
Marc Ruiz Rodríguez

TallyNetworks
Protecting Your Private Opinions with Edge-centric

Computing

Master’s degree final project

Directed by Dr. Pedro García López

Master’s Degree in Computer Security Engineering and Artificial

Intelligence

Tarragona
2017

"Without privacy there was no point in being an individual"
— Jonathan Franze, The Correction

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Pedro García for the useful
comments, remarks and engagement through the development process of this Master thesis.
Furthermore, I would like to thank Dr.Pedro García and Dr. Marc Sànchez for introducing
me to the topic as well for the support on the way and their priceless contributions to the final
result and their positive and constructive attitude during all the evolution and reviewing of
the project.

Also, I would like to thank the European Union and the Spanish Ministry of Science and
Innovation as work has been partly funded by the EU project IOStack (H2020-644182) and
Spanish research project Cloud Services and Community Clouds (TIN2013-47245-C2-2-R).

Finally, I would like to thank my loved ones, who have supported me throughout the
entire process. I will be grateful forever for your love and support Enric, Yolanda and Sílvia.

Abstract

In this work we claim that your private opinions cannot be controlled by a single centralized
entity. In this direction, we present TallyNetworks, an edge-centric distributed overlay that
aims to provide end-to-end verifiability of online opinions by leveraging the computing
resources (TallyBoxes) of users and third-party organizations. This will (i) securely compute
votes/opinions in a large group, (ii) guarantee privacy, integrity, robustness and verifiability,
and (iii) ensure that opinions cannot be tampered with or censored in any way by third parties.
Through blind signatures, pseudonyms and anonymous channels, it is possible to ensure that
the edge nodes (TallyBoxes) are blind and guarantee anonymity and privacy. Thanks to a
one-hop structured overlay and a global membership protocol using redundant broadcasting
and syncing, we guarantee that messages reach all nodes in the network (integrity, robustness),
and that vote information can be obtained and checked from different points (end-to-end
verifiability). Some examples of this are user participation in open polls or rating (stars,
like/dislike) services and persons in a community.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1

2 Background 5
2.1 Towards a decentralized shift . 5

2.1.1 Drawbacks of full centralization 6
2.1.2 Edge-centric Computing . 7

2.2 Anonymization Techniques . 9
2.2.1 Blind Signatures . 10
2.2.2 Anonymous communication channels 12

2.3 Distributed Hash Table . 15
2.3.1 Kademlia . 17

3 Related Work 21
3.1 E-voting systems . 21

3.1.1 Centralized E-voting . 23
3.1.2 Distributed E-voting . 26

3.2 Distributed reputation . 29
3.3 One-hop structured overlays . 30
3.4 Networks of edge web servers . 31

4 TallyNetworks 33
4.1 Objectives and main idea . 34
4.2 Security properties . 35
4.3 Entities of TallyNetworks . 36
4.4 Security Threats . 36

x Table of contents

4.5 Protocol steps . 37
4.6 One-Hop Architecture: Membership . 40
4.7 Kademlia CAST & SYNC . 41

4.7.1 Broadcast . 41
4.7.2 Broadcast + SYNC . 44

5 Analysis 47
5.1 Security Analysis . 47
5.2 Experimental Analysis . 49

5.2.1 Broadcast + Sync Simulation . 49
5.2.2 Protocol cryptographic operations validation 51
5.2.3 Membership storage cost evaluation 52

6 Conclusion and Future Work 53

References 57

List of figures

2.1 Centralized cloud model (left) versus Edge-centric Computing (right) [18]. 8
2.2 Blind signature diagram . 11
2.3 Onion layers depicted with an example [27] 14
2.4 Onion layers depicted with an example [13] 15
2.5 Kademlia binary tree example [29]. 17
2.6 Kademlia locating a node by its ID [29]. 18

4.1 TallyBox Protocol . 38
4.2 Participant Protocol . 40
4.3 Kademlia broadcast from node 6 [8] . 42

5.1 Broadcast+Sync Evaluation . 49

List of tables

5.1 Protocol simulation . 51
5.2 Storage Cost Evaluation (MB) . 52

Chapter 1

Introduction

Nowadays, people like to check beforehand how good the restaurant they will go next
weekend is or how suitable the item they want to buy is in their favorite on-line store. Not
only that but they also want to know what polls predict about the next election winner or
what people think about the last news we have seen in our social network (they like, love,
hate... them). Mainly, we can say that today people like to know the public opinion (ratings,
polls, like/dislike...).

However, on these days it seems that we live in a post-privacy world where our opinions
are controlled by a few big players in the market. Namely, the business models of companies
such as Facebook or Google rely on analyzing user opinions and behaviors and trade this
valuable information with advertisers.

Furthermore, a flourishing market of data brokers is emerging to analyze consumer’s
data to create consumer’s profiles which may contain sensitive user information. In fact,
every time you like a post in Facebook, whenever you like or dislike something in Google or
Youtube, when one rates something in Amazon, or anytime you participate in a poll, you are
giving away valuable information about yourself.

Although the fact that when we rate or like something in an on-line store or a social
network it may seem an innocuous action that sometimes can even be funny, being able to
gather all your ratings, likes and opinions, allows such big players to process this information
to build your on-line identity. Therefore, this can finally have an affect on your reputation.
In fact, it can even lead to you paying an increased price for some services such as health
or driving insurances due to some acts reflecting bad reputation or personal public image in
specific areas.

Additionally, we have to consider that such big players use all such information to tell
your friends, neighbors or people you may know, that you liked something to recommend it
to them. This actually means that they are using you to sell products. Moreover, they are

2 Introduction

telling to others what things you liked or rated and if you are not very careful on what you
like or rate, it may reveal private preferences that you would not want to be revealed or being
controlled by a third party.

Following the claim of edge-centric computing [18], we believe that key personal and
social communication services should be decentralized and human-driven. In this Master
thesis, we introduce TallyNetworks, an edge-centric distributed architecture designed to
preserve your opinions/voters’ privacy in large on-line communities in which public opinion
matters, but not the identity of each of the persons that expressed their opinion. At the same
time, we empower people again by centering the potential on the edges of the network, that
is, returning them the control of their own information instead of trusting and giving it away
to a third party.

The core idea of our system is to move opinion counting and storage to the edges of the
network which are powered by the users. A key assumption is that we cannot trust a single
centralized entity to store and count our opinions because of the above mentioned reasons.
Instead, we will rely on a decentralized and privacy-oriented overlay of TallyBoxes which
are controlled by the users of the system.

Our model is inspired in the remote voting paradigm where participants receive blindly
signed voting credentials that permit them to vote anonymously. However, there is a key
difference with classical voting systems in which the result is only given at the end of the
election. The contracts is that in our case, you must be able to provide real time results. Like
remote voting systems, we provide:

(i) Privacy: the identity of a voter cannot be linked to his vote.

(ii) Integrity: the result of the election cannot be altered in any way.

(iii) Robustness: the tolerance to the misbehavior of users or external parties.

(iv) End-to-end verifiability: the check that the reception and tallying of the votes is correct.

The key insight behind our approach is to leverage the services provided by a decentral-
ized, one-hop overlay of Tallyboxes and combine them with cryptographic techniques such
as blind signatures, pseudonyms and anonymous channels. The stability and capacity of edge
nodes (that are mainly stable home devices, datacenter edge services and nano datacenters)
permits the management of a global routing table and the one-hop abstraction that we will
use to distribute and count all the votes and opinions of the network.

As a proof-of-concept of TallyNetworks, we implemented a global membership service
based on a robust and reliable broadcast and synchronization algorithm for Kademlia, which is

3

a well-known peer-to-peer distributed hash table, and we used it to simulate the broadcasting
of votes and opinions with different levels of malicious nodes. Notice that our algorithm
permits to set the targeted robustness to attacks and churn by tuning redundancy across both
the defined phases or steps: broadcast and synchronization. Furthermore, we can dynamically
adapt such parameters in order to evolve the network with the circumstances.

This work was presented in the 22nd International European on Parallel and Distributed
Computing Conference (Euro-par)1, specifically in the 4th Workshop on Large Scale Dis-
tributed Virtual Environments (LSDVE)2 and later published [37] as our contribution with
the aim of moving and pushing the world from a post-privacy to a privacy-first era.

1For further information, visit the conference website: https://europar2016.inria.fr
2For further information, visit the workshop website: http://pages.di.unipi.it/ricci/LSDVE16/LSDVE16.html

Chapter 2

Background

The TallyNetworks model is an edge-centric distributed architecture that is inspired in the
remote voting paradigm where participants receive blindly signed voting credentials that
permit them to vote anonymously. However, anonymity must also be guaranteed during the
communication phases in order to avoid linking the pseudonymous voting credential with
the one that emitted the vote. This is why anonymous communication channels will also be
necessary in our proposal.

Therefore, in this chapter, edge-centric computing, blind signatures and anonymous
communication channels are described in detail as they form the main background for our
proposed model. Moreover, DHTs (Distributed Hash Tables) and specifically Kademlia,
are also explained since our proposed method will base its global membership protocol and
topics distribution on it. Those will ensure scalability and a reliable information management
in a distributed environment.

2.1 Towards a decentralized shift

Throughout the human evolution and in a wide range of human activities, the struggle
between centralization and decentralization has been emphasized. Some examples are the
power shifting in federal states, in which more or less power is given to the central state; or
the conversion of energy generation in decentralized grids, when it was first concentrated in
large power plants, to name but a few. The history of computing also shows this changes
between centralized and decentralized control. For instance, in the 1980s, due to the Internet
emergence, the systems gradually moved from centralized main-frames to PCs and local
networks, and terminated in fully decentralized systems using peer-to-peer performing
autonomously in a distributed fashion.

6 Background

However, some issues arise in the decentralized approach that lead to the need of a new
shift. Firstly, not only the number but also the diversity of powerful computing devices at the
user-facing end of the Internet has significantly increased. This is clearly shown by the boost
of high capacity mobile devices, which are always on; or home routers and dedicated Internet
connection boxes. Another example is the increase of high-bandwidth pervasive wireless
networks. Secondly, there has been a growth in the users concerns about trust, privacy and
autonomy given by cloud services, and this further accentuates the decentralized approach.

Therefore, these problems prompt the action of taking the control of computing appli-
cations, data, and services away from some central nodes (the "core") to the other logical
extreme (the "edge") of the Internet. This new shift in the history leads to the Edge-centric
Computing.

2.1.1 Drawbacks of full centralization

It is widely known that cloud computing has an enormous capacity to create effective
economies of scale using its dedicated data centers and simple centralized architectures. With
cloud computing, users can easily scale services to fit their needs, customize applications
and access cloud services from anywhere with an Internet connection. Enterprise users can
get applications to market quickly without worrying about underlying infrastructure costs or
maintenance.

However, as stated before, full centralization has significant drawbacks [18] when pushed
to such a logical extreme:

• Loss of privacy: Centralized service providers have amassed unprecedented amounts
of data about the behaviors and personalities of individuals. This is a fundamental
problem given by the fact of releasing personal and social data to centralized services.
Some examples are e-commerce sites, rating services, search engines, social networks,
and location services.

• Complete delegation: Another fundamental problem is the complete delegation of
the applications and systems control from the users to the cloud. Organizations are
encouraged to use Cloud Computing as they provide a solid environment for planning
the needed resources, cutting the business costs and applying the safety standards on
the highest level [11]. However, this requires unilateral trust from clients to the clouds
as they entirely depend on them. Moreover, this prevents from establishing finer grain
trust between users.

2.1 Towards a decentralized shift 7

• Non-exploitation of personal devices: The growth of the power of modern personal
devices is not exploited when all the work is done in centralized cloud computing
services. Therefore, there is a missed opportunity to exploit the huge amount of
computational, communication, and storage capacity of those devices.

• Absence of human-centered designs: Centralization also prevent the creation of
novel designs centered in humans, that may lead to the emergence of novel applications
and the strength of the human-machine interaction.

2.1.2 Edge-centric Computing

All these disadvantages of cloud computing described in Section 2.1.1 yield the propose of
another shift to a new decentralization: the edge-centric computing.

Edge-centric computing has been recently proposed as the natural evolution of peer-to-
peer (P2P) systems. One of the major claims of this new paradigm is to move the control to
the edges of the system (human-controlled) in order to preserve user’s privacy. Edge-centric
systems may combine centralized and decentralized components in order to overcome the
limitations of P2P systems.

