Accepted Manuscript

Macrolide therapy is associated with lower mortality in community-acquired bacteraemic pneumonia

Forest W. Arnold, Gustavo Lopardo, Timothy L. Wiemken, Robert Kelley, Paula Peyrani, William A. Mattingly, Charles Feldman, Martin Gnoni, Rosemeri Maurici, Julio A. Ramirez, for the Community-Acquired Pneumonia Organization (CAPO)

PII: S0954-6111(18)30191-4

DOI: 10.1016/j.rmed.2018.05.020

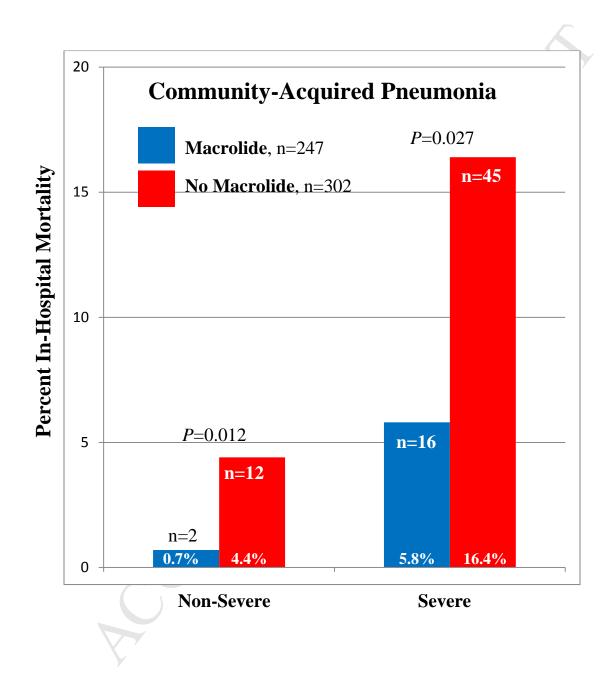
Reference: YRMED 5450

To appear in: Respiratory Medicine

Received Date: 1 December 2016

Revised Date: 23 May 2018

Accepted Date: 28 May 2018


Please cite this article as: Arnold FW, Lopardo G, Wiemken TL, Kelley R, Peyrani P, Mattingly WA, Feldman C, Gnoni M, Maurici R, Ramirez JA, for the Community-Acquired Pneumonia Organization (CAPO),Macrolide therapy is associated with lower mortality in community-acquired bacteraemic pneumonia, *Respiratory Medicine* (2018), doi: 10.1016/j.rmed.2018.05.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Comparison of mortality difference among patients who had community-acquired pneumonia and bacteremia with and without a macrolide

1			
2	Macrolide Therapy is Associated with Lower Mortality in		
3	Community-Acquired Bacteraemic Pneumonia		
4			
5 6 7 8 9	 Forest W. Arnold^{*1}, DO, MSc, Gustavo Lopardo^{*2}, MD, Timothy L. Wiemken¹, PhD, MPH, Robert Kelley¹, PhD, Paula Peyrani¹, MD, William A. Mattingly¹, PhD, Charles Feldman³, MB BCh, DSc, PhD, Martin Gnoni⁴, MD, Rosemeri Maurici⁵, MD, and Julio A. Ramirez¹, MD for the Community-Acquired Pneumonia Organization (CAPO) 		
10			
11 12	1 Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA		
13	2 Hospital Profesor Bernardo Houssay, Buenos Aires, Argentina		
14 15	3 Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa		
16	4 Good Samaritan Hospital, Cincinnati, Ohio, USA		
17	5 University Hospital, Federal University of Santa Catarina, Santa Catarina, Brazil		
18	CAPO Investigators: e-Appendix		
19 20 21 22	Forest W. Arnold <u>f.arnold@louisville.edu</u>		
23	Gustavo Lopardo		
24	glopardo@intramed.net		
25			
26 27	Timothy L. Wiemken		
27 28	<u>Tim.Wiemken@louisville.edu</u>		
20 29	Robert Kelley		
30	rrkelley@smcm.edu		

31	
32	Paula Peyrani
33	P0peyr01@louisville.edu
34	
35	William A. Mattingly
36	Bill.Mattingly@louisville.edu
37	
38	Charles Fledman
39	Charles.Feldman@wits.ac.za
40	
41	Martin Gnoni
42	tincoinfectologo@gmail.com
43	
44	Rosemeri Maurici
45	Rosemaurici@gmail.com
46	
47	Julio A. Ramirez
48	Julio.Ramirez@louisville.edu
49	
50	
51	This study was not funded
52	Ý
53	
54	
55	
56	
57	
58	
59	Corresponding Author:
60	Forest W. Arnold
61	501 E. Broadway; Suite 140 B
62	Louisville, KY 40202 USA
63	(502)562-3473
64	f.arnold@louisville.edu
CF	

66 Key Words

67 Community-acquired pneumonia, mortality, bacteremia, antimicrobial treatment

68

- 69 Take home message:
- 70 In patients with bacteremic CAP, an antimicrobial regimen including a macrolide was associated
- 71 with lower mortality.

