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Abstract

Social networks (SNs) have become the mainstream web service by which users
publish and share information. However, since much of that information is per-
sonal and sensitive, disclosing it in an uncontrolled way entails serious privacy
risks. Paradoxically, most SNs assume that their users are willing to disclose
sensitive data to others (even strangers) with little to no control. In this paper,
we formalize the utility that rational users derive from participating in SNs,
and argue that the current information exchange model is hardly sustainable
from a rational viewpoint; actually, it goes against the interests of privacy-aware
users. To tackle this issue, we propose several co-utile protocols for exchanging
(sensitive) information among SN users. An interaction is said to be co-utile if
the best way for a participant to increase her own utility is to help other partic-
ipants increase theirs; hence, co-utile information exchange is self-enforcing and
mutually beneficial for rational users. In this way, we ensure the sustainability
of SNs in the long term, especially SNs with a sensitive scope (e.g., healthcare).
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1. Introduction

Social Networks (SNs) have ushered in a new information sharing paradigm
whereby the information published on the Internet is no longer generic or anony-
mous, but associated to individuals. In this respect, the Consumer Reports’
2010 State of the Net analysis [13] highlights that more than half of SN users
usually share private information and, as a result, they are exposed to a num-
ber of privacy-related threats, such as spamming, phishing [50], discrimination
(e.g., in job application) [38] or bullying [15]. Studies have also shown that the
increasing awareness of the privacy threats underlying personal data publica-
tion in SNs has negatively affected the information posting rate of SN users and
that many users have shifted from posting to reading [40, 24]. Privacy-aware
users constitute a significant problem for the sustainability of SNs [25], because
SN “free-riding” (i.e., getting information about others without offering infor-
mation about themselves) may result in a functional standstill where no new
information is offered on the SN.
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Even though the consequences of the privacy concerns of SN users may
affect any network, it is especially relevant in SNs with particularly sensitive
scopes. For example, in LinkedIn, users disclose their CVs and their detailed
professional experience for professional networking and to attract job offers or
gain professional contacts; in healthcare-oriented SNs, such as PatientsLikeMe,
patients share their medical conditions and healthcare experiences because they
expect to learn from others’ experiences. In this kind of SNs, privacy concerns
may outweigh the utility benefits of information sharing and, thus, compromise
the sustainability of the network in the long run.

SN users face two types of privacy risks: (i) those derived from the fact that
all their data are hosted by a centralized SN operator, who may exploit and/or
resell their personal data for business purposes, such as identity verification,
marketing or personal profiling [46]; and (ii) those caused by releasing sensitive
data in an uncontrolled way to other users in the SN, who may use these data
for malicious purposes (e.g., phishing, blackmailing, discrimination, etc.).

The former risk can be tackled by using distributed SN architectures, which
avoid relying on centralized operators. Diaspora is probably the best-known
example of a decentralized SN [47], even though other systems have also been
proposed in the literature [14, 30]. Decentralized SNs allow users to install
and manage their own personal web server that locally stores all their data
(e.g., photos, videos, etc.). Since users control their own data, they retain full
ownership over the shared content, which is not subject to changing privacy
policies or sellouts to third parties.

To mitigate the second privacy risk, in this paper we propose information
exchange protocols that assist users in making informed rational decisions on
what (sensitive) data they reveal to their peers in the SN. To ensure the sustain-
ability of the SN, our protocols are grounded in the notion of co-utility [21, 20].
Specifically, co-utile protocols are those in which helping other peers increase
their utilities is also the best way to increase one’s own utility. In those SNs
where the main utility is the information the users gain from others, we envision
co-utile information exchange as a quid pro quo interaction whereby users only
disclose their sensitive data to other peers that also disclose a similar amount of
their own sensitive data. In this way, we aim at making users aware of the pri-
vacy risks inherent to disclosing their data (because data are characterized and
exchanged according to their sensitivity), and at balancing the reciprocal dis-
closure of sensitive information caused by the information exchange, thus avoid-
ing SN free-riding. Our protocols make sensitive data release compatible with
disclosure control, thereby contributing to mitigating the privacy concerns of
privacy-aware users, who are especially important in SNs with sensitive scopes.
Moreover, since users are rationally motivated to contribute their own private
data to the network to an extent sufficient to match what they obtain from the
other peers, data release becomes self-enforcing and mutually beneficial for the
involved users, and sustainable in the long term.

To attain the goals above, in this work:

• We characterize the utility a user derives from participating in the SN as a
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function of the information she obtains about other users and the privacy
risk she incurs by disclosing her own data to others. The quantification of
this utility relies on an automatic assessment of the privacy risks associated
to the data the SN users may disclose (e.g., profile attributes, messages,
etc.), which are classified according to the sensitive topic to which they
refer (e.g., healthcare, religion, etc.).

• We use the previous characterization to design decentralized and co-utile
information exchange protocols, which ensure that rational users (even
purely selfish ones) will follow them; that is, our protocols motivate ratio-
nal users to contribute to the SN and, therefore, they thwart free-riding
and ensure the sustainability of the network.

• We mitigate the reluctance of users to disclose sensitive information to
others by incorporating an also decentralized and co-utile reputation sys-
tem. In this way, users can build trust in each other, while reputation
makes them accountable for their behavior. The use of reputations also
makes the information exchange between peers more efficient and straight-
forward.

• We propose extensions to our protocols to: i) support many-to-one infor-
mation exchange (e.g., within SN groups), and ii) normalize the disclosure
risk assessment (to adjust the flow of exchanged information) when ap-
plying the protocols to users with significantly different levels of social
exposure (and, thus, of privacy requirements).

The rest of the paper is organized as follows. Section 2 discusses related
works proposing privacy-preserving mechanisms for SNs. Section 3 presents an
automatic method to measure the utility a user derives from participating in the
SN, as a function of the functionality (information) she obtains from her peers
and the privacy risk she incurs when disclosing sensitive data. Section 4 provides
background on co-utility and proposes two co-utile information exchange proto-
cols for SNs: a basic one-to-one iterative and incremental information exchange
mechanism, and another mechanism that relies on the reputation of users. Sec-
tion 5 reports the results of several experiments carried out on synthetic users
and highly sensitive (health) data. Section 6 describes protocol extensions for
many-to-one information exchange and for exchange between users with asym-
metric social exposure. The final section gathers conclusions and identifies some
lines of future research.

2. Related work

To control the disclosure of sensitive data of SN users, social network op-
erators (such as Twitter or Facebook) have implemented basic privacy settings
that enable users to specify who may access certain data, such as their profile
attributes or messages. More sophisticated approaches employ privacy policies,
such as contracts, which specify who can access a certain resource [8, 10, 17].
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However, the use of manually defined privacy settings/policies has been criti-
cized because: (i) they are burdensome to manage and, as a result, most users
seldom change the default settings, that generally make most user information
public [41]; and (ii) users find difficulties to assess the privacy risks caused by
disclosure of their data, whereas such an assessment is needed to define access
control rules [49].

