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Web search engines capitalize on, or lend themselves to, the construction of user 

interest profiles to provide personalized search results. The lack of transparency 

about what information is stored, how it is used and with whom it is shared, limits 

the perception of privacy that users have about the search service. In this thesis, 

we investigate a technology that allows users to replace specific queries with 

more general but semantically similar search terms.  

 

Through the generalization of queries, the user profile becomes less precise and 

therefore more private, although evidently at the expense of a degradation in the 

accuracy of the search results. In this work, we design and develop a tool that 

implements this principle in real practice. Our tool, developed as a browser plug-

in for Google Chrome, enables users to generalize the queries sent to a search 

engine in an automated fashion, without the need for any kind of infrastructure or 

external databases, and in real time, according to simple and intuitive privacy 

criteria.  

 

Experimental results demonstrate the technical feasibility and suitability of our 

solution.
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1. INTRODUCTION 
 

Billions of queries are processed daily by Web search engines (WSEs) such as 

Google, Bing or Yahoo. Naturally, users of these services look for information 

that is relevant to their interests, and this is the fundamental reason why WSEs 

strive to develop increasingly sophisticated algorithms that tailor search results 

to meet the specific preferences of their users. 

 

Personalization, the key enabling technology, relies on the storage of user 

information (e.g., the queries themselves, the search results visited, the location 

from which queries are submitted), the processing of such data, and the creation 

of a profile of interests and preferences. With this profile, search engines can then 

adjust search results (Bin Cao, 2017), (Elif Aktolga, 2013) to provide users with 

more accurate links. 

 

 
Fig. 1. The profi le of a user is modelled in Google as a l ist of topic categories. 

The profi le shown here reflects the user is interested in parenting-related topics, 

which might reveal she is pregnant. 

 

Behind personalization, however, WSEs not only aim to offer more precise 

search results —the construction of profiles allows search engines to segment 

their users and deliver personalized ads, which have been shown to ensure 
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conversion rates1 that double those of geographical and contextual ads (Beales, 

2010). Internet companies, besides, very often obtain a direct economic benefit 

through the sale of this valuable information. This is the case of Yahoo, which 

claims to charge the US government between 30 and 40 dollars for the email 

address of users of its search engine (Zetter, 2009). 

 

Evidently, personalization techniques —and in particular the creation of interest 

profiles—, prompts serious privacy risks. On the one hand, the lack of 

transparency about what information is stored, how it is used and with whom it is 

shared, limits the perception of privacy that users have about the search service. 

On the other hand, user’s profiles are sensitive information per se since they may 

reveal health-related issues, political affiliation, salary or religion. Fig. 1 shows an 

example of user profile and the inferences that can be drawn from it. 

 

 
Fig. 2. Three-quarters of search users say collecting user information to 

personalize search results is not okay. Source: (Kristen Purcell, 2012)  Survey, 

January 20-February 19,2012. N=2,253 adults, age 18 and older, including 901 

cell phone interviews. Interviews conducted in English and Spanish. 

 

                                                
1 In online marketing terminology, conversion usually means the act of converting Web site visitors 
into paying customers.  
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It comes as no surprise then that 30 percent of the users of these services are 

concerned about the fact that their behaviour is scrutinized without their 

knowledge or consent (Kristen Purcell, 2012). The increasing concerns about 

Web-search privacy is reflected by multiple studies. From 2014 to 2015, the 

interest in privacy-related issues increased a five percent (Penn, 2015), showing 

the negative perception that users have about personalization technologies. 

Lastly, a survey by the Mozilla Foundation indicates that almost a third of users 

feel that they have no control over their personal information on the Internet 

(MozillaFoundation, 2017). 

 

We believe that the solution to those problems necessarily implies giving users 

real control over their data, and that this can only be achieved through 

technologies that strike a good balance privacy and personalization. However, 

when the recipient of sensitive information (i.e., the search engine) is not fully 

trusted, privacy protection faces a dilemma of great practical relevance. 

