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Abstract

The deactivation pathway of the light induced spin crossover process in two Fe(II)

complexes has been studied by combining Density Functional Theory calculations for

the geometries and the normal vibrational modes and highly correlated wave function

methods for the energies and spin-orbit coupling effects. For the two systems considered,

the mechanism of the photoinduced conversion from the low-spin singlet to the high-

spin quintet state implies two intersystem crossings through intermediate triplet states.

However, while for the [Fe(mtz)6]2+ complex, the process occurs within few picoseconds

and involves uniquely metal-centered electronic states, for the [Fe(phen)3]2+ system the

deactivation channel involves both metal to ligand charge transfer and metal-centered

states and takes place in a femtosecond time scale.

November 30, 2017

Introduction

The interest in molecular based materials with photo-switchable properties has increased

in the last years due to their potencial use in technological applications, such as sensors or

optical memory devices.1–4 Among these materials, spin crossover (SCO) systems based on

transition metal molecular complexes have been extensively studied since their properties

can be optically switched in a extremely short time scale.5 In fact, at low temperatures the

spin state of the metal can be changed from a low-spin (LS) ground state to a high-spin (HS)

metastable state by light irradiation. This phenomenon is known as Light-Induced Excited

Spin State Trapping (LIESST)6 and was initially found in Fe(II) complexes6–10 and later

observed in systems containing Fe(III)11–14 and Ni(II).15–17 A broad range of Fe(II)-based

materials have been investigated both in solution and in the solid state, where cooperative

effects are of interest. Particularly, six-coordinated iron(II) complexes with nitrogen-donor

ligands in a nearly octahedral geometry have been the subject of intense research since these

systems provide the largest structural changes under spin conversion and, therefore, favor
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cooperative transitions in the solid state. As a matter of fact, the spin crossover process in

Fe(II)-N6 complexes from the LS (1A1) ground state to the HS (5T2) state is accompanied by

an enlargement of the Fe-N distance of around 0.2 Å due to the occupation of the antibonding

e orbitals in the quintet HS state.18 The study of the light-induced spin crossover process in

Fe(II) complexes from the singlet LS ground state to the quintet HS state has received much

attention. The mechanism of the process has been qualitatively described by Hauser.6 After

irradiation of the system into the LS absorption bands at low temperatures, the HS state

is populated through a double intersystem crossing involving intermediate triplet states. In

this photocycle, electronic states of different nature may be involved. Those include states

centered on the metal (metal-centered, MC), centered on the ligand (ligand-centered, LF)

or states that involve excitations from one to the other or viceversa, i.e., metal to ligand

charge transfer (MLCT) or ligand to metal charge transfer (LMCT) states. Hence, the

photophysics of the spin conversion is an intricate problem that results from the interplay

of several factors: electronic states of different character play a role, important structural

changes go along the conversion and various non-radiative processes are involved, such as

internal conversion (IC), that is, transitions between electronic states of the same spin; in-

tersystem crossing (ISC), which involves electronic states of different spin multiplicities; and

intramolecular vibrational redistribution (IVR), where the vibrational energy is redistributed

between different vibrational modes. For these reasons, together with the extremely short

time scale of the spin conversion, a detailed interpretation of the photophysics of the process

has not been possible until recently. The development of ultrafast spectroscopic techniques

in the last fifteen years opened the possibility to explore phenomena on the time scale of

molecular vibrations.5,19 Progress on optical and X-ray techniques, as pump-probe Transient

Absorption Spectroscopy,20,21 Ultrafast X-ray Absorption and Emission spectroscopies22–24

and Ultrafast Fluorescence,25 has been crucial to get insight into the mechanisms of photo-

physical and photochemical processes in transition metal complexes with resolution in the

femtosecond scale. Although the experimental information acquired by these techniques is of
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key importance, the in depth understanding of these processes is only possible in combination

with state-of-the-art computational methodologies.

