
Accepted Manuscript

Replacing Red Meat and Processed Red Meat for White Meat, Fish, Legumes or Eggs is Associated With Lower Risk of Incidence of Metabolic Syndrome

Nerea Becerra-Tomás, Nancy Babio, BSc, PhD, Miguel Ángel Martínez-González, Dolores Corella, Ramon Estruch, Emilio Ros, Montserrat Fitó, Lluís Serra-Majem, Itziar Salaverria, Rosa M. Lamuela-Raventós, José Lapetra, Enrique Gómez-Gracia, Miguel Fiol, Estefanía Toledo, José V. Sorlí, Maria Roser Pedret-Llaberia, Jordi Salas-Salvadó, MD, PhD

PII: S0261-5614(16)30005-X

DOI: 10.1016/j.clnu.2016.03.017

Reference: YCLNU 2779

To appear in: Clinical Nutrition

Received Date: 19 October 2015

Accepted Date: 24 March 2016

Please cite this article as: Becerra-Tomás N, Babio N, Martínez-González MÁ, Corella D, Estruch R, Ros E, Fitó M, Serra-Majem L, Salaverria I, Lamuela-Raventós RM, Lapetra J, Gómez-Gracia E, Fiol M, Toledo E, Sorlí JV, Pedret-Llaberia MR, Salas-Salvadó J, Replacing Red Meat and Processed Red Meat for White Meat, Fish, Legumes or Eggs is Associated With Lower Risk of Incidence of Metabolic Syndrome, *Clinical Nutrition* (2016), doi: 10.1016/j.clnu.2016.03.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- ACCEPTED MANUSCRIPT 1 REPLACING RED MEAT AND PROCESSED RED MEAT FOR WHITE 2 MEAT, FISH, LEGUMES OR EGGS IS ASSOCIATED WITH LOWER RISK 3 OF INCIDENCE OF METABOLIC SYNDROME 4 Nerea Becerra-Tomás, 1,2 Nancy Babio, 1,2 Miguel Ángel Martínez-5 González, 2,3 Dolores Corella, 2,4 Ramon Estruch, 2,5 Emilio Ros, 2,6 Montserrat Fitó, 2,7 6 Lluís Serra-Majem, ^{2,8}Itziar Salaverria, ⁹ Rosa M. Lamuela-Raventós, ^{2,10} José 7 Lapetra, 2,11 Enrique Gómez-Gracia, 2 Miguel Fiol, 2,13 Estefanía Toledo, 2,3 José V. 8 Sorlí,^{2,4}Maria Roser Pedret-Llaberia¹⁴ and Jordi Salas-Salvadó^{1,2} 9 10 11 12 ¹Human Nutrition Unit, Faculty of Medicine and Health Sciences, Biochemistry & 13 Biotechnology Department, UniversitatRoviraiVirgili, and Hospital Universitari de Sant 14 Joan de Reus, IISPV, Reus, Spain. ²Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición 15 (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. 16 17 ³Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain. 18 19 ⁴Department of Preventive Medicine, University of Valencia, València, Spain. ⁵Department of Internal Medicine, Institutd'InvestigacionsBiomèdiques August Pi
- 20
- 21 Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain.
- 22 ⁶Lipid Clinic, Endocrinology and Nutrition Service, IDIBAPS, Hospital Clinic,
- University of Barcelona, Barcelona, Spain. 23

24	⁷ Cardiovascular Risk and Nutrition Research Group, Institut Hospital del Mar
25	d'InvestigacionsMèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona,
26	Spain.
27	⁸ Research Institute of Biomedical and Health Sciences, University of Las Palmas de
28	Gran Canaria, Las Palmas, Spain.
29	⁹ Department of Cardiology, University Hospital Araba, Vitoria, Spain
30	¹⁰ Nutrition and Food Science Department. School of Pharmacy, INSA, University of
31	Barcelona, XARTA Barcelona, Spain
32	¹¹ Department of Family Medicine, Research Unit, Distrito
33	SanitarioAtenciónPrimariaSevilla, Sevilla, Spain
34	¹² Department of Preventive Medicine, University of Malaga, Malaga, Spain
35	¹³ Institute of Health Sciences, University of Balearic Islands and Son Espases Hospital,
36	Palma de Mallorca, Spain
37	¹⁴ Primary Care Division, Catalan Institute of Health,
38	Institutd'InvestigacióenAtencióPrimària Jordi Gol, Tarragona-Reus
39	
40	Corresponding authors/Request for reprints:
41	Jordi Salas-Salvadó, MD, PhD, and Nancy Babio, BSc, PhD. Human Nutrition Unit,
42	Faculty of Medicine and Health Sciences, UniversitatRoviraiVirgili. C/SantLlorenç 21,
43	43201 Reus (Spain). Telephone number: +34 977759312; Fax number: +34 977759322
44	e-mail address: jordi.salas@urv.catand nancy.babio@urv.cat
45	

- 46 Footnotes:
- 47 Abbreviations used: CVD: cardiovascular disease; ICC: intra-class correlation
- 48 coefficient; FFQ: food frequency questionnaire; HR: hazards ratios; MedDiet:
- 49 Mediterranean diet; MetS: metabolic syndrome; PRM: processed red meat; RM: red
- meat; RM&PRM: red meat and processed red meat; SFAs: saturated fatty acids

51	ABSTRACT
52	Background & Aims: Few studies have assessed the association between consumption
53	of red meat (RM) and processed red meats (PRM) and the incidence of metabolic
54	syndrome (MetS) and results have been inconsistent. We investigated associations
55	between total consumption of meat and its subtypes and incident MetS and estimated
56	the effect of substituting RM or PRM for alternative protein-rich foods.
57	Methods: We analyzed 1868 participants (55-80 years-old) recruited into the
58	PREDIMED study who had no MetS at baseline and were followed for a median of 3.2
59	years. MetS was defined using updated harmonized criteria. Anthropometric variables,
60	dietary habits, and blood biochemistry were determined at baseline and yearly
61	thereafter. Multivariable-adjusted hazard ratios (HRs) of MetS were estimated for the
62	two upper tertiles (versus the lowest one) of mean consumption of meat and its subtypes
63	during the follow-up as exposure.
64	Results: Comparing the highest vs the lowest tertile of consumption, we observed an
65	increased risk of MetS incidence, with HRs of 1.23 (95% confidence interval [CI]: 1.03-
66	1.45) and 1.46 (CI: 1.22-1.74) for total meat and pooled RM and PRM, respectively.

- 67 Compared with participants in the lowest tertile, those in the highest tertile of poultry
- and rabbit consumption had a lower risk of MetS incidence. The risk of MetS was lower
- 69 when one-serving/day of RM or PRM was replaced by legumes, poultry and rabbit, fish
- or eggs.
- 71 **Conclusion:** RM and PRM consumption was associated with higher risk of MetS.
- Replacing RM or PRM with other protein-rich foods related to a lower risk of MetS and
- should, therefore, be encouraged.
- 74 This trial was registered at controlled-trials.com as ISRCTN35739639.