Applying this paradigm will lead a movement of the data and computation from the
centralized nodes to the edges of the network.

This paradigm has a double objective:

1. Although we want to make a shift, the new paradigm needs to take advantage of the
main interesting properties of clouds. To do so, they will be integrated as a support
infrastructure. We position that the power of cloud computing needs to be exploited as
well in this new shift, but in a different form.

2. The creation of new human-centered computing applications wants to be encouraged
by returning the control and trust decisions towards the edges.

In Figure 2.1 it can be seen the structure of an edge-centric computing model. From
the illustration, three layers can be differentiated, which are the important components in
describing this new paradigm:

1. Core: It is the most inner layer and consists of the clouds and data centers. As
mentioned before, in this new paradigm we want to include clouds services as well,
although in a different way.

2. Intermediate layer: It encloses the core and this is where there are smaller servers
and content distribution.

8 Background

3. Edge: It surrounds the intermediate layer and consists of the user’s devices such as
desktop PCs, tablets and smart phones. A part from that, we can also find in here nano
data centers, which are stable computing devices such as routers or media centers.

Fig. 2.1 Centralized cloud model (left) versus Edge-centric Computing (right) [18].

The main characteristics of edge-centric computing are the following:

• Use of the proximity of the edge nodes. In this new model there exists the sense of
proximity between neighbor nodes. As it is known from P2P systems and content
distribution networks (CDNs), the exchange of information and also its distribution is
always more efficiently carried out when the nodes are close to each other. Edge-centric
computing can benefit from it in contrast of using perhaps-unnecessary centralized
intermediates that are further away between nodes in the edge.

• Exploitation of powerful edge devices. As technology evolves, the devices used for
humans are increasingly becoming more intelligent, with more capacity and with even
a smaller size. This yields the opportunity to perform autonomous decision-making
in the edge. Some examples are novel distributed crowdsensing frameworks [17],
human-controlled actuators [26] and agents reacting to the incoming information flows
[32].

• Increase of the user’s trust. The new paradigm allows the data of the users to be
pushed to the edges. Therefore, personal and social data relative to the user is stored in
her control. The management of the sensitive data is carried to the edges, which may
reinforce a secure and private management. This all leads to an increase of the user’s
trust towards the system.

2.2 Anonymization Techniques 9

• Control is in the edge. Another property is that the control of the applications is
also done in the edges. The edges are deciding where the data is stored and how it
is distributed and synchronized. Also, they choose when they delegate some storage
or computation to other nodes or to the core. Therefore, we can see that in this new
paradigm the devices of the users are the coordinators of the activity of the applications.

• Human-oriented design. By applying edge-centric computing, we are encouraging
the creations of new applications which are crowdsourced. This means that data of
different edge devices is aggregated and correlated to form the application. This clearly
leads in users having more control of the links of their networks. In general, we believe
that with this shift we are giving the opportunity to create applications in which the
power is in the crowd of users.

2.2 Anonymization Techniques

As we previously stated during the introduction, we aim to build a system that preserves
user’s privacy, but also their anonymity when participating in the network. For this reason,
we need to use anonymization techniques in two different situations. However, first we will
briefly introduce the terminology related with anonymity that can be found in [31] and [10].

• Anonymity: This concept is fairly intuitive. It is defined as the state of being not
identifiable within a set of subjects, which is called the anonymity set. We can define
it in a more formal way saying that a subject is anonymous if the probability of
identifying her in the anonymity set, which includes all the possible n subjects, it is
exactly 1

n .

• Unlinkablity: It is formally defined in the [ISO15408 1999]. In its definition we can
distinguish two kinds of unlinkability: absolute unlinkability and relative unlinkability.

The first one refers to the fact of not being able to determine a link between uses of
a resource, i.e., we cannot determine if a single user used multiple times the same
resource or if such resource was used by multiple users; while the second refers to the
fact that the knowledge about the system does not increase by its observation by an
attacker. In other words, the attacker won’t learn about links between resources by the
observation of the system.

• Unobservability: Its formal definition would be: It is the state of items of interest
(IOIs) being indistinguishable from any IOI (of the same type) at all. Roughly speaking,

10 Background

it means that, if there is sender unobservability, nobody will notice if the user sends a
message. On the other hand, if there is receiver unobservability, it means that nobody
will notice if the user receives a message. Therefore, with both combined, nobody will
notice that a message has been exchanged between two users, so a message will be
indistinguishable from a random noise.

• Pseudonymity: A pseudonym can be defined as an identifier of a subject or set of
subjects that do not change during the time unless their pseudonym is transferable.
Therefore, in pseudonymity, instead of using their real identity, they use a pseudonym.

As stated before, in the case of our proposal, there are two situations in which we will
need anonymization techniques. On the one hand, we need such techniques in order to protect
the real identity of the person when participating in the network. However, anonymizing
her would not allow the system to prevent her from participating more than once in the
same election. For this reason, we will use pseudonyms that can be obtained through blind
signatures, inspired by previous works on remote voting that will be briefly described in
related work section.

On the other hand, we will need anonymization techniques for some of the communi-
cations in order to ensure that devices, IPs or other identifiers subject to communications
cannot be tracked or linked to the pseudonym that the real person is using to protect her
identity. Therefore, we ensure that the real identity remains anonymous.

Combining both anonymization channels and pseudonyms, we can reach a level of
pseudoanonimity that is by far sufficient for the problem of distributed management of
personal opinions as it will be shown during the explanation of our proposal.

In the following subsections we will introduce the main ideas and background behind the
above mentioned techniques.

2.2.1 Blind Signatures

Although blind signatures [4] have a more general purpose than being only used for
anonymization purposes, we decided to include them in this anonymization section be-
cause, as you will see in our described proposal in chapter 4, we use them in order to create a
pseudonym for the users of our network in order to make them pseudoanonymous.

A blind signature allows a user to get a signature on a hidden message without the signer
learning the message in question. Therefore, in this form of digital signature, the content of
a message is disguised (blinded) before it is signed. Then, when the message in unblinded
with the original message, the blind signature can be publicly verified against that, just as a
regular digital signature works[45].

2.2 Anonymization Techniques 11

Due to its characteristics, blind signatures are usually used in protocols related to pri-
vacy. These protocols are needed when the signer and the message author are different
entities. Some examples of applications, which in fact will be used in TallyNetworks, are
cryptographic election systems and digital cash schemes.

A secure blind signature scheme ensures two characteristics:

• Unforgettably: this property ensures that nobody can fake a new signature for a new
message.

• Blindness: the signer will never be able to learn the message she is signing nor be able
to link a signature to the protocol run where it was obtained.

We can define the analogy illustrated in Figure 2.2 in order to make things clearer.
Consider Alice has a letter which should be signed by an authority, Bob. However, Alice
does not want Bob to be able to read the letter. Thus, she finds a clever solution: she can
place the letter in an envelope lined with carbon paper and ask Bob to sign it. Bob will sign
the outside of the carbon envelope without being able to open it, so when he sends it back to
Alice, she will be able to open the envelope and find the letter signed by Bob, without him
seeing the contents.

Fig. 2.2 Blind signature diagram

Two operations can be distinguished:

• Blinding B(m): the process of putting the letter m into the envelope to avoid Bob
seeing the content.

12 Background

• Unblinding U B(m): the process of taking out the signed letter m from the envelope.

Following the previous examples the operation steps would be the following:

1. Alice "blinds" the message m, with some random number b (the blinding factor). This
results in B(m,b).

2. Bob signs this message, resulting in sign(B(m),d), where d is Bob’s private key.

3. Alice the unblinds the message using b, resulting in U B(sign(B(m,b),d),b).

4. The functions are designed so that this reduces to sign(m,d), which is Bob’s signature
on m.

2.2.2 Anonymous communication channels

Taking into account our proposal, although the use of blindly signed pseudonyms should
guarantee that the real identity of the participant is never revealed, such pseudonym could be
linked to the real identity of the person through the connections that the user establishes with
other nodes in the network.

In order to achieve unlinkability between the real identity and the pseudonym through
the established connections, we will need an anonymous channel which guarantees that such
link can never be established.

In the field of anonymous channels there is a lot of literature and previous work. This
is because behind the idea of anonymous channels there are a lot of kind purposes and of
humanity interest such as freedom of speech, avoid surveillance or data retention, access to
censored content,...

In the cited survey of anonymous communication channels [10], we can find most of
the work around anonymous channels. However, in this thesis, as the anonymous channel
will only be a means, and not the main focus of study, we will briefly introduce some of the
proposed solutions in the literature in order to understand the main ideas behind anonymous
communication channels. Finally, we will study with a bit more of detail one of the most
popular and most studied solutions according to [31].

One of the first proposed solutions in the literature is using trusted or semi-trusted relays.
Those are systems that introduce a central entity in which users rely to provide security for
them. However, this option normally provides a low degree of anonymity protection against
traffic analysis and active attacks as it would be easy for an attacker to trace the user if the
central server is known or even pretending being such server. A current offered solution

2.2 Anonymization Techniques 13

based on this approach is Anonymizer 1 which provides a kind of proxy server to ensure
the privacy of the users. However, this anonymous scheme is too weak for our purposes as
previously described.

Another popular solution based on trusted servers to rely on is Crowds. It basically works
as follows: each user contacts a central server and receives the list of participants, i.e. the
“crowd”. A user then relays her web requests by passing it to another randomly selected
node in the crowd. Once the node receives the request, it randomly decides if it should
relay it further through the crowd or send it to the final recipient. Finally, the reply is sent
back to the user via the route established as the request was being forwarded through the
crowd. However, it has been demonstrated, as stated by [10], that some attacks are feasible
to discover the identity and the content of the messages since they do not use encryption
between servers. Therefore, this system also offers a weak solution for our purposes.

Besides trusted or semi-trusted relays solutions there are other kind of solutions. Among
them, the most noteworthy are those based on Mix Networks. The general solution for such
networks, as defined in [44], consists on using a chain of proxy servers, also known as mixes,
that take in messages from multiple senders, shuffle them, and send them back out in random
order to the next destination. The receiver can be another mix node or the final destination
depending on the length of the chain.

Furthermore, messages are encapsulated in layers of public key encryption in which each
layer corresponds to the encryption for a certain proxy. Each proxy server strips off its own
layer of encryption to reveal where to send the message next.

This concept was first introduced by Chaum [6] and nowadays it is one of the most
popular and secure solutions based on mix-networks. Also, one of the most studied is Onion
Routing and specifically its second generation version, TOR, as stated in [31].

Based on the literature, Onion routing and specifically TOR seem to be some of the most
noteworthy solutions in terms of anonymity and security. Therefore, we decided to use it as
our anonymous communication channel and in the following lines we will describe how it
works with more detail.

TOR: The new generation onion router

The paper [13] describes TOR as the second generation of onion routing. The main idea
behind it, the same as mix networks, is encapsulating a message in layers of encryption
analogous to layers of an onion as it has been depicted in figure 2.3 for a better understanding
and easier visualization.

1For further details about Anonymizer visit: http://www.anonymizer.com/

http://www.anonymizer.com/

14 Background

Fig. 2.3 Onion layers depicted with an example [27]

Each layer of encryption corresponds to a proxy in the path to our destination. The
construction of this path starts when Alice uses her TOR client to obtain a list of TOR nodes
from a directory server with the aim of accessing any service through the anonymization
network. Once she receives such directory, she will pick a random path to the destination
server. The connections between each proxy are encrypted with TLS except the final
destination (the website or service we want to access) that will be only encrypted if it
supports or offers such feature.

Alice will encapsulate the message in encryption layers, one per each hop (proxy) in the
path after negotiating the keys as shown in the protocol of figure 2.4. Each proxy will then
strip off one layer of encryption so he will be able to see the next destination. Once the next
destination is obtained, he will forward the message until it reaches the real final destination.

Once Alice want to visit a different service or website, the process will start again with a
new random path.

