Albert Canadilla Domingo

DEVELOPMENT OF A LOCAL CHATBOT WITH A CUSTOMIZED
KNOWLEDGE BASE

BACHELOR’S THESIS

Supervised by Dr. Pedro Antonio Garcia Lépez

Bachelor’s Degree in Computer Engineering

UNIVERSITAT ROVIRA i VIRGILI

Tarragona

2024

Abstract

A chatbot is a software application that relies on artificial intelligence to interact with a
machine in a way similar to a human conversation. Its use has become popular in recent
years with the arrival of commercial solutions, such as ChatGPT by OpenAl, Llama by
Meta or Gemini by Google.

This work explores new techniques and tools to improve these systems and their imple-
mentation in local environments, as well as a more customizable service adapted to the
needs of each individual as efficiently as possible.

It exploits not only portability but also adaptability. In a conventional system, it is
necessary to train the model with a series of data according to the behavior you want to
obtain. With the arrival of new data, it is necessary to retrain the model. Since model
training is a temporary and economically expensive operation, it is not feasible to resort
to it normally.

The alternative proposed in this work includes a different implementation in order to be
able to provide external knowledge (for example from a set of documents) without having
to go through this constant retraining of the model.

Resum

El xatbot és una aplicacié de software que es basa en la intel - ligencia artificial per
interactuar amb una maquina de manera semblant a una conversa humana. El seu s s’ha
popularitzat en els anys recents amb 'arribada de solucions comercials, com ChatGPT
de OpenAl, Llama de Meta o Gemini de Google.

Aquest treball explora de noves tecniques i eines per a la millora d’aquests sistemes i la
seva implementacié en entorns locals, aixi com en un servei més personalitzable i adaptat
a les necessitats de cada individu el maxim eficient possible.

Explota no només la portabilitat sin6 també 1’adaptabilitat. En un sistema convencional,
cal entrenar al model amb una serie de dades segons el comportament que es vulgui
obtenir. Amb l'arribada de noves dades, cal reentrenar el model. Essent I’entrenament de
models una operacié temporal i economicament costosa, no és viable de recorre-hi amb
normalitat.

L’alternativa proposada en aquest treball inclou una implementacié per tal de poder
aportar-li coneixement (per exemple, d'un conjunt de documents) extern sense haver de
passar per aquest reentrenament constant del model.

Resumen

El chatbot es una aplicacién de software que se basa en la inteligencia artificial para
interactuar con una maquina de forma similar a una conversaciéon humana. Su uso se
ha popularizado en los anos recientes con la llegada de soluciones comerciales, como
ChatGPT de OpenAl, Llama de Meta o Gemini de Google.

Este trabajo explora nuevas técnicas y herramientas para la mejora de estos sistemas
y su implementacién en entornos locales, asi como en un servicio mas personalizable y
adaptado a las necesidades de cada individuo lo maximo eficiente posible.

Explota no sélo la portabilidad sino también la adaptabilidad. En un sistema conven-
cional, es necesario entrenar al modelo con una serie de datos segiin el comportamiento
que se quiera obtener. Con la llegada de nuevos datos, es necesario reentrenar el modelo.
Siendo el entrenamiento de modelos una operaciéon temporal y econémicamente costosa,
no es viable recurrir a ella con normalidad.

La alternativa propuesta en este trabajo incluye una implementacion a fin de poder apor-
tarle conocimiento externo (por ejemplo, de un conjunto de documentos) sin tener que
pasar por este reentrenamiento constante del modelo.

ii

Dedication

This work is dedicated to my family, whose education, values and unconditional support
have laid the foundation for my achievements and of what I have become. Thank you for
always believing in me and for all your sacrifices.

iii

Acknowledgements

I would like to thank my tutor Dr. Pedro Antonio Garcia Lépez for the opportunities he
has given me during these last months, and for all his support and advice. This goes as
well for the help and company received from all my colleagues in the Cloudlab research

group.

I also want to extend my gratitude to my friends who have always been there, sharing
memorable moments together, and also to the amazing people I have met during these
years during my studies at college.

v

'I’d like to dedicate this to the losers. Because I tell you from my
own experience: winning is one thing, but out of losing I always
learned more for the future. So I got stronger from losing."

- Niki Lauda

Contents

1 Introduction

2 Objectives and motivations

3 Planification

4 Requirements
4.1 Functional requirements

4.2 Non-Functional requirements L.

5 Requirements Analysis

5.1 Class Diagram
5.2 Usecases Diagram L
5.2.1 Usecase #1 Diagram
5.2.2 Usecase #2 Diagram L
5.2.3 Usecase #3 Diagram
5.2.4 Usecase #4 Diagram
5.2.5 Usecase #5 Diagram L.
5.2.6 Usecase #6 Diagram
5.2.7 Usecase #7 Diagram
5.2.8 Usecase #8 Diagram
5.2.9 Usecase #9 Diagram
5.2.10 Use case #10 Diagram
6 Theoretical background
6.1 Large Language Models o
6.2 Retrieval-Augmented Generation
6.3 Vector Database

vi

10

11

12

13

14

15

16

17

18

7 Used technologies
7.1 Large Language Model
7.2 Vector Database.
7.3 Application Database
7.4 Other technologies
7.4.1 Front-end Implementation
7.4.2 Communication and relation L.
7.4.3 Dockerization Lo
8 Design
8.1 Global Schema
8.2 Backend Schema
8.3 Frontend Schema
9 Implementation
9.1 Back-end Implementation
9.1.1 LLM
9.2 Vector Database
9.3 Application Database
9.4 Front-end Implementation 0L
9.5 Communication and relation
9.5.1 VectorDB Flask server
9.5.2 Flutter HT'TP server
9.6 Dockerizationo

10 Proof of concept

10.1 Results o o s,

11 Testing and validation

vii

24

24

26

26

28

28

28

28

29

29

30

31

32

32

32

33

33

34

36

36

38

38

39

40

48

11.1 Unit tests .

11.2 Failing tests

12 Performance

12.1 Global Standard Benchmarking

12.2 Deployment performance test

13 Conclusions

13.1 Future work

Viil

List of Figures

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Planification 3
Planification timeline 4
Global Schema 6
Use cases Diagramo 7
QUETY . . . 8
Upload files 9
Upload link o o 10
Index files 11
Delete files o 12
Switch chat 13
Create chat 14
Delete chat 15
Save app state Schema o Lo Lo 16
Load app state 17
Vector database space representation. 21
Embedding generation pipeline. 0L 22
LocalAI architecture representation. Extracted from [14] 25
Global Schema 29
Back-end design Lo 30
Front-end design 31
Asking how to install Lithops from Github. From website [26] 41
Asking how to install Lithops from pip. From website [26] 42

Asking how to setup AWS credentials for Lithops. From website [24] . . . 43
Asking how to contribute to Lithops. From website [25] 44

Asking what LocalAl is. From website [15] 45

ix

26

27

28

29

30

Asking about Bachelor’s Degree in Computer Engineering in Universitat

Rovira i Virgili. From website [27] 0oL 46
Asking about an FIA statement of a Formulal race. From document [11] . 47
Performance on General Tasks 54
Performance on BIG-Bench Tasks (Part 1) 55
Performance on BIG-Bench Tasks (Part 2) 55

List of Listings

UL W N =

Langchain indexing process 33
Langchain querying process 33
CouchDB Dockerfile 34
VectorDB API code snippeto 36
VectorDB API operations list 37

X1

List of Acronyms and abbreviations

Al

LLM

NPL

RAG

ACID

ooP

GUI

PoC

RACO

STED

TSO

Artificial Intelligence

Large Language Model

Natural Processing Language

Retrieval Augmented Generation

Atomicity, Consistency, Isolation and Durability
Object Oriented Programming

Graphical User Interface

Proof of Concept

Reasoning About Colored Objects

Salient Translation Error Detection

Tracking Shuffled Objects

Xii

1 Introduction

The advent of artificial intelligence (Al) has revolutionized numerous fields, including
the development of chatbots. Chatbots are sophisticated software applications designed to
simulate human conversation through text or voice interactions, becoming integral tools
for businesses and individuals by enhancing customer service and efficient information
retrieval. This thesis deepens into recent advancements in chatbot technology, focusing
on improving functionality in local environments and providing a more personalized user
experience through customized chatbots.

In recent years, the popularity of chatbots has surged with the introduction of high-
profile solutions like ChatGPT by OpenAl, Llama by Meta, and Gemini by Google.
These platforms have set new standards for conversational Al, demonstrating remarkable
capabilities in understanding and generating human-like responses. Despite their success,
there remains significant potential for further enhancement, particularly in customization
and varied environment deployment.

Traditional chatbot systems typically require extensive model training with predefined
data, a process that must be repeated with new data, making frequent retraining imprac-
tical due to its time and cost demands. This research work addresses the challenge of
frequent retraining by proposing an alternative pipeline.

The proposed integration enables real-time updates and access to new information without
retraining the model, resulting in more accurate and relevant responses that adapt to new
information. For instance, one could provide a set of documents or files, enabling the
chatbot to answer questions specifically about the information contained within those
files. When a user poses a question, relevant data is retrieved and used as context of
the question in order to generate accurate, context-specific responses. This capability
allows the chatbot to handle queries about proprietary or specialized content that
isn’t covered by public solutions like the aforementioned ones, enhancing the ability to
adapt to specific user needs and preferences.

In summary, this thesis aims to advance chatbot technology by exploring methods to en-
hance functionality, adaptability, and deployment. The proposed design and technolo-
gies to implement the solution represent address traditional model training limitations
and enabling more efficient external knowledge integration and local implementation.

2 Objectives and motivations

To put us in situation, I was presented with a problem by a company. They wanted to
develop an online chatbot to help their costumers navigation their website. Since they
had a customized website, the bot had to be able to answer specific questions that
public AT models could have not done. Additionally, the chatbot needed the capability
to reference its information sources to redirect users for further details if they desired.

The first objective of this work is to investigate and learn about the listed technologies
and concepts in the following sections. The aim is to understand how to create a portable
model that can be adapted to different situations, while the study of those technologies
will provide knowledge on the fields.

The main goal is to integrate all this knowledge to develop a solution that can be adjusted
and customized according to the specific needs of each context or application.

The motivation behind this thesis is that it serves as a learning experience. By devel-
oping this tool, I am not only learning new technologies, but also pushing myself to tackle
real-world problems. Furthermore, I see this project as an opportunity to prepare myself
in a professional way to be more versatile and resourceful in my future career.

Ultimately, this tool is a testament to my commitment to continuous learning and my
ambition to stay at the forefront of technological advancements.

For instance, front-end development and AI haven’t been a great focus of my univer-
sity studies. Along with Cloud computing, I think Al is a trending area that will grow
exponentially in the future years.

