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Abstract 
 

 

The technological advancements that science has achieved in the latest years in the field 
of medicine allowed the creation of new fields of study that researched new medical 
approaches that aimed to personalize therapies, tailoring strategies based on the genomic, 
epigenomic and proteomic profiles of an individual to provide the most effective 
treatment for an individual or recognizing hidden abnormalities before the disease is 
manifested. This is due to the improvements in genomic sequencing techniques, which 
provide more insightful data for researchers while diminishing the costs of said 
investigations.  

While the uprising in the development of improved sequencing methods and personalized 
medicine are to be highly insightful for new techniques, they demand large quantities of 
data of many individuals to be processed to aid the research, data that is highly sensitive 
of the information of an individual, yet few specific regulatory standards protect the 
security of the sensitive health data needed for precision medicine research.  

Genomic data are extremely sensitive personal data, as they contain information that is 
unique to an individual and very disclosive regarding their health, expected diseases, 
skills, etc. At the same time, disclosing an individual’s genomic data also substantially 
discloses the genomic information of their kin. Anonymizing genomic data to make them 
non-personal and hence shareable under the General Data Protection Regulation (GDPR) 
is challenging, as the usual anonymization methods based on data perturbation or 
generalization might have unknown consequences, because the meaning of such changes 
on genomic data is not yet well understood. What exists is outdated and insufficient, thus 
new methods to protect the anonymity of the data are to be investigated so as not to 
endanger it being compromised by cyberattacks. 

In this thesis, we explore the state of the art in privacy-preserving methods for genomic 
data, and describe a new, detailed cryptographic protocol for privacy preservation in 
genomic data sharing that could guarantee the security of the data while not hampering 
the progress of new research. 
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Chapter 1 
1 Introduction 
 

 

1.1 Motivation 
 

A new systems approach to diseased states and wellness result in a new branch in the 
healthcare services, namely, personalized medicine (PM) [34]. To achieve the 
implementation of PM concept into the daily practice including clinical cardiology, it is 
necessary to create a fundamentally new strategy based upon the subclinical recognition 
of bioindicators (biopredictors and biomarkers) of hidden abnormalities long before the 
disease clinically manifests itself.  

In recent years, technological improvements have substantially decreased the cost of 
genome sequencing, thus generating an unprecedented amount of genomic data that have 
been vital in many research applications. Several research initiatives (for example, the 
National Institutes of Health (NIH) All of Us Research Program) are integrating these 
data with the goal of serving as a source of analyses for a wide range of studies. 
Simultaneously, genomic-data-driven applications in the private sector have substantially 
expanded, wherein personal genomic data are collected to provide health-related services 
to individuals. 

In parallel with this, there has been an uprising in the investigation on personalized 
medicine, a particularly novel and exciting topic in the medicine and healthcare industries, 
that has the potential to transform medical interventions by providing effective, tailored 
therapeutic strategies based on the genomic, epigenomic and proteomic profile of an 
individual, whilst also remaining mindful of a patient's personal situation, by tailoring a 
treatment as individualized as the disease. The approach relies on identifying genetic, 
epigenomic, and clinical information that allows the breakthroughs in our understanding 
of how a person's unique genomic portfolio makes them vulnerable to certain diseases 
[23], [24], [34]. 

But this precision has a price that science and medicine do not acknowledge. Personalized 
medicine demands that we all contribute our medical histories and genomes to the big 
data research pool. The science works only if the numbers are exceptionally large; so 
large that some envision every patient as a subject whose medical data will be shared for 
research, while assuring the privacy of the individual. 
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A growing number of experts, particularly re-identification scientists, believe it is simply 
not possible to de-identify the genomic data and medical information needed for precision 
medicine. To be useful, such information cannot be modified or stripped of identifiers to 
the point where there’s no real risk that the data could be linked back to a patient [35]. 

Security is essential to protect privacy, yet few specific regulatory standards protect the 
security of the sensitive health data needed for precision medicine research. What exists 
is outdated and insufficient.  

For example, while a fingerprint, long known to be useful for re-identification, was 
protected under the 2003 federal HIPAA Privacy and Security rules as a “biometric 
identifier,” the genome is not—and today, 14 years and millions of genotypes later, still 
is not. 

Growing number of civilians have seen their medical data compromised by cyberattacks 
on data stored at hospitals, insurers, and clinical laboratories, mainly attacking electronic 
health records (EHRs), which link to the genomic data needed for precision medicine. If 
said data were to be obtained, the privacy impact of cyberattacks will increase 
exponentially, as, unlike a medical record number or credit card number, genome 
sequences can’t be replaced when compromised, and sequence data are a wellspring of 
information about health risks, ancestry, and sometimes, unexpected parenthood [36]. 

Databases containing genomes and medical histories are multiplying, sometimes 
populated with the data of unwitting participants who don’t know researchers have 
sequenced their genomes and placed the data in research databases operated by public 
entities (such as the NIH) or private drug companies. Data from these databases is shared 
with researchers world-wide, typically under a “data use agreement” that offers no 
recourse to data subjects if their information is misused or compromised. 

Thus, the main object of this work is to investigate the current state of art in the field of 
privacy protection technologies applied to genomics, and to build a system that can 
guarantee the security of our genetic data while allowing working with the data for new 
investigations without hampering its progress and avoiding re-identification attacks. 

 

 

1.2  Our proposal 
 

We propose a protocol based on the METIS protocol, which promotes the division of the 
system into four different parties that each have their own roles, communicating 
researchers and data owners as a service provider, while encrypting the genomic data 
using model methods that artificially compute future generations’ data in order to grant 
anonymity. 

In general, there are three main problems that exists in working with encrypted genomic 
data, which are securing against reidentification attacks, secure computing and storing 
the genomic data, and query privacy. Current methods fail to provide defense against 
these three problems, are not yet investigated, or work only in the theoretical aspect, not 
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considering the properties of genomic data (such as needing long sequences of data to be 
of any use, instead of using small-scale data). 

Our method relies on the properties of garbled circuits, which allow the computation of 
functions on the data without revealing any information, while easily allowing the data 
owners to allow or reject any clients by sending them the key that allows to correctly 
evaluate their function. This way, the data owners have complete control over the 
genomic data. 

The clients will need to be authenticated and certified, via a legal contract, following 
similar systems in genomic databases, such as the eICU collaborative Research Database, 
where our system acts as a service provider system between genetic researchers and data 
owners, providing computations on large sets of genetic samples in a remote, secure way 
and diminishing the storage requisites of the data owners on genomic data. 

We also implement improvements over existing genomic security schemes as 
implementing modern Oblivious Transfer schemes that solve efficiency issues that surged 
on existing systems in the biological field, and the possibility to execute secure count 
queries on the encrypted data to allow the investigation on SNPs employing a prefix tree 
system. 

We add security against reidentification attacks by not using the original sequenced data, 
but instead, future generations’ artificially computed data, which by randomly pairing 
individuals, we can allow the statistical data of the alleles to remain identical while 
protecting current and future individuals’ data. For this, we propose an algorithm that 
takes advantage of the properties of the phenotypic proportions that apply to the genome 
sequences, supporting the privacy of the genomic data before it’s sent from the 
sequencing center. 

We modify the obtained genomic by simulating the recombination events in the mitosis, 
recombining all the individual’s data as to produce new sequences that can be used for 
investigation. 

 

 

1.3  Organization of the document 
 

The rest of the document is structured as follows. 

In the second chapter we will introduce the biological concepts needed to understand in 
more detail genomic data, what it is, how it can be obtained and used, and more specially, 
how can we use it in the technological sector. We will describe DNA, SNPs, genomic 
sequencing techniques and the current state of technology used in the production of such 
data. Then it will introduce the problem that this study aims to solve and the different 
techniques that are currently used in the privacy protection oriented to genomic data 
sector. 

The following chapter will be devoted to describing the systems and schemes on which 
our solution is based upon, mainly centering in the METIS system. 
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Next, we will describe our proposed system, providing a general overview of it, the 
different actors into which the system is decomposed, the technology necessary to 
implement it and real propositions of applications, as well as introducing our algorithm 
to aid in the anonymization of genomic databases through artificial generation of new 
generations, as well as studying its results with the aid of the haplotype analysis 
software ‘Haploview’.  

Finally, we will provide a conclusion and future plans for our work. 

 

 

 

1.4  Glossary 
 

DNA: Desoxyribonucleic acid, a thread-like chain of nucleotides molecules carrying the 
genetic instructions used in the growth, development, functioning and reproduction of all 
known living organisms and many viruses.  

RNA: Ribonucleic acid, a polymeric molecule assembled as a chain of nucleotides in one 
single strand that participates in the biological roles of coding, decoding, regulation and 
expression of genes.  

Nucleotide: Organic molecules consisting of a nucleoside and a phosphate. They serve 
as monomeric units of the DNA and the RNA. 

Meiosis: One of the types of cell division of germ cells in sexually reproducing organisms 
that produces the gametes. It involves two rounds of division that ultimately result in four 
cells with only one copy of each chromosome (haploid cells). 

Chromosome: Long DNA molecule with part or all of the genetic material of an 
organism. They are condensed during the initial phases of cell division, where they 
display a complex three-dimensional structure, which plays a significant role in 
transcriptional regulation. 

Chromatid: One of the halves of a duplicated chromosome. In replication, the DNA 
molecule is copied, and the two molecules are known as chromatids. During the later 
stages of cell division these chromatids separate longitudinally to become individual 
chromosomes. 

Chromosomal crossover: One of the final phases of genetic recombination, where an 
exchange of genetic material occurs during sexual reproduction between two homologous 
chromosomes' non-sister chromatids that results in recombinant chromosomes. 

Gene: Basic unit of heredity, sequence of nucleotides in DNA that are transcribed to 
produce a functional RNA. 

Allele: A variation of the same sequence of nucleotides at the same place on a long DNA 
molecule. Its simplest form are SNPs. 
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SNP: Single-nucleotide polymorphism, a substitution of a single nucleotide at a specific 
position in the genome that needs to be present in a sufficiently large fraction of the 
population (e.g., 1% or more). 

Heterozygosity: The percentage of gene loci that are heterozygous in an average 
individual of a given population. 

Gene locus: A locus refers to a fixed position in a chromosome, thus allowing to 
determine the position of a gene or marker in a chromosome. 

Genotype: The complete set of genetic material for an organism. It refers to the alleles 
or variants an individual carries in a particular gene or genetic location. In diploid species 
like humans (which carry two copies of each chromosome), two full sets of chromosomes 
are present, meaning each individual has two alleles for any given gene. 

Haplotype: Group of alleles in an organism that are inherited together from a single 
parent. The haploid genotype (haplotype) is a genotype that considers the singular 
chromosomes rather than the pairs of chromosomes. It can be all the chromosomes from 
one of the parents or a minor part of a chromosome, such a smaller sequence of base pairs. 

Genome: Nucleotide sequences of DNA (or RNA in RNA viruses) that conforms all the 
genetic information of an organism, including protein-coding genes and non-coding 
genes, the other functional regions of the genome (Non-coding DNA), and any junk DNA 
if present. 

Polymorphism: It refers to the occurrence of two or more clearly different morphs, 
phenotypes, in the population of a species 

High-throughput methods: Drug discovery process that allows automated testing of 
large numbers of chemical and/or biological compounds for a specific biological target. 
It aims to identify through compound library screenings, candidates that affect the target 
in the desired way. 

DNA sequencing: The process of determining the nucleotide order of a given DNA 
fragment. Sequencing results in a symbolic linear depiction known as a sequence which 
succinctly summarizes much of the atomic-level structure of the sequenced molecule. 

Personalized medicine: Also referred as precision medicine, it is a medical model that 
separates people into diverse groups—with medical decisions, practices, interventions 
and/or products being tailored to the individual patient based on their predicted response 
or risk of disease. 

FASTQ: Text-based format for storing both a biological sequence (usually nucleotide 
sequence) and its corresponding quality scores. Both the sequence letter and quality score 
are each encoded with a single ASCII character for brevity, used to store a variable 
number of sequence records for genetic material. 

