

Alexander David Martin Colville

Analysis of Time Series for the Intelligent Support to

Early Mobilization with Machine Learning

MASTER’S DEGREE FINAL PROJECT

Directed by Dr. Agustí Solanas

Master Degree in Computer Security Engineering and Artificial Intelligence

Tarragona

2014

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

2

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

3

This is dedicated to Maria and Jose, who showed me what really matters in life.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

4

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

5

Table of Contents

1. Introduction 7

2. State of the Art 8

3. Machine Learning Algorithms 11

3.1. Principal Component Analysis 11

3.2. Naive Bayes 12

3.3. Support Vector Machine 13

3.3.1. Linear Support Vector Machines 13

3.3.2. Non-Linear Support Vector Machines 14

3.4. Decision Tree 14

3.5. Multilayer Perceptron 15

4. Early Mobilizations Data 17

5. Implementation 19

5.1. Tools 19

5.2. Data Pre-Processing 20

5.3. Feature Selection 21

5.4. Training 21

5.4.1. Support Vector Machine 21

5.4.2. Gaussian Naïve Bayes 22

5.4.3. Decision Tree 22

5.4.4. Multilayer Perceptron 23

5.5. Testing 23

5.6. Performance Measures 24

5.7. Validation: SISMO Project Data 25

6. Results 27

6.1. Three features 27

6.1.1. SVM 27

6.1.2. GNB 30

6.1.3. DT 34

6.1.4. MLP 38

6.2. Principal Components 42

6.2.1. SVM 42

6.2.2. GNB 44

6.2.3. DT 48

6.2.4. MLP 52

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

6

6.3. All Features 56

6.3.1. SVM 56

6.3.2. GNB 58

6.3.3. DT 62

6.3.4. MLP 66

6.3.5. Validation 70

7. Conclusions 71

8. Further Work 73

9. References 74

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

7

1. Introduction

Machine Learning (ML) has gained huge strength in the Artificial Intelligence field as

computational power has increased in off-the-shelf machines. Furthermore, algorithms can

process large amounts of data that can be stored and accessed with ease. The widespread of ML

techniques has increased its usage in many fields, such as finance, logistics or healthcare.

This document covers the study and implementation of ML models that are applied to

healthcare, more specifically, to early mobilizations in Intensive Care Unit (ICU) patients. Early

mobilization consists of applying passive and active movement dynamics to hospitalized patients

earlier than usual (even when they still require mechanical ventilation) with the aim of reducing

physical and cognitive sequelae caused by a prolonged lack of mobility. With the application of

this technique, the aim is to reduce recovery time and, consequently, hospitalization and return

to work (in the case of patients of working age). The incorporation of physical activity at the

beginning of the course of the critical illness produces better clinical outcomes, including a lower

incidence of acquired weakness in the Intensive Care Unit (ICU), a lower incidence of delirium

and a shorter stay in the ICU.

The project strives to find the underlying causes produced by specific motions, specifically on

early mobilization. Early mobilization consists of applying passive and active movement

dynamics to hospitalized patients earlier than usual (even when they still require mechanical

ventilation) with the aim of reducing physical and cognitive sequelae caused by a prolonged lack

of mobility. With the application of this technique, the aim is to reduce recovery time and,

consequently, hospitalization and return to work (in the case of patients of working age). The

incorporation of physical activity at the beginning of the course of the critical illness produces

better clinical outcomes, including a lower incidence of acquired weakness in the Intensive Care

Unit (ICU), a lower incidence of delirium and a shorter stay in the ICU.

This master thesis will be carried out in the context of the SISMO Project. The project was

created with the aim of helping to reduce the recovery time of patients with prolonged lack of

by supporting analysis on early mobilization to try and reduce recovery time for patients in an

ICU unit. Widespread of early mobilization is not yet achieved, although SISMO aims to

implement IoT and ML technologies to monitor patient progress. This is done by tracking active

and passive mobilizations. Thus, the main goal of the project is to support healthcare

professionals by applying machine learning techniques on a knowledge-base, or dataset, to

recognize movements made by patients. These movements can be active or passive and can be

simpler or more complex, depending on the mobilization exercise, although ML models are

determined to classify them in order to distinguish mobility patterns. The evolution over time of

patients can, later on, be tracked in order to analyse recovery evolution.

Section 2 covers the state of the art that was consulted to plan and assist the project from a

theoretical point of view, whilst section 3 is a study of the specific ML algorithms that are used

in the implementation. Section 4 explains the dataset that is used for its further analysis in

section 5, where the implementation process as a whole is also covered. The obtain

performance and timing results are presented in section 6. Section 7 is a discussion of how the

ML models perform against the problem and if they are valid enough for real applications.

Section 8 proposes the next steps the project can take in order to develop even further the work.

Section 9 lists all references used in this thesis.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

8

2. State of the Art

Machine Learning (ML) techniques are increasing in popularity in many fields due to the

increased amount of historical data and the available computational power. This has led to a

higher demand of accurate forecasting and robust and efficient techniques that reveal the

observations between past and future[1]. This is due to the fact that ML works by "learning"

from data and can be used in many environments, working with examples with a known output,

i.e. supervised learning, and the ones which are not classified or labelled, i.e. unsupervised

learning. The usage of these techniques affect the accuracy of the final predictions, although the

goal is to obtain insight of the features within the data that reveal information that cannot be

seen with simple analytical models. Further, reinforcement learning tackles unknown input-

output pairs by obtaining the most optimal solution with non-exact mathematical models, by

obtaining sub-optimal solutions that correct within a time span. The increase in scale of data

and the usage of data-driven approaches has affected notably the health sector.

Medical and health-related practices have generated large quantities of data in the past years

and the ability to learn from the data developed into more innovative approaches to tackle

caveats in the field. Studies regarding nativity and mortality, environmental health, nutrition,

cardiovascular diseases and genetics, including many others, find better solutions in the form of

predictions resulting from ML approaches[4]. The healthcare sector strives for effectiveness and

the amount of data the sector has affects positively the decision-making process. Nonetheless,

the full potential of data-driven techniques is yet to be exploited. Data can be rather sparse and

its synchronicity with analytics limits the usage of ML techniques diagnosis and treatment

adaptations. Furthermore, more and more applications arise as data becomes more complex,

algorithms increase in robustness and predictions are more precise. The management of any

disease can be done with ML, as insight into its evolution can be tracked by analysing the

different variables and their interactions. Even further, the merge of medical data with other

data collections can allow the exploration of relationships between datasets and the effects

inferred from one to another[4][6]. Examples of datasets to relate to are social science studies,

work- or profession-related data or even usage of social media. All the previous can boost

disease diagnosis and treatment personalising, as well as drug manufacturing, prediction of

epidemics and even health record management techniques.

A common methodology for the usage of ML is done with sequential steps that are the collection

of data, the pre-processing of this data, selection of features, classification of predictions and

the presentation of results[3]. Thus, the first steps are focused on collecting the data and tuning

it to obtain a dataset that enables the user to work with it comfortably. There are many ways to

pre-process data and it highly depends on the type of data at stake, i.e. blank numbers can be

replaced with a default value or a mean value, whilst text data can be neglected or relegated to

another class or grouping. The main concern of ML, though, is the choosing of specific algorithms

that make the predictions. There are many algorithms and mentioning all of them would be

tedious and cumbersome. The selection of a specific algorithm varies on the type of data we are

dealing with and, more important, the output want to obtain. Furthermore, all algorithms work

different and there is no best option at first glance, as different algorithms have different

strengths and weaknesses. For supervised learning, we find algorithms such as Support Vector

Machines, Linear Regression, Logistic Regression, Naive Bayes, Decision Trees and k-Nearest

Neighbour. For unsupervised learning, we find clustering algorithms i.e. k-means and

hierarchical; Anomaly Detection algorithms; Neural Networks; Expectation-Maximization; and

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

9

Principal Components Analysis, within others[1][3][4][5][6]. All the previous operate differently

and, as aforementioned, they have their own pros and contras. Support Vector Machines (SVM),

for instance, have proved to give successful results to classification tasks and regression. It

classifies data points and uses loss functions to map categories and divide them as much as

possible[7]. On the other hand, Bayesian Networks are graphical models that strive to show

probabilistic dependencies between variables by the representation of directed acyclic graphs.

This proves useful in terms of interpretability, although sparse data can be challenging when

combining structure learning techniques[6]. Random Forests models are based on the

construction of decision trees as a combination of tree predictors that depend on the values of

random vectors samples independently[3]. Further information for ML algorithms can be

consulted in the references section. Local Learning, Recursive Strategy and Direct Strategy

approaches appear in [1]; [2] presents Neural Network approaches and Gaussian Processes;

Multilayer Perceptron can be seen in [2][3]; simple ML models and Neural Networks are

compared in [4]; and [5] presents a series of clustering algorithms that vary according to

online/offline settings and known/unknown number of clusters.

