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Abstract 

Ethanol, due to its high octane rating of 108, is often added as adulterant to premium 91 gasoline 

fuels to boost up their octane ratings to 96 or more but it does not provide the same power to 

engine as that of super-premium 96 gasoline fuels.  In this study, a sensitive near infrared 

spectroscopy (NIRS) coupled with chemometrics was proposed for analysis of ethanol content in 

Premium 91 gasoline fuels. Standard samples of Premium 91 octane gasoline were collected 

from Oman’s national refining and Petrochemicals Company commonly known as ORPIC. The 

Premium 91 samples were then intentionally spiked with ethanol at various levels.  The near-

infrared spectroscopy was employed in the absorption mode to obtain the spectra of all samples 

scanning from 700 to 2500 nm. Then, partial least-squares (PLS) regression, partial least-squares 

discriminant analysis (PLS-DA) and principal component analysis (PCA), and were applied to 

model and interpret the near-infrared spectra.  A PLS-DA model was developed to discriminate 

between the pristine gasoline samples and those intentionally mixed with ethanol, with excellent 

results (R
2
 = 98% and RMSE = 0.049) by random cross validation. A PLS regression model was 

established to determine the ethanol content in Premium 91 gasoline samples, with values of R
2
 

= 99% and RMSECV = 1.88 and R
2
 = 99% and RMSEP = 1.58 for cross-validation and test-set 

validation results, respectively. This newly developed method, is simple, rapid, and can quantify 

less than 2 % of ethanol adulteration in premium 91 gasolines. 
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1. Introduction 

Fossil fuel plays a major role in today’s world economy as it is the main energy source of most 

of the vehicles currently in use
1
.  Nowadays, fossil fuel reserves are being depleted due to over 

exploitation and high demand in many developing countries as a result of the improving living 

standards
2
. The increasing demand and the heavy taxation imposed by many governments 

worldwide, due to environmental concerns, has skyrocketed the prices of petrol derivatives. As a 

consequence of this situation, blending of gasoline and other fuels has become a common 

practice in many places where the prices of adulterants is much lower as compared to those of 

pure fuels
1,2

. However, excessive adulteration of gasoline and diesel fuels for financial gains has 

led to serious environmental and health problems
3
. Adulterants are selected based on economic 

benefits, ease of blending, availability and physicochemical similarities to the fuel
4
.  Kerosene, 

industrial solvents such as paint thinner and recycled lubricants are common adulterants in fuels 

due to the lower taxes imposed on these adulterants as compared to the taxation on gasoline
5,6,7,8

.  

 

Ethanol has also been added to the list of adulterants found in fuels because of its physico-

chemical properties. Ethanol, which is a renewable fuel, is economically viable and ecologically 

safe and it is a recommended additive for fuel as it increases the combustion efficiency of 

gasoline and reduces air pollution. However, a high ethanol percentage in gasoline may result in 

corrosion of the metallic components of the fuel system, variation in the fuel vapor pressure and 

in the amount of air needed for efficient combustion, which ultimately leads to low engine power 

or even engine knock
9,10

.  

 

The need for the estimation of the ethanol adulteration in gasoline, before reaching the petrol 

stations, is more important than ever.  Several analytical methods are currently available for the 

detection and quantification of ethanol in gasoline. These methods include the measurement of 

density, rate of evaporation, viscosity and ash content, and also the use of spectroscopic or 

chromatographic techniques 
11, 12, 13, 14.
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In the past two decades near infrared spectroscopic methods combined with multivariate analysis 

have gained special attention thanks to their ease of use, reliability and reproducibility of results 

and cost effectiveness 
15, 16.