 

 



 

 
 
 
Chapter 2 
 

2 Preliminaries 
 

2.1  Introduction 
 

Personalized medicine promises much. New initiatives aim to harness technology and 
genomics to create bespoke medicine, customizing your healthcare like your Facebook 
profile. Instead of relying on generic practice guidelines, your doctors may one day use 
these new analytic tools to find the ideal treatment for you. Big data will make this 
precision possible: patterns that emerge from the DNA and medical records of millions 
can predict which treatments work best for which patients. Fewer mistakes, lower costs, 
and more effective care may result. 

An individual’s genetic information is possibly the most valuable personal information. 
While knowledge of a person’s DNA sequence can facilitate the diagnosis of several 
heritable diseases and allow personalized treatment, its exposure comes with significant 
threats to the patient’s privacy. 

Several notable features make genomic data different from other health data. For example, 
genomic data carry information that can be effectively used for determining the prognosis 
of health conditions (for example, Alzheimer’s disease) and designing preventive 
interventions. Another important property of genomic data is the presence of significant 
commonality among individuals who are blood relatives. Therefore, genome analysis is 
commonly used for susceptibly risk, paternity, and relativeness testing (for example, 
ancestry services), and for forensic purposes (for example, genomic genealogy searches). 

The development of personalized medicine is tightly linked with the correct exploitation 
of molecular data, which derives to an increasing demand to share these data for research 
purposes. Transition of clinical data to research is based in the anonymization of these 
data so the patient cannot be identified, the use of genomic data poses a great challenge 
because its nature of identifying data [23]. 

To support large-scale biomedical research projects, organizations need to share person-
specific genomic sequences without violating the privacy of their data subjects. In the 
past, organizations protected subjects’ identities by removing identifiers, such as name 
and social security number; however, recent investigations illustrate that deidentified 
genomic data can be “reidentified” to named individuals using simple automated methods. 



17  Preliminaries 
-Introduction 

 
This motivates the demand for cryptographic protocols which enable computation over 
encrypted genomic data while keeping the owner of the genome in full control, as 
traditional privacy models designed for health data provide limited protection of genomic 
data. An attacker may learn sensitive information about a target individual by exploiting 
the dependency between genomic data and other publicly available information such as 
family name, demographic data and observable features (for example, eye and hair color). 

Because personal data are readily available (for example, through social networks), 
privacy assurances through traditional methods are unlikely to be sustainable. 

Furthermore, the rise of direct-to-consumer (DTC) genetic testing companies poses new 
privacy and ethical concerns. These companies are collecting data from a growing number 
of individuals, some of whom may share their data without fully understanding the 
potential implications for themselves as well as their current and future blood relatives. 

Privacy breaches can have serious social implications and can adversely affect genomic-
driven research, such as by decreasing data collection and data sharing. Therefore, it is 
imperative to ensure privacy both as a fundamental right for individuals and as an 
enabling strategy to support responsible data sharing. 

With this objective, this study aims at exploring the state of the art in privacy-preserving 
methods for genomic data, familiarizing with the current privacy-preserving techniques 
that preserve genomic utility, and at proposing new methods that preserve the utility of 
genomic data while encrypted. 

 

2.1.1 Genomic data 
 

Genomic data refers to the genome and DNA data of an organism. They are used in 
bioinformatics for collecting, storing, and processing the genomes of living things. 
Genomic data generally require a large amount of storage and purpose-built software to 
analyze.  

The DNA, or deoxyribonucleic acid, is a polymer composed of two polynucleotide chains 
that coil around each other to form a double helix carrying genetic instructions for the 
development, functioning, growth and reproduction of all known organisms and many 
viruses.  

In humans, the genetic material is formed by two strands of DNA joined together by the 
nitrogenous bases, linking adenine with thymine and guanine with cytosine.  

It consists of the hereditary material in almost all organisms, found in the nucleus of the 
cells (generally) and in the mitochondria. It stores the genetic information of an individual 
where each strand of the DNA is known as a polynucleotide, composed of simpler 
monomeric units, the nucleotides. These nucleotides are composed on a nitrogen-
containing nucleobases, the nitrogenous bases, which conform a code based on four 
different chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). These 
nucleotides are jointed to one another in a chain by covalent bonds between the sugar of 
one nucleotide and the phosphate of the next, allowing both chains to be linked. 
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Figure 1: Simplified structure of the DNA. 

Human DNA consists of about 3 billion bases, and more than 99 percent of those bases 
are the same in all people. The order, or sequence, of these bases determines the 
information available for building and maintaining an organism, similar to the way in 
which letters of the alphabet appear in a certain order to form words and sentences. 

The DNA forms a self-replicating structure, known as chromosomes, which are the units 
that carry genetic information. Human cells have 23 pairs of chromosomes (22 pairs of 
autosomes and one pair of sex chromosomes), giving a total of 46 per cell.  

The main object of study in genetics are the precise positions along a chromosome where 
the DNA of different people may vary. These positions are named Single Nucleotide 
Polymorphisms (SNP). A SNP is a single base pair change in the DNA sequence at a 
particular point compared with the “common” or “wild-type” sequence. 

 

Figure 2: SNP in genetic data. 

In the biological terms, particular types of variants of a SNP are named alleles, which 
describe single base variations that constitute the difference in the genomic data between 
two individuals of the same species.  
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Most SNPs are biallelic (i.e., the SNP site may be occupied by either of two different 
bases), and the less common base must have a frequency of at least 1%, else it is classed 
as a rare mutation rather than a SNP. 

A single ordered set of DNA variations (SNPs) on a single chromosome is denominated 
as haplotype, and they are likely to be inherited together from a single parent, whereas 
the genotype describes the unordered combinations of alleles on both chromosomes, 
forming the genomic data that is employed in personalized medicine, along with many 
other fields. 

Genomic data are primarily used in big data processing and analysis techniques. Such 
data are gathered by a bioinformatics system or a genomic data processing software. 
Typically, genomic data are processed through various data analysis and management 
techniques to find and analyze genome structures and other genomic parameters. Data 
sequencing analysis techniques and variation analysis are common processes performed 
on genomic data [24]. 

 

2.1.2 High-throughput methods 
 

The aim of genomic data analysis is to determine the functions of specific genes. 

In order to be able to study and investigate genomic data, firstly a compilation of the 
information of the genome must be done.  

For this purpose, different methods have been elaborated which aim to quantify or locate 
all or most of the genome that harbors the biological feature (expressed genes, binding 
sites, etc.) of interest. These methods are known as High-throughput methods. Most of 
the methods rely on some sort of enrichment of the targeted biological feature. For 
example, if you want to measure expression of protein coding genes you need to be able 
to extract mRNA molecules with special post-transcriptional alterations that protein-
coding genes acquire, as done in many RNA sequencing (RNA-seq) experiments. This 
part depends on available molecular biology and chemistry techniques, and the final 
product of this part is RNA or DNA fragments. 

Then you need to be able to tell where these fragments are coming from in the genome 
and how many of them there are. One method employed for this consists of microarrays, 
in which one had to design complementary bases, called “oligos” or “probes”, to the 
genetic material enriched via the experimental protocol. If the enriched material is 
complementary to the oligos, a light signal will be produced, and the intensity of the signal 
will be proportional to the amount of the genetic material pairing with that oligo. There 
will be more probes available for hybridization (process of complementary bases forming 
bonds), so the more fragments available, stronger the signal. For this to be able to work, 
you need to know at least part of your genome sequence, and design probes. If you want 
to measure gene expression, your probes should overlap with genes and should be unique 
enough to not to bind sequences from other genes.  

This technology is now being replaced with sequencing technology known as High-
throughput sequencing, where you directly sequence your genetic material. If you have 
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the sequence of your fragments, you can align them back to the genome, see where they 
are coming from, and count them. This is a better technology where the quantification is 
based on the real identity of fragments rather than based on hybridization to designed 
probes [12]. 

In summary, HT techniques have the following steps, summarized in Figure 3: 

- Extraction: This is the step where you extract the genetic material of interest, RNA 
or DNA. 

- Enrichment: In this step, you enrich for the event you are interested in. For 
example, protein binding sites. In some cases, such as whole-genome DNA 
sequencing, there is no need for enrichment step. You just get fragments of 
genomic DNA and sequence them. 

- Quantification: This is where you quantify your enriched material. Depending on 
the protocol you may need to quantify a control set as well, where you should see 
no enrichment or only background enrichment. 

 

Figure 3: Steps of high-throughput assays in genome biology. 

High-throughput sequencing, or massively parallel sequencing, is a collection of 
methods and technologies that can sequence DNA thousands/millions of fragments at a 
time, in contrast to older technologies that can produce a limited number of fragments at 
a time. 

As of data repositories for genomics, there are two requirements to be able to visualize 
genomes and their associated data:  

1. We need to be able to work with a species that has a sequenced genome  
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2. We want to have annotation on that genome, meaning, at the very least, you want 

to know where the genes are.  

Most genomes after sequencing are quickly annotated with gene-predictions or known 
gene sequences are mapped on to them, and you can also have conservation to other 
species to filter functional elements. If you are working with a model organism or human, 
you will also have a lot of auxiliary information to help demarcate the functional regions 
such as regulatory regions, ncRNAs, and SNPs that are common in the population. Or 
you might have disease- or tissue-specific data available. The more the organism is 
worked on, the more auxiliary data you will have. 

As for this study the security of human genomic data is the main objective, a broad set of 
auxiliary data is also compiled for the human genomics. 

The data analysis steps typically include data collection, quality check and cleaning, 
processing, modeling, visualization, and reporting. 

1) Data collection: In genomics, data collection is done by high-throughput assays.  
2) Data quality check and cleaning: It is common to have missing values or 

measurements that are noisy. Data quality check and cleaning aims to identify any 
data quality issue and clean it from the dataset. 

3) Data processing: Refers to processing the data into a format that is suitable for 
exploratory analysis and modeling. Oftentimes, the data will not come in a ready-
to-analyze format. You may need to convert it to other formats by transforming 
data points (such as log transforming, normalizing, etc.), or subset the data set 
with some arbitrary or pre-defined condition [4]. In terms of genomics, processing 
includes multiple steps. 

4) Exploratory data analysis and modeling: Takes in the processed or semi-processed 
data and applies machine learning or statistical methods to explore the data. For 
example, the exploration’s aim can be to observe if the samples are grouped as 
expected by the experimental design, or if there are outliers or any anomalies. 
Then, a modeling step is done. This generally refers to modeling your variable of 
interest based on other variables you measured. In the context of genomics, it 
could be that you are trying to predict disease status of the patients from 
expression of genes you measured from their tissue samples. Then your variable 
of interest is the disease status. This kind of approach is generally called 
“predictive modeling” and could be solved with regression-based machine 
learning methods, like linear regression or other statistical methods. 

 

This final data is what composes the data in genomic databases, such as the National 
Library of Medicine (NIH), which contains genome information, such as sequences, maps, 
chromosomes, assemblies, and annotations for numerous species, like humans, dogs, or 
numerous bacteria.  

Some of these databases have compiled genetic, genomic, and multi-omic information 
about humans to develop databases that can aid the research of diseases, helping 
investigators understand, diagnose, and treat diseases according to the person’s genomic 
data, constituting the personalized medicine model. 
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Personalized medicine, or precision medicine consists of a set of practices that uses an 
individual’s genetic profile to guide decisions made in regard to the prevention, diagnosis 
and treatment of a particular disease, choosing the proper medication or therapy which 
can yield the best results for a particular individual. 

However, these databases are composed of highly sensitive data that is tightly linked to 
the correct exploitation of molecular data associated with a genome sequence, which in 
consequence, can leak information about a person, being possible to reidentify an 
individual from a specific genomic data set, which reveals the current association or 
future susceptibility of some diseases for that individual, which results in a privacy 
violation, so means to anonymize and efficiently apply privacy-preserving techniques, 
while avoiding hampering research are needed.  

 

2.1.3 Storing genomic sequence data 
 

The raw genomic sequence of a single individual can be encoded in 1.5GB by 
representing each of the four symbols (nucleotides) of the genetic alphabet as two-bit 
values. Therefore, taking into account that one genome copy of a human being (23 
chromosomes) is roughly 3 billion symbols long and that each individual inherits two 
such copies from their two parents, the amount of space that genomic data requires to be 
stored is considerably high. 