To summarize, the main objectives of this thesis are:

« Investigate and learn about specific technologies and concepts relevant to developing
an online chatbot tailored for customized websites.

o Understand how to create a portable model adaptable to various contexts by study-
ing the identified technologies.

o Integrate acquired knowledge to develop a customizable solution meeting specific
needs of diverse applications.

o Utilize the project as a learning experience to gain proficiency in new technologies
and problem-solving skills.

o Prepare for future career endeavors by addressing real-world challenges and enhanc-
ing versatility and resourcefulness.

e Demonstrate commitment to continuous learning and staying updated with techno-
logical advancements, particularly in Al, cloud computing, and front-end develop-
ment.

3 Planification

In this section I will clarify the timeline of the project and the initial planification of
tasks. In the following fig. 1, there is an ordered list of tasks that I have followed in aim

to develop my solution and accomplish my objectives:

Task

Mode = Task Name

» Duration

Figure 1: Planification

- | Start

« Finish

-

=) Determining the topic of the thesis 1day Wed 20/03/24 'Wed 20/03/24
= Writing the thesis 28 days Wed 01/05/24 Fri 07/06/24
= Learning and documentation about LocalAl and LLMs 2 days Thu 21/03/24 Fri 22/03/24
= LocalAl implementation 4 days Mon 25/03/24 Thu 28/03/24
= Learning and documentation about DAG and vector databases 2 days Fri 29/03/24 Mon 01/04/24
= selecting a vector database solution 1day Tue 02/04/24 Tue 02/04/24
= Learning and documentation about Langchain 2 days Wed 03/04/24 Thu 04/04/24
= Learning and documentation about ChromaDB 2 days Fri05/04/24 Mon 08/04,/24
= Implementation of Langchain and ChromaDB 4 days Tue 09/04/24 Fri12/04/24
<] Integrating LocalAl with Langchain and ChromaDB 4 days Mon 15/04/24 Thu 18/04/24
<] Testing 1 day Fri 19/04/24 Fri 19/04/24
<] Fix possible errors 2 days Mon 22/04/24 Tue 23/04/24
<] Learning and documentation of Flask 1 day Wed 24/04/24 Wed 24/04/24
<] Flask implementation on Langchain service 2 days Thu 25/04/24 Fri 26/04/24
-} Testing 1 day Mon 29/04/24 Mon 29/04/24
-} Fix possible errars 2 days Tue 30/04/24 Wed 01/05/24
-} Learning and documentation about Flutter 2 days Thu 02/05/24 Fri03/05/24
[GUI development 10 days Mon 06/05/24 Fri 17/05/24
[Backend and frontend integration 4 days Mon 20/05/24 Thu 23/05/24
[Testing 1 day Fri 24/05/24 Fri 24/05/24
[Fix possible errors 2 days Mon 27/05/24 Tue 28/05/24
[Learning and documentation about no-sgl databases 2 days Wed 29/05/24 Thu 30/05/24
[Selecting a no-sql database solution 1 day Mon 27/05/24 Mon 27/05/24
| Implementation of CouchDB 3 days Fri31/05/24 Tue 04/06/24
| Testing 1 day Wed 05/06/24 Wed 05/06/24
= Fix possible errors 1 day Thu 06/06/24 Thu 06/06/24

I also attach a timeline plot of the project, where the reader can see the tasks on fig. 2 in
a more visually manner.

Task April 2024 May 2024 June 2024
Mode + Task Name ~ || 1720 2326 20 01 04 07 101316 19 22 25,25 01 04 07 1013 1619 22|25 28 31|03

Writing the thesis
Learning and documentation about LocalAl and LLMs j

Determining the topic of the thesis l 1

LocalAl implementation l
Learning and documentation about DAG and vector databases 1

Selecting a vector database solution h

Learning and documentation about Langchain l

Learning and documentation about ChromaDB 1
Implementation of Langchain and ChromaDB 1
Integrating LocalAl with Langchain and ChromaDB il

Testing T

Fix possible errors l

Learning and documentation of Flask l

Flask implementation on Langchain service 1
Testing 1
Fix possible errors h

Learning and documentation about Flutter T

GUI development j

Backend and frontend integration l

Testing j

Fix possible errors i
Learning and documentation about no-sql databases l

Selecting a no-sql database solution

Implementation of CouchDB l
Testing 1
Fix possible errors

A14034080808880388088d088a43

Figure 2: Planification timeline

4 Requirements

In this section, I will cover the requirements of the solution. I will consider both functional
and non-functional requirements as integral components of the overall system design.
Functional requirements will detail specific behaviours while non-functional requirements
will address the quality attributes of the system.

4.1 Functional requirements

Here, I list all of the functional requirements of the pipeline.

1. Use many different compatible models.
2. Query the model about general data.
3. Upload files.

4. Extract and store data from websites.
5. Extract and store data from files.

6. Retrieve data from stored data.

7. Handle multiple conversations.

8. Query the model about specific data.

4.2 Non-Functional requirements

To provide a great user experience, the developed solution aims to accomplish these non-
functional requirements. Not only that, but the goal for pursuing these requirements is
to also provide a robust solution.

1. Accessible.

2. Deployable.

3. Failure transparent.

4. Usable.

5. Scalable.

6. Adaptable.

7. Responsive.

8. Interoperable

5 Requirements Analysis

In this section I will include a more detailed analysis of the requirements and the structure
of the final solution in form of charts and diagrams.

Since some part of the back-end foundations come from pre-built solutions and the other
part consisted of my own self-developed packages are not structured or object-oriented, I
will contemplate the front-end analysis. The frontend structure accomplishes the object-
oriented structure and also is entirely built by myself, instead of being pre-built.

5.1 Class Diagram

In the figure below (fig. 3) I describe the class structure of the built classes in my front-
end code. In blue I represent stateful classes, and in orange I want to represent static,
stateless classes that I specifically designed to supplement the other classes.

Alerts<<static>>

+ showAlert(): Widget

Message

+ text: String

+ isUser: Boolean

+ buildMessageltem(): Widget

+ todson(): Map<>

BottomBar

+ temperature: double

+ input: TextFieldInput

+ currentChat: Chat

+ focusNode: FocusNode

+ update: Main.Function

Communicator<<static>>
- <<static>> _username: String

- <<static>> _password: String

+ askQuestion(): Future
+ uploadFiles(): Future

+ uploadLink(): Future

+ indexFiles(): Future

+ deleteFiles(): Future

+ saveAppState(): Future

+ loadAppState(): Future

Chat

+ showLowbar(): Widget
- _showUrlinput(): void

+ updateCurrentChat(): void

+id: String
- _messages: List<Message>

+ update: Main.Function

TopBar<<static>>

+ show(): Widget

SideBarMenu

- _chats: List<String>

+ counter: int

+ addChat: Main.Function

+ switchChat: Main.Function
+ deleteChat: Main.Function

+ update: Main.Function

+ listSidebar(): Widget

+ setChats(): void

+ setCounter(): void

TextFieldInput

+ addMessage(): void
+ addThinkingMessage(): void
+ listChat(): Widget

+ todson(): Map<>

+ textController: TextEditingController
+ focusNode: FocusNode
+ currentChat: Chat

+ temperature: double

Figure 3: Global Schema

+ showTextField(): Widget

5.2 Use cases Diagram

In this section I describe the use cases, their dependences and the actors that interact
with them. In the case of my proposed application, I can only contemplate a 'user’” actor,
as shown in section 5.2.

;<extend§>>
11. Generate

embeddings

2. Upload files

'
'
'
N '
'
1

N

N '
<<prerequirement>> <<extends>>

<<prerequirement>>

N

5. Delete files 4. Index files

<<prerequirement>> s
<prerequirement>>

.
.
.

Q 3. Upload link

50

USER

7. Create chat

8. Delete Chat

=
=

9. Save app state

10. Load app state

Figure 4: Use cases Diagram

5.2.1 Use case #1 Diagram

In this section I explain the use case number 1, via textual specification and with an
additional diagram in fig. 5.

Functionality summary: Allows the user to ask a question and receive a response from
the chatbot.

Input parameters: User query text

Output parameters: Chatbot response text, Alerts for errors or status updates
Users: User

Precondition: User is interacting with the chatbot interface.
Postcondition: The user receives an appropriate response to their query.
Main normal process: 1. User types a query in the text field and presses enter.

2. The chatbot (Communicator) processes the query.

3. The chatbot adds a thinking message indicating process-
ing.

4. The chatbot returns a response to the user.
5. The chatbot adds the response to the chat.

Process alternatives and exceptions: 2a. There is a client error (e.g., network issue).

2al. An alert is shown to the user indicating the error.

USER
:TextFieldInput :Chat :Communicator :Alerts
press enter
® » addMessage()
' return 7
P R
askQuestion() L
LI Ll
return future
< ____________________ A
alt addThinkingMessage()_|
[no error] P return |
[client error] showAlert() ; >
return '
SRR i Sont LU TEEELEELRTERRE

Figure 5: Query

5.2.2 Use case #2 Diagram

In this section I explain the use case number 2, via textual specification and with an
additional diagram in fig. 6.

Functionality summary:
Input parameters:
Output parameters:
Users:

Precondition:

Postcondition:

Main normal process:

Process alternatives and

Allows the user to upload files to the chatbot system.
Files to be uploaded

Upload status, Alerts for errors or status updates
User

User has files ready to upload.

Files are uploaded to the system, and the user is notified of
the status.
1. User presses the '+’ button to initiate file upload.

2. The BottomBar component handles the uploadFiles func-
tion.

3. The Communicator processes the file upload.
4. The chatbot returns the status of the upload.

5. An alert is shown to the user indicating success or failure.

exceptions: 3a. There is a client error during file upload.

3al. An alert is shown to the user indicating the error.

USER
:BottomBar :Communicator :Alerts
press '+' button
® > uploadFiles() !
i return future "
Pt U
alt showAIert()
>
[no error] return
g R
[client error] showfkleﬂ() >
return
G RRREREETEECEELEEELEREEEEEERRIES

Figure 6: Upload files

5.2.3 Use case #3 Diagram

In this section I explain the use case number 3, via textual specification and with an
additional diagram in fig. 7.

Functionality summary: Allows the user to upload content from a web link to the
chatbot system.

Input parameters: URL to be uploaded

Output parameters: Upload status, Alerts for errors or status updates

Users: User

Precondition: User has a URL ready to upload.

Postcondition: Web content is uploaded to the system, and the user is notified

of the status.

Main normal process: User presses the link button to initiate URL upload.
The BottomBar component shows the URL input field.
The user enters the URL and submits it.

The Communicator processes the URL upload.

A e

An alert is shown to the user indicating success or failure.

Process alternatives and exceptions: 4a. There is a client error during URL upload.

4al. An alert is shown to the user indicating the error.

USER

:BottomBar :Communicator :Alerts

press link button

A 4

_showUrlinput()

A

uploadLink
Ll
return future
<_ ____________________
alt showAlert()
: >
no error return
[N P —
[client error] showAlert() >
return
S R,

Figure 7: Upload link

10

5.2.4 Use case #4 Diagram

In this section I explain the use case number 4, via textual specification and with an

additional diagram in fig. 8.