A paradigmatic system that has been extensively studied, both experimentally and by

means of computational approaches, is the iron(II)tris(bipyridine) complex in aqueous solu-

tion, [Fe(bpy)3]2+. It is observed that by irradiating with visible light, the system is excited

to the 1MLCT state and afterwards, it decays into the HS MC 5T2 state in a femtosecond

time scale with almost unity quantum yield. A large number of studies have been performed

in order to ascertain the steps of the mechanism and the timescale of the photoinduced SCO

process. From these studies, different interpretations have been proposed. Some authors

claim that a first step involves singlet to triplet conversion within the MLCT manifold and

subsequently a direct deactivation from the 3MLCT to the 5T2 state takes place.19,21,24,26,27

Alternatively, mechanisms involving either intermediate Fe centered triplet states25,28–30 or

5MLCT states31 have also been suggested.

In this work, we study the light induced spin crossover process in two Fe(II) systems

by means of ab initio computational methods. The computational approach is based on a

combination of Density Functional Theory (DFT) calculations for the geometries and vibra-

tional frequencies of the relevant electronic states, with multiconfigurational wave function

calculations that allow us to compute accurate electronic energies and spin-orbit coupling

matrix elements of the spin states involved.28,29,32,33 From these data, intersystem-crossing

rate constants can be derived from a time-dependent approach based on Fermi’s golden

rule.34

Two different Fe(II)-N6 isolated complexes have been studied (Figure 1). First, the

[Fe(mtz)6]2+ complex, where mtz refers to the 1-methyl-tetrazole monodentate ligand. In

fact, this system is a model compound of the [Fe(ptz)6]2+ complex, with ptz=1-propyl-

tetrazole, that has been shown to undergo light induced spin crossover both in neat solid

state compounds, like Fe(ptz)6(BF4)2,10 and in diluted systems, as Zn1−xFex(ptz)6(BF4)2.35

From these studies, it was concluded that after excitation into the absorption bands of the
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singlet LS state, the quintet HS state is populated via two intersystem crossings involving

the intermediate MC 3T1 state. The intersystem crossing rate constants were estimated to

be in the range 1010- 1012 s−1 with a branching ratio from the 3T1 state to the 1A1 ground

state and 5T2 state of approximately 1:4. Recently, the intermediate states of the LIESST

and reverse-LIESST pathways in the Fe(ptz)6(BF4)2 SCO compound have been elucidated.

In both processes, triplet states centered on the iron are involved. In particular, the lifetime

of the 3T2 intermediate state of the LIESST process was estimated to be of 1.2 ps, while the

3T1 plays a role in the reverse-LIESST with a decay time of 39 ps.36

The second material studied is a bidentate Fe(II) system, the [Fe(phen)3]2+ complex, with

phen=1,10-phenanthroline (see Figure 1). The photoinduced spin conversion of this system

in solution has been studied by transient absorption spectroscopy.37 After initial excitation

of the system to the singlet MLCT band, the experimental data suggest a very fast transition

to the triplet MLCT band, within less than 100 fs, and subsequently the system decays into

a vibrationally excited quintet HS state in about 220 fs. Vibrational cooling within the 5T2

state is estimated to be around 8.6 ps and the final HS to LS relaxation is completed in ∼

1 ns (800 ps in water solution and 1.1 ns in acetonitrile). Hence, these authors suggested

the following relaxation scheme: 1MLCT → 3MLCT → 5T2
∗ → 5T2, where 5T2

∗ refers to a

vibrational excited state. The same mechanism has been proposed in an analogous study of

a similar system, the [Fe(2 CH3 − phen)3]2+ complex.38

Here, the photocycle of the LS to HS conversion for these two complexes will be studied.

