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Effects of the Ser326Cys polymorphism in the DNA repair OGG1 gene on cancer, 1 

cardiovascular and all-cause mortality in the PREDIMED study: Modulation by the 2 

Mediterranean diet 3 

 4 

 5 

RESEARCH SNAPSHOT 6 

Research Question: Is the lower DNA-repair capacity genotype (homozygous individuals for the 7 

Cys326 allele) in the OGG1-rs1052133 (Ser326Cys) polymorphism associated with cancer 8 

mortality or other causes and are these associations modulated by Mediterranean diet (MedDiet) 9 

or vegetable intake? 10 

Key findings: In the PREDIMED dietary intervention trial including 7,170 participants, the 11 

Cys326Cys-OGG1 genotype was associated with higher total mortality, mainly cardiovascular 12 

mortality. For cardiovascular and total mortality, no statistically significant interactions were 13 

found with the MedDiet intervention. However, when vegetable intake was considered, 14 

significant interactions decreasing the risk for cardiovascular mortality in homozygous 15 

individuals with higher intake were detected. 16 

 17 

 18 

 19 

ABSTRACT 20 

 21 

Background: Oxidatively induced DNA damage, an important factor in cancer etiology, is 22 

repaired by oxyguanine glycosylase 1 (OGG1). The lower repair capacity genotype (homozygote 23 

Cys326Cys) in the OGG1-rs1052133 (Ser326Cys) polymorphism has been associated with 24 

cancer risk. However, no information is available in relation to cancer mortality, other causes of 25 

*Manuscript
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death and modulation by diet. 26 

Objective: Our aim was to evaluate the association of the OGG1-rs1052133 with total, cancer 27 

and cardiovascular (CVD) mortality and to analyze its modulation by the Mediterranean diet 28 

(MedDiet), focusing especially on total vegetable intake as one of the main characteristics of this 29 

diet. 30 

Design: PREDIMED is a randomized, controlled trial conducted in Spain from 2003 to 2010. 31 

Participants/setting: Study participants (n=7,170) were at high risk for CVD and aged 55-80 32 

years. 33 

Intervention: Participants were randomly allocated to two groups with a MedDiet intervention 34 

or to a control diet. 35 

Main Outcome measures: Main outcomes were all-cause, cancer and CVD mortality after a 36 

median follow-up of 4.8 years. 37 

Statistical analyses: Multivariable-adjusted Cox regression models were fitted. 38 

Results: 318 deaths were detected (cancer=127, CVD=81 and others=110). Cys326Cys 39 

individuals (prevalence 4.2%) presented higher total mortality rates than Ser326-carriers 40 

(P=0.009). The multivariable-adjusted Hazard Ratio (HR) for Cys326Cys versus Ser326-carriers 41 

was 1.69 (95%CI:1.09-2.62); P=0.018. This association was greater for CVD mortality 42 

(P=0.001). No relationship was detected for cancer mortality in the whole population (HR:1.07; 43 

95%CI:0.47-2.45; P=0.867), but a significant age interaction (P=0.048) was observed as 44 

Cys326Cys was associated with cancer mortality in participants <66.5 years (P=0.029). 45 

Recessive effects limited our ability to investigate Cys326Cys*diet interactions for cancer 46 

mortality. No statistically significant interactions for total or CVD mortality were found for the 47 

MedDiet intervention. However, significant protective interactions for CVD mortality were found 48 

for vegetable intake (HR-interaction per standard deviation: 0.42;95%CI:0.18-0.98, P=0.046). 49 
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Conclusions: In this population, the Cys326Cys-OGG1 genotype was associated with all-cause 50 

mortality, mainly CVD instead of cancer mortality. Additional studies are needed to provide 51 

further evidence on its dietary modulation. 52 

 53 

 54 

  55 
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INTRODUCTION 56 

DNA molecules are exposed to the attack of DNA-damaging agents
1
, among them 57 

reactive oxygen species (ROS)
2
. Oxidatively induced DNA damage can be both mutagenic and 58 

cytotoxic
3
 and has been implicated in the etiology of cancer

4
, neurodegenerative diseases

5
 and 59 

overall aging
6
. Hydroxyl radicals preferentially react with the C8 atom of purines in DNA to 60 

generate 8-oxo-7,8-dihydroguanine (8-oxoG), 8-oxo-7,8-dihydroadenine (8-oxoA) and 61 

formamidopyrimidines (Fapy)
7
. The accumulation of unrepaired DNA damage can cause genetic 62 

instability and has deleterious effects on cell function
8
. 8-oxoG is a critical mutagenic lesion 63 

because of its propensity to mispair with A during DNA replication
7
. Repair of oxidatively 64 

damaged bases occurs primarily via the DNA base excision repair (BER) pathway
2
. In the first 65 

step of this type of repair, damaged bases are removed from DNA by DNA glycosylases
9
. The 66 

oxyguanine glycosylase 1 (OGG1) is the human DNA glycosylase responsible for removal of the 67 

highly mutagenic 8-oxoG from DNA
7
. The OGG1 gene is located in chromosome 3p26.2 and 68 

this region has frequently been detected as deleted in various tumors suggesting the loss of this 69 

gene as a possible contributor to carcinogenesis
7,10-13

. 70 

The most studied polymorphism in the human OGG1 gene is the rs1052133 (Ser326Cys), 71 

a C to G transversion at nucleotide 1245 in exon 7, leading to a serine to cysteine substitution at 72 

residue 326 
14

. This variant is functional and it has been shown that the Cys326 protein has 73 

weaker 8-hydroxyguanine-repair capacity than the Ser326 protein
15-17

. The deactivation of the 74 

OGG1 gene or the presence of a less active variant such as the Cys326 may lead to a higher risk 75 

of cancer and oxidation-related pathologies
7,13,18

. Consequently, this polymorphism has been 76 

analyzed as a risk factor in several cancers
19-25

 (i.e., breast, prostate, lung, colorectal, aero 77 

digestive, gastric, bladder). The results of meta-analyses for each location are heterogeneous
21-25

, 78 

but where there is more consensus is in the significant association of the Ser326Cys 79 
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polymorphism with greater overall risk of cancer when the different locations are pooled
26,27

. 80 

Thus, Zou et al
26

 in a meta-analysis including 152 case-control studies, concluded that the Cys 81 

variant was strongly associated with higher cancer risk. Interestingly, the cancer risk was higher 82 

in homozygous individuals for the Cys variant, suggesting a recessive pattern. This observation 83 

agrees with several functional studies showing that only homozygous carriers of the Cys allele 84 

showed a significantly lower DNA repair activity compared to Ser326Ser
16,18

. A potential source 85 

of the observed heterogeneity found among studies may be the exposure to different 86 

environmental factors
28-31

 (i.e. mainly vegetable intake and other dietary factors). 87 

 The Ser326Cys OGG1 polymorphism has also been associated with a greater risk of 88 

atherosclerosis
32,33

 and incidence of cardiovascular diseases
34,35

, although there have been very 89 

few studies that have specifically focused on cardiovascular phenotypes. 90 

 Whereas many studies have analyzed the influence of the OGG1 Ser326Cys 91 

polymorphism on cancer risk, few have analyzed its influence on mortality due to cancer. 92 

Moreover, if the OGG1 gene also makes an important contribution to other pathologies, such as 93 

cardiovascular diseases, there is compelling interest in knowing whether, in the same cohort, this 94 

gene has a greater influence on mortality due to cancer or on mortality due to cardiovascular 95 

disease. The aims were, first, to analyze the influence of the OGG1 Ser326Cys polymorphism on 96 

cancer mortality, cardiovascular mortality and on total mortality in a high cardiovascular risk 97 

Mediterranean population and second to investigate the possible modulation by diet by analyzing 98 

the Mediterranean diet (MedDiet) intervention as well as focusing on total vegetable intake as 99 

one of the main characteristics of the MedDiet. 100 

 101 

METHODS 102 

The present study was conducted within the framework of the PREDIMED trial, the 103 
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design of which has been described in detail elsewhere
36

. Briefly, the PREDIMED study is a 104 

multicenter, randomized and controlled clinical trial aimed at assessing the effects of the 105 

