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0. Abstract 

Fermentation problems during winemaking decrease product quality and may cause important 

economic losses. Thus, more and more wineries are interested in incorporating quality-by-design strategies 

instead of postproduction testing. In this sense, early detection with fast analytical techniques, such as FTIR, 

could be advantageous because they would allow to detect unwanted situations an even ‘readjust’ the process 

on time and minimize rejects. 

In this study, fermentations under normal conditions and with lactic acid bacteria contamination were 

monitored with usual classical analytical techniques (density, pH and enzymatic analysis for L-malic acid). A 

strategy consisting on coupling ATR-FTMIR spectroscopy and multivariate analysis for fermentation process 

monitoring is proposed.. The aim was to develop a portable, rapid, easy-to-use and economic device to monitor 

fermentation and to detect deviations. 

Multivariate techniques such as exploratory methods (Principal Component Analysis), linear 

regression methods (Partial Least Squares Regression) and classification methods (Partial Least Squares 

Discriminant Analysis) were applied in order to control the whole fermentation process. Standard fermentation 

parameters were successfully predicted, and lactic acid bacteria contamination detected. 

La monitorización por metodología clásica de procesos alimentarios, y en concreto en la industria 

enológica, puede suponer que los posibles problemas que se den durante la fermentación supongan una pérdida 

de calidad del producto y por tanto una pérdida económica. Por ello, se intenta llevar a cabo hoy en día métodos 

de control durante el proceso con técnicas analíticas rápidas, como el infrarrojo de transformada de Fourier. 

Esta metodología de trabajo permite detectar problemas en un estado que pueda ser reajustado sin pérdida de 

calidad en el producto final. 

En el presente estudio, se llevan a cabo dos tipos de fermentaciones, una en condiciones normales y 

otra con una contaminación por bacterias lácticas. El seguimiento de las fermentaciones se hace tanto por 

metodología estándar (densidad, pH y análisis enzimático del ácido L-málico) como mediante espectroscopía 

ATR-FTMIR usando análisis multivariantes de datos. El objetivo es conseguir un equipo portátil, que además 

sea rápido, económico y fácil de usar para detectar contaminaciones y monitorizar el sistema. 

Se utilizan diferentes técnicas multivariantes en el presente estudio, métodos exploratorios, como el 

Análisis de Componentes Principales; métodos de regresión lineal, como la Regresión por Mínimos Cuadrados 

Parciales; y métodos de clasificación; como el análisis discriminante por mínimos cuadrados parciales. Todo 

ello con el objeto de controlar el proceso de fermentación, pero también predecir los parámetros de control 

básicos y detectar la contaminación por bacterias lácticas.
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1. Abbreviations 

ATR Attenuated Total Reflectance 

FT Fourier Transform 

LAB Lactic Acid Bacteria 

MIR Mid Infrared  

MLF Malolactic Fermentation 

NIR Near Infrared 

PCA Principal Component Analysis 

PLS-DA Partial Least Squares Discriminant Analysis 

PLS Partial Least Squares  

RMSEC Root Mean Square Error of Calibration 

RMSECV Root Mean Square Error of Cross-Validation 

RMSEP Root Mean Square Error of Prediction 

SNV Standard Normal Variate
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2. Introduction 

Alcoholic fermentation 

The basis of the wine production is the yeast biochemical transformation of the must sugars into 

ethanol. This is the simplest interpretation as carbon dioxide and ethanol are the principal products of the 

transformation, but the yeasts also produce many other molecules as part of their metabolism. These secondary 

processes should be also controlled because the compounds produced are responsible for wine complexity, 

specificity and quality mainly when these are related to organoleptic properties1.  

The main yeast species associated to alcoholic fermentation is Saccharomyces cerevisiae. 

Traditionally, each winemaking region used its native yeasts to carry out spontaneous fermentations. But later, 

with the industrialization, this process involved inoculating selected yeasts that ensured rapid and complete 

fermentations, giving rise to very homogenous wines. This is why we are currently facing a moment of change, 

because today consumers demand unique products, so the current trend is to return to native yeasts to get more 

organoleptic complexity. 

Despite wine production in Spain has a notable impact in the economy and it is present in the country 

for over thousand years, the industrial development of the sector has been very slow until few years ago. This 

slow progress is explained because of the traditional concept of wine making as a natural process. Nowadays, 

it is understood that wine quality needs the implementation of technology, and without it, alcoholic 

fermentation in wineries would still have a lot of problems related to stuck, sluggish and/or contaminated 

processes. Stuck and sluggish fermentations are mainly due to deficiency of yeast assimilable nitrogen (the 

second nutrient yeast requires after carbon sources) or to sudden temperature changes2. Spoilage is associated 

to the presence of other unwanted microorganisms in the must or in unsterile equipment, which find suitable 

conditions that allow their growth till being a large enough population. Typical microorganisms related to 

spoilage are acetic acid bacteria but could also be lactic acid bacteria (LAB) and non-Saccharomyces yeast. 

