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1. Introduction 

 

Machine Learning (ML) has gained huge strength in the Artificial Intelligence field as 

computational power has increased in off-the-shelf machines. Furthermore, algorithms can 

process large amounts of data that can be stored and accessed with ease. The widespread of ML 

techniques has increased its usage in many fields, such as finance, logistics or healthcare. 

This document covers the study and implementation of ML models that are applied to 

healthcare, more specifically, to early mobilizations in Intensive Care Unit (ICU) patients. Early 

mobilization consists of applying passive and active movement dynamics to hospitalized patients 

earlier than usual (even when they still require mechanical ventilation) with the aim of reducing 

physical and cognitive sequelae caused by a prolonged lack of mobility. With the application of 

this technique, the aim is to reduce recovery time and, consequently, hospitalization and return 

to work (in the case of patients of working age). The incorporation of physical activity at the 

beginning of the course of the critical illness produces better clinical outcomes, including a lower 

incidence of acquired weakness in the Intensive Care Unit (ICU), a lower incidence of delirium 

and a shorter stay in the ICU. 

The project strives to find the underlying causes produced by specific motions, specifically on 

early mobilization. Early mobilization consists of applying passive and active movement 

dynamics to hospitalized patients earlier than usual (even when they still require mechanical 

ventilation) with the aim of reducing physical and cognitive sequelae caused by a prolonged lack 

of mobility. With the application of this technique, the aim is to reduce recovery time and, 

consequently, hospitalization and return to work (in the case of patients of working age). The 

incorporation of physical activity at the beginning of the course of the critical illness produces 

better clinical outcomes, including a lower incidence of acquired weakness in the Intensive Care 

Unit (ICU), a lower incidence of delirium and a shorter stay in the ICU. 

This master thesis will be carried out in the context of the SISMO Project. The project was 

created with the aim of helping to reduce the recovery time of patients with prolonged lack of 

by supporting analysis on early mobilization to try and reduce recovery time for patients in an 

ICU unit. Widespread of early mobilization is not yet achieved, although SISMO aims to 

implement IoT and ML technologies to monitor patient progress. This is done by tracking active 

and passive mobilizations. Thus, the main goal of the project is to support healthcare 

professionals by applying machine learning techniques on a knowledge-base, or dataset, to 

recognize movements made by patients. These movements can be active or passive and can be 

simpler or more complex, depending on the mobilization exercise, although ML models are 

determined to classify them in order to distinguish mobility patterns. The evolution over time of 

patients can, later on, be tracked in order to analyse recovery evolution.  

Section 2 covers the state of the art that was consulted to plan and assist the project from a 

theoretical point of view, whilst section 3 is a study of the specific ML algorithms that are used 

in the implementation. Section 4 explains the dataset that is used for its further analysis in 

section 5, where the implementation process as a whole is also covered. The obtain 

performance and timing results are presented in section 6. Section 7 is a discussion of how the 

ML models perform against the problem and if they are valid enough for real applications. 

Section 8 proposes the next steps the project can take in order to develop even further the work. 

Section 9 lists all references used in this thesis.  
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2. State of the Art 

 

Machine Learning (ML) techniques are increasing in popularity in many fields due to the 

increased amount of historical data and the available computational power. This has led to a 

higher demand of accurate forecasting and robust and efficient techniques that reveal the 

observations between past and future[1]. This is due to the fact that ML works by "learning" 

from data and can be used in many environments, working with examples with a known output, 

i.e. supervised learning, and the ones which are not classified or labelled, i.e. unsupervised 

learning. The usage of these techniques affect the accuracy of the final predictions, although the 

goal is to obtain insight of the features within the data that reveal information that cannot be 

seen with simple analytical models. Further, reinforcement learning tackles unknown input-

output pairs by obtaining the most optimal solution with non-exact mathematical models, by 

obtaining sub-optimal solutions that correct within a time span. The increase in scale of data 

and the usage of data-driven approaches has affected notably the health sector. 

Medical and health-related practices have generated large quantities of data in the past years 

and the ability to learn from the data developed into more innovative approaches to tackle 

caveats in the field. Studies regarding nativity and mortality, environmental health, nutrition, 

cardiovascular diseases and genetics, including many others, find better solutions in the form of 

predictions resulting from ML approaches[4]. The healthcare sector strives for effectiveness and 

the amount of data the sector has affects positively the decision-making process. Nonetheless, 

the full potential of data-driven techniques is yet to be exploited. Data can be rather sparse and 

its synchronicity with analytics limits the usage of ML techniques diagnosis and treatment 

adaptations. Furthermore, more and more applications arise as data becomes more complex, 

algorithms increase in robustness and predictions are more precise. The management of any 

disease can be done with ML, as insight into its evolution can be tracked by analysing the 

different variables and their interactions. Even further, the merge of medical data with other 

data collections can allow the exploration of relationships between datasets and the effects 

inferred from one to another[4][6]. Examples of datasets to relate to are social science studies, 

work- or profession-related data or even usage of social media. All the previous can boost 

disease diagnosis and treatment personalising, as well as drug manufacturing, prediction of 

epidemics and even health record management techniques. 

A common methodology for the usage of ML is done with sequential steps that are the collection 

of data, the pre-processing of this data, selection of features, classification of predictions and 

the presentation of results[3]. Thus, the first steps are focused on collecting the data and tuning 

it to obtain a dataset that enables the user to work with it comfortably. There are many ways to 

pre-process data and it highly depends on the type of data at stake, i.e. blank numbers can be 

replaced with a default value or a mean value, whilst text data can be neglected or relegated to 

another class or grouping. The main concern of ML, though, is the choosing of specific algorithms 

that make the predictions. There are many algorithms and mentioning all of them would be 

tedious and cumbersome. The selection of a specific algorithm varies on the type of data we are 

dealing with and, more important, the output want to obtain. Furthermore, all algorithms work 

different and there is no best option at first glance, as different algorithms have different 

strengths and weaknesses. For supervised learning, we find algorithms such as Support Vector 

Machines, Linear Regression, Logistic Regression, Naive Bayes, Decision Trees and k-Nearest 

Neighbour. For unsupervised learning, we find clustering algorithms i.e. k-means and 

hierarchical; Anomaly Detection algorithms; Neural Networks; Expectation-Maximization; and 
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Principal Components Analysis, within others[1][3][4][5][6]. All the previous operate differently 

and, as aforementioned, they have their own pros and contras. Support Vector Machines (SVM), 

for instance, have proved to give successful results to classification tasks and regression. It 

classifies data points and uses loss functions to map categories and divide them as much as 

possible[7]. On the other hand, Bayesian Networks are graphical models that strive to show 

probabilistic dependencies between variables by the representation of directed acyclic graphs. 

This proves useful in terms of interpretability, although sparse data can be challenging when 

combining structure learning techniques[6]. Random Forests models are based on the 

construction of decision trees as a combination of tree predictors that depend on the values of 

random vectors samples independently[3]. Further information for ML algorithms can be 

consulted in the references section. Local Learning, Recursive Strategy and Direct Strategy 

approaches appear in [1]; [2] presents Neural Network approaches and Gaussian Processes;  

Multilayer Perceptron can be seen in [2][3]; simple ML models and Neural Networks are 

compared in [4]; and [5] presents a series of clustering algorithms that vary according to 

online/offline settings and known/unknown number of clusters.  

The previous study of algorithms is to determine which algorithms are best for time series 

analysis and forecasting. Time series data is formed by sequences of historical measurements of 

an observable variable at equal time intervals. Forecasting of the future can be done by using 

knowledge of the past. The goal is to determine underlying features the measurements may 

have, as well as descriptors of the salient features within a time series, which can be 

determined[1]. The main challenge in time series forecasting is the determining of the random 

behaviour that provides non-linear interaction. Data points can have aperiodic behaviour and 

can be asymptotic, presenting different dimensions in terms of length[5]. On the other hand, 

time series analysis focuses on the direct understanding of the underlying causes in the data to 

develop mathematical models that provide plausible descriptors from sample data[9]. 

Time series are abundant although little is known about the nature of processes that generate 

them. This calls for specific strategies that have to be undertaken to enables successful analysis 

and forecasting. Strategies focus tackling the problem of making predictions based on the trends 

found in the data and its repeating patterns or cycles[9]. Predicting involves the determining of 

the future with only data subsets from the past. This can be done via local learning strategies. 

Local learning assumes no the data as plain - no previous knowledge applied, computational 

simplicity when new training samples are input - no re-training, and modelling is non-stationary, 

which enables the comparison of data points in a spatial and temporal way. The latter may 

provide further accuracy when making predictions. For one-step time series, we find Nearest 

Neighbour and Lazy Learning[1]. The Nearest Neighbour method bases its predictions on stating 

the output of a specific data point from the initial state to the final state with the evolution of 

the nearest neighbouring point with an already known output. Lazy Learning adapts the size of 

the neighbourhood by reducing a complex and non-linear problem into a sequence of problems 

and applies cross-validation criteria. Thus, we obtain manageable and linear problem sequences 

to solve. For multi-step data, we find recursive strategies, direct strategies and the combination 

of both that will apply to data horizons. Recursive strategies train a one-step model in order to 

use it recursively to return multi-step predictions. Direct strategies, on the other hand, learns 

models independently and concatenates all output predictions[1].  

