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1 Abstract

In this project we implement a mathematical model based in Mixed-Membership
Stochastic Block Models to be able to make predictions of the strength and
type of genetic interaction between two or three genes from the human
model organism Saccharomyces cerevisiae.

We use a data-set of 501510 entries obtained from the supplementary
materials of the article ”Systematic Analysis of Complex Genetic Interac-
tions” [1]. This data-set contains the fitness data from yeast triple and
double knock-out mutants, each with a different combination of mutated
genes.

After validating the predictions of the model using different metrics, we
compare how genes are related according to Mixed-Membership Stochas-
tic Block Models are related in Gene Ontology terms.

Keywords: Genetic interaction, Saccharomyces cerevisiae, Gene On-
tology terms, Mixed-Membership Stochastic Block Models, machine learn-
ing.
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2 Introduction

The increasing amount of available information, the cheapening of com-
putation power and the need for tools that are capable of digesting large
amounts of data, have made Machine Learning (ML) one of the most effi-
cient ways to do predictions from incomplete data.

Previous studies have shown the potential of Mixed-Membership Stochas-
tic Block Models (MMSBM) to make accurate predictions of non-observed
data with a scalable algorithm [2] [3]. MMSBM are generative models, that
is models that assign probabilities to observed events. As such, they are
amenable to Bayesian inference techniques, so that model parameters can
be inferred from observed data (in our case known gene-gene or gene-
gene-gene interactions).

In Biology and related fields, available data in public databases is grow-
ing every year specially due to the advance in multiplexing techniques such
as ELISA, DNA arrays or Luminex. That points out the increasing need of
bioinformatics and ML in biotechnology research in order to extract conclu-
sion from these large amounts of data.

In this study we put the focus on genetic interactions in the human
model organism Saccharomyces cerevisiae (S. cerevisiae). There are big
data-sets available of genetic interaction between two or three genes in
this organism, but they just represent 1% of the possible genetic interac-
tions in (S. cerevisiae). This fact makes this problem ideal for a ML solution
because even though this 1% is in absolute therms thousands of rows of
data, it only represents a small fraction of what can actually be tested in
vitro. Therefore, the algorithm is able to train efficiently due to the high
amount of available information, but also a lot of new data can be obtained
from its predictions.
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3 Objective

• Develop an algorithm that is able to train from our data-set to make ac-
curate predictions of the genetic interaction strength between genes.

• Compute different models with different parameters and obtain their
performance metrics in order to select the best model.

• Compare the clustering of the genes in our model with the distance
between their respective gene ontology therms.
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4 Theoretical Background

4.1 Genetic Interaction

The central dogma of biochemistry states that the information in most living
beings flows from genes, encoded in deoxyribonucleic acid (DNA) molecules,
which are the fundamental elements of the genetic material, to proteins and
ribonucleic acids (RNA), which are the responsible for many heterogeneous
functions in the cell: structural, reaction catalysis, signaling, transcription
factors...

We can understand genetics following a ”static” approach in which each
gene is studied individually to determine its function and to determine what
are the major chemical and physical conditions needed in the cell for that
particular gene to activate and give its final product.

But that is just a simplification from reality since Genetics has a dynamic
and very complex behaviour, specially in superior organisms: Genes and
their products are interacting with each other in many ways. Usually, this
interactions are very subtle and have functions that have not been discov-
ered yet. Because of that, life at cellular level it is not a process that flows in
one direction; is the result of a very complex network of interaction between
the metabolites of the cell and its environment. [4] [5].

So, understanding the way in which genes and their products interact
with each other can be a difficult task, since many involved factors are
still unknown. But, experimentally, observing a chosen phenotype, we can
determine if two or more genes are actually interacting, following the next
definition:

Genetic Interaction Genetic interaction is a phenomenon that occur when
two or more mutant alleles in a single individual combine to result in a phe-
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notype that is different from the expected phenotype when these alleles are
tested separately in different individuals.

Figure 1: The yeast is not viable only when the two genes are missing.