Lactic acid bacteria are the microorganisms related to malolactic fermentation (MLF) used in 

winemaking to decrease acidity of wine, typically in red or highly acidic wines. The decrease is explained 

because of the biochemical transformation of L-malic acid, a dicarboxylic acid, to L-lactic acid, a 

monocarboxylic acid and carbon dioxide. As it occurs with yeast, the secondary metabolism of the LAB 

implies the formation of many other compounds that could also affect organoleptic properties of wine3.  

When dealing with red wine, the MLF process is promoted to get a wine deacidification and, therefore, 

to increase the wine organoleptic quality given that this lower acidity is also more compatible with the high 

tannicity of these wines. However, in white wines it is mostly considered a drift from the winemaking process 

that must be avoided because it mainly increases pH and produces the degradation of organic acids such as 

tartaric, citric or sorbic acids and even results in increased volatile acidity concentrations or toxic compounds4. 

From all these considerations, it is clear that to get a good quality wine a control of the alcoholic 

fermentation process is needed. In a cellar, the most simple and useful parameters that allow this control are 
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density (which is related to sugars content), pH (which is related to acids content) and visual and aroma 

evaluation (which allows to detect abnormal colour and/or aroma). Thus, oenologists use simple instruments 

and their knowledge to measure these parameters, typically once or twice a day, which is more than enough 

when the fermentations work correctly5–7. However, when a problem is detected, oenologists should act very 

fast to minimize the effect on the wine quality and, sometimes, the corrective action is not easy nor evident. 

Thus, instruments able to provide specific real-time information during the course of the fermentation, and not 

only when the oenologist is able to make a measurement, are required. 

The Process Analytical Technologies (PAT) approach is a system for designing, analysing and 

controlling manufacturing, through timely measurements of critical quality and performance attributes of raw 

and in-process materials and processes, with the goal of ensuring final product quality. The hypothesis behind 

PAT is that the quality of the products can be incorporated by process design and not by postproduction quality 

testing. Improved instrumental analytical techniques and multivariate data analysis tools have allowed 

industries to move analysis closer to the process from off-line measurements via at-line to on-line and in-line 

analysis, and thus have opened the way for the introduction of the principles of PAT. Therefore, PATs in the 

wine sector have a great potential to improve product quality and safety, process and resource efficiency, 

yields, and consequently competitiveness. 

PAT was first introduced by the pharmaceutical industries and, like this sector, food has also strict 

laws and requirements. However, unlike pharmaceutical batches, food matrices are very complex and comprise 

a wide range of molecules8. Furthermore, wine has a great variability along the years because of the climate, 

harvest time and oenological practices, which introduces a greater complexity when it comes to controlling 

the process. Thus, to get reliable results, PAT must be optimized for each vineyard or type of wine, because 

only in this way the wine producer can control thoroughly the winemaking process and achieve precision 

enology7. 

Even so, different technologies have been satisfactorily applied in wine fermentation processes under 

the PAT concept. Buratti et al.1 performed a control of an alcoholic fermentation in wine with four techniques 

(electronic nose, electronic tongue, mid-infrared and near-infrared spectroscopy) aiming at checking their 

feasibility to determine the kinetics of the fermentation in comparison with the standard chemical 

determinations. They concluded that the non-destructive methodologies could be valid and used as standard 

analysis techniques. 

Infrared spectroscopy 

Among the different fast techniques, infrared technology seems to be a good option to obtain on-time 

information9. This is because it is a non-destructive technique, which can provide information about molecules 

or specific functional groups1 and, overall, it implies a very fast and simple analysis, solvent free and with little 

or none sample preparation. 
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The infrared region ranges from 700 to 106 nm (IR spectroscopy typically is represented in cm-1, 

ranging from 10 to 12800 cm-1) of the electromagnetic spectrum and it is divided into three different regions: 

near, mid and far infrared. Usually near and mid-infrared are used as analytical tools since both allow 

identification of organic molecules, and far-infrared is restricted to inorganic compounds and organometallic 

molecules.  

The near infrared (NIR) spectrum is characterized by complex overtones and combination bands of 

fundamental vibrations. Thus, since the useful information is contained in weak bands result of overtones and 

combinations, the applicability is limited when the concentration of the analyte is low, making difficult to 

build calibration models and to extract the information of the spectrum. 

The mid infrared (MIR) spectrum is the result of fundamental stretching, bending and rotating 

vibrations, so it can be used to determinate fundamental structural information10,11. In general, active 

fundamental vibration bands have stronger line strength and are better resolved in comparison with near 

infrared12. MIR spectroscopy has the drawback of the high absorbance of OH stretching and bending in 

aqueous matrices13. To get over this problem, attenuated total reflectance (ATR) is employed. This sampling 

accessory is based on two concepts: first the incident light reaches the sample with an angle of 45º to avoid 

peak distortions; then the radiation goes through a high-refractive index medium, which is also transparent to 

IR, such as germanium or diamond crystals14. ATR cells simplify sample handling, with a reduction in errors 

associated to traditional transmission cells. 

 
Figure 1. Description of the main parts of the ATR device. 

