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Abstract: We report on the crystal growth, structure, Raman and optical spectroscopy of 
novel “mixed” tetragonal vanadates, Yb:Lu1-x-yYxLayVO4. Optical absorption, stimulated-
emission, and gain cross-section spectra of Yb3+ are determined for π and σ polarizations. For 
a Yb:Lu0.74Y0.23La0.01VO4 crystal, the absorption bandwidth is >10 nm, the σSE is 1.1 × 10−20 
cm2 at 1013 nm, the gain bandwidth is >40 nm (for π-polarization), and the radiative lifetime 
of the 2F5/2 state is ~305 μs. The Stark splitting of the Yb3+ multiplets is determined using 
low-temperature (6 K) spectroscopy. A diode-pumped a-cut 2 at.% Yb:Lu0.74Y0.23La0.01VO4 
laser generated 5.0 W at 1044 nm with a slope efficiency of 43%. The developed materials 
are promising for sub-100 fs mode-locked lasers at ~1 µm. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (140.3380) Laser materials; (140.3480) Lasers, diode-pumped; (140.3070) Infrared and far-infrared 
lasers. 
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1. Introduction 

Tetragonal (zircon (ZrSiO4) type, sp. gr. I41/amd) orthovanadate crystals, REVO4 where RE = 
Gd, Y, or Lu, are very suitable hosts for rare-earth laser-active ions. These materials are 
optically uniaxial (the optical axis is parallel to the crystallographic c-axis) and offer linearly 
polarized laser output [1-2], relatively high transition cross-sections for the dopant ions [3] 
and good thermo-mechanical and thermo-optical properties (high thermal conductivity, low 
thermal expansion, positive dn/dT coefficients and weak thermal lensing) [4-5]. Recently, 
REVO4 crystals have been studied for Yb3+ doping [1,3,6–8] resulting in efficient continuous-
wave (CW) [1], Q-switched [9] and sub-100 fs mode-locked (ML) oscillators [10]. Optical 
bistability has been also observed in CW Yb:REVO4 lasers [11]. In ref [1], a diode-pumped 
CW a-cut Yb:LuVO4 laser generated 8.3 W of π-polarized output at 1031 nm with a slope 
efficiency of 80% (with respect to the absorbed pump power). In ref [10], a semiconductor 
saturable absorber mirror (SESAM) was used to generate 58-fs-long laser pulses from a ML 
Yb:LuVO4 laser at 1036 nm at a repetition rate of 94 MHz. 

In the REVO4 crystals, there is a single site for accommodating the RE3+ ions (D2d 
symmetry, VIII-fold O2- coordination). The Yb3+ ions replace the RE3+ ones resulting in a 
RE1-xYbxVO4 composition. Stoichiometric tetragonal YbVO4 crystals also exist but the 
fluorescence quenching effect is determental [12]. Besides the ordered Yb:REVO4 
compounds, “mixed” crystals, e.g. Yb:Gd1-xYxVO4 or Yb:Lu1-xGdxVO4, can be grown with 
good optical quality [3,13,14]. Due to the inhomogeneous broadening of the Yb3+ spectral 
bands as a result of the local disorder leading to slightly varying crystal field strengths, such 
crystals are of interest for shortening of the pulse from ML lasers. In ref [13], a SESAM ML 
Yb:Gd0.64Y0.36VO4 laser generated 100-fs pulses at ~1021 nm (shorter compared to the 
ordered Yb:YVO4 crystal) with a spectral bandwidth of ~33 nm (for π-polarization). 

In the present work, we have grown, characterized and demonstrated CW laser operation 
of novel “mixed” vanadate crystals, Yb:Lu1-x-yYxLayVO4, featuring a strong broadening of the 
spectral bands due to the particular “mixture” of passive ions (Lu3+, Y3+ and La3+) with 
pronounced ionic radius difference. 
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2. Crystal growth and structure 