TOR is also known as the second generation onion routing as besides all the properties
provided in the first onion routing definition, it adds perfect forward secrecy negotiating
temporal keys and using different random paths for accessing resources. TOR also adds
congestion control, directory servers, integrity checking and configurable exit policies.
Furthermore, it adds telescoping circuits, which besides helping to circumventing the original
patent of Onion Routing, it is the responsible of providing the above mentioned forward

2.3 Distributed Hash Table 15

Fig. 2.4 Onion layers depicted with an example [13]

privacy. The original Onion Routing proposal used long term keys, but telescoping circuits
consists on negotiating short-term session keys with each node along the path which will be
then used to encrypt the onion layers of the message.

Thanks to the anonymization provided and the strong security that TOR provides, it
makes TOR a perfect tool for our anonymization purposes.

2.3 Distributed Hash Table

A key assumption in our proposal is that trusting a central entity to store and count our
opinions leaves people in a vulnerable situation that may compromise their privacy. Therefore,
we claim that information should be distributed and human-driven.

For the above reason, we require an scalable but also reliable mechanism to distribute
opinions and maintain the membership of the network. In this sense, DHTs are known to be
an excellent solution for distributing information and looking it up in an scalable and reliable
way which perfectly fit with our requirements.

The main objective of hash tables is the insertion and retrieval of key-value pairs in an
efficient way and therefore a Distributed Hash Table (DHT) [25] aims to provide the same
functionality but in a decentralized way. In a DHT, the hash table is distributed among the
nodes so that each node in the system stores a part of it.

In order to provide an efficient lookup and insertion of the keys despite the distribution of
the table over the network, the nodes are interconnected in a structured network overlaying
the system. Thus, a user requesting a key in a node which does not contain the corresponding

16 Background

hash table part still is guaranteed efficiency in finding the key in the other nodes due to this
structured connection between them.

Moreover, as nodes can join or leave the system, the overlaid network is maintained
and replication of key-value pairs is applied to multiple nodes. This is done to guarantee
robustness.

Therefore, the structure of a DHT is basically composed by [47]:

• Keyspace: It is the foundation of a DHT and it defines the range of the keys. An
example could be the set of 160-bit strings.

• Keyspace partitioning: it is a scheme that splits the keyspace among the nodes so that
each node owns a subset of the keyspace. In other words, it is the map from key to
nodes. There are multiple variants to make this map function but the essential property
that has to provide is that when a node is removed or added in the system, only the
nodes with adjacent IDs will have to change their set of keys, leaving all the other
nodes with the same set of keys they had. Recall that in hash tables usually the addition
or removal of one bucket implies the redistribution of almost all the keyspace. In a
DHT this would not be efficient, because this would mean an intensive data movement
through the bandwidth, given by the move of objects stored in the DHT. For this reason,
the property explained before is important to keep the reorganization minimal when a
node arrives or fails.

• Overlay network: As explained before an overlaid network is required to connect the
nodes so that any node can find a given key in the keyspace. The way in which this
network works is by each node maintaining a set of links to other nodes. This is called
a routing table, where all the routing tables from each node form the overlay network.
In order for a node to choose the set of neighbor nodes (nodes in the routing table), a
certain structure is followed that is called the network’s topology. As in the previous
point, here there are multiple variants that have an essential property: for any key in
the keyspace, each node in the system either has a node ID that owns the key or it has
a link to a node whose node ID is close2 to the key.

Although there are a lot of different protocols or implementations of DHTs such as Pastry
[38], Chord [42] or P-Grid [1], we focused on Kademlia because of its unique combination
of features that will be described in the following section and that will be really useful in the
implementation of our proposal.

2For some distance definition, such as geographical or network latency.

2.3 Distributed Hash Table 17

2.3.1 Kademlia

Before pointing out the benefits that Kademlia can achieve to help us with our proposal
implementation, we will first introduce how it works and its main characteristics.

Kademlia [29] is a peer-to-peer distributed hash table (DHT) where the nodes are repre-
sented as leaves in a binary tree. The nodes in the network have a node ID in the keyspace,
in which the key is a 160-bit quantity. The keys have also the opaque property, which means
that the key is represented in a way in which there is no direct access to the key material that
forms the key.

The nodes are positioned in the tree in an structured manner. The location of a node is
given by the shortest unique prefix of its ID. Therefore, when a node wants to be added to the
network, according to its unique prefix, the binary tree is traversed and a leaf node is created
for the new incoming node. It can be seen in Figure 2.5 how the node with prefix 0011 is
located in a leaf node (represented as a black dot) according to the unique prefix.

Moreover, in order to decide the contacts of a node, the tree is successively divided. From
the perspective of a given node, the binary tree is divided into multiple lower subtrees that
do not contain the node. In Figure 2.5 these subtrees for node with prefix 0011 are denoted
by gray ovals. It can be seen that the selection of the subtrees is done by, starting from the
whole tree, considering the half of the tree not containing the node. This is successively
applied in the next subtree, in which the half that do not contain the node is considered as
another subtree, and so on and so forth until getting all k buckets (or k delegate nodes) in
each subtree.

Fig. 2.5 Kademlia binary tree example [29].

18 Background

Given this set of subtrees not containing the node, Kademlia has the important property
to guarantee that that any node has at least one contact in each of its subtrees (as long as that
subtree contains a node). With this contacts, a given node can locate any other node by its
ID. The process of finding the node is illustrated in Figure 2.6, where node 0011 wants to
find node with ID 1110. Node 0011 successively contacts the best node it knows, finding
contacts in lower and lower subtrees until the target node is found.

Fig. 2.6 Kademlia locating a node by its ID [29].

When in the last example, node 0011 contacted the best nodes, we are referring to the
closest nodes given that we want to reach node 1110. Therefore, we need a measure of
distance between nodes. In fact, one of the most important features of Kademlia is how this
distance is measured.

In order to get the value of such metric, two node ID’s or a node ID and a key are
XORed3 and the result is the distance between them. With the symmetric property of
XOR, in Kademlia, the lookup queries that participants receive are precisely from the same
distribution of nodes contained in their routing tables. Therefore, this property enables
Kademlia to learn useful routing information extracted from received queries. If this property
was not present, Kademlia would not be able to do that, just like Chord [42] cannot. Thus,
this leads Kademlia to behave in a more intelligent way, selecting rules based on latency and
even sending parallel, asynchronous queries to nodes that are equally appropriate.

3For each bit, the XOR function returns zero if the two bits are equal and one if the two bits are different.

2.3 Distributed Hash Table 19

It is important to note how the XOR metric captures the notion of distance in Kademlia’s
binary tree structure4. Namely, in a tree that is completely occupied, the distance calculated
by the XOR metric corresponds to the height of the smallest subtree containing both the node
IDs we are measuring. On the other hand, when the tree is not fully populated, the nearest
node to a certain ID is the lead node whose ID shares the longest common prefix of it.

Taking the basic approach of many DHTs and using an XOR metric for distance between
points in the key space, Kademlia simultaneously achieves many benefits that other DHT do
not such as:

• The key lookups have the interesting and beneficial side effect of giving configuration
information. This leads to a minimisation of the number messages that a node has to
send to learn about another node.

• Proximity routing is achieved as with the knowledge that nodes have due to the
symmetry, they can choose nodes with low latencies.

• Fault tolerance and concurrent execution is possible by means of parallel and asyn-
chronous queries to the list of nodes most recently seen.

• Handles denial of service attack by using the algorithm that records the existence of
the nodes.

The XOR metric that allows a symmetric treatment of the tree along with those provided
benefits, specially the fact of being able to execute parallel queries and its resilient design,
makes Kademlia a perfect element for our proposal implementation.

4Note that although XOR is a valid metric, it is not Euclidean.

Chapter 3

Related Work

Edge-centric computing has been recently proposed as the natural evolution of peer-to-peer
(P2P) systems. As described in chapter 1, one of the major claims of this new paradigm is to
move the control to the edges of the system (human-controlled) in order to preserve user’s
privacy. Edge-centric systems may combine centralized and decentralized components in
order to overcome the limitations of P2P systems.

In this new paradigm, TallyNetworks is one of the first Internet distributed services
following the edge-centric paradigm. TallyNetworks combines centralized (Authenticator)
and decentralized (TallyBox one-hop overlay) components to fight against security treats
(like the Sybil attack) and to simplify architecture services (opinion voting and opinion
retrieval, user membership, global knowledge of the routing table).

However, there are a lot of previous work that is noteworthy to point out as they have
served us as inspiration, model or proof of correctness. In the following sections, we will
describe the main topics that helped or inspired us in someway beyond the previous described
background.

3.1 E-voting systems

Although TallyNetworks differs in many aspects with E-voting systems as it will be seen
during this introduction to the traditional and common definition of an E-voting protocol, we
cannot ignore the huge influence that such systems have had on our proposal.

If you think about your local elections, you will see that the way E-voting works is
very similar to how in-person elections works but from an electronic point of view. In
fact, E-voting stands for electronic voting, which is defined as the action of voting using an
electronic procedure [48]. Such procedure can be applied to assist both the task of casting

22 Related Work

and counting the votes. In the following lines, we will describe the main ideas and steps
behind electronic voting.

Usually three main protocol steps are defined in an e-voting system, besides to an extra
step when the protocol is finished:

1. System Access Control Process: In this step the voter is authenticated in the system
so that it can be authorised to vote. In order to accomplish this step, two procedure are
encompassed:

• Identification phase : The user wanting to vote will claim an identity given by
some unique identifier for a user. This is also known as the registration phase.

• Authentication Phase : In this phase the voter provides certain credentials to
prove her identity. Usually, and it will also be the case in our proposed system,
this is done by a public key.

2. Voting Process: In this step, the actual vote of the voter happens. Such vote must
guarantee the privacy of the user, so using public key encryption or any other system
that permits to the user cast the vote without reveling her option, the vote information
is sent as an encrypted text to the election server. In this phase, usually (and also in the
system we propose) some replication is done to provide robustness to the system.

3. Collecting or Tallying Process: In this phase the counting of the votes is performed in
such a way that the system unlinks each vote from the person that casted it, so although
being able of opening the votes or aggregating them and obtaining the final result, the
system cannot learn from the option of the user. In most of the voting systems, there is
a scheduled time of voting that when is finished is when the counting takes place to
give the results. However, we will later see that our method allows the voting process
to be always open, while votes are being count. Also, in most traditional e-voting
systems, voters can only consult the result at the end of the process when the tallying
is finished. In our case, we propose a model in which any participant can retrieve the
results of the voting at that moment. This will make our architecture not suitable for
some applications such as political elections but very useful in other field such as the
reputation of users in the e-commerce. Another aspect that has to be taken into account
is that when the tallying is made, the system has to validate that the signatures of the
votes are from a valid participant.

4. Validation Process: Once the protocol finishes, all participants or an external entity
must be able to ensure that the process counted all the votes and that the final result is
correct.

3.1 E-voting systems 23

This typical steps in an e-voting system has also some common desired properties which
are the following described in [2] among many others, as such properties are common to any
e-voting system:

• Authentication: only people in the electoral roll can vote.

• Unicity: every participant can vote once at most.

• Privacy: votes can not be related to voter identities.

• Fairness: no partial results can be revealed before the end of the voting period.

• Verifiability: correctness of the process can be checked.

• Uncoercibility: nobody can prove that a voter voted in a particular way.

The described protocol and the way such properties are fulfilled is a wide field that
has been considered in different scenarios. But basically we can distinguish two different
approaches: centralized voting and remote voting.

In the following sections we will introduce some different solutions based on this two
approaches.

3.1.1 Centralized E-voting

One of the most common and studied environments is a centralized approach. In this
approach, we can distinguish three different schemes or paradigms as a solution to the remote
voting challenge:

• Mix-type: In this paradigm a voter signs her ballot and then casts after encrypting it.
Once the time for voting ends, the central entity that received all the ballots, shuffles
and re-encrypts them. This process is also known as mixing and the aim is unlinking
the votes from the user that casted it.

Some examples of this approach are [39], [22] or a more recent one [28]. Although it
is a clever an useful solution, it would clash with some problems when moving from a
centralized environment to distributed one. Votes should be mixed among different
nodes and as they are not trusted at all, we should also replicate the votes in order to
make sure all of them are counted while we ensure that they are not counted more
than once. Furthermore, managing all the keys and reencryptions required would make
things even more complicate. These are the main reasons why we decided to explore
other options.

24 Related Work

• Homomorphic tallying: We will first introduce the concept of Homomorphism. In
cryptography, a system is homomorphic if allows computations to be carried out on
ciphertext, thus generating an encrypted result which, when decrypted, matches the
result of operations performed on the plaintext.