MedDiet on the primary cardiovascular prevention
37

. This study was registered at controlled-106 

trials.com (http://www.controlledtrials.com/ISRCTN35739639). Here, 7,170 participants (from 107 

a total of 7,447) were included from whom DNA was isolated and the OGG1-rs1052133 108 

(Ser326Cys) polymorphism determined. Briefly, from October 2003 to June 2009 physicians in 109 

Primary Care Centers located in several Spanish regions selected high-cardiovascular risk 110 

participants. Eligible participants were community-dwelling adults at high cardiovascular risk 111 

(55-80 years for men; 60-80 years for women) who met at least one of two criteria: diabetes or 3 112 

or more cardiovascular risk factors (hypertension, dyslipidemia, overweight or obesity, current 113 

smoking, or a family history of premature coronary heart disease)
36

. Exclusion criteria were the 114 

presence of any severe chronic illness, previous history of cardiovascular diseases, alcohol or 115 

drug abuse, and history of allergy or intolerance to olive oil or nuts. Hence, individuals with 116 

incident cancer undergoing treatment were excluded, but individuals that reported having had 117 

some form of cancer in previous years but who had no clinical signs of cancer at the time of 118 

enrollment were not excluded. 119 

Participants were randomly assigned to these interventions: a MedDiet (2 groups, one 120 

supplemented with extra-virgin olive oil and the other with nuts) and a control group (advised to 121 

follow a low-fat diet). Randomization was performed by means of a computer-generated 122 

random-number sequence (randomly assigned in a 1:1:1 ratio to one of three groups). 123 

Participants assigned to both MedDiet groups received intensive training to follow the MedDiet 124 

and allotments of either extra-virgin olive oil (1L/week) or mixed nuts (30 g/d) throughout the 125 

entire study time period, whereas those assigned to the control diet were instructed to reduce the 126 

intake of all types of fat
37

. Because both MedDiet intervention groups had a similar effect 
37

, 127 

http://www.controlledtrials.com/ISRCTN35739639
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these groups were pooled and analyzed together. The primary end point of the PREDIMED trial 128 

was cardiovascular disease incidence, including a composite endpoint comprised of myocardial 129 

infarction incidence, stroke incidence and cardiovascular death. Total and cause-specific 130 

mortality were considered as secondary endpoints. In this study, total and cause-specific 131 

mortality will be analyzed, focusing on mortality due to cancer and cardiovascular events. 132 

The Institutional Review Board of each participating center approved the study protocol, 133 

and all participants provided written informed consent. The trial was stopped following the 134 

statistical analysis of data obtained up to December 2010, due to early evidence of the benefit of 135 

the MedDiet on the prevention of major cardiovascular events
37

. This study is based on the data 136 

obtained from this follow-up period (median follow-up of 4.8 years) with dietary intervention 137 

throughout the entire study time period. 138 

 139 

Demographic, clinical, anthropometric and dietary measurements 140 

The baseline examination included assessment of standard cardiovascular risk factors, 141 

medication use, socio-demographic factors and lifestyle variables by validated 142 

questionnaires
36,38,39

. Adherence to the MedDiet was measured by a validated 14-item 143 

questionnaire
38

. Food and beverage consumption was reported using a validated 137-item 144 

semiquantitative food-frequency questionnaire (FFQ)
39

. Dietary data from the FFQ were 145 

obtained for 7,122 participants. Weight and height were measured with calibrated manual or 146 

digital scales and a wall-mounted stadiometer, respectively
36

. Body mass index (BMI) was 147 

calculated as kg/m
2
. 148 

 149 

Biochemical determinations, DNA extraction and genotyping 150 

Fasting glucose and lipids were measured as previously described
40

. Biochemical 151 
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measures were available for nearly 7000 participants at baseline. Genomic DNA was extracted 152 

from buffy-coat and the OGG1-rs1052133 (Ser326Cys) polymorphism was genotyped in the 153 

whole cohort with DNA available on a 7900HT Sequence Detection System (Applied 154 

Biosystems, FosterCity, CA, USA) using a fluorescent allelic discrimination TaqManTM assay. 155 

Valid genotype results for 7,170 participants were obtained. Genotype frequencies did not 156 

deviate from Hardy-Weinberg equilibrium expectations (P=0.882). 157 

 158 

Outcomes and Follow-up 159 

The end points of interest in the present analysis were cancer mortality, cardiovascular 160 

mortality and all-cause mortality after the follow-up period. We used the following 4 sources of 161 

information to identify deaths: contacts with families of participants, contacts with general 162 

practitioners who were responsible for the routine clinical care of participants, yearly 163 

consultation of the National Death Index, and a comprehensive yearly review of medical records 164 

of all participants by medical doctors who were blinded with respect to the group allocation and 165 

all nutritional information. All medical records related to endpoints were examined by the Event 166 

Adjudication Committee, whose members were unaware of the dietary information
37

. Only 167 

endpoints that were confirmed by the Event Adjudication Committee were included in the 168 

analyses. In this follow-up, all deaths detected in the 7,170 patients analyzed (those that had 169 

genotype OGG1 data), and that occurred between 1 October 2003 and 1 December 2010 were 170 

included: Total deaths (n=318), per total cancer (n=127) and per cardiovascular diseases (n=81). 171 

 172 

Statistical analyses 173 

The OGG1-rs1052133 polymorphism was first tested as codominant with the three 174 

genotypes considered and taking into account the Ser326Ser genotype as reference. Given that, in 175 
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the total and cause-specific association models, the effects of the Ser326Ser and Ser326Cys 176 

genotypes were similar and no statistically significant differences were found between them, 177 

carriers of the Ser326 allele were grouped together and compared to those of Cys326Cys 178 

participants (recessive model). Triglycerides were log-transformed for statistical analyses. 179 

Vegetable intake was standardized for further Cox regression analyses. ANOVA tests were used 180 

to compare means of continuous variables by the OGG1 polymorphism and cause of death. The 181 

association between the OGG1-rs1052133 polymorphism and the different causes of death were 182 

analyzed by means of the Chi Square test, using both codominant and recessive models. 183 

To examine the longitudinal association between the OGG1-rs1052133 polymorphism 184 

and mortality (separated models for all-cause, cancer and cardiovascular mortality) in the 4.8 185 

years median follow-up, Cox regression models were used with length of follow-up as the 186 

primary time variable. The exposure time was calculated as the time between randomization and 187 

the date at death, the date when the last interview was completed on 1 December 2010, 188 

whichever came first. Firstly, the mortality rate for the 3 genotypes and fitted codominant models 189 

were estimated. After having checked that there were no significant differences between the 190 

estimates of genotypes Ser326Ser and Ser326Cys, both genotypes were grouped together as Ser-191 

carriers. This group was used as the category of reference and homozygous Cys326Cys were 192 

compared with it using a recessive model. Hazard Ratios (HRs) with 95% CIs for the OGG1-193 

rs1052133 genotypes were estimated. Models were sequentially adjusted for covariates as 194 

indicted. Model 1 was adjusted for age, sex, field center and dietary intervention group (three 195 

groups). Model 2 was additionally adjusted for type-2 diabetes, BMI, and self-reported personal 196 

history of a previously diagnosed cancer at baseline. Model 3 was additionally adjusted for 197 

alcohol consumption, smoking, physical activity, hypertension, dyslipidemia, medications (lipid-198 

lowering, hypoglycemic, and antihypertensive drugs) adherence to MedDiet and total energy 199 
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intake in the models analyzing diet. 200 

 Also evaluated was the heterogeneity of the OGG1-rs1052133 associations with mortality 201 

by age groups. Two age groups were considered, taking into account the median age of the 202 

population (66.5 years). Formal tests for the interaction between the OGG1 polymorphism and 203 

age group in determining mortality (total, cancer and cardiovascular deaths) were carried out by 204 

analyzing the product term of these variables in the corresponding hierarchical Cox regression 205 

model. Testing this interaction in a Cox regression model estimates the departure from 206 

multiplicativity instead of the departure from additivity
41,42

. Stratified analyses of both age 207 

groups were carried out. Finally, the modulation by Mediterranean diet of the associations 208 

between the OGG1-rs1052133 polymorphism and CVD mortality and total mortality were 209 

evaluated. First of all, the randomized and controlled clinical trial design (MedDiet intervention 210 

compared with the control diet) was used. Analyses were based on the intent-to-treat principle. 211 

