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A baseline metabolomic signature is associated
with immunological CD4R T-cell recovery
after 36 months of antiretroviral therapy

in HIV-infected patients
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Yolanda M. Pachecoc,M, Joaquim Perairea, Consuelo Viladésa,
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Pere Domingog,y and Francesc Vidala,y

Objectives: Poor immunological recovery in treated HIV-infected patients is associ-
ated with greater morbidity and mortality. To date, predictive biomarkers of this
incomplete immune reconstitution have not been established. We aimed to identify
a baseline metabolomic signature associated with a poor immunological recovery after
antiretroviral therapy (ART) to envisage the underlying mechanistic pathways that
influence the treatment response.

Design: This was a multicentre, prospective cohort study in ART-naive and a pre-ART
low nadir (<200 cells/ml) HIV-infected patients (n¼64).

Methods: We obtained clinical data and metabolomic profiles for each individual, in
which low molecular weight metabolites, lipids and lipoproteins (including particle
concentrations and sizes) were measured by NMR spectroscopy. Immunological
recovery was defined as reaching CD4þ T-cell count at least 250 cells/ml after 36
months of virologically successful ART. We used univariate comparisons, Random
Forest test and receiver-operating characteristic curves to identify and evaluate the
predictive factors of immunological recovery after treatment.

Results: HIV-infected patients with a baseline metabolic pattern characterized by high
levels of large high density lipoprotein (HDL) particles, HDL cholesterol and larger sizes
of low density lipoprotein particles had a better immunological recovery after treat-
ment. Conversely, patients with high ratios of non-HDL lipoprotein particles did not
experience this full recovery. Medium very-low-density lipoprotein particles and
glucose increased the classification power of the multivariate model despite not
showing any significant differences between the two groups.
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Conclusion: InHIV-infected patients, a baseline healthier metabolomic profile is related
to a better response toARTwhere the lipoprotein profile,mainly largeHDLparticles,may
play a key role. Copyright � 2018 The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction

Since the introduction of combined antiretroviral therapy
(ART), the fatal course of HIV infection has been
prevented. ART decreases viral replication, increases
CD4þ T-cell count and consequently, improves the
immune system function [1]. On the contrary, 25–30% of
HIV-infected patients still fail to restore their CD4þ T-
cell number despite optimal treatment and sustained
virological suppression [2]. This group of patients is
referred to as ‘immunodiscordants’ or ‘immunological
nonresponders’ (INR) and are at a higher risk of clinical
progression and death [3].

Traditional factors associated with poor immune recovery
are delayed diagnosis, advanced age, lower initial CD4þ

cell count, injection drug use transmission, coinfection
with hepatitis C virus (HCV), thymic dysfunction,
immune activation and genetic factors among others [4–
6]. However, none of them provides a full explanation of
the lack of total immune reconstitution. In addition, no
predictive biomarkers of this immunological recovery in
HIV-infected patients are currently available.

In the current study, we used a comprehensive
metabolomic approach to plasma samples from HIV-
infected individuals before starting ARTwith the aim of
identifying a ‘metabolomic signature’ that might predict
immunological recovery measured after 36 months.

Metabolomics techniques such asNMRhave emerged as a
powerful method for discovering new biomarkers for
disease diagnosis, prognosis and risk prediction. One of its
most important advantages is that it can be used to identify
disease-related patterns through accurate detection of
numerous metabolic changes in biological samples [7,8].

Methods

Study design
A multicentre, prospective cohort study comprising all
adult HIV-1 infected individuals who started their first
ART between 2009 and 2011 and were followed-up at
the HIV outpatient clinics of the participating hospitals:
Hospital Joan XXIII (Tarragona), Hospital de la Santa
Creu i Sant Pau (Barcelona) and Hospital Virgen del

Rocı́o (Sevilla). Of the initial cohort (n¼ 491), 379
maintained first ART during 36 months and achieved
virological suppression after 6 months of starting ART;
252 were excluded because they had pre-ART CD4þ