Crystals with two different compositions of 2.6 at.% Yb:Lu0.51Y0.45La0.01VO4 and 2 at.% 
Yb:Lu0.74Y0.23La0.01VO4 were grown by the Czochralski method in N2 + 2 vol.% O2 
atmosphere using Ir crucibles and [100]-oriented undoped YVO4 seeds. The pulling rate was 
2-3 mm/h and the rotation rate was 10-30 rpm (revolutions per minute). The as-grown 
crystals were cooled down to room temperature (RT, 293 K) at 30–80 °C/h and annealed in 
air at 1200 °C for 20 h. The obtained boules with dimensions of Ø25 × 20 mm3, Fig. 1(a),(b), 
were of high optical quality. The as-grown crystals had yellowish coloration which could be 
partially removed by annealing in air. For the spectroscopic and laser studies, 3 mm-thick 
rectangular samples were cut along the a-axis with an aperture of 3 × 3(c) mm2. They 
provided access to both principal light polarizations of the uniaxial vanadates, π (E || c) and σ 
(E ⊥ c) 

 

Fig. 1. (a,b) Photographs of the as-grown crystals (a) 2 at.% Yb:Lu0.74Y0.23La0.01VO4 and (b) 
2.6 at.% Yb:Lu0.51Y0.45La0.01VO4 crystals; (c) X-ray powder diffraction (XRD) patterns of these 
crystals (the numbers denote the Miller’s indices (hkl)). 

The structure and the phase purity of the grown crystals were confirmed by X-ray powder 
diffraction analysis, Fig. 1(c). Both crystals are tetragonal (sp. gr. I41/amd – D19

4h, No. 141, 
formula units per unit-cell Z = 4, point group 4/mmm) with the following lattice parameters: a 
= b = 7.076 Å, c = 6.266 Å (for the Yb:Lu0.51Y0.45La0.01VO4 crystal) and a = b = 7.056 Å, c = 
6.253 Å (for the Yb:Lu0.74Y0.23La0.01VO4 one). The composition of the crystals and the Yb3+ 
doping concentration were determined by Inductively Coupled Plasma (ICP) atomic 
spectroscopy: NYb = 3.31 × 1020 cm−3 and 2.57 × 1020 cm−3 for the 2.6 at.% Yb-doped and 2 
at.% Yb-doped crystals, respectively. 

 

Fig. 2. Polarized Raman spectra for the a-cut (a) 2 at.% Yb:Lu0.74Y0.23La0.01VO4 and (b) 2.6 
at.% Yb:Lu0.51Y0.45La0.01VO4 crystals, λexc = 514 nm. 

The vibrational properties of the crystals were studied by polarized Raman spectroscopy, 
Fig. 2. For the point group 4/mmm, the irreducible representations at the center of the 
Brillouin zone (k = 0) are: Г = (2A1g + 2B1u) + (B1g + A1u) + (A2g + B2u) + (4B2g + 4A2u) + 
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(5Eg + 5Eu) of which 12 (2A1g + B1g + 4B2g + 5Eg) are Raman-active [15]. For the studied 
crystals, a total of 9 modes are clearly resolved in the spectra and the maximum phonon 
frequency hνph is 898 cm−1 (Yb:Lu0.74Y0.23La0.01VO4) and 895 cm−1 
(Yb:Lu0.51Y0.45La0.01VO4). These lines are assigned as ν1(A1g) and correspond to internal 
symmetric vibrations of the tetrahedral [VO4]

3- groups [16]. 

3. Optical spectroscopy 

The absorption cross-section spectra (σabs) for the studied crystals are shown in Fig. 3(a, c) 
with the polarizations along π and σ. For Yb:Lu0.74Y0.23La0.01VO4, the maximum σabs 
corresponds to π-polarization, 5.2 × 10−20 cm2 at 984.5 nm (zero-phonon line, ZPL, the full 
width at half maximum (FWHM) of the absorption peak is 10.4 nm). For σ-polarization, the 
peak σabs value is 2.7 times lower and it is reached at 969.6 and 984.6 nm. For the 
Yb:Lu0.51Y0.45La0.01VO4 crystal, σabs for π-polarization is slightly lower, namely 4.4 × 10−20 
cm2 at 984.7 nm while the FWHM of the absorption peak is broader, 13.1 nm. Similarly, the 
absorption spectrum for σ-polarization features two peaks at 969.9 and 984.7 nm with 2.4 
times lower σabs. The determined FWHM values for the ZPL are broader than those in 
Yb:REVO4 (RE = Gd, Y and Lu) crystals and in the previously studied “mixed” vanadates 
Yb:Gd1-xYxVO4 and Yb:Lu1-xGdxVO4 [3]. The addition of large La3+ ions (ionic radius: 1.16 
Å compared to 1.053 Å for Gd3+, 1.019 Å for Y3+, and 0.977 Å for Lu3+ in VIII-fold O2- 
coordination) is expected to contribute to the distortion of the crystal field and the observed 
spectral broadening. Indeed, it is known that LaVO4 is monoclinic (monazite ((Ce,La)PO4) 
type, sp. gr. P21/n) [17]. 