For example 1 let A and B be the only two genes present in S. cerevisiae
that code for an enzyme responsible of a step in a vital pathway. Also,
let fitness be a numeric phenotype than can be calculated as the ratio
between the real diameter of a given colony and the diameter of the wild-
type colony.

When gene A is non-functional or missing, gene B can replace gene
A’s function and vice versa. This process allows S. cerevisiae to grow even
when genes that provide a vital function are deleted. Consequently, the
fitness phenotype when A or B are deleted in a individual should be 1 or
non-lethal.

But if we delete gene A and B in the same individual, we will find that
the fitness phenotype is 0 because S. cerevisiae will not be able to grow
up, because there is no gene this time that can replace the function of the
lost vital genes.
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Knowing all the above and applying the definition we can say that genes
A and B are interacting because when deleted in the same individual the
obtained phenotype is different from the expected phenotype: Since genes
A and B have non-lethal phenotype when deleted separately, we expect
the same when combined in the same individual.

Note that this is an illustrative example and genetic interaction is not
always so drastic and clear.

4.1.1 Types of genetic interaction

There are two basic types of fitness-based genetic interactions:

• Negative genetic interaction: Occurs when a combination of muta-
tions leads to a fitness defect that is more exacerbated than expected.

– Synthetic lethality occurs when two non-lethal mutations gen-
erate a lethal mutant when combined.

• Positive genetic interaction: Occurs when a combination of muta-
tions leads to a fitness greater than expected.

– Genetic suppression: Occurs when the mutations in the fitness
defect of a query mutant is alleviated by a mutation in a second
gene.

4.1.2 Quantification of a fitness-based genetic interaction

The study of the fitness phenotype allows to easily determine how lethal
the suppression of genes can be, and also gives us the possibility of defin-
ing a formula to calculate a parameter that expresses the difference be-
tween the observed and the expected fitness of a mutant colony. Given
a certain threshold of this parameter we can affirm that there is genetic
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interaction and also we can determine what type of genetic interaction is
happening.

To screen trigenic interactions, the Synthetic Genetic Array (SGA) anal-
ysis was adapted. The SGA analysis is a high-throughput genetic tech-
nique that allows systematic construction of double mutants using a com-
bination of recombinant genetic techniques, mating and selection steps.
This adaptation consisted in using a double-mutant as a query strain, and
then crossing this mutant into an array of single mutants, generating triple
mutants for trigenic interaction analysis.

Also, using the SGA score method 2 defined in previous studies [1] we
can quantify the strength of a genetic interaction by computing a numeric
parameter for each double or triple mutant yeast. As number of genes
implied in a genetic interaction increases, complexity in the calculus of this
parameter will increase too. In this project we will put our focus only in
double and triple mutant yeasts, though.

Figure 2: This scheme shows how probabilities are calculated in the SGA
score method, under the multiplicative model

The SGA score is calculated different depending on the number of im-
plied gens in the genetic interaction:

Double mutant yeasts Let εij be the digenic interaction score parameter
under the probability multiplicative model. Let i and j be two different genes
and let f be the observed fitness of a yeast. Then fi and fj represent the
fitness of a yeast where the gene i or j, respectively, has been knocked-
out. fij represents the observed fitness of a yeast where gene i and j have
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been knocked-out. We can calculate εij for each digenic mutated yeast to
obtain its genetic interaction score using the next formula:

εij = fij − fi ∗ fj

We consider that genes i and j are interacting when |εij | > 0.08 and
Pvalue < 0.05 . Otherwise, genes i and j are not interacting.

Triple mutant yeasts Let τijk be the trigenic interaction score parameter
under the probability multiplicative model. Let i, j and k be three different
genes and let f be the observed fitness of a yeast. Then fi, fj and fk

represent the fitness of a yeast where the gene i, j or k, respectively, has
been knocked-out. fijk represents the observed fitness of a yeast where
gene i, j and k have been knocked-out. We can calculate τijk for each
trigenic mutated yeast to obtain its genetic interaction score using the next
formula:

τijk = fijk − fi ∗ fj ∗ fk − εij ∗ fk − εik ∗ fj − εjk ∗ fi

We consider that genes i, j and k are interacting when τijk < −0.08

and Pvalue < 0.05 . Otherwise, genes i, j and k are not interacting.