 

1 .1 .  Contr ibut ion 
 

º 
Fig. 3. Trade-off between Privacy and search-accuracy. Source: (Parra-Arnau, 

2013) 

 

The aim of this work is to contribute to the development of privacy-enhancing 

technologies (PETs) that may attain a suitable trade-off between privacy and 
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search accuracy. In particular, this thesis investigates a privacy mechanism that 

capitalizes on the generalization of queries, that is to say, the replacement of 

specific and probably sensitive queries, into more general, albeit semantically 

similar, search terms. 

 

In the literature, a couple of previous works tackle the problem of query 

generalization in Web search (David Sánchez, 2013), (A. Avi, 2013). The major 

disadvantage of these few existing approaches, however, is that (i) they do not 

aim to protect individual queries and may reveal the actual search terms; and, 

more importantly, (ii) they are not intended for end-users, i.e., they are not 

designed to be used as stand-alone systems, without the need for infrastructure, 

and in real time. To the best of our knowledge, our work is the first to design and 

implement the principle of query generalization as a tool for end-users. 

 

The designed tool, called PrivacySearch, is implemented as a Web-browser 

extension and allows users to generalize their search queries in an automated 

fashion, as they type the query, without consulting any external entity or 

database, and according to simple and intuitive privacy criteria. Our 

generalization algorithm is specifically contrived to satisfy various requirements 

in terms of computational overhead and storage, which enable the operation of 

the whole system in real-time and on the user side. The ultimate goal of our tool 

is to provide users with certain guarantees in terms of privacy and search 

experience. 

 

1 .2 .  P lan of  th is  thes is  
 

The reminder of this thesis is organized as follows. Sec. 2 reviews the state of 

the art relevant to this work. Sec. 3 describes the design principles, the system 

architecture and the implementation details of the proposed privacy technology. 

Sec. 4 evaluates different aspects of the proposed tool and shows its technical 

feasibility. Finally, conclusions are drawn in Sec. 5. 

  



 

 

 11 

2. STATE OF THE ART 
 

Numerous approaches have been proposed to protect user privacy in the context 

of Web search. These approaches fundamentally suggest collaboration 

strategies among a group of peers, and the perturbation of user data. 

 

 
Fig. 4. Schema representing privacy techniques in Web search. Orange boxes 

represent existing applications; green boxes represent proposals.  

 

An archetypical example of user collaboration is the Crowds protocol (M. Reiter, 

1998). This protocol is particularly helpful to minimize requirements for 

infrastructure and trusted intermediaries such as pseudonymizers, or to simply 

provide an additional layer of anonymity. In the Crowds protocol, a group of users 

collaborate to submit their messages to a WSE, from whose standpoint they wish 

to remain completely anonymous. In simple terms, the protocol works as follows. 

When sending a message, a user flips a biased coin to decide whether to submit 

it directly to the recipient, or to send it to another user, who will then repeat the 

randomized decision. 

 

Privacy	in	
Web	search

Single-Party
(Data	perturbation)

GooPIR

TrackMeNot

Multi-Party
(Real	queries)

Crowds
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Crowds provides anonymity from the perspective of not only the final recipient, 

but also the intermediate nodes. Therefore, trust assumptions are essentially 

limited to fulfilment of the protocol. The original proposal suggests adding an 

initial forwarding step, which substantially increases the uncertainty of the first 

sender from the point of view of the final receiver, at the cost of an additional hop. 

As in most ACSs, Crowds enhances user anonymity but at the expense of traffic 

overhead and delay. 

 

An alternative to hinder an attacker in its efforts to precisely profile users consists 

in perturbing the information they explicitly or implicitly disclose when 

communicating with a WSE. The submission of false data, together with the 

user’s genuine data, is an illustrative example of data-perturbative mechanism. 

In this kind of mechanisms, the perturbation itself typically takes place on the user 

side. This means that users need not trust any external entity such as the WSE, 

the Internet service provider or their neighboring peers. Obviously, this does not 

signify that data perturbation cannot be used in combination with other trusted-

third solutions or mechanisms relying on user collaboration. It is rather the 

opposite—depending on the trust model assumed by users, this class of 

technologies can be synergically combined with any of other approach. In any 

case, data-perturbative techniques come at the cost of system functionality and 

data utility, which poses a trade-off between these aspects and privacy 

protection. 

