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Abstract

Data controllers accumulate more and more data on people, of which a sub-
stantial proportion are personally identifiable and hence sensitive data. Storing
and processing those data in local premises is increasingly inconvenient, but
resorting to cloud storage and processing raises security and privacy issues. We
show how to use untrusted clouds to compute scalar products and matrix prod-
ucts on privacy-protected data stored in them. These operations are useful in
statistics, linear algebra, data analysis and engineering. In our solutions, the
privacy-protected sensitive data stored in the clouds are not encrypted, but pre-
serve some utility (that is, some statistical properties) of the original data. We
consider two variants of honest-but-curious clouds: clouds that do not share in-
formation with each other and clouds that may collude by sharing information
with each other. In addition to analyzing the security of the proposed protocols,
we also evaluate their performance against a baseline consisting of downloading
plus local computation.

Keywords: Privacy, cloud computing, data splitting, scalar product, matrix
product, honest-but-curious clouds.

1. Introduction

With the advancement and spread of computation and communication tech-
nologies, the amount of data collected and stored by private and public sectors is
constantly increasing. Storing and processing such huge amounts of information
in local premises becomes very problematic, due to soaring costs of software,
hardware, energy and maintenance. In this context, the need emerges to find a
fast and cost-effective alternative. An attractive possibility for a data controller
is to outsource storage and processing to a cloud [2]. Such outsourcing brings
several benefits like elimination of infrastructure costs (no software/hardware
investments needed), flexibility (storage and computing power can scale depend-
ing on business growth) and energy savings.
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Unfortunately, storing and processing data in the cloud has also downsides
related to security and privacy. A lot of the information being collected is
personally identifiable and therefore sensitive. Neither the data controller nor
the subjects to whom the data refer want the cloud service provider (CSP) to
read, use or sell their data.

In this article we discuss several procedures to store and process sensitive
data in a privacy-preserving way in untrusted clouds, where processing consists
of two basic operations: scalar products and matrix products. These operations
are useful in statistics and data analysis (to compute correlations between at-
tributes, contingency tables, etc.), and also in engineering (image encryption,
3D graphics simulation, etc.); see Section 1.2 of [23] and references therein. In
our solutions, the privacy-protected sensitive data stored in the clouds are not
encrypted and preserve some of the utility (that is, some statistical features) of
the original data. This allows making the most of the outsourced data, while
ensuring that no original records can be re-created from the outsourced records.
The outsourced data can be used for purposes other than computing scalar prod-
ucts or matrix products. This is a relevant difference with respect to related
work on algebraic computation outsourcing (see Section 3.2).

Specifically, the outsourced data preserve means and standard deviations of
attributes for the entire data set and even in subdomains of it. In some of our
protocols, we use vertical splitting, so that each cloud stores a cleartext frag-
ment on which any statistical analysis can be directly performed by the cloud.
In the rest of our protocols, the cloud stores synthetic or anonymized versions
of the original data set that preserve the above mentioned statistics. The goal
is that the outsourced version retains some utility for exploratory analysis by
any user with direct access to the cloud-stored data (who should however be
unable to reconstruct the original data). Note that there are many organiza-
tions interested in releasing privacy-protected/anonymized data for secondary
analysis, including but not limited to official statistics [19].

Following the architecture defined in the “CLARUS” European H2020 project [9]
(within which this work has been carried out), we will assume a proxy located
in a domain trusted by the data controller (e.g., a server in her company’s in-
tranet or a plug-in in her device) that implements security and privacy-enabling
features towards the cloud service providers. We will call this trusted proxy
CLARUS.

Contribution and plan of this paper

In [5], we evaluated some non-cryptographic proposals for secure scalar prod-
uct and secure matrix product on vertically split data presented in the litera-
ture. We then proposed and enhanced some protocols adapted to the CLARUS
scenario. The CSPs were assumed to be honest-but-curious and not sharing
information with each other.

Here, we start from the conclusions of that previous work and break new
ground by: i) exploring new non-cryptographic protocols for the scalar product
on split data; ii) considering also cryptographic protocols to compute on split
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data; and iii) relaxing the non-sharing assumption. In the cryptographic proto-
cols we use encryption only in the communication between clouds; however, the
sensitive data stored in the clouds are protected by splitting, not by encryption.
Regarding the sharing assumptions, we first assume that the CSPs do not pool
their fragments to reconstruct the original data set; we start from two existing
protocols for this setting, one without cryptography and one using cryptog-
raphy, and we present two new non-cryptographic protocols and two variants
of the cryptographic protocol. We then relax the non-sharing assumption and
present two additional non-cryptographic protocols that are sharing-resistant,
even though they require substantial cloud storage (because they rely on data
replication rather than splitting).

This paper is organized as follows:

• Section 2 presents the CLARUS architecture and the security models con-
sidered in the rest of the paper for the untrusted CSPs: i) honest-but-
curious CSPs not sharing information with each other; ii) honest-but-
curious CSPs that may collude by sharing information with each other, but
that lack side knowledge on the original data set; iii) honest-but-curious
CSPs sharing information with each other and having side knowledge on
the original data set.

• Section 3 reviews background on data splitting and related work on alge-
braic computation outsourcing and secure scalar products.

• Section 4 focuses on secure scalar products on vertically partitioned data
when CSPs are honest-but-curious and do not share information: a non-
cryptographic protocol and a cryptographic protocol are reviewed, and
then two new non-cryptographic protocols and two variants of the cryp-
tographic protocol are presented. After that, we show how secure scalar
products between pairs of clouds can be combined with computations in-
volving a single cloud to perform data analyses such as correlations and
contingency tables.

• Section 5 presents a new protocol that can resist information sharing be-
tween CSPs but assumes the CSPs have no side knowledge about the
original data set; rather than computing individual scalar products, this
protocol computes a matrix product XTX of an original data set X of
which the cloud only knows a masked version Y. Just like the scalar
products allowed computing the data set correlation matrix, so does the
above matrix product; furthermore, the clouds can also be used to com-
pute the means and the standard deviations of attributes in X.

• Section 6 proposes another new sharing-resistant protocol to compute the
matrix product XTX that involves heavier computation but which stays
safe even if the CSPs have information on the statistical structure of the
original data set X.
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Figure 1: CLARUS is a proxy trusted by the data controller and the controller’s users that im-
plements security and privacy-enabling features towards the untrusted cloud service provider

• In Section 7, the computation and communication costs of all protocols
described in Sections 4, 5 and 6 are assessed and compared against a
benchmark protocol consisting of the CLARUS proxy downloading the
entire data set and locally computing on the downloaded data set.

• Section 8 presents the experimental results obtained by implementing the
proposed protocols in a multi-cloud scenario.

• Finally, Section 9 lists some conclusions and future research lines.

The Appendix contains mathematical technicalities related to the cryptographic
protocol in Section 4 and the sharing-resistant protocol in Section 5.

2. CLARUS architecture, assumptions and security models

As shown in Figure 1, CLARUS is a proxy located in a domain trusted by the
data controller that implements security and privacy-enabling features towards
the cloud service provider so that i) the CSP only receives privacy-protected
versions of the controller’s (or the controller’s users’) data, ii) CLARUS makes
the access to such data transparent to the controller’s users (by adapting their
queries and reconstructing the results retrieved from the cloud) and iii) it re-
mains possible for the users to leverage the cloud to perform accurate compu-
tations on the outsourced data without downloading them.
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The raison d’être of such an architecture is to outsource as much storage
and computation as possible to the cloud in a privacy-preserving manner, and
keep the computational load of the CLARUS proxy (sitting in the controller’s
premises) as low as possible. There is an underlying assumption that computing
in the cloud is cheaper and/or otherwise more convenient than computing in
the controller’s local facilities. To evaluate the performance of a protocol, we
will focus on how much it reduces the work to be done by the CLARUS proxy
compared to the trivial alternative of CLARUS downloading the entire data set,
unprotecting it and computing locally on the downloaded unprotected data.

Regarding privacy and security, the CSP is not trusted and hence it is not
given access to the entire original data set. The CSP just sees fragments of the
original data set or an anonymized version of it. More specifically, we consider
three different security models for the CSPs, depending on their information
sharing and their level of background knowledge:

Honest-but-curious, non-sharing CSPs. The CSPs honestly fill their role in
the protocols, and they do not share information with each other (perhaps
because they do not even know each other). In particular, they do not
pool together the data fragments they hold. However, each CSP may
be curious to infer and analyze the data it stores and the message flows
received during the protocol, in order to acquire additional information.
This model is common in the cloud computing literature, e.g. see [6].

Honest-but-curious, sharing CSPs without background knowledge. We relax
here the previous assumption about non-sharing: while honestly following
the protocol, CSPs may collude by sharing information with each other.
However, we assume they do not have any initial side knowledge about
the original data set.

Honest-but-curious, sharing CSPs with side knowledge. This is the most de-
manding model we consider. In addition to sharing information with each
other, the CSPs have background knowledge on the statistical structure
of the original data set. Nevertheless, they honestly perform their roles in
the protocols.

We do not consider malicious CSPs that may deviate from the protocols
because they would not be very useful for computation outsourcing in our con-
text. The data controller/owner using the CLARUS proxy is assumed to rent
the CSPs to get help from them. Hence, it would be pointless if it took CLARUS
more effort to check that malicious CSPs carry out the computations correctly
than to download the data and do the computations locally.

3. Background and related work

In order to ensure privacy, one might think of encrypting sensitive data be-
fore storing them in the cloud. However, encrypting data substantially hampers
processing them in the cloud (i.e., using the cloud’s computing power to perform
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queries and compute some mathematical operations on the outsourced data).
Admittedly, searchable (e.g. [21]) and homomorphic (e.g. [27]) encryption also
allow carrying out some operations on ciphertext [14], but with substantial
functionality and performance restrictions (only some operations are feasible
and special methods must be used for them). Furthermore, computing on en-
crypted data is extremely costly [28], and it requires careful management of
encryption keys: the proxy ought to locally store all keys used.

Another approach to protecting sensitive data is to split the data set into
several fragments and store them in different clouds (each provided by a different
CSP) or in different cloud accounts with the same CSP. We review background
on data splitting in what follows.

3.1. Data splitting

Data splitting (or data partitioning or fragmentation) means dividing an
original sensitive data set into fragments and storing each fragment in a different
site, in such a way that the fragment in any site considered in isolation is
no longer sensitive. Data splitting has long been used as a privacy-preserving
technique [30, 31, 10].

Queries on split data can often be answered much more efficiently than
queries on encrypted data (see [1]). In data splitting, the most challenging
step is usually to efficiently compute on the fragmented data when the com-
putations involve more than one fragment: in this case, the clouds may need
to exchange (part of) their respective fragments, but none of them ought to
reveal its own private information. Specifically, challenging tasks in computing
on split/distributed data are data mining [33] and data correlation [34]. The
literature on parallel processing for statistical computation has partly treated
this topic: the way to combine partial results obtained from independent pro-
cessors may provide guidance on how to treat distributed data. On the other
hand, privacy-preserving data mining on partitioned data can be of use too, as
its main objective is to mine data owned by different parties who are willing to
collaborate in order to get better results, but who do not want or cannot share
their raw original data.

