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Abstract 

Early in development, each muscle fiber is innervated by multiple neurons. 

Different activities between nerve terminals on the same junction cause the elimination 

of all but one of them through Hebbian competition. The molecular basis of this 

developmental synapse modulation is still being investigated because it is a model for 

how the nervous system achieves the proper synaptic connectivity and function. The 

study of the vertebrate neuromuscular junction has proven useful to understand the 

carefully regulated process of axon withdrawal, locally regulated in the synaptic site by 

the nerve terminals themselves, the postsynaptic muscle cell and the Schwann cells. In 

this review, we summarize the multiple factors that have been implicated in axonal 

competition and synapse elimination. 

 

Key words: postnatal synapse elimination, axonal competition, neuromuscular junction 

polyneuronal innervation. 

 
 
 
 

Introduction 

Proper synaptic connectivity is essential for the precise function of the nervous 

system. The well-orchestrated synaptic circuits present in the adulthood have been 

rearranged during development to achieve the complex and accurate neural function. 

During mammalian development, several neurons contact with a target cell and make 

multiple synaptic connections although most of them disappear during early postnatal 

life. The synaptic pruning process takes place without neuron death [1]. This 

physiological phenomenon was first described at the neuromuscular junction (NMJ) in 

mammals [2] and thereafter it has been observed in many parts of the central nervous 

system [3]. Hebbian competition between axons with different activities leads to the loss 

of roughly half of the synapses initially produced, so connectivity is refined and 

specificity gained. 

The vertebrate NMJ is a useful model for studying the synaptic elimination 

mechanism, which includes elimination and remodeling of existing synapses during the 

initial postnatal development. At birth, each skeletal muscle cell is innervated by several 

motoneurons but, in a short period of time (a few weeks in rodents), all but one of those 

axonal branches are withdrawn (figure 1). This loss of synapses and axons is thought to 

be based in a competitive process between axons innervating the same muscle fiber [1,4]. 

It has been demonstrated that synaptic activity is essential to initiate synapse loss and the 

mechanism appears to depend on the relative activity patterns of the competing inputs 

[5,6], with the more active input gaining synaptic territory and the less active input 

retracting [7–10]. 

What are the signals involved in the synapse elimination process? Many studies 

have described the detailed sequence of the withdrawal mechanism. However, although 

several regulatory factors have been involved, it remains unknown how do they articulate 

to regulate synaptic competition and elimination during development. 

https://www.sciencedirect.com/science/article/pii/S0896627304007184#FIG1


Axon withdrawal is a carefully regulated process 

At birth, the branches of different inputs, placed at the same NMJ, intermingle and 

occupy areas nearly equal. At the functional level, these inputs have similar strengths [11] 

but their fate is not yet determined and requires the subsequent competitive mechanism 

that causes synapse loss. From this moment, the surplus of synaptic connections is 

removed in a carefully regulated way. Observing the dynamic of the elimination process 

(mainly by in vivo fluorescent time lapse imaging), the axonal branches in process of 

withdrawing are shown to suffer distal-to-proximal retraction (accompanied by the 

formation of a retraction bulb) without degeneration and are resorbed into the parent axon 

[12–14]. The gradually vacated contact sites are mostly reoccupied by the axon that 

ultimately remains, increasing thus its synaptic area [14,15]. The location changes 

between competing axons occur in parallel with the acquisition of different synaptic 

strength, which precedes the withdrawal of the weaker input/s [11]. However, sometimes, 

a “flip-flop” mechanism is observed, in which inputs initially occupying larger spaces 

finally retreat and vice versa [14], indicating that axons are highly dynamic. 

Over the first several postnatal weeks, the number of junctions that are 

polyinnervated gradually declines, showing temporal differences between different 

muscles [16,17]. Moreover, elimination is also asynchronous between fibers belonging to 

the same muscle, with some NMJs remaining polyinnervated while other junctions are 

monoinnervated [17]. This withdrawal is asynchronous in another sense: different 

collateral axons of the same motorneuron innervating several fibers can be observed, at a 

particular time, at different stages of withdrawal [12]. This evidence indicates that 

synapse elimination is locally regulated at each NMJ site, probably with the involvement 

of the postsynaptic cell and the terminal Schwann cells in the process. 