The mechanism of absorption is explained by the rapid change in refractive index across the IR 

spectrum, and the molar absorption coefficient attributed to the vibrational mode. The IR radiation penetrates 

in the sample just between 0.5 to 2 µm and, therefore, only one drop of the liquid sample is required. 

Furthermore, optical path reproducibility enables the possibility of reducing partial spectrum obscurity 

attributed to water, that is, the saturation of the detector. In the case of hydro-alcoholic matrices such as wine 

it allows to use the whole range of MIR, what is very useful when dealing with complex mixtures because 

each molecule contributes in a special way to the overall spectrum9,15. 

In addition, the combined use of ATR with Fourier transform (FT) makes MIR a feasible tool to 

generate a molecular fingerprint of the sample analysed. The FT-MIR spectrometer parts consist of an IR 

source, an interferometer, a sampling system (in this case ATR), a detector and finally a data processor. The 
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source emits an IR beam, which passes through an interferometer. Then the beam is divided by fixed and 

moving mirrors. As the mirror moves, each wavelength is periodically transmitted or blocked, and then the 

detector measures the recombined and interfered beam after passing through the sample using a reference laser. 

The patterns produced by the interferogram are recorded, containing all the acquired information, and resolved 

in a final spectrum using a FT algorithm16. 

Because of the applicability of this technique to complex matrices, it has been widely applied to food 

and specifically to wine. Picque et al.17 in 1993 determined the feasibility of using IR to control the process of 

alcoholic and malolactic fermentation by the prediction of the principal molecules related to both 

fermentations. However, MIR instruments were not developed enough at that moment considering that the IR 

transparent crystals were not common. Afterwards, Teixeira et at.13 in 2018 compared NIR and MIR with 

Raman and found all the techniques suitable to determine the same parameters as Picque, and thus showing 

the growing advance of the infrared technique. 

Nowadays, IR spectrometers have not only the forehead advantages (rapid analysis times, small 

sample sizes, sensitivity, few sample preparation steps, …), but they can also be portable, what allows to move 

the laboratory to the required place. Equipment is nowadays small, affordable and easy-to-use, with the relative 

disadvantage of the generation of big amounts of data18. 

Manfredi et al.19 proved that it is possible to obtain good results based on the IR spectrum obtained 

with a portable device, providing farmers and certification bodies with a powerful tool to authenticate hazelnuts 

based on their origin, and reaching classification accuracies of more than 97%. Applicability of portable ATR-

FTMIR to wine analysis has recently been proven by Cavaglia et al.20, by identifying micro-fermentations with 

a deficiency of yeast assimilable nitrogen. 

Multivariate Data Analysis (Chemometrics) 

The international Chemometrics Society defines this discipline as the science of relating measurements 

made on chemical system or process to the state of the system via application of mathematical or statistical 

methods. Fermentation control with ATR-FTMIR is highly complex as it involves an evolving process which 

generates a data matrix of three dimensions (cube), Xnxtxm, being n the number of samples (batches), m the 

number of variables (in the present study, wavelengths of the IR spectrum) and t the number of time points 

collected of the alcoholic or malolactic fermentation. Therefore, a special chemometric data treatment is 

required to extract the relevant information underneath the whole spectra. 

In the present study, a systematic sequence was performed in order to standardize the work when 

applying different chemometric tools. First, the data obtained with IR spectroscopy requires an unfolding of 

the three-way matrix. Unfolding can be done in two ways, as ((n x t) x m), so arranging the data sequentially 

in time; or as (n x (t x m)), where every sample has the spectrum one after another at different time points. The 

first type of unfolding allows working time by time for all the samples, whereas the second one allows working 

with the variation in time of the spectrum. 
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Once the matrix is unfolded, removing irrelevant variation not related to the information of interest, 

due to equipment and IR source, is required. Typical data pre-processing techniques applied to homogenous 

aqueous samples in infrared technology are standard normal variate (SNV), which corrects the baseline shift; 

smoothing, which reduces random noise from the instrumental signal; mean centering, which makes the mean 

of each variable zero; and first and/or second order derivatives, which may increase differences found in the 

spectra21,22. 

After data pretreatment, data are ready to be processed and analysed by pattern recognition and/or 

multivariate calibration algorithms. Pattern recognition techniques can be classified into unsupervised or 

supervised. Typically, an unsupervised technique is Principal Component Analysis (PCA), which reduces the 

dimensionality of the original data by preserving most of the information contained. This is achieved by 

calculating new uncorrelated latent variables, called principal components (PCs), which are linear 

combinations of the original variables and explain the maximum possible variability in the data in a 

hierarchical way (PC1 explains more information than PC2, PC2 more than PC3, and so on). When PCA is 

visually represented it is possible to figure out if there are groups, trends or outlier samples in the dataset 

analysed. 

Unlike PCA, supervised techniques make use of the information about the physicochemical property 

or the class (category) of the samples analysed and are used for prediction or classification/discrimination 

purposes. One of the techniques commonly applied is Partial Least Squares (PLS) Regression. Basically, it 

uses the same concept of PCA, which consists of building new orthogonal (uncorrelated) variables that better 

explain the variation in the spectra but also correlate with a measured property. Another supervised technique 

is PLS Discriminant Analysis (PLS-DA), which is based on the PLS regression method, but models a given 

class/category (arbitrarily assigned a 0 or 1), instead of a measured property.  