- 76 **Key words**: Total meat, red meat, processed red meat, metabolic syndrome,
- 77 PREDIMED-study

INTRODUCTION

79	Metabolic syndrome (MetS) is a cluster of metabolic disorders associated with
80	abdominal obesity that is associated with an increased risk of cardiovascular disease
81	(CVD) and diabetes[1]. It has been suggested that adherence to the Mediterranean diet
82	(MedDiet) and a healthy lifestyle are cornerstones in the prevention and treatment of
83	MetS[2].On the other hand, a Western dietary pattern, characterized by a high
84	consumption of red meat, processed meat, butter and margarine and refined grain has
85	been associated with an increased prevalence and incidence[3]of MetS.
86	Some studies have reported a positive association between meat consumption- mainly
87	red meat and processed meat-and hypertension[4], abdominal obesity[5], and type 2
88	diabetes[6,7], all of which are MetS components. Cross-sectional[8–12] and prospective
89	studies[3,9,13] have examined the association between red meat consumption and
90	MetS, with controversial results. To our knowledge only three prospective studies have
91	analyzed the association between red meat consumption and MetS[3,9,13]. In the
92	Atherosclerosis Risk in Communities study, a direct association was observed between
93	meat consumption (hamburger, hot dogs, processed meats, bacon, meat sandwiches or
94	mixed dishes, meat as a main dish) and MetS incidence in middle-aged women and
95	men[3]. Along the same lines, in a study limited to one of the centers of the
96	PREDIMED trial we found an increased risk of MetS development in those individuals
97	in the highest baseline quartile of red meat and processed red meat consumption
98	compared to those in the first quartile after one year of follow-up[9]. Finally, in a cohort
99	of Japanese ancestry a 4.7-fold increased risk of developing MetS was observed in those
100	individuals in the top tertile of red meat consumption compared to those in the lower
101	tertile, although the relationship was lost after adjustment for saturated fatty acid

intake[13]. As far as we know, only two previous studies related exposure to poultry consumption with MetS prevalence[12] or incidence[13] and reported no associations. In the present analysis we provide the results obtained in the full cohort of the PREDIMED study, a nutritional intervention trial for the primary prevention of cardiovascular disease[14] for the associations between total meat and specific types of meat consumption (especially red meat and processed red meat) and the incidence of MetS during the total study follow-up. We also estimated the effects on MetS incidence of replacing red meat and processed red meat with alternative protein-rich foods.

MATERIAL AND METHODS

112	Study design and participants
113	This study is a secondary analysis of a previously published randomized clinical trial,
114	the PREDIMED (PREvención con DIeta MEDiterránea, www.predimed.es) study.
115	Briefly, PREDIMED is a randomized, multicentre, parallel-group field trial that was
116	conducted in Spain between October 2003 and December 2010 to assess the
117	effectiveness of the MedDiet on the primary prevention of CVD. The protocol and
118	design have been described elsewhere[14]. The trial was registered at
119	http://www.controlledtrials.com/ISRCTN35739639 and included 7444 men and women
120	(aged 55-80 and 60-80 years, respectively), without previously documented
121	cardiovascular disease. Participants were eligible if they had either type 2 diabetes or at
122	least three of the following cardiovascular risk factors: hypertension (systolic blood
123	pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg or on antihypertensive
124	medication), high plasma LDL-cholesterol (≥ 160 mg/dL), low plasma HDL-cholesterol
125	$(<40mg/dL \text{ in men};<50mg/dL \text{ in women}), overweight or obesity (BMI \geq 25kg/m^2),$
126	current smoking, or a family history of premature coronary heart disease. Participants
127	were randomized to one of three intervention groups: a MedDiet supplemented with 1
128	liter/week of extra-virgin olive oil, a MedDiet supplemented with 30 g/day of mixed
129	nuts, or a control diet (adviceto follow a low fat-diet). The main results in relation to
130	cardiovascular events have been published[15].
131	In the present report, data were analyzed considering the PREDIMED study as a
132	observational cohort. We selected participants from all the PREDIMED recruiting
133	centers with biochemical determinations available for at least 2 years of follow-up
134	(n=5081).

135	Because our main aim was to explore the associations between different types of meat
136	consumption and the risk of MetS development, we excluded participants with MetS at
137	baseline (n=3707). We also excluded participants who had not completed a baseline
138	food frequency questionnaire (FFQ) and those who reported total energy intake values
139	outside the pre-specified limits (500-3500 kcal/d in women and 800-4000 kcal/d in
140	men). Finally, 2094 individuals were available for evaluation. The protocol was
141	approved by the institutional review boards of each recruitment center and all
142	participants provided written informed consent.
143	Dietary assessment
144	Dietary intake was evaluated at baseline and yearly during follow-up using a previously
145	validated FFQ[16]. The reproducibility of the FFQ used in the PREDIMED study for
146	food groups, and energy and nutrient intake, explored by the Pearson correlation
147	coefficient (r), ranged from 0.50 to 0.82, and the intra-class correlation coefficient (ICC)
148	ranged from 0.63 to 0.90. The validity indices of the FFQ in relation to the dietary
149	records for food groups, nutrient and energy intake ranged (r) from 0.24 to 0.72, while
150	the ICC ranged from 0.40 to 0.84. The ICC was 0.75 for total meat/meat products, 0.59
151	for fish or seafood, 0.40 for legumes, and 0.58 for eggs. Information about meat
152	consumption was assessed using 13 items included in the FFQ. Energy and nutrient
153	intake were estimated using Spanish food composition tables[15].
154	Trained dieticians asked the participants about the frequency with which they consumed
155	red meat, poultry or rabbit, processed meat products, fish, eggs and legumes: never, one
156	to three times per month, once per week, two to four times per week, five to six times
157	per week, once per day, two to three times per day, four to six times per day or more
158	than six times per day. The responses were transformed to grams per day and then
159	categorized into red meat (RM) including pork, veal, beef and lamb; processed red meat