It will be shown that the deactivation channel of the [Fe(phen)3]2+ complex involves both

MLCT and MC states and takes place in a femtosecond time scale, while the light induced

SCO in the [Fe(mtz)6]2+ system occurs within few picoseconds and involves exclusively MC

electronic states.
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[Fe(mtz)6]2+ [Fe(phen)3]2+

Figure 1: Molecular complexes investigated in this study. Fe is in the center of the complexes,
represented by a light brown sphere, black spheres represent C, blue is N and pink is H.
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Methodology

The accurate theoretical description of the light induced SCO process requires the computa-

tion of several components. On one hand, optimized equilibrium geometries and vibrational

frequencies for all the electronic states involved in the photocycle are needed. On the other

hand, potential energy curves along the reaction coordinate that connects the LS with the HS

state give insight in the deactivation mechanism. In addition, energy differences between the

various electronic states and spin-orbit coupling matrix elements are needed to estimate the

intersystem crossing rate constants between electronic states of different spin multiplicity.

In order to achieve this goal, a combined computational approach using both DFT and wave

function based methods has been proposed. This procedure has been successfully applied in

a previous study of the deactivation process in the [Fe(bpy)3]2+ complex29 and the Fe(III)

complex [Fe(qsal)2]+, with Hqsal = 2-[(8-quinolinylimino)methyl]phenol.39

Optimized geometries and vibrational frequencies have been computed within the DFT

framework using the Perdew-Becke-Ernzerhof (PBE0) hybrid functional40 and a triple zeta

valence plus polarization basis set,41 as implemented in the TurboMole 6.3 package.42,43 The

geometry optimizations of the lowest singlet, triplet and quintet states were performed using

the standard unrestricted DFT formalism and the vibrational frequencies were computed

analytically within the harmonic approximation. Instead, the geometries of the excited

states have been determined by Time Dependent DFT (TD-DFT)44,45 calculations and the

harmonic frequencies computed numerically. No symmetry restrictions were imposed in the

DFT calculations.

The energies of the different spin states have been computed by means of a multiconfig-

urational wave function based method, the CASSCF/CASPT2 approach. One-dimensional

CASPT2 potential energy curves along the reaction coordinate, defined as a linear inter-

polation between the HS and LS PBE0 optimized structures, have been computed. The

effects of spin-orbit coupling on the relative energies between the different electronic states

are only minor and have not been included. This approach has proved to accurately describe
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thermal and optical SCO processes in several materials.28,30,32,46–49 The CASSCF/CASPT2

method50 is a two step approach in which a second-order perturbation treatment is applied

on a complete active space self-consistent field (CASSCF) reference wave function. This

methodology is implemented in the MOLCAS 7.4 software.51,52 Atomic natural orbital basis

sets, specifically derived to allow for relativistic effects, have been used53,54 with the following

contraction scheme: (7s, 6p, 5d, 4f, 3g, 2h) for Fe, (4s, 3p, 1d) for the N atoms bonded to

the Fe, (3s, 2p) for the remainding N and C atoms and (2s) for H. The active space used to

construct the CASSCF wave functions contains ten electrons distributed among 15 orbitals,

the five 3d Fe orbitals, two e-like σ-bonding ligand orbitals, three ligand virtual orbitals of

π∗ character and a second set of diffuse Fe-3d orbitals to account for the large electron cor-

relation effects in the 3d-shell. This active space assures a proper and balanced description

of the different MC and MLCT states.32,46,55 CASPT2 accounts for the remaining electron

correlation by correlating all the electrons except the deep core electrons (1s2 for N and C

and 1s2, 2s2, 2p6 for Fe). In the second order perturbative CASPT2 method, the standard

zeroth-order Hamiltonian has been used.56 Scalar relativistic effects were included using a

Douglas-Kroll-Hess Hamiltonian57,58 while the spin-orbit coupling matrix elements between

the various electronic states were computed by the spin-orbit state interaction approach us-

ing the CASSCF wave functions .59,60 For the [Fe(mtz)6]2+ and [Fe(phen)3]2+ systems studied

here, the CASSCF/CASPT2 calculations were performed within the Ci and C2 symmetry

point groups, respectively. However, since the local geometry around the central atom is

quasi octahedral, the electronic states were labeled according to the O symmetry group.

