Mohammad Yousefe

SOLID-SUPPORTED CO₂ SORBENTS BASED ON AMINE-FREE PHOSPHONIUM CARBOXYLATE

IONIC LIQUIDS

MASTER'S DEGREE THESIS

Supervised by Dr Alberto Puga

MASTER'S DEGREE IN NANOSCIENCE, MATERIALS AND PROCESSES: CHEMICAL TECHNOLOGY AT THE FRONTIER

UNIVERSITAT ROVIRA I VIRGILI

Tarragona

2020

Solid-supported CO₂ Sorbents Based on Amine-free Phosphonium Carboxylate Ionic Liquids

Mohammad Yousefe

Master Program in Nanoscience, Materials and Processes: Chemical Technology at the Frontier, 2019-2020.

e-mail: mohammad.yousefe@estudiants.urv.cat

Supervisor: Dr Alberto Puga

Departament d'Enginyeria Química - ETSEQ, Universitat Rovira i Virgili 43007 Tarragona,

Spain.

Abstract

Carbon capture is key to minimize the negative effects of CO₂ emissions. There are large numbers of technologies for CO_2 capture. Currently, amine-based CO_2 sorbents are mostly used. Despite the reasonable performance of amine sorbents, they have serious disadvantages such as high energy cost for regeneration and thermal degradability. Thus, new sorbent materials and technologies for CO₂ capture are still intensely sought. Ionic liquids with negligible vapor pressure can be designed to capture CO₂. In this framework, carboxylate ionic liquids, when hydrated, enable a chemical CO_2 sorption with moderate enthalpy, which leads to lower energy cost for regeneration. On the other hand, phosphonium-based ionic liquids exhibit superior thermal stability compared to ammonium counterparts. In this work, tetrabutylphosphonium acetate hydrate ([P4444][AcO]·H2O) was synthesized by simple neutralization of the hydroxide with acetic acid in water characterized by NMR, and its thermal decomposition and glass transition temperatures were recorded. After impregnation on porous silica, a free-flowing solid-supported material ([P4444][AcO]·H2O/SiO2) was produced and tested for CO2 sorptiondesorption experiments from model flue gas (15% CO₂) in a fixed-bed setup. Performance was compared to polyethyleneimine on silica (PEI/SiO₂) as a competitor amine sorbent material used commercially. Both sorbents showed fast CO₂ sorption, although the capacity of the amine system was higher. Desorption at low temperature (60 °C) was complete and rapid for CO₂-saturated $[P_{4444}]$ [AcO]·H₂O/SiO₂, while for PEI-20/SiO₂ desorption rate was much slower, and desorption of CO_2 was not complete under same condition. Furthermore, thermogravimetric analysis indicated that $[P_{4444}]$ [AcO]·H₂O/SiO₂ has thermal stability up to 200°C.

Keywords: Sorption, carboxylate ionic liquids, phosphonium ionic liquids, carbon dioxide capture.

Introduction and Research Proposal

Carbon Capture and Utilization

The increase in the concentration of carbon dioxide in the atmosphere by 31% since the industrial revolution began around 1750. due to anthropogenic emissions, is leading to climate change and other environmental issues, such as ocean acidification ^[1-3]. In addition, nowadays finding efficient new solutions to overcome the diminishing fossil fuel resources is a major challenge regarding global energy supply ^[4]. It is thus very important to decrease CO₂ emissions, by direct capture of CO₂ from the atmosphere or from point sources (e.g. coal-fired power plants, blast furnaces, natural gas treatment processes, or cement kilns), and to recycle this carbon resource for the production of fuels and chemicals ^[5, 6].

CO₂ capture technologies

The most common technology for CO_2 capture entails aqueous amine absorption; other approaches include aqueous alkaline absorbents, physically adsorbent solids, membrane separators, and amineimpregnated solids ^[7, 8]. Current processes for CO₂ capture are associated with some drawbacks, especially high energy consumption and limited stability, resulting in high cost of the recovered CO_2 ^[9, 10]. Aqueous amine technology is the most widely used method, and commercially implemented in the fields of natural gas purification (sweetening) and ammonia production. However, several issues of this process still remain such as oxidative degradability, high regeneration temperatures (and thus high energy expenditure), volatility losses, and equipment corrosion^[7, 8, 11].

Figure 1. The CO₂ absorption (scrubbing) process invented by Bottoms. Reproduced from reference [15].

Application of amine sorption for flue gas treatment or direct capture of CO_2 from air, whereby the economic benefit is less apparent, is thus seriously hindered by such disadvantages and costs. In consequence, it is very essential to look for alternatives to amine-based CO_2 sorbents. These alternatives must be accompanied by advantageous and more environmentally-friendly features, such as lower regeneration temperature, and cleaner process operation.

Background and State of the Art

Disadvantages of amine CO₂ sorbents

As noted earlier, presently, the favored means of CO_2 capture is chemical scrubbing based on liquidphase amine absorbents, including primary (*e.g.* monoethanolamine, MEA), secondary (*e.g.* diethanolamine, DEA), tertiary or (e.g.methyldiethanolamine, MDEA)^[12-14]. The process of CO₂ absorption from flue gas by aqueous amine solutions, and regeneration of the sorbent by stripping with water vapor (at 100 to 120 °C), was patented in 1930 (Figure 1) ^[15]. Primary and secondary amines react with CO₂ forming carbamate species ^[14], while tertiary amine groups, having no nitrogen-bonded hydrogen atoms, cannot react with CO₂ directly to form stable carbamates. Conversely, tertiary amines act as a base in CO₂ capture, only in the presence of water, leading to the formation of bicarbonate instead of carbamate. The maximum amine efficiency under dry condition, for primary and secondary amines is 1 $mol(CO_2)$ per 2 mol(N), while for tertiary amines the maximum amine theoretical efficiency is zero (Figure 2) ^[13, 16].

Primary amines	Secondary amines	Tertiary amines	
$ \begin{array}{c} & \searrow NH_2 + O=C=O \longrightarrow \begin{array}{c} & H & H \\ & & & & & \\ & & & & & \\ & & & &$	H $+ 0=0=0$ H	$ \begin{array}{c} & \searrow \\ & \searrow \\ & \searrow \\ & \searrow \\ & & & \end{pmatrix} \\ & & & & & & & & & & & \\ & & & &$	
Ratio of CO ₂ /N: 1:2	Ratio of CO ₂ /N: 1:2	Ratio of CO ₂ /N: 1:1	
Under dry condition	Under dry condition	Under humid condition (ineffective CO ₂ capture under dry condition)	

Figure 2. Reactions of different type of amines (primary, secondary, and tertiary) with CO₂.