160	(PRM) including offal , ham, sausages, pâté, hamburgers and bacon. Red meat and
161	processed red meat were merged into one category (RM&PRM) and poultry and rabbit,
162	into another category, including chicken, turkey and rabbit, while total meat included all
163	of the above categories. All dietary variables at baseline and yearly during the follow-up
164	were adjusted for total energy intake using the residuals method[17].
165	Ascertainment of Metabolic Syndrome
166	The primary end point of the PREDIMED trial was a composite of major cardiovascular
167	clinical events (non-fatal myocardial infarction, non-fatal stroke or cardiovascular
168	death). For the present study, we considered MetS incidence and its components to be
169	the outcome. The definition of MetS we used was in accordance with the updated
170	harmonized criteria of the International Diabetes Federation and the American Heart
171	Association/National Heart, Lung, and Blood Institute[1]. Individuals were diagnosed
172	with MetS if they had three or more of the following components: elevated waist
173	circumference for European individuals (≥ 88cm in women and ≥102cm in men),
174	hypertriglyceridemia (>150mg/dl) or drug treatment for elevated triglycerides, low
175	concentrations of HDL-cholesterol (<50mg/dl and <40mg/dL in women and men,
176	respectively) or drug treatment for low HDL-cholesterol, elevated blood pressure
177	(systolic \geq 130 mm Hg and/or diastolic \geq 85 mm Hg) or taking antihypertensive
178	medication; and high fasting plasma glucose (≥100 mg/dl) or drug treatment for
179	hyperglycemia.
180	Assessment of covariates
181	At baseline and yearly during follow-up, participants completed a 47-item questionnaire
182	about lifestyle variables, medical history and medication use; a validated Spanish
183	version of the Minnesota Leisure Time Physical Activity Questionnaire[18]; a 14-item

184	validated questionnaire designed to assess adherence to the MedDiet[19]; and a
185	validated semi-quantitative FFQ with 137 items [16].
186	Trained personnel measured height in centimeters, weight in kilograms, and waist
187	circumference by standard methods and blood pressure in triplicate with a 5-min
188	interval between each measurement by using a validated oscillometer (Omron
189	HEM705CP, Hoofddorp, the Netherlands) BMI was calculated by dividing weight in
190	kilograms by the square of height in meters.
191	Fasting blood samples were collected from all participants. Total cholesterol,
192	triglycerides and glucose concentrations were measured using standard methods. HDL-
193	cholesterol was determined after precipitation with phosphotungstic acid and
194	magnesium chloride. The laboratory technicians were blinded to the intervention group.
195	Statistical analyses
196	To take advantage of the yearly dietary assessments, we averaged the meat consumption
197	from baseline to the end of the follow-up or from baseline to the last follow-up FFQ
198	before the occurrence of MetS (if it ever occurred) as the relevant exposure. Because
199	participants who developed MetS during follow-up might have changed their dietary
200	habits after the diagnosis of MetS, their average consumption was calculated from
201	baseline to the year before MetS diagnosis. Then, participants were categorized into
202	tertiles of average daily consumption of total meat and its different subtypes during
203	follow-up. The baseline characteristics of the study population are expressed as
204	percentages and numbers for categorical variables and mean \pm SD or median (IQR) for
205	continuous variables. The Chi-square and one-way ANOVA tests were used to appraise
206	differences in the baseline characteristics according to tertiles of the average energy-
207	adjusted daily consumption of total meat. Multivariable Cox regression models were
208	fitted to assess the hazards ratios (HR) of incident MetS and its components during

209	follow-up for tertiles of total meat, RM, RM & PRM, PRM, and poultry and rabbit. The
210	Cox regression models were adjusted for several potential confounders. Model 1 was
211	adjusted for intervention group, sex, age, leisure time physical activity (METs/min-
212	day), BMI (kg/m²), smoking (current, former or never) at baseline; model 2 was
213	additionally adjusted for quintiles of daily average consumption (g/d) during follow-up
214	of vegetables, fruit, legumes, cereals, fish, dairy products, biscuits, olive oil, nuts and
215	alcohol(continuous and adding the quadratic term); and model 3 was additionally
216	adjusted for the prevalence of MetS components at baseline: abdominal obesity
217	(yes/no), hypertriglyceridemia (yes/no), low HDL-cholesterol (yes/no), high blood
218	pressure (yes/no), and high fasting plasma glucose (yes/no). The first tertile was used as
219	the reference category in all models. The time variable was calculated as the difference
220	between the date of death or end of follow-up (the date of the last visit or the last
221	recorded clinical event [MetS incidence] of participants who were still alive) and the
222	date of recruitment.
223	Statistical interaction between tertiles of total meat or its different subtypes and
224	potential confounding variables such as sex, diabetes status and BMI were checked
225	including product terms in the multivariable model. Because no significant interactions
226	were observed with sex, age or BMI, the product terms were removed.
227	To assess the linear trend, the median value of each tertile of total meat and different
228	subtypes of meat consumption was included in the Cox regression models as a
229	continuous variable. We conducted subsequent multivariable analyses to examine the
230	HRs for MetS of substituting RM and PRM with one portion/day of other protein-rich
231	foods such as fish, poultry and rabbit, legumes and eggs. These dietary variables were
232	included in the same fully adjusted model as continuous variables, and the differences
233	in their β -coefficients, variances and covariance were used to calculate the β -coefficient

234	±SE for the substitution effect. Thereafter, these parameters were used to estimate the
235	HR and 95% CI. The level of significance for all statistical tests was set at P <0.05 for
236	bilateral contrast. All analyses were performed with the SPSS software (version 22.0).

238	RESULTS
239	A total of 1868 individuals free of MetS at baseline and without extreme total energy
240	values in FFQ were included in the final longitudinal analyses after 226 individuals had
241	been excluded because data on some of the MetS components during follow-up were
242	missing. The mean daily consumption of total meat was 124 g, for which RM & PRM
243	were the major contributors (55%).
244	After a median follow-up of 3.2 years (interquartile range 1.9-5.8), 980 participants
245	without MetS at baseline (53.8% women) developed new-onset MetS. Table 1 depicts
246	the baseline characteristics of the study subjects by tertiles of average daily
247	consumption of total meat. Participants, in the top tertile were more likely than those in
248	the bottom tertile to have abdominal obesity and use oral antidiabetic agents or insulin;
249	they also consumed less fruit, legumes, dairy products, nuts, and olive oil.
250	The risk of MetS development across tertiles of total meat consumption and its different
251	subtypes is presented in Table 2 . Participants in the top tertile of total meat and RM &
252	PRM consumption had a greater risk of incident MetS than those in the bottom tertile,
253	with HRs of 1.23 (95%CI: 1.03-1.45) for total meat and 1.46 (95%CI: 1.22-1.74) for
254	RM & PRM. When RM and PRM were analyzed separately, similar direct associations
255	were observed, with HRs of 1.27 (95%CI: 1.06-1.52) and 1.37 (95%CI; 1.15-1.62),
256	respectively. On the other hand, the consumption of poultry and rabbit was inversely
257	associated with the risk of MetS [HR: 0.83 (95% CI: 0.70-0.99) for the upper tertile
258	compared to the lowest tertile].
259	Table 3 shows HR and 95% CI of the MetS components for the daily average tertiles of
260	energy-adjusted total meat consumption and its different subtypes. An increased intake
261	of total meat was associated with an increased risk in the incidence of all MetS

