
Enrique Molina Giménez

Burst Computing model and its
comparison with FaaS

Final Master’s project

Directed by Pedro García López

Master’s Degree in Computer Security Engineering and Artificial
Intelligence

Tarragona

2023

I would like to start this document by thanking again my loved ones for giving me the
possibility to reach this point.

Thanks again to my parents and closest family. Many thanks to Marta, who has cheered up
my days during my time on this master’s degree.

Special recognition also goes to Pedro and Marc, and the multitudinous research group they
lead, who make it possible to carry out research very comfortably within the scope of this

Master’s thesis.

Abstract

FaaS (Function-as-a-Service) has gained significant popularity over the last few years, be-
coming a cloud service used by a large number of users for various workloads. In a quick
and general definition, FaaS allows us to execute code snippets (functions) in the cloud
without worrying about the underlying infrastructure (system administration, resource
provisioning…). However, up to the current moment, FaaS only allows the atomic ac-
tivation (and execution) of functions, without including notions of parallel execution of
function groups. The proposed new model ”Burst computing” will address current limita-
tions of FaaS, allowing: (1) trip-wire mechanisms for instant activation to launch massive
groups of functions with guaranteed parallelism, (2) mechanisms for workload and/or data
partitioning using unique identifiers within the group, and (3) group communication ser-
vices and data aggregation, transparently leveraging node locality.. This thesis will focus
on analyzing and proposing solutions for the three aforementioned improvements, and
implementing a usable solution for the first two on the popular open-source FaaS platform
Apache OpenWhisk.

Keywords: cloud, FaaS, serverless, burst, group invocation, Openwhisk

Abstract

En español

FaaS (Function-as-a-Service) ha ganado muchísima popularidad durante los últimos años,
llegando a ser un servicio en la nube utilizado por gran cantidad de usuarios para múlti-
ples cargas de trabajo. En una definición muy rápida y general, FaaS nos permite ejecutar
fragmentos de código (funciones) en la nube sin preocuparnos por la infraestructura sub-
yacente (administración de sistemas, aprovisionamiento de recursos…) No obstante, FaaS
hasta el momento actual sólamente permite la activación (y ejecución) de funciones de
manera atómica, no incluyendo nociones de ejecución de grupos de funciones paralelas.
El nuevo modelo propuesto “Burst computing” permitirá resolver actuales limitaciones de
FaaS, permitiendo: (1) mecanismos de activación instantánea para lanzar grupos masivos
de funciones con paralelismo garantizado, (2) mecanismos de partición de los cargas y/o
datos usando identificadores únicos dentro del grupo y (3) servicios de comunicación gru-
pal y agregación de datos aprovechando de manera transparente la localidad del nodo. La
presente tesis se centrará en analizar y proponer la solución de las 3 mejoras enunciadas,
e implementar una solución usable de las 2 primeras sobre la popular plataforma FaaS de
código abierto Apache Openwhisk.

Palabras clave: cloud, FaaS, serverless, burst, group invocation, Openwhisk

Abstract

En català

FaaS (Function-as-a-Service) ha guanyatmolta popularitat durant els darrers anys, arribant
a ser un servei de núvol utilitzat per una gran quantitat d’usuaris per a múltiples càrregues
de treball. En una definició molt ràpida i general, FaaS ens permet executar fragments
de codi (funcions) al núvol sense preocupar-nos per la infraestructura subjacent (admin-
istració de sistemes, aprovisionament de recursos…). No obstant això, FaaS fins al mo-
ment actual només permet l’activació (i execució) de funcions de manera atòmica, sense
incloure nocions d’execució de grups de funcions paral·leles. El nou model proposat ”Burst
computing” permetrà resoldre les actuals limitacions de FaaS, permetent: (1) mecanismes
d’activació instantània per a llançar grups massius de funcions amb paral·lelisme garantit,
(2) mecanismes de partició de les càrregues i/o dades usant identificadors únics dins del
grup i (3) serveis de comunicació grupal i agregació de dades aprofitant de manera trans-
parent la localitat del node. La present tesi se centrarà en analitzar i proposar la solució
de les 3 millores enunciades, i implementar una solució usable de les 2 primeres sobre la
popular plataforma FaaS de codi obert Apache Openwhisk.

Paraules clau: cloud, FaaS, serverless, burst, group invocation, Openwhisk

Contents

List of Figures 11

List of Tables 13

1 Introduction & research objectives 15

2 State-of-the-art 19

2.1 Burst literature . 19

2.2 Burst related approaches . 21

2.3 Burst computing and cluster technologies 22

3 Technologies presentation 25

3.1 Lithops . 25

3.2 Apache Openwhisk . 28

4 Burst Computing model 33

4.1 Burst Computing architecture . 34

4.1.1 Group invocation architecture . 35

4.1.2 Group communication architecture 38

4.2 Burst Computing implementation . 41

4.2.1 Group invocation implementation 41

5 Evaluation 47

5.1 Burst boundaries . 47

10 Contents

5.2 Group invocation evaluation . 49

5.2.1 5s sleep functions . 50

5.2.2 Monte carlo algorithm . 51

6 Conclusions 55

7 Future work 57

Bibliography 59

List of Figures

1.1 Serverless word count with 4 AWS Lambda workers 16

3.1 Lithops architecture . 26

3.2 Openwhisk components diagram . 29

3.3 Openwhisk workflow . 30

4.1 Burst functionalities classification . 34

4.2 Homogeneous vs heterogeneous multi-core containers 37

4.3 Unique function identifiers . 38

4.4 FaaS vs Burst Computing comparison . 39

4.5 Group communication architecture example 40

4.6 Group invocation implementation . 42

4.7 Lithops runtime multiprocessing . 43

5.1 Timeline of 120 sleep functions FaaS vs Burst Computing 50

5.2 Latencies of 120 sleep functions FaaS vs Burst Computing 51

5.3 Timeline of 100 𝜋 estimation functions FaaS vs Burst Computing 52

5.4 Latencies of 100 𝜋 estimation functions FaaS vs Burst Computing 52

List of Tables

4.1 Modified projects links . 42

5.1 Startup time for different cluster technologies. AWS EMR Spark and GCP
Dataproc usem5 and E2-standardmachine families, respectively. Dask and
Ray are deployed on managed EC2 VMs of the m6i family. 48

5.2 Cluster architecture over Openwhisk is deployed 49

Chapter 1

Introduction & research objectives

Serverless Function as a Service (FaaS) is especially suitable for parallel computing inten-
sive tasks with fast autoscaling. In recent years, various research jobs [1–4] have exe-
cuted thousands of short-lived funcions working in parallel on computationally and data-
intensive tasks, such as data analysis, video encoding, or compilation. In this line, Excam-
era [2], PyWren [1] or Sprocket [5] already launched thousands of parallel cores in short
tasks (< 2 minutes) for a variety of tasks such as video encoding and processing, compi-
lation and data sorting. Serverless is well-suited for such tasks as it provides autoscaling
and very fast scalability, as well as pay-as-you-go billing models that charge per 1ms [6],
which is good for short duration tasks.

However, and although these previous research works have used FaaS to run their
workloads, we can realize that there are optimizations and aspects to improve in terms of
using FaaS services as an execution environment for parallel workloads. To do an analysis
of it, we must define a group of parallel functions as the same function (same code) that
will be executed 𝑁 times in such a way that:

• The 𝑁 functions will be activated at the same time instant.

• Each function can receive different data input.

• The maximum degree of concurrency possible within the group of parallel functions
is desired.

To exemplify a group of parallel functions, we will present a simple example: server-
less word count. Let’s imagine that we have a text file 𝐹 with 𝑁 lines, and we want
to know how many words are in this file. To do this, we can use FaaS where each func-
tion will be responsible of counting the words of the text that is received as input to the

16 Introduction & research objectives

function; the input of the function 𝐹𝑖 will be text blocks from the file depending on the
number of workers 𝑊 that are used. At the end, once the functions have been executed
and the partial count 𝐶𝑖 of each block of text is obtained, the addition reduction is applied,
obtaining the total number of words 𝐶 (see Figure 1.1).

