

Growth, spectroscopy, and laser operation of "mixed" vanadate crystals Yb:Lu_{1-x-y}Y_xLa_yVO₄

BIN ZHAO,¹ YANPING YE,¹ JIANZHONG CHEN,¹ HAIFENG LIN,² GE ZHANG,² XAVIER MATEOS,³ JOSEP MARIA SERRES,³ MAGDALENA AGUILÓ,³ FRANCESC DÍAZ,³ PAVEL LOIKO,⁴ UWE GRIEBNER,⁵ VALENTIN PETROV,⁵ AND WEIDONG CHEN^{2,5,*}

 ¹College of Chemistry, Fuzhou University, Fuzhou, 350116 Fujian, China
²Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, China
³Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Dept. Química Física i Inòrganica, Universitat Rovira i Virgili (URV), Campus Sescelades, E-43007 Tarragona, Spain
⁴ITMO University, 49 Kronverkskiy pr., 197101 St. Petersburg, Russia
⁵Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489 Berlin, Germany
*chenweidong@fjirsm.ac.cn

Abstract: We report on the crystal growth, structure, Raman and optical spectroscopy of novel "mixed" tetragonal vanadates, Yb:Lu_{1-x-y}Y_xLa_yVO₄. Optical absorption, stimulatedemission, and gain cross-section spectra of Yb³⁺ are determined for π and σ polarizations. For a Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ crystal, the absorption bandwidth is >10 nm, the σ_{SE} is 1.1×10^{-20} cm² at 1013 nm, the gain bandwidth is >40 nm (for π -polarization), and the radiative lifetime of the ²F_{5/2} state is ~305 µs. The Stark splitting of the Yb³⁺ multiplets is determined using low-temperature (6 K) spectroscopy. A diode-pumped *a*-cut 2 at.% Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ laser generated 5.0 W at 1044 nm with a slope efficiency of 43%. The developed materials are promising for sub-100 fs mode-locked lasers at ~1 µm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (140.3380) Laser materials; (140.3480) Lasers, diode-pumped; (140.3070) Infrared and far-infrared lasers.

References and links

- J. Liu, V. Petrov, H. Zhang, J. Wang, and M. Jiang, "High-power laser performance of *a*-cut and *c*-cut Yb:LuVO₄ crystals," Opt. Lett. **31**(22), 3294–3296 (2006).
- D. J. Jovanović, A. Chiappini, L. Zur, T. V. Gavrilović, T. N. Lam Tran, A. Chiasera, A. Lukowiak, K. Smits, M. D. Dramićanin, and M. Ferrari, "Synthesis, structure and spectroscopic properties of luminescent GdVO₄:Dy³⁺ and DyVO₄ particles," Opt. Mater. **76**, 308–316 (2018).
- J. Liu, W. Han, H. Zhang, X. Mateos, and V. Petrov, "Comparative study of high-power continuous-wave laser performance of Yb-doped vanadate crystals," IEEE J. Quantum Electron. 45(7), 807–815 (2009).
- Y. Sato and T. Taira, "The studies of thermal conductivity in GdVO₄, YVO₄, and Y₃Al₅O₁₂ measured by quasione-dimensional flash method," Opt. Express 14(22), 10528–10536 (2006).
- P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, "Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO₄ and YVO₄ laser host crystals: erratum," Appl. Opt. 54(15), 4820–4822 (2015).
- V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, "Spectroscopy and continuous-wave diode-pumped laser action of Yb³⁺:YVO₄," Opt. Lett. 29(21), 2491–2493 (2004).
- C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb³⁺:YVO₄," Appl. Phys. B **79**(5), 543–546 (2004).
- J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, "Characteristics of a continuouswave Yb:GdVO₄ laser end pumped by a high-power diode," Opt. Lett. **31**(17), 2580–2582 (2006).
- V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, "Q-switched Yb³⁺:YVO₄ laser with Raman self-conversion," Appl. Phys. B 80(4), 471– 473 (2005).
- S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, "Passively mode-locked Yb:LuVO₄ oscillator," Opt. Express 14(24), 11668–11671 (2006).