 At industrial level, NIR spectroscopic methods have been used for 

extraction and quantification of a wide range of products, such as crude extracts or pure 

compounds that may have direct or indirect absorbance. NIR spectra are retrieved quickly and 

are used to determine the quality of gasoline based on the octane rating, alcohol percentage, and 

also the percentages of the other components of the gasoline fuel
17, 18

.  The NIR spectrum is 

usually employed for qualitative analysis of samples, but quantitative analysis of physico-

chemical properties with NIR is also possible by using multivariate regression techniques 
19

. NIR 

spectroscopy has shown far better results in the detection of adulteration in gasoline samples 

when compared to other analytical methods
20, 21, 22

. NIR spectroscopy combined with 

multivariate models
23,24

has been shown to be an appropriate method for the determination of 

super-premium 95 octane gasoline adulteration with premium 91 gasoline
19

. 

 

Herein, a simple, rapid and reliable method, combining NIR spectroscopy and multivariate 

methods, is proposed for detection and quantification of ethanol adulteration in premium 91 

gasoline. 

 

2. Experimental 

2.1. Preliminary characterization of fuel samples 

This research work is related to Near Infrared (NIR) spectroscopic methods to determine 

chemical, chemical-based and physical properties of hydrocarbon fuels, which were obtained 

from the petrochemical industry of the Sultanate of Oman.  Fuel physiochemical properties such 

as aromatic hydrocarbons content, total sulfur content, density, and many others were already 

established for the characterization of fuel samples 
25-32

. The newly developed NIR spectroscopic 

methods was used for checking the quality as well as the quantity of adulterant of petroleum 

products obtained from different oil refineries and from different geographical regions of Oman. 

These newly developed NIR spectroscopic methods combined with multivariate methods will 

complement the standard ASTM methods thanks to their versatility, efficiency, rapidity.  
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2.1.1. Preparation of Adulterated Samples 

Standard samples of Premium 91 octane rating gasoline were collected from the Oman’s national 

refinery and petrochemicals company (ORPIC). Premium 91 octane rating samples were spiked 

with ethanol at the following percentage levels: 0 %, 1 %, 3 %, 5 %, 7 %, 10 %, 15 %, 20 %, 25 

%, 30 %, 35 %, 40 %, 45 %, 50 %, 55 %, 60 %, 65 %, 70 %, and 75 %.  Analysis of each sample 

was performed by triplicate for reliability reason. A total of 60 samples used were 60 for this 

study. All the samples were grouped into two sets, a training set which constitutes 70 % of the 

total samples for the purpose of establishing the PLS regression model, and a validation set 

which constitutes  30 % of the samples for evaluating the prediction performance of the model. 

2.2. NIR Spectroscopic analysis 

A Frontier NIR spectrophotometer (BSEN60825-1:2007) by Perkin Elmer was used to measure 

the absorption of all the samples from 4000 cm-1 to 10000 cm
-1

, at resolution of 2 cm
-1

 and 

employing CaF2 sealed cell with a path length a 0.2 mm. 

2.3. Statistical analysis 

For statistical analysis, The Unscrambler version 9.0 software and Microsoft Excel 2010 

software were used.  Multivariate models like PLS, PLSDA and PCA were established for both 

the pristine and the ethanol spiked gasoline 91 samples.  PCA analysis is a dimensionality 

reduction multivariate exploratory method. PCA is helpful in revealing trends in the samples and 

in identifying outliers in the data set 
19

.  

In order to remove the noise from information two types of spectral pretreatment like 1
st
 

derivative with S-Golay of 2
nd

 polynomial order and 11 smoothing points and SNV were applied 

to the collected NIR spectra. Leave-one-out cross validation procedure was used the internal 

validation of the PLSDA model.  But for the PLSR model both the internal and external cross 

validations were performed
19

. Random cross validation was employed for the internal cross 

validation of PLSR. External cross validation was applied by using the test set. RMSCEV and 

RMSEP were used as measures to check the predictive ability of the PLS regression model both 

for internal and external validations. In case of optimal PLSR model the measured RMSECV as 

well as RMSEP values should be minimum with less number of factors and with the highest 

number of R
2
. 
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3. Discussion & Results  

3.1. Characterization of fuel oil 

For determination of physiochemical properties of gasoline samples from spectral data base, 

classification methods, mainly PCA, PLS-DA, and prediction methods, mainly PLSR, were used 

for data analysis. The spectral regions of NIR data base most related to the physiochemical 

properties of the fuel oil sample were identified. Multivariate exploratory method, PCA was 

applied for the visual analysis of the spectral data. At last, the PLSR was used to quantify the 

value of ethanol adulterant in premium 91 gasoline samples from spectral NIR data. 

