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Inferring propagation paths for sparsely observed
perturbations on complex networks
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In a complex system, perturbations propagate by following paths on the network of interactions among the sys-
tem’s units. In contrast to what happens with the spreading of epidemics, observations of general perturbations are
often very sparse in time (there is a single observation of the perturbed system) and in “space” (only a few perturbed
and unperturbed units are observed). A major challenge in many areas, from biology to the social sciences, is to infer
the propagation paths from observations of the effects of perturbation under these sparsity conditions. We address
this problem and show that it is possible to go beyond the usual approach of using the shortest paths connecting
the known perturbed nodes. Specifically, we show that a simple and general probabilistic model, which we solved
using belief propagation, provides fast and accurate estimates of the probabilities of nodes being perturbed.
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INTRODUCTION
Consider the following situation: An individual ingests a drug, and
hours later, a blood test reveals that the concentration of some metab-
olites has changed with respect to the physiological baseline. The
physician trying to interpret the chain of events that led to these changes
faces significant challenges. First, there are thousands of metabolites
and thousands of biochemical reactions that transform metabolites
into one another. Second, the structure of the metabolic network de-
fined by these reactions is highly nontrivial (1–4). Third, the physician
ignores the state of most metabolites—only a few are measured by
the blood test. Through which reactions did the perturbation spread?
Which of the metabolites that cannot be measured have also been
perturbed?

The challenge of reconstructing the state of a perturbed system
from a single sparse observation is very common in biology and bio-
medicine, as in the example above or when comparing diseased versus
healthy states or treatments versus controls. However, this situation
may also arise in very different contexts. For example, consider an or-
ganization where a confidential memo has been leaked through email.
A few members of the organization are known to have the memo, a
few others are known not to have it, and one may know who sent emails
to whom (5–7) but not the content of the emails. Which path within the
organization did the leakage follow? Who else has the memo?

At an abstract level, both situations above are analogous in two
aspects: A perturbation spread through a system whose elements are
connected in a known complex network of interactions, and we wish
to infer the propagation path from a single observation that provides
information about the final state (perturbed or unperturbed) of only a
small fraction of the nodes (Fig. 1).

Although this problem is conceptually similar to the relatively well-
studied problem of locating the source of a network cascade [for ex-
ample, of an epidemic outbreak (8–13) or of an information cascade
(14)], it is more challenging in practice because (i) only a single
observation of the perturbed system is available [as opposed to having
observations at multiple times or to having the exact “infection time”
of each node (10–13, 15–17), and to having observations of multiple
cascades (16)]; (ii) the observation of the system is very sparse for both
perturbed and unperturbed nodes [as opposed to situations in which
we have complete or almost complete information about, at least, the
perturbed nodes (11, 13, 16)]; and (iii) we lack a model for the process
through which the perturbation spreads [as opposed to situations in
which there is a reasonable model, such as the SIR (susceptible-infected-
recovered), for the propagation process (10, 12, 13, 15), let alone reason-
able estimates of model parameters (13)].

Despite the importance and ubiquity of the problem of inferring
perturbation propagation paths under the aforementioned sparsity
conditions, we still lack a systematic approach to addressing it. As a
result, it is common to resort to the so-called “network parsimony prin-
ciple.” In the context of network medicine, this principle states that
“causal molecular pathways often coincide with the shortest molecular
paths between known disease-associated components” (18); more
broadly, the parsimony principle assumes that perturbation propaga-
tion paths coincide with the shortest paths in the complex network
underlying the propagation process (19).

Here, we show that a simple and general probabilistic model, on
which we can use belief propagation inference (20), provides accurate
estimates of the probabilities of nodes being perturbed. Specifically, we
show that our method performs better than potential alternatives for
(i) synthetic perturbations in model and real-world networks and
(ii) real metabolic perturbation measured in human patients after in-
gestion of a plant extract.
RESULTS
Model
Our goal is to develop an approach that is general enough to be of use
for disparate perturbation propagation processes. Therefore, we propose
a probabilistic model for the final perturbed state of the system rather
than for the propagation process itself. In the model, each node i is in
one of two states: si = 1 if the node has been perturbed during the
propagation or si = 0 if it has not been perturbed. We assume that
the probability of the state si of each unobserved node depends ex-
clusively on the state gi of its neighbors
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P
�
si ¼ 1

�� gi;sO� ¼ 0 if gi ¼ 0
h if gi ¼ 1

�
ð1Þ

where gi = 0 if all neighbors of i are unperturbed and gi = 1 otherwise,
and h is a parameter that determines how easy it is for the perturba-
tion to propagate. Therefore, the state of a node only depends on
whether or not it is exposed to the perturbation; thus, we call the model
the exposure model.