4.2 S. cerevisiae as a human model organism

S. cerevisiae is a single-celled fungus, a type of yeast used industrially
in the manufacture of bread, beer, and wine. It is one of the most suit-
able models for the study of biological problems because is an eukary-
otic system with a biological complexity slightly higher than the bacteria’s;
but shares many of its technical advantages with it: In addition to its rapid
growth, the dispersion of cells and the ease with which cultures replicate
and isolate mutants, it stands out for a simple and versatile DNA transfor-
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mation system. Also, the absence of pathogenicity allows its manipulation
with the minimum precautions.

An additional advantage of this microorganism is that the complete se-
quence of its genome is known and it is kept under constant review. This
has allowed the genetic manipulation of the nearly 6600 genes that the
yeast genome encodes, the extensive use of DNA microarrays to investi-
gate the transcriptome and genomic-scale studies of gene expression, pro-
tein localization and functional organization of the genome and proteome.

The molecular machinery of many eukaryotic cellular processes is con-
served in yeasts. This allows S. cerevisiae to be one of the most widely
used eukaryotic model organisms. It has been used as a model to study
aging [6], regulation of gene expression [7], signal transduction [8], cell cy-
cle [9], metabolism [10] [11], apoptosis [12], neurodegenerative disorders
[13], and many other biological processes.

Also, yeasts and humans share a significant fraction of their functional
pathways that control key aspects of eukaryotic cell biology such as protein
folding, quality control and degradation [14], vesicular transport [15]... In
the majority of cases, yeast has been the model organism in which these
pathways were originally identified and studied. These conserved biochem-
ical pathways drive cellular growth, division, trafficking, stress-response,
and secretion, among others, all of which are known to be associated with
various human pathologies. This explains the significant role for yeast as
a model organism for human disorders [16]. For example, up to 30% of
genes implicated in human disease may have orthologs in the yeast pro-
teome [17].

For all these reasons, S. cerevisiae has become an important large-
scale functional genomics analysis tool, providing a starting point for the
analysis of more complex eukaryotic organisms, such as humans. Being a
single-celled organism with a rapid growth rate and having many biochem-
ical processes in common with other, S. cerevisiae can be used for cell
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studies that would be very complicated or expensive in multicellular organ-
isms.

4.3 Machine Learning

ML is a subset of artificial intelligence that studies the use of computer algo-
rithms that improve automatically through experience. ML algorithms build
a mathematical model based on sample data, known as ”training data”, in
order to make predictions or decisions without being explicitly programmed
to do so. ML algorithms are used in a wide variety of applications, such
as email filtering and computer vision, where it is difficult or infeasible to
develop conventional algorithms to perform the needed tasks.

ML is closely related to computational statistics, which focuses on mak-
ing predictions using computers. The study of mathematical models and
mathematical optimization delivers methods, theory and application do-
mains to the field of machine learning.

4.3.1 Types of Machine Learning

ML approaches are traditionally divided into three broad categories, de-
pending on the nature of the ”signal” or ”feedback” available to the learning
system:

• Supervised Learning: The computer is presented with example in-
puts and their desired outputs, given by a ”teacher”, and the goal is to
learn a general rule that maps inputs to outputs.

• Unsupervised Learning: No labels are given to the learning algo-
rithm, leaving it on its own to find structure in its input. Unsupervised
learning can be a goal in itself (discovering hidden patterns in data)
or a means towards an end (feature learning).
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• Reinforcement Learning: A computer program interacts with a dy-
namic environment in which it must perform a certain goal (such as
driving a vehicle or playing a game). As it navigates in the problem
space, the program is provided with a reward that the algorithm tries
to maximize.

Supervised Learning will be the selected approach of ML for our learn-
ing algorithm because is the only approach that fits with the nature of our
data and problem.