262	components, except high blood pressure. Results were similar when RM and PRM were
263	merged and when PRM was analyzed alone.
264	Individuals in the top tertile of RM consumption showed a 40%, 25% and 36% higher
265	risk of abdominal obesity, hypertriglyceridemia and low HDL-cholesterol, respectively,
266	compared to those in the bottom tertile. Conversely, compared with participants in the
267	bottom tertile of poultry and rabbit consumption, those in the top tertile had a lower risk
268	of all MetS components, except for abdominal obesity.
269	The risk of MetS was lower when one serving/day of legumes (150 g boiled), poultry
270	and rabbit (150 g), fish (150 g) or eggs (60 g) were substituted for RM (150 g). The
271	corresponding HR and 95%CI were 0.32 (0.09-0.60), 0.34 (0.20-0.66), 0.40 (0.24-0.87),
272	0.37 (0.19-0.76), respectively. Results were similar when one-serving/day of PRM
273	(150g) was replaced (Figure1). The replacement of one serving/day of RM for one
274	serving/day of PRM was non-significantly associated with a lower risk of MetS
275	development [HR: 0.72(95%CI; 0.34-2.92)].
276	

278	To the best of our knowledge, this is the first epidemiologic study that has evaluated the
279	association between total meat and different subtypes of meat and the risk of MetS
280	development in older individuals at high cardiovascular risk. The results showed that a
281	high consumption of total meat (around more than one serving/day), especially RM &
282	PRM, was associated with increased risk of MetS after adjusting for several potential
283	confounders. In contrast, poultry and rabbit consumption was associated with a reduced
284	risk of MetS and all its components except abdominal obesity. The consumption of total
285	meat, RM & PRM and PRM was also associated with components of the MetS such as
286	abdominal obesity, hypertriglyceridemia, low HDL-cholesterol and high fasting
287	glucose. In addition, the substitution of one serving/day of poultry and rabbit, legumes,
288	fish or eggs for one serving/day of RM or PRM was associated with a significant lower
289	risk of developing MetS.
290	Our results regarding RM, PRM and RM & PRM are in line with most of the previous
291	cross-sectional[8-10,12] and prospective studies[3,9].Although Damião and co-workers
292	showed that individuals with a higher red meat consumption in a Japanese-Brazilian
293	population had an increased risk of developing MetS, this association disappeared after
294	adjustment for saturated fatty acid (SFA) intake[13]. This discrepancy may be due to
295	over-adjustment, because SFA may be mediators of the association rather than
296	confounders.
297	Contrary to our results, two previous studies found no association between consumption
298	of poultry and the risk of MetS[12,13]. This discrepancy may be due to differences in
299	the meat subtypes included in the poultry category of these studies. Cocate et al.,
300	grouped poultry and fish in the same category[12], while Damião et al. did not mention

301	which meats were included in their definition of poultry[13]. In our study, chicken,
302	turkey and rabbit were included in the same category.
303	Various mechanisms can explain the associations observed between meat consumption
304	and MetS incidence. For instance, red meat is a food group rich in compounds harmful
305	for cardiometabolic risk, such as cholesterol, SFA and heme iron There is compelling
306	evidence suggesting that SFA have a lower thermogenic effect and are more prone to
307	oxidation than unsaturated fatty acids from plant sources[20], and this type of fat has
308	been associated with a higher likelihood of weight gain in animals[21]. Indeed, in a
309	recent meta-analysis[5], consumption of RM and PRM has been associated with higher
310	waist circumference and BMI. Moreover, consumption of SFA from RM, but not from
311	white meat, has also been associated with MetS, which suggests that this nutrient has an
312	important role in the pathogenesis of metabolic disorders[12]. Heme iron from red meat,
313	but not from other food sources, has also been associated with MetS[22]. Iron is
314	potentially harmful because it catalyses cellular reactions and produces reactive oxygen
315	species that increasethe oxidative stress. This has a particular effect on pancreatic beta
316	cells, which can lead to insulin resistance[23].
317	Processed meat products are treated by salting, curing, or smoking, thus having high
318	sodium content, besides harmful additives such as nitrites and nitrates, aromatic
319	polycyclic hydrocarbons, and heterocyclic amines. Nitrites and nitrates can be converted
320	into nitrosamines that have been associated with an increased risk of diabetes in
321	experimental animal models[24]. Moreover, blood nitrites have been associated with
322	endothelial dysfunction and impaired insulin response in adults[25], thus increasing the
323	risk of MetS development. Finally, excessive sodium intake is clearly related to high
324	blood pressure.

325	The mechanism by which poultry consumption may decrease MetS risk remains
326	unclear. The substitution of poultry for RM and PRM entails a lower intake of SFA,
327	heme iron, glycotoxins and sodium, which may be involved in the development of MetS
328	through the aforementioned mechanisms. In fact, in observational studies the risk of
329	type 2 diabetes was reduced when one serving of poultry/day was substituted for one
330	serving of total red meat/day[6]. Our results also show that substituting a serving of
331	poultry, fish, legumes or eggs for RM and PRM can protect against MetS development.
332	A recent meta-analysis of prospective studies showed an inverse association between
333	fish consumption and the risk of MetS incidence[26]. The mechanisms explaining this
334	inverse association may be the high fish content of n-3 fatty acids, which have anti-
335	inflammatory effects and may help reduce insulin resistance in muscle, improve the
336	plasma lipoprotein profile and endothelial function, and control blood pressure[27]. In
337	epidemiologic studies legume consumption has been associated with a reduced risk of
338	MetS components such as increased waist circumference and high blood pressure[28].
339	Legumes have a high fiber and magnesium content, which has been associated with a
340	better lipid profile and improved glucose and inflammatory responses[29] that may be
341	responsible in part for these beneficial effects. The inverse association found with MetS
342	when substituting eggs for RM and PRM may be explained in part because eggs are a
343	good source of folate, B vitamins, and carotenoids and promote the absorption of other
344	antioxidants present in vegetables[30]. Robust observational evidence suggests that high
345	egg consumption is not associated with an increased risk of coronary heart disease or
346	stroke, with the probable exception of high consumption levels among diabetic
347	persons[31].
348	Although our study focuses on the risk of MetS attributable to exposure to a specific
349	food group (meat and processed meat), it should be considered that the effect of the