72

73 Abbreviation List

- 74 CAP community-acquired pneumonia
- 75 CAPO Community-Acquired Pneumonia Organization
- 76 CI confidence interval
- 77 HIV human immunodeficiency virus
- 78 IQR interquartile ratio
- 79 OR odds ratio
- 80 PSI pneumonia severity index
- 81 RCT randomized control trial
- 82 RR relative risk
- 83 SD standard deviation

85 Abstract

Background: Community-acquired pneumonia (CAP) has a potential complication of
bacteremia. The objective of this study was to define the clinical outcomes of patients with CAP
and bacteremia treated with and without a macrolide.

Materials and Methods: Secondary analysis of the Community-Acquired Pneumonia
Organization database of hospitalized patients with CAP. Patients with a positive blood culture
were categorized based on the presence or absence of a macrolide in their initial antimicrobial
regimen, and severity of their CAP. Outcomes included in-hospital all-cause mortality, 30-day
mortality, length of stay, and time to clinical stability.

Results: Among 549 patients with CAP and bacteremia, 247 (45%) were treated with a 94 macrolide and 302 (55%) were not. The primary pathogen was Streptococcus pneumoniae 95 (74%). Poisson regression with robust error variance models were used to compare the adjusted 96 effects of each study group on the outcomes. The unadjusted 30-day mortality was 18.4% in the 97 macrolide group, and 29.6% in the non-macrolide group (adjusted relative risk (aRR)0.81; 95% 98 confidence interval (CI)0.50-1.33; P=0.41). Unadjusted in-hospital all-cause mortality was 7.3% 99 in the macrolide group, and 18.9% in the non-macrolide group (aRR 0.54, 95% CI 0.30-0.98; 100 P=0.043). Length of stay and time to clinical stability were not significantly different. 101

Conclusions: In-hospital mortality, but not 30-day mortality, was significantly better in the
 macrolide group. Our data support the use of a macrolide in hospitalized patients with CAP and
 bacteraemia.

105 Introduction

106	Despite the introduction of antimicrobials and subsequent investment into the treatment
107	of pneumonia, it is still the 8 th leading cause of death in the world; and the number one cause of
108	death due to an infectious disease. ¹ Macrolides, combined with a β -lactam such as ceftriaxone,
109	are recommended by the Infectious Diseases Society of America/American Thoracic Society
110	guidelines for community-acquired pneumonia (CAP) for any patient admitted to a general
111	medical ward with CAP. An equally recommended regimen is a respiratory fluoroquinolone
112	alone. In ICU patients, a β -lactam may be combined with a macrolide or a fluoroquinolone.
113	Both the macrolide and non-macrolide options cover typical (e.g., Streptococcus pneumoniae)
114	and atypical (e.g., Chlamydia pneumoniae, Legionella pneumophila, and Mycoplasma
115	pneumoniae) pathogens. Macrolides are known to have antibacterial as well as
116	immunomodulatory properties. ²⁻⁴ This immunomodulation activity cannot be studied without
117	the confounder of antibacterial properties because everyone with CAP receives an antimicrobial,
118	but the combined immunomodulatory and antibacterial activity may still be studied by
119	comparing those who received a macrolide to those who did not. The benefit of
120	immunomodulation may be better recognized in patients with CAP complicated by bacteremia
121	because the difference in outcomes is easier to appreciate among patients with more severe
122	disease. The objective of this study was to define the clinical outcomes of patients with CAP and
123	bacteremia treated with and without a macrolide.

- 124
- 125

126 Materials and Methods

127 Population and Study Design

This was a secondary analysis of the community-acquired pneumonia organization (CAPO) 128 database from June 1, 2001 to November 29, 2013. The CAPO database includes hospitalized 129 130 patients with CAP, and for this study represents data from 83 hospitals in 18 countries. Countries were categorized into world regions. The US and Canada were designated as region 1, 131 Europe as region 2, and Central and South America as region 3. The procedure for collecting 132 and validating data was previously described.⁵ Each local internal review board approved the 133 study, and patient consent was waived due to the retrospective and observational study design. 134 Medical records were randomly selected among all patients diagnosed with CAP at each 135 participating hospital. All patients with bacteremia were reviewed, but those with positive blood 136 cultures with coagulase-negative Staphylococcus, Enterococcus spp. Candida spp, Salmonella 137 and non-tuberculous mycobacteria were excluded. Patients with CAP due to S. aureus with 138 unknown oxacillin sensitivity information were categorized as having Methicillin-sensitive S. 139 aureus. Demographic information and antimicrobial treatment were collected. 140

141

142 Definitions

CAP was defined using data that were radiological (the presence of a new pulmonary infiltrate found on chest radiograph), plus clinical (new or increased cough, abnormal temperature (<35.6°C or >37.8°C), or abnormal and leukocyte count (leukocytosis, left shift, or leucopenia as defined by local laboratory values); as described previously.⁵ Severity of disease was defined using the pneumonia severity index. Patients were included into the macrolide group if they received a macrolide antibiotic within the first 24 hours of their hospitalization. Patients considered to have non-severe disease had a pneumonia severity index risk class of I, II or III,