#314785 Journal © 2018 https://doi.org/10.1364/OME.8.000493 Received 1 Dec 2017; revised 31 Jan 2018; accepted 1 Feb 2018; published 5 Feb 2018

- 11. J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, "Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO₄ laser," Opt. Express **14**(25), 12183–12187 (2006).
- Y. Yu, Y. Cheng, H. Zhang, J. Wang, X. Cheng, and H. Xia, "Growth and thermal properties of YbVO₄ single crystal," Mater. Lett. 60(8), 1014–1018 (2006).
- V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, "Spectroscopy and femtosecond laser performance of Yb³⁺:Gd_{0.64}Y_{0.36}VO₄ crystal," Appl. Phys. B **85**(4), 581–584 (2006).
 J. Liu, H. Zhang, X. Mateos, W. Han, V. Petrov, and J. Wang, "Low quantum defect laser oscillation of a new
- J. Liu, H. Zhang, X. Mateos, W. Han, V. Petrov, and J. Wang, "Low quantum defect laser oscillation of a new mixed Yb_{0.009}:Y_{0.575}Gd_{0.416}VO₄ crystal," Opt. Express 16(22), 17729–17734 (2008).
- A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO₄ and GdVO₄ new efficient χ⁽³⁾-materials for Raman lasers," Opt. Commun. **194**(1), 201–206 (2001).
- S. A. Miller, H. H. Caspers, and H. E. Rast, "Lattice vibrations of yttrium vanadate," Phys. Rev. 168(3), 964– 969 (1968).
- L. Z. Zhang, Z. B. Lin, and G. F. Wang, "Growth and spectral properties of Yb³⁺ doped LaVO₄ crystal," Mater. Res. Innov. 10(4), 421–423 (2006).
- S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er³⁺, Tm³⁺, and Ho³⁺," IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
- B. Aull and H. Jenssen, "Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections," IEEE J. Quantum Electron. 18(5), 925–930 (1982).
- P. H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, "Spectroscopic and crystal-field analysis of new Yb-doped laser materials," J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
- A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel', A. V. Mandrik, and N. V. Kuleshov, "Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers," J. Appl. Spectrosc. 71(2), 202–208 (2004).

1. Introduction

Tetragonal (zircon (ZrSiO₄) type, sp. gr. $I4_1/amd$) orthovanadate crystals, REVO₄ where RE = Gd, Y, or Lu, are very suitable hosts for rare-earth laser-active ions. These materials are optically uniaxial (the optical axis is parallel to the crystallographic *c*-axis) and offer linearly polarized laser output [1-2], relatively high transition cross-sections for the dopant ions [3] and good thermo-mechanical and thermo-optical properties (high thermal conductivity, low thermal expansion, positive dn/dT coefficients and weak thermal lensing) [4-5]. Recently, REVO₄ crystals have been studied for Yb³⁺ doping [1,3,6–8] resulting in efficient continuous-wave (CW) [1], Q-switched [9] and sub-100 fs mode-locked (ML) oscillators [10]. Optical bistability has been also observed in CW Yb:REVO₄ lasers [11]. In ref [1], a diode-pumped CW *a*-cut Yb:LuVO₄ laser generated 8.3 W of π -polarized output at 1031 nm with a slope efficiency of 80% (with respect to the absorbed pump power). In ref [10], a semiconductor saturable absorber mirror (SESAM) was used to generate 58-fs-long laser pulses from a ML Yb:LuVO₄ laser at 1036 nm at a repetition rate of 94 MHz.

In the REVO₄ crystals, there is a single site for accommodating the RE³⁺ ions (D_{2d} symmetry, VIII-fold O²⁻ coordination). The Yb³⁺ ions replace the RE³⁺ ones resulting in a RE_{1-x}Yb_xVO₄ composition. Stoichiometric tetragonal YbVO₄ crystals also exist but the fluorescence quenching effect is determental [12]. Besides the ordered Yb:REVO₄ compounds, "mixed" crystals, e.g. Yb:Gd_{1-x}Y_xVO₄ or Yb:Lu_{1-x}Gd_xVO₄, can be grown with good optical quality [3,13,14]. Due to the inhomogeneous broadening of the Yb³⁺ spectral bands as a result of the local disorder leading to slightly varying crystal field strengths, such crystals are of interest for shortening of the pulse from ML lasers. In ref [13], a SESAM ML Yb:Gd_{0.64}Y_{0.36}VO₄ crystal) with a spectral bandwidth of ~33 nm (for π -polarization).

In the present work, we have grown, characterized and demonstrated CW laser operation of novel "mixed" vanadate crystals, Yb:Lu_{1-x-y}Y_xLa_yVO₄, featuring a strong broadening of the spectral bands due to the particular "mixture" of passive ions (Lu³⁺, Y³⁺ and La³⁺) with pronounced ionic radius difference.