In homomorphic tallying schemes, participants cast their ballots encrypted under some
public key cryptosystem having a homomorphic property as it would be the case of
ElGamal encryption which allows additive homomorphism.

Votes are casted and sent to the trusted entity that will aggregate all the encrypted
votes in order to obtain a single ciphertext with the result of the election. Once the
voting process period ends, the ciphertext can be decrypted in order to obtain the final
aggregated result.

Notice that in this system, votes must be encoded in such a way that the final tally can
be recovered from the cleartext of the aggregated ballots, for example, 0 means no, 1
means yes or also we could use a vector of options.

As votes are aggregated in ciphertext, we must ensure that its content is valid without
being able to know the real content. This is why we usually need to use zero-knowledge
proves to make sure the ballot has been composed properly. Zero-knowledge proves
[49] allows that one party (the prover) can prove to another party (the verifier) that a
given statement is true, without conveying any information apart from the fact that the
statement is indeed true.

Some examples in the literature using this paradigm are: [7], [21], [34]. As in the
previous case, those are very clever solutions that achieve solving the problem of
remote voting offering all the required guarantees, however, moving this model to
a distributed environment it is not an easy task. If votes must be aggregated in a
distributed fashion, we must ensure with some mechanism that each vote is aggregated
only once. Furthermore, key management will add complexity as we will require to
provide reencryption schemes in order to distribute and aggregate all votes in different
nodes. In addition to this, as we cannot trust all nodes of network, we should do
zero-knowledge proofs to each vote that we receive from any other node (single or
aggregated votes), not only when it is casted by the user, which would add an extra
computation overhead besides reencryption. For all these reasons, we decided to
explore other possibilities.

• Blind signatures: The concept of blind signature was introduced in the Background
section of this work. The idea behind an e-voting system that relies on blind signatures
is that a voter authenticates against a trusted authority which is responsible for checking

3.1 E-voting systems 25

that the voter can participate in the election and she has not voted before. In that case,
voter’s ballot (the encrypted vote) is blindly signed by that authority. The polling
station only accepts ballots that have been properly signed by the authority. When the
voting period is concluded, ballots are decrypted and tallied.

Some examples of this approach are [5] and [16]. However, although being very
good solutions for a centralized approach, again, distributing such central entity would
require constructing a mechanism to synchronize all nodes in order to be able to verify
if the voter has already casted the vote or not independently of the node he is trying to
cast the vote to. Furthermore, votes must be encrypted and blind signed, so it is clear
we will have a lot of work with key management as the authority is distributed and
each of them will have a different key. Furthermore, as all nodes in the network will be
blind signing the vote, but also counting the votes, we will need a way to anonymize
the user when casting the vote without losing the capability of guaranteeing one vote
per user.

The inception of our proposal inspired by blind signatures

The fact of realizing that any node should be able to decrypt the vote and blind signing
it in a distributed environment using blind signed ballots inspired us to become with
our proposal. In a blind signature scheme, users encrypt their vote in order to avoid the
authority or the polling system learning about our vote so they can link the vote with
the user. Nevertheless, if all the nodes will be able to decrypt the vote, it doesn’t really
make sense to encrypt it, as we are not really doing nothing in a practical sense.

In fact, we encrypt the vote to achieve privacy, but if encryption is not providing this
privacy because of the distributed approach, we must achieve privacy from another
point of view. A feasible option is achieving privacy by anonymizing our identity when
casting our vote. If we are anonymous, we won’t need to encrypt the vote.

However, we should sign the vote in order to provide integrity. In consequence, the
fact of signing the vote means that we need an identity to sign it, but also we need
such identity in order to provide one vote per user guarantees. The way of obtaining
an identity without revealing the real one is using a pseudonym as stated during the
background section.

By using a pseudonym with which we will sign the vote, we can achieve privacy
without compromising integrity if we can guarantee that such pseudonym won’t be
linked with our identity. This can be achieved by using the same idea behind the fact of

26 Related Work

not learning about the vote, blind signatures. we can generate a pseudonym and obtain
a blind signature for it. A blind signature will only be issued once to the same person
in order to guarantee one vote per user, but as they don’t learn about the pseudonym,
our privacy is not compromised.

In our proposal, which later will be described in detail, an authenticator component
uses blind signatures to create an anonymous pseudonym. In this case, such pseudonym
will be a public key and it will be used for voting and participating in the network.
By combining blind signatures and anonymous channels, we provide a level of pseu-
doanonimity that is by far sufficient for the problem of distributed management of
personal opinions.

We want to make a final note about comparing TallyNetworks to traditional e-voting
systems as used in public elections. Such systems are normally based on centralized trusted
components [33] managed by a public institution. The security requirements in these systems
are extremely high in order to have an acceptable e-voting system. For example, voting
from mobile devices cannot be considered without secure hardware devices. This is one
more reason why TallyNetworks cannot be compared directly to them besides the previously
mentioned reasons such as the need of offering real time results or voting periods with no
end.

Besides the centralized approaches that we have presented, there is also work around
distributed remote voting systems and we will introduce in the following section the main
ideas behind them.

3.1.2 Distributed E-voting

Yet a more interesting topic we will study for this work is when the remote voting is organized
in a distributed architecture. This provides some interesting benefits such as more robustness
against denial of service attacks, not relying on a trusted entity that controls all the election
and empowers election participants, which is close to the goals we aim to achieve.

Distributed E-voting is a trending topic nowadays with the disruption of cryptocurrencies,
nevertheless, there are not known real initiatives implementing or using distributed e-voting.
Besides to cryptocurrencies, other proposals can be found in the literature using other
cryptosystems as we will briefly describe.

Chan et al. [3] proposes a system in which each member publishes its own encrypted vote
in any server in such a way, once the votes are aggregated, the collaboration of all participants
is required. Then, once all of them have voted, each voter will retrieve all the votes and will
tally them using the homomorphic property provided by ElGamal encryption. They will also

3.1 E-voting systems 27

share their random exponentiation in order to be able to validate the result of the election all
together. However, they don’t provide a method for registering voters because they assume a
small group. Furthermore, the fact of collaboration between users to obtain the final result
can be an scalability threat.

Another approach based on broadcasting and using homomorphism is the one proposed
in [36], however, this approach has been thought to use it in very little communities as all the
participants contributes to the key generation and decryption process of the votes, so they
all have to be online when key generation or decryption happens in order to obtain a correct
result.

Beyond these proposals we can find the technology that seems that will have an important
roll in the world in the following years because of the tremendous interest that has awaken,
which is blockchain. Blockchain can be used in many fields and distributed voting is one of
them. In fact, there are some projects such as Follow My Vote 1 that tried to build a solution
for e-voting based on blockchain, however, it seems that is not being actively implemented as
their public repositories doesn’t have activity since the end of 2016 at the moment of writting
this work.

Although blockchain is being very trending, it doesn’t seem that exist any public imple-
mentation of e-voting, but a lot of people is speaking about it as you can find press analysis,
blockchain experts and even some goverments as the Estonian 2 pushing blockchain e-voting
and speaking about it.

Despite of this trend around blockchain, with our proposal, we wanted to explore alterna-
tives to a blockchain voting protocol. However, we will briefly introduce how blockchain
works and how e-voting would fit in it, because as it will be seen, we can find some coinci-
dences between our proposal and e-voting based on blockchain.

We can define blockchain as a distributed databases that registers transactions in such a
way they cannot be altered because they are tied forming a chain that is distributively formed
and maintained by all the users of the network.

Everything begins when a user wants to register a new transaction. She will compose the
transaction and will use his secret key to sign it. The public key associated to this secret key
will be her identifier in the network or her pseudonym. The transaction is broadcasted to the
network and all nodes in the network will validate such transaction. Once it is verified, it is
combined with other transactions to create a new block of data. Then, the block is added to
the existing blockchain in a way that is permanent and unalterable.

1For further information visit: https://followmyvote.com
2Estonian goverment is said to successfully complete a pilot program with e-voting based on blockchain:

https://www.cyberscoop.com/nasdaq-estonia-evoting-pilot/

https://followmyvote.com
https://www.cyberscoop.com/nasdaq-estonia-evoting-pilot/

28 Related Work

In this sense, the transaction will be the vote and the validation process will consist on
verifying that the vote is valid. The block chain will contain all the casted votes. Privacy is
achieved thanks to the pseudonym. The main problem with this is that anybody can generate
a new pair of private and public key that are used as pseudonym. The private key would have
to be verifiable tied to one individual’s identity, and that individual’s identity would have to
be exclusive to all other entities in the voting network. Although the voting system could
implement a 1 vote per private key when validating the vote, the pseudo-anonymous nature
of blockchain network makes nearly impossible to know if an individual has generated two
private keys. For this reason, we would require a way to ensure that only verified pseudonyms
can participate in the election, probably with a trusted entity.

As it can be deduced by this brief explanation, blockchain is relying on pseudonyms,
the same as our proposal as we introduced in the explanation of the inception of our idea.
Furthermore, an access control is required, which was also a problem in our proposal until
we added an authenticator component to do this task in order to decide which members are
accepted in the network.

However, implementing blockchain on mobile devices it is not feasible because of the
huge computation required and also because of the huge amount of required bandwidth as
it would drain the battery and end with the available data for the user. For this reason, we
should rely on intermediate servers, similar to our TallyBoxes.

The main difference between blockchain and our proposal is that blockchain ensures that
everybody will receive all transactions thanks to the permanent and unalterable blockchain
that nodes will be able to retrieve and construct. However, it cannot ensure that the broadcast
to start the validation process of a transaction is reliable enough to reach the required majority
as it uses a gossiping3 algorithm. Therefore, the transactions that are present in the blockchain
are the ones that where properly broadcasted. In contrast, our proposal aims to ensure that
the 100% are reached when broadcasting the vote, so they all will be able to check if the vote
is valid or not and count it without other validations.

We could say that our proposal is a simpler approach than blockchain as it doesn’t
require as much communication as blockchain and the required computation and the size of
transactions is smaller. However, as it is simpler there is an important difference in terms
of security. Blockchain is secure by design because of its transaction verification and block
chain and if the broadcast is not 100% reliable, the nodes that couldn’t be reached, will
acknowledge the vote once it is published in the blockchain, while our solution is statistically
secure in the sense that it relies on ensuring that the message will reach the 100% during the

3The main idea of a gossiping algorithm is that there are a bunch of nodes, and when one of them
acknowledges something, it tells it to a few nodes that are near (connected with), and then those nodes tell it to
a few more nodes and so on. Eventually everyone knows about the original information (transaction).

3.2 Distributed reputation 29

broadcast phase and if any node cannot be reached, it will be later synced with the rest of
nodes thanks to a synchronization phase.

However, taking into account the purpose of our system, we provide a level of pseu-
doanonimity and security that is by far sufficient for our purpose.

3.2 Distributed reputation

The system we are going to propose in the next chapter, TallyNetworks, is applicable to
distributed reputation. Reputation systems are used in different electronic services and
platforms such as e-commerce, in which the users gain a trust from the other users. This
makes the platforms more reliable for the users as they can check the reputation of other
users, for instance sellers in the e-commerce field.

Due to the large data that such platforms usually have to deal with, distributing the
reputation calculation is an essential aspect. This, however, introduces a further challenge,
since the distribution of the reputation measuring will trigger some security threats that should
be carefully studied. In fact, our proposal in the next chapter aims to provide a distributed
application of reputation in the platforms mentioned above in a secure and scalable way.

Previous work has been also done about this field that is worth studying.
An interesting study [24] endorses our claim of the importance in reputation mentioned

before. They pointed out how trust is an essential component not only in real-life social
interactions and business relationships but also in the on-line environment. This fact together
with the explosive growth of electronic communities, make the building of trust of the entities
in those communities an essential factor for its functioning. For instance, in the field of
electronic commerce, the building of trust into on-line vendors and their items is vital for
its success. For this reason there is the need for a reputation management. The reputation
of an entity is defined as the average trust of all the other entities towards that entity. It can
be noted how the reputation has a global connotation in contrast of the trust. Therefore,
following the previous example, a seller with bad reputation is prone to have little purchases.

Different algorithms for reputation management in a distributed environment have been
studied (see [20] for a survey). For instance, in EigenTrust [23], all the nodes in the network
cooperate to compute and store the reputation of all the nodes so that the computation, storage
and messages that have to be carried for a node is minimal.