Although amine-based sorbents show high CO₂ sorption capacities, the method involves large enthalpies of reaction ^[13] (Table. 1). Therefore, a large amount of heat is required for the regeneration step. The regeneration temperature of amine solvents is typically 100-140 °C under nearatmospheric pressures ^[14], and thus, heat requirements in a CO₂ capture plant can constitute up to 40% of the total operating costs ^[22]. Other significant drawbacks of amine-based sorbents, as mentioned above, are low thermal stability, the corrosive and reactive characteristics of these materials which raise safety concerns, loss of amine components to the environment due to volatility, and oxidative degradability^[14]. As stated above, in order to overcome these problems, it is crucial to look for other alternative CO₂ sorbents.

Design of ionic liquids

Ionic liquids (ILs) are salts which melt at ambient or near-ambient temperatures. By definition, their melting points are lower than 100 °C. Since they are formed entirely by ions, they have negligible vapor pressure and other properties such as ionic conductivity ^[23]. There are a large number of possible combinations of cations and anions with differences in structure, size, and shape, and this diversity can be used to design ILs with specific chemical and physical properties ^[24-26]. Furthermore, structural modification by introduction of certain functional groups (such as polar, hydrogenbonding, hydrophobic, coordinating groups, etc.) in the ionic entities of the IL provides certain specific chemical characteristics ^[27-29]. Thanks to this structural and functional versatilities, ILs have been widely studied in the fields of electrochemistry, catalysis, energy storage, separation processes, extraction, biomass processing and conversion, nanomaterials preparation, etc. ^[30-37]. Therefore, proper modification of ILs makes them promising substances for use in gas separation technologies, as an example of such large variety of applications.

Ionic liquids as CO₂ sorbents

Ionic liquids can be designed to exhibit marked CO_2 sorption capacity by including ion motifs with tendency to interact with CO_2 via non-covalent binding, or to react with CO_2 , for example via acid-base chemistry ^[19, 24, 26, 38-40]. An important property of ILs in this context is their non-volatility. Since they exhibit negligible vapor pressure, no

Table 1. Reaction enthalpies of adsorption of CO_2 sorbents based on amines or ILs.					
Sorbents	$\Delta H [kJmol^{-1}]$	T [°C]	References		
Aqueous amines					
Primary amine (MEA, aq, 30% wt%)	-85	-	[17]		
Secondary amine (DEA, aq, 30% wt%)	-76	-	[17]		
Tertiary amine (MDEA, aq, 30% wt%)	-62	-	[17]		
Solid-supported amines		·			
Polyethylenimine(33%)/SiO ₂	-85	85	[18]		
Amine-functionalised ILs					
Trihexyltetradecylphosphonium prolinate ([P ₆₆₆₆₁₄][Pro])	-80	25	[19]		
Trihexyltetradecylphosphonium metioninate ($[P_{66614}]$ [Met])	-64	25	[19]		
Amine-free (carboxylate) ILs					
1-ethyl-3-ethylimidazolium acetate	-38	25	[20]		
Triethylhexylphosphonium acetate hydrate (mol ratio = 1:1, $[P_{2226}][AcO].H_2O$)	-37	25-50	Unpublished Data		
1-butyl-3-methylimidazolium acetate + 14% water	-40	24-80	[21]		

contamination of the gas streams (no IL losses) are expected during the overall CO_2 sorption-regeneration process. Regeneration may be safely performed by applying either an increase in temperature or a decrease in pressure ^[24]. This is a clear advantage over existing commercial sorbents. Therefore, ILs might represent appropriate alternatives for replacing amine sorbents in CO_2 capture processes ^[19, 40-44].

Amine-functionalised ILs

As mentioned above, solubility of CO_2 in ILs can be tuned by appropriate structural design, including functional groups able to bind CO_2 . In this regard, CO_2 solubility could be enhanced by tethering amine functionalities to the constituent ions, resulting in chemical absorption. This was inspired by the widespread use of aqueous amine sorbents. Davis and coworkers reported the potential of using imidazolium-based ILs for CO_2 capture, by functionalizing the imidazolium cation with an amine group as chemical fixation agent to capture CO_2 in the form of carbamate ^[45]. Fukumoto and coworkers showed the effects of anion structure on the physical properties such as viscosity, density and glass transition temperature of a series of ILs formed by twenty natural amino acid anions, and (3-aminopropyl)tributylphosphonium and 1-ethyl-3-methylimidazolium as cations. They reported that the amino functional groups of these amino acids have the ability to chemically interact with CO₂ ^[27, 46], in an analogous fashion to classic amines. Nevertheless, these ILs still retain some disadvantages of aqueous amine sorbents due to the presence of amine functionalities, that is, high enthalpies of absorption (see Table 1), high regeneration temperatures, and related chemical degradation issues.

Carboxylate ILs as alternatives to amine-functionalized ILs

Considering amine-free sorbents, carboxylatebased ionic liquids are exclusively suitable, since a

Figure 3. a) Scheme and reaction equation for CO_2 capture on a wet phosphonium carboxylate (red: oxygen; white: hydrogen; gray: carbon; orange: phosphorus). b) CO_2 solubility of hydrated ILs as a function of the molar fraction of H_2O (blue: tetrabutylphosphonium formate; red: trihexyltetradecylphosphonium formate) showing that the maximum CO_2 solubility in the $[P_{4444}][HCO_2]/H_2O$ system is at 1:1 molar ratio of hydrated ILs. Reproduced from reference [48].

fine adjustment of their reactivity can be accomplished simply by structural design, avoiding the adverse emissions of amine processes ^[38, 39]. Kirchner and coworkers demonstrated that the acetate anion plays a main role in CO₂ absorption, and also provided evidence that dispersion interactions are present between the cation and the solute [47]. Chinn et al. demonstrated that the volumetric CO₂ absorption capacity of the IL 1-butyl-3-methylimidazolium acetate containing 14 wt% water ($\approx 25 \text{ m}^3/\text{m}^3$) is lower than that of 30 wt% aqueous MEA solution ($\approx 65 \text{ m}^3/\text{m}^3$) at equilibrium, under CO₂ at 1 atm partial pressure. However, the enthalpy of reaction of CO₂ in the acetate IL is -40 kJ mol^{-1} , while the enthalpy of reaction of CO₂ in the MEA solution is -85 kJ mol⁻¹ (see Table 1), thus suggesting a much lower energy input for the regeneration step using the IL system ^[21]. Furthermore, CO₂ capture capacity in this set of ILs shows direct relation with the degree of hydration, whereby CO₂ solubility increases as the water content increases up to a maximum at equimolar IL/H₂O ratio, which leads to enabling moisture-adjustable performance by the carboxylate functionality to capture CO₂ in the presence of water to generate trapped bicarbonate (Figure 3) ^[14, 38, 39, 48]. The most interesting aspect of this is the fact that a true chemical mode of absorption takes place, leading to solubilities attaining one mole of CO₂ per mole of IL at reasonably low pressures. In addition, the energy input for regeneration of phosphonium carboxylate ionic liquids is much lower compared to aqueous amine systems, as discussed above (Table 1). Anderson et al. reported that at 70°C (regeneration temperature), tetrabutylphosphonium formate and triethyloctylphosphonium acetate 1:1 containing water at molar ratio $([P_{4444}][HCO_2] \cdot H_2O$ and $[P_{2\,2\,2\,8}][AcO] \cdot H_2O$, respectively) recovered 100 and 90 percent of their CO₂ capacity, respectively, while 30 wt% aqueous MEA only recovered 82% of its CO₂ capacity at 120 °C ^[48].