2. Crystal growth and structure

Crystals with two different compositions of 2.6 at.% Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ and 2 at.% Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ were grown by the Czochralski method in N₂ + 2 vol.% O₂ atmosphere using Ir crucibles and [100]-oriented undoped YVO₄ seeds. The pulling rate was 2-3 mm/h and the rotation rate was 10-30 rpm (revolutions per minute). The as-grown crystals were cooled down to room temperature (RT, 293 K) at 30–80 °C/h and annealed in air at 1200 °C for 20 h. The obtained boules with dimensions of Ø25 × 20 mm³, Fig. 1(a),(b), were of high optical quality. The as-grown crystals had yellowish coloration which could be partially removed by annealing in air. For the spectroscopic and laser studies, 3 mm-thick rectangular samples were cut along the *a*-axis with an aperture of 3 × 3(*c*) mm². They provided access to both principal light polarizations of the uniaxial vanadates, π (*E* || *c*) and σ (*E* \perp *c*)

Fig. 1. (a,b) Photographs of the as-grown crystals (a) 2 at.% $Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO_4$ and (b) 2.6 at.% $Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO_4$ crystals; (c) X-ray powder diffraction (XRD) patterns of these crystals (the numbers denote the Miller's indices (*hkl*)).

The structure and the phase purity of the grown crystals were confirmed by X-ray powder diffraction analysis, Fig. 1(c). Both crystals are tetragonal (sp. gr. $I4_1/amd - D_{4h}^{19}$, No. 141, formula units per unit-cell Z = 4, point group 4/mmn) with the following lattice parameters: a = b = 7.076 Å, c = 6.266 Å (for the Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ crystal) and a = b = 7.056 Å, c = 6.253 Å (for the Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ one). The composition of the crystals and the Yb³⁺ doping concentration were determined by Inductively Coupled Plasma (ICP) atomic spectroscopy: N_{Yb} = 3.31×10^{20} cm⁻³ and 2.57×10^{20} cm⁻³ for the 2.6 at.% Yb-doped and 2 at.% Yb-doped crystals, respectively.

Fig. 2. Polarized Raman spectra for the *a*-cut (a) 2 at.% Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ and (b) 2.6 at.% Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ crystals, $\lambda_{exc} = 514$ nm.

The vibrational properties of the crystals were studied by polarized Raman spectroscopy, Fig. 2. For the point group 4/mmn, the irreducible representations at the center of the Brillouin zone (k = 0) are: $\Gamma = (2A_{1g} + 2B_{1u}) + (B_{1g} + A_{1u}) + (A_{2g} + B_{2u}) + (4B_{2g} + 4A_{2u}) +$

 $(5E_g + 5E_u)$ of which 12 $(2A_{1g} + B_{1g} + 4B_{2g} + 5E_g)$ are Raman-active [15]. For the studied crystals, a total of 9 modes are clearly resolved in the spectra and the maximum phonon frequency hvph is 898 cm⁻¹ (Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄) and 895 cm⁻¹ (Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄). These lines are assigned as $v_1(A_{1g})$ and correspond to internal symmetric vibrations of the tetrahedral [VO₄]³⁻ groups [16].

3. Optical spectroscopy

The absorption cross-section spectra (σ_{abs}) for the studied crystals are shown in Fig. 3(a, c) with the polarizations along π and σ . For Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄, the maximum σ_{abs} corresponds to π -polarization, 5.2 × 10⁻²⁰ cm² at 984.5 nm (zero-phonon line, ZPL, the full width at half maximum (FWHM) of the absorption peak is 10.4 nm). For σ -polarization, the peak σ_{abs} value is 2.7 times lower and it is reached at 969.6 and 984.6 nm. For the Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ crystal, σ_{abs} for π -polarization is slightly lower, namely 4.4 × 10⁻²⁰ cm² at 984.7 nm while the FWHM of the absorption peak is broader, 13.1 nm. Similarly, the absorption spectrum for σ -polarization features two peaks at 969.9 and 984.7 nm with 2.4 times lower σ_{abs} . The determined FWHM values for the ZPL are broader than those in Yb:REVO₄ (RE = Gd, Y and Lu) crystals and in the previously studied "mixed" vanadates Yb:Gd_{1-x}Y_xVO₄ and Yb:Lu_{1-x}Gd_xVO₄ [3]. The addition of large La³⁺ ions (ionic radius: 1.16 Å compared to 1.053 Å for Gd³⁺, 1.019 Å for Y³⁺, and 0.977 Å for Lu³⁺ in VIII-fold O²⁻ coordination) is expected to contribute to the distortion of the crystal field and the observed spectral broadening. Indeed, it is known that LaVO₄ is monoclinic (monazite ((Ce,La)PO₄) type, sp. gr. $P2_1/n$) [17].