 

An interesting approach to provide a distorted version of a user’s profile of 

interests is query forgery. The underlying idea boils down to accompanying 

original queries or query keywords with bogus ones. By adopting this data- 

perturbative strategy, users prevent privacy attackers from profiling them 

accurately based on their queries, without having to trust neither the service 

provider nor the network operator, but clearly at the cost of traffic overhead. In 

other words, inherent to query forgery is the existence of a trade-off between 

privacy and additional traffic. 
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A software implementation of query forgery is the Web browser add-on 

TrackMeNot (D. C. Howe, 2006). This popular add-on makes use of several 

strategies for generating and submitting false queries. Basically, it exploits RSS 

feeds and other sources of information to extract keywords, which are then used 

to generate false queries. The add-on gives users the option to choose how to 

forward such queries. In particular, a user may send bursts of bogus queries, thus 

mimicking the way people search, or may submit them at predefined intervals of 

time. Despite the strategies users have at their disposal, TrackMeNot is 

vulnerable to a number of attacks that leverage on the semantics of these false 

queries as well as timing information, to distinguish them from the genuine 

queries (Richard Chow, 2009). 

 

GooPIR (Josep Domingo-Ferrer, 2009) is another proposal aimed at obfuscating 

query profiles. Implemented as a software program, this approach enables users 

to conceal their search keywords by adding some false keywords. To illustrate 

how this approach works, consider a user wishing to submit the keyword 

“depression” to Google and willing to send it together with two false keywords. 

Based on this information, GooPIR would check the popularity of the original 

keyword and find that “iPhone” and “elections” have a similar frequency of use. 

Then, instead of submitting each of these three keywords at different time 

intervals, this approach would send them in a batch. The proposed strategy 

certainly thwarts attacks based on timing. However, its main limitation is that it 

cannot prevent an attacker from combining several of these batches, establishing 

correlations between keywords, and eventually inferring the user’s real interest 

(Ero Balsa, 2012). As an example, suppose that the user’s next query is “Prozac” 

and that GooPIR recommends submitting it together with the keywords “shirt” and 

“eclipse”. In this case, one could easily deduce that the user is interested in 

health-related issues. 

 

Another form of perturbation, which is the one considered in this work, is tackled 

in (A. Avi, 2013), (David Sánchez, 2013). Given a query corresponding to an 

intended interest, (A. Avi, 2013) generates a set of more general, semantically-

related queries that loosely correspond to that interest. Each of these queries are 
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submitted independently to the WSE, and the level of privacy protection is 

determined by the least private term. Upon receiving all search results, the 

proposed system tries to reconstruct a ranking similar to the one that the query 

would have yielded. However, with the increasingly sophisticated tracking 

technologies available these days, it is likely that the WSE can reverse the 

procedure and obtain the actual interest by combining all the scrambled queries. 

Consequently, the submission of multiple topic-related queries may improve 

accuracy, but it may not protect the true specific interest from the service provider. 

 

Similarly, (David Sánchez, 2013) proposes replacing user queries with general 

terms. However, since the aim is not to protect each single search but the 

accumulated query profile, it may happen that certain individual queries are 

exposed to the service provider. Besides, (David Sánchez, 2013) poses evident 

implementation and security issues, which prevent them from being put into 

practice as user tools. For example, the cited work relies on an external database 

for generalizing queries, and applies computationally-intensive natural language 

processing techniques. 
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3. PRIVACYSEARCH - LOCAL GENERALIZATION 
OF WEB SEARCHES IN REAL TIME 

 

In this section, we present the main contribution of this work: a privacy system 

that allows users to distort their query profile by protecting each single query from 

the standpoint of a malicious WSE. 