Finally, to reduce the noise of the IR spectrum, to optimize the extraction of information, and to create 

more reliable models, with the aim of improving the performance of the pattern recognition or multivariable 

calibration, it is sometimes useful to select those variables that are most related to the sought information. This 

is also very useful when using at- or in-line measurements in industries, since it enables the use of non-so high-

resolution instruments or to measure just a part of the spectrum16. 

Objectives 

The main aim of this study was to determinate the suitability of a portable mid-infrared spectroscopic 

system, to control the course of the alcoholic fermentation of a white grape must by following the PAT 

philosophy. Moreover, since the portability of the instrument allows to make measurements in the cellar, the 

prediction capability of this system was also studied by evaluating parameters useful in the cellar, such as pH 

or density. Finally, the usefulness of this spectroscopic system to detect the spoilage of LAB (in early stages) 

was also evaluated.
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3. Materials and Methods 

Grape must and microorganisms 

The must was obtained from Mostos Españoles S.A. (Ciudad Real, Spain) and was collected in 

September 2017. To avoid natural fermentation, it was stored at -20 ºC in 1.5 L bottles what were filled under 

N2 atmosphere. The defrosting process was carried out at 5 ºC and then, it was diluted with MilliQ water to 

adjust the sugar concentration to 200 ± 10 g/L. 

The inoculated yeast used for the experiment was the commercial S. cerevisiae active dry yeast “E491” 

(Vitilevure Albaflor (YSEO), Danstar Ferment A.G., Denmark) and the inoculated bacteria was the 

commercial freeze-dried blend of Oenococcus oeni and Lactobacillus plantarum “Co-inoculant Bacteria 3.2” 

(Anchor Oenology, South Africa). 

Micro-fermentations 

To have a higher number of monitored samples, the wine-making process was followed at microscale 

and 6 different batches were monitored. Thus, 34 control fermentations (distributed in 6 different batches) and 

33 fermentations with lactic bacteria contamination (distributed in the same 6 different batches) were prepared 

by using 350 mL of diluted grape must poured into conical flasks. Each flask was supplemented with ENOVIT 

and ACTIMAX (0.30 g/L each) to get a final concentration of yeast assimilable nitrogen of 300 ± 20 mg/L. 

All the fermentation processes were carried out at 18ºC. 

Each sample was inoculated with 0.105 g of active dry yeast E491 rehydrated in 2 mL for 30 minutes 

at 35 ºC to get a final concentration of 3·106 cell/mL. Related to simulated LAB contamination samples, these 

were also inoculated in different stages of alcoholic fermentation to reproduce typical critical moments in 

fermentation. This inoculation of LAB was performed taking into account the producer indications (1 g = 1011 

cell/mL) to get a final concentration order of 106 cell/mL. 

An additional experiment (batch 7) was performed by adding known amounts of L-(-)-malic acid 

(³95%) (Sigma-Aldrich, Madrid). In this case we followed 3 fermentations under normal conditions and 3 

LAB spoilage fermentations that were supplemented with 2 g/L of malic acid (i.e. the samples increased its 

malic acid content from 1.6 to 3.6 g/L).  

Process monitoring  

To ensure the correct progress of the fermentation, density and pH were measured twice a day. Density 

was measured using Densito2Go electronic portable densimeter (Mettler Toledo, United States) and pH using 

pH 7+DHS pH-meter with a 201 T portable electrode (XS Instruments, Italy). Related to the samples 

inoculated with LAB, the malolactic fermentation was also followed by measuring L-malic acid with a Y15 

Analyser (Biosystems, Barcelona, Spain). 
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Infrared analysis 

Fourier-transform mid-infrared spectra were obtained using a portable 4100 ExoScan FTIR instrument 

(Agilent, California, USA), equipped with an interchangeable spherical ATR sampling interface, consisting 

on a diamond crystal window. The spectra were collected in the range of 3999 to 649 cm-1, with a resolution 

of 8 cm-1 and 32 scans at controlled temperature (63 ± 1 ºC). To eliminate interference from laboratory 

humidity and CO2 bands the spectra were compensated by running against an air blank. 

The samples were collected, at least, once every day to follow both alcoholic and malolactic 

fermentations until both were finished. To avoid the microorganisms’ effect, mainly on the UV absorption 

when dealing with enzymatic measurements but also on the IR spectra, 1.5 mL of each corresponding sample 

were centrifuged at 10000 rpm for 10 minutes and the pellet was discarded. One drop of the sample was placed 

on the crystal and the spectra acquisition was done right after. Each sample was analysed in triplicate with a 

previous air-background collected spectrum. Before each analysis the crystal was thoroughly cleaned with 

deionized water and cotton wipes.  

