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Abstract. Upon UV light absorption, 4-aminobenzonitrile undergoes an 

ultrafast radiationless decay process from a charge-transfer state to a 

locally-excited state. This pathway proceeds through an extended seam of 

conical intersections between the second- and first-excited singlet 

electronic states. Quantum dynamics simulations show that planar 

geometries dominate the earlier times (< 20 fs), after which the whole seam 

becomes explored, as the wavepacket spreads and breathes along both 

sides of the unstable ridge with respect to the amino-bending coordinate.  

1 Introduction 
 

4-aminobenzonitrile (ABN), and its N-dimethyl derivative, DMABN [1] are 

well-known prototype systems for studying intramolecular charge transfer 

(ICT) in electron donor/acceptor molecules. Despite their chemical 

similarity, their luminescent patterns are quite different according to the 

environment: ABN shows single fluorescence in any solvent (normal band), 

whereas DMABN exhibits normal fluorescence in non-polar solvents but 

dual fluorescence in polar ones (normal and anomalous bands) [2, 3]. The 

sensitivity of ABN derivatives to their environment makes them good 
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candidates as fluorescent probes, chemical sensors, molecular switches, or 

electro-optical switches [4, 5, 6, 7, 8].  

 

It is well-established that the normal band is originated from a locally-

excited (LE) state, while the anomalous band is due to a charge-transfer 

(CT) state, with a large dipole moment that is stabilized in polar solvent 

environments. The exact structure of the species responsible for the 

anomalous band and the mechanism that populates them are still 

controversial due to contradictory arguments, based on both experimental 

observations and theoretical calculations, which support different models 

and hypotheses [1, 3, 9, 10, 11]. 

 

Three received models have been proposed regarding the structure of the 

luminescent CT species: the planar ICT model (PICT) [12], the twisted one 

(TICT) [10, 13], and the partially twisted or pretwisted one (pTICT) [14]. It 

seems sufficiently proven that the PICT and TICT species actually 

correspond to two minimum-energy points in the potential-energy surface 

(PES) of the excited CT state in both ABN and DMABN, but their respective 

roles in the fluorescent spectra remain to be clarified. A fourth model, the 

rehybridized ICT (RICT) [ 15 ], is thought to be a stable species 

corresponding to a πσ* excited state but is nowadays discarded as a 

luminescent species [16, 17, 18, 19].  

 

The ICT mechanism is triggered upon UV light absorption, which populates 

first the S2 state of CT character [20]. The subsequent sequence of steps 

leading to the S1 PES (with both LE and CT regions) until the luminescent 

species are formed is still under discussion. Gómez et al. proposed the 

following mechanism in 2005 [20]. After excitation to the S2 state, the 
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system relaxes to the PICT minimum. The system follows then a barrierless 

pathway along the amino-bending coordinate to the optimized S2/S1 conical 

intersection (denoted CI-Cs). Because of the extended conical intersection 

seam, ultrafast radiationless decay from S2 to S1 can take place at various 

torsion angles of the amino group leading either to the LE or the TICT 

geometries on S1. Experimental works suggest initial production of the LE 

species on S1 through internal conversion from S2 and later equilibration 

with a CT species on S1 [9]. 

 

Park et al. reported recently an experimental study based on highly time-

resolved fluorescence spectra (TRFS) over the whole emission domain of 

DMABN in acetonitrile [18]. Such accurate measurements provide valuable 

information about the dynamics of the ICT process free from the 

interferences of the solvent reorganization and vibrational relaxation 

dynamics that occur on the same time scale. The experimental techniques 

used in that work also give access to an analysis of the ultrafast events that 

occur within the first few femtoseconds. From their observations it is 

concluded that, after photoexcitation to the S2 state (CT), there is significant 

internal conversion to the S1 state in less than 30 fs for geometries that are 

still quasiplanar, thus in the LE region. A similar ultrafast mechanism was 

also proposed in a previous work by the McCamant group [21, 22].  

 

Computational studies carried out on ABN and DMABN have shown that the 

topographies of the S2 and S1 PESs of both systems are similar, but small 

energetic changes are suspected to induce a different interplay between the 

LE and CT species and lead to either normal or dual fluorescence [3, 20]. 

The initial steps of the deactivation mechanism, though, are expected to be 
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analogous in both systems, so the experimental conclusions, derived by 

Park et al. [18] for DMABN, should hold in a qualitative way for ABN as well.  