4.3.2 Metrics

Evaluating algorithms is a basic part of ML. There are many evaluating
metrics available but we will explain the ones that we used:

Confusion Matrix Confusion Matrix gives as a matrix 3 that describes
the complete performance of the model. To implement it, we need to as-
sume a binary classification in two classes for our problem: In our case, if
genes are interacting (positive) or not (negative). Also, we need to have N
samples tagged with its true membership to one of the two classes. We will
evaluate these samples with our algorithm, obtaining the predicted mem-
bership. Then, using a certain threshold to binarize the predictions, we can
build the next table:
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Figure 3: Generic confusion matrix.

In order to binarize the results, the first step consists in calculating the
threshold value to determine the minimum value of a prediction to be con-
sidered true. To do so, we will assume equal distribution of positives be-
tween our model data and our test data.

First, we will calculate the fraction of positives in our model data. Sec-
ond, we sort upwards in a list the samples of the test data by its predicted
probability. Then, starting from the beginning of the list, we select the sam-
ple that leaves behind a number of samples equals to the fraction of posi-
tives times the number of samples in the test data. The probability that our
algorithm has given to that sample is our threshold value.

With this value we can compute different derived metrics:

• Recall or True Positive Rate TPR = TP
TP+FN

• Fallout or False Positive Rate FPR = FP
FP+TN

• Precision or Positive Predict Value PPV = TP
TP+FP
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The Area Under the Receiver Operating Characteristic Curve metric
The Area Under the Receiver Operating Characteristic Curve (AUC) is an-
other metric to asses the algorithm. To obtain it, we need to compute C

by iterating over the actual positive (AP ) samples and the actual negative
(AN ) samples in our test data to count how many times the predicted prob-
ability of an actual positive sample is bigger than the predicted probability
of an actual negative sample. Then we obtain the AUC metric with the
following expression:

AUC =
C

AP ∗AN

4.4 Stochastic Block Model

The Stochastic Block Model (SBM) is a generative model for random graphs.
This model tends to produce graphs containing communities, subsets char-
acterized by being connected with one another with particular edge densi-
ties. For example, edges may be more common within communities than
between communities.

The SBM is important in statistics, ML, and network science, where it
serves as a useful benchmark for the task of recovering group structure in
graph data.

The SBM takes the following parameters:

• Data that can be expressed as a non-directed graphG with P vertices
and E number of edges. The number of edges related at the same
time by the data is called degree D. If data relates each vertex with
more than one other vertex at the same time, edges will be multiple
(connecting three or more nodes) instead of simple (connecting two
nodes).

• The number of groups K. Each vertex p can be classified into a cer-
tain group p1,...,K . Vertex in the same group are called communities
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C1,...,K . This allows the full graph G to be expressed as the union of
K disjoint subsets of communities G = C1 ∪ C2 ∪ ... ∪ CK .

• A symmetric matrix p = ×D1 K. For example, p = K × K if D = 2

and p = K × K × K if D = 3, and so on. Each cell in these matrix
expresses the probability P of group i, group j and group k (when
degree = 3) of being related: Pijk = pijk .

4.4.1 Mixed-Membership Stochastic Block Models

Unlike ”Single-Membership” SBM, MMSBM associate each vertex p with
multiple groups rather than a single group. This is achieved via associating
each vertex p with a membership probability-like vector with K length.

To do so, we define θ, a matrix that gives the probability P of a certain
gene p belonging to a certain group α.

P = θpα

Then, we can define our model by defining the probability that the genes
i, j, j interact:

pξijk =
∑
αβγ

θiα ∗ θjβ ∗ θkγ ∗ pξijk

We also need to define our likelihood function. This function mea-
sures the goodness of fit of a statistical model to a sample of data for certain
values of the model parameters.

The likelihood function describes a hyper-surface whose peak, if it ex-
ists, represents the combination of model parameter values that maximize
the probability of classifying the data correctly. Our objective when training
the model is to maximize the result of the likelihood function. To achieve
that, we will use the following equations to update the values of matrix p
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and matrix θ from our model. We will call iteration to each time that we
apply the definition of the model to update these values in order to rise the
result of the likelihood function.