Moreover, the current state of technology does not allow error-free determination of the 
two genomic copies in full-length chromosomes from a single molecule. Instead, millions 
of DNA molecules are obtained (e.g., from a blood sample), broken into small fragments 
of a few hundred nucleotides and the resulting “library” of fragments is sequenced 
yielding billions of so-called “reads” of between 100 and 1000 nucleotides. These are 
stored together with technical quality information (i.e., the estimated reliability of the 
value) using the FASTQ format. The size of a FASTQ file is in the order of tens of 
gigabytes. 

The FASTQ format are the output obtained from sequencing facilities in text file, 
originated from the FASTA format [22]. 

This format is designed to handle base quality metrics output from sequencing machines. 
In this format, both the sequence and quality scores are represented as single ASCII 
characters. The format uses four lines for each sequence, and these four lines are stacked 
on top of each other in text files output by sequencing workflows. Each of the 4 lines will 
represent a read. 

- The first line begins with the ‘@’ character and is followed by a sequence 
identifier and an optional description. This line is utilized by the sequencing 
technology, and usually contains specific information for the technology. It can 
contain flow cell IDs, lane numbers, and information on read pairs. 

- The second line is the sequence letters that identify the nucleotides of the chain. 
- The third line begins with a ‘+’ character; it marks the end of the sequence and is 

optionally followed by the same sequence identifier again in the first line. 
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- The fourth line encodes the quality values for the sequence in the second line and 

must contain the same number of symbols as letters in the sequence. Each letter 
corresponds to a quality score. Although there might be different definitions of 
the quality scores, a de facto standard in the field is to use “Phred quality scores”. 
These scores represent the likelihood of the base being called wrong. These 
quality scores are computed as follows: 

𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −10 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10𝑒𝑒 
where e is the probability that the base is called wrong.  
Since the score is in minus log scale, the higher the score, the more unlikely that 
the base is called wrong. 

 

Figure 4: FASTQ file format. 

 

Figure 5: Commonly used Phred quality scores in different sequencing techniques. 

To solve the presented size problem that appears in extended sequences represented in a 
file, given a known reference sequence, it is sufficient to only encode the difference 
between an individual’s sequence and the reference, storing only the variants found in the 
individual in VCF files that amount to tens of megabytes in size. 

However, these files, while reducing the storage size considerably, leak important 
information, as the size can be correlated to the number of variants found in the individual. 
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Person-specific genomic records must be shared in a manner that preserves the anonymity 
of the data subjects. This requirement is rooted in both social concerns and public policy. 
Many people fear that sensitive information learned from their medical and genomic 
records will be misused or abused. To mitigate such concerns, many countries have 
enacted policies that limit the sharing of a subject’s genomic information in a personally 
identifiable form. For this, several institutes, such as the National Institutes of Health 
(NIH) are drafting policy that will require scientists to share genomic data studied with 
NIH funding once “identifiable information” has been removed. 

 

 

2.1.4 Privacy in genomic data 
 

In order to comply with newly stablished policies, investigators, at the completion of their 
studies, need to share their data collections to a centralized repository, so that other 
researchers can perform scientific investigations on the integrated data. 

To summarize the problem, genomic data collectors need to satisfy two goals when 
sharing genomic data: 

1. Data utility: the data should be useful for scientific investigations. 
2. Data privacy: the data should not reveal the subjects’ identities. 

These two problems can be solved following the presentation on ideas for dissemination 
of genetic data by Anna Oganian, who discusses novel techniques to solve the privacy 
problems in the dissemination of genetic data by employing synthetic data.  

Instead of working with original genetic data of subjects, that would need otherwise to be 
modified or tampered with to maintain privacy, we can achieve k-anonymity by 
employing synthetic microdata generation techniques applied to the genetical field to 
generate synthetic data, which constitutes as a low-risk alternative to perturbing/masking 
the original data, as synthetic records hold no direct correspondence to the original 
records. 

For this, we can construct new genetic data sets following the principles of population 
genetics by mixing and hashing initial genetic material over many generations in order to 
create a genetically disperse future population that shares the same genetic traits in 
general as the initial population, but holds no direct correspondence, by simulating the 
recombinations and crossovers the genetic material is subjected to when crossing 
individual: 
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Figure 6: Recombination and crossover schemes of genetic material. 

In order to synthesize new genotypic data, we first need to understand how it is conformed. 
Genotype data is usually presented in a form of genotypes describing SNPs on both 
chromosomes inherited from both parents, which are unordered alleles on both 
chromosomes comprising individual genotypes. Then, haplotypes are two ordered 
sequences of alleles that have been inherited together from the parents. 

 

Figure 7: Genotype and haplotype example. 

Assuming that we have L biallelic SNPs and that the two alleles at each SNP are coded 0 
and 1, let H be a set of haplotypes at these L SNPs and G the set of genotype data at the 
L SNPs in N individual, with Gi = {Gi1, Gi2, …, GiI} denoting the genotypes of the ith 
individual. Then, to synthesize new genotypes based on the original genotypes, we can 
employ the following algorithm: 

1. For each individual genotype Gi statistically estimate a pair of corresponding 
haplotypes Hi1 and Hi2 using haplotype estimation methods.  
Haplotype estimation methods are based in the Hidden Markov Model (HMM) 
which models the haplotypes underlying Gi as an imperfect mosaic of haplotypes 
from a reference set. 
There are software that already estimate the haplotypes for the whole 
chromosomes, such as SHAPEIT, a free software that holds a linear complexity 
with the number of SNPs. 

2. After generating the haplotypes, we randomly pair them to form new synthetic 
genotypes, pairing haplotypes from two different individuals, to simulate their 
crossover. These synthetic genotypes represent new non-existing synthetic 
individual genomic data. We can conserve the statistical data of the alleles if each 
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estimated haplotype contributes exactly to one synthetic individual. 

 

Figure 8: Allele frequencies preservation in synthetic genomic microdata generation. 

This way, we can preserve the allele frequencies while avoiding re-identification. 
3. We can simulate crossover and mutation events by crossing haplotypes, which 

will not change allele frequency (but will enhance diversity in genotypes in future 
generations), and modifying one allele to add mutations, which will slightly 
change the frequencies. 

 

Differences in allele frequencies between the synthetic data and the original data may be 
desirable, as it reduces the disclosure risk of the information. 

 

 

  

Figure 9: Crossover and mutation events simulation. 
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2.1.5 Privacy problems to be solved 
 

Privacy-preserving sharing of genomic data: Securing against reidentification attacks, 
as genomic data withstands as extremely sensitive data, so not allowing public sharing of 
these data without any form of privacy guarantee or anonymization is mandatory [37]. 
Ex: Homomorphic encryption, Differential privacy. 

Secure computation and storage of genomic data: It connotes the leakage risks from 
the storage or computation of genomic data. Allowing third parties to compute on the data 
in plaintext involves unwanted risks and possible leaks from the storage. This problem 
can be affronted by employing Homomorphic encryption, Garbled circuit or Secure 
hardware. 

Query or output privacy: The output of any query from the genomic data, even after 
applying privacy-preserving techniques, can reveal the researcher’s interest and some 
data characteristics. These problems are acquiring increasing importance lately in the past 
years, due to cases such as the attacks against the aggregated results of Genomic Beacon 
Service, which further elevate the necessity of this privacy. Therefore, applying privacy 
to the queries and their outputs is mandatory, as they are as sensitive as they data, 
revealing, for example, the presence of an individual or a certain group in a genomic study. 
For this problem, techniques such as Differential privacy can be applied.  

 



 

2.2  Privacy preserving techniques 
 

2.2.1 K-anonymity 
 

The concept of k-anonymity was introduced into information security and privacy back 
in 1998 built on the idea that by combining sets of data with similar attributes, identifying 
information about any one of the individuals contributing to that data can be obscured. It 
aims to hide an individual’s data in a pool of a larger group data, meaning the information 
in the group could correspond to any single member, thus masking the identity of the 
individual or individuals in question. 

The k in k-anonymity refers to a variable, the number of times each combination of values 
appears in a data set. If k=2, the data is said to be 2-anonymous. This means the data 
points have been generalized enough that there are at least two sets of every combination 
of data in the data set. This means the data points have been generalized enough that there 
are at least two sets of every combination of data in the data set. 

k-Anonymity main’s purpose is to protect against hackers or malicious parties using ‘re-
identification,’ tracing data’s origins back to the individual it is connected to in the real 
world, thus learning sensitive data for an individual, compromising their privacy. 

It can be implemented through generalization, suppression, minimizing risk among other 
techniques. 

 

2.2.2 Homomorphic encryption: 
 

Homomorphic encryption (HE) [26] algorithms are algorithms that provide forms of 
encryptions with an additional evaluation capability for computing over encrypted data 
without access to the secret key, allowing mathematical operations to be performed on 
encrypted data by mapping a set of operation on cleartext to another set of operations on 
ciphertext. HE schemes can be classified into different forms, such as Fully, Leveled and 
SomeWhat Homomorphic Encryption schemes, which mainly differ in compactness, 
correctness, or the functions they can compute. 

- Fully Homomorphic Encryption (FHE): Allows operating any arithmetic circuit 
to be applied to ciphertexts in order to obtain the encryption of the result that 
would be obtained if applying the same circuit to the cleartext. 

- Leveled Fully Homomorphic Encryption (Leveled-FHE): It restricts certain 
depths, computed by the multiplication gates, to remove (or spread) the 
bootstrapping operation in order to gain performance, as well as removing the 
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assumption of circular security (Which states that one can safely encrypt its 
private key with their own public key). 

- SomeWhat Homomorphic Encryption (SHE) [27]: Allow to evaluate only circuits 
of multiplicative depth, thus reducing the number of restrictions and increasing 
the efficiency compared to FHE. 

 

Applied schemes: 

- Additive HE (Paillier encryption) on a semi-honest cloud server (Kantarcioglu et 
al.) to securely store the genomic sequences in a cloud server, encoding the 
genomic sequences with a binary representation and then encrypted the individual 
encoding by Paillier encryption, which consists of an additive homomorphic. 

- Additive HE, privacy-preserving genetic risk calculation (Ayday et al.), which 
depended on the DGK (Damgãrd, Geisler and Krøigaard) cryptosystem to safely 
realize computations on integers. 

- Applying secure statistical algorithms, such as Hardy-Weinberg equilibrium and 
linkage disequilibrium, while using fully homomorphic encryption to allow any 
possible computation on the encrypted data. 

- The most used scheme is the SomeWhat HE in genomic data, covering 
homomorphically computing logistic regression [27].  

HE is not efficient enough for large-scale generic genomic data computation for the first 
two problems, as multiplication or bootstrapping operations take too much time to use it 
realistically on complex functions (like machine learning) [33]. 

The CKKS scheme is an FHE scheme supporting the arithmetic operations on encrypted 
data over real or complex numbers. Any users with the public key can process the 
encrypted real or complex data with the CKKS scheme without knowing any confidential 
information. The security of the CKKS scheme is based on the Ring-LWE hardness 
assumption. The supported homomorphic operations are the addition, the multiplication, 
the rotation, and the complex conjugation operation, and each operation except the 
homomorphic rotation operation is applied component-wisely.  
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2.2.3 CKKS 
 
The Cheon-Kim-Kim-Song (CKKS) scheme was firstly introduced in the paper 
“Homomorphic Encryption for Arithmetic of Approximate Numbers”.  

It is an FHE scheme that supports arithmetic operations to be performed on encrypted 
data over vectors of real or complex numbers, where any users with the public key can 
process the encrypted real or complex data with the CKKS scheme without knowing any 
confidential information. 

The supported homomorphic operations are the addition, the multiplication, the rotation, 
and the complex conjugation operation, and each operation except the homomorphic 
rotation operation is applied component-wisely. It is one of the enhancements this scheme 
presents over the original FHE scheme. 

This scheme executes the rotation operation homomorphically by performing a cyclic 
shift of the vector by some step, while the multiplication, rotation, and complex 
conjugation operations in the CKKS scheme need additional corresponding evaluation 
keys and the key-switching procedures.  