If properly performed, fragmentation does not allow linking confidential in-
formation to specific individuals. For example, if a fragment consists of the
values of an attribute ”Diagnosis”, then clearly just knowing a list of diagnoses
is useless to an intruder, because he cannot associate them to the corresponding
subjects (it is nearly as useless as seeing a list of diseases and their frequencies
in a manual of medicine).

Splitting can be horizontal (each fragment contains the values of all at-
tributes but only for a subset of subjects), vertical (each fragment contains
the values of a subset of attributes for all subjects), or mixed (each fragment
contains the values of a subset of attributes for a subset of subjects). Whereas
vertical and mixed splitting preserve privacy by decomposition, horizontal split-
ting does not do so because all the information on the same individual subject
is stored together [1]. Hence, if preserving anonymity and preventing attribute
disclosure is a key concern, horizontal partitioning is not suitable.
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Vertical splitting methods were proposed in [1] and [16] to ensure confiden-
tiality. Both methods rely on predefined constraints describing risky attribute
combinations. An example of risky pair is passport number and disease, whereas
blood pressure and disease is generally a safe pair. The goal of both methods
is to partition the original data set into two vertical fragments in such a way
that, if some risky attributes are stored together in a fragment, some of them
need to be encoded/encrypted. In [7] the authors illustrate a similar approach
to [1] and [16] but using an arbitrary number of non-linkable data fragments,
which can be stored at an arbitrary number of providers. Also, [8] presents a
solution for splitting data in two vertical fragments without requiring the use
of encryption, but rather using a trusted party (the owner) to store a portion
of the data and perform part of the computation.

Regarding mixed splitting, in general, it does not improve on vertical split-
ting in terms of privacy and it complicates distributed computation (no local
computation on entire attributes is possible any more at the locations holding
fragments).

In summary, vertical splitting is the most suitable splitting for privacy, since
in statistical databases it is the joint distribution of several attributes that
is sensitive (because it may lead to re-identification of the subject behind a
tuple of values). Attributes in isolation (or even groups of attributes whose
value combinations are very common) are not sensitive, as illustrated by the
“Diagnosis” example above.

When storing dynamically changing sensitive data in the cloud, vertical split-
ting is very convenient: each time one wants to add/update a record, this can
be done separately in each fragment, which preserves the isolation inherent to
splitting. Also, additions/updates are fast, because nothing needs to be done
to the rest of records (those that do not change). On the contrary, if data
stored in the cloud are encrypted or masked rather than split, any record ad-
dition/update requires re-encrypting or re-anonymizing the original data set
including the added/updated record and re-uploading the entire re-encrypted
or re-anonymized data set. This is clearly more costly. Furthermore, if the frag-
ments are stored at different CSPs and these do not share information, splitting
is more privacy-preserving than masking for dynamic data, because in masking
the (single) CSP might infer the value of some original records by comparing
the successive anonymized versions of the data set.

3.2. Related work on algebraic computation outsourcing

There is a substantial amount of literature devoted to outsourcing matrix and
polynomial computations. We next review it and then highlight the differences
with our approach.

In [3], a client securely outsources algebraic computations to one or several
remote servers, in such a way that the server learns nothing about the client’s
private input or the result of the computation, and any attempted corruption
of the answer by the server is detected with high probability. This scheme is
based on multiparty secure computation via secret sharing. In [24], a client
outsources a matrix inversion to an untrusted cloud, so that the cloud does not
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learn either the original or the inverted matrices. Furthermore, the protocol
is resistant against a cheating cloud. In [23], the authors present a protocol
to outsource multiplication of large matrices that can detect cheating by the
server. The more recent contribution [29] follows the same line (outsourcing
polynomials and matrix computations), but it focuses on public verifiability
of the computation (any third party can verify its correctness, not only the
client as in the previous proposals). This comes at the price of using more
complex cryptographic schemes. In all the schemes reviewed in this paragraph,
the server(s) only see(s) encrypted versions or shares of the actual data: the
client must create these encrypted versions for each protocol execution and
decrypt the final result.

Outsourcing matrix computations where the server computes on additively
split matrices rather than encrypted matrices is considered in [26]. Even tough
no encryption is used, the split versions of the matrics seen by the server do not
preserve any of the statistical features of the original data (they look gibberish),
so that no direct exploratory analyses can be performed on them.

A substantial difference between our proposals in this paper and the previ-
ous literature is that we assume that the cloud(s) compute on data that have
been previously outsourced and privacy-protected not only to compute scalar
products or matrix products on them. Specifically, the outsourced data preserve
some of the utility of the original data, as explained in Section 1 above.

A second difference is that, as mentioned at the end of Section 2, in the
CLARUS setting we can assume that CSPs are not malicious: hence, we do not
need all the cryptographic apparatus of the above cryptographic proposals to
detect cheating.

3.3. Related work on secure scalar products

Secure scalar products can be based on cryptography or not. Cryptographic
approaches may use a variety of techniques. For instance, the protocol in [18]
involves homomorphic encryption. Similarly, [25] present a protocol in which all
users encrypt their private vector using fully homomorphic encryption and up-
load it to a server. A user (initiator) sends a scalar product query to the server,
which returns the final result after a series of computations and collaborative
operations with the other user.

Non-cryptographic approaches are rather based on modifying the data before
sharing them in such a way that the original data cannot be deduced from the
shared data but the final results are preserved (e.g. [10], [12], [13], [22]).

The vast majority of protocols proposed for computing on vertically split
data do without a trusted third party (with the exception of the commodity
server solution of [12, 13]). While avoiding a trusted third party is technically
elegant, it normally takes more computation and communication. See [32] for a
performance comparison of several protocols for the secure scalar product.

As explained in Section 2, our scenario involves a trusted party, the CLA-
RUS proxy; in particular, the clouds holding the private vectors do not see the
result of the scalar product (that is only seen by the CLARUS proxy). Hence,
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our setting is simpler than the one usually assumed in secure two-party com-
putation, in which there is no third party and at least one of the parties learns
the computation output.

4. Secure scalar product for data analysis on vertically partitioned
data

Initially, the data are stored by the data controller vertically split across
several clouds, either directly or via the CLARUS proxy. After that, users want
to use the CLARUS proxy to compute scalar products between attributes stored
in different clouds. Our goal is to minimize the computation at the CLARUS
proxy, which is a resource in the controller’s premises. In contrast, we assume
that the CSPs have unlimited storage and computational power, and, therefore,
we want to shift as much of the computational and storage load as possible to
the CSPs’ side. As to security, no cloud should learn the data stored by the other
clouds, but the CLARUS proxy is trusted and is entitled to know everything.

In Section 4.1, we start from the most efficient protocol for computing on
vertically split data identified in [32] and adapted for use with the CLARUS
proxy in [5]. We identify several shortcomings of this protocol in the CLARUS
setting and we modify it by replacing or complementing random noise additions
with permutations. In Section 4.2, we revise and adapt to the CLARUS scenario
a cryptographic protocol for the secure distributed scalar product. Section 4.3
illustrates how secure scalar products can be used to compute correlations and
contingency tables on vertically split data.

4.1. Secure scalar product without cryptography

In this section, we work under the honest-but-curious and non-sharing model:
the CSPs neither deviate from the protocols nor pool the data fragments they
hold. Let x and y be two vectors with n components owned by Alice and
Bob (who can be two CSPs), respectively. The goal is to securely compute the
product xTy, see Figure 2. The privacy of the following protocols relies on
the fact that the original vectors x and y are not shared at any time by the
respective CSPs owning them; only linear transformations of them are, such that
the number of unknowns (randomness) added by the tranformations is greater
than or equal to the number of private unknowns. In the following protocols,
CLARUS obtains the desired result; note than any disclosure by Alice or Bob
to CLARUS does not entail any privacy leak, because (unlike Alice and Bob)
CLARUS is trusted by the data controller/owner.

We take as starting point the protocol proposed in [12, 13], that is based
on what they call a commodity server. This protocol is identified as the most
efficient one in [32]. Let Alice and Bob be as previously defined and let a third,
non-sharing cloud Charlie play the role of the commodity server. In [5], we
suggested the following variant adapted for use with the CLARUS proxy:

Protocol 1.
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Figure 2: Honest-but-curious, non-sharing CSPs

1. Charlie generates a random n-vector rx and another n-vector ry and com-
putes p = rTx ry (note that p is a number).

2. Charlie sends Alice the seed for a common random generator of rx, and
sends Bob the seed for a common random generator of ry (or equivalently
Charlie sends rx and ry to Alice and Bob, respectively, if sending these
vectors is faster than Alice and Bob generating them). Also, Charlie sends
p to CLARUS.

3. Alice sends x̂ = x+ rx to Bob.

4. Bob sends t = x̂Ty to CLARUS and sends ŷ = y + ry to Alice.

5. Alice sends sx = rTx ŷ to CLARUS.

6. CLARUS computes t−sx +p [= (x+rx)Ty−rTx (y+ry)+rTx ry] = xTy.

The authors of [12] show that their basic protocol allows neither Alice to
learn y nor Bob to learn x. In [5], is it is shown that the above variant still
offers the same security regarding Alice and Bob as the basic protocol [12].

It is important to note that in Protocol 1 (as well as in the basic proto-
col [12]), the generated random vectors rx and/or ry should be reused in suc-
cessive instances of the protocol with the same original data vectors x and/or y,
in order to avoid leaking new equations that would facilitate the reconstruction
of a player’s original data vector by the other player. It is easy for Alice to store
rx along with x for subsequent potential reuse, and the same holds for Bob with
respect to ry and y. However, computing p requires knowledge of both rx and
ry, which neither Alice nor Bob have. On the other hand, Charlie knew both
random vectors when he generated them, but he is unaware of any reuse unless
told. So we propose to add the following two preliminary steps to Protocol 1:
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pi. If Alice wants to reuse a previous private vector x, she sends Charlie the
corresponding seed of the random vector rx (or equivalently sends the
vector if doing so is faster than Charlie generating it).

pii. If Bob wants to reuse a previous private vector y, he sends Charlie the seed
of ry (or equivalently sends the vector if doing so is faster than Charlie
generating it).

and modify the first two steps of Protocol 1 as

1. If Charlie has not received rx, he generates it randomly; if Charlie has not
received ry, he generates it randomly. Charlie computes p = rTx ry.

2. If Charlie generated rx, he sends the seed used to generate this vector
to Alice; if Charlie generated ry, he sends the seed used to generate this
vector to Bob (equivalently, instead of sending seeds, Charlie may send
the actual vectors if doing so is faster). Also, Charlie sends p to CLARUS.