F

F1 F2 F3 F4

+

C1 C2 C3 C4

C

Figure 1.1 Serverless word count with 4 AWS Lambda workers

Serverless word counting with FaaS conforms to the definition of a parallel function
group. And while it can be done with FaaS, in a research article Müller et al. [7] presented
the 4 limitations of FaaS that difficult to run groups of parallel functions:

1. No direct communication between functions. FaaS does not offer a direct communi-
cation way between different functions, and although it is currently possible to use
some resources (for example Object Storage) to communicate different functions and
manage the state of them, there is no specific and optimized way to communicate
the different functions inside a group.

2. No API for batch invocations. FaaS does not include the notion of a group of parallel
functions, so if you want to execute the same function 𝑁 times in parallel, the only
possible solution is to make 𝑁 calls to the corresponding FaaS API to activate each
function atomically. A contribution and improvement to the activation of parallel

17

functions would be the inclusion of an API call that allows the execution of a group
of parallel functions (1 function, 𝑁 times).

3. No way to know current function concurrency. As the notion of a group of parallel
functions does not exist within FaaS, we do not have facilities to know the degree of
concurrency of the different functions that make up the group.

4. No guarantee on concurrently running functions (simultaneity or parallelism). FaaS
does not guarantee parallelism in groups of parallel functions, as demonstrated by
Barcelona-Pons and García-López [8]. In their publication, they showed that none of
the cloud providers that offer FaaS services guarantee parallelism in the execution of
functions that are activated at the same time point. “Disastrous” cases were found,
such as Azure Functions, where the provisioning of resources is very bad and the
degree of concurrency quite low.

All these limitations are avoidable if VMs are used to run the parallel workloads, but
then we would be wasting the main advantages of FaaS, which are:

1. Extremely low start-up time

2. Lower operational complexity (manage VM instances, network, utilization, etc).

3. Fine-grained allocation and billing. Müller et al. say “What VMs and containers
lack is burstability—low-latency deployment at large scale with correspondingly low
billing granularity.”

Müller et al. [7] proposed in their publication Serverless Clusters as the solution for
parallel workloads, where basically a serverless service creates, on demand, a traditional
cluster for a specific job. But considering that creating an entire traditional cluster for
a single quick job is too slow, we realize that Serverless Clusters are not a suitable
solution for short-lived parallel workloads. We can deduce then that (1) the use of
VMs through Serverless Clusters makes more sense the longer the execution time of the
workload is (because then the startup time will be relatively less) but that (2) it loses sense
when these are short-duration workloads, since the startup time will be a greater loss of
time the shorter the execution time.

Here a new line of research opens, whose mission will be to maintain the advantages of
FaaS but solving its limitations in terms of the execution of groups of parallel functions. The
resulting new model called ”Burst computing” will have the mission of supporting and
improving the execution of groups of short-duration parallel functions on FaaS, offering:

18 Introduction & research objectives

1. Instant trip-wire mechanisms for launching massive groups of processes with guaran-
teed parallelism.

2. Problem/data partitioning mechanisms using group member identifiers.

3. Group communication and data aggregation services transparently leveraging node lo-
cality.

This thesis will focus on proposing a design that resolves these 3 upper points, and on
implementing and evaluating the first 2 points. To do this, the Lithops parallel-computing
framework [9] and the popular open-source FaaS platform Apache Openwhisk [10] will
be used.

The work appears structured in this document as follows: There will be a state-of-the-
art review in Section 2, followed by the design and implementation proposal in Section 4.
Then, in Section 5, the evaluation of the solutionwill appear, whichwill determine inwhich
degree the newmodel improves FaaS. Finally, in Section 6, we will find the conclusions and
in the Section 7 the next steps that can be taken on Burst Computing.

Chapter 2

State-of-the-art

Wewill review the state-of-the-art in 3 steps: first, (1) we will review the current litera-
ture on the term burst (referring to computing), then (2) wewill review related technologies
that can bring us closer to a more accurate definition of Burst Computing and finally, (3) we
will review the relationship between Burst Computing and cluster computing technologies.

2.1 Burst literature

Serverless has already been used in the past for running short burst-parallel jobs. In this
line, Excamera [2] , gg [4], PyWren [9] or Sprocket [5] already launched thousands of
parallel cores in short tasks (<2 minutes) for a variety of tasks such as video encoding and
processing, compilation and data sorting. From this statement we can deduce that there
are already several existing platforms responsible of the invocation of parallel task groups,
with manymore applications that make use of it in production. That is whywe can see that
we are getting closer to computing a large number of parallel tasks, with a short execution
time.

The concept of Burst computing is not new, and has already appeared several times in
the scientific literature. Next, we will cite the different cases in which the burst concept
has been referred to within the scientific branch that concerns us:

• Burstable supercomputer-on-demand

Fouladi et al. [4] introduce in their work the concept of ”burstable supercomputer-
on-demand” and refers to a ”burst-parallel swarm of thousands of cloud functions,
all working on the same job”. In their research paper, the authors present gg as

20 State-of-the-art

a general system designed to help application developers manage the challenges
of creating burst-parallel cloud-function applications. Fouladi et al. also details a
number of limitations of the current FaaS model like statelessness, limited runtime,
limited worker storage, or number of available parallel workers among others. We
can deduce that (1) computation of thousands of jobs in parallel gains relevance and
(2) FaaS presents a certain number of limitations regarding the invocation of groups
of parallel tasks.

• Burst-parallel jobs

Thomas et al. [11] refer to “burst-parallel jobs are characterized as parallel tasks with
very high fanout consisting of thousands of serverless functions, all deployed by a
single user”. In this article, although the authors explore how to reduce startup times
by improving the network, they give us a very interesting definition of burst-parallel
jobs.

• Flash bursts

Li et al. [12] refines the concept to focus on ”flash bursts”: applications that use a
large number of servers but for very short time intervals (as little as onemillisecond).
In their paper, they present two algorithms (millisort and milliquery) that validate
the feasibility of 1ms jobs. To this end, they require in their testbed low-latency
communication and a super optimized bare metal HPC dedicated deployment. Fur-
thermore, they neglect issues such as application loading, and isolation and multi-
tenancy among others. This means that the paper is an interesting research experi-
ment but still far from real deployment in current Cloud infrastructures.

However, Ousterhout outlines very interesting challenges of Burst computing in gen-
eral: (1) the relevance of data/problem partitioning, (2) why per-message overheads
and coordination communication must be optimized, (3) the unaffordable costs of di-
rect communication in short bursts, (4) the need for efficient group communication
primitives, and (5) the use of local server resources when appropriate.

• MXFaaS

MXFaaS [13] is an interesting paper because it demonstrates that the concept of
burst jobs is becoming widely accepted in FaaS settings. MxFaas (Multiplexed FaaS)
aims to optimize FaaS runtime for burst jobs in a transparent way. MxFaas pro-
poses a MXContainer that improves performance by sharing processor cycles, I/O
bandwidth and memory state between invocations of the same function, and shows
that locality is a good performance pathway in burst. They modify OpenWhisk and

2.2 Burst related approaches 21

Knative to show interesting performance improvement that leverage locality in the
MXContainer.

However, MXFaaS does not propose to directly support group invocations and it
then loses straightforward optimization benefits related to resource provisioning and
parallelism guarantees.

From the state-of-the-art, it can be extracted that the term burst has already appeared on
several occasions in the scientific literature, and that it opens the way for us to work on an
architecture that natively supports Burst computing that lately appears repeatedly in the
literature.

2.2 Burst related approaches

After reviewing the differentmain citations of the term burst within the scientific literature,
we are going to name and briefly describe other related recent approaches that set trends
and can help define the motivation of Burst Computing:

• SAND and Faastlane

SAND [14] and Faastlane [15]minimize times by using a single container for all func-
tions in the same application. Faastlane minimizes function latencies by striving to
execute functions of a workflow as threads within a single process of a container in-
stance, which eases data sharing via simple load/store instructions. SAND is a new
serverless computing system that provides lower latency, better resource efficiency
and more elasticity than existing serverless platforms using application-level sand-
boxes. We found that both technologies provide performance improvements when
using the same container to run different functions; this will influence the definition
of Burst computing.