Spectra acquisition and multivariate analysis 

Spectra acquisition, instrument control and preliminary file manipulation were done using the 

Microlab PC software (Agilent, California, USA) and data were saved as .spc files. Calculations were carried 

out using the mean spectra of the triplicates by applying in-house routines written in Matlab v.8.6 R2015b 

(Mathworks, MA, USA) and the PLS Toolbox software v.6.2 (Eigenvector Research, Manson, WA, USA). 

After a preliminary exploratory analysis with PCA, PLS regression models were developed to predict 

fermentation parameters, and PLS-DA models were used to detect LAB spoilage.
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4. Results and Discussion 

Alcoholic Fermentation 

When introducing Process Analytical Technologies by using a multiparametric fast technique in a 

system, the first step is to find the relationship between the usual or classical process control measurements 

and the simple at-time measurements with the data obtained with the fast technique (in our study, the ATR-

FTMIR technique)8. In the case of wine, typical parameters measured in the winery are density and pH. 

Figure 2 shows the fermentation kinetics of density and pH in the six batches. Density is an indirect 

measurement to follow alcoholic fermentation, as it takes into account reducing sugars at the beginning, and 

in the last hours the ethanol formed in the process. As shown in the evolution curves belonging to six different 

processes, a similar profile appeared, typical of grape must fermentation23.  

 
Figure 2. Overall fermentation kinetic profiles of density and pH of the six different batches. 

As shown in Figure 2a, three different categories for the batches could be distinguished, the first one 

beginning the fermentation with a density value of 1.087; the second with 1.083 and the last one with 1.080 

g·mL-1. The different density batches were performed in order to reproduce year-variability in a winery. During 

the alcoholic fermentation, glucose and fructose were gradually transformed into ethanol by yeasts enzymes 

until they were totally consumed24. At the beginning of the fermentation, the total reducing sugar content 

ranged between 210 and 190 g·L-1. Then, it considerably decreased in the first 80-90 hours (vigorous 

fermentation) and finally it decreased slowly until total consumption. 

As the fermentation process progress, yeasts have various metabolic paths in which they produce 

different acid compounds such as citric or succinic acids. These compounds, together with the consumption of 

ammonium, are responsible of the downward trend of pH in fermentation, as it is shown in Figure 2b. pH 

decreased from 4.07 ± 0.08 until it reached its minimum between 60-90 hours, because of the production of 

acids by yeast. Later, when the malolactic fermentation also occurs (in our study due to LAB spoilage) the pH 

trend changed and increased because of the transformation of malic acid into lactic acid, so measurement of 

pH was needed until the end of the MLF. It has to be noted that the control samples do not suffer this process, 

so these samples are monitored during that time as finished wines. However, since no filtration was applied 
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(to emulate the LAB samples matrix), we can consider that these samples suffered an “ageing on lees”. 

According to bibliography25, this kind of ageing improves tartaric acid stability because of the formation of 

tartaric salts. This fact would explain the pH increase in control fermentations of even 0.2 as the time 

progressed. 

Figure 3 shows the MIR spectra of a single micro-fermentation at different points of the alcoholic 

fermentation in order to illustrate the changes in the spectrum. It is worth mentioning that the regions from 

850 to 649 cm-1 were not used in this study due to their high irreproducibility caused by high absorbance 

values. 

 
Figure 3. MIR spectrum evolution in a typical grape must alcoholic fermentation, from 0h to 208h 

Grape must, wine and all the intermediate states are complex mixtures that share the same molecules 

or even the same functional groups in different molecules, so it is very difficult to assign specific peaks to a 

given compound. However, it is reasonable to attribute the largest peaks to chemical bond vibrations of the 

principal compounds6. Several authors26–29 had assigned the region from 3700 to 3000 cm-1 to water because 

of the OH stretching absorption, which is also related to the band between 1780 and 1500 cm-1. As water 

composition does not change during alcoholic fermentation, the changes observed in these regions correspond 

to the contribution of ethanol (when increasing throughout the alcoholic fermentation) over the OH stretching 

signal and to the pH variations that affect water bonds. 

As shown in Figure 3 the region from 1500 to 900 cm-1 has the largest variability, what is expected 

because acids, alcohols and sugars present the major peak absorptions in that area. The complex bands between 

1500 and 1100 cm-1 are associated to CH2, C-C-H and H-C-O typical functional groups of organic acids, 

alcohols and proteins, but they can also be found in sugars or other molecules. The major variation from 1100 

to 900 cm-1 is related to C-C and C-O stretching of sugars, glucose and fructose, which are consumed due to 

Time: 0 h

Time: 208 h

Time: 0 h

Time: 208 h
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the biochemical yeast transformation to ethanol. The peak around 1042 cm-1 inside this major area could be 

assigned to C-O stretching of alcohols, mainly ethanol30. 

Finally, other minor changes in the spectra are found around 3000 and 2800 cm-1, and also around 

2341 cm-1. The first area has been related to stretching of CH3 and CH2 and considering that it is only visible 

while fermentation progress, some authors assigned it to ethanol5,27,28. The peak around 2341 cm-1 is only 

visible in fermenting must, as it is related to CO2 absorbance band5,28. 