The previous study of algorithms is to determine which algorithms are best for time series

analysis and forecasting. Time series data is formed by sequences of historical measurements of

an observable variable at equal time intervals. Forecasting of the future can be done by using

knowledge of the past. The goal is to determine underlying features the measurements may

have, as well as descriptors of the salient features within a time series, which can be

determined[1]. The main challenge in time series forecasting is the determining of the random

behaviour that provides non-linear interaction. Data points can have aperiodic behaviour and

can be asymptotic, presenting different dimensions in terms of length[5]. On the other hand,

time series analysis focuses on the direct understanding of the underlying causes in the data to

develop mathematical models that provide plausible descriptors from sample data[9].

Time series are abundant although little is known about the nature of processes that generate

them. This calls for specific strategies that have to be undertaken to enables successful analysis

and forecasting. Strategies focus tackling the problem of making predictions based on the trends

found in the data and its repeating patterns or cycles[9]. Predicting involves the determining of

the future with only data subsets from the past. This can be done via local learning strategies.

Local learning assumes no the data as plain - no previous knowledge applied, computational

simplicity when new training samples are input - no re-training, and modelling is non-stationary,

which enables the comparison of data points in a spatial and temporal way. The latter may

provide further accuracy when making predictions. For one-step time series, we find Nearest

Neighbour and Lazy Learning[1]. The Nearest Neighbour method bases its predictions on stating

the output of a specific data point from the initial state to the final state with the evolution of

the nearest neighbouring point with an already known output. Lazy Learning adapts the size of

the neighbourhood by reducing a complex and non-linear problem into a sequence of problems

and applies cross-validation criteria. Thus, we obtain manageable and linear problem sequences

to solve. For multi-step data, we find recursive strategies, direct strategies and the combination

of both that will apply to data horizons. Recursive strategies train a one-step model in order to

use it recursively to return multi-step predictions. Direct strategies, on the other hand, learns

models independently and concatenates all output predictions[1].

Dealing with time series can be complex. As aforementioned, time series can be dealt with

depending on their periodicity and the step we are able to or willing to evaluate. Thus, datasets

can be simplified and we can interpret problems sequentially or in a divide-and-conquer

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

10

manner. In time series analysis, in order to cluster or classify time series, subroutines can be

used. This will enable the location of stable periods of time or to allocate changes in data points.

A common subroutine is segmentation. Segmentation divides into discrete segment sequences

the time series in search for inflection points[8]. The researched approach uses a criteria that is

used as a threshold for stopping the iterative merge of the lowest cost pair of segments. The

purpose is to find homogeneous segments, and its formalisation is based on the cost of the

individual time intervals, by means of a cost function. The cost function evaluates the distance

between a value and the data fitted by means of a simple function. The detection of changes in

the correlation structure can be done in several ways. Singular Value Decomposition, for

instance, is a model that projects the correlated high-dimensional data onto a hyperplane,

where multivariate data can be analysed. The measured distance between the initial data and

the hyperplane indicates the variations for the observed variables. This model strongly depends

on the rank of the decomposition. A Critical Point approach, on the other hand, smoothes out a

noisy signal with a filter - usually base-band-pass - in order to reduce its fluctuation and

determine critical points[8]. Many other segmentation techniques can be applied, as well as the

combination of them, in order to provide time series segmentation.

Furthermore, when a time series dataset has been segmented, it can thus be classified according

to the found patterns. This technique is mainly applied in unsupervised learning and the main

goal is to assign a set of observation to a specific subset, as the observations in a cluster must

be similar in some sense[8]. Clustering or classification must always be done by evaluation

expressive features that must be selected in order to fulfil the desired needs.

Overall, the state of the art points out that the increasing amount of data is enabling the

widespread of ML techniques. Dealing with increasing amount of data is easier and more

effective in different fields, such as finance, economics or healthcare. The latter can offer more

accurate diagnosis and personalised treatment due to the performance of ML algorithms that

make this possible. Furthermore, the collection of time series datasets tracks evolution of data

over time and tackling this is becoming more feasible and of major interest to develop ML at a

whole new level. Dealing with time series can be complex, although there are already consistent

models that can provide insight of the features underlying in the variables. Also, several

strategies strive to obtain the periodicity of data its cycles, in order to further cluster or classify

the resulting predictions.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

11

3. Machine Learning Algorithms

Theory about ML can be thorough and there are many algorithms with many variations and

extensions. The reader must bear in mind that the implementation deals with a classification

problem. Not to keep the document extremely tedious, the following points strive to collect the

most important technical features to understand the ML algorithms used in the implementation

and support the decisions agreed upon within the project[12].

3.1. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical procedure which goal is to measure data in

terms of its principal components rather than on its normal axis. This means, the underlying

structure of the data is analyzed to figure out where the highest variance of the components is

found. PCA uses orthogonal transformation, that converts the correlated variables in the

samples into linearly uncorrelated variables. The variables found are the principal components.

PCA applies to the data by transforming it to a new coordinate system for each component, that

is projected sequentially. Variance is maximised by evaluating components one by one by means

of weight vectors wk = (w1, …, wp)k which maps each sample xi to a new vector, the principal

components score vector, ti = (t1, …, tl)i. Mapping is done:

𝑡𝑘𝑖
= 𝑥𝑖 · 𝑤𝑘 for i=1, .., n and k=1, …, l.

The first weight vector satisfies:

𝑤1 = 𝑎𝑟𝑔 max
||𝑤||=1

{∑(𝑥𝑖 · 𝑤)2

𝑖

}

The finding of the first component can give us the score of t1 in the transformed coordinates.

The rest of the components are calculated with the weight vector that extracts maximum

variance:

𝑤𝑘 = 𝑎𝑟𝑔 max
||𝑤||=1

{||𝑋𝑘𝑤||
2

}

Where the k-th component is the subtraction of the first k-1 components to X:

𝑋𝑘 = 𝑋 − ∑ 𝑋𝑤𝑠𝑤𝑠
𝑇

𝑘−1

𝑠=1

Transformations are truncated by using eigenvectors. These relate directly to the desired

amount of components that compound an uncorrelated dataset over the new space. PCA learns

a linear transformation with an orthogonal basis for the number of specified components,

maximising the variance found in the features.

As we are dealing with high-dimensional data, PCA can be useful to reduce these dimensions

and make representations in a 2- or 3-dimensional space. Spreading out the principal

components in a visualisation can help to observe at first glance the results that should be

expected or to even see if any margin can be created to separate the dataset according to its

labels.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

12

3.2. Naive Bayes

Bayes’ theorem is a theorem that determines an event probability regarding related events,

which might be related to the event by means of their conditions. Based on the previous, Naïve

Bayes has a set of methods that assume naïve independence between feature pairs. It is used

for supervised learning purposes and classifiers are built by assigning labels to problem instances

from an initial finite set. These instances are represented as feature value vectors. Thus, Bayes’

theorem can be represented as:

𝑃(𝐵|𝐴) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)

Naïve Bayes can be represented as:

𝑃(𝐵|𝑎1, . . , 𝑎𝑛) =
𝑃(𝐵)𝑃(𝑎1, . . , 𝑎𝑛|𝐵)

𝑃(𝑎1, . . , 𝑎𝑛)

Naïve independence assumption gives us, for all i:

𝑃(𝑎𝑖|𝐵, 𝑎1, . . , 𝑎𝑛) = 𝑃(𝑎𝑖|𝐵)

The relationship, thus:

𝑃(𝐵|𝑎1, . . , 𝑎𝑛) =
𝑃(𝐵)𝛱𝑖=1

𝑛 𝑃(𝑎1|𝐵)

𝑃(𝑎1, . . , 𝑎𝑛)

If the probabilities for all a values are constants, an estimation can be done to the output. Some

estimators can be Maximum A Posteriori estimation, Minimum Square Error or Alternative Risk

Functions of the output constants. Furthermore, naïve Bayes classifiers differ in results when it

comes to assuming the relative frequencies of classes in the training set, considering the

distribution of P(ai|B).

The previous demonstrates the simplicity of naïve Bayes methods, as the correlation between

features are not considered and, therefore, its fast computation over large datasets. Its results

in real-life application prove to be decent for classification, although it encounters flaws when

it comes to estimation[14].

Classification of output results in a naïve Bayes method can be done in several ways. Therefore,

we can find:

a. Gaussian Naïve Bayes: when dealing with continuous values, data associations that

follow Gaussian distributions can be found. Probability distributions can be computed

by means of a normal distributions equation.

b. Multinomial Naïve Bayes: the representation of event frequencies in the form of a

multinomial is composed by the samples, or feature vectors. Thus, observations of an

event is counted and classification occurs by the representation of occurrences. It is an

interesting approach as it can be easily represented as a histogram, but it may encounter

errors when it comes to estimation, as pseudo-counts should be considered to avoid

probability wipe-outs, as values may be multiplied by zero, in the case that there is no

occurrence of a specific class.

c. Bernouilli Naïve Bayes: features in this model are treated as binary variables, proving to

be useful when it comes to expressing absence or occurrence of events based on the

likelihood of a class expressed by the binary value.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

13

d. Others: continuous values can also be dealt with by binning to discritize feature values

and obtaining a Bernouilli distribution. Also, semi-supervised training algorithms can be

trained to learn by running in a loop the supervised algorithm. These event models and

other estimators can be applied to modify or extend a naïve Bayes model.