• AWS Big Lambdas

We also want to outline a clear trend in FaaS that is aligned with Burst computing :
the emergence of Big Lambdas withmore than one CPU (up to 6 now in AWS).When
bigger functions can be used, node locality becomes even more relevant for single
jobs running in a group of nodes. This opens new possibilities for recursive data ap-
proaches where node aggregation or hierarchical approaches may be interesting for
computing and communication. In short, the CPU locality offers us certain benefits

22 State-of-the-art

(for example, lower communication latencies) to which it seems that AWS is trying
to approximate.

• MPI technologies

High Performance Computing (HPC) technologies, exemplified by MPI, enable effi-
cient group communication and collective operations for parallel jobs. However, its
static poolmembership featuremakes it difficult to quickly autoscale withinmillisec-
onds, an essential feature for Burst computing. Unlike dynamic cloud architectures,
the predefined group composition in MPI makes it difficult to quickly add or remove
nodes, which slows the response to sudden bursts of computations.

To address this, new runtime environments are essential. While learning from exist-
ing approaches is valuable, the key is to design new execution environments to seam-
lessly support fast computational demands. These execution environments should
enable agile and automated provisioning of resources, efficient reconfiguration of
communication patterns, and dynamic load balancing, tailored to the needs of Burst
computing.

2.3 Burst computing and cluster technologies

One of the main issues when it comes to using Burst Computing would be: under what
circumstances should we use this computing model to run our workloads? Cluster-based
approaches present the problem of scalability. A Spark cluster requiresminutes just to start
up, ensure membership, and configure all parameters. In tasks of short duration, this boot
time would be a large investment of time. Cluster autoscaling, even on Serverless Spark,
is still slow and it is not possible to instantly start a 300 node cluster on Spark. This is in
stark contrast to the rapid growth of burst technologies, which may be more appropriate
for short, data-intensive tasks.

So, we can verify that:

• Low-duration workloads (burst workloads) should be executed with the Burst Com-
puting model, where startup times are much shorter, avoiding the large time over-
head that initializing a cluster requires.

• High-duration workloads will continue running on a cluster, since initialization
times will be less significant the longer the execution time 1.

1High-duration workloads (i.e. > 50 minutes) will still be able to run on the Burst Computing model,
although clustering technologies would be the more correct approach.

2.3 Burst computing and cluster technologies 23

And that is why, since we have two different computational models divided by the
execution time, we must define the threshold that separates these two models. In Subsec-
tion 5.1, we will define the necessary bounds to determine in which circumstances it is
advisable to use the Burst Computing model.

Chapter 3

Technologies presentation

The technologies that will be presented in the following subsections are of special interest
since they will be those used in the Burst Computing implementation described in this
document.

3.1 Lithops

Lithops is a Python multi-cloud serverless computing framework. It allows to run
unmodified local python code at massive scale in the main serverless computing platforms.
Lithops delivers the user’s code into the cloud without requiring knowledge of how it
is deployed and run. Moreover, its multicloud-agnostic architecture ensures portability
across cloud providers, overcoming vendor lock-in.

Lithops provides great value for data-intensive applications like Big Data analytics
and embarrassingly parallel jobs. It is specially suited for highly-parallel programs
with little or no need for communication between processes. Also, facilitates consum-
ing data from object storage (like AWS S3, GCP Storage or IBM Cloud Object Storage) by
providing automatic partitioning and data discovery for common data formats like CSV.
Lithops abstracts away the underlying cloud-specific APIs for accessing storage and pro-
vides an intuitive and easy to use interface to process high volumes of data.

Architecture and implementation. The high-level architecture of Lithops is de-
picted in Figure 3.1. In its most fundamental incarnation, Lithops leverages just two differ-
ent cloud services: the compute backend to launch MapReduce jobs; and the storage back-
end to store all data, including intermediate results. To keep Lithops completely server-
less, the compute backend is typically a FaaS platform (e.g., AWS Lambda) and the storage

26 Technologies presentation

Figure 3.1 Lithops architecture

backend is a BaaS storage service (e.g., AWS S3), so that its two main pillars can scale
independently from each other. Internally, the main components of Lithops are:

• Executor, which allows end users to execute their code in the cloud through simple
API calls. Upon an API call, it serializes and uploads the single-machine user code
and input data from her local machine (e.g., laptop) to the storage backend. When
a cloud function finishes its execution, the output data generated by executing the
user code within the cloud function is persisted to the storage backend. For this
reason, the executor monitors the storage backend for the ouput data and transfers
it to the user’s local machine when available.

• Invoker, which performs the “appropriate” number of function invocations against
the compute backend. We say “appropriate” since the number of cloud functions
depends on the API call itself. The invoker can be run on the cloud to hide the high
invocation latency when the Lithops client is very far from the compute backend.

• Worker is the workhorse of Lithops. In short, it runs on the compute backend, typ-
ically as a cloud function, and its main role is to execute the user code associated
with the API call that spinned it up. In essence, it fetches the input data and user

3.1 Lithops 27

1 """
2 Simple Lithops example using the map() call to estimate PI
3 """
4 import lithops
5 import random
6

7 def is_inside(n):
8 count = 0
9 for i in range(n):

10 x = random.random()
11 y = random.random()
12 if x*x + y*y < 1:
13 count += 1
14 return count
15

16 if __name__ == '__main__':
17 np, n = 10, 15000000
18 part_count = [int(n/np)] * np
19 fexec = lithops.FunctionExecutor()
20 fexec.map(is_inside, part_count)
21 results = fexec.get_result()
22 pi = sum(results)/n*4
23 print("Esitmated Pi: {}".format(pi))

Listing 3.1 𝜋 approximation with Lithops

code from the storage backend, and executes it, eventually saving the output to the
storage backend.

Once we know the architecture of Lithops, let’s analyze the use case of Lithops that is
more concerned with Burst Computing, the invocation of groups of parallel functions (as
in the case of Figure 1.1). The Lithops API offers us different methods for calling a group of
parallel functions (map() and map_reduce()). We’ll take a closer look at the map()
function as it will later allow us to execute the groups of parallel functions in the Burst
Computing model. The map() function allows us to receive many parameters into it, and
customize different options of the function mapping. However, the only two mandatory
and most significant parameters are:

• map_function: is the name of the Python function that will be executed by the
worker. The code of this function will be loaded inside worker and executed inside
it.

28 Technologies presentation

• map_iterdata: is an iterable of the input data. In each iterable position it con-
tains the data that will be received by each of the workers. The call to map() will
activate as many workers as the length of the iterable.

In the Code extract 3.1 we can see an example of using the map() function to estimate
the value of 𝜋. To do this, 10 workers concurrently (ideally in parallel) make massive
calculations that lead to obtaining the approximate value of 𝜋.

Later on, and after having introduced and explained the general architecture of Lithops
and its map() API function that allows the invocation of a group of parallel functions,
Lithops will be named again in the implementation of the Burst Computing model. Lithops
will use Apache Openwhisk (that we can find in the next subsection) like the computation
backend that it need to execute the group of parallel functions.

3.2 Apache Openwhisk

Openwhisk is the serverless FaaS platform focused on building applications in the cloud.
OpenWhisk offers a rich programming model for creating serverless APIs from functions,
composing functions into serverless workflows, and connecting events to functions using
rules and triggers.

The functions are activated in response to events, and these events can be very diverse:
changes in a database, new commits in a Github repository, direct call to the Openwhisk
API… Openwhisk is basically the framework that offers us all the orchestration neces-
sary for a function to be executed, abstracting the user from how, where…; Openwhisk
is the software that provides the user with all the necessary facilities to have a FaaS envi-
ronment to execute functions.

Openwhisk is an open source FaaS, and extremely popular, it was created and now
used by IBM Functions and is part of the Apache software foundation, making it the ideal
FaaS platform to be adapted to Burst Computing.

In this subsection we will review the main components and the most recurring ac-
tions within the basic operation of Apache Openwhisk. The objective is to introduce the
reader to the understanding of the internal working of Openwhisk, in order to later un-
derstand the modifications that Openwhisk will have to support Burst Computing.