150 while patients with severe disease had a risk class of IV or V. In-hospital all-cause mortality was defined as the total mortality during the entire hospitalization. The 30-day mortality outcome 151 was defined as death within 30 days of admission. Length of stay, in days, was calculated as the 152 day of discharge minus the day of hospitalization. Patients who died during hospitalization were 153 attributed 14 days for their length of stay outcome. Time to clinical stability was evaluated over 154 the first seven days after admission. Criteria defining clinical stability were the 2001 ATS 155 156 criteria for switch from intravenous to oral antibiotic therapy: 1) improvement in cough and shortness of breath; 2) afebrile status for $\geq 8 h (\langle 37.8^{\circ}C \rangle; 3)$ normalizing leukocyte count by at 157 least 10% from the previous day; and 4) adequate oral intake.⁶ 158

159

160 *Statistics*

Data were prepared as frequencies with proportions and means with standard deviations (SD) or 161 medians with interquartile ranges (IQR). Bivariate analyses were applied to categorical 162 variables, which were compared using χ^2 test or Fisher's Exact Test, while continuous variables 163 were compared using the Student's t-test or the Mann-Whitney U-test. Unadjusted comparisons 164 between study group with respect to length of stay and time to clinical stability were calculated 165 using Kaplan Meier curves, and statistical significance was determined using the Log-Rank test. 166 The PSI was modeled using a restricted cubic spline as it was not expected to linearly predict all 167 168 outcomes.

169

170 To compare the adjusted effect of each study group on length of stay and time to clinical

171 stability, accelerated failure time survival models were computed using lognormal distributions.

172	Adjusted survival plots were created from each model. To compare the adjusted effect of each
173	study group on mortality, Poisson Regression models were used. Since the outcomes were
174	binary and the assumptions for the Poisson models were not met, robust error variance estimators
175	were applied to the results to correct the standard errors. ⁷ This approach allowed us to compute
176	risk ratios (RR) and 95% confidence intervals (CI). The effect estimates were adjusted for need
177	for ICU immediately upon admission, chronic obstructive pulmonary disease history, pneumonia
178	severity index, and human immunodeficiency virus infection. These confounders were selected
179	based on previous literature. ⁸ A P value of <0.05 was considered statistically significant.
180	Statistical analyses were performed using R, version 3.2.2. (R foundation for statistical
181	computing, Vienna, Austria).
182	
183	
184	Results
185	The total number of CAPO database patients reviewed was 7789. Among those, 5181 patients
186	had blood cultures taken, of whom 549 patients were positive with a CAP-related pathogen; 247
187	(45%) in the macrolide group and 302 (55%) in the non-macrolide group. A patient with
188	Salmonella bacteremia and another with a non-tuberculous mycobacterium bacteremia were
189	excluded. Patient demographics are in Table 1.

191 **Table 1**

- 192Demographics of patients with CAP treated with a macrolide or a non-macrolide
- 193 antibiotic regimen.

194	Variable	Macrolide	No Macrolide	P-value
195	GENERAL			
196	Total (%)	247 (45)	302 (55)	
197	Age, Median (IQR*)	59 (30.0)	64.5 (35.8)	0.244
198	Sex, n (%)	141 (57)	180 (60)	0.602
199	ICU admission, n (%)	53 (21)	95 (31)	0.009
200	Nursing home resident, n (%)	9 (4)	23 (8)	0.066
201	Antibiotics in prior 30 days, n (%)	23 (9)	40 (13)	0.179
202	Pneumonia Severity Index, Median (IQR)	86 (46.5)	94.5 (49.8)	0.004
203	COMORBIDITIES			
204	Congestive Heart Failure, n (%)	43 (17)	42 (14)	0.286
205	COPD, n (%)	35 (14)	58 (19)	0.137
206	Diabetes, n (%)	45 (18)	55 (18)	>0.999
207	HIV, n (%)	31 (13)	61 (20)	0.021
208	Liver Disease, n (%)	20 (8)	30 (10)	0.551
209	Neoplastic Disease, n (%)	22 (9)	31 (10)	0.664
210	Pleural effusion, n (%)	68 (28)	97 (32)	0.262
211	Renal Disease, n (%)	27 (11)	39 (13)	0.511
212	VITAL SIGNS			
213	Temperature, Median °F (IQR)	100.9 (3.4)	100.4 (3.7)	0.218
214	Systolic blood pressure, Median mmHg (IQR)	116 (28.8)	119 (36)	0.655

215	Heart rate, Median beats/min (IQR)	110 (28)	110 (24.8)	0.457
216	Respiratory Rate, Median respirations/min (IQ	PR) 24 (9)	24 (12)	0.372
217	Altered mental status on admission, n (%)	33 (14)	58 (19)	0.083
218	LABORATORY VALUES			
219	Blood Urea Nitrogen, Median mg/DL (IQR)	33 (39.9)	31 (34.2)	0.831
220	Hematocrit, Median % (IQR)	38 (6.5)	36.3 (9.3)	0.05
221	PaO2, Median mmHg (IQR)	63 (19.1)	61 (23.6)	0.453
222	pH, Median (IQR)	7.442 (0.06)	7.425 (0.12)	0.033
223	Serum glucose, Median mg/DL (IQR)	112 (40.5)	114 (47.5)	0.882
224	Serum sodium, Median mmol/L (IQR)	135 (7)	135 (7)	0.634
225				

226 COPD, chronic obstructive pulmonary disease; HIV, human immunodeficiency virus; IQR,

227 interquartile range

* All IQRs are given as the difference between the 1st and 3rd quartiles.