Phosphonium ILs have superior thermal stability than ammonium counterparts

Phosphonium carboxylate ionic liquids present higher thermal stabilities than ammonium counterparts. Pena al. reported the et (TGA) thermogravimetric analysis of tetrabutylphosphonium acetate ($[P_{4444}][AcO]$), observing a decomposition temperature (T_{dec}) of 317 °C under dynamic conditions (increasing temperature). Moreover, they determined that the necessary time for this IL to undergo 1% isothermal decomposition at 70 °C would be 5000 h^[49]. In contrast, T_{dec} for triethylbutylammonium acetate ([N₂₂₂₄][AcO]) was 171 °C under dynamic TGA conditions, as reported by Wang et al. This means a significantly lower thermal stability for ammonium as compared to phosphonium ILs. Furthermore, [N2224][AcO]·H2O lost nearly a quarter of its total mass after 24 h at 100 °C, indicating noticeable IL degradation ^[50]. Tsunashima *et al.* determined T_{dec} data for a series of ILs composed of tetraalkylphosphonium cations and the bis(trifluoromethylsulfonyl)imide (TFSI) anion, and those for their ammonium counterparts. For example. of $T_{\rm dec}$ the triethyldodecylphosphonium ([P₂₂₂₁₂][TFSI]) and triethyldodecylammonium ([N₂₂₂₁₂][TFSI]) salts were 408 and 390 °C, respectively ^[51]. Hence, phosphonium ILs are generally more thermally stable as compared to ammonium analogues. For mentioned all the reasons above. tetraalkylphosphonium carboxylate ILs are herein proposed as safe CO₂ sorbents under typical temperature-swing operation, yet at relatively mild conditions.

Solid-supported IL as CO₂ sorbents

ILs are generally associated with high viscosity, a fact that limits mass transfer processes. This may in turn result in slow CO₂ sorption rate due to slow diffusion rate of gas molecules into the viscous liquid media through a relatively small gas-liquid interface. In order to overcome this issue, IL sorbents can be impregnated onto solid support materials such as silica or alumina as an alternative approach ^[52, 53], as also reported for classic amine sorbents [5, 18, 54-56]. Zhang et al. observed that after 2 h the CO₂ absorbed by dual amino-functionalized phosphonium ILs based on the (3aminopropyl)tributylphosphonium cation and amino acid anions, was as low as $0.2 \text{ mol}(CO_2)/\text{mol}(IL)$, while materials consisting

Scheme 1. Schematic representation of the formation process for hydrated tetrabutylphosphonium acetate ionic liquid supported on silicon dioxide ($[P_{4\,4\,4}][AcO] \cdot H_2O/SiO_2$).

on the same ILs impregnated on porous SiO₂ showed almost equimolar ratio of absorption (1 mol(CO₂)/mol(IL)). Moreover, the chemical absorption of CO₂ essentially reached equilibrium after 80 min for such silica-impregnated IL sorbents (SiO₂ absorption subtracted)^[57]. Kolding et al. used a series of amino acid-based ILs loaded on hydrophobic silica gel to confirm their high performance for CO_2 absorption. Tetrahexylammonium prolinate showed the highest CO₂ adsorption capacity reaching 4.6 wt% CO₂ (at 25° C and 1 bar), thus taking up about 1.23 mole of CO₂ per mole of IL ^[58]. On the other hand, impregnation of ILs on solid support materials is expected to result in lower amounts of IL consumption in a gas capture process and enhancement of sorption rates (due to enhanced gas-liquid interface) as compared to pure ILs in their liquid state. Hence, this strategy is aimed at lowering costs and improving efficiency in CO₂ capture processes ^[59]. Zhang *et al.* reported that the CO₂ absorption in tetrabutylphosphonium aminefunctionalized glycinate or 2-cyanopyrrolide ILs supported on porous SiO₂ was reversible, and CO₂ absorption rates were much higher than those of the viscous ILs themselves ^[60]. Despite the interesting research discussed above, most solidsupported IL systems reported to date for CO₂ capture rely on amine-functionalized ions, thus presenting high energetic costs for desorption.

Carboxylate ILs, as more readily recyclable and more thermally stable sorbents, have been seldom investigated for this technology.

Research Proposal

In this work, materials based on hydrated tetrabutylphosphonium acetate impregnated onto silicon dioxide ($[P_{4444}][AcO] \cdot H_2O/SiO_2$) were prepared (Scheme 1), and their physicochemical properties were measured. Moreover, their CO₂ sorption and desorption efficiencies were preliminarily investigated at room and moderate temperatures, respectively, and compared with those of polyethyleneimine impregnated onto silicon dioxide (PEI/SiO₂) as a competitor amine sorbent material.

Experimental

Materials and characterization methods

Tetrabutylphosphonium hydroxide solution $([(CH_3CH_2CH_2CH_2)_4P][OH], 40 \text{ wt. }\% \text{ in } H_2O),$ polyethyleneimine (PEI, branched, average M_w ~800), tetrabutylammonium acetate ([N₄₄₄₄][AcO], 97%) were purchased from Sigma-Aldrich. Acetic acid (CH₃COOH, glacial, extra pure) was obtained from Scharlau. A model flue gas mixture cylinder (CO₂, 15.012%; O₂, 5%; N₂, 80%) was obtained from Carburos Metálicos. Fumed silica powder (SiO₂, AEROSIL[®] R816) was

obtained from Evonik. All chemicals were used as received unless otherwise stated.

The as-synthesized IL was characterized by ¹H NMR spectroscopy on a Varian Gemini 400 spectrometer (400 MHz) using dimethyl sulfoxide- d_6 (dmso- d_6) in a sealed capillary tube as an external standard. Thermal behavior and stability studies were performed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) on DSC 3+ STAR^e System and TGA 2 STAR^e System, respectively, Mettler Toledo instruments. The DSC analyses were performed from 50 to -80 °C, and then from -80 to 50 °C, cooling and heating cycles, respectively, at 5 °C min⁻¹, under N₂ (50 mL min⁻¹). The TGA profiles were recorded from 30 to 600 or 800 °C, at 10° C min⁻¹, under air atmosphere (50 mL min⁻¹). Specific surface areas were measured by N₂ physisorption at -196 °C and determined by Brunauer-Emmet-Teller (BET) analysis using a Quantachrome Autosorb instrument.