The likelihood function can be defined using a variational approach and
an expectation maximization algorithm [2] as:

L =
∏
ijk

(
∑
αβγ

θiα ∗ θjβ ∗ θkγ ∗ pξijkijk )

Introducing logarithms:

L = log(L) =
∑
ijk

log
∑
αβγ

θiα ∗ θjβ ∗ θkγ ∗ pξijkijk

And the auxiliary variable ω:

L =
∑
ijk

log
∑
αβγ

θiα ∗ θjβ ∗ θkγ ∗ pξijkijk

ωαβγ(ijk)
∗ ωαβγ(ijk)

Knowing that: ∑
αβγ

ωαβγ(ijk) = 1

logx̄ ≥ ¯logx∑
α

θiα = 1

∑
ξ

pξαβγ = 1

Then:

≥
∑
ijk

log
∑
αβγ

ωαβγ(ijk) ∗ log
θiα ∗ θjβ ∗ θkγ ∗ pξijkijk

ωαβγ(ijk)
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We can define ω as:

ωαβγ(ijk) =
θiα ∗ θjβ ∗ θkγ ∗ pξijkijk∑
αβγ θiα ∗ θjβ ∗ θkγ ∗ p

ξijk
ijk

Because of the properties of the likelihood, it can be used in the training
phase to know when the algorithm is trained enough. But also, it can be
used in the test phase as a metric. We will call the likelihood of the test
data held-out likelihood.
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5 Methodologies

5.1 Replication of the experiment

The first step of the project was to replicate the methodologies to obtain
the same results obtained by [1] in the selection of the triplets of genes that
have genetic interaction to validate our primary algorithm of the application
of the SGA score in the data. In their experiment that we want to replicate,
they used two data-sets: data-set S1, which had all the raw results from all
the evaluated mutants, and data-set S2, in which they only conserved those
experiments with mutants of duplets and triplets of genes that are interact-
ing according to the SGA score method and have an accepted significance
level P < 0.05.

This first step also involved the design of the data structures that will
contain all the needed data and algorithms able to digest and work with
these data structures.

5.2 Implementation of MMSBM

The second step was to implement our model along with the data of our
problem. Basically two algorithms were implemented:

• The computation of the likelihood of our model regarding our data.

• The iteration algorithm.

5.3 Validation of the MMSBM

To validate the results of the algorithm and to find which K parameter gives
better results, a five-fold crossed-validation method was applied to be

18



able to compute metrics of the algorithm for each obtained sample.

Groups of 100 samples were computed for each K parameter in a list
ranging from ”2” to ”5” for each of the 5 different folds of data (100 * 4 * 5 =
2000 samples).

Precision, recall, fallout and AUC metrics were computed for each sam-
ple. Each group of 100 samples was summarized by calculating the AUC
metric with the average of the prediction result of every triplet, obtaining
the average AUC metric. Also, the average and standard deviation of the
held-out likelihood was computed for each group of 100 samples.

Also, the average AUC metric was computed from 150 samples with
K = 1 to compare our metrics with a baseline reference.
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6 Results and Discussion

The replication of the experiment was done successfully and the results
obtained were exactly the same: trigenic mutants in the data-set S2 were
exactly the same as the ones that we obtained after applying the SGA score
method in mutants in data-set S1.

Metrics from each group of 100 samples was summarized in the next
figure:

Figure 4: Average AUC metric vs average held-out likelihood for each group
of 100 samples belonging to 5 of the different folds and K = {2, 3, 4, 5}.

This figure clearly shows thatK = 2 is the best parameter for our model,
since it shows the best metrics for every different fold. Probably, when in-
creasing the K parameter there is over-fitting of the model for the training
data, giving worse metrics and results.
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Also, the average of the AUC metric in 150 samples with the baseline
K = 1 was 0.15. Therefore, our model is effective in prediction since it
gives better predictions than choosing randomly.
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7 Conclusions

The fact that we developed a model that makes better predictions than
choosing randomly by assuming that there are groups of genes behaving
similarly confirms that MMSBM can be used as an effective method to do
predictions in complex biological networks. Thus, there are patterns in the
way genes interact and relate to each other.