Preliminary exploratory analysis with PCA was performed by using the mean spectra in order to check 

the repeatability of the measurements, to detect outliers, and to recognize patterns in the samples’ distribution. 

PCA sample scores were calculated on PC1 and PC2 and these were plotted versus time in order to find time-

related changes that occur during grape must fermentation (Figure 4). 

 
Figure 4. Score plots obtained from MIR spectra in the area defined by a) the PC1 vs time (h); and b) the PC2 vs time (h) 

As Figure 4 illustrates, the scores from the first PC showed a similar trend to must density evolution. 

This behaviour highlighted that this PC explains alcoholic fermentation as the decrease of sugars. This is 
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confirmed with the loadings of the variables in the first PC (Figure 1 - Annex I), which shows the importance 

of the region from 1700 to 950 cm-1, related to C-O and C-H of ethanol and sugars. 

In the second PC, a trend is observed between batches as samples from the same batch are grouped 

around a certain interval of PC2. Therefore, PC2 is able to detect the differences between every batch. As 

every batch had a different sugar concentration and were prepared in six different moments it is assumed that 

this variability is possible. Nevertheless, the information contained in PC1 is the 97.12% of the information 

contained in the spectra and PC2 only included a 1.95 % of the spectroscopic information.  

To check the possibility to predict the fermentation status, a PLS regression between the spectra 

acquired through fermentation (hours elapsed since yeast inoculation, ranging from 20 to 120 hours) and the 

predicted time was studied. As it can be seen in Figure 4, we only considered this time lapse as the most 

vigorous step of fermentation (also called tumultuous fermentation) because at this moment is when the 

changes are really important. In fact, before and after this step it was very difficult to detect differences in the 

spectra. Figure 2 – Annex I, shows the PLS regression model for time prediction, which was cross-validated 

(random samples, 15 splits and 10 iterations). The resulting model had a linear regression of R2 of 0.971, and 

a root mean square error of cross-validation (RMSECV) of 5.16 hours, and no cross-validation bias was 

detected. It must be taken into account that batch variability was introduced in the model as it was built with 

all batches. So, the model is able to predict within 12 hours at what moment of the process the fermenting must 

is, without year-variability correction. From the results obtained, we conclude that the portable FTIR used 

allows monitoring the alcoholic fermentation with the possibility to know at what moment of this process we 

are. 

PLS Regression 

The use multivariate analysis (chemometrics) is required to extract the maximum useful information 

from the data. The PLS regression method was used to build four different multivariate calibration models 

between the FT-MIR spectra and the reference values of density, pH and L-malic acid (during alcoholic 

fermentation and just in final wine). The spectral pre-processing used was evaluated based on the lowest 

RMSECV (root mean square error of cross-validation) values of the models and was optimized for every 

parameter. Different second-order smoothing filters were tried, by adjusting a polynomial to different spectrum 

points (ranging from 7 to 15 points). Finally, the pre-processing techniques selected were the ones indicated 

in Table 1. 

The number of optimal PLS factors in the final models was obtained by using random subsets of 

samples. In that way, the samples were divided into fifteen random splits, and the model was built with the 

remaining ones. Then, the model was used to predict the left-out samples. The procedure was repeated until 

all the groups were excluded. Finally, the procedure was repeated with ten different splits of the samples in 

order to get a better model, and the average of the ten models was used as the final model. The optimal number 

of PLS factors was the one which provided the best (lowest) RMSECV.  
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Table 1. Analytical Performance Parameters of the Multivariate Calibration Models built by PLS Regression  

Dependent 
variable 

Variable 
range Nº samples 

Pre-processing 

(Variable Selection) 
PLS 
factors 

Calibration Cross-validation Prediction 

RMSEC R2 RMSECV R2 Nº Samples RMSEP R2 

Density 0.994 - 1.087 522 Smootha - SNV 
Mean Centre (No) 4 0.0011 0.9990 0.0012 0.9989 580 0.0013 0.9986 

pH 3.32 – 4.15 352 Smoothb – SNV 
Mean Centre (Yesc) 6 0.06 0.9259 0.06 0.9259 376 0.06 0.9345 

L-malic 
acid 0.05 – 2.00 237 Smoothb - SNV 

Mean Centre (Yesd) 3 0.21 0.9024 0.22 0.8968 267 0.21 0.9106 

L-malic 
acid* 0.05 – 2.00 74 Smoothb - SNV 

Mean Centre (Yesd) 3 0.18 0.9212 0.19 0.9063 84 0.20 0.9074 

RMSEC: Root mean square error of calibration; RMSECV: root mean square error of cross-validation; RMSEP: root mean square error of prediction; R2: coefficient of 
determination; aSecond-order smoothing polynomial through seven points; bSecond-order smoothing polynomial through fifteen points; cSelectivity ratio algorithm used; 
dManual variable selection to regions more related to organic acids dec6(1320 – 1109 cm-1); *The model was performed with wine (density<0.995 g·L-1) 

 

Figure 5. Scatter plots of reference measurements versus MIR predictions for density (a), pH (b), L-malic acid (c) and L-malic acid in wine (d).   Calibration and    Validation
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To evaluate the ability of the model to describe future samples, at the beginning the samples were 

divided approximately into two halves: one half to build the model and the other half as a validation set. The 

prediction ability of the model was evaluated with the RMSEP (root mean square error of prediction) calculated 

for the validation set. 