Synthesis and characterization of [*P*₄₄₄₄][*AcO*]

In a typical synthesis of tetrabutylphosphonium acetate ([P₄₄₄₄][AcO]), based on the anionexchange acid-base neutralization method, an equimolar amount of CH₃COOH (\approx 3.5 g, \approx 58 mmol) was added drop-wise to а solution of tetrabutylphosphonium hydroxide (40 mL, 40 wt%, \approx 58 mmol) in distilled water, up to a total volume of 200 mL, in a round bottom flask. The addition of CH₃COOH was carefully performed so as to obtain the calculated final molar equivalence point at pH = 8.98 ^[61, 62], as measured using a Metrohm pH meter. The mixture was then stirred at room temperature for 24 h. Subsequently, water was distilled off at 60 °C under reduced pressure (around 10-15 mbar) in a rotary evaporator until constant weight. The obtained IL was transferred into a Schlenk-type flask and dried under vacuum (around 10-15 mbar) for extra 24 h at 60 °C to reduce possible traces of water, and then stored under N₂ atmosphere. The faint yellow viscous ILs was observed at the end point of isolation, and the final weight of the $[P_{4444}][AcO]$ was 17.64 g

(\approx 96% yield). The lower than expected yield might be due to the loss of IL during transferring IL into another flask, or to inaccuracies in the concentration of the starting commercial tetrabutylphosphonium hydroxide solution.

The structure of $[P_{4444}][AcO]$ was confirmed by ¹H NMR spectroscopy, which showed that signal integration matched the expected ratios and ruled out the presence of any noticeable impurities (Figure 4). The water content of the as-synthesized $[P_{4444}][AcO]$ was determined to be $0.8 \text{ mol}(H_2O)/\text{mol}(IL)$. In this work, the water molar ratio to IL was set to $1 \mod(H_2O)/\mod(IL)$, aiming at maximum CO₂ sorption, by adding the appropriate amount of distilled water (0.15 mL) to the total volume of IL, yielding the final $[P_{4444}][AcO] \cdot H_2O$ as a colorless fairly viscous liquid, ready to be used for further experiments.

Figure 4. ¹H NMR spectrum of the fresh [P₄₄₄₄][AcO]·H₂O (dmso-d₆ external standard, 400 MHz, 25 °C). Integration is indicated below each signal.

Preparation of [P₄₄₄₄][AcO]·H₂O/SiO₂ and PEI/SiO₂

The prepared $[P_{4444}][AcO] \cdot H_2O$ was supported onto silicon dioxide by a conventional impregnation procedure ^[5, 52, 55]. The fumed silica powder was pressed by means of a hydraulic press into cakes, and then crushed, ground, and sieved. The fraction composed of granules between 0.25 and 0.50 mm in size were separated and employed as solid support for the preparation of impregnated materials (Scheme 1).

Scheme 2. Schematic diagram of the experimental setup.

In a typical procedure to obtain silica-supported sorbent materials (*ca.* 3 g), the desired amount of liquid sorbent ($[P_{4444}][AcO] \cdot H_2O$ or PEI) was dissolved in methanol (≈ 5 mL) in a Schlenk flask and then SiO₂ was added. The mixture was gently shaken and dried off under a gentle N₂ flow at 50 °C resulting in free-flowing granular solids. The following materials, whereby the wt% values are relative to the amount of SiO₂, were prepared:

- **IL-50/SiO₂**, with 50 wt% $[P_{4444}][AcO] \cdot H_2O$.
- **PEI-20/SiO₂**, with 20 wt% PEI.
- **PEI-50/SiO₂**, with 50 wt% PEI.

The solid-supported sorbents were stored under inert atmosphere (N_2) until used for CO_2 capture experiments.

Sorption-desorption performance

Calibration. In order to perform sorption-desorption experiments, the non-dispersive gas analyzer employed (HORIBA infrared VA-5001) was doubly calibrated. Accordingly, the first calibration was performed by passing N₂ flow (300 mL min⁻¹) through of the system in order to obtain 0% CO₂ concentration. Afterward, a second calibration was performed by flowing CO₂ gas mixture (300 mL min⁻¹, 15.012% CO₂) through the gas analyzer. The next step before starting the sorption experiment was to decrease the CO₂ concentration in the gas analyzer to 0% by switching to N_2 flow again until the CO_2 concentration decreased to the baseline level.

Capture. In typical sorption experiment, a customdesigned glass U-tube with an inner diameter of 8 mm containing the desired solid-supported sorbent (ca. 3.0 g) was connected into the system, (the solid-supported sorbents were secured on both sides of the U-tube container by inserting glass wool plugs), as indicated in Scheme 2. A N₂ flow was passed as a way to isolate the system from any possible CO₂ contamination that could be caused by contact with atmospheric air while setting up the U-tube. Subsequently, the model flue gas containing 15.012% CO_2 was flowed (300 mL min⁻¹) at nearly atmospheric pressure and room temperature $(25.0 \pm 0.5 \text{ °C})$ through the solid-supported sorbents in the U-tube glass container, in a fixed-bed-type operation. The concentration of CO₂ in the gas exiting the U-tube fixed-bed was monitored in real time by using the non-dispersive infrared gas analyzer described above, and the data recorded every second. The CO₂ sorption was considered to be completed when the CO_2 concentration of the outlet stream was equal to the inlet one. Afterwards, the glass U-tube was immersed in an ice/salt cooling bath at approximately −15 °C and N_2 flowed (300 mL min⁻¹), in order to remove any CO₂ in the gas-phase remaining in the system, while avoiding

any possible regeneration that could happen at room temperature due to reversal of the CO_2 sorption reaction. This was done until the CO_2 concentration in the system decreased to 0%, before performing CO_2 desorption experiments.

Regeneration. Desorption of CO₂ from saturated sorbents was carried out by monitoring the CO₂ concentration in the same way as described for the method. However, desorption sorption in experiments the sorbents were regenerated by heating at moderate temperature. For this purpose, the U-tube glass container was immersed in an oil bath at 60 °C. Immediately afterwards, N₂ flow at nearly atmospheric pressure (300 mL min⁻¹) was passed through the CO₂-saturated sorbents in the glass container. In this stage, CO₂ was released and increases in CO₂ concentration were observed. The CO₂ desorption was considered to be completed when the CO₂ concentration reading returned down to 0% CO₂ concentration, or no change in CO₂ concentration was observed.