T-cell count more than 200 cells/ml. Therefore, 98
participants fulfilled the following inclusion criteria:
more than 18 years, presence of HIV-1 infection and a
pre-ART low nadir CD4þ T-cell count (<200 cells/ml).
Exclusion criteria were HCV coinfection, the presence of
active opportunistic infections, current inflammatory
diseases or conditions, consumption of drugs with known
metabolic effects (such as lipid-lowering agents), type 2
diabetes mellitus, dyslipidemia, acute or chronic renal
failure, pregnancy, history of vaccination during the
previous year, plasma C-reactive protein more than 1mg/
dl and adherence to ART lower than 90%, assessed
through a standardized questionnaire [9]. From those
patients who fulfilled the inclusion criteria, we handled a
subset of 84 whose stored plasma samples, drawn when
enrolled, were available. In a final step, we excluded 20
samples due to their poor spectral quality, caused by
machine acquisition problems (bad water suppression and
shimming inconsistencies), which resulted in a final
cohort of 64 patients. Patients were categorized into two
groups based on their CD4þ T-cell count at 36 months
after ART: immunological responders group if their
CD4þ T-cell count was equal or greater than 250 cells/ml
or INR group if they did not reach this threshold [3,4].
Figure 1 provides a flow chart with patient selection and
enrolment. The ethics committee from each recruiting
centre reviewed and approved the study protocol, and all
participants provided their written informed consent.

Data collection
Relevant clinical and demographic data were extracted
from an electronic predefined database specially defined
for this study. Fasting venous blood samples were
collected in ethylenediaminetetraacetic acid (EDTA)
tubes and centrifuged immediately for 15min at 4 8C
and 1500� g. Plasma samples were then stored at�80 8C
until further analysis at the BioBanc IISPV following
standard operation procedures and with appropriate
approval of the Ethical and Scientific Committees.

Procedures
In addition to NMR spectroscopy using the Liposcale test
(a total set of 26 variables), we measured lipid
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concentrations (i.e. triglycerides and cholesterol), sizes and
particle numbers for very-low-density lipoprotein (VLDL)
(38.6–81.9 nm), low density lipoprotein (LDL) (18.9–
26.5 nm) and high density lipoprotein (HDL) classes (7.8–
11.5 nm), as well as the particle numbers of nine subclasses,
namely large, medium and small VLDL, LDL and HDL of
frozen EDTA plasma specimens [10]. This test was based
on two-dimensional spectra from diffusion-orderedNMR
spectroscopy (DOSY) experiments. Briefly, cholesterol
and triglyceride concentrations of the main lipoprotein
fractions were predicted using partial least squares
regression models. Then, the methyl proton resonances
of the lipids in lipoprotein particles were decomposed into
nine Lorentzian functions representing nine lipoprotein
subclasses and the mean particle size of every main fraction
(VLDL, LDL and HDL) was derived by averaging the

NMRarea of each fraction by its associated size. Finally, we
calculated the particle numbers of each lipoprotein main
fractionbydividing the lipid volumeby theparticlevolume
of a given class and we used the relative areas of the
lipoprotein components used to decompose the NMR
spectra to derive the particle numbers of the nine
lipoprotein subclasses.

A target set of eleven low molecular weight metabolites
(LMWMs) was identified and quantified by NMR
spectroscopy in the 1D Carr–Purcell–Meiboom–Gill
sequence (CPMG) spectra using Dolphin [11,12]. Each
metabolite was identified by checking for all its resonances
along the spectra, and then quantified using line-shape
fitting methods on one of its signals. The quantification
units corresponding to the area under the curve (AUC) of
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Previously untreated HIV-infected 
patients starting their first ART 

(n = 491)  

Patients that fulfilled inclusion 

criteria (n = 98) 

Plasma available at baseline  

(n = 84) 

Final cohort to perform a reliable 
metabolite profiling  (n = 64)

Immunological 
Non-responders 

INR (n = 17)

Baseline CD4+ counts  
>200 cells/ L (n = 252) 

Others causes of exclusion 
(n = 29) 

Maintain first ART at 36 months 

(n = 379)  

Change or left ART before 
36 months (n = 112) 

Low spectral quality  
(n = 20) 

Immunological 
Responders 

IR (n = 47)