Intersystem crossing rate constants, kISC, have been determined applying a procedure

based on the Fermi’s golden rule and a time-dependent approach as implemented in the

VIBES program.34,61 This methodology has been successfully applied to different kind of

systems.29,62–64 Within this approximation, ISC rate constants can be calculated as:

kISC = |〈ΦI |ĤSO|ΦF 〉|2
∫ ∞
−∞

dtG(t)eit(∆EIF + 1
2
TrΩI) (1)
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where ΦI and ΦF refer to the initial and final electronic states, ∆EIF the energy difference

between both states, ĤSO is the spin-orbit coupling operator, G(t) is a time-dependent

correlation function that contains information about the vibrational frequencies and normal

coordinates, and ΩI is a diagonal matrix formed by the vibrational frequencies of the initial

state. The explicit formula of G(t) is rather lengthy and the interested reader is referred

to Ref.34 for more detailed information. Here, we only remark that G(t) contains, apart

from the diagonal matrices ΩI and ΩF , also the Duschinsky matrix J and the translation

vector D that are used to express the normal coordinates of the final state QF in those

of the initial state QI by the so-called Duschinsky transformation QF = JQI + D. The

combination of energy difference between initial and final state, the size of the off-diagonal

matrix elements of J, and the norm of the translation vector D determines how large the

final vibrational overlap between the different electronic states will be. Here, the relative

energies of the different electronic states, ∆EIF , and the spin-orbit coupling matrix elements

have been computed within the CASSCF/CASPT2 approach. Vibrational frequencies and

normal coordinates within the harmonic approach have been obtained from PBE0 DFT

calculations.

Results and Discussion

Light induced SCO in the [Fe(mtz)6]2+ complex

The geometries of the 1A1 ground state and the metastable 5T2 HS state of the [Fe(mtz)6]2+

complex have been computed by means of DFT calculations in previous works.33,49 It was

shown that while interatomic distances, and particularly, Fe-N distances, were in accordance

with experiment, all DFT functionals considered lead to unphysical rotation angles of the

methyl-tetrazole ligands, ∼ 45◦, to minimize steric effects. This results from the lack of

environment effects of the rest of the crystal that counterbalance the steric repulsion. Taking

into account such effects through an embedded two center complex, the rotation angles are
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well reproduced, with an average angle for the active site around 12◦. In order to take

into account this geometrical parameter, the CASPT2 potential energy curves of all the

relevant electronic states have been computed along a reaction coordinate corresponding to

the symmetric stretching mode of the Fe-N6 coordination sphere fixing the rotation angle

of the ligands at 10◦. At each scan of the reaction coordinate, the geometry of the ligands

has been optimized by PBE0 and the energy computed by CASPT2. The computed vertical

excitation energies for the lowest transitions from the LS and HS states are collected in Table

1. These excitations involve electronic states centered in the Fe(II) atom, other excitations

involving MLCT or LMCT states lie at higher energies for this particular system. As can be

seen from Table 1, the [Fe(mtz)6]2+ complex accurately reproduces the experimental data

corresponding to the Fe(ptz)6(BF4)2 system, meaning that the different substituents (methyl

or propyl) of the tetrazole rings have a negligible effect on the optical transitions centered

on the metal. Particularly, the first step in the LIESST process, the excitation from the 1A1

ground state to the first excited singlet, 1T1, is well reproduced.