Results and discussion

Physicochemical properties

The aerobic thermal decomposition profiles of [P₄₄₄₄][AcO] and [N₄₄₄₄][AcO] were measured by TGA. According to dynamic TGA data analysis (Figure S1, in supplementary data), at a temperature of 210 °C, [N₄₄₄₄][AcO] showed a significant weight loss (92 wt%) while. $[P_{4444}][AcO]$ had only lost 3.5 wt%. The decomposition temperature was at least 100 °C higher for the latter, thus proving that phosphonium-based carboxylate ILs are more thermally stable than ammonium counterparts. Furthermore, the glass transition temperature of $[P_{4444}][AcO] \cdot H_2O$ having $1 mol(H_2O)/mol(IL)$ was measured by DSC. The result indicated low glass transition temperature (Figure S2) of the hydrated IL (onset: -72.6 °C, midpoint: -70.9 °C). Moreover, the DSC analysis showed that $[P_{4444}][AcO] \cdot H_2O$ does not have a tendency to be upon cooling sub-ambient crystallized at temperatures. The results obtained from thermochemical analyses, demonstrate the

favorable physicochemical properties of the phosphonium-based IL, such as a thermal stability up to 200 °C, and remarkably low glass transition temperature with negligible propensity towards crystallization.

As mentioned above, three solid-supported sorbents which include. were prepared, **PEI-20/SiO₂**, **PEI-50/SiO₂**. IL-50/SiO₂, Their thermal properties were recorded by using dynamic TGA. Figure 5 indicates the weight loss of the three samples. The small weight loss that occurred below 150 °C can be ascribed to the removal of pre-adsorbed CO₂ and moisture from the atmosphere. The weight loss of the three samples were almost the same below 200 °C, but as the temperature increased further, the curvature of the TGA traces changed sharply, showing faster weight loss for PEI-20/SiO₂ and PEI-50/SiO₂, indicating decomposition of PEI.

Figure 5. Weight changes of **IL-50/SiO₂**, **PEI-20/SiO₂**, **PEI-50/SiO₂** measured by TGA (10 °C min⁻¹, air flow 50 mL min⁻¹).

On the other hand, **IL-50/SiO**₂ showed slower weight loss above 200 °C, indicative of enhanced thermal stability of the amine-free IL sorbent as compared to the polyamine counterparts, even under aerobic conditions employed in the TGA measurements. Decomposition of **IL-50/SiO**₂ was largely completed at temperatures below 600 °C, whereas the materials containing PEI required higher temperatures for the total removal of organic components. The content of IL or PEI were calculated from TGA data by subtracting the weight percentage at maximum temperature to that

Mohammad Yousefe

at 150 °C (after removal of adsorbed H_2O and CO_2). The resulting experimental loadings (listed in Table 2) are reasonably consistent with the theoretical values.

Sample	Theoretical IL or PEI loading [wt%]	Experimental IL or PEI loading [wt%]	Surface area [m ² .g ⁻¹]
IL-50/SiO ₂	50	50.3	43.5
PEI-20/SiO ₂	20	21.8	82.1
PEI-50/SiO ₂	50	49.3	46.2
SiO ₂ (blank)	-	-	179.3

Table 2. Theoretical wt%, experimental wt% from TGA,and surface areas from BET.

The surface areas of IL-50/SiO₂, PEI-20/SiO₂, PEI-50/SiO₂ and the pristine fumed silica support (SiO₂, blank) were measured by N₂ physisorption employing the BET method (Table 2 and Figure S3). Surface areas decrease with increasing PEI loading (82.1 and 46.2 m² g⁻¹ for 20 and 50%, respectively), whereas the type of liquid sorbent results in similar coverage of the SiO₂ surface (43.5 and 46.2 m² g⁻¹ for IL-50/SiO₂ and PEI-50/SiO₂, respectively). These data reveal that the liquid IL or PEI adsorbents were effectively supported on the surface of the SiO₂ nanoparticles.

CO₂ capture-release

To investigate the sorption of CO₂ by solidsupported phosphonium carboxylate ILs, and to compare it with amine based sorbents, the above described IL-50/SiO₂, PEI-20/SiO₂ and PEI-50/SiO₂ materials have been selected. As a benchmark amine sorbent, PEI has strong CO₂ capture capacity due to the presence of multiple amine sites. In particular, PEI is expected to contain primary/secondary/tertiary amines in a 44:33:23 molar ratio ^[55]. As discussed above, primary and secondary amines tend to capture $0.5 \text{ mol}(\text{CO}_2)/\text{mol}(\text{N})$, whereas tertiary amines remain unreactive, dry conditions under (see Figure 2). Conversely, chemical absorption by the hydrated IL ($[P_{4444}][AcO] \cdot H_2O$) may result in a maximum of 1 mol(CO₂)/mol(IL) (see Figure 3). Under these premises, the theoretical CO₂ capacities of **IL-50/SiO₂**, **PEI-20/SiO₂**, **PEI-50/SiO₂** are 1.0, 1.5 and 3.0 mmol(CO₂) per gram of material, respectively. For a more realistic comparison, the first two materials were studied more in detail in CO₂ capture/release experiments.

The CO₂ sorption in **IL-50/SiO₂** and **PEI-20/SiO₂** was measured at room temperature (25 °C) and nearly atmospheric pressure. The resulting breakthrough curves obtained from monitoring CO₂ concentration in the outlet gas from the sorption unit are shown in Figure 6. According to the breakthrough curve for $IL-50/SiO_2$ the concentration of CO₂ during the initial period of the experiment (< 1 min) remained negligible, thus indicating that CO₂ sorption on the material was taking place. This was further proven by comparison to the breakthrough curve of the blank SiO₂, which showed a significantly narrower time frame. After this, the sorbent material began to saturate, and gradual increase in CO₂ concentration in the outlet gas was observed until complete saturation was achieved. On the other hand, it took about 2 min for PEI-20/SiO₂ to show the increase in CO₂ concentration, and this shift in the breakthrough curve along the x-axis (fraction of time) compared to IL-50/SiO2 indicates higher CO₂ sorption, as expected from the higher theoretical capacity and stronger driving force of the amine sorbent, as discussed above.

It should be also noted that the sorption equilibrium for both sorbents was reached within

less than 5 min. This is primarily due to the fact of using solid-supported sorbents, which increase the CO₂ sorption rate compared to the liquid state form of sorbents. As mentioned above, the higher sorption capacity for PEI is expected due to the high CO₂ capture potential of amine-based materials, but considering the high energy input required in the desorption process, the IL-based sorbent might be more advantageous regarding regeneration efficiency. Therefore, CO₂ release experiments at moderate temperature were undertaken, as discussed in the following section.

Desorption of CO₂

The desorption of CO_2 from the studied sorbents (**IL-50/SiO₂** and **PEI-20/SiO₂**, in addition to SiO₂ as the blank material) was investigated at 60 °C, as shown in Figure 7.

Figure 7. CO_2 desorption curves for **IL-50/SiO₂**, **PEI-20/SiO₂** and blank SiO₂, at 60 °C and atmospheric pressure under pure N₂ flow (300 mL min⁻¹).