 

Fig. 3. Room temperature (293 K) optical spectroscopy of (a, b) 2 at.% Yb:Lu0.74Y0.23La0.01VO4 
and (c,d) 2.6 at.% Yb:Lu0.51Y0.45La0.01VO4 crystals: (a,c) absorption cross-sections, σabs, and (b, 
d) stimulated-emission cross-sections, σSE, for π and σ light polarizations. 

The stimulated-emission cross-sections, σSE, were calculated with a combination of the 
reciprocity method (RM) [18] and the Füchtbauer-Ladenburg (F-L) formula [19]. The latter 
method was applied for the long-wavelength part of the σSE spectra (>1050 nm). In the RM, 
the determined Yb3+ Stark splitting was considered (see Fig. 6). In the F-L method, the 
measured polarized luminescence spectra and the calculated radiative lifetimes, τrad (2F5/2), 
were used (see Fig. 3 and 4). The results obtained by the two methods were in reasonable 
agreement having in mind the effect of reabsorption on the measured luminescence spectra. 
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The results for σSE are shown in Fig. 3(b, d). In the spectral range where laser operation is 
expected, σSE amounts to ~1.1 × 10−20 cm2 at 1013 nm (π) or 1010 nm (σ) (for 
Yb:Lu0.74Y0.23La0.01VO4). For the Yb:Lu0.51Y0.45La0.01VO4 crystal, the corresponding σSE are 
slightly lower, 1.0 × 10−20 cm2 at 1012 nm (π) or 1009 nm (σ). 

The measured luminescence decay curves (excitation at 980 nm, luminescence at 1010 
nm), see Fig. 4, are clearly single-exponential for both crystals and the decay time τlum is 363 
μs (for the Yb:Lu0.74Y0.23La0.01VO4 crystal). For the Yb:Lu0.51Y0.45La0.01VO4 crystal, τlum is 
longer, 384 μs, explaining the difference in the transition cross-sections. Both lifetimes 
determined lifetimes are longer than those for Yb:REVO4 (RE = Gd, Y and Lu) crystals, for 
which τlum = 247-345 μs [3]. 

 

Fig. 4. Room-temperature (293 K) luminescence decay curves for powdered (a) 2 at.% 
Yb:Lu0.74Y0.23La0.01VO4 and (b) 2.6 at.% Yb:Lu0.51Y0.45La0.01VO4 crystals, λlum = 1010 nm, λexc 
= 980 nm. Symbols are the experimental data, red lines are their single-exponential fits. 

The Stark splitting of the Yb3+ multiplets has been determined with low-temperature (LT, 
6 K) absorption and emission spectroscopy for polarized light assuming J + 1/2 splitting of 
each multiplet, see Fig. 5. 
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Fig. 5. Low-temperature (6 K) spectroscopy of (a,b) 2 at.% Yb:Lu0.74Y0.23La0.01VO4 and (c,d) 
2.6 at.% Yb:Lu0.51Y0.45La0.01VO4 crystals: (a, c) absorption spectra and (b, d) 
photoluminescence (PL) spectra, λexc = 973 nm, for π and σ light polarizations. 

The absorption and emission lines corresponding to the 0 → j' and 0' → i transitions are 
assigned (here, the indices i = 0-3 and j' = 0'-2' are the sub-levels of the 2F7/2 ground-state and 
2F5/2 excited-state, respectively). This allowed us to plot the scheme of the energy levels of 
Yb3+ in the studied crystals, Fig. 6. In this figure, the calculated partition functions [18] for 
both multiplets Z1(2) are indicated, i.e., for Yb:Lu0.74Y0.23La0.01VO4, Z1 (

2F7/2) = 1.82 and Z2 
(2F5/2) = 1.48, so that Z1/Z2 = 1.23. 

