the CpG 
target is centred in the word (same procedure as Luu et al. [7]) (B) displacement is not 0 (we only illustrate 
a positive displacement in the example, the method is symmetric for a negative displacement though). 
Created with BioRender.com [15]. 

We extract the word corresponding to each CpG in the methylome and assign the 

CpG’s methylation rate to the word. We manage the current word displacement 

according to the method depicted in Fig. 3, and we iterate the process for lengths from 

𝑤min to 𝑤max. We group equal sequences and select only those with a frequency of at 

least 4 in the collected word collection. When grouping equal sequences, we assign 

them the average of methylation rates of the CpGs of each word, as we assume CpGs 

associated to similar sequences have similar methylation rates (see Fig. 2). Both the 

minimum word frequency and the similar methylation rate between similar sequences 

assumptions were previously reasoned by Luu et al. [7]. 

Methylome data provides methylation rates data for the forward and reverse strands of 

the genome. As both strands are not necessarily equally methylated, we execute a 

separate analysis on each strand. For DNA word retrieval in the reverse strand, the 

negative value of each displacement must be applied. In Fig. 4 we represent the 

extraction of a DNA word at a certain displacement from the forward and reverse 

strands. 
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Figure 4 Example of DNA word retrieval from the forward and reverse DNA strands. In the picture, 𝑑 = 10 

and 𝑤 = 8. The extraction of DNA words from the forward strand is straightforward. As the reverse strand 
runs in the opposite sense of the forward strand, the reverse DNA word is the reverse complementary of 
the forward DNA word at the negative value of the analysed displacement. 

Methylation-prone and methylation-resistant CpG word classification 

We filter and classify all the processed sequences into methylation-prone (their 

methylation ratio is greater or equal to 𝑇ℎ𝑟𝑝𝑟𝑜𝑛𝑒) or methylation-resistant (their 

methylation ratio is greater or equal to 𝑇ℎ𝑟𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡), and discard the remaining 

sequences. Luu et al. [7] established 𝑇ℎ𝑟𝑝𝑟𝑜𝑛𝑒 = 0.85 and 𝑇ℎ𝑟𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 0.5. We 

adapted such values if necessary, for each dataset, based on empirical tests and 

histograms of methylation rates for each methylome. By now, we do such adjustment 

manually as we explain below. We expect a future increment in the algorithm to 

automatically perform threshold adaptation. Fig. 5 illustrates the methylation rate 

histograms for each sample. Generally, differentiated cells show higher methylation 

rates than their undifferentiated counterparts [4]. However, in Fig. 5 iPSC and ESC 

show a significantly higher number of CpG sites with methylation rate above 0.85 than 

FB. Hence, we assume such methylation trends come from the intrinsic functioning of 

the annotation pipeline, as methylomes were processed with two different algorithms. 

As we depict in Fig. 5, methylation rates in FB (unipotent cells) are more uniformly 

distributed than in ESC and iPSC (pluripotent cells). We tested the method with 

𝑇ℎ𝑟𝑝𝑟𝑜𝑛𝑒 = 0.85 and 𝑇ℎ𝑟𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 0.5 for the three datasets, and ESC and iPSCs gave 

no prone motifs. This is probably due to the strong bimodality and the high difference 

between the number of methylation-prone and methylation-resistant CpGs. Having a 

higher number of words classified as prone means that heterogeneity between prone 

words increases and the conservation rate of prone words declines. Thus, the average 

binding score of prone motifs with the set of prone words is likely to decrease, as the 

probability to find words that do not match their Position Occurrence Matrix (POM) 

augments.  
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To solve the inexistence of prone motifs in iPSC and ESC we had reduced the number 

of prone words adjusting 𝑇ℎ𝑟𝑝𝑟𝑜𝑛𝑒 to 0.95. In FB we used 𝑇ℎ𝑟𝑝𝑟𝑜𝑛𝑒 = 0.85. In all 

datasets we set 𝑇ℎ𝑟𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 to 0.5. 