From the exposure model, we are ultimately interested in determin-
ing the marginal probabilitiesPðsi sOÞ�� of the state of each unobserved
node, given the state sO of the observed ones. These can be obtained
by marginalizing the joint probability Pðs; h sOÞ�� over h and the state
s of all unobserved nodes other than i
Massucci et al. Sci. Adv. 2016;2 : e1501638 21 October 2016
Pðsi
��sOÞ ¼ ∫

1

0dh∑sj≠i ∈ f0;1gPðs;h sOÞ�� ð2Þ

Estimating this integral using Markov chain Monte Carlo involves
exploring a 2M-dimensional space (with M as the number of unob-
served nodes) for each value of h, which becomes impractical for large
networks. To circumvent this limitation, we consider an approxima-
tion based on belief propagation (20) (see Materials and Methods),
which scales well with size and, most importantly, yields accurate
results.

To start, we relatePðsi
��sOÞ to the posterior marginalPðs∂i sOÞ�� of

the neighbors of i using standard Bayesian methods (see Materials and
Methods). Then, we make the following two approximations: First, we
approximatePðs∂i sOÞ�� by computing it in the absence of i; second, we
assume that the system is tree-like, such that there are no (short) paths
connecting the neighbors of i (other than through i itself). As a con-
sequence, their joint marginal in the absence of i factorizes. Albeit the
effect of loops on the results produced by belief propagation is far
from trivial to quantify, these standard approximations have been ob-
served in several cases to not seriously undermine the validity of the
results, even on complex networks (12, 21, 22).

Within these assumptions, we can finally write the probability
for the state of node i

Pðsi
��sOÞ ¼ ∑s∂i Pðsi

�� gi;sOÞ∏j∈∂iP
ðiÞðsj sOÞ�� ð3Þ

where the sum is a trace over the state of the neighbors of i, and
PðiÞðsj sOÞ�� is the marginal of node j in the system without node i.
Note that, for the sake of clarity, we have momentarily dropped the
reference to h.

Within our approach, the quantitiesPðiÞðsj sOÞ�� for each node pair
i and j can be computed recursively (see Materials and Methods). In
particular, because si is a binary variable, we only need one parameter
to describe its probability marginals; for notation compactness, we thus
define the “beliefs”yi :¼ Pðsi ¼ 0 sOÞ�� (related to Eq. 3) and the “mes-
sages” yð jÞ

i :¼ Pð jÞðsi ¼ 0 sOÞ�� (see Materials and Methods). For each
fixed value of h, we can compute messages and beliefs using the following
relations

yðkÞ
i ¼

h
∏j∈∂inky

ðiÞ
j

i
þ ð1� hÞ

h
1�∏j∈∂inky

ðiÞ
j

i
ð4Þ

yi ¼
h
∏j∈∂iy

ðiÞ
j

i
þ ð1� hÞ

h
1�∏j∈∂iy

ðiÞ
j

i
ð5Þ

The belief propagation terminology may be understood as follows:yðkÞ
i

is a message that i delivers to k about its own state computed in the
absence of k, that is, with no knowledge of the state of k and the re-
maining neighbors of that node. The belief yi is instead the probability
that node i is perturbed, as computed in the full system.

Finally, we need to compute the integral over h in Eq. 2. We choose
to evaluate the integral using a saddle point approximation, that is, by
computing the integral at the value h⋆, which maximizes the joint pos-
terior Pðs; h sOÞ�� . Expressing this posterior in an approximated fac-
torized form, explicit differentiation shows that h⋆ is given by the
fraction of nodes having perturbed neighbors that are also perturbed
(see Materials and Methods). Hence, within our approach, we can write
A B