Openwhisk stands on the shoulders of giants, and that is why it uses leading tech-
nologies such as Nginx, Kafka, Docker or CouchDB (see Figure 3.2). To understand the
basic workflow of Openwhisk, we are going to follow the traces of the main action that

3.2 Apache Openwhisk 29

Figure 3.2 Openwhisk components diagram

Openwhisk offers: execute the code of a function supplied by a user and get the result (see
workflow in Figure 3.3).

Creation of the function

A first request to the Openwhisk API registers a function (block of code) in the platform.
With the function registered, we are ready to execute the function with the corresponding
HTTP request. Below we have the workflow of the invocation.

Entering the system: nginx

The process starts with nginx as the entry point. The OpenWhisk API is based on HTTP
and uses a RESTful design. The first entry point is nginx, a reverse proxy server, which
handles SSL and redirects HTTP requests to the next component, the controller.

Entering the system: Controller

Without having made many changes to our HTTP request, nginx redirects it to the Con-
troller, the next component in our journey through OpenWhisk. The Controller, imple-
mented in Scala and based on Akka and Spray, acts as the interface for CRUD actions and
action invocation in OpenWhisk.

30 Technologies presentation

The Controller first determines the action the user is attempting to perform based on
the HTTP method used in the request. In this case, the Controller interprets that the
activation of an action has been requested.

Given the central role of the Controller (hence its name), it will be heavily involved in
the following steps.

Figure 3.3 Openwhisk workflow

Authentication and Authorization: CouchDB

Basically, in this step it will be verified that the credentials are valid and that the requesting
user has the necessary permissions to execute the requested action.

3.2 Apache Openwhisk 31

Getting the action: CouchDB… again

In this step, the function code (stored in the database) is loaded and combined with the
input data of the call. After this, we have code and data ready to call the function.

Who’s there to invoke the action: Load Balancer

The Load Balancer is a component that has got the health status of all the executors that
can run the invocation; they are called Invokers. So, the Load Balancer choose one of the
available invokers to invoke the requested action

Please form a line: Kafka

In the communication between the Controller and the Invoker there can be different prob-
lems (system break or saturation). A Kafka server takes care of indirectly communicating
between the controller and the Invoker, thus avoiding the mentioned problems. The code
and input data for the invocation are sent in the Kafka message. After the message is sent
to the Invoker, the Controller responds to the user with a unique identifier of the call; it is
about asynchronous execution.

Executing the code: Invoker

The Invoker is the heart of OpenWhisk. The Invoker’s duty is to invoke an action. To
execute actions in a isolated way it uses Docker. For each action invocation a Docker
container is spawned, the action code gets injected, it gets executed using the parameters
passed to it, the result is obtained, the container gets destroyed. Docker containers can
be one of the extended list of supporting programming languages (Python, Java, Go…) or
also a custom runtime Docker image.

Storing the result: CouchDB

The result is obtained by the Invoker and then is stored into the CouchDB. User can retrieve
the result, execution logs, timestamps… querying with the activationId of the execution.
This step finishes the workflow of executing a simple action in Openwhisk.

32 Technologies presentation

After reviewing the workflow of the Openwhisk platform, and understanding in a gen-
eral way how it works and what role its components play, we will be able to study in the
next section what modifications Openwhisk will undergo to support Burst Computing.

Chapter 4

Burst Computing model

We are going to present and begin to detail the Burst Computing model. Burst Computing
arrives as a natural evolution of FaaS, whose objectives are to allow the execution of groups
of parallel functions (of which there are many use cases, as we have seen previously), also
allowing communication between the different functions of the group.

We have also seen previously what is the perfect scenario for the use of Burst Comput-
ing: execution of short-duration workloads. We remember that for high-duration work-
loads, cluster technologies are probably the most recommended option, but undoubtedly,
for tasks of short duration (in which we need the high scalability and short startup times
of FaaS) Burst Computing will be the more suitable option.

Currently, FaaS has certain limitations that make it difficult to use for groups of parallel
functions (as we have seen in Section 1). The objective of Burst Computing is to overcome
all these limitations, offering a new framework that allows the execution of groups of
parallel functions, which can communicate with each other through the most appropriate
communication channels.

Remembering, the Burst computing model will have the mission of supporting and
improving the execution of groups of short-duration parallel functions on FaaS, offering:

1. Instant trip-wire mechanisms for launching massive groups of processes with guaran-
teed parallelism.

2. Problem/data partitioning mechanisms using group member identifiers.

3. Group communication and data aggregation services transparently leveraging node lo-
cality.

34 Burst Computing model

GROUP INVOCATION GROUP COMMUNICATION

Group communication and data
aggregation services transparently

leveraging node locality

Instant trip-wire mechanisms
for launching massive groups of

processes with guaranteed
parallelism

Problem/data partitioning
mechanisms using group member

identifiers

1

2

3

Burst Computing functionalities

Figure 4.1 Burst functionalities classification

The 3 main functionalities above can be classified into 2 groups according to their na-
ture, this classification helping us to structure the analysis and study of the new model;
the classification would be as follows:

These 2 groups will help us reflect in a more structured way the Burst Computingmodel
in this document. We take this opportunity to remember that Burst group invocation will
be designed and implemented, while Burst group communication will be designed and
mentioned, but its implementation is outside the scope of this document, and will probably
be studied in the near future.

Within this same section, wewill continue following the following structure: first (Sec-
tion 4.1) we will study the design and modifications that must be made to a FaaS platform
to support the burst approach (without focusing on any specific technology), and later on
Section 4.2 will present the current implementation on Openwhisk and Lithops that allows
groups of parallel functions to be executed in a native way on the FaaS platform itself.

4.1 Burst Computing architecture

The architecture that a FaaS platform must follow to support the functionalities that burst
requires will be specified below:

4.1 Burst Computing architecture 35

4.1.1 Group invocation architecture

We remember that current FaaS platforms do not support the invocation of groups of par-
allel functions. Our efforts will focus on specifying the series of functionalities that must
be developed on a FaaS platform to allow the native execution of groups of functions in
parallel.

To do this, the following features must be implemented:

• Group API Invocation

Instead of requiring 𝑁 parallel invocations to launch a burst, FaaS runtimes must
provide a single REST call that includes: code of the job to be loaded, number of
invocations and problem/data partitions to be distributed among jobs. The native
group invocation in the FaaS platform itself will give the execution of parallel func-
tion groups the importance it deserves (there aremany use cases for parallel function
groups) and will lead us towards a better integration of that use cases with the FaaS
platform itself.

When a FaaS runtime receives this group invocation, it checks if it has enough re-
sources to run the burst, and if so, it instruments the required resources to launch
the functions with maximum parallelism. With this improvement, it will be the role
of the FaaS platform to take care of maximizing the degree of parallelism within the
group of functions (until now, if a group of functions is invoked “one by one”, par-
allelism is not guaranteed). Furthermore, invoking the same code within the same
group of functions will mean improvements in startup times (fewer REST requests,
less bandwidth consumption…). In Section 5 we will see this improvement clearly.

• CPU exclusivity

Burst computing seeks to guarantee CPU exclusivity for each of the parallel jobs it
runs. Some current FaaS runtimes like Openwhisk allocate CPUs to their workers
based on the RAM reserved for the runtime. Burst computing pursues that regardless
of the memory reserved for the workers, there is 1 CPU available for each of them.
That way, execution times will always be as short as possible, maximizing the CPU
dedication to that job.

• Multi-core containers 1

1Note that the fact that there are multi-core containers leads us to increase the degree of locality, a fact
that will be an advantage when communicating functions with each other (see Subsection 4.1.2).

36 Burst Computing model

Isolation makes sense in functions from different tenants. In previous works, such
as SAND [14] or Faastlane [15], we have seen howwithin the same container we can
execute different functions (of the same application) obtaining better performance.
Each functionwithin a burst will need 1 CPU (CPU exclusivity), and it will be defined
that there are containers with 𝑁 CPUs assigned, within 𝑁 parallel functions will be
executed. Thus, when a burst of 𝑁 functions has to be executed, they will be created
and executed in a 𝐶 number of containers where 𝐶 << 𝑁 , managing much fewer
containers than in current FaaS, where 𝐶 = 𝑁 . When the FaaS controller receives
the burst invocation, it will launch the required multi-core containers to run the
entire burst efficiently.