 

Figure 5 Histograms of methylation rates for (A) ESC methylome (B) iPSC methylome (C) FB methylome. 
ESC and iPSC histograms are highly bimodal and show a difference of more than a million loci between 
CpGs with methylation rate >= 0.85 and CpGs with methylation rate <= 0.5 (methylation thresholds 
stablished by Luu et al.[7]). The FB histogram has methylation rates more distributed and the difference of 
frequencies between methylation-prone and methylation-resistant CpGs is significantly lower. 

Fusion of CpG sub words with longer CpG words 

DNA words of consecutive lengths extend in both directions, so the centre of the word 

is conserved. Sequences of length 𝑤 are thus likely to appear in sequences of length 

𝑤 + 2. We fusion short sub sequences into longer ones iteratively if they are perfectly 

contained, and we remove the fused sub sequences from the data structure. To 

conserve individual frequencies and methylation rates, we vectorize all sequences 

before the fusion step and frequency and methylation rates are assigned at nucleotide-

level rather than sequence-level. When the fusion of a subsequence of length 𝑤 into a 

sequence of length 𝑤 + 2 is performed, methylation rates and frequencies of each of 

the central nucleotides of the container sequence are updated as we show in Eq. (1) 

and (2), respectively. The new methylation rates and frequencies are a function of the 

methylation rate 𝑀𝑅𝑠𝑤(𝑖′) and the frequency 𝐹𝑠𝑤(𝑖′) of each nucleotide at the 

subsequence and the methylation rate 𝑀𝑅𝑠𝑤+2(𝑖)  and the frequency 𝐹𝑠𝑤+2(𝑖) of the 

corresponding nucleotide in the container sequence. The methylation rate of each 

nucleotide of the fused sequence 𝑀𝑅
𝑠𝑤+2
𝑢𝑝𝑑𝑎𝑡𝑒𝑑

(𝑖) is calculated as the weight averaged 

methylation ratio of the original nucleotides. The frequency of each nucleotide in the 

fused sequence 𝐹
𝑠𝑤+2
𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑖) is the sum of the frequencies of the corresponding 

nucleotides in the subsequence and the container sequence. 

 
𝑀𝑅

𝑠𝑤+2
𝑢𝑝𝑑𝑎𝑡𝑒𝑑

(𝑖) =
𝐹𝑠𝑤(𝑖′) × 𝑀𝑅𝑠𝑤(𝑖′) + 𝐹𝑠𝑤+2(𝑖) × 𝑀𝑅𝑠𝑤+2(𝑖)

𝐹𝑠𝑤(𝑖′) + 𝐹𝑠𝑤+2(𝑖)
 

(1) 
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 𝐹
𝑠𝑤+2
𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑖) = 𝐹𝑠𝑤(𝑖′) + 𝐹𝑠𝑤+2(𝑖) (2) 

Clustering for motif definition 

For sequence clustering10 and motif identification we transform each vectorized word 

into a Position Occurrence Matrix (POM)11 of 4 rows and 𝑤 columns. Initially, we assign 

at each column the frequency of its corresponding position of the sequence only into 

the row of the nucleotide at that position of the sequence. The rest of the positions are 

filled with zeros and the POM is flattened into a unidimensional array.  

We perform a hierarchical clustering12 with the function hclust from the R library 

fastcluster with complete linkage13 mode. We use the cosine metric14 for the 

dissimilarity matrix15 calculation. Unlike Luu et al. [7], we established a dynamic cut-

off16 parameter based on the clustering results, choosing the cut-off value with the best 

average silhouette17 for all the analysed objects. After the clustering, we rearrange the 

output vectors into bidimensional POMs. 