Fig. 1. Flowchart of the patients included in the study. Other causes of exclusion include hepatitis C virus coinfection, the
presence of active opportunistic infections, current inflammatory diseases or conditions, consumption of drugs with known
metabolic effects, type 2 diabetes mellitus, acute or chronic renal failure, pregnancy, history of vaccination during the previous
year and plasma C-reactive protein more than 1mg/dl.



each metabolite were normalized by the mean of each of
them throughout all samples, the final units being a
reflection of the fold change of each sample over the mean
of the dataset. In addition to this set, we incorporated the
measure of a peak related with glycoprotein concentration
in blood [13] and the quantification of two EDTA peaks
that have been reported previously to be indicators of
calcium and magnesium levels in blood [14].

All 1HNMR spectra were recorded at 310K on a Bruker
Avance III 600 spectrometer (Bruker, GmbH, Silber-
streifen, Rheinstetten, Germany) operating at a proton
frequency of 600.20MHz and using a 5-mm triple
resonance (1H, 13C, 31P) gradient cryoprobe (CPTCI).

Detailed information on the technical details of the
NMR spectra pulse acquisition programs (CPMG and
DOSY) and sample preparation can be found in
Supplemental Digital Content (Supplemental Digital
Content S1, http://links.lww.com/QAD/B209).

Statistical analyses
All datawere tested for normality using Shapiro–Wilk test.
A descriptive analysis of patients’ characteristicswas carried
out using frequency tables for categorical variables and
median and interquartile ranges for continuous variables.
Differences in sociodemographic and clinical character-
istics between INR and immunological responder groups
were assessed through the nonparametricMann–Whitney
test for continuous variables and the Chi-squared test for
independence for categorical variables.

To find metabolic differences between the two groups, we
compared their metabolic patterns at baseline using
different methods. Univariate comparisons were made

through the nonparametric Mann–Whitney U test. P

value less than 0.05were considered statistically significant.
In addition, the fold change of each variable was calculated
as A/B, where A was the variable median in the
immunological responders group and B was the variable
median in the INRs group.Multivariate statistics were also
used to improve the refining and distilling of all the
metabolic baseline data and for pattern recognition
purposes. In this sense, Random Forest analysis was
applied, which is a supervised classification technique
based on an ensemble of decision trees and provides an
unbiased selection of variables that make the largest
contributions to the classification. For this analysis, apart
from the metabolic variables, the variables of age and
CD4þ T-cell count at baseline were included to evaluate
their importance as predictors in the classification between
the two groups. Finally, logistic regression analysis and
receiver-operating characteristic (ROC) curves were
generated, using as input those metabolites considered
important discriminators of CD4þ T-cell recovery,
obtained from the Mann–Whitney U test (P values
<0.05) and the Random Forest analysis (largest contri-
butions in the classification model) and adjusted for
confounders (age and baseline CD4þ T-cell count). The
statistical software used included the program ‘R’ (http://
cran.r-project.org) and the SPSS 21.0 package (IBM,
Madrid, Spain).

Results

After 36 months, 17 of 64 individuals (27%) failed to
arrive at 250 CD4þ T-cell count/ml, whereas 47 of 64
(73%) reached this threshold. Table 1 contains baseline
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Table 1. Baseline clinical details.

Study cohort, n¼64

Variable INR, n¼17 IR, n¼47 P value

Age (years) 44 (39–55) 38 (34–50) 0.075
Male (%) 76.5 78.7 1.000
BMI (kg/m2) 22.9 (21.5–23.4) 23 (20.8–24.2) 0.967
AIDS (%) 100.0 85.1 0.175
HIV-1 risk factor (%)
Injecting drug user 0.0 8.5 0.566
Homosexual 47.1 44.7 1.000
Heterosexual 41.2 42.6 1.000
Other/unknown 11.8 4.3 0.285

CD4þ T-cell count (cells/ml)
Baseline 60 (28–122) 92 (48–166) 0.068
At 36 months after ART 188 (117–219) 378 (323–469) <0.001

Plasma viral load (log copies/ml)
Baseline 5.5 (4.8–5.7) 5.4 (4.8–5.7) 0.915
At 36 months after ART 1.3 (1.3–1.7) 1.3 (1.3–1.6) 0.355