The fact that there are multi-core containers opens the way to a dilemma: what size
should these containers be? The reality is that we can follow 2 different approaches:

– Homogeneous containers: it may remind us of the approach followed by
AWS Big Lambdas, where containers of up to 6 CPUs are offered to the user.
Homogeneous containers would have a fixed size of N allocated CPUs. For ex-
ample, defining 𝑁 (granularity) = 6, if we received a request to execute a burst
of 60 parallel functions, the FaaS platform invokers would create 10 contain-
ers of 6 CPUs each, where within each one 6 functions would be executed in
parallel.

– Heterogeneous containers: the heterogeneous approach involves maximiz-
ing the locality of parallel functions. With heterogeneous containers, the burst
is distributed in an unequal manner, creating in the FaaS invokers containers
as large as possible (that is, containers as large as there are CPUs available in
each of the invokers, until all the burst functions are allocated).

In Figure 4.2 we can graphically observe the distribution of a burst of 60 functions
among different invokers of 32 CPUs each, on the left in the homogeneous version
and on the right in the heterogeneous version.

• Burst runtime, code loading and dispatching

It is clear that there are advantages of downloading and loading only once per muti-
core container the function runtime. For example, if we have a burst of 60 functions,
and we have multi-core containers of 6 CPUs, the number of times we will have to
initialize the container and load the code will be much less than in the current FaaS
approach.

4.1 Burst Computing architecture 37

Invoker 1

C = 32

C = 32

C = 32

Invoker 3

Invoker 2

6 6 6

6 6 6 6

6 6 6

Invoker 1

C = 32

C = 32

C = 32

Invoker 3

Invoker 2

32

28burst(60) burst(60)

Homogeneuos Heterogeneous

Figure 4.2 Homogeneous vs heterogeneous multi-core containers

The runtime that executes each function within it (FaaS runtime) must be modified,
in such a way that to support a burst it must have an internal dispatcher that is
responsible for launching as many functions as the number of assigned CPUs the
container has.

In short, to support Burst Computing, the FaaS runtimes must be modified so that
instead of executing a functionwithin them, they execute 𝑁 functions, with 𝑁 being
the number of CPUs assigned to the multi-core container.

• Group member identifiers and unique functions identifiers

Each function and each container that exist within a burstmust be able to be uniquely
identified (a crucial aspect for function communication). A FaaS platform that sup-
ports Burst Computing must ensure the assignment of these unique identifiers to
both each function and each container that executes them. Let’s look at the example
in Figure 4.3. It is a burst of 30 functions, where the size of the containers is 𝑁 =
10. We can clearly see how each function is uniquely identified, having the data for
each function of the machine and container it is in.

The modified FaaS platform must generate a data structure with the information we
have seen in the figure (function ids, container in which it is located and its machine)
and pass this information to each of the burst execution runtimes, with the mission
that each function can know the complete structure of the burst distribution.

38 Burst Computing model

Functions
[0, 9]

Container 0

Invoker 0

Functions
[20, 29]

Container 2

Invoker 1

Functions
[10, 19]

Container 1

burst(30)

Figure 4.3 Unique function identifiers

After having reviewed the different modifications that a FaaS must have to support
Burst Computing, looking Figure 4.4 we will graphically show these new features. We can
deduce the following statements:

• In FaaS it is necessary to make 100 requests to the API of the FaaS platform to be
able to invoke a group of parallel functions, but in Burst Computing we will achieve
the same effect with a single call to the API.

• In FaaS we will have 100 containers distributed among the different invokers that
execute the functions within them, but in Burst Computing we will have a much
smaller number of containers, with dedicated CPUs that will execute the functions
within these containers using operating system processes (in the Figure 4.4 shows
heterogeneous containers).

4.1.2 Group communication architecture

For the Burst Computing model, it is of great importance to allow communication between
the functions that form the group of parallel functions. There are use cases in which com-
munication between functions is not necessary (embarrassing parallelism, see Lithops [9]),
but in the vast majority it will be necessary to offer the user a communication path between
functions that allows the exchange of data between them.

To allow communication between functions, the Burst Computing model will try to use
the fastest communication paths (as far as possible). After analyzing the architecture of

4.1 Burst Computing architecture 39

Controller

 POST

activate (x100)

Invoker 1

Invoker 2

Invoker N

... ...

x100 containers created

Cluster

Fa
aS

po
lic

y
POST

burst(..., 100)

Invoker 1

Invoker 2

Invoker N

...

<<100 containers created

Cluster

bu
rs

t
po

lic
y

32 CPU

24 CPU

8 CPU

...

FaaS

Burst

x100 API REST requests

1 API REST request

Controller

Figure 4.4 FaaS vs Burst Computing comparison

the group invocation in Subsection 4.1.1, we can clearly see that the functions that make
up a burst are distributed in different containers, so that if a function wants to commu-
nicate with another function there are 2 options: (1) that are within the same container
and (2) that are in different containers. These possibilities will be called intra-container
communication and inter-container communication, respectively.

• Intra-container communication: to communicate functions that are within the
same container, OS tools will be used to communicate processes with each other.
Let’s remember that each parallel function will be a different process of the OS, and
that depending on the implementation, different tools and techniques can be used
to communicate these processes that are executed within of the same machine.

40 Burst Computing model

• Inter-container communication: This happens when a function wants to com-
municate with another function that is running outside its container. It is necessary
to establish a communication channel between these functions. The fact that current
FaaS implementations do not allow direct communication, added to the fact that the
number of connections grows quadratically 𝑛2 with 𝑛 being the number of parallel
functions, leads us to decide by an indirect communication system between contain-
ers, such as RabbitMQ or Apache Kafka. Furthermore, this indirect communication
system there would only be 𝑚 number of connections, with 𝑚 being the number of
containers in which the burst has been distributed.

After exposing the two possible types of communication, we must highlight the im-
portance of locality. The greater the locality (the closer the functions are to each other,
with having the functions in the same container being the highest degree of locality) the
lower the communication latencies are likely to be. Burst Computing is designed in such
a way that it favors the locality of functions and, whether in its homogeneous version or
in its heterogeneous version, it will take advantage of the locality of functions to reduce
communication latencies.

1 2 3 4

5 6 7 8

Container 0

In
tra

-
co

m
m

un
ic

at
io

n
sy

st
em

s

9 10 11 12

13 14 15 16

Container 1

In
tra

-
co

m
m

un
ic

at
io

n
sy

st
em

s

Invoker 0

17 18 19 20

21 22 23 24

Container 2

In
tra

-
co

m
m

un
ic

at
io

n
sy

st
em

s

25 26 27 28

29 30 31 32

Container 3

In
tra

-
co

m
m

un
ic

at
io

n
sy

st
em

s

Invoker 1

Figure 4.5 Group communication architecture example

In Figure 4.5 we can see the communication between functions on an example of a
burst configuration. We can see that if function 1 wants to send a message to function
5, it will do so through OS communication mechanisms, but if function 1 wants to send
a message to function 32, it will do so through the indirect communication mechanism.

4.2 Burst Computing implementation 41

Furthermore, we can observe how the number of connections is low (4 connections for 32
functions) given that the container (which executes a number of functions inside) is the
responsible of the subscription to the indirect communication system.

After seeing the communication mechanisms that Burst Computing will use, it is also
necessary to offer the user the necessary interfaces so that they can specify the commu-
nication between functions. Burst Computing must offer the user the following communi-
cation policies between functions:

• One-to-one (send2)

• One-to-many (broadcast, send2all)

• Many-to-one (gather)

• Many-to-many (shuffle, sort)

Note that the programming of communication between functions in Burst Computing
will remind us of the existing interfaces that currently exist in OpenMPI. It will be nec-
essary to modify the current FaaS runtime environments by developing a communication
middleware that enables the interpretation of these communication directives, leading to
the proper routing of messages (using intra-container or inter-container communication
techniques, as appropriate). When the user programs the parallel function that will be
executed in Burst Computing, they will use the aforementioned directives to define the
communication flows between functions.