350	overall dietary pattern is likely to have a considerably greater effect than those of
351	individual food groups or nutrients. For example, there is consistent evidence that some
352	dietary patterns, such us the MedDiet, DASH and Nordic diet, have beneficial effects on
353	MetS[32]. Probably, the joint effect of the whole dietary pattern is larger than the sum
354	of itsr parts. Nevertheless, the associations we found remained significant after
355	adjusting for other food groups within the background diet.
356	Our study has some limitations. First, the results cannot be generalized to other
357	populations because study subjects are older individuals at high cardiovascular risk.
358	Second, MetS was a secondary outcome of the PREDIMED study, hence the results are
359	exploratory in nature. Third, our study has been conducted in the frame of a nutritional
360	field trial with dietary patterns that might have a differential effect on the incidence of
361	MetS or its components. However, this confounding effect was minimized by adjusting
362	analyses for the intervention group. Fourth, as in any prospective study, there can be
363	unknown or unmeasured confounding factors, such as the amounts of nitrates, nitrites
364	and heterocyclic amines consumed, all of which have been related to the occurrence and
365	progress of MetS and its components. This possibility may have introduced some
366	degree of residual confounding.
367	Our study also has strengths, such as the relatively long follow-up, the control for a
368	large number of potential confounders, the analysis of different meat subtypes and
369	yearly repeated dietary assessments during follow-up, which allows updating the
370	consumption of the foods under consideration and is rarely undertaken in large
371	observational studies.
372	In conclusion, the present study suggests that total meat (when consumed to a level of
373	around more than one serving/day), RM and PRM promote MetS development. In
374	contrast, poultry consumption is associated with a lower risk of MetS. The substitution

of other protein-rich foods for RM or PRM is also associated with a lower risk of MetS.

Therefore, replacing RM and PRM by other healthy foods should be recommended to

decrease the risk of MetS in individuals at high cardiovascular risk. Further studies are

warranted to confirm these findings and elucidate the possible mechanisms involved.

379	Acknowledgements
380	The authors thank all the participants for their collaboration, all the PREDIMED
381	personnel for their assistance and all the personnel of affiliated primary care centers for
382	making the study possible. CIBEROBN is an initiative of ISCIII, Spain.
383	
384	Authors' responsibilities: MA.M-G, D.C, R.E, E.R, L.S-M, , J.L, E.G-G, M.F, and
385	J.S-S designed the PREDIMED study; N.B-T, N.B, MA.M-G, D.C, R.E, E.R, M.F, L.S-
386	M, I.S, RM.L-R, J.L, E.G-G, M.F, E.T, JV-S, R.P. and J.S-S conducted the research;
387	N.B-T and N.B analyzed data; N.B-T,N.B, and J.SS wrote the manuscript; MA.M-G,
388	D.C, R.E, E.R, L.S-M, M.F, J.L, J.S-S were the coordinators of subject recruitment and
389	follow-up at the outpatient clinics; N.B-T, N.B and J.S-S had full access to all the data
390	in the study and take responsibility for the integrity of the data and the accuracy of the
391	data analysis. All authors have read and approved the final manuscript.
392	
393	Conflict of Interest Statement and Funding sources:
394	The authors disclose no conflict of interest related with the article.
395	This study was funded, in part, by the Spanish Ministry of Health (ISCIII), ,
396	PI13/00462, ISCIII: PI052584, PI071138, PI13/00462, Thematic NetworkG03/140,
397	RD06/0045, FEDER (European Regional Development Fund), and the Centre Català de
398	la Nutrició de l'Institut d'Estudis Catalans. None of the funding sources played a role in
399	the design, collection, analysis, or interpretation of the data or in the decision to submit
400	the manuscript for publication. CIBEROBN is an initiative of ISCIII, Spain.

REFERENCES

- [1] Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International . Circulation 2009;120:1640–5. doi:10.1161/CIRCULATIONAHA.109.192644.
- [2] Babio N, Toledo E, Estruch R, Ros E, Martínez-González MA, Castañer O, et al. Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. CMAJ 2014;186:E649–57. doi:10.1503/cmaj.140764.
- [3] Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation 2008;117:754–61. doi:10.1161/CIRCULATIONAHA.107.716159.
- [4] Wang L, Manson JE, Buring JE, Sesso HD. Meat intake and the risk of hypertension in middle-aged and older women. J Hypertens 2008;26:215–22. doi:10.1097/HJH.0b013e3282f283dc.
- [5] Rouhani MH, Salehi-Abargouei A, Surkan PJ, Azadbakht L. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes Rev 2014;15:740–8. doi:10.1111/obr.12172.
- [6] Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr 2011;94:1088–96. doi:10.3945/ajcn.111.018978.
- [7] Aune D, Ursin G, Veierød MB. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia 2009;52:2277–87. doi:10.1007/s00125-009-1481-x.
- [8] Ruidavets J-B, Bongard V, Dallongeville J, Arveiler D, Ducimetière P, Perret B, et al. High consumptions of grain, fish, dairy products and combinations of these are associated with a low prevalence of metabolic syndrome. J Epidemiol Community Health 2007;61:810–7. doi:10.1136/jech.2006.052126.
- [9] Babio N, Sorlí M, Bulló M, Basora J, Ibarrola-Jurado N, Fernández-Ballart J, et al. Association between red meat consumption and metabolic syndrome in a Mediterranean population at high cardiovascular risk: cross-sectional and 1-year follow-up assessment. Nutr Metab Cardiovasc Dis 2012;22:200–7. doi:10.1016/j.numecd.2010.06.011.

- [10] Azadbakht L, Esmaillzadeh A. Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women. J Nutr 2009;139:335–9. doi:10.3945/jn.108.096297.
- [11] Aekplakorn W, Satheannoppakao W, Putwatana P, Taneepanichskul S, Kessomboon P, Chongsuvivatwong V, et al. Dietary pattern and metabolic syndrome in thai adults. J Nutr Metab 2015;2015:468759. doi:10.1155/2015/468759.
- [12] Cocate PG, Natali AJ, de Oliveira A, Alfenas R de CG, Peluzio M do CG, Longo GZ, et al. Red but not white meat consumption is associated with metabolic syndrome, insulin resistance and lipid peroxidation in Brazilian middle-aged men. Eur J Prev Cardiol 2015;22:223–30. doi:10.1177/2047487313507684.
- [13] Damião R, Castro TG, Cardoso MA, Gimeno SGA, Ferreira SRG. Dietary intakes associated with metabolic syndrome in a cohort of Japanese ancestry. Br J Nutr 2006;96:532–8.
- [14] Martínez-González MÁ, Corella D, Salas-Salvadó J, Ros E, Covas MI, Fiol M, et al. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol 2012;41:377–85. doi:10.1093/ije/dyq250.
- [15] Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013;368:1279–90. doi:10.1056/NEJMoa1200303.
- [16] Fernández-Ballart JD, Piñol JL, Zazpe I, Corella D, Carrasco P, Toledo E, et al. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br J Nutr 2010;103:1808–16. doi:10.1017/S0007114509993837.
- [17] Willett W. Nutritional Epidemiology 2nd ed. 1998 Oxford University Press New York 1998.
- [18] Elosua R, Marrugat J, Molina L, Pons S, Pujol E. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish men. The MARATHOM Investigators. Am J Epidemiol 1994;139:1197–209.
- [19] Schröder H, Fitó M, Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr 2011;141:1140–5. doi:10.3945/jn.110.135566.
- [20] Casas-Agustench P, López-Uriarte P, Bulló M, Ros E, Gómez-Flores A, Salas-Salvadó J. Acute effects of three high-fat meals with different fat saturations on energy expenditure, substrate oxidation and satiety. Clin Nutr 2009;28:39–45. doi:10.1016/j.clnu.2008.10.008.