Models were sequentially adjusted for covariates as previously indicated (model 1, model 2 and 212 

model 3). Multiplicative tests for the interaction between the OGG1 polymorphism and MedDiet 213 

intervention in determining mortality (total and cardiovascular mortality) were carried out in the 214 

multivariable adjusted Cox regression models. Stratified analyses by dietary intervention groups 215 

were undertaken. 216 

 In addition to the modulation by MedDiet intervention, as secondary analysis, the 217 

influence of total vegetable intake at baseline (observational cohort design) was investigated, as 218 

vegetables are a main food of the MedDiet previously reported to statistically interact with the 219 

OGG1-rs1052133 polymorphism
28

. Vegetable intake was used as categorical (dichotomously, 220 

using the consumption median of the population as the cut-off point) and as a continuous variable 221 

(in grams/day). For the continuous variable, the HRs of mortality per standard deviation (SD) of 222 

vegetable intake were calculated. Multivariable Cox regression models were fitted and interaction 223 
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terms analyzed. Taking into account the relevance of age in mortality, dietary interactions by age 224 

groups were also explored. 225 

Kaplan-Meier survival curves were plotted to estimate the probability of remaining free of 226 

mortality (total or causes) during follow-up. Statistical analyses were performed with the IBM 227 

SPSS Statistics version 24.0
43

. All tests were 2-tailed, and P < 0.05 was considered statistically 228 

significant. 229 

 230 

RESULTS 231 

Descriptive characteristics of participants and causes of death by OGG1-rs1052133 232 

(Ser326Cys) genotypes 233 

Table 1 presents demographic, clinical and lifestyle characteristics at baseline of the 234 

7,170 PREDIMED participants according to their genotype in the OGG1-rs1052133 (Ser326Cys) 235 

polymorphism. Overall, there were no differences among genotypes in the main characteristics 236 

analyzed. The only statistically significant differences were observed in BMI and triglycerides. 237 

The OGG1 genotypes were equally distributed into the three dietary intervention groups. 238 

Following 4.8 years of median follow-up, 318 deaths were confirmed, of which the majority were 239 

from cancer (n=127), followed by cardiovascular diseases (n=81) and other causes (n=110 240 

deaths). Table 2 presents the baseline characteristics of the participants depending on whether 241 

participants were still alive or had died after 4.8 years of median follow-up. Within the mortality 242 

group, the cause of death was also reported. The mean age at baseline of the individuals still 243 

living was lower than that of the deceased. Among the deceased, the mean age was lower in those 244 

who died from cancer than from cardiovascular diseases. Although, in this study, individuals with 245 

a recently diagnosed cancer were not included, there were 184 participants with a prior diagnosis 246 

of cancer (in any location), presumably cancer-free at enrollment according to self-reports. 247 
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Greater mortality due to cancer was detected in individuals who had previously been diagnosed 248 

with cancer compared to those who had not (P<0.001). The effect was high (HR: 5.91; 95%CI: 249 

3.52-9.92; P<0.001, for cancer mortality and HR: 3.13; 95%CI: 2.04-4.80; P<0.001 for total 250 

mortality, in model 1), so this variable was included as an adjustment variable in the later 251 

multivariable Cox regression models. Table 2 also presents the frequencies of the OGG1-252 

rs1052133 polymorphism according to vital status and cause of death. In the model in which the 253 

three genotypes were analyzed separately, genotypes Ser326Ser and Ser326Cys were distributed 254 

equally among the different causes of death (P>0.05). However, the Cys326Cys genotype 255 

differed in some causes of death (P<0.05) and when comparing total mortality. In the recessive 256 

model, the Cys326Cys genotype was associated with all-cause mortality (P=0.006), being more 257 

frequent in mortality cases than in non-cases, while the highest frequency of the Cys326Cys 258 

genotype occurred in cardiovascular diseases. The detection of this recessive effect will limit the 259 

statistical power of subsequent comparisons. 260 

 261 

Multivariable-adjusted associations of the OGG1-rs1052133 polymorphism with total, 262 

cancer and cardiovascular mortality 263 

Table 3 presents mortality rates, HRs and 95% CI for the OGG1 genotypes for total, 264 

cancer and cardiovascular mortality after 4.8 years of median follow-up (maximum follow-up of 265 

7.4 years) obtained in the multivariable-adjusted Cox-regression models (model 1, model 2 and 266 

model 3). For all-cause mortality, higher total mortality rates in homozygous Cys326Cys were 267 

detected in comparison with the other genotypes (Ser-carriers): HR for total mortality in 268 

Cys326Cys participants: 1.77; 95% CI: 1.16-2.71; P=0.009, in the minimally adjusted model 1 269 

(adjusted for sex, age, field center and dietary intervention group). After additional multivariable 270 

adjustment in model 3 (including BMI, diabetes, self-reported history of cancer, smoking, 271 
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drinking, physical activity, adherence to the MedDiet and medications), this association remained 272 

statistically significant (HR: 1.69; 95% CI:1.09-2.62; P=0.018). On analyzing the specific causes 273 

of death separately, a strong association was found between the OGG1 polymorphism and 274 

cardiovascular mortality (HR: 3.31; 95% CI: 1.68-6.53; P=0.001 for Cys363Cys participants in 275 

comparison with Ser-carriers in the multivariable adjusted model 3). However, on studying the 276 

overall association of the OGG- rs1052133 polymorphism with mortality from cancer, even 277 

though in this population there were more deaths from cancer than from cardiovascular diseases 278 

(n=127 compared to n=81, respectively), no statistically significant association was detected in 279 

the case of cancer. Also using a recessive model, the HR for cancer mortality in Cys326Cys 280 

individuals in comparison with Ser-carriers was 1.07; 95%CI: 0.47-2.45; P=0.867. Comparing 281 

the Cys326Cys with the Ser326Ser, the results of no association were similar. Figure 1 shows 282 

Kaplan Meier curves of cumulative mortality–free survival for total mortality (A) cardiovascular 283 

(B) and cancer mortality (C) by the three OGG1-rs1052133 genotypes in the whole population. 284 

Bearing in mind that mortality from cancer occurs in younger individuals, whereas mortality 285 

from cardiovascular diseases occurs in older individuals, the influence of the age group (two 286 

groups according to the median of age at baseline) on the associations of the OGG1 287 

polymorphism was analyzed (Table 4). It was observed that there was heterogeneity by age in 288 

the association of the OGG1- rs1052133 polymorphism with cancer mortality, in such a way that 289 

in younger individuals (less than 66.5 years at baseline), the Cys326Cys genotype was 290 

significantly associated (Table 4 and Figure 1D) with higher cancer mortality (HR: 3.27; 95%CI: 291 

1.13-9.47; P=0.029 for Cy362Cys participants compared to Ser-carriers in model 3). 292 

Nevertheless, in those 66.5 years or older, no significant association was detected (P=0.285). One 293 

important limitation in this estimation is the small number of cases of fatal cancer in Cys326Cys 294 

homozygous individuals. However, despite this limitation of sample size, a statistically 295 
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significant interaction term between age group and the OGG1 polymorphism on cancer mortality 296 

(P-interaction=0.048 in model 3) was obtained. Cancer deaths (n=41) in participants <66.5 years 297 

at baseline were as follows: lung (26.8%), pancreatic-biliary (12.2%), colorectal (9.8%), gastric 298 

(7.3%), prostate (7.3%), liver (2.4%), ovary-endometrial (2.4%) and other locations (31.7%). 299 

For cardiovascular mortality, an opposite effect was observed. Most of the mortality and 300 

the greatest association with the OGG1 polymorphism occurred in the older age group (>=66.5 301 

years). However, on testing the interaction per age, no statistically significant value (P=0.234 in 302 

model 3) was detected, as although the risk is lower in the younger group, the association goes in 303 

the same direction. Neither was a statistically significant heterogeneity of the association of the 304 

polymorphism by age group with total mortality found (P-interaction=0.570 in model 3). 305 