DC

Fig. 1. Shortest paths, label propagation, and the exposure model for inferring
the propagation path of perturbations. (A) A perturbation spread from node 1 to
node 6 through nodes 2 to 5, additionally branching out from node 4 to node 9
(perturbed nodes are light red, whereas unperturbed ones are gray). To the ob-
server, the only available information is that nodes 1 and 6 are perturbed and that
nodes 15, 17, and 18 are not (observed nodes are dark-colored, whereas unobserved
nodes are light-colored). (B to D) The color and size of the nodes indicate the ranking
assigned by the shortest paths approach (B), label propagation (C), and the exposure
model (D); larger red nodes are deemed more likely to be perturbed, whereas smaller
darker nodes are deemed less likely. (B) By using shortest paths to infer the pertur-
bation propagation path, nodes 2 to 5 and 11 to 14 are all assigned the same prob-
ability of being perturbed (because both paths connecting 1 and 6 are equally short),
whereas all other nodes are deemed equally unlikely of being perturbed (because no
shortest path traverses them). Therefore, by considering shortest paths, all informa-
tion provided by the observed unperturbed nodes 15, 17, and 18 is ignored. (C) Label
propagation assigns the maximum probability of being perturbed not only to nodes
in the 2-to-5 path but also to nodes 7 to 10, because no observed node in that region
of the network is unperturbed. (D) The exposure model approach exploits the
information provided by the observed unperturbed nodes and assigns a higher prob-
ability to the 1-to-5 path than to the 11-to-14 path. Additionally, it acknowledges that
branching out of this path into nodes 7 to 10 is possible and more likely than
branching out into node 16.
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h⋆ in terms of the marginals, Eqs. 4 and 5 (see Materials and
Methods), as

h⋆ ¼
∑ið1� yiÞ

�
1�∏j∈∂iy

ðiÞ
j

�

∑i

�
1� ∏j∈∂iy

ðiÞ
j

� ð6Þ

Through the iteration of Eqs. 4 to 6, we can obtain estimates for
the probability of each unobserved node being perturbed.

In the following sections, we validate our approach on real net-
works for both synthetic and real perturbations. We benchmark our
method both with shortest paths (the parsimony principle, which is a
more conventional tool in the network science community) and with
a technique derived from the context of machine learning, that is, label
propagation (23, 24). This method was not originally devised to deal
with the problem at stake, but we have adapted it to this study by re-
casting the perturbation inference problem as a classification task on
partially labeled graphs (23, 25). In contrast to most popular methods
for label learning that have limited applicability to our problem [for
example, Laplacian regularization methods, which have limited appli-
cability to large networks (25, 26)], label propagation is, in principle,
easily adaptable to the present case. We also compare our approach to
the performance of a k–nearest neighbor classifier by adapting yet an-
other machine learning problem, namely, the optimal active search, of
which our perturbation inference may be seen as the one-step looka-
head case on a graph (27) (see the Supplementary Materials).

Validation on synthetic perturbations
We first test our method by generating synthetic perturbations, simu-
lating sparse observations of the perturbed system, and inferring the
state of the unobserved nodes. To generate the perturbation, we use
two different variants of the susceptible-infected (SI) model (28), wherein
we attempt to perturb each node only once. In the first case, the prob-
ability of propagation c is homogeneous. To generate the perturba-
tion, we select a root nodeR at random, we set it as perturbed, and
we propagate the perturbation to each of its neighbors with prob-
ability c; in turn, each of the perturbed neighbors forwards the per-
turbation to its neighbors. In the second case, we consider an SI model
with a heterogeneous probability of propagation c; specifically, c is a
random number uniformly distributed in the range D = [l, u], where
0 ≤ l ≤ u ≤ 1 (more details are given in the Supplementary Materials).
In both cases, we do not try to perturb a given node more than once if
the first attempt was unsuccessful, so that the perturbation stops when
there are no newly perturbed nodes. Note that the above processes
are arbitrary and completely independent of our inference protocol
based on the exposure model.