Measurement of binding scores of motifs against CpG words 

POMs obtained from the clustering phase must be filtered to select those that 

significantly resemble one distribution of sequences (prone or resistant) and differ from 

the other. We replicate the method of TF-DNA binding energy used by Luu et al. [7], 

based on the Berg-von Hippel method [20]. We consider a motif to match a sequence if 

its matching score with that sequence is high. First, we normalize all the POM values 

into Position Weight Matrices (PWM), see Eq. (3). Each position in the PWM 𝑃𝑊𝑀(𝑖, 𝑗) 

 
10 Clustering: Arranging a collection of elements into groups (clusters) based on a similarity 
function. 
11 POM: Bidimensional matrix that, for a specific pattern, describes the probability of having 
each nucleotide (rows) at each position (columns). 
12 Hierarchical clustering: Specific method of clustering that generates a hierarchy of groups 
or clusters. The results of a hierarchical clustering can be represented in a dendrogram (see 
Fig. 2). 
13 Complete linkage: Hierarchical clustering method that starts by assigning an individual group 
to each of the elements into the collection to analyse and sequentially joins subgroups into 
broader groups. 
14 Cosine metric: Similarity measurement between non-zero two vectors, based on calculating 
the cosine of the angle between both vectors. 
15 Dissimilarity matrix: Being N the number of elements in a clustering process, the 
dissimilarity matrix is bidimensional array representing the similarity of each of elements with 
every other element in the collection. 
16 Cut-off parameter: Level of a dendrogram at which it must be cut, thus returning as a result 
the clusters defined at that point. 
17 Silhouette (clustering): Cluster quality measurement and graphical representation that 
shows the closeness of an object with its assigned cluster (cohesion) and the remoteness with 
the rest of clusters (separation). 
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is the quotient between the same position in the POM 𝑃𝑂𝑀(𝑖, 𝑗) and the sum of the 

values of the four rows at the given column ∑ 𝑃𝑂𝑀(𝑘, 𝑗)4
𝑘 . 

 𝑃𝑊𝑀(𝑖, 𝑗) =  
𝑃𝑂𝑀(𝑖, 𝑗)

∑ 𝑃𝑂𝑀(𝑘, 𝑗)4
𝑘

 (3) 

Second, we calculate the matching score 𝑀𝑆 of each PWM against every sequence 

𝑆𝑒𝑞𝑤 from the methylation prone and methylation sets obtained after the first 

methylation prone and resistant classification (see Methylation-prone and methylation-

resistant CpG word classification), following Eq. (4). β is summed to the divisor to avoid 

a possible division by 0 and to the dividend to maximize the dynamic range of the 

resulting score, as justified by Luu et al. [7]. 

 𝑀𝑆(𝑃𝑊𝑀𝑤, 𝑆𝑒𝑞𝑤) = ∑ ln(
𝑃𝑊𝑀𝑤(𝑆𝑒𝑞𝑤(𝑖), 𝑖) + 𝛽

max(𝑃𝑊𝑀𝑤(: , 𝑖)) + 𝛽
)

𝑤

𝑖

 (4) 

Filtering of discriminative motifs 

Finally, we filter those motifs that effectively discriminate between prone and resistant 

sequences. Methylation prone motifs should statistically show higher matching scores 

over methylation prone sequences, whereas methylation resistant motifs should do the 

opposite.  

We first apply a False Discovery Rate (FDR) test, where we measure the number of 

false positives from the matching score results Eq. (5). For instance, for a methylation-

prone motif a false positive would be a methylation-resistant sequence with matching 

score above a certain threshold. We calculate the threshold as shown in Eq. (6). μ is 

the mean of the “equivalent” matching score distribution (prone sequences for prone 

motifs, resistant sequences for resistant motifs) and σ is the standard deviation of the 

“equivalent” matching score distribution. λ is an adjustment parameter set to 2 as 

previously done by Luu et al. [7]. We only select those motifs with FDR above or equal 

to 0.05 and we discard the rest. 

 𝐹𝐷𝑅 =
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (5) 

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇 + 𝜎 × λ (6) 

Once applied the FDR step, we filter the motifs with a Mann-Whitney test. Mann-

Whitney is a statistical test to validate the null hypothesis that groups are equally 
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distributed. For each motif, we compare the matching scores with the “equivalent” 

distribution against the matching scores against the other distribution. Originally, Luu et 

al. used a Kolmogorov-Smirnoff test accompanying the FDR. We use Mann-Whitney 

because the Kolmogorov-Smirnoff test works better on continuous values, whereas 

Mann-Whitney is used for discrete ones. Although matching scores are mathematically 

floating-point values, they are virtually discrete, as after the scanning phase we 

histogram them into a fixed number of breaks. For the Mann-Whitney test we use the R 

function wilcox.test from the stats package. We filter those motifs with p-value 

above significance threshold 0.00001. 