In the implementation, Gaussian Naïve Bayes (GNB) is going to be used. This decision was taken

to see determine whether a specific feature from an (x, y, z) input is determining for specific

motions without correlating the values.

3.3. Support Vector Machine

Support Vector Machines (SVM) are supervised learning models that represent features as

points in space as a non-probabilistic binary linear classification by constructing one or more

hyperplanes in a high-dimensional space for further supervision. It implies the mapping of

features as points in space and outputs predictions based on the mapping of the feature that

fall into a categorical space. The usage of hyperplanes enables classification or regression

analysis of test data inputs by measuring the distances to the training data points within the

hyperplane. Furthermore, high-dimensional space is used to deal with the fact that not all

features sets can be separated linearly [13][16].

In terms of computation, SVM works with dot products of pairs of input data vectors within the

original space and deals with the operation as a kernel function. The hyperplanes in high-

dimensional space appear when the dot product of a vector with a set of points is constant

within the dimensional space. Thus, vectors that define a hyperplane are represented as images

of feature vectors within the dataset and the degree of closeness of a test point can be

determined when the relation of parameters with the kernel becomes constant. It is to be noted

that convolution appears when hyperplane mappings are done, providing major complexity to

the discrimination offered at the time of classifying. SVM offers linear and non-linear

classification, as well as several extensions.

3.3.1. Linear Support Vector Machines

Linear SVM strives to predict the classification of (xi, yi) points when the distance between the

hyperplane and the nearest point, from both groups that divide the set xi for which yi=1 or

yi=-1, is maximized. The maximum-margin hyperplane is found and normal vectors per

hyperplane can be found. Thus, linear separation is found and, furthermore, the determination

of a margin is set. This margin can be hard or soft, determined by the linear separation of the

hyperplanes surrounding it. If two hyperplanes are linearly separable, a hard margin is found

and constraints set that data points must lie on the adequate margin side. The optimal weight

vector for linearly separable data:

𝑤𝑜 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑁𝑠

𝑖=1

Where α is the Lagrange multiplier vector that finds the optimal solution and Ns the total amount

of support vectors. Therefore, having wo, the function for the optimal hyperplane:

𝑦(𝑥) = 𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖(𝑥𝑇𝑥𝑖) + 𝑏𝑜)

𝑁𝑖

𝑖=1

Where bo is the optimal bias.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

14

Data is classified, then, according to the sign of the function result. On the other hand, if linear

separation cannot be accomplished, a loss function is introduced to determine whether if set of

points lay on the correct side of the margin.

3.3.2. Non-Linear Support Vector Machines

As a variation of a linear SVM model, non-linear SVM replaces the dot product with a non-linear

kernel function. Feature spaces is then transformed in order to fit the maximum-margin

hyperplane. This is introduced by means of hard-margin constraints and penalty

misclassifications. Multiple kernels can be examined, but the most common are the polynomial

kernels, being these homogeneous and non-homogeneous. Homogeneous polynomial kernels

are those in which all terms have the same degree, whilst, on the contrary, non-homogeneous

kernels encounters polynomials with different degrees in some or all terms.

Classification in SVM is accomplished by the computation of the reduction of a problem to a

quadratic space. Nevertheless, this is not always the case and extensions have found other ways

to find the margins, such as sub-gradient descent and coordinate descent, although the

classification problem must be solved by the minimization of the loss function.

In the implementation, SVM is chosen due to the fact that the data can be easily expressed as

data points, with its pre-processed coordinate values or after analyzing its principal components.

Striving to find the margins between the classification of the data points whilst observing the

obtained loss can be interesting.

3.4. Decision Tree

Also used in supervised learning environments, Decision Trees (DTs) are non-parametric

methods used for regression and classification goals. Observations or features are used to obtain

predictions, being this a variable target value, by means of simple decision rules, representing

conclusions as in leaves according to inference. When dealing with classification problems, the

tree structures are represented so as the leaves represent class labels and the branches

represent the conjunction of the features that lead to the leaves. As well as classification trees,

regression trees can be found to solve ML problems where the predicted outcome should be a

real number, and not a class, like in the latter problem type.

When it comes to the specific algorithm used in these model structures, we can find:

a. Iterative Dichotomiser 3 (ID3): the algorithm finds categorical features for each node by

yielding the largest information gain for categorical targets by means of a multiway tree.

It works in a way that generalization to unseen data are avoided by applying a pruning

to a previously maximized tree. First, it calculates the entropy for all features. Then, a

splitting is done using the attribute for which the entropy is minimum. Next, a decision

tree is modeled based on the previously found attribute and, lastly, recursion is applied

to all subsets with the remaining attributes.

b. C4.5: In line with ID3, C4.5 uses the concept of information entropy whilst removing

feature categorical restrictions. It thus defines a discrete feature that partitions the

continuous attribute value into a discrete set of intervals[18]. The nodes are associated

to attribute values and subsets are created, as in ID3, according to the normalized

information gain. Further pruning is done by removing rule preconditions, depending on

the accuracy of the rule itself.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

15

c. C5.0: C5.0 is a further development of C4.5 that uses less memory and rulesets are

decreased in size, although accuracy is increased.

d. Classification And Regression Tree (CART): this algorithm is non-parametric technique

that creates decision trees with rules based on values for selected values to split the

most differential observations based on variable dependencies. On rule selection, it is

applied to all child nodes recursively, stopping when set conditions are met or no further

gain is possible. Pruning also applies to CART.

Decision trees are very easy to visualize and interpretation is very straightforward. The

algorithms have logarithmic cost, proportional to the number of training nodes and statistical

tests can be run to validate models. Nevertheless, stability can complicated to deal with as

generalization can be hard to find depending on the dataset, requiring prior fitting and more

pre-processing logic in a specific implementation.

A decision tree classifier that uses the CART algorithm is proposed within the implementation.

This is due to the fact that the document strives to find whether time series datasets can be

classified in a structural manner and easy visualizations can be obtained from data it is complex

to interpret at first hand. Further, basic motions follow strict moving pattern, that can be

reflected as a set of rules that could be applied by the algorithm.

3.5. Multilayer Perceptron

Multilayer Perceptron (MLP) is an artificial neural network that uses feedforward techniques to

train datasets. The algorithm is represented by means of layers of nodes, where each node is a

neuron. Neurons use non-linear activation functions, which can be arbitrary, to distinguish data

that is not linearly separable. MLP, thus, learns an approximation function in order to classify a

dataset. It can also be used for regression. It is formed by, at least, three layers, where

perceptrons are organized. A perceptron is, by definition, a binary classifier – an artificial neuron.

MLP has a fully connected and is layer-structured. Layers are divided in three groups, being these

the input layer, output layer and all in-between hidden layers – it needs a minimum of 1 hidden

layer. Nodes are connected from one layer to another with a specific weight value.

Neurons encounter activation functions. An activation function is linear and takes action by

mapping neuron weighted inputs to their outputs. The most common activation functions are

sigmoidal:

a. Logistic function: this is a sigmoid curve that ranges results between 0 and 1. It is shown

that initial growth is almost exponential until saturation strives to accomplish a stable,

or mature, value that stops the growth.

𝑓(𝑥) =
𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)

Where L is the maximum value of the curve; k is the curve steepness; x0 is the midpoint

of the sigmoid.

b. Hyperbolic tangent: this is defined as the ratio of the corresponding hyperbolic sine and

hyperbolic cosine functions. This enables the evaluation of the logarithm of a rational

number of the arguments.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

16

𝑓(𝑥) = tanh(𝑥) =
sinh(𝑥)

cosh(𝑥)

We must bear in mind that in both previous formulas, the xi values represents the value at the

node – sometimes represented as vi. Weights are typically represented as wi.

When it comes to learning, MLP works by changing connection weights. Output neurons are

those that are no source of any connection and depend on the targeted values, being these the

ones in the test set. The connection scheme, organized in layers, is acyclic.

The algorithm works by enumerating all neurons and checking the existing connections, which

are weighted. Bias weights are used in the hidden layers. Backpropagation is used and, thus, the

algorithm executes as follows:

1. Input values are propagated into the network;

2. the cost is calculated and, therefore, the error term is determined;

3. the difference between the target value and actual value is calculated;

4. the weights are updated by multiplying the activation function result and the output

delta;

5. a percentage of gradient weight is subtracted from each weight.

Iterations in the backpropagation process are controlled by number of epochs. This strives to

minimize the error in the output nodes and the predicted output tends to approximate to the

training example label.

MLP is used in this implementation because of its stochastic nature. This can provide useful to

determine solutions for complex problems, such as time series predictions. Also, MLP is widely

used to create models based on regression analysis and classification can then be done because

of the categorical response that is found in the output layer of the network.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

17

4. Early Mobilizations Data

Body motions are recorded from wearable sensors respectively placed on the chest, wrist and/or

ankle of a subject. The usage of the sensors allows to measure the motion experience by one or

multiple body parts, namely, the acceleration captured by the body dynamics. Accelerations are

thus shown as G-forces and these compose the dataset of time series data that reflect motion

primitives.

In order to provide a valid dataset for the main purpose of this project, the tacking and analysis

of basic motions or movements, two different datasets have been analyses and pre-processed.