 306 

Effect of the MedDiet intervention on the association between the OGG1-rs1052133 307 

polymorphism and mortality 308 

The influence that diet had on modulating the Cys326Cys genotype association with 309 

greater mortality (total and cardiovascular) was analyzed. Modulation by diet in mortality due to 310 

cancer was not analyzed owing to the small number of Cys326Cys participants dying from cancer 311 

(n=6) and, besides, an additional interaction per age group had been detected that presents 312 

heterogeneity and limits statistical power still further (n=4 cancer deaths in Cys326Cys 313 

participants aged <66.5 years at baseline). Table 5 presents the results of the modulation of the 314 

Cys326Cys genotype associations with total mortality and per cardiovascular diseases depending 315 

on the intervention with MedDiet (both groups considered jointly) or the control diet. For total 316 

mortality, no statistically significant interaction between the genotype and intervention with 317 

MedDiet (P-interaction=0.752, in model 3) was found. Likewise, for cardiovascular mortality, 318 

the interaction term between intervention with the MedDiet and the OGG1 polymorphism did not 319 
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reach statistical significance (P-interaction=0.181 in model 1 and P-interaction=0.200 in model 320 

3). 321 

In subgroup analysis by age we found that for total mortality the interaction term between 322 

the OGG1 polymorphism and MedDiet intervention reached statistical significance in 323 

participants aged ≥ 66.5 years in model 1 (P-interaction=0.049). However, in model 3 after 324 

additional multivariable adjustment (HR for Cys326Cys in the MedDiet group: 1.30; 95%CI: 325 

0.65-2.60; P=0.451 versus HR for Cys326Cys in the control group: 2.99; 95%CI:1.34-6.67; 326 

P=0.008, in the stratified analysis), the statistical significance of the interaction term for this 327 

comparison was lost (P-interaction=0.112). Likewise, for cardiovascular mortality, the interaction 328 

terms in this group did not reach statistical significance (P-interaction=0.082 in model 1 and 329 

P=0.086 in model 3). 330 

 331 

Effect of vegetable intake on the association between the OGG1-rs1052133 polymorphism 332 

and mortality 333 

Finally, vegetable intake at baseline (Table 6) was focused on. No statistically significant 334 

interactions between vegetable intake and the OGG1-rs1055133 polymorphism in determining 335 

total mortality were found (P-interaction=0.491 for categorical and P=0.367 for continuous 336 

variables in model 3). However, when cardiovascular mortality was analyzed, a statistically 337 

significant interaction term between vegetable intake (as continuous variable) and the OGG1 338 

polymorphism in determining cardiovascular mortality in the whole population (P-339 

interaction=0.035 in model 1, which remained statistically significant in model 3, P-340 

interaction=0.046) was detected. According to this interaction, a high vegetable intake decreased 341 

the risk of cardiovascular mortality more in Cys326Cys individuals than in Ser-carriers: HR-342 

interaction: 0.42; 95%CI: 0.18-0.98, per 1 SD (150 g/d) of vegetable intake. When vegetable 343 
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intake was analyzed as dichotomous (2 groups according to the median intake of the population), 344 

it was observed that the Cys326Cys genotype was associated with higher cardiovascular 345 

mortality in comparison with Ser-carriers (P<0.001 in model 3), in participants having a low 346 

vegetable intake (<314 g/d). However, Cys326Cys participants having a high vegetable intake 347 

(>=314 grams/d) did not present a statistically significant higher risk of cardiovascular mortality 348 

in comparison with Ser-carriers (P=0.671). Although the P-value for the corresponding 349 

interaction term did not reach the statistical significance (P=0.101, in model 3) for the 350 

dichotomous variable of vegetable intake, due to very small number of Cys326Cys participants, 351 

this observation was supported by the statistical significance of the interaction term between the 352 

OGG1 genotype and vegetable intake as continuous variable. 353 

In the subgroup analysis in participants aged ≥ 66.5 years, a statistically significant 354 

interaction between vegetable intake (as continuous variable) and the OGG1 polymorphism in 355 

determining total mortality (HR-interaction: 0.49; 95%CI: 0.25-0.96; P=0.037 per SD, in model 356 

3) was obtained. Also in participants aged ≥ 66.5 years, the interaction term between vegetable 357 

intake (as continuous) and the OGG1 polymorphism was statistically significant for 358 

cardiovascular mortality (HR-interaction: 0.30; 95%CI: 0.11-0.83; P=0.021, per SD, in model 3). 359 

 360 

DISCUSSION 361 

In this study the influence of the OGG1-rs1052133 (Ser326Cys) polymorphism on total 362 

and cause-specific mortality, including cancer and cardiovascular mortality, has been 363 

longitudinally investigated in a cohort of older participants in the PREDIMED study. This 364 

polymorphism, in which the Cys326Cys genotype has been associated with a lower damage 365 

repair capacity in DNA
15-17

, has also been associated with a higher risk of cancer and other 366 

diseases related to DNA repair in many studies
7,18-27

. However, no previous study has jointly 367 
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analyzed the impact of this polymorphism on total mortality and in a comparative manner on 368 

cancer and cardiovascular mortality in the same population. In this sense, the current study results 369 

on the contribution of the OGG1-rs1052133 genotypes to the mortality rate per 1,000 (person-370 

years of follow-up) as well as to the mortality risk, are novel. 371 

Overall, a statistically significant association of the OGG1-rs1052133 (Ser326Cys) 372 

polymorphism with all-cause mortality has been found; the mortality risk of Cys326Cys 373 

participants being 1.69 times higher than that of the other genotypes (recessive effects). This 374 

association was stronger for cardiovascular mortality, whereas for cancer mortality no association 375 

was detected for the OGG1-rs1052133 polymorphism in the whole population. The association 376 

with cancer was only statistically significant in participants aged less than 66.5 years at baseline. 377 

The observation of recessive effects limited the statistical power of our subsequent gene-diet 378 

interaction analyses
44

. Moreover, the small number of Cys326Cys participants may have led to an 379 

overestimation of effect size in some associations, in the so-called winner's curse
45

. This term 380 

refers to the phenomenon by which studies that first find evidence of an effect often provide 381 

inflated estimates of the size of that effect
45

. Effect inflation is worse for small, low-powered 382 

studies. However, despite some inflation of the effects, a true association effect can be present in 383 

large, well-designed prospective studies
46,47

. Therefore, it can be assumed that some associations 384 

found in the present study, mainly those obtained in subgroup analyses, may be overestimated 385 

due to the low number of Cys326Cys carriers. Supporting a true association, the current study’s  386 

results are consistent with dozens of previous studies in animal models that show harmful health 387 

effects associated with a reduced DNA repair capacity of the variants in the OGG1 gene
7,48-52

 388 

They are also consistent with work in humans that associate the Cys326 variant with a higher risk 389 

of cancer
11-27 

as well as other diseases
2,33,53-55

. However, as far as we know, no previous study has 390 

estimated the influence of this polymorphism on total mortality. One of the factors that can help 391 
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explain the strong associations found between the OGG- rs1052133 polymorphism and mortality 392 

is that a high cardiovascular risk population is being analyzed. In a subsample of this 393 

population
56

, higher levels of the DNA- damaged product 8-oxo-7′8′-dihydro-2′-deoxyguanosine 394 

(8-oxo-dG) were previously detected in nucleated blood cells in comparison with participants 395 

from the general population (not at high cardiovascular risk) paired by age and sex (5.61±1.17 in 396 

PREDIMED participants versus 3.71±0.65 in non-high cardiovascular risk participants, 397 

expressed as 8-oxo-dG/10
6
dG; P<0.001). This is relevant considering the reports on the impaired 398 