ART received (%)
2NRTiþNNRTi 47.1 42.6 0.782
2NRTiþPI 52.9 57.4 0.782

Quantitative variables are expressed as median (interquartile range). Qualitative variables are expressed as percentages. AIDS was diagnosed
according to the CDC1993 criteria. ART, antiretroviral treatment; INR, immunological nonresponders; IR, immunological responders; NRTi,
nucleoside reverse transcriptase inhibitors; NNRTi, non-nucleoside reverse transcriptase inhibitors; PI, protease inhibitors.



clinical details of the two subsets analysed. The differences
in age and baseline CD4þ T-cell count between groups,
despite not being statistically significant, were in
agreement with the literature [4,5], suggesting that older
people with a low nadir CD4þ T-cell count are associated
with a lower recovery capacity.

Figure 2a shows a heat map of the fold change of the 40
metabolomic variables used in this study. According to
the fold change analysis, all HDL particles, including
HDL cholesterol and HDL triglycerides, were increased
in the immunological responders group at baseline point,
whereas all VLDL particles, including VLDL cholesterol
and VLDL triglycerides, and almost all LDL particles,
including LDL cholesterol and LDL triglycerides, were
higher in the INR group. This particle balance makes
‘LDL particles/HDL particles’ and ‘Total particles/HDL
particles’ the most increased variables in the INR group at
the baseline point. The size of all kinds of particles (HDL,
LDL and VLDL) was higher in the immunological
responders group. From the LMWM balance, the

immunological responders group presented higher
concentration of most of the amino acids (histidine,
glutamine, valine, creatine, tyrosine and leucine), whereas
the INR group showed greater concentration of a few
(alanine and isoleucine). All acids (lactate, formate and
acetate), the two EDTA peaks, the glycoprotein peak and
glucose were lower in the immunological responders
group. Figure 2b presents the notched box-plots of the
five metabolomic variables significantly altered at baseline
point between groups. Large HDL particles (P¼ 0.002),
LDL particle size (P¼ 0.029) and HDL cholesterol
(P¼ 0.045) were all significantly higher in immunologi-
cal responders group, whereas ratios of total particles/
HDL particles (P¼ 0.029) and LDL particles/HDL
particles (P¼ 0.049) were higher in INR group. The
univariate results therefore suggest that high levels of
HDL particles (especially the subclass ‘large’) including
HDL cholesterol and larger LDL particle sizes favoured
immunological recovery. On the other hand, high ratios
of lipid particles, where HDL particles were the
denominator, did not.
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Fig. 2. Univariate analysis of measured metabolomic variables at baseline. (a) Fold-change heat map of the relative plasma
concentrations of measured metabolites at baseline. Positive folding (green) means higher concentrations in the responders group,
whereas negative folding (red)means the opposite. The asterisk highlights those variableswith a significant P value able to distinguish
responders and nonresponders HIV-patients. (b) Notched box-plots of statistically significant altered metabolites, where the notch
shows the 95% confidence interval for the median, given by m�1.58� IQR/Hn. IQR, interquartile range; out-of-bag (OB) error.



Random Forest analysis revealed large HDL particles as
the primary differentiator in a ranked list of metabolites in
order of their importance in the classification scheme
(Fig. 3). It is important to highlight that large HDL
particles were also the most significant variable in the
univariate test, which suggested that they are a powerful
pre-ART indicator of CD4þ T-cell recovery over time.
The next three variables in order of importance were
medium VLDL particles, glucose and all non-HDL
particles, which despite not being significantly different in
the univariate analysis had strong classification power in
the multivariate model, and thus were selected for the
logistic regression and ROC analyses.

Finally, we evaluated the potential clinical usefulness of
our highlighted metabolomic candidates. Accordingly,
the ROC curve revealed the diagnostic accuracy of this
metabolomic signature, obtained in the Mann–Whitney
and theRandom Forest analyses. Our results showed that
the AUC of each analyte was less than 0.8 (Supplemental
Digital Content S2, http://links.lww.com/QAD/
B209). For this reason, we used a multivariate logistic
regression model that combined each potential bio-
marker mentioned before. This model displayed an AUC
value of 0.901 and correctly classified 84.4% of patients
with 80% of sensitivity and 82.4% specificity (Fig. 4,
Model A). Moreover, given that age and baseline CD4þ

T-cell count are considered confounders, we did an
adjusted analysis. In this case, the AUC value increased by

only 0.006, specificity increased by 5.8% and it did not
improve the percentage of classification (84.4%) (Fig. 4,
Model B).