Functionality summary: Allows the user to index files within the chatbot system.

Input parameters:
Output parameters:
Users:
Precondition:

Postcondition:

Main normal process:

Files to be indexed

Indexing status, Alerts for errors or status updates
User

Files are uploaded to the system.

Files are indexed, and the user is notified of the status.

1. User presses the index button to start the indexing pro-
cess.

2. The BottomBar component handles the indexFiles func-
tion.

3. The Communicator processes the file indexing.

4. An alert is shown to the user indicating the status of
indexing.

Process alternatives and exceptions: 3a. There is a client error during file indexing.

USER

press index button

3al. An alert is shown to the user indicating the error.

:BottomBar :Communicator :Alerts

A 4

indexFiles()

»
Ll
return future
Cmm e]

alt showAIert()
>
[no error] return
SGREEE R LR EEEEEEEEEEEEEEEEEE
[client error] showlAIert() >
return
[mmmm oo e

Figure 8: Index files

11

5.2.5 Use case #5 Diagram

In this section I explain the use case number 5, via textual specification and with an
additional diagram in fig. 9.

Functionality summary: Allows the user to delete files from the system.

Input parameters: Files to be deleted

Output parameters: Deletion status, Alerts for errors or status updates

Users: User

Precondition: Files are present in the system.

Postcondition: Files are deleted, and the user is notified of the status.

Main normal process: 1. User presses the delete button to start the file deletion
process.

2. The BottomBar component handles the deleteF'iles func-
tion.

3. The Communicator processes the file deletion.
4. An alert is shown to the user indicating the status of
deletion.
Process alternatives and exceptions: 3a. There is a client error during file deletion.

3al. An alert is shown to the user indicating the error.

USER

:BottomBar :Communicator :Alerts

press delete button

> deleteFiles()

»
Ll
return future
Cmm e]

alt showAIert()
>
[no error] return
SGREEE R LR EEEEEEEEEEEEEEEEEE
[client error] showlAIert() >
return
[mmmm oo e

Figure 9: Delete files

12

5.2.6 Use case #6 Diagram

In this section I explain the use case number 6, via textual specification and with an
additional diagram in fig. 10.

Functionality summary: Allows the user to switch between different chat sessions.

Input parameters: Chat session identifier

Output parameters: Updated chat interface

Users: User

Precondition: Multiple chat sessions are available.

Postcondition: The user is switched to the selected chat session.

Main normal process: 1. User presses the fold/unfold button in the TopBar to

open the navigation rail.
2. User selects a different chat from the SideBar.
3. The SideBar handles the switchChat function.

4. The chat interface is updated to the selected chat session.

USER

:TopBar :SideBar

press fold/unfold button

A 4

setlsNavigationRailOpen()

A

press chat button switchChat()

L] .|' update()

Figure 10: Switch chat

A 4

A

.
.

13

5.2.7 Use case #7 Diagram

In this section I explain the use case number 7, via textual specification and with an
additional diagram in fig. 11.

Functionality summary: Allows the user to create a new chat session.

Input parameters:
Output parameters:
Users:
Precondition:

Postcondition:

Main normal process:

USER

New chat name or identifier

New chat session, Updated chat list
User

User is logged into the system.

A new chat session is created and added to the list of available
chats.

1. User presses the fold/unfold button in the TopBar to
open the navigation rail.

2. User presses the '+ button in the SideBar to create a
new chat.

3. The SideBar handles the addChat function.
4. A new chat session is created and switched to.

5. The chat list is updated to include the new chat session.

:TopBar :SideBar

press fold/unfold button

Ll

setlsNavigationRailOpen()

>

a
press '+' button

A 4

<_| addChaty()

H :| _chats.add()

:l switchChat()
:| update()

Figure 11: Create chat

14

5.2.8 Use case #8 Diagram

In this section I explain the use case number 8, via textual specification and with an
additional diagram in fig. 12.

Functionality summary: Allows the user to delete an existing chat session.

Input parameters:
Output parameters:
Users:
Precondition:

Postcondition:

Main normal process:

USER

Chat session identifier to be deleted
Updated chat list, Confirmation message
User

User has one or more chat sessions.

The selected chat session is deleted and removed from the
chat list.

1. User presses the fold/unfold button in the TopBar to
open the navigation rail.

\)

. User presses the delete button in the SideBar for the chat
session to be deleted.

. The SideBar handles the deleteChat function.

. The selected chat session is deleted and removed from
the chat list.

5. The chat list is updated to reflect the deletion.

= W

:TopBar :SideBar

press fold/unfold button o

P

setlsNavigationRailOpen()

<

)l
press delete button

A 4

deleteChaty()
H _chats.remove()
update()

Figure 12: Delete chat

15

5.2.9 Use case #9 Diagram

In this section I explain the use case number 9, via textual specification and with an

additional diagram in fig. 13.

Functionality summary: Allows the user to save the current state of the application.

Input parameters: Current app state data

Output parameters: Save status, Alerts for errors or status updates

Users: User

Precondition: User has made changes to the app state.

Postcondition: The current app state is saved in the database, and the user

is notified of the status.

Main normal process: 1. User presses the save button in the TopBar to save the

app state.

2. The TopBar handles the saveAppState function.

3. The Communicator processes the save request.

4. An alert is shown to the user indicating the save status.

Process alternatives and exceptions: 3a. There is a client error during the save pro-

Cess.

3al. An alert is shown to the user indicating the error.

USER
:TopBar :Communicator :Alerts
press save button
® > saveAppState .
1 >
! return future
: I<EETPCRFEEEEPEFPEPEE
i alt showAIert() .
! »
: [no error] return
: ST ECEEEEEEEEEEEREEEERS
E [client error] showllAlert() >
' return
: LI

Figure 13: Save app state Schema

16

5.2.10 Use case #10 Diagram

In this section I explain the use case number 10, via textual specification and with an

additional diagram in fig. 14.

Functionality summary: Allows the user to load the previously saved state of the ap-

plication.
Input parameters: None (app state is loaded automatically)
Output parameters: Loaded app state, Alerts for errors or status updates
Users: User
Precondition: There is a saved app state in the database.
Postcondition: The app state is loaded, and the user is notified of the status.
Main normal process: 1. User enters the app, triggering the load AppState func-
tion.

The TopBar handles the load AppState function.

The Communicator processes the load request.

2.
3.
4. The app state is loaded and applied.
5.

An alert is shown to the user indicating the load status.

Process alternatives and exceptions: 3a. There is a client error during the load pro-

Cess.

3al. An alert is shown to the user indicating the error.

USER
:TopBar :Communicator :Alerts
enters the app
® > loadAppState .
1 >
! return future
: IRECEDEEEELEEREEEEEE
E alt showAIert() o
! »
: [no error] return
: ST ECEEEEEEEEEEEREEEERS
i [client error] showAlert() R
1 T Lad
: return
: LI

Figure 14: Load app state

17

6 Theoretical background

In this section I will cover all of the technical and theoretical aspects of the thesis, in
order to provide the reader with the necessary knowledge to comprehend the proposed
solution and all the reasoning behind it.

6.1 Large Language Models

A large language model (LLM)[21] is a sophisticated language processing system built
upon a neural network architecture with a vast number of parameters. These models,
they are usually trained over a large amount of data following unsupervised learning
methods. The primary goal of an LLM is to understand and generate human-like text
by learning the statistics and patters from the training data. Unlike traditional models,
LLMs leverage the abundance of textual data available on the internet to autonomously
learn linguistic structures and semantics. This capability is what allows LLMs to perform
natural language processing (NPL) tasks, such as text generation, summarization and
translation, or even answering specific questions about some data with a high degree of
accuracy and fluency.

Thousands of public LLMs are currently available in various external repositories, facili-
tating widespread access and adoption in the research and development community. One
prominent example is the HuggingFace[10] platform, which serves as a comprehensive
repository and hub for pre-trained language models. HuggingFace provides an extensive
collection of models that can be easily downloaded and integrated into various applica-
tions. These models range from general-purpose language models to specialized models
fine-tuned for specific tasks or domains.

It also supports a wide array of NLP tasks and offers tools for seamless integration, such as
the transformers library, which provides a user-friendly interface for accessing and utilizing
these models despite not being used on this thesis. Additionally, HuggingFace encourages
community contributions, allowing users to share their fine-tuned models and datasets,
making the site a more free and open-sourced facility for developers and researchers.

Another key dynamic feature about LLMs is the temperature parameter, which basically
controls the randomness of the generated text. It is a crucial parameter that influences
how conservative or creative the model’s responses are.

If we take a look at a more concise definition, we can see that it is stated that:
The temperature[l] parameter is a scalar value that adjusts the probability
distribution over the model’s vocabulary during text generation. In terms of

range, the temperature is typically a positive real number, ranging from close
to 0 up to 2, depending on the model.

18

During text generation, the model computes output probabilities prior to temperature
adjustment, employing a softmax function applied to the logits, representing raw output
scores for each possible next token. Temperature then modulates these logits before
softmax application.

Low Temperature (<1): When temperature is less than 1, the model’s output distribution
becomes sharper. This makes high-probability tokens even more likely while reducing the
chances of lower-probability tokens. The result is more deterministic and focused text
generation.

Temperature = 1: When temperature is exactly 1, the model generates text based on
the raw probabilities given by the logits maintaining its default behavior without any
additional scaling. This equilibrium state preserves the inherent characteristics of the
model’s responses.

High Temperature (>1): When temperature is greater than 1, the output distribution
becomes flatter. This broader spectrum enhances the chances of selecting less probable
tokens, encouraging a richer and more imaginative array of text outputs. However, this
may come at the expense of coherence, potentially leading to less structured or coherent
responses.

6.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG)[22] is an advanced method in natural language
processing that combines the strengths of retrieval-based and generative models. The
primary objective of RAG is to enhance the quality and accuracy of responses in various
applications, such as chatbots, question-answering systems, and content creation tools.
Unlike traditional generative models, which rely solely on pre-trained knowledge, RAG
incorporates an additional retrieval step. This means that the model can access a vast
database of documents or knowledge sources to find relevant information before generating
a response. By doing so, it ensures that the generated content is not only contextually
relevant but also factually accurate and up-to-date.

The RAG framework operates in two main stages: retrieval and generation. During
the retrieval stage, the model searches through a pre-indexed collection of documents
to find the most pertinent pieces of information related to the input query. This step
is typically powered by vector databases that efficiently handle large-scale data searches
using embeddings.

Embeddings are numerical representations that capture the semantic meaning of the data.
It usually consist of a vector, where each position has a different value, which is typically
a numerical value, and corresponds to an attribute of the represented object.

19

In the generation stage, the model takes the retrieved documents and uses them to inform
and guide the generation of its response. This hybrid approach allows RAG models to
produce more informative and context-aware answers, bridging the gap between static
knowledge bases and the dynamic needs of users. By leveraging retrieval-augmented
generation, developers can create more robust and adaptable Al systems that excel in a
wide range of practical applications.