- [21] Storlien LH, Hulbert AJ, Else PL. Polyunsaturated fatty acids, membrane function and metabolic diseases such as diabetes and obesity. Curr Opin Clin Nutr Metab Care 1998;1:559–63.
- [22] De Oliveira Otto MC, Alonso A, Lee D-H, Delclos GL, Bertoni AG, Jiang R, et al. Dietary intakes of zinc and heme iron from red meat, but not from other sources, are associated with greater risk of metabolic syndrome and cardiovascular disease. J Nutr 2012;142:526–33. doi:10.3945/jn.111.149781.
- [23] Swaminathan S, Fonseca VA, Alam MG, Shah S V. The role of iron in diabetes and its complications. Diabetes Care 2007;30:1926–33. doi:10.2337/dc06-2625.
- [24] Tong M, Neusner A, Longato L, Lawton M, Wands JR, de la Monte SM. Nitrosamine exposure causes insulin resistance diseases: relevance to type 2 diabetes mellitus, non-alcoholic steatohepatitis, and Alzheimer's disease. J Alzheimers Dis 2009;17:827–44.
- [25] Pereira EC, Ferderbar S, Bertolami MC, Faludi AA, Monte O, Xavier HT, et al. Biomarkers of oxidative stress and endothelial dysfunction in glucose intolerance and diabetes mellitus. Clin Biochem 2008;41:1454–60. doi:10.1016/j.clinbiochem.2008.08.074.
- [26] Kim Y-S, Xun P, He K. Fish consumption, long-chain omega-3 polyunsaturated fatty acid intake and risk of metabolic syndrome: a meta-analysis. Nutrients 2015;7:2085–100. doi:10.3390/nu7042085.
- [27] Carpentier YA, Portois L, Malaisse WJ. n-3 Fatty acids and the metabolic syndrome. Am J Clin Nutr 2006;83:S1499–504.
- [28] Papanikolaou Y, Fulgoni VL. Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: results from the National Health and Nutrition Examination Survey 1999-2002. J Am Coll Nutr 2008;27:569–76.
- [29] Bazzano LA, He J, Ogden LG, Loria C, Vupputuri S, Myers L, et al. Legume Consumption and Risk of Coronary Heart Disease in US Men and Women. Arch Intern Med 2001;161:2573. doi:10.1001/archinte.161.21.2573.
- [30] Kim JE, Gordon SL, Ferruzzi MG, Campbell WW. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables. Am J Clin Nutr 2015;102:75–83. doi:10.3945/ajcn.115.111062.
- [31] Rong Y, Chen L, Zhu T, Song Y, Yu M, Shan Z, et al. Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. BMJ 2013;346:e8539. doi:10.1136/bmj.e8539.
- [32] Calton EK, James AP, Pannu PK, Soares MJ. Certain dietary patterns are beneficial for the metabolic syndrome: reviewing the evidence. Nutr Res 2014;34:559–68. doi:10.1016/j.nutres.2014.06.012.

FIGURE LEGEND

Figure 1. HR and 95% CI of metabolic syndrome for replacing red meat and processed red meat with poultry and rabbit, fish, legumes and eggs. Cox regression model adjusted for age (years), sex, leisure time physical activity (METs min/day), BMI (kg/m²), current smoker (yes/no), former smoker (yes/no) at baseline, daily average consumption quintiles of vegetables (g/d), fruit (g/d), legumes (g/d) (except when substitution with legumes was analyzed), cereals (g/d), fish (g/d) (except when substitution with fish was analyzed), dairy products (g/d), biscuits (g/d), olive oil (g/d) and nuts (g/d) and alcohol (as continuous variable in g/d and adding the quadratic term), and for the prevalence of metabolic syndrome components at baseline: abdominal obesity (yes/no), hypertriglyceridemia (yes/no), low HDL-cholesterol (yes/no), hypertension (yes/no) and high fasting plasma glucose (yes/no).

Table 1.Baseline characteristics of the study population according to tertiles of energy-adjusted average daily consumption of total meat^a

	Total meat consumption (g/day)			
	T1	T2	T3	P-value ^b
	≤106.92	106.94-137.80	≥137.82	
	n=622	n=623	n=623	
Age, years	67.3 ± 6.0	66.9 ± 6.0	66.5 ± 6.2	0.06
Women, % (n)	54.0 (336)	52.5 (327)	50.9 (317)	0.54
Waist circumference, cm	95.5 ± 9.8	94.00 ± 9.5	95.7 ± 9.9	0.05
Women	93.2 ± 10.5	91.0 ± 10.9	92.8 ± 10.2	0.02
Men	98.1 ± 8.1	97.3 ± 6.1	98.6 ± 8.5	0.11
BMI, kg/m ²	28.4 ± 3.4	28.1 ± 3.5	28.5 ± 3.6	0.15
Leisure time physical activity, METs-min/d	272 ± 270	269 ± 244	282 ± 248	0.66
Former smokers, % (n)	24.8 (154)	25.7 (160)	27.1 (169)	0.63
Current smokers, % (n)	17.4 (108)	14.6 (91)	15.1 (94)	0.36
Pland programs mmUg				

Blood pressure, mmHg

Systolic	145.9 ± 20.0	147.3 ± 21.0	146.3 ± 20.5	0.35
Diastolic	81.4 ± 10.9	82.3 ± 10.7	82.3 ± 10.7	0.27
Biochemistry, mg/dL				
Fasting blood glucose	101.2 ± 37.1	99.0 ± 34.5	99.1 ± 34.6	0.01
HDL-cholesterol, median [IRQ]	59.0 [51.0-68.0]	58.7 [51.0-68.0]	57.0 [50.0-66.5]	0.41
Triglycerides, median [IRQ]	97.0 [75.0-120.0]	94.0 [76.0-116.0]	96.0 [73.0-121.0]	0.56
Current medication use, % (n)				
Use of hypoglycemic agents	13.2 (82)	12.7 (79)	17.2 (107)	0.04
Use hypolipidemic agents	46.9 (292)	47.2 (294)	44.1 (275)	0.31
Use of antihypertensive agents	65.3 (406)	66.5 (414)	63.9 (398)	0.59
Insulin treatment	2.3 (14)	4.7 (29)	6.1 (38)	< 0.01
Metabolic syndrome components, % (n)				
Abdominal obesity	47.0 (289)	38.1 (237)	46.6 (288)	< 0.01
Hypertriglyceridemia	5.6 (35)	5.1 (32)	4.8 (30)	0.81
Low HDL-cholesterol	2.6 (16)	4.2 (26)	2.2 (14)	0.10