These datasets are used for several applications, such as the generalization of common activities

of the daily living or the adoption of common test benches for creation and validation of human

motion primitives. The review of the different motions in both datasets helps the choosing of

specific data basic motions that can be found in the ICU. Detailed documentation about the

dataset can be found in [10][11].

Time series are mainly set of points measured over successive times. The elapsed time is

represented, usually, by means of a vector. Data points are thus related to a specific time

measurement. The most complicated part of assessing time series data is the determination of

trends, cycles, seasons or irregularities. Data can repeat itself over periods of time, creating

trends by the variations seen in increases, decreases or stagnations. Cycles can appear when

repetitions are done over long periods of time – cycles tend to be generalizations of repetitions

over time. Variations caused at random are referred to as irregularities and there is no way to

define the root cause of irregular fluctuations. Irregular data variations can be complex to deal

with, although models can approximate them to other observations.

This project uses time series data points associated to periods of time when motions are done.

The variables observed in the discrete time series are shown as continuous variables that are

expressed by sets of real numbers. These numbers are the location in space of the accelerometer

used on a certain subject. More specifically, recordings of 3-dimensional coordinates are done

with the accelerometer and the obtained G-forces are collected. Thus, we obtain sets of three

real numbers that are named as follows, to differentiate between the part of the body where

the accelerometer is found:

1. “x_wrist”, which tracks the x coordinate from the wrist accelerometer;

2. “y_wrist”, which tracks the y coordinate from the wrist accelerometer;

3. “z_wrist”, which tracks the z coordinate from the wrist accelerometer;

4. “x_chest”, which tracks the x coordinate from the chest accelerometer;

5. “y_chest”, which tracks the y coordinate from the chest accelerometer;

6. “z_chest”, which tracks the z coordinate from the chest accelerometer;

7. “x_ankle”, which tracks the x coordinate from the ankle accelerometer;

8. “y_ankle”, which tracks the y coordinate from the ankle accelerometer;

9. “z_ankle”, which tracks the z coordinate from the ankle accelerometer.

We must bear in mind that not all data within the data has all the three sets of 3-dimensional

coordinates, as some motions are only recorded by means of a wrist accelerometer. This can

provide as an inconvenient in terms of analysis, but it can also provide advantageous in the case

that wrist movements are more determining in terms of forecasting for the specific movements

that are in the pre-processed dataset.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

18

The chosen data refers to specific movement dynamics. These have different complexities and

a different sensor setup has been used for each one of them. Six different movements are used,

being the following, with their assigned labels:

a) Get up from bed (labeled as “0”)

b) Drink from a glass (labeled as “1”)

c) Waist bend forward (labeled as “2”)

d) Lying down (labeled as “3”)

e) Frontal elevation of arms (labeled as “4”)

f) Crouching i.e. knees bending (labeled as “5”)

The total amount of data regards 206406 samples, where the distribution of samples is not equal

for each of the labels. Thus, we find 42792 samples for label 0, compounding the 20.73% of the

data; 45801 samples for label 1, being this 22.19% of the dataset; 28315 samples for label 2,

13.72%; 30720 samples for label 3, thus being 14.88% of the data; 29441 samples for label 4,

the 14.26% of the dataset; and 29337 samples for label 5, compounding the 14.21% of the whole

data.

UCI patients can do the previous movements in their recovery phase. Thus, the selected motions

arise when a patient signals something within the room, so he will elevate her arms to point a

specific object; when bending her knees in bed or crouching, to change posture or try to flex her

lower limbs; bending her waist forward to incorporate the upper body before eating; getting up

from bed and brushing her teeth, being these motions in the latter part of the recovery phase

and becoming more complex motions.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

19

5. Implementation

In the previous chapter, several popular algorithms are studied and the basic technical features

are outlined. Time series forecasting can be done by means of these algorithms and, therefore,

models can be created to be trained on time series datasets and, when trained, fed with new

data inputs to find predictions for the future.

This section covers the approach given to make predictions on time series data provided by early

mobilization. The observations found in the datasets described in section 3 will be used to

construct models that will give us training and test sets. Construction of the models will allow us

to generate forecasts and, even further, if a validation set is used, observations can be verified.

Time series forecasting with early mobilization patterns can be done with many different models

for different reasons, depending on the way the data wants to be evaluated in terms of accuracy,

performance and functionality. We must bear in mind that data must be pre-processed to deal

with irregularities in the data and avoid empty fields when it comes to training and testing, as

this may cause error in terms of accuracy or in the algorithms executions. Heuristics are applied

to choose the training and testing datasets. Thus, 90% of the data will be dedicated to training

and 10% of the data will be dedicated to testing. The number of samples selected is done at

random and splitting is done according to the percentages to avoid knowledge transfers from

the training set into the test set . Sections 4.4 and 4.5 cover each process, whilst section 4.6

covers a specific test set obtained from the SISMO project accelerometer.

5.1. Tools

The implementation is done on a machine with Windows 10 Enterprise 64-bit Operating System

with an Intel® Core™ i5-7300U CPU @ 2.60GHz processor and 8.00GB of RAM.

The software is developed using an Anaconda 1.8.7 distribution, which is a very popular Python

distribution for data science applications. The distribution has Python 3.6.5, which is

programming language used for the implementation. Jupyter Notebook is the open-source web

application that allows the creating of documents that contain Python code that can be compiled

and executed in the web browser. From there, the Python code imports several modules or

packages, being these:

a. Scikit-learn: package for machine learning that enables the usage of classification,

regression and clustering functions by many different algorithms.

b. Numpy: package for scientific computing of N-dimensional array objects, broadcasting

functions and useful linear algebra in data science applications.

c. Pandas: package for high-performance data analysis and large data structure

preparation and management.

d. Matplotlib: package for 2D and 3D plotting with a variety of hardcopy formats and

interactive environments across platforms.

e. Statsmodels: package with functionalities to deal with estimation of statistical models

as well as exploration of statistical data and testing.

Therefore, the implementation contains a Jupyter Notebook document where Python code is

executed. This code imports several packages in order to do create ML models and show results

and visualisations for the predictions obtained.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

20

5.2. Data Pre-Processing

The first step after having obtained all the datasets is to apply pre-processing techniques. Data

gathered cannot be checked at a glance and assumptions that the data is fully controlled in the

analysis process will arise code errors, data mismatches or other mistakes. Some issues that are

to be dealt with are:

a. missing values,

b. out-of-range values,

c. wrong value types,

d. empty value fields.

Furthermore, irrelevancies, redundancies and other data that can produce misleading results

has to be processed to obtain a stable and standardised dataset. In order to do so, this chapter

cover the pre-processing steps done to assess the previous and obtain a competent dataset.

On the one hand, a series of functions are used to scale all the three dimensional data points.

This means, normalising the dataset to input some boundaries, or limits, and obtain a more

standardised dataset. This will produce better interpretations for data and will delete large

spatial distances between data points. Furthermore, a more homogeneous dataset will derive

in clearer visualisations, giving showing better separation between feature sets with different

labels. As the first dataset used uses normalised values, the G-forces, between -1.5g and 1.5g,

the whole dataset will be normalised to (-1.5g, 1.5g) values. This process can be done with a

minimum and maximum scaler, provided within the Scikit-learn library, which can transform

feature values individually into the range. The scaler only needs the dataset and the desired

range it has to be normalised to as parameters[19].

On the other hand, the dataset is set to a standard set of columns. This means, that all data-

points must have valid values. This is achieved by means of the Pandas library, allowing the

creation of DataFrames with a set amount of columns, where each columns has a unique

identifier. In addition, any columns with missing values are dropped to avoid later code failures.

Having loaded the external datasets into Pandas DataFrames, these can be concatenated,

bearing in mind that a sequential index, that can be easily reset to set a unique identifier to each

row in the dataset. The dataset itself, with a standard amount of features, unique columns

naming and normalised values is completed by a factorisation of its labels. Although feature

values relate to a motion, the motion itself should not be a determining factor within the dataset

and, thus, each motion is labelled to a value within the range (0, 1, …, 5). The label is the

determining factor when it comes to predicting. The table below shows five random samples of

the dataset.

Figure 1. Dataset sample rows

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

21

5.3. Feature Selection

Data analysis is done exhaustively with the usage of several algorithms that will interpret

different features. Features are the individual and measurable properties or characteristics

within the data, being these each G-force from each different sensor at a specific point in time.

Each motions encounters different features and these can vary in importance. What is more, all

data regarding the 0 and 1 motions is only defined by 3 features, being these (x_wrist, y_wrist,

z_wrist) - the other features with the 0 and 1 labels are set to 0.

Thus, motions will be evaluated in several ways according the features:

a. With three features, being these: (x_wrist, y_wrist, z_wrist)

b. With a set of principal components (linearly uncorrelated set of values) found after

applying Principal Component Analysis (PCA). These features will be named (a, b), as

PCA will strive to find the two most deterministic features.

c. With all features, being these (x_chest, y_chest, z_chest, x_wrist, y_wrist, z_wrist,

x_ankle, y_ankle, z_ankle)

5.4. Training

The previous section covers the pre-processing of the mobilization datasets into a standardised

and homogeneous dataset. Thus, the next step for the implementation is the training of models

with the dataset.