In this proposed solution, RAG will be addressed by using vector databases and generated
embeddings.

6.3 Vector Database

One of the main keys to the operation of the proposed solution is the Vector Database
[9]. In a vector database, information is stored in a way that enables efficient similarity
searches and clustering. By representing data points as vectors in a high-dimensional
space, we can leverage mathematical techniques to find and group similar items.

Conceptually speaking, we can associate this as a clustering model, where data points
(or chunks of information) that are close to each other in the N-dimensional space are
considered similar. The proximity of these points is determined by the values of their
respective attributes, allowing the database to quickly identify and retrieve related data
based on their spatial relationships.

To further illustrate, imagine each data point in the database as a unique position within
a vast multi-dimensional landscape. The coordinates of each point are defined by its
vector, and the distance between any two points indicates their similarity. For instance,
in a database storing images, each vector might represent various features of an image
such as color, texture, and shape. Images with similar features would be located near each
other in this space, enabling efficient retrieval of similar images through simple spatial
queries.

20

Hereby, in fig. 15 is an illustrated and simple example of the concept explained, of what
would be a query of a kitten in a clustering environment, and how the query would be

placed in the animals area, nearby the cat class:

Wolf
@
o
Dog
o
o

Query: kitten

A

L Banana

@
o Apple
®

Figure 15: Vector database space representation.

21

The data indexing process begins by creating embeddings for the files or data to be stored.
The process starts with partitioning the data into chunks of a certain size. Each chunk is
then sent to a LLM that has been specially trained to generate these embeddings. The
LLM processes each chunk separately, producing a vector of N attributes, where each
attribute has a distinct value representing a specific feature of the data. Once the vector
is generated, it is paired with the corresponding data chunk and stored in the vector
database.

When querying the model using the indexed data, the process is repeated with the query
text. The query is partitioned into chunks if necessary, and each chunk is sent to the
same specific LLM to generate the corresponding vectors. These query vectors are then
compared to the indexed vectors in the vector database to identify the most similar
ones. The similarity comparison leverages the spatial properties of the vectors in the
N-dimensional space, allowing for efficient retrieval of the relevant data chunks.

Upon identifying the most similar vectors, the associated data chunks are returned as the
query results. This approach ensures that the most contextually relevant information is
retrieved, and then given to the querying LLM model as context for the user’s question,
enhancing the accuracy and relevance of the responses. Below in fig. 16 is a schematic of
the data processing and indexing pipeline, representing the flow from data embedding to
query response.

Data indexed
into database

Data converted into
_________ embeddings

Data broken
into chunks

LLM

Files

Data chunks Vector database

Figure 16: Embedding generation pipeline.

One of the key strengths of this pipeline is the ability to provide meaningful data as
context to the model and therefore answer the specific questions the users ask, even if the
topic of discussion is not publicly available or subsequent to the model training date.

22

Another key strength is its feature to provide validation and reasoning to the given answer.
The explanatory model enhances transparency and justification by citing original sources
for the retrieved results. This is made possible by the metadata associated with the data
chunks in the vector database, which includes the source of the information. When the
data is retrieved, this metadata is also returned, allowing the system to list these sources
in its response to the user.

23

7 Used technologies

In the subsections below I will cover which backend implementations I used to cover the
parts aformentioned in section 6.

7.1 Large Language Model

For implementing the LLM model in my project, I chose LocalAT solution. LocalAI[17] is
an open-source, easy to use framework designed to interact with almost any LLM model
locally by using OpenAl’s API. One of its key advantages is its support for multiple
backends, making it versatile and adaptable for various use cases. Some of these back-
ends for running LLMs are:

e llama.cpp

o bert

o whisper

« stablediffusion

« langchain-huggingface
» piper

e bark

o exllama

o dolly.

24

In fig. 17 you can observe how LocalAl works in a more detailed manner. The reader
can observe it deploys an OpenAl-like API to interact with the LocalAl service. This
will manage the available LLMs using different backends, depending on the needs of each
LLM model.

Dep[oymen‘t

N
Moolel

Model

) . OPenAI-QomPa't]ble
APT

Local AT

AL-powered
software

Figure 17: LocalAl architecture representation. Extracted from [14]

Given the constraints of running the model on a CPU-only setup, I opted for the llama.cpp
backend. This backend is open-source, fast and privacy-focused, aligning with the project’s
requirements. Moreover, it is integrated with the LangChain framework, which T will
discuss in section 9.2. The llama.cpp backend offers several model options available for
download, all of which would be valid and suit my necessities. For the demonstration
purposes of this work, I selected the nous-hermes-llama2-13b.Q8_ 0.gguf model.

It is important to note that running a model solely on a CPU results in lower perfor-
mance compared to GPU-accelerated models. GPUs are specifically optimized for the
parallel processing tasks required in neural network computations, leading to signifi-
cantly faster performance. However, exploring GPU optimization falls outside the scope of
this thesis. Also, the provided developing infrastructure did not dispose of GPU-oriented
nodes, but only large CPU processing nodes with also loads of memory (which is one of
the big requirements to run those kind of models on hardware).

For generating the aformentioned embeddings, I will also deploy a bert backend based
model: mudler/all-MiniLM-L6-v2 [16]. This model specializes in the generation of
the vectors that will be stored in the vector database.

25

7.2 Vector Database

To get the RAG behaviour on the backend pipeline 1 chose to go with vector databases,
since they offer great performance for the required stages of RAG technique.

There are numerous open-source, high-performance vector databases available in the mar-
ket today, each offering unique features and capabilities. Among the most reputable op-
tions are Pinecone, Qdrant, and ChromaDB. After some consideration, I have opted
to implement ChromaDB as the vector database solution for this project. The decision
to choose ChromaDBI[6] was influenced by several factors, including its robust features,
scalability, and compatibility with the project’s requirements.

Langchain|18] is a framework designed to streamline the development of applications
utilizing LLMs, simplifying complex tasks such as integration and data pre-processing.
By providing a suite of tools for pre-processing input data and post-processing model
outputs, Langchain facilitates seamless interaction with LLMs. For instance, it offers
functions for data cleaning, text tokenization, and formatting model outputs into user-
friendly formats.

Moreover, Langchain offers compatibility with various vector databases (in which we can
find the already mentioned ChromaDB). This provides developers like me the flexibility
to choose the most suitable option for their specific requirements, allowing for efficient
data management and retrieval processes.

As an open-source project, Langchain benefits from comprehensive documentation and an
active community of developers contributing to it. Additionally, Langchain’s compatibility
with popular models such as OpenAl’s ChatGPT and its API further enhances its utility
and appeal for this work, since the compatibility with LocalAI's API.

With LocalAl facilitating model communication, ChromaDB managing vector data stor-
age, and Langchain streamlining development tasks, the combined solution offers a ver-
satile and efficient platform for building intelligent applications. All in all, it becomes
also free and open-source, as well as providing a more than desirable perfect integration
between them out of the box.

7.3 Application Database

Given the JSON-like nature of the information handled by the web application, imple-
menting a NoSQL database would provide the necessary flexibility and scalability, appart
from the fact that such a simple demo application does not require the design of tables
and relations.

26

NoSQL databases are designed to handle unstructured or semi-structured data, making
them ideal for applications dealing with JSON-like data formats. The key advantages of
NoSQL databases include:

1. Flexibility: Schema-less data models allow for easy adjustments as application
requirements evolve.

2. Scalability: Horizontal scaling capabilities to handle large volumes of data and
high traffic.

3. Performance: Optimized for read and write operations, often resulting in faster
access times.

The main NoSQL database that I have seen during my degree studies has been Redis,
which is an in-memory database with the basic PUT GET DELETE queries. One big
disadvantage of Redis is that is single-threaded, which means that it only uses one CPU of
your hardware. That might be a bottleneck in some applications, for which exists Drag-
onfly. Dragonfly is an open-source, multi-threading alternative to Redis that performs
way better.

I took both options into consideration, but since the amount of queries will be minimum,
Redis will not bottleneck the performance and therefore the high-performant Dragonfly
will not be needed.

Another database I found interesting has been CouchDB[2]. This alternative runs as a
service and can be interacted with via an API of its own. It also supports disk-persistence,
despite that the performance is therefore reduced in comparison with like the other two.

Each database mentioned before has its unique strengths and potential drawbacks, but
since Redis and Dragonfly are memory-oriented and I aim to have persistence even be-
tween boots, I expect persistence to disk. Therefore, CouchDB is the answer.

I want to note that, despite being a NoSQL database, which usually have BASE properties,
CouchDB offers ACID (Atomicity, Consistency, Isolation, Durability) properties.

On-disk, CouchDB never overwrites committed data or associated structures, ensuring
the database file is always in a consistent state. In these cases, the data must be first
deleted given their unique ID, to then upload the newer data afterwards.

Document updates (ADD and DELETE) are serialized, except for binary blobs which are
written concurrently. Database readers are never locked out and never have to wait on
writers or other readers.

CouchDB also uses B-trees to indexr documents by their ID and Sequence ID, aiding in
efficient change tracking. The append-only update approach ensures that even during
document updates, the database remains consistent.

Unlike traditional SQL databases, CouchDB stores data in semi-structured documents,
which avoids the complexity of maintaining multiple tables and rows found in traditional
databases. For querying and organizing this semi-structured data, CouchDB employs a

27

dynamic view model. Views allow for the aggregation, joining, and reporting of data on-
demand without altering the underlying documents. These views are defined in special
design documents, which can also replicate across databases, ensuring that both data and
application logic are consistently replicated.

7.4 Other technologies

In all these sections I talked about technologies I just deployed to use at some point of
the application. Here, I will briefly talk about other technologies I used to develop myself
the rest of the structure.

7.4.1 Front-end Implementation

For more versatility, I decided to create a web application, so that it can run on any
operating system. I have used the Flutter[13] framework to develop my design, inspired
by the current ChatGPT web solution. Flutter is a front-end framework that uses
a programming language called Dart. Since I intend to have stateful element on the
interface, I find mandatory to develop it using the OOP rather than a functional paradigm
language. It is also really easy to use, and it lets you export to HTML, CSS and Javascript.

7.4.2 Communication and relation

To enable the communication between the client and the vector database, I used the
Flask package to create a custom API that encapsulates the defined functions in the
vector database’s Python script.

Flask[12] is a micro web framework for Python that simplifies the creation of web applica-
tions. It listens for incoming HTTP requests and maps these requests to the appropriate
functions based on the URL route specified. When a request is received, Flask executes
the corresponding function and returns the response data in JSON format to the client.
This process allows seamless integration and communication between the client and the
server, making it an ideal choice.

7.4.3 Dockerization

To ensure flexibility and ease of deployment across diverse environments, I have planned
to containerize each component individually using Docker. This enables users to easily
set up and manage each element according to their specific requirements.