Discussion

Our findings reveal that there are metabolomic differ-
ences between pre-ART HIV-infected individuals with a
low nadir of CD4þ T-cell count at baseline and that these
differences are associated with the future response after 36
months of treatment. In general, the immunological
responders group presents a healthier metabolomic
profile than the INR group. Even considering that only
five metabolomic indicators significantly altered in the
univariate test, the fold change of all kinds of HDL
particles and the size of all the lipoprotein classes were
higher in the immunological responders group, whereas
all kinds of VLDL and most LDL particles were higher in
the INR group. Moreover, the Random Forest test
corroborated that large HDL particles and LDL particle
size are key metabolomic features that differentiate
immunological responders and INR. This test also
showed that medium VLDL and non-HDL particles,
despite not being significantly different between groups,
contribute to that. Putting all of these factors together, we
report a multivariate model with all of these metabolomic
variables that can accurately predict the immunological
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Fig. 3. Variable importance plot of the Random Forest
analysis resulting from a large number ofmodels built around
immunological response to antiretroviral therapy. The vari-
ables are ordered top-to-bottom as most-to-least important in
classifying between responders and nonresponders. The
ranked list of variables tells us the importance of each variable
in classifying data (OB error¼24%). The figure shows the top
20 variables in importance of classification from a total of 42,
including age and CD4þ T-cell count, and only the top four
(bold) were considered for the receiver-operating character-
istic curve analysis.

Fig. 4. Using receiver-operating characteristic curves, we
assessed multimetabolite biomarker models that could accu-
rately predict a discordant response to HIV-infection treat-
ment.Model A inputs: large HDL particles, LDL particle size,
total particles/HDL particles, LDL particles/HDL particles,
glucose, medium VLDL particles and non-HDL particles.
For Model B, we used the same metabolomic inputs but
the model was adjusted for age and baseline CD4þ T-cell
count.



recovery in HIV-patients with a low nadir CD4þ T-cell
count after 36 months of ART.

Incomplete immunological recovery during ART is a
relevant clinical problem; indeed, in our multicentre,
prospective cohort study, 24% of the 64 treated HIV-
infected patients who had viral suppression were
considered INR using a restrictive definition (CD4þ

T-cell count <250 cells/ml after 36 months of successful
treatment). Several studies have tried to elucidate the
impact of HIV-induced immunological changes on
metabolism [15,16], and others focused on finding
metabolomic differences between HIV-infected patients
and healthy controls [17,18]. However, only a small
number of studies have investigated baseline indicators of
CD4þT-cell recovery before ART. In those studies, older
age, a lower nadir CD4þ T-cell count, higher immune
activation, viral load and HCV coinfection have all been
proposed as the most relevant predictive factors for a
immunodiscordant response even though individually
they were not able to predict treatment response, so their
combined effect remains elusive [19,20]. The current
study has included the variables of age and CD4þ T-cell
count at baseline in the statistical analyses but none of
them has presented a significant P value in the univariate
comparisons (Table 1) nor showed importance of
classification in the Random Forest model (Fig. 3).
However, their inclusion in the logistic model slightly
improved the AUC and the specificity in the ROC
analysis (Fig. 4). Therefore, there is still the need to
identify specific predictive factors for an early recognition
and classification of immunological discordant individuals
to propose the appropriate therapy to each situation.

Some studies have characterized the metabolomic profile
of HIV/AIDS biofluids using metabolomic techniques
such as protonNMR spectroscopy andmass spectrometry
and demonstrated the ability to detect metabolites
affected by infection and treatment [7]. However, none
of them have been carried out using metabolism as the
target for immunological recovery biomarker identifica-
tion. For this reason, the current study could be
considered novel research work aimed at identifying a
useful metabolomic signature for the early prediction of
immune response after ART in HIV-infected patients
with a low nadir CD4þ T-cell count.