Dealing with time series can be complex. As aforementioned, time series can be dealt with 

depending on their periodicity and the step we are able to or willing to evaluate. Thus, datasets 

can be simplified and we can interpret problems sequentially or in a divide-and-conquer 
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manner. In time series analysis, in order to cluster or classify time series, subroutines can be 

used. This will enable the location of stable periods of time or to allocate changes in data points. 

A common subroutine is segmentation. Segmentation divides into discrete segment sequences 

the time series in search for inflection points[8]. The researched approach uses a criteria that is 

used as a threshold for stopping the iterative merge of the lowest cost pair of segments. The 

purpose is to find homogeneous segments, and its formalisation is based on the cost of the 

individual time intervals, by means of a cost function. The cost function evaluates the distance 

between a value and the data fitted by means of a simple function. The detection of changes in 

the correlation structure can be done in several ways. Singular Value Decomposition, for 

instance, is a model that projects the correlated high-dimensional data onto a hyperplane, 

where multivariate data can be analysed. The measured distance between the initial data and 

the hyperplane indicates the variations for the observed variables. This model strongly depends 

on the rank of the decomposition. A Critical Point approach, on the other hand, smoothes out a 

noisy signal with a filter - usually base-band-pass - in order to reduce its fluctuation and 

determine critical points[8]. Many other segmentation techniques can be applied, as well as the 

combination of them, in order to provide time series segmentation. 

Furthermore, when a time series dataset has been segmented, it can thus be classified according 

to the found patterns. This technique is mainly applied in unsupervised learning and the main 

goal is to assign a set of observation to a specific subset, as the observations in a cluster must 

be similar in some sense[8]. Clustering or classification must always be done by evaluation 

expressive features that must be selected in order to fulfil the desired needs. 

Overall, the state of the art points out that the increasing amount of data is enabling the 

widespread of ML techniques. Dealing with increasing amount of data is easier and more 

effective in different fields, such as finance, economics or healthcare. The latter can offer more 

accurate diagnosis and personalised treatment due to the performance of ML algorithms that 

make this possible. Furthermore, the collection of time series datasets tracks evolution of data 

over time and tackling this is becoming more feasible and of major interest to develop ML at a 

whole new level. Dealing with time series can be complex, although there are already consistent 

models that can provide insight of the features underlying in the variables. Also, several 

strategies strive to obtain the periodicity of data its cycles, in order to further cluster or classify 

the resulting predictions. 

  



Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville 

 

11 
 

3. Machine Learning Algorithms 

 

Theory about ML can be thorough and there are many algorithms with many variations and 

extensions. The reader must bear in mind that the implementation deals with a classification 

problem. Not to keep the document extremely tedious, the following points strive to collect the 

most important technical features to understand the ML algorithms used in the implementation 

and support the decisions agreed upon within the project[12].  

3.1. Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical procedure which goal is to measure data in 

terms of its principal components rather than on its normal axis. This means, the underlying 

structure of the data is analyzed to figure out where the highest variance of the components is 

found. PCA uses orthogonal transformation, that converts the correlated variables in the 

samples into linearly uncorrelated variables. The variables found are the principal components.  

PCA applies to the data by transforming it to a new coordinate system for each component, that 

is projected sequentially. Variance is maximised by evaluating components one by one by means 

of weight vectors wk = (w1, …, wp)k which maps each sample xi to a new vector, the principal 

components score vector, ti = (t1, …, tl)i. Mapping is done: 

𝑡𝑘𝑖
= 𝑥𝑖 · 𝑤𝑘 for i=1, .., n and k=1, …, l. 

The first weight vector satisfies: 

𝑤1 = 𝑎𝑟𝑔 max
||𝑤||=1

{∑(𝑥𝑖 · 𝑤)2

𝑖

} 

The finding of the first component can give us the score of t1 in the transformed coordinates. 

The rest of the components are calculated with the weight vector that extracts maximum 

variance: 

𝑤𝑘 = 𝑎𝑟𝑔 max
||𝑤||=1

{||𝑋𝑘𝑤||
2

} 

Where the k-th component is the subtraction of the first k-1 components to X: 

𝑋𝑘 = 𝑋 − ∑ 𝑋𝑤𝑠𝑤𝑠
𝑇

𝑘−1

𝑠=1

 

Transformations are truncated by using eigenvectors. These relate directly to the desired 

amount of components that compound an uncorrelated dataset over the new space. PCA learns 

a linear transformation with an orthogonal basis for the number of specified components, 

maximising the variance found in the features. 

As we are dealing with high-dimensional data, PCA can be useful to reduce these dimensions 

and make representations in a 2- or 3-dimensional space. Spreading out the principal 

components in a visualisation can help to observe at first glance the results that should be 

expected or to even see if any margin can be created to separate the dataset according to its 

labels. 
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3.2. Naive Bayes 

Bayes’ theorem is a theorem that determines an event probability regarding related events, 

which might be related to the event by means of their conditions. Based on the previous, Naïve 

Bayes has a set of methods that assume naïve independence between feature pairs. It is used 

for supervised learning purposes and classifiers are built by assigning labels to problem instances 

from an initial finite set. These instances are represented as feature value vectors. Thus, Bayes’ 

theorem can be represented as: 

𝑃(𝐵|𝐴) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 

Naïve Bayes can be represented as: 

𝑃(𝐵|𝑎1, . . , 𝑎𝑛) =
𝑃(𝐵)𝑃(𝑎1, . . , 𝑎𝑛|𝐵)

𝑃(𝑎1, . . , 𝑎𝑛)
 

Naïve independence assumption gives us, for all i:  

𝑃(𝑎𝑖|𝐵, 𝑎1, . . , 𝑎𝑛) = 𝑃(𝑎𝑖|𝐵) 

The relationship, thus: 

𝑃(𝐵|𝑎1, . . , 𝑎𝑛) =
𝑃(𝐵)𝛱𝑖=1

𝑛 𝑃(𝑎1|𝐵)

𝑃(𝑎1, . . , 𝑎𝑛)
 

If the probabilities for all a values are constants, an estimation can be done to the output. Some 

estimators can be Maximum A Posteriori estimation, Minimum Square Error or Alternative Risk 

Functions of the output constants. Furthermore, naïve Bayes classifiers differ in results when it 

comes to assuming the relative frequencies of classes in the training set, considering the 

distribution of P(ai|B).  

The previous demonstrates the simplicity of naïve Bayes methods, as the correlation between 

features are not considered and, therefore, its fast computation over large datasets. Its results 

in real-life application prove to be decent for classification, although it encounters flaws when 

it comes to estimation[14]. 

Classification of output results in a naïve Bayes method can be done in several ways. Therefore, 

we can find: 

a. Gaussian Naïve Bayes: when dealing with continuous values, data associations that 

follow Gaussian distributions can be found. Probability distributions can be computed 

by means of a normal distributions equation.  

b. Multinomial Naïve Bayes: the representation of event frequencies in the form of a 

multinomial is composed by the samples, or feature vectors. Thus, observations of an 

event is counted and classification occurs by the representation of occurrences. It is an 

interesting approach as it can be easily represented as a histogram, but it may encounter 

errors when it comes to estimation, as pseudo-counts should be considered to avoid 

probability wipe-outs, as values may be multiplied by zero, in the case that there is no 

occurrence of a specific class. 

c. Bernouilli Naïve Bayes: features in this model are treated as binary variables, proving to 

be useful when it comes to expressing absence or occurrence of events based on the 

likelihood of a class expressed by the binary value.  
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d. Others: continuous values can also be dealt with by binning to discritize feature values 

and obtaining a Bernouilli distribution. Also, semi-supervised training algorithms can be 

trained to learn by running in a loop the supervised algorithm. These event models and 

other estimators can be applied to modify or extend a naïve Bayes model.  

In the implementation, Gaussian Naïve Bayes (GNB) is going to be used. This decision was taken 

to see determine whether a specific feature from an (x, y, z) input is determining for specific 

motions without correlating the values. 

3.3. Support Vector Machine 

Support Vector Machines (SVM) are supervised learning models that represent features as 

points in space as a non-probabilistic binary linear classification by constructing one or more 

hyperplanes in a high-dimensional space for further supervision. It implies the mapping of 

features as points in space and outputs predictions based on the mapping of the feature that 

fall into a categorical space. The usage of hyperplanes enables classification or regression 

analysis of test data inputs by measuring the distances to the training data points within the 

hyperplane. Furthermore, high-dimensional space is used to deal with the fact that not all 

features sets can be separated linearly [13][16].  