Regarding this latter issue, many authors have proposed mechanisms to as-
sess the privacy risks inherent to users’ data in SNs. In [28], a privacy risk
score was presented to quantify the privacy risks caused by disclosing profile
attributes. Attributes (e.g., country, political views, religion) are associated a
sensitivity value (i.e., how embarrassing it is for a user to reveal an attribute
to a certain other user). The privacy score is then calculated as the sum of
attributes (weighted by their respective sensitivity) that are visible to all the
peers in the network. Similar approaches with ad hoc privacy scores have been
also contributed in [39, 49]. In [5, 42] the authors propose mechanisms that
infer hidden attribute profiles of a user from the publicly available attributes of
her friends in the SN. The number of attributes that can be inferred is used to
calculate a privacy score. In [7] the authors introduce a cryptographic protocol
to unlink the identities of the users when submitting Likes to an SN (because
Likes may reveal some of the users’ attributes). The authors also rely on dis-
tributed SNs to avoid a centralized provider that learns the sensitive data of
users. In [26], the authors analyze the privacy issues that derive from tags sub-
mitted by the users, which may reflect their preferences and personal features.
In [45], the authors describe a measure to evaluate the privacy of social graphs,
that is, graphs that depict the social innerconnections between SN users.

The papers reviewed thus far only focus on the privacy risks related to
attribute profiles and social connections, and neglect the risks inherent to textual
messages, which account for most of the content currently released in SNs [48,
37].

In [39] the authors measure the privacy risks of user publications by relying
on a manual association of their contents with attribute profiles. Then, the pri-
vacy risk is measured according to the information distribution of the message
contents within a subset of social network users. In [16] the authors use struc-
tured knowledge bases (ontologies) to define disclosure thresholds for sensitive
topics (e.g., healthcare, religion, etc.). According to these, the terms appearing
in textual publications that are more specific than the thresholds are considered
risky, and access control rules are defined on this basis.

All the former methods require manually defining the sensitivity of the pub-
lished contents with different degrees of granularity and, in some cases, with
respect to the type of users the data may be disclosed to. This constitutes a
significant burden on SN users, who may also lack the technical knowledge and
awareness of the risks inherent to the data they publish. Moreover, the fact
that each user may understand (and state) privacy risks in a different (and sub-
jective) way makes it difficult to fairly compare the level of disclosure incurred
by different users. In [37, 48] a more general and automatic approach based
on information theory is presented. This mechanism identifies individual terms
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within the published contents and uniformly measures the privacy risk they en-
tail according to their informativeness. Even though this mechanism yields an
objective measurement of privacy risks, it systematically considers highly infor-
mative terms risky, regardless of whether they actually refer to a sensitive topic
or not.

3. A privacy-functionality score

The cornerstone of the rational information exchange protocols we propose
is a model of the utility that a privacy-concerned user derives from participating
in an SN. In this section, we describe how to assess this dimension as the func-
tionality the user obtains (i.e., the sensitive information she gathers about her
peers) divided by the privacy risk she incurs by revealing her own sensitive data
to others. The basic idea of modeling a user’s SN utility as the ratio between the
information learned and the information disclosed by the user was first proposed
in [18], but here we introduce more accurate ways of evaluating how informa-
tive is what is learned and how risky for privacy is what is disclosed. Moreover,
whereas in [18] the disclosed information was limited to profile attributes, in
this work we extend it to the whole user’s data. Based on the resulting ratio,
the protocols we propose will enable a rational (balanced) exchange of sensitive
information among peers.

3.1. Measuring privacy risks of SN data

Unlike other approaches in the literature [28, 39, 49, 5, 42], our assessment
of privacy risks will account for all the data a user may release in an SN (i.e.,
profile attributes, text messages and tagged multimedia files), regardless of their
type and structure. Because these data mainly consist of unstructured text or
textually tagged multimedia files, they are usually understood and analyzed by
stakeholders (i.e., content publishers, readers, SN operators and also potential
attackers) according to their underlying semantics. Thus, the privacy risks in-
curred by a user disclosing these data (and, also, the utility her peers derive from
the disclosed data) should be semantically quantified [1, 37]. Moreover, unlike
most related works discussed in Section 2, our approach will be generic and
automatic, hence overcoming the burden and subjectivity inherent to manual
assessments of privacy risks.

To do so, we first evaluate whether each data piece (e.g., an attribute value, a
tag, (part of) a message, etc.) refers to a sensitive topic that should be protected
against disclosure (e.g., health, sexuality, ethnicity, etc.). Then, we measure the
privacy risk of releasing the data piece on a sensitive topic, according to the
amount of semantics the piece conveys. This approach is coherent with current
research on textual data protection [1, 35], which assumes that pieces of data
conveying a large amount of semantics are potentially risky, because they are
the ones from which third parties gain most knowledge on the individuals.

However, measuring data semantics is not trivial because they are inherently
human and qualitative features. Following the state of the art on textual data
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analysis [32] and document sanitization [33, 35, 2], we adopt an information-
theoretic quantification of data semantics: the semantics conveyed by a textual
term t is quantified as the informativeness of the term (i.e., its Information
Content (IC)) computed as the inverse of the probability of occurrence of t in
corpora [31], that is

IC(t) = − log(p(t)), (1)

where, for the sake of concreteness, we take the logarithm to be binary. Accord-
ing to Expression (1), general terms (e.g., disease) are considered less informa-
tive (and thus, potentially less sensitive) than specific ones (e.g., breast cancer),
because the former are more likely to appear in a text.

Under the same framework, the amount of information (semantics) that
a term t discloses about a certain topic τ can be measured by their mutual
overlap of information (i.e., their Point-wise Mutual Information (PMI)), which
is computed as the ratio between their joint and marginal distributions [12]:

PMI(t; τ) = log
p(t ∩ τ)

p(t)p(τ)
.

By applying these notions to our setting, and assuming that t is a piece of
data describing a feature of a user and τ is a sensitive topic for which disclosure
should be controlled (e.g., health, race, etc.), we have the following upper and
lower bounds for their PMI [34]:

• If t and τ are independent, that is, they co-occur in corpora just by chance,
then PMI(t; τ) = 0. In this case, we have that t is not disclosing anything
about τ and, hence, the privacy risk t may cause on the sensitive topic
τ is zero. Strictly speaking, PMI may also take negative values if t and
τ are exclusive: when they never co-occur, PMI = −∞. However, since
textual entities are in general correlated up to some degree [27], we can
attribute rare co-occurrence or no co-occurrence to data sparseness in the
probability calculus (i.e., to the fact that not enough data are available to
extract reliable conclusions from their analysis) rather than to real exclu-
siveness [34]. Therefore, for the sake of semantic coherence, we truncate
negative PMI values to 0; that is, we use PMI ′(t; τ) = max(0, PMI(t; τ)).