 

In a previous work [23] on ABN, we have shown that ultrafast production of 

the LE species in S1 can occur efficiently via S2/S1 internal conversion 

involving a newly-investigated planar conical intersection (denoted CI-C2v), 

both in the gas phase and a polar solvent. Although this conical intersection 

is not the lowest-energy one within the S2/S1 intersection seam, it is easily 

accessible from the Franck-Condon point both geometrically and 

energetically. In other words, the system is able to deactivate first upon 

involving coordinates associated to such in-plane skeletal deformations in a 

first stage, while bending and twisting motions may occur on longer time 

scales once vibrational energy is redistributed. Curchod et al. did recently a 

study on DMABN [24] using time-dependent DFT combined with Multiple-

Spawning dynamics. While their molecular system (DMABN) is slightly 

different from ours (ABN), they have reached similar conclusions: ultrafast 

transfer from S2 to S1 can occur without torsion of the amino group.  

In the present work, we investigate in more detail the competition between 

the deactivation pathways through a planar conical intersection, CI-C2v, and 

through the low-lying Cs one, CI-Cs, so as to provide further information 

about the ultrafast process that populates the LE state almost immediately 

after the initial photoexcitation of the CT state. Our objective is to 

determine whether deactivation occurs specifically around CI-C2v, if the 

system rather bifurcates early on towards CI-Cs, as suggested by Gómez et 

al. [20], or if the situation is intermediate, with significant delocalization 

along the amino-bending coordinate so that the wavepacket will reach the 

whole portion of the S1/S2 seam connecting the bent conical intersection to 

the planar one at similar times.  
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2 Computational Details 
 

The topographies of both coupled PESs involved in the initial steps of the 

process was first determined from a CASSCF(12,11)/cc-pVDZ study using 

the Gaussian 09 package [25]. Energies in these regions were further 

refined at the CASPT2 level with the Molcas 7 package [26] so as to include 

the effect of dynamic correlation in the calculations. In our previous study, 

we showed that the effect of a polar solvent on ABN only enhances the 

efficiency of the radiationless decay but does not change the mechanism of 

the ultrafast process under study (< 30fs) [3, 23]. This was not accounted 

for in the present study, as calculations in vacuo seem sufficient to provide 

reliable mechanistic information.  

 

In order to run quantum dynamics calculation with the multilayer version 

[27] of the multiconfiguration time-dependent Hartree (ML-MCTDH) 

method implemented in the Heidelberg MCTDH package [28, 29], analytical 

expressions of quasidiabatic coupled PESs are required, often in the form of 

what is called a vibronic-coupling Hamiltonian (VCH) model [30, 31, 32]. Its 

entries are expressed usually as linear (linear vibronic-coupling model – 

LVC) or quadratic (quadratic vibronic-coupling model – QVC) functions of 

normal Cartesian coordinates originated from the ground-state equilibrium 

geometry (Franck-Condon point). This is the type of approach that we used 

in the present work. However, the main originality of our strategy is that we 

explicitly used analytical relationships between adiabatic data and diabatic 

parameters so as to obtain the latter automatically. Consistently with our 

previous study [23], three diabatic states are involved (corresponding 
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diagonal entries of the electronic-energy matrix: 𝐻11(𝐐), 𝐻22(𝐐), and 

𝐻33(𝐐)). In addition, along some directions or coordinates, the model was 

adjusted to obtain a better description of the conical intersections. We thus 

circumvent numerical fitting procedures that, in some cases, can occur to be 

time consuming and tedious tasks from a technical perspective. Our full-

dimensional models of coupled PESs (39D in the present study) are based 

on CASSCF energies and geometries and further refined to match CASPT2 

data in the gas phase.  

 

The choice of an adequate coordinate system depends on the process under 

study. In particular, for molecular systems with large-amplitude motions, 

normal-mode coordinates are not adequate to describe motions leading far 

from the equilibrium position [33]. Thus, it is often beneficial to describe 

the molecular system with curvilinear coordinates, i.e., distances and 

angles, since they describe large-amplitude motions such as for example 

torsions in a more natural way; in other words, they will provide a simpler 

expression of the PES. Unfortunately, the use of curvilinear coordinates can 

lead to very complicated expressions of the kinetic-energy operator (KEO) 

[34, 35], which can be expressed numerically (but exactly) [36, 37, 38, 39, 

40] or analytically [41, 42, 43, 44, 45]. An analytical approach is more 

practical, as there is no need to compute the numerical the KEO on a grid 

and then fit the results or make further approximations (for example upon 

considering Taylor expansions). However, an analytical expression of the 

KEO is not always compatible with an “MCTDH format” (see below), where 

operators must be written as sums of products of low-dimensional 

functions. Some specific types of coordinates allow this condition to be 

fulfilled, in particular so-called polyspherical coordinates, denoted QPoly [41, 

43, 44], which were indirectly used in this study. However, the actual 
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coordinates, Q, used here to define the model and to run the dynamics were 

obtained after several transformations of the polyspherical coordinates.  