After generating the perturbation, we observe the state of a setO of
nodes and hide the state of the others. We then apply our algorithm to
infer the state of all nodes not belonging to O. We evaluate the per-
formance of our approach by calculating the frequency with which,
given a pair of unobserved nodes whose states are perturbed and un-
perturbed, respectively, the algorithm identifies the perturbed node
as being more likely to be perturbed than the unperturbed one. This
is equivalent to computing the so-called area under the receiver operat-
ing characteristic curve (AUC) (29) (see Materials and Methods). We
carry out this protocol for different sizes ofO, by varying the value of c
and of the range width dc = u − l for the homogeneous and heteroge-
neous SI models, respectively.
Massucci et al. Sci. Adv. 2016;2 : e1501638 21 October 2016
To test the accuracy of our method at inferring these synthetic per-
turbations, we repeat the two abovementioned perturbation protocols
on the giant component of four real networks with different aver-
age degrees 〈k〉 and different numbers of nodes N, where perturba-
tion processes, such as the one we are considering, are likely to take
place. These networks are (i) the metabolic network of the bacterium
Escherichia coli (〈k〉 = 2.8, N = 507) (4, 30, 31), where the alteration of
metabolite concentrations can result from the intake of a drug; (ii) the
global air transportation network (〈k〉 = 7.8, N = 3618) (32), on which
service disruption cascades may occur (33); (iii) the Internet in 1999
(〈k〉 = 3.8, N = 3216) (34), where one may want to detect infected
machines in a partially known bot network (35–37); and (iv) an email
communication network (〈k〉 = 9.6, N = 1133) (5), through which sen-
sitive information can spread. All networks are treated as undirected
and unweighted. We perform a similar analysis on model networks
that have realistic features (see the Supplementary Materials).

Figure 2 shows the performance of our method in detecting syn-
thetic perturbations generated by the first version of the SI model, as
compared to the results obtained using shortest paths (18, 19) (that is,
the parsimony principle; see the Supplementary Materials) and label
propagation (23, 24) (see the Supplementary Materials) for homoge-
neous perturbations. The reported values of c are c = 1/(〈k〉 + 0. 05)
and c = 0.5, two limiting values that ensure that perturbation prop-
agates to a finite size of the network but does not reach percolation.
The accuracy of a k–nearest neighbor classifier (27) is also evaluated
in the Supplementary Materials. As expected, the performance of all
inference methods generally decreases when the size of O decreases
because less information is available. Performance also decreases with
perturbation size (controlled by parameter c in the perturbation gen-
eration process) and when the average connectivity of the network
grows because the number of plausible propagation paths also grows
in these cases (see fig. S2 for other topological features).

For the real networks we consider, our method outperforms short-
est paths in all cases without exception (Fig. 2, A to D). Notably, when
less than half of the system is observed, our approach also yields
better accuracy than label propagation, with no exception. This re-
sult is particularly relevant because sparse observations are the most
relevant in practice. For the Internet and the air transportation net-
works, our model outperforms label propagation even in a wider range
of observed nodes.

Despite the fact that accuracy decreases for dense networks (Fig.
2D), we find that, for most cases, the AUC of our method is above
0.7 even for very small observationsO (10% of nodes observed), large
perturbations (c close to 0.5), and relatively dense networks, such as
the air transportation network.

The results for the SI model with heterogeneous probability of
propagation are shown in Fig. 3. Also in this case, we find that our
method outperforms label propagation in detecting the perturbation
in most of the conditions, especially when the observed set is par-
ticularly small ( Oj j = 0.2) and the perturbation is more homoge-
neously spread (dc ≲ 0.5).

Inference of real metabolic perturbations
We now consider the propagation of a real perturbation of human
metabolism caused by the ingestion of a plant extract, a situation akin
to what we described earlier (Fig. 4). In particular, we administered a
plant extract to healthy volunteers and monitored the concentration of
188 metabolites before and after the administration of the extract (see
the Supplementary Materials). We observe that, contrary to what one
3 of 8
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Fig. 2. Accuracy of the node state inference for simulated perturbations with homogeneous perturbation probability c.We plot the AUC (see Materials and Methods)
as a function of the fraction of nodes whose state is observed, for the real networks described in the text. We compare the results of our algorithm on the basis of the
exposure model (filled circles) with those obtained using shortest paths (dashed line) and label propagation (solid line). All points are averages over 100 perturbation
repetitions (error bars are smaller than the markers). Different colors correspond to different values of the probability c of contagion for the perturbation (the larger the
value of c, the larger the perturbation). (A) Metabolic network of the bacterium E. coli (4, 30, 31), (B) reconstruction of the 1999 Internet at the autonomous system level
(34), (C) global air transportation network (32), and (D) email communication network (5). Note that because observed nodes are picked at random, the observation is
unbiased (see fig. S3); nonetheless, the performance of our method is not greatly affected if the observation is biased toward perturbed nodes (see fig. S4).
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Fig. 3. Accuracy of the node state inference for simulated perturbations with heterogeneous perturbation probability. We fix the fraction of observed nodes
and plot the AUC as a function of the range dc allowed for the probability of propagation c, for synthetic perturbations generated with a heterogeneous SI model
(described more in detail in the Supplementary Materials). We show here the accuracy of the exposure model (filled circles) and of label propagation (solid line). Each
point is an average over 100 different perturbations from distinct root nodes R; error bars are smaller than the markers.
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may expect, perturbed metabolites are spread over the whole human
metabolic network [we reconstruct this network from the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) database (30, 31, 38); see
Materials and Methods] rather than localized into one particular meta-
bolic pathway (Fig. 4A).