• If t and τ are perfectly correlated (they always co-occur), either for an oc-
currence of t and/or an occurrence of τ , PMI is maximized to PMI(t; τ) =
− log(p(t)) = IC(t) if p(t ∩ τ) = p(τ), or to PMI(t; τ) = − log(p(τ)) =
IC(τ) if p(t∩τ) = p(t). In particular, if PMI(t; τ) = IC(τ), we have that
t is providing information that fully refers to the sensitive topic τ (e.g.,
t might be a specialization of τ), and the specific amount of information
(semantics) t discloses on τ is IC(t).

Therefore, in case PMI ′(t; τ) = IC(τ), we adopt IC(t) as the privacy risk of
disclosing t to peers in the SN regarding τ , that is, PRτ (t). In practice, closely
(even though not perfectly) correlated terms may also be risky if most of the
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information they reveal conveys τ . To also consider this situation and to make
the risk assessment more flexible, we incorporate a parameter α ∈ [0..1], which
defines the relative amount of τ ’s information conveyed by t that is considered
risky. Formally, the PR expression is defined as follows:

PRτ (t) =

{
IC(t) ifPMI ′(t; τ) ≥ α× IC(τ),
0 otherwise.

(2)

We apply the former notions to measuring the privacy risk resulting from
the data disclosed by the user in the SN as follows. Let T a = {ta1 , . . . , tan} be
the set of data pieces referring to the user ua. As stated above, tai might be
individual profile attributes, textual tags associated to multimedia files (e.g.,
tagged photos) or (part of) messages to be posted in the SN wall. Which data
are considered and how they are tokenized in pieces can be configured depending
on the specific privacy needs or the particularities of the SN (more details are
given in Section 5); for example, complete messages can be divided in sentences
or noun phrases for a finer-grained assessment of privacy risks.

On the other hand, let T = {τ1, . . . , τm} be the set of sensitive topics that
may put the privacy of SN users at risk. One might think of individual users
manually defining which topics they consider sensitive; however, to make the
information exchange coherent among peers, it seems better to fix sensitive
topics for all SN users according to one or both of the following criteria:

• The thematic scope of the SN (e.g., health topics in medical-oriented SNs
such as PatientLikeMe);

• The topics declared as private by applicable legal frameworks (e.g., the
EU Data Protection Act [23] defines data related to political opinions,
race, sexual orientation, religion and health as private).

By applying Expression (2) to each pair (tai , τk), where tai ∈ T a and τk ∈
T , we identify the data pieces tai that entail a privacy risk for user ua and
each sensitive topic τk. Notice that each tai may entail risks for several τk; for
example, a sexually transmitted disease may disclose sensitive information about
health, but also about sexuality.

Finally, we measure the accumulated privacy risk of users’ data T a = {ta1 , . . . , taq}
for all τk ∈ T as follows:

PRT (T a) =
∑
∀τk∈T

∑
∀tai ∈Ta

PRτk(tai ). (3)

Notice that, as stated in Expression (2), the pieces in T a that do not convey
the sensitive topic do not increase the privacy risk of the user; hence, we do not
consider them risky regardless of their informativeness. This is a fundamen-
tal difference w.r.t. related works also relying on information-theoretic mea-
sures [48, 37], which systematically consider specific/informative terms risky,
whether or not they actually refer to a sensitive topic.
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Proposition 1. For any disclosure of risky (sensitive) information by a user
ua, it holds that PRT (T a) > 1.

Proof. According to Expression (3), PRT (T a) is the sum of the privacy risks
of data pieces in T a. Now, by assumption, T a contains at least one data piece
t that conveys risky information for ua. According to Expressions (1) and (2),
the privacy risk of t is IC(t) = − log(p(t)). Since we assume binary logarithms,
IC(t) ≤ 1 only if p(t) ≥ 1/2, that is, if the probability of occurrence of t
is at least 50% in corpora. Assuming that such a highly frequent t exists, it
cannot convey risky information, which is a contradiction. Hence, it has to be
IC(t) > 1, and therefore PRT (T a) > 1.

3.2. A privacy-functionality score

As introduced above, our definition of the utility the users derive from their
participation in the SN can be summarized as the amount of sensitive informa-
tion each user ua learns about her peers in the SN (i.e., the functionality ua
obtains) divided by the privacy risks ua incurs by revealing her own sensitive
information to others. This “rational” utility may not probably explain the
attitude of the typical Facebook user, who tends to disclose data just for social
visibility [25], and without caring much about what she gets in return for her
own privacy. However, our vision is more adapted to SNs with the sensitive
scopes we mention above (e.g., LinkedIn, PatientsLikeMe), where users ratio-
nally disclose their information (i) in a more targeted way (because, instead
of just looking for social visibility, they expect to gain information in return),
and (ii) with more caution (because they are aware of privacy risks due to the
sensitivity of the data they disclose) [24].

In the sequel, we formalize this utility for pairwise interactions between two
users ua and ub:

• On the one hand, the privacy risk incurred by user ua when disclosing
her data T a (or a subset) to a peer ub can be measured with the PR
score presented above (Expression (3)), which is the reciprocal of the
privacy-preservation utility that concerns privacy-aware users: the greater
PRT (T a), the lower is the privacy-preservation utility for user ua.

• On the other hand, the functionality ua gets from ub can also be seen
as the privacy risk (PR) incurred by ub when disclosing his own data
to ua. This perfectly fits our information-theoretic assessment of privacy
risks, because the functionality ua obtains is the amount of (sensitive)
information she learns from ub.

Since disclosure risks are uniformly and objectively measured for all users
(i.e., T is fixed beforehand), we can coherently compare and integrate both the
incurred privacy risks w.r.t. other peers and the functionality a user gets from
those peers.

8



Formally, we quantify the utility a user ua derives from interacting with her
peer ub in the SN by using the following privacy-functionality score

PRF (ua, ub) =

{
PRT (T b)
PRT (Ta) if PRT (T a) > 1,

PRT (T b) otherwise,
(4)

where T x is the data user x ∈ {a, b} discloses to the other user. By Proposi-
tion 1, the first case in Expression (4) corresponds to ua disclosing risky informa-
tion, whereas the second case corresponds to ua disclosing either no information
or at most non-risky information.

Our score has several advantages vs. other SN utility scores proposed in the
literature [18]:

• It can be automatically assessed and updated as users release more data
in the SN.

• Since it measures privacy and utility in an objective and uniform way,
the incurred disclosure risks and gained information (functionality) can
be fairly compared and integrated.

• The previous feature guarantees that self-interested attempts at tampering
with or biasing privacy/functionality scores are ineffective, because peers
can easily check the actual informativeness of the data they obtain from
other peers. As we discuss in the following sections, this ensures co-utility
in the rational information exchange protocols we propose.