 

Our approach is based on the principle of query generalization. Although there 

exist theoretical proposals relying on this same principle of information 

perturbation (A. Avi, 2013), (David Sánchez, 2013); there is no practical tool 

available to end-users, which applies this perturbation principle and effectively 

protects each individual search query against WSEs. As discussed in Sec. 2, the 

proposals available in the literature may fail in the protection of search terms and 

cannot be implemented as stand-alone systems. In contrast, our technology is 

specifically designed to meet these two fundamental requirements: 

 

- Real time. At the time of sending a query, it must be replaced 

automatically by a term of a higher semantic category, without the user 

perceiving any degradation in the search engine’s response time. 

 

- Local mode. The generalization algorithm, and in general the query 

protection tool, must perform all operations on the user side, without the 

help of any type of infrastructure. 

 
The few existing proposals in the literature contemplate the use of external 

databases to carry out query processing and/or generalization. This is the case, 

for example, of (David Sánchez, 2013), which uses the Open Directory Project to 

determine the category to which a query belongs. However, querying external 

databases is not an appropriate solution. An attacker, possibly the database 

itself, could leverage the queries to profile the user in question and compromise 

their privacy. 
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In this work, we present PrivacySearch, a technology that is aimed to address 

the issues raised in Sec. 2 and meet the requirements of real time and local-mode 

mentioned above. This tool is aimed at users concerned about their online 

privacy, who wish to prevent search engines like Google from building a precise 

profile based on their queries.  

 

Our solution replaces the queries to be submitted by a user with generic terms, 

so that the search engine cannot find out the exact information they are looking 

for. How generic these terms are determined by the users themselves through 

appropriate and simple privacy configurations.  

 

 
Fig. 5. Selection of the level of privacy in our tool. 

 

Specifically, our tool allows users to configure three levels of privacy: low, 

medium and high (see Fig. 5). The selected privacy level indicates how generic 

the query generated by PrivacySearch will be from the original query2. As an 

example, consider the case in which a user wants to send the specific query 

“bipolar disorder” on a topic as sensitive as health. For a low level of privacy, our 

tool would not modify the query; with a medium level of protection, PrivacySearch 

would send the query “mental disorder”; and for the highest protection level, the 

tool would return the term “health”.  

 

 

 

                                                
2 Users can also choose in which search engine the processed search will be carried out. 
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3 .1 .  System descr ip t ion 
 

PrivacySearch has been developed as a plug-in for the Chrome browser3 and is 

currently integrated in the navigation bar. Web searches are sent through the 

navigation bar after typing the keyword “privacy”. 

 

It is worth emphasizing that the current implementation of our tool, available 

online in the Chrome Store, is based on a semantic ontology without using 

sophisticated natural language processing techniques or deep semantic analysis. 

As we shall describe later in this section, our aim is investigating the practical 

feasibility of query generalization and the performance of a tool implementing this 

principle. 

 

As the user types their query, recommendations of previously processed queries 

may be shown to the user. The ability of our tool to operate in real time is of 

special relevance to conduct this task. 

 

For the development of PrivacySearch, several techniques of Natural Language 

Processing (NLP) have been used. The NLP is a discipline of Artificial Intelligence 

that deals with the formulation and research of computational mechanisms for 

communication between people and machines through the use of Natural 

Languages. 

 

To generalize user queries, we capitalize on WordNet as a categorizer (Miller, 

1995). WordNet is a database that contains lexical relations between words in 

English. In particular, it has 117 798 names, 11 529 verbs, 21 479 adjectives and 

4 481 adverbs. Since each WordNet entry stores its hyperonym and its hyponym, 

it can be construed as an ontology (Vaclav Snasel, 2005). For example, the term 

“dog” has the following hyperonym (note that entity is the common hyperonym to 

all WordNet terms): 

                                                
3 The plug-in is available at https://chrome.google.com/webstore/detail/ 
ecippblhocppaciehgckhfboegciekkf. 
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⇒ Dog 	

				⇒ Canid  

								⇒ ... 	

												⇒ Animal  

																⇒ ... 	

																				⇒ Entity  

 

When our plug-in receives a query, it processes it in three different steps. First, 

PrivacySearch pre-process the text; subsequently it performs a linguistic 

disambiguation; and finally it concludes by making a categorization according to 

the level of privacy selected by the user. Figure 5 shows the processing schema. 