The CKKS scheme employs polynomials in the operations because they provide a good 
trade-off between security and efficiency as compared to standard computations on 
vectors. The central idea to implement a homomorphic encryption scheme is to have 
homomorphic properties on the encoder, decoder, encryptor and decryptor. This way, 
operations on ciphertext will be decrypted and decoded correctly and provide outputs as 
if operations were done directly on plaintext. 

 
Figure 10: High level view of CKKS. 
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The figure 10 represents a high-level view of the CKKS scheme, where m represents the 
message, a vector of values on which we want to perform certain computations. It is 
encoded into a plaintext polynomial p(X), and then encrypted with the public key to 
create c, composed by a couple of polynomials.  

The operations that the scheme can employ are applied to this ciphertext, allowing 
addition, multiplication, and rotation. These operations are denoted by the function f. 

Finally, decrypting c’ = f(c) with the secret key will yield p’ = f(p), and once decoded, 
we will get m = f(m), the resulting message of the operation applied. 

 

 

2.2.4 RNS-CKKS 
 

The RNS-CKKS scheme is a modern implementation of the CKKS scheme which 
solves the main problem of the CKKS, since the original CKKS scheme needs big 
integers, so it employs a multi-precision library, which requires a higher computational 
complexity. 

The RNS-CKKS scheme solves this problem by employing the residue number of the 
integers, where the big integer is split into several small integers, and the addition and 
the multiplication of the original big integers are equivalent to the corresponding   
component-wise operations of the small integers. 

Each real number data is scaled with some big integer, called the scaling factor, and 
then rounded to the integer before encrypting the data. When the two data encrypted 
with the CKKS scheme are multiplied homomorphically, the scaling factors of the two 
data are also multiplied. This scaling factor should be reduced to the original value 
using the rescaling operation by employing the representational abilities of the Residual 
Neural Network (ResNet), more exactly, the ResNet-20 [2] (using 20 parameter layers), 
which employs the following specifications: 
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Figure 11: The specification of ResNet-20 (CIFAR-10) 

By employing the RNS-CKKS scheme to a standard deep neural network the efficiency 
of the neural network can be incremented greatly, removing the need of using big 
integers, increasing the computational complexity, while achieving the same accuracy 
than the original neural networks, adapting deep learning techniques to grand quantities 
of data.  

 

2.2.5 ResNet 
 

A Residual Neural Network (ResNet) [2] is an artificial neural network that conforms a 
gateless (open-gated) variant of the HighwayNet (The first working deep feedforward 
neural network, composed by hundreds of layers by employing skip connections 
modulated by learned gating mechanisms that regulated information flow).  

The ResNet is characterized due to applying identity mapping, where the input to some 
layer is passed directly or as a shortcut to some other layer by gates. These open gates 
employ skip connections (or shortcuts) to jump over layers by employing an additional 
weight matrix for the gates, and typically are implemented with double or triple layer 
skips with nonlinearities (ReLU) and batch normalization in between. 
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Figure 12: Canonical form of a residual neural network. A layer ℓ − 1 is skipped over activation from ℓ − 2. 

Skip connection is basically the identity mapping where the input from previous layer is 
added directly to the output of the other layer. Skipping connections is desirable, as it 
can be used to avoid the problem of vanishing gradients, allowing the optimization of 
neural networks to be less time-consuming (as the gating mechanisms facilitate the 
information flow across many layers) and mitigates the accuracy saturation problem 
(Degradation), which arises when employing a numerable amount of layers (adding 
more layers to a suitably deep model leads to higher training error). 

During training, the weights adapt to mute the upstream layer, and amplify the 
previously skipped layer, thus training the skip connections in the same process. 

Thanks to the employment of the ResNet architecture, the performance of neural 
networks with a large number of layers have increased substantially, allowing the use of 
neural networks for more complex situations, such as genomic research. 

 

2.2.6 Pseudorandom function 
 

Pseudorandom functions (PRFs) [32] were first introduced by Goldreich et al. PRFs are 
deterministic functions of a key and an input that is computationally indistinguishable 
from a truly random function of the input out of all the set of functions having the same 
domain and range. For all inputs x, the output of a PRF(k,x) is indistinguishable and 
random to the eyes of a computationally bounded adversary. 

Let s be a security parameter, let K be a key of length s bits, and let f(K,x) be a function 
on keys K and inputs x.  Then, f is a PRF if: 

- f can be computed in polynomial time in s. 
- If K is random, then f cannot be distinguished from a random function in 

polynomial time.  
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Distinguishability refers to the ability of an algorithm to tell whether a function is not 
truly random. Let g be a truly random function of x with the same output length as f. 
Supposing a polynomial-time algorithm A is given access to an oracle that, on input x, 
either consistently returns f(K,x) or consistently returns g(x). 

After some polynomial number of accesses to the oracle, the algorithm outputs a guess, 
b, as to whether the oracle is f or g.  

Let ϵ be A’s difference in probabilities (advantage) 

𝜖𝜖 =  |𝑃𝑃𝑃𝑃[𝑏𝑏 = "𝑓𝑓" | 𝑙𝑙𝑃𝑃𝑜𝑜𝑜𝑜𝑙𝑙𝑒𝑒 𝑖𝑖𝑖𝑖 𝑓𝑓] − Pr[𝑏𝑏 =  "𝑓𝑓"| 𝑙𝑙𝑃𝑃𝑜𝑜𝑜𝑜𝑙𝑙𝑒𝑒 𝑖𝑖𝑖𝑖 𝑙𝑙]  

If the inverse 1/ ϵ grows faster than any polynomial in s for all polynomial-time 
algorithms A, then the function f is said to be indistinguishable from a random function. 

Pseudorandomness is important in privacy studies as it is a stronger requirement than 
being a one-way function (functions that are easy to compute on every input but hard to 
invert given the image of a random input), since a one-way function only needs to be 
hard to invert, whereas a PRF also needs to be hard to guess when the key is used, thus 
providing a way to turn an input into a value that is effectively random. 

This is helpful for computing MAC algorithms, deriving keys from other keys, and 
more generally for replacing random number generators in an application with a 
deterministic function, when a secret key is available. 

 

 

2.2.7 Message Authentication Codes 
 

Messages Authentication Codes (MACs) [30], or tags, are short pieces of information 
additionally added to messages employed to authenticate the origin and nature of a 
message. MACs employ authentication cryptography to verify the legitimacy of data 
sent through a network or transferred from one person to another. 

A strong MAC can help preventing an adversary from modifying a message sent by one 
party to another, without the parties detecting that a modification has been made. 

The first step in the MAC process is the establishment of a secure channel between the 
receiver and the sender. To encrypt a message, the MAC system uses an algorithm, 
which uses a symmetric key and the plain text message being sent. The MAC algorithm 
then generates authentication tags of a fixed length by processing the message.  

For this, a sender associates a message m with a MAC tag t that was generated by 
computing MAC(k,m) with a key k. The resulting computation is the message's MAC. 
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This MAC is then appended to the message and transmitted to the receiver, who also 
knows the key, can verify whether the tag is correct on the associated message by 
checking if MACVfy(k,m,t) = 1. If the resulting MAC the receiver arrives at equals the 
one sent by the sender, the message is verified as authentic, legitimate, and not 
tampered with. 

In effect, MAC uses a secure key only known to the sender and the recipient. Without 
this information, the recipient will not be able to open, use, read, or even receive the 
data being sent. If the data is to be altered between the time the sender initiates the 
transfer and when the recipient receives it, the MAC information will also be affected.  

Therefore, when the recipient attempts to verify the authenticity of the data, the key will 
not work, and the end result will not match that of the sender. When this kind of 
discrepancy is detected, the data packet can be discarded, protecting the recipient’s 
system. 

A one-time MAC denoted by OTMAC is a restricted version of a MAC, where each key 
can used only once to compute a MAC tag, providing stronger security than a normal 
MAC. 

The strong security of a OTMAC scheme implies that no adversary can forge a new 
valid message-tag pair and employing PRFs to derive keys for new OTMAC functions 
can diminish the computational times, erasing the need to generate new keys. 

 

2.2.8 Oblivious Transfer 
 

Oblivious Transfer (OT) [31], firstly introduced by Michael O. Rabin, is a 
cryptographic protocol in which a sender transfers one of potentially many pieces of 
information to a receiver but remains oblivious as to what piece has been transferred, if 
any has been sent. 

In this protocol, the sender has two input messages m0 and m1, and the receiver has an 
input bit b. At the end of the protocol the receiver learns mb and nothing else, while the 
sender does not know which message the receiver has obtained, although the protocol 
can be employed to select out of many other messages (1-out-of-n oblivious transfer 
protocol). 

The protocol starts by the sender generating n RSA key pair (pk, sk), where n is the 
number of messages that will be sent to the receiver and sends the public keys. The 
receiver selects b ϵ {0, n-1} that corresponds to the message he wants to learn about, 
and chooses a random symmetric key k, encrypts it with the pk, which is sent back to 
the sender. The sender then computes n keys with k and each message sk and creates a 
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ciphertext of each message Ekn(mk), which are sent to the receiver, who will be able to 
only decrypt the ciphertext that corresponds to the message it desired. 

 

 
Figure 13: 1-out-of-2 OT protocol (Schneier, 1996) 

The security requirement demands that the sender should not learn the bit b and the 
receiver should not learn anything about m1−b. 

 

 

 

2.2.9 Garbled circuit 
 

A garbled circuit (GC) [29] is a constant round secure protocol that allows any function 
to be computed between multiple parties while hiding the inputs from each other, 
without needing the presence of a trusted third party, as was originally schemed by 
Andrew Yao [28].  

In GCs, the function has to be described as a Boolean circuit (a mathematical model for 
combinational digital logic circuits, defined in terms of the logic gates they contain). 
This protocol is executed between two different parties, the garbler, which encrypts the 
circuit, and the evaluator, who decrypts the circuit and obtains the encrypted outputs. 

The protocol consists of 5 steps: 
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1. Circuit generation: The underlying function that wants to be executed is formed 

by generating a Boolean circuit, which will be employed in the protocol. 
2. Garbling: The garbler encrypts the Boolean circuit (also known as garbling the 

circuit). For it, the garbler assigns two randomly generated strings, called labels, 
to each wire in the circuit: one for Boolean semantic 0 and one for 1. (The label 
is k-bit long where k the security parameter and is usually set to 128.) and then 
replaces 0 and 1 in the truth tables with the corresponding labels for each gate in 
the circuit, forming a truth table. This truth table is encrypted with a double-key 
symmetric encryption function, Enck(X), where k is the secret key and X are the 
values to be encrypted.  
The last step of the garbling process consists of a permutation of the table, in 
order to make the output values undeterminable by the row. 

3. Data transfer: The garbler sends the computed garbled tables for all gates in the 
circuit to the evaluator, as well as the tables that correspond to the garblers 
input. The evaluator needs the input tables to open the garbled tables, thus 
needing the garbler’s tables of their inputs. As the labels are randomly generated 
by the garbler, the evaluator will not learn anything about the garbler’s input. 
(For example, if the garbler’s input is a4a3a2a1, where a is their input, she sends 
the corresponding labels for each input, thus not leaking information). 
The labels that correspond to the evaluator are sent through oblivious transfer 
for each bit of his input, which disables the garbler to learn anything of the 
evaluator’s inputs. 

4. Evaluation: The evaluator, who now has in possession the garbled tables and the 
input labels, can decrypt the rows of the garbled tables through all the gates, 
retrieving for one row for each table the corresponding output label (a is the 
garbler’s input and b is the evaluator’s input), until it reaches the output labels: 

𝑋𝑋𝑐𝑐 = 𝐷𝐷𝑒𝑒𝑜𝑜𝑥𝑥𝑎𝑎,𝑥𝑥𝑏𝑏�𝑙𝑙𝑜𝑜𝑃𝑃𝑏𝑏𝑙𝑙𝑒𝑒𝑑𝑑𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝[𝑖𝑖]� 
5. Revealing output: After the evaluation process has been completed, the 

evaluator obtains the output label, and the garbler knows its mapping to Boolean 
value, as she has both labels that were computed. At this point, either the garbler 
can share the label information to the evaluator, or the evaluator can reveal the 
output to the garbler so that one or both of the parties can learn the output. 