This model may not be very accurate at local level, but can be used to
discover patterns at general level that sometimes are not seen, specially
when working with large amounts of data. This is specially important in
fields like Biology, because finding new biological patterns will help to inter-
pret unknown data and will allow to discover new biological mechanisms.

Also, a better inference of the model parameters can be achieved by
extending the model to interactions between pairs of genes.

Finally, further studies are needed to be done in order to compare
how genes are related according to our model parameters with the actual
”grouping” of the genes: its placement, function and process. To do so, we
will compare the relation between the associated GO therms of the genes
and its model parameters. This could reveal patterns in some groups of
genes that may lead to the discovery or better characterization of some
biological processes and the discovery of new therapeutic targets.
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de las redes metabòlicas. Sebbm, Ene2016, 1-3,
papers3://publication/uuid/F620AFC0-1257-4F0F-910A-
45A7A3D53525

[6] Murakami, C., & Kaeberlein, M. (2009). Quantifying yeast chronological
life span by outgrowth of aged cells. Journal of Visualized Experiments,
27, 1156. https://doi.org/10.3791/1156

[7] Biddick, R., & Young, E. T. (2009). The disorderly study of or-
dered recruitment. In Yeast (Vol. 26, Issue 4, pp. 205–220). Yeast.
https://doi.org/10.1002/yea.1660

23



[8] Hohmann, S., Krantz, M., & Nordlander, B. (2007). Yeast Osmoregula-
tion. In Methods in Enzymology (Vol. 428, pp. 29–45). Academic Press
Inc. https://doi.org/10.1016/S0076-6879(07)28002-4

[9] Nasheuer, H. P., Smith, R., Bauerschmidt, C., Grosse, F., & Weis-
shart, K. (2002). Initiation of eukaryotic DNA replication: Regulation
and mechanisms. Progress in Nucleic Acid Research and Molecular
Biology, 72. https://doi.org/10.1016/s0079-6603(02)72067-9

[10] Brocard-Masson, C., & Dumas, B. (2006). The fascinating world of
steroids: S. cerevisiae as a model organism for the study of hydrocor-
tisone biosynthesis. Biotechnology and Genetic Engineering Reviews,
22(1), 213–252. https://doi.org/10.1080/02648725.2006.10648072
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9 Auto-evaluation

When working in collaboration with SEES:lab I understood better the roll
of a bioinformatician: As a bioinformatician, I understand the nature of bio-
logical problems and data, and I can implement the algorithm that solves a
certain problem, but I need to obtain a specification of that problem: Bioin-
formatics and computational biology feeds on problems and data from bi-
ology. My main goal as a Biotechnologist and Computer Scienctist is to
link these two fields by using my acquired knowledge from my studies. My
expectations with this project were fullfilled because I worked in an interdis-
ciplinary environment, in which computation in used to solve problems from
other fields of the science, such as physics, biology or chemistry.

Also, I did some of the tasks expected from a worker of a laboratory:
I attended research group meetings and I learnt which are the available
resources for my work and how I can access them.

I improved many skills over the course of this project such as my pro-
gramming level in python and bash, my ability to manage and work with
scientific articles or my knowledge of scientific databases. But specially, I
acquired new skills and ability to work with new different environments: I
learnt LaTeX, Python, bash, machine-learning using MMSBM and to use
new tools that I will use in the future in further projects.

I consider that my collaboration with SEES:lab has been completely
enriching and and productive for me.
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10 Annex

10.1 Materials

This section covers all the elements needed to do our experiment. Since
our experiment is an algorithm its materials are basically hardware and
software elements.

10.1.1 Hardware requirements

The training algorithm is the only algorithm that is strongly hardware-demanding.
Using just one thread of execution in a last-generation user PC, the algo-
rithm can delay at most two weeks to finish. That is why there is an extra
layer of parallelization that allows to run the algorithm in parallel using the
number of threads corresponding to the number of cores available in the
machine running the algorithm. That allows to divide the execution time
by the number of cores available, so better performances are expected in
better machines with more cores.