229

The number of patients in each world region were: US/Canada 233 (42%) patients, Europe 175

231 (32%) patients and Central/South America 141 (26%) patients. The pathogens infecting patients

included primarily *Streptococcus pneumoniae*, but also *Staphylococcus aureus* (Table 2).

234 Table 2

235 Pathogens identified in 549 patients with CAP.

236

237	Pathogen	Macrolide (%)	No Macrolide (%)
238	Streptococcus pneumoniae	184 (75)	219 (73)
239	Staphylococcus aureus	6 (2)	3 (<1)
240	MRSA	7 (3)	20 (7)
241	MSSA	13 (6)	15 (5)
242	Escherichia coli	5 (4)	15 (5)
243	Haemophilus influenzae	8 (4)	11 (4)
244	Pseudomonas aeruginosa	6 (2)	7 (2)
245	Moraxella catarrhalis	5 (2)	3 (<1)
246	Streptococcus pyogenes	2 (<1)	2 (<1)
247	Klebsiella pneumoniae	3 (1)	2 (<1)
248	Acinetobacter spp.	1 (<1)	2 (<1)
249	Proteus spp.	2 (<1)	0
250	Enterobacter spp.	0	(<1)
251			

251

252 MRSA – Methicillin resistant *Staphylococcus aureus*, MSSA – Methicillin sensitive

253 Staphylococcus aureus

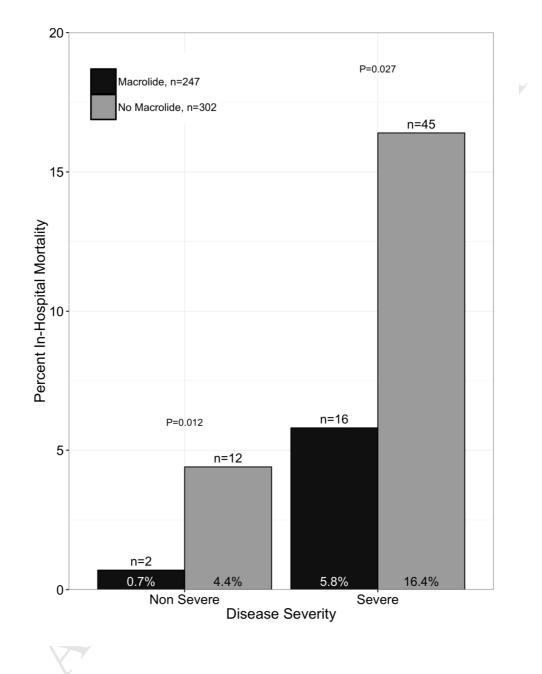
254 The antimicrobial regimens prescribed to all the patients are in Table 3. The most common

regimens were a β -lactam with or without a macrolide, and a fluoroquinolone with or without a

 β -lactam. In the ICU, 89 of 148 (60%) patients received a β -lactam with or without a fluoroquinolone, while 42 of 148 (28%)

257 received a β -lactam plus a macrolide	257	received a	β-lactam	plus a	macrolide.
---	-----	------------	----------	--------	------------

257	received a β -lactam plus a macrolide.		A.	
258				
259	Table 3			
260	Antimicrobial regimen categories prescribed to pat	tients with CAP.	S	
261				
262	Macrolide Containing Regimen	No. (%)	Non-macrolide Containing Regimen	No. (%)
263	β -lactam + Macrolide \pm other*	220 (40)	β -lactam ± other*	145 (26)
264	$Fluoroquinolone + \beta \text{-lactam} + Macrolide \pm other*$	1 (<1)	Fluoroquinolone ± other*	75 (14)
265	Fluoroquinolone + Macrolide \pm other*	6 (1)	$Fluoroquinolone + \beta \text{-lactam} \pm other *$	91 (17)
266	Macrolide \pm other*	5 (<1)	Other*	4 (<1)


* Other excludes a β-lactam, a macrolide and a fluoroquinolone, and may or may not include one or more of the following: amikacin,

atovaquone, clindamycin, colistimethate, gentamicin, metronidazole, oseltamivir, pentamidine, primaquine, rifampin,

trimethoprim/sulfamethoxazole, tobramycin, and vancomycin.