 

 

2.1 Sets of Coordinates 
 

Fig. 1 depicts the polyspherical vectors and subsystems used to define 

relative frames (red: S1; green: S1,1; blue: S2,1; pink: S1,2,1). Subsystems are 

defined so as to avoid numerical issues related to poles due to collinear 

vectors (such as 𝐑1
(1) and 𝐑2

(1,1)) around the reference geometry [45].  

 

 

Fig. 1. Polyspherical vectors and subsystems. 

 

 

Each vector is expressed in terms of spherical coordinates. These 

coordinates, Qpoly, were carefully selected so as to correspond to the most 

relevant motions involved in the photoprocess. In particular, 𝑅1
(1)

 describes 



 8 

the quinoidal stretching, 𝑅2
(2,1)

 the symmetric stretching of the allyl-like 

fragment on the amino side, 𝛾
(2,1)

 the envelope ring-puckering on the 

amino side, 𝛼
(1,2,1)

 the pyramidalization of the C-atom attached to the 

amino group, 𝛾
(1,2,1)

 and 𝜑3
(1,2,1)

 the torsion and pyramidalization of the 

amino group.  

 

 

Then, two transformations are required: (i) the polyspherical coordinates, 

Qpoly, are symmetrized with respect to the C2v point group (see Table 1); 

such symmetrized coordinates, Qsym, make it possible to enforce C2V 

symmetry into ab-initio data (Hessians, gradients) obtained numerically; 

(ii) effective coordinates are defined from a linear transformation of Qsym 

such that a single coordinate is defined according to each conical-

intersection direction (Eq. 1). The remaining linear combinations belong to 

the orthogonal complement. This coordinate change is performed 

automatically with the TNUM program that uses the vectors 𝐑22
LE  and 𝐑33

PICT 

expressed in terms of the symmetrized coordinates,  

 

𝐑22
LE =

𝐐symCI−C2𝑣
− 𝐐symLE

‖𝐐symCI−C2𝑣
− 𝐐symLE

‖
, 

𝐑33
PICT =

𝐐symCI−C2𝑣
− 𝐐symPICT

‖𝐐symCI−C2𝑣
− 𝐐symPICT

‖
, 

Eq. 1 

 

where 𝐐symLE
 and 𝐐symPICT

 are the PICT or the LE minima, respectively, 

and 𝐐symCI−C2𝑣
 is the geometry of C2v conical intersection.  
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Table 1. Variations of the original set of polyspherical coordinates (∆𝐐𝐏𝐨𝐥𝐲 = 𝐐𝐏𝐨𝐥𝐲 −

𝐐𝐏𝐨𝐥𝐲𝟎
) symmetrized with respect to a planar C2v reference geometry (𝐐𝐏𝐨𝐥𝐲 = 𝐐𝐏𝐨𝐥𝐲𝟎

). 

In this, we used a convention where (zy) is the molecular plane (||) and (zx) is the 

perpendicular plane (⊥). 𝑨𝟐 deformations are torsions,  𝑩𝟐 deformations are in-plane 

left-right-breaking motions, and  𝑩𝟏 deformations are out-of-plane up-down-breaking 

motions.  

𝐴1 [𝐶2𝑣 ⇒  𝐶2𝑣] 𝐴2 [𝐶2𝑣 ⇒  𝐶2] 𝐵1 [𝐶2𝑣 ⇒  𝐶𝑠
⊥] 𝐵2 [𝐶2𝑣 ⇒  𝐶𝑠

∥] 

∆𝑅1
(1)

 ∆𝜑4
(1,1)

− ∆𝜑3
(1,1)

2
 

∆𝜑4
(1,1)

+ ∆𝜑3
(1,1)

2
 

∆𝑅4
(1,1)

− ∆𝑅3
(1,1)

2
 

∆𝑅1
(1,1)

 ∆𝜑4
(2,1)

− ∆𝜑3
(2,1)

2
 

∆𝜑5
(1,1)