In terms of computation, SVM works with dot products of pairs of input data vectors within the 

original space and deals with the operation as a kernel function. The hyperplanes in high-

dimensional space appear when the dot product of a vector with a set of points is constant 

within the dimensional space. Thus, vectors that define a hyperplane are represented as images 

of feature vectors within the dataset and the degree of closeness of a test point can be 

determined when the relation of parameters with the kernel becomes constant. It is to be noted 

that convolution appears when hyperplane mappings are done, providing major complexity to 

the discrimination offered at the time of classifying. SVM offers linear and non-linear 

classification, as well as several extensions. 

3.3.1.  Linear Support Vector Machines 

Linear SVM strives to predict the classification of (xi, yi) points when the distance between the 

hyperplane and the nearest point, from both groups that divide the set xi for which yi=1 or  

yi=-1, is maximized. The maximum-margin hyperplane is found and normal vectors per 

hyperplane can be found. Thus, linear separation is found and, furthermore, the determination 

of a margin is set. This margin can be hard or soft, determined by the linear separation of the 

hyperplanes surrounding it. If two hyperplanes are linearly separable, a hard margin is found 

and constraints set that data points must lie on the adequate margin side. The optimal weight 

vector for linearly separable data: 

𝑤𝑜 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑁𝑠

𝑖=1

 

Where α is the Lagrange multiplier vector that finds the optimal solution and Ns the total amount 

of support vectors. Therefore, having wo, the function for the optimal hyperplane: 

𝑦(𝑥) = 𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖(𝑥𝑇𝑥𝑖) + 𝑏𝑜)

𝑁𝑖

𝑖=1

 

Where bo is the optimal bias.  
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Data is classified, then, according to the sign of the function result. On the other hand, if linear 

separation cannot be accomplished, a loss function is introduced to determine whether if set of 

points lay on the correct side of the margin. 

3.3.2. Non-Linear Support Vector Machines 

As a variation of a linear SVM model, non-linear SVM replaces the dot product with a non-linear 

kernel function. Feature spaces is then transformed in order to fit the maximum-margin 

hyperplane. This is introduced by means of hard-margin constraints and penalty 

misclassifications. Multiple kernels can be examined, but the most common are the polynomial 

kernels, being these homogeneous and non-homogeneous. Homogeneous polynomial kernels 

are those in which all terms have the same degree, whilst, on the contrary, non-homogeneous 

kernels encounters polynomials with different degrees in some or all terms.  

Classification in SVM is accomplished by the computation of the reduction of a problem to a 

quadratic space. Nevertheless, this is not always the case and extensions have found other ways 

to find the margins, such as sub-gradient descent and coordinate descent, although the 

classification problem must be solved by the minimization of the loss function. 

In the implementation, SVM is chosen due to the fact that the data can be easily expressed as 

data points, with its pre-processed coordinate values or after analyzing its principal components. 

Striving to find the margins between the classification of the data points whilst observing the 

obtained loss can be interesting. 

3.4. Decision Tree 

Also used in supervised learning environments, Decision Trees (DTs) are non-parametric 

methods used for regression and classification goals. Observations or features are used to obtain 

predictions, being this a variable target value, by means of simple decision rules, representing 

conclusions as in leaves according to inference. When dealing with classification problems, the 

tree structures are represented so as the leaves represent class labels and the branches 

represent the conjunction of the features that lead to the leaves. As well as classification trees, 

regression trees can be found to solve ML problems where the predicted outcome should be a 

real number, and not a class, like in the latter problem type.  

When it comes to the specific algorithm used in these model structures, we can find: 

a. Iterative Dichotomiser 3 (ID3): the algorithm finds categorical features for each node by 

yielding the largest information gain for categorical targets by means of a multiway tree. 

It works in a way that generalization to unseen data are avoided by applying a pruning 

to a previously maximized tree. First, it calculates the entropy for all features. Then, a 

splitting is done using the attribute for which the entropy is minimum. Next, a decision 

tree is modeled based on the previously found attribute and, lastly, recursion is applied 

to all subsets with the remaining attributes. 

b. C4.5: In line with ID3, C4.5 uses the concept of information entropy whilst removing 

feature categorical restrictions. It thus defines a discrete feature that partitions the 

continuous attribute value into a discrete set of intervals[18]. The nodes are associated 

to attribute values and subsets are created, as in ID3, according to the normalized 

information gain. Further pruning is done by removing rule preconditions, depending on 

the accuracy of the rule itself. 
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c. C5.0: C5.0 is a further development of C4.5 that uses less memory and rulesets are 

decreased in size, although accuracy is increased.  

d. Classification And Regression Tree (CART): this algorithm is non-parametric technique 

that creates decision trees with rules based on values for selected values to split the 

most differential observations based on variable dependencies. On rule selection, it is 

applied to all child nodes recursively, stopping when set conditions are met or no further 

gain is possible. Pruning also applies to CART.  

Decision trees are very easy to visualize and interpretation is very straightforward. The 

algorithms have logarithmic cost, proportional to the number of training nodes and statistical 

tests can be run to validate models. Nevertheless, stability can complicated to deal with as 

generalization can be hard to find depending on the dataset, requiring prior fitting and more 

pre-processing logic in a specific implementation. 

A decision tree classifier that uses the CART algorithm is proposed within the implementation. 

This is due to the fact that the document strives to find whether time series datasets can be 

classified in a structural manner and easy visualizations can be obtained from data it is complex 

to interpret at first hand. Further, basic motions follow strict moving pattern, that can be 

reflected as a set of rules that could be applied by the algorithm. 

 

3.5. Multilayer Perceptron 

Multilayer Perceptron (MLP) is an artificial neural network that uses feedforward techniques to 

train datasets. The algorithm is represented by means of layers of nodes, where each node is a 

neuron. Neurons use non-linear activation functions, which can be arbitrary, to distinguish data 

that is not linearly separable. MLP, thus, learns an approximation function in order to classify a 

dataset. It can also be used for regression. It is formed by, at least, three layers, where 

perceptrons are organized. A perceptron is, by definition, a binary classifier – an artificial neuron.  

MLP has a fully connected and is layer-structured. Layers are divided in three groups, being these 

the input layer, output layer and all in-between hidden layers – it needs a minimum of 1 hidden 

layer. Nodes are connected from one layer to another with a specific weight value.  

Neurons encounter activation functions. An activation function is linear and takes action by 

mapping neuron weighted inputs to their outputs. The most common activation functions are 

sigmoidal: 

a. Logistic function: this is a sigmoid curve that ranges results between 0 and 1. It is shown 

that initial growth is almost exponential until saturation strives to accomplish a stable, 

or mature, value that stops the growth.  

𝑓(𝑥) =
𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)
 

Where L is the maximum value of the curve; k is the curve steepness; x0 is the midpoint 

of the sigmoid. 

b. Hyperbolic tangent: this is defined as the ratio of the corresponding hyperbolic sine and 

hyperbolic cosine functions. This enables the evaluation of the logarithm of a rational 

number of the arguments.  



Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville 

 

16 
 

𝑓(𝑥) = tanh(𝑥) =
sinh(𝑥)

cosh(𝑥)
 

We must bear in mind that in both previous formulas, the xi values represents the value at the 

node – sometimes represented as vi. Weights are typically represented as wi.  

When it comes to learning, MLP works by changing connection weights. Output neurons are 

those that are no source of any connection and depend on the targeted values, being these the 

ones in the test set. The connection scheme, organized in layers, is acyclic.  

The algorithm works by enumerating all neurons and checking the existing connections, which 

are weighted. Bias weights are used in the hidden layers. Backpropagation is used and, thus, the 

algorithm executes as follows: 

1. Input values are propagated into the network; 

2. the cost is calculated and, therefore, the error term is determined; 

3. the difference between the target value and actual value is calculated; 

4. the weights are updated by multiplying the activation function result and the output 

delta; 

5. a percentage of gradient weight is subtracted from each weight.  

Iterations in the backpropagation process are controlled by number of epochs. This strives to 

minimize the error in the output nodes and the predicted output tends to approximate to the 

training example label. 

MLP is used in this implementation because of its stochastic nature. This can provide useful to 

determine solutions for complex problems, such as time series predictions. Also, MLP is widely 

used to create models based on regression analysis and classification can then be done because 

of the categorical response that is found in the output layer of the network. 
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4. Early Mobilizations Data 

 

Body motions are recorded from wearable sensors respectively placed on the chest, wrist and/or 

ankle of a subject. The usage of the sensors allows to measure the motion experience by one or 

multiple body parts, namely, the acceleration captured by the body dynamics. Accelerations are 

thus shown as G-forces and these compose the dataset of time series data that reflect motion 

primitives. 

In order to provide a valid dataset for the main purpose of this project, the tacking and analysis 

of basic motions or movements, two different datasets have been analyses and pre-processed. 