Most of the metabolomic findings obtained in the current
study rely directly on the number of HDL particles. The
role of HDL in immunity has been studied fairly
extensively and several beneficial effects have been
attributed to this lipoprotein class [21]. Notably,
proteomics studies have revealed that HDL components
exert regulatory functions on the immune system [21].
Accordingly, it has been accepted that HDL has an
important role in host defence, contributing to both
innate and adaptive immunity. As an example, apolipro-
tein A-I, the principal protein of HDL, impairs HIV

fusion, thus preventing HIV cell penetration [22].
Moreover, this protein positively correlates with CD4þ

T-cell count [23]. However, the most described function
of HDL lipoproteins is its antiatherogenic role due to its
ability to transport excess cellular cholesterol to the liver
for excretion. In this sense, a number of studies have
described the association between HIV infection and an
increased risk of cardiovascular disease (CVD) [24,25].
Adverse lipid changes during infection could be a possible
explanation for this association and, accordingly, the study
of baseline lipoprotein profile could elucidate some points
of this clinical situation. It has been elucidated that HDL-
C and total HDL particles concentration, especially large
HDL, are significantly lower among HIV-infected
patients [23,26]. On the contrary, smaller LDL particles
(the most atherogenic ones) are higher in patients with
chronic inflammatory diseases such as HIV have the
opposite behaviour higher [26,27]. All together contrib-
utes to an atherogenic profile among HIV patients and,
consequently, to a higher risk for the development of
CVD. Hence, all this previous findings are in accordance
with our results since HDL particle concentration
(especially the subclass ‘large’) and larger LDL sizes were
increased further in the immunological responders
metabolism at baseline; however, we also suggest a
relationship between a lower atherogenic lipid profile and
the prediction of immunological recovery in HIV-
infected patients.

During inflammation and infection, serum triglycerides
and VLDL levels increase, which in turn has an effect on
other lipoproteins, such as an increase in the production
of small, dense LDL and a decrease in the production of
HDL [28]. This metabolomic mechanism completely
agrees with our results, showing a positive correlation
between the medium VLDL particles and the ratios of
‘total/HDL particles’ and ‘LDL/HDL particles’, high
values of which are an indicator of nonrecovery.
Moreover, a meaningful negative link between ‘LDL/
HDL particles’ ratios and CD4þ T-cell recovery has
already been reported in a previous study, in which total
particles (including VLDL) were not measured [20].
Several beneficial immunological effects of HDL particles
as well as damaging effects of LDL and VLDL particles
have already been reported. However, no predictive role
has been attributed to them so far.

Glucose metabolism plays a fundamental role in
supporting the growth, proliferation and effector func-
tions of T cells [29,30]. Several studies have demonstrated
that HIV-infected patients have an increased glycolytic
metabolism in CD4þ T-cells because activated immune
cells consume glucose at an extremely high rate.
Consequently, high plasma levels of this metabolite are
associated with a low CD4þ T-cell count [31,32].
Therefore, glucose could be a confounder to immuno-
logical recovery due to its correlation with CD4þ T-
cell count.
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In summary, our experimental data establishes that HIV-
infected patients with a baseline metabolomic pattern
characterized by high levels of HDL particles (especially
the subclass ‘large’), including HDL cholesterol and larger
sizes of LDL particles, will have a better immunological
recovery after treatment. On the other hand, patients
with high ratios of non-HDL lipoprotein particles, high
levels of VLDL particles (especially the subclass ‘medium’)
and high concentrations of glucose will not fully recover
CD4þ T-cells.