 
Figure 14: Example of the construction of the garbled table 
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One of the major advantages of garbled circuits is that two different parties can evaluate 
a function without revealing any information about their input aside from trivial info 
leaked by the output of the garbling scheme, due to its properties, as it is based on the 
oblivious transfer protocol, where a string is transferred between a sender and a receiver 
out of many possible different pieces of information so that the receiver doesn’t know 
what the sender is sending, remaining oblivious of the real information. In this, a sender 
has two strings S0 and S1. The receiver chooses i in {0, 1} and the sender sends Si with 
the oblivious transfer protocol such that: 

1. The receiver does not gain any information about the unsent string S(1-i). 
2. The value of i is not exposed to the sender. 

Garbled circuits can be used to solve the problems that surge with the query and output 
privacy, and applying secure computations and storage to genomic data, as with the 
latest improvements they have gone through, they are optimized enough to be efficient 
for practical applications. However, GC, as the current state of the art, still need to be 
tested on large-scale genomic data computation, as realistic scenarios dictates long 
genomic sequences, whereas all the recent secure edit distance approximations only take 
small sequence lengths into account, as well as possibly requiring greater network 
overheads for large-scale circuit computation. 

A new surging technology that can be employed for secure multiparty computation 
protocols are the Secret Sharing Schemes, which can be employed to solve these 
limitations on GCs in the genomic data ambit. 

 

2.2.10 METIS system 
 

The major challenge in secure computation on genomic data is performance, since 
human genomic data is large (as stated before). 

In order to solve the second and third proposed problems, a system that gives the data-
owners in full control over the disclosed information, while not imposing high 
computational burdens by cryptographic schemes is the most ideal solution. 

For this purpose, we can elaborate a system based on the METIS system by Dominic, 
Deuber et al. (2018) [41], which gives the data owners complete control over the 
genomic data, while reducing the computational costs, this system divides the structure 
into four distinct roles so that the computing time of data owners and clients can be 
reduced, as well as storage space. 

The METIS system consists of a service provider system between genetic researchers 
and data owners, while securing the genetic data in the METIS servers, providing 
computations on large sets of genetic samples in a remote, secure way. For it, it designs 
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four different types of parties: sequencing center, server, data owners and clients, which 
serves as ways to ease the computation times and storage weights on the clients and data 
owners, as well as keeping the data secure and accessible, thanks to the employed 
protocol for data encoding, which leverages the security and integrity properties of 
garbled circuits, while allowing secure computation of functions. 

 
Figure 15: Structure of the METIS system 

For this system, we assume the existence of a secure, authenticated channel between all 
parties, which are aware of the public, authenticated keys of the other parties (Using, for 
example PKI), or using the server as a relay and encrypting the data with the public key 
of the recipient, under a non-malleable encryption scheme. 

The METIS protocol is structured in two phases: 

- Setup phase: The sequencing center produces the DNA sequence and stores the 
genetic information. 

- Evaluation phase: The client interacts with the server and the data owner to 
evaluate a function over the genetic information. The computation and 
communication flow must be independent of the size of the genome. 

In order to keep the storage employed by the data and avoiding overburdening the 
owner with computation over the genome with each query, we can employ multi-party 
computation solutions, sharing the load of computation and communication equally 
among the parties. For it, a protocol for data encoding based on Garbled circuits can be 
employed, allowing to securely compute any function without revealing the inputs. 

The cryptographic scheme, in the setup phase, employs a secret key, generated by the 
sequencing center, to evaluate a function to generate series of pseudorandom labels, 
which then, are used to generate a sequence of random labels of the same length, which 



40  Preliminaries 
-Privacy preserving techniques 

 
will be used to encode the data. The two sequences of labels constitute an encoding 
information, in which for every position i we store a pair of labels (li0, li0).  

In this encoding information, if the bit of the binary representation of the sequence of 
the genome at position i is 0, then li0 is a pseudorandom label, whereas li1 is a random 
label, and vice versa. The sequencing center sends the secret key to the data owner. 
Such an encoding bears a crucial property: Given the key, one can easily re-evaluate the 
pseudorandom function and reconstruct the labels corresponding to the genomic 
sequence. 

The setup phase consists in a series of steps in which the genomic data is produced and 
encoded by the system, with the collaboration of the sequencing center.  

First, the sequencing center needs to have the desired data to be stored in the system, 
and producing a secret key, which will be employed in the cryptographic system that 
will encrypt the data, sampling sequences of random labels, stored in pairs, to manage 
the data.  

Then, the sequencing center samples a random key (k) to generate the keys (kj) which 
will be used for all the blocks of the sequenced DNA data (x), and creates the encoding 
information (ex) as following: 

For the i-th bit of the j-th block of x (xj,i) it computes a pair of labels, which represent 
xj,I (determined by the pseudorandom function with input kj,i)), and a randomly sampled 
string which represents the bit 1- xj,I, respectively. 

Consequently, the labels that correspond to the genomic data in question are fixed and 
can only be reconstructed using the employed pseudorandom function and the key. 

Then, the sequencing center sends the encrypted data and the sequence of 0 and 1 labels 
for the genomic data to the server the secret key to the data owner.  

This is a key aspect of the METIS system, as such an encoding bears a crucial property, 
where given the key, one can easily re-evaluate the pseudorandom function and 
reconstruct the labels corresponding to the genomic sequence. However, it does not, on 
its own, reveal any information about the original input (the corresponding original 
bitstring). 

Thanks to this property, the data owner can easily decide whether a user can evaluate a 
function on the data easily by giving the data owner a secret key, which is computed by 
the sequencing center. Given the key, one can easily re-evaluate the pseudorandom 
function and reconstruct the labels corresponding to the genomic sequence, while not 
revealing any information about the original input, as the information transformed into a 
series of pseudorandom labels, which are sampled into sequences that can be used to 
reform the data.  
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At the end of this step, the server holds an encoding of the data, and the owner holds the 
corresponding decoding information, and the sequencing center can securely delete all 
the data, as it is stored in an encrypted manner in the server. 

 

At the evaluation phase the client interacts with the server and the owner, so that the 
owner can grant permission to compute a function of his interest on the encrypted 
genomic data stored in the server. 

Whenever a client wants to operate a function on a DNA sequence, the server informs 
the data owner about the request, while generating a garbled circuit with the encoding 
provided by the sequencing center and forwarding decoding information said circuit to 
the data owner and forwarding the circuit to the center. If the owner wants to grant 
access to the data for the function of the client, the owner can send the key to 
reconstruct the encoded input so it can evaluate the circuit, and if it wants to allow the 
function to be evaluated, he can also send the decoding information to the client. 

This grants privacy as the output of a garbled circuit without the decoding information 
consists of a set of randomly chosen bitstrings, thus, maintaining the privacy of the data. 

The client sends a function its query to the server, which then takes the role of the 
garbler, garbling the generated circuit using as input the genomic data (x) and the sent 
query by the client (z), returning z||f(x,z) while the client evaluates the circuit. The 
client does not know x thus it cannot run an oblivious transfer process for the labels that 
correspond to the data with the server. 

Therefore, using the pseudorandom function (PRF) key that was sent by the owner, it 
can directly reconstruct the correct labels to evaluate the garbled circuit. 

The server, after computing the result of the function requested by the client, blinds the 
values corresponding to the function output with a random string v, instead of sending 
the output table to the client (alongside with the garbled circuit), thus sending the 
blinded decoding information, including an OTMAC to the client and the blinding 
factor v together with the decoding information for the client’s output to the owner. 

Thanks to the OTMAC we can prevent selective failure attacks from a corrupted data 
owner, as any modification done the string v is noted by the client, stopping said 
attacks. 

In parallel, the client interacts with the owner, who sends the PRF key (if so desired by 
the owner) that corresponds to the block of interest j, therefore, as the labels that 
correspond to the input data were created using this PRF key on the block key kj and the 
offset I, the client is now able to reconstruct the correct input labels, not leaking any 
additional information as the block is a random string. 
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Now that the client holds the output labels that correspond to z||f(x,z), he can send the 
request to the owner, who decodes and validates it with their policies, and, if the owner 
agrees to the function and the request, it can send the blinding factor to the client to 
verify the OTMAC and thus decoding f(x,z). 

Consequently, at the end of the evaluation phase, the client only learns the output of the 
function f(x,z), given the case that the owner allows the execution, and the owner learns 
the request of the client, while not learning the result of the evaluation, covering against 
potential security breaches at the data owner’s end. 

Multiple queries from clients for the same data owner and the same data employ the 
same encoded data, but as the server computed different garbled circuits with the same 
encoded data, thus employing different encoding data for each different query. 

One of the main problems that arises with the proposal of the METIS scheme consists 
on the use of the generic oblivious transfer technique proposed by Gilad-Bachrach et al. 
which allows to outsource computation to a semi-trusted cloud provider that has similar 
characteristics to other systems, but carries a linear cost in the inputs, requiring a 
number of oblivious transfers in size of the inputs, which makes the costs of the METIS 
scheme be higher the bigger the size of the inputs is. As genomic sequences are large, 
the METIS scheme is only suitable of peculiar cases, or for theorical use. 
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Figure 16: METIS algorithm 

 



 

 
 
 
Chapter 3 
3 A computation over encrypted data in 

cloud environments for genomic data 
 

3.1  Overview 
 

We propose a system where the data owners have complete control over the genomic data, 
while reducing the computational costs based on the METIS system employing garbled 
circuits in an external server to reduce the computational burden on the clients as well as 
the extensive storage requisites that are required for genomic databases.  

The system divides the actuators in the scheme into four different groups, the sequencing 
center, the server, the data owners and the clients, where in each of the groups different 
protocols will be employed to encrypt the genomic data to assure that it remains safe 
during its transfer to the cloud server, when computations are being used on the encrypted 
data and anonymizing the data on the database to guarantee the security of the identity of 
any individual reflected in the original data.  

Additionally, the data proportioned by the sequencing center is anonymized employing 
novel synthetic microdata generation techniques to guarantee that no reidentification can 
be done. 

 

3.2  Description of the protocol 
 

While the protocol follows a similar structure and procedure to the METIS system [41], 
the protocols and data that it employs have been modified to solve its previous problems 
while also providing more security with more novel methods. 

The system will consist of a service provider system between genetic researchers and data 
owners, while securing the genetic data in the METIS servers, providing computations 
on large sets of genetic samples in a remote, secure way and diminishing the storage 
requisites of the data owners on genomic data, as the extensive data can gather up to 
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1.5GB of space for a single individual if the full genomic sequence is to be recorded per 
individual.  

For it, it designs four different types of parties: sequencing center, server, data owners 
and clients, which serves as ways to ease the computation times and storage weights on 
the clients and data owners, as well as keeping the data secure and accessible, thanks to 
the employed protocol for data encoding, which leverages the security and integrity 
properties of garbled circuits, while allowing secure computation of functions. 

The protocol starts after the sequencing center finishes the sequencing of the genomes 
and proceeds to aggregate all the data into a single database whose data will be sent to 
the cloud servers after it is anonymized employing synthetic microdata generation 
techniques. 

Therefore, after the database has been obtained, in the machines of the sequencing center 
the algorithm will obtain a new database from the original, constructing new genetic data 
sets following the principles of population genetics by mixing and hashing initial genetic 
material over many generations in order to create a genetically disperse future population 
that shares the same genetic traits in general as the initial population, but holds no direct 
correspondence to the original individuals by simulating crossovers and mutation events 
with random pairings. 

Finally, the new formed data is encrypted employing a secret key generated from a 
pseudorandom function, sending both to the data server, where using the key, the genomic 
sequence can be made use in operations. Said key will be used by the server to form a 
sequence of random labels of the same length, storing labels in pairs, using a sequence of 
bits to indicate which of the labels in the pairs are truly random labels and which ones are 
pseudorandom labels, using the key to easily reconstruct the labels that correspond to the 
genomic sequence. Also, the genomic data will be split into blocks of biological units, 
imitating genes, as computing on one block is less expensive computationally, although, 
if desired, the whole DNA sequence can be represented into one block in order to analyze 
them fully. 