28

8 Design

Here I will display some global and detailed graphs about the designed structure for
the proposed solution. The main goal is to provide graphical, easy to read and process
information to the reader so that it can comprehend all of the structure.

8.1 Global Schema

The design of the environment is very simple and straightforward. The primary mode of
interaction is through an API, which can be accessed in two ways: through a GUI or by
manually sending POST and GET requests. The GUI provides a user-friendly interface
for those who prefer a visual approach, and better suits my testing and demonstration
purposes. The following fig. 18 illustrates the overall architecture and interaction flow
between the user interface and the back-end API:

/ Docker Compose \

Back-end Dockers

Browser http://localhost

docker docker
&>

docker

\ Front-end Dockers

docker

USER

Figure 18: Global Schema

29

8.2 Backend Schema

The GUI API primarily interfaces with the vector database service. This service is crucial
as it interacts with the large language models (LLMs) to generate vector embeddings
from textual data, which are then stored in the vector database. Additionally, the vector
database service handles the task of passing user queries to the LLMs along with relevant
context data, ensuring accurate and contextually aware responses.

In addition to this primary interaction, the GUI also connects directly to the CouchDB
database using CouchDB’s own API. This connection is essential for persisting the state
of the application, which includes storing all user chats and their respective messages.
This dual interaction ensures that the application operates smoothly and retains critical
user interaction data. The following fig. 19 illustrates this architecture:

<5

docker docker docker

Storage CouchDB

LocalAl Models Database

¢

3. Generate

Vector Database Embeddings

2. Ask Question 1. Load Session

5. Receive A
eceive Answer 6. Store Session

FRONTEND

Figure 19: Back-end design

30

8.3 Frontend Schema

The Graphical User Interface (GUI) design for this application will resemble the ChatGPT
website layout. A side panel, positioned on the left-hand side, serves as a navigation hub.
From this panel, users can select existing conversations or initiate new ones, providing a
way to manage multiple conversations.

Occupying the central portion of the interface is the chat window, where messages from
the currently active conversation are displayed in a clear and organized manner. This area
will be designed to ensure readability and ease of interaction, supporting the dynamic flow
of conversation between the user and the application.

At the bottom of the interface, the input field is placed at the center, allowing users to
type their queries. Alongside this input field are several buttons that facilitate interaction
with the back-end functionalities. These buttons will enable users to perform tasks such as
uploading context files to a vector database, deleting or indexing these files, and adjusting
model parameters like temperature.

This arrangement of elements ensures that users have all necessary tools at reach, while
copying the current ChatGPT layout facilitates adaptation for its users. The fig. 20
below provides a visual representation of the described interface, showing the layout of
each individual component in greater detail.

B chatl
B chat2
B chat3

— Send a message > + ©® 9 8

Figure 20: Front-end design

31

9 Implementation

In this section of the thesis, I will detail the implementation process of my solution,
including the technologies I decided to use and the reason of my decisions.

Before delving deeper into the technical and detailed aspects of this section, it is impor-
tant to note that all necessary files required to run the pipeline, along with the source code
for each component, will be made available in my public repository on GitHub. For those
interested in accessing these resources, please refer to [5] for further details. This reposi-
tory will include comprehensive documentation, ensuring that all steps and processes are
transparent and reproducible, aiming to facilitate easier replication and validation of the
findings presented in this thesis.

9.1 Back-end Implementation
9.1.1 LLM

To implement Local Al I pulled the base public image from DockerHub localai/localai:v2.16.0-
ffmpeg-core [19]. Once downloaded, I had to start a container with this given command:

docker run -—-net=host --detach --name cllic localai/localai --threads 40

If the reader is willing to replicate the application, he must know that he can use any
other model by running a bash in the running container and pulling a new model with
the following command:

wget https://gpt4all.io/models/ggml-gpt4all-j.bin -0 ggml-gpt4all-j
Models can also be downloaded from the LocalAl gallery, which also runs on the pulled

Docker. In addition, there are many options available on the HuggingFace portal.

Complementary to this, users have the flexibility to customize each model by writing yaml
configuration files, which enable detailed adjustments, model fine-tuning or even merging
multiple models at once.

It is mandatory to restart the container in order for the newer models to work. In any
case, the documentation for LocalAl is added in the references section of this thesis.

In my case, as you may have noticed, I indicated the localAl the number of vCPUs
I wanted to assign to the model, and in order to increase performance I selected the
majority of the availables in the computing node I was running the container in.

32

9.2 Vector Database

To implement the Langchain vector database, I used ChromaDB library, as long as sub-
dependencies of the Langchain python library, such as OpenAIEmbeddings. Here is where
the compatibility of LocalAl with OpenAI’s API plays a huge role in the development.
In the listings below listing 1 and listing 2, the reader can see the two main actions done
by the python script covering the vector database:

texts = CharacterTextSplitter(chunk_size="size",

< chunk_overlap="overlap").split_documents(data)

embedding = OpenAIEmbeddings(model="embegging-model-name",

< openai_api_base=base_path)

vectordb = Chroma.from_documents(documents=texts, embedding=embedding,
< persist_directory=vectordb_persist_dir)

vectordb.persist()

Listing 1: Langchain indexing process

embedding = OpenAIEmbeddings(model="embegging-model-name",

< openai_api_base=base_path)

1lm = ChatOpenAI(temperature="temperature", model_name="answering-model-name",
< openai_api_base=base_path)

vectordb = Chroma(persist_directory=vectordb_persist_dir,

— embedding_function=embedding)

ga = RetrievalQA.from_11m(1lm=11m,

— retriever=VectorStoreRetriever(vectorstore=vectordb))

answer = ga.invoke("your question here")

Listing 2: Langchain querying process

In section 9.5.1 you can find more information about this custom API. You can also check
the source files in the GitHub repository [5].

9.3 Application Database

In order to use CouchDB for the application I also had to pull the public base image from
Dockerhub couchdb:latest [3]. It needed some manual preparation in order to properly
work for the application. For that case, I created a custom Dockerfile.

33

It is still something that I wonder, to make the user manually create the base tables for
the database to work instead or providing them out of the box. Anyway, just by building
that new Dockerfile image, I managed to create a custom image that works out of the box
with my application implementation as shown in listing 3:

FROM couchdb:latest

COPY data /opt/couchdb/data

Listing 3: CouchDB Dockerfile

For this, I had to create a container from couchdb vanilla, create the necessary tables, to
therefore copy the created files to my local storage. Then, I could copy those files into
the new image.

9.4 Front-end Implementation

The Flutter application is basically composed by these 4 main components:

On one hand, the main page serves as the central hub, showcasing the ongoing conversation
with an organized display of all messages exchanged between users.

On the other hand, a side menu provides navigation over the available chats, and also the
ability to delete created chat rooms. This feature empowers users to easily switch between
different conversation threads, exponentially improving the potential of the pipeline.

The top bar also provides with the application title, a button to fold and unfold the side
menu and another button to save the current application state.

Lastly, a convenient bottom bar facilitates user interaction with the vector database while
also serving as a command center for inputting questions into the model.

All in all, it basically follows the Design described in section section 8.3 . To be more
concisely, hereby I describe all the undetailed buttons that haven’t been explained yet:

A button to delete the selected chat room.

A slidebar to control the temperature parameter of the model.

A button to send the question to the pipeline.

A button to upload files to the vector database.

A button to attach URLSs, so their contents also get uploaded to the vector database.

A button to index the vector database, generating embeddings for the stored data.
This action deletes all the previously stored vectors, resetting the ChromaDB itself.

34

e A button to delete the uploaded files and contents of the submitted URLs.

» A button to save the actual app state.

Flutter is a front-end framework that uses an Object-oriented programming (OOP) lan-
guage called Dart. Since I intend to have stateful element on the interface, I find manda-
tory to develop it using the OOP rather than a functional paradigm language. It is also
really easy to use, and it lets you export to html, css and javascript.

The solution establishes that each mainly part of the interface is corresponded a class.
Each class will have functions to build the necessary widgets and variables to store the
state in-memory. So basically, we have:

o BottomBar class.
« Chat class.

o Message class.

e SidebarMenu class.
o TextField class.

o TopBar class.

I also decided to implement two more classes, which for their inteded purpose, will be
static. Their aim is to provide a clean and organized communicnation relation with the
back-ends explained in the earlier point. These classes (listed below) will use the APIs I
talk about in section 9.5 :

o Alerts class.

o« Communication class.

To facilitate the deployment of the frontend, I exported the Flutter project into JSON,
HTML, and CSS scripts by using the Flutter tool flutter build web. Following the
export, I proceeded to create a Dockerfile to containerize the application, selecting a
Python 3 image as a baseline.

In the Dockerfile, I incorporated instructions to copy the directory containing the exported
files into the container’s file system. This ensures that all necessary frontend resources
are available within the container environment. To enable the frontend to be served
upon the container’s startup, I also configured the Dockerfile to execute the command
python3 -m http.server 8989. This command initiates a simple HTTP server on port
8989, effectively serving the exported files and making the frontend accessible via a web
browser.

By using Python’s built-in HT'TP server, the solution remains lightweight, easy and
straightforward, minimizing overhead and maintaining the focus on the main objectives
of this thesis.

35

9.5 Communication and relation

Here I discuss the different APIs designed and implemented by myself in order to com-
municate extra parts, such as the explained here developed by myself that still don’t have
a functional API.

9.5.1 VectorDB Flask server

To enable the communication between the client and the vector database, I used the
Flask package to create a custom API that encapsulates the defined functions in the
vector database’s Python script.

Flask is a micro web framework for Python that simplifies the creation of web applica-
tions. It listens for incoming HTTP requests and maps these requests to the appropriate
functions based on the URL route specified. When a request is received, Flask executes
the corresponding function and returns the response data in JSON format to the client.
This process allows seamless integration and communication between the client and the
server, making it an ideal choice.

By leveraging Flask, I have been able to efficiently build a functional API for interacting
with the vector database, ensuring smooth and effective data exchange between the client
and server.

For each functionality, I implemented a corresponding function and annotated it with the
@app.route() decorator, which defines the URL endpoint for that function.

For example, consider the example shown in listing 4 coming from the deployed script:

@app.route('/files/clean', methods=['POST'])
def clean_files():

os.system('rm storage/*')

return "Files cleared"

Q@app.route('/current', methods=['GET'])
def get_current_model():
return current_model

@app.route('/models', methods=['GET'])
def get_list_models():
response = 'curl http://localhost:8080/v1/models’
for model in responsel['data']:
available_models.append (model['id'])
return available_models

Listing 4: VectorDB API code snippet

36

This code snippet sets up various endpoints, each specifying the allowed HTTP methods.
When an endpoint is accessed, the associated function is executed, and the server returns
an HTTP response with the function’s return value as a JSON value.

For example, when a POST request is sent to http://hostIP:5000/files/clean, the
clean files() function is invoked, which removes all files in the storage directory and
returns a confirmation message "Files cleared".