To study the CO_2 desorption behavior aiming at minimizing energy expenditure, short cycles (10 min) were performed at moderate temperature. As can be observed in Figure 7, the CO_2 concentration of the outlet gas for three samples as a function of time show noticeable differences. The blank experiment showed negligible CO₂ release, as clearly seen by the flat line for pristine SiO₂. A maximum value of CO₂ concentration at 3.1% was recorded for IL-50/SiO₂ after ca. 2 min, indicating rapid release. Moreover, fast and complete regeneration occurred within 7 min. In contrast, the PEI sample showed a maximum value of 2.1%, and then CO₂ concentration kept decreasing slowly during the remaining regeneration cycle, but it did not reach the baseline level. This means that regeneration of PEI-20/SiO₂ took place to a limited extent, and the rate of desorption was slower than for the IL material.

These preliminary results demonstrate that the regeneration energy input for $IL-50/SiO_2$ was much lower than for the amine-based competitor. Despite the lower (as expected) total sorption capacity of the IL material, which would require further optimization, the performance under repeated cycles at moderate temperatures might be competitive. These advantages make solid-supported phosphonium carboxylate ILs become promising as energy-efficient CO₂ sorbents.

Conclusions

Carbon dioxide capture is a key factor technology in palliating climate change. Moreover, recycling carbon in the atmosphere or from point sources by direct capture of CO₂, and converting these carbon sources to chemicals and fuels might be a promising solution to overcome the diminishing fossil fuels resources. There are large numbers of various technologies for CO₂ capture. Currently, amine-based CO₂ sorbents are mostly used, but these sorbents are accompanied by several disadvantages such as low thermal stability and high enthalpy of CO₂ reaction with amines, which lead to high energy input in regeneration process. Therefore, it is necessary to look for other alternatives. ILs as non-volatile sorbents with low enthalpy of CO₂ absorption might represent a good alternative to replace amines. In particular, phosphonium carboxylate ILs present higher thermal stabilities than ammonium counterparts. Furthermore, these set of (carboxylate-based) ILs show high CO₂ absorption, up to equimolar ratio, if formulated in the form of monohydrates.

Tetrabutylphosphonium hydrate acetate $([P_{4444}][AcO] \cdot H_2O)$ was synthesized and impregnated onto silicon dioxide. The physicochemical properties and CO₂ capturerelease performance of this solid-supported aminefree IL sorbent were studied and compared to analogous polyethyleneimine materials as competitor amine sorbents. Physicochemical properties of $[P_{4444}][AcO] \cdot H_2O/SiO_2$ and

PEI/SiO₂ materials were measured, including thermal stability and surface The area. $[P_{4444}][AcO] \cdot H_2O/SiO_2$ showed thermal stability up to 200 °C, that is, higher than that of PEI/SiO₂. The CO₂ sorption capacity of materials containing (IL-50/SiO₂), 50% IL and 20% PEI $(PEI-20/SiO_2),$ investigated were at room temperature using model flue gas (containing ca. 15% CO₂). It was clearly observed that the sorption equilibrium for both sorbents could be reached within 5 minutes, showing the fast capture kinetics of solid-supported materials, but as expected, the PEI sorbent showed higher CO₂ solubility than the IL counterpart. On the other hand, regeneration at 60 °C and flowing experiments N_2 $(300 \text{ ml min}^{-1})$ through the CO₂-saturated sorbents showed much better result for IL-50/SiO₂, which underwent rapid and total desorption of CO₂ within 7 minutes, while **PEI-20/SiO**₂ desorption rate was much slower, and desorption of CO₂ did not completed even after the entire regeneration cycle (10 min). Therefore, the energy input required to regenerate the IL material was much lower than that of a rich CO₂ amine-based PEI benchmark. These results suggest that sorption with solidsupported phosphonium carboxylate IL sorbents might become an energy-efficient CO₂ capture technology.

Future work

Clearly, there is an opportunity for amine-free, carboxylate-based ionic liquids to have a profound impact on CO₂ capture technology by avoiding the noxious emissions of amine processes, exhibiting higher thermal stability, enabling a moistureadjustable performance, and directing the sorptiondesorption process with minimal energy input. Several studies for integrating ionic liquids into CO₂ capture technology should be explored. In the particular of this study case using $[P_{4444}]$ [AcO]·H₂O/SiO₂, the following ideas could be tested:

- Studying the regenerability of IL sorbents by testing under repeated cycles.
- Spectroscopic characterization of samples before and after CO₂ sorption experiments,

in order to identify the different expected species (carbamates, bicarbonates, carbonates, *etc.*).

- Studying the effect of different water ratios in [P₄₄₄₄][AcO]·H₂O/SiO₂ materials on CO₂ sorption processes.
- Design and modify the chemical structure of IL, to enhance the CO₂ sorption capacity.
- Optimization of the system by studying the heat required in the regeneration process, the rate of the gas flow in sorption-desorption process and testing various loadings of the IL on SiO₂.
- Exploring the possibility of using [P₄₄₄₄][AcO]·H₂O/SiO₂ in large scale CO₂ capture needs to be studied.

References

- [1] P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," *Nature*, vol. 408, no. 6809, pp. 184–187, **2000**.
- [2] R. Lal, "Soil carbon sequestration to mitigate climate change," *Geoderma*, vol. 123, no. 1-2, pp. 1–22, **2004**.
- [3] N. Whiteley, "Physiological and ecological responses of crustaceans to ocean acidification," *Marine Ecology Progress Series*, vol. 430, pp. 257–271, **2011**.
- [4] G. A. Olah, A. Goeppert, and G. K. S. Prakash, "Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons," *The Journal of Organic Chemistry*, vol. 74, no. 2, pp. 487–498, **2009**.
- [5] A. Goeppert, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah, and S. R. Narayanan, "Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent," *Journal of the American Chemical Society*, vol. 133, no. 50, pp. 20164–20167, **2011**.
- [6] E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, and C. W. Jones, "Direct Capture of CO₂ from Ambient Air," *Chemical Reviews*, vol. 116, no. 19, pp. 11840–11876, **2016**.
- M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. M. Dowell, J. R. Fernández, M.-C. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A.

Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao, and P. S. Fennell, "Carbon capture and storage update," *Energy & Environmental Science*, vol. 7, no. 1, pp. 130–189, **2014**.