 

Fig. 6. Stark structure of the energy levels of Yb3+ in (a) Lu0.74Y0.23La0.01VO4 and (b) 
Lu0.51Y0.45La0.01VO4 crystals, Z1(2) are the partition functions, numbers denote the energies of 
the 0-3 (2F7/2) and 0'-2' (2F5/2) sub-levels (in cm−1), arrows indicate the transitions in absorption 
(blue) and emission (red) at low temperature and the corresponding wavelengths 

In Fig. 7, the so-called barycenter plot is presented for different Yb3+-doped crystals [20] 
where the barycenter energy of the 2F5/2 excited-state is plotted vs. the barycenter energy of 
the 2F7/2 ground-state. For RE3+, the barycenter of any 2S + 1LJ(4fn) multiplet shows a linear 
variation with the barycenter of any other isolated 4fn multiplet. For Yb3+, this dependence is 
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expressed by the formula ‹E›(2F5/2) = 10166.6 + 0.997‹E›(2F7/2) cm−1 [20]. The determined 
Stark splitting is well in line with this trend. 

 

Fig. 7. A barycenter plot for Yb3+ in different crystals (barycenter energy ‹E› for the 2F5/2 upper 
laser level vs. ‹E› for the 2F7/2 ground-state): symbols – experimental data, line – their linear fit. 
Crystals: KGW – KGd(WO4)2, YLF – LiYF4, YAP – YAlO3, YAB – YAl3(BO3)4, YSO – 
Y2SiO5, CAS – Ca2Al2SiO7, YAG – Y3Al5O12, YCOB –YCa4O(BO3)3. 

Based on the determined Stark splitting and using the modified reciprocity method [21], 
we calculated the radiative lifetimes of the 2F5/2 state as τrad = 305 μs 
(Yb:Lu0.74Y0.23La0.01VO4) and 325 μs (Yb:Lu0.51Y0.45La0.01VO4). The difference in τrad and τlum 
(cf. Figure 4) reflects the effect of radiation-trapping on the measured luminescence decay 
curves. Still, the radiative lifetime for Yb:Lu0.51Y0.45La0.01VO4 is longer and both values are 
longer than those for the Yb:REVO4 crystals [6]. 

According to the quasi-three-level nature of the Yb3+ laser, the gain cross-sections, σgain = 
βσSE – (1–β)σabs, were calculated, see Fig. 8. Here, β = N2(

2F5/2)/NYb is the inversion ratio. For 
both π and σ light polarizations, the σgain spectra are smooth and broad. The gain bandwidth 
(FWHM) is 41 nm (π) or 33 nm (σ) for Yb:Lu0.74Y0.23La0.01VO4 and 39 nm (π) or 29 nm (σ) 
for Yb:Lu0.51Y0.45La0.01VO4 (for β = 0.2) indicating high suitability of the grown crystals for 
broadly tunable and sub-100-fs ML lasers. Indeed, the determined gain bandwidths are 
broader than those calculated for Yb:YVO4 and Yb:Gd0.64Y0.36VO4 at the same inversion level 
for π-polarization (32 nm and 33.5 nm, respectively) [13]. 
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Fig. 8. (a, b) Gain cross-sections, σgain = βσSE – (1–β)σabs, for the 2F5/2 → 2F7/2 transition of Yb3+ 
in Lu0.74Y0.23La0.01VO4 for π (a) and σ (b) polarizations, β = N2(

2F5/2)/NYb is the inversion ratio. 
Figure 8. (c, d) Gain cross-sections, σgain = βσSE – (1–β)σabs, for the 2F5/2 → 2F7/2 transition of 
Yb3+ in Lu0.51Y0.45La0.01VO4 for π (c) and σ (d) polarizations. 