Fig. 3. Room temperature (293 K) optical spectroscopy of (a, b) 2 at.% Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ and (c,d) 2.6 at.% Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ crystals: (a,c) absorption cross-sections, σ_{abs} , and (b, d) stimulated-emission cross-sections, σ_{SE} , for π and σ light polarizations.

The stimulated-emission cross-sections, σ_{SE} , were calculated with a combination of the reciprocity method (RM) [18] and the Füchtbauer-Ladenburg (F-L) formula [19]. The latter method was applied for the long-wavelength part of the σ_{SE} spectra (>1050 nm). In the RM, the determined Yb³⁺ Stark splitting was considered (see Fig. 6). In the F-L method, the measured polarized luminescence spectra and the calculated radiative lifetimes, τ_{rad} (²F_{5/2}), were used (see Fig. 3 and 4). The results obtained by the two methods were in reasonable agreement having in mind the effect of reabsorption on the measured luminescence spectra.

The results for σ_{SE} are shown in Fig. 3(b, d). In the spectral range where laser operation is expected, σ_{SE} amounts to ~1.1 × 10⁻²⁰ cm² at 1013 nm (π) or 1010 nm (σ) (for Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄). For the Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ crystal, the corresponding σ_{SE} are slightly lower, 1.0 × 10⁻²⁰ cm² at 1012 nm (π) or 1009 nm (σ).

The measured luminescence decay curves (excitation at 980 nm, luminescence at 1010 nm), see Fig. 4, are clearly single-exponential for both crystals and the decay time τ_{lum} is 363 µs (for the Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ crystal). For the Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ crystal, τ_{lum} is longer, 384 µs, explaining the difference in the transition cross-sections. Both lifetimes determined lifetimes are longer than those for Yb:REVO₄ (RE = Gd, Y and Lu) crystals, for which $\tau_{lum} = 247-345$ µs [3].

Fig. 4. Room-temperature (293 K) luminescence decay curves for powdered (a) 2 at.% Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ and (b) 2.6 at.% Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ crystals, $\lambda_{lum} = 1010 \text{ nm}$, $\lambda_{exc} = 980 \text{ nm}$. Symbols are the experimental data, red lines are their single-exponential fits.

The Stark splitting of the Yb³⁺ multiplets has been determined with low-temperature (LT, 6 K) absorption and emission spectroscopy for polarized light assuming J + 1/2 splitting of each multiplet, see Fig. 5.

Fig. 5. Low-temperature (6 K) spectroscopy of (a,b) 2 at.% Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ and (c,d) 2.6 at.% Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ crystals: (a, c) absorption spectra and (b, d) photoluminescence (PL) spectra, $\lambda_{exc} = 973$ nm, for π and σ light polarizations.

The absorption and emission lines corresponding to the $0 \rightarrow j'$ and $0' \rightarrow i$ transitions are assigned (here, the indices i = 0.3 and j' = 0'.2' are the sub-levels of the ${}^{2}F_{7/2}$ ground-state and ${}^{2}F_{5/2}$ excited-state, respectively). This allowed us to plot the scheme of the energy levels of Yb³⁺ in the studied crystals, Fig. 6. In this figure, the calculated partition functions [18] for both multiplets $Z_{1(2)}$ are indicated, i.e., for Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄, Z_1 (${}^{2}F_{7/2}$) = 1.82 and Z_2 (${}^{2}F_{5/2}$) = 1.48, so that $Z_1/Z_2 = 1.23$.