 

Postsynaptic cell as intermediary 

The distribution of acetylcholine receptors (AChR) within and around the 

neuromuscular junction changes dramatically during the first postnatal weeks at the same 

time polyneuronal innervation is being eliminated. Axon withdrawal at each NMJ is 

contemporaneous with and may be related to the transformation of the postsynaptic AChR 

cluster from a unique plaque-shaped site where multiple axons converge to the branched 

pattern seen some weeks later [18–21]. This evidence reinforces that the postsynaptic cell 

may be intermediary in axonal competition. 

A careful examination of the time course of loss of innervation and the 

disappearance of postsynaptic receptors reveals that there is a degree of independence 

between these two processes [20–22]. A considerable decrement in polyneuronal 

innervation occurs at a time when relatively little loss of the postsynaptic AChR can be 

demonstrated [20]. On the other hand, local receptor loss has been observed before the 

corresponding axon loss [18,23]. This outcome maintains the idea that changes in the 

postsynaptic cell may occur before the axon has withdrawn and implies that pre- and 

postsynaptic changes in developmental synapse elimination are closely coordinated. 

 

Terminal Schwann cells as intermediary 

 Non-myelinating terminal Schwann cells (tSC) at the NMJ play a role in synapse 

elimination (reviewed by [24]). At birth, the several tSCs present at each endplate branch 

are interdigitate extensively without delimiting territories, as they do at mature junctions. 



Their processes separate nerve terminals from each other and can directly appose AChRs 

in the muscle cell membrane [25,26]. A detailed electron microscopic study showed that 

tSC contribute to synapse elimination by performing a random disconnection of the 

converging immature axons from the muscle fiber and even attacking them 

phagocytically [26]. This evidence suggests a model in which the activity of tSCs may 

promote synapse elimination by creating vacant synaptic sites that can be reoccuppied by 

the competing terminals [24]. It has been described that a factor that controls the 

participation of tSCs in the synapse loss process is a motor axon-tethered isoform of 

neuregulin1 (NRG1-III) [27] contributing, thus, to the multifactorial regulation of the 

process. However, not only tSCs are involved in the synapse loss mechanism. The non-

terminal myelinating SCs are related to the glial isoform of neurofascin (Nfasc155) [28] 

and the Grb2-associated binder 1 (Gab1), the latter required for NRG1-induced peripheral 

nerve myelination [29], and both molecules are necessary for postnatal remodeling of 

synaptic circuitry. 

 

Activity-dependence of synapse elimination 

Synapse elimination has been extensively described as an activity-dependent 

process (reviewed by [10,30]). It is inhibited by the block of neuromuscular activity and 

it accelerates by through nerve electrical stimulation [31]. However, asynchronous 

activation of the postsynaptic cell could be a fundamental feature to determine which 

axon wins and which loses [5,6,10,32–34]. Hebbian competition between nerve endings 

with different activities would result in the elimination of the less active input and the 

gain of synaptic territory of the more active input [7–10,35]. 

The NMJ is a cholinergic synapse and it has been proposed that acetylcholine 

mediates this activity-dependent process [36]. However, glutamatergic transmission is 

also present at the NMJ [37,38]. In particular, glutamate is derived from the nerve 

terminal whereas NMDA receptors are postsynaptic. It has been determined that NMDA 

signaling in the NMJ enhances synapse elimination during the first two postnatal weeks 

[39]. Therefore, the activity-dependent process of synapse loss might have to coordinate 

cholinergic and glutamatergic neurotransmission. In addition, other metabotropic 

receptors activated in the context of synaptic activity also play a role in synapse 

elimination (see later; [22,40]). However, other evidence showed that activity is not 

decisive on the synapse elimination process [41–43]. Therefore, synapse elimination, 

although controlled by different activity levels between competing motoneurons, is a 

complex mechanism that depends on multiple factors. 