Beyond the need to manage reuse as specified above, using random rectors
can result in the following potential weaknesses:

• Weak choices of rx and ry could also leak information, and should there-
fore be avoided: for example, an unsafe choice is when only one component
of rx (or ry) is different from zero.

• While the basic protocol in [12] and Protocol 1 do not leak the exact values
of y to Alice or the exact values of x to Bob, it may be possible to infer the
range of some elements in x and y from the range of the random vectors,
rx and ry. For example, imagine the elements of x are known to lie in the
domain [0, 100] (the domain of an attribute may sometimes be estimated
from its semantics, e.g., the domain of Age can be estimated at [0, 100]).
On the other hand, assume Charlie generates the elements of rx by ran-
domly sampling the [0, 200] domain (the parameters of (pseudo)random
number generation are normally public). Then, if an element of vector
x+rx is 250, Bob learns that the corresponding original element in vector
x is greater than 50.

A way to avoid the previous shortcomings of noise addition is to resort to
the other main principle of non-cryptographic data protection, namely permu-
tation [11]. Independent random permutation of the values of each attribute
affords suitable protection if: a) the values taken by the attribute to be per-
muted are diverse enough; b) breaking the joint occurrence of attribute values
in original records is deemed sufficient to protect the subjects’ privacy, but the
values of each attribute can be released as long as they cannot be linked to
the corresponding subjects (in fact, using vertical data splitting for privacy is
also predicated on this assumption). Specifically, we propose an alternative
new permutation-based protocol, which is graphically depicted in Figure 3 and
whose steps are as follows:
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p=rx
T r y

x̂=Px (x )

t=( x̂)T y
s x=(r x)

T ŷ

t−sx+ p= xT y

r x= x̂−x
ŷ=Py ( y)

r y= ŷ− y

Figure 3: In Protocol 1.1, the CSPs permute their private vectors

Protocol 1.1.

1. Alice randomly permutes the values in her private vector to obtain x̂ =
Px(x).

2. Alice sends x̂ to Bob and rx = x̂− x to Charlie.

3. Bob randomly permutes the values in his private vector to obtain ŷ =
Py(y).

4. Bob sends ŷ to Alice and ry = ŷ − y to Charlie.

5. Charlie sends p = rTx ry (note that p is a number) to CLARUS.

6. Bob sends t = x̂Ty to CLARUS.

7. Alice sends sx = rTx ŷ to CLARUS.

8. CLARUS computes t−sx +p [= (x+rx)Ty−rTx (y+ry)+rTx ry] = xTy.

Unlike in Protocol 1, randomness in Protocol 1.1 does not consist of adding
random numbers and it is not generated by Charlie: Alice and Bob are the ones
generating random permutations for their own vectors. Hence, the shortcomings
identified above for Protocol 1 (need to handle random vector reuse, possible
weak choices of random values, possible partial inferences) do not apply to
Protocol 1.1. Regarding security, we have the following result.

Proposition 1 (Security). After participating in Protocol 1.1, Charlie does
not learn x or y; the probability of Bob’s guessing x is at most

nx1 !nx2 ! . . . nxdx
!

n!
,
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where dx is the number of different values among the n values of x, and nxi is
the number of repetitions of the i-different value; analogously, the probability of
Alice’s guessing y is at most

ny1!ny2! . . . nydy
!

n!
.

Further, the probability of Bob’s guessing one particular component in x is at
most max(nx1 , . . . , n

x
dx

)/n and the probability of Alice’s guessing one particular
component in y is at most max(ny1, . . . , n

y
dy

)/n.

Proof. Charlie receives rx from Alice. But rx can be obtained as the difference
between x̂ + k and x + k, where k is an n-vector with all its components set
to k, where k is any real number. Hence, Charlie learns nothing about x. A
similar argument shows that Charlie learns nothing about y.

On the other hand, Bob receives x̂ from Alice, which is a random permuta-
tion of x. The number of different permutations of x is n!

nx
1 !n

x
2 !...n

x
dx

! ; hence, the

probability of Bob’s guessing the correct one is 1 divided by this number. The
argument for the probability of Alice’s guessing y is analogous.

Finally, if Bob wants to guess a particular component of x given x̂, his best
guess is the most frequent value in x̂, which is also the most frequent value in
x. The probability of the target component coinciding with the most frequent
value is the relative frequency of the most frequent value. The argument when
Alice wants to guess a component of y is analogous. �

If the probabilities given by Proposition 1 are not considered low enough
(this may be the case if data are not diverse enough), then Protocol 1.1 should
not be used. In this case, another option can be to combine permutation and
noise addition into a hybrid of Protocol 1 and Protocol 1.1, as follows:

Protocol 1.2.

1. Charlie sends Alice the seed for a common random generator of a random
n-vector rx, and sends Bob the seed for a common random generator of
a random n-vector ry (or equivalently generates and sends the vectors if
doing so is faster than Alice and Bob generating them).

2. Alice computes x̂ = x + rx and randomly permutes the values in x̂ to
obtain x̂′ = Px(x̂).

3. Alice sends x̂′ to Bob and r′x = x̂′ − x to Charlie.

4. Bob computes ŷ = y+ry and randomly permutes the values in ŷ to obtain
ŷ′ = Py(ŷ).

5. Bob sends ŷ′ to Alice and r′y = ŷ′ − y to Charlie.

6. Charlie sends p = (r′x)Tr′y (note that p is a number) to CLARUS.
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7. Bob sends t = (x̂′)Ty to CLARUS.

8. Alice sends sx = (r′x)T ŷ′ to CLARUS.

9. CLARUS computes

t− sx + p [= (x+ r′x)Ty − (r′x)T (y + r′y) + (r′x)T (r′y)] = xTy.

In the above protocol, reusing the random vectors in successive instances is
not needed, because the components are randomly permuted each time, so that
an attacker cannot link the successive noise-added versions of the same original
component of x (resp. y). Regarding security, Protocol 1.2 is at least as secure
as Protocol 1. Specifically:

Proposition 2 (Security). Protocol 1.2 does not allow Charlie to learn x or
y, it does not allow Alice to learn y, and it does not allow Bob to learn x.

Proof. Charlie receives r′x from Alice. But r′x can be obtained as the difference
between x̂′ + k and x + k, where k is an n-vector with all its components set
to k, where k is any real number. Hence, Charlie learns nothing about x. A
similar argument shows that Charlie learns nothing about y.

Regarding Alice and Bob, Protocol 1.2 clearly offers at least the same secu-
rity as Protocol 1. In fact, due to the additional random permutation step and
provided that there is some diversity in the original attribute values, it offers
better security: it is free from the shortcomings of Protocol 1 related to poor
choice of random vectors and to range inference. At best, the attacker can make
inferences on permuted values. �

4.2. Secure scalar product with cryptography

Using cryptography to compute the scalar product of two vectors x and y
privately owned by Alice and Bob, respectively, can be expected to increase the
computational complexity with respect to non-cryptographic protocols. How-
ever, it is attractive in terms of security if it can be shown that for Alice to
learn y or Bob to learn x they should break a cryptosystem that is known to
be secure.

In [18], the authors proposed a cryptographic protocol based on the Paillier
homomorphic cryptosystem [27]. Let x = (x1, . . . , xn)T and y = (y1, . . . , yn)T .
We remain under the honest-but-curious, non-sharing model: the CSPs neither
deviate from the protocols nor pool the data fragments they hold. The protocol
is depicted in Figure 2 and consists of the following steps:

Protocol 2.

Set-up phase:

1. Alice generates a private and public key pair (sk, pk) and sends pk to Bob.

Scalar product:
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2. Alice generates the ciphertexts ci = Encpk
(xi; ri), where ri is a random

number in FN , for every i = 1, . . . , n, and sends them to Bob.

3. Bob computes ω =
∏n

i=1 c
yi

i .

4. Bob generates a random plaintext sB, a random number r′ and sends
ω′ = ωEncpk

(−sB ; r′) to Alice.

5. Alice computes sA = Decsk(ω′) = xTy − sB.

6. Alice and Bob simultaneously exchange the values sA and sB, respectively,
so that both can compute sA + sB = xTy.

Protocol 2 works in a finite field FN , where the order N must be large enough
(as explained in Appendix A) and it is the product of two primes p and q of the
same length and such that gcd(pq, (p − 1)(q − 1)) = 1. In case Alice and Bob
need to execute this protocol several times, they can reuse public and private
keys and thus the set-up step (first step) needs to be executed only once. The
number of computations required is: Bob must perform n exponentiations and
one encryption, and Alice has to perform n encryptions and one decryption.
Encryption involves computing two exponentiations and multiplying them, but
one of the exponentiations can be precomputed. Decryption needs one exponen-
tiation as its most expensive operation. The complexity of all these operations
depends on N : the larger N , the more computationally demanding they are.

In Protocol 2, both Alice and Bob obtain the result. If we want only the
proxy to learn it, we propose the following variation of the last steps:

Protocol 2.1.

4. Bob generates a random plaintext sB, a random number r′, sends ω′ =
ωEncpk

(−sB ; r′) to Alice and sends sB to CLARUS.

5. Alice sends sA = Decsk(ω′) = xTy − sB to CLARUS.

6. CLARUS computes sA + sB = xTy.

A sketch of Protocol 2.1 is given in Figure 4.
If it is possible for CLARUS to use an auxiliary cryptographic module, the

number of computations can be reduced, and the protocol can be simplified as
follows:

Protocol 2.2.

Set-up phase:

1. CLARUS generates a private and public key pair (sk, pk) and sends pk to
Alice and Bob.

Scalar product:
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⋮
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]
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key pair

pk

w=∏
i=1

n
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w '=w Enc pk
(−sB ,r ' )

s A=Dec sk
(w ')= xT y−sB

s A+sB=xT y

Alice Bob

CLARUS

Figure 4: Protocol 2.1 is based on the Paillier homomorphic cryptosystem. In this case, the
generation of the public key pair is left to Alice.

2. Alice generates the ciphertexts ci = Encpk
(xi; ri), where ri is a random

number belonging to FN , for every i = 1, . . . , n and sends them to Bob.

3. Bob computes ω =
∏n

i=1 c
yi

i and sends it to CLARUS.

4. CLARUS computes Decsk(ω) = xTy.

We have the following security result regarding the previous protocols.

Proposition 3 (Security). If Paillier’s cryptosystem is secure, then Proto-
cols 2.1 and 2.2 are secure, in the sense that Alice cannot learn y and Bob
cannot learn x.

Proof. It is proven in [18] that Protocol 2 is secure in the above sense if the
Paillier cryptosystem is secure (see [27] about the security of this cryptosystem).