The server will act as a mediator between the parties, involved in all the interactions while 
storing the encrypted data, but is unable to learn anything from the genome or the input 
of the client. 

Whenever a client wants to evaluate a function on a DNA sequence, it indicates its 
intention to the data server, which notifies the data owners about the request and generates 
a garbled circuit with the encoded information, which will be used to evaluate a function 
by the client, given the permission by the data owner. If it desires the function of the client 
to be performed on the data, then it will send to the client, automatically, the decoding 
information towards the client, which can then use to decode the output of the garbled 
circuit and have their query resolved. 
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A data owner does not necessarily need to be online at all times to accept or reject 
petitions of clients to execute functions, as they can define a set of policies that can define 
whether a client can execute a function or not on their data, hidden to the clients, so the 
server can take decisions on the owners behalf freely when requests arise, although they 
can be changed whenever the owner’s privacy preferences are desired to be swapped, and 
the owner can also accept or reject requests personally. 

 

3.2.1 Improvements on the METIS scheme 
The main differences that our adaptation of the METIS scheme has over the original 
consist of the introduction of synthetic microdata generation techniques to anonymize the 
data obtained from the sequencing center, in order to guarantee that any disclosure of data 
will not be enough to re-identify another person from the genomic data, protecting their 
anonymity, thus covering one of the main problems that arise with the use of this 
information. 

Moreover, we replace the traditional Oblivious Transfer techniques that are employed for 
the data exchange with a novel Oblivious Transfer scheme proposed by Jianchang Lai et. 
al. who developed a two-round k-out-of-n oblivious transfer scheme with minimal 
communicational costs [5], solving the efficiency issues that surge with the traditional 
OT scheme. The OT scheme that is employed in the traditional METIS protocol is a two-
round k-out-of-n oblivious transfer [20], which is expensive, scaling up to lineal costs to 
the size of the inputs. 

This scheme is characterized by employing efficient rounds where the communication 
costs are reduced to the ideal costs, being the messages from receiver to sender constant, 
and only three elements being independent from n and k. The system parameter that they 
employ is universal, thus being able to be used by any users. 

The first round of the protocol commences by sending a token by the receiver, containing 
the receiver’s choice, and a proof information which is used to prove that its choice is not 
larger than k to the sender. In the second round, the sender responds with encrypted 
secrets after checking the validity of the received token. Finally, the receiver uses its 
choice set and secret key to decrypt the ciphertext and only retrieves the secrets whose 
indexes are in its choice set. 

The scheme is as follows: 

- Inputs:  
System parameter SP. The PKG runs the following Setup algorithm: Given a 
security parameter λ, this algorithm generates a bilinear group  
BG = (G, GT, e, p) with two generators g, h ∈ G. Then it randomly chooses  

α ∈ Z*p as the system secret key, and computes 𝑙𝑙𝑖𝑖 = 𝑙𝑙
1
∝+𝑖𝑖, ℎ𝑖𝑖 = ℎ∝𝑖𝑖for all  

i = 1, 2, …, n. The system parameter SP consists of (BG, g, h, g1, g2, …, gn, h1, 
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h2, …, hn). 
S (sender) holds a set of secrets M = {m1, m2, …, mn} ∈ GT. 
R (receiver) holds his choice set G = {l1, l2, …, lk} C [n]. 

- Protocol: 
1. R → S: Given a choice set G = {l1, l2, …, lk}and the system parameters SP, R 
picks a random s ∈ Z*p as his secret key sk and uses the Aggregation algorithm to 
compute 

𝑃𝑃(𝐺𝐺) =  𝑙𝑙
𝑠𝑠

(∝+𝑙𝑙1)(∝+𝑙𝑙2)⋯�∝+𝑙𝑙𝑘𝑘� 𝛴𝛴 =  ℎ
(∝+𝑙𝑙1)(∝+𝑙𝑙2)⋯�∝+𝑙𝑙𝑘𝑘�∙𝛼𝛼

𝑛𝑛−𝑘𝑘

𝑠𝑠  
and sets T = (P(G), Σ, k). 
 
2. S →R: S runs the Encrypt algorithm as follows. 
Given a set T = (P(G), Σ, k), a set of secrets M = {m1, m2, …, mn} and the system 
parameter SP, it first performs the verification algorithm as: 𝑒𝑒(𝑃𝑃(G), Σ) =
𝑒𝑒 �𝑙𝑙, ℎ∝

𝑛𝑛−𝑘𝑘
�. If the equation does not hold, it aborts, and otherwise, it accepts |G| 

≤ k. Then it picks a random r ∈ Z*p and computes the ciphertext CT for the secrets 

𝐶𝐶0 = 𝑃𝑃(𝐺𝐺)𝑝𝑝 =  𝑙𝑙
𝑠𝑠

(∝+𝑡𝑡1)(∝+𝑡𝑡2)⋯(∝+𝑡𝑡𝑘𝑘) 
together with, for each i = 1, 2, …, n: 

𝐶𝐶𝑖𝑖 = 𝑒𝑒 �𝑙𝑙
1

∝+1,ℎ�
𝑝𝑝
∙ 𝑚𝑚𝑖𝑖 

- Outputs: 
R runs the decryption algorithm as follows. 
Given a cyphertext CT = (C0, C1, …, Cn), a choice set G = {l1, l2, …, lk}, a secret 
key sk and the system parameter SP, for each i∈G, R computes 

𝑚𝑚𝑖𝑖 =  𝐶𝐶𝑖𝑖 ∙ 𝑒𝑒 �𝐶𝐶0, ℎ
(∝+𝑡𝑡1)(∝+𝑡𝑡2)⋯(∝+𝑡𝑡𝑘𝑘)

(∝+𝑖𝑖)  �
− 1
𝑠𝑠𝑠𝑠

 

A trusted third party called PKG establishes the system by choosing a security parameter 
λ and a random α as the system secret key, and generates the system parameter SP = (BG, 
g, h, g1, g2, …, gn, h1, h2, …, hn), which is public known. 

In the first round, the receiver chooses a random s∈Z*p as its secret key and a set G = {l1, 
l2, …, lk}. Then, it uses the Aggregation algorithm to compute a token  

 𝑃𝑃(𝐺𝐺) =  𝑙𝑙
𝑠𝑠

(∝+𝑙𝑙1)(∝+𝑙𝑙2)⋯�∝+𝑙𝑙𝑘𝑘�  and a proof information 𝛴𝛴 =  ℎ
(∝+𝑙𝑙1)(∝+𝑙𝑙2)⋯�∝+𝑙𝑙𝑘𝑘�∙𝛼𝛼

𝑛𝑛−𝑘𝑘

𝑠𝑠  for its 
choice set G. 

In the second round, upon receiving a request from a receiver, the sender first tests 
whether 𝑒𝑒(𝑃𝑃(G), Σ) = 𝑒𝑒 �𝑙𝑙, ℎ∝

𝑛𝑛−𝑘𝑘
� as a verification algorithm, aborting if it is not equal. 

Otherwise, S selects a random r ∈Z*p  and computes a ciphertext CT for the secrets as 
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𝐶𝐶0 = 𝑃𝑃(𝐺𝐺)𝑝𝑝 =  𝑙𝑙
𝑠𝑠

(∝+𝑙𝑙1)(∝+𝑙𝑙2)⋯�∝+𝑙𝑙𝑘𝑘�  together with, for each i = 1, 2, …, n:  

𝐶𝐶𝑖𝑖 = 𝑒𝑒 �𝑙𝑙
1

∝+1,ℎ�
𝑝𝑝
∙ 𝑚𝑚𝑖𝑖. 

Once receiving the encrypted secrets CT from the sender, the receiver computes, for each 

i ∈ G, 𝑚𝑚𝑖𝑖 =  𝐶𝐶𝑖𝑖 ∙ 𝑒𝑒 �𝐶𝐶0,ℎ
(∝+𝑙𝑙1)(∝+𝑙𝑙2)⋯�∝+𝑙𝑙𝑘𝑘�

(∝+𝑖𝑖)  �
− 1
𝑠𝑠𝑘𝑘

 . Thus, after the decryption, R only gets k 

secrets with indexes in G from S. 

If i ∈ G, ℎ
(∝+𝑙𝑙1)(∝+𝑙𝑙2)⋯�∝+𝑙𝑙𝑘𝑘�

(∝+𝑖𝑖)  is computable from the system parameters, so the decryptor 

can retrieve the encryption (decryption) key 𝑒𝑒 �𝑙𝑙
1

∝+1,ℎ�
𝑝𝑝
 together with 𝑃𝑃(𝐺𝐺)𝑝𝑝  and its 

private key s. If i ∉ G, the value of ℎ
(∝+𝑙𝑙1)(∝+𝑙𝑙2)⋯�∝+𝑙𝑙𝑘𝑘�

(∝+𝑖𝑖)  cannot be computed, and thus, the 
decryptor is unable to retrieve the encryption key and get the corresponding secret. 

Employing this OT scheme, the communication costs are reduced to the minimum, 
trading off with a slightly higher computational cost, that allows an efficient secure data 
exchange for big genomic sequences, as it can be seen when comparing this scheme to 
other OT schemes (The second implementation done by Chu and Tzeng is a protocol 
similar to the one employed by METIS): 

 

Figure 17: Comparison of two-round 𝑂𝑂𝑂𝑂𝑛𝑛𝑠𝑠  in terms of communication cost. 

Comparing the computation costs of the two algorithms, the implementation employed 
by METIS has a computation complexity as follows: R computes 3k and S computes kn 
modular exponentiations, whereas the new OT scheme that we propose proposes a 
tradeoff, reducing the communication overheads while adding more computation, as it 
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has to encrypt and send all secrets in order to reduce for the sender the communication 
times, thus obtaining computation costs for the R equal to 3k, and for S computes 
(k+3)n exponentiation operations. 

Thanks to this tradeoff, the communication is to be as quick as possible as to haste 
process of the modified METIS system as much as possible, while not increasing the 
computation costs in an excessive manner, thus providing to be a better alternative than 
the original one. 

 

Another change that has been implemented on the original METIS scheme consists of the 
introduction of the possibility to execute secure count queries on the encrypted genomic 
data [25]. Many cryptographical works ignore the potential of the study of SNP sequences, 
as it is mainly a biological term, but a single change of a SNP can correlate to many 
different illnesses, characteristics, diagnoses and so, thus implementing a way to make 
SNP queries on the data is of high importance for future research. 

In count query operations the main aim is to know how many records in the database 
match a given query predicate (i.e., a certain combination of genotype and phenotype 
values). 

For this, we implement a system based on the framework proposed by Hasan, M.Z. et. al. 
The architecture of the system that they propose divide the participants into four groups: 
Data Owners, Certified Institution (CI), Cloud Server (CS) and Researchers. Each entity 
is responsible for performing different specific tasks to make the overall system secure 
and functional. The Data Owners, Cloud Server and Researchers correspond to the roles 
we already specified before of Data Owner, Server and Client roles, while the Certified 
Institution is the one that gets the data into a database, being a trusted entity, like the 
National Institute of Health (NIH). With the data, it builds an encrypted searchable 
version of the aggregate shared data and sends it to the CS. The search operation is 
basically performed on an encrypted index tree.  

In our proposed system, the sequencing center will be the one in charge of building a 
prefix tree from the dataset that contains all the records from aggregate shared data and 
sends the encrypted version of the tree to the server, where the server will manage the 
keys used for encryption and decryption [40]. 

The scheme starts after the data has been obtained and encrypted into labels for normal 
processing in our METIS-like scheme.  

The sequencing center then generates a prefix tree T, using as attributes the SNPs, 
phenotype and age to distinguish in the use of the SNPs. It encodes each SNP from 1 to 
16, as there are 16 possible SNP sequences, for each record. Each node in the prefix tree 
contains: 
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- sid: It represents the unique identifier for a SNP. 
- Val: It represents the SNP’s value (AA, AG, CC, ..., TT), which is encoded as {1, 

2, ..., 16}. 
- Count: It represents the total number of occurrences of a SNP in a particular 

position of the prefix tree. 
- Phenotype: Every node i of T consists of a Bloom filter Bi to hold the phenotype 

information. 
- List: The children list of a node. 
- Additional information: Numeric information such as age range is also saved on 

the nodes. Each node contains of age.low and age.high that represents the age 
range of the current node and its children. 