These datasets are used for several applications, such as the generalization of common activities 

of the daily living or the adoption of common test benches for creation and validation of human 

motion primitives. The review of the different motions in both datasets helps the choosing of 

specific data basic motions that can be found in the ICU. Detailed documentation about the 

dataset can be found in [10][11]. 

Time series are mainly set of points measured over successive times. The elapsed time is 

represented, usually, by means of a vector. Data points are thus related to a specific time 

measurement. The most complicated part of assessing time series data is the determination of 

trends, cycles, seasons or irregularities. Data can repeat itself over periods of time, creating 

trends by the variations seen in increases, decreases or stagnations. Cycles can appear when 

repetitions are done over long periods of time – cycles tend to be generalizations of repetitions 

over time. Variations caused at random are referred to as irregularities and there is no way to 

define the root cause of irregular fluctuations. Irregular data variations can be complex to deal 

with, although models can approximate them to other observations. 

This project uses time series data points associated to periods of time when motions are done.  

The variables observed in the discrete time series are shown as continuous variables that are 

expressed by sets of real numbers. These numbers are the location in space of the accelerometer 

used on a certain subject. More specifically, recordings of 3-dimensional coordinates are done 

with the accelerometer and the obtained G-forces are collected. Thus, we obtain sets of three 

real numbers that are named as follows, to differentiate between the part of the body where 

the accelerometer is found: 

1. “x_wrist”, which tracks the x coordinate from the wrist accelerometer; 

2. “y_wrist”, which tracks the y coordinate from the wrist accelerometer; 

3. “z_wrist”, which tracks the z coordinate from the wrist accelerometer; 

4. “x_chest”, which tracks the x coordinate from the chest accelerometer; 

5. “y_chest”, which tracks the y coordinate from the chest accelerometer; 

6. “z_chest”, which tracks the z coordinate from the chest accelerometer; 

7. “x_ankle”, which tracks the x coordinate from the ankle accelerometer; 

8. “y_ankle”, which tracks the y coordinate from the ankle accelerometer; 

9. “z_ankle”, which tracks the z coordinate from the ankle accelerometer. 

We must bear in mind that not all data within the data has all the three sets of 3-dimensional 

coordinates, as some motions are only recorded by means of a wrist accelerometer. This can 

provide as an inconvenient in terms of analysis, but it can also provide advantageous in the case 

that wrist movements are more determining in terms of forecasting for the specific movements 

that are in the pre-processed dataset.  



Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville 

 

18 
 

The chosen data refers to specific movement dynamics. These have different complexities and 

a different sensor setup has been used for each one of them. Six different movements are used, 

being the following, with their assigned labels: 

a) Get up from bed (labeled as “0”) 

b) Drink from a glass (labeled as “1”) 

c) Waist bend forward (labeled as “2”) 

d) Lying down (labeled as “3”) 

e) Frontal elevation of arms (labeled as “4”) 

f) Crouching i.e. knees bending (labeled as “5”) 

The total amount of data regards 206406 samples, where the distribution of samples is not equal 

for each of the labels. Thus, we find 42792 samples for label 0, compounding the 20.73% of the 

data; 45801 samples for label 1, being this 22.19% of the dataset; 28315 samples for label 2, 

13.72%; 30720 samples for label 3, thus being 14.88% of the data; 29441 samples for label 4, 

the 14.26% of the dataset; and 29337 samples for label 5, compounding the 14.21% of the whole 

data. 

UCI patients can do the previous movements in their recovery phase. Thus, the selected motions 

arise when a patient signals something within the room, so he will elevate her arms to point a 

specific object; when bending her knees in bed or crouching, to change posture or try to flex her 

lower limbs;  bending her waist forward to incorporate the upper body before eating; getting up 

from bed and brushing her teeth, being these motions in the latter part of the recovery phase 

and becoming more complex motions.  
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5. Implementation 

 

In the previous chapter, several popular algorithms are studied and the basic technical features 

are outlined. Time series forecasting can be done by means of these algorithms and, therefore, 

models can be created to be trained on time series datasets and, when trained, fed with new 

data inputs to find predictions for the future.  

This section covers the approach given to make predictions on time series data provided by early 

mobilization. The observations found in the datasets described in section 3 will be used to 

construct models that will give us training and test sets. Construction of the models will allow us 

to generate forecasts and, even further, if a validation set is used, observations can be verified. 

Time series forecasting with early mobilization patterns can be done with many different models 

for different reasons, depending on the way the data wants to be evaluated in terms of accuracy, 

performance and functionality. We must bear in mind that data must be pre-processed to deal 

with irregularities in the data and avoid empty fields when it comes to training and testing, as 

this may cause error in terms of accuracy or in the algorithms executions. Heuristics are applied 

to choose the training and testing datasets. Thus, 90% of the data will be dedicated to training 

and 10% of the data will be dedicated to testing. The number of samples selected is done at 

random and splitting is done according to the percentages to avoid knowledge transfers from 

the training set into the test set . Sections 4.4 and 4.5 cover each process, whilst section 4.6 

covers a specific test set obtained from the SISMO project accelerometer. 

5.1. Tools 

The implementation is done on a machine with Windows 10 Enterprise 64-bit Operating System 

with an Intel® Core™ i5-7300U CPU @ 2.60GHz processor and 8.00GB of RAM.  

The software is developed using an Anaconda 1.8.7 distribution, which is a very popular Python 

distribution for data science applications. The distribution has Python 3.6.5, which is 

programming language used for the implementation. Jupyter Notebook is the open-source web 

application that allows the creating of documents that contain Python code that can be compiled 

and executed in the web browser. From there, the Python code imports several modules or 

packages, being these: 

a. Scikit-learn: package for machine learning that enables the usage of classification, 

regression and clustering functions by many different algorithms.  

b. Numpy: package for scientific computing of N-dimensional array objects, broadcasting 

functions and useful linear algebra in data science applications. 

c. Pandas: package for high-performance data analysis and large data structure 

preparation and management.  

d. Matplotlib: package for 2D and 3D plotting with a variety of hardcopy formats and 

interactive environments across platforms. 

e. Statsmodels: package with functionalities to deal with estimation of statistical models 

as well as exploration of statistical data and testing.  

Therefore, the implementation contains a Jupyter Notebook document where Python code is 

executed. This code imports several packages in order to do create ML models and show results 

and visualisations for the predictions obtained.  
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5.2.  Data Pre-Processing 

The first step after having obtained all the datasets is to apply pre-processing techniques. Data 

gathered cannot be checked at a glance and assumptions that the data is fully controlled in the 

analysis process will arise code errors, data mismatches or other mistakes. Some issues that are 

to be dealt with are:  

a. missing values, 

b. out-of-range values, 

c. wrong value types,  

d. empty value fields. 

Furthermore, irrelevancies, redundancies and other data that can produce misleading results 

has to be processed to obtain a stable and standardised dataset. In order to do so, this chapter 

cover the pre-processing steps done to assess the previous and obtain a competent dataset. 

On the one hand, a series of functions are used to scale all the three dimensional data points. 

This means, normalising the dataset to input some boundaries, or limits, and obtain a more 

standardised dataset. This will produce better interpretations for data and will delete large 

spatial distances between data points.  Furthermore, a more homogeneous dataset will derive 

in clearer visualisations, giving showing better separation between feature sets with different 

labels. As the first dataset used uses normalised values, the G-forces, between -1.5g and 1.5g, 

the whole dataset will be normalised to (-1.5g, 1.5g) values. This process can be done with a 

minimum and maximum scaler, provided within the Scikit-learn library, which can transform 

feature values individually into the range. The scaler only needs the dataset and the desired 

range it has to be normalised to as parameters[19]. 

On the other hand, the dataset is set to a standard set of columns. This means, that all data-

points must have valid values. This is achieved by means of the Pandas library, allowing the 

creation of DataFrames with a set amount of columns, where each columns has a unique 

identifier. In addition, any columns with missing values are dropped to avoid later code failures. 

Having loaded the external datasets into Pandas DataFrames, these can be concatenated, 

bearing in mind that a sequential index, that can be easily reset to set a unique identifier to each 

row in the dataset. The dataset itself, with a standard amount of features, unique columns 

naming and normalised values is completed by a factorisation of its labels. Although feature 

values relate to a motion, the motion itself should not be a determining factor within the dataset 

and, thus, each motion is labelled to a value within the range (0, 1, …, 5). The label is the 

determining factor when it comes to predicting. The table below shows five random samples of 

the dataset. 

 

Figure 1. Dataset sample rows 
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5.3. Feature Selection 

Data analysis is done exhaustively with the usage of several algorithms that will interpret 

different features. Features are the individual and measurable properties or characteristics 

within the data, being these each G-force from each different sensor at a specific point in time. 