- [8] D. Y. Leung, G. Caramanna, and M. M. Maroto-Valer, "An overview of current status of carbon dioxide capture and storage technologies," *Renewable and Sustainable Energy Reviews*, vol. 39, pp. 426–443, **2014**.
- [9] E. I. Koytsoumpa, C. Bergins, and E. Kakaras, "The CO₂ economy: Review of CO₂ capture and reuse technologies," *The Journal of Supercritical Fluids*, vol. 132, pp. 3–16, **2018**.
- [10] G. D. Guido, M. Compagnoni, L. A. Pellegrini, and I. Rossetti, "Mature versus emerging technologies for CO₂ capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion," *Frontiers of Chemical Science and Engineering*, vol. 12, no. 2, pp. 315–325, **2018**.
- [11] E. E. Ünveren, B. Ö. Monkul, Ş. Sarıoğlan, N. Karademir, and E. Alper, "Solid amine sorbents for CO₂ capture by chemical adsorption: *A review*," *Petroleum*, vol. 3, no. 1, pp. 37–50, **2017**.
- [12] G. T. Rochelle, "Amine Scrubbing for CO₂ Capture," *Science*, vol. 325, no. 5948, pp. 1652– 1654, **2009**.
- [13] P. D. Vaidya and E. Y. Kenig, "CO₂-Alkanolamine Reaction Kinetics: A Review of Recent Studies," *Chemical Engineering & Technology*, vol. 30, no. 11, pp. 1467–1474, **2007**.
- [14] D. M. Dalessandro, B. Smit, and J. R. Long, "Carbon Dioxide Capture: Prospects for New Materials," *Angewandte Chemie International Edition*, vol. 49, no. 35, pp. 6058–6082, **2010**.
- [15] R. R. Bottoms (Girdler Corp.), "Separating acid gases", U.S Patent 1783901, 12,02,1930.
- [16] S. Choi, J. H. Drese, and C. W. Jones, "Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources," *ChemSusChem*, vol. 2, no. 9, pp. 796–854, **2009**.
- [17] A. L. Kohl, and R. B. Nielsen, "Gas purification 5th ed," Houston: *Gulf Publishing Company*, 900, 1997.
- [18] A. Goeppert, H. Zhang, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah, and S. R. Narayanan, "Easily Regenerable Solid Adsorbents Based on Polyamines for Carbon Dioxide Capture from the Air," *ChemSusChem*, vol. 7, no. 5, pp. 1386–1397, 2014.
- [19] M. Ramdin, T. W. D. Loos, and T. J. Vlugt, "State-of-the-Art of CO₂ Capture with Ionic Liquids," *Industrial & Engineering Chemistry Research*, vol. 51, no. 24, pp. 8149–8177, **2012**.

- [20] M. B. Shiflett, B. A. Elliott, S. R. Lustig, S. Sabesan, M. S. Kelkar, and A. Yokozeki, "Phase Behavior of CO₂ in Room-Temperature Ionic Liquid 1-Ethyl-3-Ethylimidazolium Acetate," *ChemPhysChem*, vol. 13, no. 7, pp. 1806–1817, **2012**.
- [21] D. Chinn, D. Q. vu, M. S. Driver, and L. C. Boudreau, "CO₂ removal from gas using ionic liquid absorbents," U.S. Patent 7527775B2, Washington. DC: U.S. Patent and Trademark Office, 05,05,2009.
- [22] P. Singh, J. P. Niederer, and G. F. Versteeg, "Structure and activity relationships for amine based CO₂ absorbents—I," *International Journal* of Greenhouse Gas Control, vol. 1, no. 1, pp. 5– 10, **2007**.
- [23] J. S. Wilkes, "A short history of ionic liquids from molten salts to neoteric solvents," *Green Chemistry*, vol. 4, no. 2, pp. 73–80, **2002**.
- [24] J. F. Brennecke and B. E. Gurkan, "Ionic Liquids for CO₂ Capture and Emission Reduction," *The Journal of Physical Chemistry Letters*, vol. 1, no. 24, pp. 3459–3464, **2010**.
- [25] B. Karimi, M. Tavakolian, M. Akbari, and F. Mansouri, "Ionic Liquids in Asymmetric Synthesis: An Overall View from Reaction Media to Supported Ionic Liquid Catalysis," *ChemCatChem*, vol. 10, no. 15, pp. 3173–3205, 2018.
- [26] S. Sarmad, J.-P. Mikkola, and X. Ji, "Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents," *ChemSusChem*, vol. 10, no. 2, pp. 324– 352, 2016.
- [27] H. Ohno and K. Fukumoto, "Amino Acid Ionic Liquids," Accounts of Chemical Research, vol. 40, no. 11, pp. 1122–1129, 2007.
- [28] N. Macdowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah, and P. Fennell, "An overview of CO₂ capture technologies," *Energy & Environmental Science*, vol. 3, no. 11, p. 1645-1669, **2010**.
- [29] L. A. Blanchard, D. Hancu, E. J. Beckman, and J. F. Brennecke, "Green processing using ionic liquids and CO₂," *Nature*, vol. 399, no. 6731, pp. 28–29, **1999**.
- [30] H. Ohno (Ed.), "Electrochemical aspects of ionic liquids," *John Wiley & Sons*, 408, **2005**.
- [31] M. Gruttadauria, S. Riela, P. L. Meo, F. Danna, and R. Noto, "Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed aldol reaction," *Tetrahedron Letters*, vol. 45, no. 32, pp. 6113–6116, **2004**.

- [32] T. Welton, "Ionic liquids in catalysis," *Coordination Chemistry Reviews*, vol. 248, no. 21-24, pp. 2459–2477, **2004**.
- [33] M. Angell, C.-J. Pan, Y. Rong, C. Yuan, M.-C. Lin, B.-J. Hwang, and H. Dai, "High Coulombic efficiency aluminum-ion battery using an AlCl₃urea ionic liquid analog electrolyte," *Proceedings* of the National Academy of Sciences, vol. 114, no. 5, pp. 834–839, **2017**.
- [34] S. P. M. Ventura, F. A. E. Silva, M. V. Quental, D. Mondal, M. G. Freire, and J. A. P. Coutinho, "Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends," *Chemical Reviews*, vol. 117, no. 10, pp. 6984–7052, **2017**.
- [35] F. Xu, J. Sun, N. V. S. N. Murthy Konda, J. Shi, T. Dutta, C. D. Scown, B. A. Simmons, and S. Singh, "Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol," *Energy & Environmental Science*, vol. 9, no. 3, pp. 1042–1049, **2016**.
- [36] H. Wang, G. Gurau, and R. D. Rogers, "Ionic liquid processing of cellulose," *Chemical Society Reviews*, vol. 41, no. 4, p. 1519=1537, 2012.
- [37] Z. Ma, J. Yu, and S. Dai, "Preparation of Inorganic Materials Using Ionic Liquids," *Advanced Materials*, vol. 22, no. 2, pp. 261–285, **2010**.
- [38] S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, and S. Zhang, "Ionic-Liquid-Based CO₂ Capture Systems: Structure, Interaction and Process," *Chemical Reviews*, vol. 117, no. 14, pp. 9625–9673, **2017**.
- [39] G. Cui, J. Wang, and S. Zhang, "Active chemisorption sites in functionalized ionic liquids for carbon capture," *Chemical Society Reviews*, vol. 45, no. 15, pp. 4307–4339, **2016**.
- [40] M. Hasib-Ur-Rahman, M. Siaj, and F. Larachi, "Ionic liquids for CO₂ capture—Development and progress," *Chemical Engineering and Processing: Process Intensification*, vol. 49, no. 4, pp. 313– 322, **2010**.
- [41] J. D. Figueroa, T. Fout, S. Plasynski, H. Mcilvried, and R. D. Srivastava, "Advances in CO₂ capture technology—The U.S. Department of Energys Carbon Sequestration Program," *International Journal of Greenhouse Gas Control*, vol. 2, no. 1, pp. 9–20, **2008**.
- [42] S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, and S. Zhang, "Ionic-Liquid-Based CO₂ Capture Systems: Structure, Interaction and Process," *Chemical Reviews*, vol. 117, no. 14, pp. 9625–9673, **2017**.
- [43] G. Cui, J. Wang, and S. Zhang, "Active chemisorption sites in functionalized ionic liquids for carbon capture," *Chemical Society Reviews*, vol. 45, no. 15, pp. 4307–4339, **2016**.