 

 
Fig. 6. PrivacySearch processing steps. 

 

Pre-processing Queries. In this very first step, a series of tasks are conducted 

that aim to prepare the query for further processing by WordNet. This step is of 

special importance for the real-time requirement specified in the previous 

subsection. Essentially, queries are “simplified”, although the meaning is kept, in 

order to diminish the workload of the following two steps. 

 

In fact, as we can see in Figure 7, the pre-processing step occupies more than 

75% of the total execution time of the algorithm. 

 

Preprocessing	
Queries

Linguistic	
Disambiguation Categorization
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Fig. 7. Average execution time consumption for each step of the PrivacySearch 

processing 

 

The pre-processing done in our tool is simpler than the one suggested in (David 

Sánchez, 2013). In the cited work, the authors obtain the grammatical category 

and perform a morpho-syntactic analysis of each term using models of maximum 

entropy. In our case, we perform a less complex natural language processing, 

without taking into account neither the grammar nor the amount of information 

provided by each term of a query, which significantly reduces the computational 

overhead and notably speeds up the response time. 

 

To pre-process a query, we perform the following tasks: 

 

- The query is converted to lowercase, and the score is deleted. In this way, 

we avoid false negatives when searching for each term in WordNet. 

 

- The so-called “stop words” of the query are removed. The stop words are 

words that do not contribute any meaning to the query. This is the case of 

articles, pronouns and prepositions. In this step, they are eliminated to 

reduce the execution time, without altering the meaning of the query. 

 

- The query is tokenized. Tokenization is the process by which the atomic 

units of a text are detected and isolated. 
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- Plural terms become singular. With this process, we aim to prevent false 

negatives in the categorization phase. 

 

- The atomic units or tokens obtained are lemmatized. The lemmatization is 

the linguistic process by which the motto of a given term is determined. 

The slogan is the form that, by agreement, is accepted as representative 

of all the flexed forms of the same word, that is to say, the terms that the 

tool will find as entries in WordNet. For this step, we use the WordNet 

native slogan map. 

 

- We obtain the n-grams existing in the query. An n-gram is a contiguous 

sequence of n elements contained in a text. The elements can be 

phonemes, syllables, letters, or words. For reasons of efficiency, our 

categorization algorithm uses unigrams and bigrams. 

 

- Finally, terms are eliminated in languages other than English, or that do 

not exist in WordNet, in order to reduce the computing time in the language 

disambiguation step. 

 

Linguistic Disambiguation. Once the query has been pre-processed, we must 

determine the correct meaning of each term. WordNet stores the different 

meanings that terms can have. For example, the word “bank” can refer to a pile 

or mass of some material, or a company dedicated to perform financial 

operations, among other meanings. The only way to ascertain the correct 

meaning is through linguistic disambiguation (Mark Stevenson, 2003). 

 

Language disambiguation is currently an open problem, and there exist several 

approaches to tackle it. In our plug-in, we have implemented a linguistic 

disambiguation algorithm based on the Lesk algorithm (Lesk, 1986). This 

algorithm relies on the principle that neighbour’s words within a text tend to share 

a common theme. The concrete implementation of the algorithm is shown below 

by means of an example: 

 



 

 

 21 

1. Let A B C be the input query. 

 

2. Assume each term has a set of associated meanings, denoted as follows: 

A ∈ {a1, a2, a3}, B ∈ {b1}, C ∈ {c1, c2}. 

 

3. All possible permutations of meanings are formed: 

(a1, b1, c1), (a1, b1, c2), (a2, b1, c1), . . . , (a3, b1, c2)   

 

4. A function F(a, b) is defined that returns the distance between a pair of 

meanings:   

  

𝐹 𝑎, 𝑏 = 	
1

𝐻)/2
+	

|./|

012

|.3|

412

1
𝐻5/2

 

being Ha the sequence of existing hyperonyms between a and entity, and 

Hb the sequence of existing hyperonyms between b and entity, where  

Hai ≠ Haj 

 

5. F is evaluated for each pair of permutation meanings, and the permutation 

with less distance is chosen. 