4.2 Burst Computing implementation

4.2.1 Group invocation implementation

The invocation of groups of parallel functions through Burst Computing has been imple-
mented by making the necessary modifications to the Apache Openwhisk and Lithops
technologies. Openwhisk has been chosen as the FaaS platform to modify given its great
acceptance within the FaaS world, and together with Lithops (an excellent tool for exe-
cuting parallel jobs, and developed by the CLOUDLAB research group, from this same
university), they form the perfect combination to implement group invocation.

Both Openwhisk and Lithops have been modified to support Burst computing. In Table
4.1, we can obtain the access URLs to themodified versions of the code from both platforms.

42 Burst Computing model

These are repositories hosted onGithub, which are forks of themain projects onwhich they
are based.

Project Github link
Openwhisk https://github.com/CLOUDLAB-URV/openwhisk-burst
Lithops https://github.com/kikemolina3/lithops-burst

Table 4.1 Modified projects links

To introduce the modifications, we show Figure 4.6, where we can graphically visualize
a diagram of an invocation of a group of parallel functions with Lithops and Open-
whisk (in their modified versions), and then begin to list the steps that have been followed
in the implementation of burst group invocation.

Openwhisk
CTRL

Invoker 1

Invoker 2

Invoker NKubernetes
cluster

20 CPU

15 CPU

activationIds:
[uuid1, uuid2, uuid3]

activate(..., 20)

INVOKER
MONITOR

Lithops
image

activate(..., 15)
activate(..., 5)

uuid1

uuid2

uuid3 5 CPU

m
ap

(4
0,

 ..
.,

bu
rs

t=
Tr

ue
)

Figure 4.6 Group invocation implementation

In Lithops (client side), the current map() function has been modified, so that in
the newmodified version it will accept a new optional burst parameter. If this parameter
is set to true (burst=true), then the new burst API method created in Openwhisk will
be called (which we will name a little later). Based on Figure 4.6, if we make a map() call
like the one in Listing 4.1, then instead of making 40 calls to Openwhisk via REST API, a
single call will be made to Openwhisk.

1 fexec.map(code, iterdata, burst=True)

https://github.com/CLOUDLAB-URV/openwhisk-burst
https://github.com/kikemolina3/lithops-burst

4.2 Burst Computing implementation 43

Lithops
image

Entry
point

N CPUs

Result

N times

...

Figure 4.7 Lithops runtime multiprocessing

Listing 4.1 New burst param in map() function in Lithops

In order for Openwhisk to receive the burst, the current Openwhisk Controller has been
modified. It has been modified in such a way that the HTTP invocation of a function
now supports a burst query param. If burst=true, then Openwhisk will know that
it has to handle the burst of 𝑁 functions and will act accordingly.

With the newmodifications, it will be necessary for the Openwhisk Controller to know
the status of the CPUs of the different Invokers it operates (Invoker Monitor in Figure 4.6),
so that it can distribute the burst between the different machines. To do this, both the
Invoker and the Controller of Openwhisk have beenmodified, making each of the invokers
notify the Controller with the CPUs they have available, allowing the Controller to have
the CPU availability status of each of its Invokers.

Once the CPU availability status of the Invokers is known, and after having received
a burst request in the Openwhisk controller, the burst is distributed accordingly. The
implemented version has been the heterogeneous one, where the containers may have
different numbers of assigned CPUs. The burst scheduling policy will assign the invok-

44 Burst Computing model

ers with the highest number of available CPUs first, prioritizing the location of functions
within the same node (locality).

The Openwhisk Invoker has also been modified to make CPU usage exclusive, with
each function running on burst having its dedicated CPU.

A number of multicore containers 𝐶 will be initialized, which will execute 𝑁 func-
tions, satisfying that 𝐶 << 𝑁 . Then, within the multi-core containers several functions
will be executed. The Lithops runtime is responsible of dispatching the different func-
tions within the container, and after receiving the necessary payload, and through Python
multiprocessing (see Figure 4.7), it will be responsible of creating as many Python
processes as necessary and executing functions in parallel.

The runtime for executing the functions (Lithops runtime) will receive the data struc-
ture it needs to know the distribution of burst functions. The runtime will receive a
data structure in the payload, which we can see in Listing 4.2, which reports the position of
each of the functions for communication between them (not implemented at the moment).

1 {
2 "burst_info":{
3 "invoker0":{
4 "container0":[
5 0,
6 9
7],
8 "container1":[
9 10,

10 19
11]
12 },
13 "invoker1":{
14 "container2":[
15 20,
16 29
17]
18 }
19 }

4.2 Burst Computing implementation 45

20 }

Listing 4.2 Burst distribution payload

It should be noted that the current burst implementation on Openwhisk using Lithops
as a client and execution runtime ismulti-burst (supports several bursts at the same time)
and multi-tenancy (supports several users executing bursts at the same time).

Chapter 5

Evaluation

5.1 Burst boundaries

What determines whether a job should (or even can) be run as a burst computation or
is best run on other models? Since we define a burst job as a transient workload that
arrives suddenly, runs quickly, and vanishes from the system as soon as it is done, our first
hint towards the answer is around execution latency. One one side, a burst computation
requires timeliness, meaning that is should be able to respond to real-time workloads, and
thus begin execution immediately after receiving a request. On the other side, heavy, long-
running jobs are naturally less sensitive to latency, and may thus invest part of their run
time in setting up a dedicated cluster that best fits their needs (the longer the job, the
less representative becomes the startup time). These considerations define a lower and an
upper boundaries, respectively, for the definition of burst computations. They should start
immediately, and they should not last too long as to become resource inefficient. However,
how do we determine specific values for them that make sense in an implementation that
leverages current technologies?

Since we aim to find a feasible solution to Burst computing with current technologies,
in this document we decide to only consider those platforms that can run today as multi-
tenant public cloud services. We also consider a serverless approach, meaning that there
are no allocated idle resources ready for an incoming burst job. For instance, Li et al. [12]
propose a target of 1 ms as time boundary to run a massively parallel job. However, this
is only feasible with a bare-metal, fully-managed, dedicated cluster with multiple ad hoc
optimizations, and thus beyond reach of a serverless service.

48 Evaluation

For the lower bound, immediate execution is not possible since we need to allocate
resources, prepare runtime environments, and distribute work. For instance, cluster tech-
nologies like Spark, Dask, or Raymust first start a set of VMs (or containers in a Kubernetes-
like system) which may take seconds or minutes to become available. Furthermore, they
require initial node membership and configuration protocols that extend startup time even
longer. As we may see in Table 5.1, EMR Spark, Dask, and Ray need at least 3 min to start
a small cluster (6–8 nodes). To create bigger clusters (24–64 nodes), the startup time raises
to around 4-5 min. AWS EMR Spark is slower here, deploying 24 nodes in around 7 min.
Meanwhile, Google’s Dataproc is able to deploy a 24-machine Spark cluster in just under 2
min. It is important to note that we collect the time when all computational resources are
ready to work since a burst computation requires complete simultaneity to run its parallel
code. Hence, situations possible in systems like Ray, where nodes may start working as
soon as they are ready individually, are not considered valid here.

On the other hand, FaaS technologies are much faster to allocate space for a large
number of parallel tasks. Experimentation shows how AWS Lambda may allocate a new
environment for a function execution (cold start) in around 200 ms and start 100 of them
in 7 s. Reusing previous environments (warm start), the service may start all 100 tasks in
just 100 ms.

Technology Total CPUs Nodes Startup time
EMR Spark 96 6 295.66 s
EMR Spark 96 24 430.85 s
Dataproc 96 6 95.39 s
Dataproc 96 24 13.28 s
Dask 128 8 183.50 s
Dask 128 64 253.35 s
Ray 128 8 186.87 s
Ray 128 64 228.98 s

Table 5.1 Startup time for different cluster technologies. AWS EMR Spark and GCP Dat-
aproc use m5 and E2-standard machine families, respectively. Dask and Ray are deployed
on managed EC2 VMs of the m6i family.

Therefore, our lower bound cannot be set lower than 100 ms with currently available
cloud services (warm start in AWS Lambda). Another clear conclusion is that it makes no
sense to use cluster computing technologies to run burst-parallel jobs that last less than
3-4 min since the time to start the cluster outweights useful compute time. Currently, only
FaaS can provide resources quickly enough for jobs that last between 100 ms and 4 min.