Because the complete propagation path is unknown in this case, we
analyze whether different approaches are capable of identifying subsets
of perturbed nodes (as we did in Fig. 2). Therefore, to assess the ac-
curacy of each approach, we hide a subset of the observed metabolites
(as if they were actually unobserved) and evaluate the AUC of the in-
ference of the state of these hidden nodes.

Although, as we have mentioned, the perturbed nodes are scattered
all over the network and the fraction of observed nodes is very low (1
to 5% of the whole network), with the exposure model, we achieve an
Massucci et al. Sci. Adv. 2016;2 : e1501638 21 October 2016
AUC of 0.64, significantly above the AUC of both shortest paths and
label propagation approaches, respectively. Note that the performance
of LP is <0.5 for these small observations. This is because, whereas
the perturbation is mostly localized along the central (denser) part
of the network, where there is little information, label propagation
tends to set periferic areas of unobserved nodes to the state of the
closest node, which is typically perturbed. This results in typically
labeling nonpertubed nodes as perturbed, therefore yielding an
AUC below 0.5. Our results are notable considering the crude sim-
plifications of the approach, namely, the assumption that the per-
turbation propagates exclusively through metabolic routes (when
probably there are signaling pathways beyond metabolism) and the
assumption that the network reconstruction is complete and accurate
(39, 40).
0.02 0.04

Fraction observed
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0.55
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Label propagation
Shortest paths
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Fig. 4. Results on human metabolism. (A) The giant connected component of the human metabolic network (30, 31), which we use to infer the real metabolic perturbation,
as explained in Materials and Methods. Each node of the network is a metabolite; nodes are connected if a metabolic reaction processes both of them. For the sake of clarity,
nodes are not shown. Large red circles indicate metabolites that changed concentration after the perturbation (observed perturbed nodes). Large green circles show me-
tabolites whose concentration was not affected by the perturbation (observed unperturbed nodes). The observed nodes are just a minor fraction scattered all around the
underlying network. (B) Upon hiding the state of a fraction of the observed nodes, we used the remaining set to infer the state of all the nodes. The graph shows the AUC (see
Materials and Methods) obtained when using the exposure model (filled circles; error bars indicate 1 SE), shortest paths (dashed line; the shaded area indicates 1 SE), and label
propagation (solid line; the shaded area indicates 1 SE) as a function of the fraction of nodes actually fed to the algorithm.
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DISCUSSION
The identification of perturbed nodes in sparsely observed complex
systems is a central issue in many different fields, ranging from biology
and medicine to the social sciences. Until now, approaches to the prob-
lem in network science had been limited to using the shortest paths
approach, the so-called parsimony principle. In computer science, a few
algorithms (for example, label propagation) were devised to deal with
related problems. However, these algorithms had not been specifically
applied to the problem of inferring perturbations on networks (there-
fore, they had not been compared to a method aimed at completing
this task).

Here, we have demonstrated that a simple probabilistic model, which
we call the exposure model, is appropriate for inferring perturbation
propagation paths given very sparse information in synthetic and real
networks and in synthetic and real perturbations. Our approach sys-
tematically outperforms an inference protocol based on shortest paths.
This is probably because the shortest paths approach disregards any
information provided by observed unperturbed nodes that do not fall
in shortest paths between perturbed ones, whereas the exposure model
allows for information to flow and is, in this sense, global rather than
local. Additionally, the method we propose regularly performs bet-
ter than inferring perturbations via label propagation when less than
half of the system is observed. This situation is arguably expected to be
met in most practical applications of our method. The observed per-
formance gap may be explained, noticing that, for sparse observations,
label propagation is prone to set the state of whole regions to that of
any observed node in the neighborhood, whereas probabilities decay
with distance in the exposure model.