DNA repair capacity of the Cys326Cys variant being enhanced under conditions of oxidative 399 

stress
17

, largely increasing the risk of oxidative patothologies
18

. 400 

Although several studies have analyzed the influence of the OGG1-rs1052133 on cancer 401 

incidence or prevalence
19-27

, no previous study at the population level has analyzed the 402 

association of such polymorphism with cancer mortality. Some studies have analyzed the 403 

influence of the OGG1-rs1052133 polymorphism on the survival or prognosis of selected groups 404 

of patients receiving cancer treatment
57, 58

, but there are no estimates of mortality rates in a 405 

general population cohort. Although in our cohort at high cardiovascular risk deaths from cancer 406 

outnumbered those from cardiovascular disease, no association between the Cys326Cys genotype 407 

and cancer mortality was observed in the whole population. However, a strong association was 408 

detected between the Cys326Cys risk genotype and cardiovascular mortality. Although in 409 

comparison to studies that have examined the possible association between the OGG1-rs1052133 410 

polymorphism and cancer
18-31

, very few have examined its association with cardiovascular 411 

disease
33-35,54

, studies in animal models on OGG1 function strongly support this 412 

association
32,59,60

. Thus, in a study by Tumurkhuu et al
32

 in Ogg1(-/-) mice, the authors observed 413 

a more atherogenic profile of the different markers analyzed in comparison with mice with a 414 

normal Ogg1 gene expression. In the Ogg1 (-/-) mice, higher serum IL-1β and IL-18 levels, 415 
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higher oxidized mitochondrial DNA and higher inflammasome activation were detected. Taking 416 

into account that OGG1 is the major DNA glycosylase responsible for removing the most 417 

abundant products of oxidative DNA damage, it is not surprising to find a pro-atherosclerotic 418 

phenotype in mice deficient in the ogg1 gene. Interestingly, these authors also reported higher 419 

levels of triglycerides in deficient mice
32

. Interestingly, in PREDIMED participants, higher 420 

plasma triglycerides in Cys326Cys participants were also detected. Overall, OGG1 may play a 421 

protective role in atherogenesis by preventing excessive inflammasome activation
32

. In humans, 422 

most of the few studies carried out on cardiovascular disease
33-35,54

 also have found a higher risk 423 

associated with the Cys326 allele. Thus, Izzoti et al
33

 examined the survival of patients with 424 

severe atherosclerosis and concluded that those bearing the OGG1 homozygous slow 425 

polymorphism had increased levels of two bulky DNA adducts, being more susceptible than 426 

other individuals to the genotoxic consequences of oxidative stress in the arterial wall. Orhan et 427 

al
35

 also concluded that the OGG1-rs1052133 played a role in stroke risk, and Shyu et al
34

 428 

reported an effect of smoking increasing stroke risk in Chinese carriers of the Cys allele. The 429 

present study results showing a strong association between the OGG1-rs1052133 polymorphism 430 

and cardiovascular mortality in Cys326Cys homozygotes concur with these findings. Because a 431 

high cardiovascular risk population was analyzed, it is no surprise that the association of the 432 

OGG1-rs1052133 polymorphism was stronger for cardiovascular disease mortality than cancer 433 

mortality. 434 

Of note, cardiovascular mortality is also gaining in importance in cancer patients
61,62

, as 435 

their increased survival allows them to reach older ages in which their risk of death may be 436 

determined by cardiovascular risk factors. For instance, in a population-based cohort study 437 

conducted among 98,999 women diagnosed with early-stage breast cancer, those 66 years or 438 

older who survived 5 years or more after diagnosis had cardiovascular disease as the leading 439 
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cause of death, exceeding breast cancer mortality rates at 10 years after diagnosis
62

. 440 

 Age is an important determinant of mortality. The mean age of the deceased due to cancer 441 

in the PREDIMED cohort was significantly lower than the mean age of the deceased due to 442 

cardiovascular diseases. Interestingly, it was found that, in the younger age group (<66.5 years), 443 

the OGG1-rs1052133 polymorphism was indeed more associated with cancer mortality than 444 

cardiovascular mortality. Conversely, the association of the OGG1 polymorphism with higher 445 

cardiovascular mortality was mainly detected in the older age group. This may be explained by 446 

the age-dependent reduction of the DNA repair efficiency, enhanced in Cys326Cys participants
2
. 447 

In younger participants, the increased cancer mortality associated with this polymorphism may be 448 

associated with an additional genetic component related to specific locations (i.e. BRCA1, 449 

BRCA2, etc.) in which the OGG1-risk genotype may contribute to enhance the genome 450 

instability that increases the risk, being also considered as a cancer risk modifier
63

. 451 

When analyzing gene-diet interactions, sample size limitations due to the recessive effect 452 

and the relatively low prevalence of the Cys326Cys genotype in this population (4.2%) prevented 453 

examination of the dietary modulation of the effects of the OGG1-rs1052133 polymorphism on 454 

cancer mortality (only 6 deaths with the Cys326Cys genotype were detected). Related to this, it is 455 

known that the prevalence of the OGG1-rs1052133 polymorphism is lower in white (1.8-8.6 per 456 

cent Cys326Cys participants) than in Asian populations (13.4-38.2 per cent Cys326Cys)
64

. 457 

However, bearing this limitation in mind, it was possible to explore dietary modulation in 458 

determining all-cause mortality and cardiovascular mortality (involving more homozygotes). 459 

When testing whether intervention with the MedDiet modulated the effect of the Cys326Cys 460 

genotype increasing total mortality a statistically significant interaction was not found. Likewise, 461 

for cardiovascular mortality in the whole population, the interaction term between the OGG1 462 

genotype and MedDiet did not reach statistical significance. Further studies are needed to provide 463 
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further evidence on the modulation of the MedDiet intervention on the effects of the OGG1-464 

rs1052133 polymorphism on mortality risk. 465 

The MedDiet is characterized by a high intake of vegetables
37,65

. Vegetables are very rich 466 

in antioxidants and other phytochemicals
66,67 

that may contribute to a better DNA protection from 467 

oxidation in Cys326Cys individuals who have less capacity for repairing it
68-70

. Recent meta-468 

analyses
71,72 

have shown that high vegetable consumption is associated with a lower risk of all-469 

cause mortality
71,72

, particularly cardiovascular mortality
72

. Although no previous study has 470 

analyzed the interaction between vegetable consumption and the OGG1-rs1052133 471 

polymorphism in determining total or cause-specific mortality, this gene-diet interaction on 472 

cancer risk has been analyzed in some reports
28,73,74

. Noteworthy is the work of Sorensen et al
28

, 473 

showing a statistically significant interaction between vegetable intake and the OGG1-rs1052133 474 

polymorphism on lung cancer incidence, with a 54% decrease in cancer risk per 50% increase in 475 

vegetable consumption among Cys326Cys participants and no decrease in risk among Ser326Ser 476 

or Ser326Cys individuals. In the PREDIMED study, a similar interaction between theOGG1-477 

rs1052133 polymorphism and vegetable intake in determining cardiovascular mortality in the 478 

whole population has been detected, in such a way that a high vegetable intake was associated 479 

with a greater reduction of cardiovascular mortality in Cys326Cys homozygotes in comparison 480 

with Ser-carriers. This effect had a similar trend for total mortality but only reached significance 481 

in the older age group. 482 

CONCLUSIONS  483 

In conclusion, in a Mediterranean population at high cardiovascular disease risk, an association of 484 

the OGG1-rs1052133 polymorphism with higher total and cardiovascular mortality in 485 

Cys326Cys homozygotes has been found, while higher cancer mortality was only detected in the 486 

lower age group. Recessive effects limited the study of gene-diet interactions. Non-significant 487 
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interaction terms were detected for the MedDiet intervention. Nevertheless, a significant gene-488 

diet interaction with vegetable consumption in determining cardiovascular mortality has been 489 

observed, in such a way that higher consumption decreased the risk more in Cys326Cys 490 

participants, supporting the beneficial role of the antioxidant compounds present in vegetables in 491 

providing protection from DNA damage and mortality risk in genetically susceptible individuals. 492 