272	In-hospital mortality for the macrolide group was 7.3%, and for the non-macrolide group was
273	18.9%; P<0.001. Data is presented for severe and non-severe patients (Figure 1). The adjusted
274	risk of in-hospital mortality was 46% lower for patients with a macrolide compared to those
275	without; RR 0.54, 95% CI 0.30-0.98; <i>P</i> =0.043. Those who received a macrolide had
276	significantly decreased in-hospital mortality regardless of severity. There were fewer patients to
277	evaluate for 30-day mortality than in-hospital mortality (432 patients instead of 549) because of
278	missing data. The 30-day mortality for the macrolide group was 18.4%, and for the non-
279	macrolide group was 29.6%; P=0.011. The adjusted risk of 30-day mortality was 19% lower for
280	patients with a macrolide compared to those without; RR 0.81; 95% CI 0.50-1.33; P=0.41. The
281	difference in length of stay and time to clinical stability is depicted in Figures 2 and 3,
282	respectively. Although the length of stay was two days shorter in the macrolide group and the
283	time to clinical stability was 0.7 days shorter, the differences were not significantly different.
284	
285	
286	

287 Figure 1

288

Figure 1 In hospital mortality for severe and non-severe community-acquired pneumoniapatients treated with and without a macrolide.

292 Figure 2

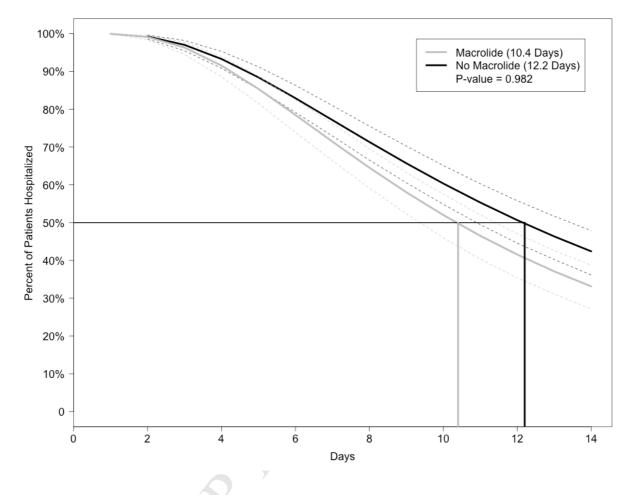
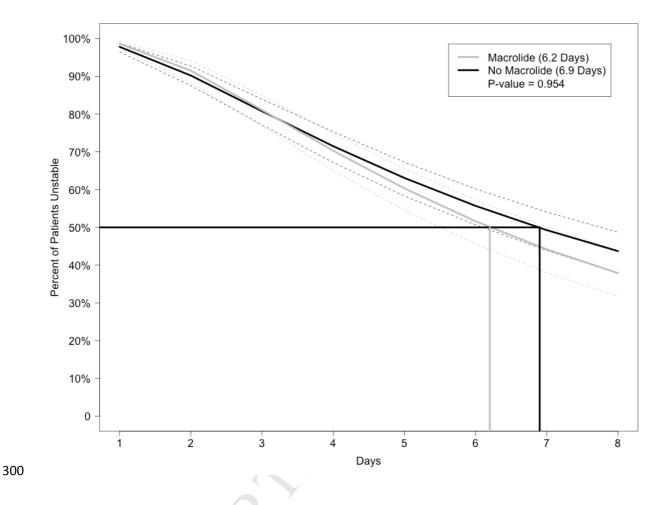



Figure 2 Kaplan Meier curve (adjusted) for length of stay in community-acquired
 pneumonia patients with and without a macrolide. The darker dashed lines accompany the
 darker line, while the lighter dashed lines accompany the lighter line.

299 Figure 3

301 Figure 3

302 Kaplan Meier curve (adjusted) for time to clinical stability in community-acquired

- 303 pneumonia patients with and without a macrolide. The darker dashed lines accompany the
- darker line, while the lighter dashed lines accompany the lighter line.

306 Discussion

307 The most striking finding of this study was the statistically significant difference for in-hospital mortality in CAP patients with bacteremia who received a macrolide compared to those who did 308 309 not. Certainly, mortality has multiple factors contributing to it, but the difference for those patients with and without a macrolide is striking. The antibacterial property of a macrolide is a 310 reasonable first explanation for the favorable difference, but 95% of the entire population 311 (macrolide recipients as well as non-macrolide recipients), had an appropriate empiric 312 antimicrobial regimen when comparing it to the ultimate pathogen isolated (data not shown). A 313 second potential explanation is if patients had a dual infection with an undiagnosed atypical 314 pathogen, but the antimicrobial benefit of a fluoroquinolone, which also covers atypical 315 pathogens and part of the non-macrolide group treatment, would oppose that theory. A third 316 factor that may be attributed to the difference is the immunomodulatory property of a macrolide. 317 One study found a much lower mortality among patients with CAP due to S. pneumoniae who 318 received a macrolide – even among those who were resistant to a macrolide.⁹ A fourth possible 319 explanation is residual bias, particularly indication bias. 320

321

The decreased mortality among the macrolide group was most apparent when considering patients with severe CAP. The non-macrolide group had mortality that was >10% higher than the macrolide group. This supports that there may be a greater benefit among patients with severe CAP than those with mild to moderate CAP. Since the dosing is the same regardless of severity, future research may address whether severe patients benefit more from

327 immunomodulation because they are suffering from a greater immune response or some other328 reason.