 ∆𝑅4
(2,1)

− ∆𝑅3
(2,1)

2
 

∆𝑅2
(1,1)

 
∆𝛾

(1,2,1)
+

∆𝜑3
(1,2,1)

2
 

∆𝜑6
(1,1)

 ∆𝑅3
(1,2,1)

− ∆𝑅2
(1,2,1)

2
 

∆𝑅4
(1,1)

+ ∆𝑅3
(1,1)

2
 

∆𝛼
(2,1)

 ∆𝜑4
(2,1)

+ ∆𝜑3
(2,1)

2
 

∆𝜃2
(1,1)

 

∆𝑅5
(1,1)

  ∆𝜑3
(1,2,1)

 ∆𝜃4
(1,1)

+ ∆𝜃3
(1,1)

2
 

∆𝑅6
(1,1)

  ∆𝛼
(1,2,1)

 ∆𝜃5
(1,1)

 

∆𝑅1
(2,1)

  ∆𝛾
(1,1)

 ∆𝜃6
(1,1)

 

∆𝑅2
(2,1)

  ∆𝛾
(2,1)

 ∆𝜃2
(2,1)

 

∆𝑅4
(2,1)

+ ∆𝑅3
(2,1)

2
 

  ∆𝜃4
(2,1)

+ ∆𝜃3
(2,1)

2
 

∆𝑅1
(1,2,1)

   ∆𝜃3
(1,2,1)

− ∆𝜃2
(1,2,1)

2
 

∆𝑅3
(1,2,1)

+ ∆𝑅2
(1,2,1)

2
 

  ∆𝛽
(1,1)

 

∆𝜃4
(1,1)

− ∆𝜃3
(1,1)

2
 

  ∆𝛽
(2,1)

 

∆𝜃4
(2,1)

− ∆𝜃3
(2,1)

2
 

  ∆𝛽
(1,2,1)

 

∆𝜃3
(1,2,1)

+ ∆𝜃2
(1,2,1)

2
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2.2 Quasidiabatic Model of Coupled PESs 

 

The quasidiabatic PESs and couplings are represented as a 3×3 electronic 

Hamiltonian matrix based on a generalization of the VCH model [30]. It 

consists in a real symmetric matrix, 𝐇(𝐐), made of three diagonal potential-

energy functions, 𝐻11(𝐐), 𝐻22(𝐐),  and 𝐻33(𝐐) , and three off-diagonal 

electronic couplings, 𝐻12(𝐐), 𝐻13(𝐐), and 𝐻23(𝐐). In the Franck-Condon 

region the three diabatic states are chosen to correlate with the adiabatic 

ones: state 1 (S0/GS), state 2 (S1/LE), and state 3 (S2/CT).  

 

The non-adiabatic coupling terms between S0 and the other two states can 

be neglected. In other words, 𝐻11(𝐐) is identified to the S0 PES and the 

electronic couplings 𝐻12(𝐐) and 𝐻13(𝐐) are set to zero. The remaining 

coupling, 𝐻23(𝐐), is expanded linearly around 𝐐CI-C2v
, the geometry of the 

C2v conical intersection between S1 and S2, along the derivative coupling 

calculated at this point. The derivative couplings at both the CI-C2v and the 

CI-Cs points are very similar and correspond essentially to a B2/A” Kekulé-

like motion that breaks the left/right symmetry of the molecule, and which 

does not change much all over the seam as illustrated on Fig. 2.  
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Fig. 2. Gradient differences and derivative couplings at CI-C2V (upper panel) and CI-Cs 
(lower panel) calculated at the CASSCF(12,11)/cc-pVDZ level of theory with 0.5:0.5 
state-averaging on S1 and S2.  

 

Note that our procedure can define the gradient of the electronic coupling 

as any linear combination of the two vectors of the branching space rotated 

together such that 𝐻23(𝐐0) = 0 where 𝐐0 is some chosen geometry where 

the states are not degenerate. This point is used as a reference for setting 

the value of the arbitrary mixing angle between both degenerate states at 

the conical intersection. The extra condition thus implies that the adiabatic 

and quasidiabatic representations coincide at 𝐐0 . Here, symmetry 

guarantees that 𝐻23(𝐐) = 0 at all C2v/Cs points (i.e., as long as there is no 

distortion along B2/A” modes). For example, 𝐻23(𝐐PICT) = 0. In practice, 

the B2/A” derivative coupling is identified to the gradient of the electronic 

coupling in the present situation.  