Regarding Protocol 2.1, the only modification with respect to Protocol 2 is
that Alice and Bob do not share their results sA and sB , but they send these
values to CLARUS. Since neither Alice nor Bob have more information than in
Protocol 2, the security of Protocol 2 is preserved by Protocol 2.1.

Regarding Protocol 2.2, the only differences with Protocol 2 are that: Alice
neither generates the key pair in the set-up phase nor decrypts ω′ later; Bob
does not generate and encrypt sB ; Alice and Bob do not share their results sA
and sB , but they send these values to CLARUS. Neither Alice nor Bob have
more information than in Protocol 2. Therefore, the security of Protocol 2 is
preserved by Protocol 2.2. �
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4.3. Example data analyses based on scalar products

In vertical splitting, analyses that involve only attributes in a single fragment
are really fast and easy to compute: the cloud storing the fragment can compute
and send the outputs of the analyses to the CLARUS proxy. Unfortunately,
many statistical analyses, such as regression, classification, principal component
analysis, etc., are likely to involve attributes stored in different fragments, and
thus communication between clouds.

The sample correlation matrix ζ̂ is fundamental for many statistical analyses.
Let X be the original data set with n rows (records) and m columns (attributes

X1, · · · ,Xm). The sample correlation matrix of X can be computed as ζ̂ =
(ρ̂ij) for 1 ≤ i, j ≤ m, where

ρ̂ij =
1

n

XT
i Xj − nµ̂iµ̂j

σ̂iσ̂j
(1)

with µ̂T = (µ̂1, . . . , µ̂m) being the vector of sample means and σ̂T = (σ̂1, . . . , σ̂m)
the vector of sample standard deviations of the attributes of X. Regarding the
scalar product XT

i Xj in the numerator of Expression (1), it can be viewed as
a component of the following matrix

XTX = (X1| · · · |Xm)
T

(X1| · · · |Xm)

=


XT

1 X1 XT
1 X2 · · · XT

1 Xm

XT
2 X1 XT

2 X2 · · · XT
2 Xm

...
...

. . .
...

XT
mX1 XT

mX2 · · · XT
mXm

 .

Each element of µ̂, σ̂ and each diagonal element XT
i Xi can be separately

computed by the respective cloud and sent to the CLARUS proxy, who calculates
ζ̂. Off-diagonal elements are also easy to compute if the involved attributes are
stored in the same cloud. The most challenging task is therefore calculating the
off-diagonal elements of XTX when the involved attributes are not in the same
cloud. Note that it is not expensive for CLARUS to subsequently reassemble
and store XTX and to derive ζ̂ according to Expression (1): on the one hand,
if X has n records and m attributes with m � n, XTX is an m ×m matrix,
and thus it is very small compared to the size of X; on the other hand, the
required computations to obtain ζ̂ are simply operations between short vectors
(of m components) or numbers.

ComputingXT
i Xj , for anyXi andXj stored in different clouds, amounts to

performing a secure scalar product of two vectors each held by a different party
(where “secure” means without any party disclosing her vector to the other
party). Therefore, obtaining the sample correlation matrix in vertical splitting
among several clouds can be decomposed into several secure scalar products to
be conducted between pairs of clouds.

Furthermore, being able to securely compute scalar products permits ob-
taining, in addition to sample correlation matrices, contingency tables (that is,
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cross-tabulations) in a very simple way. To help computing a cross-tabulation
cell between value x of attribute Xi and value x′ of attribute Xj , the cloud
holding Xi computes an auxiliary binary attribute as follows:

auxix =

{
1 for records with Xi = x;
0 for records with Xi 6= x;

similarly, the cloud holding Xj computes another auxiliary attribute:

auxjx′ =

{
1 for records with Xj = x′;
0 for records with Xj 6= x′.

Finally, to count the joint occurrences of Xi = x and Xj = x′, the clouds
holding Xi and Xj , respectively, engage in a secure scalar product protocol
of their attributes auxix and auxjx′ . Note that this procedure is directly
applicable to discrete numerical and categorical attributes, and can also be
applied to continuous numerical attributes if discretized as intervals.

5. A sharing-resistant protocol in case of clouds without side knowl-
edge

If the non-sharing assumption between clouds does not hold, then vertical
partitioning alone cannot guarantee the privacy of the stored sensitive data.
Here we show how the owner of a sensitive data set (represented by the CLARUS
proxy in our case) can still use the computing power of several honest-but-
curious, potentially sharing clouds to compute the matrix product XTX of her
original data set X (which contains the scalar products of the columns of X).
With the new protocol we propose, no information sharing between the clouds
can determine the original data set or its matrix product. The latter is only
seen by the owner CLARUS. We assume here that the CSPs do not have any
side knowledge about the original data set (such as its statistical structure).

Let X be an n×m matrix representing an original data set with n records
and m attributes, where n � m. In this case we are interested in computing
the matrix product XTX. The protocol is depicted in Figure 5 and it runs in
two phases: set-up and matrix product computation. The set-up phase needs
to be run only once. The steps of the protocol are detailed next.

Protocol 3.
Set-up phase (data storage):

1. CLARUS (the owner of X) does:

(a) Choose a random invertible m×m matrix P .

(b) Send X ′ = XP to t clouds C1, . . . , Ct.

(c) Delete X ′ and P .

2. For i = 1 to t, each cloud Ci does:
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Y=X+E j

C0

C1

C j

Ct

...

...
E1

E j

E t

XT X

Figure 5: CSPs that share information but do not have side knowledge on the original data
set. Despite sharing, the lack of knowledge of the CSPs on X prevents them from discovering
with certainty which error matrix they ought to subtract from Y to get X.

(a) Compute a random n×m matrix Ei such that it is orthogonal to X ′,
that is, such that

(X ′)TEi = (Ei)
TX ′ = 0.

and send Ei to CLARUS.

(b) Compute (Ei)
TEi and send it to CLARUS.

3. CLARUS does:

(a) Randomly select j ∈R {1, . . . , t}.
(b) Read Ej and (Ej)

TEj, and discard all communications from clouds
other than Cj.

(c) Compute Y = X +Ej.

(d) Store Y at cloud C0.

(e) Delete X,Ej and Y .

Matrix product computation:

1. Cloud C0 computes (Y )TY and returns it to CLARUS.

2. CLARUS just subtracts

Y TY − (Ej)
TEj = XTX. (2)

We have the following correctness and security results.
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Proposition 4 (Correctness). Protocol 3 is correct.

Proof. If P is not invertible, then there exists at least one vector b in Ker(X ′)
such that X ′b = 0 (but it is not necessary that Xb 6= 0). We can always take
P invertible without losing security (see Appendix B). The correctness of
Equation (2) follows from

(Y )TY = (X)TX + (Ej)
TEj + (X)TEj + (Ej)

TX

= (X)TX + (Ej)
TEj ,

where in the last step we use orthogonality between Ej and X, which in turn
follows from orthogonality between Ej and X ′. �

In Section 5.2, we discuss how to create Ej so that X ′ preserves the means
and the variance of X.

Proposition 5 (Security). If the CSPs are honest-but-curious and share in-
formation, but have no side knowledge on X, Protocol 3 is secure in the sense
that their probability of guessing the correct X and XTX is at most 1/t.

Proof. Let us examine what the clouds receive. During the matrix product
computation, none of the clouds receives any further information. They only
receive information during the set-up.

In Step 1 of the set-up, clouds C1, . . . , Ct receive matrix X ′, which is the
original data set multiplied by a random matrix generated by CLARUS; hence
X ′ leaks no information on X to the clouds.

In Step 3 of the set-up, cloud C0 receives Y , which is the original data
set plus a random matrix Ej generated by one of the clouds. However, the
sharing clouds cannot find out which of the noise matrices E1, . . . ,Et they have
generated is the one that has been used to obtain Y. The clouds could try an
exhaustive method: subtract all the possible Ei from Y , i.e. Si = Y − Ei,
for i = 1, . . . , t. Note that, since all Ei are random (we assume the clouds
honestly follow the protocol), all t matrices Si are different with overwhelming
probability. But the clouds have no way to guess which Si equals the original
data set X, because by assumption they neither know X nor have any side
information on X. Hence, even by sharing information, the clouds have no
better strategy than randomly picking one of S1, . . . , St; the probability that
they hit the correct X is 1/t.

On the other hand, to obtain XTX, Alice also needs to guess the correct
Ej in Expression (2), which happens with probability 1/t. �

5.1. Computing the attribute means and standard deviations

In addition to leveraging the clouds to compute XTX, CLARUS can use
them to compute the attribute means and standard deviations. Note that,
according to Expression (1), the vector of means and the vector of standard
deviations are needed to compute the sample correlation matrix of the data set.
The following additions need to be done to Protocol 3 to compute the means:
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• In Step 2b of Protocol 3 (set-up phase), each cloud Ci computes the vector
of sums of the columns of Ei, say sTi = (si1, . . . , sim) and the vector of
the squared sums of the columns of Ei, that is, ssTi = ((si1)2, . . . , (sim)2);
then Ci sends sTi and ssTi along with Ei and (Ei)

TEi to CLARUS.

• In Step 1 of Protocol 3 (matrix product computation), C0 computes the
vector of sums of the columns of Y , say sTY = (sY 1, . . . , sYm), and the vec-
tor of squared sums of the columns of Y , that is, ssTY = ((sY 1)2, . . . , (sYm)2)
and returns both vectors to CLARUS along with (Y )TY .

• In Step 2 of Protocol 3 (matrix product computation), CLARUS computes
the vector of sample means of X, say (µ̂X)T = (µ̂X1, . . . , µ̂Xm) from the
partial results obtained from the clouds as

µ̂X =
sTY − sTj

n
.

Additionally, CLARUS computes ssTX = ((sX1)2, . . . , (sXm)2) from the
partial results obtained from the clouds as

ssTX = ssTY − 2(sj1sY 1, . . . , sjmsYm) + ssTj .

Finally, CLARUS computes the vector of standard deviations of X as

σ̂T
X =

(√
(sX1)2

n
− (µX1)2, . . . ,

√
(sXm)2

n
− (µXm)2

)
.

The additional computations to be performed by CLARUS may seem substan-
tial, but they are only O(m) and, since m � n, they are much less than the
additional O(mn) computations performed by the clouds. On the other hand,
the correctness of those additional computations follows from direct algebraic
verification.

Security. The security of the extended version of Protocol 3 to compute the
attribute means and standard deviations is the same as the security of the basic
Protocol 3. Clearly, the proof of Proposition 5 also holds for the extended
version of Protocol 3, because the computations and communications added
in the extended version do not result in the clouds receiving any additional
information (all additional communications are directed to CLARUS).

5.2. Preserving the attribute means in the masked data set

It may be desirable to preserve the means of attributes of X in the data set
Y stored in the cloud. To that end, matrices Ei, i = 1, . . . , t must be such that
each of their columns adds to 0. We show how to obtain such matrices Ei.