The study has limitations. Some of them come from the
NMR technique itself. On one hand, the quantification
of LMWMs is very challenging in nonfiltered plasma
samples because of its high content of lipids and proteins.
Even with the CPMG filter, residual signals of such high
molecular weight molecules keep disturbing the identifi-
cation and quantification of LMWMs. Moreover, due to
the electronic filter applied to the CPMG samples, its
quantification cannot be directly converted to absolute
units, remaining quantified with arbitrary units. So,
ultrafiltration of samples should be taken into account to
enlarge and improve the profiling of LMWMs in further
studies. The final list of 11 metabolites was the result of
selecting only those metabolites which signals were
‘clean’ enough to be quantifiable in a reliable way. On the
other hand, wrong spectral acquisitions produced by
alterations in the magnetic field and bad water suppres-
sions reduced the number of available samples to perform
the study. Actually, the main limitation is the small sample
size of our study population, especially due to the high
restrictive inclusion criteria that we used. Therefore, the
statistical power for establishing a predictive metabolomic
pattern of immunological recovery was limited and also it
could be other aspects that might affect immunological
response to ART that were not assessed in this study. For
this reason, further studies with larger cohorts are needed
to confirm the strength of the proposed metabolomic
signature as a possible diagnostic panel for immunological
recovery prediction.

In conclusion, we have identified an association between
the baseline metabolomic signature of HIV-infected
patients with low nadir and their immunological response
after ART treatment. This metabolomic signature,
among other factors, could help to elucidate the
underlying mechanistic pathways responsible for antire-
troviral treatment response. Accordingly, this study
provides new insights into HIV pathogenesis and suggests
new clues for the development of novel diagnostic,
prognostic and therapeutic strategies for HIV.
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S1. NMR Measurements 

 

For NMR measurements, 430 μl of plasma was transferred to 5-mm NMR tubes. A double tube system 

was used. The external reference tube (o.d. 2 mm, supported by a Teflon adapter) containing the reference 

substance (9.9 mmol/l sodium 3-trimethylsilyl[2,2,3,3-d4] propionate (TSP), 0.47 mmol/l MnSO4 in 

99.9% D2O) was placed coaxially into the NMR sample tube (o.d. 5 mm). This double tube system was 

kept at 4ºC in the sample changer until the moment of analysis. 

All 1H NMR spectra were recorded at 310 K on a Bruker Avance III 600 spectrometer operating at a 

proton frequency of 600.20 MHz and using a 5 mm CPTCI triple resonance (1H, 13C, 31P) gradient 

cryoprobe.  

1H spectra of low molecular weight metabolites (LMWMs) were performed using the Carr-Purcell-

Meiboom-Gill sequence (CPMG spin-spin T2 relaxation filter) ( RD–90º–[–180º–]n–ACQ FID), with a 

0.4 ms of echo time ( to allow elimination of J modulation and 500 loops (n) for a  total time filter of 

410 ms, that attenuate the signals of macromolecules to a residual level. Pre-saturation of the water signal 

was applied during the recycling delay (RD) period of 5s. The spectral width was 20 ppm, and a total of 

64 transients were collected during acquisition time (ACQ) of 2.73 s into 64 k data points for each CPMG 

spectrum. The total CPMG experiment time was 9 min per sample. 

1H spectra of macromolecules were measured using a diffusion-edited pulse sequence with bipolar 

gradients and the longitudinal eddy-current delay (LED) scheme with two spoil gradients (ledbpgp2s1d 

Bruker® pulse RD-90º-G1-180º-(-G1)-90º-Gs-D-90º-G1-180º-(-G1)-90º-Gs-τ-90º-acquire FID). The 

relaxation delay (RD) was set to 2 s, and the FIDs were collected into 64K, complex data points. 64 scans 

were acquired for each sample with a gradient pulse strength (G1) of 3.23 Gauss per cm and an eddy 

current delay (τ) of 5 ms. A diffusion time of 116 ms and bipolar sine-shaped gradient pulses of length 

2.6 ms were applied to obtain the lipoprotein profile without the low-molecular weight metabolites 

signals. The total diffusion experiment time was 4.5 min per sample. 

The acquired NMR spectra were phased, baseline-corrected, and referenced to the chemical shift of the α-

glucose anomeric proton doublet taken at 5.233 ppms, as proposed by Pearce et al., except for the 

diffusion-edited spectra, in which the spectral reference (SR) offset value from a referenced 1H co-

acquisition on the same sample was used (in diffusion-edited spectra the α-glucose signal is attenuated 

and cannot be used as a reference). Additionally, an electronic reference signal (ERETIC) was introduced 

for quantification purposes. 



S2. Receiver operator characteristic curves of each selected analyte. 