According to Expression (4), PRF decreases as the privacy risk of ua’s dis-
closed data (PRT (T a) in the denominator) increases. Also, PRF increases as ua
has access to more (and more informative) sensitive data from ub. Since PRF is
maximized when ua does not disclose any privacy-risky data (i.e., PRT (T a) ≤ 1
and, thus, PRT (T b) is not divided by any factor), the dominant strategy for the
users in a setting in which their utility is only defined by the privacy/functional
dimensions in Expression (4) is to disclose no information or only trivial infor-
mation to the SN; that is, to behave as free-riders. Therefore, if all users follow
this strategy and the SN does not implement any mechanism to prevent it, the
SN will shut down.

4. Co-utile protocols for rational content disclosure in SN

4.1. System model

The approach we follow to tackle the rational free-riding behavior discussed
above is based on i) decentralization of social network interactions by following
a peer-to-peer model and ii) direct reciprocity (in other words, quid pro quo) of
information disclosure. Specifically, the protocols we propose are strictly peer-
to-peer and decentralized, and they are meant to be executed in distributed
SN architectures. Such architectures support both one-to-one and many-to-one
information exchanges, and users in them locally manage and store their own
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data (e.g., photos, videos, etc.) in a personal web server. In this way, the users
themselves are the ones who manage the information exchange without relying
on a centralized SN operator. This forestalls privacy concerns that users might
have vs. a central operator compiling their data (note that such concerns might
deter users from releasing data to the SN).

Moreover, the protocols we propose make information release sustainable
by relying on the notion of co-utility, which characterizes interactions in which
the best alternative for rational users to increase their utilities is to help other
users increase theirs. This mutually beneficial collaboration ensures that the
protocols are self-enforcing and that peers do not find incentives to deviate
from the protocols (i.e., attack them or tamper with them).

4.2. Background on co-utility

Co-utility models a kind of interaction between rational agents (e.g., the
users of an SN) in which the best option for each agent to reach her own goal
(e.g., to get information from the SN) is to help other agents reach theirs (e.g.,
to help them get information from the SN, possibly by providing them with such
information). Since we are dealing with rational agents, that is, agents that act
strategically according to utility functions, game theory is a natural framework
to formalize this concept. In [21, 20] we defined co-utility for scenarios that
can be represented as perfect-information games; these are games in which each
agent making a decision knows the utility payoffs of all agents under the various
possible actions (or sequences of actions) they may execute, plus any previously
made decisions. We represent these games in the so-called extensive form, which
is a tree where: (i) nodes are the points where decisions are made, (ii) each node
is labeled with the name of the agent (e.g., SN user) making the decision, (iii)
outgoing edges in a node represent the available choices (actions) at that node
(e.g., to exchange or not some data), and (iv) each leaf node is labeled with the
tuple of utility payoffs that agents obtain when the node is reached.

By using this extensive form, we can view a protocol (i.e., the actions needed
for the completion of a task) as a path that traverses the tree representing the
game.

Co-utility focuses on self-enforcing protocols, that are those from which
agents have no rational incentive to deviate. That is, no agent can increase
her utility by deviating from the protocol, provided that the other agents stick
to it. In game-theoretic terms, this means that, at each successive node of the
protocol path, sticking to the next action prescribed by the protocol (taking the
next edge in the path) is an equilibrium of the remaining subgame (the subtree
rooted at the current node), that is, a subgame perfect equilibrium of the game.

We say that a self-enforcing protocol is co-utile if it results in mutually
beneficial collaboration (in terms of utility payoffs) between the participating
agents. More specifically, a protocol P is co-utile if and only if the three following
conditions hold:

1. P is self-enforcing;
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2. The utility derived by each agent participating in P is strictly greater than
the utility the agent would derive from not participating;

3. There is no alternative protocol P ′ giving greater utilities to all agents
and a strictly greater utility to at least one agent.

The first condition ensures that, if participants engage in the protocol, they
will not deviate. The second condition is needed to ensure that engaging in
the protocol is attractive for everyone. The third condition can be rephrased in
game-theoretic terms by saying that the protocol is a Pareto-optimal solution
of the underlying game.

4.3. A co-utile protocol for sensitive information exchange

The first protocol we propose implements a reciprocal, balanced and sequen-
tial exchange of (sensitive) information between SN users. Specifically, users no
longer publish data in the SN without control, but decide which data will be
(iteratively) disclosed to their peers. Being a strict P2P decentralized protocol,
in principle it is designed for two users, ua, ub; nonetheless, in Section 6 we will
detail how it can be extended to groups of users.

As discussed above, we assume that all users in the SN share the same set
of sensitive topics, T = {τ1, . . . , τm}, and that they implement the privacy risk
assessment procedure we detailed in Section 3.1. Recall that T a = {ta1 , . . . , tan}
is the set of data pieces referring to user ua. The protocol is defined as follows:

While simple, Protocol 1 has the shortcoming of requiring that the data
pieces exchanged between ua and ub provide a similar amount of information
on τk. However, it may happen that ub only has data pieces tbj ∈ T b that are
significantly less informative or more informative than the ta∗ he received from
ua. In the former case, we can extend the protocol so that the exchange of data
pieces is groupwise (i.e., ub can release Sb = {tb1, . . . , tbq}, where Sb ⊆ T b in

response to ta∗, if PRτk(Sb) ≈ PRτk(ta∗)). In the latter case, when ub’s pieces
are more informative than ua’s, we can allow ub to release a generalization of tb∗
(that is, g(tb∗)) instead of tb∗; by definition, a generalization of a term (e.g.,
g(AIDS) = immunological disorder) discloses a strict subset of the seman-
tics/information of the term (i.e., IC(immunological disorder) < IC(AIDS)
and PMI ′(AIDS; immunological disorder) = IC(immunological disorder)).

Protocol 1 also assumes that the information that is iteratively exchanged
between users does not overlap; that is, PMI ′(tai ; taj ) = 0,∀tai , taj ∈ T a and

PMI ′(tbi ; t
b
j) = 0,∀tbi , tbj ∈ T b. However, since textual terms appearing in

a context (i.e., the SN account) are usually correlated [27], the data piece
ta∗ disclosed to ub at a certain iteration does not provide IC(ta∗) to ub, but
just IC(ta∗) − PMI ′(ta∗;Received T

b); for example, if ub already received from
ua that the latter suffers from an immunological disorder due to unprotected
sexual intercourse, then, if ua discloses to ub that she suffers from AIDS, the
new information that ub is acquiring is not IC(AIDS), but just IC(AIDS)−
PMI ′(AIDS; {immunological disorder, unprotected sexual intercourse}), because
AIDS and {immunological disorder, unprotected sexual intercourse} are closely
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Protocol 1 [Quid-pro-quo information exchange (ua, ub)]

ua and ub agree on a sensitive topic τk ∈ T they are interested in about each
other. Then ua does:

01 Set Quit := 0
02 Set Disclosed T a = ∅
03 Set Received T b = ∅
04 while Quit = 0 do:
05 if ua has already disclosed all her data on τk to ub

(i.e., tai ∈ Disclosed T a, ∀tai ∈ T a such that PRτk(tai ) > 1), then
06 set Quit := 1
07 else
08 Disclose to ub the data piece ta∗ such that

ta∗ = arg min
tai ∈Ta∧tai /∈Disclosed Ta∧PRτk (t

a
i )>1

PRτk(tai ), (5)

that is, the least informative data piece that produces disclosure on τk
among those not yet disclosed to ub.