Each motions encounters different features and these can vary in importance. What is more, all 

data regarding the 0 and 1 motions is only defined by 3 features, being these (x_wrist, y_wrist, 

z_wrist) - the other features with the 0 and 1 labels are set to 0. 

Thus, motions will be evaluated in several ways according the features: 

a. With three features, being these: (x_wrist, y_wrist, z_wrist) 

b. With a set of principal components (linearly uncorrelated set of values) found after 

applying Principal Component Analysis (PCA). These features will be named (a, b), as 

PCA will strive to find the two most deterministic features. 

c. With all features, being these (x_chest, y_chest, z_chest, x_wrist, y_wrist, z_wrist, 

x_ankle, y_ankle, z_ankle) 

 

5.4.  Training 

The previous section covers the pre-processing of the mobilization datasets into a standardised 

and homogeneous dataset. Thus, the next step for the implementation is the training of models 

with the dataset. 

Training the dataset is quite straight-forward when using Python and Scikit-learn. Nevertheless, 

the selection of parameters has to be done appropriately to obtain a model that will give us the 

best results in terms of prediction. Machine learning models are trained on a number of samples 

and try to predict properties of unknown data. In this implementation, we are only covering 

supervised learning schemes[section 3], as we have a dataset that is labelled.Also, we are 

dealing with a classification problem, so we are going to use classifier models. 

First, the training set has to be defined. The training set will depend the number of features or 

components we are looking into[section 4.3].  Training or learning in Scikit-learn is achieved by 

means of an estimator. An estimator is, basically, a rule applied for the estimation of a specific 

value. Scikit-learn has the fit(X, y) method to which the training set is passed on to, being 

X the features values in the training set and y the labels to which these values map to.  

5.4.1. Support Vector Machine 

Support Vector Machine models in Scikit-learn can be used as classifiers. Although scalability can 

be quite complex when it comes to large datasets with many sample – it is computationally 

expensive – it provides many parameters to tweak the algorithm to the needs of the dataset and 

strive to find better predictions. These parameters can be seen in [16] and, mathematical 

formulation proves that the parameters of most importance are the definition of the C, kernel, 

gamma, coef0 and degree parameters. This is because they allow the user to determine the 

error term – C – and the kernel type, its polynomial degree, coefficient and independent term. 

Tolerance, random state and the maximum number of iterations can also be set when 

instantiating the class.  
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The implementation will train the SVM classifier model a singleset of parameters, for each 

feature selection. This is because SVM can take long periods of time for large datasets and the 

main parameters we focus this models is the kernel function. 

1. SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True, 

probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, 

max_iter=-1, decision_function_shape=’ovr’, random_state=None) 

 

5.4.2. Gaussian Naïve Bayes 

Gaussian Naïve Bayes is used as an algorithm for the classification model. It strives to find 

likelihood of features and it can be tweaked by adding the prior probabilities of the classes. This 

can provide useful when we know that a specific label appears with more probability than 

another, thus being prioritised when it comes to prediction[17]. 

The implementation will train the GNB classifier model the modification of priors, in order to 

vary the priorities due to motion complexities and the amount of data points, for each feature 

selection: 

1. GaussianNB() 
2. GaussianNB[0.2, 0.2, 0.15, 0.15, 0.15, 0.15]) 

 

5.4.3. Decision Tree 

Decision Trees train a model with the goal of predicting values of a targeted samples by learning 

simple decision rules, provided by the sample features. Classification with DTs can be adjusted 

with parameters that allow the measurement of the quality of a split (criterion), the choosing of 

split at each node (splitter), the maximum depth of a tree (max_depth), the minimum number 

of samples required to split an internal node (min_samples_split) and minimum number of 

samples required to be at a leaf node (min_samples_leaf), the minimum weighted fraction of 

the sum total of weights (min_weight_fraction_leaf), the number of features considered when 

looking for a split (max_features) and the seed used by the random number generator 

(random_state). Also, the maximum leaf nodes (max_leaf_nodes), minimum impurity decrease 

and growth threshold (min_impurity_decrease and min_impurity_split), as well as the class 

weight (class_weight) and the option to whether the data should be presorted for fitting 

(presort) can be decided upon. 

The implementation will train the Decision Treeclassifier model with several parameters, for 

each feature selection: 

1. DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None, 

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 

max_features=None, random_state=None, max_leaf_nodes=None, 

min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, 

presort=False) 

2. DecisionTreeClassifier(criterion=’entropy’, splitter=’best’, max_depth=None, 

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 

max_features=None, random_state=1, max_leaf_nodes=None, 

min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, 

presort=True) 
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5.4.4. Multilayer Perceptron 

Neural networks can also be created and modelled in Scikit-learn. The MLP classifier implies a 

neural network with several parameters that strives to optimize the log-loss function using 

LBFGS or stochastic gradient descent. 

The number of neurons within each hidden layer (hidden_layer_sizes), activation function 

(activation), penalty (alpha), size of the batch for the stochastic optimizers (batch_size), learning 

rate (learning_rate), exponent for inverse scaling learning rate (power_t), maximum number of 

iterations (max_iter), the ability to shuffle samples per iteration (shuffle), random state 

(random_state), tolerance (tol), momentum (momentum), proportion of training data to set 

aside (validation_fraction), exponential decays (beta_1 and beta_2) and numerical stability 

(epsilon) can be defined.Furthemore, verbosity and re-usage parameters can be set to feed user 

purposes[20]. 

The implementation will train the Multilayer Perceptron classifier model with several 

parameters, for each feature selection: 

1. MLPClassifier(hidden_layer_sizes=(50, ), activation=’relu’, solver=’adam’, 

alpha=0.0001, batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001, 

power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, 

verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, 

early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-

08) 

2. MLPClassifier(hidden_layer_sizes=(100, ), activation=’tanh’, solver=’lbfgs’, 

alpha=0.0001, batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001, 

power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, 

verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, 

early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-

08) 

Training the models with the previous classifiers allows us to assist the data from early 

mobilizations considering different aspects related to time series. Therefore, SVM, GNB and DTs 

allow the training of models with imbalanced learning and MLP can provide large numbers of 

hidden layers in artificial neural networks. These ML techniques will allow the further 

distinguishing of mobilizations from one another by means of the predicted classifications.   

5.5. Testing 

Section 4.4 outlines the testing of the dataset that collect early mobilizations. Thus, a 90% of the 

data within the set is used by the algorithms to learn the underlying patterns. Belonging to the 

same distribution as the training data, test data has not yet been processed by the algorithm, 

and feeding the model with such data thrives to find predictions with this fresh data. The 

performance of such test will determine whether the model will generalise the dataset and 

works well on doing predictions of this type. Therefore, ML models with good performance will 

classify time series data and will be competent enough for forecasting. 

Scikit-learn provides a very simple way to obtain predictions from a dataset. This step implies 

the fact that training must have already been done in order to output new values. These values 

are output as an array with the same size as the number of input samples that were given in the 
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to the fit function. In particular, all classifier models can be asked to output their predictions of 

a test set after learning. This is done by: 

classifier_model_name.predict(test_X) 

where test_X is the array-like structure with the same amount of features as the training set, 

but usually a reduced number of samples. The output array, or predictions, will be the labels 

that each sample has fallen into. Thus, the output and input array are the same length, being 

this the number of test samples. 

5.6.  Performance Measures  

This section discusses the usage and properties of performance measure for time series 

forecasting.  

1.6.1. Mean Square Error 

Mean Square Error (MSE) measures the average square deviation of the predicted values, 

reflecting the large errors that occur in the prediction. It gives an overall idea of the error 

occurred during forecasting.  
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The Sum of the Square Error (SSE) can also be measured as the total square deviation of the 

predictions from the sample values. Therefore: 
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The Signed Mean Square Error (SMSE) keep the sign for all individual squared errors to 

panelise outstanding errors.   
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Last but not least, the Root Mean Squared Error (RMSE) is a commonly used performance 

measure that simply calculates the root square of MSE. Thus: 

𝑅𝑀𝑆𝐸 = √
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1.6.2. Mean Forecast Error 

Mean Forecast Error (MFE) measures the average deviation obtained from the predictions 

regarding the actual labels. Direction of error is shown, implying that a result that is close to zero 

does not particularly imply a low amount of errors, but a low bias of errors on both directions. 
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1.6.3. Mean Absolute Error 

The Mean Absolute Error (MAE) measures the absolute deviation of predictions from the original 

label values. This results in the determination of an overall magnitude of the error, although 

direction is not specified.  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑡|
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After the training of the various models and having the predictions from different sets of 

features, the following section collects a table where all the mean squared error, root mean 

squared error and mean absolute error of the predictions are covered, in order to evaluate 

performance with the most relevant error rates and observe which ML model gives best results.  