Training the dataset is quite straight-forward when using Python and Scikit-learn. Nevertheless,

the selection of parameters has to be done appropriately to obtain a model that will give us the

best results in terms of prediction. Machine learning models are trained on a number of samples

and try to predict properties of unknown data. In this implementation, we are only covering

supervised learning schemes[section 3], as we have a dataset that is labelled.Also, we are

dealing with a classification problem, so we are going to use classifier models.

First, the training set has to be defined. The training set will depend the number of features or

components we are looking into[section 4.3]. Training or learning in Scikit-learn is achieved by

means of an estimator. An estimator is, basically, a rule applied for the estimation of a specific

value. Scikit-learn has the fit(X, y) method to which the training set is passed on to, being

X the features values in the training set and y the labels to which these values map to.

5.4.1. Support Vector Machine

Support Vector Machine models in Scikit-learn can be used as classifiers. Although scalability can

be quite complex when it comes to large datasets with many sample – it is computationally

expensive – it provides many parameters to tweak the algorithm to the needs of the dataset and

strive to find better predictions. These parameters can be seen in [16] and, mathematical

formulation proves that the parameters of most importance are the definition of the C, kernel,

gamma, coef0 and degree parameters. This is because they allow the user to determine the

error term – C – and the kernel type, its polynomial degree, coefficient and independent term.

Tolerance, random state and the maximum number of iterations can also be set when

instantiating the class.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

22

The implementation will train the SVM classifier model a singleset of parameters, for each

feature selection. This is because SVM can take long periods of time for large datasets and the

main parameters we focus this models is the kernel function.

1. SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True,

probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False,

max_iter=-1, decision_function_shape=’ovr’, random_state=None)

5.4.2. Gaussian Naïve Bayes

Gaussian Naïve Bayes is used as an algorithm for the classification model. It strives to find

likelihood of features and it can be tweaked by adding the prior probabilities of the classes. This

can provide useful when we know that a specific label appears with more probability than

another, thus being prioritised when it comes to prediction[17].

The implementation will train the GNB classifier model the modification of priors, in order to

vary the priorities due to motion complexities and the amount of data points, for each feature

selection:

1. GaussianNB()
2. GaussianNB[0.2, 0.2, 0.15, 0.15, 0.15, 0.15])

5.4.3. Decision Tree

Decision Trees train a model with the goal of predicting values of a targeted samples by learning

simple decision rules, provided by the sample features. Classification with DTs can be adjusted

with parameters that allow the measurement of the quality of a split (criterion), the choosing of

split at each node (splitter), the maximum depth of a tree (max_depth), the minimum number

of samples required to split an internal node (min_samples_split) and minimum number of

samples required to be at a leaf node (min_samples_leaf), the minimum weighted fraction of

the sum total of weights (min_weight_fraction_leaf), the number of features considered when

looking for a split (max_features) and the seed used by the random number generator

(random_state). Also, the maximum leaf nodes (max_leaf_nodes), minimum impurity decrease

and growth threshold (min_impurity_decrease and min_impurity_split), as well as the class

weight (class_weight) and the option to whether the data should be presorted for fitting

(presort) can be decided upon.

The implementation will train the Decision Treeclassifier model with several parameters, for

each feature selection:

1. DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_features=None, random_state=None, max_leaf_nodes=None,

min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None,

presort=False)

2. DecisionTreeClassifier(criterion=’entropy’, splitter=’best’, max_depth=None,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_features=None, random_state=1, max_leaf_nodes=None,

min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None,

presort=True)

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

23

5.4.4. Multilayer Perceptron

Neural networks can also be created and modelled in Scikit-learn. The MLP classifier implies a

neural network with several parameters that strives to optimize the log-loss function using

LBFGS or stochastic gradient descent.

The number of neurons within each hidden layer (hidden_layer_sizes), activation function

(activation), penalty (alpha), size of the batch for the stochastic optimizers (batch_size), learning

rate (learning_rate), exponent for inverse scaling learning rate (power_t), maximum number of

iterations (max_iter), the ability to shuffle samples per iteration (shuffle), random state

(random_state), tolerance (tol), momentum (momentum), proportion of training data to set

aside (validation_fraction), exponential decays (beta_1 and beta_2) and numerical stability

(epsilon) can be defined.Furthemore, verbosity and re-usage parameters can be set to feed user

purposes[20].

The implementation will train the Multilayer Perceptron classifier model with several

parameters, for each feature selection:

1. MLPClassifier(hidden_layer_sizes=(50,), activation=’relu’, solver=’adam’,

alpha=0.0001, batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001,

power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001,

verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,

early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-

08)

2. MLPClassifier(hidden_layer_sizes=(100,), activation=’tanh’, solver=’lbfgs’,

alpha=0.0001, batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001,

power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001,

verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,

early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-

08)

Training the models with the previous classifiers allows us to assist the data from early

mobilizations considering different aspects related to time series. Therefore, SVM, GNB and DTs

allow the training of models with imbalanced learning and MLP can provide large numbers of

hidden layers in artificial neural networks. These ML techniques will allow the further

distinguishing of mobilizations from one another by means of the predicted classifications.

5.5. Testing

Section 4.4 outlines the testing of the dataset that collect early mobilizations. Thus, a 90% of the

data within the set is used by the algorithms to learn the underlying patterns. Belonging to the

same distribution as the training data, test data has not yet been processed by the algorithm,

and feeding the model with such data thrives to find predictions with this fresh data. The

performance of such test will determine whether the model will generalise the dataset and

works well on doing predictions of this type. Therefore, ML models with good performance will

classify time series data and will be competent enough for forecasting.

Scikit-learn provides a very simple way to obtain predictions from a dataset. This step implies

the fact that training must have already been done in order to output new values. These values

are output as an array with the same size as the number of input samples that were given in the

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

24

to the fit function. In particular, all classifier models can be asked to output their predictions of

a test set after learning. This is done by:

classifier_model_name.predict(test_X)

where test_X is the array-like structure with the same amount of features as the training set,

but usually a reduced number of samples. The output array, or predictions, will be the labels

that each sample has fallen into. Thus, the output and input array are the same length, being

this the number of test samples.

5.6. Performance Measures

This section discusses the usage and properties of performance measure for time series

forecasting.

1.6.1. Mean Square Error

Mean Square Error (MSE) measures the average square deviation of the predicted values,

reflecting the large errors that occur in the prediction. It gives an overall idea of the error

occurred during forecasting.

𝑀𝑆𝐸 =
1

𝑛
∑ 𝑒𝑡

2

𝑛

𝑡=1

The Sum of the Square Error (SSE) can also be measured as the total square deviation of the

predictions from the sample values. Therefore:

𝑆𝑆𝐸 = ∑ 𝑒𝑡
2

𝑛

𝑡=1

The Signed Mean Square Error (SMSE) keep the sign for all individual squared errors to

panelise outstanding errors.

𝑆𝑀𝑆𝐸 =
1

𝑛
∑ (

𝑒𝑡

|𝑒𝑡|
) 𝑒𝑡

2

𝑛

𝑡=1

Last but not least, the Root Mean Squared Error (RMSE) is a commonly used performance

measure that simply calculates the root square of MSE. Thus:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑡

2

𝑛

𝑡=1

1.6.2. Mean Forecast Error

Mean Forecast Error (MFE) measures the average deviation obtained from the predictions

regarding the actual labels. Direction of error is shown, implying that a result that is close to zero

does not particularly imply a low amount of errors, but a low bias of errors on both directions.

𝑀𝐹𝐸 =
1

𝑛
∑ 𝑒𝑡

𝑛

𝑡=1

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

25

1.6.3. Mean Absolute Error

The Mean Absolute Error (MAE) measures the absolute deviation of predictions from the original

label values. This results in the determination of an overall magnitude of the error, although

direction is not specified.

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑡|

𝑛

𝑡=1

After the training of the various models and having the predictions from different sets of

features, the following section collects a table where all the mean squared error, root mean

squared error and mean absolute error of the predictions are covered, in order to evaluate

performance with the most relevant error rates and observe which ML model gives best results.

5.7. Validation: SISMO Project Data

Early mobilization consists of applying passive and active movement dynamics to hospitalized
patients earlier than with the aim of reducing physical and cognitive sequelae caused by a
prolonged lack of mobility. With the application of this technique, the aim is to reduce recovery
time and, consequently, hospitalization and return to work, given the case. The incorporation of
physical activity at the beginning of the course of the critical illness produces better clinical
outcomes, including a lower incidence of acquired weakness in the ICU, a lower incidence of
delirium and a shorter stay in the ICU.

With the aim of supporting healthcare professionals in the process of implementing and
generalizing early mobilization in practice, the SISMO project develops technology based on the
Internet of Things (IoT) and machine learning. The IoT technology makes the SISMO project
robust and guarantees its viability as its development goes beyond its scope. The SISMO project
uses wearable devices, specially designed and adapted for the task of monitoring the
mobilization, interconnected through efficient communication protocols such as Bluetooth Low
Energy (LE), with its own software developed in house. This software is used within this
implementation to obtain a dataset that will be used to validate the ML models.