Given a random n×m matrix Bi such that (X ′)TBi = (Bi)
TX ′ = 0, take

any two of the m column vectors of Bi, say bj and bk, such that their respective
components do not add to zero. This may be infeasible in two cases:
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• If all columns of Bi have their respective components adding to 0, then
we can take Ei = Bi and stop.

• If all columns of Bi except one have their components adding to 0, then
we have a problem and we must choose a new random matrix Bi.

Divide all components of bj by the sum of the components, in order to obtain

a vector b̂j such that its components add to 1; do the same to bk and get b̂k.

By construction, it holds that (X ′)T b̂j = 0, (b̂j)
TX ′ = 0T , (X ′)T b̂k = 0,

(b̂k)TX ′ = 0T . Then build

Ei = Bi − s1M1 − . . .− smMm, (3)

where Ml for l 6= j is a matrix having all columns equal to 0 except the l-th
column which is equal to b̂j , Mj is a matrix having all columns equal to 0

except the j-th column which is equal to b̂k, and, for l = 1, . . . ,m, sl is the
sum of the l-th column of Bi. Clearly, each column of Ei adds to 0 and, by
construction, (X ′)TEi = (Ei)

TX ′ = 0.

Security. The error matrices obtained with Expression (3) are still random and
can be different from each other. On the other hand, these additional compu-
tations are done separately by each cloud. Thus, they require no exchange of
information and hence do not affect the security of the basic protocol, stated in
Proposition 5.

5.3. Preserving means and correlations in subdomains

One may wish to enable the computation of sample correlations in the cloud
for subdomains ofX. Also, one may wish to preserve the means of attributes for
records in the subdomain. For example, consider a medical data set, in which
we define the following 20 subdomains: women aged 0 to 9, women aged 10 to
19, . . ., women aged 90+, men aged 0 to 9, men aged 10 to 19, . . ., men aged
90+.

In the example, one can split X into 20 data subsets X(1), . . ., X(20).
Then Protocol 3 (set-up phase) with the improvements described in Sections 5.1
and 5.2 is separately run for each X(i). It holds that the corresponding Y (i)
preserves attribute means and Protocol 3 (matrix product computation) can be
used to compute correlations within each X(i).

The price paid for considering subdomains is that it may no longer hold
that ni � m, where ni is the number of records of X(i). This reduces the
computational gain of using Protocol 3 and also the privacy of theX(i), because
the number of degrees of freedom is reduced. However, as long as all ni are
substantially larger than m, considering subdomains is acceptable.

Security. We merely subdivide the problem into disjoint subproblems. In each
subproblem, security is guaranteed as per Proposition 5.
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5.4. Using a single cloud

If one assumes all clouds may share information, then from the security point
of view the situation is equivalent to using a single cloud. We could then take
C0 = C1 = · · · = Ct in Protocol 3. While security is not affected, there are
performance pros and cons in using a single cloud:

• Pros. Using a single cloud is simpler and CLARUS saves communication
at Step 1b, because X ′ only needs to be sent to one cloud. Also, one can
modify the protocol at Step 1 for the cloud to compute Y TY − (Ei)

TEi

for i = 1, . . . , t, so that at Step 2, CLARUS only needs to pick Y TY −
(Ej)

TEj asXTX without doing any computation. A similar modification
could be done to the additional computations described in Section 5.1:
the cloud could be asked to provide all candidate vectors of means and
standard deviations under the t different error matrices, so that the only
job left to CLARUS would be to pick the right vectors.

• Cons. When all the work needs to be done by a single cloud, the overall
computation is likely to take longer (except if the cloud has a great com-
putational power and/or is very efficient at parallelizing). Also, CLARUS
can no longer discard any communication (as it did in Step 3b when com-
munication coming from clouds other than Cj was discarded). Further, if
we require the cloud to provide all Y TY − (Ei)

TEi for i = 1, . . . , t, plus
all candidate vectors of means and standard deviations under all error
matrices, communication increases even more.

So, all in all, there is no clear advantage in using a single cloud: while CLARUS
saves computation, it incurs more communication costs.

6. A sharing-resistant protocol robust against cloud side knowledge

In Protocol 3, if clouds have side knowledge on the statistical structure of
X (for example, correlations between attributes, etc.), they can discard most
of the “false” error matrices and focus on the (possibly unique) error matrix Ej

such that Y −Ej matches their side knowledge on X. This would allow them
to recover X. We propose an alternative solution that addresses this issue but
requires more set-up computation from CLARUS.

By the argument given in Section 5.4, a set of clouds sharing information is
equivalent to a single cloud from a security point of view. Whereas Protocol 3
could work the same way with one or several clouds, in this section we present
a new protocol designed for a single cloud. The proposed protocol is depicted
in Figure 6 and its steps are detailed next.

Protocol 4.
Set-up phase (data storage):

CLARUS does:
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Y=X+E j
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Figure 6: CSPs that share information and have side knowledge about the original data set
are treated as if there was a single CSP. An anonymized version Y = X + Ej of the original
data set X is stored in the cloud, together with several plausible error matrices E1, . . . ,Et

under the side information on X known to the CSP. The CSP does not know which error
matrix should be subtracted from Y to recover X.

1. Anonymize the whole data set X using a randomized statistical disclosure
control method to obtain a safe matrix Y and send Y to cloud Alice.

2. Randomly select j ∈R {1, . . . , t}.

3. Let Ej = Y −X and let E1, . . . ,Ej−1,Ej+1, . . . ,Et be fake but plausible
error matrices (in the sense that all Y − Ei are plausible with the side
information on X known to the clouds, for i = 1, . . . , t).

4. Send E1, . . . ,Et to Alice.

5. Delete X, Y and E1, . . . ,Et.

Matrix product computation:

1. Alice computes Y TY .

2. For i = 1, . . . , t, Alice computes:

(Y −Ei)
T (Y −Ei) = Y TY + (Ei)

TEi − Y TEi − (Ei)
TY . (4)

3. For i = 1, . . . , t, Alice sends (Y −Ei)
T (Y −Ei) to CLARUS.

4. CLARUS picks (Y −Ej)
T (Y −Ej) as XTX.

Note that, to compute the products in Step 2, the cloud needs to know
Y and all error matrices. This is why this protocol only works for a single
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cloud (or for clouds that share all information). The randomized statistical
disclosure control (SDC) methods usable to obtain Y from X should be such
that the matrix Y −X looks random. Possible options include additive noise,
multiplicative noise, synthetic data, etc. (see [19] for more details).

A key issue to Protocol 4 is how to obtain fake plausible error matrices
E1, . . . ,Ej−1,Ej+1, . . . ,Et. We propose to generate these fake error matrices
as anonymized versions of the true Ej . As above, the anonymization method
should be such that the difference matrix between Ej and any anonymized
version of it looks random. However, even if random-looking, the differences
between Ej and its anonymized versions should be relatively small, so that the
following two conditions are satisfied:

1. All the Ei’s are similar enough to yield data sets Y −Ei plausible under
the side knowledge on X held by the clouds;

2. The matrices Y −Ei for i 6= j are not too similar to Y −Ej = X.

Introducing random perturbations that achieve a good trade-off between pro-
tection and preservation of the structure of data is precisely the purpose of
the aforementioned SDC methods. Note that, whereas when anonymizing X
into Y the only purpose was protection (and perturbations could be large),
when anonymizing Ej into E1, . . . ,Ej−1, Ej+1, . . . ,Et, parameters for the SDC
methods yielding smaller perturbations must be chosen to attain the previously
mentioned protection/preservation trade-off. We can now state the following
security result:

Proposition 6 (Security). If Y −X looks random, all Y −Ei for i = 1, . . . , t
are plausible under the CSP’s side knowledge on X, and Y −Ei for i = 1, . . . , t,
i 6= j are not too similar to Y −Ej = X, then Protocol 4 is secure in the sense
that the probability of the CSP guessing the correct X and XTX is at most 1/t.

Proof. Let us examine what the cloud Alice receives. During the matrix prod-
uct computation, Alice receives no further information. She only receives infor-
mation during the set-up.

In Step 1 of the set-up, Alice receives an anonymized version Y of the original
data set X. By assumption, Y −X looks random, so Y does not leak X.

Finally, in Step 4 of the set-up, Alice receives error matrices E1, . . . ,Et. By
assumption, Alice’s side knowledge does not allow her to single out Y − Ej

(which is equal to X) from Y −Ei for i = 1, . . . , t. On the other hand, also by
assumption, Y −Ei for i = 1, . . . , t, i 6= j are not too similar to Y −Ej .

Hence, Alice has no better strategy than randomly picking one of Y − Ei

for i = 1, . . . , t as X; her probability of hitting the correct X is 1/t.
On the other hand, to obtain XTX, Alice also needs to guess the correct

Ej , which happens with probability 1/t. �
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6.1. Computing the attribute means and standard deviations

If attribute means and standard deviations are to be computed (for example,
for CLARUS to obtain the sample correlation matrix of the data set), then some
computations need to be added to Protocol 4:

• In Step 2 of Protocol 4 (matrix product computation), for i = 1, . . . , t,
Alice computes in an analogous way as in Section 5.1:

1. sTY and ssTY corresponding to Y ;

2. sTi and ssTi corresponding to Ei;

3. µ̂Y−Ei
= (sTY − sTi )/n;

4. ssY−Ei
= ((sY−Ei,1)2, . . . , (sY−Ei,m)2) as

ssY−Ei
= ssTY − 2(si1sY 1, . . . , simsYm) + ssTi .

5. The vector of standard deviations of Y −Ei:

σ̂T
Y−Ei

=

(√
(sY−Ei,1)2

n
− (µY−Ei,1)2, . . . ,

√
(sY−Ei,m)2

n
− (µY−Ei,m)2

)
.

• In Step 3 of Protocol 4, Alice sends µ̂Y−Ei
and σ̂Y−Ei

to CLARUS, for
i = 1, . . . , t.

• In Step 4 of Protocol 4, CLARUS picks µ̂Y−Ej as µ̂X and σ̂Y−Ej as σ̂X .

Security. The security of the extended version of Protocol 4 to compute the
attribute means and standard deviations is the same as the security of the basic
Protocol 4. The proof of Proposition 6 also holds for the extended version of
Protocol 4, because the computations and communications added in the ex-
tended version do not result in Alice receiving any additional information.

6.2. Preserving means and other statistics

In Section 5.2 above, we discussed how the data set Y stored in the cloud
under Protocol 3 could exactly preserve the attribute means of X. This is
even easier for Protocol 4, where it would be sufficient for all columns of all
error matrices E1, . . . ,Et to add to zero. Given Ej whose columns add to
zero, it is easy to generate anonymized versions of it (the other error matrices
E1, . . . ,Ej−1, Ej+1, . . . ,Et) whose columns also add to zero (see [19]).