However, completely distributed or peer to peer approaches in a mobile first world like
the one we are living may clash with some limitations. Participating in a peer to peer
network with the above mentioned characteristics using an smartphone may drain the battery,
especially in very active networks, because of the constant required connections to establish

30 Related Work

and calculations to perform. Also, it would probably consume more data than the desired by
the user because of the number of messages that must be sent or received.

On the other hand, if users decided to be selfish and only connect to the network when they
want to vote or know someone’s reputation in order to avoid the previous stated consequences,
a high churn would be produced and the stability and reliability of the network would be
compromised.

In our proposal of TallyNetworks we want precisely to overcome such problem by means
of using the TallyBoxes, enabling the user to use a more or less stable device (server)
to perform the operations for her without the need of being connected all the time but
instead retrieving information from the server when needed. Other similar protocols such as
PeerTrust [50] encounter the same problem as their focus is on peer-to-peer networks.

3.3 One-hop structured overlays

Another relevant related work is the literature on one-hop structured overlays [19], as we will
used them in our proposal to easily access to the different participants without the need of
doing multiple queries to reach our destination as some systems, such as Chord, do.

Such overlays are highly suitable in networks of relatively stable peers like the ones
proposed by edge-centric computing. In this case, the widespread adoption of stable home ap-
pliances (storage and compute sticks, media centers, nanodatacenters) and the improvements
in residential bandwidth can create very efficient Internet services like the one proposed in
this thesis.

Therefore, by using one-hop overlays in the membership of TallyNetworks, nodes will
be able to retrieve all membership information in one step. This leads to a reduce of
communication and also to a faster results. Moreover, it is more scalable and it can aggregate
information in a trustworthy way.

An important difference with previous related works on one-hop overlays is the algorithm
employed for the efficient management of a huge up-to-date routing table. Previous works
[19] aim to reduce the bandwidth imposed to nodes due to the event dissemination of active
peers in the routing table. In our case, our global membership service will only send events
about permanent joins or leaves from the network, and not about transient churn. Our novel
approach efficiently combines a redundant broadcast algorithm for Kademlia with a syncing
protocol.

We analytically study the relationship between redundancy in the broadcast and syncing
phases to ensure that all active peers have a fresh global view of the network. Transient

3.4 Networks of edge web servers 31

churn, malicious and unresponsive peers can be ignored or bypassed easily while ensuring
one-hop query services.

A simple alternative to our membership service could be a gossip protocol for member
dissemination. In fact, our syncing phase is equivalent to a pull gossip protocol, but the
combination of broadcast and syncing guarantees better convergence time in large steady-
state networks. We advocate for an adaptive membership protocol that can rely only on
syncing in fast-growing periods, and resort to broadcast+syncing when the network is more
stable.

3.4 Networks of edge web servers

Finally, previous works like [40] have linked networks of edge web servers using structured
overlays by creating an open, decentralized infrastructure to enable Web servers to use
their spare capacity to filter out, aggregate and disseminate Web content in a scalable and
timely manner. Interconnecting stable web servers using HTTP in structured overlays
offer interesting value-added services to applications such as indexing or efficient content
dissemination.

As stated in [40], our implementation also interconnects edge servers in a structured
overlay. However, in this proposal, our efficient one-hop overlay considerably reduces the
communication overhead for the servers thanks to the adaptive broadcast/sync membership
model.

In particular, indexing (put, get), naming, aggregation or efficient content dissemination
are interesting application level services that can be built on top of these infrastructures.

Chapter 4

TallyNetworks

Nowadays all our information is in the hands of very big companies. Some examples are
Google, Facebook and Amazon, to name but a few. With all their gathered information, they
trade with advertisers [12] the value of all such data. This makes us highly dependent on
those companies in a centralised scenario in which all is delegated to them.

This leads us to propose another model focused on offering a system to let people express
their opinions such us like/dislike or polls, but with a key feature, they must be able to
express their opinion in a private/anonymous way, so we can acknowledge the opinion of the
community, but not the opinion of each member of the community.

Furthermore, we believe that key personal and social communication services should
be decentralized and human-driven. This is why we propose a decentralized solution to
empower people. The concern about companies controlling your personal information has
been previously stated such as in [5], which also proposes some different approaches to
address the problem.

This master thesis describes a new architecture, TallyNetworks, that allows to preserve
your opinions/vote’s privacy in large communities based on the new introduced paradigm of
Edge-centric computing.

This proposal contrasts with other solutions such as the ones introduced in previous
sections based on centralized or distributed e-voting protocols, reputation systems or even
voting systems based on blockchain. TallyNetworks doesn’t present itself as a better solution
than the ones introduced, but an alternative solution presented by us which addresses our
concerns about the control of our opinions and our privacy.

In this section, we explain the key insights of our idea and the overall architecture of our
solution, the life-cycle of the system and our novel global membership protocol based on
Kademlia.

34 TallyNetworks

4.1 Objectives and main idea

The objective is to design a distributed architecture and a communication protocol with the
two following main principles in terms of robustness:

• The distributed architecture has to be resilient to malicious nodes based on the Edge-
centric computing paradigm.

• The communication protocol has to be resilient to malicious node attacks for such
architecture.

Recall that our aim is to build a system that allows people to participate in any kind
of poll or rating without disclosure of their real identities. However, not only we want to
achieve such objective but also we want to ensure the integrity of the result of any poll in the
presence of malicious behavior. Moreover, what is more important is that we want to provide
end-to-end verifiability. This means that both the reception and tallying of votes is correct
and its correctness can be verified from the cast of the vote to the final result. As in most of
poll or voting systems, the user can only vote once and the system must be able to guarantee
this.

In fact, the desired properties of our system are very similar to the ones described in the
E-voting explanation, except for fairness, as in this case, we want to be able to offer dynamic
and real time results as like/dislike systems or opinion systems scenarios always work in a
real time or dynamic way.

Instead of a pure cryptographic solution, we propose TallyNetworks, a system that
meets this challenge through a novel integration of cryptographic techniques with a one-hop
Distributed Hash Table (DHT). Thus, we can benefit of the strength of both cryptography
that provides properties such as privacy and security and distributed systems that provides
properties like scalability or robustness.

For a given poll, the basic idea is to leverage the underlying one-hop DHT to assign the
task of tallying to a subset of TallyBoxes with enough redundancy to ensure the correctness of
the result. Moreover, in order to guarantee the correct delivery of the votes to the responsible
TallyBoxes, we will combine a broadcast algorithm with a pull based approach, recasting our
problem as a secure distribution of votes.

4.2 Security properties 35

4.2 Security properties

Before starting the description of TallyNetworks we recall the security properties that our
system needs to have. In fact, this is an important research area in its own right [41, 43]. The
most important security properties can be grouped as follows:

• Integrity: This is concerned with the avoiding of alteration or corruption of the
opinions submitted. Additionally, intruders should not interfere with the process. More
specifically, integrity implies that a submission is cast as intended, recorded as cast and
counted as recorded. Integrity entails honest behavior, in our case, an honest behaviour
of the minimum users of the system depending on the setup. It also entails collusion
resistance.

• Privacy: This property is aimed at ensuring that votes are cast anonymously or in our
case, pseudo-anonymously. In other words, it means that it is not possible to associate
an opinion with the corresponding real user identity (untraceability).

• Verifiability: This criterion is related to integrity and it refers to the openness of the
system to formal and practical inspection. This is divided into two verifications:

– Individual verifiability: It should be possible for users to check that their opinions
were correctly recorded.

– Universal verifiability: It should be possible for users to check that all the opinions
were processed and counted correctly.

It is believed that with enhanced verifiability, users have more confidence in the system.

• Robustness: This last property is defined as the resilience of the system when it is
subject of external or internal malicious attacks. It should be also resilient when
cheating behavior is detected or even when system malfunctions occur (partial or
non-partial). The system should operate as expected in abnormal conditions or in a
hostile environment. Some examples of being robust are: resisting a denial of service
attack thanks to the distributed nature of the system, ensuring that all honest nodes
receives a casted vote even if a malicious node drops messages or if a node in the
network is down...

In Chapter 5 we analyse each one of the previous properties for our novel system
TallyNetworks that is explained in the following sections.

36 TallyNetworks

4.3 Entities of TallyNetworks

In this Section our actual presentation of TallyNetworks starts with the description of its
entities. Our proposal of TallyNetworks is composed by three entities involved in the system
that are described below:

• Participant: A registered user who can emit opinions (like/dislike) or participate
in public polls anonymously from a mobile terminal. It can also query the system
about the current state (votes, opinions) of specific polls or items.

• TallyBox edge server: It is a node of the TallyNetwork overlay. It can cast votes but
also retrieve and query them using the one-hop DHT. It receives votes from participants
and redirects them to the appropriate TallyBoxes using the opinion identifier. The
responsible nodes will then count and store the votes if they are valid according to their
credentials.

• Authenticator server: It authenticates participants and TallyBoxes based on an admis-
sion policy and blindly signs their credentials. For participants, it can check whether
they are members of the community or real authenticated users. When a TallyBox
edge server is accepted, then the Authenticator server will assign a unique identifier to
it, in order to avoid Sybil attacks [15].

4.4 Security Threats

Our system has to provide security features according to the potential malicious participants.
For this reason, it is useful to identify which are the security conflict situations that may
appear in the system and how our system should overcome them. The two main scenarios
with its corresponding expected system behavior are the following:

1. We assume that the goal of a malicious participant is to try to tamper with the poll
results, for instance, by emitting multiple votes to favor some option, or even by
emitting contradictory votes for the same poll.

• Expected behavior: Our system will have to handle these situations in order to
ensure one vote per user and that all participants have seen the same vote counting
result.

2. Further, we assume that a malicious TallyBox can drop messages, flood the network
with fake messages or try to disconnect other TallyBox servers from the network.

4.5 Protocol steps 37

• Expected behavior: Our system must mainly prevent the loss of votes in addition
to thwart Denial-of-Service1 (DoS) attacks and overlay partitions.

4.5 Protocol steps

In this section we define the steps of the protocol, that are different for participants than for
TallyBoxes.

In Figure 4.1, the protocol steps that a TallyBox follows are depicted and they are
explained below:

• Obtaining the node identifier: In order to register a new TallyBox in the network,
the first step is to contact the Authenticator server and request a node credential. The
Authenticator can accept or reject the request taking into account the admission policy.
If it is accepted, it will receive a signed credential that includes the node identifier and
the URL by it will be accessible to the rest of nodes.

• Entering the network: Due to the fact that the network of TallyBoxes is a one-hop
overlay, a joining node only needs to contact a group of TallyBoxes in the system to
construct the entire one-hop routing table and obtaining the information of the active
polls it is responsible for. Notice that it contacts a group of nodes in order to establish
a consensus from the different one-hop routing tables and information it receives from
the contacted nodes.

Thereafter, the new node will broadcast its join request signed with its credential to the
rest of them, so all the nodes in the network will know about the new join to add it to
their respective routing tables.

It is noteworthy that all this procedure is transparently handled by the underlying DHT
itself.

• Participating in the network: It basically consists on forwarding messages or re-
questing updates during broadcast and syncing phases. Every TallyBox can fine tune
its activity in the two phases of the protocol depending upon its resources. For example,
a weak node might decide to avoid participating in the broadcast algorithm, and only
periodically synchronize on a per-day or per-week basis.

1A denial-of-service attack (DoS attack) is a cyber-attack where the perpetrator seeks to make a machine
or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a
host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or
resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests
from being fulfilled [30].

38 TallyNetworks

Fig. 4.1 TallyBox Protocol

On the other hand, a participant follows another protocol steps that are shown in Figure 4.2
and described below:

• Obtaining a user credential: In order for a participant to register in the system, the
first step is to contact the Authenticator server to request a user credential. To achieve
that, the following steps are performed:

1. The joining participant sends his public key PK in blinded form B(PK).

2. It can be admitted or rejected by the Authenticator depending on the admission
policy.

3. If admitted, he will receive a blindly signed credential {B(PK)}sign from the
Authenticator to participate in TallyNetwork.