5.2 Group invocation evaluation 49

This defines our lower and upper bounds for burst job1 and creates a space of applica-
tions that remain only partially supported by current technologies. Indeed, FaaS platforms
effectively embrace burst embarrassingly parallel jobs, but their restrictions (ephemeral,
no direct communication, no guarantees of simultaneity, etc.) hold them short to fully
host burst computations. In this document we reforce that an evolution of FaaS to become
burst-aware is necessary to provide such support.

5.2 Group invocation evaluation

The implementation of burst group invocation using Apache Openwhisk and Lithops (see
Subsection 4.2) will allow us to invoke groups of parallel functions (without communica-
tion between them) ensuring parallelism between these functions.

To validate the proper functioning of the burst group invocation implementation, a
group of 𝑁 parallel functions will be launched, first with the classic version of Apache
Openwhisk (FaaS) and later with the modified burst version of Lithops and Openwhisk
(Burst Computing). The comparison between the results obtained will show to what extent
Burst Computing favors the execution of groups of parallel functions.

In the experiments that wewill present below, Openwhisk is used deployed on a Kuber-
netes cluster, in such a way that there is 1 Openwhisk control plane node and 4 Invokers
nodes. In the following table, we can see the architecture we have for the Kubernetes
cluster on which both the classic version of Openwhisk and its modified version for Burst
Computing are deployed.

PC name Role # CPU
compute6 Core 4
compute2 Invoker 24
compute4 Invoker 48
compute5 Invoker 48
compute7 Invoker 12

Table 5.2 Cluster architecture over Openwhisk is deployed

Two experiments will be carried out: in the first of them, 120 sleep functions will be
executed on Openwhisk deployed in the Kubernetes cluster, and in the second experiment

1The boundaries do not mean that Burst computing is not adequate for jobs beyond them. They just define
a set of jobs that cannot effectively run with current serverless technologies. For instance, Burst computing
is completely valid for sudden long jobs with parallel tasks running for even 50 min.

50 Evaluation

an intense workload will be executed (Monte Carlo algorithm) that will approximate the
value of 𝜋.

5.2.1 5s sleep functions

This experiment consists of launching 120 parallelsleep functions (functions that execute
a processor sleep for 5 seconds and then return). We are going to compare the execution
of the 120 sleep functions between the classic version of Openwhisk versus the modified
version of Burst Computing.

In Figure 5.1 we can see this comparison. The purple dots are the time at which Open-
whisk is requested to invoke the function. The horizontal bars (note that their length is
5s) represent the execution strip of the corresponding function, and the color of these bars
represents the invoker in which the function is executed. Finally, the blue curve represents
the number of active functions at the same time point.

0

25

50

75

100

0 5 10 15 20
time FaaS (s)

ac

ti
va

ti
on

0

25

50

75

100

125

0 5 10 15 20
time Burst (s)

ac

ti
va

ti
on

Figure 5.1 Timeline of 120 sleep functions FaaS vs Burst Computing

5.2 Group invocation evaluation 51

Wecan see how in the implementation of Burst Computing onOpenwhisk the execution
time is much shorter than in the vanilla version (10.2 s vs 20 s, being approximately half
the time for this particular case). Furthermore, the degree of parallelism is much higher in
the Burst Computing version (in the vanilla version the maximum degree of concurrency is
75/120 functions, while in Burst Computing the degree of parallelism reaches a maximum,
120/120 functions). This is mainly because activating functions in the same container
(using multiprocessing) is much faster than creating individual Docker containers
to run a single function within them.

From the same experiment we obtain the latency boxplot that we can see in Figure 5.2.
In this plot, we can observe the temporal distribution of the moments in which each of the
functions begin to be executed. Comparing Openwhisk vanilla with the Burst Computing
version, we see that the distribution of Burst Computing is much narrower. The narrower
the distribution of function start latencies, the greater their degree of parallelism, so Figure
5.2 is further evidence that the degree of parallelism ismuch greater using Burst Computing.

classic

burst

4 8 12 16

Latency (s)

C
lo

ud

pr
ov

id
er

Figure 5.2 Latencies of 120 sleep functions FaaS vs Burst Computing

5.2.2 Monte carlo algorithm

This experiment is related to the previous one, since in the same way, a group of parallel
functions that do not communicate during their execution will be executed. However, this
experiment differs from the previous one in that in this case, we will run a real and intense
workload.

This workload consists of estimating the value of 𝜋 using a Monte Carlo simulation
(Monte Carlo methods are a broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results). In the following link (https://github.com/
lithops-cloud/applications) we can find the Python script that is responsible for estimating
the value of 𝜋. In the simulation carried out in this experiment, 100 functions will be
activated and executed, and each of them will use 10 million random points to estimate
the value of 𝜋.

https://github.com/lithops-cloud/applications
https://github.com/lithops-cloud/applications

52 Evaluation

0

25

50

75

100

0 10 20 30 40
time FaaS (s)

ac

ti
va

ti
on

0

25

50

75

100

0 10 20 30 40
time Burst (s)

ac

ti
va

ti
on

Figure 5.3 Timeline of 100 𝜋 estimation functions FaaS vs Burst Computing

Wewill proceed to show the timeline of function executions (analogous to the previous
experiment).

classic

burst

5 10 15 20

Latency (s)

C
lo

ud

pr
ov

id
er

Figure 5.4 Latencies of 100 𝜋 estimation functions FaaS vs Burst Computing

In Figure 5.3, we can again see how the degree of parallelism is higher and remains
higher for longer in the Burst Computing implementation. In the vanilla version of Open-

5.2 Group invocation evaluation 53

whisk we see that the degree of concurrency is, at most, 90/100 functions (instant peak),
but in the Burst Computing version the best degree of concurrency is again 100/100 func-
tions. It is again evident that the execution time is much lower, obtaining 31 s of execution
time in vanilla Openwhisk and 20 s in the modified version of Burst Computing.

In order to study the degree of parallelism again, we will study the distribution of
startup times in Figure 5.4. We regenerate the latency boxplot, and the Burst Computing
boxplot is much more compact than the vanilla Openwhisk boxplot. This means that the
functions start in a shorter time frame from each other, which leads to a much greater
degree of parallelism.

To conclude this section, we will highlight the main advantages of the burst group
invocation implementation presented in this document:

• Shorter execution times of the group of parallel functions, produced by lower
startup latencies.

• Greater degree of parallelism of functions, and guarantee of parallelism between
them.

Chapter 6

Conclusions

In this document, we have identified that workloads that require a low temporal cost of
execution can be executed under a new computing model.

With Burst Computing, users will be able to take advantage of FaaS services to run their
short workloads much faster than using alternative cluster technologies in the cloud.

The series of specifications that a FaaS platform must include to allow the invocation
of groups of parallel functions and communication between them in Burst Computing has
been defined. Furthermore, the implementation of execution of groups of parallel func-
tions in Apache Openwhisk has had positive results, so that a high degree of parallelism
is achieved and at the same time the execution time of the workloads is significantly im-
proved.

The new Burst Computing model presented in this document requires more work. This
final master’s project serves as a presentation and definition of the model, and a first step
in its implementation by programming the invocation of groups of functions. However,
there is a lot of possible future work along the lines of this computing model, which we
can see in the following Section 7.

Chapter 7

Future work

The scope of this document is to introduce the new Burst Computing model, defining what
its general architecture should be and starting the implementation by taking a first step
with the implementation of the invocation of function groups. Clearly, in terms of future
work in the line of research involved in the Burst Computing model, there is still a lot
of work ahead to reach a good degree of maturity and refine the model until reaching a
good implementation that can be used in productive environments.

First of all, the most urgent thing is to develop the necessarymiddleware to be able to
communicate functions with each other. This implementation has been left out of the
scope of this document (due to too much workload) but it is the key aspect that will allow
the Burst Computing model to be used for many more use cases than is currently possible
(given that so far it has not been possible communicate functions between them).