329

Several beneficial immunomodulatory properties of a macrolide have been studied. Specific
favorable immunomodulatory effects on host inflammation and immunity that could be
attributed to a macrolide include affecting neutrophil function and cytokine levels in patients
with CAP.¹⁰ Macrolides may have the ability to suppress production of systemic proinflammatory chemokines and cytokines ² while allowing more local pulmonary inflammation.¹¹
They may also interfere with the attachment of bacteria to respiratory epithelial cells ³ and favor
apoptosis over necrosis in the presence of neutrophils.⁴

337

There have been studies that found a benefit from a macrolide, but were limited primarily to 338 pneumococcal bacteremia. In one study, over 2200 CAP patients had bacteremia due to a variety 339 of bacteria including S. pneumoniae, other streptococci, S. aureus, E. coli and other bacteria.¹² A 340 multivariable analysis found that a macrolide was independently associated with a decreased in-341 hospital mortality (OR 0.59 (95% CI 0.40-0.88); P=0.01), 30-day mortality and 30-day 342 readmission rate. A meta-analysis by Nie et al. included 12 reviews of which five represented 343 over 4500 CAP patients with bacteremia.¹³ Each of the five studies found a statistical difference 344 in improved mortality in patients who received a macrolide.^{12,14-17} Overall, Nie et al. found a 345 significant association between use of a β -lactam plus a macrolide and decreased mortality risk 346 (OR 0.57 (95% CI 0.35-0.94); P=0.03). 347

349 There have been many more studies of patients with CAP, in which bacteremia was not an inclusion criterion, and conclusions were mixed. A cluster-randomized, crossover trial using 350 three antimicrobial regimens was tested evaluating a β -lactam alone for non-inferiority against a 351 β -lactam with a macrolide, and against a fluoroquinolone.¹⁸ ICU patients were excluded, and the 352 mean pneumonia severity index was 84 for each group (risk class III 71-90). Outcomes included 353 90-day mortality, length of stay and time to starting oral therapy. The mortality for β -lactam use 354 alone was 9% (59 of 656 patients), for a β -lactam with a macrolide was 11% (82 of 739 patients) 355 and for a fluoroquinolone was 9% (78 of 888). The time to oral therapy was four days, except 356 for the fluoroquinolone group, which was three days. All groups had an average length of stay 357 of six days. The use of β -lactams was concluded to be non-inferior to the other to regimens. 358

359

A retrospective, multicenter study on hospitalized patients with CAP, using a hospital-claims 360 database, studied 44,814 patients who received a backbone antimicrobial (penicillin, ceftriaxone, 361 other cephalosporin, or fluoroquinolone) with or without a macrolide.¹⁹ For each treatment, 362 length of stay, cost and mortality were better if a macrolide was added as part of the regimen. 363 However, a sub-analysis of each antimicrobial regimen based on four classes of severity only 364 showed a significant difference when a macrolide was paired with ceftriaxone compared to 365 ceftriaxone alone. The present study and some other studies of both ward and ICU patients have 366 shown an association with macrolide use and decreased 30-day mortality. ^{20, 21} One study even 367 showed a benefit of macrolide use with 90-day mortality.⁹ 368

369

370 There have been at least five meta-analyses in the last five years addressing antimicrobial therapy in patients with CAP in which macrolide vs. non-macrolide treatment was compared. 371 Three detected a difference in mortality with macrolide use while two did not. ^{13,22-25} There were 372 84 individual manuscripts reviewed; with 19 in more than one review. The three meta-analyses 373 that favored macrolides included in-patients and reviewed a total of 54 articles; 45 were 374 retrospective studies, five were randomized controlled trials (RCTs), and four were prospective 375 cohort studies. ^{13,22,23} The two meta-analyses that did not find a difference between antimicrobial 376 groups reviewed 32 studies; all RCTs – and included out-patients.^{24,25} Populations with CAP in 377 RCTs have been shown to have a lower overall mortality rate ($\sim 4\%$) than the usual 8-10% 378 mortality reported in observational studies.²⁶ This suggests that the populations in the RCTs 379 mentioned above may be different from the populations in the observational studies, hence 380 explaining the inconsistent conclusions of the reviews. 381

382

The major implication of the present study is that it should provoke further research into the 383 potential benefit of a macrolide for CAP preferentially over a non-macrolide regimen (e.g., 384 fluoroquinolone alone). Despite multiple studies having been published of antimicrobial therapy 385 in CAP patients, there are differing conclusions whether a macrolide is beneficial or not. 386 387 Regarding studies addressing macrolide use in patients with CAP, there are some generalities that can be made about RCTs finding no difference and observational studies finding a 388 difference, but the few observational studies evaluating CAP patients with bacteremia, and the 389 present study, all favor groups who received a macrolide. The present study should prompt one 390 to consider obtaining blood cultures if they have a suspicion for bacteremia. Positive blood 391 culture data already help create local antibiograms and treatment guidelines. There are two 392

reasons to study macrolide use in CAP patients with bacteremia. First, the immunomodulatory properties of macrolides that enhanced gastro-motility in patients without CAP show that they have at least one clinical impact, and second, it is unknown how those properties might be relevant in CAP.²⁷