4. Upon reception, the joining participant will unblind the signature to get {PK}sign,
which will be, from now on, his public credential or pseudonym to participate in
the network. Notice that thanks to the blind signature, the credential is signed by
the authenticator, but he doesn’t learn about the credential, so it cannot be linked
to the user.

• Voting process: The participant can now use an anonymous channel, for instance Tor
[14] which has been previously described in section 2.2, to cast a vote in any TallyBox
using his public key PK as pseudonym. For robustness reasons, the vote is cast to
more than one TallyBox. In this way, if a TallyBox is unavailable or decides to drop

4.5 Protocol steps 39

messages, other TallyBoxes will ensure that the vote is properly distributed to the
network.

To actually cast a vote v, the vote itself, its signature {v}SK,sign with the participant’s
private key SK, and the authentication credential (PK,{PK}sign) must be sent via
the one-hop overlay to the TallyBoxes responsible for the poll. For example, if a
participants wants to add a Like to “Hans”, this Like vote will be addressed to the
TallyBoxes responsible for the key “Hans”. The number of nodes responsible for each
key can be configured to ensure the robustness of the voting process.

Notice that the vote is signed in order to guarantee its integrity. On the other hand, the
credential is sent in order to link the vote to a credential, so we can guarantee one vote
per user/credential, but also in order to check the correctness of the signature with the
credential. Finally, in order to guarantee that the credential and the vote corresponds to
a member of the network, we use the signature of the credential from the authenticator,
which guarantees the belonging to the network.

• Tallying: Unlike traditional voting systems, the voting period can be always open
because of the nature of public opinions in social environments. Therefore, a participant
can retrieve the current state at any time.

Tallyboxes will receive votes for the polls they manage. For each vote, they will verify
the integrity of the vote and that the signature comes from a valid participant. Then,
they will check that the vote is not a duplicate one, which means that they haven’t
already accounted the vote in their list. In order to keep the vote counting up to date, the
TallyBoxes responsible for the same key will also be “in sync” so that vote counting
will eventually converge.

Notice that in case a malicious participant cast two votes for the same poll with same
values, the second will be ignored in order to guarantee the property of one vote/one
value. However, if he cast two votes but both have different values, then both will be
discarded in order to ensure that all the nodes will respond with the same result.

It is also noteworthy that the fact of having a list with all the votes in each responsible
node, allows the participant to retrieve the entire list and check if her vote appears in
the list or if the public result has been properly calculated.

40 TallyNetworks

Fig. 4.2 Participant Protocol

4.6 One-Hop Architecture: Membership

The objective of this thesis is to build a system capable of satisfying all the goals listed in the
introduction section and argued throughout the Background and Related Work Sections. In
order to do that we proposed to implement an efficient DHT of stable TallyBox edge servers
because of its scalability and reliable storage of distributed information properties.

On the grounds that servers do not maintain active connections (HTTP), they will have
enough resources to be able to maintain in disk a huge amount of contacts in the network that
would not be possible otherwise. This is clearly in line with previous one-hop or two-hop
overlays that maintain big routing tables that has been previously mentioned.

Having a one-hop overlay, allows the system efficiently contacting any node in the
network with only one hop. Therefore any possible algorithm can be implemented over
this overlay in an optimal way such as our broadcast and sync phases which contacts the
minimum number of nodes in order to guarantee all the desired properties.

The fundamental difference of our approach is that we only handle permanent joins or
leaves to the network due to the stable nature of TallyBoxes, and not transient churn. This
avoids active checks or keep-alives to detect and propagate the availability of nodes in the
system. As it is explained below, our network is designed with sufficient redundancy to
overcome not only transient churn but also malicious participants.

Kademlia, which has been previously introduced in the background section, has been
chosen as the structured overlay to use for our implementation. The principal reasons are

4.7 Kademlia CAST & SYNC 41

its resilient design and the ability to issue parallel queries. In order to maintain the routing
tables up to date, we propose a novel Kademlia CAST & SYNC algorithm (see Section 4.7
for full description) that leverages an existing broadcast algorithm over the Kademlia tree
overlay.

Notices that our algorithm is adaptive to the size of the network and capabilities of
each TallyBox. Additionally, it permits the configuration of the redundancy level across the
broadcast and synchronization phases to fit with the TallyBox resources, but also to ensure
the desired level of robustness of the network.

4.7 Kademlia CAST & SYNC

In this section we describe our novel membership protocol that aims to be adaptive to the
size and also persistent churn of the network. In fact, in a very small network, the broadcast
(CAST) algorithm may become a star topology. On the other hand, in fast-growing networks,
the broadcast traffic might be very costly. In that case, the synchronization (SYNC) phase
should prevail.

The combination of CAST & SYNC algorithms is ideal for large steady-state networks.
In this scenario, the broadcast algorithm will accelerate convergence time and interactivity,
and the SYNC phase will guarantee 100% coverage.

The next two sections define the reliability of the broadcast and the syncing phase
separately. However, we need to combine both to obtain the total system reliability.

4.7.1 Broadcast

The first phase of our proposal tries to arrive to the maximum of nodes in the minimum
possible time. This can be achieved with a broadcast which in our case is built upon a
previous Kademlia broadcast algorithm proposed by [9, 35].

This algorithm divides the key space using the Kademlia k-bucket routing tables. The
main idea behind it is that the initiator of the broadcast will send a message to a contact or
representative in each bucket. Then, recipients will forward it to their contacts or represen-
tatives in their buckets, but only to those within their own region. An example is depicted
in figure 4.3 in which node number six starts a broadcast contacting a node in each of its
buckets: 0,4,10 and 24. Then, each representative contacts a representative of each of its
buckets, but notice that only contacts to those within their own region. For example, the
region of 0 is 0, the region of 4 is from 4 to 5, the region of 10 is from 8 to 15 and finally 24

42 TallyNetworks

has a space defined from 16 to 31. Notice that the space is defined depending on the XOR
metric.

This solution is the most natural and reliable way of dividing the key space in Kademlia
for broadcasting. Moreover, it has been widely proven by the referred authors.

Fig. 4.3 Kademlia broadcast from node 6 [8]

However, a simple Kademlia broadcast cannot assure the total coverage of the network,
because messages can be lost due to churn and malicious participants. In our case, because
malicious and offline TallyBoxes have the same effect on the network, we will treat them
equally.

Additionally, our system wants to overcome message losses. One typical solution to
this problem is to increase the redundancy of the broadcast algorithm, so the message
can arrive through different paths to the same destination. In order to achieve that, we
will simply choose more than one representative contact in each bucket. This leads to a
huge improvement of the reliability of the broadcast. Besides, the shortcoming is that its
communication cost quickly increases. Therefore, as redundancy increases, the traffic grows
with it, compromising scalability. However, a network that is handling popular opinions is
very susceptible to be attacked, so high packet loss ratios should be tolerated, which means
that we will need more redundancy. For this reason, we have to optimize the level redundacy
we will implement in order to reduce the loss effects without compromising scalability as we
will later discuss in the redundancy analysis section.

Below we describe, with specific numbers associated to messages broadcast, an example
to depict the problem so that it can be clearly presented.

If each node had 160 buckets, the initiator of the broadcast would send n∗160 messages,
where n is the redundancy level. In our case, the messages size would be: TallyBox server ID
(160 bits) + IP address (32 bits) + port number (16 bits) + signature of the server ID (2048

4.7 Kademlia CAST & SYNC 43

bits), the latter depending on the chosen cryptographic system. With n = 3, only the initiator
of the broadcast would send around 1MB. If this number is ported to huge networks, it is
obvious that scalability will be severely undermined.

It is clear we must disseminate information efficiently and with high resiliency to packet
losses, but also minimizing the communication traffic in the network. In order to reduce
redundancy needs, we will complement the CAST protocol with a SYNC phase (explained
in Section 4.7.2).

Redundancy analysis

Let us first study the analytical model presented and validated by [9]. Later, we will extend it
with the SYNC protocol in Section 4.7.2.

To start with, let B be the number of nodes receiving the message over all nodes in
the overlay. The expected coverage of the broadcast depending on packet loss ratio is the
following:

B = (1+P)d, (4.1)

where P is the expected number of nodes getting the message for two immediate neighboring
nodes and d is the length of the message path, which can be estimated as log2 N (height of
the broadcast tree), where N is the total number of nodes.

This can be easily inferred from the fact that the number of nodes getting the message
from to immediate neighbors is 1+P. The node that receives the message adds the expected
value of 1∗P. Therefore, this leads us to get: (1+P)+P(1+P)+P2(1+P)... Which is
summarized and generalized in the first expression.

By dividing the above expression (Eq. 4.1) by the number of nodes 2d we get the ratio of
nodes receiving the message m. The resulting expression after dividing can be seen above
(Eq. 4.2):

m =

(
1+P

2

)d

(4.2)

In order to add redundancy to our previous equation, we will consider P as 1−Pkd
l , where

Pl is the packet loss ratio and kd is the level of redundancy. Substituting it into the previous
expression, we get:

m =

(
2−Pkd

l
2

)d

(4.3)

44 TallyNetworks

These equations were validated by their authors, getting even better results in the experi-
mentation when using the redundant algorithm. Among other reasons, the principal cause
was because when messages are duplicated, each node can receive the message from multiple
paths, which can be shorter than the estimated by d.

4.7.2 Broadcast + SYNC

The broadcast by itself cannot guarantee that every TallyBox maintains a perfect membership
of system, even with high redundancy without flooding the network with too much messages.
For this reason, we propose a solution that uses less redundancy without (negligible) loss of
robustness based on periodic reconciliation or anti-entropy.

More concretely, we call this solution SYNC phase and it consists on contacting periodi-
cally a number of random TallyBox servers and ask them for the last received updates. In
this way, if a membership message is lost during the broadcast phase, it will be recovered
from the nodes that received it without flooding the entire network with a new broadcast. The
synchronization period can be adapted depending on the network activity and the desired
refresh rate.

In this work we definitely assume that malicious TallyBoxes will be evenly distributed.
This is because their IDs are assigned by the Authenticator server. Therefore, in our redun-
dancy analysis, now we take into account not only the reliability of the broadcast, but also
the reliability of combining the CAST with the SYNC phase.

Obviously, the SYNC phase will depend directly on the redundant broadcast, so we will
also use the broadcast equation (Eq. 4.3) to get the result of our SYNC phase.

We must first analyze the situations in which the SYNC phase can fail, which are mainly
two possible situations:

1. The first one is that the SYNC packet gets lost with probability Pl as we previously
stated.

2. The second one is that the packet arrives to a node that will respond, but the contacted
node does not have the message we want to synchronize with because it got lost when
arriving the contacted node in the broadcast phase. So basically, the contacted node
doesn’t have the message we want.

Taking both situations into account, we defined the reliability S of the SYNC phase as:

S = 1− (Pl +(1−m)(1−Pl)) (4.4)

4.7 Kademlia CAST & SYNC 45

However, as explained above, sending a single SYNC message is clearly insufficient to
re-synchronize correctly. Thus, redundancy, ks, is added to the equation which yields:

S = 1− (1+m∗ (Pl −1))ks (4.5)

In summary, combining the CAST and SYNC phases, a message can be received in two
ways in our proposal. The first way is through the broadcast phase, m. Or on the other hand,
that happens when the message was not received, it will be obtained in the SYNC phase
((1−m)∗S). So, the total system reliability M is given by the following equation:

M = m+(1−m)∗S (4.6)

Chapter 5

Analysis

After proposing our novel method TallyNetworks, we are going to give both theoretical
analysis and experimental study to verify its functioning. For the theoretical part, a security
analysis is performed and discussed. Moreover, for the experimental part, we simulate a
Broadcast + Sync over a network, we validate the protocol cryptographic operations and
finally we evaluate the membership storage and cost.

5.1 Security Analysis

In Chapter 4 the four main security properties that our system should have were described.
Now, we analyse how our proposed protocol TallyNetworks maintain those 4 security
requirements:

• Privacy: As mentioned before, this property guarantees that the relation between a
vote and the identity of the person who cast it cannot be discovered. In our protocol, we
ensure this property thanks to the untraceability of the blind signature scheme and also
the use of an anonymous bidirectional channel between participants and TallyBoxes.
Our model only provides pseudoanonimity since the entire voting history of a given
pseudonym is stored in the network. If it is the case that the participant is identified in
any of the communications with a TallyBox, the whole voting history will be linked to
his real identity.