Final motif retrieval 

At the end of the pipeline, we get motifs for each considered length and each strand, 

classified into methylation-prone and methylation-resistant, for each analysed 

displacement. We depict such complexity in Fig. 6. 

 

Figure 6 Input arguments and every type of motif returned by our algorithm. For each motif, it also returns 
the average binding score for equivalent and non-equivalent sequences and its FDR value. 
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Results 

We studied displacements from 𝑑𝑚𝑖𝑛 = −50 to 𝑑𝑚𝑎𝑥 = 50 for ESC, iPSC and FB. The 

three studied cell lines pertain to different potency states. The analysed ESC and iPSC 

are pluripotent whereas FB is unipotent. iPSC are FB derived. Thus, we could infer a 

methylation motif history across the three samples. For each dataset, we extracted 

three quality measurements for the obtained motifs at each displacement, (1) the 

distribution of FDR values of all the motifs (as explained in Filtering of discriminative 

motifs a lower FDR value relates to a better motif), (2) the average matching score 

difference between the two distributions (an effectively discriminative motif should get a 

high difference between its “equivalent” sequence distribution and the other sequence 

distribution) and (3) the total number of obtained motifs. 

Quality of the motifs is dependent on the displacement value 

FDR distributions across the analysed displacements show variable behaviour across 

the three samples (see Fig. 7). Although tendencies are similar, the overall distribution 

of motif quality differs between samples. FDR values in ESC prone motifs and iPSC 

are more distributed across their possible spectrum of values than those in ESC 

resistant motifs and FB. Such differences probably come from the dissimilar 

methylation histograms described in Methylation-prone and methylation-resistant CpG 

word classification.  

FDR values tend to decrease when the distance to the 0 displacement increases. In 

iPSC prone motif results we perceive a subtle oscillation at both sides of 𝑑 = 0. Also, 

FDR values seem to improve symmetrically just before 𝑑 = 25 and 𝑑 = −25. 

Theoretically, such a result would favour our hypothesis that methylation motifs appear 

at some distance from the methylation target. In most cases, FDR distributions are 

symmetrical to both sides of 𝑑 = 0, although we see some exceptions. In FB prone 

motif results, for instance, we see a minor change in FDR dynamics at about 18 

nucleotides of positive displacement. A priori, motifs at that point would be less 

discriminative than the rest, as FDR values slightly increase compared to their 

surrounding results. However, FDR values are only a statistical indicative of motif 

quality not directly related to biological consequences. Therefore, such variations in the 

FDR distribution could reflect an implicit feature of motifs at that position that remains 

to be studied from other perspectives. 
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Our results show motif quality local maximums at 𝑑 ≠ 0. Obtaining discriminative motifs 

distant from 𝑑 = 0 reaffirms the possibility of a cooperative or multiple-domain model 

for DNA modulation. 

 

Figure 7 Heatmaps of the distribution of motif FDR values for each of the three samples analysed. We 
show resistant motif and prone motif results separately. (A) Prone motifs in ESC. (B) Resistant motifs in 
ESC. (C) Prone motifs in iPSC. (D) Resistant motifs in iPSC. (E) Prone motifs in FB. (F) Resistant motifs in 
FB. We could not perform the full displacement range analysis in ESC for time issues. 

Discriminative motifs emerge at the centred displacement 

In Fig. 8 we depict both the number of motifs obtained from the pipeline and the 

difference of matching scores between prone and resistant word distributions for our 3 

samples. In iPSC and ESC resistant motifs and in FB, the number of filtered motifs 
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increases around 𝑑 = 0. This tendency is especially abrupt in iPSC resistant motifs. 