However, replication of these results in other studies is needed to confirm these associations and 493 

dietary modulations. 494 

  495 
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LEGEND TO FIGURE 

Figure 1: Cumulative mortality-free survival by the OGG1-rs1052133 (Ser326Cys) 

polymorphism for total mortality in the whole population (A), cardiovascular mortality in the 

whole population (B), cancer mortality in the whole population (C) and cancer mortality in 

participants aged less than 66.5 years (D). Kaplan-Meier curves were depicted for the three 

genotypes, the one letter code was used for the amino acids (S indicated serine and C indicates 

cysteine) (n = 4519 SS, n = 2349 SC and n = 302 SS in the whole population). In the group of 

participants aged less than 66.5 years, n=3515 individuals. Multivariable Cox regression models 

were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI). Models were 

adjusted for age, sex, field center, dietary intervention group, type-2 diabetes, BMI, self-reported 

personal history of a previously diagnosed cancer at baseline, alcohol consumption, smoking, 

physical activity, hypertension, dyslipidemia, medications (lipid-lowering, hypoglycemic, and 

antihypertensive drugs) and adherence to the Mediterranean Diet. P
1
 indicates the P-value for the 

comparison between CC and CS genotypes in the multivariable Cox regression model. HR and 

CI were estimated in the corresponding multivariable Cox regression models for CC participants 

in comparison with SS (P
2
) or in comparison with SS and SC grouped together (recessive model) 

(P
3
) for each cause of death. 
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Table 1: Demographic, clinical, lifestyle and genetic characteristics of the 

PREDIMED study participants at baseline according to the OGG1-rs1052133 

genotype (n = 7,170)
a
 

        

  

Ser326Ser 

(n=4,519) 

Ser326Cys 

(n=2,349) 

Cys326Cys 

(n=302) P
b
 

Age (years) 66.9 (6.2) 67.0 (6.2) 67.3 (6.2) 0.526 

BMI (kg/m
2
)

c
 29.9 (3.9) 30.1 (3.8) 29.5 (3.7) 0.016 

Female sex : n, % 2601 (57.6) 1346 (57.3) 171 (56.6) 0.939 

Current smokers: n, % 661 (14.6) 300 (12.8) 41 (13.6) 0.204 

Type 2 diabetes: n, % 2195 (48.6) 1127 (48.0) 142 (47.0) 0.807 

Hypertension: n, % 3729 (82.5) 1959 (83.4) 248 (82.1) 0.626 

Dyslipidemia: n, % 3259 (72.1) 1707 (72.7) 225 (74.5) 0.627 

OGG1-rs1052133: n, % 

      

0.069 

MedDiet with EVOO
d
 1550 (62.7) 817 (33.0) 106 (4.3) 

 
MedDiet with Nuts 1525 (64.5) 729 (32.6) 110 (4.7) 

 
Control group 1444 (61.9) 803 (34.4) 86 (3.7) 

 
SBP (mm Hg)

e
 149.3 (20.5) 149.5 (21.3) 148.1 (20.1) 0.543 

DBP (mm Hg)
f
 83.3 (11.0) 83.4 (11.0) 83.9 (11.2) 0.676 

Total cholesterol (mg/dL)
g
 210.4 (38.4) 210.7 (37.8) 208.6 (38.3) 0.697 

LDL-C (mg/dL)
g,h

 129.4 (33.8) 130.4 (33.4) 125.9 (34.1) 0.083 

HDL-C (mg/dL)
g,i

 53.9 (14.1) 53.7 (13.4) 53.4 (14.5) 0.762 

Triglycerides (mg/dL)
j
 136.7 (74.9) 135.1 (70.9) 149.6 (89.7) 0.018 

Fasting glucose (mg/dL)
k
 121.9 (40.5) 122.5 (41.7) 122.6 (46.1) 0.838 

Energy intake (kcal/d) 2273 (598) 2275 (614) 2321 (647) 0.411 

Total fat (g/d) 98.6 (30.1) 98.7 (30.7) 100.6 (30.9) 0.554 

Saturated fat (g/d) 25.2 (9.1) 25.4 (9.2) 25.8 (10.1) 0.368 

MUFA (g/d)
l
 48.9 (16.0) 48.7 (16.1) 49.8 (15.2) 0.530 

PUFA (g/d)
m

 15.8 (7.0) 15.9 (7.1) 16.2 (6.9) 0.663 

Protein (g/d) 92.2 (22.9) 93.0 (23.4) 94.9 (25.0) 0.087 

Carbohydrate (g/d) 239.4 (79.9) 238.8 (82.5) 245.6 (87.0) 0.395 

Fat (% energy) 39.2 (6.8) 39.2 (6.8) 39.2 (6.8) 0.554 

Carbohydrate (% energy) 41.9 (7.2) 41.7 (7.1) 42.0 (7.0) 0.395 

Protein (% energy) 92.2 (22.9) 93.0 (23.4) 94.9 (25.0) 0.087 

Fiber (g/d) 25.6 (9.0) 25.7 (9.4) 26.0 (8.9) 0.604 

Table 1



Vegetable (g/d) 334.9 (146.4) 340.9 (156.8) 339.8 (151.0) 0.281 

Fruit (g/d) 371.2 (206.2) 373.2 (210.3) 364.7 (192.1) 0.780 

Meat (g/d) 131.8 (60.0) 133.1 (58.4) 139.7 (62.7) 0.075 

Olive oil (g/d) 39.5 (17.9) 38.8 (18.2) 40.2 (16.7) 0.266 

Adherence to the MedDiet (points)
n
 8.6 (2.0) 8.6 (1.9) 8.7 (1.9) 0.969 

Alcohol consumption (g/d) 8.4 (14.2) 8.5 (14.4) 7.7 (13.0) 0.685 

Physical activity (MET-min/day)
o
 233 (239) 230 (243) 228 (225) 0.904 

  
a: Values are mean(SD) for continuous variables and number (%) for categorical variables. Food intake, total energy and 

macronutrients were available in 7,122 participants. Biochemical determinations were available for almost 7,000 participants (from 
6,767 for LDL-C to 6,903 for Total cholesterol). 
b: P unadjusted. 
c: BMI: body mass index; 
d: EVOO: extra virgin olive oil; 
e: SBP: Systolic blood pressure, 
f: DBP: Diastolic blood pressure; 
g: Cholesterol conversion units: 1 mg/dL = (1/38.610039) mmol/L; 
h: LDL-C: Low-Density Lipoprotein Cholesterol; 
i: HDL-C: High-Density Lipoprotein Cholesterol; 
j: Triglycerides conversion units: 1 mg/dL = (1/88.495575) mmol/L; 
k: Glucose conversion units: 1 mg/dL = (1/18.018018) mmol/L; 
l: MUFA: Monounsaturated fatty acids; 
m: PUFA: Polyunsaturated fatty acids; 
n: MedDiet: Mediterranean diet; Adherence to the MedDiet (ADM) score based on a 14-point screener of adherence: a higher score 
represents greater ADM38; 
o: MET: metabolic equivalent of physical activity in leisure time; 

 
 

 

 



 

Table 2: Baseline characteristics at the time of entry and future cause of death after 4.8 years of 

median follow-up of the PREDIMED study participants by vital status
a
 

              

  

Alive 

(n=6,852) 

Cancer 

(n=127) 

CVD
b
 

(n=81) 

Other 

(n=110) P
c
 

 

Total deaths 

(n=318) P
d
 

Age (years) 66.8 (6.1) 68.2 (6.0) 71.8 (6.4) 71.4 (6.6) < 0.001 

 

70.6 (6.4) < 0.001 

BMI (kg/m
2
)

e
 30.0 (3.8) 29.8 (3.9) 29.9 (4.2) 29.2 (4.3) 0.202 

 

30.0 (3.8) 0.101 

SBP (mm Hg)
f
 149.2 (20.7) 152.5 (20.5) 156.9 (22.1) 149.6 (22.6) 0.003 

 

152.8 (21.9) 0.003 

DBP (mm Hg)
g
 83.4 (11.0) 83.2 (11.0) 82.9 (11.5) 82.8 (11.5) 0.915 

 

83.1 (11.4) 0.629 

Energy intake (kcal/d) 2273 (602) 2309 (636) 2423 (699) 2269 (700) 0.154 

 