• Integrity: Recall that this property guarantees that the result of the election cannot
be altered in any way. In our particular system, the cases that have to be taken into
account are:

1. Allowing only registered users to cast votes.

48 Analysis

2. Allowing users only to vote once

3. Making sure that votes are correctly tallied.

Below we explain how those properties are guaranteed for our protocol following the
same order:

1. The first property is ensured thanks to the Authenticator’s signature of the
pseudonym. If the pseudonym is not signed, the vote will not be propagated into
the network as it will not be considered as a valid vote.

2. The second property is ensured thanks to the user’s signature of each vote. If a
vote signed with an already used key is emitted, it will be discarded.

3. Finally, the third property is ensured thanks to the redundancy of TallyBoxes
that cover each key. This allows TallyBoxes to wait for a minimum number of
messages before considering the vote as valid. If two different votes signed with
the same key are received at the same time, both are discarded.

• Robustness: As explained in last chapter, this property guarantees that the protocol is
robust against external attacks or malicious nodes that try to disrupt the overall process.
In our case in particular, our distributed overlay is designed with sufficient redundancy
and communication to overcome such attacks. Evaluating our protocol, it is observed
that the most vulnerable part of our architecture is the centralized Authenticator
component. Namely, if it is the case that this component is not working due to attacks,
the entrance of new nodes and users to the network is compromised. However, in
any case, the distributed TallyNetwork can continue working independently from the
Authenticator.

• Verifiablity: Analyzing the last requirement, we can advocate that our system provides
individual verifiability. This is because a user can recover (via a GET request for a
key) the votes of a poll from different TallyBoxes (key managers), and check if his
vote is present and counted. Furthermore, user can check if all votes in a poll are
correct according to their signatures and if the global count is consistent in the different
TallyBoxes.

With this complete analysis of the four security requirements that we stated in last chapter,
we can conclude that our system satisfies them.

5.2 Experimental Analysis 49

5.2 Experimental Analysis

By means of simulations, whose properties are stated in each subsection, we evaluate 3 parts
of our proposal. Firstly, we simulate the Broadcast + Sync to prove the improvement of
the system due to the synchronization. Secondly, we validate the protocol cryptographic
operations by evaluating their cost. Lastly, we evaluate the membership storage, showing
that the space cost of storing the membership information is not a problem.

5.2.1 Broadcast + Sync Simulation

As it can be easily seen in Figure 5.1, synchronization improves the overall system reliability
M. This is concluded according to the redundancy level determined by our equations. The
analysis was done by simulating a network of 10,000 TallyBoxes with Peersim 1.

(P
l
)

(M
)

(a) Redundancy 1

(M
)

(b) Redundancy 2

(M
)

(c) Redundancy 3

(P
l
)

(M
)

Fig. 5.1 Broadcast+Sync Evaluation

1 For further information about this Peer-to-Peer Simulator visit: http://peersim.sourceforge.net

50 Analysis

If we again observe Figure 5.1, it can be noted that the obtained results (denoted as
crosses) faithfully follow our analytical model (represented as lines). However, we have to
take into account that our evaluation is rather pessimistic. This is because our equations
capture only the worst-case scenario, which is when all out-of-sync TallyBoxes try to re-sync
at the same time, just after a broadcast. Nonetheless, if we consider a real situation, all
nodes will not sync at the same time, which means that the probability of re-synchronizing
increases after any other node has already synced. Therefore, we can conclude that a better
reliability M will be achieved in practice.

Moreover, we want to point our that the initial reliability of the broadcast is the one that
corresponds to the value 0 of the x axis (sync redundancy).

Analyzing Fig. 1(a), we can determine that the most relevant result obtained is that with
Pl = 10% of loss ratio and no redundancy, reliability improves from 50% to 100% by just
contacting 8 nodes. This is a relevant result since in previous works[9], in order to achieve the
same result with just broadcasting, a minimum of 3 levels of redundancy would be required
as shown in.

What is more, Fig. 1(b) illustrates that with redundancy 2, we only need to contact 2 nodes
when Pl = 10% to achieve 100% reliability, and only 4 nodes to obtain 100% reliability with
Pl = 20%. Even 30% of losses can be overcome by simply contacting 10 nodes, improving
from 50% to 100% the level of reliability. In order to achieve this with just broadcasting, at
least a redundancy level of 4 would be required.

Finally, compared with the previous figure, Fig. 1(c) shows that the number of nodes
required to ask for synchronization is smaller up to Pl = 30%. Besides, it also shows that a
reliability of 100% can be achieved with a loss ratio of 40% by only contacting 10 nodes.
Furthermore, even a loss ratio of 50% could be supported by just contacting 20 nodes or even
less.

Those results clearly show that our network is more tolerant to failures with less resources,
thus saving significant amounts of bandwidth. Moreover, the syncing phase makes our
network much less fragile in front any attack that wants to silence the public opinion, thanks
to a our greater reliability.

For example, if redundancy 3 is used and 20 nodes are contacted when synchronizing,
a coverage of 100% is assured for an up to Pl = 50% in a N size network. Therefore, in
case that an attacker wants to break the broadcast of the network, she will need to introduce
N +1 byzantine nodes. This has to be done as in order to generate a higher loss ratio than
50%. Recalling that loss ratio generated by byzantine nodes can be calculated as Byzantine
Nodes/Total number of nodes, in our example it is (N +1)/2∗N

5.2 Experimental Analysis 51

Notice that both the broadcast redundancy and the syncing redundancy are not static
parameters and can evolve with the network, i.e., increasing or decreasing their values
according to the network state. Such state and its loss ratio can be estimated by the nodes
themselves by calculating the ratio of their unanswered requests sent to other TallyBoxes.
Thus, the algorithm can be adaptive to optimize system resources without compromising
reliability.

5.2.2 Protocol cryptographic operations validation

In this part of the analysis we evaluate the cost of each protocol operation. In order to do so,
we implemented each of them in Python using the Pycrypto library. To provide the evaluation
we ran more than 10,000 tests in an Intel Core i5-3470@3.20GHz with Debian 7.8. As a
result we obtained the numbers that are shown in Table 5.1.

Table 5.1 Protocol simulation

Operations/second (depending on key size)
Stage 1024 2048 4096

1. Participant Join
1.1 P: Key generation 4,23 1,06 0,16
1.2 P: Public Key hashing 12500 10000 7142
1.3 P: Hash Blinding 20000 7142 2857
1.4 A: Blind Signature 657,89 110 18,16
1.5 P: Signature Unblinding 100000 49999 16666

2. TallyBox Join
2.1 A: Credential signature 657,89 110 18,16
2.2 T: Signature verification 16666,66 5000 1538,46

3. Voting
3.1 P: Vote signature 657,89 110 18,16
3.2 T: Vote signature verification 16666,66 5000 1538,46

P:Participant, A:Authenticator, T: TallyBox

As it can be observed form Table 5.1, the most limiting operations are signing and key
generation. The latter is not a problem, since it is performed only once by each participant
when joining. Signing is not a problem neither as it impossible that a real person will cast
more than 657 votes per second. Consequently, the Authenticator is the only limiting entity.
However, due to the fact that it is a trusted and controlled entity, it can be easily scaled to

52 Analysis

perform much more operations per second. Furthermore, the Authenticator can rate limit the
joining process to the network in order to reduce pronounced joining peaks.

5.2.3 Membership storage cost evaluation

The final part of our evaluation consists on evaluating the space cost of storing the membership
information. The analysis is done assuming a 160-bit TallyBox server ID, an IP address of 32
bits, a port of 16 bits and a signature of variable size. A TallyBox stores this information for
each TallyBox in the network. As it can be seen in the following results showed in Table 5.2
(in MB) and assuming 4096-bit signatures, it would take only around 513 MB of disk space.
Therefore, we can confirm that space is not a problem.

Table 5.2 Storage Cost Evaluation (MB)

Network size
Signature Size (bits)

1024 2048 4096
10.000 1,47 2,69 5,13

100.000 14,69 26,89 51,31
1.000.000 146,87 268,94 513,08

Thus, we can claim that our combined SYNC & CAST algorithm is adaptive and resilient
and can scale to big networks. Furthermore, thanks to full membership, we know the size of
the network and depth of the tree, so that the aforementioned broadcast algorithm is efficient
and feasible to implement in real networks.

Chapter 6

Conclusion and Future Work

In this work we have introduced TallyNetworks, an edge-centric distributed overlay for
protecting the privacy of your on-line opinions. This model is aimed for typical user on-line
participation tools such as open polls or item rating (stars, like/dislike).

Thanks to the decentralized edge-centric model, not only this method does protect your
privacy, but also we have achieved that no one can have the entire control of the information,
which makes people less vulnerable. This is because we have empowered people again,
returning to them the control of their information. Furthermore, information will be more
reliable as it cannot be manipulated by a centralized entity to impose an opinion and would
make people much less tied to the current big players of the public opinions such as Facebook,
Google or Amazon.

A TallyNetwork must both count opinions and also assure their correct retrieval under
attacks or censorship attempts. Therefore, our proposed solution cover those problems.
In this work, we showed how it is possible to provide privacy, integrity, robustness, and
end-to-end verifiability through the combination of security technologies (blind signatures,
encryption and anonymous channels) with a one-hop DHT of edge servers.

Due to the proof of concept that we implemented for this work, we could demonstrate
that besides guaranteeing the above mentioned properties we can do it in a real environment
with communities that have a huge number of members on the order of millions with quite
quick response. It has been shown that we can process a large number of operations per
second involved in the protocol.

Moreover, as our evaluation faithfully fits our theoretical model, nodes can estimate the
optimal parameters in each moment, estimating the state of the network and its loss ratio by
calculating the ratio of their unanswered requests sent to other TallyBoxes. Therefore, we
can adjust the protocol parameters (broadcast and syncs) in order to evolve with the network,

54 Conclusion and Future Work

increasing or decreasing their values according to the network state. Thus, the algorithm can
be adaptive to optimize system resources without compromising reliability.

Although the good perspectives, it is noteworthy that our proposal also has a main
drawback that we should take into account. We are moving the control of the information
to the edges which a priori is a beneficial property that empowers people. However, we
have recently been witness to how vulnerable we are in front of hacking attacks such as
what happened with WannaCry attack 1 in which 200,000 computers were infected across
150 countries. If huge companies with high security requirements were affected, it is easy
that ordinary people also gets infected. This means that TallyBoxes or even participant’s
smartphones are subject to the possibility of being hacked and then compromising user’s
privacy or even system’s integrity if the scale of the attack is bigger than the expected loss
ratio. Therefore, moving the power to the edges makes everything a bit more risky as they
are more vulnerable.

Nevertheless, moving to a decentralized approach in which privacy is one of the main
concerns or priorities seems to be a natural movement as everyday, people is more concerned
about privacy. However, they are also concerned about the power that big players such as
Google or Facebook are acquiring thanks to all of our opinions, votes, likes/dislikes... In
addition, this shift towards a privacy-first service that can motivate decentralization cannot be
only observed in our society but also in the new General Data Protection Regulation from the
European Commission 2. With this new document, the European Union is becoming much
more strict in terms of privacy with companies and the data they use from European Citizens.

Furthermore, technology in terms of computation power on mobile phones and home
devices along with connection bandwidth at home is improving everyday which makes
possible and easy to build your own server with very high speeds both in terms of computation
and connection, specially the ones powered by fiber optic. This makes much more feasible a
decentralized model. In fact, recently we could see that some decentralized projects has been
initiated with a remarkable adoption such as a decentralized social network called Diaspora 3

that has more than 667.000 users [46]. These positive numbers and a favorable scenario can
be a great companion for our proposal as they demonstrate the feasibility and the interest
that, at least in a certain big enough target, can awake a proposal like ours.