A node is represented as s δ (sid, val, count, phenotype, list, age.low, age.high). The 
prefix tree T is generated following this algorithm: 

At first, the tree T only contains the root node. For each record in D, we start from the 
root node and create new nodes in T. We represent a record as 𝑑𝑑𝑖𝑖

𝑗𝑗 ∈ 𝐷𝐷 where i and j 
represents the particular record and the particular column, respectively. For each 𝑑𝑑𝑖𝑖

𝑗𝑗, the 
first column 𝑑𝑑𝑖𝑖1 represents the root node’s child. The second column, 𝑑𝑑𝑖𝑖2, is the child of 
the node 𝑑𝑑𝑖𝑖1, and it iterates this procedure to create the rest of the tree. 

Thus, level 1 represents the first column’s data, level 2 represents the second column’s 
data, and so forth, as seen in the Figure 18. 

 
Figure 18: Prefix tree generation states. 

When needing to insert a new record, d2, we first check each of the corresponding 
level’s columns of T whether the current record has been inserted in T before or not. If 
we don’t find any, we create a new node to store 𝑑𝑑2

𝑗𝑗. If it exists on the tree, then we 
increment the count value. 
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Figure 19: Example of fully constructed prefix tree. 

The process of constructing the prefix tree is O(nm), where n is the total number of 
records in the database, and m is the total number of SNPs per record. This algorithm is 
to be executed at the same time, in parallel to the construction of the anonymized 
database for the METIS protocol. 

Then the tree is encrypted, generating two keys employing the Paillier Cryptosystem, 
the pk and the sk, and encrypts the nodes of T using the public key pk, in an analogous 
way to the METIS system. 

Each node in the tree becomes 
(𝜎𝜎�𝑖𝑖𝑖𝑖𝑑𝑑, 𝜀𝜀𝑝𝑝𝑠𝑠(𝑣𝑣𝑜𝑜𝑙𝑙), 𝜀𝜀𝑝𝑝𝑠𝑠(𝑜𝑜𝑙𝑙𝑐𝑐𝑂𝑂𝑐𝑐), 𝜀𝜀𝑝𝑝𝑠𝑠(𝛽𝛽𝑖𝑖), 𝜀𝜀𝑝𝑝𝑠𝑠(𝑜𝑜𝑙𝑙𝑒𝑒. 𝑙𝑙𝑙𝑙𝑙𝑙), 𝜀𝜀𝑝𝑝𝑠𝑠(𝑜𝑜𝑙𝑙𝑒𝑒.ℎ𝑖𝑖𝑙𝑙ℎ), 𝑙𝑙𝑖𝑖𝑖𝑖𝑐𝑐� after the 
encryption. This encrypted tree is depicted as 𝑂𝑂� . 

Finally, both the tree (pk, 𝑂𝑂�)and the database are sent to the servers for the queries of the 
clients.  

To execute a encrypt query on the tree 𝑂𝑂� , the query first must be constructed according 
to the encryption employed for the tree. The researchers encrypt a query q as 𝛷𝛷 (𝜀𝜀𝑝𝑝𝑠𝑠(𝑞𝑞)), 
employing the public key that is shown by the server. 

The age fields of the query are not needed to be encrypted, as those are sent directly to 
the garbled circuit to ease the query construction. 
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Figure 20: Example query for a prefix tree. 

The encrypted query 𝛷𝛷 is sent to the server to find the number of records, which 
matches the SNPs, phenotype, and age range in the query predicate. 

To search numeric information in prefix tree, we need to check the age range of the 
query whether it lies between the node.age.low and node.age.high, which are easily 
done employing garbled circuits, allowing us to compare both ages to the ones sent in 
the query in their encrypted forms.  

 



 

 

 

Chapter 4 

4 Implementation of the synthetic genomic data 
generation algorithm 

 

4.1 Overview 
 

We propose an algorithm that takes advantage of the properties of the phenotypic 
proportions that apply to the genome sequences, supporting the privacy of the genomic 
data before it’s sent from the sequencing center. 

This algorithm takes hold on the ideas for dissemination of genetic data by Anna Oganian, 
who discusses novel techniques to solve the privacy problems in the dissemination of 
genetic data by employing synthetic data. We modify the obtained genomic by simulating 
the recombination events in the mitosis, recombining all the individual’s data as to 
produce new sequences. 

One per iteration, each individual swaps its second half of their genotype with another 
random individual, with individuals that did not were swapped in the iteration. After the 
genotypes are swapped, each individual is subjected to possible mutations, simulating the 
possible errors that can happen during the biological processes, which lead to more 
distance between the original genotype and the synthetic one. The mutations considered 
are the most common mutations that can happen, base substitutions, where a nitrogenated 
base is replaced with another one.  

There are two kinds of mutations that result in a base substitution, where the bases can be 
catalogized into two categories, purines (being those the adenine and guanine) and 
pyrimidines (being the thymidine and guanosine) [17]: 

- Transition: When a purine is substituted with another purine or when a 
pyrimidine is substituted with another pyrimidine. 

- Transversion: When a purine is substituted for a pyrimidine, or a pyrimidine 
replaces a purine. 

It is worth noting that, although there are two possible transversions but only one possible 
transition per base, transition mutations are more likely than transversions because 
substituting a single ring structure for another single ring structure is more likely than 
substituting a double ring for a single ring (due to the structural differences of pyrimidines 
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and purines). Also, transitions are less likely to result in amino acid substitutions (due to 
wobble base pair) and are therefore more likely to persist as "silent substitutions" in 
populations as single nucleotide polymorphisms (SNPs). 

These combinations do not break the data that they provide, as the principles of population 
genetics indicate that the phenotypic proportions of the main characteristics and SNPs of 
the individuals would still be present in the population in the same proportions as they 
were in the original set, allowing to create a genetically disperse future population that 
shares the same genetic traits in general as the initial population, but holds no direct 
correspondence, thanks to the recombinations and crossovers of the genetic material, as 
can be seen in Figure 8. 

Finally, we can employ other genomic tools to verify manually that the phenotypes are 
not changed too far from the original data, testing different possible chances of mutations, 
checking how much we can modify our data without straining too far from the original 
information, or without breaking the sense of the genomic sequences. 

 

4.2  Description of the algorithm 
 

We will now describe how the simple genomic algorithm operates, based on the system 
employed by the software ‘Haploview’, developed by Broad institute at MIT.  

The input of the algorithm will be based on the files employed for the software, using 
the generic format for displaying genomic data, the Linkage format. This format is 
based on the LIPED format, is a format used to store data for software capable of 
analyzing marker genotypes, and specifies a staple to store genomic data, saving the 
references to the individuals without exposing them directly. 

It employs two different files, a ‘.ped’ file (Linkage Pedigree) [6] which stores the 
family IDs, the individual IDs to reference the genotype’ progeny, the father and 
mother’s IDs, the sex, the affection status, employed for association tests, and finally 
the marker genotypes, displaying the nitrogenated bases of the genotype, and a 0 if the 
data is missing. The genotype employed is introduced in haploid format (major and 
minor alleles), so we only employ one-chained DNA sequences. 
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Figure 21: Reference of .ped file 

The second file that this format employs is the ‘.info’ file, consisting of two columns, 
which indicate the marker information of the genomic sequences, allowing to extract the 
phenotype out of the genotype. The two attributes that it stores are the marker name, 
which can have a stablished name, or can be specified manually, if it’s a known marker 
or not, and the physical position of it in the genomic sequence. 

 

Figure 22: Reference of .info file. 

The algorithm operates using the python language, employing the pandas, math, numpy 
and random libraries in order to operate the files, compute the chances for the mutation 
and manage the vectors that contain the genotype of an individual. 

It proceeds by extracting the genotypic sequence from the .ped file information into a 
separate dataframe, which will be the one that will be modified. 
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After that, the program will iterate for the specified number of generations that we want 
to simulate. 

In each generation, we first randomly choose pairs of two individuals and swap their 
latter half of their genotypes, until no individuals remain without recombining their 
genotypes, simulating a haploid recombination of the DNA sequences, simulating the 
strand assimilation process of the recombination, in which two strands merge together 
swapping their genome. 

 

Figure 23: Monoantennary DNA assimilation process. 

Then, immediately after we check per individual if a mutation happens in each 
nitrogenated base, following the possibility indices specified at the beginning for the 
transition and the transversion mutations (we stablish the transversion mutation chance to 
be the half value of the transition mutation chance, as transversion base substitution 
mutations are far more difficult to happen since these kinds of mutations have to modify 
the nitrogenated base by modifying the ring structure to be a double nitrogenated ring 
instead of a single one (pyrimidine to a purine) or vice versa). 

These mutations are done after the recombinations and not at the same time as to not 
modify the genomic data during the recombination, which might lead to some strands to 
be mutated more than once, unlike in the real recombination events, where all these events 
happen during the same process.  
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With this, the generation step is completed for new iterations. 

 
Figure 24: Base substitution mutations: Transitions and transversions. 
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Figure 25: Data anonymization iterating by desired amount of generations 

Finally, after all the generations have been completed, the genotype is joined back with 
the genotype information, and exported into a .csv file, which can be used to make a .ped 
file for the analysis of the data using external software, which in our case, is Haploview. 

 

4.3 Analysis of the results 
 

 

4.3.1 Haploview software 
 

The Haploview software [19] is a Java based open-source software, developed by Broad 
institute at MIT for haplotype analysis and LD visualization. It is designed to simplify 
and expedite the process of haplotype analysis by providing a common interface to several 
tasks relating to such analyses, providing investigators the possibility to perform wide 
range of analyses such as LD & haplotype block analysis, haplotype frequency estimation, 
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association analysis, and visualization and plotting LD and haplotypes parting from two 
files following the Linkage format. 

After loading a file, Haploview shows some basic data quality checks for the markers. 
Markers are filtered out based on some default criteria which can be adjusted as necessary, 
showing the information in different columns for each specified marker in the .info file. 

These columns indicate the following information: 

- # is the marker number. 
- Name is the marker ID specified (only if an info file is loaded). 
- Position is the marker position specified (only if an info file is loaded). 
- ObsHET is the marker's observed heterozygosity (which refers to the percentage 

of gene loci that are heterozygous in an average individual of a given 
population.) 

- PredHET is the marker's predicted heterozygosity (i.e. 2*MAF*(1-MAF)). 
- HWpval is the Hardy-Weinberg equilibrium p value, which is the probability 

that its deviation from H-W equilibrium could be explained by chance. 
- %Geno is the percentage of non-missing genotypes for this marker. 
- FamTrio is the number of fully genotyped family trios for this marker (0 for 

datasets with unrelated individuals). 
- MendErr is the number of observed Mendelian inheritance errors (0 for datasets 

with unrelated individuals). 
- MAF is the minor allele frequency (using founders only) for this marker. 
- Alleles are the major and minor alleles for this marker. 
- Rating is checked if the marker passes all the tests and unchecked if it fails one or 

more tests (highlighted in red). 
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Figure 26: Marker information checks in Haploview. 

We can also obtain results following Linkage Disequilibrium Displays (LD Displays).  

The Linkage Disequilibrium [9], [10] is the non-random association of alleles at different 
loci in a given population. Loci are said to be in linkage disequilibrium when the 
frequency of association of their different alleles is higher or lower than what would be 
expected if the loci were independent and associated randomly.  

This means, that the LD represents how probable are different alleles to be associated 
together more frequently. The LD is represented in a graphic display, showing the LD 
values for two different markers as blocks, representing the LD value of two markers as 
the block that connects the two diagonally. If no value is presented, it means that it has a 
LD value of a hundred, meaning that the two markers are always associated together. 

Recombination interacts in a complex way with selection, mutation and genetic drift to 
determine levels of LD. As a consequence, local and genome-wide patterns of LD can 
provide insight into patterns of natural selection and the past history of population growth 
and dispersal. 

In humans and other model organisms, LD between marker alleles and traits of interest 
allow fine-scale gene mapping [8]. Unusually high local LD can indicate an allele that 
has recently increased to high frequency under strong selection [38]. 