5.7. Validation: SISMO Project Data 

Early mobilization consists of applying passive and active movement dynamics to hospitalized 
patients earlier than with the aim of reducing physical and cognitive sequelae caused by a 
prolonged lack of mobility. With the application of this technique, the aim is to reduce recovery 
time and, consequently, hospitalization and return to work, given the case. The incorporation of 
physical activity at the beginning of the course of the critical illness produces better clinical 
outcomes, including a lower incidence of acquired weakness in the ICU, a lower incidence of 
delirium and a shorter stay in the ICU. 
 
With the aim of supporting healthcare professionals in the process of implementing and 
generalizing early mobilization in practice, the SISMO project develops technology based on the 
Internet of Things (IoT) and machine learning. The IoT technology makes the SISMO project 
robust and guarantees its viability as its development goes beyond its scope. The SISMO project 
uses wearable devices, specially designed and adapted for the task of monitoring the 
mobilization, interconnected through efficient communication protocols such as Bluetooth Low 
Energy (LE), with its own software developed in house. This software is used within this 
implementation to obtain a dataset that will be used to validate the ML models. 
 
The software, that has been slightly modified to obtain small datasets in text files which can be 
easily imported into the project notebook, is used for validation. Therefore, we do not only test 
the models with the test set from the given datasets, but we can also test with new data 
obtained from the replication of motions. These motions are obtained by allocation an 
accelerometer on one part of the body, this mean the wrist on the right arm of a subject - thus 
creating a validation set of three features. The output text file is named according to the motion 
label (recall section 3) e.g. the motions recorded when drinking from a glass with be under the 
text file named "1.txt". This naming will be using for the further comparison of data, as all the 
sample predictions will be compared to the label. Following the example, the output array values 
will be compared to an array of the same size where all values will be 1. Within the file, we find 
a set of three G-forces for each row separated by a space. This will be imported into an array in 
the Python code, leaving it ready to apply to predict(X) method for each model that has been 
previously fitted with the training set. 
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The training set used will be the one used for the models that evaluate three-feature, to follow 
conventions that only (x, y, z) coordinates for the wrist will be evaluated. Nevertheless, the same 
procedure can be applied and measurements can be taken from an accelerometer at the chest 
and ankle. Having only one accelerometer, it is not possible to merge the data from three 
different measurements on different body parts even though the motion is the same one. This 
can induce larger errors when it comes to predictions, and this implementation thrives to 
validate as accurately as possible the models. 
 
Validation of the ML models is covered in the notebook and the following section collects the 
obtained results. We must bear in mind that, in order to avoid unnecessary calculations, only 
the best models with best predictions rates, and lower error rates, are used for the validation 
set. In section 7, discussion about the best models is explained based on the observations of 
section 6.



6. Results 

 

The implementation covered in this document attempts to train and test ML models with a specific dataset created from various mobilizations from patients 

in the ICU. Therefore, the results obtained regarding the testing and validation phases are collected below. The results show the time undertaking for training 

the model, the precision of the model when predicting test samples for each label, the mean square error, root mean square error and mean absolute error 

values, as well as 2D (in the cases for PCA) and 3D visualisations to enhance visualisation of areas where data points are predictions correctly and mistakenly. 

For all 3D visualisations, green data points show the correct predictions and red data points the mistaken predictions. The blue area is the area determined 

by the training dataset. Thus, models will prove to be good at predicting when points that fall out of the training set area are predicted correctly. All parameter 

sets can be consulted in section 5.3. 

6.1. Three features 

6.1.1. SVM 

Results for SVM with the first set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.82     

1 0.89     

2 0.72     

3 0.97     

4 0.84     

5 0.64     

AVERAGE/TOTAL 0.82 1.13 1.07 0.42 18min 51s ± 1min 43s per loop 
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Figure 2. SVM 3D visualisation of test predictions for label 0. Figure 3. SVM 3D visualisation of test predictions for label 1.  
 

 

Figure 4. SVM 3D visualisation of test predictions for label 2. Figure 5. SVM 3D visualisation of test predictions for label 3.  
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Figure 6. SVM 3D visualisation of test predictions for label 4. Figure 7. SVM 3D visualisation of test predictions for label 5.  
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6.1.2. GNB 

Results for GNB with the first set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.59     

1 0.57     

2 0.59     

3 0.47     

4 0.62     

5 0.55     

AVERAGE/TOTAL 0.57 2.73 1.65 1.00 43.4 ms ± 5 ms per loop 

 

 

Figure 8. GNB 3D visualisation of test predictions for label 0. Figure 9. GNB 3D visualisation of test predictions for label 1.  
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Figure 10. GNB 3D visualisation of test predictions for label 2. Figure 11. GNB 3D visualisation of test predictions for label 3.  
 

 

Figure 12. GNB 3D visualisation of test predictions for label 4. Figure 13. GNB 3D visualisation of test predictions for label 5.  
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Results for GNB with priors set in the parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.59     

1 0.61     

2 0.54     

3 0.48     

4 0.59     

5 0.55     

AVERAGE/TOTAL 0.57 2.72 1.65 1.01 41.7 ms ± 6 ms per loop 
 

 

Figure 14. GNB 3D visualisation of test predictions for label 0. Figure 15. GNB 3D visualisation of test predictions for label 1.  
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Figure 16. GNB 3D visualisation of test predictions for label 2. Figure 17. GNB 3D visualisation of test predictions for label 3.  

 

Figure 18. GNB 3D visualisation of test predictions for label 4. Figure 19. GNB 3D visualisation of test predictions for label 5.  
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6.1.3. DT 

Results for DT with the first parameter set. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.83     

1 0.90     

2 0.60     

3 1.00     

4 0.84     

5 0.57     

AVERAGE/TOTAL 0.80 1.04 1.02 0.42 2.04 s ± 248 ms per loop 

 

 

Figure 20. DT 3D visualisation of test predictions for label 0. Figure 21. DT 3D visualisation of test predictions for label 1.  
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Figure 22. DT 3D visualisation of test predictions for label 2. Figure 23. DT 3D visualisation of test predictions for label 3.  
 

 

Figure 24. DT 3D visualisation of test predictions for label 4. Figure 25. DT 3D visualisation of test predictions for label 5.  
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Results for DT with the second set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.82     

1 0.90     

2 0.60     

3 1.00     

4 0.83     

5 0.59     

AVERAGE/TOTAL 0.81 1.03 1.01 0.41 1.71 s ± 254 ms per loop 
 

  

Figure 26. DT 3D visualisation of test predictions for label 0. Figure 27. DT 3D visualisation of test predictions for label 1.  
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Figure 28. DT 3D visualisation of test predictions for label 2. Figure 29. DT 3D visualisation of test predictions for label 3.  
 

 

Figure 30. DT 3D visualisation of test predictions for label 4. Figure 31. DT 3D visualisation of test predictions for label 5.  
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6.1.4. MLP 

Results for MLP with the first set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.80     

1 0.88     

2 0.60     

3 0.92     

4 0.80     

5 0.65     

AVERAGE/TOTAL 0.79 1.31 1.14 0.48 1min 23s ± 4.48 s per loop 

 

 

Figure 32. MLP 3D visualisation of test predictions for label 0. Figure 33. MLP 3D visualisation of test predictions for label 1.  
 



Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville 

 

39 
 

 

Figure 34. MLP 3D visualisation of test predictions for label 2. Figure 35. MLP 3D visualisation of test predictions for label 3.  
 

 

Figure 36. MLP 3D visualisation of test predictions for label 4. Figure 37. MLP 3D visualisation of test predictions for label 5.  
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Results for MLP with the second set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.79     

1 0.87     

2 0.65     

3 0.94     

4 0.81     

5 0.62     

AVERAGE/TOTAL 0.79 1.32 1.15 0.49 2min 56s ± 13.6 s per loop 

 

 

Figure 38. MLP 3D visualisation of test predictions for label 0. Figure 39. MLP 3D visualisation of test predictions for label 1.  
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Figure 40. MLP 3D visualisation of test predictions for label 2. Figure 41. MLP 3D visualisation of test predictions for label 3.  
 

 

Figure 42. MLP 3D visualisation of test predictions for label 4. Figure 43. MLP 3D visualisation of test predictions for label 5.  
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6.2. Principal Components 

6.2.1. SVM 

Results for SVM with the first set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.79     

1 0.89     

2 0.56     

3 0.99     

4 0.77     

5 0.64     

AVERAGE/TOTAL 0.79 1.22 1.10 0.48 10min 55s ± 2min 38s per loop 

 

 

Figure 44. SVM 2D visualisation of test predictions for label 0. Figure 45. SVM 2D visualisation of test predictions for label 1. 
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Figure 46. SVM 2D visualisation of test predictions for label 2. Figure 47. SVM 2D visualisation of test predictions for label 3. 