 

As a starting approximation, each diagonal entry was expanded as a 

quadratic form, 𝐻𝑖𝑖 (𝐐) ≈ 𝐻𝑖𝑖
quad(𝐐)  with 𝑖 = 1,2,3 , around a reference 

Gradient Difference 
Derivative Coupling 

Gradient Difference Derivative Coupling 
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geometry, 𝐐ref,𝑖𝑖 , corresponding to the relevant C2V stationary point: 𝐐GS =

𝐐ref,11, 𝐐LE = 𝐐ref,22, and 𝐐PICT = 𝐐ref,33. The quasidiabatic curvatures of 

the diagonal entries, 𝐻𝑖𝑖
quad(𝐐), were obtained from the adiabatic ones at 

those points through a second-order Jahn-Teller procedure (whereby the 

difference between the adiabatic and quasidiabatic second derivatives is 

considered as a second-order effect involving the non-adiabatic coupling).  

 

In a second stage, the curvatures along the two directions 𝐐LE − 𝐐CI-C2v
 

(proportional to 𝐑22
LE , see Eq. 1) and 𝐐PICT − 𝐐CI-C2v

 (proportional to 𝐑33
PICT, 

see Eq. 1) were slightly adjusted to enforce that the two quasidiabatic PESs 

𝐻22(𝐐) and 𝐻33(𝐐) crossed exactly at 𝐐CI-C2v
 and did so with the right 

energy. Fig. 3 shows the agreement between the ab-initio energies and 

those of our VCH model (based on CASPT2 data in the gas phase) for a cut 

along the direction 𝐐PICT − 𝐐CI-C2v
.  
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Fig. 3. C2v pathway along a linear-interpolation coordinate Q linking the PICT point (Q = 
0) to the CI-C2v point (Q = 13). Energy differences are given with respect to the ground-
state minimum. Dashed lines: ab initio; plain lines: model. Ab-initio level of theory: 
CASPT2/cc-pVDZ and MS2-CASPT2 at the CI-C2v point.  

 

In addition, accessing the bent conical intersection (CI-Cs) requires breaking 

the C2v symmetry of the molecule along the non-totally-symmetric bending 

motion of the amino group, 𝛼
(1,2,1)

. This coordinate, the first Euler angle of 

the sub-system (1,2,1), describes the motion of the amino group (see Fig. 1). 

In other words, there is a pair of equivalent bent conical intersections, 

denoted CI-C𝑠
+ and CI-C𝑠

−, where the amino group is either up or down with 

respect to the molecular plane, as shown on Fig. 4.  

 

4.2$

4.7$

5.2$

5.7$

6.2$

6.7$

0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$ 18$ 20$

Δ
E

 (
e

V
) 

PICT – CI-C2V linear interpolation coordinate (arb. unit) 

LE (S1) 

CT (S2) 
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Fig. 4. Optimized geometry at the CASSCF(12,11)/cc-pVDZ level of theory of the pair of S2/S1 conical 
intersections denoted CI-𝐂𝒔

+ (a) and CI-𝐂𝒔
− (b).  

 

To account for the instability of the C2v pathway (see Fig. 5), we refined the 

expression of 𝐻𝑖𝑖 (𝐐) (see Eq. 2) for 𝑖 = 2,3 upon using a switch-type 

function denoted 𝐹switch (see Eq. 3). Its purpose is to modify symmetrically 

the curvature with respect to the amino-bending coordinate, x (x is one of 

the coordinates Q), and enforce that 𝐻22(𝐐) and 𝐻33(𝐐) intersect exactly at 

𝐐CI-CS
+  and 𝐐CI-CS

−  with the right energy. The switch-modified diagonal 

quasidiabatic PESs and 𝑓𝑖𝑖 , the new curvatures that controls the conical 

intersection (CI-CS
+ and CI-CS

−) energies, read:  

 

𝐻𝑖𝑖 (𝐐) = 𝐻𝑖𝑖
quad(𝐐)

+
1

2
𝑓𝑖𝑖 (𝐹switch(𝑥) − 𝐹switch(0)) (

tanh (0.5 ∙ 𝑥)

0.5
)

2

. 