Furthermore, we can do more than preserving means. In the discussion
above, we have not required the anonymized Y to preserve the statistical prop-
erties of X. If the parameters of the SDC method used to transform X into
Y are carefully chosen, many statistical properties of X can be exactly or ap-
proximately preserved by Y . The specific preserved properties and whether
preservation is only approximate depend on the particular SDC method used
(see [19]).
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7. Comparison among methods

We compare here the protocols described in the previous sections against
benchmark solutions that consist of CLARUS downloading the data from the
cloud or clouds and computing locally.

Specifically, the protocols to compute scalar products over vertically split
data described in Section 4 are compared to the following benchmark protocol:

Protocol 5.

1. Alice and Bob send x and y to CLARUS, respectively.

2. CLARUS locally computes xTy.

If we relax the non-sharing assumption, as in Sections 5 and 6, then we
need a different benchmark which no longer relies on data splitting (note that
Protocol 5 splits data among Alice and Bob). We will use as such alternative
benchmark the storage of the whole data set X (containing in particular vectors
x and y) in a single cloud in encrypted form. In this setting, CLARUS first
encrypts the data set, stores it in the cloud and, when it needs to compute
a scalar product, it downloads and decrypts the data set, as detailed in the
following protocol:

Protocol 6.

Set-up phase:

1. CLARUS encrypts the original data set E = Enc(X)

2. CLARUS sends E to a cloud Alice for remote storage, and deletes X from
local storage.

Matrix product computation:

3. CLARUS requests E from Alice, decrypts X = Dec(E) and performs the
computation (X)TX.

Encryption and decryption can be performed using a fast symmetric cryp-
tosystem, such as the Advanced Encryption Standard (AES), which takes time
linear in the number of records/vector components n, as well as ciphertexts
similar in size to the corresponding plaintexts.

We now evaluate the computational cost for Alice, Bob, CLARUS and the
total computation under each protocol. Moreover, operations that do not need
to be repeated each time the protocol is executed, specifically the generation of
cryptographic keys in Protocols 2.1 and 2.2, are separately counted as set-up
costs.

Assuming that the clouds have unlimited storage, it is reasonable to assume
that they can store any random matrices or vectors that may need to be reused.
In contrast, we do not assume unlimited storage at CLARUS; therefore, we as-
sume the proxy just stores the random seeds and (re)generates random matrices
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Table 1: (Set-up computation and communication costs of Protocols 1, 1.1, 1.2,
2.1, 2.2, 5 and 6): n is the length of the private vectors x and y. γ represents the maximum
length of the numbers in the vectors and matrices used in the protocols. N is the size of the
plaintext field used by Paillier (see Appendix A). The computation cost is presented in terms
of the costliest operations performed in each case. Protocols 2.1 and 2.2 have two different
computation costs depending on the choice of N (they are separated by “|” in the table): if
the smallest possible N is taken, then the private vectors need to be read (see Appendix A
for details). The communication cost is the exact amount of data transmitted. The Paillier
key generation cost is indicated with “PKgen”, the AES keys generation with “RNDgen” and
the AES encryption with “AESencr”. Note: in protocols not requiring the presence of Bob or
Charlie, their costs are indicated with “−”.

Set-up
Computation Communication

Alice Bob Charlie CLARUS Alice Bob Charlie CLARUS
Prot. 1 0 0 0 0 0 0 0 0

Prot. 1.1 0 0 0 0 0 0 0 0
Prot. 1.2 0 0 0 0 0 0 0 0
Prot. 2.1 n read + PKgen | PKgen n read|0 − 0 3 log2N 3 log2N − 0
Prot. 2.2 n read|0 n read|0 − PKgen 3 log2N 3 log2N − 6 log2N

Prot. 5 0 0 − 0 0 0 − 0

Prot. 6 0 − − n AESencr
2nγ − − 2nγ

+1 RNDgen

or vectors when needed. Also, the cost of a communication is associated both
to the sender (who needs to send the data) and to the receiver (who needs to
read the data). We use a parameter γ to represent the maximum length of
the numbers in the vectors and matrices used in the protocols. For the case
of Protocols 2.1 and 2.2, lengths are a function of the size N of the field used
by the Paillier cryptosystem (see Appendix A): the public key is 3 log2N bits
long, the secret key is log2N bits long, ciphertexts are 2 log2N bits long and
plaintexts are log2N bits long. We consider that, whenever possible, the partic-
ipants send the seeds of random vectors and matrices, rather than the vectors
and matrices themselves. If communications are very fast and/or vectors are
very short, sending the vectors rather than the seeds might be preferable (see
related experimental results in Section 8).

7.1. Comparison for scalar products over split data

In this section, we compare the protocols based on data splitting (Proto-
cols 1, 1.1, 1.2, 2.1 and 2.2) with the benchmark Protocols 5 and 6. We do not
detail the costs of Protocol 2, because they are mostly equivalent to those of
the two variants, Protocols 2.1 and 2.2.

Table 1 shows the set-up computation costs and set-up communication costs
incurred by all protocols. For the computation cost, just giving the order of
magnitude of the complexity is not accurate enough (e.g. n additions are faster
than n multiplications, even if we have O(n) computation in both cases); there-
fore we give the complexity in terms of the costliest operation performed in each
case. For instance, “read” means reading the vector, “AESencr” means AES en-
cryption of the vectors and “RNDgen” is one random number generation. When
the stored data are updated (that is, records are added, changed or removed),
the set-up phase (key generation) of Protocols 2.1 and 2.2 needs to be repeated
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Table 2: (Long-term and temporary storage costs of Protocols 1, 1.1, 1.2, 2.1, 2.2,
5 and 6): n is the length of the private vectors x and y; γ represents the maximum length of
the numbers in the vectors and matrices used in the protocols. N is the size of the plaintext
field used by Paillier (see Appendix A). Note: in protocols not requiring the presence of Bob
or Charlie, their costs are indicated with “−”.

Storage

Long-term Temporary

Alice Bob Charlie CLARUS Alice Bob Charlie CLARUS

Prot. 1 (2n+ 1)γ (2n+ 1)γ 0 0 (2n+ 1)γ (2n+ 1)γ (2n+ 3)γ 4γ

Prot. 1.1 nγ nγ 0 0 (2n+ 1)γ (2n+ 1)γ (2n+ 1)γ 4γ

Prot. 1.2 (2n+ 1)γ (2n+ 1)γ 0 0 (4n+ 1)γ (4n+ 1)γ (2n+ 3)γ 4γ

Prot. 2.1
nγ+

nγ − 0
2γ+ 3γ+ − 3γ

4 log2N 2(n+ 1) log2N 2(n+ 2) log2N

Prot. 2.2
nγ nγ − 4 log2N

γ+
2(n+ 1) log2N − γ + 2 log2N

2(n+ 1) log2N

Prot. 5 nγ nγ − 0 0 0 − (2n+ 1)γ

Prot. 6 2nγ − − 0 0 − − (4n+ 1)γ

only if some of the new values are greater than the order N of the finite field
in use; otherwise, it is possible to reuse the same keys without losing security.
Protocol 6 requires downloading, decrypting, updating and re-encrypting all the
records.

If in Protocols 2.1 and 2.2 one wants to save storage by using the smallest
possible N that does not result in overflow, it takes 2n “read” effort (to check
all vector elements). If one just takes a large N , say a 1024-bit N , then the
key generation cost is constant. This is why the n reads have been marked as
optional in Table 1. See Appendix A for details. At most, the key generation for
both Protocol 2.1 and Protocol 2.2 requires 3 random generations, 1 modular
multiplicative inversion and 1 least common multiple computation, which is
represented with ”PKgen” in the table. It is possible to use the same keys also
for different data sets belonging to the same field FN ; therefore, the update of
elements in the private vectors does not require generating new keys. Protocol 6
also requires a set-up phase, that is, the key generation for the AES cryptosystem
and the encryption of the private vectors. Compared to Protocols 2.1 and 2.2,
the set-up phase of Protocol 6 needs to be repeated every time that the private
vectors are changed.

Table 1 also shows the communication cost of the set-up phase. As said
above, the cost of communicating a number of bits is incurred by both the
sender (who must write them to the channel) and the receiver (who must read
them from the channel). Only Protocol 2.1, Protocol 2.2 and Protocol 6 involve
a set-up communication cost, due to the exchange of the public key for the two
former protocols and the transmittal of the encrypted private vectors for the
latter one.

Table 2 shows the long-term and temporary data storage costs (temporary
storage is the one needed only to conduct a certain calculation at some point).
In Protocol 1, Alice needs long-term storage for her data vector x and also for
the random vector rx, which is needed for potential reuse; similarly for Bob
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Table 3: (Execution costs for Protocols 1, 1.1, 1.2, 2.1, 2.2, 5 and 6): n is the
length of the private vectors x and y; γ represents the maximum length of the numbers in the
vectors and matrices used in the protocols. Finally, Charlie only appears in Protocols 1, 1.1
and 1.2, and Bob does not appear in Protocol 6; we indicate the absence of a cloud with
“−”. The computation cost is presented in terms of the costliest operations performed in each
case; the communication cost is the exact amount of data transmitted. In Protocol 1 we have
considered the most usual case in which there is no reuse; for each reused private vector, nγ
communication cost is shifted from Charlie to the reusing cloud, and the computational cost
for Charlie decreases by n RNDgen.

Computational cost Communication cost
Who

needs a

Alice Bob CLARUS Charlie Alice Bob CLARUS Charlie
crypt.

module

Prot. 1
n prod. n prod.

2 sum.
2n RNDgen.

(2n+ 2)γ (2n+ 2)γ 3γ 3γ none
n RNDgen. n RNDgen. +n prod.

Prot. 1.1
n prod. n prod.

2 sum. n prod. (3n+ 1)γ (3n+ 1)γ 3γ (2n+ 1)γ none
n RNDgen. n RNDgen.

Prot. 1.2
n prod. n prod.

2 sum. n prod. (3n+ 2)γ (3n+ 2)γ 3γ (2n+ 3)γ none
n RNDgen. n RNDgen.

Prot. 2.1
n RNDgen. n prod.

1 sum. − 2(n+ 1) log2N 2(n+ 1) log2N 2γ − Alice
+n encr.+1 decr. 2 RNDgen +1 encr. +γ +γ

Prot. 2.2
n RNDgen.

n prod. 1 decr. − 2n log2N (2(n+ 1) log2N 2 log2N − CLARUS
+n encr.

Prot. 5 0 0 n prod. − nγ nγ 2nγ − none

Prot. 6 0 − n prod. + − 2nγ − 2nγ − CLARUS
n AESdecr.

regarding y and ry. In Protocols 1.1 and 1.2, the random vectors do not need
to be reused, so less long-term storage is needed by Alice and Bob; on the
other hand, computing the random permutations in those protocols takes just
n random number generations and no auxiliary storage, by using Durstenfeld’s
algorithm [15]. Only the benchmark Protocols 5 and 6 require CLARUS to
(temporarily) store a large amount of data, namely the downloaded data, plus
the decrypted data if the downloaded data are encrypted.