The software, that has been slightly modified to obtain small datasets in text files which can be
easily imported into the project notebook, is used for validation. Therefore, we do not only test
the models with the test set from the given datasets, but we can also test with new data
obtained from the replication of motions. These motions are obtained by allocation an
accelerometer on one part of the body, this mean the wrist on the right arm of a subject - thus
creating a validation set of three features. The output text file is named according to the motion
label (recall section 3) e.g. the motions recorded when drinking from a glass with be under the
text file named "1.txt". This naming will be using for the further comparison of data, as all the
sample predictions will be compared to the label. Following the example, the output array values
will be compared to an array of the same size where all values will be 1. Within the file, we find
a set of three G-forces for each row separated by a space. This will be imported into an array in
the Python code, leaving it ready to apply to predict(X) method for each model that has been
previously fitted with the training set.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

26

The training set used will be the one used for the models that evaluate three-feature, to follow
conventions that only (x, y, z) coordinates for the wrist will be evaluated. Nevertheless, the same
procedure can be applied and measurements can be taken from an accelerometer at the chest
and ankle. Having only one accelerometer, it is not possible to merge the data from three
different measurements on different body parts even though the motion is the same one. This
can induce larger errors when it comes to predictions, and this implementation thrives to
validate as accurately as possible the models.

Validation of the ML models is covered in the notebook and the following section collects the
obtained results. We must bear in mind that, in order to avoid unnecessary calculations, only
the best models with best predictions rates, and lower error rates, are used for the validation
set. In section 7, discussion about the best models is explained based on the observations of
section 6.

6. Results

The implementation covered in this document attempts to train and test ML models with a specific dataset created from various mobilizations from patients

in the ICU. Therefore, the results obtained regarding the testing and validation phases are collected below. The results show the time undertaking for training

the model, the precision of the model when predicting test samples for each label, the mean square error, root mean square error and mean absolute error

values, as well as 2D (in the cases for PCA) and 3D visualisations to enhance visualisation of areas where data points are predictions correctly and mistakenly.

For all 3D visualisations, green data points show the correct predictions and red data points the mistaken predictions. The blue area is the area determined

by the training dataset. Thus, models will prove to be good at predicting when points that fall out of the training set area are predicted correctly. All parameter

sets can be consulted in section 5.3.

6.1. Three features

6.1.1. SVM

Results for SVM with the first set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.82

1 0.89

2 0.72

3 0.97

4 0.84

5 0.64

AVERAGE/TOTAL 0.82 1.13 1.07 0.42 18min 51s ± 1min 43s per loop

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

28

Figure 2. SVM 3D visualisation of test predictions for label 0. Figure 3. SVM 3D visualisation of test predictions for label 1.

Figure 4. SVM 3D visualisation of test predictions for label 2. Figure 5. SVM 3D visualisation of test predictions for label 3.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

29

Figure 6. SVM 3D visualisation of test predictions for label 4. Figure 7. SVM 3D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

30

6.1.2. GNB

Results for GNB with the first set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.59

1 0.57

2 0.59

3 0.47

4 0.62

5 0.55

AVERAGE/TOTAL 0.57 2.73 1.65 1.00 43.4 ms ± 5 ms per loop

Figure 8. GNB 3D visualisation of test predictions for label 0. Figure 9. GNB 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

31

Figure 10. GNB 3D visualisation of test predictions for label 2. Figure 11. GNB 3D visualisation of test predictions for label 3.

Figure 12. GNB 3D visualisation of test predictions for label 4. Figure 13. GNB 3D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

32

Results for GNB with priors set in the parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.59

1 0.61

2 0.54

3 0.48

4 0.59

5 0.55

AVERAGE/TOTAL 0.57 2.72 1.65 1.01 41.7 ms ± 6 ms per loop

Figure 14. GNB 3D visualisation of test predictions for label 0. Figure 15. GNB 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

33

Figure 16. GNB 3D visualisation of test predictions for label 2. Figure 17. GNB 3D visualisation of test predictions for label 3.

Figure 18. GNB 3D visualisation of test predictions for label 4. Figure 19. GNB 3D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

34

6.1.3. DT

Results for DT with the first parameter set.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.83

1 0.90

2 0.60

3 1.00

4 0.84

5 0.57

AVERAGE/TOTAL 0.80 1.04 1.02 0.42 2.04 s ± 248 ms per loop

Figure 20. DT 3D visualisation of test predictions for label 0. Figure 21. DT 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

35

Figure 22. DT 3D visualisation of test predictions for label 2. Figure 23. DT 3D visualisation of test predictions for label 3.

Figure 24. DT 3D visualisation of test predictions for label 4. Figure 25. DT 3D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

36

Results for DT with the second set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.82

1 0.90

2 0.60

3 1.00

4 0.83

5 0.59

AVERAGE/TOTAL 0.81 1.03 1.01 0.41 1.71 s ± 254 ms per loop

Figure 26. DT 3D visualisation of test predictions for label 0. Figure 27. DT 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

37

Figure 28. DT 3D visualisation of test predictions for label 2. Figure 29. DT 3D visualisation of test predictions for label 3.

Figure 30. DT 3D visualisation of test predictions for label 4. Figure 31. DT 3D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

38

6.1.4. MLP

Results for MLP with the first set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.80

1 0.88

2 0.60

3 0.92

4 0.80

5 0.65

AVERAGE/TOTAL 0.79 1.31 1.14 0.48 1min 23s ± 4.48 s per loop

Figure 32. MLP 3D visualisation of test predictions for label 0. Figure 33. MLP 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

39

Figure 34. MLP 3D visualisation of test predictions for label 2. Figure 35. MLP 3D visualisation of test predictions for label 3.

Figure 36. MLP 3D visualisation of test predictions for label 4. Figure 37. MLP 3D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

40

Results for MLP with the second set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.79

1 0.87

2 0.65

3 0.94

4 0.81

5 0.62

AVERAGE/TOTAL 0.79 1.32 1.15 0.49 2min 56s ± 13.6 s per loop

Figure 38. MLP 3D visualisation of test predictions for label 0. Figure 39. MLP 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

41

Figure 40. MLP 3D visualisation of test predictions for label 2. Figure 41. MLP 3D visualisation of test predictions for label 3.

Figure 42. MLP 3D visualisation of test predictions for label 4. Figure 43. MLP 3D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

42

6.2. Principal Components

6.2.1. SVM

Results for SVM with the first set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.79

1 0.89

2 0.56

3 0.99

4 0.77

5 0.64

AVERAGE/TOTAL 0.79 1.22 1.10 0.48 10min 55s ± 2min 38s per loop

Figure 44. SVM 2D visualisation of test predictions for label 0. Figure 45. SVM 2D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

43

Figure 46. SVM 2D visualisation of test predictions for label 2. Figure 47. SVM 2D visualisation of test predictions for label 3.

Figure 48. SVM 2D visualisation of test predictions for label 4. Figure 49. SVM 2D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

44

6.2.2. GNB

Results for GNB with the first set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.75

1 0.69

2 0.44

3 1.00

4 0.67

5 0.59

AVERAGE/TOTAL 0.70 1.80 1.34 0.70 29.2 ms ± 656 µs per loop

Figure 50. GNB 2D visualisation of test predictions for label 0. Figure 51. GNB 2D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

45

Figure 52. GNB 2D visualisation of test predictions for label 2. Figure 53. GNB 2D visualisation of test predictions for label 3.

Figure 54. GNB 2D visualisation of test predictions for label 4. Figure 55. GNB 2D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

46

Results for GNB with priors set in the parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.75

1 0.70

2 0.45

3 1.00

4 0.67

5 0.61

AVERAGE/TOTAL 0.70 1.80 1.34 0.71 27.8 ms ± 743 µs per loop

Figure 56. GNB 2D visualisation of test predictions for label 0. Figure 57. GNB 2D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

47

Figure 58. GNB 2D visualisation of test predictions for label 2. Figure 59. GNB 2D visualisation of test predictions for label 3.

Figure 60. GNB 2D visualisation of test predictions for label 4. Figure 61. GNB 2D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

48

6.2.3. DT

Results for DT with the first parameter set.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.82

1 0.86

2 0.50

3 1.00

4 0.72

5 0.53

AVERAGE/TOTAL 0.75 1.31 1.14 0.52 1.33 s ± 96.2 ms per loop

Figure 62. DT 2D visualisation of test predictions for label 0. Figure 5763 DT 2D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

49

Figure 64. DT 2D visualisation of test predictions for label 2. Figure 65. DT 2D visualisation of test predictions for label 3.

Figure 66. DT 2D visualisation of test predictions for label 4. Figure 67. DT 2D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

50

Results for DT with the second set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.82

1 0.86

2 0.51

3 1.00

4 0.73

5 0.52

AVERAGE/TOTAL 0.75 1.33 1.15 0.52 1.51 s ± 92.5 ms per loop

Figure 68. DT 2D visualisation of test predictions for label 0. Figure 69. DT 2D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

51

Figure 70. DT 2D visualisation of test predictions for label 2. Figure 71. DT 2D visualisation of test predictions for label 3.