Fig. 6. Stark structure of the energy levels of Yb^{3+} in (a) $Lu_{0.74}Y_{0.23}La_{0.01}VO_4$ and (b) $Lu_{0.51}Y_{0.45}La_{0.01}VO_4$ crystals, $Z_{1(2)}$ are the partition functions, *numbers* denote the energies of the 0-3 (²F_{7/2}) and 0'-2' (²F_{5/2}) sub-levels (in cm⁻¹), *arrows* indicate the transitions in absorption (*blue*) and emission (*red*) at low temperature and the corresponding wavelengths

In Fig. 7, the so-called barycenter plot is presented for different Yb^{3+} -doped crystals [20] where the barycenter energy of the ${}^{2}F_{5/2}$ excited-state is plotted vs. the barycenter energy of the ${}^{2}F_{7/2}$ ground-state. For RE³⁺, the barycenter of any ${}^{2S + 1}L_{J}(4f^{n})$ multiplet shows a linear variation with the barycenter of any other isolated $4f^{n}$ multiplet. For Yb³⁺, this dependence is

expressed by the formula $\langle E \rangle ({}^{2}F_{5/2}) = 10166.6 + 0.997 \langle E \rangle ({}^{2}F_{7/2}) \text{ cm}^{-1}$ [20]. The determined Stark splitting is well in line with this trend.

Fig. 7. A barycenter plot for Yb³⁺ in different crystals (barycenter energy $\langle E \rangle$ for the ${}^{2}F_{5/2}$ upper laser level vs. $\langle E \rangle$ for the ${}^{2}F_{7/2}$ ground-state): *symbols* – experimental data, *line* – their linear fit. Crystals: KGW – KGd(WO₄)₂, YLF – LiYF₄, YAP – YAlO₃, YAB – YAl₃(BO₃)₄, YSO – Y₂SiO₅, CAS – Ca₂Al₂SiO₇, YAG – Y₃Al₅O₁₂, YCOB – YCa₄O(BO₃)₃.

Based on the determined Stark splitting and using the modified reciprocity method [21], we calculated the radiative lifetimes of the ${}^{2}F_{5/2}$ state as $\tau_{rad} = 305$ µs (Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄) and 325 µs (Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄). The difference in τ_{rad} and τ_{lum} (cf. Figure 4) reflects the effect of radiation-trapping on the measured luminescence decay curves. Still, the radiative lifetime for Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ is longer and both values are longer than those for the Yb:REVO₄ crystals [6].

According to the quasi-three-level nature of the Yb³⁺ laser, the gain cross-sections, $\sigma_{gain} = \beta \sigma_{SE} - (1-\beta)\sigma_{abs}$, were calculated, see Fig. 8. Here, $\beta = N_2(^2F_{5/2})/N_{Yb}$ is the inversion ratio. For both π and σ light polarizations, the σ_{gain} spectra are smooth and broad. The gain bandwidth (FWHM) is 41 nm (π) or 33 nm (σ) for Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ and 39 nm (π) or 29 nm (σ) for Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ (for $\beta = 0.2$) indicating high suitability of the grown crystals for broadly tunable and sub-100-fs ML lasers. Indeed, the determined gain bandwidths are broader than those calculated for Yb:YVO₄ and Yb:Gd_{0.64}Y_{0.36}VO₄ at the same inversion level for π -polarization (32 nm and 33.5 nm, respectively) [13].

Fig. 8. (a, b) Gain cross-sections, $\sigma_{gain} = \beta \sigma_{SE} - (1-\beta)\sigma_{abs}$, for the ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition of Yb³⁺ in Lu_{0.74}Y_{0.23}La_{0.01}VO₄ for π (a) and σ (b) polarizations, $\beta = N_2({}^{2}F_{5/2})/N_{Yb}$ is the inversion ratio. Figure 8. (c, d) Gain cross-sections, $\sigma_{gain} = \beta \sigma_{SE} - (1-\beta)\sigma_{abs}$, for the ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition of Yb³⁺ in Lu_{0.51}Y_{0.45}La_{0.01}VO₄ for π (c) and σ (d) polarizations.

4. Laser operation

For the laser experiments, the crystals were oriented for light propagation along the *a*-axis (*a*-cut). The dimensions were 3 (*a*) \times 3 (*c*) \times 3 (*a*) mm³; both input and output faces were polished to laser quality and remained uncoated. The crystals were wrapped using In foil to improve the thermal contact from all 4 lateral sides and mounted in a Cu-holder water-cooled to 12 °C. Two laser cavities were designed.