The previous paragraph leads us to another possible line of work: the performance
analysis of workloads with different burst configurations (homogeneous version of
different granularities + heterogeneous version). An analysis of different workloads (with
different volumes of data to be transferred between functions, different levels of CPU stress,
etc.) would provide information on which configurations are most appropriate in which
cases. The information obtained could even be used so that the FaaS platform, by default,
decides for the user the best burst configuration (depending on the code to be executed,
number of functions, volume of data to be transferred…).

Another aspect to improve is the client’s independence from the FaaS platform.
In the current implementation reflected in this document, Apache Openwhisk as FaaS is
the ideal backend to run parallel functions, but in the current implementation it depends
on the Lithops client for a function burst to be successful. The current implementation

58 Future work

with Lithops offers us advantages when it comes to obtaining execution metrics (very
valuable for the evaluation of the implementation) andmainly for this reason it was chosen.
However, modify default Openwhisk runtimes is much more elegant and appropriate than
use the Lithops dependent runtime. Note that there are numerous Openwhisk runtimes
(one for each supported language) and making Openwhisk 100% compatible with Burst
Computing means adapting all runtimes.

It would also be very interesting to take classic examples of different algorithms that
require parallel computing, and make a comparison between Burst Computing and
cluster technologies. It would give us valuable information (types of tasks most appro-
priate for a specific environment, influence of the communication channel on the perfor-
mance of the algorithm, possible bottlenecks in Burst Computing, etc.) that could even
be used to redefine the burst boundaries, getting us closer each time to more appropriate
values.

It would also be of special interest to explore the possible fault tolerance of the Burst
Computing model. At the moment, the model does not consider fault tolerance, sacrificing
the reliability of short-duration executions for greater performance. However, progress
can be made in this matter, making Burst Computing resistant to certain failures. If the
functions executed in a burst are stateless, and one of the functions fails, the re-execution
of this function can be scheduled and the workflow would recover from the failure. If the
functions to be executed in a burst are stateful, then the situation becomes complicated,
but persistence in communication systems (communication through OS tools and indirect
communication between functions in different containers) could be used to recover the
workflow of the burst successfully. This last mentioned design is a small draft of how one
could act before failures in the system, but it needs to be studied in depth to mature and
be defined.

What is clear is that Burst Computing is a model with a very well-defined target (short
tasks of between 100 ms and 4 min, which require immediacy in their execution) and
some ambitious future lines. Although there is a long way to go, if they are satisfactorily
overcome, they could mean the success of Burst Computing and its use to provide solutions
to multiple use cases.

Bibliography

[1] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. Oc-
cupy the cloud: distributed computing for the 99%. In Proceedings of the 2017 Sympo-
sium on Cloud Computing, SoCC ’17, pages 445–451, New York, NY, USA, Septem-
ber 2017. Association for Computing Machinery. ISBN 978-1-4503-5028-0. doi:
10.1145/3127479.3128601. URL https://dl.acm.org/doi/10.1145/3127479.3128601.

[2] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubrama-
niam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. Encoding, Fast and Slow: Low-Latency Video Processing Using Thou-
sands of Tiny Threads. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 363–376, Boston, MA, March 2017. USENIX Asso-
ciation. ISBN 978-1-931971-37-9. URL https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/fouladi.

[3] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-López. Serverless
data analytics in the ibm cloud. In Proceedings of the 19th International Middleware
Conference Industry, Middleware ’18, page 1–8, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450360166. doi: 10.1145/3284028.3284029. URL
https://doi.org/10.1145/3284028.3284029.

[4] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional containers. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 475–488, Renton, WA, July
2019. USENIX Association. ISBN 978-1-939133-03-8. URL http://www.usenix.org/
conference/atc19/presentation/fouladi.

[5] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. Sprocket: A
Serverless Video Processing Framework. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’18, pages 263–274, New York, NY, USA, October 2018. As-
sociation for Computing Machinery. ISBN 978-1-4503-6011-1. doi: 10.1145/3267809.
3267815. URL https://dl.acm.org/doi/10.1145/3267809.3267815.

[6] AWS. New for aws lambda – 1ms billing granular-
ity adds cost savings. https://aws.amazon.com/blogs/aws/
new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/, 2020.

[7] Ingo Müller, Rodrigo F. B. P. Bruno, Ana Klimovic, Gustavo Alonso, JohnWilkes, and
Eric Sedlar. Serverless Clusters: TheMissing Piece for Interactive Batch Applications?

https://dl.acm.org/doi/10.1145/3127479.3128601
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1145/3284028.3284029
http://www.usenix.org/conference/atc19/presentation/fouladi
http://www.usenix.org/conference/atc19/presentation/fouladi
https://dl.acm.org/doi/10.1145/3267809.3267815
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/

60 Bibliography

April 2020. doi: 10.3929/ethz-b-000405616. URL https://www.research-collection.
ethz.ch/handle/20.500.11850/405616.

[8] Daniel Barcelona-Pons and Pedro García-López. Benchmarking Parallelism in FaaS
Platforms. Future Generation Computer Systems, 124:268–284, October 2020. doi:
10.1016/j.future.2021.06.005. Publisher: Elsevier BV arXiv: 2010.15032.

[9] Lithops Contributors. Lithops - Lightweight optimized Python framework for server-
less computing, 2023. URL https://lithops-cloud.github.io.

[10] Apache Software Foundation. Apache openwhisk documentation, 2023. URL https:
//openwhisk.apache.org.

[11] Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter. Particle:
ephemeral endpoints for serverless networking. In Proceedings of the 11th ACM
Symposium on Cloud Computing, SoCC ’20, pages 16–29, New York, NY, USA, Oc-
tober 2020. Association for Computing Machinery. ISBN 978-1-4503-8137-6. doi:
10.1145/3419111.3421275. URL https://dl.acm.org/doi/10.1145/3419111.3421275.

[12] Yilong Li, Seo Jin Park, and John Ousterhout. {MilliSort} and {MilliQuery}: {Large-
Scale} {Data-Intensive} Computing in Milliseconds. pages 593–611, 2021. ISBN 978-1-
939133-21-2. URL https://www.usenix.org/conference/nsdi21/presentation/li-yilong.

[13] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas. Mxfaas: Resource
sharing in serverless environments for parallelism and efficiency. In Proceedings of
the 50th Annual International Symposium on Computer Architecture, ISCA ’23, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700958.
doi: 10.1145/3579371.3589069. URL https://doi.org/10.1145/3579371.3589069.

[14] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke, An-
dre Beck, Paarijaat Aditya, and Volker Hilt. {SAND}: Towards {High-Performance}
Serverless Computing. pages 923–935, 2018. ISBN 978-1-939133-01-4. URL https:
//www.usenix.org/conference/atc18/presentation/akkus.

[15] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. Faastlane: Ac-
celerating Function-as-a-Service workflows. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21), pages 805–820. USENIX Association, July 2021. ISBN 978-
1-939133-23-6. URL https://www.usenix.org/conference/atc21/presentation/kotni.

https://www.research-collection.ethz.ch/handle/20.500.11850/405616
https://www.research-collection.ethz.ch/handle/20.500.11850/405616
https://lithops-cloud.github.io
https://openwhisk.apache.org
https://openwhisk.apache.org
https://dl.acm.org/doi/10.1145/3419111.3421275
https://www.usenix.org/conference/nsdi21/presentation/li-yilong
https://doi.org/10.1145/3579371.3589069
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc21/presentation/kotni

	Contents
	List of Figures
	List of Tables
	1 Introduction & research objectives
	2 State-of-the-art
	2.1 Burst literature
	2.2 Burst related approaches
	2.3 Burst computing and cluster technologies

	3 Technologies presentation
	3.1 Lithops
	3.2 Apache Openwhisk

	4 Burst Computing model
	4.1 Burst Computing architecture
	4.1.1 Group invocation architecture
	4.1.2 Group communication architecture

	4.2 Burst Computing implementation
	4.2.1 Group invocation implementation

	5 Evaluation
	5.1 Burst boundaries
	5.2 Group invocation evaluation
	5.2.1 5s sleep functions
	5.2.2 Monte carlo algorithm

	6 Conclusions
	7 Future work
	Bibliography