4. Laser operation 

For the laser experiments, the crystals were oriented for light propagation along the a-axis (a-
cut). The dimensions were 3 (a) × 3 (c) × 3 (a) mm3; both input and output faces were 
polished to laser quality and remained uncoated. The crystals were wrapped using In foil to 
improve the thermal contact from all 4 lateral sides and mounted in a Cu-holder water-cooled 
to 12 °C. Two laser cavities were designed. 

Cavity #1 (compact plane-concave) was formed by a concave (R = 100 mm) pump mirror 
(PM) highly reflective (HR) coated for 1.01-1.2 μm and with high transmission (HT) at the 
pump wavelength (~980 nm), and a flat output coupler (OC) having a transmission TOC of 5% 
at 1.01-1.1 μm. The crystal was placed close to the PM. The total cavity length Lcav was ~20 
mm. Cavity #2 (microchip-type) utilized a flat PM with a similar coating and a set of flat OCs 
with TOC = 1%, 2.5%, 5% or 10%. Both PM and OC were placed close to the crystal surfaces 
resulting in Lcav ~3 mm. The crystal was pumped by fiber-coupled (fiber core diameter: 200 
μm, numerical aperture, N.A. = 0.22) InGaAs laser diodes emitting unpolarized output at 
~978 nm (up to 25 W and 17 W for cavity #1 and #2, respectively). A lens assembly (1:1 re-
imaging ratio, f = 30 mm) was used to collimate and focus the pump radiation. The pump spot 
radius in the crystal wp was 100 μm and the confocal parameter 2zR was 1.8 mm. 

The input-output dependences for cavity #1 are shown in Fig. 9. For both crystals, the 
laser output was linearly polarized (π) with the polarization naturally-selected by the 
anisotropy of the gain. The Yb:Lu0.74Y0.23La0.01VO4 laser generated 5.0 W at ~1044 nm with a 
slope efficiency η of 43% (with respect to the absorbed pump power Pabs). The laser threshold 
was at Pabs = 4.3 W. The output performance for the Yb:Lu0.51Y0.45La0.01VO4 laser was 
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inferior: The maximum output power reached 4.15 W at lower η of 33% and higher threshold, 
(4.9 W). For both crystals, the input-output dependences was linear at least up to Pabs = 16 W. 

 

Fig. 9. Input-output dependences of cavity #1 for CW Yb:Lu1-x-yYxLayVO4 lasers, η – slope 
efficiency. 

The results obtained with the microchip-type cavity and the Yb:Lu0.74Y0.23La0.01VO4 
crystal are shown in Fig. 10 (a, b). Microchip laser operation with the Yb:REVO4 crystals is 
possible due to the positive dn/dT coefficients, and, consequently, positive sign of the thermal 
lens [4]. The maximum output power was 2.01 W at 1033-1038 nm with η = 37% (for TOC = 
5%). Further power scaling was limited by the available pump power. With the increase of 
TOC, the emission wavelength shortened from 1045 to 1050 nm (for TOC = 1%) to 1023-1027 
nm (for TOC = 10%), in agreement with the gain spectra, see Fig. 8(a). The multi-peak 
emission from the microchip-type laser was related to etalon effects. The output of the 
microchip laser was also naturally π-polarized. 

 

Fig. 10. Input-output dependences and typical laser emission spectra measured at maximum 
Pabs for CW Yb:Lu1-x-yYxLayVO4 lasers with microchip-type laser cavity #2, η – slope 
efficiency. 

5. Conclusion 

The tetragonal Yb:Lu1-x-yYxLayVO4 crystals offer strongly polarized spectral bands 
(absorption and emission) with enhanced inhomogeneous broadening compared to previously 
reported “mixed” orthovanadates. For Yb:Lu0.74Y0.23La0.01VO4, the FWHM of the ZPL 
absorption peak is >10 nm, the stimulated-emission cross-section σSE is 1.1 × 10−20 cm2 at 
~1013 nm and the gain bandwidth is >40 nm (for π-polarization). Moreover, this crystal 
features relatively long radiative lifetime of the upper laser level, ~305 μs. Multi-watt CW 
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laser output at ~1044 nm is demonstrated in the Yb:Lu1-x-yYxLayVO4 crystals under diode-
pumping at 978 nm. The new crystals are very promising for sub-100 fs ML oscillators and 
broadly tunable lasers around 1 µm. 
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