Density 

As it was shown in Figure 4, the first PC against the time displayed a shape similar to the density 

evolution shown in Figure 2; therefore, it was likely that the PLS regression shows a great ability to predict 

density. The reference measurement equipment has an error of 0.0010 g·mL-1; and the RMSECV and RMSEP 

were 0.0012 and 0.0013 g·mL-1, respectively. The wide range of density values determined all along alcoholic 

fermentation, together with the high number of samples analysed allowed building a good model for a 

parameter with high variability, such as density. 

It has to be noted that density prediction during alcoholic fermentation had been already performed by 

Fernández-Novales, et al.31 using a fiber NIR and the cross-validated value obtained was 0.0004 g·mL-1 

(RMSECV). Although this prediction error is lower that the obtained with our portable FTIR device, it must 

be taken into account that the number of batches of that experiment was just one, so the variability considered 

is very low.  

pH 

pH is a parameter that has a strong dependency on the different compounds of the sample and, in the 

case of wine, mainly on organic acids but also ethanol. The models obtained for pH prediction, showed very 

good results as the R2
CV and R2

Pred had a value over 0.90. It seems logical that the PLS model needs 6 factors, 

as many compounds have an influence on pH (compared with density) so it was necessary to perform a variable 

selection to achieve better results. The regions selected in the model were 3700 to 2900 and 1750 to 850 cm-1, 

which are related to water, organic acids, and sugars. This selection is due to the fact that pH changes in the 

matrices affect not only the acids. 

Predicting pH with mid-infrared spectroscopy had been already studied in grape must and wine, with 

a performance very similar to the results obtained in the present study. Thus, Teixeira et al.13 obtained a 

RMSEP of 0.05 in wine and Ozturk et al.32 performed a model with a result of prediction of 0.09. On the other 

hand Shah et al.14, obtained an error of cross-validation in grape must of 0.07. From these results, it can be 

concluded that the results obtained for pH prediction with a portable MIR are similar to the ones obtained with 

a benchmark one, during the alcoholic fermentation process and the “ageing on lees”. 

L-malic acid 

L-malic acid was determined during the alcoholic fermentation since LAB and yeasts were co-

inoculated; and LAB could begin their metabolism. 
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The first multivariate model built showed that the downward signal of sugars was used to explain also 

the decrease of L-malic acid before the end of the alcoholic fermentation, but the model was not able to 

establish a good correlation. This behaviour was the one expected because there is no metabolic relationship 

between these compounds. Therefore, it was necessary to improve the performance of the model by selecting 

specific spectral regions, which really were related to the malolactic fermentation process. That selection was 

firstly made by using algorithms that the PLS Toolbox software proposed. However, the algorithms selected 

different variables in each run and always selected the sugar region as the one necessary to establish the 

correlation. This fact demonstrated that the algorithms implemented in the software were not able to find the 

variables that really explain the malolactic process. The next step was to manually select the variables that 

bibliography describes as the most important for organic acids, specially L-malic and L-lactic acids30,33. 

The prediction results obtained appear not so accurate as density and pH; however, they PLS models 

need less factors to explain the correlation between L-malic acid and the MIR spectra. It is expected that a 

compound whose variation ranges from 0.00 (below LOD) to 2.00 g·L-1 and being in a concentration less than 

1% in the must would have a high error. The error of prediction (RMSEP) was 0.21 g·L-1 whereas Urtubia et 

al.34, with a benchtop FT-IR instrument, obtained an error of 0.34 g·L-1 for Cabernet Sauvignon and of 0.29 

g·L-1 for the rest of varieties studied. This shows that a model built for a molecule with a very low concentration 

with a portable ATR-FTMIR is comparable to a model built with a benchtop IR instrument. 

To evaluate the capacity of the model to predict L-malic acid concentration without the interference 

of sugars, a model was built with just wine (density >0.995 g·mL-1) to check the influence of the alcoholic 

fermentation in the model. The prediction error achieved seems to be a little more accurate (0.20 g·L-1). 

Compared to other studies such the ones performed by Patz et al.35, the RMSEP value of 0.63 g·L-1 obtained 

with a benchtop mid-infrared spectrometer showed that variable selection is a powerful tool to reduce non-

relevant information of the spectrum and obtain better results. 

LAB spoilage 

In this study, an early stage deviation was intentionally promoted by adding LAB to an alcoholic 

fermentation process with the purpose of detecting the contamination even at the first moments of the process. 

Two problems were detected in this approach. First, as the grape must is a high sugar content matrix, it was 

difficult to see variations of L-malic acid concentrations, which is present initially at a maximum 2 g/L. On 

the other hand, as it was reported in the literature36, yeasts are also able to use malic acid as a part of their 

metabolism. So, the attempts to detect contamination at early stages in grape must were unsuccessful. It was 

found that the moment in which the detection could be accomplished is when the yeasts have consumed all the 

sugar, that is, in final wine. 