Table 3 shows the computational and communication costs incurred by the
execution of the above mentioned protocols (after set-up). As said above, in
Protocols 1.1 and 1.2 a permutation of n elements takes n random number gen-
erations. Protocols 1, 1.1, 1.2 and 2.1 have all similar costs for CLARUS. Proto-
col 2.2 requires more computation and communication from CLARUS, but the
difference can be reduced if CLARUS has a cryptographic module. It is worth
noting that all protocols have constant computation, storage and communication
costs for CLARUS; hence, they clearly outperform the benchmark Protocols 5
and 6, which require from CLARUS computation, storage and communication
that increase linearly with the data set size n.

If we count costs for all parties involved, Protocol 1 is the most efficient
one, closely followed by Protocol 1.1 and Protocol 1.2 (note that these three
protocols do not require any set-up). If we focus on the cost/security trade-off,
Protocol 1.2 is probably the best choice.

7.2. Comparison for the sharing-resistant alternative without side knowledge

Table 4 shows all the costs for Protocols 3 and 6. Alice represents C0,
the cloud storing the anonymized data set Y . The other clouds C1, . . . , Cm
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Table 4: (Costs for Protocols 3 and 6): X is the n×m matrix (with n� m) containing
the original data set. γ represents the maximum length of the numbers in the vectors and
matrices, and t is the number of clouds involved in the protocol.

Protocol 3 Protocol 6

Alice (C0) Bob (Cj) CLARUS Alice CLARUS

Set-up
computation

0 3nm2 prod. nm2 prod. +m2 RNDgen. 0 nm AESencr.

Set-up
communication

nm (2nm+m2)γ ((t+ 2)nm+m2)γ nmγ nmγ

Long-term storage nmγ nmγ m2γ nmγ nmγ

Temporary storage 0 0 2m2γ 0 (nm+m2)γ

Matrix product
computation

nm2 prod. 0 m2 subtr. 0 nm AESdecr. +nm2 prod.

Matrix product
communication

m2γ 0 m2γ nmγ nmγ

perform similar amounts of computation and so we represent all of them by
Bob. Protocol 3 needs a set-up phase, in which:

• CLARUS needs to compute the random invertible m ×m matrix P (as
described in Appendix B). Then it must multiply X times P and add Ej

to X.

• Each cloud needs to compute the orthogonal complement of Y (as de-
scribed in Appendix C), which takes 2nm2 products (using the Gram-
Schmidt algorithm for QR decomposition), plus (Ej)

TEj , which takes
nm2 products.

The set-up phase is performed just once, unless X is modified (in which case it
needs to be repeated).

Regarding storage, in Protocol 3 each cloud stores one n × m matrix (X ′

for C1, . . . , Ct, and Y for C0), whereas CLARUS stores three m ×m matrices
((Y )TY and (X)TX as temporary storage and (Ej)

TEj as long-term storage).
As to communication, at set-up CLARUS sends one n × m matrix to clouds
C1, . . . , Ct (this can be done in a single message if using broadcast or if using
a single cloud to do all computations) and one n×m matrix Y to C0; each of
C1, . . . , Ct returns one n ×m matrix and one m ×m matrix to CLARUS; C0

returns one m×m matrix to CLARUS.
To compute the matrix product (after set-up), in Protocol 3 C0 needs to

compute (Y )TY , which takes nm2 products. CLARUS only needs to compute
m2 subtractions. As to communications during matrix product, only C0 needs
to send an m×m matrix, which makes m2γ bits.

With the benchmark Protocol 6, CLARUS needs less set-up communica-
tion than with Protocol 3, but more communication during the matrix product
computation. The difference between the two protocols regarding storage is
substantial: Protocol 3 requires CLARUS to use much less temporary and long-
term storage. Another important difference refers to the computing time for
the matrix product: in the benchmark protocol, CLARUS needs to perform nm
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Table 5: (Costs for Protocol 4): γ represents the maximum length of the numbers in the
vectors and matrices. ”anon” stands for the anonymization cost of a value and ”read” stands
for the cost of reading a value.

Protocol 4 Protocol 6
Alice CLARUS Alice CLARUS

Set-up computation 0 (t+ 1)nm anon. 0 nm AESencr.
Set-up communication (t+ 1)nmγ (t+ 1)nmγ nmγ nmγ

Long-term storage (t+ 1)nmγ γ nmγ nmγ
Temporary storage (3t+ 1)m2 m2γ 0 (nm+m2)γ

Matrix product computation (2t+ 1)nm2 prod. +tm2 reads 0 0 nm AESdecr. +nm2 prod.
Matrix product communication (3t+ 1)m2γ (3t+ 1)m2γ nmγ nmγ

decryptions (to decrypt the entire data set) plus nm2 products, which is clearly
more work than the m2 subtractions needed under Protocol 3.

In summary, the advantage of Protocol 3 is that it permits different statistical
analyses without requiring the use of the original data set X: just using Y
suffices and most of the computational burden falls on the C0 cloud. In contrast,
Protocol 6 requires CLARUS to download and decryptX before performing any
analysis.

7.3. Comparison for the sharing-resistant alternative with side knowledge

Table 5 shows all the costs for Protocols 4 and 6. Protocol 4 requires a
set-up phase to anonymize the original data set, compute the true error matrix
and obtain the t plausible fake error matrices by means of an SDC method.

To compute Expression (4) t times, Alice first computes Y TY once, and
then, for i = 1, . . . , t, she computes (Ei)

TEi, Y
TEi and (Ei)

TY . This takes
(2t + 1)nm2 products, and transposing (Y )TEi into (Ei)

TY for i = 1, . . . , t
takes tm2 reads.

When comparing Protocol 4 with Protocol 6, we can see that the latter has
smaller set-up costs for CLARUS, but larger costs for the matrix computation
phase. Although the set-up costs are higher for Protocol 4, they allow usefully
releasing the data protected with anonymization to potential users (such as
researchers), which is not possible with Protocol 6 (because protected data are
encrypted in the latter protocol).

8. Experimental results

This section details the experimental results obtained by implementing the
proposed protocols in Java in a multi-cloud scenario. Since Protocols 1 and 2
had security and functionality issues that motivated Protocols 1.1, 1.2, 2.1,
and 2.2, we focused on implementing the latter protocols.

The reported experiments were conducted using the first two attributes of
the California housing data set (CADATA, [4]), a usual test data set in the
statistical disclosure control literature that contains 9 numerical attributes and
20, 640 records. Let x and y represent the two selected attributes of CADATA,
and X be the matrix containing x and y.
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Table 6: (Computational specifications of CLARUS and CSPs ) CLARUS, the trusted
proxy, was run on a local computer. CERSEI is a local server mimicking a for-payment CSP.
AWS represents a free-of-charge t2.micro Amazon EC2 instance.

Machine Operating System Width(bits) CPU(GHz) RAM(GB) HDD(GB)

CLARUS Windows 7 64 2.5 8 500

CERSEI Ubuntu 14.4 LTS 64 3.4 16 500

AWS Ubuntu Server 16.04 LTS 64 2.4 1 30

First, we ran the tests on Amazon Web Services (AWS), a public CSP that
offers 12 months free tier. The tests were performed on a t2.micro Amazon
EC2 instance for each cloud. Since the computing power and main storage were
substantially capped in this free-of-charge service, and communication with it
was slow, we took it as representing the low-end scenario a user can expect from a
CSP. Second, we also used a local server (CERSEI) offering more computational
power and main storage, as well as faster communication, in order to mimic
the service that can be expected from a for-payment CSP. In both cases, we
used another local computer to run CLARUS on it, that worked as the proxy
located in a trusted domain. Table 6 summarizes the specifications of CLARUS,
CERSEI and the AWS instance.

The computational cost was measured as the time in seconds that each
machine spent to perform the computations specified by the protocols. The
communication cost was measured as an approximation of the time each cloud
spent at sending data (writing to the channel) or receiving data (reading from
the channel). As explained in Section 7, we consider in general that the partic-
ipants send the seeds of random vectors and matrices, rather than the vectors
and matrices themselves. The reason is that generating a random vector takes
normally less time than sending it. However, the communication time depends
on many factors (user internet connection, distance between users, network load,
etc.). In our experimental setting, we compared the times for generating and
sending vectors of several sizes n; the results are reported in Table 7, where it
can be seen that sending a random vector takes longer than generating it at the
recipient for sizes n > 104.

Table 7: (Time to send a random vector vs time to generate it at the recipient): n
is the number of elements of a random vector x and the times are given in seconds. Sending
is faster only for short vectors.

PPPPPPPPTime (s)
n

103 104 105 106

to generate x 2.08× 10−3 4.6× 10−3 8.4× 10−3 2.07× 10−2

to send x 2.8× 10−4 3.5× 10−3 1.9× 10−2 1.19× 10−1
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Table 8: (Long-term and temporary storage costs of Protocols 1.1, 1.2, 2.1, 5
and 6): Private vectors x and y have length n = 20, 640. The representation of the numbers
takes γ = 8 bytes. Elements in the field FN used by the Paillier cryptosystem have 65 bytes.
We indicate the absence of a cloud with “−”. The values are given in bytes.

Storage (B)

Long-term Temporary

Alice Bob Charlie CLARUS Alice Bob Charlie CLARUS

Prot. 1.1 1.7× 105 1.7× 105 0 0 3.3× 105 3.3× 105 3.3× 105 32

Prot. 1.2 3.3× 105 3.3× 105 0 0 6.6× 105 6.6× 105 3.3× 105 32

Prot. 2.1 1.7× 105 1.7× 105 − 0 2.5× 105 2.5× 105 − 24

Prot. 5 1.7× 105 1.7× 105 − 0 0 0 − 3.3× 105

Prot. 6 3.3× 105 − − 0 0 − − 6.6× 105

8.1. Experimental results for scalar products over split data

In this section, we detail storage, computation and communication costs of
Protocols 1.1, 1.2 and 2.1 (based on data splitting) and the benchmark Pro-
tocols 5 and 6. We do not detail the costs of Protocol 2.2, because they are
basically equivalent to those of Protocol 2.1.

Table 8 shows the comparison of long-term and temporary storage measured
in bytes. The storage does not depend on the particular CSP used. Long-term
storage turns out to be similar in all protocols for all players involved; the only
remarkable difference occurs in Protocol 6, where CLARUS must keep the AES
keys (whereas it keeps nothing in the other protocols). Temporary storage is of
the same order of magnitude for Protocols 1.1, 1.2 and 2.1 and really small for
CLARUS; instead, the benchmark Protocols 5 and 6 require large temporary
storage on the CLARUS side.