09 Add ta∗ to Disclosed T a.
10 end if
11 Request ub to disclose a tb∗ such that tb∗ ∈ T b, tb∗ /∈ Received T b and

PRτk(tb∗) ≈ PRτk(ta∗), that is, a data piece of ub that discloses a similar
amount of information on τk as already disclosed by ta∗.

12 if ua does not receive ub’s t
b
∗ or PRτk(tb∗)� PRτk(ta∗), then

13 set Quit := 1
14 else
15 add tb∗ to Received T b.
16 end if
17 end while
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correlated and their mutual information is positive. Such informational over-
laps can be accounted for by Protocol 1 by subtracting from the PR of the
disclosed/received data pieces that appear at lines 5, 11 and 12 (i.e., tai , ta∗, t

b
∗,

respectively) their mutual information with the set of already disclosed/received
data pieces (i.e., Disclosed T a, Received T b, respectively); this means using
PRτk(tai ) − PMI ′(tai ;Disclosed T a), PRτk(ta∗) − PMI ′(ta∗;Disclosed T

a) and
PRτk(tb∗)−PMI ′(tb∗;Received T

b) instead of PRτk(tai ), PRτk(ta∗) and PRτk(tb∗),
respectively.

Provided that the desire of learning information about peers (the numerator
PRT (T b) in Expression (4)) is the dominant utility, Protocol 1 provides equal
mutual benefits to the participants. Moreover, since the only way for a user to
get data from peers is by disclosing a similar amount of her own data, the pro-
tocol is self-enforcing and prevents free-riding; thus Protocol 1 is co-utile. Also,
given that an information exchange finishes when a user does not reciprocate
the data received from her peer, users become motivated to contribute more
and more of their own data if they want to learn a similar amount from others;
this guarantees the sustainability of the SN.

However, Protocol 1 has the shortcoming that ua, being the initiator, first
takes the risk of not being reciprocated by ub. What is more, by systematically
refusing to reciprocate exchanges initiated by other peers, ub may learn small
pieces of data from those peers “for free”. Therefore, users may be reluctant to
initiate the interaction because of the privacy risk it entails (the denominator
PRT (T a) in Expression (4)); note, however, that the “loss” of ua is limited to
the data piece disclosed in the unreciprocated iteration, which, by Expression
(5), is the least informative one among those that could have been disclosed.
In this case, co-utility may not hold and the information exchange within the
SN may terminate. To tackle this issue, in the next section we mitigate the
initiator’s reluctance by leveraging user reputations and incorporating them
into the information exchange protocol.

4.4. Reputation-based information exchange protocol

The risk taken by the initiator ua can be mitigated by relying on past expe-
riences with ub, either direct interactions between ua and ub or interactions of
ub with other peers in the SN. A natural way to capture and quantify the suc-
cess of such past experiences is to use a reputation system. Reputation, which
captures the opinion of the community on each peer, has at least two positive
effects [19]:

• It allows users to build trust, which can neutralize the negative utilities
related to mistrust. The higher a user’s reputation, the more trusted she
is by other peers.

• It makes users accountable for their behavior: if a user misbehaves (e.g., he
systematically refuses to provide his data after receiving those of others),
his reputation worsens and his peers mistrust him more and more and
become less and less interested to exchange information with him. In

13



this manner, malicious agents (who may try to subvert the system, even
irrationally) may be identified (via a low reputation) and penalized (e.g.,
through limitation or denial of service).

Within our information exchange protocol, the reputation sa of a user ua in
the SN can be understood as the disclosure she underwent in past interactions;
that is, the reputation can be expressed in the same units as the actual infor-
mation disclosure occurring during the information exchange. To manage and
update reputations in a decentralized network, we need a reputation manage-
ment protocol that is decentralized itself, such as the one we propose in [19].
Specifically, the protocol in [19] generalizes the well-known EigenTrust reputa-
tion calculation mechanism and introduces a more secure distributed calculation
that cancels the benefits of deviating from (e.g., tampering with) the protocol.
Thanks to these modifications, the reputation calculation becomes scalable to
large networks (because the calculation is distributed and parallelized among
the users of the network), and robust against a number of classical attacks: self-
promotion, whitewashing, slandering and denial of service [6]. In this way, the
reputation management becomes itself co-utile and reputation can be seamlessly
used as a mechanism to enforce co-utility in protocols in which negative utilities
would otherwise rule it out [19], which is precisely the case of Protocol 1.

The basic idea of the reputation mechanism is to calculate a global reputa-
tion sa of a user ua based on aggregating the local opinions of the peers that
have interacted with ua. If we represent the local opinions by a matrix whose
component (i, j) contains the opinion of user ui on user uj , the distributed cal-
culation mechanism computes global reputation values that approximate the
left principal eigenvector of this matrix. The interested reader can refer to [19]
for a formal step-by-step description of the protocol, its scalable distributed
calculation, its robustness to attacks and its co-utile nature.

Assuming that all users in the SN have global reputations sx computed
from past experiences and that these reputations measure the disclosure users
incurred in past interactions, we propose using them to mitigate the initiator’s
risk in Protocol 1, as follows.

Protocol 2 offers several properties as a result of incorporating ub’s reputa-
tion:

• Co-utility. At line 05 (“if” clause), ua refuses to send any information to ub
if ub’s reputation (i.e., the information disclosed by ub in past iterations) is
lower than the disclosure level of ua’s data pieces tai ∈ T a. That is, ua only
trusts and discloses data to her peers if in previous iterations these peers
have disclosed information at the same level ua has. We thereby mitigate
the reluctance of users to initiate the information exchange, because trust
cancels the fear by users of not being reciprocated, which is necessary to
ensure the co-utility of the protocol.

• Sustainability. At line 08 (“else” clause), ua uses ub’s reputation to decide
how much information she is going to disclose, instead of just disclosing
the least informative piece as in Protocol 1. In this way, users with high
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Protocol 2 [Reputation-based quid-pro-quo information exchange (ua, ub)]

ua and ub agree on a sensitive topic τk ∈ T they are interested in. ua knows
ub’s global reputation in the SN, sb.