Eq. 2 

 

The value of 𝑓𝑖𝑖  is obtained at 𝐐CI-CS
+  and thus at 𝑥CI-CS

+  (or 𝐐CI-CS
−  and 𝑥CI-CS

−) 

upon imposing 𝐻𝑖𝑖 (𝐐CI-CS
+  ) = 𝑉 (𝐐CI-CS

+  ) in Eq. 2, where 𝑉 (𝐐CI-CS
+  ) is the 

ab-initio energy of the conical intersection at 𝐐CI-CS
+ ,  

 

(a) (b) 
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𝐹switch(𝑥) =
1 + tanh (𝑥 −

𝑥CI-CS
+

2 )

2
+

1 − tanh (𝑥 +
𝑥CI-CS

+

2 )

2
. 

Eq. 3 

 

Fig. 5 shows the agreement between the ab-initio energies and those of our 

VCH model (based on CASPT2 data in the gas phase) along the amino-

bending direction. The largest difference between the ab-initio data and the 

model is 0.04 eV, which is within the range of error for high-level ab-initio 

methods.  

 

 

Fig. 5. Cs pathway along a linear-interpolation coordinate Q linking the PICT point (Q = 
0) to the pair of CI-Cs+ and CI-Cs– points (Q = +8 and –8). Energy differences are given 
with respect to the ground-state minimum. Dashed lines: ab initio; plan lines: model. Ab-
initio level of theory: CASPT2/cc-pVDZ and MS2-CASPT2 at the CI-Cs+/– points.  
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2.3 ML-MCTDH 

 
The principle of the MCTDH method is the use of the following 

wavefunction ansatz, Eq. 4, to solve the time-dependent Schrödinger 

equation for a system with M degrees of freedom, 𝐐 = [Q1 ⋯ Q𝑀]. The 

nuclear wavefunction is expanded in terms of time-dependent direct 

products of orthonormal time-dependent Single Particle Functions (SPFs), 

denoted 𝜑𝑗𝐾

(𝐾)
, where both the coefficients and the basis functions are 

optimized (as in an MCSCF electronic wavefunction),  

 

𝜓nuclear(Q1, ⋯ Q𝑀, 𝑡) = ∑ … ∑ 𝐴𝑗1,…,𝑗𝑀
(𝑡) ∏ 𝜑𝑗𝐾

(𝐾)
(Q𝐾, 𝑡)

𝑀

𝐾=1

𝑛𝑀

𝑗𝑀=1

𝑛1

𝑗1=1

. 
Eq. 4 

 
The SPFs are themselves expanded in terms of primitive basis functions,  

 

𝜑𝑗𝐾

(𝐾)
(Q𝐾, 𝑡) = ∑ 𝐶𝑗𝐾;𝑣𝐾

(𝐾) (𝑡)

𝑁𝐾

𝑣𝐾=1

𝜒𝑣𝐾

(𝐾)
(Q𝐾). 

Eq. 5 

 
Therefore, MCTDH can be seen as a two-layer scheme with time-dependent 

coefficients: 𝐴𝑗1,…,𝑗𝑀
(𝑡) at the top layer, and sets of second-layer time-

dependent coefficients 𝐶𝑗𝐾;𝑣𝐾

(𝐾) (𝑡) for each degree of freedom.  

 
The size of the SPF basis can be further reduced by combining the physical 

coordinates [Q1 ⋯ Q𝑀]  into logical coordinates (also called combined 

modes) [𝐐1
1 ⋯ 𝐐𝑃

1 ], such that each logical coordinate, 𝐐𝐾
1 , comprises one or 

several of the physical coordinates, as 𝐐𝐾
1 = [Q1𝐾

⋯ Q𝑑𝐾
]. The superscript 1 

in the notation represents the layer number of the combined modes 

(notation introduced to make explicit the multilayer formulation).  

 

The MCTDH nuclear wavefunction with combined modes reads  
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𝜓nuclear (𝐐1
1, ⋯ 𝐐𝑃

1
, 𝑡) = ∑ … ∑ 𝐴1;𝑗1,…,𝑗𝑃

1 (𝑡) ∏ 𝜑𝑗𝐾

(1;𝐾)
(𝐐𝐾

1
, 𝑡)

𝑃

𝐾=1

𝑛𝑃

𝑗𝑃=1

𝑛1

𝑗1=1

. 
Eq. 6 

 

The time-dependent basis functions 𝜑𝑗𝐾

(1;𝐾)
 are now multidimensional. 

Introducing mode combination implies that the computational effort is 

transferred from the propagation of a large vector of 𝐴1;𝑗1,…,𝑗𝑃

1 (𝑡) 

coefficients with one-dimensional SPFs, to a shorter vector of coefficients 

but multidimensional SPFs. Some experience and knowledge of the system 

under study is required to find an efficient mode-combination scheme for 

the study. For example, combining modes with similar frequencies is a 

possible strategy, as shown by O. Vendrell et al. [27].  