We find that our method is more accurate for the inference of pertur-
bation paths on real-world networks than on their synthetic counterparts
(see the Supplementary Materials), showing that the assumptions be-
hind our method are well suited to address real-world problems. This
fact and the linear scaling of our algorithm with the number of links in
the network make our approach very appealing to deal with real net-
works that contain hundreds of thousands of nodes.

Finally, our method allows us to infer a real metabolic perturbation
on an actual metabolic network. The accuracy of our results is espe-
cially notable if we consider that there are many factors that we cannot
take into account, such as regulatory mechanisms and enzymatic ac-
tivities, not to mention the incompleteness of the metabolic recon-
struction. Our results thus suggest that beyond being able to infer
perturbation paths in a number of contexts, the framework we re-
port can also be used as a tool to guide future hypothesis building and
discovery, by, for instance, aiding in the identification of ramification
points in the perturbation paths.
MATERIALS AND METHODS
Definition of the exposure model
In the exposure model, we assumed that perturbations propagate by
proximity. Thus, we assumed (Eq. 1) that an unobserved node i is
perturbed with probability h if it is exposed to the perturbation, that is,
if at least one of i’s neighbors is perturbed; otherwise, the node is un-
perturbed with probability 1. We represented the state of the neigh-
bors of i as gi, which can be expressed in terms of the states {sj} of each
one of the neighbors of i as follows

gi ¼ 1� ∏j∈∂ið1� sjÞ ð7Þ
Massucci et al. Sci. Adv. 2016;2 : e1501638 21 October 2016
where ∂i denotes the neighborhood of i. Then, for a fixed value of
h, we can write the probability of node i being in state sj given gi as
follows

P
�
si

�� gi;sO� ¼ hsið1� hÞ1�si if gi ¼ 1
1� si if gi ¼ 0

�
ð8Þ

Belief propagation equations
The probability for node i to be unperturbed for a fixed value of h (for
now, we drop the reference to h as an argument for the sake of clarity;
we focus on this parameter in the next section) is obtained by relating
the posterior marginal of i to that of its neighbors

Pðsi sOÞ ¼ ∑s /i
Pðs sOÞ ¼ ∑s∂i Pðsi gi;sOÞ Pðs∂i s

OÞ���������� ð9Þ

where s\i is the set of unobserved nodes except i, s∂i are the
neighbors of i, and Pðsi gi;s

OÞ ≡ Pðsi s∂i;sOÞ���� . We then approxi-
mated the joint posteriorPðs∂i sOÞ�� asPðiÞðs∂i sOÞ�� by calculating it in
the absence of node i. Furthermore, we assumed that the system is
tree-like, such that, without i, this joint posterior factorizes, that is,
PðiÞðs∂i sOÞ ¼�� ∏k∈∂i PðiÞðsk sOÞ�� . By doing so, one can write
Pðsi sOÞ�� , as in Eq. 3. The self-consistent equations for the marginals
PðiÞðsk sOÞ�� are derived by removing node i from the system

PðiÞðsk
��sOÞ ¼ ∑s∂k /i

P
�
sk
��gðiÞk ;sO�∏j∈∂k /i P

ðkÞðsj sOÞ�� ð10Þ

where, indepenendent of the state of i, gðiÞk is equal to 0 if none of the
remaining neighbors of k is perturbed or is equal to 1 if at least one
of them is perturbed. The parameterization in terms of the beliefs
yi and messages yðkÞ

i is obtained by noting that si is a binary variable
and PðkÞðsi ¼ 0 sOÞj fully specifies each marginal. Expressing Pðsi ¼
0 gi;s

OÞ�� according to Eq. 8 and plugging this expression into Eq. 3,
we obtain the expressions for yðkÞ

i and yi given in Eqs. 4 and 5. The
resulting set of equations may be solved iteratively.