 

In the design of our tool, we have limited the number of possible permutations in 

the last step, since it increases exponentially with the number of terms and 

meanings of each term. 

 

Below we illustrate with an example the linguistic disambiguation of the term bass 

from English. This term can refer to a musical instrument or a type of fish, among 

other meanings. If a user types the query “I like playing the bass guitar”, our tool 

should return a generic query other than if the query “I like fishing sea bass” was 

made. With the proposed query disambiguation algorithm, our tool is able to 

capture these two meanings. In particular, for the low level of privacy, the 

algorithm returns “musical performance guitar” for the first query, and “outdoor 

sport saltwater fish” for the second one. 
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Categorization. Once the original query has been pre-processed and the correct 

meanings of each n-gram obtained, we proceed to conduct the categorization of 

the resulting terms. To carry out this step, we utilize WordNet as a categorizer. 

WordNet is a very popular lexical database of the English language. The 

proposed categorization algorithm is described in Algorithm 1. 

 

 
 

As we discussed at the beginning of this section, WordNet can be considered an 

ontology. This allows us to easily access all the hypernonyms of a term until 

reaching the common hyperonym to all of them, i.e., entity. Accordingly, for each 

n-gram existing in the processed query we extract a hyperonym. 

 

As frequently done in information retrieval and text mining, our query classifier 

also relies on the term frequency-inverse document frequency model. Said 

otherwise, we weight the resulting hyperonym/s based on the frequency of 

occurrence of the corresponding unigrams and bigrams. 

 

Next, we specify the rule for choosing the depth of the hyperonym/s in the 

hierarchy, as a function of the level of privacy: 
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- For the level “low”, the first hyperonym is extracted from each n-gram. 

 

- For the privacy level “medium”, we compute the depth from the n-gram to 

entity, and the hyperonym with a depth of 10% is extracted. 

 

- For the privacy level “high”, we compute the depth from the n-gram to 

entity, and the hyperonym with a depth of 20% is extracted. 

 

A maximum depth of 20% has been configured since, for a large number of terms, 

experimental evidence shows that a higher percentage returns results that are 

too generic and, therefore, of little utility. In addition, since WordNet is not an 

ontology per se (it contains redundancies in its hierarchy), we proceed as follows: 

to avoid cycles when categorizing, when one hyperonym is detected, the 

following available secondary hyperonym is chosen and not the direct one. 

 

3 .2 .  Implementat ion Deta i ls  
 

For implementing the system described in the previous section, several options 

were considered. One of them was OpenSearch, a standard that allows 

publishing search results in a format suitable for syndication and aggregation, so 

web pages and search engines are able to publish their results in an accessible 

way. 

 

Using OpenSearch is simple, it is defined in an xml file that specify which output 

URL is generated for each input query, in this way, we would obtain a search 

service available for all possible browsers. 

 

The counterpart is that both the OpenSearch definition and the search service 

logic must be uploaded on a server. With PrivacySearch we look for all the 

processing to be done from the client side, so OpenSearch is not suitable for our 

implementation. 
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Fig 8. OpenSearch implementation schema. 

 

Once OpenSearch has been discarded, the only option left consists on 

developing an extension for a specific browser. We chose Google Chrome since 

its API to develop extensions is simple and widely documented, and also, it is the 

browser with the highest market share, having more than half of the market share. 

 

On the implementation for Google Chrome it is important to point out that we only 

keep two elements in the browser session memory: (i) the level of privacy chosen 

by the user (by default low), (ii) the search engine chosen by the user (by 

Google). No genuine search is sent to any server, nor does it persist in the user's 

browser or computer. 

 

The WordNet database is stored in the extension per se. It should be mentioned 

that for efficiency in both execution time and memory, the original database is not 

used. 

 

Two important changes were made to WordNet. First, non-relevant information 

such as definitions, hyponyms, multiple flags, etc. was eliminated in order to 

minimize the size of the database. Once minified we converted it into Javascript 

maps so that retrieving elements from it was as fast as possible. 