Table 9 shows the computation and communication costs incurred by the
execution of the above mentioned protocols. Communication takes a very sub-
stantial time both at the sender and at the receiver: obviously, the receiver
cannot process the data until he receives them, and the sender needs to wait for
the receiver’s acknowledgment of receipt before carrying on. The communica-
tion between AWS and CLARUS is slow, in part because the Amazon services
are geographically distant and in part because we used a free-of-charge instance.
Note that, although CLARUS receives only scalars in Protocols 1.1, 1.2 and 2.1,
its communication cost is greater than for Alice, who sends and receives vectors.
The explanation is that: i) reading/sending between the CSPs (Alice and Bob)
is faster than between the CSPs and CLARUS (because Alice and Bob are lo-
cated in the same cloud system, AWS in one case or CERSEI in the other case);
ii) in the CLARUS-CSP communication the time to send a scalar is dominated
by the time to establish the channel. Protocols 1.1, 1.2 and 2.1 have all simi-
lar costs for CLARUS. In Protocol 2.1, the computational and communication
costs for Alice and Bob are greater than in Protocols 1.1 and 1.2, because in
the former protocol computations are performed over a field FN , where N is big
and the representation of numbers takes 65 bytes instead of 8.

If we aggregate costs for all parties involved, Protocol 1.1 is the most efficient
one, closely followed by Protocol 1.2 (note that these two protocols do not
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Table 9: (Execution costs for Protocols 1.1, 1.2, 2.1, 5 and 6): Private vectors x and
y have length n = 20, 640. The representation of the numbers takes γ = 8 bytes. Elements
in the field FN used by the Paillier cryptosystem have 65 bytes. We indicate the absence of
a cloud with ”−”. Times are given in seconds.

AWS
Computational cost (s.) Communication cost (s.)

Alice Bob CLARUS Charlie Alice Bob CLARUS Charlie

Prot. 1.1 8.3× 10−3 8.5× 10−3 3.3× 10−5 1.4× 10−3 0.05 0.05 0.40 0.06

Prot. 1.2 1.7× 10−2 1.6× 10−2 4.1× 10−5 1.4× 10−3 0.06 0.06 0.40 0.06

Prot. 2.1 34.1 121.6 9.1× 10−5 − 0.15 0.31 0.40 −

Prot. 5 0 0 1.5× 10−3 − 0.1 0.1 0.65 −
Prot. 6 0 − 0.8 − 2.2 − 2.62 −

CERSEI
Computational cost (s.) Communication cost(s.)

Alice Bob CLARUS Charlie Alice Bob CLARUS Charlie

Prot. 1.1 8.1× 10−3 7.8× 10−3 3.1× 10−5 1.4× 10−3 0.04 0.04 0.20 0.04

Prot. 1.2 5.7× 10−3 5.8× 10−3 3.7× 10−5 1.4× 10−3 0.04 0.04 0.20 0.04

Prot. 2.1 29.3 120.9 8.4× 10−5 − 0.07 0.08 0.20 −

Prot. 5 0 0 1.9× 10−3 − 0.02 0.01 0.23 −
Prot. 6 0 − 0.7 − 0.3 − 0.45 −

require any set-up). These results are consistent with the analytical comparison
in Section 7.1.

8.2. Comparison for the sharing-resistant alternatives

In this section, Protocol 3 (sharing-resistant without background knowledge)
and Protocol 4 (sharing-resistant with background knowledge) are compared
with the benchmark Protocol 6.

Table 10 shows the storage, computation and communication costs for the
aforementioned protocols. CLARUS needs significantly less storage, computa-
tion and communication resources in Protocols 3 and 4 than in the benchmark
Protocol 6. In fact, once the set-up phase is completed, the sharing-resistant
protocols are extremely convenient for CLARUS, because nearly all the compu-
tations are performed by the cloud and CLARUS only needs to do very little
work. AWS and CERSEI give results that are consistent with the analytical
comparison in Sections 7.2 and 7.3.

9. Conclusions and future work

We have presented several protocols (two of them existing, two of them
variants, and four of them new, plus the two trivial benchmark protocols) for
outsourcing to untrusted clouds two basic operations on sensitive data vectors:
scalar products and matrix products. Based on those operations, more complex
data analyses can be performed, such as correlations and contingency tables.
The goal is to minimize the amount of work that needs to be performed locally
by the controller, who wants to use the cloud as much as possible to compute on
her outsourced sensitive data. For the sake of flexibility and efficiency, we have
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Table 10: (Costs for Protocols 3, 4 and 6 for AWS and CERSEI): X is a 20, 640× 2
matrix containing the original data set. The components in the vectors and matrices take
γ = 8 bytes. The storage is given in bytes (B) and the computational and communication
costs are given in seconds (s).

Protocol 3 Protocol 6 Protocol 4

Alice (C0) Bob (Cj) CLARUS Alice CLARUS Alice CLARUS

Long-term(B) 3.3× 105 3.3× 105 32 3.3× 105 0 3.6× 106 8

Temporary(B) 0 0 64 0 6.6× 105 124 160

AWS
Protocol 3 Protocol 6 Protocol 4

Alice (C0) Bob (Cj) CLARUS Alice CLARUS Alice CLARUS

XTX comp.(s) 0.2 0 4.4× 10−5 0 0.9 0.05 2.03× 10−5

XTX comm.(s) 1.2× 10−4 0 0.4 2.2 2.6 3.6× 10−4 0.4

CERSEI
Protocol 3 Protocol 6 Protocol 4

Alice (C0) Bob (Cj) CLARUS Alice CLARUS Alice CLARUS

XTX comp.(s) 0.08 0 4.2× 10−5 0 0.7 0.03 1.9× 10−5

XTX comm.(s) 5.4× 10−5 0 0.2 0.3 0.5 8.2× 10−5 0.2

considered non-cryptographic methods for data protection, such as data split-
ting and anonymization, rather than the heavier fully homomorphic encryption
(e.g. [17]). A distinguishing feature of our approach is that the outsourced data
on which the clouds compute retain some of the utility of the original data,
which entails added value with respect to outsourcing encrypted or otherwise
gibberish data.

If clouds can be assumed not to share information (perhaps because they
do not know each other), data splitting is probably the best choice, due to
simplicity and flexibility. We have proposed four protocols to compute on split
data. In case clouds can share information but have no side knowledge on the
original data set, we have proposed a sharing-resistant protocol based on orthog-
onal noise matrices that shifts most of the computational burden to the clouds.
Finally, for the worst case, in which clouds share information and have side
knowledge allowing them to recognize the original data set, we have proposed a
sharing-resistant protocol relying on noise matrices derived via anonymization.
Although the latter protocol is heavier, it still substantially relieves the con-
troller (CLARUS) in computational terms. We have provided complexity anal-
yses and benchmarking for all proposed protocols, in order to show their com-
putational advantages for the outsourcing controller. Further, we have provided
experimental evidence that the new protocols take less effort from CLARUS
than the benchmark protocols consisting of downloading and local processing.

In this way, clouds are not only used to store sensitive data, but also to per-
form computations on these data in a privacy-aware manner. This is especially
interesting for large sensitive data sets.

Scalar products and matrix products are useful for correlations and contin-
gency tables. While these are important analyses, many other analytical needs
exist. Future research will be directed at broadening the range of data analyses
that can be performed on protected sensitive data stored in the cloud.
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Appendix A. Finite field for the computations

Protocol 2 and its variants work in a finite field FN , i.e. given x = (x1, . . . , xn),
y = (y1, . . . , yn) two private n-vectors, we are computing xTy mod (N). If
we do not want the result to be modified by the modulus, it must hold that
N > xTy. Let Mx = maxxi∈x xi be the maximum value belonging to x,
My = maxyi∈y yi the maximum value belonging to y and M = max{Mx,My}.
It is sufficient to choose N > nMxMy. To chose such an N , we suggest that,
before the protocol, Bob send M ′y > My to Alice who chooses M ′x > Mx, and
then picks N > nM ′xM

′
y.

Alternatively, Alice can one-sidedly choose a very large N without Bob’s
input (a 1024-bit N is a common choice with Paillier’s cryptosystem). In Pro-
tocol 2.2 the public key generation and hence this one-sided choice would be
done by CLARUS.

The choice of a very large N allows decreasing the computational cost of
the set-up phase of Protocols 2, 2.1 and 2.2 (reading the vectors is not neces-
sary anymore and so the set-up phase has O(1) cost). On the other hand, the
computational cost of the scalar product in all three protocols is considerably
increased, because a larger N means larger keys and ciphertexts, which make
cryptographic operations slower.

Appendix B. Computation of the invertible matrix P

The probability of obtaining an invertible matrix P (needed in the set-
up phase of Protocol 3) if we randomly choose its elements depends on the
cardinality of the field we are working in.

Lemma 1. Let K be a field where the elements of a random m×m matrix P
are chosen. If |K| = N , then

Pr(P is invertible) > 1− 1

N − 1
+

1

(N − 1)Nm
. (B.1)

Proof. P has m column vectors v1, . . . ,vm. In order for P to be invertible,
they must be linearly independent. We have:
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• Pr(v1 is the null vector) = 1
Nm ;

• Pr(v2 is linear combination of v1) ≤ N
Nm ;

• Pr(v3 is linear combination of v1,v2) ≤ N2

Nm ;

• . . .

• Pr(vt is linear combination of v1, . . . ,vm−1) ≤ Nm−1

Nm .

Hence, Pr(P is not invertible) ≤
∑m−1

i=0
Ni

Nm = Nm−1
(N−1)Nm and then

Pr(P is invertible) > 1− Nm − 1

(N − 1)Nm
= 1− 1

N − 1
+

1

(N − 1)Nm
.

�

We suggest to obtain P by randomly picking an m×m matrix over K and
trying to invert it. This will work with probability lower-bounded by Expression
(B.1). As N grows, the lower bound approaches 1, so if we take a sufficiently
large K, a single attempt is very likely to suffice to find P . If the first attempt
fails, one can always try again.

Appendix C. Orthogonal complement of a matrix

In Protocol 3 (set-up phase), each cloud Ci needs to find an n ×m matrix
Ei orthogonal to X ′. Following [22], we suggest to find Ort(X ′) by using the
QR-decomposition of X ′, where Q is an (n × n) orthonormal matrix and R
is an n × m upper-triangular matrix. If we split Q = [Q1,Q2], where Q1 is
(n ×m) and Q2 is composed of n −m orthogonal vectors to X ′, it is possible
to select m columns out of Q2 to generate Ei. Note that n� m, so m columns
can be selected out of n−m and each cloud is likely to select a different set of
m columns.

If n−m > m, but it does not hold that n� m, then m random linear com-
binations of the columns of Q2 are preferable to using the columns themselves:
since Protocol 3 (set-up phase) will be used by all the clouds C1, C2, . . . , Ct, we
want to avoid the possibility that different clouds obtain the same Ei.
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