Figure 72. DT 2D visualisation of test predictions for label 4. Figure 73. DT 2D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

52

6.2.4. MLP

Results for MLP with the first set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.78

1 0.87

2 0.57

3 0.99

4 0.77

5 0.57

AVERAGE/TOTAL 0.77 1.25 1.12 0.50 32.3 s ± 11.4 s per loop

Figure 74. MLP 2D visualisation of test predictions for label 0. Figure 75. MLP 2D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

53

Figure 76. MLP 2D visualisation of test predictions for label 2. Figure 77. MLP 2D visualisation of test predictions for label 3.

Figure 78. MLP 2D visualisation of test predictions for label 4. Figure 79. MLP 2D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

54

Results for MLP with the second set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.78

1 0.87

2 0.57

3 0.99

4 0.77

5 0.57

AVERAGE/TOTAL 0.77 1.25 1.12 0.50 29.7 s ± 12.2 s per loop

Figure 80. MLP 2D visualisation of test predictions for label 0. Figure 81. MLP 2D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

55

Figure 82. MLP 2D visualisation of test predictions for label 2. Figure 83. MLP 2D visualisation of test predictions for label 3.

Figure 84. MLP 2D visualisation of test predictions for label 4. Figure 85. MLP 2D visualisation of test predictions for label 5.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

56

6.3. All Features

6.3.1. SVM

Results for SVM with the first set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.75

1 0.93

2 0.84

3 1.00

4 0.95

5 0.88

AVERAGE/TOTAL 0.89 1.81 1.32 0.71 14min 48s ± 4min 22s per loop

Figure 86. SVM 3D visualisation of test predictions for label 0. Figure 87. SVM 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

57

Figure 88. SVM 3D visualisation of test predictions for label 2 on ankle. Figure 89. SVM 3D visualisation of test predictions for label 3 on ankle.

Figure 90. SVM 3D visualisation of test predictions for label 4 on ankle. Figure 91. SVM 3D visualisation of test predictions for label 5 on chest.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

58

6.3.2. GNB

Results for GNB with the first set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.72

1 0.91

2 0.84

3 1.00

4 0.77

5 0.97

AVERAGE/TOTAL 0.86 1.84 1.36 0.75 76.8 ms ± 6.2 ms per loop

Figure 92. GNB 3D visualisation of test predictions for label 0. Figure 93. GNB 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

59

Figure 94. GNB 3D visualisation of test predictions for label 2 on ankle Figure 95. GNB 3D visualisation of test predictions for label 3 on ankle

Figure 96. GNB 3D visualisation of test predictions for label 4 on ankle. Figure 97. GNB 3D visualisation of test predictions for label 5 on chest.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

60

Results for GNB with priors set in the parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.72

1 0.91

2 0.83

3 1.00

4 0.77

5 0.97

AVERAGE/TOTAL 0.86 1.83 1.35 0.74 82.2 ms ± 3.91 ms per loop

Figure 98. GNB 3D visualisation of test predictions for label 0. Figure 99. GNB 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

61

Figure 100. GNB 3D visualisation of test predictions for label 2 on ankle. Figure 101. GNB 3D visualisation of test predictions for label 3 on ankle.

Figure 102. GNB 3D visualisation of test predictions for label 4 on ankle. Figure 103. GNB 3D visualisation of test predictions for label 5 on chest.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

62

6.3.3. DT

Results for DT with the first parameter set.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.83

1 0.90

2 0.60

3 1.00

4 0.84

5 0.57

AVERAGE/TOTAL 0.80 1.33 1.16 0.57 1.86 s ± 219 ms per loop

Figure 104. DT 3D visualisation of test predictions for label 0. Figure 105. DT 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

63

Figure 106. DT 3D visualisation of test predictions for label 2 on ankle. Figure 107. DT 3D visualisation of test predictions for label 3 on ankle.

Figure 108. DT 3D visualisation of test predictions for label 4 on ankle. Figure 109. DT 3D visualisation of test predictions for label 5 on chest.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

64

Results for DT with the second set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.83

1 0.92

2 0.95

3 1.00

4 0.97

5 0.95

AVERAGE/TOTAL 0.92 0.18 0.42 0.10 2.47 s ± 187 ms per loop

Figure 110. DT 3D visualisation of test predictions for label 0. Figure 111. DT 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

65

Figure 112. DT 3D visualisation of test predictions for label 2 for ankle. Figure 113. DT 3D visualisation of test predictions for label 3 for ankle.

Figure 114. DT 3D visualisation of test predictions for label 4 for ankle.. Figure 115 DT 3D visualisation of test predictions for label 5 for chest.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

66

6.3.4. MLP

Results for MLP with the first set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.82

1 0.92

2 0.98

3 1.00

4 0.98

5 0.95

AVERAGE/TOTAL 0.93 0.17 0.41 0.11 1min 5s ± 9.77 s per loop

Figure 116. MLP 3D visualisation of test predictions for label 0. Figure 117. MLP 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

67

Figure 118. MLP 3D visualisation of test predictions for label 2 on ankle. Figure 119. MLP 3D visualisation of test predictions for label 3 on ankle.

Figure 120. MLP 3D visualisation of test predictions for label 4 on ankle. Figure 121. MLP 3D visualisation of test predictions for label 5 on chest.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

68

Results for MLP with the second set of parameters.

LABEL PRECISION
ERROR

TIME
MSE RMSE MAE

0 0.81

1 0.93

2 0.95

3 1.00

4 0.98

5 0.94

AVERAGE/TOTAL 0.93 0.17 0.41 0.11 3min 6s ± 12.2 s per loop

Figure 122. MLP 3D visualisation of test predictions for label 0. Figure 123. MLP 3D visualisation of test predictions for label 1.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

69

Figure 124. MLP 3D visualisation of test predictions for label 2 on ankle. Figure 125. MLP 3D visualisation of test predictions for label 3 on ankle.

Figure 126. MLP 3D visualisation of test predictions for label 4 on ankle. Figure 127. MLP 3D visualisation of test predictions for label 5 on chest.

6.3.5. Validation

In this section, results from the validations with the best models in the implementation, after

evaluating the previous results are shown. Evaluation and discussion of the results can be seen

in the conclusions section. Nevertheless, we must bear in mind that validation only takes into

account the G-forces obtained from the wrist accelerometer, as the dataset was created with

only one accelerometer allocated in that position. Therefore, the model with best results in

section 6.1 will be used to validate the dataset from the SISMO project.

The dataset for validation is not rather large and it is standardised for its values to be between

-1.5g and 1.5g in order to provide homogeneity. The values should be on the same scale as the

training and test sets.

Being MLP the best algorithm for the ML models, we observe that:

LABEL PRECISION
ERROR

MSE RMSE MAE

0 0.81

1 0.61

2 0.68

3 0.94

4 0.92

5 0.78

AVERAGE/TOTAL 0.79 1.97 1.40 0.67

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

71

7. Conclusions

In this document the presentation of state-of-the-art ML algorithms have been presented, as

well as techniques to resolve time series forecasting problems. The algorithms dealt with are

Support Vector Machines – linear and non-linear; Gaussian Naïve Bayes; Decision Trees; and

Multilayer Perceptron. Also, the importance of feature selection and pre-processing of data is

explained, so as to obtain reliable predictions from a robust dataset.

In this section, the discussion of the results from the previous section is written. All performance

measures are taken into consideration, being these the success rate in the model output

predictions, as well as the error rates and the time spend for each set of predictions. Time is in

an important factor in this project, because, if taken further, it can be applied to near-real-time

applications, where motions of ICU patients can be seen and predicted in short periods of time.

Being the best case scenario, we find that an ML model with MLP configured to work with an

quasi-Newton method (‘lbfgs’) optimized solver and hyperbolic tangent activation function is

the most reliable predictor. Its accuracy is spread out as it can manage to predict simple and

complex movement with a 93% accuracy, 0.17 MSE, 0.41 RMSE and 0.11 MAE. Even further,

simple mobilizations have greater accuracy, reaching a 100% prediction rate. This must not be

judged as a perfect predictor, as fresh data from subjects with higher deviations can produce

inaccurate outputs, although it demonstrates the contrary with the given test set. It is also seen

that the increase of feature in the samples provide even more reliable predictions for MLP, as

more bias weights are considered within the algorithm. Nevertheless, MLP is not the fastest

model in the implementation, and the model would not be trained fast enough for real-time

applications. In the case of using the dataset with the need of high performance in terms of time,

DTs with entropy criterion and defined random state have proven to have almost the same

accuracy as MLP in a shorter period of time. The ML model with a DT algorithm achieves a 92%

accuracy in only three seconds, being this a considerable result.

Gaussian Naïve Bayes proves to be the fastest ML model, training a model with a fairly large data

is less than a second. This could be used for real-time applications. DTs, as aforementioned, are

also very fast ML models in terms of training and predictions. The simplicity and lack of

correlation between variables is the reason why these models output results so quickly,

although predictions are not as good for time series as MLP or SVM with a smaller dataset. On

the other hand, SVM can be quite slow and can train a model with the time series data in a long

period of time. SVM could not be considered as a good predictor if we are looking at time

performance variables.