The program, once groups of markers are selected, the program generates haplotypes 
and their population frequencies, partitioning the region into different segments with 
strong LD [15]. 
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This display shows lines to indicate transitions from one block to the next with 
frequency corresponding to the thickness of the line and also presents Hedrick’s 
multiallelic D, which represents the overall degree of LD between two blocks, treating 
each haplotype within a block as an ‘allele’ of that region [13]. 

 

Figure 27: Haploview LD display with recombination rate plotted. 

Each box displays the LD statistics for the comparison of any two markers as its Hedrick’s 
multiallelic D value, so we can how the different markers associate in a non-random way 
[14]. 

These values can also be represented with their haplotypes, indicating how they relate 
with each other in what’s known as a Haplotype map. It simplifies the individual DNA 
markers into subsets of alleles that lie close to a single chromosome frequently inherited, 
thus displaying the relationship between different marker compositions, and how usual 
they are displayed one another with their current aspect. 

Each column represents a single SNP that forms part of the certain block, while each row 
that appears in the block indicates a possible haplotype representation [38]. 

The lines that connect the different blocks indicate the locations where more than 1% (10% 
if the line is thick) of all the chromosomes are observed to transition from one common 
haplotype to a different one. The number at the right of each block indicates the 
population frequencies, which indicate the percentage of observed chromosomes that 
match one of the common patterns exactly, the most common crossings from one block 
to the next [39]. 

 

Figure 28: Haploview Haplotype display with transition rates and pattern matches rate. 
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We can employ these tools that Haploview provides investigators to examine how 
effective our algorithm is, comparing if the haplotype structure is modified by our 
changes, and testing how the number of generations and the mutation rates affect these 
results.  

4.3.2 Algorithm results 
For the results to be easier to understand, the main factor that will be observed are the 
differences in how the haplotypes are represented in the different displays, and not 
analyzing the results showed by the LD display and the haplotype display. If our 
algorithm has affected the haplotype significantly, then the graphics will show different 
structures and values, which would indicate that the haplotypes are no longer identical, 
and therefore, useful for the investigation, and elsewise, were the results showing similar 
representations, then the algorithm would be successful at anonymizing the original 
donor’s genotypes. 

Our algorithm will prove appropriate if the changes that we do to our genotypes do not 
reflect considerable differences on the phenotypes, as previously stated by the principles 
of population genetics. 

The test dataset is obtained from an investigation done by Daly etal. (2001), who studied 
the Chron disease applying an LD approach, where the datasets were gathered from the 
National Library of Medicine / National Center for Biotechnology Information [7][11], 
providing free collections of genomic data.  

It sequences the haploid genotypes of hundreds of individuals affected with the Chron 
disease and the information of the important SNP markers that want to be studied for the 
disease, provided in the .ped and .info files needed for the analysis. 

 

Figure 29: Chron disease patients’ data 

As to keep the results as simple as possible, we will not go into details of the biological 
results, but instead, checking if the data obtained from Haploview on the original data is 
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similar or correspondent to the synthetic data that we obtain, thus revealing if modifying 
the genotypes, we can produce considerable variations in the population’s overall 
haplotype or not. 

The original data provides the following results: 

 

Figure 30: Marker information for Chron patients 

 

Figure 31: LD display for Chron patients 



64  Implementation of the synthetic genomic 
data generation algorithm-Analysis of the results 

 

 

Figure 32: Haplotype display for Chron patients 

We will compare now these results to the data obtained from employing the algorithm 
with different amounts of generations and mutation rates, checking if the population data 
is preserved, and how do those parameters affect execution. 

Number of generations: 2 | No mutations 

 



65  Implementation of the synthetic genomic 
data generation algorithm-Analysis of the results 

 

 

 

Number of generations: 5 | No mutations 
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As we can check from the data obtained when not applying any mutations, the results 
remain consistent with the original, the LD display shows similar results with no 
variations in the relations between the markers, as well as the haplotype displays, which 
only present some limited variations in the numeric values, but not in the relations 
presented originally. 

The data presented also remains consistent, which is the expected results, as this way does 
not modify the locus of the genes nor the SNPs and the markers, but does swap the 
genotypes, which make the genotype of the original providers harder to trace back. 

 

As we have seen, the number of generations does not affect the data directly, obtaining 
similar results, due to the markers not being modified, exchanging data in those markers 
of people with the same physical trait of study (in this scenario, Chron’s disease). 

What can make differences between generations are mutations. In nature, the transversion 
mutation chance to be the half value of the transition mutation chance, so we will treat it 
in an analogous way in our study scenarios, representing it by the variable 
‘mutation_chance’. It will mean the chance for a transition mutation to happen, so the 
transversion mutation chance would be half of that value. 

Seeing how the mutations affect the sequences, the higher the mutation rate is, the more 
unidentifiable the data becomes, but the further the data strays from its original purpose.  

We won’t be looking at the Marker information segment, as we are more interested in 
comparing the LD display and Haplotype display graphics, as they indicate in a more 
visual and easier way to see how different both studied files are. 
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Number of generations: 5 | Mutation_Chance = 1 ∗ 10−7 

 

 

Although results are quite similar as well in this case, we can see a slight variation that 
happens when comparing the marker_6 with the marker_14, where a box, the Hedrick’s 
multiallelic D value, (how we can see the way different markers associate in a non-
random form), is missing, meaning that those two markers are no longer associated with 
each other. 

Checking the block 6, we can appreciate a slight difference as well, seeing that there is 
now a red box in the end of the first row, whereas before we could appreciate a blue box, 
indicating that the allele has now been modified. 

This is all due to a mutation having happened in that box, which has modified the way 
the markers interact, and the representation of the haplotype having been modified as a 
result. However, this is only a slight change, as we can check that the rest of the results 
retain similarity with the original ones, so this change will not manifest any problem in 
any future investigations, should this modified version be employed, as it is only a slight 
change in the whole array of data. 

This is what we aim for, changing the genomic sequences in a way that makes the data 
unlinkable for the original donors, while still retaining the utility it can provide to 
investigators. 
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Number of generations: 5 | Mutation_Chance = 1 ∗ 10−5 

 

 

As we can see, now that the mutation rate has been increased, the changes in the LD 
display and the haplotype display are beginning to be increased, not only in value form, 
but also now modifying how the markers interact with each other, adding new interactions 
and removing others. For example, the LD display now shows two markers that originally 
interacted are no longer connected, the marker 14 and 15 with the marker 20, as the 
squares that indicated so are no longer present. In the haplotype display, the block 9 has 
received substantial changes as well, as its structure has been completely modified, as 
well as their interactions with its colliding blocks. 

Whether this changes could add significant error or not to a study’s result cannot be 
quantified just looking at those displays, further examination using different 
biotechnological methods should be employ to fully understand the significance of the 
alterations due to the mutations, such as employing techniques as Random Amplified 
Polymorphic DNA (RAPD) or Amplified Fragment Length Polymorphism (AFLP), 
PCR-based tools that employ DNA-fingerprinting techniques with restriction enzymes to 
detect polymorphisms, and thus, know if the modification has produced a new phenotype 
to surge. 

Some commonly used software that allow to analyze AFLP data are BioNumerics [1] or 
SoftGenetics [2], two advanced biological data analyzing software. 
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Number of generations: 5 | Mutation_Chance = 1 ∗ 10−4 

 

 

The displayed data show that now the mutations have changed greatly the different blocks 
and markers, displaying completely new relations, or having removed previous 
interactions that appeared before. The mutations have affected the markers from the 
marker_9 to the marker_20, showing that they are more frequent now, changing several 
alleles to now be associated random forms, other than having non-random relationships, 
shown by the ‘squares’ in the LD display. 

This is also shown in the haplotype display, the interactions of the blocks have changed, 
while adding extra bases to the structure of different blocks or adding new alleles as 
possible representation for the block, due to the high modification that it has received, 
and even changing the amount of markers that are in a same block, such as it can be seen 
in block 2. 

From this point forward, any modification done with more mutation chance provides 
unsuccessful results, as the chains are too modified as to the program to parse, throwing 
file errors due to marker errors, or having too many erroneous pairwise comparisons by 
the mutations. 
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Number of generations: 10 | Mutation_Chance = 1 ∗ 10−7 

 

 

As we can see, the number of generations directly influence the quantity of mutations that 
happen in the genotype, having more possible rounds for mutations to appear, which can 
be directly represented in changes in the haplotype.  

As can be seen in the haplotype display, both block 2 and block 5 present mutations that 
change the structures of the alleles, and the LD display shows new interactions between 
the markers, and others that had previously existed now aren’t displayed. 

As happened before, the data has changed but not in a high degree that would make it 
unrecognizable. However, we cannot extract how useful this data would be at first glance, 
the RAPD or AFLP technique should be applied as to determine this grade of mutations 
results in data that does not change the results of any investigations on the haplotype or 
not. 
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Number of generations: 10 | Mutation_Chance = 1 ∗ 10−5 

 

 

In this scenario, the mutations have changed greatly the structure of the haplotype due to 
the modifications in the genotype, the blocks changing in size now, having less markers 
(in the case of the first block), or more (in the case of the second block). Adding more 
generations with more mutation rate with more generations adds more mutations, risking 
changing the genotype to a degree that the markers and blocks of the haplotype are 
modified and thus, makes the data not useful anymore for the story, as is this case’s 
problem. 

Thus, when studying how the mutations affect the haplotype with the techniques 
previously mentioned, we would not recommend using this configuration and any other’s 
that would cause the increment of mutations in the genotype. 



 

 
 
 
Chapter 5 
5 Conclusions and future work 
 

Managing genomic data in a secure way is a novel practice that is not well developed, as 
currently employed techniques require the owner to be heavily involved or to outsource 
to third parties. 

We have studied several cryptographic protocols and schemes that are used currently in 
the scientific scheme to construct privacy-preserving solutions to the problems that surge 
when the DNA sequence data of an individual is leaked. These methods employ 
homomorphic encryption, CKKS, ResNet, oblivious transfer, garbled circuits, and other 
techniques. 

We have described a method for assisting investigations in genomic data, managing the 
computation over encrypted data stored in the cloud while leaving the decision on 
admissible computations to the data owner, while anonymizing the records before being 
sent from the sequencing centers. This allows the owners to remain in full control of the 
data, while maintaining computational costs to a minimum. 

This method is based on the METIS scheme by Battke, Florian & Sak, Dilara. (2019) 
while introducing improvements on the scheme to solve its previous problems. These 
solutions consist of the development of a synthetic microdata generation algorithm, 
employing a modern OT scheme with minimal communicational costs and introducing 
the possibility to execute secure count queries on the encrypted genomic data to facilitate 
SNP studies. 

We have also implemented in an algorithm to anonymize the donors’ DNA by 
constructing new genetic data sets following the principles of population genetics by 
mixing and hashing initial genetic material over many generations in order to create a 
genetically disperse future population that shares the same genetic traits in general as the 
initial population but holds no direct correspondence to the original individuals. The 
genotype is modified, but the haplotype of the population remains unmodified, thus 
allowing haplotype studies to not be affected.



 

 

5.1 Future work 
 

Our future work in this project is related to implementing the METIS variation model, as 
well employing biotechnological methods to verify the best parameters for our synthetic 
microdata generation algorithm. 

First, we intend to analyze the haplotype differences that surge in our results with higher 
mutation rates using different biotechnological methods should be employ to fully 
understand the significance of the alterations due to the mutations, such as employing 
techniques as Random Amplified Polymorphic DNA (RAPD) or Amplified Fragment 
Length Polymorphism (AFLP), PCR-based tools that employ DNA-fingerprinting 
techniques with restriction enzymes to detect polymorphisms, and thus, know if the 
modification has produced a new phenotype to surge.  

Finally, we will implement a functional prototype of our model with a simple user 
interface to test its efficiency in real-live scenarios, employing data from the eICU 
database and making real employed queries with the database to analyze the performance 
of our protocol, and were it to prove successful, then we will design a more user friendly 
interface for the system, prepare the implementation with cloud servers, and present it to 
biotechnological industries and hospitals that can be interested in the system in protecting 
the user’s DNA sequences while not hampering their investigations.
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