 
The mode-combined SPFs expressed in the primitive basis are given by  

 

𝜑𝑗𝐾

(1;𝐾)
(𝐐𝐾

1
, 𝑡) = ∑ … ∑ 𝐶𝑗𝐾;𝑣1𝐾

…𝑣𝑑𝐾

(2;𝐾) (𝑡) ∏ 𝜒𝑣𝑖𝐾

(𝐾,𝑖𝐾)
(Q𝑖𝐾

)

𝑑𝐾

𝑖=1

𝑁𝑑𝐾

𝑣𝑑𝐾

𝑁1𝐾

𝑣1𝐾

. 
Eq. 7 

 
In a high-dimensional system one should combine groups of degrees of 

freedom into high-dimensional SPFs in order to make the size of the vector 

of coefficients in Eq. 6 manageable (i.e., to get a wavefunction propagation 

that is reasonable in terms of computation time). However, the combined 

SPFs are too large to be efficiently propagated. The ML-MCTDH layering 

scheme is a very flexible way of dealing with this issue. One treats the 

combined mode as a “sub-configuration” involving smaller groups of logical 

coordinates. This introduces a new layer of coefficients, the size of which is 

manageable. The procedure can be repeated over and over until the 

primitive degrees of freedom are reached.  
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According to standard use, we may refer to the one-layer scheme as the 

standard method (primitive basis), to the two-layer scheme simply as 

MCTDH, and to deeper layering schemes as ML-MCTDH.  

 
Our system, consisting in 39 nuclear coordinates, was described with up to 

a five-layer wavefunction, and for each layer eight SPFs were used except 

for the last layer. For the primitive basis sets (the so-called last layer) we 

used, as usual, the discrete variable representation (DVR) with 40 grid 

points corresponding to harmonic-oscillator basis sets. The vibrational 

ground state on S0 was obtained with the relaxation procedure 

implemented for the ML-MCTDH method.  

 

As shown in the previous section, to adjust the linear vibronic-coupling 

model, the coordinates used in the dynamics are defined as linear 

combinations of polyspherical coordinates. Therefore, the analytical KEO is 

not simply expressed as a sum of products and it cannot be used with 

MCTDH directly. To overcome this difficulty and with the help of TNUM [38], 

we generated a Taylor expansion of the metric tensor, G(Q), around the 

reference geometry of S0. In this study, we only used a zero-order 

approximation. In other words, the G-matrix will be considered constant all 

over the coordinate grid.  

 

3 Results and Discussion 
 

Fig. 6 shows a comparison of the evolution of the quasidiabatic populations 

obtained with: (i) our previous model [23], essentially focused on the 

description of the deactivation pathway through the C2v conical 
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intersection; (ii) the present model, which also describes correctly the C2v-

breaking motion along the amino-bending direction that leads to the Cs 

conical intersection.  

It shall be noted that the generalised VHC model and the quantum 

simulations in the present study enable to describe only the short-time 

(sub-picosecond) internal-conversion process. In addition, in order for the 

system to return to the low-lying electronic state and thus reach thermal 

equilibrium, other processes must be taken into account, such as other 

internal-conversion mechanisms, internal vibrational redistribution, 

fluorescence, solvent effect... 

 

Fig. 6. Time evolution of the quasidiabatic populations of the LE and CT electronic states 

in the gas phase. Coupled PES model based on CASPT2 data. Plain line: model describing 

both bent and planar deactivation pathways; dashed line: model describing the planar 

deactivation pathway [23]. 
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One can notice that the transfer of quasidiabatic population between the CT 

and LE electronic states is faster when both deactivation pathways are 

described on the same footing (plain line) but it becomes similar on longer 

time scales (after 50-100 fs).  

 

However, this result is global and does not discriminate the relative 

efficiencies and roles of the two different conical intersections (i.e., CI-Cs 

and CI-C2v) with respect to the deactivation process. To this end, we defined 

different regions along the amino-bending coordinate, centred on each 

conical intersection and with borders located midway between CI-C2v and 

CI-Cs+/–. The partial populations integrated within these regions will be 

called local quasidiabatic populations (for each specific conical 

intersection) and their time evolutions are presented in Fig. 7 for the LE 

state.  