Table 1: Vertical CASPT2 excitation energies (in cm−1) for the [Fe(mtz)6]2+

complex and experimental data for Fe(ptz)6(BF4)2.10

Transition CASPT2 Experiment
1A1→ 1T1 17509 18200
1A1→ 3T1 9646 10280
1A1→ 3T2 14361 14330
5T2→ 5E 12682 11760

The CASPT2 one-dimensional potential energy curves for the lowest singlet, triplet and

quintet states are plotted in Figure 2. Since all these electronic states arise from the different

distributions of the 3d6 electrons in the Fe(II) atom, the standard active space of 10 electrons

in twelve orbitals55 suffices and there is no need to add extra occupied or virtual ligand

orbitals. As can be seen in Figure 2, the Fe-N equilibrium distance for the LS state is 1.95

Å and the corresponding value for the HS state is 0.2 Å larger, as expected in Fe(II)-N6

complexes. The excited singlet, 1T1, and the intermediate triplet states, 3T2 and 3T1, show
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a minimum at an intermediate Fe-N distance, around 2.05 Å , due to the occupation of

an antibonding e orbital in a (t52e1) configuration. The Jablonski diagram of the electronic

states involved in the spin conversion (Figure 2) shows that after light irradiation, the excited

1T1 state is populated. This state crosses with the final HS 5T2 in the Franck-Condon

region, and the intermediate triplet states also interact with the HS state. To quantify

these interactions, inclusion of spin-orbit coupling is necessary. In Table 2 the square of

the spin-orbit coupling matrix elements for the possible interactions are presented. These

elements have been computed at the geometry corresponding to the LS state, i.e. in the

Franck-Condon region. Nevertheless, it has been demonstrated that spin-orbit coupling

does not significantly change with the Fe-ligand distance, especially when MC states are

involved.32 As can be seen in Table 2, all the values of the SO term are of similar order

of magnitude (between 104 - 105 cm−2) except for the 3T2→ 1A1 transition. The spin-orbit

coupling matrix element between these two states is strictly zero in the Oh point group by

symmetry reasons. Here, due to the nearly-octahedral symmetry of the compound, this term

is not zero but of small value, ∼ 102 cm−2. Regarding the SO term, the 1T1 state populated

after absorption, shows important interactions with the lowest 3T2 and 3T1 intermediate

states while there is no direct SO coupling between the singlet 1T1 and the quintet 5T2

state. In order to understand the photocycle and to quantify the timescale of the process,

apart from the spin-orbit coupling term, the vibrational contribution as defined in Eq. 1 is

needed. The results of this term along with the ISC rate constants are presented in Table

2. Inclusion of the vibrational contribution reveals that from the photoexcited 1T1 state the

system can cross to the 3T2 state in 36 ps, while deactivation to the lower-lying 3T1 state is

not favored because the vibrational contribution is four orders of magnitude smaller. Since

the geometrical structure of the two triplet states is very similar, the large difference in

the vibrational term is explained by the larger energy difference between the 1T1 and 3T1

states. From the 3T2 state, the complex could eventually decay either into the initial LS or

into the HS, thus completing the spin conversion. Our results show that the decay to the
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5T2 HS is preferred since the ISC rate constant is two orders of magnitude larger than the

corresponding deactivation to the initial LS state. Based on these results, the photoinduced

spin conversion can be explained as follows: after populating the 1T1 by light irradiation,

the 3T2 state is reached in 36 ps, and throughout a second ISC the 5T2 is populated within

12 ps. According to this interpretation, the whole process takes place within 50 ps with

a high quantum efficiency and involves two ISC, 1T1→ 3T2→ 5T2. These results are in

agreement with previous experimental studies indicating that the process takes place in few

picoseconds10 and with a recent study that pointed to the 3T2 state as intermediate state in

the LIESST process.36
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Figure 2: CASPT2 potential energy curves of the lowest electronic states of [Fe(mtz)6]2+ as
function of the Fe-N distance.

Examining the results in Table 2, it should be noticed that the highest ISC rate constants

correspond to the deactivation from the lowest triplet state, 3T1, to the LS and HS states.