 

  

Figure 48. SVM 2D visualisation of test predictions for label 4. Figure 49. SVM 2D visualisation of test predictions for label 5. 
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6.2.2. GNB 

Results for GNB with the first set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.75     

1 0.69     

2 0.44     

3 1.00     

4 0.67     

5 0.59     

AVERAGE/TOTAL 0.70 1.80 1.34 0.70 29.2 ms ± 656 µs per loop 

 

 

Figure 50. GNB 2D visualisation of test predictions for label 0. Figure 51. GNB 2D visualisation of test predictions for label 1. 
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Figure 52. GNB 2D visualisation of test predictions for label 2. Figure 53. GNB 2D visualisation of test predictions for label 3. 
 

 

Figure 54. GNB 2D visualisation of test predictions for label 4. Figure 55. GNB 2D visualisation of test predictions for label 5. 
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Results for GNB with priors set in the parameters. 

LABEL PRECISION 
ERROR 

TIME 
MSE RMSE MAE 

0 0.75     

1 0.70     

2 0.45     

3 1.00     

4 0.67     

5 0.61     

AVERAGE/TOTAL 0.70 1.80 1.34 0.71 27.8 ms ± 743 µs per loop 
 

 

Figure 56. GNB 2D visualisation of test predictions for label 0. Figure 57. GNB 2D visualisation of test predictions for label 1. 
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Figure 58. GNB 2D visualisation of test predictions for label 2. Figure 59. GNB 2D visualisation of test predictions for label 3. 

 

 

Figure 60. GNB 2D visualisation of test predictions for label 4. Figure 61. GNB 2D visualisation of test predictions for label 5. 
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6.2.3. DT 

Results for DT with the first parameter set. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.82     

1 0.86     

2 0.50     

3 1.00     

4 0.72     

5 0.53     

AVERAGE/TOTAL 0.75 1.31 1.14 0.52 1.33 s ± 96.2 ms per loop 

 

 

Figure 62. DT 2D visualisation of test predictions for label 0. Figure 5763 DT 2D visualisation of test predictions for label 1. 
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Figure 64. DT 2D visualisation of test predictions for label 2. Figure 65. DT 2D visualisation of test predictions for label 3. 
 

 

Figure 66. DT 2D visualisation of test predictions for label 4. Figure 67. DT 2D visualisation of test predictions for label 5. 
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Results for DT with the second set of parameters. 

LABEL PRECISION 
ERROR 

TIME 
MSE RMSE MAE 

0 0.82     

1 0.86     

2 0.51     

3 1.00     

4 0.73     

5 0.52     

AVERAGE/TOTAL 0.75 1.33 1.15 0.52 1.51 s ± 92.5 ms per loop 

 

 

Figure 68. DT 2D visualisation of test predictions for label 0. Figure 69. DT 2D visualisation of test predictions for label 1. 
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Figure 70. DT 2D visualisation of test predictions for label 2. Figure 71. DT 2D visualisation of test predictions for label 3. 
 

 

Figure 72. DT 2D visualisation of test predictions for label 4. Figure 73. DT 2D visualisation of test predictions for label 5. 
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6.2.4. MLP 

Results for MLP with the first set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.78     

1 0.87     

2 0.57     

3 0.99     

4 0.77     

5 0.57     

AVERAGE/TOTAL 0.77 1.25 1.12 0.50 32.3 s ± 11.4 s per loop 
 

 

Figure 74. MLP 2D visualisation of test predictions for label 0. Figure 75. MLP 2D visualisation of test predictions for label 1. 
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Figure 76. MLP 2D visualisation of test predictions for label 2. Figure 77. MLP 2D visualisation of test predictions for label 3. 

 

 

Figure 78. MLP 2D visualisation of test predictions for label 4. Figure 79. MLP 2D visualisation of test predictions for label 5. 
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Results for MLP with the second set of parameters. 

LABEL PRECISION 
ERROR 

TIME 
MSE RMSE MAE 

0 0.78     

1 0.87     

2 0.57     

3 0.99     

4 0.77     

5 0.57     

AVERAGE/TOTAL 0.77 1.25 1.12 0.50 29.7 s ± 12.2 s per loop 

 

 

Figure 80. MLP 2D visualisation of test predictions for label 0. Figure 81. MLP 2D visualisation of test predictions for label 1. 
 



Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville 

 

55 
 

  
Figure 82. MLP 2D visualisation of test predictions for label 2. Figure 83. MLP 2D visualisation of test predictions for label 3. 

 

 

Figure 84. MLP 2D visualisation of test predictions for label 4. Figure 85. MLP 2D visualisation of test predictions for label 5. 
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6.3. All Features 

6.3.1. SVM 

Results for SVM with the first set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.75     

1 0.93     

2 0.84     

3 1.00     

4 0.95     

5 0.88     

AVERAGE/TOTAL 0.89 1.81 1.32 0.71 14min 48s ± 4min 22s per loop 

 

 

Figure 86. SVM 3D visualisation of test predictions for label 0. Figure 87. SVM 3D visualisation of test predictions for label 1.  
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Figure 88. SVM 3D visualisation of test predictions for label 2 on ankle. Figure 89. SVM 3D visualisation of test predictions for label 3 on ankle.  
 

 

Figure 90. SVM 3D visualisation of test predictions for label 4 on ankle. Figure 91. SVM 3D visualisation of test predictions for label 5 on chest.  
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6.3.2. GNB 

Results for GNB with the first set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.72     

1 0.91     

2 0.84     

3 1.00     

4 0.77     

5 0.97     

AVERAGE/TOTAL 0.86 1.84 1.36 0.75 76.8 ms ± 6.2 ms per loop 
 

 

Figure 92. GNB 3D visualisation of test predictions for label 0. Figure 93. GNB 3D visualisation of test predictions for label 1.  
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Figure 94. GNB 3D visualisation of test predictions for label 2 on ankle Figure 95. GNB 3D visualisation of test predictions for label 3 on ankle 
 

 

Figure 96. GNB 3D visualisation of test predictions for label 4 on ankle. Figure 97. GNB 3D visualisation of test predictions for label 5 on chest.  



Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville 

 

60 
 

 

Results for GNB with priors set in the parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.72     

1 0.91     

2 0.83     

3 1.00     

4 0.77     

5 0.97     

AVERAGE/TOTAL 0.86 1.83 1.35 0.74 82.2 ms ± 3.91 ms per loop 
 

 

Figure 98. GNB 3D visualisation of test predictions for label 0. Figure 99. GNB 3D visualisation of test predictions for label 1.  
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Figure 100. GNB 3D visualisation of test predictions for label 2 on ankle. Figure 101. GNB 3D visualisation of test predictions for label 3 on ankle.  
 

 

Figure 102. GNB 3D visualisation of test predictions for label 4 on ankle. Figure 103. GNB 3D visualisation of test predictions for label 5 on chest.  
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6.3.3. DT 

Results for DT with the first parameter set. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.83     

1 0.90     

2 0.60     

3 1.00     

4 0.84     

5 0.57     

AVERAGE/TOTAL 0.80 1.33 1.16 0.57 1.86 s ± 219 ms per loop 
 

 

Figure 104. DT 3D visualisation of test predictions for label 0. Figure 105. DT 3D visualisation of test predictions for label 1.  
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Figure 106. DT 3D visualisation of test predictions for label 2 on ankle. Figure 107. DT 3D visualisation of test predictions for label 3 on ankle.  
 

 

Figure 108. DT 3D visualisation of test predictions for label 4 on ankle. Figure 109. DT 3D visualisation of test predictions for label 5 on chest.  
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Results for DT with the second set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.83     

1 0.92     

2 0.95     

3 1.00     

4 0.97     

5 0.95     

AVERAGE/TOTAL 0.92 0.18 0.42 0.10 2.47 s ± 187 ms per loop 
 

 

Figure 110. DT 3D visualisation of test predictions for label 0. Figure 111. DT 3D visualisation of test predictions for label 1.  
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Figure 112. DT 3D visualisation of test predictions for label 2 for ankle. Figure 113. DT 3D visualisation of test predictions for label 3 for ankle.  
 

 

Figure 114. DT 3D visualisation of test predictions for label 4 for ankle.. Figure 115 DT 3D visualisation of test predictions for label 5 for chest.  
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6.3.4. MLP 

Results for MLP with the first set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.82     

1 0.92     

2 0.98     

3 1.00     

4 0.98     

5 0.95     

AVERAGE/TOTAL 0.93 0.17 0.41 0.11 1min 5s ± 9.77 s per loop 
 

 

Figure 116. MLP 3D visualisation of test predictions for label 0. Figure 117. MLP 3D visualisation of test predictions for label 1.  
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Figure 118. MLP 3D visualisation of test predictions for label 2 on ankle. Figure 119. MLP 3D visualisation of test predictions for label 3 on ankle.  
 

 

Figure 120. MLP 3D visualisation of test predictions for label 4 on ankle. Figure 121. MLP 3D visualisation of test predictions for label 5 on chest.  
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Results for MLP with the second set of parameters. 