As it was concluded before (PLS regression) the spectroscopic regions related to organic acids (L-

malic and L-lactic acid) are the most promising to detect malolactic fermentation problems, as it was 

demonstrated that it is possible to build models with good correlation with the amount of L-malic acid. The 
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consumption of L-malic acid could be considered as the main difference between a normal and a contaminated 

process as it is the reagent or product with the highest concentration in MLF. 

Preliminary exploratory analysis with PCA was performed on the mean spectra in order to recognize 

patterns in the samples’ distribution. The preprocessing used was second-order smoothing polynomial through 

fifteen points with first derivative, SNV and mean centering. Then the sample scores were calculated on PC1 

and PC2 and were plotted against each other in Figure 6. 

 
Figure 6. Score plot of PC1 (43.19 %) vs PC2 (24.03 %) indicating the percentage of malolactic fermentation: 0% (green), 0-25 % 

(red), 25-50 % (light blue), 50-75 % (pink), 75-100 % (yellow) and 100 % (dark blue) 

As Figure 6 shows, a trend is detected in PC1 as the malolactic fermentation moves forward. This 

behaviour highlighted that this PC explains malolactic fermentation as the downward of L-malic acid. In the 

PC2, a high variability is observed as the result of introducing batch differences in the model (every batch had 

a different sugar concentration). In order to perform better malolactic fermentation detection, supervised 

discrimination models (PLS-DA) were built with the intention of focusing on variability related to detect LAB 

contamination (Figure 7). It was assigned 1 to control fermentations and 0 to the BAL spoilage fermentations. 

 
Figure 7. Discrimination plots between normal fermentation (1, green) and different progress steps of malolactic fermentation (0). 
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As Figure 7 shows, the ability to recognize different states of LAB contamination increased as 

malolactic fermentation advanced. It can be seen that the threshold, that is the red discontinuous line, dismissed 

in every PLS-DA as the differences between deviated and control fermentation increased. From 0 to 50% it 

was difficult to distinguish between control and deviated processes. This is explained first because of the lack 

of points between 0 and 25%. Secondly, the differences between the normal and deviated fermentations are 

slight as much in L-malic acid as in pH differences. 50-75% had an improved trend showing a good 

differentiation. Finally, 75 to 100% of malolactic advance was well differentiated, until the 100% of malolactic 

fermentation when this differentiation was total.
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5. Conclusions and Future perspectives 

Conclusions 

The drawn conclusions of this study about monitoring of grape must alcoholic fermentation using a 

portable ATR-FT-MIR are: 

- The kinetic evolution of the grape must fermentation obtained with the PC1 versus time showed a 

similar trend with respect to the density curve. 

- ATR-FT-MIR is a reliable tool to predict standard fermentation control parameters (density, pH 

and L-malic acid). 

- PLS-DA models are able to detect LAB contamination before the end of malolactic fermentation 

and are able to distinguish between the different stages of the contamination. 

- A fast, simple and at-line analytical device has a great potential to monitor alcoholic fermentation 

and offers the possibility to eventually correct the process. 

Future perspectives 

The prediction error of the PLS regression models for pH and malic acid and for the LAB spoilage 

at first steps of the process, which had slight differences with control fermentation, made difficult to detect 

LAB contamination before half of the deviation had happened. As the initial L-malic acid concentration was 

low (2 g/L), it is possible that an increase of concentration would allow to improve the detection of the 

deviation. The dataset 7 (3 normal and 3 LAB contaminated fermentations) was supplemented with L-malic 

acid until 3.6 g/L, which is still a normal concentration in wines. This allowed to enlarge the variable range in 

L-malic acid prediction as it is shown in Figure 8. 

 
Figure 8. Scatter plots of reference measurements and MIR predictions for L-malic acid.      Calibration and    Validation 
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The error of prediction achieved when increasing L-malic acid concentration was 0.29 g·L-1, showing 

higher error in the enlarged variable range. This seems logical as it existed a gap between the previous model 

and the added samples. On the other hand, the model prediction ability remains linear at higher concentrations, 

so it would allow us to build a better prediction model with more samples. 

An exploratory analysis with PCA was performed on the mean spectra of wines with a higher amount 

of L-malic acid in order to recognize patterns in the samples’ distribution, as it is shown in Figure 6. The 

preprocessing used was the same, second-order smoothing polynomial through fifteen points with first derivative, 

SNV and mean centering. Then the sample scores were calculated on PC1 and PC2 and were plotted against 

each other (Figure 9). 

 
Figure 9. Score plots of PC1 (60.04 %) vs PC2 (24.99 %) indicating control (green) or BAL contaminated (red) fermentations. 
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8. Annex 1 

 

Figure 1. Loadings of the PC1 and PC2 of the PCA of the six batches.  

 

Figure 2. Scatter plots of time after yeast inoculation and MIR predictions of different fermentations. 
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