01 Set Quit := 0
02 Set Disclosed T a = ∅
03 Set Received T b = ∅
04 while Quit = 0 do:
05 if ua has already disclosed all her data on τk to ub

(i.e., tai ∈ Disclosed T a, ∀tai ∈ T a such that PRτk(tai ) > 1), or all her
non-disclosed data are more informative on τk than ub’s reputation sb
(i.e., ∀tai ∈ T a such that tai /∈ Disclosed T a it holds that PRτk(tai ) > sb),
then

06 set Quit := 1
07 else
08 Disclose to ub the data piece ta∗ such that ta∗ ∈ T a, ta∗ /∈ Disclosed T a

and PRτk(ta∗) ≈ sb that is, ua discloses a non-disclosed data piece that
produces as much disclosure as ub’s reputation.

09 Add ta∗ to Disclosed T a.
10 end if
11 Request ub to disclose a tb∗ such that tb∗ ∈ T b, tb∗ /∈ Received T b and

PRτk(tb∗) ≈ PRτk(ta∗), that is, a data piece of ub that discloses a similar
amount of information on τk as already disclosed by ta∗.

12 if ua does not receive ub’s t
b
∗, then

13 Update(sb,−PRτk(ta∗))
14 set Quit := 1
15 else
16 Update(sb,(PRτk(tb∗)− PRτk(ta∗)))
17 add tb∗ to Received T b.
18 end if
19 end while
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reputations will receive further information faster than with Protocol 1.
This will motivate users to maintain their reputations as high as possible,
which can only be achieved by reciprocating information exchanges with
more information. This reinforces the sustainability of the SN.

• No free-riding. If ub attempts free-riding on ua by not sending any infor-
mation, ua punishes ub at line 13 (“if clause”) by lowering ub’s reputation
as much as the unrequited information disclosure. This will cause ub’s
reputation to decrease and, thus, it will limit the chances of ub getting
data from other peers. As a consequence, free-riding and protocol abuse
are thwarted.

• Fairness. At line 16 (“else” clause), ua reflects the differential between
the amount of disclosed/received information in ub’s reputation; since the
updated reputation will be considered in the next iteration to determine
the amount of information to be exchanged, fairness is ensured.

Reputation can also be used to prevent malicious behaviors, such as users
releasing sensitive but fake data in order to get information from others, or users
releasing the confidential information they got from others to third parties.
When these behaviors are detected, the affected users may punish malicious
users by lowering their reputations. Therefore, if a user persists in malicious
behaviors, his reputation will significantly decrease (or become zero), which
will prevent him from getting new information. By raising awareness of this
punishment, users will be rationally motivated to avoid malicious behaviors,
which will ensure the co-utility of the information exchange.

In practice, once the set of sensitive topics and the criteria to evaluate their
PR (see Expression (2)) have been defined and agreed upon by the members
of the SN, our protocols can operate in an automatic way, both during the
assessment of disclosure risks and during the iterative exchange of sensitive
data. However, if users wish to have more control on the information exchange,
the protocols can be used just as assistants to the human user in deciding
whether to disclose a piece of data to a peer; in this latter scenario, the final
decision is made by the data owner, who may contradict the action proposed by
the system (either because she does not agree with the automatic assessment of
privacy risks or if utility components other than those modeled in Expression
(4) influence her decision).

5. Empirical study

In this section, we report on experimental results obtained from simulating
the two co-utile protocols proposed in the previous section. We created a pair
of synthetic users that exchanged sensitive information about their medical con-
ditions; thus, the sensitive topic was τ = healthcare. As usual in the field of
document protection [11, 36, 33], we associated with each of the two users one
disease considered as highly sensitive according to current legal frameworks [44]
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and we took the information on the disease from the Wikipedia; specifically, one
user was assumed to suffer from HIV and the other from Hepatitis.

To implement the disclosure risk analysis detailed in Section 3.1 on the
unstructured textual data of the users, we relied on natural language analysis.
Sensitive entities are either concepts (e.g., diseases) or instances (e.g., hospital
names), and those are represented in a text as nouns or noun phrases (NPs) [34].
Thus, we syntactically analyzed the text data to detect such noun phrases.
This was done by means of a pipeline of natural language analyses consisting
of sentence detection, tokenization of words, part-of-speech tagging to identify
the grammatical categories of words, and syntactic parsing to identify phrases.

Once data pieces (NPs) had been detected, we assessed the privacy risk
of each NP w.r.t. τ = healthcare by means of Expression (2) with α = 0.6.
Recall that α is a global parameter that sets the minimum degree of information
overlap between each NP and τ to consider the former risky; this means that
the NPs we considered risky in the experiments were those whose semantics
mostly referred to healthcare topics (60% overlap or more). Notice that, since
α was the same for all users, it only influenced the number of NPs considered
risky and, thus, the number of protocol iterations, but not the tendencies and
differences between the accumulated PR of the users, which were features we
were interested in.

The information-theoretic calculations in Expression (2) require estimating
the probability of (co-)occurrence of the NPs from corpora. To obtain repre-
sentative assessments, it is crucial that the corpora be large and heterogeneous
enough to capture the information distribution at a social scale. The Web, be-
ing the largest electronic repository available, fits those requirements and, in
fact, has been broadly employed to estimate the distribution of the information
in the fields of data semantics [4] and data privacy [11, 35, 36]. Specifically,
to gather term probabilities of (co-)occurrence from the Web, we used the hit
count provided by Google when querying the terms and term combinations of
interest:

p(t) = hits(′′t′′)
total webs ,

p(ti ∩ tj) =
hits(′′t′′i AND

′′t′′j )

total webs ,
(6)

where total webs is the total number of web resources indexed by Google.
Notice the use of quotation marks to constrain the search to exact matches of
the query and the AND operator to look for co-occurrences of two (or more)
terms.

The first experiment was carried out with Protocol 1 (Section 4.3) and the
two synthetic users: one providing information about HIV (which we denote
by uHIV ) and the other one about Hepatitis (denoted by uHEP ). As shown by
the horizontal lines in Figure 1, the data corresponding to uHIV convey more
information and, thus, entail more accumulated PR (Expression (3)), than the
data of uHEP . Thus, releasing their information as done in a standard SN
setting would result in significant disclosure risk asymmetry: uHIV would gain
more sensitive information about uHEP than the latter about the former.
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Figure 1: Protocol 1 between two users. Horizontal lines: accumulated PR of the data sets
held by the two users. Non-horizontal full lines: accumulated PR for each user as a function
of the number of iterations of Protocol 1. Left: the HIV user initiates the exchange, so that
users are uHIV

a and uHEP
b . Right: the HEP user initiates the exchange, so that users are

uHEP
a and uHIV

b .