Similarly, sending a GET request to http://hostIP:5000/current will trigger the
get_current_model () function, returning the current model in use.

Finally, a GET request to http://hostIP:5000/models calls the get_list_models()

function. This function queries the local LLM API at http://localhost:8080/v1/models
to retrieve a list of available models. The response data is then parsed and stored in a

list, which is subsequently returned to the user, providing the frontend with the necessary

model information.

To start the Flask service, I used the command flask -app backend run, which initial-
izes the Flask application and makes it ready to handle incoming HTTP requests. This
will run automatically when starting the container, as I will explain on section 9.6 .

In listing 5 there is a simplified full script, with all of the functions and routes listed:

app = Flask(__name__)
CORS (app)

Qapp.route('/files/upload', methods=['POST'])
def upload_files():

Qapp.route('/from-link', methods=['POST'])
def fromlink():

Qapp.route('/files/index', methods=['POST'])
def index_files():

@app.route('/files/clean', methods=['POST'])
def clean_files():

Q@app.route('/current')
def get_current_model():

@app.route('/models')
def get_list_models():

@app.route('/query', methods=['POST'])
def ask():

Listing 5: VectorDB API operations list

37

9.5.2 Flutter HTTP server

To implement the front-end, I exported the Flutter project and migrated it to a separate
Docker container with Python installed. Within this container, I configured the default
working directory to point to the location of the exported files. Afterwards, whenever
the container is started, it runs a simple HTTP server using the command python3 -m
http.server (similar to using Apache2, as both serve the purpose of running HTTP
servers to host web applications), which serves the front-end files and makes the applica-
tion accessible via a web browser. This method simplifies the deployment over static files,
providing a lightweight and efficient solution for the front-end delivery.

9.6 Dockerization

To ensure flexibility and ease of deployment across diverse environments, I have planned
to containerize each component individually using Docker, as I already explained before.
This enables users to easily set up and manage each element according to their specific
requirements. While the design mandates that all components reside on the same ma-
chine, it’s adaptable for distributed setups via SSH tunneling. Crucially, each container
is configured to share the network of the host to avoid IP addresses and ports misconfig-
uration.

By encapsulating each part within its own container, users have the liberty to distribute
the workload across multiple nodes if needed, as already mentioned. This modular setup
accommodates instances where certain components of the pipeline demand higher compu-
tational resources. Users can dynamically allocate resources and balance the load across
various nodes, optimizing performance and resource utilization.

Moreover, for users with a single node capable of handling the entire system’s workload,
or for ones that want an even easier way to deploy the pipeline, I have crafted a specific
Docker Compose YAML file. This file streamlines the deployment process with a single
command in a matter of minutes, simplifying the setup even more. This straightforward
approach is intended to approach the AI and LLMs to more people, even if they have
close to no knowledge on the I'T area.

38

10

Proof of concept

This section also works as the validation of the project. To validate the proposed tech-
niques and demonstrate their effectiveness in enhancing chatbots.

I will talk about the design, implementation, and evaluation of the Proof of Concept
(PoC), which involved several steps:

The

Data Preparation: A dataset composed by various unrelated contexts was pre-
pared. This dataset is used to populate the vector database with relevant and
different knowledge.

Vector Database Population: Knowledge vectors is created from the training
data and additional external sources. These vectors are then stored in the vector
database, indexed for efficient retrieval.

Dynamic Knowledge Integration: Mechanisms have been implemented to allow
the chatbot to query the vector database in real-time, retrieving relevant knowledge
vectors based on user inputs. This integration enables the chatbot to provide up-
dated and contextually appropriate responses without retraining.

Local Deployment: The entire system has been configured to run on a local
machine if wanted by the user. This setup involved ensuring that all components,
including the vector database and chatbot core engine, operated efficiently in a local
environment.

PoC system was evaluated based on several criteria:

Adaptability: The system’s ability to incorporate new knowledge dynamically.

Response Accuracy: The accuracy of the chatbot’s responses was measured by
comparing its outputs to the original source data.

Customization: The effectiveness of the customization was evaluated by allowing
users to specify their temperature and observing the chatbot’s ability to adapt its
responses accordingly.

39

The PoC system demonstrated the feasibility and benefits of integrating vector databases
into chatbot systems. Key findings include:

« Enhanced Adaptability: The chatbot could easily integrate new information
from the vector database, improving its relevance and accuracy without undergoing
retraining.

« Response Accuracy: The results showed that the pipeline improved the chatbot’s
accuracy by providing more relevant and contextually appropriate answers.

e Local Deployment: The system operated effectively in a local environment, en-
suring data privacy and security while providing a custom context.

e Improved Customization: User could customize the chatbot’s behavior to meet
their specific needs, resulting in more personalized and engaging interactions.

These results confirm the potential of the proposed techniques to address the limitations
of traditional chatbot systems, offering a more flexible approach to conversational Al
That is in spite of the loss of performance giving the testing environment in terms of
hardware capabilities.

10.1 Results

In this section, I have included a series of images from a selection of the tests conducted.
The following images below (fig. 21, fig. 22, fig. 23, fig. 24, fig. 25, fig. 26 and fig. 27)
provide a clear and comprehensive of the results obtained. By examining these pictures,
one can better understand the possible outcome behaviour that can be obtained out of
this thesis.

To start with, some documents and URLs were uploaded and indexed in the system, so
to give the proper and intended context to the model. These are Lithops documentation
websties such as [26], [24] and [25], Local Al main website [15], URV website of my bachelor
[27] and a FIA official PDF document of a racing incident during a Formulal Grand Prix
[11]. The average answering time of all these questions was 67s.

40

User: How do | install Lithops from Github?

Bot: To install Lithops from Github, you can follow the steps below:
1. Open your terminal or command line interface.

2. Navigate to the directory where you want to install Lithops.

3. Use the following command to install Lithops from Github:

git clone https://github.com/lithops-cloud/lithops

This will create a local copy of the Lithops repository on your computer.
4. Navigate to the directory where you just cloned the Lithops repository:

cd lithops
5. Use the following command to install Lithops using pip:
python3 -m venv .venv

source .venv/bin/activate
pip install -e .

This will install the latest version of Lithops from the master branch.

You can also choose another branch to install if you want to use a different version.

That's it! You now have Lithops installed on your computer from Github.

Let me know if you have any other questions or if there's anything else | can help you with.</s>

(source)
Installing Lithops — Lithops documentation. txt

= Send a message > + 2 § B

Figure 21: Asking how to install Lithops from Github. From website [26]

41

cd lithops

5. Use the following command to install Lithops using pip:

python3 -m venv .veny
source .venv/bin/activate
pip install -e .

This will install the |atest version of Lithops from the master branch.

You can also choose another branch to install if you want to use a different version.

That's it! You now have Lithops installed on your computer from Github.

Let me know if you have any other questions or if there's anything else | can help you with.</s>

(source)
Installing Lithops — Lithops documentation. txt

User: How do | install Lithops using pip?

Bot: You can install Lithops using pip by running the following command in your terminal:
pip install lithops

This will install the latest version of Lithops for your system. If you already have Lithops installed,
you can upgrade to the latest version by running the following command:

pip install —upgrade lithops

If you are using a Linux system, you may need fo use the 'sudo’ command to install Lithops if you
don't have permission to write to the system's Python modules directory.
Let me know if you need any more help or if there's anything else | can assist you with!</s>

(source)
Installing Lithops — Lithops documentation. txt

= Send a message > + 2 9 B

Figure 22: Asking how to install Lithops from pip. From website [26]

42

Bot: To setup AWS credential in Lithops, you need to create an IAM User or assume role for your
Lithops service to access AWS resources. You can follow these steps:
1. Create an IAM User or assume role for your Lithops service:

- Go to AWS IAM console

- Create a new user or assume role

- Copy the Access Key ID and Secret Access Key
2. Set the environment variable "AWS_ACCESS_KEY_ID" and "AWS_SECRET_ACCESS_KEY" with the
Access Key ID and Secret Access Key respectively.
3. Configure the Lithops service to use the environment variables by providing the following
parameters in the “lithops configure® command:

-"—region” the region where the resources are located

- "—-profile’ the name of the IAM User or assume role created in step 1 (optional)

- "—-uge-iam-role” whether to use 1AM roles (optional, defaults to false)
For more detailed instructions, you can refer to the official Lithops documentation:

- [Setting up AWS Credentials](https://lithops-cloud.github.io/docs/source/configure/#setting-up-
aws-credentials)
Hope this helps!</s>

(source)
Compute Backends — Lithops documentation.txt

Figure 23: Asking how to setup AWS credentials for Lithops. From website [24]

43

User: How do | setup AWS credential in Lithops?

User: How can | contribute to Lithops?

Bot: You can contribute 1o Lithops in several ways, such as reporting bugs and asking questions,
contributing a patch, and unit testing. To report bugs or ask questions, you can use Github
Discussions or GitHub Issues. If you want to contribute a patch, you should break your work into
small, single-purpose patches, submit the patch as a GitHub pull request against the master
branch, make sure your code passes the unit tests, make sure your code passes the linter, and add

new unit tests for your code. Finally, to test that all is working as expected, you can run the tests
provided in the documentation or create your own tests following the guidelines in testing.</s>

(source)
Contributing to Lithops — Lithops documentation.txt

Figure 24: Asking how to contribute to Lithops. From website [25]

44

User: What is LocalAl?

Bot: LocalAl is a free, Open Source OpenAl alternative. It allows you to run LLMs, generate images,
audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model
families and architectures. Does not require GPU. It is created and maintained by Ettore Di
Giacinto. Start LocalAl linkStart the image with Docker to have a functional clone of OpenAl! :

docker run -p 8080:8080 —name local-ai -ti localai/localai:latest-aio-cpu</s>

(source)
https-___localai_io__

Figure 25: Asking what LocalAl is. From website [15]

45

User: How many specializations are there in the bachelor's degree? List them.

Bot: There are three specializations in the Bachelor's Degree in Computer Engineering: Software
Engineering, Computing and Computer Engineering.</s>

(source)
https-____www_urv_cat__en__studies__bachelor__courses__graudenginyeriainfermatica__

Figure 26: Asking about Bachelor’s Degree in Computer Engineering in Universitat Rovira
i Virgili. From website [27]

ﬁ

46

Usi ho was to blame for the 2024 monaco f1 grand prix collision? Who wa
penalties were handed?

Bot: The 2024 Monaco F1 Grand Prix collision involved Driver 31 - Esteban Ocon from the BWT
Alpine F1 Team and Car 10. The Stewards determined that Car 31 was solely to blame for the

incident and penalized him with a 10 second time penalty, converted to a drop of 5 grid positions
for the next race in which the driver participates. Additionally, two penalty points were given,
totaling three for the 12-month period.</s>

(source)
2024 Monaco Grand Prix - Infringement - Car 31 - Causing a collision.txt

Figure 27: Asking about an FIA statement of a Formulal race. From document [11]

47

11 Testing and validation

In this section I will describe all the testing procedures I have followed in order to check and
guarantee a perfect functionality of the project. There will be unit tests and integration
tests as well.