10.1.2 Software Requirements

Due to having big data-sets, long scripts and the need for computing power;
many software dependencies needed to be satisfied before working with
the algorithm. Some are completely necessary and some others are just
accessories for increased comfort when working in the project. Also, some
tools can be substituted with similar ones.

Python3 The main algorithm is written in Python3 so it needs a Python3
interpreter in order to run the code. The algorithm also uses the following
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Python3 packages that need to be installed:

• NumPy: Used for random picking function.

• codecs: To read from different files.

• matplotlib: To create all the graphics from the results.

PyPy3 PyPy3 is a Python3 interpreter that runs much faster in many
cases. We strongly recommend to use this interpreter since it reduces
many times the computation time of the training algorithm.

Linux Even though Python scripts are portable, we strongly recommend
to use Linux to run the script. The last version of the code is tested in
Ubuntu 20.04 LTS Focal.

GNU-parallel GNU-parallel is a Linux utility that allows to easily run batches
of commands in parallel. It is not needed to run the main algorithm, but is
needed to run the parallelization layer, which is strongly recommended to
do.

Git Git is a software versioning tool to maintain and develop software. Git
is needed at least to clone the repository where all the data-sets and scripts
are stored.

Also, because of the need to store all the data-sets in the same reposi-
tory, the complementary utility Git-LFS was installed in the repository. This
utility allows to work with big data-sets in the repository without sacrificing
speed when cloning and pulling.
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A .gitignore file was defined for all the possible junk, temporals and
product of compilation for our repository in order to ignore all those files
when updating the repository.

LaTeX The documentation was written in LaTeX and compiled with PDFLa-
TeX. Due to that, at least a LaTeX compiler is needed to obtain the final doc-
ument of the documentation. Also a LaTeX IDE is strongly recommended:
We used TexMaker in local Ubuntu 20 and Overleaf, an online LaTeX edi-
tor.

Mendeley Mendeley was used to organize, maintain and format all the
citations present in this documentation.

Virtual Box Virtual Box was used to run virtual machines with Ubuntu
Linux. This allowed to run the project even if the available machine to do so
did not have Linux installed.

Linux-Auto-Customizer Since there is a lot of software dependencies in
our project and most of the work has been done in virtual environments that
needed to be configured each time that are initialized, a side project called
Linux-Auto-Customizer was created with its own repository in GitHub.

This repository contains software to automatize the configuration and
the dependency installation of this project for Ubuntu/Debian machines.
The installation script can apply some custom features (depending on the
received arguments) to the current user console and to the Ubuntu-Linux
environment, such as local functions, file templates and global variables.
Also, third-party software can be installed too, including its dependencies.

An uninstall script is provided too, in order to uninstall previously in-
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stalled software dependencies. Please, refer to the README.md in the
repository to understand the usage of this software.

Libraries To run many of the previous software many libraries need to
be installed, such as: gcc, perl-tk, pkg-config, libfreetype6-dev, libpng-dev,
libffi-dev, curl... Using the Linux-Auto-Customizer dependencies are auto-
matically solved.

10.2 Design

10.2.1 Data structures

Different data structures to contain data of our model and problem along
with methods to work with them were implemented:

• p matrix was implemented as a 3D matrix with a fourth level of in-
direction for the ”rate”, that in our case is 0 for the probability of no
interaction or 1 for the probability of interaction.

• θ was implemented as a 2D matrix in which you could index with the
unique identifier of a certain gene, and then with the number of the
group.

• Two dictionaries were implemented to allow the transformation be-
tween the name of a gene and its identifier and vice versa.

• Two dictionaries that relate a triplet with its rating, using ids or using
the gene names.
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10.2.2 Methods

Different methods were designed to perform the experiment: initialize the
data structures of the algorithm, perform an iteration, calculate metrics, do
prediction for a certain triplet, validate the SGA score method with our data,
digest a folded or non-folded data-set...

Also a method to print all the data in the model and a help method was
designed.
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