Although the increase of the number of motifs at 𝑑 = 0 could contradict our hypothesis, 

it could also be the consequence of a possible bias produced by the CpG placement. 

Most words around 𝑑 = 0 contain the CpG in their sequence and thus carry an implicit, 

basal level of conservation. As words move away from the centre, the probability of 

having an CpG decreases asymptotically until it reaches the average frequency of CpG 

dinucleotides in the genome. Thus, “central” words would be more conserved and thus 

the matching score of generated motifs with word distributions would increase, hence 

increasing the number of effectively discriminative motifs. 

FB resistant motifs show oscillatory quality peaks 

Matching score difference measurements in FB resistant motifs display an oscillatory 

trend at both sides of the centred displacement that suggest that motifs could 

concentrate at certain specific displacements from the CpG target. ESC resistant motif 

quality metrics also show a slight oscillation. Relating such displacements to biological 

features would partially enforce our hypothesis, as there could exist local maximums of 

motif optimality at determined displacements from 𝑑 = 0, rather than an absolute 

maximum at one specific 𝑑. 

Binding score difference is a better indicator for motif quality trends 

than FDR 

Although matching scores and FDR distributions do not perfectly correlate, they follow 

similar trends in all samples. The asymmetry in iPSC prone motif matching scores is 

also slightly present in its FDR distribution, and the valley in the iPSC resistant motif 

matching scores around 𝑑 = 0 is represented in FDR distribution as an abrupt general 

increase of FDR values. Also, the oscillatory trend in FB resistant motifs and the 

improvement of the overall quality at 𝑑 ≅ 35, −35 in prone motifs can be deducted from 

the FDR distributions. In general, mean matching scores seem to represent more 

precise quality trends of motifs than FDR distributions. 

FB prone motif and iPSC resistant motif graphs show similar shape 

In iPSC and ESC, resistant motifs tend to improve as 𝑑 increases. FB prone motifs 

follow a similar trend, although displaced motifs do not reach the quality of centred 

motifs. Considering iPSC cells are FB derived, this equivalence is feasible to be related 

to a real biological event. 
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Figure 8 Number of filtered motifs and average of the difference of matching scores for each analysed 
displacement. The left axis (orange line chart) represent the total number of POMs (motifs) obtained at the 
end of the pipeline. The right axis (bar charts) represent the average of the difference for each motif 
between its matching score with its “equivalent” distribution and the other distribution. (A) Prone motifs in 
ESC. (B) Resistant motifs in ESC. (C) Prone motifs in iPSC. (D) Resistant motifs in iPSC. (E) Prone motifs 
in FB. (F) Resistant motifs in FB. We could not perform the full displacement range analysis in ESC for 
time issues. 
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The execution time of the algorithm has been optimized 

The original algorithm by Luu et al.[7] took a few days to perform the motif discovery 

analysis on a single displacement. Our algorithm without optimizations performs the 

analysis of a single displacement in about 26 hours, whereas the optimized algorithm 

takes about 15 hours for each displacement. 

The cluster execution script is critical for performance. In our specific case, analysing 

101 displacements for a unique sample in a cluster of 7 nodes took 217 hours (about 9 

days). Without the cluster execution script, the algorithm would take 1515 hours (about 

63 days) for the analysis. 
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Discussion 

In this work, we study the role of DNA words in epigenomic regulation by targeting DNA 

methylation motifs. We propose a hypothesis, that the optimal displacement from a 

CpG target for DNA motif presence is different to 0, and we suggest two possible 

molecular models for DNA methylation modulation that support displaced DNA motifs. 

To validate our hypothesis, we detect DNA motifs at several positive and negative 

displacements from the CpG target in ESC, iPSC and FB samples. 

The presence of discriminative motifs centred on the CpG, apart from being influenced 

by the CpG positioning bias explained in Results, is consistent with previous results on 

DNA methylation motifs. From the total of the human TFs, for instance, about a 67% 

have been associated with TFBSs containing CpG dinucleotides at variable positioning 

within their sequence [4]. 