3.1.1. NIR spectra 

The NIR spectra for both the adulterated and un-adulterated gasoline samples is shown in Figure 

1. The absorptions peaks in NIR spectra are due to combinations and overtones molecular 

vibrations absorptions of C-H hydrocarbons.  

 

Figure 1. Raw (not pre-processed) NIR spectra of all premium 91 gasoline samples, both pure 

and adulterated with ethanol 
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The NIR spectra of the both adulterated and un-adulterated gasoline samples is shown in Figure 

1. The absorption peaks in regions from 3500 to 3700 cm
-1

 are due to 
-
OH combinations, while 

the peaks at regions from 7100 to 7700 cm
-1

 are due to absorption of 1
st
 overtone  of ethanol 

-
OH 

group. While the peaks at 8403.36 is due to 2
nd

 overtone of C-H from methyl group, at 8264.46 

is due C-H from methylen group and at 8726 is due to C-H from aromatics from gasoline 

samples
25

.  In order to eliminate the scattering effect of the gasoline samples and to remove noise 

from the information two types of preprocessing like SNV and 1
st
 derivative were applied on the 

spectral data, as shown in Table 1.  

Table 1. Selection of Pre-processing 

Type of spectra Pre-

processing 

PLS regression PLS-DA PLS prediction # of 

factors 

  RMSECV R
2
 RMSEC R

2
 RMSEP R

2
  

Full Spectra 

(4000 to 10000 

cm
-1

) 

Without 

pre-

processing 

1.82 0.996 0.013 0.99 1.60 0.997 2 

Spectra (4000 to 

7500 cm
-1

) 

Without 

pre-

processing 

1.82 0.996 0.318 0.75 1.63 0.997 2 

Full Spectra 

(4000 to 10000 

cm
-1

) 

SNV 2.96 0.989 0.164 0.88 24.22* -1.84* 2 

Spectra (4000 to 

7500 cm
-1

) 

SNV 2.94 0.989 0.165 0.88 28.71* -0.44* 2 

Full Spectra 

(4000 to 10000 

cm
-1

) 

1
st
 derv. 

with 13 

smoothing 

points 

1.885 0.995 0.0769 0.97 1.585 0.997 1 

Spectra (4000 to 

6500 cm
-1

) 

1
st
 derv. 

with 13 

smoothing 

points 

1.89 0.995 0.012 0.99 1.586 0.997 1 

 

As it can be seen from Table 1, that the use of 2
nd

 polynomial order of the 1
st
 derivative functions 

with S-Golay of 13 smoothing points on the spectral data has improved the accuracy of the PLSR 

models in term of the parameters like RMSECV, R
2
 as well as RMSEP. In case of optimal PLSR 
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models the measured RMSECV as well as RMSEP values should be minimum with the highest 

number of R
2
 and with less number of factors. The preprocessed spectra is given in Figure 2.  

 

 

Figure 2. Preprocessed NIR spectra with 1
st
 derivative functions with S-Golay smoothing (13 

points with polynomial of order 2) 

For a better visualization of the effect of variation between the pure premium 91 octane rating 

gasoline samples than those adulterated with ethanol the exploratory data analysis method, 

principal components analysis was used as shown in Figure 3.   
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Figure 3. PCA score plot of pure premium 91 against various levels of ethanol adulterant in 

premium 91 samples.  

The PCA score plot in Figure 3 shows a complete map of the classification of pure premium 91 

gasoline samples against various levels of ethanol adulterant in premium 91. They are spaced in 

different parts of the score plot of the PCA model. It is based on the differences in their 

respective NIR spectra due to ethanol adulterant. It shows with changing the percentage of 

ethanol in premium 91 has prominent effect on premium 91 gasoline samples. 