Cavity #1 (compact plane-concave) was formed by a concave (R = 100 mm) pump mirror (PM) highly reflective (HR) coated for 1.01-1.2 µm and with high transmission (HT) at the pump wavelength (~980 nm), and a flat output coupler (OC) having a transmission T_{OC} of 5% at 1.01-1.1 µm. The crystal was placed close to the PM. The total cavity length L_{cav} was ~20 mm. Cavity #2 (microchip-type) utilized a flat PM with a similar coating and a set of flat OCs with $T_{OC} = 1\%$, 2.5%, 5% or 10%. Both PM and OC were placed close to the crystal surfaces resulting in L_{cav} ~3 mm. The crystal was pumped by fiber-coupled (fiber core diameter: 200 µm, numerical aperture, N.A. = 0.22) InGaAs laser diodes emitting unpolarized output at ~978 nm (up to 25 W and 17 W for cavity #1 and #2, respectively). A lens assembly (1:1 reimaging ratio, f = 30 mm) was used to collimate and focus the pump radiation. The pump spot radius in the crystal w_p was 100 µm and the confocal parameter $2z_R$ was 1.8 mm.

The input-output dependences for cavity #1 are shown in Fig. 9. For both crystals, the laser output was linearly polarized (π) with the polarization naturally-selected by the anisotropy of the gain. The Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ laser generated 5.0 W at ~1044 nm with a slope efficiency η of 43% (with respect to the absorbed pump power P_{abs}). The laser threshold was at $P_{abs} = 4.3$ W. The output performance for the Yb:Lu_{0.51}Y_{0.45}La_{0.01}VO₄ laser was

inferior: The maximum output power reached 4.15 W at lower η of 33% and higher threshold, (4.9 W). For both crystals, the input-output dependences was linear at least up to $P_{abs} = 16$ W.

Fig. 9. Input-output dependences of cavity #1 for CW Yb:Lu_{1-x-y}Y_xLa_yVO₄ lasers, η – slope efficiency.

The results obtained with the microchip-type cavity and the Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄ crystal are shown in Fig. 10 (a, b). Microchip laser operation with the Yb:REVO₄ crystals is possible due to the positive dn/dT coefficients, and, consequently, positive sign of the thermal lens [4]. The maximum output power was 2.01 W at 1033-1038 nm with $\eta = 37\%$ (for $T_{OC} = 5\%$). Further power scaling was limited by the available pump power. With the increase of T_{OC} , the emission wavelength shortened from 1045 to 1050 nm (for $T_{OC} = 1\%$) to 1023-1027 nm (for $T_{OC} = 10\%$), in agreement with the gain spectra, see Fig. 8(a). The multi-peak emission from the microchip-type laser was related to etalon effects. The output of the microchip laser was also naturally π -polarized.

Fig. 10. Input-output dependences and typical laser emission spectra measured at maximum P_{abs} for CW Yb:Lu_{1-x-y}Y_xLa_yVO₄ lasers with microchip-type laser cavity #2, η – slope efficiency.

5. Conclusion

The tetragonal Yb:Lu_{1-x-y}Y_xLa_yVO₄ crystals offer strongly polarized spectral bands (absorption and emission) with enhanced inhomogeneous broadening compared to previously reported "mixed" orthovanadates. For Yb:Lu_{0.74}Y_{0.23}La_{0.01}VO₄, the FWHM of the ZPL absorption peak is >10 nm, the stimulated-emission cross-section σ_{SE} is 1.1×10^{-20} cm² at ~1013 nm and the gain bandwidth is >40 nm (for π -polarization). Moreover, this crystal features relatively long radiative lifetime of the upper laser level, ~305 µs. Multi-watt CW

laser output at ~1044 nm is demonstrated in the Yb:Lu_{1-x-y}Y_xLa_yVO₄ crystals under diodepumping at 978 nm. The new crystals are very promising for sub-100 fs ML oscillators and broadly tunable lasers around 1 μ m.

Funding

National Natural Science Foundation of China (No.61575199, No.11404332, No.J1103303, No.61775039); Key Project of Science and Technology of Fujian Province (2016H0045); Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000); Instrument Project of Chinese Academy of Sciences (YZ201414) and the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (2008DP173016); Spanish Government (MAT2016-75716-C2-1-R, (AEI/FEDER,UE), TEC 2014-55948-R); Generalitat de Catalunya (2014SGR1358).

Acknowledgments

F. D. acknowledges additional support through the ICREA academia award 2010ICREA-02 for excellence in research. P. L. acknowledges financial support from the Government of the Russian Federation (Grant No. 074-U01) through ITMO Post-Doctoral Fellowship scheme.