Although motifs containing a CpG dinucleotide seem to contradict our hypothesis, they 

match other DNA methylation molecular mechanisms that could be complementary to 

our proposal. Methylation resistant motifs containing a CpG may be associated to 

proteins, such as TFs, sequence-specifically binding unmethylated DNA and 

preventing it from methylation. TFs binding to DNA to avoid methylation have 

previously been suggested [7,12] and could coexist with the cooperative and multiple-

domain models. 

The local maximum of methylation prone motifs with CpG inside its sequence is more 

difficult to justify in molecular terms, as sequence specific recognition of methylated 

DNA in situ has not been probed. However, previous results support this fact. “Methyl-

plus” TFs described by Yin et al. [4] have higher affinity for methylated DNA binding 

sites rather than unmethylated DNA binding sites. Combining the mEpigram 

methylation motif discovery pipeline and Chip-seq analysis, Ngo et al. demonstrated 

that the enrichment of some methylated TFBS decreased significantly after DNA 

demethylation [6]. The existence of a molecular model for sequence-specific 

methylated DNA recognition by TFs would therefore be plausible. 

The equivalence between FB prone motifs and iPSC and ESC resistant motifs can be 

related to molecular mechanisms for reprogramming, enforced by the fact that the 

iPSC are FB-derived. For instance, OCT4 and NANOG are crucial genes for cell 

pluripotency, silenced through promoter methylation in non-pluripotent cells. It is known 

that in cell reprogramming promoters of such pluripotency genes are sequence-

specifically recognised for unmethylation, activating their expression [7]. As previously 
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cited, there exists no evidence of any molecular process for sequence-specific 

recognition of methylated DNA for unmethylation. Then, OCT4 and NANOG activation 

could occur through specific recognition of unmethylated sequences in their promoters, 

displaced from their methylated CpG, and recruitment of DNA demethylation proteins 

(see Fig. 9A). This would explain the similar trends between iPSC and ESC resistant 

motifs and FB prone motifs. Discriminative prone motifs displaced from the centre in FB 

could therefore appear unmethylated in iPSC. The same reasoning could be applied to 

the rest of genes involved in pluripotency. 

We find further evidence for similar models in previous literature. The MBD family 

protein MBD2a is directly related to differentiation and reprogramming, as it binds 

OCT4 and NANOG. Overexpressed MBDa can cause differentiation in ESC, silencing 

OCT4 and NANOG through the recruitment of the chromatin remodelling and histone 

deacetylase complex NuRD [11]. Histone deacetylation removes an acetyl group from 

the histone tail, tightening the wrapping of the DNA around the nucleosome, reducing 

DNA accessibility, and thus silencing its expression. MBD2 proteins have an MBD 

domain and sequence specific TRDs. Thus, MBD2a could match both the cooperative 

and the single protein, multiple domains models. Once a pluripotency gene is 

methylated in the differentiation process, MBD2a would sequence-specifically 

recognise the pluripotency promoter through its TRD and the methylated CpG through 

its MBD. Then, MBD2a would recruit the repression machinery for pluripotency genes, 

in this case NuRD (see Fig. 9B). Unlike the previous model, MBD2a recruit chromatin 

remodelling factors rather than MUFs. 

The two pluripotency gene regulation models could be complementary and 

consecutive. During differentiation, specific promoter sequences would be recognized 

and methylated. Once differentiated, expression of pluripotency genes would be 

repressed through sequence-specific histone modification and chromatin remodelling 

(see Fig. 9). 