397

398 Limitations

This study was limited by its retrospective nature and recording of antimicrobial treatment in an 399 400 observational manner. And although it had over 500 confirmed pneumonia patients with 401 bacteremia, the data were short of finding a significant difference between the more subtle outcomes such as length of stay and time to clinical stability. As in any observational study there 402 is possible bias despite our choice of statistical methods, including residual bias. Patients 403 included in the database were randomly selected by each site, and did not represent consecutive 404 405 cases of hospitalized patients with CAP. In-hospital mortality is prone to biases that are prevented in 30-day mortality. We did not perform competing risk analysis using 'discharge 406 alive' as the competing event. This manuscript was strengthened by its inclusion of multiple 407 international sites, and a mortality rate consistent with previous reports making it generalizable 408 to a broad audience. Having bacteremia and abnormal pulmonary imaging served to confirm the 409 diagnosis of pneumonia. 410

411

412 Conclusions

The profound difference for in-patient mortality between the macrolide and non-macrolide groups in the present study, combined with the findings from other studies in slightly different populations, including pneumococcal bacteremia patients, the elderly, ICU patients and veterans, make a larger argument for using a macrolide as empiric therapy in hospitalized patients with CAP and bacteraemia. Our data were associated with a macrolide-containing regimen resulting in lower in-hospital mortality. Our findings are consistent with guideline recommendations for using a macrolide when treating CAP.

421 Acknowledgements

- 422 We appreciate the critical review by Jessica Lynn Petrey, MSLS, Clinical Librarian, Kornhauser
- 423 Health Sciences Library, University of Louisville, Louisville, KY.

425 **References**

426	1	FastStats Deaths and Mortality. Centers for Disease Control and Prevention Web site.
427		http://www.cdc.gov/nchs/fastats/deaths.htm. Updated October 7, 2016. Accessed October
428		14, 2016.
429	2	Demartini G, Esposti D, Marthyn P, Lapidari A, Fraschini F, Scaglione F. Effect of
430		multiple doses of clarithromycin and amoxicillin on IL-6, IFNgamma and IL-10 plasma
431		levels in patients with community acquired pneumonia. J Chemother 2004;16(1):82-85.
432		10.1179/joc.2004.16.1.82
433	3	Lagrou K, Peetermans WE, Jorissen M, Verhaegen J, Damme JV, Van Eldere J.
434		Subinhibitory concentrations of erythromycin reduce pneumococcal adherence to
435		respiratory epithelial cells in vitro. J Antimicrob Chemother 2000;46(5):717-723.
436		10.1093/jac/46.5.717
437	4	Koch CC, Esteban DJ, Chin AC, et al. Apoptosis, oxidative metabolism and interleukin-8
438		production in human neutrophils exposed to azithromycin: effects of Streptococcus
439		pneumoniae. J Antimicrob Chemother 2000;46(1):19-26. 10.1093/jac/46.1.19
440	5	Arnold FW, LaJoie AS, Brock GN, et al. Improving outcomes in elderly patients with
441		community-acquired pneumonia by adhering to national guidelines: Community-
442		Acquired Pneumonia Organization International cohort study results. JAMA Intern Med
443		2009;169(16):1515-1524. 10.1001/archinternmed.2009.265
444	6	Niederman MS, Mandell LA, Anzueto A, et al. American Thoracic Society. Guidelines
445		for the management of adults with community-acquired pneumonia. Am J Respir Crit
446		Care Med, 2001;163:1730-1754. 10.1164/ajrccm.163.7.at1010

447	7	Zou G. A modified poisson regression approach to prospective studies with binary data.
448		Am J Epidemiol 2004;159(7):702-706.
449	8	Sun G, Shook T, Kay G. Inappropriate use of bivariable analysis to screen factors for use
450		in multivariable analysis. J Clin Epidemiol 1996;49:907-16.
451	9	Restrepo MI, Mortensen EM, Waterer GW, Wunderink RG, Coalson JJ, Anzueto A.
452		Impact of macrolide therapy on mortality for patients with severe sepsis due to
453		pneumonia. Eur Respir J 2009;33(1):153-159. 10.1183/09031936.00054108
454	10	Arnold FW, Bordon J, Fernandez-Botran R, et al. Macrolide Use and Neutrophil
455		Function/Cytokine Levels in Hospitalized Patients with Community-Acquired
456		Pneumonia: A Pilot Study. Lung 2016;194(1):155-162. 10.1007/s00408-015-9822-7
457	11	Fernandez-Botran R, Uriarte SM, Arnold FW, et al. Contrasting inflammatory responses
458		in severe and non-severe community-acquired pneumonia. Inflammation
459		2014;37(4):1158-1166. 10.1007/s10753-014-9840-2
460	12	Metersky ML, Ma A, Houck PM, Bratzler DW. Antibiotics for bacteremic pneumonia:
461		Improved outcomes with macrolides but not fluoroquinolones. Chest 2007;131(2):466-
462		473. 10.1378/chest.06-1426
463	13	Nie W, Li B, Xiu Q. beta-Lactam/macrolide dual therapy versus beta-lactam
464		monotherapy for the treatment of community-acquired pneumonia in adults: a systematic
465		review and meta-analysis. J Antimicrob Chemother 2014;69(6):1441-1446.
466		10.1093/jac/dku033
467	14	Dwyer R, Ortqvist A, Aufwerber E, et al. Addition of a macrolide to a ss-lactam in
468		bacteremic pneumococcal pneumonia. Eur J Clin Microbiol Infect Dis 2006;25(8):518-
469		521. 10.1007/s10096-006-0183-2