11.1 Unit tests

In this subsection I describe all the individual unit tests I have applied to the project app
to check its functionality.

Test Case 1: Query Verify that the chatbot responds appropriately to a user query.

Test Steps:

1. Enter a query in the chatbot interface.

2. Press enter or send message button.

Expected Result: The chatbot should process the query and provide a response
within a reasonable time frame.

Actual Result: The message is shown, and eventually the chatbot gives an answer.

Pass/Fail: Pass

Test Case 2: Upload Files Verify that files can be successfully uploaded to the chatbot
system.

Test Steps:

1. Click the '+’ button to initiate file upload.
2. Select files to upload.

o Expected Result: Files should be uploaded to the system, and a success message
should be displayed.

o Actual Result: The files are correctly uploaded to the container filesystem and
formatted if necessary.

» Pass/Fail: Pass

48

Test Case 3: Upload Link Verify that a URL can be successfully uploaded to the
chatbot system.

Test Steps:

1. Click the link button to initiate URL upload.
2. Enter a valid URL.
3. Submit the URL.

Expected Result: The URL content should be uploaded to the system, and a
success message should be displayed.

Actual Result: The URL contents will be obtained, unless Javascript is required
to get that. In that case, it fails to gather the contents.

Pass/Fail: Partial Pass

Test Case 4: Index Files Verify that files can be successfully indexed within the chatbot
system.

Test Steps:
1. Click the index button to start the indexing process.

Expected Result: Files should be indexed, and a success message should be
displayed.

Actual Result: Files are indexed correctly, and a message is shown.

Pass/Fail: Pass

Test Case 5: Delete files Verify that files can be successfully deleted from the chatbot
system.

Test Steps:
1. Click the delete button to start the file deletion process.

Expected Result: Files should be deleted, and a success message should be dis-
played.

Actual Result: Files stored in the container’s filesystem are removes successfully.

Pass/Fail: Pass

49

Test Case 6: Switch Chat Verify that the user can switch between different chat
sessions.

Test Steps:

1. Open the navigation rail.

2. Select a different chat session from the sidebar.

Expected Result: The chat interface should update to display the selected chat
session.

Actual Result: The user can switch to another created chat, even if the previous
one is waiting for a response.

Pass/Fail: Pass

Test Case 7: Create Chat Verify that the user can create a new chat session.

Test Steps:

1. Open the navigation rail.

2. Click the '+’ button to create a new chat session.

Expected Result: A new chat session should be created, and the chat list should
be updated to include it.

Actual Result: A new chat session is created and added to the side menu, swapping
the user’s current session to the new one.

Pass/Fail: Pass

Test Case 8: Delete Chat Verify that the user can delete an existing chat session.

a.

b.

d.

Test Steps:

(a) Open the navigation rail.
(b) Select the chat session to be deleted from the sidebar.
(c) Click the delete button.

Expected Result: The selected chat session should be deleted, and the chat list
should be updated to remove it.

Actual Result: The user can successfully remove any existing chat room, removing
it from the side menu. If it results to be the current session the user is in, it will
change to the first session available. If the removed chat was waiting for a response,
once it arrives it will generate an error, bot will not stop the app from functioning
correctly.

Pass/Fail: Partially Pass.

20

Test Case 9: Save App State Verify that the user can save the current state of the
application.

Test Steps:
1. Click the save button in the TopBar.

« Expected Result: The current state of the application should be saved, and a
success message should be displayed.

o Actual Result: The state of the app is saved in the Couchdb database correctly.
If the users expects a response at the moment of saving that still hasn’t arrived, it
will not be saved.

« Pass/Fail: Pass

Test Case 10: Load App State Verify that the user can load the previously saved
state of the application.

Test Steps:
1. Open the application.

« Expected Result: The previously saved state of the application should be loaded
automatically, and a success message should be displayed.

o Actual Result: Once we restart the website application, the last saved session is
restored successfully.

« Pass/Fail: Pass

11.2 Failing tests

In this subsection I run failing tests to check the failure handling by the user interface,
including the error communication to the user.

Failing Test 1: Flask unavailable Verify that app shows an error if Flask service is
not available and fails to provide an answer.

Test Steps:

1. Steps from the Unit Test cases number 1, 2, 3, 4 and 5.

Expected Result: The app state does not change and an error message is shown
to the user, describing that what is failing is the Flask service.

Actual Result: The error message specifying the error is shown.

Pass/Fail: Pass

o1

Failing Test 2: Couchdb unavailable Verify that app shows an error if CouchDB
container is not available and fails to provide an answer.

Test Steps:
1. Steps from the Unit Test cases number 9 and 10.

Expected Result: The app state does not change, it cannot neither load nor save
the app state and an error message is shown to the user, describing that what is
failing is the CouchDB service.

Actual Result: The error message specifying the error is shown and the app state
is not loaded nor saved.

Pass/Fail: Pass

Failing Test 3: LocalAl unavailable Verify that app shows an error if LocalAl con-
tainer is not available and fails to provide an answer.

Test Steps:
1. Steps from the Unit Test cases number 1 and 4.

Expected Result: The app state does not change, the files are not indexed or
the answer is not provided, showing a "-" as a response from the chatbot. An error
message is shown to the user, describing that what is failing is the LocalAl service.

Actual Result: The error message specifying the error is shown.

Pass/Fail: Pass

In conclusion, 11 out of the 13 tests fully pass, and the other 2 remaining tests pass
partially. This last expression means that while the error is not handled and the exception
not contemplated, it does not compromise the working operation of the app in any way,
as well as the user experience.

52

12 Performance

While hosting a Large Language Model (LLM) and its associated system in a local en-
vironment offers numerous advantages, it also presents certain trade-offs, with perfor-
mance being the primary concern, depending on the hardware and the chosen model.
Local deployment allows for enhanced data privacy and security, as sensitive information
remains within the confines of the local network, mitigating the risk of data breaches
that can occur with cloud-based solutions. Additionally, it provides greater control over
the environment, enabling customization and optimization tailored to specific needs and
workflows.

These benefits are often overshadowed by significant performance challenges. Unlike
cloud-based or other distributed solutions solutions that leverage high-performance com-
puting resources, local environments typically lack the same level of hardware capabilities.
This is especially evident when running models on CPUs instead of GPUs. CPUs, while
versatile and adequate for many computational tasks, are not optimized for the paral-
lel processing demands of LLMs, leading to a notable worse performance. The latency
introduced by CPU-bound processing becomes a huge bottleneck.

In my specific case, the performance degradation when running models on a CPU is
pronounced. The inference times are significantly longer, which not only slows down
the development and testing cycles but also impacts the user experience if the model is
intended for real-time interaction. For instance, tasks that would take seconds on a GPU
can extend to minutes on a CPU, making the system impractical for any application
requiring swift turnaround.

Moreover, the lack of specialized hardware accelerators in a local setup means that scaling
the system to handle larger models or more concurrent users becomes a challenge. This
can hinder the ability to experiment with more complex models or to iterate rapidly,
which is crucial in a research and development setting.

All this goes for the performance in terms of responsiveness and speed. There are many
other factors when evaluating a LLM performance. For instance, you can benchmark its
perplexity, human evaluation, used grammar or readability. These other factors can also
qualify LLMs capacity to perform on a diversity of tasks.

23

12.1 Global Standard Benchmarking

In this subsection I detail the exact Standard Benchmarks I used to compare the perfor-
mance of the used model in contrast to commercial solutions You find the comparison of
the following benchmarks on fig. 28.

« ARC Challenge[8]: Checks for advanced reasoning skills.
« ARC Easy[8]: Checks for basic reasoning skills.
« BoolQ[7]: Checks for natural language understanding through boolean questions.

« HellaSwah[30]: Challenges models with nuanced reasoning as well as sentence
completion.

« OpenBookQA[29]: Tests comprenhension of science-based questions.

« WinoGrande[20]: Assesses common-sense reasoning thorugh winograd schema
styled questions.

« PIQA[28]: Evaluates understanding of physical interactions and commonsense.

I have also studied the performance difference on different tasks from Google’s Beyond
the Imitation Game benchmark (BIG-bench)|[23]. It is composed by a diverse collection
of 204 tasks contributed by various recognized authors. These tasks cover a wide range of
topics, including linguistics, mathematics, common-sense reasoning, social bias, software
development, biology or physics knowledge. In this thesis I compare some of those tasks
in fig. 29 and in fig. 30.

Performance on General Tasks
1 | | |

I0 Nous-Hermes
_ — N I GcpT4
0.8+ = N— I — 1 |00GPT-3.5 Turbo
_ B - 00 LLaMA2
z 0.6] m e
s -
=} _
g
< 04 |
0.2 i
0 1 I I I I T T
NS < o S N X 2
> C) Q) \\%’ OO Q
& > Q¥ Ny i
S X & RS
< o
X
Task

Figure 28: Performance on General Tasks

o4

Performance on BIG-Bench Tasks (Part 1)

1 | | | | |
I0 Nous-Hermes
I GPT-4o
0.8 l0GPT-3.5 Turbo
— 00 LLaMA2
0.6 |-

Accuracy
]

o o
o N e~
I I
I
I
1
/7
I

o Vod &) N N . &
& ot’& & & T
S D S < SN SN SN S
< Q) X0 O Q) Q) & %
\3\3 b@"f QOQ,‘Z?‘ Q},S\ & Q;Q & '&.&
D & NS & & of N K
& & & F e &
AN o & > 5 &
S X0 X0 N
& & & ¥
& &
@G& .\G%Q . C}‘b'\o
W \)0% ,\)o‘53
Task

Figure 29: Performance on BIG-Bench Tasks (Part 1)

Performance on BIG-Bench Tasks (Part 2)

1 | | | | |
I0 Nous-Hermes
I GPT-4o
0.8 F l0GPT-3.5 Turbo
00 LLaMA2
Z 0.6 []
< I -
fa .
=
3
< 04
0.2

L LA 1 iy

P ? > ® @ D D D
O & Nd S & & x® x®
R T S IO S
>) o O O O
& & > S & &
QQ M @ ¥ &‘Q’
$ s X Q\ OK
%QO & & &/‘5 &G\)
Task

Figure 30: Performance on BIG-Bench Tasks (Part 2)

25

12.2 Deployment performance test

To provide a more understandable comparison of the time performance between the de-
ployment of my solution and other commercial solutions, I have made a simple test on
my chatbot and ChatGPT-40. I have uploaded a PDF document [11] to both of them
and asked the same questions. Here are the answers obtained and the elapsed time by
each model:

Model: ChatGPT

Question: What are the competitors reminded of?