High blood pressure	87.8 (545)	86.8 (541)	86.7 (539)	0.82
High fasting plasma glucose	28.6 (177)	31.7 (196)	34.8 (216)	0.07
Intervention group, % (n)				
MedDiet+EVOO	37.1 (231)	34.3 (214)	32.3 (201)	0.32
MedDiet+nuts	33.8 (210)	35.3 (220)	34.0 (212)	
Low-fat control diet	29.1 (181)	30.3 (189)	33.7 (210)	
Energy intake, kcal/day	2358 ± 534	2279 ± 521	2332 ± 538	0.03
Food consumption, g/day ^c		Y		
Vegetables	335 ± 145	330 ± 133	348 ± 151	0.09
Fruits	392 ± 211	388 ± 202	366 ±194	0.05
Eggs	19 ± 11	20 ± 10	21 ± 12	< 0.01
Legumes	23 ± 17	21 ± 11	20 ± 10	< 0.01
Dairy	421 ± 241	384 ± 216	360 ± 212	< 0.01
Fish	100 ± 47	102 ± 43	105 ± 45	0.10
Cereals	232 ± 92	234 ± 82	225 ± 79	0.11

Biscuits	25 ± 30	24 ± 29	21 ± 24	0.07
Nuts	13 ± 16	12 ± 13	11 ± 14	0.01
Olive oil	43 ± 18	42 ± 16	40 ± 16	0.03
Alcohol	10 ± 16	10 ± 13	10 ± 14	0.61

Data are expressed as means (standard deviation) or medians [IRQ, interquartile range] for continuous variables and percentages and numbers (n) for categorical variables.

Abbreviations: T, Tertile; BMI, Body mass index; MedDiet, Mediterranean diet, EVOO, extra-virgin olive oil.

^aTertile cut-offs are based on energy-adjusted daily average of total meat intake.

^bP values for differences between tertiles were calculated by chi-square or ANOVA tests for categorical and continuous variables, respectively.

^cAll dietary variables were adjusted for total energy intake.

Table 2. Hazard ratios (95% confidence intervals) of metabolic syndrome incidence across average energy-adjusted tertiles of total meat, red meat and processed red meat, red meat, processed red meat and poultry and rabbit consumption during the follow-up ^a

	N	Ieat consumption	(g/day)	
	T1 ^a	T2	Т3	P-
			£	trend
Total meat, median g/day b	87.0	120.6	158.9	/
Metabolic syndrome incidence, % (n)	49.2 (306)	42.1 (262)	58.1 (362)	< 0.01
Crude model	1.00 ref.	0.82 (0.69-0.97)	1.31 (1.12-1.54)	< 0.01
Multivariable model 1	1.00 ref.	0.83 (0.70-0.98)	1.32 (1.12-1.55)	< 0.01
Multivariable model 2	1.00 ref.	0.95 (0.80-1.13)	1.29 (1.09-1.53)	0.01
Multivariable model 3	1.00 ref.	0.93 (0.78-1.11)	1.23 (1.03-1.45)	0.02
Red meat and processed red meat,	38.4	62.9	96.4	
median g/day ^c		7		
Metabolic syndrome incidence, % (n)	45.5 (283)	44.3 (276)	59.6 (371)	
Crude model	1.00 ref.	0.96 (0.81-1.14)	1.61 (1.37-1.89)	< 0.01
Multivariable model 1	1.00 ref.	0.97 (0.82-1.15)	1.67 (1.41-1.97)	< 0.01
Multivariable model 2	1.00 ref.	1.03 (0.87-1.23)	1.57 (1.32-1.86)	< 0.01
Multivariable model 3	1.00 ref.	0.98 (0.82-1.17)	1.46 (1.22-1.74)	< 0.01
Red meat, median g/day d	19.5	39.3	67.5	
Metabolic syndrome incidence, % (n)	47.9 (298)	44.1 (275)	57.3 (357)	< 0.01
Crude model	1.00 ref.	0.89 (0.75-1.05)	1.38 (1.17-1.63)	< 0.01
Multivariable model 1	1.00 ref.	0.89 (0.75-1.05)	1.43 (1.21-1.68)	< 0.01
Multivariable model 2	1.00 ref.	0.91 (0.77-1.09)	1.32 (1.10-1.57)	< 0.01

A	CCEPTED N	MANUSCRIPT		
Multivariable model 3	1.00 ref.	0.86 (0.72-1.02)	1.27 (1.06-1.52)	< 0.01
Processed red meat, median g/day ^e	12.3	22.4	35.3	
Metabolic syndrome incidence, % (n)	46.0 (286)	45.1 (281)	58.3 (363)	< 0.01
Crude model	1.00 ref.	0.96 (0.81-1.14)	1.44 (1.22-1.69)	< 0.01
Multivariable model 1	1.00 ref.	0.97 (0.82-1.14)	1.46 (1.24-1.72)	< 0.01
Multivariable model 2	1.00 ref.	1.06 (0.89-1.26)	1.42 (1.20-1.68)	< 0.01
Multivariable model 3	1.00 ref.	1.06 (0.89-1.26)	1.37 (1.15-1.62)	< 0.01
Poultry and rabbit, median g/day ^f	28.9	58.6	79.4	
Metabolic syndrome incidence, % (n)	56.4 (351)	43.2 (269)	49.8 (310)	< 0.01
Crude model	1.00 ref.	0.67 (0.57-0.79)	0.79 (0.67-0.93)	< 0.01
Multivariable model 1	1.00 ref.	0.67 (0.57-0.78)	0.78 (0.66-0.92)	< 0.01
Multivariable model 2	1.00 ref.	0.76 (0.64-0.90)	0.85 (0.72-1.01)	0.03
Multivariable model 3	1.00 ref.	0.74 (0.63-0.88)	0.83 (0.70-0.99)	0.02

Abbreviations: T, Tertile.

Multivariable model 1 adjusted for intervention group, sex, age (years), leisure time physical activity (METs-min/day), BMI (kg/m²), current smoker (yes/no), former smoker (yes/no). Multivariable model 2 additionally adjusted for average consumption quintiles of vegetables (g/d), fruit (g/d), legumes (g/d), cereals (g/d), fish (g/d), dairy products (g/d), alcohol (g/d and quadratic term), biscuits (g/d), olive oil (g/d) and nuts (g/d). Multivariable model 3 additionally adjusted for the prevalence of metabolic syndrome components at baseline: abdominal obesity (yes/no), hypertriglyceridemia (yes/no), low HDL-cholesterol (yes/no), hypertension (yes/no) and high fasting plasma glucose (yes/no). All models were stratified by recruitment centre.