2323 (675) 0.161 

Total fat (% energy) 39.2 (6.8) 38.1 (6.7) 39.2 (6.5) 39.9 (7.7) 0.270 

 

39.0 (7.1) 0.754 

Saturated fat (% energy) 10.0 (2.2) 9.8 (2.4) 10.6 (2.4) 10.5 (2.3) 0.003 

 

10.3 (2.4) 0.023 

MUFA (% energy)
h
 19.5 (4.5) 19.0 (4.2) 18.9 (4.5) 20.1 (5.7) 0.199 

 

19.3 (4.8) 0.613 

PUFA (% energy)
i
 6.2 (2.1) 6.1 (2.2) 6.0 (2.4) 6.2 (2.0) 0.567 

 

6.1 (2.2) 0.186 

Protein (% energy) 16.6 (2.8) 16.3 (2.9) 16.3 (3.2) 16.7 (3.4) 0.486 

 

16.5 (3.2) 0.437 

Carbohydrate (% energy) 41.9 (7.1) 42.1 (7.0) 41.3 (7.2) 41.3 (7.7) 0.766 

 

41.6 (7.3) 0.465 

ADM (points)
j
 8.7 (2.0) 8.5 (1.9) 8.1 (2.0) 8.5 (2.0) 0.068 

 

8.4 (2.0) 0.029 

Sex : n, % 

        

< 0.001 

   

< 0.001 

Male : n, % 2857 (93.6) 77 (2.5) 52 (1.7) 66 (2.2) 

  

195 (6.4) 

 Female : n, % 3996 (97.0) 50 (1.2) 29 (1.0) 43 (1.0) 

  

123 (3.0) 

 History of cancer: n, % 

        

< 0.001 

   

< 0.001 

Yes : n, % 184 (88.9) 17 (8.2) 2 (1.0) 4 (1.9) 

  

23 (11.1) 

 No : n, % 6668 (95.8) 110 (1.6) 79 (1.1) 105 (1.5) 

  

295 (4.2) 

 
Type 2 diabetes: n, % 

        

< 0.001 

   

< 0.001 

Yes : n, % 3269 (94.4) 68 (2.0) 52 (1.5) 75 (2.2) 

  

196 (5.7) 

 No : n, % 3584 (96.7) 59 (1.6) 29 (0.8) 34 (0.9) 

  

122 (3.3) 

 OGG1-rs1052133: n, % 

        

0.003 

   

0.016 

Ser326Ser 4318 (95.6) 81 (1.8) 50 (1.1) 70 (1.5) 

  

201 (4.4) 

 Ser326Cys 2256 (96.0) 40 (1.7) 20 (0.9) 34 (1.4) 

  

94 (4.0) 

 Cys326Cys 279 (92.4) 6 (2.0) 11 (3.6) 6 (2.0) 

  

23 (7.6) 

 OGG1-rs1052133: n, % 

        

< 0.001 

   

0.006 

Ser-carrier 6574 (95.7) 121 (1.8) 70 (1.0) 104 (1.5) 

  

295 (4.3) 

 Cys326Cys 279 (92.4) 6 (2.0) 11 (3.6) 6 (2.0)     23 (7.6)   
a: Values are mean(SD) for continuous variables and number (%) for categorical variables; 
b: CVD: Cardiovascular diseases; 
c: Unadjusted P-value for the comparison among the 4 groups; 
d: Unadjusted P-value for the comparison between total deaths and alive; 
e: BMI: body mass index; 
f: SBP: Systolic blood pressure, 
g: DBP: Diastolic blood pressure; 
h: MUFA: Monounsaturated fatty acids; 
i: PUFA: Polyunsaturated fatty acids; 
j: MedDiet: Mediterranean diet; Adherence to the MedDiet (ADM) score based on a 14-point screener of adherence: a higher score represents greater ADM38. 
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Table 3. Mortality rate and hazard ratios (HR) for total mortality and cause-specific mortality (cancer 

and cardiovascular) in the PREDIMED participants depending on the OGG1-rs1052133 polymorphism, 

after 4.8 years of median follow-up 

            

 
Whole population (n = 7,170) 

   

Model 1
a
 Model 2

b
 Model 3

c
 

OGG1-rs1052133 

genotypes 

Deaths / 

person-y 

Mortality 

rate
d
 HR 95% CI P HR 95% CI P HR 95% CI P 

Total mortality (deaths: 318) 

         
Codominant model 

          
Ser326Ser 201/19502 10.3 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Ser326Cys 94/10085 9.3 0.89 (0.70-1.14) 0.356 0.88 (0.68-1.12) 0.285 0.87 (0.68-1.03) 0.275 

Cys326Cys 23/1302 17.7 1.70 (1.10-2.63) 0.016 1.70 (1.10-2.61) 0.017 1.61 (1.03-2.51) 0.036 

Recessive model 

          
Ser-carriers 295/29587 10.0 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 23/1302 17.7 1.77 (1.16-2.71) 0.009 1.77 (1.16-2.71) 0.009 1.69 (1.09-2.62) 0.018 

Cancer mortality (deaths: 127) 

         
Recessive model 

          
Ser-carriers 121/29587 4.1 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 6/1302 4.6 1.13 (0.50-2.57) 0.771 1.12 (0.49-2.53) 0.796 1.07 (0.47-2.45) 0.867 

Cardiovascular mortality (deaths: 81) 

         
Recessive model 

          
Ser-carriers 70/29587 2.4 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 11/1302 8.4 3.87 (2.03-7.36) < 0.001 3.86 (2.02-7.35) < 0.001 3.31 (1.68-6.53) 0.001 

a: Model 1: Adjusted for sex, age, center and dietary intervention group. 

b: Model 2: Adjusted for variables in model 1 plus body mass index, type-2 diabetes and self-reported cancer history at baseline. 

c: Model 3: Adjusted for variables in model 2 plus drinking, smoking, physical activity, adherence to Mediterranean diet and medications (hypertension, dyslipemia and 
type-2 diabetes) at baseline. 

d: Mortality rates were expressed per 1000 person-years of follow-up. 
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Table 4. Mortality rate and hazard ratios (HR) for total mortality and cause-specific mortality (cancer and 

cardiovascular) in the PREDIMED participants depending on the OGG1-rs1052133 polymorphism, after 

4.8 years of median follow-up. Stratified analysis by age group
a
 

            

   

Model 1
b
 Model 2

c
 Model 3

d
 

OGG1-rs1052133 

genotypes 

Deaths / 

person-

years 

Mortality 

rate
e
 HR 95% CI P HR 95% CI P HR 95% CI P 

Total mortality (deaths: 318) 

         
            

Age group < 66.5 years (n = 3515) 

         
Ser-carriers 80/14402 5.6 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 7/584 12.0 2.27 (1.04-4.95) 0.039 2.33 (1.07-5.08) 0.034 2.63 (1.19-5.83) 0.017 

Age group ≥ 66.5 years (n = 3655) 

         
Ser-carriers 215/15216 14.1 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 16/719 22.3 1.67 (1.00-2.78) 0.051 1.67 (1.00-2.78) 0.051 1.62 (0.95-2.75) 0.077 

P (interaction OGG1 x Age group)
f
 

  
0.627 

  
0.570 

  
0.570 

Cancer mortality (deaths: 127) 

         
            

Age group < 66.5 years (n = 3515) 

         
Ser-carriers 37/14402 2.6 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 4/584 6.8 2.77 (0.98-7.84) 0.055 3.00 (1.05-8.54) 0.040 3.27 (1.13-9.47) 0.029 

Age group ≥ 66.5 years (n = 3655) 

         
Ser-carriers 84/15216 5.5 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 2/719 2.8 0.52 (0.13-2.14) 0.360 0.50 (0.12-2.04) 0.333 0.46 (0.11-1.90) 0.285 

P (interaction OGG1 x Age group)
f
 

  
0.063 

  
0.047 

  
0.048 

Cardiovascular mortality (deaths: 81) 

         
            

Age group < 66.5 years (n = 3515) 

         
Ser-carriers 19/14402 1.3 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 1/584 1.7 1.37 (0.19-10.36) 0.761 1.40 (0.19-10.60) 0.744 1.88 (0.23-15.20) 0.555 

Age group ≥ 66.5 years (n = 3655) 

                     
Ser-carriers 51/15216 3.4 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 

Cys326Cys 10/719 13.9 4.89 (2.43-9.78) <0.001 5.00 (2.48-10.01) 

< 

0.001 4.60 (2.18-9.71) <0.001 

P (interaction OGG1 x Age group)
f
 

  
0.219 

  
0.212 

  
0.234 

a: Age groups were considered taking into account the median of age at baseline. 
b: Model 1: Adjusted for sex, age, center and dietary intervention group. 
c: Model 2: Adjusted for variables in model 1 plus body mass index, type-2 diabetes and self-reported cancer history at baseline. 

d: Model 3: Adjusted for variables in model 2 plus drinking, smoking, physical activity, adherence to Mediterranean diet and medications (hypertension, dyslipemia and 

type-2 diabetes) at baseline. 