Elapsed time: 1.5s

Answer: [4] Competitors are reminded that they have the right to appeal
certain decisions of the Stewards in accordance with Article 15 of the FIA
International Sporting Code and Chapter 4 of the FIA Judicial and
Disciplinary Rules, within the applicable time limits

Model: My solution (nous-hermes-llama2-13b.Q8_0.gguf)

Question: What are the competitors reminded of?

Elapsed time: 88s

Answer: They are reminded that they have the right to appeal certain
decisions of the Stewards, in accordance with Article 15 of the FIA
International Sporting Code and Chapter 4 of the FIA Judicial and
Disciplinary Rules, within the applicable time limits.

In both scenarios, the chatbots referenced the specific file from which they successfully
extracted the information to answer the given questions. While both answers are of similar
quality, a severe difference in terms on computational time can be noted.

As already explained before, there is a huge performance difference from running a model
using CPU only an on an ordinary hardware platform. This tiny test underscores the
responsive gap between its deployment and a globally-scale distributed deployed model.

When tasked with providing general information, the models usually have to deal with
less data. Therefore, the response time is also reduced. the elapsing time also relates
to the response and the complexity of the user’s demands. On average, when asked
about concrete general information, my solution achieves a response time of over 40
seconds. This improvement demonstrates that when not querying the model with context
or demanding big responses such as generating big pieces of code, there is a substantial
reduction in the time required to process and deliver answers.

26

13 Conclusions

The realization of this thesis has shown how chatbots have undergone a significant evo-
lution from simple rule-based programs to the sophisticated architecture they currently
have. This continuous evolution has enabled chatbots not only to answer questions, but
also to understand complex contexts, adapt their responses and continuously learn from
interactions with users. Their application in more and more sectors demonstrates their
enormous potential to improve efficiency and service quality.

It has also demonstrated the possibility of deploying a local, safe and private alternative
of the current commercial chatbots, and also its ability to adapt to any context with an
almost free cost. The integration of LLM models and vector databases not only allows
to offer more contextual answers and continuous improvement with a minimum cost, but
also offers powerful tools for the analysis of data and large volumes of information.

What I take away from this is the idea that it has also allowed me to complete my
professional training and knowledge as a computer scientist working with new fields,
concepts and tools.

13.1 Future work

This project represents an initial exploration into these technologies and their integration
at a low, foundational level. Building upon this groundwork opens exciting possibilities,
such as the exploration of running distributed LLMs models within a Kubernetes cluster.

This mentioned approach harnesses the scalability and orchestration capabilities of Ku-
bernetes to efficiently manage and scale LLMs across multiple nodes, unlocking new
possibilities for enhancing the performance and versatility of their language processing
applications. This experimental thesis serves as a springboard for further research and
development in the field of distributed artificial intelligence.

57

References

[1] Amansinghalml. Temperature — LLMs. URL: https://medium. com/@amansinghalml_
33304/temperature-11ms-b41d75870510.

[2] Apache. API Reference. URL: https://docs . couchdb . org/en/stable/api/
index.html.

[3] Apache. couchdb. URL: https://hub.docker.com/_/couchdb.

[4] Albert Canadilla. ChatGPT chatroom performance test. URL: https://chatgpt .
com/share/82b38794-d87a-44a5-a918-beefb3ef9892.

[5] Albert Canadilla. Thesis GitHub repo. URL: https://github.com/acanadil/TFG.

[6] ChromaDB. Chroma, an Al-native open-source vector database. URL: https://
python.langchain.com/v0.2/docs/integrations/vectorstores/chroma/.

[7] Christopher Clark et al. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No
Questions. 2019. arXiv: 1905.10044 [cs.CL].

[8] Peter Clark et al. Think you have Solved Question Answering? Try ARC, the AI2
Reasoning Challenge. 2018. arXiv: 1803.05457 [cs.AI].

[9] Cloudflare. What is a vector database? URL: https://www . cloudflare . com/
learning/ai/what-is-vector-database/.

[10] Hugging Face. HuggingFace main page. URL: https://huggingface.co/.

[11] FIA. 202/ Monaco Grand Priz - Infringement - Car 31 - Causing a collision.
URL: https://www.fia.com/sites/default/files/decision-document /
20247%20Monaco%20Grand%20Prix%20-%20Infringement’,20-7%20Car%2031%20-
%20Causing20aj20collision. pdf.

[12] Flask. User’s guide. URL: https://flask.palletsprojects.com/en/3.0.x/.
3] Flutter. Flutter documentation. URL: https://docs.flutter.dev/.

[14] Ettore Di Giacinto. LocalAI - Architecture. URL: https://localai.io/docs/
reference/architecture/.

[15] Ettore Di Giacinto. LocalAI - Overview. URL: https://localai.io/.

[16] Ettore Di Giacinto. mudler/all-MiniLM-L6-v2. URL: https://huggingface.co/
mudler/all-MiniLM-L6-v2/tree/main.

[17] Ettore Di Giacinto. Text generation (GPT). URL: https://localai.io/features/
text-generation/.

[18] Langchain. Docs Introduction. URL: https://python.langchain.com/v0.2/docs/
introduction/.

[19] LocalAl. localai/localai. URL: https://hub.docker.com/r/localai/localai.

[20] Keisuke Sakaguchi et al. WinoGrande: An Adversarial Winograd Schema Challenge
at Scale. 2019. arXiv: 1907.10641 [cs.CL].

[21] Amazon Web Services. What are Large Language Models (LLM)? URL: https :
//aws.amazon.com/en/what-is/large-language-model/.

[22] Amazon Web Services. What Is RAG? URL: https://aws . amazon . com/what -
is/retrieval-augmented-generation/.

o8

https://medium.com/@amansinghalml_33304/temperature-llms-b41d75870510
https://medium.com/@amansinghalml_33304/temperature-llms-b41d75870510
https://docs.couchdb.org/en/stable/api/index.html
https://docs.couchdb.org/en/stable/api/index.html
https://hub.docker.com/_/couchdb
https://chatgpt.com/share/82b38794-d87a-44a5-a918-beefb3ef9892
https://chatgpt.com/share/82b38794-d87a-44a5-a918-beefb3ef9892
https://github.com/acanadil/TFG
https://python.langchain.com/v0.2/docs/integrations/vectorstores/chroma/
https://python.langchain.com/v0.2/docs/integrations/vectorstores/chroma/
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://www.cloudflare.com/learning/ai/what-is-vector-database/
https://www.cloudflare.com/learning/ai/what-is-vector-database/
https://huggingface.co/
https://www.fia.com/sites/default/files/decision-document/2024%20Monaco%20Grand%20Prix%20-%20Infringement%20-%20Car%2031%20-%20Causing%20a%20collision.pdf
https://www.fia.com/sites/default/files/decision-document/2024%20Monaco%20Grand%20Prix%20-%20Infringement%20-%20Car%2031%20-%20Causing%20a%20collision.pdf
https://www.fia.com/sites/default/files/decision-document/2024%20Monaco%20Grand%20Prix%20-%20Infringement%20-%20Car%2031%20-%20Causing%20a%20collision.pdf
https://flask.palletsprojects.com/en/3.0.x/
https://docs.flutter.dev/
https://localai.io/docs/reference/architecture/
https://localai.io/docs/reference/architecture/
https://localai.io/
https://huggingface.co/mudler/all-MiniLM-L6-v2/tree/main
https://huggingface.co/mudler/all-MiniLM-L6-v2/tree/main
https://localai.io/features/text-generation/
https://localai.io/features/text-generation/
https://python.langchain.com/v0.2/docs/introduction/
https://python.langchain.com/v0.2/docs/introduction/
https://hub.docker.com/r/localai/localai
https://arxiv.org/abs/1907.10641
https://aws.amazon.com/en/what-is/large-language-model/
https://aws.amazon.com/en/what-is/large-language-model/
https://aws.amazon.com/what-is/retrieval-augmented-generation/
https://aws.amazon.com/what-is/retrieval-augmented-generation/

23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

Aarohi Srivastava et al. Beyond the Imitation Game: Quantifying and extrapolating
the capabilities of language models. 2023. arXiv: 2206.04615 [cs.CL].

The Lithops Team. AWS Lambda. URL: https://lithops-cloud.github.io/
docs/source/compute_config/aws_lambda.html.

The Lithops Team. Contributing to Lithops. URL: https : //lithops - cloud .
github.io/docs/source/contributing.html.

The Lithops Team. Installing Lithops. URL: https://lithops-cloud.github.io/
docs/source/install lithops.html.

Universitat Rovira i Virgili. Bachelor’s Degree in Computer Engineering. URL: https:
//www.urv.cat/en/studies/bachelor/courses/graudenginyeriainformatica/.

Weiguo Xia et al. Analysis of a Nonlinear Opinion Dynamics Model with Biased
Assimilation. 2020. arXiv: 1912.01778 [math.0C].

Chen Yuan et al. Power Flow Analysis Using Graph based Combination of Iterative
Methods and Vertex Contraction Approach. 2018. arXiv: 1809.01398 [cs.DC].

Rowan Zellers et al. HellaSwag: Can a Machine Really Finish Your Sentence? 2019.
arXiv: 1905.07830 [cs.CL].

29

https://arxiv.org/abs/2206.04615
https://lithops-cloud.github.io/docs/source/compute_config/aws_lambda.html
https://lithops-cloud.github.io/docs/source/compute_config/aws_lambda.html
https://lithops-cloud.github.io/docs/source/contributing.html
https://lithops-cloud.github.io/docs/source/contributing.html
https://lithops-cloud.github.io/docs/source/install_lithops.html
https://lithops-cloud.github.io/docs/source/install_lithops.html
https://www.urv.cat/en/studies/bachelor/courses/graudenginyeriainformatica/
https://www.urv.cat/en/studies/bachelor/courses/graudenginyeriainformatica/
https://arxiv.org/abs/1912.01778
https://arxiv.org/abs/1809.01398
https://arxiv.org/abs/1905.07830

	Introduction
	Objectives and motivations
	Planification
	Requirements
	Functional requirements
	Non-Functional requirements

	Requirements Analysis
	Class Diagram
	Use cases Diagram
	Use case #1 Diagram
	Use case #2 Diagram
	Use case #3 Diagram
	Use case #4 Diagram
	Use case #5 Diagram
	Use case #6 Diagram
	Use case #7 Diagram
	Use case #8 Diagram
	Use case #9 Diagram
	Use case #10 Diagram

	Theoretical background
	Large Language Models
	Retrieval-Augmented Generation
	Vector Database

	Used technologies
	Large Language Model
	Vector Database
	Application Database
	Other technologies
	Front-end Implementation
	Communication and relation
	Dockerization

	Design
	Global Schema
	Backend Schema
	Frontend Schema

	Implementation
	Back-end Implementation
	LLM

	Vector Database
	Application Database
	Front-end Implementation
	Communication and relation
	VectorDB Flask server
	Flutter HTTP server

	Dockerization

	Proof of concept
	Results

	Testing and validation
	Unit tests
	Failing tests

	Performance
	Global Standard Benchmarking
	Deployment performance test

	Conclusions
	Future work