 Similarly, as a discrimination tool to check the presence of  the ethanol adulterant in premium 

91 octane rating gasolines PLS-DA model was made by using spectral data of the pure gasoline 

premium 91 (0 % ethanol) and those spiked with various levels of ethanol, as given in Figure 4.   
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Figure 4. PLS-DA model for pure premium 91 gasoline against ethanol adulterated samples  

Figure 4 shows that pure Premium 91 samples are completely discriminated from those 

adulterated with ethanol due to the change in spectral data because of the presence of ethanol. 

The PLS-DA model is an excellent tool for detection of the adulteration. 

3.2 PLS regression Model  

In order to propose and develop a quantification tool for the ethanol adultrant in premium 91 

samples a PLSR model was built at the following percentage levels: 0 %, 1 %, 3 %, 5 %, 7 %, 10 

%, 15 %, 20 %, 25 %, 30 %, 35 %, 40 %, 45 %, 50 %, 55 %, 60 %, 65 %, 70 %, and 75 % of the 

training set.  It is shown in Figure 5.  
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Figure 5. PLS regression model for 91 gasoline samples (pure and adulterated with ethanol) 

Figure 5 shows that the RMSECV and R
2
 values for  the proposed PLS model with 1 factor are 

1.885 % and 99%, respectively. The RMSECV value is a measure to check the performance of 

the internal predictive ability of the PLSR models. RMSECV is given as shown in the  Eq. 1:  

)1(

)ˆ(
1

2

−−−−−−−−−−−−−−−−

−

=

∑
=

n

yy

RMSECV

n

i
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Smaller value of the RMSECV indicates the better performance for the prediction ability of the 

PLSR model. 
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Figure 6. Factor loading plot of the PLS model for factor 1 

Figure 6 shows the loading vector for factor 1. It tells us how much of the variation in a variable 

is explained by the factor. In this case, factor1 contains 99 % variation. 

In fact, the loading plot tells us what variables (wave numbers) are important to predict the 

property (% ethanol).  

The optimized PLSR model was then applied to the test set (described in the experimental 

section) to check its prediction ability. The results are shown in Figure 7.  
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Figure 7. Prediction plot for the 30 % test samples as an external validation set 

It can be seen the PLS model in Figure 7 has a good prediction abilty, with an RMSEP value of 

1.58%. The RMSEP is calculated as shown in Eq. 2: 

)2(
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−−−−−−−−−−−−−−
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∑
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t
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i
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n

yy
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t

     

 

The RMSEP value is an external measure to check the predictive ability of the PLSR model. 

Smaller value of RMSEP gives the better performance of the PLSR model when it was applied to 

the unknown test set of the samples that was not included in building the PLSR model. 

 

4. Conclusions   

The proposed NIR spectroscopy, together with multivariate methods, was found a good tool for 

estimation of ethanol adulteration in premium 91 octane rating gasoline samples with results of 
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RMSECV, RMSEP and R
2
. In this methodology both PCA and discriminant analysis i.e. PLS-

DA were used to distinguish between pure gasoline samples from those intentionally adulterated 

with ethanol. The R
2
 value of the PLS-DA model was found 98 % along with 0.049 % value of 

the RMSE using random cross validation. The proposed multivariate regression method i.e. 

PLSR model was developed to estimate the amount of ethanol in Premium 91 gasolines and the 

values of R
2
 found was 99 %, along with value of RMSECV obtained was 1.88 %. This newly 

developed method, is simple, rapid, and can quantify less than 2 % of ethanol adulteration in 

premium 91 gasolines. 
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• Near Infrared spectroscopy (NIR) 

• Principle component analysis (PCA) 

• Partial least discriminant analysis (PLS-DA)  
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• Partial least regression analysis (PLS) 

• Root mean square error (RMSE) 

• Root mean square error of cross validation (RMSECV) 

• Root mean square error of prediction (RMSEP) 

• Multiplicative Scatter Correction (MSC) 
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