Both processes occur in the range of hundred femtoseconds. This fast channel can only be
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of importance if after excitation to the 1T1 state, the 3T1 state is populated. However, as

previously commented, the direct 1T1→ 3T1 transition is not favored. An alternative path in-

volving internal conversion from the 3T2 to the 3T1 state opens this possibility. Unfortunately,

the time scale of the internal conversion within the two triplet states cannot be estimated,

but previous studies gave evidence that this process is expected to be fast.29 Under this

assumption, a possible deactivation path involving two ISC and a IC is as follows: 1T1→
3T2→ 3T1→ 5T2. This mechanism takes place in picoseconds, as experimentally measured,

however it leads to a branching ratio that favors the LS ground state, with a value of 2:1 for

the 3T1→ 1A1 and 3T1→ 5T2 conversions. This is contrary to the observed quantum efficiency

that favors the HS state and therefore, this fact plays against this proposal. On the other

hand, the possibility that the two mechanisms commented here take place simultaneously

cannot be ruled out.

Table 2: Intersystem crossing rates between the relevant electronic states of
[Fe(mtz)6]2+. The spin-orbit and vibrational contributions (cf. Eq. 1) are sepa-
rately given. t denotes the deactivation time.

ΦI ΦF SO term (cm−2) vib. term (cm2s−1) kISC (s−1) t
1T1

3T2 1.2·105 2.3·105 2.8·1010 36 ps
3T2

1A1 5.3·102 1.6·106 8.5·108 1.2 ns
3T2

5T2 9.8·104 9.4·105 8.2·1010 12 ps
1T1

3T1 1.6·104 5.3·101 8.5·105 > 100 ns
3T1

1A1 9.8·104 1.0·108 9.8·1012 102 fs
3T1

5T2 2.4·105 2.1·107 5.0·1012 200 fs

Light induced SCO in the [Fe(phen)3]2+ complex

As a first step, a full geometry optimization of the ground state of the [Fe(phen)3]2+ complex

in vacuo has been performed by means of DFT PBE0 calculations. The resulting optimized

geometry possesses D3 symmetry with all Fe-N distances equal to 2.003 Å , which is in good

agreement with the experimental average value of 1.983 Å.65 The optimized structures for the

rest of the electronic states involved in the light induced spin conversion have been determined
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either by standard DFT calculations (lowest triplet and quintet states, 3T1 and 5T2) or by

the TD-DFT methodology (singlet excited states, 1T1 and 1MLCT ). Only the lowest state

of a given nearly degenerated manifold of states has been computed. It is assumed that the

other states of the manifold have the same geometry and vibrational frequencies. For the 3T1

and 5T2 the optimized geometries slightly deviate from the D3 point group. Average PBE0

optimized Fe-N distances for the 1T1 and 3T1 states are 2.101 Å and 2.109 Å respectively,

while for the quintet 5T2 state it is 2.206 Å . As in the previous Fe(II) system, the Fe-N

distance increases regularly ∼0.1 Å when one electron is promoted from the non-bonding t2

orbitals to an antibonding e orbital. It is important to notice that the average optimized

Fe-N distance for the 1MLCT state is 1.987 Å , that is, very close to the Fe-N distance in the

1A1 ground state, in line with the fact that no antibonding e-like orbital is occupied in the

lower 1MLCT states. In order to obtain the optimal geometric parameters at the CASPT2

level of calculation, a hybrid DFT/CASPT2 approach as described before, has been applied.

A scan of the Fe-N distance around the equilibrium distance has been performed and at

each point the geometry of the ligands were optimized by PBE0 calculations. In this way,

the CASPT2 optimized Fe-N distance for the ground state turns out to be 1.92 Å , which is

somewhat shorter that the value corresponding to a full PBE0 optimization. Equivalently,

the Fe-N distances corresponding to the CASPT2 minimum for the 5T2 and 3T1 are 2.15 and

2.04 Å , respectively.