470	15	Martinez JA, Horcajada JP, Almela M, et al. Addition of a macrolide to a beta-lactam-
471		based empirical antibiotic regimen is associated with lower in-hospital mortality for
472		patients with bacteremic pneumococcal pneumonia. Clin Infect Dis 2003;36(4):389-395.
473		10.1086/367541
474	16	Naucler P, Darenberg J, Morfeldt E, Ortqvist A, Henriques Normark B. Contribution of
475		host, bacterial factors and antibiotic treatment to mortality in adult patients with
476		bacteraemic pneumococcal pneumonia. Thorax 2013;68(6):571-579. 10.1136/thoraxjnl-
477		2012-203106
478	17	Waterer GW, Somes GW, Wunderink RG. Monotherapy may be suboptimal for severe
479		bacteremic pneumococcal pneumonia. Arch Intern Med 2001;161(15):1837-1842.
480		10.1001/archinte.161.15.1837
481	18	Postma DF, van Werkhoven CH, van Elden LJ, et al. Antibiotic treatment strategies for
482		community-acquired pneumonia in adults. N Engl J Med 2015;372(14):1312-1323.
483		10.1056/NEJMoa1406330
484	19	Brown RB, Iannini P, Gross P, Kunkel M. Impact of initial antibiotic choice on clinical
485		outcomes in community-acquired pneumonia: analysis of a hospital claims-made
486		database. Chest 2003;123(5):1503-1511. 10.1378/chest.123.5.1503
487	20	Mortensen EM, Restrepo MI, Anzueto A, Pugh J. The impact of empiric antimicrobial
488		therapy with a beta-lactam and fluoroquinolone on mortality for patients hospitalized
489		with severe pneumonia. Crit Care 2006;10(1):R8. 10.1186/cc3934
490	21	Rodrigo C, McKeever TM, Woodhead M, Lim WS. Single versus combination antibiotic
491		therapy in adults hospitalised with community acquired pneumonia. Thorax
492		2013;68(5):493-495. 10.1136/thoraxjnl-2012-202296

493	22	Asadi L, Sligl WI, Eurich DT, et al. Macrolide-Based Regimens and Mortality in
494		Hospitalized Patients with Community-Acquired Pneumonia: A Systematic Review and
495		Meta-Analysis. Clin Infect Dis 2012;55(3):371-380. 10.1093/cid/cis414
496	23	Sligl WI, Asadi L, Eurich DT, Tjosvold L, Marrie TJ, Majumdar SR. Macrolides and
497		mortality in critically ill patients with community-acquired pneumonia: a systematic
498		review and meta-analysis. Crit Care Med 2014;42(2):420-432.
499		10.1097/CCM.0b013e3182a66b9b
500	24	Skalsky K, Yahav D, Lador A, Eliakim-Raz N, Leibovici L, Paul M. Macrolides vs.
501		quinolones for community-acquired pneumonia: meta-analysis of randomized controlled
502		trials. Clin Microbiol Infect 2013;19(4):370-378. 10.1111/j.1469-0691.2012.03838.x
503	25	Raz-Pasteur A, Shasha D, Paul M. Fluoroquinolones or macrolides alone versus
504		combined with beta-lactams for adults with community-acquired pneumonia: Systematic
505		review and meta-analysis. Int J Antimicrob Agents 2015;469(3):242-248.
506		10.1016/j.ijantimicag.2015.04.010
507	26	Shefet D, Robenshtok E, Paul M, Leibovici L. Empirical atypical coverage for inpatients
508		with community-acquired pneumonia: systematic review of randomized controlled trials.
509		Arch Intern Med 2005;165(17):1992-2000. 10.1001/archinte.165.17.1992
510	27	Parkman HP, Hasler WL, Fisher RS. American Gastroenterological Association technical
511		review on the diagnosis and treatment of gastroparesis. Gastroenterology
512		2004;127(5):1592-1622. 10.1053/j.gastro.2004.09.055
513		

Highlights

Patients with community-acquired pneumonia and bacteremia have a high mortality

Mortality was significantly lower among patients who received a macrolide

The association was more significant among patients with severe pneumonia

Conflicts of Interest

Macrolide Therapy is Associated with Lower Mortality in Community-Acquired Pneumonia

Forest W. Arnold – Conflicts of interest:none

Gustavo Lopardo - Conflicts of interest:none

Timothy L. Wiemken - Conflicts of interest:none

Robert Kelley - Conflicts of interest:none

Paula Peyrani – Conflicts of interest:none

- William A. Mattingly Conflicts of interest:none
- Charles Feldman has been on the advisory board and/or received honoraria for talks presented for pharmaceutical companies that manufacture and/or market macrolide antibiotics (Abbott, Aspen-GSK, Pfizer, Sandoz).

Martin Gnoni - Conflicts of interest:none

Rosemeri Maurici - Conflicts of interest:none

Julio A. Ramirez - Conflicts of interest:none