 

Molecular factors involved in synapse elimination 

The cell mechanism leading to the massive circuit changes occurring during 

postnatal development is not fully known as well as its molecular drivers. It was first 

suggested that endogenous calcium-dependent proteases released within the synapse may 

be involved in nerve terminal destabilization [44–46]. Specifically, the naturally 

occurring serine protease thrombin mediates the activity-dependent synapse loss at the 

NMJ [44,47,48], probably by destabilizing AChR clusters [49]. Moreover, thrombin may 

affect synapse elimination via protein kinase C activity [33,48]. The serine-threonine 

protein kinases A (PKA) and C (PKC) have been extensively involved as mediators of 

the selective activity-dependent synapse reduction vs stabilization [20,34,50]. In 

particular, PKC activation destabilizes synapses whereas PKA stabilizes them [51]. 

Activation of PKA and PKC have opposite effects on AChR stability and their balance 



may play some role in synapse loss [52]. In fact, it has been hypothesized a kinase-based 

model for Hebbian synapse loss based in spatially specific and opposing actions of the 

PKCθ isoform and PKA. A localized positive effect of activating a given input to the 

muscle (mediated by PKA), can neutralize the general, negative, synapse-eliminating 

effect (mediated by PKC) resulting from the input activation. These effects may result in 

activity-dependent alterations of synaptic connectivity at both the nerve inputs and the 

postsynaptic nAChR clusters [51,53]. In fact, several metabotropic receptors present in 

the NMJ (mainly neurotrophic, muscarinic and purinergic receptors, see later) that have 

been related to synapse elimination [22,54,55] converge on PKC and PKA [56]. 

It has been proposed that active synaptic sites can destabilize inactive synapses in 

their vicinity by competing for a trophic factor secreted by the postsynaptic cell in limited 

supply [57,58]. The various neurotrophins expressed in skeletal muscle [brain-derived 

neurotrophic factor (BDNF), neurotrophin (NT)-4, and NT-3] mediate their effects by 

binding to two types of cell surface receptors in the motor nerve terminals, p75NTR 

receptor and a related family of tyrosine protein kinase receptors (Trks). The 

neurotrophins and their receptors are involved in both ACh release and axonal retraction 

during postnatal axonal competition and loss [40,59,60]. Their signaling pathways have 

a different spatial and temporal expression during development and thus may contribute 

differently to the synapse loss [61–64]. It has been  described a model in which pro-BDNF 

and mature mBDNF serve as potential “punishment” and “reward” signals for inactive 

and active terminals, respectively [60]. In relation with this, the blockade of the BDNF-

receptor trkB during synapse elimination, results in an initial delay (suggesting increased 

but unresolved competition) finally followed by an acceleration of axon loss [59]. Also, 

NT-3 is involved in the developmental mechanism that eliminates redundant synapses 

[63]. Ciliary neurotrophic factor (CNTF) promotes the retention of polyneuronal 

innervation of developing skeletal muscle fibers. Glial cell line-derived neurotrophic 

factor (GDNF) has an important effect on synapse elimination [12] although it does not 

acutely modulate transmitter release during the developmental process of synapse 

elimination [62]. 

There is evidence indicating that, in addition to trkB,  presynaptic autoreceptors 

(muscarinic acetylcholine receptors –mAChR- and adenosine receptors –AR-) play an 

important role by allowing the nerve terminals to communicate directly during the 

competition in the NMJ [22,40,56,65]. mAChR may mediate the direct competitive 

interaction between nerve endings because their different activity-dependent 

acetylcholine (ACh) release [55,66,67]. Therefore, the more active endings may punish 

the less active ones or reward themselves [40]. However, as stated, not only differences 

in the amount of activity between competing  terminals but also their timing are important 

because asynchronous activity promotes synapse elimination whereas synchronous 

activity prevents it [10]. The weakest nerve endings (those that evoke endplate potentials 

(EPP) with the least quantal content) in polyinnervated junctions seem to have an ACh 

release inhibition mechanism, based on muscarinic autoreceptors coupled to PKC and 

voltage-dependent calcium channels (VDCC), which can depress the ACh release 

capacity in these endings and may contribute to functionally disconnect them [55,66–68]. 

In this context, it has been showed that the cooperation of M1, M2 and M4 muscarinic 

subtypes favors axonal competition at the end of the first postnatal week and promotes 

the full sequence of axonal loss and synapse elimination shortly thereafter [22]. 