LABEL PRECISION  
ERROR 

TIME 
MSE RMSE MAE 

0 0.81     

1 0.93     

2 0.95     

3 1.00     

4 0.98     

5 0.94     

AVERAGE/TOTAL 0.93 0.17 0.41 0.11 3min 6s ± 12.2 s per loop 
 

 

Figure 122. MLP 3D visualisation of test predictions for label 0. Figure 123. MLP 3D visualisation of test predictions for label 1.  
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Figure 124. MLP 3D visualisation of test predictions for label 2 on ankle. Figure 125. MLP 3D visualisation of test predictions for label 3 on ankle.  
 

 

Figure 126. MLP 3D visualisation of test predictions for label 4 on ankle. Figure 127. MLP 3D visualisation of test predictions for label 5 on chest.  



6.3.5. Validation 

 

In this section, results from the validations with the best models in the implementation, after 

evaluating the previous results are shown. Evaluation and discussion of the results can be seen 

in the conclusions section. Nevertheless, we must bear in mind that validation only takes into 

account the G-forces obtained from the wrist accelerometer, as the dataset was created with 

only one accelerometer allocated in that position. Therefore, the model with best results in 

section 6.1 will be used to validate the dataset from the SISMO project.  

The dataset for validation is not rather large and it is standardised for its values to be between 

-1.5g and 1.5g in order to provide homogeneity. The values should be on the same scale as the 

training and test sets. 

Being MLP the best algorithm for the ML models, we observe that: 

LABEL PRECISION  
ERROR 

MSE RMSE MAE 

0 0.81    

1 0.61    

2 0.68    

3 0.94    

4 0.92    

5 0.78    

AVERAGE/TOTAL 0.79 1.97 1.40 0.67 
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7. Conclusions 

 

In this document the presentation of state-of-the-art ML algorithms have been presented, as 

well as techniques to resolve time series forecasting problems. The algorithms dealt with are 

Support Vector Machines – linear and non-linear; Gaussian Naïve Bayes; Decision Trees; and 

Multilayer Perceptron. Also, the importance of feature selection and pre-processing of data is 

explained, so as to obtain reliable predictions from a robust dataset.  

In this section, the discussion of the results from the previous section is written. All performance 

measures are taken into consideration, being these the success rate in the model output 

predictions, as well as the error rates and the time spend for each set of predictions. Time is in 

an important factor in this project, because, if taken further, it can be applied to near-real-time 

applications, where motions of ICU patients can be seen and predicted in short periods of time.  

Being the best case scenario, we find that an ML model with MLP configured to work with an 

quasi-Newton method (‘lbfgs’) optimized solver and hyperbolic tangent activation function is 

the most reliable predictor.  Its accuracy is spread out as it can manage to predict simple and 

complex movement with a 93% accuracy, 0.17 MSE, 0.41 RMSE and 0.11 MAE. Even further, 

simple mobilizations have greater accuracy, reaching a 100% prediction rate. This must not be 

judged as a perfect predictor, as fresh data from subjects with higher deviations can produce 

inaccurate outputs, although it demonstrates the contrary with the given test set. It is also seen 

that the increase of feature in the samples provide even more reliable predictions for MLP, as 

more bias weights are considered within the algorithm. Nevertheless, MLP is not the fastest 

model in the implementation, and the model would not be trained fast enough for real-time 

applications. In the case of using the dataset with the need of high performance in terms of time, 

DTs with entropy criterion and defined random state have proven to have almost the same 

accuracy as MLP in a shorter period of time. The ML model with a DT algorithm achieves a 92% 

accuracy in only three seconds, being this a considerable result. 

Gaussian Naïve Bayes proves to be the fastest ML model, training a model with a fairly large data 

is less than a second. This could be used for real-time applications. DTs, as aforementioned, are 

also very fast ML models in terms of training and predictions. The simplicity and lack of 

correlation between variables is the reason why these models output results so quickly, 

although predictions are not as good for time series as MLP or SVM with a smaller dataset. On 

the other hand, SVM can be quite slow and can train a model with the time series data in a long 

period of time. SVM could not be considered as a good predictor if we are looking at time 

performance variables. 

Principal Component Analysis can allow us to simplify the problem by reducing the dataset to 

two principal components. PCA enables us to analyse a data with many differences between 

labels by evaluating the core dependencies. The dataset, although robust, does not always 

contain values for the G-forces in the areas covered by ankle and chest accelerometers, and PCA 

allows models to do faster predictions on a more standardised dataset. Also, it proves to be very 

useful in terms of visualisation, as the margins that separate data points from being predicted 

to fall into one label or another are easily seen in 2D. 3D visualisations are a bit more 

cumbersome and it is easier to visualise the data points with a single label area, as many data in 

the visualisation can overlap and it becomes much less defined to see what predictions fall into 

which areas. Nevertheless, the results obtained from PCA are not extremely relevant when being 
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compared to the analysis with the features from the wrist accelerometer or the features from 

all three accelerometers.  

By far, the most interesting part of the implementation is when a dataset a fresh set of data is 

created from an accelerometer and software from the SISMO project. Modifying the code to 

obtain a dataset that is found in the training and test set parameters proves that Scikit-learn is 

a very interesting tool that can be used in many ways – the data was scaled by use of its 

packages. Also, this provides insight of further development for the project, as it can be 

integrated in real-life applications for early mobilizations tracking. Thus, in cooperation with 

health professionals, the data obtained from patients in the ICU can be analysed and fed into a 

ML model, most probability with a DT or MLP algorithm. Following the movements of a patient 

can distinguish between early mobilization patterns under supervision of such professionals or 

motions done non-therapeutically, e.g. movements while sleeping or eating. Even further, if the 

ML models are trained regularly throughout the recovery of a patient, improvements can be 

tracked to obtain more accurate models against movements with increased complexity and 

assess which movement are done at different stages of recovery. The lack of time for further 

development leaves an open discussion for this topic, as it would be positive to test the models 

with different movements and taking into account different features, that would be obtained 

from more input sources i.e. accelerometers.  

It is demonstrated in the results section that predictions become more inaccurate when the data 

points in the time series dataset become more complex. As an example, it is observed that the 

motion labelled under “5”, crouching by bending knees, always has de worst predictions. This 

can be due to the fact that G-forces obtained from accelerometers that are not located directly 

on the points of movement had greater variations. The bending knees in different subjects have 

similar G-forces in that area, although subject can move their arms, chest or ankles very 

differently when applying the movement. This is strongly reflected in the validation section, as 

movements such as drinking from a glass (label “1”) or lying down (label “3”) have good 

predictions because of the location of accelerometers on the wrist and chest, respectively. The 

fresh dataset provided has proven that the MLP model can do fairly good predictions when 

subject input does not fluctuate too widely. The rescaling of the set helps strongly for these 

predictions to be more accurate. Nevertheless, improvements can be done as it is not known 

exactly how the movement where done and with what speeds or the exact bending of limbs, for 

example.    
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8. Further Work 

 

Analysis of time series can be done in many ways and ML problems do not always have one 

specific solution for each problem. This study proposes one possible solution for time series 

forecasting after using several ML models and evaluating the outputs. Nevertheless, further 

work can be done in order to provide a solution with stronger predictive features. Listed below 

we find several proposal for this purpose: 

a. Usage of deep neural networks. Deep learning cover ML algorithms, more specifically 

artificial neural networks, where multiple layers of nonlinear processing units are found. 

This means that several hidden layers transform and extract features by cascading in 

different layers of abstraction. Deep generative models – models with joint probability 

distribution – organise the layers such that data inputs increase in complexity in terms 

of composition and abstraction. The higher the number of layers, the deeper the neural 

network becomes. Deep learning models are a lot more complex to deal with regarding 

propagation and recurrence, although representation redundancy is avoided as they 

extract principal components from the feature set.  

b. Having more data. More data from other mobilizations, being these simple or more 

complex can train models even further. The usage of data points makes it easy to obtain 

new samples, although standardisation and data labelling should always be considered. 

The implication of more data, nevertheless, being for new mobilizations or even more 

sensors, can affect ML models in terms of overtraining. Overtraining of models can imply 

the decrease of prediction accuracy. Also, the amount of samples requires more control 

over iterations, especially for models with iterations, as well as computational power, 

as ML models can become slower when huge amounts of data have to be processed. 

c. Evaluation of cycles or repetitive patterns by using groups of data points as samples. As 

read in section 2, time series forecasting strives to find patterns, cycles and repetitions 

within data. By training models on single data points this can be achieved, although 

grouping time series data can determine these characteristics more accurately and offer 

better predictions. This can be very beneficial but complexity in the resolution of 

problems increases greatly. The appearance of variables such as the frequency of cycles, 

for example, requires the usage of assumptions, or complex algorithms to find 

approximations, that would make the groupings possible to use without decreasing 

prediction accuracy. The shifting of periods can be complex to assist with time series 

data, although it would definitely be a very interesting problem to solve.  
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