 

In appendix A we explain in more detail the structure and logic of our 

implementation.  
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4. EVALUATION  
 

In this section, we evaluate our tool in terms of computational efficiency and 

performance, with the aim of verifying whether the design requirements specified 

in Sec. 3 are met. Due to the relevance of showing recommended queries (i.e., 

generalized terms) in real time, we have performed an analysis of the execution 

times obtained with selected real queries from a database. 

 

The database of queries we have employed in our experiments was published by 

the AOL search engine in 2006 (Arrington, 2006). This database contains about 

37 million queries of 657 000 unique users, obtained during a period of three 

months (from 1 March 2006 to May 31, 2006). Other databases are available 

such as those of Altavista (Beales, 2010) and MSN database (Zhicheng Dou, 

2007), but since they are rather similar in terms of user queries, we restrict just 

to the AOL data set. 

 

To carry out our analysis, we run PrivacySearch on the first 100 000 records of 

the database. The selected subset includes searches made between March 1 to 

March 6, 2006. Tables 1 and 2 respectively show some statistics of the data set 

under study, and those of the data after the pre-processing phase. 

 

 

1 term in the query: 30 603  Max. 25 

2 terms in the query: 26 149  Mean 2.65 

3 terms in the query: 18 750  Standard deviation 1.79 

4 terms in the query: 11 195    

5 terms in the query: 6 415    

>5 terms in the query: 6 888    
Table 1.  Some stat is t ics  of  the f i rs t  100 000 quer ies of  the AOL query 

database.  
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0 terms in the query: 29 502  Max. 12 

1 term in the query: 21 731  Mean 1.56 

2 terms in the query: 24 859  Standard deviation 1.41 

3 terms in the query: 14 939    

4 terms in the query: 6 082    

5 terms in the query: 1 925    

>5 terms in the query: 962    
Table 2.  Some stat is t ics  of  the f i rs t  100 000 quer ies,  a f ter  pre-process ing.  

 

One of the effects of the pre-processing step is an average reduction of 41.13% 

in the number of terms of per query. This significant reduction is essentially due 

to the elimination of stop words, the deletion of terms without an entry in WordNet, 

and the grouping of terms in n-grams. Furthermore, around 30% of queries have 

been omitted, since a number of them either referred to URLs, or included 

character names and/or terms, or were written in a language other than English; 

the current version of our tool only works for English searches. 

 

 
Fig. 9. Average execution time based on the number of terms. 
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Fig. 10. Average execution time. 

 

Our experimental results are shown in Figs. 9 and 10. In the former figure, we 

observe that, in more than 85% of cases, the tasks of pre-processing, 

disambiguation and categorization were performed in less than 3ms. This result 

is of special relevance as it demonstrates that privacy protection may come at 

the cost of negligible processing overhead. In the latter figure, on the other hand, 

we can appreciate that the average running time increases exponentially with the 

number of terms. The reason is due to the fact that the number of computations  

performed by the linguistic disambiguation algorithm depends on the number of 

terms in the query and the number of meanings per search term. 

 

Despite this, if we consider only the pre-processing phase, the average number 

of terms per query in the selected subset of data yields 2.65; in the Altavista and 

BIEW databases, this number becomes 2.35 and 1.63, respectively. This, 

together with the fact that 99.93% of the executions carried out in our analysis 

did not exceed 10ms, allows us to conclude that our tool performs suitably for 

real-time use. Last but not least, as far as memory use is concerned, our 

extension occupies 4.3MB approximately once packaged, and 51.6MB once 

installed in Chrome and in use. 
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5. CONCLUSIONS AND FUTURE WORK  
 

The use of personalization techniques by WSEs is a promising way to improve 

the quality of searches. However, these techniques lend themselves to the 

construction of profiles of interests and preferences, which pose serious concerns 

to user privacy. This work focuses on a data-perturbative mechanism by which 

specific queries are transformed into more general terms (although semantically 

similar) and so less sensitive. Although there exist few proposals based on query 

generalization, no solution has been designed nor developed that brings this 

principle into practice and is intended for end-users. 