Oscillatory motif quality trends in FB and ESC resistant motifs can be the consequence 

of multiple factors. The effect of steric hindrance when recruiting other proteins would 

depend on the specific structure and size of each TF family [4]. Hence, it is logical to 

think that different protein families would have optimal motifs at different displacements 

from 𝑑 = 0. TFs have also been suggested to work in clusters [6,10], and different 

proteins in a same cluster could concurrently bind to DNA. For instance, pioneer TFs 

bind chromosomes and recruit other TFs to open the chromatin region [12]. In this 

context, several motifs could emerge in a small range of nucleotides, as it is the case of 

FB resistant motif results. 
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Figure 9 Possible regulation models for the expression of pluripotency genes during differentiation. In the 
figure, OCT4 is taken as an example. A methylated CpG is represented with a filled lollipop, whereas an 
unfilled lollipop represents an unmethylated CpG. (A) In a pluripotent cell, a sequence-specific DNA reader 
binds the OCT4 promoter and recruits DNMT proteins for methylation. (B) In a differentiated cell, MBD2a 
sequence-specifically recognises the OCT4 promoter through its TRD and not-specifically binds the 
methylated CpG through its MBD. MBD2a then recruits the NuRD complex for histone modification and 
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chromatin remodelling. DNA around nucleosomes tightens and loses accessibility, thus repressing the 

expression of OCT4. Created with BioRender.com [15]. 

The possible relationship between methylation motifs and histone modification makes 

us think that displaced epigenomic words are not only feasible for methylation motifs. 

For example, displaced motif have also been reported for histone marks [2]. The co-

occurrence of DNA methylation motifs and histone marks has also been previously 

studied [7] and it previous research suggested that DNA methylation regulates 

discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw 

mechanism [21]. Our algorithm is generic for the discovery of DNA motifs related to any 

measured signal. Thus, our pipeline could be extensible to the study of target position-

irrespective motifs related to histone marks, as histone modifier proteins would be 

affected by similar steric hindrance effects as methylation modulators. 

Next steps 

Once implemented and tested the pipeline on cells at variable differentiation levels, our 

short-term continuation is the analysis of methylation motifs on additional cell samples. 

A key insight into methylation motif placement would come from the analysis of cells 

from the three primary germ layers. Determining common and differential motif quality 

patterns in such cells would extend our present results and would contribute to the 

current knowledge about reprogramming. 

Concerning the long-term objectives of our project, we could extract, sort, and perform 

a top-k selection on motifs at local maximums of quality. Then, we would perform 

ontology tests on such motifs to define their biological functionality. Complementary 

assays for DNA word functionality definition could also include testing their co-

occurrence with other epigenomic marks or performing a motif-comparison assays 

between our extracted motifs and TFBS databases, such as JASPAR [22]. 

Biological functionality tests should be validated in vivo. Once determined differential 

motifs for each cell line, we could perform CRISP-Cas9 genome editing on their 

matching DNA words. We could measure their cell type-specific phenotypical features 

before and after DNA word splicing. A significant variation between the pre-splicing and 

the post-splicing states would be an indicator of the biological relevance of our motifs. 

Validating our results both in vivo and in vitro would provide the enough consistency to 

our research for the publication of a public server of DNA words for CRISPR/Cas9 

genome editing. 
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Conclusion 

Identifying and profiling functional DNA words in epigenomic regulation is crucial for a 

better understanding of processes such as differentiation and reprogramming. Such 

research would favour gene therapy treatment designed, epigenomics-based disease 

diagnosis and cell reprogramming for research, among other. Methylation is an 

essential epigenetic mark that works as cause and consequence of many biological 

mechanisms. Although DNA methylation motifs have been previously studied, the 

results about genome-wide motifs intrinsic to the DNA sequence are scarce. In 

addition, previous studies only contemplate motifs centred in the methylation target. 

Current molecular models for DNA methylation regulation suggest that the 

interpretation of methylated DNA could be a cooperative mechanism between multiple 

proteins. Hence, we could think that the binding of proteins with DNA is influenced by 

steric hindrance between different molecules. Consequently, DNA motifs could emerge 

at some displacement from the methylation target.  