- [44] J. L. Anthony, J. L. Anderson, E. J. Maginn, and J. F. Brennecke, "Anion Effects on Gas Solubility in Ionic Liquids," *The Journal of Physical Chemistry B*, vol. 109, no. 13, pp. 6366–6374, **2005**.
- [45] E. D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis, "CO₂ Capture by a Task-Specific Ionic Liquid," *Journal of the American Chemical Society*, vol. 124, no. 6, pp. 926–927, **2002**.
- [46] K. Fukumoto, M. Yoshizawa, and H. Ohno, "Room Temperature Ionic Liquids from 20 Natural Amino Acids," *Journal of the American Chemical Society*, vol. 127, no. 8, pp. 2398–2399, 2005.
- [47] O. Hollóczki, Z. Kelemen, L. Könczöl, D. Szieberth, L. Nyulászi, A. Stark, and B. Kirchner, "Significant Cation Effects in Carbon Dioxide-Ionic Liquid Systems," *ChemPhysChem*, vol. 14, no. 2, pp. 315–320, **2013**.
- [48] K. Anderson, M. P. Atkins, J. Estager, Y. Kuah, S. Ng, A. A. Oliferenko, N. V. Plechkova, A. V. Puga, K. R. Seddon, and D. F. Wassell, "Carbon dioxide uptake from natural gas by binary ionic liquid–water mixtures," *Green Chemistry*, vol. 17, no. 8, pp. 4340–4354, **2015**.
- [49] C. A. Pena, A. Soto, A. W. T. King, and H. Rodríguez, "Improved Reactivity of Cellulose via Its Crystallinity Reduction by Nondissolving Pretreatment with an Ionic Liquid," ACS Sustainable Chemistry & Engineering, vol. 7, no. 10, pp. 9164–9171, 2019.
- [50] G. Wang, W. Hou, F. Xiao, J. Geng, Y. Wu, and Z. Zhang, "Low-Viscosity Triethylbutylammonium Acetate as a Task-Specific Ionic Liquid for Reversible CO₂ Absorption," *Journal of Chemical* & *Engineering Data*, vol. 56, no. 4, pp. 1125– 1133, **2011**.
- [51] K. Tsunashima and M. Sugiya, "Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes," *Electrochemistry Communications*, vol. 9, no. 9, pp. 2353–2358, **2007**.
- [52] M. N. Safiah, B. M. Azmi, and M. Y. Normawati, "CO₂ Capture Using Silica and Molecular Sieve Impregnated with [hmim][Tf₂N]," *International Journal of Chemical Engineering and Applications*, vol. 5, no. 4, pp. 342–346, **2014**.
- [53] C. E. S. Fuentes, D. Guzmán-Lucero, M. Torres-Rodriguez, N. V. Likhanova, J. N. Bolaños, O. Olivares-Xometl, and I. V. Lijanova, "CO₂/N₂ separation using alumina supported membranes based on new functionalized ionic liquids," *Separation and Purification Technology*, vol. 182, pp. 59–68, **2017**.
- [54] S. Choi, M. L. Gray, and C. W. Jones, "Amine-Tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO₂ Capture From Ambient Air," *ChemSusChem*, vol. 4, no. 5, pp. 628–635, **2011**.

- [55] J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Qi, and C. W. Jones, "Designing Adsorbents for CO₂ Capture from Flue Gas-Hyperbranched Aminosilicas Capable of Capturing CO₂ Reversibly," *Journal of the American Chemical Society*, vol. 130, no. 10, pp. 2902–2903, **2008**.
- [56] C. Chen, S.-T. Yang, W.-S. Ahn, and R. Ryoo, "Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO₂ capture capacity," *Chemical Communications*, no. 24, p. 3627-3629, **2009**.
- [57] Y. Zhang, S. Zhang, X. Lu, Q. Zhou, W. Fan, and X. Zhang, "Dual Amino-Functionalised Phosphonium Ionic Liquids for CO₂ Capture," *Chemistry - A European Journal*, vol. 15, no. 12, pp. 3003–3011, **2009**.
- [58] H. Kolding, R. Fehrmann, and A. Riisager, "CO₂ Capture technologies: Current status and new directions using supported ionic liquid phase (SILP) absorbers," *Science China Chemistry*, vol. 55, no. 8, pp. 1648–1656, **2012**.
- [59] Z. Zhang, L. Wu, J. Dong, B.-G. Li, and S. Zhu, "Preparation and SO₂ Sorption/Desorption Behavior of an Ionic Liquid Supported on Porous Silica Particles," *Industrial & Engineering Chemistry Research*, vol. 48, no. 4, pp. 2142– 2148, **2009**.
- [60] J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen, and X. Lv, "Supported Absorption of CO₂ by Tetrabutylphosphonium Amino Acid Ionic Liquids," *Chemistry - A European Journal*, vol. 12, no. 15, pp. 4021–4026, **2006**.
- [61] J. L. Ferguson, J. D. Holbrey, S. Ng, N. V. Plechkova, K. R. Seddon, A. A. Tomaszowska, and D. F. Wassell, "A greener, halide-free approach to ionic liquid synthesis," *Pure and Applied Chemistry*, vol. 84, no. 3, pp. 723–744, **2011**.
- [62] I. G. R. Gutz, CurTiPot pH and Acid–Base Titration Curves:Analysis and Simulation freeware, version 4.2. [Online] <u>http://www.iq.usp.br/gutz/Curtipot_.html</u>.

Supplementary Data

Figure S1. Weight changes of [N₄₄₄₄][AcO] and [P₄₄₄₄][AcO], measured by TGA (10 °C min⁻¹, air flow 50 mL min⁻¹).

Figure S2. Cooling (black) and heating (red) DSC traces of $[P_{4\,4\,4\,4}][AcO] \cdot H_2O$, showing the glass transition event at -70.9 °C upon heating (5 °C min⁻¹, N₂ flow 50 mL min⁻¹).

Figure S3. The BET analysis of, A) IL-50/SiO₂, B) PEI-20/SiO₂, C) PEI-50/SiO₂, D) blank sample (SiO₂).