^aTertile cut-offs are based on energy-adjusted daily average of total meat, red meat and processed red meat, red meat, processed red meat and poultry and rabbit. ^bIncludes all meat products: chicken, turkey, rabbit, pork, beef, veal, lamb, several types of sausages and processed red meat. ^cIncludes pork, veal, lamb, several types of sausages and processed red meat. ^dIncludes pork, beef, veal and lamb. ^eIncludes several types of sausages and processed red meat. ^fIncludes chicken, turkey and rabbit.

Table 3. Hazard ratios (95% CI) of metabolic syndrome components (abdominal obesity, hypertriglyceridemia, low HDL-cholesterol, high blood pressure and high fasting plasma glucose) across energy-adjusted tertiles of specific meat consumption^a

	T1	T2	Т3	P- trend
Total Meat ^b				
Abdominal obesity	1.00 ref.	0.87 (0.69-1.09)	1.34 (1.07-1.68)	0.01
Hypertriglyceridemia	1.00 ref.	0.94 (0.80-1.09)	1.21 (1.03-1.41)	0.01
Low HDL-cholesterol	1.00 ref.	0.90 (0.77-1.06)	1.29 (1.10-1.50)	< 0.01
High blood pressure	1.00 ref.	0.76 (0.52-1.12)	0.88 (0.59-1.31)	0.64
High fasting plasma glucose	1.00 ref.	0.87 (0.72-1.05)	1.21 (1.00-1.46)	0.04
Red and processed red meat ^c				
Abdominal obesity	1.00 ref.	1.19 (0.96-1.49)	1.73 (1.36-2.18)	< 0.01
Hypertriglyceridemia	1.00 ref.	1.02 (0.87-1.19)	1.47 (1.26-1.72)	< 0.01
Low HDL-cholesterol	1.00 ref.	1.08 (0.92-1.26)	1.45 (1.24-1.70)	< 0.01
High blood pressure	1.00 ref.	0.95 (0.66-1.37)	1.25 (0.84-1.88)	0.28
High fasting plasma glucose	1.00 ref.	0.99 (0.82-1.19)	1.28 (1.05-1.56)	0.01
Red meat ^d				
Abdominal obesity	1.00 ref.	1.07 (0.86-1.33)	1.4 (1.19-1.88)	< 0.01
Hypertriglyceridemia	1.00 ref.	0.88 (0.76-1.03)	1.25 (1.08-1.46)	< 0.01
Low HDL-cholesterol	1.00 ref.	0.99 (0.86-1.16)	1.36 (1.17-1.59)	< 0.01
High blood pressure	1.00 ref.	0.78 (0.55-1.12)	1.05 (0.71-1.54)	0.69
High fasting plasma glucose	1.00 ref.	1.07 (0.89-1.29)	1.18 (0.97-1.43)	0.09
Processed red meat ^e				
Abdominal obesity	1.00 ref.	0.83 (0.66-1.03)	1.50 (1.21-1.86)	< 0.01
Hypertriglyceridemia	1.00 ref.	0.89 (0.77-1.04)	1.26 (1.09-1.46)	< 0.01
Low HDL-cholesterol	1.00 ref.	0.90 (0.77-1.04)	1.25 (1.08-1.45)	< 0.01

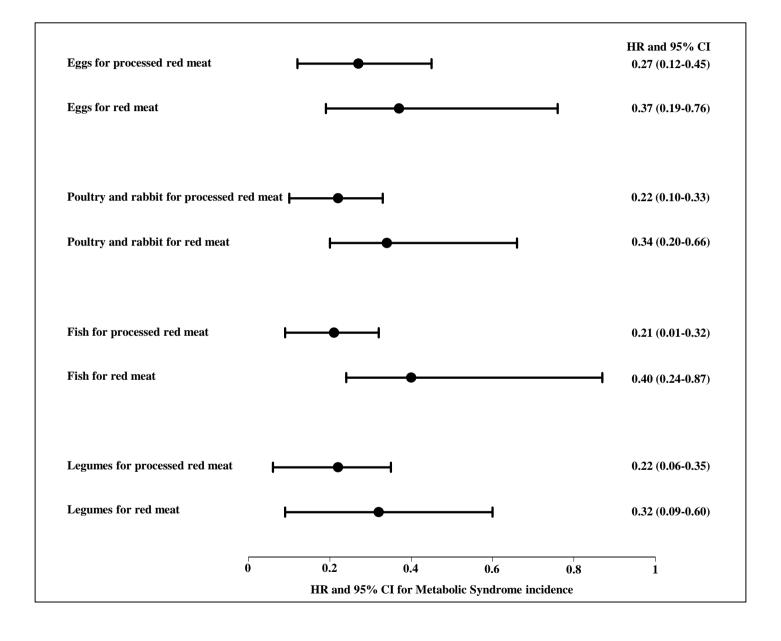
ACCEPTED MANUSCRIPT				
High blood pressure	1.00 ref.	0.94 (0.66-1.34)	0.97 (0.66-1.41)	0.88
High fasting plasma glucose	1.00 ref.	0.96 (0.80-1.15)	1.23 (1.02-1.48)	0.02
Poultry and rabbit ^f				
Abdominal obesity	1.00 ref.	0.72 (0.59-0.89)	0.81 (0.65-1.01)	0.03
Hypertriglyceridemia	1.00 ref.	0.69 (0.59-0.80)	0.78 (0.67-0.91)	< 0.01
Low HDL-cholesterol	1.00 ref.	0.70 (0.61-0.82)	0.83 (0.71-0.96)	< 0.01
High blood pressure	1.00 ref.	0.69(0.48-0.99)	0.68 (0.47-0.97)	0.02
High fasting plasma glucose	1.00 ref.	0.74 (0.62-0.88)	0.83 (0.69-0.99)	0.01

Abbreviations: CI, confidence interval, T, tertile.

The metabolic syndrome components were defined according to updated harmonizing criteria.

Cox regression models adjusted for intervention group, sex, age (year), leisure time physical activity (METs-min/day), BMI (kg/m²), current smoker (yes/no), former smoker (yes/no), quintiles of average consumption of vegetables (g/d), fruit (g/d), legumes (g/d), cereals (g/d), fish (g/d) dairy (g/d), biscuits (g/d), olive oil (g/d) and nuts (g/d), and alcohol (g/d) (continuous and quadratic term). All models were stratified by recruitment center.

^bIncludes all meat products: chicken, turkey, rabbit, pork, beef, veal, lamb, several types of sausages and processed red meat.


^aTertile cut-offs are based on energy-adjusted daily average meat intake.

^cIncludes pork, beef, veal, lamb, several types of sausages and processed red meat.

^dIncludes pork, beef, veal and lamb.

^eIncludes several types of sausages and processed red meat.

^fIncludes chicken, turkey and rabbit.