 

In this thesis, we have proposed PrivacySearch, a browser tool that allows users 

to generalize the queries sent to a search engine, automatically, without the need 

of any type of infrastructure or external database, and in real time. With 

PrivacySearch, users can control the specificity of their interest profiles in front of 

a search engine, through a flexible and intuitive control of the sensitivity of the 

information they are disclosing. In contrast to other approaches, our tool protects 

each individual query independently and, as such, does not make any 

assumption on the ability of the WSE to track all them. Experimental results show 

that our tool is able to categorize complex searches in real time while users types 

their queries, without affecting the performance of the system. 

 

Future work will evaluate the proposed tool further with real users, and attempt 

to determine the utility loss incurred by the generalized queries (e.g., how many 

result pages a user must go through to find the link that best fits the original 

query). 

  



 

 

 29 

APPENDIX A: PRIVACYSEARCH 
IMPLEMENTATION STRUCTURE 

 

The structure of the implementation of PrivacySearch is the following one: 

 

 
Fig 11. PrivacySearch implementation structure. 

 

In the directory js/src the files in Javascript that contain the logic of our extension 

are stored: 

 

- constants.js -  Stores all the constants used, such as the depth of 

searches with medium and high privacy level, the index to the root node 

of WordNet, etc. 

 
- preProcess.js - It contains all the logic for pre-processing queries. 
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- singularize.js - Map and code used for singularize terms. 

 
- wsd.js - This file has the word sense disambiguation algorithm 

implementation, and also the logic used in the categorization of queries.  

 

In the js/wordnet directory, the simplified database based on WordNet is stored: 

 

- data.js - This file stores all WordNet terms together with its hyperonyms, 

without distinguishing between names, verbs, adjectives, etc. 

 
- index.js - It contains (term - index) tuples. 

 
- lemmas.js - Map with English lemmas, used in the lemmatization process.  

 
- stopwords.js - List of English stop words. 

 

In the root directory we have included all the files that are related to the 

extension's deployment and visualization. 

 

- about.html - The ‘About PrivacySearch’ view. 

 
- privacyPolicy.html - The ‘PrivacyPolicy’ view. 

 
- popup.html & popup.js -  Main view that is shown to the user, it also 

controls the changes of parameters made by the user. 

 
- background.js - This file controls the searches, recovering from session 

the level of privacy, and the selected search engine, to carry out the 

desired search by the user. 

 
- manifest.json - It is information that Google Chrome needs from the 

extension (where the logic files are, what permissions are needed, etc.). 
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FIGURES INDEX 
 
Fig. 1. The profi le of a user is modelled in Google as a l ist of topic 

categories. The profi le shown here reflects the user is interested 

in parenting-related topics, which might reveal she is pregnant.

 7 

 

Fig. 2. Three-quarters of search users say collecting user 

information to personalize search results is not okay. Source: 

(Kristen Purcell, 2012)  Survey, January 20-February 19,2012. 

N=2,253 adults, age 18 and older. 8 

 

Fig. 3. Trade-off between Privacy and search-accuracy. Source: 

(Parra-Arnau, 2013) 9 

 

Fig. 4.  Schema representing privacy techniques in Web search. 

Orange boxes represent existing applications; green boxes 

represent proposals. 11 

 

Fig. 5. Selection of the level of privacy in our tool. 16 

 

Fig. 6. PrivacySearch processing steps. 18 

 

Fig. 7.  Average execution t ime consumption for each step of the 

PrivacySearch processing 19 

 

Fig 8. OpenSearch implementation schema. 24 

 

Fig. 9. Average execution t ime based on the number of terms. 26 

 

Fig. 10.  Average execution t ime. 27 

 

Fig 11.  PrivacySearch implementation structure. 29 
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TABLES INDEX 
 

Table 1. Some statistics of the first 100 000 queries of the AOL query database.

 25 

 
Table 2. Some statistics of the first 100 000 queries, after preprocessing. 26 
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