Protocol 1 was executed in two different settings: (i) the user whose data had
the largest accumulated PR (user uHIV ) initiated the protocol (accordingly, in
this setting we denoted users by uHIVa and uHEPb ), and (ii) the user with the
lowest accumulated PR (user uHEP ) initiated the protocol (accordingly, users
were denoted by uHEPa and uHIVb ). For these tests, we only allowed the exchange
of individual NPs, rather than groups of NPs. Figure 1 shows the results of the
execution in both settings. The X-axis corresponds to the number of protocol
iterations performed (iterations terminated when the initiator quit), and the
Y-axis depicts the accumulated PR (Expression (3)) incurred by each user as a
result of the information exchange, which also corresponds to the information
each user obtained from the other. The two horizontal lines (accumulated PR
of the respective data sets of the two users) upper-bound the information that
can be exchanged by the users.

In both settings we can see that the accumulated risk incurred by each user
grows proportionally to that of his/her peer, which corresponds to a fair and
balanced information exchange of sensitive data. The shape of the accumulated
PR curves shows that, the greater the number of iterations, the more informa-
tion (and, thus, the more risk) the exchanged data involve. In the first setting
(with uHIVa and uHEPb ), 43 iterations were executed before uHIVa quit. The
initiator quit because uHEPb (whose data have a lower accumulated PR) was
unable to provide a data piece matching the PR of the last data piece sent by
uHIVa . In the second setting (with uHEPa and uHIVb ), 47 iterations were exe-
cuted. In this case, the protocol ended because uHIVb (whose data have a higher
accumulated PR) was always able to match the PR of the data pieces sent by
uHEPa ; therefore, uHEPa ended disclosing all her data to uHIVb , which explains
why more iterations were executed than in the first setting. In both settings, the
protocol ended once the upper bound set by the lowest accumulated PR (that
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Figure 2: Protocol 1: evolution of users’ PRF . Left: setting with uHIV
a and uHEP

b . Right:

setting with uHEP
a and uHIV

b .

of user uHEP ) was reached. Hence, the user with the lowest accumulated PR
was only able to acquire as much sensitive information from his/her peer as the
information contained in his/her own data. Furthermore, there was co-utility
in the sense discussed in Section 4.3: to get additional data, each user had to
disclose more of his/her data.

In Figure 2, we see that the PRF (Expression (4)) each user derives from
the execution of the protocol grows quickly and becomes stable around 1, which
shows an equilibrium between the amount of disclosed and acquired information.
However, both in Figures 1 and 2 we observe small differences between the PR
and PRF of the two users (around 10-20%), which are caused by the difficulty
of exchanging individual NPs that perfectly match the expected PR.

The second experiment was carried out with Protocol 2 (Section 4.4), which
incorporates user reputations. Two different values for the responder user’s
initial reputation, sinib , were considered: 10 (which roughly corresponds to the
average information content of the NPs of each user’s data) and 20 (which
corresponds to the information content of the most informative NPs). Since sb
measures the disclosure risk incurred by ub in previous information exchanges,
it is used in Protocol 2 to compensate the potential initiator’s fear of ub not
reciprocating and, also, to make the information exchange more straightforward:
instead of exchanging the least informative data piece at each iteration, ua can
disclose an amount of data conveying as much information as sb. To reinforce
this latter aspect, in this experiment we allowed the users to exchange groups of
NPs at each iteration. Moreover, as stated in Section 4.4, since ub is interested
in maintaining his reputation high, ub will reciprocate ua’s data with data pieces
that best approximate ua’s PR in excess. This is the most rational behavior
for ub, because it increases ub’s reputation and, thus, motivates ua to disclose
further data faster.

Figures 3 and 4 depict the accumulated PR and PRF of the users in both
settings according to who was the protocol initiator, ua, and to the initial rep-
utation value, sinib , of the responder user ub.
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Figure 3: Protocol 2 between two users. Horizontal lines: accumulated PR of the data sets
held by the two users. Non-horizontal lines: accumulated PR for each user as a function
of the number of iterations of Protocol 2. Top left: initiator uHIV

a , responder uHEP
b and

responder’s initial reputation sini
b = 10; top right: uHEP

a , uHIV
b and sini

b = 10; bottom left:

uHIV
a , uHEP

b and sini
b = 20; bottom right: uHEP

a , uHIV
b and sini

b = 20.

20



0 10 20 30

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Iteration

u
HIV

a

(s
b
=10)u

HEP

b

ini

33

P
R

F

0 10 20 30

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Iteration

u
HEP

a

(s
b
=10)u

HIV

b

ini

35

P
R

F

0 10 20

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Iteration

u
HIV

a

(s
b
=20)u

HEP

b

ini

22

P
R

F

0 10 20

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Iteration

u
HEP

a

(s
b

= 0)2u
HIV

b

ini

23

P
R

F

Figure 4: Protocol 2. Evolution of users’ PRF . Top left: uHIV
a , uHEP

b and sini
b = 10; top
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We observe two main differences w.r.t. the results reported for Protocol 1:
(i) the number of iterations executed with Protocol 2 is smaller, and decreases
proportionally to the initial reputation of ub, and (ii) the differential between the
PR and PRF of both users is much lower (in fact, negligible). Regarding the
number of iterations, increasing the initial reputation of ub causes ua to disclose
information faster than with Protocol 1, which results in less iterations and,
therefore, in a more efficient information exchange. Regarding the negligible
differences between the PR and PRF of both users, the possibility of exchanging
groups of NPs enables ub to better approximate with his own data the PR of
the data received from ua, thereby minimizing the disclosure/utility mismatch
between the users in the long term.

In Figure 5 we also depict the evolution of ub’s reputation in the different sce-
narios, which reflect the PR differential incurred in past iterations. In general,
ub’s reputation tends to increase because ub reciprocates ua’s data in excess.
In the case uHIVa , uHEPb (where the responder holds less information than the
initiator), the responder’s reputation increases until the responder is unable to
reciprocate the initiator’s data because the responder has already disclosed all
his data; at this point, the responder’s reputation decreases to reflect the (large)
disclosure differential incurred in the last iteration of the protocol. In contrast,
in the case uHEPa , uHIVb (where the responder holds more information than the
initiator), the responder’s reputation keeps increasing until the end, because the
responder is always able to reciprocate the initiator’s data.

So far, we have considered users that follow the protocols in a rational and
deterministic way. To demonstrate that our protocols favor such rational behav-
ior and are thus co-utile (because of the mutual benefits derived by the users),
we also tested Protocol 2 against the following irrational behaviors:

• Irrationally selfish responder. ub systematically provides his least infor-
mative data pieces to ua, regardless of the PR of the data received from
ua. In this case, ub is trying to abuse the protocol in order to unfairly
increase his PRF by lowering his PR. The results for this scenario (ac-
cumulated PR and evolution of ub’s reputation) are depicted in Figure 6
(taking sinib = 20).

• Random responder. ub responds to ua by providing data pieces randomly,
regardless of their PR and the PR of the data received from ua. The
results for this scenario are depicted in Figure 7 (also taking sbini = 20).