Table 4



e: Mortality rates were expressed per 1000 person-years of follow-up. 
f: P-values obtained for multiplicative interaction terms in the corresponding multivariable-adjusted Cox regression model. 

 



 

Table 5. Mortality rate and hazard ratios (HR) for total mortality and cardiovascular mortality in the 

PREDIMED participants according to the OGG1-rs1052133 polymorphism, after 4.8 years of median follow-

up, depending on the Mediterranean diet intervention
a
 

            

 
Whole population (n = 7,170) 

   

Model 1
b
 Model 2

c
 Model 3

d
 

OGG1-rs1052133 

genotypes 

Deaths / 

person-

years 

Mortality 

rate
e
 HR 95% CI P HR 95% CI P HR 95% CI P 

Total mortality (deaths: 318) 

         
            

Mediterranean diet (n = 4837) 

         
Ser-carriers 202/20655 9.8 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 16/952 16.8 1.61 (0.97-2.69) 0.068 1.66 (0.99-2.76) 0.071 1.61 (0.96-2.69) 0.070 

Control group (n = 2333) 

         
Ser-carriers 93/8963 10.4 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 7/349 20.0 2.09 (0.97-4.54) 0.061 2.04 (0.94-4.43) 0.071 2.14 (0.98-4.65) 0.056 

P (interaction OGG1 x Intervention group)
f
 

 
0.469 

  
0.558 

  
0.752 

Cardiovascular mortality (deaths: 81) 

         
            

Mediterranean diet (n = 4837) 

         
Ser-carriers 45/20655 2.2 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 6/952 6.3 2.73 (1.16-6.48) 0.020 2.78 (1.17-6.60) 0.020 2.60 (1.07-6.22) 0.034 

Control group (n = 2333) 

         
Ser-carriers 25/8963 2.8 1.00  (ref.) 

 

1.00  (ref.) 

 

1.00  (ref.) 

 
Cys326Cys 5/349 14.3 7.48 (2.77-20.16) <0.001 8.16 (3.00-22.20) <0.001 7.89 (2.48-25.11) <0.001 

P (interaction OGG1 x Intervention group)
f
 

 

0.181 
  

0.167 
  

0.200 

a: Both, Mediterranean diet intervention groups, were analyzed together. 
b: Model 1: Adjusted for sex, age, center and dietary intervention group. 
c: Model 2: Adjusted for variables in model 1 plus body mass index, type-2 diabetes and self-reported cancer history at baseline. 
d: Model 3: Adjusted for variables in model 2 plus drinking, smoking, physical activity, adherence to Mediterranean diet, medications (hypertension, dyslipemia and type-2 

diabetes) and total energy intake at baseline. Energy intake data in Model 3 were only available in 7,122 participants. 
e: Mortality rates were expressed per 1000 person-years of follow-up. 
f: P-values obtained for multiplicative interaction terms in the corresponding multivariable-adjusted Cox regression model. 

 

Table 5



 

Table 6. Mortality rate and hazard ratios (HR) for total mortality and cardiovascular mortality in the 

PREDIMED participants according to the OGG1-rs1052133 polymorphism, after 4.8 years of median 

follow-up, depending on vegetable intake
a
 

            

 
Whole population (n = 7,122) 

   

Model 1
b
 Model 2

c
 Model 3

d
 

OGG1-rs1052133 

genotypes 

Deaths / 

person-

years 

Mortality 

rate
e
 HR 95% CI P HR 95% CI P HR 95% CI P 

Total mortality (deaths: 313) 

         
            

Vegetable intake (2 groups) 

         Low intake (< 314 g/d) (n = 3532) 

         
Ser-carriers 165/14910 11.1 1.00 (ref.) 

 

1.00 (ref.) 

 

1.00 (ref.) 

 
Cys326Cys 14/650 21.5 2.01 (1.16-3.49) 0.013 1.97 (1.14-3.41) 0.016 1.92 (1.16-3.36) 0.022 

High intake (>=314 g/d) (n = 3580) 

        
Ser-carriers 126/14517 8.7 1.00 (ref.) 

 

1.00 (ref.) 

 

1.00 (ref.) 

 
Cys326Cys 8/639 12.5 1.36 (0.66-2.79) 0.407 1.43 (0.69-2.93) 0.333 1.37 (0.66-2.81) 0.395 

P (interaction OGG1 x Vegetable intake)
f
 

 

0.446 
  

0.444 
  

0.491 

Vegetable intake (as continuous) 

         
Interaction term OGG1 x Vegetables

g
 0.75 (0.45-1.25) 0.268 0.79 (0.48-1.30) 0.360 0.80 (0.49-1.30) 0.367 

Cardiovascular mortality (deaths: 80) 

         
            

Vegetable intake (2 groups) 

         
Low intake (< 314 g/d) (n = 3532) 

         
Ser-carriers 39/14910 2.6 1.00 (ref.) 

 

1.00 (ref.) 

 

1.00 (ref.) 

 
Cys326Cys 8/650 12.3 5.23 (2.40-11.38) <0.001 5.15 (2.36-11.24) <0.001 5.21 (2.36-11.52) <0.001 

High intake (>=314 g/d) (n = 3580) 

        
Ser-carriers 31/14517 2.1 1.00 (ref.) 

 

1.00 (ref.) 

 

1.00 (ref.) 

 
Cys326Cys 2/639 3.1 1.18 (0.28-5.05) 0.823 1.26 (0.29-5.40) 0.757 1.38 (0.31-6.19) 0.671 

P (interaction OGG1 x Vegetable intake)
f
 

 

0.096 
  

0.120 
  

0.101 

Vegetable intake (as continuous) 

         
Interaction term OGG1 x Vegetables

g
 0.37 (0.15-0.93) 0.035 0.38 (0.15-0.96) 0.041 0.42 (0.18-0.98) 0.046 

a: Vegetable intake were analyzed as categorical (2 groups based on the median population intake) and as continuous variable (g/d). This variable was standardized and HRs 

were expressed per 1 standard deviation (approx. 150 g/d). Vegetable intake data were only available in 7,122 participants. In PREDIMED, one average serving of 
vegetables was estimated in 125 g/d. Then, 314 g/d of vegetables are equivalent to 2.5 servings/d. 
b: Model 1: Adjusted for sex, age, center and dietary intervention group. 
c: Model 2: Adjusted for variables in model 1 plus body mass index, type-2 diabetes and self-reported cancer history at baseline. 
d: Model 3: Adjusted for variables in model 2 plus drinking, smoking, physical activity, adherence to Mediterranean diet, medications (hypertension, dyslipemia and type-2 

diabetes) and total energy intake at baseline. 

Table 6



e: Mortality rates were expressed per 1000 person-years of follow-up. 
f: P-values obtained for multiplicative interaction terms between the OGG1 genotype and vegetable intake, as categorical, in the corresponding multivariable-adjusted Cox 

regression model. 
g: HR 95% confidence interval and P-value for multiplicative interaction terms, between the OGG1 genotype and vegetable intake (as continuous), in the corresponding 

multivariable-adjusted Cox regression model. HRs are expressed per 1 standard deviation increase in vegetable intake. 

 

 

 