We present a pipeline for genome-wide analysis of target position-irrespective 

methylation motifs. Our results on ESC, iPSC and FB show that motifs have peaks of 

quality at determinate displacements from the methylation target. We suggest that 

displaced motifs could come from pluripotency gene repression mechanisms. Also, we 

see indications of cooperative binding of multiple proteins to DNA at once, with 

oscillatory motif peaks separated by a low number of nucleotides. We conclude that 

DNA motifs prevail at specific displacements from the methylation target that include 

the methylation target centre. 
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Self-evaluation 

The project progressed based on the expectations and the available time. We could 

implement the algorithm, tune its parameters up for coherent biological results, 

optimize its execution time and perform the analysis on different samples. Initially, 

objectives were broader than the ones reached, as we planned to perform some 

complementary assays for result consistency. However, as each analysis takes several 

hours to complete, the tuning of the algorithm took longer than expected. However, I 

personally consider the research reached interesting results that allowed a coherent 

argumentation for the presented hypothesis. 

Personally, my stay was greatly profitable both in personal and academic terms. In the 

professional domain, my supervisor presented the project and its objectives to me from 

the start, clearly and without ambiguities. A remarkable fact about the proposal was 

that it was highly individualized, as my supervisor and I were the main researchers of 

the project. Although I was constantly supervised and we performed follow up meetings 

periodically, I was given a wide range of freedom. Frequently, they gave me the 

possibility to make my own decisions during the research path and considered all my 

contributions. Thus, my stay was exigent concerning responsibility but favourable in 

terms of applying both my own criteria and the knowledge acquired during my degree. 

Regarding the domain of the project, I found it of great value for the transversal 

development of my whole Double Degree in Biotechnology and Computer Engineering. 

Despite the research was focused on the retrieval of biological results, it had a strong 

component of informatics. In fact, I had to learn and dominate R, a completely 

programming language for me. I could therefore develop new skills for bioinformatics 

programming and algorithmics. 

Finally, and concerning my personal experience in the group, it was a great 

introduction to the research community. I was constantly backed by my teammates and 

we collaborated with each other even if we were working on different projects. A 

positive aspect about the group was its heterogeneity in researcher profiles, from 

computer engineers to biochemists. The coherence of the group hence compensated 

the individuality of the project. 
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Annex A: Detailed dataset features 

Table 1 Details of the analysed datasets. 
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Annex B: Computational optimizations of the original 

algorithm 

R optimizations 

We used the R library doMC to parallelize the filtering through FDR and Mann-Whitney 

tests across multiple CPUs. For low latency R data frame operations, we used 

pipelining from the magrittr library. 

Low level routines 

Some steps of the pipeline show excessively high latency in their implementation in R, 

even using parallelization libraries. We thus implemented C routines for some phases 

of the algorithm of heavy computational burden. The initial extraction of DNA words 

from the genome, the generation of the similarity matrix for clustering, the scanning of 

motifs against sequences for matching score calculation and some complementary 

routines are written in C. 

For C calls from R we used the .Call base R function. 

HPC execution script 

As the analysis of each displacement is independent from the others, we implemented 

an encapsulating bash script for the execution of our pipeline on slurm-based clusters. 

We use a bash FIFO queue for the enqueuing of the displacements to be analysed and 

an automatic recognition of available nodes in the slurm context. Thus, the algorithm 

sequentially assigns idle nodes to displacement analysis, detects the end of analysed 

displacements and manages the sequential repartition of nodes from finished 

displacements to displacements in the analysis stack. 
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Annex C: Additional software design features 

Motifs are usually represented with logos that visually show the relevance of each of 

the four possible nucleotides at each position of the motif. Our algorithm can be 

parameterized by the user to optionally generate logos for all the filtered motifs at the 

end of the pipeline. Logos are generated with the R function seqLogo from the 

seqLogo library. We depict an example for a motif logo in Fig. 10. 

 

Figure 10 Example of a logo for a 44-nucleotide-length motif. 

We also provide HTML files that contain matching score histograms for both 

distributions for each of the filtered motifs, as depicted in Fig. 11. Such information files 

are divided into methylation-prone and resistant motifs and positive and negative DNA 

strands. 

 

Figure 11 Matching score distribution representation for a specific motif. 

Finally, the user can optionally perform gene assignment of the filtered motifs by their 

closeness to an annotated gene. The user only must provide a gene annotation file of 

the reference genome and turn the gene assignment parameter on. 
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