It is noteworthy that decentralization entails architectural and implementation challenges
due to the nature of a decentralized system; (i) we cannot trust anybody, but we must

1 For further information about the WannaCry attack visit: http://edition.cnn.com/2017/05/12/health/
uk-nhs-cyber-attack/index.html or https://en.wikipedia.org/wiki/WannaCry_ransomware_
attack

2For further information about the General Data Protection Regulation visit: http://ec.europa.eu/justice/
data-protection/reform/files/regulation_oj_en.pdf

3For further information about Diaspora visit: https://diasporafoundation.org

http://edition.cnn.com/2017/05/12/health/uk-nhs-cyber-attack/index.html
http://edition.cnn.com/2017/05/12/health/uk-nhs-cyber-attack/index.html
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
https://diasporafoundation.org

55

be sure that the system will finally provide the correct results for us. This means that
we mainly need security and reliability (ii) we must coordinate hundreds, thousands or
even millions of participants in our system, which means we need a very scalable system
but also resistant to attacks, (iii) furthermore, in our case, everything must be achieved
without compromising user’s privacy. However, although the difficulty of overcoming such
challenges, our proposal has demonstrated that it can provide privacy in a decentralized
system thanks to the combination of pseudonymous with blinds signatures and a one-hop
structured overlay based on Kademlia. Such overlay provides us not only scalability, but
also, combined with our protocol based on broadcast and syncing phases, provides integrity,
end-to-end verifiability and robustness to malicious attacks.

We want to point out that this work is the first steps towards the construction of an
edge-centric middleware based on an efficient and adaptive one-hop structured overlay of
stable edge servers.

As a relevant remark, we started our path to bring privacy-first public opinions systems
and moving away from this post-privacy world leaded by big players instead of persons,
presenting our TallyNetworks proposal in the 22nd International European on Parallel and
Distributed Computing Conference (Euro-par). In fact, during the conference we obtained
a positive feedback that encourages us to keep working on TallyNetworks and continue
walking towards our goal.

What is more, the next steps we would like to reach consist on bringing to our proof of
concept the necessary strength to be able to use it in a real life environment. Additionally,
we want to prepare an application that uses our system as a use case with a real community
of users in order to be able to study how the system reacts in a real environment.

Once we reach a mature implementation of our proposal, we would like to study the
possibility of modifying and adapting a mobile application called ConsultApp that has been
developed in the Architectures and Telematic Services (AST) Research Group in the Rovira
i Virgili University. ConsultApp is a direct democracy system that permits to create open
polls by any member of the community. The users can vote or comment on the arguments
for or against each option of the polls. For this reason, ConsultApp would be a very good use
case to use TallyNetworks. However, it is a challenging task as it was developed for Android
devices as an API consumer application of a centralized service that stores all the votes.
The proposal would consist on substituting such centralized service with a TallyNetwork as
backend.

Moreover, we would like to use the resulting TallyNetwork application in our University to
favor the global discussion and promote internal democracy. Doing so, we could demonstrate
that privacy-first systems that empower people again are possible in real life scenarios.

56 Conclusion and Future Work

However, as it can be seen, this a very ambitious proposal that would require huge
development effort. Therefore, we can consider this as a mid-long term goal that requires
further study. Meanwhile, we will work improving our proposed method and we will try
to reach a more mature implementation to be able to consider goals such as the one above
mentioned.

The main improvement we would like to work on is to enact measures to prevent impunity
associated to complete anonymity. For example, identity disclosure if a user is trying to
tamper the results with invalid votes or voting two times for different options. We believe that
this tool can promote democracy while respecting the privacy of the opinions of the members
of any community. Moreover, enacting such measures would improve the democracy quality,
but without affecting user’s privacy.

In summary, we have presented TallyNetworks, an edge-centric distributed overlay for
protecting the privacy of your on-line opinions providing privacy, integrity, robustness, and
end-to-end verifiability through the combination of security technologies with a one-hop
DHT of edge servers. This is our contribution with the aim of moving and pushing the world
from a post-privacy to a privacy-first era.

References

[1] Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M.,
and Schmidt, R. (2003). P-grid: a self-organizing structured p2p system. ACM SIGMOD
Record, 32(3):29–33.

[2] Cerveró Abelló, M., Mateu Meseguer, V., Miret Biosca, J. M., Sebé Feixas, F., and
Valera Martín, J. (2014). An elliptic curve based homomorphic remote voting system.

[3] Chan, P. H., Li, H., Ugalde, J., and Stoller, Y. (2015). Private decentralized e-voting.

[4] Chaum, D. (1983). Blind signatures for untraceable payments. In Advances in cryptology,
pages 199–203. Springer.

[5] Chaum, D. (1985). Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044.

[6] Chaum, D. L. (1981). Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90.

[7] Cohen, J. D. and Fischer, M. J. (1985). A robust and verifiable cryptographically secure
election scheme. Yale University. Department of Computer Science.

[8] Czirkos, Z. and Hosszú, G. (2012). Enhancing the kademlia p2p network. Periodica
Polytechnica Electrical Engineering, 54(3-4):87–92.

[9] Czirkos, Z. and Hosszú, G. (2013). Solution for the broadcasting in the kademlia
peer-to-peer overlay. Computer Networks, 57(8):1853–1862.

[10] Danezis, G. and Diaz, C. (2008). A survey of anonymous communication channels.
Technical report, Technical Report MSR-TR-2008-35, Microsoft Research.

[11] Davidovic, V., Ilijevic, D., Luk, V., and Pogarcic, I. (2015). Private cloud computing
and delegation of control. Procedia Engineering, 100:196–205.

[12] Davis, H. (2006). Google advertising tools: Cashing in with AdSense, AdWords, and
the Google APIs. " O’Reilly Media, Inc.".

[13] Dingledine, R., Mathewson, N., and Syverson, P. (2004). Tor: The second-generation
onion router. Technical report, DTIC Document.

[14] Dingledine, R., Mathewson, N., and Syverson, P. (2008). Tor: anonymity online.

58 References

[15] Douceur, J. R. (2002). The sybil attack. In International Workshop on Peer-to-Peer
Systems, pages 251–260. Springer.

[16] Fujioka, A., Okamoto, T., and Ohta, K. (1993). A practical secret voting scheme
for large scale elections. In Advances in Cryptology—AUSCRYPT’92, pages 244–251.
Springer.

[17] Ganti, R. K., Ye, F., and Lei, H. (2011). Mobile crowdsensing: current state and future
challenges. IEEE Communications Magazine, 49(11).

[18] Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A.,
Barcellos, M., Felber, P., and Riviere, E. (2015). Edge-centric computing: Vision and
challenges. ACM SIGCOMM Computer Communication Review, 45(5):37–42.

[19] Gupta, A., Liskov, B., Rodrigues, R., et al. (2003). One hop lookups for peer-to-peer
overlays. In HotOS, pages 7–12.

[20] Hendrikx, F., Bubendorfer, K., and Chard, R. (2015). Reputation systems: A survey
and taxonomy. Journal of Parallel and Distributed Computing, 75:184–197.

[21] Huszti, A. (2011). A homomorphic encryption-based secure electronic voting scheme.
Publ. Math. Debrecen, 79(3-4):479–496.

[22] Jakobsson, M. (1998). A practical mix. Advances in Cryptology—EUROCRYPT’98,
pages 448–461.

[23] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H. (2003). The eigentrust algorithm
for reputation management in p2p networks. In Proceedings of the 12th international
conference on World Wide Web, pages 640–651. ACM.

[24] Kinateder, M. and Rothermel, K. (2003). Architecture and algorithms for a distributed
reputation system. Trust Management, pages 1071–1071.

[25] Li, R. (2009). Distributed hash table.

[26] Li, W., Santos, I., Delicato, F. C., Pires, P. F., Pirmez, L., Wei, W., Song, H., Zomaya,
A., and Khan, S. (2016). System modelling and performance evaluation of a three-tier
cloud of things. Future Generation Computer Systems.

[27] Marc O’Morain, V. T. and Verbuggen, W. (2016). Onion routing for anonymous
communications. [Online; accessed 4-June-2017].

[28] Mateu, V., Miret, J. M., and Sebé, F. (2011). Verifiable encrypted redundancy for
mix-type remote electronic voting. In International Conference on Electronic Government
and the Information Systems Perspective, pages 370–385. Springer.

[29] Maymounkov, P. and Mazieres, D. (2002). Kademlia: A peer-to-peer information
system based on the xor metric. In International Workshop on Peer-to-Peer Systems, pages
53–65. Springer.

[30] McDowell, M. (2004). Understanding denial-of-service attacks. National Cyber Alert
System, Cyber Security Tip ST04-015.2004.

References 59

[31] Middelesch, E. (2015). Anonymous and hidden communication channels: a perspective
on future developments. Master’s thesis, University of Twente.

[32] Montresor, A. (2016). Reflecting on the past, preparing for the future: From peer-to-
peer to edge-centric computing. In Distributed Computing Systems (ICDCS), 2016 IEEE
36th International Conference on, pages 22–23. IEEE.

[33] Peng, K. (2011). An efficient shuffling based evoting scheme. Journal of Systems and
Software, 84(6):906–922.

[34] Peng, K., Aditya, R., Boyd, C., Dawson, E., and Lee, B. (2005). Multiplicative
homomorphic e-voting. Progress in Cryptology-INDOCRYPT 2004, pages 1403–1418.

[35] Peris, A. D., Hernández, J. M., and Huedo, E. (2016). Evaluation of alternatives for the
broadcast operation in kademlia under churn. Peer-to-Peer Networking and Applications,
9(2):313–327.

[36] Ritter, J., Haenni, R., and Neumann, S. (2014). Decentralized e-voting on android
devices using homomorphic tallying. PhD thesis, Master Thesis, Bern University of
Applied Sciences, Biel, Switzerland.

[37] Rodríguez, M. R., López, P. G., and Sánchez-Artigas, M. (2017). TallyNetworks:
Protecting Your Private Opinions with Edge-Centric Computing, pages 211–223. Springer
International Publishing, Cham.

[38] Rowstron, A. and Druschel, P. (2001). Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed Processing, pages 329–350.
Springer.

[39] Sako, K. and Kilian, J. (1995). Receipt-free mix-type voting scheme. In Advances in
Cryptology—EUROCRYPT’95, pages 393–403. Springer.

[40] Sànchez-Artigas, M., Pujol-Ahulló, J., Pamies-Juarez, L., and García-López, P. (2010).
p2pweb: An open, decentralized infrastructure of web servers for sharing ephemeral web
content. Computer Networks, 54(12):1968–1985.

[41] Schneier, B. (1996). Applied cryptography john wiley. New York.

[42] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001).
Chord: A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review, 31(4):149–160.

[43] Weldemariam, K., Volkamer, M., and Villafiorita, A. (2011). Evoting: What we learned
where we are going to. In Proceedings of the Sixth International Workshop on Frontiers
in Availability, Reliability and Security,(FARES 2011).

[44] Wikipedia (2016). Mix network. [Online; accessed 4-June-2017].

[45] Wikipedia (2017a). Blind signature. [Online; accessed 18-May-2017].

[46] Wikipedia (2017b). Diaspora (social network). [Online; accessed 3-June-2017].

60 References

[47] Wikipedia (2017c). Distributed hash table. [Online; accessed 3-June-2017].

[48] Wikipedia (2017d). Electronic voting. [Online; accessed 4-June-2017].

[49] Wikipedia (2017e). Zero-knowledge proof. [Online; accessed 6-June-2017].

[50] Xiong, L. and Liu, L. (2004). Peertrust: Supporting reputation-based trust for peer-to-
peer electronic communities. IEEE transactions on Knowledge and Data Engineering,
16(7):843–857.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Background
	2.1 Towards a decentralized shift
	2.1.1 Drawbacks of full centralization
	2.1.2 Edge-centric Computing

	2.2 Anonymization Techniques
	2.2.1 Blind Signatures
	2.2.2 Anonymous communication channels

	2.3 Distributed Hash Table
	2.3.1 Kademlia

	3 Related Work
	3.1 E-voting systems
	3.1.1 Centralized E-voting
	3.1.2 Distributed E-voting

	3.2 Distributed reputation
	3.3 One-hop structured overlays
	3.4 Networks of edge web servers

	4 TallyNetworks
	4.1 Objectives and main idea
	4.2 Security properties
	4.3 Entities of TallyNetworks
	4.4 Security Threats
	4.5 Protocol steps
	4.6 One-Hop Architecture: Membership
	4.7 Kademlia CAST & SYNC
	4.7.1 Broadcast
	4.7.2 Broadcast + SYNC

	5 Analysis
	5.1 Security Analysis
	5.2 Experimental Analysis
	5.2.1 Broadcast + Sync Simulation
	5.2.2 Protocol cryptographic operations validation
	5.2.3 Membership storage cost evaluation

	6 Conclusion and Future Work
	References