When ub acts irrationally selfishly, ua quits the protocol after just two itera-
tions. In the first one, ua sends ub data pieces involving a PR around ub’s high
initial reputation (sinib = 20), whereas ub reciprocates with a data piece whose
PR is much lower (PR ≈ 3); as a consequence, ub’s reputation is updated to
reflect the large PR mismatch. Then, in the second iteration ua sends ub a
data piece involving a much lower PR, to which ub responds with an equally
uninformative data piece. After this second iteration, ua does not have any
more data pieces with low enough PR and quits the protocol. In addition to
ub not being able to acquire more information from ua, the very low reputation
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Figure 5: Protocol 2. Evolution of the reputation of the responder ub. Top left: uHIV
a ,
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b and sini
b = 20, where ub behaves in a random way.

Left graph: accumulated PR for each user as a function of the number of iterations (non-
horizontal lines) and accumulated PR for the data sets held by each user (horizontal lines).
Right graph: evolution of ub’s reputation.

resulting from his irrationally selfish behavior will make it very difficult for him
to acquire information from other peers. Therefore, the protocol design prevents
peers from rationally abusing it.

When ub acts randomly, we observe a similar behavior: ub’s reputation
is continuously updated according to the PR mismatch resulting from each
information exchange. The protocol stops when sb is lower than the PR of ua’s
data pieces.

6. Protocol extensions

6.1. Group-based information exchange

The protocols described so far implement a strict P2P interaction between
two users. However, by following the interaction model of distributed SNs, the
one-to-many information exchanges that occur in standard SNs like Facebook (in
which a user publishes content and many users consume it) can be implemented
as many one-to-one transactions. As discussed in Section 4.4, since our protocols
can be executed automatically once the privacy requirements have been set, this
iterative one-to-one exchange will not constitute an additional overhead for the
user.

Even so, strict one-to-many and many-to-one information exchanges (in
which the information is simultaneously and uniformly sent to a set of users)
can also be supported by extending our protocols. Specifically, we assume (as
is the case for real SNs like Facebook) that users are categorized in groups
(e.g., followers, friends, family), each one corresponding to different intimacy
levels w.r.t. a concrete user, and that users must be logged in to access the
information. The following changes are needed to extend our protocols to this
scenario:
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• In one-to-many and many-to-one information exchanges, the utility de-
rived by user ua (former Expression (4)) from a specific group of users
u1, . . . , uN (e.g., those categorized as friends by ua) can be rewritten as
follows:

PRF (ua, {u1, . . . , uN}) =

{ ∑N
j=1,j 6=a PRT (T j)

N×PRT (Ta) if PRT (T a) > 1,∑N
j=1,j 6=a PRT (T j) otherwise.

(7)

In plain words, the privacy risk incurred by ua grows linearly with the
number N of users receiving her data, whereas the information acquired
by ua is the sum of the informativeness of all the data disclosed by the
members of the group to ua.

• By using Expression (7) in Protocols 1 and 2, at each iteration ua will
request the users in the group to release a total amount of information that
compensates ua’s disclosure N times. However, the information disclosed
by each member of the group does need to be exactly the same.

• Even though the total information supplied by the users in the group
is what matters to the initiator, reputations are individually updated in
the extended Protocol 2. In this way, any users systematically disclosing
significantly less informative data pieces than the average (hoping to free-
ride on what the other group members disclose) will be duly penalized.
For example, these users may be expelled from the group or be “degraded”
to a less intimate/trusted group.

6.2. Compensating imbalances between users

Up to here, we have assumed that disclosure risks can be homogeneously
computed for all users in the network. Since the information exchange is recip-
rocal, this holds for average SN users, who are more or less “unknown” to the
society in general; however, the assumption becomes less tenable for information
exchanges between users having significantly different levels of social exposure.
For example, disclosing that a politician suffers from a sexually transmitted dis-
ease would be of higher sensitivity than disclosing the same about an unknown
citizen, because the consequences for the former may be significantly more se-
vere than for the latter. In this case, we can say that users are “unbalanced”
(because of their different social exposures) and the assessment of the privacy
risks they incur when releasing information should reflect the imbalance.

The exposure of a user can be regarded as being proportional to her social
influence; in the context of SNs, the influence of a user can be roughly quantified
by the number of users following her. Thus, we propose to use the number of
followers to weight the privacy risks the users incur when disclosing data; in
this way, the risk assessment can account for the different social exposure levels
of the interacting users.
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Let followers(ua) and followers(ub) be the number of followers of ua and ub
in the SN, respectively. The normalized privacy risk (NPR) the users incur
when exchanging information is balanced by weighting Expression (2) by their
number of followers. Specifically, for ua the NPR is computed as follows:

NPRτ (ta) =
followers(ua)

max(followers(ua), followers(ub))
× PRτ (ta); (8)

for ub it is as follows:

NPRτ (tb) =
followers(ub)

max(followers(ua), followers(ub))
× PRτ (tb). (9)

Expressions (8) and (9) can be directly used instead of Expression (2) in
Protocols 1 and 2, in order to weight the assessment of disclosure risks between
peers with significantly different levels of social exposure.

7. Conclusions and future work directions

The privacy concerns of users are a major threat to the sustainability of
SNs, especially of those with very sensitive scopes. In this paper, we have for-
malized the utility that rational users derive from participating in SNs. Also,
we have argued that the current information exchange model, in which users
release (sensitive) information to others in an uncontrolled way, contradicts the
rational interests of privacy-aware users. To solve this issue, and thereby ensure
the sustainability of SN in the long term, we can leverage decentralized SNs
(in which users are not concerned anymore about the SN operator getting hold
of their personal data) and the P2P co-utile information exchange protocols we
propose. Our protocols ensure that the exchange of information is self-enforcing
and mutually beneficial even for privacy-aware users. Our empirical work con-
firms that our protocols favor rational and mutually beneficial behaviors, and
are immune to rational attempts to abuse them. Moreover, we have also shown
that incorporating user reputations (managed in an also decentralized and co-
utile way) contributes to mitigating the reluctance of users to disclose sensitive
information to other peers and makes the information exchange more efficient.

As future work, we plan to develop protocols for detecting malicious behav-
iors and punish users through their reputations, as we discuss in Section 4.4;
in this way, users will be rationally motivated to avoid malicious actions, which
will ensure that co-utility holds. On a technical side, we plan to develop plug-
ins for well-known SNs that, by relying on our automatic disclosure assessment,
educate users on the privacy risks inherent to data release. We also plan to
implement our protocols in decentralized SNs, such as Diaspora, in order to
validate their suitability and scalability, and also to obtain feedback from real
users and daily use. Last but not least, we intend to investigate other utility
and privacy definitions: whereas the information acquired on other users is a
reasonable definition of utility in some SNs (for example, professional or health-
care SNs), the utility of the typical Facebook user may be also related to social
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visibility [25]. Work is needed to formalize an entire range of plausible utility
functions, taking into account that changing the definition of utility may also
have an impact on the definition of privacy.
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