 

 

Fig. 7. Time evolution of the local quasidiabatic populations transferred to the LE state 

in the gas phase. Coupled PES model based on CASPT2 data. Plain line: local population 
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transferred around CI-C2v; dashed line: local population transferred around both CI-Cs+ 

and CI-Cs-. 

 

The evolution of the local quasidiabatic populations within the inner 

(around CI-C2v) and outer (around CI-Cs+/–) regions shows two sequences. 

The first sequence concerns times less than 20fs: the transfer of population 

occurs mainly in the vicinity of CI-C2v (sharp peak corresponding to a 

maximum of 24% of population transferred to LE around CI-C2v whereas 

population transferred around both CI-Cs+ and CI-Cs– increases more 

smoothly, up to 16% within the same period of time; see Fig. 7). After 20 fs, 

the local quasidiabatic population within the outer region becomes larger 

and evolves as a mirror image of the local quasidiabatic population within 

the inner region. One can notice that the global quasidiabatic population no 

longer evolves after about 25 fs (green plain line in Fig. 6). This indicates 

that the width of the wavepacket has now increased enough for both 

regions to be populated significantly and only exhibits a slight oscillatory 

breathing along the amino-bending direction. In summary, the non-

adiabatic transfer of population occurs sequentially along the seam. Before 

20 fs, the wavepacket travels on a ridge along the planar deactivation 

channel with no significant spreading. After 20 fs, delocalization along the 

amino-bending coordinate implies that the whole seam is reached. 

Comparison with the results our previous simulations shows that 

accounting for this spreading makes the transfer of population a bit faster 

but not more efficient overall.  
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4 Conclusions 
 

In this study, we have performed quantum dynamics simulations on ABN in 

the gas phase in order to describe the competition between two 

deactivation pathways from the initially-excited S2 state to the luminescent 

S1 state and provide further information about the ultrafast process that 

populates the LE state almost immediately after the initial photoexcitation.  

 

We have developed a full-dimensional (39D) quasidiabatic model of 

coupled PESs based on CASSCF(12,11)/cc-pVDZ data further refined to 

match to CASPT2 data in the gas phase. This model, which describes the 

whole portion of the S2/S1 deactivation seam along the amino-bending 

coordinate, was used to run quantum dynamics simulations with ML-

MCTDH.  

 

Our quantum dynamics calculations clearly indicate that deactivation is 

first localized around the planar conical intersection (CI-C2v) and becomes 

delocalized after about 20 fs along the S2/S1 seam connecting the pair of 

lower-energy amino-bent conical intersections (CI-Cs+ and CI-Cs–) to the 

planar one (centre of the seam). The PICT species on S2 is populated right 

after photoexcitation where it undergoes internal conversion to the LE 

species on S1 very early, mainly through the planar conical intersection. The 

amino-bending motion is not crucial for the overall efficiency of the internal 

conversion. However, delocalization of the wavepacket along the amino-

bending direction implies that the wavepacket explores a larger portion of 

the seam, which makes the deactivation process faster. Such computational 

results are consistent with the recent theoretical work of Curchod et al. on 

the parent system DMABN [24] and the recent experimental observation of 
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Park et al. [18] in DMABN as well where the first deactivation step is 

attributed to quasiplanar motions inducing ultrafast internal conversion 

and direct formation of the LE species in less than 30 fs.  

 

As shown in our previous study [23], this feature is expected to be even 

more efficient in polar solvents than in the gas phase due to the strong 

stabilization of the CT state with respect to the LE state, which results in 

making the conical intersections closer to the Franck-Condon region.  
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Meyer, Comput. Theor. Chem. 990 (2012) 75-89. DOI: 

10.1016/j.comptc.2011.12.015 

[34] A. Nauts, X. Chapuisat, Mol. Phys. 55 (1985) 1287–1318. DOI: 

10.1080/00268978500102031 

[35] X. Chapuisat, A. Nauts, J.-P. Brunet, Mol. Phys. 72 (1991) 1–31. DOI: 

10.1080/00268979100100011 

[36] R. Meyer, Hs. H. Günthard, J. Chem. Phys. 49 (1968) 1510–1520. DOI: 

10.1063/1.1670272 



 26 

                                                                                                                                                                             

[37] M. Harthcock, J. Laane, J. Mol. Spectrosc. 91 (1982) 300-324. DOI: 

10.1016/0022-2852(82)90147-3 

[38] D. Lauvergnat, A. Nauts. J. Chem. Phys. 117 (2002), 8560–8570. DOI: 

10.1063/1.1469019 
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