Principal Component Analysis can allow us to simplify the problem by reducing the dataset to

two principal components. PCA enables us to analyse a data with many differences between

labels by evaluating the core dependencies. The dataset, although robust, does not always

contain values for the G-forces in the areas covered by ankle and chest accelerometers, and PCA

allows models to do faster predictions on a more standardised dataset. Also, it proves to be very

useful in terms of visualisation, as the margins that separate data points from being predicted

to fall into one label or another are easily seen in 2D. 3D visualisations are a bit more

cumbersome and it is easier to visualise the data points with a single label area, as many data in

the visualisation can overlap and it becomes much less defined to see what predictions fall into

which areas. Nevertheless, the results obtained from PCA are not extremely relevant when being

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

72

compared to the analysis with the features from the wrist accelerometer or the features from

all three accelerometers.

By far, the most interesting part of the implementation is when a dataset a fresh set of data is

created from an accelerometer and software from the SISMO project. Modifying the code to

obtain a dataset that is found in the training and test set parameters proves that Scikit-learn is

a very interesting tool that can be used in many ways – the data was scaled by use of its

packages. Also, this provides insight of further development for the project, as it can be

integrated in real-life applications for early mobilizations tracking. Thus, in cooperation with

health professionals, the data obtained from patients in the ICU can be analysed and fed into a

ML model, most probability with a DT or MLP algorithm. Following the movements of a patient

can distinguish between early mobilization patterns under supervision of such professionals or

motions done non-therapeutically, e.g. movements while sleeping or eating. Even further, if the

ML models are trained regularly throughout the recovery of a patient, improvements can be

tracked to obtain more accurate models against movements with increased complexity and

assess which movement are done at different stages of recovery. The lack of time for further

development leaves an open discussion for this topic, as it would be positive to test the models

with different movements and taking into account different features, that would be obtained

from more input sources i.e. accelerometers.

It is demonstrated in the results section that predictions become more inaccurate when the data

points in the time series dataset become more complex. As an example, it is observed that the

motion labelled under “5”, crouching by bending knees, always has de worst predictions. This

can be due to the fact that G-forces obtained from accelerometers that are not located directly

on the points of movement had greater variations. The bending knees in different subjects have

similar G-forces in that area, although subject can move their arms, chest or ankles very

differently when applying the movement. This is strongly reflected in the validation section, as

movements such as drinking from a glass (label “1”) or lying down (label “3”) have good

predictions because of the location of accelerometers on the wrist and chest, respectively. The

fresh dataset provided has proven that the MLP model can do fairly good predictions when

subject input does not fluctuate too widely. The rescaling of the set helps strongly for these

predictions to be more accurate. Nevertheless, improvements can be done as it is not known

exactly how the movement where done and with what speeds or the exact bending of limbs, for

example.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

73

8. Further Work

Analysis of time series can be done in many ways and ML problems do not always have one

specific solution for each problem. This study proposes one possible solution for time series

forecasting after using several ML models and evaluating the outputs. Nevertheless, further

work can be done in order to provide a solution with stronger predictive features. Listed below

we find several proposal for this purpose:

a. Usage of deep neural networks. Deep learning cover ML algorithms, more specifically

artificial neural networks, where multiple layers of nonlinear processing units are found.

This means that several hidden layers transform and extract features by cascading in

different layers of abstraction. Deep generative models – models with joint probability

distribution – organise the layers such that data inputs increase in complexity in terms

of composition and abstraction. The higher the number of layers, the deeper the neural

network becomes. Deep learning models are a lot more complex to deal with regarding

propagation and recurrence, although representation redundancy is avoided as they

extract principal components from the feature set.

b. Having more data. More data from other mobilizations, being these simple or more

complex can train models even further. The usage of data points makes it easy to obtain

new samples, although standardisation and data labelling should always be considered.

The implication of more data, nevertheless, being for new mobilizations or even more

sensors, can affect ML models in terms of overtraining. Overtraining of models can imply

the decrease of prediction accuracy. Also, the amount of samples requires more control

over iterations, especially for models with iterations, as well as computational power,

as ML models can become slower when huge amounts of data have to be processed.

c. Evaluation of cycles or repetitive patterns by using groups of data points as samples. As

read in section 2, time series forecasting strives to find patterns, cycles and repetitions

within data. By training models on single data points this can be achieved, although

grouping time series data can determine these characteristics more accurately and offer

better predictions. This can be very beneficial but complexity in the resolution of

problems increases greatly. The appearance of variables such as the frequency of cycles,

for example, requires the usage of assumptions, or complex algorithms to find

approximations, that would make the groupings possible to use without decreasing

prediction accuracy. The shifting of periods can be complex to assist with time series

data, although it would definitely be a very interesting problem to solve.

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

74

9. References

1. Bontempi, G., Ben Taieb, S., & Le Borgne, Y.-A. (2013). Machine Learning Strategies for Time Series
Forecasting. Discovery, (July 2015), 62–77. https://doi.org/10.1007/978-3-642-36318-4_3

2. Ahmed, N. K., Amir; Atiya, F., Neamat, ;, Gayar, E., El-Shishiny, H., … Gayar, N. El. (2010). An Empirical
Comparison of Machine Learning Models for Time Series Forecasting. Econometric Reviews, 29(29),
594–6215. https://doi.org/10.1080/07474938.2010.481556

3. Bansal, D., Chhikara, R., Khanna, K., & Gupta, P. (2018). Comparative Analysis of Various Machine
Learning Algorithms for Detecting Dementia. Procedia Computer Science, 132, 1497–1502.
https://doi.org/10.1016/j.procs.2018.05.102

4. Seligman, B., Tuljapurkar, S., & Rehkopf, D. (2017). Machine Learning Approaches to the Social
Determinants of Health in the Health and Retirement Study. SSM - Population Health, 4(November
2017), 95–99. https://doi.org/10.1016/j.ssmph.2017.11.008

5. Khaleghi, A., Ryabko, D., Mary, J., & Preux, P. (2016). Consistent Algorithms for Clustering Time Series.
Journal of Machine Learning Research, 17(3), 1–32. Retrieved from
http://jmlr.org/papers/v17/khaleghi16a.html

6. Van der Heijden, M., Velikova, M., & Lucas, P. J. F. (2014). Learning Bayesian networks for clinical time
series analysis. Journal of Biomedical Informatics, 48, 94–105.
https://doi.org/10.1016/j.jbi.2013.12.007

7. Smola, A. J. (2000). Using Support Vector Machines for Time Series Prediction. GMD FIRST, (May
2014), 1–13. https://doi.org/10.1515/9783110915990.1

8. Spiegel, S., Gaebler, J., Lommatzsch, A., Luca, E. De, & Albayrak, S. (2011). Pattern Recognition and
Classification for Multivariate Time Series Categories and Subject Descriptors. Time, 34–42.
https://doi.org/10.1145/2003653.2003657

9. Analytics, B. (2017). A comprehensive beginner’s guide to create a Time Series Forecast (with Codes
in Python). Analytics Vidhya. Retrieved from https://www.analyticsvidhya.com/blog/2016/02/time-
series-forecasting-codes-python/

10. MHEALTH Dataset. ICS UCI EDU. Retrieved from
https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset

11. Dataset for ADL Recognition with Wrist-worn Accelerometer. ICS UCI EDU. Retrieved from
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-
worn+Accelerometer

12. How to Predict Multiple Time Series with Scikit-Learn with sales Forecasting Example. Mario Filho.
Retrieved from http://mariofilho.com/how-to-predict-multiple-time-series-with-scikit-learn-with-
sales-forecasting-example

13. Time Series Forecast Study. Jason Brownlee on February 20, 2017. Retrieved from
https://machinelearningmastery.com/time-series-forecast-study-python-monthly-sales-french-
champagne

14. In Depth: Naïve Bayes Classification. Python Data Science Handbook. Retrieved from
https://jakevdp.github.io/PythonDataScienceHandbook/05.05-naive-bayes.html

15. Gaussian Processes. Scikit-learn developers 2007-2017. Retrieved from http://scikit-
learn.org/stable/modules/gaussian_process.html

Master Degree in Computer Security Engineering and Artificial Intelligence Alexander David Martin Colville

75

16. Support Vector Machines. Scikit-learn developers 2007-2017. Retrieved from http://scikit-
learn.org/stable/modules/svm.html

17. Naïve Bayes. Scikit-learn developers 2007-2017. Retrieved from http://scikit-
learn.org/stable/modules/naive_bayes.html

18. Decision Tree. Scikit-learn developers 2007-2017. Retrieved from http://scikit-
learn.org/stable/modules/tree.html

19. Feature Selection. Scikit-learn developers 2007-2017. Retrieved from http://scikit-
learn.org/stable/modules/feature_selection.html

20. Neural Network models (supervised) . Scikit-learn developers 2007-2017. Retrieved from
http://scikit-learn.org/stable/modules/neural_networks_supervised.html

21. Preprocessing data. Scikit-learn developers 2007-2017. Retrieved from http://scikit-
learn.org/stable/modules/preprocessing.html