Expectation maximization and inference algorithm
To compute the probability marginals for each si, one would need to in-
tegrate over all values of the unobserved parameter h that controls how
efficiently the perturbation propagates (Eq. 2). Rather than exactly
evaluating the integral, we used a saddle point approximation by com-
puting the h⋆ value that maximizes the posterior Pðh sOÞ�� . To do so,
we maximized the log-weight log∑sPðh sOÞ�� (note that because of the
dependence on h, the trace is not normalized). In particular, we have

∂
∂h

log∑sP
�
s; h

�� sO� ¼ ∂
∂h

1
N
∑i log∑si P

�
si; h

��sO�

¼ 1
NZ
∑i∑si;s∂i gi

s
h
� gi

1� s
1� h

� �
P
�
si; h; gi

��sO�

¼ 1
N
∑i

〈gisi〉
h

� 〈gið1� siÞ〉
1� h

� � ð11Þ

where Z ¼ ∑si Pðsi; h sOÞ�� and, hence, 〈…〉 is a properly normalized
average. To differentiate with respect to h, we used here the definitions
of P(s, h) in Eq. 8, and we noticed that because \PðsiÞ ¼ ∑s i PðsÞ,
one has∑si PðsiÞ ¼ ∑s PðsÞ. We thus performed the trick of carrying
out this normalization N times [over each node i,

�
∑s PðsÞ

�N ] and
normalized over N accordingly.
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Equating Eq. 11 to zero yields the h⋆ value that maximizes the weight

h⋆ ¼ N 11

N 01 þN 11
ð12Þ

whereN 11 ≡ 1=N ∑i 〈gisi〉 andN 01 ≡ 1=N ∑i 〈gið1� siÞ〉 are the ex-
pected number of perturbed and unperturbed nodes with perturbed
neighbors, respectively. These quantities could, in principle, be obtained
from the node states si. However, within our belief propagation ap-
proach, we only have the estimates of the marginals {yi} and fyðkÞ

i g.
Therefore, we wrote h⋆ in terms of these marginals, as shown in Eq. 6,
and numerically solved Eqs. 4 to 6 using the algorithm outlined in the
Supplementary Materials.

Note that h⋆ is an effective parameter that does not necessarily bear
resemblance to any of the real parameters of the perturbation. However,
for the SI type of perturbations we generated on the real networks we
studied (shown in Fig. 2), we found that the values of h⋆ and the prop-
agation probability c are very close (see fig. S5).

Algorithm accuracy
Given the probability of each unobserved node being perturbed, we as-
sessed the performance of our approach by computing the AUC (29). In
practice, we ranked all unobserved nodes from smallest to largest yi and
computed the frequency with which a true perturbed node is ranked
above a true unperturbed node (following the usual convention, cases
in which a perturbed and an unperturbed node are assigned the same
yi are considered half correct). The AUC is a real number ranging from
0 to 1—the closer to 1, the more true perturbed nodes are ranked above
true unperturbed ones. Conversely, an AUC value of 0.5 indicates pure
randomness in performing the ranking, in which case the inference
protocol is no better than a coin toss.

Human metabolic perturbation
A metabolomic analysis of human blood plasma (see Supplementary
Materials) was carried out on healthy volunteers to obtain a list of ex-
perimentally perturbed and unperturbed metabolites after ingestion
of a plant extract.

We used the observed perturbed and unperturbed metabolites to
infer the state of all remaining metabolites included in the reconstruc-
tion of human metabolism obtained from the KEGG database (30, 31).
For the reconstruction, we considered only links between main reac-
tant pairs in each reaction (4, 30, 31). This reconstruction features
1422 metabolites connected by 1760 reactions. We considered this
reconstruction to be the underlying network on which perturbation
propagates. Note that 85 of the 188 metabolites identified by the ex-
perimental analysis were not present in the reconstruction; thus, our
observationO was reduced to a pool of only 103 metabolites (19 per-
tubed and 84 unperturbed).

To evaluate the performance of the exposure model in detecting the
perturbation, we hid a fraction of the setO and measured the AUC for
the inferred nodes in the hidden subset ofO. Figure 4B shows how the
exposure algorithm performs better than the shortest path algorithm,
which is especially notable, taking into account that observed nodes are
scattered throughout the network (see Fig. 4A). Note that the AUC values
we obtained seemed to be lower than those reported for synthetic pertur-
bations; this is due to the fact that the observation amounts to a mere 7%
of the total number of metabolites and would therefore correspond to
very low values in the x axis of the plots in Fig. 2, in which AUC values
are comparable to the ones we report in Fig. 4.
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