However, an axon that fails and is eliminated from one NMJ can win the 

competition at another [12], which suggests the importance of local effectiveness with 

the involvement of other signaling pathways and postsynaptic muscle cell-derived 



factors. At least, trkB signaling plays this role and cooperates with muscarinic signaling 

favoring synapse elimination [22,59,66]. In addition, ATP and adenosine release 

promotes stabilization of the neuromuscular junction and may play a role in activity-

dependent synaptic modification during development [69]. In particular, adenosine 

receptors (A1 and A2A) are involved and cooperate with other signaling [54]. Recently, it 

has been identified an unexpected role for the major histocompatibility complex class I 

(MHCI) in the elimination of neuromuscular synapses during development [70] extending 

thus the factors involved in the process. Specifically, developmental synapse elimination 

is promoted by specific immune proteins, members of MHCI. 

Several studies have provided fundamental insights into among the importance of 

the temporal activation of several molecular factors to achieve the naturally occurring 

synaptic remodeling during the postnatal development (70, 34, 39 22, 40). This evidence 

indicates that between the first and second postnatal weeks there is a crucial period for 

synapse elimination. 

It is evident that neuromuscular developmental synaptic elimination is a 

multifactorial process in which most molecular changes are related with changes in 

signaling pathways that communicate the synaptic cells. The phosphorylating activity of 

kinases, as PKC and PKA, on exocytotic proteins in the axons, and, in the postsynaptic 

receptors may be important in modulating synaptic functionality and, therefore, stability 

during the process.  

 

 

Conclusion 

Developmental activity-dependent Hebbian synaptic plasticity is of central 

interest for neuroscience. The postnatal synaptic elimination is essential to achieve the 

proper synaptic connectivity and function of the nervous system. The study of the 

vertebrate NMJ has been useful to increase the knowledge about the carefully regulated 

process of axon withdrawal, locally regulated and in which postsynaptic muscle cell and 

the tSC contribute. Synapse elimination, although controlled by different activity levels 

between competing motoneurons, is a complex mechanism that depends on multiple 

factors related with several signaling. Finally, the advances in this field will be of great 

interest to determine which molecular pathways are shared by the different forms of 

nervous system plasticity as developmental synapse elimination, learning, aging, injury 

and disease adaptation, and regeneration. 

 

 

 

 

 

 

 

 

 



Legend of the Figure 1. 

 

Synapse elimination removes redundant connections to transform the newborn 

polyinnervated system into the adult monoinnervated neuromuscular junctions. 

A. Circuitry editing depends mostly on synaptic activity and is a highly dynamic local 

process controlled by multiple factors and in which the postsynaptic cell and the terminal 

Schwann cell are involved. 

(a) At birth the branches of different inputs, placed at the same AChR oval postsynaptic 

plaque-shaped site, intermingle and the areas occupied are nearly equal. These inputs 

have similar strengths. Several tSCs are present at each NMJ and interdigitate extensively.  

(b) From this moment, the surplus of synaptic connections is removed in a carefully 

regulated way. The axonal inputs are eliminated by gradually vacating their synaptic 

contact sites and the axon that remains gradually occupies many of the synaptic sites that 

were previously occupied by the lost axons. In some cases, inputs initially occupying 

large areas can begin to retreat and smaller terminals take over the vacated space (*). 

Retraction bulbs form at the end of retreating axonal branches (**), which are reabsorbed 

into the parent axon. The postsynaptic site develops one or more AChR-free areas that 

are non-innervated. The competing axons acquire different synaptic strength, which 

precedes the withdrawal of the weaker input/s.  

(c) Finally, all but one inputs are eliminated and each muscle fiber is innervated in its 

branched AChR endplate by only one input. 

B. Confocal image showing several NMJs at postnatal day 9 immunostained in green with 

neurofilament-200 and in red with rodamine-alpha-bungarotoxin. Several degrees of 

polyinnervation are observed. *monoinnervated, **doubly and ***triply innervated 

NMJs. Arrow indicates a retraction bulb. Scale bar: 10 m. 
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