The vertical absorption spectrum from the 1A1 ground state has been computed by

means of CASPT2 calculations. At the LS geometry, the lowest excited singlet state is a

MC state lying about 2.4 eV above the 1A1. However, for the [Fe(phen)3]2+ complex, and at

difference of the [Fe(mtz)6]2+ system, the singlet MLCT states lie in the same energy region

as the lowest singlet MC ligand field states. Indeed, the lowest 1MLCT states span in the

energy range of 2.5-3.0 eV. This is slightly higher, but very close, to the peak measured

in the absorption spectrum of [Fe(phen)3]2+ in acetonitrile, at approximately 2.5 eV.66 The

3MLCT states form a band in the same energy region as the 1MLCT states and with the
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same Fe-N equilibrium distance. The 5MLCT states, instead, appear at much higher energies

and spread over 3.8-4.6 eV above the LS state and, therefore, these states are not involved

in the LIESST process. Finally, the lowest triplet Fe centered state, 3T1, appears at 1.4 eV

above the 1A1 state, however a singlet-triplet transition is not allowed by the dipole selection

rule. Hence, the first state populated in the [Fe(phen)3]2+ complex by light irradiation is the

1MLCT state, as found in a similar bidentate ligand complex, the [Fe(bpy)3]2+ system. This

1A1 to singlet 1MLCT excitation carries intensity since it is symmetry allowed in a perfect

octahedral geometry, while the ligand field 1A1 to 1T1 transition is symmetry forbidden and

only displays a weak signal in the absorption spectrum.

In order to elucidate the relaxation mechanism, all states that can be involved in the

process have to be taken into account to analyze all the possible deactivation paths. Spin-

orbit coupling matrix elements involving all low-lying electronic states have been calculated.

These include the sixteen lowest singlet, triplet and quintet states, which leads to 144 spin

states and the corresponding 144x144 spin-orbit matrix. The results of the spin-orbit contri-

bution, together with the vibrational term and the rate constant for the intersystem crossings

between the relevant electronic states, are reported in Table 3. Deactivation times are also

detailed when pertinent. In light of our results, after population of the 1MLCT state by

irradiation, the system most probably deactivates to the 3MLCT manifold. As can be seen

in Table 3, this process is favored both by a large spin orbit coupling term and by vibrational

terms, resulting in a large rate constant, 2.8·1013 s−1, and a deactivation time of 36 fs. This

result is in agreement with transient absorption spectroscopy measures of [Fe(phen)3]2+ in

solution, that estimated the relaxation time towards the 3MLCT state in less that 100 fs.37

Other deactivation routes from the 1MLCT to triplet MC states are two orders of magnitude

slower, and therefore, less optimal. Once the 3MLCT state is reached, this state can directly

relax to either the 1A1 LS ground state or the 5T2 HS state. Relaxation back to the LS state

is very slow, since the two contributions, vibrational and spin-orbit, are small. Alternatively,

direct deactivation to the 5T2 is favored by a large vibrational term, however the small spin-
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orbit coupling between 3MLCT - 5T2, 2.7·103 cm−2, hinders this path. This small direct SO

coupling can be justified by the fact that the orbital occupation of the two electronic states

differs by a double electron transfer, from a t52e0L1 configuration of the 3MLCT to a t42e2

configuration in the 5T2. Nevertheless, on the basis of the present calculations, we cannot

exclude the possibility that indirect spin-orbit terms, that is, SO mediated by other spin

electronic states, could be of importance and make this channel viable. A different path to

explain the relaxation from the 3MLCT state to the HS state can involve the Fe-centered 3T1

state. The results in Table 3 show that the deactivation from the 3T1 to the 5T2 state is very

effective and takes place in around 100 fs, while relaxation back to the 1A1 is two orders of

magnitude slower. A fast population of the 3T1 state is only possible by internal conversion

from the 3MLCT states, since the other possibilities, either from the 1MLCT or the 1T1

states, exhibit deactivation times one order of magnitude larger than the measured ones. As

a consequence, a plausible deactivation path could involve both MLCT and MC states as

follows: 1MLCT→ 3MLCT→ 3T1→ 5T2, in which the first intersystem crossing implying

singlet and triplet MLCT states takes place in 36 fs and the second ISC involving iron cen-

tered states, 3T1 and 5T2, occurs in 102 fs. As commented before, we have not estimated

the timescale of the internal conversion between the 3MLCT and 3T1 states, but this spin

allowed transition is expected to be very fast. In summary, the timescale of the deactivation

process based on our results is in overall accord with the experimental observation that the

process takes place in around 300 fs via 3MLCT states.

Summary and Conclusions

The mechanism of the photoinduced spin crossover process in two Fe(II) complexes has been

studied by means of a combination of theoretical methods. Density functional theory calcu-

lations allow to compute optimized geometries and vibrational spectra, multiconfigurational

CASSCF and CASPT2 calculations give sufficiently accurate energies, spin-orbit coupling
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Table 3: Intersystem crossing rates between the relevant electronic states of
[Fe(phen)3]2+. The spin-orbit and vibrational contributions (cf. Eq. 1) are
separately given. t denotes the deactivation time.

ΦI ΦF SO term (cm−2) vib. term (cm2s−1) kISC (s−1) t
1MLCT 3MLCT 1.1·105 2.6·108 2.8·1013 36 fs
1MLCT 3T2 1.3·104 8.3·104 1.1·109 −
1MLCT 3T1 1.4·104 6.0·107 8.1·1011 > 1 ps
3MLCT 1A1 2.5·103 4.7·104 2.6·108 −
3MLCT 5T2 2.7·103 5.0·107 1.4·1011 > 1 ps
1T1

3T2 2.8·105 4.6·103 1.3·109 −
3T2

1A1 2.0·104 6.0·100 1.2·105 −
3T2

5T2 7.7·105 6.3·102 4.9·108 −
1T1

3T1 1.7·104 2.6·107 4.5·1011 > 1 ps
3T1

1A1 8.2·105 5.7·104 4.7·1010 −
3T1

5T2 1.9·106 5.1·106 9.8·1012 102 fs

matrix elements and relative energies, and intersystem crossing transition rate constants are

derived by a time-dependent approach based on Fermi’s golden rule. This integrated strat-

egy permits to describe the essential features of the light induced spin conversion and helps

to elucidate the mechanism of the process, in conjunction with the experimental information

available. Specifically, the electronic states involved in the process can be assessed and the

rates of the intersystem crossings quantified.

In this work, this methodology has been applied to two Fe(II) complexes, [Fe(mtz)6]2+

and [Fe(phen)3]2+. The light induced spin conversion in the [Fe(mtz)6]2+ complex starts

by populating the 1T1 metal centered state by photoirradiation. Metal to ligand charge

transfer bands are too high in energy to be accessed. From the 1T1 state, the HS state is

reached within 50 ps with a high quantum efficiency following the path 1T1→ 3T2→ 5T2. This

interpretation implies two intersystem crossings between metal centered states and sets the

time scale of the process in the order of picoseconds. Both characteristics are in agreement

with the experimental data available for the similar [Fe(ptz)6]2+ system.

In the [Fe(phen)3]2+ complex, irradiation of the LS state populates the singlet metal

to ligand charge transfer band, 1MLCT . The 1MLCT and 3MLCT states show similar
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geometries and lie in the same energy region, therefore a first deactivation step 1MLCT→
3MLCT is favored and occurs within 36 fs. From this state, the process can proceed in two

ways: either through an internal conversion to the Fe-centered 3T1 state, that is, 1MLCT→
3MLCT→ 3T1→ 5T2 or by a direct deactivation from the 3MLCT manifold to the final HS

state, 1MLCT→ 3MLCT→ 5T2. The first path requires that the internal conversion takes

place in the femtosecond time scale and the second route is only possible if second-order

spin-orbit coupling is of importance.67

The different time scale of the LIESST process in the two complexes derives from the

initial step in the deactivation. The 1MLCT-3MLCT intersystem crossing for [Fe(phen)3]2+

is extremely fast, whereas the 1T1-3T2 crossing in for [Fe(mtz)6]2+ is much slower. The

subsequent steps occur on a similar time scale in both complexes.
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